forked from aravindMahadevan/trajectory_prediction_INFER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BaselineDataset.py
186 lines (150 loc) · 8.08 KB
/
BaselineDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import pandas as pd
import numpy as np
import torch
import torchvision
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset
from PIL import Image
from torchvision import transforms
class BaselineDataset(Dataset):
def __init__(self, KITTIBaseDir, height=256, width=256, train=True, infoPath=None, augmentation=False,
augmentationProb=0.3, channels=None, groundTruth=False):
self.baseDir = KITTIBaseDir
# Path to disparity directory
self.obstacleDir = os.path.join(self.baseDir, 'obstacles')
# Path to lane directory
self.laneDir = os.path.join(self.baseDir, 'lane')
# Path to road directory
self.roadDir = os.path.join(self.baseDir, 'road')
# Path to target directory
self.targetDir = os.path.join(self.baseDir, 'target')
# Path to vehicles directory
self.vehiclesDir = os.path.join(self.baseDir, 'vehicles')
# Target GT refers to the occupancy grid of the target vehicle id computed using ground truth
self.targetGTDir = os.path.join(self.baseDir, 'targetGT')
# Target GT but not gaussian data
self.targetGTNonGaussianDir = os.path.join(self.baseDir, 'non-gaussian')
# The rgb occupany map directory
self.rgbDir = os.path.join(self.baseDir, 'rgbGrid')
self.height, self.width = height, width
# train = True if train dataset, else train = False
self.train = train
self.transform = transforms.Compose([
transforms.Resize(self.height),
transforms.ToTensor()
])
# Affine Transformation Parameters
self.horizontalShift = 0
self.verticalShift = 0
# augmentation = True if there is dataset augmentation
self.augmentation = augmentation
# Augmentation Probability
self.augmentationProb = augmentationProb
# True if we are using ground truth data
self.groundTruth = groundTruth
# Channels to Use
self.channels = channels
# Path to the dataset info / csv file
self.infoPath = infoPath
self.train_df = pd.read_csv(self.infoPath, sep=' ', names=['kittiSequence', 'vehicleId',
'startFrame', 'endFrame', 'numFrames'])
# Length of the Pandas Data Frame
self.dataFrameLen = len(self.train_df)
# Length of dataset
self.len = int(self.train_df['numFrames'].sum()) - self.dataFrameLen
# Add starting and ending indexes column to the data frame
self.train_df['startIndex'] = np.zeros((self.dataFrameLen, 1))
self.train_df['endIndex'] = np.zeros((self.dataFrameLen, 1))
# List to Map indexes to the corresponding vehicle
self.indexToVehicle = np.ones((self.len, 1))
# Updating indexToVehicle and the dataFrame
curIdx = 0
for row in range(self.dataFrameLen):
cur_frame = self.train_df.loc[row]
startFrame = cur_frame['startFrame']
endFrame = cur_frame['endFrame']
seqLength = endFrame - startFrame
startIdx = int(curIdx)
endIdx = int(curIdx + seqLength - 1)
self.train_df.loc[row, 'startIndex'] = startIdx
self.train_df.loc[row, 'endIndex'] = endIdx
curIdx = endIdx + 1
self.indexToVehicle[startIdx:curIdx, 0] = row
def __len__(self):
return self.len
def affineTransformParams(self):
# Return default params if value of prob greater than augmentationProb
prob = np.random.random()
horizontal_shift = 0
vertical_shift = 0
if prob < self.augmentationProb and self.augmentation:
# horizontal_shift = np.random.randint(- int(self.width * 0.2), int(self.width * 0.2))
vertical_shift = np.random.randint(- int(self.height * 0.2), int(self.height * 0.2))
return horizontal_shift, vertical_shift
def __getitem__(self, idx):
row = int(self.indexToVehicle[idx, 0])
# Get vehicle Id
vehicleId = self.train_df.loc[row, 'vehicleId']
# Get the kitti sequence no
kittiSeqNum = self.train_df.loc[row, 'kittiSequence']
# Get the num of kitti frames
numFrames = self.train_df.loc[row, 'numFrames']
# Get the Current frame
offset = idx - self.train_df.loc[row, 'startIndex']
frame1 = int(self.train_df.loc[row, 'startFrame'] + offset)
frame2 = int(frame1 + 1)
# Load image for current frame
curLaneImg = Image.open(os.path.join(self.laneDir, str(kittiSeqNum).zfill(4),
str(frame1).zfill(6)+'.png'))
curRoadImg = Image.open(os.path.join(self.roadDir, str(kittiSeqNum).zfill(4),
str(frame1).zfill(6)+'.png'))
curObstacleImg = Image.open(os.path.join(self.obstacleDir, str(kittiSeqNum).zfill(4),
str(frame1).zfill(6)+'.png'))
curTargetImg = Image.open(os.path.join(self.targetGTDir, str(kittiSeqNum).zfill(4),
str(frame1).zfill(6), str(vehicleId).zfill(6)+'.png'))
curVehiclesImg = Image.open(os.path.join(self.vehiclesDir, str(kittiSeqNum).zfill(4),
str(frame1).zfill(6), str(vehicleId).zfill(6)+'.png'))
rgbImage = Image.open(os.path.join(self.rgbDir, str(kittiSeqNum).zfill(4),
str(frame1).zfill(6)+'.png'))
# Load image for next frame
nextTargetImg = Image.open(os.path.join(self.targetDir, str(kittiSeqNum).zfill(4),
str(frame2).zfill(6), str(vehicleId).zfill(6) + '.png'))
if self.groundTruth:
nextTargetImg = Image.open(os.path.join(self.targetGTDir, str(kittiSeqNum).zfill(4),
str(frame2).zfill(6), str(vehicleId).zfill(6) + '.png'))
# Apply Affine Transforms
if self.train:
degree = 0
curLaneImg = TF.affine(curLaneImg, degree, (self.horizontalShift, self.verticalShift),
1, 0, fillcolor=0)
curRoadImg = TF.affine(curRoadImg, degree, (self.horizontalShift, self.verticalShift),
1, 0, fillcolor=0)
curObstacleImg = TF.affine(curObstacleImg, degree, (self.horizontalShift, self.verticalShift),
1, 0, fillcolor=0)
curTargetImg = TF.affine(curTargetImg, degree, (self.horizontalShift, self.verticalShift),
1, 0, fillcolor=0)
curVehiclesImg = TF.affine(curVehiclesImg, degree, (self.horizontalShift, self.verticalShift),
1, 0, fillcolor=0)
nextTargetImg = TF.affine(nextTargetImg, degree, (self.horizontalShift, self.verticalShift),
1, 0, fillcolor=0)
# Apply simple torchvision transforms
curLaneTensor = self.transform(curLaneImg)
curRoadTensor = self.transform(curRoadImg)
curObstacleTensor = self.transform(curObstacleImg)
curVehiclesTensor = self.transform(curVehiclesImg)
curTargetTensor = self.transform(curTargetImg)
nextTargetTensor = self.transform(nextTargetImg)
rgbTensor = self.transform(rgbImage)
inpTensor = curTargetTensor
# Concatenating the channels:
inpTensor = torch.cat((inpTensor, rgbTensor), dim=0)
inpTensor = torch.cat((inpTensor, nextTargetTensor), dim=0)
endOfSequence = False
if frame2 == self.train_df.loc[row, 'endFrame']:
self.horizontalShift, self.verticalShift = self.affineTransformParams()
endOfSequence = True
augmentation = True # Default Value if self.augmentation is True
if self.horizontalShift == 0 and self.verticalShift == 0:
augmentation = False
return inpTensor, kittiSeqNum, vehicleId, frame1, frame2, endOfSequence, offset, numFrames, augmentation