-
Notifications
You must be signed in to change notification settings - Fork 101
/
ResNet_CAM.py
67 lines (62 loc) · 3.04 KB
/
ResNet_CAM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
import ast
import scipy
import matplotlib.pyplot as plt
import cv2
from keras.applications.resnet50 import ResNet50, preprocess_input
from keras.preprocessing import image
from keras.models import Model
import sys
def pretrained_path_to_tensor(img_path):
# loads RGB image as PIL.Image.Image type
img = image.load_img(img_path, target_size=(224, 224))
# convert PIL.Image.Image type to 3D tensor with shape (224, 224, 3)
x = image.img_to_array(img)
# convert 3D tensor to 4D tensor with shape (1, 224, 224, 3) and return 4D tensor
x = np.expand_dims(x, axis=0)
# convert RGB -> BGR, subtract mean ImageNet pixel, and return 4D tensor
return preprocess_input(x)
def get_ResNet():
# define ResNet50 model
model = ResNet50(weights='imagenet')
# get AMP layer weights
all_amp_layer_weights = model.layers[-1].get_weights()[0]
# extract wanted output
ResNet_model = Model(inputs=model.input,
outputs=(model.layers[-4].output, model.layers[-1].output))
return ResNet_model, all_amp_layer_weights
def ResNet_CAM(img_path, model, all_amp_layer_weights):
# get filtered images from convolutional output + model prediction vector
last_conv_output, pred_vec = model.predict(pretrained_path_to_tensor(img_path))
# change dimensions of last convolutional outpu tto 7 x 7 x 2048
last_conv_output = np.squeeze(last_conv_output)
# get model's prediction (number between 0 and 999, inclusive)
pred = np.argmax(pred_vec)
# bilinear upsampling to resize each filtered image to size of original image
mat_for_mult = scipy.ndimage.zoom(last_conv_output, (32, 32, 1), order=1) # dim: 224 x 224 x 2048
# get AMP layer weights
amp_layer_weights = all_amp_layer_weights[:, pred] # dim: (2048,)
# get class activation map for object class that is predicted to be in the image
final_output = np.dot(mat_for_mult.reshape((224*224, 2048)), amp_layer_weights).reshape(224,224) # dim: 224 x 224
# return class activation map
return final_output, pred
def plot_ResNet_CAM(img_path, ax, model, all_amp_layer_weights):
# load image, convert BGR --> RGB, resize image to 224 x 224,
im = cv2.resize(cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB), (224, 224))
# plot image
ax.imshow(im, alpha=0.5)
# get class activation map
CAM, pred = ResNet_CAM(img_path, model, all_amp_layer_weights)
# plot class activation map
ax.imshow(CAM, cmap='jet', alpha=0.5)
# load the dictionary that identifies each ImageNet category to an index in the prediction vector
with open('imagenet1000_clsid_to_human.txt') as imagenet_classes_file:
imagenet_classes_dict = ast.literal_eval(imagenet_classes_file.read())
# obtain the predicted ImageNet category
ax.set_title(imagenet_classes_dict[pred])
if __name__ == '__main__':
ResNet_model, all_amp_layer_weights = get_ResNet()
img_path = sys.argv[1]
fig, ax = plt.subplots()
CAM = plot_ResNet_CAM(img_path, ax, ResNet_model, all_amp_layer_weights)
plt.show()