-
Notifications
You must be signed in to change notification settings - Fork 0
/
heap.go
214 lines (166 loc) · 4.73 KB
/
heap.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
package pqueue
import (
"encoding/json"
)
// Options for QueueHeap
type Options struct {
Min bool // flag set to either create a max heap or min heap
}
// QueueHeap struct defined to describe the Priority Queue ADT
type QueueHeap struct {
min bool
pqArr []*pItem
count int
table *HeapHash
}
// NewHeap returns a new QueueHeap struct
func NewHeap(opts Options) *QueueHeap {
return &QueueHeap{
table: NewHeapHash(),
min: opts.Min,
}
}
// pItem struct defined to describe a priority object
type pItem struct {
Item string
Priority int
}
// InsertPriority inserts a new item with priority p in integer.
// It insert an Item at the end of array and bubbles back up to
// satisfy the binary heap invariant.
func (m *QueueHeap) InsertPriority(item string, priority int) {
if m.min == true {
priority = -priority
}
newPriority := &pItem{Item: item, Priority: priority}
m.pqArr = append(m.pqArr, newPriority)
// use a count to avoid looping through the heap
// to get the length. O(1) advantage
m.count++
m.buildHeap(m.pqArr, m.count)
}
// ShowPriority returns the Min/Max priority but does
// not remove it from the priority queue
func (m *QueueHeap) ShowPriority() (string, int) {
priorityOne := m.pqArr[0]
if m.min == true {
return priorityOne.Item, -priorityOne.Priority
}
return priorityOne.Item, priorityOne.Priority
}
// buildHeap function defined
func (m *QueueHeap) buildHeap(arr []*pItem, size int) {
// Index of the last non-leaf node
startIdx := (size / 2) - 1
// Perform reverse level order traversal
// from last non-leaf node and heapify
// each node
for i := startIdx; i >= 0; i-- {
m.hashHeapify(arr, i, size)
}
}
// Update hashtable and heapify a subtree rooted with node i (rootIndex)
// which is an index in arr[]. size is the number of items in the heap.
func (m *QueueHeap) hashHeapify(arr []*pItem, rootIndex, size int) {
var leftIndex int
var rightIndex int
var largest int
largest = rootIndex
m.table.AddToTable(arr[largest].Priority, largest)
leftIndex = 2*rootIndex + 1
rightIndex = 2*rootIndex + 2
if m.count > leftIndex {
m.table.AddToTable(arr[leftIndex].Priority, leftIndex)
}
if m.count > rightIndex {
m.table.AddToTable(arr[rightIndex].Priority, rightIndex)
}
// if the left child is larger than root
if leftIndex < size && arr[leftIndex].Priority > arr[largest].Priority {
largest = leftIndex
}
// if the right child is larger than largest so far
if rightIndex < size && arr[rightIndex].Priority > arr[largest].Priority {
largest = rightIndex
}
// if the largest is not root
if largest != rootIndex {
m.swap(arr, rootIndex, largest)
// recursively heapify the affected sub-tree
m.hashHeapify(arr, largest, size)
}
}
// ShowHeap function defined
func (m *QueueHeap) ShowHeap() []string {
result := make([]string, 0)
for _, val := range m.pqArr {
vjson, _ := json.Marshal(val)
result = append(result, string(vjson))
}
return result
}
func (m *QueueHeap) swap(arr []*pItem, x, y int) {
// swap and update hashtable while at it.
tmp := arr[x]
idx := m.table.GetFromTable(arr[x].Priority, x)
idy := m.table.GetFromTable(arr[y].Priority, y)
arr[x] = arr[y]
m.table.AddToTable(arr[x].Priority, idx)
arr[y] = tmp
m.table.AddToTable(arr[y].Priority, idy)
}
// Poll defined to remove the top element from the heap
func (m *QueueHeap) Poll() (string, int) {
// swap root index with last index
// i.e array[zero_index] <==> array[last_index]
// Pop the last_index from the heap
// reduce the count
// DeleteFromTable and heapify
zeroIndex := 0
lastIndex := m.count - 1
m.swap(m.pqArr, zeroIndex, lastIndex)
p, arr := m.pqArr[m.count-1], m.pqArr[:m.count-1]
m.pqArr = arr
// delete from table
m.table.DeleteFromTable(p.Priority)
m.count--
m.buildHeap(m.pqArr, m.count)
if m.min == true {
return p.Item, -p.Priority
}
return p.Item, p.Priority
}
// Remove defined to remove an item from the heap
// by specified priority
func (m *QueueHeap) Remove(priority int) bool {
// get index to be removed from hashtable
// swap index with last_index
// pop index from heap and from hashtable
// reduce the count
// DeleteFromTable and heapify
if m.min == true {
priority = -priority
}
priorityIndex := m.table.PeekPriority(priority)
if priorityIndex == -1 {
return false
}
lastIndex := m.count - 1
m.swap(m.pqArr, priorityIndex, lastIndex)
p, arr := m.pqArr[m.count-1], m.pqArr[:m.count-1]
m.pqArr = arr
// delete from table
m.table.DeleteFromTable(p.Priority)
m.count--
m.buildHeap(m.pqArr, m.count)
return true
}
// ShowHashTable show the content of the hash table
func (m *QueueHeap) ShowHashTable() *Htable {
t := m.table.GetHashTable()
return t
}
// Length return the length of the priority queue
func (m *QueueHeap) Length() int {
return m.count
}