-
Notifications
You must be signed in to change notification settings - Fork 3
/
densenet.py
329 lines (288 loc) · 12.5 KB
/
densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Copyright 2020 - 2021 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from collections import OrderedDict
from typing import Callable, Sequence, Type, Union
import torch
import torch.nn as nn
from torch.hub import load_state_dict_from_url
from monai.networks.layers.factories import Conv, Dropout, Norm, Pool
class _DenseLayer(nn.Module):
def __init__(
self, spatial_dims: int, in_channels: int, growth_rate: int, bn_size: int, dropout_prob: float
) -> None:
"""
Args:
spatial_dims: number of spatial dimensions of the input image.
in_channels: number of the input channel.
growth_rate: how many filters to add each layer (k in paper).
bn_size: multiplicative factor for number of bottle neck layers.
(i.e. bn_size * k features in the bottleneck layer)
dropout_prob: dropout rate after each dense layer.
"""
super(_DenseLayer, self).__init__()
out_channels = bn_size * growth_rate
conv_type: Callable = Conv[Conv.CONV, spatial_dims]
norm_type: Callable = Norm[Norm.BATCH, spatial_dims]
dropout_type: Callable = Dropout[Dropout.DROPOUT, spatial_dims]
self.layers = nn.Sequential()
self.layers.add_module("relu1", nn.ReLU(inplace=True))
self.layers.add_module("conv1", conv_type(in_channels, out_channels, kernel_size=1, bias=False))
self.layers.add_module("norm2", norm_type(out_channels))
self.layers.add_module("relu2", nn.ReLU(inplace=True))
self.layers.add_module("conv2", conv_type(out_channels, growth_rate, kernel_size=3, padding=1, bias=False))
if dropout_prob > 0:
self.layers.add_module("dropout", dropout_type(dropout_prob))
# Move norm layer to the end
self.layers.add_module("norm1", norm_type(growth_rate))
def forward(self, x: torch.Tensor) -> torch.Tensor:
new_features = self.layers(x)
return torch.cat([x, new_features], 1)
class _DenseBlock(nn.Sequential):
def __init__(
self, spatial_dims: int, layers: int, in_channels: int, bn_size: int, growth_rate: int, dropout_prob: float
) -> None:
"""
Args:
spatial_dims: number of spatial dimensions of the input image.
layers: number of layers in the block.
in_channels: number of the input channel.
bn_size: multiplicative factor for number of bottle neck layers.
(i.e. bn_size * k features in the bottleneck layer)
growth_rate: how many filters to add each layer (k in paper).
dropout_prob: dropout rate after each dense layer.
"""
super(_DenseBlock, self).__init__()
for i in range(layers):
layer = _DenseLayer(spatial_dims, in_channels, growth_rate, bn_size, dropout_prob)
in_channels += growth_rate
self.add_module("denselayer%d" % (i + 1), layer)
class _Transition(nn.Sequential):
def __init__(self, spatial_dims: int, in_channels: int, out_channels: int) -> None:
"""
Args:
spatial_dims: number of spatial dimensions of the input image.
in_channels: number of the input channel.
out_channels: number of the output classes.
"""
super(_Transition, self).__init__()
conv_type: Callable = Conv[Conv.CONV, spatial_dims]
norm_type: Callable = Norm[Norm.BATCH, spatial_dims]
pool_type: Callable = Pool[Pool.AVG, spatial_dims]
# self.add_module("dummy_conv", conv_type(in_channels, in_channels, kernel_size=1, bias=False))
# self.add_module("norm", norm_type(in_channels))
self.add_module("relu", nn.ReLU(inplace=True))
self.add_module("conv", conv_type(in_channels, out_channels, kernel_size=1, bias=False))
self.add_module("pool", pool_type(kernel_size=2, stride=2))
class DenseNet(nn.Module):
"""
Densenet based on: `Densely Connected Convolutional Networks <https://arxiv.org/pdf/1608.06993.pdf>`_.
Adapted from `PyTorch Hub 2D version
<https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py>`_.
Args:
spatial_dims: number of spatial dimensions of the input image.
in_channels: number of the input channel.
out_channels: number of the output classes.
init_features: number of filters in the first convolution layer.
growth_rate: how many filters to add each layer (k in paper).
block_config: how many layers in each pooling block.
bn_size: multiplicative factor for number of bottle neck layers.
(i.e. bn_size * k features in the bottleneck layer)
dropout_prob: dropout rate after each dense layer.
"""
def __init__(
self,
spatial_dims: int,
in_channels: int,
out_channels: int,
init_features: int = 64,
growth_rate: int = 32,
block_config: Sequence[int] = (6, 12, 24, 16),
bn_size: int = 4,
dropout_prob: float = 0.0,
) -> None:
super(DenseNet, self).__init__()
conv_type: Type[Union[nn.Conv1d, nn.Conv2d, nn.Conv3d]] = Conv[Conv.CONV, spatial_dims]
norm_type: Type[Union[nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]
pool_type: Type[Union[nn.MaxPool1d, nn.MaxPool2d, nn.MaxPool3d]] = Pool[Pool.MAX, spatial_dims]
avg_pool_type: Type[Union[nn.AdaptiveAvgPool1d, nn.AdaptiveAvgPool2d, nn.AdaptiveAvgPool3d]] = Pool[
Pool.ADAPTIVEAVG, spatial_dims
]
self.features = nn.Sequential(
OrderedDict(
[
("conv0", conv_type(in_channels, init_features, kernel_size=7, stride=2, padding=3, bias=False)),
("norm0", norm_type(init_features)),
("relu0", nn.ReLU(inplace=True)),
("pool0", pool_type(kernel_size=3, stride=2, padding=1)),
]
)
)
in_channels = init_features
for i, num_layers in enumerate(block_config):
block = _DenseBlock(
spatial_dims=spatial_dims,
layers=num_layers,
in_channels=in_channels,
bn_size=bn_size,
growth_rate=growth_rate,
dropout_prob=dropout_prob,
)
self.features.add_module(f"denseblock{i + 1}", block)
in_channels += num_layers * growth_rate
if i == len(block_config) - 1:
# self.features.add_module("dummy_conv", conv_type(in_channels, in_channels, kernel_size=1, bias=False))
# self.features.add_module("norm5", norm_type(in_channels))
pass
else:
_out_channels = in_channels // 2
trans = _Transition(spatial_dims, in_channels=in_channels, out_channels=_out_channels)
self.features.add_module(f"transition{i + 1}", trans)
in_channels = _out_channels
# pooling and classification
self.class_layers = nn.Sequential(
OrderedDict(
[
("relu", nn.ReLU(inplace=True)),
("pool", avg_pool_type(1)),
("flatten", nn.Flatten(1)),
("out", nn.Linear(in_channels, out_channels)),
]
)
)
for m in self.modules():
if isinstance(m, conv_type):
nn.init.kaiming_normal_(torch.as_tensor(m.weight))
elif isinstance(m, norm_type):
nn.init.constant_(torch.as_tensor(m.weight), 1)
nn.init.constant_(torch.as_tensor(m.bias), 0)
elif isinstance(m, nn.Linear):
nn.init.constant_(torch.as_tensor(m.bias), 0)
for name, m in self.named_modules():
if name.endswith('dummy_conv'):
nn.init.constant_(torch.as_tensor(m.weight), float(1. / m.in_channels))
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.features(x)
x = self.class_layers(x)
return x
def _load_state_dict(model, arch, progress):
"""
This function is used to load pretrained models.
Adapted from `PyTorch Hub 2D version
<https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py>`_
"""
model_urls = {
"densenet121": "https://download.pytorch.org/models/densenet121-a639ec97.pth",
"densenet169": "https://download.pytorch.org/models/densenet169-b2777c0a.pth",
"densenet201": "https://download.pytorch.org/models/densenet201-c1103571.pth",
}
if arch in model_urls:
model_url = model_urls[arch]
else:
raise ValueError(
"only 'densenet121', 'densenet169' and 'densenet201' are supported to load pretrained weights."
)
pattern = re.compile(
r"^(.*denselayer\d+)(\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$"
)
state_dict = load_state_dict_from_url(model_url, progress=progress)
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + ".layers" + res.group(2) + res.group(3)
state_dict[new_key] = state_dict[key]
del state_dict[key]
model_dict = model.state_dict()
state_dict = {
k: v for k, v in state_dict.items() if (k in model_dict) and (model_dict[k].shape == state_dict[k].shape)
}
model_dict.update(state_dict)
model.load_state_dict(model_dict)
class DenseNet121(DenseNet):
def __init__(
self,
init_features: int = 64,
growth_rate: int = 32,
block_config: Sequence[int] = (6, 12, 24, 16),
pretrained: bool = False,
progress: bool = True,
**kwargs,
) -> None:
super(DenseNet121, self).__init__(
init_features=init_features,
growth_rate=growth_rate,
block_config=block_config,
**kwargs,
)
if pretrained:
# it only worked when `spatial_dims` is 2
_load_state_dict(self, "densenet121", progress)
class DenseNet169(DenseNet):
def __init__(
self,
init_features: int = 64,
growth_rate: int = 32,
block_config: Sequence[int] = (6, 12, 32, 32),
pretrained: bool = False,
progress: bool = True,
**kwargs,
) -> None:
super(DenseNet169, self).__init__(
init_features=init_features,
growth_rate=growth_rate,
block_config=block_config,
**kwargs,
)
if pretrained:
# it only worked when `spatial_dims` is 2
_load_state_dict(self, "densenet169", progress)
class DenseNet201(DenseNet):
def __init__(
self,
init_features: int = 64,
growth_rate: int = 32,
block_config: Sequence[int] = (6, 12, 48, 32),
pretrained: bool = False,
progress: bool = True,
**kwargs,
) -> None:
super(DenseNet201, self).__init__(
init_features=init_features,
growth_rate=growth_rate,
block_config=block_config,
**kwargs,
)
if pretrained:
# it only worked when `spatial_dims` is 2
_load_state_dict(self, "densenet201", progress)
class DenseNet264(DenseNet):
def __init__(
self,
init_features: int = 64,
growth_rate: int = 32,
block_config: Sequence[int] = (6, 12, 48, 32),
pretrained: bool = False,
progress: bool = True,
**kwargs,
) -> None:
super(DenseNet264, self).__init__(
init_features=init_features,
growth_rate=growth_rate,
block_config=block_config,
**kwargs,
)
if pretrained:
print("Currently PyTorch Hub does not provide densenet264 pretrained models.")
Densenet = densenet = DenseNet
Densenet121 = densenet121 = DenseNet121
Densenet169 = densenet169 = DenseNet169
Densenet201 = densenet201 = DenseNet201
Densenet264 = densenet264 = DenseNet264