-
Notifications
You must be signed in to change notification settings - Fork 0
/
processing.js
114 lines (83 loc) · 3.43 KB
/
processing.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
var model;
async function loadModel() {
model = await tf.loadGraphModel('TFJS/model.json')
}
function predictImage() {
let image = cv.imread(canvas);
//Input and output both are image- we are basically updating it
cv.cvtColor(image, image, cv.COLOR_RGB2GRAY, 0);
cv.threshold(image, image, 175, 255, cv.THRESH_BINARY);
let contours = new cv.MatVector();
let hierarchy = new cv.Mat();
cv.findContours(image, contours, hierarchy, cv.RETR_CCOMP, cv.CHAIN_APPROX_SIMPLE);
let cnt = contours.get(0);
let rect = cv.boundingRect(cnt);
image = image.roi(rect);
//Scaling it up
var height = image.rows;
var width = image.cols;
if (height>width){
height = 20
const scaleFactor = image.rows/height;
width = Math.round(image.cols/scaleFactor);
}
else{
width = 20
const scaleFactor = image.cols/width;
height = Math.round(image.rows/scaleFactor);
}
let newSize = new cv.Size(width, height);
cv.resize(image, image, newSize, 0, 0, cv.INTER_AREA);
const LEFT = Math.ceil(4 + (20 - width) / 2);
const RIGHT = Math.floor(4 + (20 - width) / 2);
const TOP = Math.ceil(4 + (20 - height) / 2);
const BOTTOM = Math.floor(4 + (20 - height) / 2);
const BLACK = new cv.Scalar(0, 0, 0, 0);
cv.copyMakeBorder(image, image, TOP, BOTTOM, LEFT, RIGHT, cv.BORDER_CONSTANT, BLACK);
// Centre of mass
cv.findContours(image, contours, hierarchy, cv.RETR_CCOMP, cv.CHAIN_APPROX_SIMPLE);
cnt = contours.get(0);
const Moments = cv.moments(cnt, false);
// 00 is mass of moments overall and 10 is mass in x direction
const cx = Moments.m10 / Moments.m00;
const cy = Moments.m01 / Moments.m00;
//console.log(`M00: ${Moments.m00}, cx: ${cx}, cy: ${cy}`);
// Shifting image- to get COM
const X_SHIFT = Math.round(image.cols / 2.0 - cx);
const Y_SHIFT = Math.round(image.rows / 2.0 - cy);
// Lets reuse the newsize variable that we had
newSize = new cv.Size(image.cols, image.rows);
const M = cv.matFromArray(2, 3, cv.CV_64FC1, [1, 0, X_SHIFT, 0, 1, Y_SHIFT]);
cv.warpAffine(image, image, M, newSize, cv.INTER_LINEAR, cv.BORDER_CONSTANT, BLACK);
// Changing the pixel values to fit between 0 and 1 rather than 0 and 255
let pixelValues = image.data;
// console.log(`pixel values: ${pixelValues}`);
//This is where javascript differs from python
// Float 32 array is for us to get decimal values, rather than just integers
pixelValues = Float32Array.from(pixelValues);
//map method to divide values
pixelValues = pixelValues.map(function (item) {
return item / 255.0;
});
//console.log(`scaled array: ${pixelValues}`);
const X = tf.tensor([pixelValues]);
// console.log(`Shape of Tensor: ${X.shape}`);
// console.log(`dtype of Tensor: ${X.dtype}`);
const result = model.predict(X);
result.print();
const output = result.dataSync()[0];
//console.log(tf.memory());
// // Testing code
// var X = document.createElement('CANVAS');
// cv.imshow(X, image);
// document.body.appendChild(X);
// Cleanup- to free up memory
image.delete();
contours.delete();
cnt.delete();
hierarchy.delete();
M.delete();
X.dispose();
result.dispose();
return output;
}