forked from hr23232323/stock_data_scraper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
get_data.py
39 lines (31 loc) · 1.16 KB
/
get_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import stock_scraper as ss
import pandas as pd
def createList():
df_symbols = pd.read_csv("sp500-constituents.csv")
return df_symbols
def main():
df_symbols = createList()
interested = ['Market Cap (intraday)', 'Return on Equity', 'Revenue', 'Quarterly Revenue Growth',
'Operating Cash Flow', 'Total Cash', 'Total Debt', 'Current Ratio', '52-Week Change',
'Avg Vol (3 month)', 'Avg Vol (10 day)', '% Held by Insiders']
technicals = {}
df = pd.DataFrame(columns=interested)
for index, each_stock in df_symbols.iterrows():
tech = ss.scrape_yahoo(each_stock["Symbol"])
for ind in interested:
try:
df.at[each_stock["Symbol"], ind] = tech[ind]
except Exception as e:
print('Failed, exception: ', str(e))
print(str(index+1) + ": DONE- " + each_stock["Symbol"])
#Correct column name
df = df.reset_index()
df.rename(index=str, columns={df.columns[0]: "Symbol"}, inplace=True)
# Merge symbols with data df to get name of company and industry
df = df.join(df_symbols.set_index('Symbol'), on="Symbol")
# Drop rows with excessive NaN values
df.dropna(thresh=10, inplace=True)
# Save as CSV
df.to_csv("data.csv")
if __name__ == "__main__":
main()