-
Notifications
You must be signed in to change notification settings - Fork 21
/
GAN.py
206 lines (167 loc) · 7.99 KB
/
GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# -*- coding: utf-8 -*-
# File: GAN.py
# Author: Yuxin Wu
import tensorflow as tf
import numpy as np
from tensorpack import (TowerTrainer, StagingInput,
ModelDescBase, DataFlow)
from tensorpack.tfutils.tower import TowerContext, TowerFuncWrapper
from tensorpack.graph_builder import DataParallelBuilder, LeastLoadedDeviceSetter
from tensorpack.tfutils.summary import add_moving_summary
from tensorpack.utils.argtools import memoized
from tensorpack.utils.develop import deprecated
class GANModelDesc(ModelDescBase):
def collect_variables(self, g_scope='gen', d_scope='discrim'):
"""
Assign `self.g_vars` to the parameters under scope `g_scope`,
and same with `self.d_vars`.
"""
self.g_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, g_scope)
assert self.g_vars
self.d_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, d_scope)
assert self.d_vars
def build_losses(self, logits_real, logits_fake):
"""
Build standard GAN loss and set `self.g_loss` and `self.d_loss`.
D and G play two-player minimax game with value function V(G,D)
min_G max _D V(D, G) = IE_{x ~ p_data} [log D(x)] + IE_{z ~ p_fake} [log (1 - D(G(z)))]
Args:
logits_real (tf.Tensor): discrim logits from real samples
logits_fake (tf.Tensor): discrim logits from fake samples produced by generator
"""
with tf.name_scope("GAN_loss"):
score_real = tf.sigmoid(logits_real)
score_fake = tf.sigmoid(logits_fake)
tf.summary.histogram('score-real', score_real)
tf.summary.histogram('score-fake', score_fake)
with tf.name_scope("discrim"):
d_loss_pos = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits_real, labels=tf.ones_like(logits_real)), name='loss_real')
d_loss_neg = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits_fake, labels=tf.zeros_like(logits_fake)), name='loss_fake')
d_pos_acc = tf.reduce_mean(tf.cast(score_real > 0.5, tf.float32), name='accuracy_real')
d_neg_acc = tf.reduce_mean(tf.cast(score_fake < 0.5, tf.float32), name='accuracy_fake')
d_accuracy = tf.add(.5 * d_pos_acc, .5 * d_neg_acc, name='accuracy')
self.d_loss = tf.add(.5 * d_loss_pos, .5 * d_loss_neg, name='loss')
with tf.name_scope("gen"):
self.g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits_fake, labels=tf.ones_like(logits_fake)), name='loss')
g_accuracy = tf.reduce_mean(tf.cast(score_fake > 0.5, tf.float32), name='accuracy')
add_moving_summary(self.g_loss, self.d_loss, d_accuracy, g_accuracy)
def build_graph(self, *inputs):
"""
Have to build one tower and set the following attributes:
g_loss, d_loss, g_vars, d_vars.
"""
pass
@memoized
def get_optimizer(self):
return self.optimizer()
class GANTrainer(TowerTrainer):
def __init__(self, input, model, num_gpu=1):
"""
Args:
input (InputSource):
model (GANModelDesc):
"""
super(GANTrainer, self).__init__()
assert isinstance(model, GANModelDesc), model
if num_gpu > 1:
input = StagingInput(input)
# Setup input
cbs = input.setup(model.get_inputs_desc())
self.register_callback(cbs)
if num_gpu <= 1:
self._build_gan_trainer(input, model)
else:
self._build_multigpu_gan_trainer(input, model, num_gpu)
def _build_gan_trainer(self, input, model):
"""
We need to set tower_func because it's a TowerTrainer,
and only TowerTrainer supports automatic graph creation for inference during training.
If we don't care about inference during training, using tower_func is
not needed. Just calling model.build_graph directly is OK.
"""
# Build the graph
self.tower_func = TowerFuncWrapper(model.build_graph, model.get_inputs_desc())
with TowerContext('', is_training=True):
self.tower_func(*input.get_input_tensors())
opt = model.get_optimizer()
# Define the training iteration
# by default, run one d_min after one g_min
with tf.name_scope('optimize'):
g_min = opt.minimize(model.g_loss, var_list=model.g_vars, name='g_op')
with tf.control_dependencies([g_min]):
d_min = opt.minimize(model.d_loss, var_list=model.d_vars, name='d_op')
self.train_op = d_min
def _build_multigpu_gan_trainer(self, input, model, num_gpu):
assert num_gpu > 1
raw_devices = ['/gpu:{}'.format(k) for k in range(num_gpu)]
# Build the graph with multi-gpu replication
def get_cost(*inputs):
model.build_graph(*inputs)
return [model.d_loss, model.g_loss]
self.tower_func = TowerFuncWrapper(get_cost, model.get_inputs_desc())
devices = [LeastLoadedDeviceSetter(d, raw_devices) for d in raw_devices]
cost_list = DataParallelBuilder.build_on_towers(
list(range(num_gpu)),
lambda: self.tower_func(*input.get_input_tensors()),
devices)
# For simplicity, average the cost here. It might be faster to average the gradients
with tf.name_scope('optimize'):
d_loss = tf.add_n([x[0] for x in cost_list]) * (1.0 / num_gpu)
g_loss = tf.add_n([x[1] for x in cost_list]) * (1.0 / num_gpu)
opt = model.get_optimizer()
# run one d_min after one g_min
g_min = opt.minimize(g_loss, var_list=model.g_vars,
colocate_gradients_with_ops=True, name='g_op')
with tf.control_dependencies([g_min]):
d_min = opt.minimize(d_loss, var_list=model.d_vars,
colocate_gradients_with_ops=True, name='d_op')
# Define the training iteration
self.train_op = d_min
class MultiGPUGANTrainer(GANTrainer):
"""
A replacement of GANTrainer (optimize d and g one by one) with multi-gpu support.
"""
@deprecated("Please use GANTrainer and set num_gpu", "2019-01-31")
def __init__(self, num_gpu, input, model):
super(MultiGPUGANTrainer, self).__init__(input, model, 1)
class SeparateGANTrainer(TowerTrainer):
""" A GAN trainer which runs two optimization ops with a certain ratio."""
def __init__(self, input, model, d_period=1, g_period=1):
"""
Args:
d_period(int): period of each d_opt run
g_period(int): period of each g_opt run
"""
super(SeparateGANTrainer, self).__init__()
self._d_period = int(d_period)
self._g_period = int(g_period)
assert min(d_period, g_period) == 1
# Setup input
cbs = input.setup(model.get_inputs_desc())
self.register_callback(cbs)
# Build the graph
self.tower_func = TowerFuncWrapper(model.build_graph, model.get_inputs_desc())
with TowerContext('', is_training=True):
self.tower_func(*input.get_input_tensors())
opt = model.get_optimizer()
with tf.name_scope('optimize'):
self.d_min = opt.minimize(
model.d_loss, var_list=model.d_vars, name='d_min')
self.g_min = opt.minimize(
model.g_loss, var_list=model.g_vars, name='g_min')
def run_step(self):
# Define the training iteration
if self.global_step % (self._d_period) == 0:
self.hooked_sess.run(self.d_min)
if self.global_step % (self._g_period) == 0:
self.hooked_sess.run(self.g_min)
class RandomZData(DataFlow):
def __init__(self, shape):
super(RandomZData, self).__init__()
self.shape = shape
def __iter__(self):
while True:
yield [np.random.uniform(-1, 1, size=self.shape)]