-
Notifications
You must be signed in to change notification settings - Fork 36
/
ros2.py
258 lines (207 loc) · 10.9 KB
/
ros2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright (c) 2024, RoboVerse community
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import asyncio
import time
import numpy as np
from rclpy.node import Node
from rclpy.qos import QoSProfile
from sensor_msgs.msg import JointState
from geometry_msgs.msg import TransformStamped
from tf2_ros import TransformBroadcaster
from go2_interfaces.msg import Go2State
from std_msgs.msg import Header
from nav_msgs.msg import Odometry
from sensor_msgs.msg import PointCloud2, PointField, Imu
from sensor_msgs_py import point_cloud2
from omni.isaac.orbit.sensors import CameraCfg, Camera
from omni.isaac.sensor import LidarRtx
import omni.replicator.core as rep
from scipy.spatial.transform import Rotation
import omni.isaac.orbit.sim as sim_utils
def update_meshes_for_cloud2(position_array, origin, rot):
q = rot.cpu().numpy()
rotation = Rotation.from_quat([q[1], q[2], q[3], q[0]])
rotated_vectors = rotation.apply(position_array)
rotated_vectors += origin.cpu().numpy()
rotated_vectors += [0.0, 0.0, 0.4]
return rotated_vectors
def add_rtx_lidar(num_envs, robot_type, debug=False):
annotator_lst = []
for i in range(num_envs):
if robot_type == "g1":
lidar_sensor = LidarRtx(f'/World/envs/env_{i}/Robot/head_link/lidar_sensor',
rotation_frequency = 200,
pulse_time=1,
translation=(0.0, 0.0, 0.0),
orientation=(1.0, 0.0, 0.0, 0.0),
config_file_name= "Unitree_L1",
)
else:
lidar_sensor = LidarRtx(f'/World/envs/env_{i}/Robot/base/lidar_sensor',
rotation_frequency = 200,
pulse_time=1,
translation=(0.0, 0, 0.4),
orientation=(1.0, 0.0, 0.0, 0.0),
config_file_name= "Unitree_L1",
)
if debug:
# Create the debug draw pipeline in the post process graph
writer = rep.writers.get("RtxLidar" + "DebugDrawPointCloudBuffer")
writer.attach([lidar_sensor.get_render_product_path()])
annotator = rep.AnnotatorRegistry.get_annotator("RtxSensorCpuIsaacCreateRTXLidarScanBuffer")
annotator.attach(lidar_sensor.get_render_product_path())
annotator_lst.append(annotator)
return annotator_lst
def add_camera(num_envs, robot_type):
for i in range(num_envs):
cameraCfg = CameraCfg(
prim_path=f"/World/envs/env_{i}/Robot/base/front_cam",
update_period=0.1,
height=480,
width=640,
data_types=["rgb"],
spawn=sim_utils.PinholeCameraCfg(
focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(0.1, 1.0e5)
),
offset=CameraCfg.OffsetCfg(pos=(0.32487, -0.00095, 0.05362), rot=(0.5, -0.5, 0.5, -0.5), convention="ros"),
)
if robot_type == "g1":
cameraCfg.prim_path = f"/World/envs/env_{i}/Robot/head_link/front_cam"
cameraCfg.offset = CameraCfg.OffsetCfg(pos=(0.0, 0.0, 0.0), rot=(0.5, -0.5, 0.5, -0.5), convention="ros")
Camera(cameraCfg)
def pub_robo_data_ros2(robot_type, num_envs, base_node, env, annotator_lst, start_time):
for i in range(num_envs):
# publish ros2 info
base_node.publish_joints(env.env.scene["robot"].data.joint_names, env.env.scene["robot"].data.joint_pos[i], i)
base_node.publish_odom(env.env.scene["robot"].data.root_state_w[i, :3], env.env.scene["robot"].data.root_state_w[i, 3:7], i)
base_node.publish_imu(env.env.scene["robot"].data.root_state_w[i, 3:7], env.env.scene["robot"].data.root_lin_vel_b[i, :], env.env.scene["robot"].data.root_ang_vel_b[i, :], i)
if robot_type == "go2":
base_node.publish_robot_state([
env.env.scene["contact_forces"].data.net_forces_w[i][4][2],
env.env.scene["contact_forces"].data.net_forces_w[i][8][2],
env.env.scene["contact_forces"].data.net_forces_w[i][14][2],
env.env.scene["contact_forces"].data.net_forces_w[i][18][2]
], i)
try:
if (time.time() - start_time) > 1/20:
for j in range(num_envs):
data = annotator_lst[j].get_data()
point_cloud = update_meshes_for_cloud2(
data['data'], env.env.scene["robot"].data.root_state_w[j, :3],
env.env.scene["robot"].data.root_state_w[j, 3:7]
)
base_node.publish_lidar(point_cloud, j)
start_time = time.time()
except :
pass
class RobotBaseNode(Node):
def __init__(self, num_envs):
super().__init__('go2_driver_node')
qos_profile = QoSProfile(depth=10)
self.joint_pub = []
self.go2_state_pub = []
self.go2_lidar_pub = []
self.odom_pub = []
self.imu_pub = []
for i in range(num_envs):
self.joint_pub.append(self.create_publisher(JointState, f'robot{i}/joint_states', qos_profile))
self.go2_state_pub.append(self.create_publisher(Go2State, f'robot{i}/go2_states', qos_profile))
self.go2_lidar_pub.append(self.create_publisher(PointCloud2, f'robot{i}/point_cloud2', qos_profile))
self.odom_pub.append(self.create_publisher(Odometry, f'robot{i}/odom', qos_profile))
self.imu_pub.append(self.create_publisher(Imu, f'robot{i}/imu', qos_profile))
self.broadcaster= TransformBroadcaster(self, qos=qos_profile)
def publish_joints(self, joint_names_lst, joint_state_lst, robot_num):
# Create message
joint_state = JointState()
joint_state.header.stamp = self.get_clock().now().to_msg()
joint_state_names_formated = []
for joint_name in joint_names_lst:
joint_state_names_formated.append(f"robot{robot_num}/"+joint_name)
joint_state_formated = []
for joint_state_val in joint_state_lst:
joint_state_formated.append(joint_state_val.item())
joint_state.name = joint_state_names_formated
joint_state.position = joint_state_formated
self.joint_pub[robot_num].publish(joint_state)
def publish_odom(self, base_pos, base_rot, robot_num):
odom_trans = TransformStamped()
odom_trans.header.stamp = self.get_clock().now().to_msg()
odom_trans.header.frame_id = "odom"
odom_trans.child_frame_id = f"robot{robot_num}/base_link"
odom_trans.transform.translation.x = base_pos[0].item()
odom_trans.transform.translation.y = base_pos[1].item()
odom_trans.transform.translation.z = base_pos[2].item()
odom_trans.transform.rotation.x = base_rot[1].item()
odom_trans.transform.rotation.y = base_rot[2].item()
odom_trans.transform.rotation.z = base_rot[3].item()
odom_trans.transform.rotation.w = base_rot[0].item()
self.broadcaster.sendTransform(odom_trans)
odom_topic = Odometry()
odom_topic.header.stamp = self.get_clock().now().to_msg()
odom_topic.header.frame_id = "odom"
odom_topic.child_frame_id = f"robot{robot_num}/base_link"
odom_topic.pose.pose.position.x = base_pos[0].item()
odom_topic.pose.pose.position.y = base_pos[1].item()
odom_topic.pose.pose.position.z = base_pos[2].item()
odom_topic.pose.pose.orientation.x = base_rot[1].item()
odom_topic.pose.pose.orientation.y = base_rot[2].item()
odom_topic.pose.pose.orientation.z = base_rot[3].item()
odom_topic.pose.pose.orientation.w = base_rot[0].item()
self.odom_pub[robot_num].publish(odom_topic)
def publish_imu(self, base_rot, base_lin_vel, base_ang_vel, robot_num):
imu_trans = Imu()
imu_trans.header.stamp = self.get_clock().now().to_msg()
imu_trans.header.frame_id = f"robot{robot_num}/base_link"
imu_trans.linear_acceleration.x = base_lin_vel[0].item()
imu_trans.linear_acceleration.y = base_lin_vel[1].item()
imu_trans.linear_acceleration.z = base_lin_vel[2].item()
imu_trans.angular_velocity.x = base_ang_vel[0].item()
imu_trans.angular_velocity.y = base_ang_vel[1].item()
imu_trans.angular_velocity.z = base_ang_vel[2].item()
imu_trans.orientation.x = base_rot[1].item()
imu_trans.orientation.y = base_rot[2].item()
imu_trans.orientation.z = base_rot[3].item()
imu_trans.orientation.w = base_rot[0].item()
self.imu_pub[robot_num].publish(imu_trans)
def publish_robot_state(self, foot_force_lst, robot_num):
go2_state = Go2State()
go2_state.foot_force = [
int(foot_force_lst[0].item()),
int(foot_force_lst[1].item()),
int(foot_force_lst[2].item()),
int(foot_force_lst[3].item())]
self.go2_state_pub[robot_num].publish(go2_state)
def publish_lidar(self, points, robot_num):
point_cloud = PointCloud2()
point_cloud.header = Header(frame_id="odom")
fields = [
PointField(name='x', offset=0, datatype=PointField.FLOAT32, count=1),
PointField(name='y', offset=4, datatype=PointField.FLOAT32, count=1),
PointField(name='z', offset=8, datatype=PointField.FLOAT32, count=1),
]
point_cloud = point_cloud2.create_cloud(point_cloud.header, fields, points)
self.go2_lidar_pub[robot_num].publish(point_cloud)
async def run(self):
while True:
self.publish_lidar()
await asyncio.sleep(0.1)