We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
(torch) ➜ gitWorkspace nvidia-htop.py Fri Nov 12 08:32:56 2021 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 470.57.02 Driver Version: 470.57.02 CUDA Version: 11.4 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA GeForce ... Off | 00000000:21:00.0 On | N/A | | 41% 67C P2 213W / 370W | 5398MiB / 24234MiB | 36% Default | | | | N/A | +-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+ | GPU PID USER GPU MEM %CPU %MEM TIME COMMAND | | 0 2637 root 725MiB 2.5 0.3 04:35:08 /usr/lib/xorg/Xorg v | | 0 3700 jp 133MiB 5.7 2.3 04:35:05 /usr/bin/gnome-shell | | 0 5077 jp 198MiB 7.9 0.9 04:34:57 /opt/google/chrome/c | | 0 11864 jp 64MiB 1.1 0.5 04:16:50 /snap/code/80/usr/sh | | 0 26251 jp 287MiB 0.1 4.6 01:34:40 python generate.py | | 0 58358 jp 3985MiB 99.8 15.7 47:52 python scripts/train | +-----------------------------------------------------------------------------+
Currently - I'm seeing usage at 16% - 5GB memory of 24GB card. Is there some low hanging fruit to get code to use more resources?
I did take a look here https://towardsdatascience.com/7-tips-for-squeezing-maximum-performance-from-pytorch-ca4a40951259 (only thing that stood out is tensor(init) not calling cuda() directly.)
were there efforts to reduce ram requirements (that I could remove)?
The text was updated successfully, but these errors were encountered:
A simple thing to try is to increase the number of workers in dataloader.
Sorry, something went wrong.
No branches or pull requests
(torch) ➜ gitWorkspace nvidia-htop.py
Fri Nov 12 08:32:56 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.57.02 Driver Version: 470.57.02 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... Off | 00000000:21:00.0 On | N/A |
| 41% 67C P2 213W / 370W | 5398MiB / 24234MiB | 36% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| GPU PID USER GPU MEM %CPU %MEM TIME COMMAND |
| 0 2637 root 725MiB 2.5 0.3 04:35:08 /usr/lib/xorg/Xorg v |
| 0 3700 jp 133MiB 5.7 2.3 04:35:05 /usr/bin/gnome-shell |
| 0 5077 jp 198MiB 7.9 0.9 04:34:57 /opt/google/chrome/c |
| 0 11864 jp 64MiB 1.1 0.5 04:16:50 /snap/code/80/usr/sh |
| 0 26251 jp 287MiB 0.1 4.6 01:34:40 python generate.py |
| 0 58358 jp 3985MiB 99.8 15.7 47:52 python scripts/train |
+-----------------------------------------------------------------------------+
Currently - I'm seeing usage at 16% - 5GB memory of 24GB card. Is there some low hanging fruit to get code to use more resources?
I did take a look here
https://towardsdatascience.com/7-tips-for-squeezing-maximum-performance-from-pytorch-ca4a40951259
(only thing that stood out is tensor(init) not calling cuda() directly.)
were there efforts to reduce ram requirements (that I could remove)?
The text was updated successfully, but these errors were encountered: