You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello,
I'm getting a runtime error running the bench_cg.py example:
RuntimeError: In function std::vector cuda::compileToPTX(const char*, std::string)
Also, the af.info() seems to see the GPU device, but doesn't assign it an ID, not could detect its memory and compute capability. At the same time, the bench_fft.py seems to work.
(venv3) igu@demeter:~$ nvidia-smi
Fri Apr 19 17:45:53 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.39 Driver Version: 418.39 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 980 Off | 00000000:02:00.0 Off | N/A |
| 30% 42C P0 45W / 195W | 0MiB / 4040MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
(venv3) igu@demeter:~$ export | grep LD_LILI
declare -x LD_LIBRARY_PATH=":/usr/local/cuda/lib64:/opt/arrayfire/lib64:/usr/local/cuda/nvvm/lib64"
(venv3) igu@demeter:~$ python /mnt/Simulations/IvanG/WORKSPACE/arrayfire_examples/examples/benchmarks/bench_fft.py
ArrayFire v3.6.2 (CUDA, 64-bit Linux, build dc38ef1)
Platform: CUDA Toolkit , Driver: 418.39
[] GeForce GTX 980, MB, CUDA Compute .
Benchmark N x N 2D fft on arrayfire
Time taken for 128 x 128: 0.9280 Gflops
Time taken for 256 x 256: 174.0147 Gflops
Time taken for 512 x 512: 300.4586 Gflops
Time taken for 1024 x 1024: 298.9022 Gflops
Time taken for 2048 x 2048: 287.5326 Gflops
Time taken for 4096 x 4096: 309.7844 Gflops
Benchmark N x N 2D fft on numpy
Time taken for 128 x 128: 4.4689 Gflops
Time taken for 256 x 256: 4.8368 Gflops
Time taken for 512 x 512: 4.4340 Gflops
Time taken for 1024 x 1024: 3.8707 Gflops
(venv3) igu@demeter:~$ python /mnt/Simulations/IvanG/WORKSPACE/arrayfire_examples/examples/benchmarks/bench_cg.py
ArrayFire v3.6.2 (CUDA, 64-bit Linux, build dc38ef1)
Platform: CUDA Toolkit , Driver: 418.39
[] GeForce GTX 980, MB, CUDA Compute .
Testing benchmark functions...
Traceback (most recent call last):
File "/mnt/Simulations/IvanG/WORKSPACE/arrayfire_examples/examples/benchmarks/bench_cg.py", line 199, in <module>
test()
File "/mnt/Simulations/IvanG/WORKSPACE/arrayfire_examples/examples/benchmarks/bench_cg.py", line 141, in test
A, b, x0 = setup_input(n=50, sparsity=7) # dense A
File "/mnt/Simulations/IvanG/WORKSPACE/arrayfire_examples/examples/benchmarks/bench_cg.py", line 51, in setup_input
A = A.T + A + n*af.identity(n, n, dtype=af.Dtype.f32)
File "/opt/venv3/lib/python3.6/site-packages/arrayfire/array.py", line 664, in T
return transpose(self, False)
File "/opt/venv3/lib/python3.6/site-packages/arrayfire/array.py", line 318, in transpose
safe_call(backend.get().af_transpose(c_pointer(out.arr), a.arr, conj))
File "/opt/venv3/lib/python3.6/site-packages/arrayfire/util.py", line 79, in safe_call
raise RuntimeError(to_str(err_str))
RuntimeError: In function std::vector<char> cuda::compileToPTX(const char*, std::string)
In file src/backend/cuda/jit.cpp:
(venv3) igu@demeter:~$
Also, setting the backend doesn't seem to have an effect:
Hello,
I'm getting a runtime error running the bench_cg.py example:
RuntimeError: In function std::vector cuda::compileToPTX(const char*, std::string)
Also, the af.info() seems to see the GPU device, but doesn't assign it an ID, not could detect its memory and compute capability. At the same time, the bench_fft.py seems to work.
Also, setting the backend doesn't seem to have an effect:
Thank you,
Ivan
The text was updated successfully, but these errors were encountered: