-
Notifications
You must be signed in to change notification settings - Fork 3
/
LSTMLayer_v2.py
646 lines (565 loc) · 27.9 KB
/
LSTMLayer_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import numpy as np
import theano
import theano.tensor as T
import lasagne
from lasagne import nonlinearities
from lasagne import init
from lasagne.utils import unroll_scan
from lasagne.layers.base import MergeLayer, Layer
from lasagne.layers.input import InputLayer
from lasagne.layers.dense import DenseLayer
from lasagne.layers.recurrent import *
from lasagne.layers import helper
__all__ = [
"LSTMLayer_v2"
]
class LSTMLayer_v2(MergeLayer):
r"""
LSTMLayer_v2(incoming, num_units,
ingate=lasagne.layers.Gate(), forgetgate=lasagne.layers.Gate(),
cell=lasagne.layers.Gate(
W_cell=None, nonlinearity=lasagne.nonlinearities.tanh),
outgate=lasagne.layers.Gate(),
nonlinearity=lasagne.nonlinearities.tanh,
cell_init=lasagne.init.Constant(0.),
hid_init=lasagne.init.Constant(0.), backwards=False, learn_init=False,
peepholes=True, gradient_steps=-1, grad_clipping=0, unroll_scan=False,
precompute_input=True, mask_input=None, only_return_final=False, **kwargs)
A long short-term memory (LSTM) layer.
Includes optional "peephole connections" and a forget gate. Based on the
definition in [1]_, which is the current common definition. The output is
computed by
.. math ::
i_t &= \sigma_i(x_t W_{xi} + h_{t-1} W_{hi}
+ w_{ci} \odot c_{t-1} + b_i)\\
f_t &= \sigma_f(x_t W_{xf} + h_{t-1} W_{hf}
+ w_{cf} \odot c_{t-1} + b_f)\\
c_t &= f_t \odot c_{t - 1}
+ i_t \odot \sigma_c(x_t W_{xc} + h_{t-1} W_{hc} + b_c)\\
o_t &= \sigma_o(x_t W_{xo} + h_{t-1} W_{ho} + w_{co} \odot c_t + b_o)\\
h_t &= o_t \odot \sigma_h(c_t)
Parameters
----------
incoming : a :class:`lasagne.layers.Layer` instance or a tuple
The layer feeding into this layer, or the expected input shape.
num_units : int
Number of hidden/cell units in the layer.
ingate : Gate
Parameters for the input gate (:math:`i_t`): :math:`W_{xi}`,
:math:`W_{hi}`, :math:`w_{ci}`, :math:`b_i`, and :math:`\sigma_i`.
forgetgate : Gate
Parameters for the forget gate (:math:`f_t`): :math:`W_{xf}`,
:math:`W_{hf}`, :math:`w_{cf}`, :math:`b_f`, and :math:`\sigma_f`.
cell : Gate
Parameters for the cell computation (:math:`c_t`): :math:`W_{xc}`,
:math:`W_{hc}`, :math:`b_c`, and :math:`\sigma_c`.
outgate : Gate
Parameters for the output gate (:math:`o_t`): :math:`W_{xo}`,
:math:`W_{ho}`, :math:`w_{co}`, :math:`b_o`, and :math:`\sigma_o`.
nonlinearity : callable or None
The nonlinearity that is applied to the output (:math:`\sigma_h`). If
None is provided, no nonlinearity will be applied.
cell_init : callable, np.ndarray, theano.shared or :class:`Layer`
Initializer for initial cell state (:math:`c_0`).
hid_init : callable, np.ndarray, theano.shared or :class:`Layer`
Initializer for initial hidden state (:math:`h_0`).
backwards : bool
If True, process the sequence backwards and then reverse the
output again such that the output from the layer is always
from :math:`x_1` to :math:`x_n`.
learn_init : bool
If True, initial hidden values are learned.
peepholes : bool
If True, the LSTM uses peephole connections.
When False, `ingate.W_cell`, `forgetgate.W_cell` and
`outgate.W_cell` are ignored.
gradient_steps : int
Number of timesteps to include in the backpropagated gradient.
If -1, backpropagate through the entire sequence.
grad_clipping : float
If nonzero, the gradient messages are clipped to the given value during
the backward pass. See [1]_ (p. 6) for further explanation.
unroll_scan : bool
If True the recursion is unrolled instead of using scan. For some
graphs this gives a significant speed up but it might also consume
more memory. When `unroll_scan` is True, backpropagation always
includes the full sequence, so `gradient_steps` must be set to -1 and
the input sequence length must be known at compile time (i.e., cannot
be given as None).
precompute_input : bool
If True, precompute input_to_hid before iterating through
the sequence. This can result in a speedup at the expense of
an increase in memory usage.
mask_input : :class:`lasagne.layers.Layer`
Layer which allows for a sequence mask to be input, for when sequences
are of variable length. Default `None`, which means no mask will be
supplied (i.e. all sequences are of the same length).
only_return_final : bool
If True, only return the final sequential output (e.g. for tasks where
a single target value for the entire sequence is desired). In this
case, Theano makes an optimization which saves memory.
References
----------
.. [1] Graves, Alex: "Generating sequences with recurrent neural networks."
arXiv preprint arXiv:1308.0850 (2013).
"""
def __init__(self, incoming, num_units,
ingate=Gate(),
forgetgate=Gate(),
cell=Gate(W_cell=None, nonlinearity=nonlinearities.tanh),
outgate=Gate(),
nonlinearity=nonlinearities.tanh,
cell_init=init.Constant(0.),
hid_init=init.Constant(0.),
backwards=False,
learn_init=False,
peepholes=True,
gradient_steps=-1,
grad_clipping=0,
unroll_scan=False,
precompute_input=True,
mask_input=None,
only_return_final=False,
**kwargs):
# This layer inherits from a MergeLayer, because it can have four
# inputs - the layer input, the mask, the initial hidden state and the
# inital cell state. We will just provide the layer input as incomings,
# unless a mask input, inital hidden state or initial cell state was
# provided.
incomings = [incoming]
self.mask_incoming_index = -1
self.hid_init_incoming_index = -1
self.cell_init_incoming_index = -1
if mask_input is not None:
incomings.append(mask_input)
self.mask_incoming_index = len(incomings)-1
if isinstance(hid_init, Layer):
incomings.append(hid_init)
self.hid_init_incoming_index = len(incomings)-1
if isinstance(cell_init, Layer):
incomings.append(cell_init)
self.cell_init_incoming_index = len(incomings)-1
# Initialize parent layer
super(LSTMLayer_v2, self).__init__(incomings, **kwargs)
# If the provided nonlinearity is None, make it linear
if nonlinearity is None:
self.nonlinearity = nonlinearities.identity
else:
self.nonlinearity = nonlinearity
self.learn_init = learn_init
self.num_units = num_units
self.backwards = backwards
self.peepholes = peepholes
self.gradient_steps = gradient_steps
self.grad_clipping = grad_clipping
self.unroll_scan = unroll_scan
self.precompute_input = precompute_input
self.only_return_final = only_return_final
if unroll_scan and gradient_steps != -1:
raise ValueError(
"Gradient steps must be -1 when unroll_scan is true.")
# Retrieve the dimensionality of the incoming layer
input_shape = self.input_shapes[0]
if unroll_scan and input_shape[1] is None:
raise ValueError("Input sequence length cannot be specified as "
"None when unroll_scan is True")
num_inputs = np.prod(input_shape[2:])
def add_gate_params(gate, gate_name):
""" Convenience function for adding layer parameters from a Gate
instance. """
return (self.add_param(gate.W_in, (num_inputs, num_units),
name="W_in_to_{}".format(gate_name)),
self.add_param(gate.W_hid, (num_units, num_units),
name="W_hid_to_{}".format(gate_name)),
self.add_param(gate.b, (num_units,),
name="b_{}".format(gate_name),
regularizable=False),
gate.nonlinearity)
# Add in parameters from the supplied Gate instances
(self.W_in_to_ingate, self.W_hid_to_ingate, self.b_ingate,
self.nonlinearity_ingate) = add_gate_params(ingate, 'ingate')
(self.W_in_to_forgetgate, self.W_hid_to_forgetgate, self.b_forgetgate,
self.nonlinearity_forgetgate) = add_gate_params(forgetgate,
'forgetgate')
(self.W_in_to_cell, self.W_hid_to_cell, self.b_cell,
self.nonlinearity_cell) = add_gate_params(cell, 'cell')
(self.W_in_to_outgate, self.W_hid_to_outgate, self.b_outgate,
self.nonlinearity_outgate) = add_gate_params(outgate, 'outgate')
# If peephole (cell to gate) connections were enabled, initialize
# peephole connections. These are elementwise products with the cell
# state, so they are represented as vectors.
if self.peepholes:
self.W_cell_to_ingate = self.add_param(
ingate.W_cell, (num_units, ), name="W_cell_to_ingate")
self.W_cell_to_forgetgate = self.add_param(
forgetgate.W_cell, (num_units, ), name="W_cell_to_forgetgate")
self.W_cell_to_outgate = self.add_param(
outgate.W_cell, (num_units, ), name="W_cell_to_outgate")
# Setup initial values for the cell and the hidden units
if isinstance(cell_init, Layer):
self.cell_init = cell_init
else:
self.cell_init = self.add_param(
cell_init, (1, num_units), name="cell_init",
trainable=learn_init, regularizable=False)
if isinstance(hid_init, Layer):
self.hid_init = hid_init
else:
self.hid_init = self.add_param(
hid_init, (1, self.num_units), name="hid_init",
trainable=learn_init, regularizable=False)
def get_output_shape_for(self, input_shapes):
# The shape of the input to this layer will be the first element
# of input_shapes, whether or not a mask input is being used.
input_shape = input_shapes[0]
# When only_return_final is true, the second (sequence step) dimension
# will be flattened
if self.only_return_final:
return input_shape[0], self.num_units
# Otherwise, the shape will be (n_batch, n_steps, num_units)
else:
return input_shape[0], input_shape[1], self.num_units
def get_output_for(self, inputs, **kwargs):
"""
Compute this layer's output function given a symbolic input variable
Parameters
----------
inputs : list of theano.TensorType
`inputs[0]` should always be the symbolic input variable. When
this layer has a mask input (i.e. was instantiated with
`mask_input != None`, indicating that the lengths of sequences in
each batch vary), `inputs` should have length 2, where `inputs[1]`
is the `mask`. The `mask` should be supplied as a Theano variable
denoting whether each time step in each sequence in the batch is
part of the sequence or not. `mask` should be a matrix of shape
``(n_batch, n_time_steps)`` where ``mask[i, j] = 1`` when ``j <=
(length of sequence i)`` and ``mask[i, j] = 0`` when ``j > (length
of sequence i)``. When the hidden state of this layer is to be
pre-filled (i.e. was set to a :class:`Layer` instance) `inputs`
should have length at least 2, and `inputs[-1]` is the hidden state
to prefill with. When the cell state of this layer is to be
pre-filled (i.e. was set to a :class:`Layer` instance) `inputs`
should have length at least 2, and `inputs[-1]` is the hidden state
to prefill with. When both the cell state and the hidden state are
being pre-filled `inputs[-2]` is the hidden state, while
`inputs[-1]` is the cell state.
Returns
-------
layer_output : theano.TensorType
Symbolic output variable.
"""
# Retrieve the layer input
input = inputs[0]
# Retrieve the mask when it is supplied
mask = None
hid_init = None
cell_init = None
if self.mask_incoming_index > 0:
mask = inputs[self.mask_incoming_index]
if self.hid_init_incoming_index > 0:
hid_init = inputs[self.hid_init_incoming_index]
if self.cell_init_incoming_index > 0:
cell_init = inputs[self.cell_init_incoming_index]
# Treat all dimensions after the second as flattened feature dimensions
if input.ndim > 3:
input = T.flatten(input, 3)
# Because scan iterates over the first dimension we dimshuffle to
# (n_time_steps, n_batch, n_features)
input = input.dimshuffle(1, 0, 2)
seq_len, num_batch, _ = input.shape
# Stack input weight matrices into a (num_inputs, 4*num_units)
# matrix, which speeds up computation
W_in_stacked = T.concatenate(
[self.W_in_to_ingate, self.W_in_to_forgetgate,
self.W_in_to_cell, self.W_in_to_outgate], axis=1)
# Same for hidden weight matrices
W_hid_stacked = T.concatenate(
[self.W_hid_to_ingate, self.W_hid_to_forgetgate,
self.W_hid_to_cell, self.W_hid_to_outgate], axis=1)
# Stack biases into a (4*num_units) vector
b_stacked = T.concatenate(
[self.b_ingate, self.b_forgetgate,
self.b_cell, self.b_outgate], axis=0)
if self.precompute_input:
# Because the input is given for all time steps, we can
# precompute_input the inputs dot weight matrices before scanning.
# W_in_stacked is (n_features, 4*num_units). input is then
# (n_time_steps, n_batch, 4*num_units).
input = T.dot(input, W_in_stacked) + b_stacked
# At each call to scan, input_n will be (n_time_steps, 4*num_units).
# We define a slicing function that extract the input to each LSTM gate
def slice_w(x, n):
return x[:, n*self.num_units:(n+1)*self.num_units]
# Create single recurrent computation step function
# input_n is the n'th vector of the input
def step(input_n, cell_previous, hid_previous, *args):
if not self.precompute_input:
input_n = T.dot(input_n, W_in_stacked) + b_stacked
# Calculate gates pre-activations and slice
gates = input_n + T.dot(hid_previous, W_hid_stacked)
# Clip gradients
if self.grad_clipping:
gates = theano.gradient.grad_clip(
gates, -self.grad_clipping, self.grad_clipping)
# Extract the pre-activation gate values
ingate = slice_w(gates, 0)
forgetgate = slice_w(gates, 1)
cell_input = slice_w(gates, 2)
outgate = slice_w(gates, 3)
if self.peepholes:
# Compute peephole connections
ingate += cell_previous*self.W_cell_to_ingate
forgetgate += cell_previous*self.W_cell_to_forgetgate
# Apply nonlinearities
ingate = self.nonlinearity_ingate(ingate)
forgetgate = self.nonlinearity_forgetgate(forgetgate)
cell_input = self.nonlinearity_cell(cell_input)
# Compute new cell value
cell = forgetgate*cell_previous + ingate*cell_input
if self.peepholes:
outgate += cell*self.W_cell_to_outgate
outgate = self.nonlinearity_outgate(outgate)
# Compute new hidden unit activation
hid = outgate*self.nonlinearity(cell)
return [cell, hid]
def step_masked(input_n, mask_n, cell_previous, hid_previous, *args):
cell, hid = step(input_n, cell_previous, hid_previous, *args)
# Skip over any input with mask 0 by copying the previous
# hidden state; proceed normally for any input with mask 1.
cell = T.switch(mask_n, cell, cell_previous)
hid = T.switch(mask_n, hid, hid_previous)
return [cell, hid]
if mask is not None:
# mask is given as (batch_size, seq_len). Because scan iterates
# over first dimension, we dimshuffle to (seq_len, batch_size) and
# add a broadcastable dimension
mask = mask.dimshuffle(1, 0, 'x')
sequences = [input, mask]
step_fun = step_masked
else:
sequences = input
step_fun = step
ones = T.ones((num_batch, 1))
if not isinstance(self.cell_init, Layer):
# Dot against a 1s vector to repeat to shape (num_batch, num_units)
cell_init = T.dot(ones, self.cell_init)
if not isinstance(self.hid_init, Layer):
# Dot against a 1s vector to repeat to shape (num_batch, num_units)
hid_init = T.dot(ones, self.hid_init)
# The hidden-to-hidden weight matrix is always used in step
non_seqs = [W_hid_stacked]
# The "peephole" weight matrices are only used when self.peepholes=True
if self.peepholes:
non_seqs += [self.W_cell_to_ingate,
self.W_cell_to_forgetgate,
self.W_cell_to_outgate]
# When we aren't precomputing the input outside of scan, we need to
# provide the input weights and biases to the step function
if not self.precompute_input:
non_seqs += [W_in_stacked, b_stacked]
if self.unroll_scan:
# Retrieve the dimensionality of the incoming layer
input_shape = self.input_shapes[0]
# Explicitly unroll the recurrence instead of using scan
cell_out, hid_out = unroll_scan(
fn=step_fun,
sequences=sequences,
outputs_info=[cell_init, hid_init],
go_backwards=self.backwards,
non_sequences=non_seqs,
n_steps=input_shape[1])
else:
# Scan op iterates over first dimension of input and repeatedly
# applies the step function
cell_out, hid_out = theano.scan(
fn=step_fun,
sequences=sequences,
outputs_info=[cell_init, hid_init],
go_backwards=self.backwards,
truncate_gradient=self.gradient_steps,
non_sequences=non_seqs,
strict=True)[0]
# When it is requested that we only return the final sequence step,
# we need to slice it out immediately after scan is applied
if self.only_return_final:
hid_out = hid_out[-1]
else:
# dimshuffle back to (n_batch, n_time_steps, n_features))
hid_out = hid_out.dimshuffle(1, 0, 2)
# if scan is backward reverse the output
if self.backwards:
hid_out = hid_out[:, ::-1]
return hid_out
def get_hid_cell_for(self, inputs, **kwargs):
"""
Compute this layer's hidden and cell states given a symbolic input variable
Parameters
----------
inputs : list of theano.TensorType
`inputs[0]` should always be the symbolic input variable. When
this layer has a mask input (i.e. was instantiated with
`mask_input != None`, indicating that the lengths of sequences in
each batch vary), `inputs` should have length 2, where `inputs[1]`
is the `mask`. The `mask` should be supplied as a Theano variable
denoting whether each time step in each sequence in the batch is
part of the sequence or not. `mask` should be a matrix of shape
``(n_batch, n_time_steps)`` where ``mask[i, j] = 1`` when ``j <=
(length of sequence i)`` and ``mask[i, j] = 0`` when ``j > (length
of sequence i)``. When the hidden state of this layer is to be
pre-filled (i.e. was set to a :class:`Layer` instance) `inputs`
should have length at least 2, and `inputs[-1]` is the hidden state
to prefill with. When the cell state of this layer is to be
pre-filled (i.e. was set to a :class:`Layer` instance) `inputs`
should have length at least 2, and `inputs[-1]` is the hidden state
to prefill with. When both the cell state and the hidden state are
being pre-filled `inputs[-2]` is the hidden state, while
`inputs[-1]` is the cell state.
Returns
-------
layer_output : theano.TensorType
Symbolic output variable.
"""
# Retrieve the layer input
input = inputs[0]
# Retrieve the mask when it is supplied
mask = None
hid_init = None
cell_init = None
if self.mask_incoming_index > 0:
mask = inputs[self.mask_incoming_index]
if self.hid_init_incoming_index > 0:
hid_init = inputs[self.hid_init_incoming_index]
if self.cell_init_incoming_index > 0:
cell_init = inputs[self.cell_init_incoming_index]
# Treat all dimensions after the second as flattened feature dimensions
if input.ndim > 3:
input = T.flatten(input, 3)
# Because scan iterates over the first dimension we dimshuffle to
# (n_time_steps, n_batch, n_features)
input = input.dimshuffle(1, 0, 2)
seq_len, num_batch, _ = input.shape
# Stack input weight matrices into a (num_inputs, 4*num_units)
# matrix, which speeds up computation
W_in_stacked = T.concatenate(
[self.W_in_to_ingate, self.W_in_to_forgetgate,
self.W_in_to_cell, self.W_in_to_outgate], axis=1)
# Same for hidden weight matrices
W_hid_stacked = T.concatenate(
[self.W_hid_to_ingate, self.W_hid_to_forgetgate,
self.W_hid_to_cell, self.W_hid_to_outgate], axis=1)
# Stack biases into a (4*num_units) vector
b_stacked = T.concatenate(
[self.b_ingate, self.b_forgetgate,
self.b_cell, self.b_outgate], axis=0)
if self.precompute_input:
# Because the input is given for all time steps, we can
# precompute_input the inputs dot weight matrices before scanning.
# W_in_stacked is (n_features, 4*num_units). input is then
# (n_time_steps, n_batch, 4*num_units).
input = T.dot(input, W_in_stacked) + b_stacked
# At each call to scan, input_n will be (n_time_steps, 4*num_units).
# We define a slicing function that extract the input to each LSTM gate
def slice_w(x, n):
return x[:, n*self.num_units:(n+1)*self.num_units]
# Create single recurrent computation step function
# input_n is the n'th vector of the input
def step(input_n, cell_previous, hid_previous, *args):
if not self.precompute_input:
input_n = T.dot(input_n, W_in_stacked) + b_stacked
# Calculate gates pre-activations and slice
gates = input_n + T.dot(hid_previous, W_hid_stacked)
# Clip gradients
if self.grad_clipping:
gates = theano.gradient.grad_clip(
gates, -self.grad_clipping, self.grad_clipping)
# Extract the pre-activation gate values
ingate = slice_w(gates, 0)
forgetgate = slice_w(gates, 1)
cell_input = slice_w(gates, 2)
outgate = slice_w(gates, 3)
if self.peepholes:
# Compute peephole connections
ingate += cell_previous*self.W_cell_to_ingate
forgetgate += cell_previous*self.W_cell_to_forgetgate
# Apply nonlinearities
ingate = self.nonlinearity_ingate(ingate)
forgetgate = self.nonlinearity_forgetgate(forgetgate)
cell_input = self.nonlinearity_cell(cell_input)
# Compute new cell value
cell = forgetgate*cell_previous + ingate*cell_input
if self.peepholes:
outgate += cell*self.W_cell_to_outgate
outgate = self.nonlinearity_outgate(outgate)
# Compute new hidden unit activation
hid = outgate*self.nonlinearity(cell)
return [cell, hid]
def step_masked(input_n, mask_n, cell_previous, hid_previous, *args):
cell, hid = step(input_n, cell_previous, hid_previous, *args)
# Skip over any input with mask 0 by copying the previous
# hidden state; proceed normally for any input with mask 1.
cell = T.switch(mask_n, cell, cell_previous)
hid = T.switch(mask_n, hid, hid_previous)
return [cell, hid]
if mask is not None:
# mask is given as (batch_size, seq_len). Because scan iterates
# over first dimension, we dimshuffle to (seq_len, batch_size) and
# add a broadcastable dimension
mask = mask.dimshuffle(1, 0, 'x')
sequences = [input, mask]
step_fun = step_masked
else:
sequences = input
step_fun = step
ones = T.ones((num_batch, 1))
if not isinstance(self.cell_init, Layer):
# Dot against a 1s vector to repeat to shape (num_batch, num_units)
cell_init = T.dot(ones, self.cell_init)
if not isinstance(self.hid_init, Layer):
# Dot against a 1s vector to repeat to shape (num_batch, num_units)
hid_init = T.dot(ones, self.hid_init)
# The hidden-to-hidden weight matrix is always used in step
non_seqs = [W_hid_stacked]
# The "peephole" weight matrices are only used when self.peepholes=True
if self.peepholes:
non_seqs += [self.W_cell_to_ingate,
self.W_cell_to_forgetgate,
self.W_cell_to_outgate]
# When we aren't precomputing the input outside of scan, we need to
# provide the input weights and biases to the step function
if not self.precompute_input:
non_seqs += [W_in_stacked, b_stacked]
if self.unroll_scan:
# Retrieve the dimensionality of the incoming layer
input_shape = self.input_shapes[0]
# Explicitly unroll the recurrence instead of using scan
cell_out, hid_out = unroll_scan(
fn=step_fun,
sequences=sequences,
outputs_info=[cell_init, hid_init],
go_backwards=self.backwards,
non_sequences=non_seqs,
n_steps=input_shape[1])
else:
# Scan op iterates over first dimension of input and repeatedly
# applies the step function
cell_out, hid_out = theano.scan(
fn=step_fun,
sequences=sequences,
outputs_info=[cell_init, hid_init],
go_backwards=self.backwards,
truncate_gradient=self.gradient_steps,
non_sequences=non_seqs,
strict=True)[0]
# When it is requested that we only return the final sequence step,
# we need to slice it out immediately after scan is applied
if self.only_return_final:
hid_out = hid_out[-1]
else:
# dimshuffle back to (n_batch, n_time_steps, n_features))
hid_out = hid_out.dimshuffle(1, 0, 2)
cell_out = cell_out.dimshuffle(1, 0, 2)
# if scan is backward reverse the output
if self.backwards:
hid_out = hid_out[:, ::-1]
cell_out = cell_out[:, ::-1]
return hid_out, cell_out