forked from clips/pattern
-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.txt
142 lines (118 loc) · 5.02 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
PATTERN
=======
Pattern is a web mining module for Python. It has tools for data mining (web services for Google, Twitter and Wikipedia, web crawler, HTML DOM parser), natural language processing (part-of-speech taggers, n-gram search, sentiment analysis, WordNet), machine learning (vector space model, clustering, classification using KNN, SVM, Perceptron) and network analysis (graph centrality and visualization). It is well documented and bundled with 50+ examples and 350+ unit tests. The source code is licensed under BSD and available from http://www.clips.ua.ac.be/pages/pattern.
VERSION
=======
2.6
LICENSE
=======
BSD, see LICENSE.txt for further details.
INSTALLATION
============
Pattern is written for Python 2.5+ (no support for Python 3 yet). The module has no external dependencies except when using LSA in the pattern.vector module, which requires NumPy (installed by default on Mac OS X). To install Pattern so that it is available in all your scripts, unzip the download and from the command line do:
> cd pattern-2.6
> python setup.py install
If you have pip, you can automatically download and install from the PyPi repository:
> pip install pattern
If none of the above works, you can make Python aware of the module in three ways:
- Put the pattern folder in the same folder as your script.
- Put the pattern folder in the standard location for modules so it is available to all scripts:
c:\python26\Lib\site-packages\ (Windows),
/Library/Python/2.6/site-packages/ (Mac OS X),
/usr/lib/python2.6/site-packages/ (Unix).
- Add the location of the module to sys.path in your script, before importing it:
>>> MODULE = '/users/tom/desktop/pattern'
>>> import sys; if MODULE not in sys.path: sys.path.append(MODULE)
>>> from pattern.en import parsetree
Example
=======
This example trains a classifier on adjectives mined from Twitter. First, tweets that contain hashtag #win or #fail are collected. For example: "$20 tip off a sweet little old lady today #win". The word part-of-speech tags are then parsed, keeping only adjectives. Each tweet is transformed to a vector, a dictionary of adjective → count items, labeled WIN or FAIL. The classifier uses the vectors to learn which other tweets look more like WIN or more like FAIL.
>>> from pattern.web import Twitter
>>> from pattern.en import tag
>>> from pattern.vector import KNN, count
>>>
>>> twitter, knn = Twitter(), KNN()
>>>
>>> for i in range(1, 3):
>>> for tweet in twitter.search('#win OR #fail', start=i, count=100):
>>> s = tweet.text.lower()
>>> p = '#win' in s and 'WIN' or 'FAIL'
>>> v = tag(s)
>>> v = [word for word, pos in v if pos == 'JJ'] # JJ = adjective
>>> v = count(v) # {'sweet': 1}
>>> if v:
>>> knn.train(v, type=p)
>>>
>>> print knn.classify('sweet potato burger')
>>> print knn.classify('stupid autocorrect')
DOCUMENTATION
=============
http://www.clips.ua.ac.be/pages/pattern
REFERENCE
=========
De Smedt, T., Daelemans, W. (2012). Pattern for Python. Journal of Machine Learning Research, 13, 2031–2035.
CONTRIBUTE
==========
The source code is hosted on GitHub and contributions or donations are welcomed, see the developer documentation (http://www.clips.ua.ac.be/pages/pattern#contribute). If you use Pattern in your work, please cite our reference paper.
BUNDLED DEPENDENCIES
====================
Pattern is bundled with the following data sets, algorithms and Python packages:
- Beautiful Soup, Leonard Richardson
- Brill tagger, Eric Brill
- Brill tagger for Dutch, Jeroen Geertzen
- Brill tagger for German, Gerold Schneider & Martin Volk
- Brill tagger for Spanish, trained on Wikicorpus (Samuel Reese & Gemma Boleda et al.)
- Brill tagger for French, trained on Lefff (Benoît Sagot & Lionel Clément et al.)
- Brill tagger for Italian, mined from Wiktionary
- English pluralization, Damian Conway
- Spanish verb inflection, Fred Jehle
- French verb inflection, Bob Salita
- Graph JavaScript framework, Aslak Hellesoy & Dave Hoover
- LIBSVM, Chih-Chung Chang & Chih-Jen Lin
- LIBLINEAR, Rong-En Fan et al.
- NetworkX centrality, Aric Hagberg, Dan Schult & Pieter Swart
- PDFMiner, Yusuke Shinyama
- Python docx, Mike Maccana
- PyWordNet, Oliver Steele
- simplejson, Bob Ippolito
- spelling corrector, Peter Norvig
- Universal Feed Parser, Mark Pilgrim
- WordNet, Christiane Fellbaum et al.
ACKNOWLEDGEMENTS
================
Authors:
- Tom De Smedt ([email protected])
- Walter Daelemans ([email protected])
Contributors (chronological):
- Frederik De Bleser
- Jason Wiener
- Daniel Friesen
- Jeroen Geertzen
- Thomas Crombez
- Ken Williams
- Peteris Erins
- Rajesh Nair
- F. De Smedt
- Radim Řehůřek
- Tom Loredo
- John DeBovis
- Thomas Sileo
- Gerold Schneider
- Martin Volk
- Samuel Joseph
- Shubhanshu Mishra
- Robert Elwell
- Fred Jehle
- Antoine Mazières + fabelier.org
- Rémi de Zoeten + closealert.nl
- Kenneth Koch
- Jens Grivolla
- Fabio Marfia
- Steven Loria
- Colin Molter + tevizz.com
- Peter Bull
- Maurizio Sambati
- Dan Fu
- Salvatore Di Dio
- Vincent Van Asch
- Frederik Elwert