-
Notifications
You must be signed in to change notification settings - Fork 0
/
Baeza_cv.Rmd
251 lines (174 loc) · 5.9 KB
/
Baeza_cv.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
---
name: Josue
surname: Baeza, PhD
position: "Johnson Foundation (JF) Fellow"
address: "University of Pennsylvania"
phone: 817-980-7281
email: "[email protected]"
twitter: baezaj83
github: baezaj
linkedin: baezaj
orcid: 0000-0003-4960-3905
date: "`r format(Sys.time(), '%B %Y')`"
output:
vitae::moderncv:
theme: classic
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE)
library(vitae)
library(tidyverse)
library(rio)
library(lubridate)
library(rorcid)
library(glue)
library(scholar)
```
# Summary
Johnson Foundation (JF) Fellow at the University of Pennsylvania developing an independent research program using mass spectrometry. My research is aimed at understanding biological mechanisms of protein homeostasis with a major focus on the study of aging.
```{r data import, include=FALSE}
# # Education data - fetching from Orcid
# education <- orcid_educations("0000-0003-4960-3905")$`0000-0003-4960-3905`$`affiliation-group`$summaries %>%
# bind_rows()
education <- import("data/education.csv") %>%
mutate(pi = if_else(!is.na(pi), glue("PI: {pi}"), as.character(NA)),
dissertation = glue("\\textbf{[dissertation]}", .open = "[", .close = "]")) %>%
gather(dissertation, pi, key = "whytype", value = "why")
# Employment data - fetching from Orcid
employment <- orcid_employments("0000-0003-4960-3905")$`0000-0003-4960-3905`$`affiliation-group`$summaries %>%
bind_rows()
# Awards
awards <- import("data/awards_grants.csv") %>%
mutate(date = mdy(date)) %>%
arrange(desc(date))
# Importing jobs
jobs <- import("data/jobs.csv")
jobs[jobs == ""] <- NA
jobs <- jobs %>%
tidyr::fill(Start, End, What, With, Where, Tag) %>%
mutate(Start = mdy(Start),
End = mdy(End)) %>%
mutate(When = case_when(is.na(End) ~ glue("{year(Start)}--Present") %>% as.character(),
year(Start) == year(End) ~ year(End) %>% as.character(),
TRUE ~ glue("{year(Start)}--{year(End)}") %>% as.character()
)) %>%
mutate(End = if_else(is.na(End), today() + years(2), End)) #if no end date specified, set it to two years from now for sorting purposes, i.e. so jobs I'm still doing show up at top.
# Importing publications
pubs <- import("data/publications_google_scholar.csv")
# Importing presentations
presentations <- import("data/presentations.csv") %>%
mutate(When = mdy(When))
# Importing professional development
professional_dev <- import("data/professional_development.csv")
```
# Education
```{r}
education %>%
detailed_entries(when = glue("{start_date}--{end_date}"),
what = degree,
where = location,
with = university,
why = why,
.protect = FALSE)
# education %>%
# detailed_entries(
# what = `education-summary.role-title`,
# when = glue("{`education-summary.start-date.year.value`} - {`education-summary.end-date.year.value`}"),
# with = `education-summary.organization.name`,
# where = glue("{`education-summary.organization.address.city`}, {`education-summary.organization.address.region`}, {`education-summary.organization.address.country`}")
# )
```
# Research Experience
```{r research}
jobs %>%
filter(Tag == "research") %>%
arrange(desc(Start)) %>%
arrange(desc(End)) %>%
detailed_entries(what = What,
when = When,
with = With,
where = Where,
why = Why,
.protect = TRUE)
```
# Awards and Honors
```{r}
awards %>%
filter(!tag %in% c("failed", "travel", "grant")) %>%
brief_entries(what = award, when = glue("{month(date, label = TRUE)} {year(date)}"), with = with)
```
```{r}
# Grants
# awards %>%
# filter(tag == "grant") %>%
# detailed_entries(what = award, when = glue("{month(date, label = TRUE)} {year(date)}"),
# why = amount) %>%
# mutate_all(as.character) %>%
# mutate(with = as.character(with),
# when = as.character(when),
# where = as.character(where))
```
# Teaching
```{r}
jobs %>%
filter(Tag == "teaching") %>%
arrange(desc(Start)) %>%
arrange(desc(End)) %>%
detailed_entries(what = What,
when = When,
with = With,
where = Where,
why = Why,
.protect = TRUE)
```
# Publications
```{r}
pubs <- pubs %>%
mutate(author = str_replace_all(author, "Cheolâ€\u0090Woo Kim", "Cheol-Woo Kim"),
author = str_replace_all(author, "Pascual López-Buesa", "Pascual Lopez-Buesa"),
author = str_replace_all(author, "José A Carrodeguas", "Jose A Carrodeguas"),
author = str_replace_all(author, "Ramón Hurtado-Guerrero", "Ramon Hurtado-Guerrero"),
author = as.character(author))
pubs %>%
arrange(desc(year)) %>%
filter(journal != "University of Wisconsin--Madison") %>% # Removing my thesis
detailed_entries(
what = title,
when = year,
with = author,
where = journal
)
```
# Research Talks
```{r}
presentations %>%
filter(Tag == "talk") %>%
arrange(desc(When)) %>%
detailed_entries(what = Title,
when = glue("{month(When, label = TRUE)} {year(When)}"),
with = Conference,
where = Location,
why = Award,
.protect = FALSE)
```
# Selected Posters
```{r}
presentations %>%
filter(Tag == "poster") %>%
arrange(desc(When)) %>%
detailed_entries(what = Title,
when = glue("{month(When, label = TRUE)} {year(When)}"),
with = Conference,
where = Location,
why = Award)#,
# .protect = FALSE)
```
# Professional Organizations
```{r}
professional_dev %>%
arrange(desc(When)) %>%
brief_entries(
what = What,
when = When
)
```