-
Notifications
You must be signed in to change notification settings - Fork 182
/
cc_layers.py
405 lines (301 loc) · 16.6 KB
/
cc_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"""
Layers using the cuda-convnet Theano wrappers that are part of pylearn2.
"""
import theano
import theano.tensor as T
import numpy as np
import layers
from theano.sandbox.cuda.basic_ops import gpu_contiguous
from pylearn2.sandbox.cuda_convnet.filter_acts import FilterActs
from pylearn2.sandbox.cuda_convnet.pool import MaxPool
from pylearn2.sandbox.cuda_convnet.stochastic_pool import StochasticMaxPool, WeightedMaxPool
from pylearn2.sandbox.cuda_convnet.response_norm import CrossMapNorm
from theano.sandbox.cuda import host_from_gpu
class CudaConvnetInput2DLayer(layers.Input2DLayer):
"""
Like Input2DLayer, but the data is expected to be in c01b order instead of bc01.
"""
def get_output_shape(self):
return (self.n_features, self.width, self.height, self.mb_size) # c01b instead of bc01
class CudaConvnetConv2DLayer(object):
def __init__(self, input_layer, n_filters, filter_size, weights_std, init_bias_value, stride=1, nonlinearity=layers.rectify, dropout=0., partial_sum=None, pad=0, untie_biases=False):
"""
Only the valid border mode is supported.
n_filters should be a multiple of 16
"""
self.input_layer = input_layer
self.n_filters = n_filters
self.filter_size = filter_size
self.weights_std = np.float32(weights_std)
self.init_bias_value = np.float32(init_bias_value)
self.stride = stride
self.nonlinearity = nonlinearity
self.dropout = dropout
self.partial_sum = partial_sum
self.pad = pad
self.untie_biases = untie_biases
# if untie_biases == True, each position in the output map has its own bias (as opposed to having the same bias everywhere for a given filter)
self.mb_size = self.input_layer.mb_size
self.input_shape = self.input_layer.get_output_shape()
self.filter_shape = (self.input_shape[0], filter_size, filter_size, n_filters)
self.W = layers.shared_single(4) # theano.shared(np.random.randn(*self.filter_shape).astype(np.float32) * self.weights_std)
if self.untie_biases:
self.b = layers.shared_single(3)
else:
self.b = layers.shared_single(1) # theano.shared(np.ones(n_filters).astype(np.float32) * self.init_bias_value)
self.params = [self.W, self.b]
self.bias_params = [self.b]
self.reset_params()
self.filter_acts_op = FilterActs(stride=self.stride, partial_sum=self.partial_sum, pad=self.pad)
def reset_params(self):
self.W.set_value(np.random.randn(*self.filter_shape).astype(np.float32) * self.weights_std)
if self.untie_biases:
self.b.set_value(np.ones(self.get_output_shape()[:3]).astype(np.float32) * self.init_bias_value)
else:
self.b.set_value(np.ones(self.n_filters).astype(np.float32) * self.init_bias_value)
def get_output_shape(self):
output_width = (self.input_shape[1] + 2 * self.pad - self.filter_size + self.stride) // self.stride
output_height = (self.input_shape[2] + 2 * self.pad - self.filter_size + self.stride) // self.stride
output_shape = (self.n_filters, output_width, output_height, self.mb_size)
return output_shape
def output(self, input=None, dropout_active=True, *args, **kwargs):
if input == None:
input = self.input_layer.output(dropout_active=dropout_active, *args, **kwargs)
if dropout_active and (self.dropout > 0.):
retain_prob = 1 - self.dropout
mask = layers.srng.binomial(input.shape, p=retain_prob, dtype='int32').astype('float32')
# apply the input mask and rescale the input accordingly. By doing this it's no longer necessary to rescale the weights at test time.
input = input / retain_prob * mask
contiguous_input = gpu_contiguous(input)
contiguous_filters = gpu_contiguous(self.W)
conved = self.filter_acts_op(contiguous_input, contiguous_filters)
if self.untie_biases:
conved += self.b.dimshuffle(0, 1, 2, 'x')
else:
conved += self.b.dimshuffle(0, 'x', 'x', 'x')
return self.nonlinearity(conved)
class CudaConvnetPooling2DLayer(object):
def __init__(self, input_layer, pool_size, stride=None): # pool_size is an INTEGER here!
"""
pool_size is an INTEGER, not a tuple. We can only do square pooling windows.
if the stride is none, it is taken to be the same as the pool size.
borders are never ignored.
"""
self.pool_size = pool_size
self.stride = stride if stride is not None else pool_size
self.input_layer = input_layer
self.params = []
self.bias_params = []
self.mb_size = self.input_layer.mb_size
self.pool_op = MaxPool(ds=self.pool_size, stride=self.stride)
def get_output_shape(self):
input_shape = self.input_layer.get_output_shape() # convert to list because we cannot assign to a tuple element
w, h = input_shape[1], input_shape[2]
new_w = int(np.ceil(float(w - self.pool_size + self.stride) / self.stride))
new_h = int(np.ceil(float(h - self.pool_size + self.stride) / self.stride))
return (input_shape[0], new_w, new_h, input_shape[3])
def output(self, *args, **kwargs):
input = self.input_layer.output(*args, **kwargs)
contiguous_input = gpu_contiguous(input)
return self.pool_op(contiguous_input)
class CudaConvnetStochasticPooling2DLayer(object):
def __init__(self, input_layer, pool_size, stride=None): # pool_size is an INTEGER here!
"""
This implements stochastic pooling as in Zeiler et al. 2013 to replace max pooling.
Pooling is stochastic by default. When dropout_active=True, weighted pooling is used
instead. As a result it is not possible to enable/disable stochastic pooling and
dropout separately within a network, but the use cases for that should be rare.
Usually we want both on during training, and both off at test time.
pool_size is an INTEGER, not a tuple. We can only do square pooling windows.
if the stride is none, it is taken to be the same as the pool size.
borders are never ignored.
"""
self.pool_size = pool_size
self.stride = stride if stride is not None else pool_size
self.input_layer = input_layer
self.params = []
self.bias_params = []
self.mb_size = self.input_layer.mb_size
self.stochastic_pool_op = StochasticMaxPool(ds=self.pool_size, stride=self.stride)
self.weighted_pool_op = WeightedMaxPool(ds=self.pool_size, stride=self.stride)
def get_output_shape(self):
input_shape = self.input_layer.get_output_shape() # convert to list because we cannot assign to a tuple element
w, h = input_shape[1], input_shape[2]
new_w = int(np.ceil(float(w - self.pool_size + self.stride) / self.stride))
new_h = int(np.ceil(float(h - self.pool_size + self.stride) / self.stride))
return (input_shape[0], new_w, new_h, input_shape[3])
def output(self, dropout_active=True, *args, **kwargs):
input = self.input_layer.output(dropout_active=dropout_active, *args, **kwargs)
contiguous_input = gpu_contiguous(input)
if dropout_active:
return self.stochastic_pool_op(contiguous_input)
else:
return self.weighted_pool_op(contiguous_input)
class CudaConvnetCrossMapNormLayer(object):
def __init__(self, input_layer, alpha=1e-4, beta=0.75, size_f=5, blocked=True):
self.alpha = alpha
self.beta = beta
self.size_f = size_f
self.blocked = blocked
self.input_layer = input_layer
self.params = []
self.bias_params = []
self.mb_size = self.input_layer.mb_size
self.norm_op = CrossMapNorm(size_f=size_f, add_scale=alpha, pow_scale=beta, blocked=blocked)
def get_output_shape(self):
# output shape is the same as the input shape
return self.input_layer.get_output_shape()
def output(self, *args, **kwargs):
input = self.input_layer.output(*args, **kwargs)
contiguous_input = gpu_contiguous(input)
return self.norm_op(contiguous_input)[0]
class ShuffleC01BToBC01Layer(object):
"""
This layer dimshuffles 4D input for interoperability between C01B and BC01 ops.
C01B (cuda convnet) -> BC01 (theano)
"""
def __init__(self, input_layer):
self.input_layer = input_layer
self.params = []
self.bias_params = []
self.mb_size = self.input_layer.mb_size
def get_output_shape(self):
input_shape = self.input_layer.get_output_shape()
return (input_shape[3], input_shape[0], input_shape[1], input_shape[2])
def output(self, *args, **kwargs):
input = self.input_layer.output(*args, **kwargs)
return input.dimshuffle(3, 0, 1, 2)
class ShuffleBC01ToC01BLayer(object):
"""
This layer dimshuffles 4D input for interoperability between C01B and BC01 ops.
BC01 (theano) -> C01B (cuda convnet)
"""
def __init__(self, input_layer):
self.input_layer = input_layer
self.params = []
self.bias_params = []
self.mb_size = self.input_layer.mb_size
def get_output_shape(self):
input_shape = self.input_layer.get_output_shape()
return (input_shape[1], input_shape[2], input_shape[3], input_shape[0])
def output(self, *args, **kwargs):
input = self.input_layer.output(*args, **kwargs)
return input.dimshuffle(1, 2, 3, 0)
class CudaConvnetCircularConv2DLayer(object):
def __init__(self, input_layer, n_filters, filter_size, weights_std, init_bias_value, stride=1, nonlinearity=layers.rectify, dropout=0., partial_sum=None, untie_biases=False):
"""
This is a convolution which is circular in the 0-direction, and valid in the 1-direction.
n_filters should be a multiple of 16
"""
self.input_layer = input_layer
self.n_filters = n_filters
self.filter_size = filter_size
self.weights_std = np.float32(weights_std)
self.init_bias_value = np.float32(init_bias_value)
self.stride = stride
self.nonlinearity = nonlinearity
self.dropout = dropout
self.partial_sum = partial_sum
self.untie_biases = untie_biases
# if untie_biases == True, each position in the output map has its own bias (as opposed to having the same bias everywhere for a given filter)
self.mb_size = self.input_layer.mb_size
self.input_shape = self.input_layer.get_output_shape()
self.filter_shape = (self.input_shape[0], filter_size, filter_size, n_filters)
self.W = layers.shared_single(4) # theano.shared(np.random.randn(*self.filter_shape).astype(np.float32) * self.weights_std)
if self.untie_biases:
self.b = layers.shared_single(3)
else:
self.b = layers.shared_single(1) # theano.shared(np.ones(n_filters).astype(np.float32) * self.init_bias_value)
self.params = [self.W, self.b]
self.bias_params = [self.b]
self.reset_params()
self.filter_acts_op = FilterActs(stride=self.stride, partial_sum=self.partial_sum)
def reset_params(self):
self.W.set_value(np.random.randn(*self.filter_shape).astype(np.float32) * self.weights_std)
if self.untie_biases:
self.b.set_value(np.ones(self.get_output_shape()[:3]).astype(np.float32) * self.init_bias_value)
else:
self.b.set_value(np.ones(self.n_filters).astype(np.float32) * self.init_bias_value)
def get_output_shape(self):
# output_width = (self.input_shape[1] - self.filter_size + self.stride) // self.stride
output_width = self.input_shape[1] // self.stride # because it's a circular convolution, this dimension is just divided by the stride.
output_height = (self.input_shape[2] - self.filter_size + self.stride) // self.stride # in this direction it's still valid though.
output_shape = (self.n_filters, output_width, output_height, self.mb_size)
return output_shape
def output(self, input=None, dropout_active=True, *args, **kwargs):
if input == None:
input = self.input_layer.output(dropout_active=dropout_active, *args, **kwargs)
if dropout_active and (self.dropout > 0.):
retain_prob = 1 - self.dropout
mask = layers.srng.binomial(input.shape, p=retain_prob, dtype='int32').astype('float32')
# apply the input mask and rescale the input accordingly. By doing this it's no longer necessary to rescale the weights at test time.
input = input / retain_prob * mask
# pad input so the valid convolution amounts to a circular one.
# we need to copy (filter_size - stride) values from one side to the other
input_padded = T.zeros((input.shape[0], input.shape[1] + self.filter_size - self.stride, input.shape[2], input.shape[3]))
input_padded = T.set_subtensor(input_padded[:, :input.shape[1], :, :], input)
input_padded = T.set_subtensor(input_padded[:, input.shape[1]:, :, :], input[:, :self.filter_size - self.stride, :, :])
contiguous_input = gpu_contiguous(input_padded)
contiguous_filters = gpu_contiguous(self.W)
conved = self.filter_acts_op(contiguous_input, contiguous_filters)
if self.untie_biases:
conved += self.b.dimshuffle(0, 1, 2, 'x')
else:
conved += self.b.dimshuffle(0, 'x', 'x', 'x')
return self.nonlinearity(conved)
def shuffle_pool_unshuffle(input_layer, *args, **kwargs):
"""
The Krizhevskhy max pooling layer only supports square input. This function provides
a workaround that uses Theano's own max pooling op, flanked by two shuffling operations:
c01b to bc01 before pooling, and bc01 to c01b afterwards.
"""
l_bc01 = ShuffleC01BToBC01Layer(input_layer)
l_pool = layers.Pooling2DLayer(l_bc01, *args, **kwargs)
l_c01b = ShuffleBC01ToC01BLayer(l_pool)
return l_c01b
class StochasticPoolingC01BLayer(object):
"""
Stochastic pooling implemented in Theano using reshapes, since the Pylearn2 class for it is
way too slow.
This only works for c01b, i.e. it assumes that the dimensions to pool over are (1, 2).
It's also required that the dimensions are a multiple of the pool size (no incomplete pools).
epsilon is used to prevent division by 0, it is added to all probabilities,
so that when all activations are 0, the distribution is uniform.
"""
def __init__(self, input_layer, pool_size, epsilon=1e-12):
"""
pool_size: the number of inputs to be pooled together.
"""
self.pool_size = pool_size
self.epsilon = epsilon
self.input_layer = input_layer
self.input_shape = self.input_layer.get_output_shape()
self.mb_size = self.input_layer.mb_size
self.params = []
self.bias_params = []
def get_output_shape(self):
output_shape = list(self.input_shape) # make a mutable copy
output_shape[1] = output_shape[1] // self.pool_size
output_shape[2] = output_shape[2] // self.pool_size
return tuple(output_shape)
def output(self, dropout_active=True, *args, **kwargs):
input = self.input_layer.output(*args, **kwargs)
output_shape = self.get_output_shape()
pool_shape = (output_shape[0], output_shape[1], self.pool_size, output_shape[2], self.pool_size, output_shape[3])
merged_shape = (output_shape[0], output_shape[1], output_shape[2], output_shape[3], self.pool_size**2)
flat_shape = (output_shape[0] * output_shape[1] * output_shape[2] * output_shape[3], self.pool_size**2)
input_reshaped = input.reshape(pool_shape).transpose(0, 1, 3, 5, 2, 4).reshape(flat_shape) #pools are now in axis 4
input_reshaped += self.epsilon # add a small constant to prevent division by 0 in what follows.
if dropout_active:
probabilities = input_reshaped / input_reshaped.sum(axis=1, keepdims=True)
samples = layers.srng.multinomial(pvals=probabilities, dtype=theano.config.floatX)
output_flat = T.sum(input_reshaped * samples, axis=1)
output = output_flat.reshape(output_shape)
else:
# no dropout, so compute the weighted average instead.
# this amounts to the sum of squares normalised by the sum of the values.
numerator = T.sum(input_reshaped**2, axis=1)
denominator = T.sum(input_reshaped, axis=1)
output_flat = numerator / denominator
output = output_flat.reshape(output_shape)
return output