-
Notifications
You must be signed in to change notification settings - Fork 84
/
planenet.py
639 lines (564 loc) · 39.4 KB
/
planenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
# Converted to TensorFlow .caffemodel
# with the DeepLab-ResNet configuration.
# The batch normalisation layer is provided by
# the slim library (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim).
from kaffe.tensorflow import Network
import tensorflow as tf
class PlaneNet(Network):
def setup(self, is_training, options):
'''Network definition.
Args:
is_training: whether to update the running mean and variance of the batch normalisation layer.
If the batch size is small, it is better to keep the running mean and variance of
the-pretrained model frozen.
options: contains network configuration parameters
'''
nChannels_3 = 1024
nChannels_4 = 1024
nChannels_5 = 2048
if False: # Dilated Residual Networks change the first few layers to deal with the gridding issue
(self.feed('img_inp')
.conv(7, 7, 64, 2, 2, biased=False, relu=False, name='conv1')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn_conv1')
.max_pool(3, 3, 2, 2, name='pool1'))
(self.feed('pool1')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2a_branch1')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn2a_branch1'))
(self.feed('pool1')
.conv(1, 1, 64, 1, 1, biased=False, relu=False, name='res2a_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2a_branch2a')
.conv(3, 3, 64, 1, 1, biased=False, relu=False, name='res2a_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2a_branch2b')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2a_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn2a_branch2c'))
else:
with tf.variable_scope('degridding'):
(self.feed('img_inp')
.conv(7, 7, 16, 1, 1, biased=False, relu=False, name='conv1')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn1')
.conv(1, 1, 16, 2, 2, biased=False, relu=False, name='conv2_c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn2c'))
(self.feed('bn1')
.conv(3, 3, 16, 1, 1, biased=False, relu=False, name='conv2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2a')
.conv(3, 3, 16, 2, 2, biased=False, relu=False, name='conv2b')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn2b'))
(self.feed('bn2b',
'bn2c')
.add(name='add1')
.relu(name='relu1')
.conv(1, 1, 32, 2, 2, biased=False, relu=False, name='conv3c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn3c'))
(self.feed('relu1')
.conv(3, 3, 32, 1, 1, biased=False, relu=False, name='conv3a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3a')
.conv(3, 3, 32, 2, 2, biased=False, relu=False, name='conv3b')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn3b'))
(self.feed('bn3b',
'bn3c')
.add(name='add2')
.relu(name='pool1'))
pass
pass
(self.feed('pool1')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2a_branch1')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn2a_branch1'))
(self.feed('pool1')
.conv(1, 1, 64, 1, 1, biased=False, relu=False, name='res2a_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2a_branch2a')
.conv(3, 3, 64, 1, 1, biased=False, relu=False, name='res2a_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2a_branch2b')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2a_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn2a_branch2c'))
(self.feed('bn2a_branch1',
'bn2a_branch2c')
.add(name='res2a')
.relu(name='res2a_relu')
.conv(1, 1, 64, 1, 1, biased=False, relu=False, name='res2b_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2b_branch2a')
.conv(3, 3, 64, 1, 1, biased=False, relu=False, name='res2b_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2b_branch2b')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2b_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn2b_branch2c'))
(self.feed('res2a_relu',
'bn2b_branch2c')
.add(name='res2b')
.relu(name='res2b_relu')
.conv(1, 1, 64, 1, 1, biased=False, relu=False, name='res2c_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2c_branch2a')
.conv(3, 3, 64, 1, 1, biased=False, relu=False, name='res2c_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2c_branch2b')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2c_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn2c_branch2c'))
(self.feed('res2b_relu',
'bn2c_branch2c')
.add(name='res2c')
.relu(name='res2c_relu')
.conv(1, 1, 512, 2, 2, biased=False, relu=False, name='res3a_branch1')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn3a_branch1'))
(self.feed('res2c_relu')
.conv(1, 1, 128, 2, 2, biased=False, relu=False, name='res3a_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3a_branch2a')
.conv(3, 3, 128, 1, 1, biased=False, relu=False, name='res3a_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3a_branch2b')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res3a_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn3a_branch2c'))
(self.feed('bn3a_branch1',
'bn3a_branch2c')
.add(name='res3a')
.relu(name='res3a_relu')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='res3b1_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b1_branch2a')
.conv(3, 3, 128, 1, 1, biased=False, relu=False, name='res3b1_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b1_branch2b')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res3b1_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn3b1_branch2c'))
(self.feed('res3a_relu',
'bn3b1_branch2c')
.add(name='res3b1')
.relu(name='res3b1_relu')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='res3b2_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b2_branch2a')
.conv(3, 3, 128, 1, 1, biased=False, relu=False, name='res3b2_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b2_branch2b')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res3b2_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn3b2_branch2c'))
(self.feed('res3b1_relu',
'bn3b2_branch2c')
.add(name='res3b2')
.relu(name='res3b2_relu')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='res3b3_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b3_branch2a')
.conv(3, 3, 128, 1, 1, biased=False, relu=False, name='res3b3_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b3_branch2b')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res3b3_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn3b3_branch2c'))
(self.feed('res3b2_relu',
'bn3b3_branch2c')
.add(name='res3b3')
.relu(name='res3b3_relu')
.conv(1, 1, nChannels_3, 1, 1, biased=False, relu=False, name='res4a_branch1')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4a_branch1'))
(self.feed('res3b3_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4a_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4a_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4a_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4a_branch2b')
.conv(1, 1, nChannels_3, 1, 1, biased=False, relu=False, name='res4a_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4a_branch2c'))
(self.feed('bn4a_branch1',
'bn4a_branch2c')
.add(name='res4a')
.relu(name='res4a_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b1_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b1_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b1_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b1_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b1_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b1_branch2c'))
(self.feed('res4a_relu',
'bn4b1_branch2c')
.add(name='res4b1')
.relu(name='res4b1_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b2_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b2_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b2_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b2_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b2_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b2_branch2c'))
(self.feed('res4b1_relu',
'bn4b2_branch2c')
.add(name='res4b2')
.relu(name='res4b2_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b3_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b3_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b3_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b3_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b3_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b3_branch2c'))
(self.feed('res4b2_relu',
'bn4b3_branch2c')
.add(name='res4b3')
.relu(name='res4b3_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b4_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b4_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b4_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b4_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b4_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b4_branch2c'))
(self.feed('res4b3_relu',
'bn4b4_branch2c')
.add(name='res4b4')
.relu(name='res4b4_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b5_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b5_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b5_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b5_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b5_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b5_branch2c'))
(self.feed('res4b4_relu',
'bn4b5_branch2c')
.add(name='res4b5')
.relu(name='res4b5_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b6_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b6_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b6_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b6_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b6_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b6_branch2c'))
(self.feed('res4b5_relu',
'bn4b6_branch2c')
.add(name='res4b6')
.relu(name='res4b6_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b7_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b7_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b7_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b7_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b7_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b7_branch2c'))
(self.feed('res4b6_relu',
'bn4b7_branch2c')
.add(name='res4b7')
.relu(name='res4b7_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b8_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b8_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b8_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b8_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b8_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b8_branch2c'))
(self.feed('res4b7_relu',
'bn4b8_branch2c')
.add(name='res4b8')
.relu(name='res4b8_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b9_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b9_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b9_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b9_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b9_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b9_branch2c'))
(self.feed('res4b8_relu',
'bn4b9_branch2c')
.add(name='res4b9')
.relu(name='res4b9_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b10_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b10_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b10_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b10_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b10_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b10_branch2c'))
(self.feed('res4b9_relu',
'bn4b10_branch2c')
.add(name='res4b10')
.relu(name='res4b10_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b11_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b11_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b11_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b11_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b11_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b11_branch2c'))
(self.feed('res4b10_relu',
'bn4b11_branch2c')
.add(name='res4b11')
.relu(name='res4b11_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b12_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b12_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b12_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b12_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b12_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b12_branch2c'))
(self.feed('res4b11_relu',
'bn4b12_branch2c')
.add(name='res4b12')
.relu(name='res4b12_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b13_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b13_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b13_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b13_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b13_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b13_branch2c'))
(self.feed('res4b12_relu',
'bn4b13_branch2c')
.add(name='res4b13')
.relu(name='res4b13_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b14_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b14_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b14_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b14_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b14_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b14_branch2c'))
(self.feed('res4b13_relu',
'bn4b14_branch2c')
.add(name='res4b14')
.relu(name='res4b14_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b15_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b15_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b15_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b15_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b15_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b15_branch2c'))
(self.feed('res4b14_relu',
'bn4b15_branch2c')
.add(name='res4b15')
.relu(name='res4b15_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b16_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b16_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b16_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b16_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b16_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b16_branch2c'))
(self.feed('res4b15_relu',
'bn4b16_branch2c')
.add(name='res4b16')
.relu(name='res4b16_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b17_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b17_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b17_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b17_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b17_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b17_branch2c'))
(self.feed('res4b16_relu',
'bn4b17_branch2c')
.add(name='res4b17')
.relu(name='res4b17_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b18_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b18_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b18_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b18_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b18_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b18_branch2c'))
(self.feed('res4b17_relu',
'bn4b18_branch2c')
.add(name='res4b18')
.relu(name='res4b18_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b19_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b19_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b19_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b19_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b19_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b19_branch2c'))
(self.feed('res4b18_relu',
'bn4b19_branch2c')
.add(name='res4b19')
.relu(name='res4b19_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b20_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b20_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b20_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b20_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b20_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b20_branch2c'))
(self.feed('res4b19_relu',
'bn4b20_branch2c')
.add(name='res4b20')
.relu(name='res4b20_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b21_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b21_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b21_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b21_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b21_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b21_branch2c'))
(self.feed('res4b20_relu',
'bn4b21_branch2c')
.add(name='res4b21')
.relu(name='res4b21_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b22_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b22_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b22_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b22_branch2b')
.conv(1, 1, nChannels_4, 1, 1, biased=False, relu=False, name='res4b22_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b22_branch2c'))
(self.feed('res4b21_relu',
'bn4b22_branch2c')
.add(name='res4b22')
.relu(name='res4b22_relu')
.conv(1, 1, nChannels_5, 1, 1, biased=False, relu=False, name='res5a_branch1')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn5a_branch1'))
(self.feed('res4b22_relu')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res5a_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5a_branch2a')
.atrous_conv(3, 3, 512, 4, padding='SAME', biased=False, relu=False, name='res5a_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5a_branch2b')
.conv(1, 1, nChannels_5, 1, 1, biased=False, relu=False, name='res5a_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn5a_branch2c'))
(self.feed('bn5a_branch1',
'bn5a_branch2c')
.add(name='res5a')
.relu(name='res5a_relu')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res5b_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5b_branch2a')
.atrous_conv(3, 3, 512, 4, padding='SAME', biased=False, relu=False, name='res5b_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5b_branch2b')
.conv(1, 1, nChannels_5, 1, 1, biased=False, relu=False, name='res5b_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn5b_branch2c'))
(self.feed('res5a_relu',
'bn5b_branch2c')
.add(name='res5b')
.relu(name='res5b_relu')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res5c_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5c_branch2a')
.atrous_conv(3, 3, 512, 4, padding='SAME', biased=False, relu=False, name='res5c_branch2b')
.batch_normalization(activation_fn=tf.nn.relu, name='bn5c_branch2b', is_training=is_training)
.conv(1, 1, nChannels_5, 1, 1, biased=False, relu=False, name='res5c_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn5c_branch2c'))
(self.feed('res5b_relu',
'bn5c_branch2c')
.add(name='res5c')
.relu(name='res5c_relu'))
(self.feed('res5c_relu')
.avg_pool(24, 32, 24, 32, name='res5d_pool1')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res5d_pool1_conv')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='res5d_pool1_bn')
.resize_bilinear(size=[24, 32], name='res5d_upsample1'))
(self.feed('res5c_relu')
.avg_pool(12, 16, 12, 16, name='res5d_pool2')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res5d_pool2_conv')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='res5d_pool2_bn')
.resize_bilinear(size=[24, 32], name='res5d_upsample2'))
(self.feed('res5c_relu')
.avg_pool(6, 8, 6, 8, name='res5d_pool3')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res5d_pool3_conv')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='res5d_pool3_bn')
.resize_bilinear(size=[24, 32], name='res5d_upsample3'))
(self.feed('res5c_relu')
.avg_pool(3, 4, 3, 4, name='res5d_pool4')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res5d_pool4_conv')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='res5d_pool4_bn')
.resize_bilinear(size=[24, 32], name='res5d_upsample4'))
#deep supervision at layers in list options.deepSupervisionLayers
if len(options.deepSupervisionLayers) > 0:
with tf.variable_scope('deep_supervision'):
for layerIndex, layer in enumerate(options.deepSupervisionLayers):
(self.feed(layer)
.avg_pool(24, 32, 24, 32, name=layer+'_pool1')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name=layer+'_pool1_conv')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name=layer+'_pool1_bn')
.resize_bilinear(size=[24, 32], name=layer+'_upsample1'))
(self.feed(layer)
.avg_pool(12, 16, 12, 16, name=layer+'_pool2')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name=layer+'_pool2_conv')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name=layer+'_pool2_bn')
.resize_bilinear(size=[24, 32], name=layer+'_upsample2'))
(self.feed(layer)
.avg_pool(6, 8, 6, 8, name=layer+'_pool3')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name=layer+'_pool3_conv')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name=layer+'_pool3_bn')
.resize_bilinear(size=[24, 32], name=layer+'_upsample3'))
(self.feed(layer)
.avg_pool(3, 4, 3, 4, name=layer+'_pool4')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name=layer+'_pool4_conv')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name=layer+'_pool4_bn')
.resize_bilinear(size=[24, 32], name=layer+'_upsample4'))
(self.feed(layer+'_pool1')
.reshape(shape=[-1, nChannels_4], name=layer+'_plane_reshape1')
.fc(num_out=options.numOutputPlanes * 3, name=layer+'_plane_fc', relu=False)
.reshape(shape=[-1, options.numOutputPlanes, 3], name=layer+'_plane_pred'))
if options.predictConfidence == 1:
(self.feed(layer+'_plane_reshape1')
.fc(num_out=options.numOutputPlanes, name=layer+'_plane_confidence_fc', relu=False)
.reshape(shape=[-1, options.numOutputPlanes, 1], name=layer+'_plane_confidence_pred'))
pass
(self.feed(layer,
layer+'_upsample1',
layer+'_upsample2',
layer+'_upsample3',
layer+'_upsample4')
.concat(axis=3, name=layer+'_segmentation_concat')
.conv(3, 3, 512, 1, 1, biased=False, relu=False, name=layer+'_segmentation_conv1')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name=layer+'_segmentation_bn1')
.dropout(keep_prob=0.9, name=layer+'_segmentation_dropout')
.conv(1, 1, options.numOutputPlanes, 1, 1, relu=False, name=layer+'_segmentation_conv2')
.resize_bilinear(size=[192, 256], name=layer+'_segmentation_pred'))
(self.feed(layer+'_segmentation_dropout')
.conv(1, 1, 1, 1, 1, relu=False, name=layer+'_non_plane_mask_conv2')
.resize_bilinear(size=[192, 256], name=layer+'_non_plane_mask_pred'))
# (self.feed(layer+'_segmentation_dropout')
# .conv(1, 1, 1, 1, 1, relu=False, name=layer+'_non_plane_depth_conv2')
# .resize_bilinear(size=[192, 256], name=layer+'_non_plane_depth_pred'))
# (self.feed(layer+'_segmentation_dropout')
# .conv(1, 1, 3, 1, 1, relu=False, name=layer+'_non_plane_normal_conv2')
# .resize_bilinear(size=[192, 256], name=layer+'_non_plane_normal_pred'))
continue
pass
pass
(self.feed('res5d_pool1')
.reshape(shape=[-1, nChannels_5], name='plane_reshape1')
.fc(num_out=options.numOutputPlanes * 3, name='plane_fc', relu=False)
.reshape(shape=[-1, options.numOutputPlanes, 3], name='plane_pred'))
if options.predictConfidence == 1:
(self.feed('plane_reshape1')
.fc(num_out=options.numOutputPlanes, name='plane_confidence_fc', relu=False)
.reshape(shape=[-1, options.numOutputPlanes, 1], name='plane_confidence_pred'))
pass
(self.feed('res5c_relu',
'res5d_upsample1',
'res5d_upsample2',
'res5d_upsample3',
'res5d_upsample4')
.concat(axis=3, name='segmentation_concat')
.conv(3, 3, 512, 1, 1, biased=False, relu=False, name='segmentation_conv1')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='segmentation_bn1')
.dropout(keep_prob=0.9, name='segmentation_dropout')
.conv(1, 1, options.numOutputPlanes, 1, 1, relu=False, name='segmentation_conv2')
.resize_bilinear(size=[192, 256], name='segmentation_pred'))
(self.feed('segmentation_dropout')
.conv(1, 1, 1, 1, 1, relu=False, name='non_plane_mask_conv2')
.resize_bilinear(size=[192, 256], name='non_plane_mask_pred'))
(self.feed('segmentation_dropout')
.conv(1, 1, 1, 1, 1, relu=False, name='non_plane_depth_conv2')
.resize_bilinear(size=[192, 256], name='non_plane_depth_pred'))
(self.feed('segmentation_dropout')
.conv(1, 1, 3, 1, 1, relu=False, name='non_plane_normal_conv2')
.resize_bilinear(size=[192, 256], name='non_plane_normal_pred'))
if options.predictSemantics == 1:
(self.feed('segmentation_dropout')
.conv(1, 1, 41, 1, 1, relu=False, name='semantics_conv2')
.resize_bilinear(size=[192, 256], name='semantics_pred'))
pass
#boundary prediction
if options.predictBoundary == 1:
(self.feed('segmentation_dropout')
.conv(1, 1, 1, 1, 1, relu=False, name='boundary_smooth_conv5')
.resize_bilinear(size=[192, 256], name='boundary_smooth_upsample5'))
(self.feed('segmentation_dropout')
.conv(1, 1, 1, 1, 1, relu=False, name='boundary_occlusion_conv5')
.resize_bilinear(size=[192, 256], name='boundary_occlusion_upsample5'))
(self.feed('bn1')
.conv(1, 1, 1, 1, 1, relu=False, name='boundary_conv0')
.resize_bilinear(size=[192, 256], name='boundary_upsample0'))
(self.feed('relu1')
.conv(1, 1, 1, 1, 1, relu=False, name='boundary_conv1')
.resize_bilinear(size=[192, 256], name='boundary_upsample1'))
(self.feed('res2c_relu')
.conv(1, 1, 1, 1, 1, relu=False, name='boundary_conv2')
.resize_bilinear(size=[192, 256], name='boundary_upsample2'))
(self.feed('res3b3_relu')
.conv(1, 1, 1, 1, 1, relu=False, name='boundary_conv3')
.resize_bilinear(size=[192, 256], name='boundary_upsample3'))
(self.feed('boundary_smooth_upsample5',
'boundary_upsample0',
'boundary_upsample1',
'boundary_upsample2',
'boundary_upsample3')
.concat(axis=3, name='boundary_smooth_concat')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='boundary_smooth_bn')
.conv(1, 1, 1, 1, 1, relu=False, name='boundary_smooth_pred'))
(self.feed('boundary_occlusion_upsample5',
'boundary_upsample0',
'boundary_upsample1',
'boundary_upsample2',
'boundary_upsample3')
.concat(axis=3, name='boundary_occlusion_concat')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='boundary_occlusion_bn')
.conv(1, 1, 1, 1, 1, relu=False, name='boundary_occlusion_pred'))
(self.feed('boundary_smooth_pred',
'boundary_occlusion_pred')
.concat(axis=3, name='boundary_pred'))
pass
#local prediction
if options.predictLocal == 1:
(self.feed('segmentation_dropout')
.conv(1, 1, 1, 1, 1, relu=False, name='local_score_pred'))
(self.feed('segmentation_dropout')
.conv(1, 1, 3, 1, 1, relu=False, name='local_plane_pred'))
(self.feed('segmentation_dropout')
.conv(1, 1, 16*16, 1, 1, relu=False, name='local_mask_pred'))
pass