forked from aimacode/aima-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
search.py
1561 lines (1245 loc) · 54 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Search (Chapters 3-4)
The way to use this code is to subclass Problem to create a class of problems,
then create problem instances and solve them with calls to the various search
functions."""
from utils import (
is_in, argmin, argmax, argmax_random_tie, probability, weighted_sampler,
memoize, print_table, open_data, PriorityQueue, name,
distance, vector_add
)
from collections import defaultdict, deque
import math
import random
import sys
import bisect
from operator import itemgetter
infinity = float('inf')
# ______________________________________________________________________________
class Problem(object):
"""The abstract class for a formal problem. You should subclass
this and implement the methods actions and result, and possibly
__init__, goal_test, and path_cost. Then you will create instances
of your subclass and solve them with the various search functions."""
def __init__(self, initial, goal=None):
"""The constructor specifies the initial state, and possibly a goal
state, if there is a unique goal. Your subclass's constructor can add
other arguments."""
self.initial = initial
self.goal = goal
def actions(self, state):
"""Return the actions that can be executed in the given
state. The result would typically be a list, but if there are
many actions, consider yielding them one at a time in an
iterator, rather than building them all at once."""
raise NotImplementedError
def result(self, state, action):
"""Return the state that results from executing the given
action in the given state. The action must be one of
self.actions(state)."""
raise NotImplementedError
def goal_test(self, state):
"""Return True if the state is a goal. The default method compares the
state to self.goal or checks for state in self.goal if it is a
list, as specified in the constructor. Override this method if
checking against a single self.goal is not enough."""
if isinstance(self.goal, list):
return is_in(state, self.goal)
else:
return state == self.goal
def path_cost(self, c, state1, action, state2):
"""Return the cost of a solution path that arrives at state2 from
state1 via action, assuming cost c to get up to state1. If the problem
is such that the path doesn't matter, this function will only look at
state2. If the path does matter, it will consider c and maybe state1
and action. The default method costs 1 for every step in the path."""
return c + 1
def value(self, state):
"""For optimization problems, each state has a value. Hill-climbing
and related algorithms try to maximize this value."""
raise NotImplementedError
# ______________________________________________________________________________
class Node:
"""A node in a search tree. Contains a pointer to the parent (the node
that this is a successor of) and to the actual state for this node. Note
that if a state is arrived at by two paths, then there are two nodes with
the same state. Also includes the action that got us to this state, and
the total path_cost (also known as g) to reach the node. Other functions
may add an f and h value; see best_first_graph_search and astar_search for
an explanation of how the f and h values are handled. You will not need to
subclass this class."""
def __init__(self, state, parent=None, action=None, path_cost=0):
"""Create a search tree Node, derived from a parent by an action."""
self.state = state
self.parent = parent
self.action = action
self.path_cost = path_cost
self.depth = 0
if parent:
self.depth = parent.depth + 1
def __repr__(self):
return "<Node {}>".format(self.state)
def __lt__(self, node):
return self.state < node.state
def expand(self, problem):
"""List the nodes reachable in one step from this node."""
return [self.child_node(problem, action)
for action in problem.actions(self.state)]
def child_node(self, problem, action):
"""[Figure 3.10]"""
next_state = problem.result(self.state, action)
next_node = Node(next_state, self, action,
problem.path_cost(self.path_cost, self.state,
action, next_state))
return next_node
def solution(self):
"""Return the sequence of actions to go from the root to this node."""
return [node.action for node in self.path()[1:]]
def path(self):
"""Return a list of nodes forming the path from the root to this node."""
node, path_back = self, []
while node:
path_back.append(node)
node = node.parent
return list(reversed(path_back))
# We want for a queue of nodes in breadth_first_graph_search or
# astar_search to have no duplicated states, so we treat nodes
# with the same state as equal. [Problem: this may not be what you
# want in other contexts.]
def __eq__(self, other):
return isinstance(other, Node) and self.state == other.state
def __hash__(self):
return hash(self.state)
# ______________________________________________________________________________
class SimpleProblemSolvingAgentProgram:
"""Abstract framework for a problem-solving agent. [Figure 3.1]"""
def __init__(self, initial_state=None):
"""State is an abstract representation of the state
of the world, and seq is the list of actions required
to get to a particular state from the initial state(root)."""
self.state = initial_state
self.seq = []
def __call__(self, percept):
"""[Figure 3.1] Formulate a goal and problem, then
search for a sequence of actions to solve it."""
self.state = self.update_state(self.state, percept)
if not self.seq:
goal = self.formulate_goal(self.state)
problem = self.formulate_problem(self.state, goal)
self.seq = self.search(problem)
if not self.seq:
return None
return self.seq.pop(0)
def update_state(self, state, percept):
raise NotImplementedError
def formulate_goal(self, state):
raise NotImplementedError
def formulate_problem(self, state, goal):
raise NotImplementedError
def search(self, problem):
raise NotImplementedError
# ______________________________________________________________________________
# Uninformed Search algorithms
def breadth_first_tree_search(problem):
"""Search the shallowest nodes in the search tree first.
Search through the successors of a problem to find a goal.
The argument frontier should be an empty queue.
Repeats infinitely in case of loops. [Figure 3.7]"""
frontier = deque([Node(problem.initial)]) # FIFO queue
while frontier:
node = frontier.popleft()
if problem.goal_test(node.state):
return node
frontier.extend(node.expand(problem))
return None
def depth_first_tree_search(problem):
"""Search the deepest nodes in the search tree first.
Search through the successors of a problem to find a goal.
The argument frontier should be an empty queue.
Repeats infinitely in case of loops. [Figure 3.7]"""
frontier = [Node(problem.initial)] # Stack
while frontier:
node = frontier.pop()
if problem.goal_test(node.state):
return node
frontier.extend(node.expand(problem))
return None
def depth_first_graph_search(problem):
"""Search the deepest nodes in the search tree first.
Search through the successors of a problem to find a goal.
The argument frontier should be an empty queue.
Does not get trapped by loops.
If two paths reach a state, only use the first one. [Figure 3.7]"""
frontier = [(Node(problem.initial))] # Stack
explored = set()
while frontier:
node = frontier.pop()
if problem.goal_test(node.state):
return node
explored.add(node.state)
frontier.extend(child for child in node.expand(problem)
if child.state not in explored and
child not in frontier)
return None
def breadth_first_graph_search(problem):
"""[Figure 3.11]
Note that this function can be implemented in a
single line as below:
return graph_search(problem, FIFOQueue())
"""
node = Node(problem.initial)
if problem.goal_test(node.state):
return node
frontier = deque([node])
explored = set()
while frontier:
node = frontier.popleft()
explored.add(node.state)
for child in node.expand(problem):
if child.state not in explored and child not in frontier:
if problem.goal_test(child.state):
return child
frontier.append(child)
return None
def best_first_graph_search(problem, f):
"""Search the nodes with the lowest f scores first.
You specify the function f(node) that you want to minimize; for example,
if f is a heuristic estimate to the goal, then we have greedy best
first search; if f is node.depth then we have breadth-first search.
There is a subtlety: the line "f = memoize(f, 'f')" means that the f
values will be cached on the nodes as they are computed. So after doing
a best first search you can examine the f values of the path returned."""
f = memoize(f, 'f')
node = Node(problem.initial)
frontier = PriorityQueue('min', f)
frontier.append(node)
explored = set()
while frontier:
node = frontier.pop()
if problem.goal_test(node.state):
return node
explored.add(node.state)
for child in node.expand(problem):
if child.state not in explored and child not in frontier:
frontier.append(child)
elif child in frontier:
incumbent = frontier[child]
if f(child) < f(incumbent):
del frontier[incumbent]
frontier.append(child)
return None
def uniform_cost_search(problem):
"""[Figure 3.14]"""
return best_first_graph_search(problem, lambda node: node.path_cost)
def depth_limited_search(problem, limit=50):
"""[Figure 3.17]"""
def recursive_dls(node, problem, limit):
if problem.goal_test(node.state):
return node
elif limit == 0:
return 'cutoff'
else:
cutoff_occurred = False
for child in node.expand(problem):
result = recursive_dls(child, problem, limit - 1)
if result == 'cutoff':
cutoff_occurred = True
elif result is not None:
return result
return 'cutoff' if cutoff_occurred else None
# Body of depth_limited_search:
return recursive_dls(Node(problem.initial), problem, limit)
def iterative_deepening_search(problem):
"""[Figure 3.18]"""
for depth in range(sys.maxsize):
result = depth_limited_search(problem, depth)
if result != 'cutoff':
return result
# ______________________________________________________________________________
# Bidirectional Search
# Pseudocode from https://webdocs.cs.ualberta.ca/%7Eholte/Publications/MM-AAAI2016.pdf
def bidirectional_search(problem):
e = problem.find_min_edge()
gF, gB = {problem.initial : 0}, {problem.goal : 0}
openF, openB = [problem.initial], [problem.goal]
closedF, closedB = [], []
U = infinity
def extend(U, open_dir, open_other, g_dir, g_other, closed_dir):
"""Extend search in given direction"""
n = find_key(C, open_dir, g_dir)
open_dir.remove(n)
closed_dir.append(n)
for c in problem.actions(n):
if c in open_dir or c in closed_dir:
if g_dir[c] <= problem.path_cost(g_dir[n], n, None, c):
continue
open_dir.remove(c)
g_dir[c] = problem.path_cost(g_dir[n], n, None, c)
open_dir.append(c)
if c in open_other:
U = min(U, g_dir[c] + g_other[c])
return U, open_dir, closed_dir, g_dir
def find_min(open_dir, g):
"""Finds minimum priority, g and f values in open_dir"""
m, m_f = infinity, infinity
for n in open_dir:
f = g[n] + problem.h(n)
pr = max(f, 2*g[n])
m = min(m, pr)
m_f = min(m_f, f)
return m, m_f, min(g.values())
def find_key(pr_min, open_dir, g):
"""Finds key in open_dir with value equal to pr_min
and minimum g value."""
m = infinity
state = -1
for n in open_dir:
pr = max(g[n] + problem.h(n), 2*g[n])
if pr == pr_min:
if g[n] < m:
m = g[n]
state = n
return state
while openF and openB:
pr_min_f, f_min_f, g_min_f = find_min(openF, gF)
pr_min_b, f_min_b, g_min_b = find_min(openB, gB)
C = min(pr_min_f, pr_min_b)
if U <= max(C, f_min_f, f_min_b, g_min_f + g_min_b + e):
return U
if C == pr_min_f:
# Extend forward
U, openF, closedF, gF = extend(U, openF, openB, gF, gB, closedF)
else:
# Extend backward
U, openB, closedB, gB = extend(U, openB, openF, gB, gF, closedB)
return infinity
# ______________________________________________________________________________
# Informed (Heuristic) Search
greedy_best_first_graph_search = best_first_graph_search
# Greedy best-first search is accomplished by specifying f(n) = h(n).
def astar_search(problem, h=None):
"""A* search is best-first graph search with f(n) = g(n)+h(n).
You need to specify the h function when you call astar_search, or
else in your Problem subclass."""
h = memoize(h or problem.h, 'h')
return best_first_graph_search(problem, lambda n: n.path_cost + h(n))
# ______________________________________________________________________________
# A* heuristics
class EightPuzzle(Problem):
""" The problem of sliding tiles numbered from 1 to 8 on a 3x3 board,
where one of the squares is a blank. A state is represented as a 3x3 list,
where element at index i,j represents the tile number (0 if it's an empty square) """
def __init__(self, initial, goal=(1, 2, 3, 4, 5, 6, 7, 8, 0)):
""" Define goal state and initialize a problem """
self.goal = goal
Problem.__init__(self, initial, goal)
def find_blank_square(self, state):
"""Return the index of the blank square in a given state"""
return state.index(0)
def actions(self, state):
""" Return the actions that can be executed in the given state.
The result would be a list, since there are only four possible actions
in any given state of the environment """
possible_actions = ['UP', 'DOWN', 'LEFT', 'RIGHT']
index_blank_square = self.find_blank_square(state)
if index_blank_square % 3 == 0:
possible_actions.remove('LEFT')
if index_blank_square < 3:
possible_actions.remove('UP')
if index_blank_square % 3 == 2:
possible_actions.remove('RIGHT')
if index_blank_square > 5:
possible_actions.remove('DOWN')
return possible_actions
def result(self, state, action):
""" Given state and action, return a new state that is the result of the action.
Action is assumed to be a valid action in the state """
# blank is the index of the blank square
blank = self.find_blank_square(state)
new_state = list(state)
delta = {'UP':-3, 'DOWN':3, 'LEFT':-1, 'RIGHT':1}
neighbor = blank + delta[action]
new_state[blank], new_state[neighbor] = new_state[neighbor], new_state[blank]
return tuple(new_state)
def goal_test(self, state):
""" Given a state, return True if state is a goal state or False, otherwise """
return state == self.goal
def check_solvability(self, state):
""" Checks if the given state is solvable """
inversion = 0
for i in range(len(state)):
for j in range(i, len(state)):
if state[i] > state[j] != 0:
inversion += 1
return inversion % 2 == 0
def h(self, node):
""" Return the heuristic value for a given state. Default heuristic function used is
h(n) = number of misplaced tiles """
return sum(s != g for (s, g) in zip(node.state, self.goal))
# ______________________________________________________________________________
class PlanRoute(Problem):
""" The problem of moving the Hybrid Wumpus Agent from one place to other """
def __init__(self, initial, goal, allowed, dimrow):
""" Define goal state and initialize a problem """
self.dimrow = dimrow
self.goal = goal
self.allowed = allowed
Problem.__init__(self, initial, goal)
def actions(self, state):
""" Return the actions that can be executed in the given state.
The result would be a list, since there are only three possible actions
in any given state of the environment """
possible_actions = ['Forward', 'TurnLeft', 'TurnRight']
x, y = state.get_location()
orientation = state.get_orientation()
# Prevent Bumps
if x == 1 and orientation == 'LEFT':
if 'Forward' in possible_actions:
possible_actions.remove('Forward')
if y == 1 and orientation == 'DOWN':
if 'Forward' in possible_actions:
possible_actions.remove('Forward')
if x == self.dimrow and orientation == 'RIGHT':
if 'Forward' in possible_actions:
possible_actions.remove('Forward')
if y == self.dimrow and orientation == 'UP':
if 'Forward' in possible_actions:
possible_actions.remove('Forward')
return possible_actions
def result(self, state, action):
""" Given state and action, return a new state that is the result of the action.
Action is assumed to be a valid action in the state """
x, y = state.get_location()
proposed_loc = list()
# Move Forward
if action == 'Forward':
if state.get_orientation() == 'UP':
proposed_loc = [x, y + 1]
elif state.get_orientation() == 'DOWN':
proposed_loc = [x, y - 1]
elif state.get_orientation() == 'LEFT':
proposed_loc = [x - 1, y]
elif state.get_orientation() == 'RIGHT':
proposed_loc = [x + 1, y]
else:
raise Exception('InvalidOrientation')
# Rotate counter-clockwise
elif action == 'TurnLeft':
if state.get_orientation() == 'UP':
state.set_orientation('LEFT')
elif state.get_orientation() == 'DOWN':
state.set_orientation('RIGHT')
elif state.get_orientation() == 'LEFT':
state.set_orientation('DOWN')
elif state.get_orientation() == 'RIGHT':
state.set_orientation('UP')
else:
raise Exception('InvalidOrientation')
# Rotate clockwise
elif action == 'TurnRight':
if state.get_orientation() == 'UP':
state.set_orientation('RIGHT')
elif state.get_orientation() == 'DOWN':
state.set_orientation('LEFT')
elif state.get_orientation() == 'LEFT':
state.set_orientation('UP')
elif state.get_orientation() == 'RIGHT':
state.set_orientation('DOWN')
else:
raise Exception('InvalidOrientation')
if proposed_loc in self.allowed:
state.set_location(proposed_loc[0], [proposed_loc[1]])
return state
def goal_test(self, state):
""" Given a state, return True if state is a goal state or False, otherwise """
return state.get_location() == tuple(self.goal)
def h(self, node):
""" Return the heuristic value for a given state."""
# Manhattan Heuristic Function
x1, y1 = node.state.get_location()
x2, y2 = self.goal
return abs(x2 - x1) + abs(y2 - y1)
# ______________________________________________________________________________
# Other search algorithms
def recursive_best_first_search(problem, h=None):
"""[Figure 3.26]"""
h = memoize(h or problem.h, 'h')
def RBFS(problem, node, flimit):
if problem.goal_test(node.state):
return node, 0 # (The second value is immaterial)
successors = node.expand(problem)
if len(successors) == 0:
return None, infinity
for s in successors:
s.f = max(s.path_cost + h(s), node.f)
while True:
# Order by lowest f value
successors.sort(key=lambda x: x.f)
best = successors[0]
if best.f > flimit:
return None, best.f
if len(successors) > 1:
alternative = successors[1].f
else:
alternative = infinity
result, best.f = RBFS(problem, best, min(flimit, alternative))
if result is not None:
return result, best.f
node = Node(problem.initial)
node.f = h(node)
result, bestf = RBFS(problem, node, infinity)
return result
def hill_climbing(problem):
"""From the initial node, keep choosing the neighbor with highest value,
stopping when no neighbor is better. [Figure 4.2]"""
current = Node(problem.initial)
while True:
neighbors = current.expand(problem)
if not neighbors:
break
neighbor = argmax_random_tie(neighbors,
key=lambda node: problem.value(node.state))
if problem.value(neighbor.state) <= problem.value(current.state):
break
current = neighbor
return current.state
def exp_schedule(k=20, lam=0.005, limit=100):
"""One possible schedule function for simulated annealing"""
return lambda t: (k * math.exp(-lam * t) if t < limit else 0)
def simulated_annealing(problem, schedule=exp_schedule()):
"""[Figure 4.5] CAUTION: This differs from the pseudocode as it
returns a state instead of a Node."""
current = Node(problem.initial)
for t in range(sys.maxsize):
T = schedule(t)
if T == 0:
return current.state
neighbors = current.expand(problem)
if not neighbors:
return current.state
next_choice = random.choice(neighbors)
delta_e = problem.value(next_choice.state) - problem.value(current.state)
if delta_e > 0 or probability(math.exp(delta_e / T)):
current = next_choice
def simulated_annealing_full(problem, schedule=exp_schedule()):
""" This version returns all the states encountered in reaching
the goal state."""
states = []
current = Node(problem.initial)
for t in range(sys.maxsize):
states.append(current.state)
T = schedule(t)
if T == 0:
return states
neighbors = current.expand(problem)
if not neighbors:
return current.state
next_choice = random.choice(neighbors)
delta_e = problem.value(next_choice.state) - problem.value(current.state)
if delta_e > 0 or probability(math.exp(delta_e / T)):
current = next_choice
def and_or_graph_search(problem):
"""[Figure 4.11]Used when the environment is nondeterministic and completely observable.
Contains OR nodes where the agent is free to choose any action.
After every action there is an AND node which contains all possible states
the agent may reach due to stochastic nature of environment.
The agent must be able to handle all possible states of the AND node (as it
may end up in any of them).
Returns a conditional plan to reach goal state,
or failure if the former is not possible."""
# functions used by and_or_search
def or_search(state, problem, path):
"""returns a plan as a list of actions"""
if problem.goal_test(state):
return []
if state in path:
return None
for action in problem.actions(state):
plan = and_search(problem.result(state, action),
problem, path + [state, ])
if plan is not None:
return [action, plan]
def and_search(states, problem, path):
"""Returns plan in form of dictionary where we take action plan[s] if we reach state s."""
plan = {}
for s in states:
plan[s] = or_search(s, problem, path)
if plan[s] is None:
return None
return plan
# body of and or search
return or_search(problem.initial, problem, [])
# Pre-defined actions for PeakFindingProblem
directions4 = { 'W':(-1, 0), 'N':(0, 1), 'E':(1, 0), 'S':(0, -1) }
directions8 = dict(directions4)
directions8.update({'NW':(-1, 1), 'NE':(1, 1), 'SE':(1, -1), 'SW':(-1, -1) })
class PeakFindingProblem(Problem):
"""Problem of finding the highest peak in a limited grid"""
def __init__(self, initial, grid, defined_actions=directions4):
"""The grid is a 2 dimensional array/list whose state is specified by tuple of indices"""
Problem.__init__(self, initial)
self.grid = grid
self.defined_actions = defined_actions
self.n = len(grid)
assert self.n > 0
self.m = len(grid[0])
assert self.m > 0
def actions(self, state):
"""Returns the list of actions which are allowed to be taken from the given state"""
allowed_actions = []
for action in self.defined_actions:
next_state = vector_add(state, self.defined_actions[action])
if next_state[0] >= 0 and next_state[1] >= 0 and next_state[0] <= self.n - 1 and next_state[1] <= self.m - 1:
allowed_actions.append(action)
return allowed_actions
def result(self, state, action):
"""Moves in the direction specified by action"""
return vector_add(state, self.defined_actions[action])
def value(self, state):
"""Value of a state is the value it is the index to"""
x, y = state
assert 0 <= x < self.n
assert 0 <= y < self.m
return self.grid[x][y]
class OnlineDFSAgent:
"""[Figure 4.21] The abstract class for an OnlineDFSAgent. Override
update_state method to convert percept to state. While initializing
the subclass a problem needs to be provided which is an instance of
a subclass of the Problem class."""
def __init__(self, problem):
self.problem = problem
self.s = None
self.a = None
self.untried = dict()
self.unbacktracked = dict()
self.result = {}
def __call__(self, percept):
s1 = self.update_state(percept)
if self.problem.goal_test(s1):
self.a = None
else:
if s1 not in self.untried.keys():
self.untried[s1] = self.problem.actions(s1)
if self.s is not None:
if s1 != self.result[(self.s, self.a)]:
self.result[(self.s, self.a)] = s1
self.unbacktracked[s1].insert(0, self.s)
if len(self.untried[s1]) == 0:
if len(self.unbacktracked[s1]) == 0:
self.a = None
else:
# else a <- an action b such that result[s', b] = POP(unbacktracked[s'])
unbacktracked_pop = self.unbacktracked.pop(s1)
for (s, b) in self.result.keys():
if self.result[(s, b)] == unbacktracked_pop:
self.a = b
break
else:
self.a = self.untried.pop(s1)
self.s = s1
return self.a
def update_state(self, percept):
"""To be overridden in most cases. The default case
assumes the percept to be of type state."""
return percept
# ______________________________________________________________________________
class OnlineSearchProblem(Problem):
"""
A problem which is solved by an agent executing
actions, rather than by just computation.
Carried in a deterministic and a fully observable environment."""
def __init__(self, initial, goal, graph):
self.initial = initial
self.goal = goal
self.graph = graph
def actions(self, state):
return self.graph.graph_dict[state].keys()
def output(self, state, action):
return self.graph.graph_dict[state][action]
def h(self, state):
"""Returns least possible cost to reach a goal for the given state."""
return self.graph.least_costs[state]
def c(self, s, a, s1):
"""Returns a cost estimate for an agent to move from state 's' to state 's1'."""
return 1
def update_state(self, percept):
raise NotImplementedError
def goal_test(self, state):
if state == self.goal:
return True
return False
class LRTAStarAgent:
""" [Figure 4.24]
Abstract class for LRTA*-Agent. A problem needs to be
provided which is an instance of a subclass of Problem Class.
Takes a OnlineSearchProblem [Figure 4.23] as a problem.
"""
def __init__(self, problem):
self.problem = problem
# self.result = {} # no need as we are using problem.result
self.H = {}
self.s = None
self.a = None
def __call__(self, s1): # as of now s1 is a state rather than a percept
if self.problem.goal_test(s1):
self.a = None
return self.a
else:
if s1 not in self.H:
self.H[s1] = self.problem.h(s1)
if self.s is not None:
# self.result[(self.s, self.a)] = s1 # no need as we are using problem.output
# minimum cost for action b in problem.actions(s)
self.H[self.s] = min(self.LRTA_cost(self.s, b, self.problem.output(self.s, b),
self.H) for b in self.problem.actions(self.s))
# an action b in problem.actions(s1) that minimizes costs
self.a = argmin(self.problem.actions(s1),
key=lambda b: self.LRTA_cost(s1, b, self.problem.output(s1, b), self.H))
self.s = s1
return self.a
def LRTA_cost(self, s, a, s1, H):
"""Returns cost to move from state 's' to state 's1' plus
estimated cost to get to goal from s1."""
print(s, a, s1)
if s1 is None:
return self.problem.h(s)
else:
# sometimes we need to get H[s1] which we haven't yet added to H
# to replace this try, except: we can initialize H with values from problem.h
try:
return self.problem.c(s, a, s1) + self.H[s1]
except:
return self.problem.c(s, a, s1) + self.problem.h(s1)
# ______________________________________________________________________________
# Genetic Algorithm
def genetic_search(problem, fitness_fn, ngen=1000, pmut=0.1, n=20):
"""Call genetic_algorithm on the appropriate parts of a problem.
This requires the problem to have states that can mate and mutate,
plus a value method that scores states."""
# NOTE: This is not tested and might not work.
# TODO: Use this function to make Problems work with genetic_algorithm.
s = problem.initial_state
states = [problem.result(s, a) for a in problem.actions(s)]
random.shuffle(states)
return genetic_algorithm(states[:n], problem.value, ngen, pmut)
def genetic_algorithm(population, fitness_fn, gene_pool=[0, 1], f_thres=None, ngen=1000, pmut=0.1):
"""[Figure 4.8]"""
for i in range(ngen):
population = [mutate(recombine(*select(2, population, fitness_fn)), gene_pool, pmut)
for i in range(len(population))]
fittest_individual = fitness_threshold(fitness_fn, f_thres, population)
if fittest_individual:
return fittest_individual
return argmax(population, key=fitness_fn)
def fitness_threshold(fitness_fn, f_thres, population):
if not f_thres:
return None
fittest_individual = argmax(population, key=fitness_fn)
if fitness_fn(fittest_individual) >= f_thres:
return fittest_individual
return None
def init_population(pop_number, gene_pool, state_length):
"""Initializes population for genetic algorithm
pop_number : Number of individuals in population
gene_pool : List of possible values for individuals
state_length: The length of each individual"""
g = len(gene_pool)
population = []
for i in range(pop_number):
new_individual = [gene_pool[random.randrange(0, g)] for j in range(state_length)]
population.append(new_individual)
return population
def select(r, population, fitness_fn):
fitnesses = map(fitness_fn, population)
sampler = weighted_sampler(population, fitnesses)
return [sampler() for i in range(r)]
def recombine(x, y):
n = len(x)
c = random.randrange(0, n)
return x[:c] + y[c:]
def recombine_uniform(x, y):
n = len(x)
result = [0] * n
indexes = random.sample(range(n), n)
for i in range(n):
ix = indexes[i]
result[ix] = x[ix] if i < n / 2 else y[ix]
return ''.join(str(r) for r in result)
def mutate(x, gene_pool, pmut):
if random.uniform(0, 1) >= pmut:
return x
n = len(x)
g = len(gene_pool)
c = random.randrange(0, n)
r = random.randrange(0, g)
new_gene = gene_pool[r]
return x[:c] + [new_gene] + x[c+1:]
# _____________________________________________________________________________
# The remainder of this file implements examples for the search algorithms.
# ______________________________________________________________________________
# Graphs and Graph Problems
class Graph:
"""A graph connects nodes (vertices) by edges (links). Each edge can also
have a length associated with it. The constructor call is something like:
g = Graph({'A': {'B': 1, 'C': 2})
this makes a graph with 3 nodes, A, B, and C, with an edge of length 1 from
A to B, and an edge of length 2 from A to C. You can also do:
g = Graph({'A': {'B': 1, 'C': 2}, directed=False)
This makes an undirected graph, so inverse links are also added. The graph
stays undirected; if you add more links with g.connect('B', 'C', 3), then