You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi,
I tried to add a sagemakerEstimator within a Spark ML Pipeline and fit the training dataset on the pipeline which worked without any issues. When I tried to save the pipeline itself, it threw an exception stating the pipeline contains a stage that is not writable.
Is it intended to be that way since when fit runs on the sagemakerEstimator, it automatically persists the model to trainingOutputS3DataPath ?
If I wish to have a pipeline persisted which contains other transformer stages along with the sagemakerEstimator instance how would I do it?
The text was updated successfully, but these errors were encountered:
Thank you for bringing this to our attention. I have created an internal backlog ticket to track this, as it seems that our SageMaker estimators don't have an implemented write function, which enables saving.
Is it intended to be that way since when fit runs on the sagemakerEstimator, it automatically persists the model to trainingOutputS3DataPath ?
If I wish to have a pipeline persisted which contains other transformer stages along with the sagemakerEstimator instance how would I do it?
There doesn't seem to be a possible way to do this. I'll make note of this to investigate and provide a solution in the internal ticket.
Reference: MLFW-2726
System Information
Describe the problem
Hi,
I tried to add a sagemakerEstimator within a Spark ML Pipeline and fit the training dataset on the pipeline which worked without any issues. When I tried to save the pipeline itself, it threw an exception stating the pipeline contains a stage that is not writable.
Is it intended to be that way since when fit runs on the sagemakerEstimator, it automatically persists the model to trainingOutputS3DataPath ?
If I wish to have a pipeline persisted which contains other transformer stages along with the sagemakerEstimator instance how would I do it?
The text was updated successfully, but these errors were encountered: