We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
GPU(brightmart版, tiny模型): export BERT_BASE_DIR=./albert_tiny_zh nohup python3 run_pretraining.py --input_file=./data/tf*.tfrecord --output_dir=./my_new_model_path --do_train=True --do_eval=True --bert_config_file=$BERT_BASE_DIR/albert_config_tiny.json --train_batch_size=4096 --max_seq_length=512 --max_predictions_per_seq=51 --num_train_steps=125000 --num_warmup_steps=12500 --learning_rate=0.00176 --save_checkpoints_steps=2000 --init_checkpoint=$BERT_BASE_DIR/albert_model.ckpt &
GPU(Google版本, small模型): export BERT_BASE_DIR=./albert_small_zh_google nohup python3 run_pretraining_google.py --input_file=./data/tf*.tfrecord --eval_batch_size=64 --output_dir=./my_new_model_path --do_train=True --do_eval=True --albert_config_file=$BERT_BASE_DIR/albert_config_small_google.json --export_dir=./my_new_model_path_export --train_batch_size=4096 --max_seq_length=512 --max_predictions_per_seq=20 --num_train_steps=125000 --num_warmup_steps=12500 --learning_rate=0.00176 --save_checkpoints_steps=2000 --init_checkpoint=$BERT_BASE_DIR/albert_model.ckpt
TPU, add something like this: --use_tpu=True --tpu_name=grpc://10.240.1.66:8470 --tpu_zone=us-central1-a
@brightmart 您好,但我看modeling_google 与 modeling 似乎前者仍是bert embedding方式,后者才是加上了因式分解,那为什么small进行预训练要用与bert一样的方式呢,若理解不对还请指正
The text was updated successfully, but these errors were encountered:
modeling_google就是用google albert版本的模型的代码;modeling就是我们自己调整的代码哦。
Sorry, something went wrong.
No branches or pull requests
GPU(brightmart版, tiny模型):
export BERT_BASE_DIR=./albert_tiny_zh
nohup python3 run_pretraining.py --input_file=./data/tf*.tfrecord
--output_dir=./my_new_model_path --do_train=True --do_eval=True --bert_config_file=$BERT_BASE_DIR/albert_config_tiny.json
--train_batch_size=4096 --max_seq_length=512 --max_predictions_per_seq=51
--num_train_steps=125000 --num_warmup_steps=12500 --learning_rate=0.00176
--save_checkpoints_steps=2000 --init_checkpoint=$BERT_BASE_DIR/albert_model.ckpt &
GPU(Google版本, small模型):
export BERT_BASE_DIR=./albert_small_zh_google
nohup python3 run_pretraining_google.py --input_file=./data/tf*.tfrecord --eval_batch_size=64
--output_dir=./my_new_model_path --do_train=True --do_eval=True --albert_config_file=$BERT_BASE_DIR/albert_config_small_google.json --export_dir=./my_new_model_path_export
--train_batch_size=4096 --max_seq_length=512 --max_predictions_per_seq=20
--num_train_steps=125000 --num_warmup_steps=12500 --learning_rate=0.00176
--save_checkpoints_steps=2000 --init_checkpoint=$BERT_BASE_DIR/albert_model.ckpt
TPU, add something like this:
--use_tpu=True --tpu_name=grpc://10.240.1.66:8470 --tpu_zone=us-central1-a
@brightmart 您好,但我看modeling_google 与 modeling 似乎前者仍是bert embedding方式,后者才是加上了因式分解,那为什么small进行预训练要用与bert一样的方式呢,若理解不对还请指正
The text was updated successfully, but these errors were encountered: