-
Notifications
You must be signed in to change notification settings - Fork 0
/
preProcessing.py
76 lines (58 loc) · 2.85 KB
/
preProcessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import json
import os
import math
import librosa
DATASET_PATH = "./archive/Data/genres_original"
JSON_PATH = "processed_data.json"
SAMPLE_RATE = 22050
TRACK_DURATION = 30 # measured in seconds
SAMPLES_PER_TRACK = SAMPLE_RATE * TRACK_DURATION
def save_mfcc(dataset_path, json_path, num_mfcc=13, n_fft=2048, hop_length=512, num_segments=5):
"""Extracts MFCCs from music dataset and saves them into a json file along witgh genre labels.
:param dataset_path (str): Path to dataset
:param json_path (str): Path to json file used to save MFCCs
:param num_mfcc (int): Number of coefficients to extract
:param n_fft (int): Interval we consider to apply FFT. Measured in # of samples
:param hop_length (int): Sliding window for FFT. Measured in # of samples
:param: num_segments (int): Number of segments we want to divide sample tracks into
:return:
"""
# dictionary to store mapping, labels, and MFCCs
data = {
"mapping": [],
"labels": [],
"mfcc": []
}
samples_per_segment = int(SAMPLES_PER_TRACK / num_segments)
num_mfcc_vectors_per_segment = math.ceil(samples_per_segment / hop_length)
# loop through all genre sub-folder
for i, (dirpath, dirnames, filenames) in enumerate(os.walk(dataset_path)):
# ensure we're processing a genre sub-folder level
if dirpath is not dataset_path:
# save genre label (i.e., sub-folder name) in the mapping
semantic_label = dirpath.split("/")[-1]
data["mapping"].append(semantic_label)
print("\nProcessing: {}".format(semantic_label))
# process all audio files in genre sub-dir
for f in filenames:
# load audio file
file_path = os.path.join(dirpath, f)
signal, sample_rate = librosa.load(file_path, sr=SAMPLE_RATE)
# process all segments of audio file
for d in range(num_segments):
# calculate start and finish sample for current segment
start = samples_per_segment * d
finish = start + samples_per_segment
# extract mfcc
mfcc = librosa.feature.mfcc(signal[start:finish], sample_rate, n_mfcc=num_mfcc, n_fft=n_fft, hop_length=hop_length)
mfcc = mfcc.T
# store only mfcc feature with expected number of vectors
if len(mfcc) == num_mfcc_vectors_per_segment:
data["mfcc"].append(mfcc.tolist())
data["labels"].append(i-1)
print("{}, segment:{}".format(file_path, d+1))
# save MFCCs to json file
with open(json_path, "w") as fp:
json.dump(data, fp, indent=4)
if __name__ == "__main__":
save_mfcc(DATASET_PATH, JSON_PATH, num_segments=10)