-
Notifications
You must be signed in to change notification settings - Fork 13
/
app.py
286 lines (240 loc) · 15.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import torch
import numpy as np
from helper import *
from config.GlobalVariables import *
from SynthesisNetwork import SynthesisNetwork
from DataLoader import DataLoader
import convenience
import gradio as gr
def update_chosen_writers(writer1, writer2, weight, words, all_loaded_data):
net.clamp_mdn = 0
chosen_writers = [int(writer1.split(" ")[1]), int(writer2.split(" ")[1])]
all_loaded_data = []
for writer_id in chosen_writers:
loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
all_loaded_data.append(loaded_data)
writer_mean_Ws = []
for loaded_data in all_loaded_data:
mean_global_W = convenience.get_mean_global_W(net, loaded_data, device)
writer_mean_Ws.append(mean_global_W.detach())
return gr.Slider.update(label=f"{writer1} vs. {writer2}"), chosen_writers, writer_mean_Ws, *update_writer_word(" ".join(words), writer_mean_Ws, all_loaded_data, weight)
def update_writer_word(target_word, writer_mean_Ws, all_loaded_data, writer_weight, device="cpu"):
words = []
for word in target_word.split(" "):
if len(word) > 0:
words.append(word)
word_Ws = []
word_Cs = []
for word in words:
writer_Ws, writer_Cs = convenience.get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
word_Ws.append(writer_Ws)
word_Cs.append(writer_Cs)
if len(words) == 0:
word_Ws.append(torch.tensor([]))
word_Cs.append(torch.tensor([]))
return words, word_Ws, word_Cs, *update_writer_slider(writer_weight, words, word_Ws, word_Cs)
def update_writer_slider(weight, words, all_word_Ws, all_word_Cs):
weights = [1 - weight, weight]
net.clamp_mdn = 0
svg = convenience.draw_words_svg(words, all_word_Ws, all_word_Cs, weights, net)
return gr.HTML.update(value=svg.tostring()), gr.File.update(visible=False), gr.Button.update(visible=True), weight, svg
def update_writer_download(writer_svg):
writer_svg.saveas("./DSD_writer_interpolation.svg")
return gr.File.update(value="./DSD_writer_interpolation.svg", visible=True), gr.Button.update(visible=False)
# for character blend
def update_blend_chars(c1, c2, weight, char_Ws):
blend_chars = [c1, c2]
char_Cs = torch.zeros(1, 2, convenience.L, convenience.L)
for i in range(2): # get corners of grid
_, char_matrix = convenience.get_DSD(net, blend_chars[i], default_mean_global_W, [default_loaded_data], device)
char_Cs[:, i, :, :] = char_matrix
return gr.Slider.update(label=f"'{c1}' vs. '{c2}'"), char_Cs.detach(), blend_chars, *update_char_slider(weight, char_Ws, char_Cs, blend_chars)
def update_char_slider(weight, char_Ws, char_Cs, blend_chars):
"""Generates an image of handwritten text based on target_sentence"""
net.clamp_mdn = 0
character_weights = [1 - weight, weight]
all_W_c = convenience.get_character_blend_W_c(character_weights, char_Ws, char_Cs)
all_commands = convenience.get_commands(net, blend_chars[0], all_W_c)
svg = convenience.commands_to_svg(all_commands, 750, 160, 375)
return gr.HTML.update(value=svg.tostring()), gr.File.update(visible=False), gr.Button.update(visible=True), weight, svg
def update_char_download(char_svg):
char_svg.saveas("./DSD_char_interpolation.svg")
return gr.File.update(value="./DSD_char_interpolation.svg", visible=True), gr.Button.update(visible=False)
# for MDN
def update_mdn_word(target_word, scale_sd, clamp_mdn):
mdn_words = []
for word in target_word.split(" "):
mdn_words.append(word)
all_word_mdn_Ws = []
all_word_mdn_Cs = []
for word in mdn_words:
all_writer_Ws, all_writer_Cs = convenience.get_DSD(net, word, default_mean_global_W, [default_loaded_data], device)
all_word_mdn_Ws.append(all_writer_Ws)
all_word_mdn_Cs.append(all_writer_Cs)
return mdn_words, all_word_mdn_Ws, all_word_mdn_Cs, *sample_mdn(scale_sd, clamp_mdn, mdn_words, all_word_mdn_Ws, all_word_mdn_Cs)
def sample_mdn(maxs, maxr, mdn_words, all_word_mdn_Ws, all_word_mdn_Cs):
net.clamp_mdn = maxr
net.scale_sd = maxs
svg = convenience.draw_words_svg(mdn_words, all_word_mdn_Ws, all_word_mdn_Cs, [1], net)
return gr.HTML.update(value=svg.tostring()), gr.File.update(visible=False), gr.Button.update(visible=True), maxr, maxs, svg
def update_mdn_download(mdn_svg):
mdn_svg.saveas("./DSD_add_randomness.svg")
return gr.File.update(value="./DSD_add_randomness.svg", visible=True), gr.Button.update(visible=False)
device = 'cpu'
num_samples = 10
net = SynthesisNetwork(weight_dim=256, num_layers=3).to(device)
if not torch.cuda.is_available():
net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device))["model_state_dict"])
dl = DataLoader(num_writer=1, num_samples=10, divider=5.0, datadir='./data/writers')
writer_options = [5, 14, 15, 16, 17, 22, 25, 80, 120, 137, 147, 151]
all_loaded_data_DEFAULT = []
chosen_writers_DEFAULT = [120, 80]
avail_char = "0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ! ? \" ' * + - = : ; , . < > \ / [ ] ( ) # $ % &"
avail_char_list = avail_char.split(" ")
for writer_id in chosen_writers_DEFAULT:
loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
all_loaded_data_DEFAULT.append(loaded_data)
default_loaded_data = all_loaded_data_DEFAULT[-1]
default_mean_global_W = convenience.get_mean_global_W(net, default_loaded_data, device)
# data for writer interpolation
writer_words_DEFAULT = ["hello", "world"]
writer_mean_Ws_DEFAULT = []
writer_all_word_Ws_DEFAULT = []
writer_all_word_Cs_DEFAULT = []
writer_weight_DEFAULT = 0.7
writer_svg_DEFAULT = None
# data for char interpolation
char_chosen_DEFAULT = ["y", "s"]
char_mean_global_W_DEFAULT = None
char_weight_DEFAULT = 0.7
char_Ws_DEFAULT = default_mean_global_W.reshape(1, 1, convenience.L)
char_Cs_DEFAULT = None
char_svg_DEFAULT = None
# # data for MDN
mdn_words_DEFAULT = ["hello", "world"]
all_word_mdn_Ws_DEFAULT = None
all_word_mdn_Cs_DEFAULT = None
clamp_mdn_DEFAULT = 0.5
scale_sd_DEFAULT = 1
mdn_svg_DEFAULT = None
_wrds, writer_all_word_Ws_DEFAULT, writer_all_word_Cs_DEFAULT, _html, _file, _btn, _wt, _svg = update_writer_word(" ".join(writer_words_DEFAULT), writer_mean_Ws_DEFAULT, all_loaded_data_DEFAULT, writer_weight_DEFAULT)
_sldr, _wrtrs, writer_mean_Ws_DEFAULT, _wrds, _waww, _wawc, _html, _file, _btn, _wt, writer_svg_DEFAULT = update_chosen_writers(f"Writer {chosen_writers_DEFAULT[0]}", f"Writer {chosen_writers_DEFAULT[1]}", writer_weight_DEFAULT, writer_words_DEFAULT, all_loaded_data_DEFAULT)
_wrds, all_word_mdn_Ws_DEFAULT, all_word_mdn_Cs_DEFAULT, _html, _file, _btn, _maxr, _maxs, mdn_svg_DEFAULT = update_mdn_word(" ".join(mdn_words_DEFAULT), scale_sd_DEFAULT, clamp_mdn_DEFAULT)
_sldr, char_Cs_DEFAULT, _chrs, _html, _file, _btn, _wght, char_svg_DEFAULT = update_blend_chars(*char_chosen_DEFAULT, char_weight_DEFAULT, char_Ws_DEFAULT)
with gr.Blocks() as demo:
all_loaded_data_var = gr.Variable(all_loaded_data_DEFAULT)
chosen_writers_var = gr.Variable(chosen_writers_DEFAULT)
# data for writer interpolation
writer_words_var = gr.Variable(writer_words_DEFAULT)
writer_mean_Ws_var = gr.Variable(writer_mean_Ws_DEFAULT)
writer_all_word_Ws_var = gr.Variable([e.detach() for e in writer_all_word_Ws_DEFAULT])
writer_all_word_Cs_var = gr.Variable([e.detach() for e in writer_all_word_Cs_DEFAULT])
writer_weight_var = gr.Variable(writer_weight_DEFAULT)
writer_svg_var = gr.Variable(writer_svg_DEFAULT)
# data for char interpolation
char_chosen_var = gr.Variable(char_chosen_DEFAULT)
char_mean_global_W_var = gr.Variable(char_mean_global_W_DEFAULT)
char_weight_var = gr.Variable(char_weight_DEFAULT)
char_Ws_var = gr.Variable(char_Ws_DEFAULT.detach())
char_Cs_var = gr.Variable(char_Cs_DEFAULT.detach())
char_svg_var = gr.Variable(char_svg_DEFAULT)
# # data for MDN
mdn_words_var = gr.Variable(mdn_words_DEFAULT)
all_word_mdn_Ws_var = gr.Variable([e.detach() for e in all_word_mdn_Ws_DEFAULT])
all_word_mdn_Cs_var = gr.Variable([e.detach() for e in all_word_mdn_Cs_DEFAULT])
clamp_mdn_var = gr.Variable(clamp_mdn_DEFAULT)
scale_sd_var = gr.Variable(scale_sd_DEFAULT)
mdn_svg_var = gr.Variable(mdn_svg_DEFAULT)
with gr.Tabs():
with gr.TabItem("Blend Writers"):
target_word = gr.Textbox(label="Target Word", value=" ".join(writer_words_DEFAULT), max_lines=1)
with gr.Row():
left_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 0]
right_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 1]
with gr.Column():
writer1 = gr.Radio(left_ratio_options, value="Style 120", label="Style for first writer")
with gr.Column():
writer2 = gr.Radio(right_ratio_options, value="Style 80", label="Style for second writer")
with gr.Row():
writer_slider = gr.Slider(0, 1, value=writer_weight_DEFAULT, label="Style 120 vs. Style 80")
with gr.Row():
writer_default_image = update_writer_slider(writer_weight_DEFAULT, writer_words_DEFAULT, writer_all_word_Ws_DEFAULT, writer_all_word_Cs_DEFAULT)
writer_output = gr.HTML(writer_default_image[0]["value"])
with gr.Row():
writer_download_btn = gr.Button("Save to SVG file")
writer_download_btn.style(full_width="true")
writer_download = gr.File(interactive=False, show_label=False, visible=False)
writer_slider.change(fn=update_writer_slider,
inputs=[writer_slider, writer_words_var, writer_all_word_Ws_var, writer_all_word_Cs_var],
outputs=[writer_output, writer_download, writer_download_btn, writer_weight_var, writer_svg_var], show_progress=False)
target_word.submit(fn=update_writer_word,
inputs=[target_word, writer_mean_Ws_var, all_loaded_data_var, writer_weight_var],
outputs=[writer_words_var, writer_all_word_Ws_var, writer_all_word_Cs_var, writer_output, writer_download, writer_download_btn, writer_weight_var, writer_svg_var], show_progress=False)
writer1.change(fn=update_chosen_writers,
inputs=[writer1, writer2, writer_weight_var, writer_words_var, all_loaded_data_var],
outputs=[writer_slider, chosen_writers_var, writer_mean_Ws_var, writer_words_var, writer_all_word_Ws_var, writer_all_word_Cs_var, writer_output, writer_download, writer_download_btn, writer_weight_var, writer_svg_var])
writer2.change(fn=update_chosen_writers,
inputs=[writer1, writer2, writer_weight_var, writer_words_var, all_loaded_data_var],
outputs=[writer_slider, chosen_writers_var, writer_mean_Ws_var, writer_words_var, writer_all_word_Ws_var, writer_all_word_Cs_var, writer_output, writer_download, writer_download_btn, writer_weight_var, writer_svg_var])
writer_download_btn.click(fn=update_writer_download,
inputs=[writer_svg_var],
outputs=[writer_download, writer_download_btn])
with gr.TabItem("Blend Characters"):
with gr.Row():
with gr.Column():
char1 = gr.Dropdown(choices=avail_char_list, value=char_chosen_DEFAULT[0], label="Character 1")
with gr.Column():
char2 = gr.Dropdown(choices=avail_char_list, value=char_chosen_DEFAULT[1], label="Character 2")
with gr.Row():
char_slider = gr.Slider(0, 1, value=char_weight_DEFAULT, label=f"'{char_chosen_DEFAULT[0]}' vs. '{char_chosen_DEFAULT[1]}'")
with gr.Row():
char_default_image = update_char_slider(char_weight_DEFAULT, char_Ws_DEFAULT, char_Cs_DEFAULT, char_chosen_DEFAULT)
char_output = gr.HTML(char_default_image[0]["value"])
with gr.Row():
char_download_btn = gr.Button("Save to SVG file")
char_download_btn.style(full_width="true")
char_download = gr.File(interactive=False, show_label=False, visible=False)
char_slider.change(fn=update_char_slider,
inputs=[char_slider, char_Ws_var, char_Cs_var, char_chosen_var],
outputs=[char_output, char_download, char_download_btn, char_weight_var, char_svg_var], show_progress=False)
char1.change(fn=update_blend_chars,
inputs=[char1, char2, char_weight_var, char_Ws_var],
outputs=[char_slider, char_Cs_var, char_chosen_var, char_output, char_download, char_download_btn, char_weight_var, char_svg_var])
char2.change(fn=update_blend_chars,
inputs=[char1, char2, char_weight_var, char_Ws_var],
outputs=[char_slider, char_Cs_var, char_chosen_var, char_output, char_download, char_download_btn, char_weight_var, char_svg_var])
char_download_btn.click(fn=update_char_download,
inputs=[char_svg_var],
outputs=[char_download, char_download_btn], show_progress=True)
with gr.TabItem("Add Randomness"):
mdn_word = gr.Textbox(label="Target Word", value=" ".join(mdn_words_DEFAULT), max_lines=1)
with gr.Row():
with gr.Column():
max_rand = gr.Slider(0, 1, value=clamp_mdn_DEFAULT, label="Maximum Randomness")
with gr.Column():
scale_rand = gr.Slider(0, 3, value=scale_sd_DEFAULT, label="Scale of Randomness")
with gr.Row():
mdn_sample_button = gr.Button(value="Resample")
with gr.Row():
default_im = sample_mdn(scale_sd_DEFAULT, clamp_mdn_DEFAULT, mdn_words_DEFAULT, all_word_mdn_Ws_DEFAULT, all_word_mdn_Cs_DEFAULT)
mdn_output = gr.HTML(default_im[0]["value"])
with gr.Row():
randomness_download_btn = gr.Button("Save to SVG file")
randomness_download = gr.File(interactive=False, show_label=False, visible=False)
max_rand.change(fn=sample_mdn,
inputs=[scale_rand, max_rand, mdn_words_var, all_word_mdn_Ws_var, all_word_mdn_Cs_var],
outputs=[mdn_output, randomness_download, randomness_download_btn, clamp_mdn_var, scale_sd_var, mdn_svg_var], show_progress=False)
scale_rand.change(fn=sample_mdn,
inputs=[scale_rand, max_rand, mdn_words_var, all_word_mdn_Ws_var, all_word_mdn_Cs_var],
outputs=[mdn_output, randomness_download, randomness_download_btn, clamp_mdn_var, scale_sd_var, mdn_svg_var], show_progress=False)
mdn_sample_button.click(fn=sample_mdn,
inputs=[scale_rand, max_rand, mdn_words_var, all_word_mdn_Ws_var, all_word_mdn_Cs_var],
outputs=[mdn_output, randomness_download, randomness_download_btn, clamp_mdn_var, scale_sd_var, mdn_svg_var], show_progress=False)
mdn_word.submit(fn=update_mdn_word,
inputs=[mdn_word, scale_sd_var, clamp_mdn_var],
outputs=[mdn_words_var, all_word_mdn_Ws_var, all_word_mdn_Cs_var, mdn_output, randomness_download, randomness_download_btn, clamp_mdn_var, scale_sd_var, mdn_svg_var], show_progress=False)
randomness_download_btn.click(fn=update_mdn_download,
inputs=[mdn_svg_var],
outputs=[randomness_download, randomness_download_btn])
randomness_download_btn.style(full_width="true")
demo.launch()