-
Notifications
You must be signed in to change notification settings - Fork 46
/
knet_s3_pspnet_r50-d8_80k_adamw_ade20k.py
80 lines (79 loc) · 2.58 KB
/
knet_s3_pspnet_r50-d8_80k_adamw_ade20k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
_base_ = [
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_adamw_80k.py', '../_base_/custom_import.py'
]
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
num_stages = 3
conv_kernel_size = 1
model = dict(
type='EncoderDecoder',
pretrained='open-mmlab://resnet50_v1c',
backbone=dict(
type='ResNetV1c',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
dilations=(1, 1, 2, 4),
strides=(1, 2, 1, 1),
norm_cfg=norm_cfg,
norm_eval=False,
style='pytorch',
contract_dilation=True),
decode_head=dict(
type='IterativeDecodeHead',
num_stages=num_stages,
kernel_update_head=[
dict(
type='KernelUpdateHead',
num_classes=150,
num_ffn_fcs=2,
num_heads=8,
num_mask_fcs=1,
feedforward_channels=2048,
in_channels=512,
out_channels=512,
dropout=0.0,
conv_kernel_size=conv_kernel_size,
mask_upsample_stride=2,
ffn_act_cfg=dict(type='ReLU', inplace=True),
with_ffn=True,
feat_transform_cfg=dict(
conv_cfg=dict(type='Conv2d'), act_cfg=None),
kernel_updator_cfg=dict(
type='KernelUpdator',
in_channels=256,
feat_channels=256,
out_channels=256,
input_feat_shape=3,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN'))) for _ in range(num_stages)
],
kernel_generate_head=dict(
type='PSPKernelHead',
in_channels=2048,
in_index=3,
channels=512,
pool_scales=(1, 2, 3, 6),
dropout_ratio=0.1,
num_classes=150,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0))),
auxiliary_head=dict(
type='FCNHead',
in_channels=1024,
in_index=2,
channels=256,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=150,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))