forked from Anttwo/SuGaR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_coarse_sdf.py
34 lines (26 loc) · 1.63 KB
/
train_coarse_sdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import argparse
from sugar_utils.general_utils import str2bool
from sugar_trainers.coarse_sdf import coarse_training_with_sdf_regularization
if __name__ == "__main__":
# Parser
parser = argparse.ArgumentParser(description='Script to optimize a coarse SuGaR model, i.e. a 3D Gaussian Splatting model with surface regularization losses in SDF space.')
parser.add_argument('-c', '--checkpoint_path',
type=str,
help='path to the vanilla 3D Gaussian Splatting Checkpoint to load.')
parser.add_argument('-s', '--scene_path',
type=str,
help='path to the scene data to use.')
parser.add_argument('-o', '--output_dir',
type=str, default=None,
help='path to the output directory.')
parser.add_argument('-i', '--iteration_to_load',
type=int, default=7000,
help='iteration to load.')
parser.add_argument('--eval', type=str2bool, default=True, help='Use eval split.')
parser.add_argument('--white_background', type=str2bool, default=False, help='Use a white background instead of black.')
parser.add_argument('-e', '--estimation_factor', type=float, default=0.2, help='factor to multiply the estimation loss by.')
parser.add_argument('-n', '--normal_factor', type=float, default=0.2, help='factor to multiply the normal loss by.')
parser.add_argument('--gpu', type=int, default=0, help='Index of GPU device to use.')
args = parser.parse_args()
# Call function
coarse_training_with_sdf_regularization(args)