Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

为什么连给的example也有bug? #517

Open
Moran232 opened this issue Jul 5, 2023 · 4 comments
Open

为什么连给的example也有bug? #517

Moran232 opened this issue Jul 5, 2023 · 4 comments

Comments

@Moran232
Copy link

Moran232 commented Jul 5, 2023

#430

@etoilestar
Copy link

为什么我安装的环境,编译时会有bug?你遇到过吗?

@Moran232
Copy link
Author

编译我通过了,跑不了他给的example,这库不行, 别纠结了

@SysuJayce
Copy link

SysuJayce commented Dec 5, 2023

AssertionError: CUDA_HOME does not exist, unable to compile CUDA op(s)
有人遇到一样的问题吗?安装了pytorch==2.1.0 + cuda11,竟然说找不到CUDA……

跑的知乎上的demo

import torch
from lightseq.training.ops.pytorch.transformer_encoder_layer import LSTransformerEncoderLayer

def train(model, inputs, masks):
    inputs = inputs.to(device="cuda:0")
    masks = masks.to(device="cuda:0")
    model.to(device="cuda:0")
    model.train()
    opt = torch.optim.Adam(model.parameters(), lr=1e-3)

    for epoch in range(1000):
        opt.zero_grad()
        outputs = model(inputs, masks)
        loss = torch.square(outputs).mean()
        loss.backward()
        opt.step()
        if epoch % 200 == 0:
            print("epoch {:>3d}: loss = {:>5.3f}".format(epoch, loss))

if __name__ == "__main__":
    # 定义LightSeq配置
    config = LSTransformerEncoderLayer.get_config(
        max_batch_tokens=4096,
        max_seq_len=256,
        hidden_size=1024,
        intermediate_size=4096,
        nhead=16,
        attn_prob_dropout_ratio=0.1,
        activation_dropout_ratio=0.1,
        hidden_dropout_ratio=0.1,
        pre_layer_norm=True,
        fp16=False,
        local_rank=0
    )

    # 随机生成输入
    bsz, sl = 10, 80
    inputs = torch.randn(bsz, sl, config.hidden_size)
    masks = torch.zeros(bsz, sl)

    # 定义LightSeq编码层并进行训练
    model = LSTransformerEncoderLayer(config)
    train(model, inputs, masks)

@Anychnn
Copy link
Collaborator

Anychnn commented Dec 5, 2023 via email

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants