Skip to content

Latest commit

 

History

History
106 lines (74 loc) · 4.64 KB

File metadata and controls

106 lines (74 loc) · 4.64 KB

Conda Environments as Kernels

Overview

This custom image example demonstrates how to create a custom Conda environment in a Docker image and use it as a custom kernel in SageMaker Studio. The Conda environment must have the appropriate kernel package installed, for e.g., ipykernel for a Python kernel.

This example creates a Conda environment called geospatial-env (see environment.yml)

docker build looks for a Dockerfile, which references the environment.yml -> hence change environment before running docker build

SageMaker Studio will automatically recognize this Conda environment as a kernel named conda-env-myenv-py (See app-image-config-input.json

Building the image - use Coiled or below

Build the Docker image and push to Amazon ECR.

# The Docker registry endpoint can be tuned based on your current region from https://docs.aws.amazon.com/general/latest/gr/ecr.html#ecr-docker-endpoints
REGION=<aws-region>
ACCOUNT_ID=<aws-account-id>
IMAGE_NAME=geospatial-env-kernel

# Create ECR Repository
aws --region ${REGION} ecr create-repository --repository-name sm-geospatial

# Build and push the image
aws --region ${REGION} ecr get-login-password | docker login --username AWS --password-stdin ${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/sm-geospatial
docker build . -t ${IMAGE_NAME} -t ${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/smstudio-custom:${IMAGE_NAME}
docker push ${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/smstudio-custom:${IMAGE_NAME}

Using with SageMaker Studio

Create a SageMaker Image (SMI) with the image in ECR. Request parameter RoleArn value is used to get ECR image information when and Image version is created. After creating Image, create an Image Version during which SageMaker stores image metadata like SHA etc. Everytime an image is updated in ECR, a new image version should be created. See Update Image

# Role in your account to be used for SageMakerImage. Modify as required.
# This creates an "image-repository" - or an empty image with a name viewable in Sagemaker images

# Get ROLEARN executioner role from Sagemaker control panel 
ROLE_ARN=arn:aws:iam::${ACCOUNT_ID}:role/RoleName
aws --region ${REGION} sagemaker create-image \
    --image-name ${IMAGE_NAME} \
    --role-arn ${ROLE_ARN}

# Get base image URI from ECR
aws --region ${REGION} sagemaker create-image-version \
    --image-name ${IMAGE_NAME} \
    --base-image "${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/smstudio-custom:${IMAGE_NAME}"

# Verify the image-version is created successfully. Do NOT proceed if image-version is in CREATE_FAILED state or in any other state apart from CREATED.
aws --region ${REGION} sagemaker describe-image-version --image-name ${IMAGE_NAME}

Create a AppImageConfig for this image

aws --region ${REGION} sagemaker create-app-image-config --cli-input-json file://app-image-config-input.json

Create a Domain, providing the SageMaker Image and AppImageConfig in the Domain input. Replace the placeholders for VPC ID, Subnet IDs, and Execution Role in create-domain-input.json

aws --region ${REGION} sagemaker create-domain --cli-input-json file://create-domain-input.json

If you have an existing Domain, you can also use the update-domain

aws --region ${REGION} sagemaker update-domain --cli-input-json file://update-domain-input.json

When updating domain, add the image name and the image-config to json and then update i.e. all custom images should be in the json

Create a User Profile, and start a Notebook using the SageMaker Studio launcher.

Update Image with SageMaker Studio

If you found an issue with your image or want to update Image with new features, Use following steps

Re-Build and push the image to ECR

# Build and push the image
aws --region ${REGION} ecr get-login-password | docker login --username AWS --password-stdin ${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/smstudio-custom
docker build . -t ${IMAGE_NAME} -t ${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/smstudio-custom:${IMAGE_NAME}
docker push ${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/smstudio-custom:${IMAGE_NAME}

Create new App Image Version.

aws --region ${REGION} sagemaker create-image-version \
    --image-name ${IMAGE_NAME} \
    --base-image "${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/smstudio-custom:${IMAGE_NAME}"

# Verify the image-version is created successfully. Do NOT proceed if image-version is in CREATE_FAILED state or in any other state apart from CREATED.
aws --region ${REGION} sagemaker describe-image-version --image-name ${IMAGE_NAME}

Re-Create App in SageMaker studio.