forked from dclambert/Python-ELM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
random_layer.py
531 lines (393 loc) · 18.4 KB
/
random_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
#-*- coding: utf8
# Author: David C. Lambert [dcl -at- panix -dot- com]
# Copyright(c) 2013
# License: Simple BSD
"""The :mod:`random_layer` module
implements Random Layer transformers.
Random layers are arrays of hidden unit activations that are
random functions of input activation values (dot products for simple
activation functions, distances from prototypes for radial basis
functions).
They are used in the implementation of Extreme Learning Machines (ELMs),
but can be used as a general input mapping.
"""
from abc import ABCMeta, abstractmethod
from math import sqrt
import numpy as np
import scipy.sparse as sp
from scipy.spatial.distance import cdist, pdist, squareform
from sklearn.metrics import pairwise_distances
from sklearn.utils import check_random_state, atleast2d_or_csr
from sklearn.utils.extmath import safe_sparse_dot
from sklearn.base import BaseEstimator, TransformerMixin
__all__ = ['RandomLayer',
'MLPRandomLayer',
'RBFRandomLayer',
'GRBFRandomLayer',
]
class BaseRandomLayer(BaseEstimator, TransformerMixin):
"""Abstract Base Class for random layers"""
__metaclass__ = ABCMeta
_internal_activation_funcs = dict()
@classmethod
def activation_func_names(cls):
"""Get list of internal activation function names"""
return cls._internal_activation_funcs.keys()
# take n_hidden and random_state, init components_ and
# input_activations_
def __init__(self, n_hidden=20, random_state=0, activation_func=None,
activation_args=None):
self.n_hidden = n_hidden
self.random_state = random_state
self.activation_func = activation_func
self.activation_args = activation_args
self.components_ = dict()
self.input_activations_ = None
# keyword args for internally defined funcs
self._extra_args = dict()
@abstractmethod
def _generate_components(self, X):
"""Generate components of hidden layer given X"""
@abstractmethod
def _compute_input_activations(self, X):
"""Compute input activations given X"""
# compute input activations and pass them
# through the hidden layer transfer functions
# to compute the transform
def _compute_hidden_activations(self, X):
"""Compute hidden activations given X"""
self._compute_input_activations(X)
acts = self.input_activations_
if (callable(self.activation_func)):
args_dict = self.activation_args if (self.activation_args) else {}
X_new = self.activation_func(acts, **args_dict)
else:
func_name = self.activation_func
func = self._internal_activation_funcs[func_name]
X_new = func(acts, **self._extra_args)
return X_new
# perform fit by generating random components based
# on the input array
def fit(self, X, y=None):
"""Generate a random hidden layer.
Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Training set: only the shape is used to generate random component
values for hidden units
y : is not used: placeholder to allow for usage in a Pipeline.
Returns
-------
self
"""
X = atleast2d_or_csr(X)
self._generate_components(X)
return self
# perform transformation by calling compute_hidden_activations
# (which will normally call compute_input_activations first)
def transform(self, X, y=None):
"""Generate the random hidden layer's activations given X as input.
Parameters
----------
X : {array-like, sparse matrix}, shape [n_samples, n_features]
Data to transform
y : is not used: placeholder to allow for usage in a Pipeline.
Returns
-------
X_new : numpy array of shape [n_samples, n_components]
"""
X = atleast2d_or_csr(X)
if (self.components_ is None):
raise ValueError('No components initialized')
return self._compute_hidden_activations(X)
class RandomLayer(BaseRandomLayer):
"""RandomLayer is a transformer that creates a feature mapping of the
inputs that corresponds to a layer of hidden units with randomly
generated components.
The transformed values are a specified function of input activations
that are a weighted combination of dot product (multilayer perceptron)
and distance (rbf) activations:
input_activation = alpha * mlp_activation + (1-alpha) * rbf_activation
mlp_activation(x) = dot(x, weights) + bias
rbf_activation(x) = rbf_width * ||x - center||/radius
alpha and rbf_width are specified by the user
weights and biases are taken from normal distribution of
mean 0 and sd of 1
centers are taken uniformly from the bounding hyperrectangle
of the inputs, and radii are max(||x-c||)/sqrt(n_centers*2)
The input activation is transformed by a transfer function that defaults
to numpy.tanh if not specified, but can be any callable that returns an
array of the same shape as its argument (the input activation array, of
shape [n_samples, n_hidden]). Functions provided are 'sine', 'tanh',
'tribas', 'inv_tribas', 'sigmoid', 'hardlim', 'softlim', 'gaussian',
'multiquadric', or 'inv_multiquadric'.
Parameters
----------
`n_hidden` : int, optional (default=20)
Number of units to generate
`alpha` : float, optional (default=0.5)
Mixing coefficient for distance and dot product input activations:
activation = alpha*mlp_activation + (1-alpha)*rbf_width*rbf_activation
`rbf_width` : float, optional (default=1.0)
multiplier on rbf_activation
`user_components`: dictionary, optional (default=None)
dictionary containing values for components that woud otherwise be
randomly generated. Valid key/value pairs are as follows:
'radii' : array-like of shape [n_hidden]
'centers': array-like of shape [n_hidden, n_features]
'biases' : array-like of shape [n_hidden]
'weights': array-like of shape [n_features, n_hidden]
`activation_func` : {callable, string} optional (default='tanh')
Function used to transform input activation
It must be one of 'tanh', 'sine', 'tribas', 'inv_tribas',
'sigmoid', 'hardlim', 'softlim', 'gaussian', 'multiquadric',
'inv_multiquadric' or a callable. If None is given, 'tanh'
will be used.
If a callable is given, it will be used to compute the activations.
`activation_args` : dictionary, optional (default=None)
Supplies keyword arguments for a callable activation_func
`random_state` : int, RandomState instance or None (default=None)
Control the pseudo random number generator used to generate the
hidden unit weights at fit time.
Attributes
----------
`input_activations_` : numpy array of shape [n_samples, n_hidden]
Array containing dot(x, hidden_weights) + bias for all samples
`components_` : dictionary containing two keys:
`bias_weights_` : numpy array of shape [n_hidden]
`hidden_weights_` : numpy array of shape [n_features, n_hidden]
See Also
--------
"""
# triangular activation function
_tribas = (lambda x: np.clip(1.0 - np.fabs(x), 0.0, 1.0))
# inverse triangular activation function
_inv_tribas = (lambda x: np.clip(np.fabs(x), 0.0, 1.0))
# sigmoid activation function
_sigmoid = (lambda x: 1.0/(1.0 + np.exp(-x)))
# hard limit activation function
_hardlim = (lambda x: np.array(x > 0.0, dtype=float))
_softlim = (lambda x: np.clip(x, 0.0, 1.0))
# gaussian RBF
_gaussian = (lambda x: np.exp(-pow(x, 2.0)))
# multiquadric RBF
_multiquadric = (lambda x:
np.sqrt(1.0 + pow(x, 2.0)))
# inverse multiquadric RBF
_inv_multiquadric = (lambda x:
1.0/(np.sqrt(1.0 + pow(x, 2.0))))
# internal activation function table
_internal_activation_funcs = {'sine': np.sin,
'tanh': np.tanh,
'tribas': _tribas,
'inv_tribas': _inv_tribas,
'sigmoid': _sigmoid,
'softlim': _softlim,
'hardlim': _hardlim,
'gaussian': _gaussian,
'multiquadric': _multiquadric,
'inv_multiquadric': _inv_multiquadric,
}
def __init__(self, n_hidden=20, alpha=0.5, random_state=None,
activation_func='tanh', activation_args=None,
user_components=None, rbf_width=1.0):
super(RandomLayer, self).__init__(n_hidden=n_hidden,
random_state=random_state,
activation_func=activation_func,
activation_args=activation_args)
if (isinstance(self.activation_func, str)):
func_names = self._internal_activation_funcs.keys()
if (self.activation_func not in func_names):
msg = "unknown activation function '%s'" % self.activation_func
raise ValueError(msg)
self.alpha = alpha
self.rbf_width = rbf_width
self.user_components = user_components
self._use_mlp_input = (self.alpha != 0.0)
self._use_rbf_input = (self.alpha != 1.0)
def _get_user_components(self, key):
"""Look for given user component"""
try:
return self.user_components[key]
except (TypeError, KeyError):
return None
def _compute_radii(self):
"""Generate RBF radii"""
# use supplied radii if present
radii = self._get_user_components('radii')
# compute radii
if (radii is None):
centers = self.components_['centers']
n_centers = centers.shape[0]
max_dist = np.max(pairwise_distances(centers))
radii = np.ones(n_centers) * max_dist/sqrt(2.0 * n_centers)
self.components_['radii'] = radii
def _compute_centers(self, X, sparse, rs):
"""Generate RBF centers"""
# use supplied centers if present
centers = self._get_user_components('centers')
# use points taken uniformly from the bounding
# hyperrectangle
if (centers is None):
n_features = X.shape[1]
if (sparse):
fxr = xrange(n_features)
cols = [X.getcol(i) for i in fxr]
min_dtype = X.dtype.type(1.0e10)
sp_min = lambda col: np.minimum(min_dtype, np.min(col.data))
min_Xs = np.array(map(sp_min, cols))
max_dtype = X.dtype.type(-1.0e10)
sp_max = lambda col: np.maximum(max_dtype, np.max(col.data))
max_Xs = np.array(map(sp_max, cols))
else:
min_Xs = X.min(axis=0)
max_Xs = X.max(axis=0)
spans = max_Xs - min_Xs
ctrs_size = (self.n_hidden, n_features)
centers = min_Xs + spans * rs.uniform(0.0, 1.0, ctrs_size)
self.components_['centers'] = centers
def _compute_biases(self, rs):
"""Generate MLP biases"""
# use supplied biases if present
biases = self._get_user_components('biases')
if (biases is None):
b_size = self.n_hidden
biases = rs.normal(size=b_size)
self.components_['biases'] = biases
def _compute_weights(self, X, rs):
"""Generate MLP weights"""
# use supplied weights if present
weights = self._get_user_components('weights')
if (weights is None):
n_features = X.shape[1]
hw_size = (n_features, self.n_hidden)
weights = rs.normal(size=hw_size)
self.components_['weights'] = weights
def _generate_components(self, X):
"""Generate components of hidden layer given X"""
rs = check_random_state(self.random_state)
if (self._use_mlp_input):
self._compute_biases(rs)
self._compute_weights(X, rs)
if (self._use_rbf_input):
self._compute_centers(X, sp.issparse(X), rs)
self._compute_radii()
def _compute_input_activations(self, X):
"""Compute input activations given X"""
n_samples = X.shape[0]
mlp_acts = np.zeros((n_samples, self.n_hidden))
if (self._use_mlp_input):
b = self.components_['biases']
w = self.components_['weights']
mlp_acts = self.alpha * (safe_sparse_dot(X, w) + b)
rbf_acts = np.zeros((n_samples, self.n_hidden))
if (self._use_rbf_input):
radii = self.components_['radii']
centers = self.components_['centers']
scale = self.rbf_width * (1.0 - self.alpha)
rbf_acts = scale * cdist(X, centers)/radii
self.input_activations_ = mlp_acts + rbf_acts
class MLPRandomLayer(RandomLayer):
"""Wrapper for RandomLayer with alpha (mixing coefficient) set
to 1.0 for MLP activations only"""
def __init__(self, n_hidden=20, random_state=None,
activation_func='tanh', activation_args=None,
weights=None, biases=None):
user_components = {'weights': weights, 'biases': biases}
super(MLPRandomLayer, self).__init__(n_hidden=n_hidden,
random_state=random_state,
activation_func=activation_func,
activation_args=activation_args,
user_components=user_components,
alpha=1.0)
class RBFRandomLayer(RandomLayer):
"""Wrapper for RandomLayer with alpha (mixing coefficient) set
to 0.0 for RBF activations only"""
def __init__(self, n_hidden=20, random_state=None,
activation_func='gaussian', activation_args=None,
centers=None, radii=None, rbf_width=1.0):
user_components = {'centers': centers, 'radii': radii}
super(RBFRandomLayer, self).__init__(n_hidden=n_hidden,
random_state=random_state,
activation_func=activation_func,
activation_args=activation_args,
user_components=user_components,
rbf_width=rbf_width,
alpha=0.0)
class GRBFRandomLayer(RBFRandomLayer):
"""Random Generalized RBF Hidden Layer transformer
Creates a layer of radial basis function units where:
f(a), s.t. a = ||x-c||/r
with c the unit center
and f() is exp(-gamma * a^tau) where tau and r are computed
based on [1]
Parameters
----------
`n_hidden` : int, optional (default=20)
Number of units to generate, ignored if centers are provided
`grbf_lambda` : float, optional (default=0.05)
GRBF shape parameter
`gamma` : {int, float} optional (default=1.0)
Width multiplier for GRBF distance argument
`centers` : array of shape (n_hidden, n_features), optional (default=None)
If provided, overrides internal computation of the centers
`radii` : array of shape (n_hidden), optional (default=None)
If provided, overrides internal computation of the radii
`use_exemplars` : bool, optional (default=False)
If True, uses random examples from the input to determine the RBF
centers, ignored if centers are provided
`random_state` : int or RandomState instance, optional (default=None)
Control the pseudo random number generator used to generate the
centers at fit time, ignored if centers are provided
Attributes
----------
`components_` : dictionary containing two keys:
`radii_` : numpy array of shape [n_hidden]
`centers_` : numpy array of shape [n_hidden, n_features]
`input_activations_` : numpy array of shape [n_samples, n_hidden]
Array containing ||x-c||/r for all samples
See Also
--------
ELMRegressor, ELMClassifier, SimpleELMRegressor, SimpleELMClassifier,
SimpleRandomLayer
References
----------
.. [1] Fernandez-Navarro, et al, "MELM-GRBF: a modified version of the
extreme learning machine for generalized radial basis function
neural networks", Neurocomputing 74 (2011), 2502-2510
"""
# def _grbf(acts, taus):
# """GRBF activation function"""
# return np.exp(np.exp(-pow(acts, taus)))
_grbf = (lambda acts, taus: np.exp(np.exp(-pow(acts, taus))))
_internal_activation_funcs = {'grbf': _grbf}
def __init__(self, n_hidden=20, grbf_lambda=0.001,
centers=None, radii=None, random_state=None):
super(GRBFRandomLayer, self).__init__(n_hidden=n_hidden,
activation_func='grbf',
centers=centers, radii=radii,
random_state=random_state)
self.grbf_lambda = grbf_lambda
self.dN_vals = None
self.dF_vals = None
self.tau_vals = None
# get centers from superclass, then calculate tau_vals
# according to ref [1]
def _compute_centers(self, X, sparse, rs):
"""Generate centers, then compute tau, dF and dN vals"""
super(GRBFRandomLayer, self)._compute_centers(X, sparse, rs)
centers = self.components_['centers']
sorted_distances = np.sort(squareform(pdist(centers)))
self.dF_vals = sorted_distances[:, -1]
self.dN_vals = sorted_distances[:, 1]/100.0
#self.dN_vals = 0.0002 * np.ones(self.dF_vals.shape)
tauNum = np.log(np.log(self.grbf_lambda) /
np.log(1.0 - self.grbf_lambda))
tauDenom = np.log(self.dF_vals/self.dN_vals)
self.tau_vals = tauNum/tauDenom
self._extra_args['taus'] = self.tau_vals
# get radii according to ref [1]
def _compute_radii(self):
"""Generate radii"""
denom = pow(-np.log(self.grbf_lambda), 1.0/self.tau_vals)
self.components_['radii'] = self.dF_vals/denom