Skip to content

Data acquisition and preprocessing for RS-PRISMATIC

Notifications You must be signed in to change notification settings

annaspiers/PRISMATIC

 
 

Repository files navigation

Python Package using Conda Binder

PRISMATIC-Preprocessing

Data acquisition and preprocessing for PRISMATIC

Install

conda env create -f environment.yml

Troubleshoots

For MacOS M1/M2 users:

  • It does not work with R arch arm64, so you will need to reinstall R arch x86_64, follow this guide here.
  • Library not loaded: /opt/X11/lib/libX11.6.dylib: run this command: brew install xquartz --cask
    • If you need to install brew, run this command: $ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

GDAL, OSR:

  • To import GDAL, use: from osgeo import gdal, osr

Cannot install leafR:

  • sudo aptitude install libgdal-dev

Usage

conf/paths/paths.yaml: you may need to update the path.

  • data_raw_inv_path: where to save processed data.
  • data_raw_aop_path: where to save raw NEON Airborne Observatory Platform (AOP) data.
  • data_int_path: where to save processed data.
  • data_final_path: where to save final-formatted data.

conf/sites/sites.yaml: you may need to add other sites if you want to process those.

List of processes for each site: Workflow diagram of functions

  • download_lidar: download lidar data from NEON
  • download_veg_structure_data: download vegetation data from NEON
  • preprocess_veg_structure_data: process vegetation data and sampling effort
  • download_polygons: download polygons data from NEON
  • preprocess_polygons: process polygons data
  • normalize_laz: normalize laz files
  • clip_lidar_by_plots: clip the laz/tif files given plots in processed vegetation structure and save to output
  • preprocess_biomass: process biomass and save to output
  • preprocess_lad: process Leaf Area Density and save to output
  • download_hyperspectral: download imaging spectroscopy data from NEON
  • prep_aop_imagery: prepare NEON AOP imagery for plant functional type (PFT) classifier
  • create_training_data: generate training data for PFT classifier
  • train_pft_classifier: train PFT classifier
  • generate_initial_conditions: generate FATES initial conditions (cohort and patch files)

We generate FATES intital conditions in three types:

  • ic_type == field_inv_plots: initialization from NEON forest inventory plots
  • ic_type == rs_inv_plots: initialization from remote sensing data over NEON forest inventory plots
  • ic_type == rs_random_plots: initialization from remote sensing data over plots randomly generated across entire NEON site

The final result is at data_final_path/site/year/ic_type.

# run all sites with default params
python main.py

# force preprocess_biomass to rerun for all sites/years
python main.py sites.global_run_params.force_rerun.preprocess_biomass=True

# run only SJER
python main.py sites.global_run_params.run=SJER

# run SJER and SOAP
python main.py sites.global_run_params.run='[SJER, SOAP]'

# run only SJER, force to rerun preprocess_biomass on SJER
python main.py sites.global_run_params.run=SJER sites.SJER.2019.force_rerun.preprocess_biomass=True

About

Data acquisition and preprocessing for RS-PRISMATIC

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 51.3%
  • Python 45.2%
  • Jupyter Notebook 3.5%