-
Notifications
You must be signed in to change notification settings - Fork 649
/
lecture3.tex
309 lines (271 loc) · 9.45 KB
/
lecture3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
\documentclass[aspectratio=169]{beamer}
\mode<presentation>
\usetheme{Hannover}
\useoutertheme{sidebar}
\usecolortheme{dolphin}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{enumerate}
%some bold math symbosl
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\brho}{\boldsymbol{\rho}}
\newcommand{\bSigma}{\boldsymbol{\Sigma}}
\newcommand{\btheta}{\boldsymbol{\theta}}
\newcommand{\bbeta}{\boldsymbol{\beta}}
\newcommand{\bmu}{\boldsymbol{\mu}}
\newcommand{\bW}{\mathbf{W}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\bH}{\mathbf{H}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bolde}{\mathbf{e}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\cpp}[1]{\texttt{#1}}
\title{Mathematical Biostatistics Boot Camp: Lecture 3, Expectations}
\author{Brian Caffo}
\date{\today}
\institute[Department of Biostatistics]{
Department of Biostatistics \\
Johns Hopkins Bloomberg School of Public Health\\
Johns Hopkins University
}
\begin{document}
\frame{\titlepage}
\frame{
\frametitle{Table of contents}
\tableofcontents
}
\section{Expected values}
\subsection{Discrete random variables}
\begin{frame}
\frametitle{Expected values}
\begin{itemize}
\item The {\bf expected value} or {\bf mean} of a random variable is the center of its
distribution
\item For discrete random variable $X$ with PMF $p(x)$, it is defined as follows
$$
E[X] = \sum_x xp(x).
$$
where the sum is taken over the possible values of $x$
\item $E[X]$ represents the center of mass of a collection of
locations and weights, $\{x, p(x)\}$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Example}
\includegraphics[width=3.5in]{expectation.pdf}
\end{frame}
\begin{frame}
\frametitle{Example}
\begin{itemize}
\item Suppose a coin is flipped and $X$ is declared $0$ or $1$ corresponding
to a head or a tail, respectively
\item What is the expected value of $X$?
$$
E[X] = .5 \times 0 + .5 \times 1 = .5
$$
\item Note, if thought about geometrically, this answer is obvious; if two equal
weights are spaced at 0 and 1, the center of mass will be $.5$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Example}
\begin{itemize}
\item Suppose that a die is rolled and $X$ is the number face up
\item What is the expected value of $X$?
$$
E[X] = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} +
3 \times \frac{1}{6} + 4 \times \frac{1}{6} +
5 \times \frac{1}{6} + 6 \times \frac{1}{6} = 3.5
$$
\item Again, the geometric argument makes this answer obvious without calculation.
\end{itemize}
\end{frame}
\subsection{Continuous random variables}
\begin{frame}\frametitle{Continuous random variables}
\begin{itemize}
\item For a continuous random variable, $X$, with density, $f$, the expected
value is defined as follows
$$
E[X] = \int_{-\infty}^\infty t f(t)dt
$$
\item This definition borrows from the definition of center of mass for
a continuous body
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Example}
\begin{itemize}
\item Consider a density where $f(x) = 1$ for $x$
between zero and one
\item (Is this a valid density?)
\item Suppose that $X$ follows this density; what is its expected value?
$$
E[X] = \int_{0}^{1} x dx = \left. \frac{x^2}{2} ~\right|_{0}^{1} = 1/2
$$
\end{itemize}
\end{frame}
\section{Rules about expected values}
\begin{frame}\frametitle{Rules about expected values}
\begin{itemize}
\item The expected value is a linear operator
\item If $a$ and $b$ are not random and $X$ and $Y$
are two random variables then
\begin{itemize}
\item $E[aX + b] = a E[X] + b$
\item $E[X + Y] = E[X] + E[Y]$
\end{itemize}
\item {\em In general} if $g$ is a function that is not linear,
$$
E[g(X)] \neq g(E[X])
$$
\item For example, in general, $E[X^2] \neq E[X]^2$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Example}
\begin{itemize}
\item You flip a coin, $X$ and simulate a uniform random number $Y$, what
is the expected value of their sum?
$$
E[X + Y] = E[X] + E[Y] = .5 + .5 = 1
$$
\item Another example, you roll a die twice. What is the expected value of
the average?
\item Let $X_1$ and $X_2$ be the results of the two rolls
$$
E[(X_1 + X_2) / 2] = \frac{1}{2}(E[X_1] + E[X_2])
= \frac{1}{2}(3.5 + 3.5) = 3.5
$$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Example}
\begin{enumerate}
\item Let $X_i$ for $i=1,\ldots,n$ be a collection of random
variables, each from a distribution with mean $\mu$
\item Calculate the expected value of the sample average of the $X_i$
\end{enumerate}
\begin{eqnarray*}
E\left[ \frac{1}{n}\sum_{i=1}^n X_i\right]
& = & \frac{1}{n} E\left[\sum_{i=1}^n X_i\right] \\
& = & \frac{1}{n} \sum_{i=1}^n E\left[X_i\right] \\
& = & \frac{1}{n} \sum_{i=1}^n \mu = \mu.
\end{eqnarray*}
\end{frame}
\begin{frame}
\frametitle{Remark}
\begin{itemize}
\item Therefore, the expected value of the {\bf sample mean} is the {\bf
population mean} that it's trying to estimate
\item When the expected value of an estimator is what its trying to estimate,
we say that the estimator is {\bf unbiased}
\end{itemize}
\end{frame}
\section{Variances}
\begin{frame}\frametitle{The variance}
\begin{itemize}
\item The variance of a random variable is a measure of {\em spread}
\item If $X$ is a random variable with mean $\mu$, the variance of
$X$ is defined as
$$
\Var(X) = E[(X - \mu)^2]
$$
the expected (squared) distance from the mean
\item Densities with a higher variance are more spread out than
densities with a lower variance
\end{itemize}
\end{frame}
\begin{frame}
\begin{itemize}
\item Convenient computational form
$$
\Var(X) = E[X^2] - E[X]^2
$$
\item If $a$ is constant then $\Var(aX) = a^2 \Var(X)$
\item The square root of the variance is called the {\bf standard deviation}
\item The standard deviation has the same units as $X$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Example}
\begin{itemize}
\item What's the sample variance from the result of a toss of a die?
\begin{itemize}
\item $E[X] = 3.5$
\item $E[X^2] = 1 ^ 2 \times \frac{1}{6} + 2 ^ 2 \times \frac{1}{6} +
3 ^ 2 \times \frac{1}{6} + 4 ^ 2 \times \frac{1}{6} +
5 ^ 2 \times \frac{1}{6} + 6 ^ 2 \times \frac{1}{6} = 15.17$
\end{itemize}
\item $\Var(X) = E[X^2] - E[X]^2 \approx 2.92$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Example}
\begin{itemize}
\item What's the sample variance from the result of the toss of a coin
with probability of heads (1) of $p$?
\begin{itemize}
\item $E[X] = 0 \times (1 - p) + 1 \times p = p$
\item $E[X^2] = E[X] = p$
\end{itemize}
\item $\Var(X) = E[X^2] - E[X]^2 = p - p^2 = p(1 - p)$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Example}
\begin{itemize}
\item Suppose that a random variable is such that $0 \leq X \leq 1$ and $E[X] = p$
\item Note $X^2 \leq X$ so that $E[X^2] \leq E[X] = p$
\item $\Var(X) = E[X^2] - E[X]^2 \leq E[X] - E[X]^2 = p(1-p)$
\item Therefore the Bernoulli variance is the largest possible for random variables bounded between $0$ and $1$
\end{itemize}
\end{frame}
\section{Chebyshev's inequality}
\begin{frame}
\frametitle{Interpreting variances}
\begin{itemize}
\item Chebyshev's inequality is useful for interpreting variances
\item This inequality states that
$$
P(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2}
$$
\item For example, the probability that a random variable lies beyond $k$
standard deviations from its mean is less than $1/k^2$
\begin{eqnarray*}
2\sigma & \rightarrow & 25\% \\
3\sigma & \rightarrow & 11\% \\
4\sigma & \rightarrow & 6\%
\end{eqnarray*}
\item Note this is only a bound; the actual probability might be
quite a bit smaller
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Proof of Chebyshev's inequality}
\begin{eqnarray*}
P(|X - \mu| > k\sigma) & = & \int_{\{x: |x-\mu| > k\sigma\}} f(x) dx \\
& \leq & \int_{\{x:|x -\mu| > k\sigma\}}\frac{(x - \mu)^2}{k^2\sigma^2} f(x) dx \\
& \leq & \int_{-\infty}^{\infty} \frac{(x - \mu)^2}{k^2\sigma^2} f(x) dx \\
& = & \frac{1}{k^2}
\end{eqnarray*}
\end{frame}
\begin{frame} \frametitle{Example}
\begin{itemize}
\item IQs are often said to be distributed with a mean of $100$ and a sd of $15$
\item What is the probability of a randomly drawn person having an IQ higher than
$160$ or below $40$?
\item Thus we want to know the probability of a person being more
than $4$ standard deviations from the mean
\item Thus Chebyshev's inequality suggests that this will be no larger than 6\%
\item IQs distributions are often cited as being bell shaped, in which case this
bound is very conservative
\item The probability of a random draw from a bell curve being $4$
standard deviations from the mean is on the order of $10^{-5}$ (one
thousandth of one percent)
\end{itemize}
\end{frame}
\begin{frame} \frametitle{Example}
\begin{itemize}
\item A popular buzz phrase in industrial quality control is
Motorola's``Six Sigma'' whereby businesses are suggested to
control extreme events or rare defective parts
\item Chebyshev's inequality states that the probability of a ``Six
Sigma'' event is less than $1/6^2 \approx 3\%$
\item If a bell curve is assumed, the probability of a ``six sigma''
event is on the order of $10^{-9}$ (one ten millionth of a percent)
\end{itemize}
\end{frame}
\end{document}