forked from dzhu/myo-raw
-
Notifications
You must be signed in to change notification settings - Fork 4
/
myo.py
115 lines (86 loc) · 3.01 KB
/
myo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from __future__ import print_function
from collections import Counter, deque
import sys
import time
import numpy as np
try:
from sklearn import neighbors, svm
HAVE_SK = True
except ImportError:
HAVE_SK = False
from common import *
from myo_raw import MyoRaw
SUBSAMPLE = 3
K = 15
class NNClassifier(object):
'''A wrapper for sklearn's nearest-neighbor classifier that stores
training data in vals0, ..., vals9.dat.'''
def __init__(self):
for i in range(10):
with open('vals%d.dat' % i, 'ab') as f: pass
self.read_data()
def store_data(self, cls, vals):
with open('vals%d.dat' % cls, 'ab') as f:
f.write(pack('8H', *vals))
self.train(np.vstack([self.X, vals]), np.hstack([self.Y, [cls]]))
def read_data(self):
X = []
Y = []
for i in range(10):
X.append(np.fromfile('vals%d.dat' % i, dtype=np.uint16).reshape((-1, 8)))
Y.append(i + np.zeros(X[-1].shape[0]))
self.train(np.vstack(X), np.hstack(Y))
def train(self, X, Y):
self.X = X
self.Y = Y
if HAVE_SK and self.X.shape[0] >= K * SUBSAMPLE:
self.nn = neighbors.KNeighborsClassifier(n_neighbors=K, algorithm='kd_tree')
self.nn.fit(self.X[::SUBSAMPLE], self.Y[::SUBSAMPLE])
else:
self.nn = None
def nearest(self, d):
dists = ((self.X - d)**2).sum(1)
ind = dists.argmin()
return self.Y[ind]
def classify(self, d):
if self.X.shape[0] < K * SUBSAMPLE: return 0
if not HAVE_SK: return self.nearest(d)
return int(self.nn.predict(d)[0])
class Myo(MyoRaw):
'''Adds higher-level pose classification and handling onto MyoRaw.'''
HIST_LEN = 25
def __init__(self, cls, tty=None):
MyoRaw.__init__(self, tty)
self.cls = cls
self.history = deque([0] * Myo.HIST_LEN, Myo.HIST_LEN)
self.history_cnt = Counter(self.history)
self.add_emg_handler(self.emg_handler)
self.last_pose = None
self.pose_handlers = []
def emg_handler(self, emg, moving):
y = self.cls.classify(emg)
self.history_cnt[self.history[0]] -= 1
self.history_cnt[y] += 1
self.history.append(y)
r, n = self.history_cnt.most_common(1)[0]
if self.last_pose is None or (n > self.history_cnt[self.last_pose] + 5 and n > Myo.HIST_LEN / 2):
self.on_raw_pose(r)
self.last_pose = r
def add_raw_pose_handler(self, h):
self.pose_handlers.append(h)
def on_raw_pose(self, pose):
for h in self.pose_handlers:
h(pose)
if __name__ == '__main__':
import subprocess
m = Myo(NNClassifier(), sys.argv[1] if len(sys.argv) >= 2 else None)
m.add_raw_pose_handler(print)
def page(pose):
if pose == 5:
subprocess.call(['xte', 'key Page_Down'])
elif pose == 6:
subprocess.call(['xte', 'key Page_Up'])
m.add_raw_pose_handler(page)
m.connect()
while True:
m.run()