diff --git a/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip b/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip index f6b54dad..e169e30f 100644 Binary files a/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip and b/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip differ diff --git a/dev/_downloads/2b3354037141fa0033174f982871d566/plot_relative_positioning.zip b/dev/_downloads/2b3354037141fa0033174f982871d566/plot_relative_positioning.zip index 83578a75..7ed162a9 100644 Binary files a/dev/_downloads/2b3354037141fa0033174f982871d566/plot_relative_positioning.zip and b/dev/_downloads/2b3354037141fa0033174f982871d566/plot_relative_positioning.zip differ diff --git a/dev/_downloads/36393305d195c3207520572a3b677a05/plot_basic_training_epochs.zip b/dev/_downloads/36393305d195c3207520572a3b677a05/plot_basic_training_epochs.zip index ce9cfdfd..7e55dc14 100644 Binary files a/dev/_downloads/36393305d195c3207520572a3b677a05/plot_basic_training_epochs.zip and b/dev/_downloads/36393305d195c3207520572a3b677a05/plot_basic_training_epochs.zip differ diff --git a/dev/_downloads/3d616473194ad5c360edcbb3e46c7a3a/plot_custom_dataset_example.zip b/dev/_downloads/3d616473194ad5c360edcbb3e46c7a3a/plot_custom_dataset_example.zip index 87c4f4dd..ebdabd1e 100644 Binary files a/dev/_downloads/3d616473194ad5c360edcbb3e46c7a3a/plot_custom_dataset_example.zip and b/dev/_downloads/3d616473194ad5c360edcbb3e46c7a3a/plot_custom_dataset_example.zip differ diff --git a/dev/_downloads/497b39027218ebaf8ffa20c07a0eff8d/plot_split_dataset.zip b/dev/_downloads/497b39027218ebaf8ffa20c07a0eff8d/plot_split_dataset.zip index 50c14aa6..51a0226b 100644 Binary files a/dev/_downloads/497b39027218ebaf8ffa20c07a0eff8d/plot_split_dataset.zip and b/dev/_downloads/497b39027218ebaf8ffa20c07a0eff8d/plot_split_dataset.zip differ diff --git a/dev/_downloads/4a2751c5805e7a17be8ee78ee1f2d520/plot_sleep_staging_chambon2018.zip b/dev/_downloads/4a2751c5805e7a17be8ee78ee1f2d520/plot_sleep_staging_chambon2018.zip index 5cef0852..0a303a1b 100644 Binary files a/dev/_downloads/4a2751c5805e7a17be8ee78ee1f2d520/plot_sleep_staging_chambon2018.zip and b/dev/_downloads/4a2751c5805e7a17be8ee78ee1f2d520/plot_sleep_staging_chambon2018.zip differ diff --git a/dev/_downloads/52f5b6b37eb9b07c97027b1eb0fadcd4/plot_sleep_staging_usleep.zip b/dev/_downloads/52f5b6b37eb9b07c97027b1eb0fadcd4/plot_sleep_staging_usleep.zip index 1bcd3829..9956ebd7 100644 Binary files a/dev/_downloads/52f5b6b37eb9b07c97027b1eb0fadcd4/plot_sleep_staging_usleep.zip and b/dev/_downloads/52f5b6b37eb9b07c97027b1eb0fadcd4/plot_sleep_staging_usleep.zip differ diff --git a/dev/_downloads/568f264ca0ecc135d137fd575c39cf8e/plot_regression.zip b/dev/_downloads/568f264ca0ecc135d137fd575c39cf8e/plot_regression.zip index 6af62479..5fee96cb 100644 Binary files a/dev/_downloads/568f264ca0ecc135d137fd575c39cf8e/plot_regression.zip and b/dev/_downloads/568f264ca0ecc135d137fd575c39cf8e/plot_regression.zip differ diff --git a/dev/_downloads/5e85dd7b06a544f298bd1837eddfcbd5/plot_train_in_pure_pytorch_and_pytorch_lightning.zip b/dev/_downloads/5e85dd7b06a544f298bd1837eddfcbd5/plot_train_in_pure_pytorch_and_pytorch_lightning.zip index 63ad66cf..f9e50a45 100644 Binary files a/dev/_downloads/5e85dd7b06a544f298bd1837eddfcbd5/plot_train_in_pure_pytorch_and_pytorch_lightning.zip and b/dev/_downloads/5e85dd7b06a544f298bd1837eddfcbd5/plot_train_in_pure_pytorch_and_pytorch_lightning.zip differ diff --git a/dev/_downloads/67cf91b203bc10a20a2f8703a04849f8/plot_data_augmentation_search.zip b/dev/_downloads/67cf91b203bc10a20a2f8703a04849f8/plot_data_augmentation_search.zip index 552798b7..2740cd6a 100644 Binary files a/dev/_downloads/67cf91b203bc10a20a2f8703a04849f8/plot_data_augmentation_search.zip and b/dev/_downloads/67cf91b203bc10a20a2f8703a04849f8/plot_data_augmentation_search.zip differ diff --git a/dev/_downloads/6b30e1d8632bb747aae46f30c6993983/plot_bcic_iv_4_ecog_cropped.zip b/dev/_downloads/6b30e1d8632bb747aae46f30c6993983/plot_bcic_iv_4_ecog_cropped.zip index e8fb13c2..e5124ffb 100644 Binary files a/dev/_downloads/6b30e1d8632bb747aae46f30c6993983/plot_bcic_iv_4_ecog_cropped.zip and b/dev/_downloads/6b30e1d8632bb747aae46f30c6993983/plot_bcic_iv_4_ecog_cropped.zip differ diff --git a/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip b/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip index dfa70262..8bfa2b6e 100644 Binary files a/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip and b/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip differ diff --git a/dev/_downloads/701321eb74424104536be933ed2cbf9e/plot_moabb_dataset_example.zip b/dev/_downloads/701321eb74424104536be933ed2cbf9e/plot_moabb_dataset_example.zip index 30776a2e..7e114d60 100644 Binary files a/dev/_downloads/701321eb74424104536be933ed2cbf9e/plot_moabb_dataset_example.zip and b/dev/_downloads/701321eb74424104536be933ed2cbf9e/plot_moabb_dataset_example.zip differ diff --git a/dev/_downloads/7ec8b4809f7c475073a9b5d8ebb962dc/plot_benchmark_preprocessing.zip b/dev/_downloads/7ec8b4809f7c475073a9b5d8ebb962dc/plot_benchmark_preprocessing.zip index 76cba4a0..a8f0206a 100644 Binary files a/dev/_downloads/7ec8b4809f7c475073a9b5d8ebb962dc/plot_benchmark_preprocessing.zip and b/dev/_downloads/7ec8b4809f7c475073a9b5d8ebb962dc/plot_benchmark_preprocessing.zip differ diff --git a/dev/_downloads/975f746daaf2fbe1dfde86e12f8d5031/plot_how_train_test_and_tune.zip b/dev/_downloads/975f746daaf2fbe1dfde86e12f8d5031/plot_how_train_test_and_tune.zip index c3068c96..894bf313 100644 Binary files a/dev/_downloads/975f746daaf2fbe1dfde86e12f8d5031/plot_how_train_test_and_tune.zip and b/dev/_downloads/975f746daaf2fbe1dfde86e12f8d5031/plot_how_train_test_and_tune.zip differ diff --git a/dev/_downloads/9f417c6133a57e14b27122d013590718/plot_mne_dataset_example.zip b/dev/_downloads/9f417c6133a57e14b27122d013590718/plot_mne_dataset_example.zip index a01dfc0b..06c7700b 100644 Binary files a/dev/_downloads/9f417c6133a57e14b27122d013590718/plot_mne_dataset_example.zip and b/dev/_downloads/9f417c6133a57e14b27122d013590718/plot_mne_dataset_example.zip differ diff --git a/dev/_downloads/add1a85fee267a1849d27de66d7d8a6b/plot_sleep_staging_eldele2021.zip b/dev/_downloads/add1a85fee267a1849d27de66d7d8a6b/plot_sleep_staging_eldele2021.zip index 182060cb..0e7d976f 100644 Binary files a/dev/_downloads/add1a85fee267a1849d27de66d7d8a6b/plot_sleep_staging_eldele2021.zip and b/dev/_downloads/add1a85fee267a1849d27de66d7d8a6b/plot_sleep_staging_eldele2021.zip differ diff --git a/dev/_downloads/b5c94eb60270f5ff2f26d4d743e7c69d/plot_tuh_eeg_corpus.zip b/dev/_downloads/b5c94eb60270f5ff2f26d4d743e7c69d/plot_tuh_eeg_corpus.zip index 013b7251..4dc5593a 100644 Binary files a/dev/_downloads/b5c94eb60270f5ff2f26d4d743e7c69d/plot_tuh_eeg_corpus.zip and b/dev/_downloads/b5c94eb60270f5ff2f26d4d743e7c69d/plot_tuh_eeg_corpus.zip differ diff --git a/dev/_downloads/c3317f5b839dfe85c3fa27a60420173e/plot_bcic_iv_2a_moabb_cropped.zip b/dev/_downloads/c3317f5b839dfe85c3fa27a60420173e/plot_bcic_iv_2a_moabb_cropped.zip index 9a1301a7..0f14c5f1 100644 Binary files a/dev/_downloads/c3317f5b839dfe85c3fa27a60420173e/plot_bcic_iv_2a_moabb_cropped.zip and b/dev/_downloads/c3317f5b839dfe85c3fa27a60420173e/plot_bcic_iv_2a_moabb_cropped.zip differ diff --git a/dev/_downloads/c58c35b5588d025b3e00c7e383793f93/benchmark_lazy_eager_loading.zip b/dev/_downloads/c58c35b5588d025b3e00c7e383793f93/benchmark_lazy_eager_loading.zip index 153223f4..bb4dd222 100644 Binary files a/dev/_downloads/c58c35b5588d025b3e00c7e383793f93/benchmark_lazy_eager_loading.zip and b/dev/_downloads/c58c35b5588d025b3e00c7e383793f93/benchmark_lazy_eager_loading.zip differ diff --git a/dev/_downloads/cec1d60200f666e0fada2d86280a2abe/plot_tuh_discrete_multitarget.zip b/dev/_downloads/cec1d60200f666e0fada2d86280a2abe/plot_tuh_discrete_multitarget.zip index 23c3e202..5f862b88 100644 Binary files a/dev/_downloads/cec1d60200f666e0fada2d86280a2abe/plot_tuh_discrete_multitarget.zip and b/dev/_downloads/cec1d60200f666e0fada2d86280a2abe/plot_tuh_discrete_multitarget.zip differ diff --git a/dev/_downloads/d323b5e4b5903c1466d0e7674a0bfab6/plot_bcic_iv_2a_moabb_trial.zip b/dev/_downloads/d323b5e4b5903c1466d0e7674a0bfab6/plot_bcic_iv_2a_moabb_trial.zip index cd7d510f..78b67c60 100644 Binary files a/dev/_downloads/d323b5e4b5903c1466d0e7674a0bfab6/plot_bcic_iv_2a_moabb_trial.zip and b/dev/_downloads/d323b5e4b5903c1466d0e7674a0bfab6/plot_bcic_iv_2a_moabb_trial.zip differ diff --git a/dev/_downloads/e824ae71d652d80edc1e0be50f3fcab4/plot_data_augmentation.zip b/dev/_downloads/e824ae71d652d80edc1e0be50f3fcab4/plot_data_augmentation.zip index 117569fb..d16e1f7d 100644 Binary files a/dev/_downloads/e824ae71d652d80edc1e0be50f3fcab4/plot_data_augmentation.zip and b/dev/_downloads/e824ae71d652d80edc1e0be50f3fcab4/plot_data_augmentation.zip differ diff --git a/dev/_downloads/e920a22508db3ee26e946faad811f57f/plot_hyperparameter_tuning_with_scikit-learn.zip b/dev/_downloads/e920a22508db3ee26e946faad811f57f/plot_hyperparameter_tuning_with_scikit-learn.zip index deeccfd1..400354d3 100644 Binary files a/dev/_downloads/e920a22508db3ee26e946faad811f57f/plot_hyperparameter_tuning_with_scikit-learn.zip and b/dev/_downloads/e920a22508db3ee26e946faad811f57f/plot_hyperparameter_tuning_with_scikit-learn.zip differ diff --git a/dev/_downloads/f3c7c35609f54876319e72ff42b71bb9/plot_load_save_datasets.zip b/dev/_downloads/f3c7c35609f54876319e72ff42b71bb9/plot_load_save_datasets.zip index 081e435b..0c43e554 100644 Binary files a/dev/_downloads/f3c7c35609f54876319e72ff42b71bb9/plot_load_save_datasets.zip and b/dev/_downloads/f3c7c35609f54876319e72ff42b71bb9/plot_load_save_datasets.zip differ diff --git a/dev/_downloads/f56b29a9031a522f5bcdaa29212f6171/plot_bcic_iv_4_ecog_trial.zip b/dev/_downloads/f56b29a9031a522f5bcdaa29212f6171/plot_bcic_iv_4_ecog_trial.zip index 7f4c9254..da17ff05 100644 Binary files a/dev/_downloads/f56b29a9031a522f5bcdaa29212f6171/plot_bcic_iv_4_ecog_trial.zip and b/dev/_downloads/f56b29a9031a522f5bcdaa29212f6171/plot_bcic_iv_4_ecog_trial.zip differ diff --git a/dev/_images/sphx_glr_plot_benchmark_preprocessing_001.png b/dev/_images/sphx_glr_plot_benchmark_preprocessing_001.png index 6c60d2b9..9575226d 100644 Binary files a/dev/_images/sphx_glr_plot_benchmark_preprocessing_001.png and b/dev/_images/sphx_glr_plot_benchmark_preprocessing_001.png differ diff --git a/dev/_images/sphx_glr_plot_benchmark_preprocessing_thumb.png b/dev/_images/sphx_glr_plot_benchmark_preprocessing_thumb.png index 1bf7adc9..7a6037b9 100644 Binary files a/dev/_images/sphx_glr_plot_benchmark_preprocessing_thumb.png and b/dev/_images/sphx_glr_plot_benchmark_preprocessing_thumb.png differ diff --git a/dev/auto_examples/advanced_training/plot_bcic_iv_4_ecog_cropped.html b/dev/auto_examples/advanced_training/plot_bcic_iv_4_ecog_cropped.html index 1f05d51b..82927a10 100644 --- a/dev/auto_examples/advanced_training/plot_bcic_iv_4_ecog_cropped.html +++ b/dev/auto_examples/advanced_training/plot_bcic_iv_4_ecog_cropped.html @@ -605,7 +605,7 @@
<braindecode.datasets.base.BaseConcatDataset object at 0x7f1b519a1450>
+<braindecode.datasets.base.BaseConcatDataset object at 0x7f6961eb2500>
In time series targets setup, targets variables are stored in mne.Raw object as channels
@@ -842,14 +842,14 @@
Training
epoch r2_train r2_valid train_loss valid_loss lr dur
------- ---------- ---------- ------------ ------------ ------ ------
- 1 -23.7826 -4.6087 1.8225 11.7419 0.0006 0.5175
- 2 -1.1990 -0.1716 1.5134 2.6475 0.0006 0.4728
- 3 -0.3654 -0.4985 1.2625 3.4645 0.0005 0.4460
- 4 -0.4383 -0.2731 1.2058 2.9438 0.0004 0.4744
- 5 -0.5982 -0.1512 1.1027 2.6529 0.0002 0.4460
- 6 -0.6090 -0.1255 1.1121 2.5886 0.0001 0.4455
- 7 -0.4455 -0.1445 0.9618 2.6339 0.0000 0.4626
- 8 -0.2790 -0.1755 1.0927 2.7063 0.0000 0.4457
+ 1 -23.7826 -4.6087 1.8225 11.7419 0.0006 0.5271
+ 2 -1.1990 -0.1716 1.5134 2.6475 0.0006 0.4678
+ 3 -0.3654 -0.4985 1.2625 3.4645 0.0005 0.4534
+ 4 -0.4383 -0.2731 1.2058 2.9438 0.0004 0.4724
+ 5 -0.5982 -0.1512 1.1027 2.6529 0.0002 0.4513
+ 6 -0.6090 -0.1255 1.1121 2.5886 0.0001 0.4624
+ 7 -0.4455 -0.1445 0.9618 2.6339 0.0000 0.4509
+ 8 -0.2790 -0.1755 1.0927 2.7063 0.0000 0.4514
Obtaining predictions and targets for the test, train, and validation dataset
@@ -970,8 +970,8 @@Total running time of the script: (1 minutes 3.138 seconds)
-Estimated memory usage: 1466 MB
+Total running time of the script: (2 minutes 53.498 seconds)
+Estimated memory usage: 1381 MB
epoch train_accuracy train_loss valid_acc valid_accuracy valid_loss lr dur
------- ---------------- ------------ ----------- ---------------- ------------ ------ ------
- 1 0.2639 1.4655 0.2639 0.2639 1.5266 0.0006 1.7435
- 2 0.3299 1.3119 0.3194 0.3194 1.3948 0.0005 1.6014
- 3 0.4757 1.1941 0.2986 0.2986 1.3259 0.0002 1.6057
- 4 0.5625 1.1671 0.3333 0.3333 1.3025 0.0000 1.6054
+ 1 0.2639 1.4655 0.2639 0.2639 1.5266 0.0006 1.7984
+ 2 0.3299 1.3119 0.3194 0.3194 1.3948 0.0005 1.6008
+ 3 0.4757 1.1941 0.2986 0.2986 1.3259 0.0002 1.6195
+ 4 0.5625 1.1671 0.3333 0.3333 1.3025 0.0000 1.6158
<class 'braindecode.classifier.EEGClassifier'>[initialized](
module_=============================================================================================================================================
@@ -850,8 +850,8 @@ Setting the data aug
-Total running time of the script: (0 minutes 17.541 seconds)
-Estimated memory usage: 967 MB
+Total running time of the script: (0 minutes 18.402 seconds)
+Estimated memory usage: 1129 MB
-/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7f1c150fbc40>] to the mne.io.Raw of an EEGWindowsDataset.
+/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7f694c7e1e70>] to the mne.io.Raw of an EEGWindowsDataset.
warn(
-/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7f1c150fbc40>] to the mne.io.Raw of an EEGWindowsDataset.
+/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7f694c7e1e70>] to the mne.io.Raw of an EEGWindowsDataset.
warn(
-/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7f1c150fbc40>] to the mne.io.Raw of an EEGWindowsDataset.
+/home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:244: UserWarning: Applying preprocessors [<braindecode.preprocessing.preprocess.Preprocessor object at 0x7f694c7e1e70>] to the mne.io.Raw of an EEGWindowsDataset.
warn(
-<braindecode.datasets.base.BaseConcatDataset object at 0x7f1c150f98a0>
+<braindecode.datasets.base.BaseConcatDataset object at 0x7f694c6d5cf0>
@@ -892,31 +892,31 @@ Training
epoch train_acc train_loss valid_acc valid_loss cp dur
------- ----------- ------------ ----------- ------------ ---- ------
- 1 0.5234 0.7013 0.6680 0.6320 + 1.0788
- 2 0.5938 0.7149 0.4880 0.8358 0.8068
- 3 0.4922 1.0040 0.6440 0.6172 + 0.7990
- 4 0.5234 0.7031 0.6120 0.5990 + 0.8103
- 5 0.5391 0.6751 0.5920 0.6213 0.8144
- 6 0.6719 0.6227 0.5920 0.6263 0.8038
- 7 0.6562 0.6309 0.6240 0.6117 0.7917
- 8 0.6641 0.6272 0.6480 0.5950 + 0.8118
- 9 0.6328 0.6238 0.6680 0.5797 + 0.8104
- 10 0.6406 0.6177 0.6800 0.5746 + 0.8028
- 11 0.6250 0.6323 0.7040 0.5787 0.7864
- 12 0.6094 0.6281 0.6760 0.5772 0.7984
- 13 0.6328 0.6422 0.6880 0.5790 0.8117
- 14 0.6406 0.5920 0.6840 0.5765 0.7915
- 15 0.6562 0.6170 0.6920 0.5730 + 0.7830
- 16 0.7578 0.5608 0.6960 0.5676 + 0.7846
- 17 0.6875 0.5936 0.7120 0.5612 + 0.7944
- 18 0.7734 0.5472 0.7080 0.5500 + 0.7865
- 19 0.7656 0.5245 0.7120 0.5400 + 0.8003
- 20 0.6641 0.5641 0.7160 0.5333 + 0.7922
- 21 0.7422 0.5307 0.7200 0.5272 + 0.7993
- 22 0.7109 0.5499 0.7360 0.5211 + 0.8033
- 23 0.6250 0.6259 0.7400 0.5164 + 0.7959
- 24 0.7031 0.5712 0.7400 0.5120 + 0.7848
- 25 0.7109 0.5030 0.7280 0.5120 0.8068
+ 1 0.5234 0.7013 0.6680 0.6320 + 1.1019
+ 2 0.5938 0.7149 0.4880 0.8358 0.8375
+ 3 0.4922 1.0040 0.6440 0.6172 + 0.8318
+ 4 0.5234 0.7031 0.6120 0.5990 + 0.8193
+ 5 0.5391 0.6751 0.5920 0.6213 0.8141
+ 6 0.6719 0.6227 0.5920 0.6263 0.8127
+ 7 0.6562 0.6309 0.6240 0.6117 0.8231
+ 8 0.6641 0.6272 0.6480 0.5950 + 0.8536
+ 9 0.6328 0.6238 0.6680 0.5797 + 0.8490
+ 10 0.6406 0.6177 0.6800 0.5746 + 0.8047
+ 11 0.6250 0.6323 0.7040 0.5787 0.8115
+ 12 0.6094 0.6281 0.6760 0.5772 0.8142
+ 13 0.6328 0.6422 0.6880 0.5790 0.8075
+ 14 0.6406 0.5920 0.6840 0.5765 0.8064
+ 15 0.6562 0.6170 0.6920 0.5730 + 0.8072
+ 16 0.7578 0.5608 0.6960 0.5676 + 0.8270
+ 17 0.6875 0.5936 0.7120 0.5612 + 0.8575
+ 18 0.7734 0.5472 0.7080 0.5500 + 0.8184
+ 19 0.7656 0.5245 0.7120 0.5400 + 0.8047
+ 20 0.6641 0.5641 0.7160 0.5333 + 0.8226
+ 21 0.7422 0.5307 0.7200 0.5272 + 0.8214
+ 22 0.7109 0.5499 0.7360 0.5211 + 0.8287
+ 23 0.6250 0.6259 0.7400 0.5164 + 0.8225
+ 24 0.7031 0.5712 0.7400 0.5120 + 0.8157
+ 25 0.7109 0.5030 0.7280 0.5120 0.8217
/home/runner/.local/lib/python3.10/site-packages/skorch/net.py:2626: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
return torch.load(f_name, map_location=map_location)
@@ -1102,7 +1102,7 @@ Using the learned re
ax.legend()
-<matplotlib.legend.Legend object at 0x7f1c1504bbe0>
+<matplotlib.legend.Legend object at 0x7f69620cc6a0>
We see that there is sleep stage-related structure in the embedding. A
@@ -1159,8 +1159,8 @@
References
-Total running time of the script: (1 minutes 54.736 seconds)
-Estimated memory usage: 777 MB
+Total running time of the script: (2 minutes 4.775 seconds)
+Estimated memory usage: 822 MB