tcpdump -nvvvtttt -i any -XX 'host 100.122.229.228'
tcpdump -n dst port <port></port>
https://www.wains.be/pub/networking/tcpdump_advanced_filters.txt tcpdump advanced filters
Sebastien Wains <sebastien></sebastien> http://www.wains.be
I usually always specify the interface from which to listen.. that's the -i option you will always see in the examples. Indeed, I have tested each rule on my laptop over the wireless adapter which is eth1.
Feel free to contact me for comments, suggestions or for reporting mistakes. I know I'm usually terrible at explaining stuff, so let me know if something is not clear.
I'll try to keep this document updated with new useful rules.
Before I begin with advanced filters, let's review the basic syntax of tcpdump
Basic syntax :
Filtering hosts :
- Match any traffic involving 192.168.1.1 as destination or source
- tcpdump -i eth1 host 192.168.1.1
- tcpdump -i eth1 src host 192.168.1.1
- tcpdump -i eth1 dst host 192.168.1.1
- Match any traffic involving port 25 as source or destination
- tcpdump -i eth1 port 25
- tcpdump -i eth1 src port 25
- tcpdump -i eth1 dst port 25
- tcpdump -i eth1 net 192.168
- tcpdump -i eth1 src net 192.168
- tcpdump -i eth1 dst net 192.168
- tcpdump -i eth1 arp
- tcpdump -i eth1 ip
- tcpdump -i eth1 tcp
- tcpdump -i eth1 udp
- tcpdump -i eth1 icmp
Negation : ! or "not" (without the quotes) Concatanate : && or "and" Alternate : || or "or"
- This rule will match any TCP traffic on port 80 (web) with 192.168.1.254 or 192.168.1.200 as destination host
- tcpdump -i eth1 '((tcp) and (port 80) and ((dst host 192.168.1.254) or (dst host 192.168.1.200)))'
- tcpdump -i eth1 '((icmp) and ((ether dst host 00:01:02:03:04:05)))'
- tcpdump -i eth1 '((tcp) and ((dst net 192.168) and (not dst host 192.168.1.200)))'
Before we continue, we need to know how to filter out info from headers
proto[x:y] : will start filtering from byte x for y bytes. ip[2:2] would filter bytes 3 and 4 (first byte begins by 0) proto[x:y] & z = 0 : will match bits set to 0 when applying mask z to proto[x:y] proto[x:y] & z !=0 : some bits are set when applying mask z to proto[x:y] proto[x:y] & z = z : every bits are set to z when applying mask z to proto[x:y] proto[x:y] = z : p[x:y] has exactly the bits set to z
Operators : >, <, >=, <=, =, !=
This may not be clear in the first place but you'll find examples below involving these.
Of course, it is important to know what the protocol headers look like before diving into more advanced filters.
IP header
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| IHL |Type of Service| Total Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identification |Flags| Fragment Offset | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Time to Live | Protocol | Header Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Destination Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Options | Padding | <-- optional +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DATA ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I'll consider we are only working with the IPv4 protocol suite for these examples.
In an ideal world, every field would fit inside one byte. This is not the case, of course.
Are IP options set ?
Let's say we want to know if the IP header has options set. We can't just try to filter out the 21st byte because if no options are set, data start at the 21st byte. We know a "normal" header is usually 20 bytes (160 bits) long. With options set, the header is longer than that. The IP header has the header length field which we will filter here to know if the header is longer than 20 bytes.
+-+-+-+-+-+-+-+-+ |Version| IHL | +-+-+-+-+-+-+-+-+
Usually the first byte has a value of 01000101 in binary.
Anyhow, we need to divide the first byte in half...
0100 = 4 in decimal. This is the IP version. 0101 = 5 in decimal. This is the number of blocks of 32 bits in the headers. 5 x 32 bits = 160 bits or 20 bytes.
The second half of the first byte would be bigger than 5 if the header had IP options set.
We have two ways of dealing with that kind of filters.
1. Either try to match a value bigger than 01000101. This would trigger matches for IPv4 traffic with IP options set,
but ALSO any IPv6 traffic !
In decimal 01000101 equals 69.
Let's recap how to calculate in decimal.
0 : 0 \ 1 : 2^6 = 64 \ First field (IP version) 0 : 0 / 0 : 0 / - 0 : 0 \ 1 : 2^2 = 4 \ Second field (Header length) 0 : 0 / 1 : 2^0 = 1 /
64 + 4 + 1 = 69
The first field in the IP header would usually have a decimal value of 69. If we had IP options set, we would probably have 01000110 (IPv4 = 4 + header = 6), which in decimal equals 70.
This rule should do the job :
- tcpdump -i eth1 'ip[0] > 69'
2. The proper/right way : "masking" the first half of the byte
0100 0101 : 1st byte originally 0000 1111 : mask (0xf in hex or 15 in decimal). 0 will mask the values while 1 will keep the values intact.
0000 0101 : final result
You should see the mask as a power switch. 1 means on/enabled, 0 means off/disabled.
The correct filter :
In binary
- tcpdump -i eth1 'ip[0] & 15 > 5'
In hexadecimal
- tcpdump -i eth1 'ip[0] & 0xf > 5'
Recap.. That's rather simple, if you want to : - keep the last 4 bits intact, use 0xf (binary 00001111) - keep the first 4 bits intact, use 0xf0 (binary 11110000)
DF bit (don't fragment) set ?
Let's now trying to know if we have fragmentation occuring, which is not desirable. Fragmentation occurs when a the MTU of the sender is bigger than the path MTU on the path to destination.
Fragmentation info can be found in the 7th and 8th byte of the IP header.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Flags| Fragment Offset | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Bit 0: reserved, must be zero Bit 1: (DF) 0 = May Fragment, 1 = Don't Fragment. Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.
The fragment offset field is only used when fragmentation occurs.
If we want to match the DF bit (don't fragment bit, to avoid IP fragmentation) :
The 7th byte would have a value of : 01000000 or 64 in decimal
- tcpdump -i eth1 'ip[6] = 64'
- Matching MF (more fragment set) ? This would match the fragmented datagrams but wouldn't match the last
fragment (which has the 2nd bit set to 0).
- tcpdump -i eth1 'ip[6] = 32'
- Matching the fragments and the last fragments
- tcpdump -i eth1 '((ip[6:2] > 0) and (not ip[6] = 64))'
If you want to test fragmentation use something like : ping -M want -s 3000 192.168.1.1
Matching datagrams with low TTL
The TTL field is located in the 9th byte and fits perfectly into 1 byte. The maximum decimal value of the TTL field is thus 255 (11111111 in binary).
This can be verified : $ ping -M want -s 3000 -t 256 192.168.1.200 ping: ttl 256 out of range
+-+-+-+-+-+-+-+-+ | Time to Live | +-+-+-+-+-+-+-+-+
We can try to find if someone on our network is using traceroute by using something like this on the gateway :
- tcpdump -i eth1 'ip[8] < 5'
Where X is 600 bytes
- tcpdump -i eth1 'ip[2:2] > 600'
We could imagine filtering source and destination addresses directly in decimal addressing. We could also match the protocol by filtering the 10th byte.
It would be pointless anyhow, because tcpdump makes it already easy to filter out that kind of info.
TCP header
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Port | Destination Port | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sequence Number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Acknowledgment Number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Data | |C|E|U|A|P|R|S|F| | | Offset| Res. |W|C|R|C|S|S|Y|I| Window | | | |R|E|G|K|H|T|N|N| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | Urgent Pointer | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Options | Padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- Matching any TCP traffic with a source port > 1024
- tcpdump -i eth1 'tcp[0:2] > 1024'
The flags are defined in the 14th byte of the TCP header.
+-+-+-+-+-+-+-+-+ |C|E|U|A|P|R|S|F| |W|C|R|C|S|S|Y|I| |R|E|G|K|H|T|N|N| +-+-+-+-+-+-+-+-+
In the TCP 3-way handshakes, the exchange between hosts goes like this :
1. Source sends SYN 2. Destination answers with SYN, ACK 3. Source sends ACK
- If we want to match packets with only the SYN flag set, the 14th byte would have a binary
value of 00000010 which equals 2 in decimal.
- tcpdump -i eth1 'tcp[13] = 2'
- tcpdump -i eth1 'tcp[13] = 18'
- tcpdump -i eth1 'tcp[13] & 2 = 2'
Let's assume the following examples (SYN-ACK)
00010010 : SYN-ACK packet 00000010 : mask (2 in decimal)
00000010 : result (2 in decimal)
Every bits of the mask match !
- Matching PSH-ACK packets
- tcpdump -i eth1 'tcp[13] = 24'
need to use a mask or match the combination ACK-FIN)
- tcpdump -i eth1 'tcp[13] & 1 = 1'
- tcpdump -i eth1 'tcp[13] & 4 = 4'
- tcpdump -i eth1 'tcp[tcpflags] == tcp-ack'
- tcpdump 'tcp[tcpflags] & (tcp-syn|tcp-fin) != 0
Ideally, a socket in ACK_WAIT mode should not have to send a RST. It means the 3 way handshake has not completed. We may want to analyze that kind of traffic.
Matching SMTP data :
I will make a filter that will match any packet containing the "MAIL" command from SMTP exchanges.
I use something like http://www.easycalculation.com/ascii-hex.php to convert values from ASCII to hexadecimal.
"MAIL" in hex is 0x4d41494c
The rule would be :
- tcpdump -i eth1 '((port 25) and (tcp[20:4] = 0x4d41494c))'
This rule would not match packets with IP options set.
This is an example of packet (a spam, of course) :
- tshark -V -i eth0 '((port 25) and (tcp[20:4] = 0x4d41494c))'
Arrival Time: Sep 25, 2007 00:06:10.875424000 [Time] [Time] Frame Number: 1 Packet Length: 92 bytes Capture Length: 92 bytes [Frame] [Protocols]
Ethernet II, Src: Cisco_X (00:11:5c:X), Dst: 3Com_X (00:04:75:X)
Destination: 3Com_X (00:04:75:X) Address: 3Com_X (00:04:75:X) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) Source: Cisco_X (00:11:5c:X) Address: Cisco_X (00:11:5c:X) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) Type: IP (0x0800)
Internet Protocol, Src: 62.163.X (62.163.X), Dst: 192.168.X (192.168.X)
Version: 4 Header length: 20 bytes Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00) 0000 00.. = Differentiated Services Codepoint: Default (0x00) .... ..0. = ECN-Capable Transport (ECT): 0 .... ...0 = ECN-CE: 0 Total Length: 78 Identification: 0x4078 (16504) Flags: 0x04 (Don't Fragment) 0... = Reserved bit: Not set .1.. = Don't fragment: Set ..0. = More fragments: Not set Fragment offset: 0 Time to live: 118 Protocol: TCP (0x06) Header checksum: 0x08cb [correct] [Good:] [Bad] Source: 62.163.X (62.163.X) Destination: 192.168.X (192.168.XX)
Transmission Control Protocol, Src Port: 4760 (4760), Dst Port: smtp (25), Seq: 0, Ack: 0, Len: 38
Source port: 4760 (4760) Destination port: smtp (25) Sequence number: 0 (relative sequence number) [Next] Acknowledgement number: 0 (relative ack number) Header length: 20 bytes Flags: 0x18 (PSH, ACK) 0... .... = Congestion Window Reduced (CWR): Not set .0.. .... = ECN-Echo: Not set ..0. .... = Urgent: Not set ...1 .... = Acknowledgment: Set .... 1... = Push: Set .... .0.. = Reset: Not set .... ..0. = Syn: Not set .... ...0 = Fin: Not set Window size: 17375 Checksum: 0x6320 [correct] [Good] [Bad]
Simple Mail Transfer Protocol
Command: MAIL FROM:<wguthrie_at_mysickworld--dot--com></wguthrie_at_mysickworld--dot--com>\r\n Command: MAIL Request parameter: FROM:<wguthrie_at_mysickworld--dot--com></wguthrie_at_mysickworld--dot--com>
Matching HTTP data :
Let's make a filter that will find any packets containing GET requests The HTTP request will begin by :
GET / HTTP/1.1\r\n (16 bytes counting the carriage return but not the backslashes !)
If no IP options are set.. the GET command will use the byte 20, 21 and 22 Usually, options will take 12 bytes (12nd byte indicates the header length, which should report 32 bytes). So we should match bytes 32, 33 and 34 (1st byte = byte 0).
Tcpdump is only able to match data size of either 1, 2 or 4 bytes, we will take the following ASCII character following the GET command (a space)
"GET " in hex : 47455420
- tcpdump -i eth1 'tcp[32:4] = 0x47455420'
- tcpdump -i eth1 'tcp port 80 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)'
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
ip[2:2] = | Total Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+ ip[0] = |Version| IHL | +-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+ ip[0]&0xf = |# # # #| IHL | <-- that's right, we masked the version bits with 0xf or 00001111 in binary +-+-+-+-+-+-+-+-+
+-+-+-+-+
| Data | tcp[12] = | Offset| | | +-+-+-+-+
So what we are doing here is "(IP total length - IP header length - TCP header length) != 0"
We are matching any packet that contains data.
We are taking the IHL (total IP lenght
Matching other interesting TCP things :
SSH connection (on any port) : We will be looking for the reply given by the SSH server. OpenSSH usually replies with something like "SSH-2.0-OpenSSH_3.6.1p2". The first 4 bytes (SSH-) have an hex value of 0x5353482D.
- tcpdump -i eth1 'tcp[(tcp[12]>>2):4] = 0x5353482D'
- tcpdump -i eth1 '(tcp[(tcp[12]>>2):4] = 0x5353482D) and (tcp[((tcp[12]>>2)+4):2] = 0x312E)'
UDP header
0 7 8 15 16 23 24 31 +--------+--------+--------+--------+ | Source | Destination | | Port | Port | +--------+--------+--------+--------+ | | | | Length | Checksum | +--------+--------+--------+--------+ | | | DATA ... | +-----------------------------------+
Nothing really interesting here.
If we want to filter ports we would use something like :
- tcpdump -i eth1 udp dst port 53
See different ICMP messages : http://img292.imageshack.us/my.php?image=icmpmm6.gif
We will usually filter the type (1 byte) and code (1 byte) of the ICMP messages.
Here are common ICMP types :
0 Echo Reply [RFC792] 3 Destination Unreachable [RFC792] 4 Source Quench [RFC792] 5 Redirect [RFC792] 8 Echo [RFC792] 11 Time Exceeded [RFC792]
We may want to filter ICMP messages type 4, these kind of messages are sent in case of congestion of the network.
- tcpdump -i eth1 'icmp[0] = 4'
- tcpdump -i eth0 '(icmp[0] = 0) and (icmp[4:2] = 0x1f4)'
tcpdump man page : http://www.tcpdump.org/tcpdump_man.html Conversions : http://easycalculation.com/hex-converter.php Filtering HTTP requests : http://www.wireshark.org/tools/string-cf.html Filtering data regardless of TCP options : http://www.wireshark.org/lists/wireshark-users/201003/msg00024.html
Just in case the post disappears, here's a copy of the last URL :
From: Sake Blok <sake@xxxxxxxxxx></sake@xxxxxxxxxx> Date: Wed, 3 Mar 2010 22:42:29 +0100 Or if your capturing device is capable of interpreting tcpdump style filters (or more accurately, BPF style filters), you could use:
tcp[(((tcp[12:1]] = 0x2030
Which in English would be: - take the upper 4 bits of the 12th octet in the tcp header ( tcp[12:1] & 0xf0 ) - multiply it by four ( (tcp[12:1] & 0xf0)>>2 ) which should give the tcp header length - add 8 ( ((tcp[12:1] & 0xf0) >> 2) + 8 ) gives the offset into the tcp header of the space before the first octet of the response code - now take two octets from the tcp stream, starting at that offset ( tcp[(((tcp[12:1]] ) - and verify that they are " 0" ( = 0x2030 )
Of course this can give you false positives, so you might want to add a test for "HTTP" and the start of the tcp payload with:
tcp[((tcp[12:1]] = 0x48545450
resulting in the filter:
tcp[((tcp[12:1]] = 0x48545450 and tcp[(((tcp[12:1]] = 0x2030
A bit cryptic, but it works, even when TCP options are present (which would mess up a fixed offset into the tcp data).