-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
564 lines (473 loc) · 22.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import json
import logging
import os
import random
import re
import shutil
from contextlib import contextmanager
from pathlib import Path
from typing import Callable, Dict, List, NamedTuple, Optional, Tuple
import numpy as np
import torch
from torch import nn
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Dataset
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import RandomSampler
from tqdm import tqdm, trange
from data_collator import DataCollator, DefaultDataCollator
from transformers.modeling_utils import PreTrainedModel
from transformers.optimization import AdamW, get_linear_schedule_with_warmup
from training_args import TrainingArguments
try:
from apex import amp
_has_apex = True
except ImportError:
_has_apex = False
def is_apex_available():
return _has_apex
try:
from torch.utils.tensorboard import SummaryWriter
_has_tensorboard = True
except ImportError:
try:
from tensorboardX import SummaryWriter
_has_tensorboard = True
except ImportError:
_has_tensorboard = False
def is_tensorboard_available():
return _has_tensorboard
logger = logging.getLogger(__name__)
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# ^^ safe to call this function even if cuda is not available
@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""
Decorator to make all processes in distributed training wait for the first one (locally) to do something.
"""
if local_rank not in [-1, 0]:
torch.distributed.barrier()
yield
if local_rank == 0:
torch.distributed.barrier()
class EvalPrediction(NamedTuple):
"""
Evaluation output (always contains labels), to be used
to compute metrics.
"""
predictions: np.ndarray
label_ids: np.ndarray
class PredictionOutput(NamedTuple):
predictions: np.ndarray
label_ids: Optional[np.ndarray]
metrics: Optional[Dict[str, float]]
class TrainOutput(NamedTuple):
global_step: int
training_loss: float
PREFIX_CHECKPOINT_DIR = "checkpoint"
class Trainer:
"""
Trainer is a simple but feature-complete training and eval loop for PyTorch,
optimized for Transformers.
"""
model: PreTrainedModel
args: TrainingArguments
data_collator: DataCollator
train_dataset: Optional[Dataset]
eval_dataset: Optional[Dataset]
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None
prediction_loss_only: bool
tb_writer: Optional["SummaryWriter"] = None
def __init__(
self,
model: PreTrainedModel,
args: TrainingArguments,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Dataset] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
prediction_loss_only=False,
):
"""
Trainer is a simple but feature-complete training and eval loop for PyTorch,
optimized for Transformers.
Args:
prediction_loss_only:
(Optional) in evaluation and prediction, only return the loss
"""
self.model = model
self.args = args
if data_collator is not None:
self.data_collator = data_collator
else:
self.data_collator = DefaultDataCollator()
self.train_dataset = train_dataset
self.eval_dataset = eval_dataset
self.compute_metrics = compute_metrics
self.prediction_loss_only = prediction_loss_only
if is_tensorboard_available() and self.args.local_rank in [-1, 0]:
self.tb_writer = SummaryWriter(log_dir=self.args.logging_dir)
if not is_tensorboard_available():
logger.warning(
"You are instantiating a Trainer but Tensorboard is not installed. You should consider installing it."
)
set_seed(self.args.seed)
# Create output directory if needed
if self.args.local_rank in [-1, 0]:
os.makedirs(self.args.output_dir, exist_ok=True)
def get_train_dataloader(self) -> DataLoader:
if self.train_dataset is None:
raise ValueError("Trainer: training requires a train_dataset.")
train_sampler = (
RandomSampler(self.train_dataset) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset)
)
return DataLoader(
self.train_dataset,
batch_size=self.args.train_batch_size,
sampler=train_sampler,
collate_fn=self.data_collator.collate_batch,
)
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
if eval_dataset is None and self.eval_dataset is None:
raise ValueError("Trainer: evaluation requires an eval_dataset.")
return DataLoader(
eval_dataset if eval_dataset is not None else self.eval_dataset,
batch_size=self.args.eval_batch_size,
shuffle=False,
collate_fn=self.data_collator.collate_batch,
)
def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
# We use the same batch_size as for eval.
return DataLoader(
test_dataset,
batch_size=self.args.eval_batch_size,
shuffle=False,
collate_fn=self.data_collator.collate_batch,
)
def get_optimizers(
self, num_training_steps: int
) -> Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]:
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.args.weight_decay,
},
{
"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=self.args.learning_rate, eps=self.args.adam_epsilon)
#scheduler = get_linear_schedule_with_warmup(
# optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps
#)
if self.args.warmup_steps>0:
logger.info("*****Linear warmup over %d warmup_steps *****"%self.args.warmup_steps)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps
)
else:
logger.info("*****Linear warmup over %.1f%% of training.*****"%(self.args.warmup_proportion*100))
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=int(self.args.warmup_proportion*num_training_steps), num_training_steps=num_training_steps
)
return optimizer, scheduler
def train(self,tokenizer, model_path: Optional[str] = None):
"""
Main training entry point.
Args:
model_path:
(Optional) Local path to model if model to train has been instantiated from a local path
If present, we will try reloading the optimizer/scheduler states from there.
"""
train_dataloader = self.get_train_dataloader()
if self.args.max_steps > 0:
t_total = self.args.max_steps
num_train_epochs = (
self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1
)
else:
t_total = int(len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs)
num_train_epochs = self.args.num_train_epochs
optimizer, scheduler = self.get_optimizers(num_training_steps=t_total)
# Check if saved optimizer or scheduler states exist
if (
model_path is not None
and os.path.isfile(os.path.join(model_path, "optimizer.pt"))
and os.path.isfile(os.path.join(model_path, "scheduler.pt"))
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(model_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(model_path, "scheduler.pt")))
model = self.model
model.to(self.args.device)
if self.args.fp16:
if not is_apex_available():
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=self.args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if self.args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if self.args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[self.args.local_rank],
output_device=self.args.local_rank,
find_unused_parameters=True,
)
if self.tb_writer is not None:
self.tb_writer.add_text("args", self.args.to_json_string())
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataloader.dataset))
logger.info(" Num Epochs = %d", num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", self.args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
self.args.train_batch_size
* self.args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if self.args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
logger.info(" Starting fine-tuning.")
#if model_path is not None:
# # set global_step to global_step of last saved checkpoint from model path
# try:
# global_step = int(model_path.split("-")[-1].split("/")[0])
# epochs_trained = global_step // (len(train_dataloader) // self.args.gradient_accumulation_steps)
# steps_trained_in_current_epoch = global_step % (
# len(train_dataloader) // self.args.gradient_accumulation_steps
# )
# logger.info(" Continuing training from checkpoint, will skip to saved global_step")
# logger.info(" Continuing training from epoch %d", epochs_trained)
# logger.info(" Continuing training from global step %d", global_step)
# logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
# except ValueError:
# global_step = 0
# logger.info(" Starting fine-tuning.")
tr_loss = 0.0
logging_loss = 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(num_train_epochs), desc="Epoch", disable=self.args.local_rank not in [-1, 0],
)
for epoch in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=self.args.local_rank not in [-1, 0])
for step, inputs in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
tr_loss += self._training_step(model, inputs, optimizer)
if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
# last step in epoch but step is always smaller than gradient_accumulation_steps
len(epoch_iterator) <= self.args.gradient_accumulation_steps
and (step + 1) == len(epoch_iterator)
):
if self.args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), self.args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)
optimizer.step()
scheduler.step()
model.zero_grad()
global_step += 1
if self.args.local_rank in [-1, 0]:
if (self.args.logging_steps > 0 and global_step % self.args.logging_steps == 0) or (
global_step == 1 and self.args.logging_first_step
):
logs = {}
if self.args.evaluate_during_training:
results = self.evaluate()
for key, value in results.items():
eval_key = "eval_{}".format(key)
logs[eval_key] = value
loss_scalar = (tr_loss - logging_loss) / self.args.logging_steps
learning_rate_scalar = scheduler.get_lr()[0]
logs["learning_rate"] = learning_rate_scalar
logs["loss"] = loss_scalar
logging_loss = tr_loss
if self.tb_writer:
for k, v in logs.items():
self.tb_writer.add_scalar(k, v, global_step)
epoch_iterator.write(json.dumps({**logs, **{"step": global_step}}))
if self.args.max_steps > 0 and global_step > self.args.max_steps:
epoch_iterator.close()
break
if self.args.save_steps > 0 :
# In all cases (even distributed/parallel), self.model is always a reference
# to the model we want to save.
if hasattr(model, "module"):
assert model.module is self.model
else:
assert model is self.model
# Save model checkpoint
output_dir = os.path.join(self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{global_step}")
self.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
self._rotate_checkpoints()
#torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
#torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if self.args.max_steps > 0 and global_step > self.args.max_steps:
train_iterator.close()
break
if self.tb_writer:
self.tb_writer.close()
logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
return TrainOutput(global_step, tr_loss / global_step)
def _training_step(
self, model: nn.Module, inputs: Dict[str, torch.Tensor], optimizer: torch.optim.Optimizer
) -> float:
model.train()
for k, v in inputs.items():
inputs[k] = v.to(self.args.device)
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if self.args.gradient_accumulation_steps > 1:
loss = loss / self.args.gradient_accumulation_steps
if self.args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
return loss.item()
def is_world_master(self) -> bool:
"""
This will be True only in one process, even in distributed mode,
even when training on multiple machines.
"""
return self.args.local_rank == -1 or torch.distributed.get_rank() == 0
def save_model(self, output_dir: Optional[str] = None):
"""
Saving best-practices: if you use default names for the model,
you can reload it using from_pretrained().
Will only save from the master process.
"""
if self.is_world_master():
self._save(output_dir)
def _save(self, output_dir: Optional[str] = None):
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info("Saving model checkpoint to %s", output_dir)
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
if not isinstance(self.model, PreTrainedModel):
raise ValueError("Trainer.model appears to not be a PreTrainedModel")
self.model.save_pretrained(output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
def _sorted_checkpoints(self, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False) -> List[str]:
ordering_and_checkpoint_path = []
glob_checkpoints = [str(x) for x in Path(self.args.output_dir).glob(f"{checkpoint_prefix}-*")]
for path in glob_checkpoints:
if use_mtime:
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
else:
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
if regex_match and regex_match.groups():
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
return checkpoints_sorted
def _rotate_checkpoints(self, use_mtime=False) -> None:
if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
return
# Check if we should delete older checkpoint(s)
checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime)
if len(checkpoints_sorted) <= self.args.save_total_limit:
return
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - self.args.save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
shutil.rmtree(checkpoint)
def evaluate(
self, eval_dataset: Optional[Dataset] = None, prediction_loss_only: Optional[bool] = None
) -> Dict[str, float]:
"""
Run evaluation and return metrics.
The calling script will be responsible for providing a method to compute metrics, as they are
task-dependent.
Args:
eval_dataset: (Optional) Pass a dataset if you wish to override
the one on the instance.
Returns:
A dict containing:
- the eval loss
- the potential metrics computed from the predictions
"""
eval_dataloader = self.get_eval_dataloader(eval_dataset)
output = self._prediction_loop(eval_dataloader, description="Evaluation")
return output.metrics
def predict(self, test_dataset: Dataset) -> PredictionOutput:
"""
Run prediction and return predictions and potential metrics.
Depending on the dataset and your use case, your test dataset may contain labels.
In that case, this method will also return metrics, like in evaluate().
"""
test_dataloader = self.get_test_dataloader(test_dataset)
return self._prediction_loop(test_dataloader, description="Prediction")
def _prediction_loop(
self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None
) -> PredictionOutput:
"""
Prediction/evaluation loop, shared by `evaluate()` and `predict()`.
Works both with or without labels.
"""
prediction_loss_only = prediction_loss_only if prediction_loss_only is not None else self.prediction_loss_only
# multi-gpu eval
if self.args.n_gpu > 1 and not isinstance(self.model, torch.nn.DataParallel):
model = torch.nn.DataParallel(self.model)
else:
model = self.model
model.to(self.args.device)
logger.info("***** Running %s *****", description)
logger.info(" Num examples = %d", len(dataloader.dataset))
logger.info(" Batch size = %d", dataloader.batch_size)
eval_losses: List[float] = []
preds: np.ndarray = None
label_ids: np.ndarray = None
model.eval()
for inputs in tqdm(dataloader, desc=description):
has_labels = any(inputs.get(k) is not None for k in ["labels", "masked_lm_labels"])
for k, v in inputs.items():
inputs[k] = v.to(self.args.device)
with torch.no_grad():
outputs = model(**inputs)
if has_labels:
step_eval_loss, logits = outputs[:2]
eval_losses += [step_eval_loss.mean().item()]
else:
logits = outputs[0]
if not prediction_loss_only:
if preds is None:
preds = logits.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
if inputs.get("labels") is not None:
if label_ids is None:
label_ids = inputs["labels"].detach().cpu().numpy()
else:
label_ids = np.append(label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
if self.compute_metrics is not None and preds is not None and label_ids is not None:
metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
else:
metrics = {}
if len(eval_losses) > 0:
metrics["loss"] = np.mean(eval_losses)
return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)