-
Notifications
You must be signed in to change notification settings - Fork 18
/
apply_events.py
642 lines (558 loc) · 20.2 KB
/
apply_events.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-b",
"--batch_size",
type=int,
default=4,
help="Batch size to process input images to events. Defaults to 4",
)
parser.add_argument(
"-i",
"--images_paths",
type=str,
required=True,
help="Path to a directory with image files",
)
parser.add_argument(
"-o",
"--output_path",
type=str,
default=None,
help="Path to a directory were events should be written. "
+ "Will NOT write anything to disk if this flag is not used.",
)
parser.add_argument(
"-s",
"--save_input",
action="store_true",
default=False,
help="Binary flag to include the input image to the model (after crop and"
+ " resize) in the images written or uploaded (depending on saving options.)",
)
parser.add_argument(
"-r",
"--resume_path",
type=str,
default=None,
help="Path to a directory containing the trainer to resume."
+ " In particular it must contain `opts.yam` and `checkpoints/`."
+ " Typically this points to a Masker, which holds the path to a"
+ " Painter in its opts",
)
parser.add_argument(
"--no_time",
action="store_true",
default=False,
help="Binary flag to prevent the timing of operations.",
)
parser.add_argument(
"-f",
"--flood_mask_binarization",
type=float,
default=0.5,
help="Value to use to binarize masks (mask > value). "
+ "Set to -1 to use soft masks (not binarized). Defaults to 0.5.",
)
parser.add_argument(
"-t",
"--target_size",
type=int,
default=640,
help="Output image size (when not using `keep_ratio_128`): images are resized"
+ " such that their smallest side is `target_size` then cropped in the middle"
+ " of the largest side such that the resulting input image (and output images)"
+ " has height and width `target_size x target_size`. **Must** be a multiple of"
+ " 2^7=128 (up/downscaling inside the models). Defaults to 640.",
)
parser.add_argument(
"--half",
action="store_true",
default=False,
help="Binary flag to use half precision (float16). Defaults to False.",
)
parser.add_argument(
"-n",
"--n_images",
default=-1,
type=int,
help="Limit the number of images processed (if you have 100 images in "
+ "a directory but n is 10 then only the first 10 images will be loaded"
+ " for processing)",
)
parser.add_argument(
"--no_conf",
action="store_true",
default=False,
help="disable writing the apply_events hash and command in the output folder",
)
parser.add_argument(
"--overwrite",
action="store_true",
default=False,
help="Do not check for existing outdir, i.e. force overwrite"
+ " potentially existing files in the output path",
)
parser.add_argument(
"--no_cloudy",
action="store_true",
default=False,
help="Prevent the use of the cloudy intermediate"
+ " image to create the flood image. Rendering will"
+ " be more colorful but may seem less realistic",
)
parser.add_argument(
"--keep_ratio_128",
action="store_true",
default=False,
help="When loading the input images, resize and crop them in order for their "
+ "dimensions to match the closest multiples"
+ " of 128. Will force a batch size of 1 since images"
+ " now have different dimensions. "
+ "Use --max_im_width to cap the resulting dimensions.",
)
parser.add_argument(
"--fuse",
action="store_true",
default=False,
help="Use batch norm fusion to speed up inference",
)
parser.add_argument(
"--save_masks",
action="store_true",
default=False,
help="Save output masks along events",
)
parser.add_argument(
"-m",
"--max_im_width",
type=int,
default=-1,
help="When using --keep_ratio_128, some images may still be too large. Use "
+ "--max_im_width to cap the resized image's width. Defaults to -1 (no cap).",
)
parser.add_argument(
"--upload",
action="store_true",
help="Upload to comet.ml in a project called `climategan-apply`",
)
parser.add_argument(
"--zip_outdir",
"-z",
action="store_true",
help="Zip the output directory as '{outdir.parent}/{outdir.name}.zip'",
)
return parser.parse_args()
args = parse_args()
print("\n• Imports\n")
import time
import_time = time.time()
import sys
import shutil
from collections import OrderedDict
from pathlib import Path
import comet_ml # noqa: F401
import torch
import numpy as np
import skimage.io as io
from skimage.color import rgba2rgb
from skimage.transform import resize
from tqdm import tqdm
from climategan.trainer import Trainer
from climategan.bn_fusion import bn_fuse
from climategan.tutils import print_num_parameters
from climategan.utils import Timer, find_images, get_git_revision_hash, to_128, resolve
import_time = time.time() - import_time
def to_m1_p1(img, i):
"""
rescales a [0, 1] image to [-1, +1]
Args:
img (np.array): float32 numpy array of an image in [0, 1]
i (int): Index of the image being rescaled
Raises:
ValueError: If the image is not in [0, 1]
Returns:
np.array(np.float32): array in [-1, +1]
"""
if img.min() >= 0 and img.max() <= 1:
return (img.astype(np.float32) - 0.5) * 2
raise ValueError(f"Data range mismatch for image {i} : ({img.min()}, {img.max()})")
def uint8(array):
"""
convert an array to np.uint8 (does not rescale or anything else than changing dtype)
Args:
array (np.array): array to modify
Returns:
np.array(np.uint8): converted array
"""
return array.astype(np.uint8)
def resize_and_crop(img, to=640):
"""
Resizes an image so that it keeps the aspect ratio and the smallest dimensions
is `to`, then crops this resized image in its center so that the output is `to x to`
without aspect ratio distortion
Args:
img (np.array): np.uint8 255 image
Returns:
np.array: [0, 1] np.float32 image
"""
# resize keeping aspect ratio: smallest dim is 640
h, w = img.shape[:2]
if h < w:
size = (to, int(to * w / h))
else:
size = (int(to * h / w), to)
r_img = resize(img, size, preserve_range=True, anti_aliasing=True)
r_img = uint8(r_img)
# crop in the center
H, W = r_img.shape[:2]
top = (H - to) // 2
left = (W - to) // 2
rc_img = r_img[top : top + to, left : left + to, :]
return rc_img / 255.0
def print_time(text, time_series, purge=-1):
"""
Print a timeseries's mean and std with a label
Args:
text (str): label of the time series
time_series (list): list of timings
purge (int, optional): ignore first n values of time series. Defaults to -1.
"""
if not time_series:
return
if purge > 0 and len(time_series) > purge:
time_series = time_series[purge:]
m = np.mean(time_series)
s = np.std(time_series)
print(
f"{text.capitalize() + ' ':.<26} {m:.5f}"
+ (f" +/- {s:.5f}" if len(time_series) > 1 else "")
)
def print_store(store, purge=-1):
"""
Pretty-print time series store
Args:
store (dict): maps string keys to lists of times
purge (int, optional): ignore first n values of time series. Defaults to -1.
"""
singles = OrderedDict({k: v for k, v in store.items() if len(v) == 1})
multiples = OrderedDict({k: v for k, v in store.items() if len(v) > 1})
empties = {k: v for k, v in store.items() if len(v) == 0}
if empties:
print("Ignoring empty stores ", ", ".join(empties.keys()))
print()
for k in singles:
print_time(k, singles[k], purge)
print()
print("Unit: s/batch")
for k in multiples:
print_time(k, multiples[k], purge)
print()
def write_apply_config(out):
"""
Saves the args to `apply_events.py` in a text file for future reference
"""
cwd = Path.cwd().expanduser().resolve()
command = f"cd {str(cwd)}\n"
command += " ".join(sys.argv)
git_hash = get_git_revision_hash()
with (out / "command.txt").open("w") as f:
f.write(command)
with (out / "hash.txt").open("w") as f:
f.write(git_hash)
def get_outdir_name(half, keep_ratio, max_im_width, target_size, bin_value, cloudy):
"""
Create the output directory's name based on uer-provided arguments
"""
name_items = []
if half:
name_items.append("half")
if keep_ratio:
name_items.append("AR")
if max_im_width and keep_ratio:
name_items.append(f"{max_im_width}")
if target_size and not keep_ratio:
name_items.append("S")
name_items.append(f"{target_size}")
if bin_value != 0.5:
name_items.append(f"bin{bin_value}")
if not cloudy:
name_items.append("no_cloudy")
return "-".join(name_items)
def make_outdir(
outdir, overwrite, half, keep_ratio, max_im_width, target_size, bin_value, cloudy
):
"""
Creates the output directory if it does not exist. If it does exist,
prompts the user for confirmation (except if `overwrite` is True).
If the output directory's name is "_auto_" then it is created as:
outdir.parent / get_outdir_name(...)
"""
if outdir.name == "_auto_":
outdir = outdir.parent / get_outdir_name(
half, keep_ratio, max_im_width, target_size, bin_value, cloudy
)
if outdir.exists() and not overwrite:
print(
f"\nWARNING: outdir ({str(outdir)}) already exists."
+ " Files with existing names will be overwritten"
)
if "n" in input(">>> Continue anyway? [y / n] (default: y) : "):
print("Interrupting execution from user input.")
sys.exit()
print()
outdir.mkdir(exist_ok=True, parents=True)
return outdir
def get_time_stores(import_time):
return OrderedDict(
{
"imports": [import_time],
"setup": [],
"data pre-processing": [],
"encode": [],
"mask": [],
"flood": [],
"depth": [],
"segmentation": [],
"smog": [],
"wildfire": [],
"all events": [],
"numpy": [],
"inference on all images": [],
"write": [],
}
)
if __name__ == "__main__":
# -----------------------------------------
# ----- Initialize script variables -----
# -----------------------------------------
print(
"• Using args\n\n"
+ "\n".join(["{:25}: {}".format(k, v) for k, v in vars(args).items()]),
)
batch_size = args.batch_size
bin_value = args.flood_mask_binarization
cloudy = not args.no_cloudy
fuse = args.fuse
half = args.half
save_masks = args.save_masks
images_paths = resolve(args.images_paths)
keep_ratio = args.keep_ratio_128
max_im_width = args.max_im_width
n_images = args.n_images
outdir = resolve(args.output_path) if args.output_path is not None else None
resume_path = args.resume_path
target_size = args.target_size
time_inference = not args.no_time
upload = args.upload
zip_outdir = args.zip_outdir
# -------------------------------------
# ----- Validate size arguments -----
# -------------------------------------
if keep_ratio:
if target_size != 640:
print(
"\nWARNING: using --keep_ratio_128 overwrites target_size"
+ " which is ignored."
)
if batch_size != 1:
print("\nWARNING: batch_size overwritten to 1 when using keep_ratio_128")
batch_size = 1
if max_im_width > 0 and max_im_width % 128 != 0:
new_im_width = int(max_im_width / 128) * 128
print("\nWARNING: max_im_width should be <0 or a multiple of 128.")
print(
" Was {} but is now overwritten to {}".format(
max_im_width, new_im_width
)
)
max_im_width = new_im_width
else:
if target_size % 128 != 0:
print(f"\nWarning: target size {target_size} is not a multiple of 128.")
target_size = target_size - (target_size % 128)
print(f"Setting target_size to {target_size}.")
# -------------------------------------
# ----- Create output directory -----
# -------------------------------------
if outdir is not None:
outdir = make_outdir(
outdir,
args.overwrite,
half,
keep_ratio,
max_im_width,
target_size,
bin_value,
cloudy,
)
# -------------------------------
# ----- Create time store -----
# -------------------------------
stores = get_time_stores(import_time)
# -----------------------------------
# ----- Load Trainer instance -----
# -----------------------------------
with Timer(store=stores.get("setup", []), ignore=time_inference):
print("\n• Initializing trainer\n")
torch.set_grad_enabled(False)
trainer = Trainer.resume_from_path(
resume_path,
setup=True,
inference=True,
new_exp=None,
)
print()
print_num_parameters(trainer, True)
if fuse:
trainer.G = bn_fuse(trainer.G)
if half:
trainer.G.half()
# --------------------------------------------
# ----- Read data from input directory -----
# --------------------------------------------
print("\n• Reading & Pre-processing Data\n")
# find all images
data_paths = find_images(images_paths)
base_data_paths = data_paths
# filter images
if 0 < n_images < len(data_paths):
data_paths = data_paths[:n_images]
# repeat data
elif n_images > len(data_paths):
repeats = n_images // len(data_paths) + 1
data_paths = base_data_paths * repeats
data_paths = data_paths[:n_images]
with Timer(store=stores.get("data pre-processing", []), ignore=time_inference):
# read images to numpy arrays
data = [io.imread(str(d)) for d in data_paths]
# rgba to rgb
data = [im if im.shape[-1] == 3 else uint8(rgba2rgb(im) * 255) for im in data]
# resize images to target_size or
if keep_ratio:
# to closest multiples of 128 <= max_im_width, keeping aspect ratio
new_sizes = [to_128(d, max_im_width) for d in data]
data = [resize(d, ns, anti_aliasing=True) for d, ns in zip(data, new_sizes)]
else:
# to args.target_size
data = [resize_and_crop(d, target_size) for d in data]
new_sizes = [(target_size, target_size) for _ in data]
# resize() produces [0, 1] images, rescale to [-1, 1]
data = [to_m1_p1(d, i) for i, d in enumerate(data)]
n_batchs = len(data) // batch_size
if len(data) % batch_size != 0:
n_batchs += 1
print("Found", len(base_data_paths), "images. Inferring on", len(data), "images.")
# --------------------------------------------
# ----- Batch-process images to events -----
# --------------------------------------------
print(f"\n• Using device {str(trainer.device)}\n")
all_events = []
with Timer(store=stores.get("inference on all images", []), ignore=time_inference):
for b in tqdm(range(n_batchs), desc="Infering events", unit="batch"):
images = data[b * batch_size : (b + 1) * batch_size]
if not images:
continue
# concatenate images in a batch batch_size x height x width x 3
images = np.stack(images)
# Retreive numpy events as a dict {event: array[BxHxWxC]}
events = trainer.infer_all(
images,
numpy=True,
stores=stores,
bin_value=bin_value,
half=half,
cloudy=cloudy,
return_masks=save_masks,
)
# save resized and cropped image
if args.save_input:
events["input"] = uint8((images + 1) / 2 * 255)
# store events to write after inference loop
all_events.append(events)
# --------------------------------------------
# ----- Save (write/upload) inferences -----
# --------------------------------------------
if outdir is not None or upload:
if upload:
print("\n• Creating comet Experiment")
exp = comet_ml.Experiment(project_name="climategan-apply")
exp.log_parameters(vars(args))
# --------------------------------------------------------------
# ----- Change inferred data structure to a list of dicts -----
# --------------------------------------------------------------
to_write = []
events_names = list(all_events[0].keys())
for events_data in all_events:
n_ims = len(events_data[events_names[0]])
for i in range(n_ims):
item = {event: events_data[event][i] for event in events_names}
to_write.append(item)
progress_bar_desc = ""
if outdir is not None:
print("\n• Output directory:\n")
print(str(outdir), "\n")
if upload:
progress_bar_desc = "Writing & Uploading events"
else:
progress_bar_desc = "Writing events"
else:
if upload:
progress_bar_desc = "Uploading events"
# ------------------------------------
# ----- Save individual images -----
# ------------------------------------
with Timer(store=stores.get("write", []), ignore=time_inference):
# for each image
for t, event_dict in tqdm(
enumerate(to_write),
desc=progress_bar_desc,
unit="input image",
total=len(to_write),
):
idx = t % len(base_data_paths)
stem = Path(data_paths[idx]).stem
width = new_sizes[idx][1]
if keep_ratio:
ar = "_AR"
else:
ar = ""
# for each event type
event_bar = tqdm(
enumerate(event_dict.items()),
leave=False,
total=len(events_names),
unit="event",
)
for e, (event, im_data) in event_bar:
event_bar.set_description(
f" {event.capitalize():<{len(progress_bar_desc) - 2}}"
)
if args.no_cloudy:
suffix = ar + "_no_cloudy"
else:
suffix = ar
im_path = Path(f"{stem}_{event}_{width}{suffix}.png")
if outdir is not None:
im_path = outdir / im_path
io.imsave(im_path, im_data)
if upload:
exp.log_image(im_data, name=im_path.name)
if zip_outdir:
print("\n• Zipping output directory... ", end="", flush=True)
archive_path = Path(shutil.make_archive(outdir.name, "zip", root_dir=outdir))
archive_path = archive_path.rename(outdir.parent / archive_path.name)
print("Done:\n")
print(str(archive_path))
# ---------------------------
# ----- Print timings -----
# ---------------------------
if time_inference:
print("\n• Timings\n")
print_store(stores)
# ---------------------------------------------
# ----- Save apply_events.py run config -----
# ---------------------------------------------
if not args.no_conf and outdir is not None:
write_apply_config(outdir)