-
Notifications
You must be signed in to change notification settings - Fork 110
/
mw-neural.py
255 lines (217 loc) · 10.9 KB
/
mw-neural.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#!/usr/bin/env python
""" Drone Pilot - Control of MRUAV """
""" mw-neural.py: Totally experimental stuff. """
__author__ = "Aldo Vargas"
__copyright__ = "Copyright 2016 Altax.net"
__license__ = "GPL"
__version__ = "1.2"
__maintainer__ = "Aldo Vargas"
__email__ = "[email protected]"
__status__ = "Development"
import time, datetime, csv, threading
from modules.utils import *
from modules.pyMultiwii import MultiWii
import modules.UDPserver as udp
import pandas as pd
import numpy as np
import modules.pyrenn as prn
# Main configuration
logging = True
update_rate = 0.01 # 100 hz loop cycle
vehicle_weight = 0.84 # Kg
u0 = 1000 # Zero throttle command
uh = 1360 # Hover throttle command
kt = vehicle_weight * g / (uh-u0)
ky = 500 / pi # Yaw controller gain
# Trajectory configuration
trajectory = 'circle'
w = (2*pi)/12 # It will take 6 seconds to complete a circle
# For Circle
radius = 0.8 # Circle radius
# Infinity trajectory configuration
a = 1.0
b = 1.2
# MRUAV initialization
vehicle = MultiWii("/dev/ttyUSB0")
# Position coordinates [x, y, x]
desiredPos = {'x':0.0, 'y':0.0, 'z':1.0} # Set at the beginning, later is updated with the trajectory
currentPos = {'x':0.0, 'y':0.0, 'z':0.0} # It will be updated using UDP from the motion capture system
# Velocity
velocities = {'x':0.0, 'y':0.0, 'z':0.0, 'fx':0.0, 'fy':0.0, 'fz':0.0}
# Initialize RC commands and pitch/roll to be sent to the MultiWii
rcCMD = [1500,1500,1500,1000]
desiredRoll = desiredPitch = desiredYaw = 1500
desiredThrottle = 1000
# Controller PID's gains (Gains are considered the same for pitch and roll)
p_gains = {'kp': 2.61, 'ki':0.57, 'kd':3.41, 'iMax':2, 'filter_bandwidth':50} # Position Controller gains
h_gains = {'kp': 4.64, 'ki':1.37, 'kd':4.55, 'iMax':2, 'filter_bandwidth':50} # Height Controller gains
y_gains = {'kp': 1.0, 'ki':0.0, 'kd':0.0, 'iMax':2, 'filter_bandwidth':50} # Yaw Controller gains
# PID modules initialization
rollPID = PID(p_gains['kp'], p_gains['ki'], p_gains['kd'], p_gains['filter_bandwidth'], 0, 0, update_rate, p_gains['iMax'], -p_gains['iMax'])
pitchPID = PID(p_gains['kp'], p_gains['ki'], p_gains['kd'], p_gains['filter_bandwidth'], 0, 0, update_rate, p_gains['iMax'], -p_gains['iMax'])
heightPID = PID(h_gains['kp'], h_gains['ki'], h_gains['kd'], h_gains['filter_bandwidth'], 0, 0, update_rate, h_gains['iMax'], -h_gains['iMax'])
yawPID = PID(y_gains['kp'], y_gains['ki'], y_gains['kd'], y_gains['filter_bandwidth'], 0, 0, update_rate, y_gains['iMax'], -y_gains['iMax'])
rPIDvalue = pPIDvalue = yPIDvalue = hPIDvalue = 0.0
# Filters initialization
f_yaw = low_pass(20,update_rate)
f_pitch = low_pass(20,update_rate)
f_roll = low_pass(20,update_rate)
f_desx = low_pass(20,update_rate)
f_desy = low_pass(20,update_rate)
# Calculate velocities
vel_x = velocity(20,update_rate)
vel_y = velocity(20,update_rate)
vel_z = velocity(20,update_rate)
# Function to update commands and attitude to be called by a thread
def control():
global vehicle, rcCMD
global rollPID, pitchPID, heightPID, yawPID
global desiredPos, currentPos, velocities
global desiredRoll, desiredPitch, desiredThrottle
global rPIDvalue, pPIDvalue, yPIDvalue
global f_yaw, f_pitch, f_roll, f_desx, f_desy
global vel_x, vel_y, vel_z
# Start Neural network
print "Starting neural network..."
net = prn.loadNN('modules/networkNOV.csv')
# Array of inputs to network
inputs = np.zeros((10,1))
print "Neural network active!"
while True:
if udp.active:
print "UDP server is active..."
break
else:
print "Waiting for UDP server to be active..."
time.sleep(0.5)
try:
if logging:
st = datetime.datetime.fromtimestamp(time.time()).strftime('%m_%d_%H-%M-%S')+".csv"
f = open("logs/mw-neural-"+st, "w")
logger = csv.writer(f)
# V -> vehicle | P -> pilot (joystick) | D -> desired position
# M -> motion capture | C -> commanded controls | sl -> Second marker | Mode
logger.writerow(('timestamp','Vroll','Vpitch','Vyaw','Proll','Ppitch','Pyaw','Pthrottle', \
'x','y','z','Dx','Dy','Dz','Mroll','Mpitch','Myaw','Mode','Croll','Cpitch','Cyaw','Cthrottle', \
'slx','sly','slz','slr','slp','sly', \
'vel_x', 'vel_fx', 'vel_y', 'vel_fy', 'vel_z', 'vel_fz', \
'NNroll','NNpitch','NNyaw','NNx','NNy','NNz' ))
while True:
# Variable to time the loop
current = time.time()
elapsed = 0
# Update joystick commands from UDP communication, order (roll, pitch, yaw, throttle)
for channel in range(0, 4):
rcCMD[channel] = int(udp.message[channel])
# Coordinate map from Optitrack in the MAST Lab: X, Y, Z. NED: If going up, Z is negative.
######### WALL ########
#Door | x+ |
# | |
# | y+ |
#---------------------|
# y- | |
# | |
# x-| |
#######################
# Update current position of the vehicle
currentPos['x'] = udp.message[5]
currentPos['y'] = udp.message[6]
currentPos['z'] = -udp.message[7]
# Get velocities of the vehicle
velocities['x'],velocities['fx'] = vel_x.get_velocity(currentPos['x'])
velocities['y'],velocities['fy'] = vel_y.get_velocity(currentPos['y'])
velocities['z'],velocities['fz'] = vel_z.get_velocity(currentPos['z'])
# Update vehicle Attitude
vehicle.getData(MultiWii.ATTITUDE)
# Desired position changed using joystick movements
if udp.message[4] == 1:
desiredPos['x'] = radius
desiredPos['y'] = 0.0
trajectory_step = 0.0
if udp.message[4] == 2:
if trajectory == 'circle':
desiredPos['x'], desiredPos['y'] = circle_trajectory(radius, w, trajectory_step)
trajectory_step += update_rate
elif trajectory == 'infinity':
desiredPos['x'], desiredPos['y'] = infinity_trajectory(a, b, w, trajectory_step)
trajectory_step += update_rate
# Filter new values before using them
heading = f_yaw.update(udp.message[12])
# PID updating, Roll is for Y and Pitch for X, Z is negative
rPIDvalue = rollPID.update(desiredPos['y'] - currentPos['y'])
pPIDvalue = pitchPID.update(desiredPos['x'] - currentPos['x'])
hPIDvalue = heightPID.update(desiredPos['z'] - currentPos['z'])
yPIDvalue = yawPID.update(0.0 - heading)
# Heading must be in radians, MultiWii heading comes in degrees, optitrack in radians
sinYaw = sin(heading)
cosYaw = cos(heading)
# Conversion from desired accelerations to desired angle commands
desiredRoll = toPWM(degrees( (rPIDvalue * cosYaw + pPIDvalue * sinYaw) * (1 / g) ), 1, 50)
desiredPitch = toPWM(degrees( (pPIDvalue * cosYaw - rPIDvalue * sinYaw) * (1 / g) ), 1, 50)
desiredThrottle = ((hPIDvalue + g) * vehicle_weight) / (cos(f_pitch.update(radians(vehicle.attitude['angx'])))*cos(f_roll.update(radians(vehicle.attitude['angy']))))
desiredThrottle = round((desiredThrottle / kt) + u0 ,0)
desiredYaw = round(1500 - (yPIDvalue * ky) ,0)
# Limit commands for safety
if udp.message[4] == 1:
rcCMD[0] = limit(desiredRoll,1200,1800)
rcCMD[1] = limit(desiredPitch,1200,1800)
rcCMD[2] = limit(desiredYaw,1000,2000)
rcCMD[3] = limit(desiredThrottle,1000,2000)
mode = 'Hold'
elif udp.message[4] == 2:
rcCMD[0] = limit(desiredRoll,1200,1800)
rcCMD[1] = limit(desiredPitch,1200,1800)
rcCMD[2] = limit(desiredYaw,1000,2000)
rcCMD[3] = limit(desiredThrottle,1000,2000)
mode = 'Trajectory'
else:
# Prevent integrators to increase if they are not in use
rollPID.resetIntegrator()
pitchPID.resetIntegrator()
heightPID.resetIntegrator()
yawPID.resetIntegrator()
mode = 'Manual'
rcCMD = [limit(n,1000,2000) for n in rcCMD]
# Neural network update
# Order of the inputs -> roll, pitch, yaw, throttle, vehicle roll, vehicle pitch, motion capture yaw, x, y, z
np.put(inputs, [0,1,2,3,4,5,6,7,8,9], \
[rcCMD[0], rcCMD[1], rcCMD[2], rcCMD[3], \
vehicle.attitude['angx'], vehicle.attitude['angy'], udp.message[9], \
currentPos['x'], currentPos['y'], currentPos['z'] ])
# Get output of neural network
outputs = prn.NNOut(inputs,net)
# Send commands to vehicle
vehicle.sendCMD(8,MultiWii.SET_RAW_RC,rcCMD)
row = (time.time(), \
vehicle.attitude['angx'], vehicle.attitude['angy'], vehicle.attitude['heading'], \
udp.message[0], udp.message[1], udp.message[2], udp.message[3], \
currentPos['x'], currentPos['y'], currentPos['z'], desiredPos['x'], desiredPos['y'], desiredPos['z'], \
udp.message[11], udp.message[13], udp.message[12], \
udp.message[4], \
rcCMD[0], rcCMD[1], rcCMD[2], rcCMD[3], \
udp.message[8], udp.message[9], udp.message[10], udp.message[14],udp.message[15], udp.message[16], \
velocities['x'], velocities['fx'], velocities['y'], velocities['fy'], velocities['z'], velocities['fz'], \
outputs[0,0], outputs[1,0], outputs[2,0], outputs[3,0], outputs[4,0], outputs[5,0] )
if logging:
logger.writerow(row)
if mode == 'Hold' or 'Manual':
print "Mode: %s | X: %0.2f | Y: %0.2f | Z: %0.2f" % (mode, currentPos['x'], currentPos['y'], currentPos['z'])
elif mode == 'Trajectory':
print "Mode: %s | Des_X: %0.2f | Des_Y: %0.2f" % (mode, desiredPos['x'], desiredPos['y'])
# Wait until the update_rate is completed
while elapsed < update_rate:
elapsed = time.time() - current
except Exception,error:
print "Error in control thread: "+str(error)
if __name__ == "__main__":
try:
logThread = threading.Thread(target=control)
logThread.daemon=True
logThread.start()
udp.startTwisted()
except Exception,error:
print "Error on main: "+str(error)
vehicle.ser.close()
except KeyboardInterrupt:
print "Keyboard Interrupt, exiting."
exit()