forked from jcjohnson/torch-rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LSTM.lua
317 lines (261 loc) · 8.71 KB
/
LSTM.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
require 'torch'
require 'nn'
local lu = require 'util.layer_utils'
local layer, parent = torch.class('nn.LSTM', 'nn.Module')
--[[
If we add up the sizes of all the tensors for output, gradInput, weights,
gradWeights, and temporary buffers, we get that a SequenceLSTM stores this many
scalar values:
NTD + 6NTH + 8NH + 8H^2 + 8DH + 9H
For N = 100, D = 512, T = 100, H = 1024 and with 4 bytes per number, this comes
out to 305MB. Note that this class doesn't own input or gradOutput, so you'll
see a bit higher memory usage in practice.
--]]
function layer:__init(input_dim, hidden_dim)
parent.__init(self)
local D, H = input_dim, hidden_dim
self.input_dim, self.hidden_dim = D, H
self.weight = torch.Tensor(D + H, 4 * H)
self.gradWeight = torch.Tensor(D + H, 4 * H):zero()
self.bias = torch.Tensor(4 * H)
self.gradBias = torch.Tensor(4 * H):zero()
self:reset()
self.cell = torch.Tensor() -- This will be (N, T, H)
self.gates = torch.Tensor() -- This will be (N, T, 4H)
self.buffer1 = torch.Tensor() -- This will be (N, H)
self.buffer2 = torch.Tensor() -- This will be (N, H)
self.buffer3 = torch.Tensor() -- This will be (1, 4H)
self.grad_a_buffer = torch.Tensor() -- This will be (N, 4H)
self.h0 = torch.Tensor()
self.c0 = torch.Tensor()
self.remember_states = false
self.grad_c0 = torch.Tensor()
self.grad_h0 = torch.Tensor()
self.grad_x = torch.Tensor()
self.gradInput = {self.grad_c0, self.grad_h0, self.grad_x}
end
function layer:reset(std)
if not std then
std = 1.0 / math.sqrt(self.hidden_dim + self.input_dim)
end
self.bias:zero()
self.bias[{{self.hidden_dim + 1, 2 * self.hidden_dim}}]:fill(1)
self.weight:normal(0, std)
return self
end
function layer:resetStates()
self.h0 = self.h0.new()
self.c0 = self.c0.new()
end
local function check_dims(x, dims)
assert(x:dim() == #dims)
for i, d in ipairs(dims) do
assert(x:size(i) == d)
end
end
function layer:_unpack_input(input)
local c0, h0, x = nil, nil, nil
if torch.type(input) == 'table' and #input == 3 then
c0, h0, x = unpack(input)
elseif torch.type(input) == 'table' and #input == 2 then
h0, x = unpack(input)
elseif torch.isTensor(input) then
x = input
else
assert(false, 'invalid input')
end
return c0, h0, x
end
function layer:_get_sizes(input, gradOutput)
local c0, h0, x = self:_unpack_input(input)
local N, T = x:size(1), x:size(2)
local H, D = self.hidden_dim, self.input_dim
check_dims(x, {N, T, D})
if h0 then
check_dims(h0, {N, H})
end
if c0 then
check_dims(c0, {N, H})
end
if gradOutput then
check_dims(gradOutput, {N, T, H})
end
return N, T, D, H
end
--[[
Input:
- c0: Initial cell state, (N, H)
- h0: Initial hidden state, (N, H)
- x: Input sequence, (N, T, D)
Output:
- h: Sequence of hidden states, (N, T, H)
--]]
function layer:updateOutput(input)
self.recompute_backward = true
local c0, h0, x = self:_unpack_input(input)
local N, T, D, H = self:_get_sizes(input)
self._return_grad_c0 = (c0 ~= nil)
self._return_grad_h0 = (h0 ~= nil)
if not c0 then
c0 = self.c0
if c0:nElement() == 0 or not self.remember_states then
c0:resize(N, H):zero()
elseif self.remember_states then
local prev_N, prev_T = self.cell:size(1), self.cell:size(2)
assert(prev_N == N, 'batch sizes must be constant to remember states')
c0:copy(self.cell[{{}, prev_T}])
end
end
if not h0 then
h0 = self.h0
if h0:nElement() == 0 or not self.remember_states then
h0:resize(N, H):zero()
elseif self.remember_states then
local prev_N, prev_T = self.output:size(1), self.output:size(2)
assert(prev_N == N, 'batch sizes must be the same to remember states')
h0:copy(self.output[{{}, prev_T}])
end
end
local bias_expand = self.bias:view(1, 4 * H):expand(N * T, 4 * H)
local Wx = self.weight[{{1, D}}]
local Wh = self.weight[{{D + 1, D + H}}]
local h, c = self.output, self.cell
h:resize(N, T, H):zero()
c:resize(N, T, H):zero()
local prev_h, prev_c = h0, c0
self.gates:resize(N, T, 4 * H):zero()
self.gates:view(N * T, 4 * H):addmm(bias_expand, x:view(N * T, D), Wx)
for t = 1, T do
local next_h = h[{{}, t}]
local next_c = c[{{}, t}]
local cur_gates = self.gates[{{}, t}]
cur_gates:addmm(prev_h, Wh)
cur_gates[{{}, {1, 3 * H}}]:sigmoid()
cur_gates[{{}, {3 * H + 1, 4 * H}}]:tanh()
local i = cur_gates[{{}, {1, H}}]
local f = cur_gates[{{}, {H + 1, 2 * H}}]
local o = cur_gates[{{}, {2 * H + 1, 3 * H}}]
local g = cur_gates[{{}, {3 * H + 1, 4 * H}}]
next_h:cmul(i, g)
next_c:cmul(f, prev_c):add(next_h)
next_h:tanh(next_c):cmul(o)
prev_h, prev_c = next_h, next_c
end
return self.output
end
function layer:backward(input, gradOutput, scale)
self.recompute_backward = false
scale = scale or 1.0
assert(scale == 1.0, 'must have scale=1')
local c0, h0, x = self:_unpack_input(input)
if not c0 then c0 = self.c0 end
if not h0 then h0 = self.h0 end
local grad_c0, grad_h0, grad_x = self.grad_c0, self.grad_h0, self.grad_x
local h, c = self.output, self.cell
local grad_h = gradOutput
local N, T, D, H = self:_get_sizes(input, gradOutput)
local Wx = self.weight[{{1, D}}]
local Wh = self.weight[{{D + 1, D + H}}]
local grad_Wx = self.gradWeight[{{1, D}}]
local grad_Wh = self.gradWeight[{{D + 1, D + H}}]
local grad_b = self.gradBias
grad_h0:resizeAs(h0):zero()
grad_c0:resizeAs(c0):zero()
grad_x:resizeAs(x):zero()
local grad_next_h = self.buffer1:resizeAs(h0):zero()
local grad_next_c = self.buffer2:resizeAs(c0):zero()
for t = T, 1, -1 do
local next_c = c[{{}, t}]
local prev_h, prev_c
if t == 1 then
prev_h, prev_c = h0, c0
else
prev_h, prev_c = h[{{}, t - 1}], c[{{}, t - 1}]
end
grad_next_h:add(grad_h[{{}, t}])
local i = self.gates[{{}, t, {1, H}}]
local f = self.gates[{{}, t, {H + 1, 2 * H}}]
local o = self.gates[{{}, t, {2 * H + 1, 3 * H}}]
local g = self.gates[{{}, t, {3 * H + 1, 4 * H}}]
local grad_a = self.grad_a_buffer:resize(N, 4 * H):zero()
local grad_ai = grad_a[{{}, {1, H}}]
local grad_af = grad_a[{{}, {H + 1, 2 * H}}]
local grad_ao = grad_a[{{}, {2 * H + 1, 3 * H}}]
local grad_ag = grad_a[{{}, {3 * H + 1, 4 * H}}]
-- We will use grad_ai, grad_af, and grad_ao as temporary buffers
-- to to compute grad_next_c. We will need tanh_next_c (stored in grad_ai)
-- to compute grad_ao; the other values can be overwritten after we compute
-- grad_next_c
local tanh_next_c = grad_ai:tanh(next_c)
local my_grad_next_c = grad_ao
lu.tanh_gradient(my_grad_next_c, tanh_next_c, grad_next_h)
grad_next_c:addcmul(my_grad_next_c, o)
-- We need tanh_next_c (currently in grad_ai) to compute grad_ao; after
-- that we can overwrite it.
lu.sigmoid_gradient(grad_ao, o, grad_next_h)
grad_ao:cmul(tanh_next_c)
-- Use grad_ai as a temporary buffer for computing grad_ag
lu.tanh_gradient(grad_ag, g, grad_next_c)
grad_ag:cmul(i)
-- We don't need any temporary storage for these so do them last
lu.sigmoid_gradient(grad_ai, i, grad_next_c)
lu.sigmoid_gradient(grad_af, f, grad_next_c)
grad_ai:cmul(g)
grad_af:cmul(prev_c)
grad_x[{{}, t}]:mm(grad_a, Wx:t())
grad_Wx:addmm(scale, x[{{}, t}]:t(), grad_a)
grad_Wh:addmm(scale, prev_h:t(), grad_a)
local grad_a_sum = self.buffer3:resize(1, 4 * H):sum(grad_a, 1)
grad_b:add(scale, grad_a_sum)
grad_next_h:mm(grad_a, Wh:t())
grad_next_c:cmul(f)
end
grad_h0:copy(grad_next_h)
grad_c0:copy(grad_next_c)
if self._return_grad_c0 and self._return_grad_h0 then
self.gradInput = {self.grad_c0, self.grad_h0, self.grad_x}
elseif self._return_grad_h0 then
self.gradInput = {self.grad_h0, self.grad_x}
else
self.gradInput = self.grad_x
end
return self.gradInput
end
function layer:clearState()
self.cell:set()
self.gates:set()
self.buffer1:set()
self.buffer2:set()
self.buffer3:set()
self.grad_a_buffer:set()
self.grad_c0:set()
self.grad_h0:set()
self.grad_x:set()
self.output:set()
end
function layer:updateGradInput(input, gradOutput)
if self.recompute_backward then
self:backward(input, gradOutput, 1.0)
end
return self.gradInput
end
function layer:accGradParameters(input, gradOutput, scale)
if self.recompute_backward then
self:backward(input, gradOutput, scale)
end
end
function layer:__tostring__()
local name = torch.type(self)
local din, dout = self.input_dim, self.hidden_dim
return string.format('%s(%d -> %d)', name, din, dout)
end
function layer:setBatchSize(N)
local H = self.hidden_dim
local T = self.cell:size(2)
self.cell:resize(N, T, H):zero()
self.h0:resize(N, H):zero()
end
function layer:getState(n)
local T = self.cell:size(2)
return self.cell[{n, T}]
end