forked from NeelanshGulati/emotion_detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Classification_little_vgg.py
206 lines (120 loc) · 4.56 KB
/
Classification_little_vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from __future__ import print_function
import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense,Dropout,Activation,Flatten,BatchNormalization
from keras.layers import Conv2D,MaxPooling2D
import os
num_classes = 5
img_rows,img_cols = 48,48
batch_size = 32
train_data_dir = '/Users/durgeshthakur/Deep Learning Stuff/Emotion Classification/fer2013/train'
validation_data_dir = '/Users/durgeshthakur/Deep Learning Stuff/Emotion Classification/fer2013/validation'
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=30,
shear_range=0.3,
zoom_range=0.3,
width_shift_range=0.4,
height_shift_range=0.4,
horizontal_flip=True,
fill_mode='nearest')
validation_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
color_mode='grayscale',
target_size=(img_rows,img_cols),
batch_size=batch_size,
class_mode='categorical',
shuffle=True)
validation_generator = validation_datagen.flow_from_directory(
validation_data_dir,
color_mode='grayscale',
target_size=(img_rows,img_cols),
batch_size=batch_size,
class_mode='categorical',
shuffle=True)
model = Sequential()
# Block-1
model.add(Conv2D(32,(3,3),padding='same',kernel_initializer='he_normal',input_shape=(img_rows,img_cols,1)))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(Conv2D(32,(3,3),padding='same',kernel_initializer='he_normal',input_shape=(img_rows,img_cols,1)))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
# Block-2
model.add(Conv2D(64,(3,3),padding='same',kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(Conv2D(64,(3,3),padding='same',kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
# Block-3
model.add(Conv2D(128,(3,3),padding='same',kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(Conv2D(128,(3,3),padding='same',kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
# Block-4
model.add(Conv2D(256,(3,3),padding='same',kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(Conv2D(256,(3,3),padding='same',kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
# Block-5
model.add(Flatten())
model.add(Dense(64,kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
# Block-6
model.add(Dense(64,kernel_initializer='he_normal'))
model.add(Activation('elu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
# Block-7
model.add(Dense(num_classes,kernel_initializer='he_normal'))
model.add(Activation('softmax'))
print(model.summary())
from keras.optimizers import RMSprop,SGD,Adam
from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
checkpoint = ModelCheckpoint('Emotion_little_vgg.h5',
monitor='val_loss',
mode='min',
save_best_only=True,
verbose=1)
earlystop = EarlyStopping(monitor='val_loss',
min_delta=0,
patience=3,
verbose=1,
restore_best_weights=True
)
reduce_lr = ReduceLROnPlateau(monitor='val_loss',
factor=0.2,
patience=3,
verbose=1,
min_delta=0.0001)
callbacks = [earlystop,checkpoint,reduce_lr]
model.compile(loss='categorical_crossentropy',
optimizer = Adam(lr=0.001),
metrics=['accuracy'])
nb_train_samples = 24176
nb_validation_samples = 3006
epochs=25
history=model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples//batch_size,
epochs=epochs,
callbacks=callbacks,
validation_data=validation_generator,
validation_steps=nb_validation_samples//batch_size)