Skip to content

Latest commit

 

History

History
140 lines (102 loc) · 3.79 KB

README.md

File metadata and controls

140 lines (102 loc) · 3.79 KB

clessnverse

Lifecycle: experimental CRAN status R-CMD-check

clessnverse contains functions for data domestication, analysis and visualization along with functions specific to the research chair’s projects.

Disclaimer

July 2023: clessnverse is no longer under active development.

To avoid breaking dependencies, the package remains available “as is” with no warranty of any kind.

Installation

To install the latest stable version of this package, run the following line in your R console:

remotes::install_github("clessn/clessnverse")

Usage

library("clessnverse") will load the following packages:

Examples

Wrangle data

Normalize a continuous variable between 0 and 1

library(clessnverse)

data <- tibble::tibble(a = c(1, 0, 2, 0), b = c(4, 0, 1, 0))

# Base R
sapply(data, normalize_min_max)
#>        a    b
#> [1,] 0.5 1.00
#> [2,] 0.0 0.00
#> [3,] 1.0 0.25
#> [4,] 0.0 0.00

# Dplyr
library("dplyr")

data %>%
  mutate(across(c(a, b), normalize_min_max))
#> # A tibble: 4 × 2
#>       a     b
#>   <dbl> <dbl>
#> 1   0.5  1   
#> 2   0    0   
#> 3   1    0.25
#> 4   0    0

Analyse data

run_dictionary(
  data.frame(colnames(attitude)),
  text = colnames(attitude),
  dictionary = quanteda::data_dictionary_LSD2015
) %>% head()
#> 0.3 sec elapsed
#>   doc_id negative positive neg_positive neg_negative
#> 1  text1        0        0            0            0
#> 2  text2        1        0            0            0
#> 3  text3        0        1            0            0
#> 4  text4        0        1            0            0
#> 5  text5        0        0            0            0
#> 6  text6        1        0            0            0

Visualise data

library("clessnverse")

p  <- ggplot2::ggplot(data = ggplot2::mpg) +
  ggplot2::geom_point(mapping = ggplot2::aes(x = displ, y = cty, colour = class)) +
  ggplot2::labs(title = "Look at this graph!",
                subtitle = "What a great theme, eh?",
                caption = "Data: API Twitter \nCLESSN") +
  ggplot2::xlab("x axis label") +
  ggplot2::ylab("y axis label")

p + theme_clean_light()

p + theme_clean_dark()

p  <- ggplot2::ggplot(data = ggplot2::mpg) +
  ggplot2::geom_point(mapping = ggplot2::aes(x = displ, y = cty, colour = class)) +
  ggplot2::labs(title = "Look at this graph!",
                subtitle = "What a great look, eh?",
                caption = "Data: Twitter API \nCLESSN")

p + scale_discrete_quorum(aesthetics = "colour")

Issues and suggestions

You can submit bugs or suggestions in the Issues tab of this repo. To facilitate problem solving, please include a minimal reproducible example of the issue.