From c1b55f645cfe898b3084aeeb41a2aa11bbf11176 Mon Sep 17 00:00:00 2001 From: zyliang2001 Date: Thu, 11 Apr 2024 21:14:14 -0700 Subject: [PATCH] Add new ablation features --- .../01_run_ablation_classification.py | 211 +- .../01_run_ablation_regression.py | 166 +- .../mdi_local/real_data_regression/models.py | 4 +- ..._data_ablation_visulization_version3.ipynb | 6547 +++++++++++++---- .../scripts/competing_methods_local.py | 427 +- 5 files changed, 5612 insertions(+), 1743 deletions(-) diff --git a/feature_importance/01_run_ablation_classification.py b/feature_importance/01_run_ablation_classification.py index b2a1448..8b388b5 100644 --- a/feature_importance/01_run_ablation_classification.py +++ b/feature_importance/01_run_ablation_classification.py @@ -19,10 +19,10 @@ from sklearn.metrics import roc_auc_score, f1_score, recall_score, precision_score, mean_squared_error from sklearn import preprocessing from sklearn.ensemble import RandomForestClassifier -from sklearn.linear_model import LogisticRegression +from sklearn.linear_model import LogisticRegressionCV from sklearn.svm import SVC import xgboost as xgb - +from imodels.importance import RandomForestPlusRegressor, RandomForestPlusClassifier sys.path.append(".") sys.path.append("..") sys.path.append("../..") @@ -77,6 +77,22 @@ def ablation_to_mean(train, data, feature_importance, mode, num_features): data_copy[i, indices[i,j]] = train_mean[indices[i,j]] return data_copy +def ablation_by_addition(data, feature_importance, mode, num_features): + """ + Initialize the data with zeros and add the top num_features max feature importance data for each sample + """ + assert mode in ["max", "min"] + fi = feature_importance.to_numpy() + if mode == "max": + indices = np.argsort(-fi) + else: + indices = np.argsort(fi) + data_copy = np.zeros(data.shape) + for i in range(data.shape[0]): + for j in range(num_features): + data_copy[i, indices[i,j]] = data[i, indices[i,j]] + return data_copy + def compare_estimators(estimators: List[ModelConfig], fi_estimators: List[FIModelConfig], X, y, support: List, @@ -121,7 +137,6 @@ def compare_estimators(estimators: List[ModelConfig], y_tune = y y_test = y - normalizer = preprocessing.Normalizer() normalizer = preprocessing.Normalizer() if splitting_strategy == "train-test": X_train = normalizer.fit_transform(X_train) @@ -138,10 +153,12 @@ def compare_estimators(estimators: List[ModelConfig], test_all_auprc = auprc_score(y_test, est.predict_proba(X_test)[:, 1]) test_all_f1 = f1_score(y_test, est.predict_proba(X_test)[:, 1] > 0.5) - if model.name == "RF_plus": - indices = np.random.choice(X_test.shape[0], 100, replace=False) - X_test = X_test[indices] - y_test = y_test[indices] + indices_train = np.random.choice(X_train.shape[0], 100, replace=False) + indices_test = np.random.choice(X_test.shape[0], 100, replace=False) + X_train_subset = X_train[indices_train] + y_train_subset = y_train[indices_train] + X_test_subset = X_test[indices_test] + y_test_subset = y_test[indices_test] # loop over fi estimators rng = np.random.RandomState() @@ -160,101 +177,167 @@ def compare_estimators(estimators: List[ModelConfig], 'test_all_f1': test_all_f1 } for i in range(100): - if model.name == "RF_plus": - metric_results[f'sample_test_{i}'] = indices[i] - else: - metric_results[f'sample_test_{i}'] = None + metric_results[f'sample_train_{i}'] = indices_train[i] + metric_results[f'sample_test_{i}'] = indices_test[i] for i in range(len(seeds)): metric_results[f'ablation_seed_{i}'] = seeds[i] start = time.time() - local_fi_score_train = fi_est.cls(X_train=X_train, y_train=y_train, + local_fi_score_train_subset = fi_est.cls(X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test, fit=copy.deepcopy(est), data_fit_on="train", **fi_est.kwargs) local_fi_score_test = fi_est.cls(X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test, fit=copy.deepcopy(est), data_fit_on="test", **fi_est.kwargs) + local_fi_score_test_subset = None end = time.time() metric_results['fi_time'] = end - start - feature_importance_list.append(local_fi_score_train) + feature_importance_list.append(local_fi_score_train_subset) feature_importance_list.append(local_fi_score_test) + feature_importance_list.append(local_fi_score_test_subset) - ablation_models = {"RF_classifier": RandomForestClassifier(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42), - "Logistic": LogisticRegression(), + ablation_models = {"RF_Classifier": RandomForestClassifier(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42), + "Logistic": LogisticRegressionCV(), "SVM": SVC(probability=True), - "XGBoost_classifier": xgb.XGBClassifier(n_estimators=100, min_child_weight=1, max_depth=None, - subsample=1.0, colsample_bytree=np.sqrt(X_train.shape[0])/X_train.shape[0], random_state=42)} + "XGBoost_Classifier": xgb.XGBClassifier(random_state=42), + "RF_Plus_Classifier": RandomForestPlusClassifier(rf_model=RandomForestClassifier(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42))} - # Train data ablation + # Subset Train data ablation for all FI methods start = time.time() for a_model in ablation_models: - est = ablation_models[a_model] - est.fit(X_train, y_train) - y_pred = est.predict_proba(X_train)[:, 1] - metric_results[a_model+'_train_AUROC_before_ablation'] = roc_auc_score(y_train, y_pred) - metric_results[a_model+'_train_AUPRC_before_ablation'] = auprc_score(y_train, y_pred) - metric_results[a_model+'_train_F1_before_ablation'] = f1_score(y_train, y_pred > 0.5) - imp_vals = copy.deepcopy(local_fi_score_train) + ablation_est = ablation_models[a_model] + ablation_est.fit(X_train, y_train) + y_pred = ablation_est.predict_proba(X_train_subset)[:, 1] + metric_results[a_model+'_train_subset_AUROC_before_ablation'] = roc_auc_score(y_train_subset, y_pred) + metric_results[a_model+'_train_subset_AUPRC_before_ablation'] = auprc_score(y_train_subset, y_pred) + metric_results[a_model+'_train_subset_F1_before_ablation'] = f1_score(y_train_subset, y_pred > 0.5) + imp_vals = copy.deepcopy(local_fi_score_train_subset) imp_vals[imp_vals == float("-inf")] = -sys.maxsize - 1 imp_vals[imp_vals == float("inf")] = sys.maxsize - 1 - ablation_results_auroc_list = [0] * X_train.shape[1] - ablation_results__auprc_list = [0] * X_train.shape[1] - ablation_results_f1_list = [0] * X_train.shape[1] + ablation_results_auroc_list = [0] * X_train_subset.shape[1] + ablation_results_auprc_list = [0] * X_train_subset.shape[1] + ablation_results_f1_list = [0] * X_train_subset.shape[1] for seed in seeds: - for i in range(X_train.shape[1]): + for i in range(X_train_subset.shape[1]): if fi_est.ascending: - ablation_X_train = ablation_to_mean(X_train, X_train, imp_vals, "max", i+1) + ablation_X_train_subset = ablation_to_mean(X_train, X_train_subset, imp_vals, "max", i+1) else: - ablation_X_train = ablation_to_mean(X_train, X_train, imp_vals, "min", i+1) - ablation_results_auroc_list[i] += roc_auc_score(y_train, est.predict_proba(ablation_X_train)[:, 1]) - ablation_results__auprc_list[i] += auprc_score(y_train, est.predict_proba(ablation_X_train)[:, 1]) - ablation_results_f1_list[i] += f1_score(y_train, est.predict_proba(ablation_X_train)[:, 1] > 0.5) + ablation_X_train_subset = ablation_to_mean(X_train, X_train_subset, imp_vals, "min", i+1) + ablation_results_auroc_list[i] += roc_auc_score(y_train_subset, ablation_est.predict_proba(ablation_X_train_subset)[:, 1]) + ablation_results_auprc_list[i] += auprc_score(y_train_subset, ablation_est.predict_proba(ablation_X_train_subset)[:, 1]) + ablation_results_f1_list[i] += f1_score(y_train_subset, ablation_est.predict_proba(ablation_X_train_subset)[:, 1] > 0.5) ablation_results_f1_list = [x / number_of_ablations for x in ablation_results_f1_list] ablation_results_auroc_list = [x / number_of_ablations for x in ablation_results_auroc_list] - ablation_results__auprc_list = [x / number_of_ablations for x in ablation_results__auprc_list] - for i in range(X_train.shape[1]): - metric_results[f'{a_model}_train_AUROC_after_ablation_{i+1}'] = ablation_results_auroc_list[i] - metric_results[f'{a_model}_train_AUPRC_after_ablation_{i+1}'] = ablation_results__auprc_list[i] - metric_results[f'{a_model}_train_F1_after_ablation_{i+1}'] = ablation_results_f1_list[i] + ablation_results_auprc_list = [x / number_of_ablations for x in ablation_results_auprc_list] + for i in range(X_train_subset.shape[1]): + metric_results[f'{a_model}_train_subset_AUROC_after_ablation_{i+1}'] = ablation_results_auroc_list[i] + metric_results[f'{a_model}_train_subset_AUPRC_after_ablation_{i+1}'] = ablation_results_auprc_list[i] + metric_results[f'{a_model}_train_subset_F1_after_ablation_{i+1}'] = ablation_results_f1_list[i] end = time.time() - metric_results['train_data_ablation_time'] = end - start + metric_results['train_subset_data_ablation_time'] = end - start # Test data ablation + # Subset test data ablation for all FI methods - removal start = time.time() for a_model in ablation_models: - est = ablation_models[a_model] - est.fit(X_train, y_train) - y_pred = est.predict_proba(X_test)[:, 1] - metric_results[a_model+'_test_AUROC_before_ablation'] = roc_auc_score(y_test, y_pred) - metric_results[a_model+'_test_AUPRC_before_ablation'] = auprc_score(y_test, y_pred) - metric_results[a_model+'_test_F1_before_ablation'] = f1_score(y_test, y_pred > 0.5) - imp_vals = copy.deepcopy(local_fi_score_test) + ablation_est = ablation_models[a_model] + ablation_est.fit(X_train, y_train) + y_pred_subset = est.predict_proba(X_test_subset)[:, 1] + metric_results[a_model+'_test_subset_AUROC_before_ablation'] = roc_auc_score(y_test_subset, y_pred_subset) + metric_results[a_model+'_test_subset_AUPRC_before_ablation'] = auprc_score(y_test_subset, y_pred_subset) + metric_results[a_model+'_test_subset_F1_before_ablation'] = f1_score(y_test_subset, y_pred_subset > 0.5) + imp_vals = copy.deepcopy(local_fi_score_test_subset) imp_vals[imp_vals == float("-inf")] = -sys.maxsize - 1 imp_vals[imp_vals == float("inf")] = sys.maxsize - 1 - ablation_results_auroc_list = [0] * X_test.shape[1] - ablation_results__auprc_list = [0] * X_test.shape[1] - ablation_results_f1_list = [0] * X_test.shape[1] + ablation_results_auroc_list = [0] * X_test_subset.shape[1] + ablation_results_auprc_list = [0] * X_test_subset.shape[1] + ablation_results_f1_list = [0] * X_test_subset.shape[1] for seed in seeds: - for i in range(X_test.shape[1]): + for i in range(X_test_subset.shape[1]): if fi_est.ascending: - ablation_X_test = ablation_to_mean(X_train, X_test, imp_vals, "max", i+1) + ablation_X_test_subset = ablation_to_mean(X_train, X_test_subset, imp_vals, "max", i+1) else: - ablation_X_test = ablation_to_mean(X_train, X_test, imp_vals, "min", i+1) - ablation_results_auroc_list[i] += roc_auc_score(y_test, est.predict_proba(ablation_X_test)[:, 1]) - ablation_results__auprc_list[i] += auprc_score(y_test, est.predict_proba(ablation_X_test)[:, 1]) - ablation_results_f1_list[i] += f1_score(y_test, est.predict_proba(ablation_X_test)[:, 1] > 0.5) + ablation_X_test_subset = ablation_to_mean(X_train, X_test_subset, imp_vals, "min", i+1) + ablation_results_auroc_list[i] += roc_auc_score(y_test_subset, ablation_est.predict_proba(ablation_X_test_subset)[:, 1]) + ablation_results_auprc_list[i] += auprc_score(y_test_subset, ablation_est.predict_proba(ablation_X_test_subset)[:, 1]) + ablation_results_f1_list[i] += f1_score(y_test_subset, ablation_est.predict_proba(ablation_X_test_subset)[:, 1] > 0.5) ablation_results_f1_list = [x / number_of_ablations for x in ablation_results_f1_list] ablation_results_auroc_list = [x / number_of_ablations for x in ablation_results_auroc_list] - ablation_results__auprc_list = [x / number_of_ablations for x in ablation_results__auprc_list] - for i in range(X_test.shape[1]): - metric_results[f'{a_model}_test_AUROC_after_ablation_{i+1}'] = ablation_results_auroc_list[i] - metric_results[f'{a_model}_test_AUPRC_after_ablation_{i+1}'] = ablation_results__auprc_list[i] - metric_results[f'{a_model}_test_F1_after_ablation_{i+1}'] = ablation_results_f1_list[i] + ablation_results_auprc_list = [x / number_of_ablations for x in ablation_results_auprc_list] + for i in range(X_test_subset.shape[1]): + metric_results[f'{a_model}_test_subset_AUROC_after_ablation_{i+1}'] = ablation_results_auroc_list[i] + metric_results[f'{a_model}_test_subset_AUPRC_after_ablation_{i+1}'] = ablation_results_auprc_list[i] + metric_results[f'{a_model}_test_subset_F1_after_ablation_{i+1}'] = ablation_results_f1_list[i] end = time.time() - metric_results['test_data_ablation_time'] = end - start - + metric_results['test_subset_ablation_time'] = end - start - print(f"data_size: {X_test.shape[0]}, fi: {fi_est.name}, done with time: {end - start}") + # Subset test data ablation for all FI methods - addition + start = time.time() + for a_model in ablation_models: + ablation_est = ablation_models[a_model] + ablation_est.fit(X_train, y_train) + metric_results[a_model+'_test_subset_AUROC_before_ablation_blank'] = roc_auc_score(y_test_subset, ablation_est.predict(np.zeros(X_test_subset.shape))) + metric_results[a_model+'_test_subset_AUPRC_before_ablation_blank'] = auprc_score(y_test_subset, ablation_est.predict(np.zeros(X_test_subset.shape))) + metric_results[a_model+'_test_subset_F1_before_ablation_blank'] = f1_score(y_test_subset, ablation_est.predict(np.zeros(X_test_subset.shape)) > 0.5) + imp_vals = copy.deepcopy(local_fi_score_test_subset) + imp_vals[imp_vals == float("-inf")] = -sys.maxsize - 1 + imp_vals[imp_vals == float("inf")] = sys.maxsize - 1 + ablation_results_auroc_list = [0] * X_test_subset.shape[1] + ablation_results_auprc_list = [0] * X_test_subset.shape[1] + ablation_results_f1_list = [0] * X_test_subset.shape[1] + for seed in seeds: + for i in range(X_test_subset.shape[1]): + if fi_est.ascending: + ablation_X_test_subset_blank = ablation_by_addition(X_test_subset, imp_vals, "max", i+1) + else: + ablation_X_test_subset_blank = ablation_by_addition(X_test_subset, imp_vals, "min", i+1) + ablation_results_auroc_list[i] += roc_auc_score(y_test_subset, ablation_est.predict_proba(ablation_X_test_subset_blank)[:, 1]) + ablation_results_auprc_list[i] += auprc_score(y_test_subset, ablation_est.predict_proba(ablation_X_test_subset_blank)[:, 1]) + ablation_results_f1_list[i] += f1_score(y_test_subset, ablation_est.predict_proba(ablation_X_test_subset_blank)[:, 1] > 0.5) + ablation_results_list = [x / len(seeds) for x in ablation_results_list] + ablation_results_list_r2 = [x / len(seeds) for x in ablation_results_list_r2] + for i in range(X_test_subset.shape[1]): + metric_results[f'{a_model}_test_subset_AUROC_after_ablation_{i+1}_blank'] = ablation_results_auroc_list[i] + metric_results[f'{a_model}_test_subset_AUPRC_after_ablation_{i+1}_blank'] = ablation_results_auprc_list[i] + metric_results[f'{a_model}_test_subset_F1_after_ablation_{i+1}_blank'] = ablation_results_f1_list[i] + end = time.time() + metric_results['test_subset_blank_ablation_time'] = end - start + + # Whole test data ablation for all FI methods except for KernelSHAP and LIME + if fi_est.name not in ["LIME_RF_plus", "Kernel_SHAP_RF_plus"]: + start = time.time() + for a_model in ablation_models: + ablation_est = ablation_models[a_model] + ablation_est.fit(X_train, y_train) + y_pred = est.predict_proba(X_test)[:, 1] + metric_results[a_model+'_test_AUROC_before_ablation'] = roc_auc_score(y_test, y_pred) + metric_results[a_model+'_test_AUPRC_before_ablation'] = auprc_score(y_test, y_pred) + metric_results[a_model+'_test_F1_before_ablation'] = f1_score(y_test, y_pred > 0.5) + imp_vals = copy.deepcopy(local_fi_score_test) + imp_vals[imp_vals == float("-inf")] = -sys.maxsize - 1 + imp_vals[imp_vals == float("inf")] = sys.maxsize - 1 + ablation_results_auroc_list = [0] * X_test.shape[1] + ablation_results_auprc_list = [0] * X_test.shape[1] + ablation_results_f1_list = [0] * X_test.shape[1] + for seed in seeds: + for i in range(X_test.shape[1]): + if fi_est.ascending: + ablation_X_test = ablation_to_mean(X_train, X_test, imp_vals, "max", i+1) + else: + ablation_X_test = ablation_to_mean(X_train, X_test, imp_vals, "min", i+1) + ablation_results_auroc_list[i] += roc_auc_score(y_test, ablation_est.predict_proba(ablation_X_test)[:, 1]) + ablation_results_auprc_list[i] += auprc_score(y_test, ablation_est.predict_proba(ablation_X_test)[:, 1]) + ablation_results_f1_list[i] += f1_score(y_test, ablation_est.predict_proba(ablation_X_test)[:, 1] > 0.5) + ablation_results_f1_list = [x / number_of_ablations for x in ablation_results_f1_list] + ablation_results_auroc_list = [x / number_of_ablations for x in ablation_results_auroc_list] + ablation_results_auprc_list = [x / number_of_ablations for x in ablation_results_auprc_list] + for i in range(X_test.shape[1]): + metric_results[f'{a_model}_test_AUROC_after_ablation_{i+1}'] = ablation_results_auroc_list[i] + metric_results[f'{a_model}_test_AUPRC_after_ablation_{i+1}'] = ablation_results_auprc_list[i] + metric_results[f'{a_model}_test_F1_after_ablation_{i+1}'] = ablation_results_f1_list[i] + end = time.time() + metric_results['test_data_ablation_time'] = end - start + print(f"fi: {fi_est.name} ablation done with time: {end - start}") # initialize results with metadata and metric results kwargs: dict = model.kwargs # dict diff --git a/feature_importance/01_run_ablation_regression.py b/feature_importance/01_run_ablation_regression.py index 2c049a9..970f233 100644 --- a/feature_importance/01_run_ablation_regression.py +++ b/feature_importance/01_run_ablation_regression.py @@ -21,6 +21,7 @@ from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression import xgboost as xgb +from imodels.importance import RandomForestPlusRegressor, RandomForestPlusClassifier sys.path.append(".") sys.path.append("..") @@ -76,6 +77,22 @@ def ablation_to_mean(train, data, feature_importance, mode, num_features): data_copy[i, indices[i,j]] = train_mean[indices[i,j]] return data_copy +def ablation_by_addition(data, feature_importance, mode, num_features): + """ + Initialize the data with zeros and add the top num_features max feature importance data for each sample + """ + assert mode in ["max", "min"] + fi = feature_importance.to_numpy() + if mode == "max": + indices = np.argsort(-fi) + else: + indices = np.argsort(fi) + data_copy = np.zeros(data.shape) + for i in range(data.shape[0]): + for j in range(num_features): + data_copy[i, indices[i,j]] = data[i, indices[i,j]] + return data_copy + def compare_estimators(estimators: List[ModelConfig], fi_estimators: List[FIModelConfig], @@ -133,10 +150,12 @@ def compare_estimators(estimators: List[ModelConfig], test_all_mse = mean_squared_error(y_test, est.predict(X_test)) test_all_r2 = r2_score(y_test, est.predict(X_test)) - if model.name == "RF_plus": - indices = np.random.choice(X_test.shape[0], 100, replace=False) - X_test = X_test[indices] - y_test = y_test[indices] + indices_train = np.random.choice(X_train.shape[0], 100, replace=False) + indices_test = np.random.choice(X_test.shape[0], 100, replace=False) + X_train_subset = X_train[indices_train] + y_train_subset = y_train[indices_train] + X_test_subset = X_test[indices_test] + y_test_subset = y_test[indices_test] # loop over fi estimators rng = np.random.RandomState() @@ -154,88 +173,147 @@ def compare_estimators(estimators: List[ModelConfig], 'test_all_r2': test_all_r2 } for i in range(100): - if model.name == "RF_plus": - metric_results[f'sample_test_{i}'] = indices[i] - else: - metric_results[f'sample_test_{i}'] = None + metric_results[f'sample_train_{i}'] = indices_train[i] + metric_results[f'sample_test_{i}'] = indices_test[i] for i in range(len(seeds)): metric_results[f'ablation_seed_{i}'] = seeds[i] start = time.time() - local_fi_score_train = fi_est.cls(X_train=X_train, y_train=y_train, + local_fi_score_train_subset = fi_est.cls(X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test, fit=copy.deepcopy(est), data_fit_on="train", **fi_est.kwargs) local_fi_score_test = fi_est.cls(X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test, fit=copy.deepcopy(est), data_fit_on="test", **fi_est.kwargs) + local_fi_score_test_subset = None end = time.time() metric_results['fi_time'] = end - start - feature_importance_list.append(local_fi_score_train) + feature_importance_list.append(local_fi_score_train_subset) feature_importance_list.append(local_fi_score_test) + feature_importance_list.append(local_fi_score_test_subset) - ablation_models = {"RF_Regressor": RandomForestRegressor(n_estimators=100,min_samples_leaf=5,max_features=0.33), + ablation_models = {"RF_Regressor": RandomForestRegressor(n_estimators=100,min_samples_leaf=5,max_features=0.33,random_state=42), "Linear": LinearRegression(), - "XGB_Regressor": xgb.XGBRegressor(n_estimators=100, max_depth=None, min_child_weight=5, - subsample=1.0, colsample_bytree=0.33, random_state=42)} + "XGB_Regressor": xgb.XGBRegressor(random_state=42), + "RF_Plus_Regressor":RandomForestPlusRegressor(rf_model=RandomForestRegressor(n_estimators=100,min_samples_leaf=5,max_features=0.33,random_state=42))} - # Train data ablation + # Subset Train data ablation for all FI methods start = time.time() for a_model in ablation_models: ablation_est = ablation_models[a_model] ablation_est.fit(X_train, y_train) - y_pred = ablation_est.predict(X_train) - metric_results[a_model + '_MSE_before_ablation'] = mean_squared_error(y_train, y_pred) - metric_results[a_model + '_R_2_before_ablation'] = r2_score(y_train, y_pred) - imp_vals = copy.deepcopy(local_fi_score_train) + y_pred_subset = ablation_est.predict(X_train_subset) + metric_results[a_model + '_train_subset_MSE_before_ablation'] = mean_squared_error(y_train_subset, y_pred_subset) + metric_results[a_model + '_train_subset_R_2_before_ablation'] = r2_score(y_train_subset, y_pred_subset) + imp_vals = copy.deepcopy(local_fi_score_train_subset) imp_vals[imp_vals == float("-inf")] = -sys.maxsize - 1 imp_vals[imp_vals == float("inf")] = sys.maxsize - 1 - ablation_results_list = [0] * X_train.shape[1] - ablation_results_list_r2 = [0] * X_train.shape[1] + ablation_results_list = [0] * X_train_subset.shape[1] + ablation_results_list_r2 = [0] * X_train_subset.shape[1] for seed in seeds: - for i in range(X_train.shape[1]): + for i in range(X_train_subset.shape[1]): if fi_est.ascending: - ablation_X_train = ablation_to_mean(X_train, X_train, imp_vals, "max", i+1) + ablation_X_train_subset = ablation_to_mean(X_train, X_train_subset, imp_vals, "max", i+1) else: - ablation_X_train = ablation_to_mean(X_train, X_train, imp_vals, "min", i+1) - ablation_results_list[i] += mean_squared_error(y_train, ablation_est.predict(ablation_X_train)) - ablation_results_list_r2[i] += r2_score(y_train, ablation_est.predict(ablation_X_train)) + ablation_X_train_subset = ablation_to_mean(X_train, X_train_subset, imp_vals, "min", i+1) + ablation_results_list[i] += mean_squared_error(y_train_subset, ablation_est.predict(ablation_X_train_subset)) + ablation_results_list_r2[i] += r2_score(y_train_subset, ablation_est.predict(ablation_X_train_subset)) ablation_results_list = [x / len(seeds) for x in ablation_results_list] ablation_results_list_r2 = [x / len(seeds) for x in ablation_results_list_r2] for i in range(X_train.shape[1]): - metric_results[f'{a_model}_MSE_after_ablation_{i+1}'] = ablation_results_list[i] - metric_results[f'{a_model}_R_2_after_ablation_{i+1}'] = ablation_results_list_r2[i] + metric_results[f'{a_model}_train_subset_MSE_after_ablation_{i+1}'] = ablation_results_list[i] + metric_results[f'{a_model}_train_subset_R_2_after_ablation_{i+1}'] = ablation_results_list_r2[i] end = time.time() - metric_results['train_data_ablation_time'] = end - start + metric_results['train_subset_ablation_time'] = end - start # Test data ablation + # Subset test data ablation for all FI methods - removal start = time.time() for a_model in ablation_models: ablation_est = ablation_models[a_model] ablation_est.fit(X_train, y_train) - y_pred = ablation_est.predict(X_test) - metric_results[a_model + '_MSE_before_ablation'] = mean_squared_error(y_test, y_pred) - metric_results[a_model + '_R_2_before_ablation'] = r2_score(y_test, y_pred) - imp_vals = copy.deepcopy(local_fi_score_test) + y_pred_subset = ablation_est.predict(X_test_subset) + metric_results[a_model + '_test_subset_MSE_before_ablation'] = mean_squared_error(y_test_subset, y_pred_subset) + metric_results[a_model + '_test_subset_R_2_before_ablation'] = r2_score(y_test_subset, y_pred_subset) + imp_vals = copy.deepcopy(local_fi_score_test_subset) imp_vals[imp_vals == float("-inf")] = -sys.maxsize - 1 imp_vals[imp_vals == float("inf")] = sys.maxsize - 1 - ablation_results_list = [0] * X_test.shape[1] - ablation_results_list_r2 = [0] * X_test.shape[1] + ablation_results_list = [0] * X_test_subset.shape[1] + ablation_results_list_r2 = [0] * X_test_subset.shape[1] for seed in seeds: - for i in range(X_test.shape[1]): + for i in range(X_test_subset.shape[1]): if fi_est.ascending: - ablation_X_test = ablation_to_mean(X_train, X_test, imp_vals, "max", i+1) + ablation_X_test_subset = ablation_to_mean(X_train, X_test_subset, imp_vals, "max", i+1) else: - ablation_X_test = ablation_to_mean(X_train, X_test, imp_vals, "min", i+1) - ablation_results_list[i] += mean_squared_error(y_test, ablation_est.predict(ablation_X_test)) - ablation_results_list_r2[i] += r2_score(y_test, ablation_est.predict(ablation_X_test)) + ablation_X_test_subset = ablation_to_mean(X_train, X_test_subset, imp_vals, "min", i+1) + ablation_results_list[i] += mean_squared_error(y_test_subset, ablation_est.predict(ablation_X_test_subset)) + ablation_results_list_r2[i] += r2_score(y_test_subset, ablation_est.predict(ablation_X_test_subset)) ablation_results_list = [x / len(seeds) for x in ablation_results_list] ablation_results_list_r2 = [x / len(seeds) for x in ablation_results_list_r2] - for i in range(X_test.shape[1]): - metric_results[f'{a_model}_MSE_after_ablation_{i+1}'] = ablation_results_list[i] - metric_results[f'{a_model}_R_2_after_ablation_{i+1}'] = ablation_results_list_r2[i] + for i in range(X_test_subset.shape[1]): + metric_results[f'{a_model}_test_subset_MSE_after_ablation_{i+1}'] = ablation_results_list[i] + metric_results[f'{a_model}_test_subset_R_2_after_ablation_{i+1}'] = ablation_results_list_r2[i] end = time.time() - metric_results['test_data_ablation_time'] = end - start + metric_results['test_subset_ablation_time'] = end - start - print(f"data_size: {X_test.shape[0]}, fi: {fi_est.name}, done with time: {end - start}") + + # Subset test data ablation for all FI methods - addition + start = time.time() + for a_model in ablation_models: + ablation_est = ablation_models[a_model] + ablation_est.fit(X_train, y_train) + metric_results[a_model + '_test_subset_MSE_before_ablation_blank'] = mean_squared_error(y_test_subset, ablation_est.predict(np.zeros(X_test_subset.shape))) + metric_results[a_model + '_test_subset_R_2_before_ablation_blank'] = r2_score(y_test_subset, ablation_est.predict(np.zeros(X_test_subset.shape))) + imp_vals = copy.deepcopy(local_fi_score_test_subset) + imp_vals[imp_vals == float("-inf")] = -sys.maxsize - 1 + imp_vals[imp_vals == float("inf")] = sys.maxsize - 1 + ablation_results_list = [0] * X_test_subset.shape[1] + ablation_results_list_r2 = [0] * X_test_subset.shape[1] + for seed in seeds: + for i in range(X_test_subset.shape[1]): + if fi_est.ascending: + ablation_X_test_subset_blank = ablation_by_addition(X_test_subset, imp_vals, "max", i+1) + else: + ablation_X_test_subset_blank = ablation_by_addition(X_test_subset, imp_vals, "min", i+1) + ablation_results_list[i] += mean_squared_error(y_test_subset, ablation_est.predict(ablation_X_test_subset_blank)) + ablation_results_list_r2[i] += r2_score(y_test_subset, ablation_est.predict(ablation_X_test_subset_blank)) + ablation_results_list = [x / len(seeds) for x in ablation_results_list] + ablation_results_list_r2 = [x / len(seeds) for x in ablation_results_list_r2] + for i in range(X_test_subset.shape[1]): + metric_results[f'{a_model}_test_subset_MSE_after_ablation_{i+1}_blank'] = ablation_results_list[i] + metric_results[f'{a_model}_test_subset_R_2_after_ablation_{i+1}_blank'] = ablation_results_list_r2[i] + end = time.time() + metric_results['test_subset_blank_ablation_time'] = end - start + + # Whole test data ablation for all FI methods except for KernelSHAP and LIME + if fi_est.name not in ["LIME_RF_plus", "Kernel_SHAP_RF_plus"]: + start = time.time() + for a_model in ablation_models: + ablation_est = ablation_models[a_model] + ablation_est.fit(X_train, y_train) + y_pred = ablation_est.predict(X_test) + metric_results[a_model + '_test_MSE_before_ablation'] = mean_squared_error(y_test, y_pred) + metric_results[a_model + '_test_R_2_before_ablation'] = r2_score(y_test, y_pred) + imp_vals = copy.deepcopy(local_fi_score_test) + imp_vals[imp_vals == float("-inf")] = -sys.maxsize - 1 + imp_vals[imp_vals == float("inf")] = sys.maxsize - 1 + ablation_results_list = [0] * X_test.shape[1] + ablation_results_list_r2 = [0] * X_test.shape[1] + for seed in seeds: + for i in range(X_test.shape[1]): + if fi_est.ascending: + ablation_X_test = ablation_to_mean(X_train, X_test, imp_vals, "max", i+1) + else: + ablation_X_test = ablation_to_mean(X_train, X_test, imp_vals, "min", i+1) + ablation_results_list[i] += mean_squared_error(y_test, ablation_est.predict(ablation_X_test)) + ablation_results_list_r2[i] += r2_score(y_test, ablation_est.predict(ablation_X_test)) + ablation_results_list = [x / len(seeds) for x in ablation_results_list] + ablation_results_list_r2 = [x / len(seeds) for x in ablation_results_list_r2] + for i in range(X_test.shape[1]): + metric_results[f'{a_model}_test_MSE_after_ablation_{i+1}'] = ablation_results_list[i] + metric_results[f'{a_model}_test_R_2_after_ablation_{i+1}'] = ablation_results_list_r2[i] + end = time.time() + metric_results['test_data_ablation_time'] = end - start + print(f"fi: {fi_est.name} ablation done with time: {end - start}") # initialize results with metadata and metric results kwargs: dict = model.kwargs # dict diff --git a/feature_importance/fi_config/mdi_local/real_data_regression/models.py b/feature_importance/fi_config/mdi_local/real_data_regression/models.py index 8b83659..3b9d3c9 100644 --- a/feature_importance/fi_config/mdi_local/real_data_regression/models.py +++ b/feature_importance/fi_config/mdi_local/real_data_regression/models.py @@ -11,9 +11,9 @@ ESTIMATORS = [ [ModelConfig('RF', RandomForestRegressor, model_type='tree', - other_params={'n_estimators': 100, 'min_samples_leaf': 5, 'max_features': 0.33})], + other_params={'n_estimators': 100, 'min_samples_leaf': 5, 'max_features': 0.33, 'random_state': 42})], [ModelConfig('RF_plus', RandomForestPlusRegressor, model_type='t_plus', - other_params={'rf_model': RandomForestRegressor(n_estimators=100, min_samples_leaf=5, max_features=0.33)})], + other_params={'rf_model': RandomForestRegressor(n_estimators=100, min_samples_leaf=5, max_features=0.33, random_state=42)})], ] FI_ESTIMATORS = [ diff --git a/feature_importance/real_data_ablation_visulization_version3.ipynb b/feature_importance/real_data_ablation_visulization_version3.ipynb index 128ea01..449bd4f 100644 --- a/feature_importance/real_data_ablation_visulization_version3.ipynb +++ b/feature_importance/real_data_ablation_visulization_version3.ipynb @@ -21,7 +21,7 @@ "source": [ "# directory = './results/mdi_local.real_data_regression/diabetes_regression_parallel/varying_sample_row_n/'\n", "# directory = './results/mdi_local.real_data_classification/diabetes_classification_parallel/varying_sample_row_n/'\n", - "directory = './results/mdi_local.real_data_regression/diabetes_regression_parallel/varying_sample_row_n'\n", + "directory = './results/mdi_local.real_data_regression/diabetes_regression/varying_sample_row_n'\n", "folder_names = [folder for folder in os.listdir(directory) if os.path.isdir(os.path.join(directory, folder))]\n", "experiments_seeds = []\n", "for folder_name in folder_names:\n", @@ -78,18 +78,18 @@ " n_estimators\n", " min_samples_leaf\n", " max_features\n", + " random_state\n", + " include_raw\n", " cv_ridge\n", " calc_loo_coef\n", - " include_raw\n", " sample_split\n", " fit_on\n", " model\n", " fi\n", - " splitting_strategy\n", " train_size\n", + " test_size\n", " num_features\n", " data_split_seed\n", - " test_size\n", " test_all_mse\n", " test_all_r2\n", " sample_test_0\n", @@ -193,44 +193,187 @@ " sample_test_98\n", " sample_test_99\n", " ablation_seed_0\n", - " ablation_seed_1\n", - " ablation_seed_2\n", - " ablation_seed_3\n", - " ablation_seed_4\n", - " ablation_seed_5\n", - " ablation_seed_6\n", - " ablation_seed_7\n", - " ablation_seed_8\n", - " ablation_seed_9\n", " fi_time\n", - " MSE_before_ablation\n", - " R_2_before_ablation\n", - " MSE_after_ablation_1\n", - " R_2_after_ablation_1\n", - " MSE_after_ablation_2\n", - " R_2_after_ablation_2\n", - " MSE_after_ablation_3\n", - " R_2_after_ablation_3\n", - " MSE_after_ablation_4\n", - " R_2_after_ablation_4\n", - " MSE_after_ablation_5\n", - " R_2_after_ablation_5\n", - " MSE_after_ablation_6\n", - " R_2_after_ablation_6\n", - " MSE_after_ablation_7\n", - " R_2_after_ablation_7\n", - " MSE_after_ablation_8\n", - " R_2_after_ablation_8\n", - " MSE_after_ablation_9\n", - " R_2_after_ablation_9\n", - " MSE_after_ablation_10\n", - " R_2_after_ablation_10\n", - " ablation_time\n", + " RF_Regressor_train_MSE_before_ablation\n", + " RF_Regressor_train_R_2_before_ablation\n", + " RF_Regressor_train_MSE_after_ablation_1\n", + " RF_Regressor_train_R_2_after_ablation_1\n", + " RF_Regressor_train_MSE_after_ablation_2\n", + " RF_Regressor_train_R_2_after_ablation_2\n", + " RF_Regressor_train_MSE_after_ablation_3\n", + " RF_Regressor_train_R_2_after_ablation_3\n", + " RF_Regressor_train_MSE_after_ablation_4\n", + " RF_Regressor_train_R_2_after_ablation_4\n", + " RF_Regressor_train_MSE_after_ablation_5\n", + " RF_Regressor_train_R_2_after_ablation_5\n", + " RF_Regressor_train_MSE_after_ablation_6\n", + " RF_Regressor_train_R_2_after_ablation_6\n", + " RF_Regressor_train_MSE_after_ablation_7\n", + " RF_Regressor_train_R_2_after_ablation_7\n", + " RF_Regressor_train_MSE_after_ablation_8\n", + " RF_Regressor_train_R_2_after_ablation_8\n", + " RF_Regressor_train_MSE_after_ablation_9\n", + " RF_Regressor_train_R_2_after_ablation_9\n", + " RF_Regressor_train_MSE_after_ablation_10\n", + " RF_Regressor_train_R_2_after_ablation_10\n", + " Linear_train_MSE_before_ablation\n", + " Linear_train_R_2_before_ablation\n", + " Linear_train_MSE_after_ablation_1\n", + " Linear_train_R_2_after_ablation_1\n", + " Linear_train_MSE_after_ablation_2\n", + " Linear_train_R_2_after_ablation_2\n", + " Linear_train_MSE_after_ablation_3\n", + " Linear_train_R_2_after_ablation_3\n", + " Linear_train_MSE_after_ablation_4\n", + " Linear_train_R_2_after_ablation_4\n", + " Linear_train_MSE_after_ablation_5\n", + " Linear_train_R_2_after_ablation_5\n", + " Linear_train_MSE_after_ablation_6\n", + " Linear_train_R_2_after_ablation_6\n", + " Linear_train_MSE_after_ablation_7\n", + " Linear_train_R_2_after_ablation_7\n", + " Linear_train_MSE_after_ablation_8\n", + " Linear_train_R_2_after_ablation_8\n", + " Linear_train_MSE_after_ablation_9\n", + " Linear_train_R_2_after_ablation_9\n", + " Linear_train_MSE_after_ablation_10\n", + " Linear_train_R_2_after_ablation_10\n", + " XGB_Regressor_train_MSE_before_ablation\n", + " XGB_Regressor_train_R_2_before_ablation\n", + " XGB_Regressor_train_MSE_after_ablation_1\n", + " XGB_Regressor_train_R_2_after_ablation_1\n", + " XGB_Regressor_train_MSE_after_ablation_2\n", + " XGB_Regressor_train_R_2_after_ablation_2\n", + " XGB_Regressor_train_MSE_after_ablation_3\n", + " XGB_Regressor_train_R_2_after_ablation_3\n", + " XGB_Regressor_train_MSE_after_ablation_4\n", + " XGB_Regressor_train_R_2_after_ablation_4\n", + " XGB_Regressor_train_MSE_after_ablation_5\n", + " XGB_Regressor_train_R_2_after_ablation_5\n", + " XGB_Regressor_train_MSE_after_ablation_6\n", + " XGB_Regressor_train_R_2_after_ablation_6\n", + " XGB_Regressor_train_MSE_after_ablation_7\n", + " XGB_Regressor_train_R_2_after_ablation_7\n", + " XGB_Regressor_train_MSE_after_ablation_8\n", + " XGB_Regressor_train_R_2_after_ablation_8\n", + " XGB_Regressor_train_MSE_after_ablation_9\n", + " XGB_Regressor_train_R_2_after_ablation_9\n", + " XGB_Regressor_train_MSE_after_ablation_10\n", + " XGB_Regressor_train_R_2_after_ablation_10\n", + " RF_Plus_Regressor_train_MSE_before_ablation\n", + " RF_Plus_Regressor_train_R_2_before_ablation\n", + " RF_Plus_Regressor_train_MSE_after_ablation_1\n", + " RF_Plus_Regressor_train_R_2_after_ablation_1\n", + " RF_Plus_Regressor_train_MSE_after_ablation_2\n", + " RF_Plus_Regressor_train_R_2_after_ablation_2\n", + " RF_Plus_Regressor_train_MSE_after_ablation_3\n", + " RF_Plus_Regressor_train_R_2_after_ablation_3\n", + " RF_Plus_Regressor_train_MSE_after_ablation_4\n", + " RF_Plus_Regressor_train_R_2_after_ablation_4\n", + " RF_Plus_Regressor_train_MSE_after_ablation_5\n", + " RF_Plus_Regressor_train_R_2_after_ablation_5\n", + " RF_Plus_Regressor_train_MSE_after_ablation_6\n", + " RF_Plus_Regressor_train_R_2_after_ablation_6\n", + " RF_Plus_Regressor_train_MSE_after_ablation_7\n", + " RF_Plus_Regressor_train_R_2_after_ablation_7\n", + " RF_Plus_Regressor_train_MSE_after_ablation_8\n", + " RF_Plus_Regressor_train_R_2_after_ablation_8\n", + " RF_Plus_Regressor_train_MSE_after_ablation_9\n", + " RF_Plus_Regressor_train_R_2_after_ablation_9\n", + " RF_Plus_Regressor_train_MSE_after_ablation_10\n", + " RF_Plus_Regressor_train_R_2_after_ablation_10\n", + " train_data_ablation_time\n", + " RF_Regressor_test_MSE_before_ablation\n", + " RF_Regressor_test_R_2_before_ablation\n", + " RF_Regressor_test_MSE_after_ablation_1\n", + " RF_Regressor_test_R_2_after_ablation_1\n", + " RF_Regressor_test_MSE_after_ablation_2\n", + " RF_Regressor_test_R_2_after_ablation_2\n", + " RF_Regressor_test_MSE_after_ablation_3\n", + " RF_Regressor_test_R_2_after_ablation_3\n", + " RF_Regressor_test_MSE_after_ablation_4\n", + " RF_Regressor_test_R_2_after_ablation_4\n", + " RF_Regressor_test_MSE_after_ablation_5\n", + " RF_Regressor_test_R_2_after_ablation_5\n", + " RF_Regressor_test_MSE_after_ablation_6\n", + " RF_Regressor_test_R_2_after_ablation_6\n", + " RF_Regressor_test_MSE_after_ablation_7\n", + " RF_Regressor_test_R_2_after_ablation_7\n", + " RF_Regressor_test_MSE_after_ablation_8\n", + " RF_Regressor_test_R_2_after_ablation_8\n", + " RF_Regressor_test_MSE_after_ablation_9\n", + " RF_Regressor_test_R_2_after_ablation_9\n", + " RF_Regressor_test_MSE_after_ablation_10\n", + " RF_Regressor_test_R_2_after_ablation_10\n", + " Linear_test_MSE_before_ablation\n", + " Linear_test_R_2_before_ablation\n", + " Linear_test_MSE_after_ablation_1\n", + " Linear_test_R_2_after_ablation_1\n", + " Linear_test_MSE_after_ablation_2\n", + " Linear_test_R_2_after_ablation_2\n", + " Linear_test_MSE_after_ablation_3\n", + " Linear_test_R_2_after_ablation_3\n", + " Linear_test_MSE_after_ablation_4\n", + " Linear_test_R_2_after_ablation_4\n", + " Linear_test_MSE_after_ablation_5\n", + " Linear_test_R_2_after_ablation_5\n", + " Linear_test_MSE_after_ablation_6\n", + " Linear_test_R_2_after_ablation_6\n", + " Linear_test_MSE_after_ablation_7\n", + " Linear_test_R_2_after_ablation_7\n", + " Linear_test_MSE_after_ablation_8\n", + " Linear_test_R_2_after_ablation_8\n", + " Linear_test_MSE_after_ablation_9\n", + " Linear_test_R_2_after_ablation_9\n", + " Linear_test_MSE_after_ablation_10\n", + " Linear_test_R_2_after_ablation_10\n", + " XGB_Regressor_test_MSE_before_ablation\n", + " XGB_Regressor_test_R_2_before_ablation\n", + " XGB_Regressor_test_MSE_after_ablation_1\n", + " XGB_Regressor_test_R_2_after_ablation_1\n", + " XGB_Regressor_test_MSE_after_ablation_2\n", + " XGB_Regressor_test_R_2_after_ablation_2\n", + " XGB_Regressor_test_MSE_after_ablation_3\n", + " XGB_Regressor_test_R_2_after_ablation_3\n", + " XGB_Regressor_test_MSE_after_ablation_4\n", + " XGB_Regressor_test_R_2_after_ablation_4\n", + " XGB_Regressor_test_MSE_after_ablation_5\n", + " XGB_Regressor_test_R_2_after_ablation_5\n", + " XGB_Regressor_test_MSE_after_ablation_6\n", + " XGB_Regressor_test_R_2_after_ablation_6\n", + " XGB_Regressor_test_MSE_after_ablation_7\n", + " XGB_Regressor_test_R_2_after_ablation_7\n", + " XGB_Regressor_test_MSE_after_ablation_8\n", + " XGB_Regressor_test_R_2_after_ablation_8\n", + " XGB_Regressor_test_MSE_after_ablation_9\n", + " XGB_Regressor_test_R_2_after_ablation_9\n", + " XGB_Regressor_test_MSE_after_ablation_10\n", + " XGB_Regressor_test_R_2_after_ablation_10\n", + " RF_Plus_Regressor_test_MSE_before_ablation\n", + " RF_Plus_Regressor_test_R_2_before_ablation\n", + " RF_Plus_Regressor_test_MSE_after_ablation_1\n", + " RF_Plus_Regressor_test_R_2_after_ablation_1\n", + " RF_Plus_Regressor_test_MSE_after_ablation_2\n", + " RF_Plus_Regressor_test_R_2_after_ablation_2\n", + " RF_Plus_Regressor_test_MSE_after_ablation_3\n", + " RF_Plus_Regressor_test_R_2_after_ablation_3\n", + " RF_Plus_Regressor_test_MSE_after_ablation_4\n", + " RF_Plus_Regressor_test_R_2_after_ablation_4\n", + " RF_Plus_Regressor_test_MSE_after_ablation_5\n", + " RF_Plus_Regressor_test_R_2_after_ablation_5\n", + " RF_Plus_Regressor_test_MSE_after_ablation_6\n", + " RF_Plus_Regressor_test_R_2_after_ablation_6\n", + " RF_Plus_Regressor_test_MSE_after_ablation_7\n", + " RF_Plus_Regressor_test_R_2_after_ablation_7\n", + " RF_Plus_Regressor_test_MSE_after_ablation_8\n", + " RF_Plus_Regressor_test_R_2_after_ablation_8\n", + " RF_Plus_Regressor_test_MSE_after_ablation_9\n", + " RF_Plus_Regressor_test_R_2_after_ablation_9\n", + " RF_Plus_Regressor_test_MSE_after_ablation_10\n", + " RF_Plus_Regressor_test_R_2_after_ablation_10\n", + " test_data_ablation_time\n", " split_seed\n", " rf_model\n", - " index\n", - " var\n", - " true_support\n", " \n", " \n", " \n", @@ -242,20 +385,20 @@ " 100.0\n", " 5.0\n", " 0.33\n", - " 5.0\n", - " False\n", - " NaN\n", + " 42.0\n", " NaN\n", " NaN\n", + " False\n", + " oob\n", + " test\n", " RF\n", - " LFI_with_raw_CV_RF\n", - " train-test\n", + " LFI_with_raw_OOB_RF\n", " 296\n", - " 10\n", - " 7\n", " 146\n", - " 3015.657705\n", - " 0.493287\n", + " 10\n", + " 4\n", + " 3167.314235\n", + " 0.445492\n", " NaN\n", " NaN\n", " NaN\n", @@ -356,45 +499,188 @@ " NaN\n", " NaN\n", " NaN\n", - " 224\n", - " 4847\n", - " 6229\n", - " 7033\n", - " 4246\n", - " 4462\n", - " 2467\n", - " 704\n", - " 6974\n", - " 7100\n", - " 87.258065\n", - " 3015.657705\n", - " 0.493287\n", - " 4431.464328\n", - " 0.255393\n", - " 5395.476701\n", - " 0.093413\n", - " 5961.563954\n", - " -0.001705\n", - " 6127.256083\n", - " -0.029546\n", - " 6329.519071\n", - " -0.063531\n", - " 6440.261355\n", - " -0.082139\n", - " 6543.210590\n", - " -0.099437\n", - " 6598.214822\n", - " -0.108680\n", - " 6668.503871\n", - " -0.120490\n", - " 6754.906732\n", - " -0.135008\n", - " 2.449821\n", - " 7\n", + " 2405\n", + " 6.036580\n", + " 1635.151982\n", + " 0.728697\n", + " 2928.895040\n", + " 0.514040\n", + " 4043.923756\n", + " 0.329035\n", + " 4919.486722\n", + " 0.183763\n", + " 5437.029551\n", + " 0.097892\n", + " 5901.392876\n", + " 0.020846\n", + " 6048.520615\n", + " -0.003566\n", + " 6074.659511\n", + " -0.007903\n", + " 6149.594281\n", + " -0.020336\n", + " 6175.817312\n", + " -0.024687\n", + " 6202.436470\n", + " -0.029103\n", + " 2888.523636\n", + " 0.520738\n", + " 3761.316620\n", + " 0.375925\n", + " 4957.235173\n", + " 0.177500\n", + " 5736.434644\n", + " 0.048215\n", + " 6023.733378\n", + " 0.000547\n", + " 6302.387576\n", + " -0.045687\n", + " 6410.100574\n", + " -0.063559\n", + " 6404.359728\n", + " -0.062606\n", + " 6297.330585\n", + " -0.044848\n", + " 6131.286306\n", + " -0.017298\n", + " 6027.030120\n", + " 0.0\n", + " 0.668153\n", + " 0.999889\n", + " 1216.244402\n", + " 0.798202\n", + " 2651.509022\n", + " 0.560064\n", + " 3485.395705\n", + " 0.421706\n", + " 3999.628256\n", + " 0.336385\n", + " 4638.982468\n", + " 0.230304\n", + " 5027.302770\n", + " 0.165874\n", + " 5386.895147\n", + " 0.106211\n", + " 5732.155126\n", + " 0.048925\n", + " 6017.858119\n", + " 0.001522\n", + " 6161.700389\n", + " -0.022344\n", + " 2328.348592\n", + " 0.613682\n", + " 3455.778837\n", + " 0.426620\n", + " 4632.400024\n", + " 0.231396\n", + " 5426.927997\n", + " 0.099568\n", + " 5750.819366\n", + " 0.045829\n", + " 6024.411053\n", + " 0.000435\n", + " 6120.464775\n", + " -0.015503\n", + " 6125.663086\n", + " -0.016365\n", + " 6092.410122\n", + " -0.010848\n", + " 6050.975584\n", + " -0.003973\n", + " 6032.751362\n", + " -0.000949\n", + " 10.026768\n", + " 3167.314235\n", + " 0.445492\n", + " 3788.003075\n", + " 0.336827\n", + " 4752.063649\n", + " 0.168047\n", + " 5282.813050\n", + " 0.075127\n", + " 5661.928879\n", + " 0.008755\n", + " 5833.559426\n", + " -0.021293\n", + " 5865.509482\n", + " -0.026887\n", + " 5966.941781\n", + " -0.044645\n", + " 6001.779722\n", + " -0.050744\n", + " 6030.147576\n", + " -0.055710\n", + " 6067.018319\n", + " -0.062165\n", + " 3121.854972\n", + " 0.453451\n", + " 3802.338138\n", + " 0.334317\n", + " 4944.247196\n", + " 0.134401\n", + " 5658.191138\n", + " 0.009409\n", + " 6066.312661\n", + " -0.062042\n", + " 6021.472063\n", + " -0.054191\n", + " 6101.326312\n", + " -0.068172\n", + " 6090.259226\n", + " -0.066234\n", + " 6039.050269\n", + " -0.057269\n", + " 5875.871694\n", + " -0.028701\n", + " 5743.289993\n", + " -0.005489\n", + " 3565.479582\n", + " 0.375784\n", + " 4362.897831\n", + " 0.236179\n", + " 5082.947380\n", + " 0.110118\n", + " 5443.059555\n", + " 0.047073\n", + " 5747.170461\n", + " -0.006169\n", + " 5782.250032\n", + " -0.012310\n", + " 5830.867264\n", + " -0.020822\n", + " 5832.799073\n", + " -0.021160\n", + " 5886.180420\n", + " -0.030505\n", + " 5843.408829\n", + " -0.023017\n", + " 6007.922958\n", + " -0.051819\n", + " 3068.863830\n", + " 0.462728\n", + " 3818.286646\n", + " 0.331525\n", + " 4914.443118\n", + " 0.139619\n", + " 5558.586043\n", + " 0.026847\n", + " 5832.603810\n", + " -0.021126\n", + " 5784.351708\n", + " -0.012678\n", + " 5793.649629\n", + " -0.014306\n", + " 5799.895490\n", + " -0.015399\n", + " 5799.531819\n", + " -0.015336\n", + " 5783.277353\n", + " -0.012490\n", + " 5775.798475\n", + " -0.011181\n", + " 8.891757\n", + " 4\n", " NaN\n", - " 0\n", - " 0\n", - " 1.0\n", " \n", " \n", " 1\n", @@ -404,20 +690,20 @@ " 100.0\n", " 5.0\n", " 0.33\n", + " 42.0\n", + " NaN\n", + " NaN\n", + " NaN\n", " NaN\n", - " False\n", " NaN\n", - " oob\n", - " test\n", " RF\n", - " LFI_with_raw_OOB_RF\n", - " train-test\n", + " LFI_with_raw_RF\n", " 296\n", - " 10\n", - " 7\n", " 146\n", - " 3015.657705\n", - " 0.493287\n", + " 10\n", + " 4\n", + " 3167.314235\n", + " 0.445492\n", " NaN\n", " NaN\n", " NaN\n", @@ -518,45 +804,188 @@ " NaN\n", " NaN\n", " NaN\n", - " 224\n", - " 4847\n", - " 6229\n", - " 7033\n", - " 4246\n", - " 4462\n", - " 2467\n", - " 704\n", - " 6974\n", - " 7100\n", - " 2.991500\n", - " 3015.657705\n", - " 0.493287\n", - " 4403.317011\n", - " 0.260123\n", - " 5510.475704\n", - " 0.074090\n", - " 6062.766174\n", - " -0.018710\n", - " 6420.107254\n", - " -0.078753\n", - " 6550.611119\n", - " -0.100681\n", - " 6699.697074\n", - " -0.125731\n", - " 6768.142298\n", - " -0.137232\n", - " 6787.349203\n", - " -0.140459\n", - " 6725.982194\n", - " -0.130148\n", - " 6754.906732\n", - " -0.135008\n", - " 2.449706\n", - " 7\n", + " 2405\n", + " 6.758458\n", + " 1635.151982\n", + " 0.728697\n", + " 3021.720386\n", + " 0.498639\n", + " 4123.708913\n", + " 0.315798\n", + " 4906.024069\n", + " 0.185996\n", + " 5541.504254\n", + " 0.080558\n", + " 5961.706039\n", + " 0.010839\n", + " 6122.232814\n", + " -0.015796\n", + " 6184.281735\n", + " -0.026091\n", + " 6199.593162\n", + " -0.028632\n", + " 6192.776084\n", + " -0.027500\n", + " 6202.436470\n", + " -0.029103\n", + " 2888.523636\n", + " 0.520738\n", + " 3916.706467\n", + " 0.350143\n", + " 5015.669338\n", + " 0.167804\n", + " 5721.361272\n", + " 0.050716\n", + " 6139.722264\n", + " -0.018698\n", + " 6341.303427\n", + " -0.052144\n", + " 6388.554668\n", + " -0.059984\n", + " 6433.855484\n", + " -0.067500\n", + " 6443.171782\n", + " -0.069046\n", + " 6298.161514\n", + " -0.044986\n", + " 6027.030120\n", + " 0.0\n", + " 0.668153\n", + " 0.999889\n", + " 1208.211458\n", + " 0.799535\n", + " 2624.721798\n", + " 0.564508\n", + " 3463.798074\n", + " 0.425289\n", + " 4048.620645\n", + " 0.328256\n", + " 4674.750775\n", + " 0.224369\n", + " 4920.398751\n", + " 0.183611\n", + " 5196.455731\n", + " 0.137808\n", + " 5560.146803\n", + " 0.077465\n", + " 5842.122436\n", + " 0.030680\n", + " 6161.700389\n", + " -0.022344\n", + " 2328.348592\n", + " 0.613682\n", + " 3586.105224\n", + " 0.404996\n", + " 4700.756327\n", + " 0.220054\n", + " 5412.704307\n", + " 0.101928\n", + " 5855.402714\n", + " 0.028476\n", + " 6061.293311\n", + " -0.005685\n", + " 6135.493568\n", + " -0.017996\n", + " 6186.457881\n", + " -0.026452\n", + " 6171.165504\n", + " -0.023915\n", + " 6102.377688\n", + " -0.012502\n", + " 6032.751362\n", + " -0.000949\n", + " 10.083984\n", + " 3167.314235\n", + " 0.445492\n", + " 3827.691114\n", + " 0.329878\n", + " 4578.262051\n", + " 0.198474\n", + " 5044.353110\n", + " 0.116875\n", + " 5456.091373\n", + " 0.044791\n", + " 5793.795173\n", + " -0.014331\n", + " 6010.746038\n", + " -0.052313\n", + " 6049.385658\n", + " -0.059078\n", + " 5998.481445\n", + " -0.050166\n", + " 6036.697699\n", + " -0.056857\n", + " 6067.018319\n", + " -0.062165\n", + " 3121.854972\n", + " 0.453451\n", + " 3803.232973\n", + " 0.334160\n", + " 4703.872125\n", + " 0.176484\n", + " 5324.761627\n", + " 0.067783\n", + " 5773.709727\n", + " -0.010815\n", + " 5977.826552\n", + " -0.046550\n", + " 5986.809965\n", + " -0.048123\n", + " 5983.111169\n", + " -0.047475\n", + " 5939.508997\n", + " -0.039842\n", + " 5810.251492\n", + " -0.017212\n", + " 5743.289993\n", + " -0.005489\n", + " 3565.479582\n", + " 0.375784\n", + " 4417.125378\n", + " 0.226685\n", + " 5059.030994\n", + " 0.114305\n", + " 5123.918062\n", + " 0.102945\n", + " 5524.767115\n", + " 0.032768\n", + " 5776.289705\n", + " -0.011267\n", + " 6083.961808\n", + " -0.065131\n", + " 5755.751419\n", + " -0.007671\n", + " 5791.839463\n", + " -0.013989\n", + " 5875.728030\n", + " -0.028676\n", + " 6007.922958\n", + " -0.051819\n", + " 3068.863830\n", + " 0.462728\n", + " 3824.162442\n", + " 0.330496\n", + " 4707.799112\n", + " 0.175796\n", + " 5259.040670\n", + " 0.079289\n", + " 5575.386841\n", + " 0.023906\n", + " 5723.134442\n", + " -0.001961\n", + " 5771.443274\n", + " -0.010418\n", + " 5830.381002\n", + " -0.020737\n", + " 5789.080541\n", + " -0.013506\n", + " 5778.531386\n", + " -0.011659\n", + " 5775.798475\n", + " -0.011181\n", + " 8.881537\n", + " 4\n", " NaN\n", - " 1\n", - " 0\n", - " 1.0\n", " \n", " \n", " 2\n", @@ -566,20 +995,20 @@ " 100.0\n", " 5.0\n", " 0.33\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", + " 42.0\n", + " False\n", + " 0.0\n", + " False\n", + " inbag\n", " NaN\n", " RF\n", - " LFI_with_raw_RF\n", - " train-test\n", + " MDI_RF\n", " 296\n", - " 10\n", - " 7\n", " 146\n", - " 3015.657705\n", - " 0.493287\n", + " 10\n", + " 4\n", + " 3167.314235\n", + " 0.445492\n", " NaN\n", " NaN\n", " NaN\n", @@ -680,45 +1109,188 @@ " NaN\n", " NaN\n", " NaN\n", - " 224\n", - " 4847\n", - " 6229\n", - " 7033\n", - " 4246\n", - " 4462\n", - " 2467\n", - " 704\n", - " 6974\n", - " 7100\n", - " 3.529108\n", - " 3015.657705\n", - " 0.493287\n", - " 4350.242507\n", - " 0.269041\n", - " 5528.366306\n", - " 0.071084\n", - " 6008.104990\n", - " -0.009525\n", - " 6190.662160\n", - " -0.040200\n", - " 6400.736746\n", - " -0.075498\n", - " 6540.444309\n", - " -0.098973\n", - " 6621.351976\n", - " -0.112567\n", - " 6725.345707\n", - " -0.130041\n", - " 6728.526559\n", - " -0.130575\n", - " 6754.906732\n", - " -0.135008\n", - " 2.461490\n", - " 7\n", + " 2405\n", + " 2.749065\n", + " 1635.151982\n", + " 0.728697\n", + " 3133.874535\n", + " 0.480030\n", + " 4208.266058\n", + " 0.301768\n", + " 5012.797456\n", + " 0.168281\n", + " 5621.910172\n", + " 0.067217\n", + " 6002.738896\n", + " 0.004030\n", + " 6121.457849\n", + " -0.015667\n", + " 6210.278943\n", + " -0.030404\n", + " 6247.690750\n", + " -0.036612\n", + " 6250.071403\n", + " -0.037007\n", + " 6202.436470\n", + " -0.029103\n", + " 2888.523636\n", + " 0.520738\n", + " 3914.109435\n", + " 0.350574\n", + " 4885.192723\n", + " 0.189453\n", + " 5492.817224\n", + " 0.088636\n", + " 6031.489112\n", + " -0.000740\n", + " 6247.694137\n", + " -0.036612\n", + " 6325.959184\n", + " -0.049598\n", + " 6326.214645\n", + " -0.049640\n", + " 6208.409712\n", + " -0.030094\n", + " 6127.752193\n", + " -0.016712\n", + " 6027.030120\n", + " 0.0\n", + " 0.668153\n", + " 0.999889\n", + " 1213.928121\n", + " 0.798586\n", + " 2602.100460\n", + " 0.568262\n", + " 3578.727889\n", + " 0.406220\n", + " 4127.285053\n", + " 0.315204\n", + " 4494.619078\n", + " 0.254256\n", + " 5001.728634\n", + " 0.170117\n", + " 5463.751185\n", + " 0.093459\n", + " 5817.996707\n", + " 0.034683\n", + " 6094.716095\n", + " -0.011230\n", + " 6161.700389\n", + " -0.022344\n", + " 2328.348592\n", + " 0.613682\n", + " 3618.673346\n", + " 0.399593\n", + " 4672.741484\n", + " 0.224702\n", + " 5318.471574\n", + " 0.117563\n", + " 5765.457023\n", + " 0.043400\n", + " 6003.824735\n", + " 0.003850\n", + " 6113.418631\n", + " -0.014334\n", + " 6179.035357\n", + " -0.025221\n", + " 6148.517487\n", + " -0.020157\n", + " 6098.941000\n", + " -0.011931\n", + " 6032.751362\n", + " -0.000949\n", + " 10.183294\n", + " 3167.314235\n", + " 0.445492\n", + " 3911.846966\n", + " 0.315145\n", + " 4673.293043\n", + " 0.181837\n", + " 5165.809068\n", + " 0.095611\n", + " 5579.673507\n", + " 0.023155\n", + " 5866.425027\n", + " -0.027047\n", + " 5899.293811\n", + " -0.032801\n", + " 6021.113226\n", + " -0.054128\n", + " 6042.816515\n", + " -0.057928\n", + " 6017.320805\n", + " -0.053464\n", + " 6067.018319\n", + " -0.062165\n", + " 3121.854972\n", + " 0.453451\n", + " 3782.799439\n", + " 0.337738\n", + " 4640.935068\n", + " 0.187502\n", + " 5146.024758\n", + " 0.099075\n", + " 5560.543096\n", + " 0.026504\n", + " 5746.434317\n", + " -0.006040\n", + " 5832.336892\n", + " -0.021079\n", + " 5952.085807\n", + " -0.042044\n", + " 5999.332220\n", + " -0.050315\n", + " 5843.222894\n", + " -0.022985\n", + " 5743.289993\n", + " -0.005489\n", + " 3565.479582\n", + " 0.375784\n", + " 4491.207741\n", + " 0.213715\n", + " 5325.002424\n", + " 0.067741\n", + " 5404.375561\n", + " 0.053845\n", + " 6105.030874\n", + " -0.068820\n", + " 6161.928219\n", + " -0.078781\n", + " 6084.476971\n", + " -0.065222\n", + " 6072.037858\n", + " -0.063044\n", + " 6164.297845\n", + " -0.079196\n", + " 6121.536055\n", + " -0.071710\n", + " 6007.922958\n", + " -0.051819\n", + " 3068.863830\n", + " 0.462728\n", + " 3827.072282\n", + " 0.329987\n", + " 4716.561876\n", + " 0.174262\n", + " 5153.033770\n", + " 0.097848\n", + " 5434.084925\n", + " 0.048644\n", + " 5554.591693\n", + " 0.027546\n", + " 5635.787161\n", + " 0.013331\n", + " 5763.684469\n", + " -0.009060\n", + " 5807.287765\n", + " -0.016694\n", + " 5761.554160\n", + " -0.008687\n", + " 5775.798475\n", + " -0.011181\n", + " 8.914796\n", + " 4\n", " NaN\n", - " 2\n", - " 0\n", - " 1.0\n", " \n", " \n", " 3\n", @@ -728,20 +1300,20 @@ " 100.0\n", " 5.0\n", " 0.33\n", - " 0.0\n", - " False\n", - " False\n", - " inbag\n", + " 42.0\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", " NaN\n", " RF\n", - " MDI_RF\n", - " train-test\n", + " TreeSHAP_RF\n", " 296\n", - " 10\n", - " 7\n", " 146\n", - " 3015.657705\n", - " 0.493287\n", + " 10\n", + " 4\n", + " 3167.314235\n", + " 0.445492\n", " NaN\n", " NaN\n", " NaN\n", @@ -842,119 +1414,194 @@ " NaN\n", " NaN\n", " NaN\n", - " 224\n", - " 4847\n", - " 6229\n", - " 7033\n", - " 4246\n", - " 4462\n", - " 2467\n", - " 704\n", - " 6974\n", - " 7100\n", - " 1.448320\n", - " 3015.657705\n", - " 0.493287\n", - " 4450.729741\n", - " 0.252156\n", - " 5401.335532\n", - " 0.092429\n", - " 5872.831654\n", - " 0.013205\n", - " 6229.387859\n", - " -0.046707\n", - " 6497.063836\n", - " -0.091683\n", - " 6638.438945\n", - " -0.115438\n", - " 6708.991358\n", - " -0.127293\n", - " 6692.120871\n", - " -0.124458\n", - " 6704.867772\n", - " -0.126600\n", - " 6754.906732\n", - " -0.135008\n", - " 2.445521\n", - " 7\n", + " 2405\n", + " 0.413684\n", + " 1635.151982\n", + " 0.728697\n", + " 3195.234603\n", + " 0.469849\n", + " 4374.383756\n", + " 0.274206\n", + " 5218.143321\n", + " 0.134210\n", + " 5792.052146\n", + " 0.038987\n", + " 6124.433170\n", + " -0.016161\n", + " 6182.621856\n", + " -0.025816\n", + " 6213.795448\n", + " -0.030988\n", + " 6220.357930\n", + " -0.032077\n", + " 6228.987740\n", + " -0.033509\n", + " 6202.436470\n", + " -0.029103\n", + " 2888.523636\n", + " 0.520738\n", + " 4024.382264\n", + " 0.332278\n", + " 5102.326251\n", + " 0.153426\n", + " 5740.581038\n", + " 0.047527\n", + " 6321.322530\n", + " -0.048829\n", + " 6555.449924\n", + " -0.087675\n", + " 6510.868650\n", + " -0.080278\n", + " 6390.723824\n", + " -0.060344\n", + " 6225.389065\n", + " -0.032912\n", + " 6088.198905\n", + " -0.010149\n", + " 6027.030120\n", + " 0.0\n", + " 0.668153\n", + " 0.999889\n", + " 1110.645464\n", + " 0.815723\n", + " 2856.413683\n", + " 0.526066\n", + " 3690.510793\n", + " 0.387673\n", + " 4235.765848\n", + " 0.297205\n", + " 4872.452681\n", + " 0.191567\n", + " 5242.038979\n", + " 0.130245\n", + " 5452.423985\n", + " 0.095338\n", + " 5587.003451\n", + " 0.073009\n", + " 6176.740303\n", + " -0.024840\n", + " 6161.700389\n", + " -0.022344\n", + " 2328.348592\n", + " 0.613682\n", + " 3681.820673\n", + " 0.389115\n", + " 4820.261610\n", + " 0.200226\n", + " 5537.866064\n", + " 0.081162\n", + " 5995.550352\n", + " 0.005223\n", + " 6243.577365\n", + " -0.035929\n", + " 6221.975848\n", + " -0.032345\n", + " 6190.922138\n", + " -0.027193\n", + " 6150.480056\n", + " -0.020483\n", + " 6103.170216\n", + " -0.012633\n", + " 6032.751362\n", + " -0.000949\n", + " 9.835077\n", + " 3167.314235\n", + " 0.445492\n", + " 3775.838507\n", + " 0.338956\n", + " 4633.157541\n", + " 0.188864\n", + " 5247.502613\n", + " 0.081309\n", + " 5637.322633\n", + " 0.013063\n", + " 5960.763458\n", + " -0.043563\n", + " 5977.057139\n", + " -0.046415\n", + " 6028.927315\n", + " -0.055496\n", + " 6074.807174\n", + " -0.063529\n", + " 6086.136079\n", + " -0.065512\n", + " 6067.018319\n", + " -0.062165\n", + " 3121.854972\n", + " 0.453451\n", + " 3739.288445\n", + " 0.345355\n", + " 4678.676433\n", + " 0.180895\n", + " 5452.652247\n", + " 0.045393\n", + " 5808.699092\n", + " -0.016941\n", + " 6069.614343\n", + " -0.062620\n", + " 5915.356963\n", + " -0.035613\n", + " 6006.034824\n", + " -0.051489\n", + " 5993.584111\n", + " -0.049309\n", + " 5835.219347\n", + " -0.021584\n", + " 5743.289993\n", + " -0.005489\n", + " 3565.479582\n", + " 0.375784\n", + " 4237.764376\n", + " 0.258086\n", + " 5120.520406\n", + " 0.103540\n", + " 5318.162829\n", + " 0.068939\n", + " 5673.859855\n", + " 0.006666\n", + " 6080.111206\n", + " -0.064457\n", + " 6056.849952\n", + " -0.060385\n", + " 6114.234944\n", + " -0.070431\n", + " 6259.056809\n", + " -0.095786\n", + " 6129.607419\n", + " -0.073123\n", + " 6007.922958\n", + " -0.051819\n", + " 3068.863830\n", + " 0.462728\n", + " 3732.654148\n", + " 0.346517\n", + " 4726.437509\n", + " 0.172533\n", + " 5427.336730\n", + " 0.049825\n", + " 5680.278030\n", + " 0.005542\n", + " 5833.784358\n", + " -0.021332\n", + " 5714.152885\n", + " -0.000388\n", + " 5797.828571\n", + " -0.015038\n", + " 5811.450208\n", + " -0.017422\n", + " 5807.028565\n", + " -0.016648\n", + " 5775.798475\n", + " -0.011181\n", + " 8.867040\n", + " 4\n", " NaN\n", - " 3\n", - " 0\n", - " 1.0\n", " \n", " \n", " 4\n", " NaN\n", " keep_all_rows\n", " 0\n", - " 100.0\n", - " 5.0\n", - " 0.33\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " RF\n", - " TreeSHAP_RF\n", - " train-test\n", - " 296\n", - " 10\n", - " 7\n", - " 146\n", - " 3015.657705\n", - " 0.493287\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", " NaN\n", " NaN\n", " NaN\n", @@ -964,85 +1611,296 @@ " NaN\n", " NaN\n", " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " 224\n", - " 4847\n", - " 6229\n", - " 7033\n", - " 4246\n", - " 4462\n", - " 2467\n", - " 704\n", - " 6974\n", - " 7100\n", - " 0.166827\n", - " 3015.657705\n", - " 0.493287\n", - " 4425.135054\n", - " 0.256457\n", - " 5571.449691\n", - " 0.063845\n", - " 6052.897939\n", - " -0.017051\n", - " 6391.870115\n", - " -0.074008\n", - " 6662.404069\n", - " -0.119465\n", - " 6724.232910\n", - " -0.129854\n", - " 6712.329030\n", - " -0.127854\n", - " 6746.616969\n", - " -0.133615\n", - " 6754.743785\n", - " -0.134981\n", - " 6754.906732\n", - " -0.135008\n", - " 2.448545\n", - " 7\n", - " NaN\n", + " RF_plus\n", + " Kernel_SHAP_RF_plus\n", + " 296\n", + " 100\n", + " 10\n", " 4\n", - " 0\n", - " 1.0\n", + " 3068.863830\n", + " 0.462728\n", + " 19.0\n", + " 18.0\n", + " 119.0\n", + " 77.0\n", + " 71.0\n", + " 103.0\n", + " 33.0\n", + " 126.0\n", + " 48.0\n", + " 36.0\n", + " 59.0\n", + " 49.0\n", + " 62.0\n", + " 42.0\n", + " 13.0\n", + " 82.0\n", + " 22.0\n", + " 123.0\n", + " 75.0\n", + " 137.0\n", + " 134.0\n", + " 38.0\n", + " 2.0\n", + " 79.0\n", + " 138.0\n", + " 88.0\n", + " 54.0\n", + " 55.0\n", + " 84.0\n", + " 50.0\n", + " 114.0\n", + " 144.0\n", + " 7.0\n", + " 53.0\n", + " 5.0\n", + " 124.0\n", + " 104.0\n", + " 44.0\n", + " 60.0\n", + " 99.0\n", + " 93.0\n", + " 112.0\n", + " 128.0\n", + " 85.0\n", + " 76.0\n", + " 25.0\n", + " 92.0\n", + " 86.0\n", + " 127.0\n", + " 115.0\n", + " 41.0\n", + " 97.0\n", + " 113.0\n", + " 118.0\n", + " 135.0\n", + " 101.0\n", + " 8.0\n", + " 27.0\n", + " 72.0\n", + " 94.0\n", + " 133.0\n", + " 43.0\n", + " 120.0\n", + " 51.0\n", + " 132.0\n", + " 61.0\n", + " 83.0\n", + " 32.0\n", + " 45.0\n", + " 95.0\n", + " 30.0\n", + " 31.0\n", + " 90.0\n", + " 129.0\n", + " 100.0\n", + " 96.0\n", + " 14.0\n", + " 39.0\n", + " 80.0\n", + " 56.0\n", + " 35.0\n", + " 139.0\n", + " 16.0\n", + " 70.0\n", + " 46.0\n", + " 69.0\n", + " 6.0\n", + " 23.0\n", + " 52.0\n", + " 29.0\n", + " 15.0\n", + " 66.0\n", + " 68.0\n", + " 37.0\n", + " 64.0\n", + " 17.0\n", + " 4.0\n", + " 145.0\n", + " 47.0\n", + " 63.0\n", + " 6733\n", + " 272.584633\n", + " 1635.151982\n", + " 0.728697\n", + " 3010.018440\n", + " 0.500580\n", + " 4081.594103\n", + " 0.322785\n", + " 4871.540333\n", + " 0.191718\n", + " 5427.925117\n", + " 0.099403\n", + " 5806.229855\n", + " 0.036635\n", + " 5968.959854\n", + " 0.009635\n", + " 6009.615524\n", + " 0.002889\n", + " 6028.684646\n", + " -0.000275\n", + " 6089.516761\n", + " -0.010368\n", + " 6202.436470\n", + " -0.029103\n", + " 2888.523636\n", + " 0.520738\n", + " 3867.089557\n", + " 0.358376\n", + " 4936.004551\n", + " 0.181022\n", + " 5618.567424\n", + " 0.067772\n", + " 5961.929743\n", + " 0.010801\n", + " 6114.847766\n", + " -0.014571\n", + " 6198.656398\n", + " -0.028476\n", + " 6287.859301\n", + " -0.043277\n", + " 6274.965297\n", + " -0.041137\n", + " 6153.972043\n", + " -0.021062\n", + " 6027.030120\n", + " 0.0\n", + " 0.668153\n", + " 0.999889\n", + " 1227.836013\n", + " 0.796278\n", + " 2655.454874\n", + " 0.559409\n", + " 3489.393571\n", + " 0.421043\n", + " 4007.950448\n", + " 0.335004\n", + " 4607.906326\n", + " 0.235460\n", + " 5426.288241\n", + " 0.099675\n", + " 5628.621190\n", + " 0.066104\n", + " 5785.556238\n", + " 0.040065\n", + " 5987.542309\n", + " 0.006552\n", + " 6161.700389\n", + " -0.022344\n", + " 2328.348592\n", + " 0.613682\n", + " 3556.013929\n", + " 0.409989\n", + " 4662.131533\n", + " 0.226463\n", + " 5368.597563\n", + " 0.109247\n", + " 5731.046785\n", + " 0.049109\n", + " 5894.048153\n", + " 0.022064\n", + " 5960.296484\n", + " 0.011072\n", + " 6029.442460\n", + " -0.000400\n", + " 6041.139850\n", + " -0.002341\n", + " 6036.782692\n", + " -0.001618\n", + " 6032.751362\n", + " -0.000949\n", + " 9.809540\n", + " 3476.788124\n", + " 0.417422\n", + " 4194.571341\n", + " 0.297148\n", + " 5334.974847\n", + " 0.106060\n", + " 5596.675389\n", + " 0.062209\n", + " 5937.622020\n", + " 0.005079\n", + " 6111.152277\n", + " -0.023998\n", + " 6143.624744\n", + " -0.029439\n", + " 6163.867887\n", + " -0.032831\n", + " 6244.000528\n", + " -0.046258\n", + " 6396.107074\n", + " -0.071746\n", + " 6465.545412\n", + " -0.083381\n", + " 3465.585233\n", + " 0.419299\n", + " 4161.596525\n", + " 0.302674\n", + " 5338.566511\n", + " 0.105458\n", + " 5866.474772\n", + " 0.017001\n", + " 6058.949364\n", + " -0.015251\n", + " 6186.505044\n", + " -0.036624\n", + " 6078.148133\n", + " -0.018468\n", + " 6079.932688\n", + " -0.018767\n", + " 6124.462336\n", + " -0.026228\n", + " 6098.814817\n", + " -0.021931\n", + " 6050.073529\n", + " -0.013764\n", + " 3931.667854\n", + " 0.341201\n", + " 4787.549007\n", + " 0.197788\n", + " 5654.969990\n", + " 0.052441\n", + " 5475.757988\n", + " 0.082470\n", + " 5690.431182\n", + " 0.046499\n", + " 5921.843788\n", + " 0.007723\n", + " 5940.795730\n", + " 0.004547\n", + " 6009.317532\n", + " -0.006934\n", + " 6309.394957\n", + " -0.057216\n", + " 6453.157959\n", + " -0.081305\n", + " 6395.094041\n", + " -0.071576\n", + " 3392.891623\n", + " 0.431480\n", + " 4191.710491\n", + " 0.297628\n", + " 5399.696626\n", + " 0.095215\n", + " 5851.776337\n", + " 0.019464\n", + " 6018.755220\n", + " -0.008516\n", + " 6071.573392\n", + " -0.017366\n", + " 6010.857279\n", + " -0.007192\n", + " 6042.684405\n", + " -0.012525\n", + " 6090.457960\n", + " -0.020530\n", + " 6081.173795\n", + " -0.018975\n", + " 6099.151078\n", + " -0.021987\n", + " 8.382616\n", + " 4\n", + " RandomForestRegressor(max_features=0.33, min_s...\n", " \n", " \n", " ...\n", @@ -1205,29 +2063,172 @@ " ...\n", " ...\n", " ...\n", - " \n", - " \n", - " 75\n", - " NaN\n", - " keep_all_rows\n", - " 0\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " \n", + " \n", + " 65\n", + " NaN\n", + " keep_all_rows\n", + " 0\n", " 100.0\n", " 5.0\n", " 0.33\n", - " 0.0\n", + " 42.0\n", " False\n", + " 0.0\n", " False\n", " inbag\n", " NaN\n", " RF\n", " MDI_RF\n", - " train-test\n", " 296\n", - " 10\n", - " 5\n", " 146\n", - " 3364.534109\n", - " 0.472198\n", + " 10\n", + " 6\n", + " 3072.457734\n", + " 0.448450\n", " NaN\n", " NaN\n", " NaN\n", @@ -1328,54 +2329,198 @@ " NaN\n", " NaN\n", " NaN\n", - " 3861\n", - " 146\n", - " 5855\n", - " 1493\n", - " 3971\n", - " 5711\n", - " 8760\n", - " 4156\n", - " 1273\n", - " 9581\n", - " 0.651751\n", - " 3364.534109\n", - " 0.472198\n", - " 4589.284370\n", - " 0.280069\n", - " 5510.440643\n", - " 0.135565\n", - " 6269.197133\n", - " 0.016537\n", - " 6802.626607\n", - " -0.067143\n", - " 7182.245130\n", - " -0.126694\n", - " 7383.240571\n", - " -0.158225\n", - " 7500.322118\n", - " -0.176592\n", - " 7560.531068\n", - " -0.186037\n", - " 7623.677720\n", - " -0.195943\n", - " 7620.889900\n", - " -0.195506\n", - " 1.181488\n", - " 5\n", - " NaN\n", - " 3\n", - " 0\n", - " 1.0\n", + " 4690\n", + " 2.550201\n", + " 1599.333649\n", + " 0.737912\n", + " 3139.907366\n", + " 0.485454\n", + " 4304.751910\n", + " 0.294568\n", + " 5189.976398\n", + " 0.149503\n", + " 5808.092449\n", + " 0.048211\n", + " 5979.670912\n", + " 0.020094\n", + " 6126.709725\n", + " -0.004002\n", + " 6162.581437\n", + " -0.009881\n", + " 6100.482692\n", + " 0.000296\n", + " 6098.125073\n", + " 0.000682\n", + " 6136.821625\n", + " -0.005659\n", + " 2821.915630\n", + " 0.537564\n", + " 4107.855143\n", + " 0.326834\n", + " 5559.862756\n", + " 0.088889\n", + " 6349.285129\n", + " -0.040476\n", + " 6869.438005\n", + " -0.125715\n", + " 7111.388743\n", + " -0.165364\n", + " 7315.462544\n", + " -0.198807\n", + " 7313.503384\n", + " -0.198486\n", + " 7088.936649\n", + " -0.161685\n", + " 6596.083346\n", + " -0.080920\n", + " 6102.287573\n", + " 0.0\n", + " 0.760518\n", + " 0.999875\n", + " 1763.906154\n", + " 0.710943\n", + " 3323.255445\n", + " 0.455408\n", + " 4813.473905\n", + " 0.211202\n", + " 5344.880717\n", + " 0.124119\n", + " 5630.315250\n", + " 0.077344\n", + " 5884.420100\n", + " 0.035703\n", + " 6344.961992\n", + " -0.039768\n", + " 6600.780924\n", + " -0.081690\n", + " 6766.067981\n", + " -0.108776\n", + " 7157.760530\n", + " -0.172963\n", + " 2334.402428\n", + " 0.617455\n", + " 3727.738049\n", + " 0.389124\n", + " 4792.390428\n", + " 0.214657\n", + " 5403.449429\n", + " 0.114521\n", + " 5987.595488\n", + " 0.018795\n", + " 6134.983178\n", + " -0.005358\n", + " 6293.557154\n", + " -0.031344\n", + " 6305.937749\n", + " -0.033373\n", + " 6243.400250\n", + " -0.023125\n", + " 6177.260466\n", + " -0.012286\n", + " 6131.312645\n", + " -0.004756\n", + " 10.852957\n", + " 3072.457734\n", + " 0.448450\n", + " 3599.197638\n", + " 0.353892\n", + " 4064.045641\n", + " 0.270445\n", + " 4786.645423\n", + " 0.140728\n", + " 5216.701738\n", + " 0.063527\n", + " 5425.473666\n", + " 0.026049\n", + " 5590.326152\n", + " -0.003544\n", + " 5562.124282\n", + " 0.001518\n", + " 5644.709360\n", + " -0.013307\n", + " 5619.576540\n", + " -0.008795\n", + " 5664.609603\n", + " -0.016879\n", + " 3213.858553\n", + " 0.423066\n", + " 4037.406723\n", + " 0.275227\n", + " 5200.381743\n", + " 0.066456\n", + " 5884.153057\n", + " -0.056290\n", + " 6556.102398\n", + " -0.176915\n", + " 6885.746921\n", + " -0.236091\n", + " 6917.122114\n", + " -0.241723\n", + " 6905.819125\n", + " -0.239694\n", + " 6489.716483\n", + " -0.164998\n", + " 5999.861947\n", + " -0.077062\n", + " 5585.176699\n", + " -0.002620\n", + " 3725.748845\n", + " 0.331174\n", + " 4237.968847\n", + " 0.239223\n", + " 5811.342427\n", + " -0.043220\n", + " 7035.886520\n", + " -0.263043\n", + " 6466.436133\n", + " -0.160819\n", + " 6318.690304\n", + " -0.134296\n", + " 6248.073414\n", + " -0.121619\n", + " 6390.760993\n", + " -0.147234\n", + " 6417.178461\n", + " -0.151976\n", + " 6340.479231\n", + " -0.138207\n", + " 6392.430662\n", + " -0.147533\n", + " 3043.279335\n", + " 0.453687\n", + " 3747.546011\n", + " 0.327261\n", + " 4388.732777\n", + " 0.212159\n", + " 5042.162467\n", + " 0.094859\n", + " 5459.350264\n", + " 0.019968\n", + " 5555.680287\n", + " 0.002675\n", + " 5702.488350\n", + " -0.023679\n", + " 5680.464377\n", + " -0.019725\n", + " 5695.898765\n", + " -0.022496\n", + " 5664.517560\n", + " -0.016863\n", + " 5655.363927\n", + " -0.015219\n", + " 7.412112\n", + " 6\n", + " NaN\n", " \n", " \n", - " 76\n", + " 66\n", " NaN\n", " keep_all_rows\n", " 0\n", " 100.0\n", " 5.0\n", " 0.33\n", + " 42.0\n", " NaN\n", " NaN\n", " NaN\n", @@ -1383,13 +2528,12 @@ " NaN\n", " RF\n", " TreeSHAP_RF\n", - " train-test\n", " 296\n", - " 10\n", - " 5\n", " 146\n", - " 3364.534109\n", - " 0.472198\n", + " 10\n", + " 6\n", + " 3072.457734\n", + " 0.448450\n", " NaN\n", " NaN\n", " NaN\n", @@ -1490,48 +2634,191 @@ " NaN\n", " NaN\n", " NaN\n", - " 3861\n", - " 146\n", - " 5855\n", - " 1493\n", - " 3971\n", - " 5711\n", - " 8760\n", - " 4156\n", - " 1273\n", - " 9581\n", - " 0.071407\n", - " 3364.534109\n", - " 0.472198\n", - " 4644.131916\n", - " 0.271465\n", - " 5625.114534\n", - " 0.117576\n", - " 6479.673837\n", - " -0.016480\n", - " 7087.133723\n", - " -0.111774\n", - " 7414.971343\n", - " -0.163203\n", - " 7523.826113\n", - " -0.180279\n", - " 7625.821932\n", - " -0.196279\n", - " 7658.318127\n", - " -0.201377\n", - " 7654.377608\n", - " -0.200759\n", - " 7620.889900\n", - " -0.195506\n", - " 1.182896\n", - " 5\n", + " 4690\n", + " 0.249166\n", + " 1599.333649\n", + " 0.737912\n", + " 3175.230208\n", + " 0.479666\n", + " 4498.675276\n", + " 0.262789\n", + " 5261.137462\n", + " 0.137842\n", + " 5924.955983\n", + " 0.029060\n", + " 6212.097890\n", + " -0.017995\n", + " 6262.068654\n", + " -0.026184\n", + " 6179.049182\n", + " -0.012579\n", + " 6235.406215\n", + " -0.021815\n", + " 6213.565248\n", + " -0.018235\n", + " 6136.821625\n", + " -0.005659\n", + " 2821.915630\n", + " 0.537564\n", + " 4124.907264\n", + " 0.324039\n", + " 5934.906752\n", + " 0.027429\n", + " 6682.422829\n", + " -0.095068\n", + " 7204.488112\n", + " -0.180621\n", + " 7443.348015\n", + " -0.219764\n", + " 7525.682868\n", + " -0.233256\n", + " 7552.747816\n", + " -0.237691\n", + " 7347.797853\n", + " -0.204105\n", + " 6955.511368\n", + " -0.139820\n", + " 6102.287573\n", + " 0.0\n", + " 0.760518\n", + " 0.999875\n", + " 1782.617426\n", + " 0.707877\n", + " 3201.913810\n", + " 0.475293\n", + " 4730.471547\n", + " 0.224804\n", + " 5150.386860\n", + " 0.155991\n", + " 5606.040199\n", + " 0.081322\n", + " 5963.154321\n", + " 0.022800\n", + " 6399.094632\n", + " -0.048639\n", + " 6741.407424\n", + " -0.104734\n", + " 6921.960510\n", + " -0.134322\n", + " 7157.760530\n", + " -0.172963\n", + " 2334.402428\n", + " 0.617455\n", + " 3761.718243\n", + " 0.383556\n", + " 5045.947750\n", + " 0.173106\n", + " 5554.918333\n", + " 0.089699\n", + " 6154.518735\n", + " -0.008559\n", + " 6418.420962\n", + " -0.051806\n", + " 6428.170085\n", + " -0.053403\n", + " 6373.102912\n", + " -0.044379\n", + " 6360.759368\n", + " -0.042357\n", + " 6269.951470\n", + " -0.027476\n", + " 6131.312645\n", + " -0.004756\n", + " 10.695844\n", + " 3072.457734\n", + " 0.448450\n", + " 3743.320860\n", + " 0.328020\n", + " 4211.329333\n", + " 0.244006\n", + " 4765.872128\n", + " 0.144457\n", + " 5236.877977\n", + " 0.059905\n", + " 5625.037238\n", + " -0.009775\n", + " 5521.985960\n", + " 0.008724\n", + " 5545.446533\n", + " 0.004512\n", + " 5653.778023\n", + " -0.014935\n", + " 5661.451333\n", + " -0.016312\n", + " 5664.609603\n", + " -0.016879\n", + " 3213.858553\n", + " 0.423066\n", + " 4218.066221\n", + " 0.242796\n", + " 5356.336721\n", + " 0.038460\n", + " 5997.063026\n", + " -0.076559\n", + " 6524.414652\n", + " -0.171227\n", + " 7015.708280\n", + " -0.259421\n", + " 7106.531998\n", + " -0.275725\n", + " 6990.755293\n", + " -0.254941\n", + " 6853.979093\n", + " -0.230388\n", + " 6484.153190\n", + " -0.163999\n", + " 5585.176699\n", + " -0.002620\n", + " 3725.748845\n", + " 0.331174\n", + " 4433.523117\n", + " 0.204119\n", + " 5404.224345\n", + " 0.029864\n", + " 6252.311144\n", + " -0.122380\n", + " 6135.927928\n", + " -0.101488\n", + " 6393.470622\n", + " -0.147720\n", + " 6529.782934\n", + " -0.172190\n", + " 6440.441698\n", + " -0.156152\n", + " 6627.164328\n", + " -0.189672\n", + " 6234.587550\n", + " -0.119198\n", + " 6392.430662\n", + " -0.147533\n", + " 3043.279335\n", + " 0.453687\n", + " 3916.359829\n", + " 0.296957\n", + " 4555.396175\n", + " 0.182241\n", + " 5116.362836\n", + " 0.081539\n", + " 5520.772874\n", + " 0.008942\n", + " 5789.702012\n", + " -0.039335\n", + " 5781.533396\n", + " -0.037869\n", + " 5764.376455\n", + " -0.034789\n", + " 5799.731329\n", + " -0.041135\n", + " 5737.201421\n", + " -0.029910\n", + " 5655.363927\n", + " -0.015219\n", + " 7.402059\n", + " 6\n", " NaN\n", - " 4\n", - " 0\n", - " 1.0\n", " \n", " \n", - " 77\n", + " 67\n", " NaN\n", " keep_all_rows\n", " 0\n", @@ -1543,157 +2830,300 @@ " NaN\n", " NaN\n", " NaN\n", + " NaN\n", " RF_plus\n", " Kernel_SHAP_RF_plus\n", - " train-test\n", " 296\n", - " 10\n", - " 5\n", " 100\n", - " 3176.917990\n", - " 0.501630\n", + " 10\n", + " 6\n", + " 3043.279335\n", + " 0.453687\n", + " 19.0\n", + " 18.0\n", + " 119.0\n", + " 77.0\n", + " 71.0\n", + " 103.0\n", + " 33.0\n", + " 126.0\n", + " 48.0\n", + " 36.0\n", + " 59.0\n", + " 49.0\n", + " 62.0\n", + " 42.0\n", + " 13.0\n", " 82.0\n", - " 6.0\n", - " 139.0\n", + " 22.0\n", + " 123.0\n", + " 75.0\n", + " 137.0\n", + " 134.0\n", + " 38.0\n", + " 2.0\n", + " 79.0\n", + " 138.0\n", + " 88.0\n", + " 54.0\n", + " 55.0\n", " 84.0\n", - " 40.0\n", - " 30.0\n", + " 50.0\n", + " 114.0\n", + " 144.0\n", + " 7.0\n", + " 53.0\n", + " 5.0\n", + " 124.0\n", + " 104.0\n", + " 44.0\n", + " 60.0\n", + " 99.0\n", + " 93.0\n", + " 112.0\n", + " 128.0\n", + " 85.0\n", + " 76.0\n", + " 25.0\n", " 92.0\n", + " 86.0\n", + " 127.0\n", + " 115.0\n", + " 41.0\n", + " 97.0\n", + " 113.0\n", + " 118.0\n", + " 135.0\n", + " 101.0\n", + " 8.0\n", " 27.0\n", + " 72.0\n", + " 94.0\n", + " 133.0\n", + " 43.0\n", " 120.0\n", - " 25.0\n", - " 122.0\n", - " 85.0\n", - " 81.0\n", - " 143.0\n", - " 124.0\n", - " 58.0\n", + " 51.0\n", " 132.0\n", - " 127.0\n", - " 88.0\n", - " 135.0\n", - " 138.0\n", - " 35.0\n", - " 80.0\n", - " 17.0\n", - " 131.0\n", - " 108.0\n", - " 112.0\n", - " 36.0\n", + " 61.0\n", " 83.0\n", - " 102.0\n", - " 28.0\n", + " 32.0\n", + " 45.0\n", + " 95.0\n", + " 30.0\n", + " 31.0\n", + " 90.0\n", + " 129.0\n", + " 100.0\n", + " 96.0\n", + " 14.0\n", + " 39.0\n", + " 80.0\n", + " 56.0\n", + " 35.0\n", + " 139.0\n", + " 16.0\n", + " 70.0\n", " 46.0\n", " 69.0\n", - " 107.0\n", - " 60.0\n", - " 78.0\n", - " 70.0\n", + " 6.0\n", + " 23.0\n", " 52.0\n", - " 34.0\n", - " 144.0\n", - " 105.0\n", - " 89.0\n", - " 74.0\n", + " 29.0\n", " 15.0\n", - " 75.0\n", - " 136.0\n", - " 16.0\n", - " 12.0\n", - " 137.0\n", - " 101.0\n", - " 3.0\n", - " 71.0\n", - " 72.0\n", - " 7.0\n", - " 79.0\n", + " 66.0\n", + " 68.0\n", + " 37.0\n", " 64.0\n", - " 59.0\n", - " 119.0\n", - " 113.0\n", - " 2.0\n", - " 142.0\n", - " 57.0\n", - " 54.0\n", - " 94.0\n", - " 68.0\n", - " 5.0\n", - " 1.0\n", - " 91.0\n", - " 56.0\n", - " 14.0\n", - " 20.0\n", - " 104.0\n", - " 47.0\n", - " 123.0\n", - " 76.0\n", - " 125.0\n", - " 95.0\n", - " 134.0\n", - " 38.0\n", - " 13.0\n", - " 129.0\n", - " 22.0\n", - " 32.0\n", - " 110.0\n", - " 62.0\n", - " 11.0\n", - " 23.0\n", - " 128.0\n", - " 65.0\n", + " 17.0\n", + " 4.0\n", " 145.0\n", - " 44.0\n", - " 116.0\n", - " 39.0\n", - " 45.0\n", - " 103.0\n", + " 47.0\n", " 63.0\n", - " 18.0\n", - " 19.0\n", - " 43.0\n", - " 99.0\n", - " 6734\n", - " 8731\n", - " 5921\n", - " 9043\n", - " 526\n", - " 8382\n", - " 3923\n", - " 2646\n", - " 9942\n", - " 5732\n", - " 29.754058\n", - " 3058.202408\n", - " 0.478782\n", - " 4223.564334\n", - " 0.280166\n", - " 5540.213154\n", - " 0.055766\n", - " 6100.799366\n", - " -0.039777\n", - " 6404.189310\n", - " -0.091484\n", - " 6705.799392\n", - " -0.142889\n", - " 6918.319441\n", - " -0.179109\n", - " 7039.701464\n", - " -0.199796\n", - " 7041.718704\n", - " -0.200140\n", - " 7051.753892\n", - " -0.201851\n", - " 7018.716589\n", - " -0.196220\n", - " 23.125059\n", - " 5\n", + " 188\n", + " 277.196261\n", + " 1599.333649\n", + " 0.737912\n", + " 3109.607702\n", + " 0.490419\n", + " 4278.810212\n", + " 0.298819\n", + " 5024.113229\n", + " 0.176684\n", + " 5528.180545\n", + " 0.094081\n", + " 5710.608596\n", + " 0.064186\n", + " 5874.069955\n", + " 0.037399\n", + " 5921.729102\n", + " 0.029589\n", + " 5990.038030\n", + " 0.018395\n", + " 6126.092314\n", + " -0.003901\n", + " 6136.821625\n", + " -0.005659\n", + " 2821.915630\n", + " 0.537564\n", + " 4042.670841\n", + " 0.337516\n", + " 5643.649191\n", + " 0.075158\n", + " 6612.534967\n", + " -0.083616\n", + " 7126.165388\n", + " -0.167786\n", + " 7249.087498\n", + " -0.187930\n", + " 7278.281425\n", + " -0.192714\n", + " 6820.752066\n", + " -0.117737\n", + " 6559.088545\n", + " -0.074857\n", + " 6186.218071\n", + " -0.013754\n", + " 6102.287573\n", + " 0.0\n", + " 0.760518\n", + " 0.999875\n", + " 1830.868812\n", + " 0.699970\n", + " 3019.931424\n", + " 0.505115\n", + " 4240.653693\n", + " 0.305071\n", + " 4955.577984\n", + " 0.187915\n", + " 5682.969251\n", + " 0.068715\n", + " 6023.360442\n", + " 0.012934\n", + " 6165.455206\n", + " -0.010351\n", + " 6512.064765\n", + " -0.067151\n", + " 6924.629590\n", + " -0.134760\n", + " 7157.760530\n", + " -0.172963\n", + " 2334.402428\n", + " 0.617455\n", + " 3673.127492\n", + " 0.398074\n", + " 4901.292728\n", + " 0.196811\n", + " 5568.985794\n", + " 0.087394\n", + " 5933.849628\n", + " 0.027602\n", + " 6067.913538\n", + " 0.005633\n", + " 6195.677726\n", + " -0.015304\n", + " 6184.703036\n", + " -0.013506\n", + " 6165.895689\n", + " -0.010424\n", + " 6141.011126\n", + " -0.006346\n", + " 6131.312645\n", + " -0.004756\n", + " 10.828993\n", + " 3074.549811\n", + " 0.439991\n", + " 3824.972040\n", + " 0.303307\n", + " 4273.545813\n", + " 0.221602\n", + " 4822.571646\n", + " 0.121601\n", + " 5169.557621\n", + " 0.058400\n", + " 5364.977537\n", + " 0.022805\n", + " 5362.147595\n", + " 0.023321\n", + " 5383.491593\n", + " 0.019433\n", + " 5405.576376\n", + " 0.015410\n", + " 5547.677265\n", + " -0.010472\n", + " 5648.814576\n", + " -0.028894\n", + " 3438.229965\n", + " 0.373749\n", + " 4269.577351\n", + " 0.222325\n", + " 5222.916628\n", + " 0.048681\n", + " 5812.610512\n", + " -0.058728\n", + " 6323.222346\n", + " -0.151733\n", + " 6789.017275\n", + " -0.236574\n", + " 6888.956923\n", + " -0.254778\n", + " 6342.579611\n", + " -0.155259\n", + " 5805.435651\n", + " -0.057421\n", + " 5647.333250\n", + " -0.028624\n", + " 5535.318508\n", + " -0.008221\n", + " 3761.115159\n", + " 0.314938\n", + " 4551.081588\n", + " 0.171051\n", + " 5212.816093\n", + " 0.050520\n", + " 5727.578800\n", + " -0.043240\n", + " 6311.016611\n", + " -0.149510\n", + " 6614.314282\n", + " -0.204753\n", + " 6483.378328\n", + " -0.180904\n", + " 5960.523436\n", + " -0.085670\n", + " 6015.960917\n", + " -0.095767\n", + " 6115.491296\n", + " -0.113896\n", + " 6154.257530\n", + " -0.120957\n", + " 3139.516608\n", + " 0.428158\n", + " 3949.965025\n", + " 0.280540\n", + " 4609.805293\n", + " 0.160355\n", + " 5102.378012\n", + " 0.070636\n", + " 5422.380406\n", + " 0.012350\n", + " 5611.746572\n", + " -0.022142\n", + " 5650.413900\n", + " -0.029185\n", + " 5624.395688\n", + " -0.024446\n", + " 5597.750571\n", + " -0.019593\n", + " 5626.025263\n", + " -0.024743\n", + " 5636.734002\n", + " -0.026693\n", + " 7.036491\n", + " 6\n", " RandomForestRegressor(max_features=0.33, min_s...\n", - " 5\n", - " 0\n", - " 1.0\n", " \n", " \n", - " 78\n", + " 68\n", " NaN\n", " keep_all_rows\n", " 0\n", @@ -1705,157 +3135,300 @@ " NaN\n", " NaN\n", " NaN\n", + " NaN\n", " RF_plus\n", " LFI_with_raw_RF_plus\n", - " train-test\n", " 296\n", - " 10\n", - " 5\n", " 100\n", - " 3176.917990\n", - " 0.501630\n", + " 10\n", + " 6\n", + " 3043.279335\n", + " 0.453687\n", + " 19.0\n", + " 18.0\n", + " 119.0\n", + " 77.0\n", + " 71.0\n", + " 103.0\n", + " 33.0\n", + " 126.0\n", + " 48.0\n", + " 36.0\n", + " 59.0\n", + " 49.0\n", + " 62.0\n", + " 42.0\n", + " 13.0\n", " 82.0\n", - " 6.0\n", - " 139.0\n", + " 22.0\n", + " 123.0\n", + " 75.0\n", + " 137.0\n", + " 134.0\n", + " 38.0\n", + " 2.0\n", + " 79.0\n", + " 138.0\n", + " 88.0\n", + " 54.0\n", + " 55.0\n", " 84.0\n", - " 40.0\n", - " 30.0\n", + " 50.0\n", + " 114.0\n", + " 144.0\n", + " 7.0\n", + " 53.0\n", + " 5.0\n", + " 124.0\n", + " 104.0\n", + " 44.0\n", + " 60.0\n", + " 99.0\n", + " 93.0\n", + " 112.0\n", + " 128.0\n", + " 85.0\n", + " 76.0\n", + " 25.0\n", " 92.0\n", + " 86.0\n", + " 127.0\n", + " 115.0\n", + " 41.0\n", + " 97.0\n", + " 113.0\n", + " 118.0\n", + " 135.0\n", + " 101.0\n", + " 8.0\n", " 27.0\n", + " 72.0\n", + " 94.0\n", + " 133.0\n", + " 43.0\n", " 120.0\n", - " 25.0\n", - " 122.0\n", - " 85.0\n", - " 81.0\n", - " 143.0\n", - " 124.0\n", - " 58.0\n", + " 51.0\n", " 132.0\n", - " 127.0\n", - " 88.0\n", - " 135.0\n", - " 138.0\n", - " 35.0\n", - " 80.0\n", - " 17.0\n", - " 131.0\n", - " 108.0\n", - " 112.0\n", - " 36.0\n", + " 61.0\n", " 83.0\n", - " 102.0\n", - " 28.0\n", + " 32.0\n", + " 45.0\n", + " 95.0\n", + " 30.0\n", + " 31.0\n", + " 90.0\n", + " 129.0\n", + " 100.0\n", + " 96.0\n", + " 14.0\n", + " 39.0\n", + " 80.0\n", + " 56.0\n", + " 35.0\n", + " 139.0\n", + " 16.0\n", + " 70.0\n", " 46.0\n", " 69.0\n", - " 107.0\n", - " 60.0\n", - " 78.0\n", - " 70.0\n", + " 6.0\n", + " 23.0\n", " 52.0\n", - " 34.0\n", - " 144.0\n", - " 105.0\n", - " 89.0\n", - " 74.0\n", + " 29.0\n", " 15.0\n", - " 75.0\n", - " 136.0\n", - " 16.0\n", - " 12.0\n", - " 137.0\n", - " 101.0\n", - " 3.0\n", - " 71.0\n", - " 72.0\n", - " 7.0\n", - " 79.0\n", - " 64.0\n", - " 59.0\n", - " 119.0\n", - " 113.0\n", - " 2.0\n", - " 142.0\n", - " 57.0\n", - " 54.0\n", - " 94.0\n", + " 66.0\n", " 68.0\n", - " 5.0\n", - " 1.0\n", - " 91.0\n", - " 56.0\n", - " 14.0\n", - " 20.0\n", - " 104.0\n", - " 47.0\n", - " 123.0\n", - " 76.0\n", - " 125.0\n", - " 95.0\n", - " 134.0\n", - " 38.0\n", - " 13.0\n", - " 129.0\n", - " 22.0\n", - " 32.0\n", - " 110.0\n", - " 62.0\n", - " 11.0\n", - " 23.0\n", - " 128.0\n", - " 65.0\n", + " 37.0\n", + " 64.0\n", + " 17.0\n", + " 4.0\n", " 145.0\n", - " 44.0\n", - " 116.0\n", - " 39.0\n", - " 45.0\n", - " 103.0\n", + " 47.0\n", " 63.0\n", - " 18.0\n", - " 19.0\n", - " 43.0\n", - " 99.0\n", - " 6734\n", - " 8731\n", - " 5921\n", - " 9043\n", - " 526\n", - " 8382\n", - " 3923\n", - " 2646\n", - " 9942\n", - " 5732\n", - " 0.437314\n", - " 3058.202408\n", - " 0.478782\n", - " 4118.945235\n", - " 0.297996\n", - " 5522.440952\n", - " 0.058795\n", - " 6139.370419\n", - " -0.046350\n", - " 6561.148099\n", - " -0.118235\n", - " 6779.508319\n", - " -0.155451\n", - " 6876.299938\n", - " -0.171947\n", - " 6935.213602\n", - " -0.181988\n", - " 7002.733329\n", - " -0.193496\n", - " 7019.751192\n", - " -0.196396\n", - " 7018.716589\n", - " -0.196220\n", - " 23.535761\n", - " 5\n", - " RandomForestRegressor(max_features=0.33, min_s...\n", + " 188\n", + " 1.481301\n", + " 1599.333649\n", + " 0.737912\n", + " 2929.545377\n", + " 0.519927\n", + " 4293.008635\n", + " 0.296492\n", + " 4993.430906\n", + " 0.181712\n", + " 5530.065550\n", + " 0.093772\n", + " 5805.377507\n", + " 0.048656\n", + " 5901.229975\n", + " 0.032948\n", + " 5971.856480\n", + " 0.021374\n", + " 6054.179537\n", + " 0.007884\n", + " 6175.355063\n", + " -0.011974\n", + " 6136.821625\n", + " -0.005659\n", + " 2821.915630\n", + " 0.537564\n", + " 4061.883737\n", + " 0.334367\n", + " 5760.011411\n", + " 0.056090\n", + " 6607.114189\n", + " -0.082727\n", + " 7187.319599\n", + " -0.177807\n", + " 7383.018224\n", + " -0.209877\n", + " 7452.938431\n", + " -0.221335\n", + " 7070.721750\n", + " -0.158700\n", + " 6725.906785\n", + " -0.102194\n", + " 6256.765405\n", + " -0.025315\n", + " 6102.287573\n", + " 0.0\n", + " 0.760518\n", + " 0.999875\n", + " 1549.952598\n", + " 0.746005\n", + " 2949.589294\n", + " 0.516642\n", + " 4180.439924\n", + " 0.314939\n", + " 5094.934816\n", + " 0.165078\n", + " 5662.407971\n", + " 0.072084\n", + " 5954.963272\n", + " 0.024142\n", + " 6157.649217\n", + " -0.009072\n", + " 6483.893137\n", + " -0.062535\n", + " 6980.145851\n", + " -0.143857\n", + " 7157.760530\n", + " -0.172963\n", + " 2334.402428\n", + " 0.617455\n", + " 3582.949000\n", + " 0.412851\n", + " 4923.427170\n", + " 0.193183\n", + " 5566.165474\n", + " 0.087856\n", + " 5979.565894\n", + " 0.020111\n", + " 6150.733264\n", + " -0.007939\n", + " 6225.990012\n", + " -0.020271\n", + " 6222.193823\n", + " -0.019649\n", + " 6178.858171\n", + " -0.012548\n", + " 6164.131500\n", + " -0.010135\n", + " 6131.312645\n", + " -0.004756\n", + " 10.817527\n", + " 3074.549811\n", + " 0.439991\n", + " 3677.383895\n", + " 0.330189\n", + " 4223.973426\n", + " 0.230631\n", + " 4853.249242\n", + " 0.116013\n", + " 5184.298032\n", + " 0.055715\n", + " 5471.391949\n", + " 0.003422\n", + " 5443.474923\n", + " 0.008507\n", + " 5455.547129\n", + " 0.006308\n", + " 5499.562086\n", + " -0.001709\n", + " 5564.283426\n", + " -0.013497\n", + " 5648.814576\n", + " -0.028894\n", + " 3438.229965\n", + " 0.373749\n", + " 4250.446715\n", + " 0.225809\n", + " 5168.535770\n", + " 0.058586\n", + " 5904.704003\n", + " -0.075502\n", + " 6346.397918\n", + " -0.155954\n", + " 6559.339739\n", + " -0.194740\n", + " 6702.852473\n", + " -0.220880\n", + " 6652.209705\n", + " -0.211656\n", + " 6360.483378\n", + " -0.158520\n", + " 5807.268863\n", + " -0.057755\n", + " 5535.318508\n", + " -0.008221\n", + " 3761.115159\n", + " 0.314938\n", + " 4484.427719\n", + " 0.183191\n", + " 5230.083512\n", + " 0.047375\n", + " 6147.504065\n", + " -0.119727\n", + " 6596.737184\n", + " -0.201552\n", + " 6460.519172\n", + " -0.176740\n", + " 6583.652258\n", + " -0.199168\n", + " 6573.851529\n", + " -0.197383\n", + " 6295.371009\n", + " -0.146660\n", + " 6204.552633\n", + " -0.130118\n", + " 6154.257530\n", + " -0.120957\n", + " 3139.516608\n", + " 0.428158\n", + " 3882.799563\n", + " 0.292774\n", + " 4562.861560\n", + " 0.168905\n", + " 5160.712830\n", + " 0.060011\n", + " 5366.841728\n", + " 0.022466\n", + " 5591.524535\n", + " -0.018459\n", + " 5634.800732\n", + " -0.026341\n", + " 5614.899058\n", + " -0.022716\n", + " 5613.153894\n", + " -0.022399\n", + " 5620.507263\n", + " -0.023738\n", + " 5636.734002\n", + " -0.026693\n", + " 7.033576\n", " 6\n", - " 0\n", - " 1.0\n", + " RandomForestRegressor(max_features=0.33, min_s...\n", " \n", " \n", - " 79\n", + " 69\n", " NaN\n", " keep_all_rows\n", " 0\n", @@ -1867,158 +3440,301 @@ " NaN\n", " NaN\n", " NaN\n", + " NaN\n", " RF_plus\n", " LIME_RF_plus\n", - " train-test\n", " 296\n", - " 10\n", - " 5\n", " 100\n", - " 3176.917990\n", - " 0.501630\n", + " 10\n", + " 6\n", + " 3043.279335\n", + " 0.453687\n", + " 19.0\n", + " 18.0\n", + " 119.0\n", + " 77.0\n", + " 71.0\n", + " 103.0\n", + " 33.0\n", + " 126.0\n", + " 48.0\n", + " 36.0\n", + " 59.0\n", + " 49.0\n", + " 62.0\n", + " 42.0\n", + " 13.0\n", " 82.0\n", - " 6.0\n", - " 139.0\n", + " 22.0\n", + " 123.0\n", + " 75.0\n", + " 137.0\n", + " 134.0\n", + " 38.0\n", + " 2.0\n", + " 79.0\n", + " 138.0\n", + " 88.0\n", + " 54.0\n", + " 55.0\n", " 84.0\n", - " 40.0\n", - " 30.0\n", + " 50.0\n", + " 114.0\n", + " 144.0\n", + " 7.0\n", + " 53.0\n", + " 5.0\n", + " 124.0\n", + " 104.0\n", + " 44.0\n", + " 60.0\n", + " 99.0\n", + " 93.0\n", + " 112.0\n", + " 128.0\n", + " 85.0\n", + " 76.0\n", + " 25.0\n", " 92.0\n", + " 86.0\n", + " 127.0\n", + " 115.0\n", + " 41.0\n", + " 97.0\n", + " 113.0\n", + " 118.0\n", + " 135.0\n", + " 101.0\n", + " 8.0\n", " 27.0\n", + " 72.0\n", + " 94.0\n", + " 133.0\n", + " 43.0\n", " 120.0\n", - " 25.0\n", - " 122.0\n", - " 85.0\n", - " 81.0\n", - " 143.0\n", - " 124.0\n", - " 58.0\n", + " 51.0\n", " 132.0\n", - " 127.0\n", - " 88.0\n", - " 135.0\n", - " 138.0\n", - " 35.0\n", - " 80.0\n", - " 17.0\n", - " 131.0\n", - " 108.0\n", - " 112.0\n", - " 36.0\n", + " 61.0\n", " 83.0\n", - " 102.0\n", - " 28.0\n", + " 32.0\n", + " 45.0\n", + " 95.0\n", + " 30.0\n", + " 31.0\n", + " 90.0\n", + " 129.0\n", + " 100.0\n", + " 96.0\n", + " 14.0\n", + " 39.0\n", + " 80.0\n", + " 56.0\n", + " 35.0\n", + " 139.0\n", + " 16.0\n", + " 70.0\n", " 46.0\n", " 69.0\n", - " 107.0\n", - " 60.0\n", - " 78.0\n", - " 70.0\n", + " 6.0\n", + " 23.0\n", " 52.0\n", - " 34.0\n", - " 144.0\n", - " 105.0\n", - " 89.0\n", - " 74.0\n", + " 29.0\n", " 15.0\n", - " 75.0\n", - " 136.0\n", - " 16.0\n", - " 12.0\n", - " 137.0\n", - " 101.0\n", - " 3.0\n", - " 71.0\n", - " 72.0\n", - " 7.0\n", - " 79.0\n", - " 64.0\n", - " 59.0\n", - " 119.0\n", - " 113.0\n", - " 2.0\n", - " 142.0\n", - " 57.0\n", - " 54.0\n", - " 94.0\n", + " 66.0\n", " 68.0\n", - " 5.0\n", - " 1.0\n", - " 91.0\n", - " 56.0\n", - " 14.0\n", - " 20.0\n", - " 104.0\n", - " 47.0\n", - " 123.0\n", - " 76.0\n", - " 125.0\n", - " 95.0\n", - " 134.0\n", - " 38.0\n", - " 13.0\n", - " 129.0\n", - " 22.0\n", - " 32.0\n", - " 110.0\n", - " 62.0\n", - " 11.0\n", - " 23.0\n", - " 128.0\n", - " 65.0\n", + " 37.0\n", + " 64.0\n", + " 17.0\n", + " 4.0\n", " 145.0\n", - " 44.0\n", - " 116.0\n", - " 39.0\n", - " 45.0\n", - " 103.0\n", + " 47.0\n", " 63.0\n", - " 18.0\n", - " 19.0\n", - " 43.0\n", - " 99.0\n", - " 6734\n", - " 8731\n", - " 5921\n", - " 9043\n", - " 526\n", - " 8382\n", - " 3923\n", - " 2646\n", - " 9942\n", - " 5732\n", - " 68.105400\n", - " 3058.202408\n", - " 0.478782\n", - " 4213.920895\n", - " 0.281809\n", - " 5618.801778\n", - " 0.042372\n", - " 6167.544944\n", - " -0.051152\n", - " 6554.712486\n", - " -0.117138\n", - " 6770.764955\n", - " -0.153961\n", - " 6933.509996\n", - " -0.181698\n", - " 6983.510919\n", - " -0.190220\n", - " 7023.012024\n", - " -0.196952\n", - " 7014.183445\n", - " -0.195447\n", - " 7018.716589\n", - " -0.196220\n", - " 22.972130\n", - " 5\n", + " 188\n", + " 618.747853\n", + " 1599.333649\n", + " 0.737912\n", + " 2804.384070\n", + " 0.540437\n", + " 3822.906427\n", + " 0.373529\n", + " 4535.926610\n", + " 0.256684\n", + " 5000.666619\n", + " 0.180526\n", + " 5427.487599\n", + " 0.110581\n", + " 5653.479333\n", + " 0.073548\n", + " 5880.020669\n", + " 0.036424\n", + " 5955.174232\n", + " 0.024108\n", + " 6043.195386\n", + " 0.009684\n", + " 6136.821625\n", + " -0.005659\n", + " 2821.915630\n", + " 0.537564\n", + " 3838.501816\n", + " 0.370973\n", + " 5478.137514\n", + " 0.102281\n", + " 6270.632052\n", + " -0.027587\n", + " 6728.929011\n", + " -0.102690\n", + " 7242.790599\n", + " -0.186898\n", + " 7201.354577\n", + " -0.180107\n", + " 7055.655190\n", + " -0.156231\n", + " 6564.300773\n", + " -0.075711\n", + " 6221.826715\n", + " -0.019589\n", + " 6102.287573\n", + " 0.0\n", + " 0.760518\n", + " 0.999875\n", + " 1461.549087\n", + " 0.760492\n", + " 2485.350227\n", + " 0.592718\n", + " 3405.374928\n", + " 0.441951\n", + " 4237.103450\n", + " 0.305653\n", + " 5025.917365\n", + " 0.176388\n", + " 5526.111155\n", + " 0.094420\n", + " 6041.587390\n", + " 0.009947\n", + " 6323.935368\n", + " -0.036322\n", + " 6895.975176\n", + " -0.130064\n", + " 7157.760530\n", + " -0.172963\n", + " 2334.402428\n", + " 0.617455\n", + " 3432.805310\n", + " 0.437456\n", + " 4520.363739\n", + " 0.259235\n", + " 5213.767608\n", + " 0.145604\n", + " 5612.293318\n", + " 0.080297\n", + " 5905.468277\n", + " 0.032253\n", + " 6004.708413\n", + " 0.015991\n", + " 6092.876970\n", + " 0.001542\n", + " 6096.781290\n", + " 0.000902\n", + " 6104.946294\n", + " -0.000436\n", + " 6131.312645\n", + " -0.004756\n", + " 10.869999\n", + " 3074.549811\n", + " 0.439991\n", + " 3488.988909\n", + " 0.364504\n", + " 4038.189629\n", + " 0.264471\n", + " 4713.345462\n", + " 0.141496\n", + " 5046.789311\n", + " 0.080761\n", + " 5304.597975\n", + " 0.033803\n", + " 5388.787525\n", + " 0.018468\n", + " 5465.219576\n", + " 0.004547\n", + " 5509.129123\n", + " -0.003451\n", + " 5521.703510\n", + " -0.005741\n", + " 5648.814576\n", + " -0.028894\n", + " 3438.229965\n", + " 0.373749\n", + " 4154.543994\n", + " 0.243278\n", + " 5271.242084\n", + " 0.039878\n", + " 5923.989444\n", + " -0.079015\n", + " 6127.787889\n", + " -0.116136\n", + " 6595.262987\n", + " -0.201283\n", + " 6947.470195\n", + " -0.265435\n", + " 6558.722886\n", + " -0.194628\n", + " 6060.428514\n", + " -0.103867\n", + " 5729.046317\n", + " -0.043508\n", + " 5535.318508\n", + " -0.008221\n", + " 3761.115159\n", + " 0.314938\n", + " 4499.283634\n", + " 0.180486\n", + " 4657.567836\n", + " 0.151655\n", + " 5698.794307\n", + " -0.037997\n", + " 6048.504854\n", + " -0.101695\n", + " 6602.231271\n", + " -0.202552\n", + " 6440.659192\n", + " -0.173123\n", + " 6118.444678\n", + " -0.114434\n", + " 6293.345882\n", + " -0.146291\n", + " 6083.916220\n", + " -0.108145\n", + " 6154.257530\n", + " -0.120957\n", + " 3139.516608\n", + " 0.428158\n", + " 3761.727998\n", + " 0.314826\n", + " 4420.406856\n", + " 0.194852\n", + " 5086.133038\n", + " 0.073595\n", + " 5394.059982\n", + " 0.017508\n", + " 5571.039679\n", + " -0.014728\n", + " 5549.016093\n", + " -0.010716\n", + " 5631.833473\n", + " -0.025801\n", + " 5591.152466\n", + " -0.018391\n", + " 5590.145323\n", + " -0.018208\n", + " 5636.734002\n", + " -0.026693\n", + " 6.885340\n", + " 6\n", " RandomForestRegressor(max_features=0.33, min_s...\n", - " 7\n", - " 0\n", - " 1.0\n", " \n", " \n", "\n", - "

80 rows × 159 columns

\n", + "

70 rows × 302 columns

\n", "" ], "text/plain": [ @@ -2027,535 +3743,2381 @@ "1 NaN keep_all_rows 0 100.0 5.0 \n", "2 NaN keep_all_rows 0 100.0 5.0 \n", "3 NaN keep_all_rows 0 100.0 5.0 \n", - "4 NaN keep_all_rows 0 100.0 5.0 \n", + "4 NaN keep_all_rows 0 NaN NaN \n", ".. ... ... ... ... ... \n", - "75 NaN keep_all_rows 0 100.0 5.0 \n", - "76 NaN keep_all_rows 0 100.0 5.0 \n", - "77 NaN keep_all_rows 0 NaN NaN \n", - "78 NaN keep_all_rows 0 NaN NaN \n", - "79 NaN keep_all_rows 0 NaN NaN \n", - "\n", - " max_features cv_ridge calc_loo_coef include_raw sample_split fit_on \\\n", - "0 0.33 5.0 False NaN NaN NaN \n", - "1 0.33 NaN False NaN oob test \n", - "2 0.33 NaN NaN NaN NaN NaN \n", - "3 0.33 0.0 False False inbag NaN \n", - "4 0.33 NaN NaN NaN NaN NaN \n", - ".. ... ... ... ... ... ... \n", - "75 0.33 0.0 False False inbag NaN \n", - "76 0.33 NaN NaN NaN NaN NaN \n", - "77 NaN NaN NaN NaN NaN NaN \n", - "78 NaN NaN NaN NaN NaN NaN \n", - "79 NaN NaN NaN NaN NaN NaN \n", - "\n", - " model fi splitting_strategy train_size \\\n", - "0 RF LFI_with_raw_CV_RF train-test 296 \n", - "1 RF LFI_with_raw_OOB_RF train-test 296 \n", - "2 RF LFI_with_raw_RF train-test 296 \n", - "3 RF MDI_RF train-test 296 \n", - "4 RF TreeSHAP_RF train-test 296 \n", - ".. ... ... ... ... \n", - "75 RF MDI_RF train-test 296 \n", - "76 RF TreeSHAP_RF train-test 296 \n", - "77 RF_plus Kernel_SHAP_RF_plus train-test 296 \n", - "78 RF_plus LFI_with_raw_RF_plus train-test 296 \n", - "79 RF_plus LIME_RF_plus train-test 296 \n", - "\n", - " num_features data_split_seed test_size test_all_mse test_all_r2 \\\n", - "0 10 7 146 3015.657705 0.493287 \n", - "1 10 7 146 3015.657705 0.493287 \n", - "2 10 7 146 3015.657705 0.493287 \n", - "3 10 7 146 3015.657705 0.493287 \n", - "4 10 7 146 3015.657705 0.493287 \n", - ".. ... ... ... ... ... \n", - "75 10 5 146 3364.534109 0.472198 \n", - "76 10 5 146 3364.534109 0.472198 \n", - "77 10 5 100 3176.917990 0.501630 \n", - "78 10 5 100 3176.917990 0.501630 \n", - "79 10 5 100 3176.917990 0.501630 \n", - "\n", - " sample_test_0 sample_test_1 sample_test_2 sample_test_3 sample_test_4 \\\n", - "0 NaN NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN NaN \n", - ".. ... ... ... ... ... \n", - "75 NaN NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN NaN \n", - "77 82.0 6.0 139.0 84.0 40.0 \n", - "78 82.0 6.0 139.0 84.0 40.0 \n", - "79 82.0 6.0 139.0 84.0 40.0 \n", + "65 NaN keep_all_rows 0 100.0 5.0 \n", + "66 NaN keep_all_rows 0 100.0 5.0 \n", + "67 NaN keep_all_rows 0 NaN NaN \n", + "68 NaN keep_all_rows 0 NaN NaN \n", + "69 NaN keep_all_rows 0 NaN NaN \n", + "\n", + " max_features random_state include_raw cv_ridge calc_loo_coef \\\n", + "0 0.33 42.0 NaN NaN False \n", + "1 0.33 42.0 NaN NaN NaN \n", + "2 0.33 42.0 False 0.0 False \n", + "3 0.33 42.0 NaN NaN NaN \n", + "4 NaN NaN NaN NaN NaN \n", + ".. ... ... ... ... ... \n", + "65 0.33 42.0 False 0.0 False \n", + "66 0.33 42.0 NaN NaN NaN \n", + "67 NaN NaN NaN NaN NaN \n", + "68 NaN NaN NaN NaN NaN \n", + "69 NaN NaN NaN NaN NaN \n", + "\n", + " sample_split fit_on model fi train_size test_size \\\n", + "0 oob test RF LFI_with_raw_OOB_RF 296 146 \n", + "1 NaN NaN RF LFI_with_raw_RF 296 146 \n", + "2 inbag NaN RF MDI_RF 296 146 \n", + "3 NaN NaN RF TreeSHAP_RF 296 146 \n", + "4 NaN NaN RF_plus Kernel_SHAP_RF_plus 296 100 \n", + ".. ... ... ... ... ... ... \n", + "65 inbag NaN RF MDI_RF 296 146 \n", + "66 NaN NaN RF TreeSHAP_RF 296 146 \n", + "67 NaN NaN RF_plus Kernel_SHAP_RF_plus 296 100 \n", + "68 NaN NaN RF_plus LFI_with_raw_RF_plus 296 100 \n", + "69 NaN NaN RF_plus LIME_RF_plus 296 100 \n", + "\n", + " num_features data_split_seed test_all_mse test_all_r2 sample_test_0 \\\n", + "0 10 4 3167.314235 0.445492 NaN \n", + "1 10 4 3167.314235 0.445492 NaN \n", + "2 10 4 3167.314235 0.445492 NaN \n", + "3 10 4 3167.314235 0.445492 NaN \n", + "4 10 4 3068.863830 0.462728 19.0 \n", + ".. ... ... ... ... ... \n", + "65 10 6 3072.457734 0.448450 NaN \n", + "66 10 6 3072.457734 0.448450 NaN \n", + "67 10 6 3043.279335 0.453687 19.0 \n", + "68 10 6 3043.279335 0.453687 19.0 \n", + "69 10 6 3043.279335 0.453687 19.0 \n", "\n", - " sample_test_5 sample_test_6 sample_test_7 sample_test_8 sample_test_9 \\\n", + " sample_test_1 sample_test_2 sample_test_3 sample_test_4 sample_test_5 \\\n", "0 NaN NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN NaN \n", "2 NaN NaN NaN NaN NaN \n", "3 NaN NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN NaN \n", + "4 18.0 119.0 77.0 71.0 103.0 \n", ".. ... ... ... ... ... \n", - "75 NaN NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN NaN \n", - "77 30.0 92.0 27.0 120.0 25.0 \n", - "78 30.0 92.0 27.0 120.0 25.0 \n", - "79 30.0 92.0 27.0 120.0 25.0 \n", + "65 NaN NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN NaN \n", + "67 18.0 119.0 77.0 71.0 103.0 \n", + "68 18.0 119.0 77.0 71.0 103.0 \n", + "69 18.0 119.0 77.0 71.0 103.0 \n", + "\n", + " sample_test_6 sample_test_7 sample_test_8 sample_test_9 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 33.0 126.0 48.0 36.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 33.0 126.0 48.0 36.0 \n", + "68 33.0 126.0 48.0 36.0 \n", + "69 33.0 126.0 48.0 36.0 \n", "\n", " sample_test_10 sample_test_11 sample_test_12 sample_test_13 \\\n", "0 NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN \n", "2 NaN NaN NaN NaN \n", "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", + "4 59.0 49.0 62.0 42.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 59.0 49.0 62.0 42.0 \n", + "68 59.0 49.0 62.0 42.0 \n", + "69 59.0 49.0 62.0 42.0 \n", + "\n", + " sample_test_14 sample_test_15 sample_test_16 sample_test_17 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 13.0 82.0 22.0 123.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 13.0 82.0 22.0 123.0 \n", + "68 13.0 82.0 22.0 123.0 \n", + "69 13.0 82.0 22.0 123.0 \n", + "\n", + " sample_test_18 sample_test_19 sample_test_20 sample_test_21 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 75.0 137.0 134.0 38.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 75.0 137.0 134.0 38.0 \n", + "68 75.0 137.0 134.0 38.0 \n", + "69 75.0 137.0 134.0 38.0 \n", + "\n", + " sample_test_22 sample_test_23 sample_test_24 sample_test_25 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 2.0 79.0 138.0 88.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 2.0 79.0 138.0 88.0 \n", + "68 2.0 79.0 138.0 88.0 \n", + "69 2.0 79.0 138.0 88.0 \n", + "\n", + " sample_test_26 sample_test_27 sample_test_28 sample_test_29 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 54.0 55.0 84.0 50.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 54.0 55.0 84.0 50.0 \n", + "68 54.0 55.0 84.0 50.0 \n", + "69 54.0 55.0 84.0 50.0 \n", + "\n", + " sample_test_30 sample_test_31 sample_test_32 sample_test_33 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 114.0 144.0 7.0 53.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 114.0 144.0 7.0 53.0 \n", + "68 114.0 144.0 7.0 53.0 \n", + "69 114.0 144.0 7.0 53.0 \n", + "\n", + " sample_test_34 sample_test_35 sample_test_36 sample_test_37 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 5.0 124.0 104.0 44.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 5.0 124.0 104.0 44.0 \n", + "68 5.0 124.0 104.0 44.0 \n", + "69 5.0 124.0 104.0 44.0 \n", + "\n", + " sample_test_38 sample_test_39 sample_test_40 sample_test_41 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 60.0 99.0 93.0 112.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 60.0 99.0 93.0 112.0 \n", + "68 60.0 99.0 93.0 112.0 \n", + "69 60.0 99.0 93.0 112.0 \n", + "\n", + " sample_test_42 sample_test_43 sample_test_44 sample_test_45 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 128.0 85.0 76.0 25.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 128.0 85.0 76.0 25.0 \n", + "68 128.0 85.0 76.0 25.0 \n", + "69 128.0 85.0 76.0 25.0 \n", + "\n", + " sample_test_46 sample_test_47 sample_test_48 sample_test_49 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 92.0 86.0 127.0 115.0 \n", ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 122.0 85.0 81.0 143.0 \n", - "78 122.0 85.0 81.0 143.0 \n", - "79 122.0 85.0 81.0 143.0 \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 92.0 86.0 127.0 115.0 \n", + "68 92.0 86.0 127.0 115.0 \n", + "69 92.0 86.0 127.0 115.0 \n", + "\n", + " sample_test_50 sample_test_51 sample_test_52 sample_test_53 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 41.0 97.0 113.0 118.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 41.0 97.0 113.0 118.0 \n", + "68 41.0 97.0 113.0 118.0 \n", + "69 41.0 97.0 113.0 118.0 \n", + "\n", + " sample_test_54 sample_test_55 sample_test_56 sample_test_57 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 135.0 101.0 8.0 27.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 135.0 101.0 8.0 27.0 \n", + "68 135.0 101.0 8.0 27.0 \n", + "69 135.0 101.0 8.0 27.0 \n", + "\n", + " sample_test_58 sample_test_59 sample_test_60 sample_test_61 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 72.0 94.0 133.0 43.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 72.0 94.0 133.0 43.0 \n", + "68 72.0 94.0 133.0 43.0 \n", + "69 72.0 94.0 133.0 43.0 \n", + "\n", + " sample_test_62 sample_test_63 sample_test_64 sample_test_65 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 120.0 51.0 132.0 61.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 120.0 51.0 132.0 61.0 \n", + "68 120.0 51.0 132.0 61.0 \n", + "69 120.0 51.0 132.0 61.0 \n", + "\n", + " sample_test_66 sample_test_67 sample_test_68 sample_test_69 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 83.0 32.0 45.0 95.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 83.0 32.0 45.0 95.0 \n", + "68 83.0 32.0 45.0 95.0 \n", + "69 83.0 32.0 45.0 95.0 \n", + "\n", + " sample_test_70 sample_test_71 sample_test_72 sample_test_73 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 30.0 31.0 90.0 129.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 30.0 31.0 90.0 129.0 \n", + "68 30.0 31.0 90.0 129.0 \n", + "69 30.0 31.0 90.0 129.0 \n", + "\n", + " sample_test_74 sample_test_75 sample_test_76 sample_test_77 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 100.0 96.0 14.0 39.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 100.0 96.0 14.0 39.0 \n", + "68 100.0 96.0 14.0 39.0 \n", + "69 100.0 96.0 14.0 39.0 \n", + "\n", + " sample_test_78 sample_test_79 sample_test_80 sample_test_81 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 80.0 56.0 35.0 139.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 80.0 56.0 35.0 139.0 \n", + "68 80.0 56.0 35.0 139.0 \n", + "69 80.0 56.0 35.0 139.0 \n", + "\n", + " sample_test_82 sample_test_83 sample_test_84 sample_test_85 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 16.0 70.0 46.0 69.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 16.0 70.0 46.0 69.0 \n", + "68 16.0 70.0 46.0 69.0 \n", + "69 16.0 70.0 46.0 69.0 \n", + "\n", + " sample_test_86 sample_test_87 sample_test_88 sample_test_89 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 6.0 23.0 52.0 29.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 6.0 23.0 52.0 29.0 \n", + "68 6.0 23.0 52.0 29.0 \n", + "69 6.0 23.0 52.0 29.0 \n", + "\n", + " sample_test_90 sample_test_91 sample_test_92 sample_test_93 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 15.0 66.0 68.0 37.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 15.0 66.0 68.0 37.0 \n", + "68 15.0 66.0 68.0 37.0 \n", + "69 15.0 66.0 68.0 37.0 \n", + "\n", + " sample_test_94 sample_test_95 sample_test_96 sample_test_97 \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 64.0 17.0 4.0 145.0 \n", + ".. ... ... ... ... \n", + "65 NaN NaN NaN NaN \n", + "66 NaN NaN NaN NaN \n", + "67 64.0 17.0 4.0 145.0 \n", + "68 64.0 17.0 4.0 145.0 \n", + "69 64.0 17.0 4.0 145.0 \n", + "\n", + " sample_test_98 sample_test_99 ablation_seed_0 fi_time \\\n", + "0 NaN NaN 2405 6.036580 \n", + "1 NaN NaN 2405 6.758458 \n", + "2 NaN NaN 2405 2.749065 \n", + "3 NaN NaN 2405 0.413684 \n", + "4 47.0 63.0 6733 272.584633 \n", + ".. ... ... ... ... \n", + "65 NaN NaN 4690 2.550201 \n", + "66 NaN NaN 4690 0.249166 \n", + "67 47.0 63.0 188 277.196261 \n", + "68 47.0 63.0 188 1.481301 \n", + "69 47.0 63.0 188 618.747853 \n", + "\n", + " RF_Regressor_train_MSE_before_ablation \\\n", + "0 1635.151982 \n", + "1 1635.151982 \n", + "2 1635.151982 \n", + "3 1635.151982 \n", + "4 1635.151982 \n", + ".. ... \n", + "65 1599.333649 \n", + "66 1599.333649 \n", + "67 1599.333649 \n", + "68 1599.333649 \n", + "69 1599.333649 \n", + "\n", + " RF_Regressor_train_R_2_before_ablation \\\n", + "0 0.728697 \n", + "1 0.728697 \n", + "2 0.728697 \n", + "3 0.728697 \n", + "4 0.728697 \n", + ".. ... \n", + "65 0.737912 \n", + "66 0.737912 \n", + "67 0.737912 \n", + "68 0.737912 \n", + "69 0.737912 \n", + "\n", + " RF_Regressor_train_MSE_after_ablation_1 \\\n", + "0 2928.895040 \n", + "1 3021.720386 \n", + "2 3133.874535 \n", + "3 3195.234603 \n", + "4 3010.018440 \n", + ".. ... \n", + "65 3139.907366 \n", + "66 3175.230208 \n", + "67 3109.607702 \n", + "68 2929.545377 \n", + "69 2804.384070 \n", + "\n", + " RF_Regressor_train_R_2_after_ablation_1 \\\n", + "0 0.514040 \n", + "1 0.498639 \n", + "2 0.480030 \n", + "3 0.469849 \n", + "4 0.500580 \n", + ".. ... \n", + "65 0.485454 \n", + "66 0.479666 \n", + "67 0.490419 \n", + "68 0.519927 \n", + "69 0.540437 \n", + "\n", + " RF_Regressor_train_MSE_after_ablation_2 \\\n", + "0 4043.923756 \n", + "1 4123.708913 \n", + "2 4208.266058 \n", + "3 4374.383756 \n", + "4 4081.594103 \n", + ".. ... \n", + "65 4304.751910 \n", + "66 4498.675276 \n", + "67 4278.810212 \n", + "68 4293.008635 \n", + "69 3822.906427 \n", + "\n", + " RF_Regressor_train_R_2_after_ablation_2 \\\n", + "0 0.329035 \n", + "1 0.315798 \n", + "2 0.301768 \n", + "3 0.274206 \n", + "4 0.322785 \n", + ".. ... \n", + "65 0.294568 \n", + "66 0.262789 \n", + "67 0.298819 \n", + "68 0.296492 \n", + "69 0.373529 \n", + "\n", + " RF_Regressor_train_MSE_after_ablation_3 \\\n", + "0 4919.486722 \n", + "1 4906.024069 \n", + "2 5012.797456 \n", + "3 5218.143321 \n", + "4 4871.540333 \n", + ".. ... \n", + "65 5189.976398 \n", + "66 5261.137462 \n", + "67 5024.113229 \n", + "68 4993.430906 \n", + "69 4535.926610 \n", + "\n", + " RF_Regressor_train_R_2_after_ablation_3 \\\n", + "0 0.183763 \n", + "1 0.185996 \n", + "2 0.168281 \n", + "3 0.134210 \n", + "4 0.191718 \n", + ".. ... \n", + "65 0.149503 \n", + "66 0.137842 \n", + "67 0.176684 \n", + "68 0.181712 \n", + "69 0.256684 \n", + "\n", + " RF_Regressor_train_MSE_after_ablation_4 \\\n", + "0 5437.029551 \n", + "1 5541.504254 \n", + "2 5621.910172 \n", + "3 5792.052146 \n", + "4 5427.925117 \n", + ".. ... \n", + "65 5808.092449 \n", + "66 5924.955983 \n", + "67 5528.180545 \n", + "68 5530.065550 \n", + "69 5000.666619 \n", + "\n", + " RF_Regressor_train_R_2_after_ablation_4 \\\n", + "0 0.097892 \n", + "1 0.080558 \n", + "2 0.067217 \n", + "3 0.038987 \n", + "4 0.099403 \n", + ".. ... \n", + "65 0.048211 \n", + "66 0.029060 \n", + "67 0.094081 \n", + "68 0.093772 \n", + "69 0.180526 \n", + "\n", + " RF_Regressor_train_MSE_after_ablation_5 \\\n", + "0 5901.392876 \n", + "1 5961.706039 \n", + "2 6002.738896 \n", + "3 6124.433170 \n", + "4 5806.229855 \n", + ".. ... \n", + "65 5979.670912 \n", + "66 6212.097890 \n", + "67 5710.608596 \n", + "68 5805.377507 \n", + "69 5427.487599 \n", + "\n", + " RF_Regressor_train_R_2_after_ablation_5 \\\n", + "0 0.020846 \n", + "1 0.010839 \n", + "2 0.004030 \n", + "3 -0.016161 \n", + "4 0.036635 \n", + ".. ... \n", + "65 0.020094 \n", + "66 -0.017995 \n", + "67 0.064186 \n", + "68 0.048656 \n", + "69 0.110581 \n", + "\n", + " RF_Regressor_train_MSE_after_ablation_6 \\\n", + "0 6048.520615 \n", + "1 6122.232814 \n", + "2 6121.457849 \n", + "3 6182.621856 \n", + "4 5968.959854 \n", + ".. ... \n", + "65 6126.709725 \n", + "66 6262.068654 \n", + "67 5874.069955 \n", + "68 5901.229975 \n", + "69 5653.479333 \n", + "\n", + " RF_Regressor_train_R_2_after_ablation_6 \\\n", + "0 -0.003566 \n", + "1 -0.015796 \n", + "2 -0.015667 \n", + "3 -0.025816 \n", + "4 0.009635 \n", + ".. ... \n", + "65 -0.004002 \n", + "66 -0.026184 \n", + "67 0.037399 \n", + "68 0.032948 \n", + "69 0.073548 \n", + "\n", + " RF_Regressor_train_MSE_after_ablation_7 \\\n", + "0 6074.659511 \n", + "1 6184.281735 \n", + "2 6210.278943 \n", + "3 6213.795448 \n", + "4 6009.615524 \n", + ".. ... \n", + "65 6162.581437 \n", + "66 6179.049182 \n", + "67 5921.729102 \n", + "68 5971.856480 \n", + "69 5880.020669 \n", + "\n", + " RF_Regressor_train_R_2_after_ablation_7 \\\n", + "0 -0.007903 \n", + "1 -0.026091 \n", + "2 -0.030404 \n", + "3 -0.030988 \n", + "4 0.002889 \n", + ".. ... \n", + "65 -0.009881 \n", + "66 -0.012579 \n", + "67 0.029589 \n", + "68 0.021374 \n", + "69 0.036424 \n", + "\n", + " RF_Regressor_train_MSE_after_ablation_8 \\\n", + "0 6149.594281 \n", + "1 6199.593162 \n", + "2 6247.690750 \n", + "3 6220.357930 \n", + "4 6028.684646 \n", + ".. ... \n", + "65 6100.482692 \n", + "66 6235.406215 \n", + "67 5990.038030 \n", + "68 6054.179537 \n", + "69 5955.174232 \n", + "\n", + " RF_Regressor_train_R_2_after_ablation_8 \\\n", + "0 -0.020336 \n", + "1 -0.028632 \n", + "2 -0.036612 \n", + "3 -0.032077 \n", + "4 -0.000275 \n", + ".. ... \n", + "65 0.000296 \n", + "66 -0.021815 \n", + "67 0.018395 \n", + "68 0.007884 \n", + "69 0.024108 \n", + "\n", + " RF_Regressor_train_MSE_after_ablation_9 \\\n", + "0 6175.817312 \n", + "1 6192.776084 \n", + "2 6250.071403 \n", + "3 6228.987740 \n", + "4 6089.516761 \n", + ".. ... \n", + "65 6098.125073 \n", + "66 6213.565248 \n", + "67 6126.092314 \n", + "68 6175.355063 \n", + "69 6043.195386 \n", + "\n", + " RF_Regressor_train_R_2_after_ablation_9 \\\n", + "0 -0.024687 \n", + "1 -0.027500 \n", + "2 -0.037007 \n", + "3 -0.033509 \n", + "4 -0.010368 \n", + ".. ... \n", + "65 0.000682 \n", + "66 -0.018235 \n", + "67 -0.003901 \n", + "68 -0.011974 \n", + "69 0.009684 \n", + "\n", + " RF_Regressor_train_MSE_after_ablation_10 \\\n", + "0 6202.436470 \n", + "1 6202.436470 \n", + "2 6202.436470 \n", + "3 6202.436470 \n", + "4 6202.436470 \n", + ".. ... \n", + "65 6136.821625 \n", + "66 6136.821625 \n", + "67 6136.821625 \n", + "68 6136.821625 \n", + "69 6136.821625 \n", + "\n", + " RF_Regressor_train_R_2_after_ablation_10 \\\n", + "0 -0.029103 \n", + "1 -0.029103 \n", + "2 -0.029103 \n", + "3 -0.029103 \n", + "4 -0.029103 \n", + ".. ... \n", + "65 -0.005659 \n", + "66 -0.005659 \n", + "67 -0.005659 \n", + "68 -0.005659 \n", + "69 -0.005659 \n", + "\n", + " Linear_train_MSE_before_ablation Linear_train_R_2_before_ablation \\\n", + "0 2888.523636 0.520738 \n", + "1 2888.523636 0.520738 \n", + "2 2888.523636 0.520738 \n", + "3 2888.523636 0.520738 \n", + "4 2888.523636 0.520738 \n", + ".. ... ... \n", + "65 2821.915630 0.537564 \n", + "66 2821.915630 0.537564 \n", + "67 2821.915630 0.537564 \n", + "68 2821.915630 0.537564 \n", + "69 2821.915630 0.537564 \n", + "\n", + " Linear_train_MSE_after_ablation_1 Linear_train_R_2_after_ablation_1 \\\n", + "0 3761.316620 0.375925 \n", + "1 3916.706467 0.350143 \n", + "2 3914.109435 0.350574 \n", + "3 4024.382264 0.332278 \n", + "4 3867.089557 0.358376 \n", + ".. ... ... \n", + "65 4107.855143 0.326834 \n", + "66 4124.907264 0.324039 \n", + "67 4042.670841 0.337516 \n", + "68 4061.883737 0.334367 \n", + "69 3838.501816 0.370973 \n", + "\n", + " Linear_train_MSE_after_ablation_2 Linear_train_R_2_after_ablation_2 \\\n", + "0 4957.235173 0.177500 \n", + "1 5015.669338 0.167804 \n", + "2 4885.192723 0.189453 \n", + "3 5102.326251 0.153426 \n", + "4 4936.004551 0.181022 \n", + ".. ... ... \n", + "65 5559.862756 0.088889 \n", + "66 5934.906752 0.027429 \n", + "67 5643.649191 0.075158 \n", + "68 5760.011411 0.056090 \n", + "69 5478.137514 0.102281 \n", + "\n", + " Linear_train_MSE_after_ablation_3 Linear_train_R_2_after_ablation_3 \\\n", + "0 5736.434644 0.048215 \n", + "1 5721.361272 0.050716 \n", + "2 5492.817224 0.088636 \n", + "3 5740.581038 0.047527 \n", + "4 5618.567424 0.067772 \n", + ".. ... ... \n", + "65 6349.285129 -0.040476 \n", + "66 6682.422829 -0.095068 \n", + "67 6612.534967 -0.083616 \n", + "68 6607.114189 -0.082727 \n", + "69 6270.632052 -0.027587 \n", + "\n", + " Linear_train_MSE_after_ablation_4 Linear_train_R_2_after_ablation_4 \\\n", + "0 6023.733378 0.000547 \n", + "1 6139.722264 -0.018698 \n", + "2 6031.489112 -0.000740 \n", + "3 6321.322530 -0.048829 \n", + "4 5961.929743 0.010801 \n", + ".. ... ... \n", + "65 6869.438005 -0.125715 \n", + "66 7204.488112 -0.180621 \n", + "67 7126.165388 -0.167786 \n", + "68 7187.319599 -0.177807 \n", + "69 6728.929011 -0.102690 \n", + "\n", + " Linear_train_MSE_after_ablation_5 Linear_train_R_2_after_ablation_5 \\\n", + "0 6302.387576 -0.045687 \n", + "1 6341.303427 -0.052144 \n", + "2 6247.694137 -0.036612 \n", + "3 6555.449924 -0.087675 \n", + "4 6114.847766 -0.014571 \n", + ".. ... ... \n", + "65 7111.388743 -0.165364 \n", + "66 7443.348015 -0.219764 \n", + "67 7249.087498 -0.187930 \n", + "68 7383.018224 -0.209877 \n", + "69 7242.790599 -0.186898 \n", + "\n", + " Linear_train_MSE_after_ablation_6 Linear_train_R_2_after_ablation_6 \\\n", + "0 6410.100574 -0.063559 \n", + "1 6388.554668 -0.059984 \n", + "2 6325.959184 -0.049598 \n", + "3 6510.868650 -0.080278 \n", + "4 6198.656398 -0.028476 \n", + ".. ... ... \n", + "65 7315.462544 -0.198807 \n", + "66 7525.682868 -0.233256 \n", + "67 7278.281425 -0.192714 \n", + "68 7452.938431 -0.221335 \n", + "69 7201.354577 -0.180107 \n", + "\n", + " Linear_train_MSE_after_ablation_7 Linear_train_R_2_after_ablation_7 \\\n", + "0 6404.359728 -0.062606 \n", + "1 6433.855484 -0.067500 \n", + "2 6326.214645 -0.049640 \n", + "3 6390.723824 -0.060344 \n", + "4 6287.859301 -0.043277 \n", + ".. ... ... \n", + "65 7313.503384 -0.198486 \n", + "66 7552.747816 -0.237691 \n", + "67 6820.752066 -0.117737 \n", + "68 7070.721750 -0.158700 \n", + "69 7055.655190 -0.156231 \n", + "\n", + " Linear_train_MSE_after_ablation_8 Linear_train_R_2_after_ablation_8 \\\n", + "0 6297.330585 -0.044848 \n", + "1 6443.171782 -0.069046 \n", + "2 6208.409712 -0.030094 \n", + "3 6225.389065 -0.032912 \n", + "4 6274.965297 -0.041137 \n", + ".. ... ... \n", + "65 7088.936649 -0.161685 \n", + "66 7347.797853 -0.204105 \n", + "67 6559.088545 -0.074857 \n", + "68 6725.906785 -0.102194 \n", + "69 6564.300773 -0.075711 \n", + "\n", + " Linear_train_MSE_after_ablation_9 Linear_train_R_2_after_ablation_9 \\\n", + "0 6131.286306 -0.017298 \n", + "1 6298.161514 -0.044986 \n", + "2 6127.752193 -0.016712 \n", + "3 6088.198905 -0.010149 \n", + "4 6153.972043 -0.021062 \n", + ".. ... ... \n", + "65 6596.083346 -0.080920 \n", + "66 6955.511368 -0.139820 \n", + "67 6186.218071 -0.013754 \n", + "68 6256.765405 -0.025315 \n", + "69 6221.826715 -0.019589 \n", + "\n", + " Linear_train_MSE_after_ablation_10 Linear_train_R_2_after_ablation_10 \\\n", + "0 6027.030120 0.0 \n", + "1 6027.030120 0.0 \n", + "2 6027.030120 0.0 \n", + "3 6027.030120 0.0 \n", + "4 6027.030120 0.0 \n", + ".. ... ... \n", + "65 6102.287573 0.0 \n", + "66 6102.287573 0.0 \n", + "67 6102.287573 0.0 \n", + "68 6102.287573 0.0 \n", + "69 6102.287573 0.0 \n", + "\n", + " XGB_Regressor_train_MSE_before_ablation \\\n", + "0 0.668153 \n", + "1 0.668153 \n", + "2 0.668153 \n", + "3 0.668153 \n", + "4 0.668153 \n", + ".. ... \n", + "65 0.760518 \n", + "66 0.760518 \n", + "67 0.760518 \n", + "68 0.760518 \n", + "69 0.760518 \n", + "\n", + " XGB_Regressor_train_R_2_before_ablation \\\n", + "0 0.999889 \n", + "1 0.999889 \n", + "2 0.999889 \n", + "3 0.999889 \n", + "4 0.999889 \n", + ".. ... \n", + "65 0.999875 \n", + "66 0.999875 \n", + "67 0.999875 \n", + "68 0.999875 \n", + "69 0.999875 \n", + "\n", + " XGB_Regressor_train_MSE_after_ablation_1 \\\n", + "0 1216.244402 \n", + "1 1208.211458 \n", + "2 1213.928121 \n", + "3 1110.645464 \n", + "4 1227.836013 \n", + ".. ... \n", + "65 1763.906154 \n", + "66 1782.617426 \n", + "67 1830.868812 \n", + "68 1549.952598 \n", + "69 1461.549087 \n", + "\n", + " XGB_Regressor_train_R_2_after_ablation_1 \\\n", + "0 0.798202 \n", + "1 0.799535 \n", + "2 0.798586 \n", + "3 0.815723 \n", + "4 0.796278 \n", + ".. ... \n", + "65 0.710943 \n", + "66 0.707877 \n", + "67 0.699970 \n", + "68 0.746005 \n", + "69 0.760492 \n", + "\n", + " XGB_Regressor_train_MSE_after_ablation_2 \\\n", + "0 2651.509022 \n", + "1 2624.721798 \n", + "2 2602.100460 \n", + "3 2856.413683 \n", + "4 2655.454874 \n", + ".. ... \n", + "65 3323.255445 \n", + "66 3201.913810 \n", + "67 3019.931424 \n", + "68 2949.589294 \n", + "69 2485.350227 \n", + "\n", + " XGB_Regressor_train_R_2_after_ablation_2 \\\n", + "0 0.560064 \n", + "1 0.564508 \n", + "2 0.568262 \n", + "3 0.526066 \n", + "4 0.559409 \n", + ".. ... \n", + "65 0.455408 \n", + "66 0.475293 \n", + "67 0.505115 \n", + "68 0.516642 \n", + "69 0.592718 \n", + "\n", + " XGB_Regressor_train_MSE_after_ablation_3 \\\n", + "0 3485.395705 \n", + "1 3463.798074 \n", + "2 3578.727889 \n", + "3 3690.510793 \n", + "4 3489.393571 \n", + ".. ... \n", + "65 4813.473905 \n", + "66 4730.471547 \n", + "67 4240.653693 \n", + "68 4180.439924 \n", + "69 3405.374928 \n", + "\n", + " XGB_Regressor_train_R_2_after_ablation_3 \\\n", + "0 0.421706 \n", + "1 0.425289 \n", + "2 0.406220 \n", + "3 0.387673 \n", + "4 0.421043 \n", + ".. ... \n", + "65 0.211202 \n", + "66 0.224804 \n", + "67 0.305071 \n", + "68 0.314939 \n", + "69 0.441951 \n", + "\n", + " XGB_Regressor_train_MSE_after_ablation_4 \\\n", + "0 3999.628256 \n", + "1 4048.620645 \n", + "2 4127.285053 \n", + "3 4235.765848 \n", + "4 4007.950448 \n", + ".. ... \n", + "65 5344.880717 \n", + "66 5150.386860 \n", + "67 4955.577984 \n", + "68 5094.934816 \n", + "69 4237.103450 \n", + "\n", + " XGB_Regressor_train_R_2_after_ablation_4 \\\n", + "0 0.336385 \n", + "1 0.328256 \n", + "2 0.315204 \n", + "3 0.297205 \n", + "4 0.335004 \n", + ".. ... \n", + "65 0.124119 \n", + "66 0.155991 \n", + "67 0.187915 \n", + "68 0.165078 \n", + "69 0.305653 \n", + "\n", + " XGB_Regressor_train_MSE_after_ablation_5 \\\n", + "0 4638.982468 \n", + "1 4674.750775 \n", + "2 4494.619078 \n", + "3 4872.452681 \n", + "4 4607.906326 \n", + ".. ... \n", + "65 5630.315250 \n", + "66 5606.040199 \n", + "67 5682.969251 \n", + "68 5662.407971 \n", + "69 5025.917365 \n", + "\n", + " XGB_Regressor_train_R_2_after_ablation_5 \\\n", + "0 0.230304 \n", + "1 0.224369 \n", + "2 0.254256 \n", + "3 0.191567 \n", + "4 0.235460 \n", + ".. ... \n", + "65 0.077344 \n", + "66 0.081322 \n", + "67 0.068715 \n", + "68 0.072084 \n", + "69 0.176388 \n", + "\n", + " XGB_Regressor_train_MSE_after_ablation_6 \\\n", + "0 5027.302770 \n", + "1 4920.398751 \n", + "2 5001.728634 \n", + "3 5242.038979 \n", + "4 5426.288241 \n", + ".. ... \n", + "65 5884.420100 \n", + "66 5963.154321 \n", + "67 6023.360442 \n", + "68 5954.963272 \n", + "69 5526.111155 \n", + "\n", + " XGB_Regressor_train_R_2_after_ablation_6 \\\n", + "0 0.165874 \n", + "1 0.183611 \n", + "2 0.170117 \n", + "3 0.130245 \n", + "4 0.099675 \n", + ".. ... \n", + "65 0.035703 \n", + "66 0.022800 \n", + "67 0.012934 \n", + "68 0.024142 \n", + "69 0.094420 \n", + "\n", + " XGB_Regressor_train_MSE_after_ablation_7 \\\n", + "0 5386.895147 \n", + "1 5196.455731 \n", + "2 5463.751185 \n", + "3 5452.423985 \n", + "4 5628.621190 \n", + ".. ... \n", + "65 6344.961992 \n", + "66 6399.094632 \n", + "67 6165.455206 \n", + "68 6157.649217 \n", + "69 6041.587390 \n", + "\n", + " XGB_Regressor_train_R_2_after_ablation_7 \\\n", + "0 0.106211 \n", + "1 0.137808 \n", + "2 0.093459 \n", + "3 0.095338 \n", + "4 0.066104 \n", + ".. ... \n", + "65 -0.039768 \n", + "66 -0.048639 \n", + "67 -0.010351 \n", + "68 -0.009072 \n", + "69 0.009947 \n", + "\n", + " XGB_Regressor_train_MSE_after_ablation_8 \\\n", + "0 5732.155126 \n", + "1 5560.146803 \n", + "2 5817.996707 \n", + "3 5587.003451 \n", + "4 5785.556238 \n", + ".. ... \n", + "65 6600.780924 \n", + "66 6741.407424 \n", + "67 6512.064765 \n", + "68 6483.893137 \n", + "69 6323.935368 \n", + "\n", + " XGB_Regressor_train_R_2_after_ablation_8 \\\n", + "0 0.048925 \n", + "1 0.077465 \n", + "2 0.034683 \n", + "3 0.073009 \n", + "4 0.040065 \n", + ".. ... \n", + "65 -0.081690 \n", + "66 -0.104734 \n", + "67 -0.067151 \n", + "68 -0.062535 \n", + "69 -0.036322 \n", + "\n", + " XGB_Regressor_train_MSE_after_ablation_9 \\\n", + "0 6017.858119 \n", + "1 5842.122436 \n", + "2 6094.716095 \n", + "3 6176.740303 \n", + "4 5987.542309 \n", + ".. ... \n", + "65 6766.067981 \n", + "66 6921.960510 \n", + "67 6924.629590 \n", + "68 6980.145851 \n", + "69 6895.975176 \n", + "\n", + " XGB_Regressor_train_R_2_after_ablation_9 \\\n", + "0 0.001522 \n", + "1 0.030680 \n", + "2 -0.011230 \n", + "3 -0.024840 \n", + "4 0.006552 \n", + ".. ... \n", + "65 -0.108776 \n", + "66 -0.134322 \n", + "67 -0.134760 \n", + "68 -0.143857 \n", + "69 -0.130064 \n", + "\n", + " XGB_Regressor_train_MSE_after_ablation_10 \\\n", + "0 6161.700389 \n", + "1 6161.700389 \n", + "2 6161.700389 \n", + "3 6161.700389 \n", + "4 6161.700389 \n", + ".. ... \n", + "65 7157.760530 \n", + "66 7157.760530 \n", + "67 7157.760530 \n", + "68 7157.760530 \n", + "69 7157.760530 \n", + "\n", + " XGB_Regressor_train_R_2_after_ablation_10 \\\n", + "0 -0.022344 \n", + "1 -0.022344 \n", + "2 -0.022344 \n", + "3 -0.022344 \n", + "4 -0.022344 \n", + ".. ... \n", + "65 -0.172963 \n", + "66 -0.172963 \n", + "67 -0.172963 \n", + "68 -0.172963 \n", + "69 -0.172963 \n", + "\n", + " RF_Plus_Regressor_train_MSE_before_ablation \\\n", + "0 2328.348592 \n", + "1 2328.348592 \n", + "2 2328.348592 \n", + "3 2328.348592 \n", + "4 2328.348592 \n", + ".. ... \n", + "65 2334.402428 \n", + "66 2334.402428 \n", + "67 2334.402428 \n", + "68 2334.402428 \n", + "69 2334.402428 \n", + "\n", + " RF_Plus_Regressor_train_R_2_before_ablation \\\n", + "0 0.613682 \n", + "1 0.613682 \n", + "2 0.613682 \n", + "3 0.613682 \n", + "4 0.613682 \n", + ".. ... \n", + "65 0.617455 \n", + "66 0.617455 \n", + "67 0.617455 \n", + "68 0.617455 \n", + "69 0.617455 \n", + "\n", + " RF_Plus_Regressor_train_MSE_after_ablation_1 \\\n", + "0 3455.778837 \n", + "1 3586.105224 \n", + "2 3618.673346 \n", + "3 3681.820673 \n", + "4 3556.013929 \n", + ".. ... \n", + "65 3727.738049 \n", + "66 3761.718243 \n", + "67 3673.127492 \n", + "68 3582.949000 \n", + "69 3432.805310 \n", + "\n", + " RF_Plus_Regressor_train_R_2_after_ablation_1 \\\n", + "0 0.426620 \n", + "1 0.404996 \n", + "2 0.399593 \n", + "3 0.389115 \n", + "4 0.409989 \n", + ".. ... \n", + "65 0.389124 \n", + "66 0.383556 \n", + "67 0.398074 \n", + "68 0.412851 \n", + "69 0.437456 \n", + "\n", + " RF_Plus_Regressor_train_MSE_after_ablation_2 \\\n", + "0 4632.400024 \n", + "1 4700.756327 \n", + "2 4672.741484 \n", + "3 4820.261610 \n", + "4 4662.131533 \n", + ".. ... \n", + "65 4792.390428 \n", + "66 5045.947750 \n", + "67 4901.292728 \n", + "68 4923.427170 \n", + "69 4520.363739 \n", + "\n", + " RF_Plus_Regressor_train_R_2_after_ablation_2 \\\n", + "0 0.231396 \n", + "1 0.220054 \n", + "2 0.224702 \n", + "3 0.200226 \n", + "4 0.226463 \n", + ".. ... \n", + "65 0.214657 \n", + "66 0.173106 \n", + "67 0.196811 \n", + "68 0.193183 \n", + "69 0.259235 \n", + "\n", + " RF_Plus_Regressor_train_MSE_after_ablation_3 \\\n", + "0 5426.927997 \n", + "1 5412.704307 \n", + "2 5318.471574 \n", + "3 5537.866064 \n", + "4 5368.597563 \n", + ".. ... \n", + "65 5403.449429 \n", + "66 5554.918333 \n", + "67 5568.985794 \n", + "68 5566.165474 \n", + "69 5213.767608 \n", + "\n", + " RF_Plus_Regressor_train_R_2_after_ablation_3 \\\n", + "0 0.099568 \n", + "1 0.101928 \n", + "2 0.117563 \n", + "3 0.081162 \n", + "4 0.109247 \n", + ".. ... \n", + "65 0.114521 \n", + "66 0.089699 \n", + "67 0.087394 \n", + "68 0.087856 \n", + "69 0.145604 \n", + "\n", + " RF_Plus_Regressor_train_MSE_after_ablation_4 \\\n", + "0 5750.819366 \n", + "1 5855.402714 \n", + "2 5765.457023 \n", + "3 5995.550352 \n", + "4 5731.046785 \n", + ".. ... \n", + "65 5987.595488 \n", + "66 6154.518735 \n", + "67 5933.849628 \n", + "68 5979.565894 \n", + "69 5612.293318 \n", + "\n", + " RF_Plus_Regressor_train_R_2_after_ablation_4 \\\n", + "0 0.045829 \n", + "1 0.028476 \n", + "2 0.043400 \n", + "3 0.005223 \n", + "4 0.049109 \n", + ".. ... \n", + "65 0.018795 \n", + "66 -0.008559 \n", + "67 0.027602 \n", + "68 0.020111 \n", + "69 0.080297 \n", + "\n", + " RF_Plus_Regressor_train_MSE_after_ablation_5 \\\n", + "0 6024.411053 \n", + "1 6061.293311 \n", + "2 6003.824735 \n", + "3 6243.577365 \n", + "4 5894.048153 \n", + ".. ... \n", + "65 6134.983178 \n", + "66 6418.420962 \n", + "67 6067.913538 \n", + "68 6150.733264 \n", + "69 5905.468277 \n", + "\n", + " RF_Plus_Regressor_train_R_2_after_ablation_5 \\\n", + "0 0.000435 \n", + "1 -0.005685 \n", + "2 0.003850 \n", + "3 -0.035929 \n", + "4 0.022064 \n", + ".. ... \n", + "65 -0.005358 \n", + "66 -0.051806 \n", + "67 0.005633 \n", + "68 -0.007939 \n", + "69 0.032253 \n", + "\n", + " RF_Plus_Regressor_train_MSE_after_ablation_6 \\\n", + "0 6120.464775 \n", + "1 6135.493568 \n", + "2 6113.418631 \n", + "3 6221.975848 \n", + "4 5960.296484 \n", + ".. ... \n", + "65 6293.557154 \n", + "66 6428.170085 \n", + "67 6195.677726 \n", + "68 6225.990012 \n", + "69 6004.708413 \n", + "\n", + " RF_Plus_Regressor_train_R_2_after_ablation_6 \\\n", + "0 -0.015503 \n", + "1 -0.017996 \n", + "2 -0.014334 \n", + "3 -0.032345 \n", + "4 0.011072 \n", + ".. ... \n", + "65 -0.031344 \n", + "66 -0.053403 \n", + "67 -0.015304 \n", + "68 -0.020271 \n", + "69 0.015991 \n", + "\n", + " RF_Plus_Regressor_train_MSE_after_ablation_7 \\\n", + "0 6125.663086 \n", + "1 6186.457881 \n", + "2 6179.035357 \n", + "3 6190.922138 \n", + "4 6029.442460 \n", + ".. ... \n", + "65 6305.937749 \n", + "66 6373.102912 \n", + "67 6184.703036 \n", + "68 6222.193823 \n", + "69 6092.876970 \n", + "\n", + " RF_Plus_Regressor_train_R_2_after_ablation_7 \\\n", + "0 -0.016365 \n", + "1 -0.026452 \n", + "2 -0.025221 \n", + "3 -0.027193 \n", + "4 -0.000400 \n", + ".. ... \n", + "65 -0.033373 \n", + "66 -0.044379 \n", + "67 -0.013506 \n", + "68 -0.019649 \n", + "69 0.001542 \n", + "\n", + " RF_Plus_Regressor_train_MSE_after_ablation_8 \\\n", + "0 6092.410122 \n", + "1 6171.165504 \n", + "2 6148.517487 \n", + "3 6150.480056 \n", + "4 6041.139850 \n", + ".. ... \n", + "65 6243.400250 \n", + "66 6360.759368 \n", + "67 6165.895689 \n", + "68 6178.858171 \n", + "69 6096.781290 \n", + "\n", + " RF_Plus_Regressor_train_R_2_after_ablation_8 \\\n", + "0 -0.010848 \n", + "1 -0.023915 \n", + "2 -0.020157 \n", + "3 -0.020483 \n", + "4 -0.002341 \n", + ".. ... \n", + "65 -0.023125 \n", + "66 -0.042357 \n", + "67 -0.010424 \n", + "68 -0.012548 \n", + "69 0.000902 \n", + "\n", + " RF_Plus_Regressor_train_MSE_after_ablation_9 \\\n", + "0 6050.975584 \n", + "1 6102.377688 \n", + "2 6098.941000 \n", + "3 6103.170216 \n", + "4 6036.782692 \n", + ".. ... \n", + "65 6177.260466 \n", + "66 6269.951470 \n", + "67 6141.011126 \n", + "68 6164.131500 \n", + "69 6104.946294 \n", + "\n", + " RF_Plus_Regressor_train_R_2_after_ablation_9 \\\n", + "0 -0.003973 \n", + "1 -0.012502 \n", + "2 -0.011931 \n", + "3 -0.012633 \n", + "4 -0.001618 \n", + ".. ... \n", + "65 -0.012286 \n", + "66 -0.027476 \n", + "67 -0.006346 \n", + "68 -0.010135 \n", + "69 -0.000436 \n", + "\n", + " RF_Plus_Regressor_train_MSE_after_ablation_10 \\\n", + "0 6032.751362 \n", + "1 6032.751362 \n", + "2 6032.751362 \n", + "3 6032.751362 \n", + "4 6032.751362 \n", + ".. ... \n", + "65 6131.312645 \n", + "66 6131.312645 \n", + "67 6131.312645 \n", + "68 6131.312645 \n", + "69 6131.312645 \n", + "\n", + " RF_Plus_Regressor_train_R_2_after_ablation_10 train_data_ablation_time \\\n", + "0 -0.000949 10.026768 \n", + "1 -0.000949 10.083984 \n", + "2 -0.000949 10.183294 \n", + "3 -0.000949 9.835077 \n", + "4 -0.000949 9.809540 \n", + ".. ... ... \n", + "65 -0.004756 10.852957 \n", + "66 -0.004756 10.695844 \n", + "67 -0.004756 10.828993 \n", + "68 -0.004756 10.817527 \n", + "69 -0.004756 10.869999 \n", + "\n", + " RF_Regressor_test_MSE_before_ablation \\\n", + "0 3167.314235 \n", + "1 3167.314235 \n", + "2 3167.314235 \n", + "3 3167.314235 \n", + "4 3476.788124 \n", + ".. ... \n", + "65 3072.457734 \n", + "66 3072.457734 \n", + "67 3074.549811 \n", + "68 3074.549811 \n", + "69 3074.549811 \n", + "\n", + " RF_Regressor_test_R_2_before_ablation \\\n", + "0 0.445492 \n", + "1 0.445492 \n", + "2 0.445492 \n", + "3 0.445492 \n", + "4 0.417422 \n", + ".. ... \n", + "65 0.448450 \n", + "66 0.448450 \n", + "67 0.439991 \n", + "68 0.439991 \n", + "69 0.439991 \n", + "\n", + " RF_Regressor_test_MSE_after_ablation_1 \\\n", + "0 3788.003075 \n", + "1 3827.691114 \n", + "2 3911.846966 \n", + "3 3775.838507 \n", + "4 4194.571341 \n", + ".. ... \n", + "65 3599.197638 \n", + "66 3743.320860 \n", + "67 3824.972040 \n", + "68 3677.383895 \n", + "69 3488.988909 \n", + "\n", + " RF_Regressor_test_R_2_after_ablation_1 \\\n", + "0 0.336827 \n", + "1 0.329878 \n", + "2 0.315145 \n", + "3 0.338956 \n", + "4 0.297148 \n", + ".. ... \n", + "65 0.353892 \n", + "66 0.328020 \n", + "67 0.303307 \n", + "68 0.330189 \n", + "69 0.364504 \n", + "\n", + " RF_Regressor_test_MSE_after_ablation_2 \\\n", + "0 4752.063649 \n", + "1 4578.262051 \n", + "2 4673.293043 \n", + "3 4633.157541 \n", + "4 5334.974847 \n", + ".. ... \n", + "65 4064.045641 \n", + "66 4211.329333 \n", + "67 4273.545813 \n", + "68 4223.973426 \n", + "69 4038.189629 \n", + "\n", + " RF_Regressor_test_R_2_after_ablation_2 \\\n", + "0 0.168047 \n", + "1 0.198474 \n", + "2 0.181837 \n", + "3 0.188864 \n", + "4 0.106060 \n", + ".. ... \n", + "65 0.270445 \n", + "66 0.244006 \n", + "67 0.221602 \n", + "68 0.230631 \n", + "69 0.264471 \n", + "\n", + " RF_Regressor_test_MSE_after_ablation_3 \\\n", + "0 5282.813050 \n", + "1 5044.353110 \n", + "2 5165.809068 \n", + "3 5247.502613 \n", + "4 5596.675389 \n", + ".. ... \n", + "65 4786.645423 \n", + "66 4765.872128 \n", + "67 4822.571646 \n", + "68 4853.249242 \n", + "69 4713.345462 \n", + "\n", + " RF_Regressor_test_R_2_after_ablation_3 \\\n", + "0 0.075127 \n", + "1 0.116875 \n", + "2 0.095611 \n", + "3 0.081309 \n", + "4 0.062209 \n", + ".. ... \n", + "65 0.140728 \n", + "66 0.144457 \n", + "67 0.121601 \n", + "68 0.116013 \n", + "69 0.141496 \n", + "\n", + " RF_Regressor_test_MSE_after_ablation_4 \\\n", + "0 5661.928879 \n", + "1 5456.091373 \n", + "2 5579.673507 \n", + "3 5637.322633 \n", + "4 5937.622020 \n", + ".. ... \n", + "65 5216.701738 \n", + "66 5236.877977 \n", + "67 5169.557621 \n", + "68 5184.298032 \n", + "69 5046.789311 \n", + "\n", + " RF_Regressor_test_R_2_after_ablation_4 \\\n", + "0 0.008755 \n", + "1 0.044791 \n", + "2 0.023155 \n", + "3 0.013063 \n", + "4 0.005079 \n", + ".. ... \n", + "65 0.063527 \n", + "66 0.059905 \n", + "67 0.058400 \n", + "68 0.055715 \n", + "69 0.080761 \n", + "\n", + " RF_Regressor_test_MSE_after_ablation_5 \\\n", + "0 5833.559426 \n", + "1 5793.795173 \n", + "2 5866.425027 \n", + "3 5960.763458 \n", + "4 6111.152277 \n", + ".. ... \n", + "65 5425.473666 \n", + "66 5625.037238 \n", + "67 5364.977537 \n", + "68 5471.391949 \n", + "69 5304.597975 \n", + "\n", + " RF_Regressor_test_R_2_after_ablation_5 \\\n", + "0 -0.021293 \n", + "1 -0.014331 \n", + "2 -0.027047 \n", + "3 -0.043563 \n", + "4 -0.023998 \n", + ".. ... \n", + "65 0.026049 \n", + "66 -0.009775 \n", + "67 0.022805 \n", + "68 0.003422 \n", + "69 0.033803 \n", + "\n", + " RF_Regressor_test_MSE_after_ablation_6 \\\n", + "0 5865.509482 \n", + "1 6010.746038 \n", + "2 5899.293811 \n", + "3 5977.057139 \n", + "4 6143.624744 \n", + ".. ... \n", + "65 5590.326152 \n", + "66 5521.985960 \n", + "67 5362.147595 \n", + "68 5443.474923 \n", + "69 5388.787525 \n", + "\n", + " RF_Regressor_test_R_2_after_ablation_6 \\\n", + "0 -0.026887 \n", + "1 -0.052313 \n", + "2 -0.032801 \n", + "3 -0.046415 \n", + "4 -0.029439 \n", + ".. ... \n", + "65 -0.003544 \n", + "66 0.008724 \n", + "67 0.023321 \n", + "68 0.008507 \n", + "69 0.018468 \n", + "\n", + " RF_Regressor_test_MSE_after_ablation_7 \\\n", + "0 5966.941781 \n", + "1 6049.385658 \n", + "2 6021.113226 \n", + "3 6028.927315 \n", + "4 6163.867887 \n", + ".. ... \n", + "65 5562.124282 \n", + "66 5545.446533 \n", + "67 5383.491593 \n", + "68 5455.547129 \n", + "69 5465.219576 \n", + "\n", + " RF_Regressor_test_R_2_after_ablation_7 \\\n", + "0 -0.044645 \n", + "1 -0.059078 \n", + "2 -0.054128 \n", + "3 -0.055496 \n", + "4 -0.032831 \n", + ".. ... \n", + "65 0.001518 \n", + "66 0.004512 \n", + "67 0.019433 \n", + "68 0.006308 \n", + "69 0.004547 \n", + "\n", + " RF_Regressor_test_MSE_after_ablation_8 \\\n", + "0 6001.779722 \n", + "1 5998.481445 \n", + "2 6042.816515 \n", + "3 6074.807174 \n", + "4 6244.000528 \n", + ".. ... \n", + "65 5644.709360 \n", + "66 5653.778023 \n", + "67 5405.576376 \n", + "68 5499.562086 \n", + "69 5509.129123 \n", + "\n", + " RF_Regressor_test_R_2_after_ablation_8 \\\n", + "0 -0.050744 \n", + "1 -0.050166 \n", + "2 -0.057928 \n", + "3 -0.063529 \n", + "4 -0.046258 \n", + ".. ... \n", + "65 -0.013307 \n", + "66 -0.014935 \n", + "67 0.015410 \n", + "68 -0.001709 \n", + "69 -0.003451 \n", + "\n", + " RF_Regressor_test_MSE_after_ablation_9 \\\n", + "0 6030.147576 \n", + "1 6036.697699 \n", + "2 6017.320805 \n", + "3 6086.136079 \n", + "4 6396.107074 \n", + ".. ... \n", + "65 5619.576540 \n", + "66 5661.451333 \n", + "67 5547.677265 \n", + "68 5564.283426 \n", + "69 5521.703510 \n", + "\n", + " RF_Regressor_test_R_2_after_ablation_9 \\\n", + "0 -0.055710 \n", + "1 -0.056857 \n", + "2 -0.053464 \n", + "3 -0.065512 \n", + "4 -0.071746 \n", + ".. ... \n", + "65 -0.008795 \n", + "66 -0.016312 \n", + "67 -0.010472 \n", + "68 -0.013497 \n", + "69 -0.005741 \n", + "\n", + " RF_Regressor_test_MSE_after_ablation_10 \\\n", + "0 6067.018319 \n", + "1 6067.018319 \n", + "2 6067.018319 \n", + "3 6067.018319 \n", + "4 6465.545412 \n", + ".. ... \n", + "65 5664.609603 \n", + "66 5664.609603 \n", + "67 5648.814576 \n", + "68 5648.814576 \n", + "69 5648.814576 \n", + "\n", + " RF_Regressor_test_R_2_after_ablation_10 Linear_test_MSE_before_ablation \\\n", + "0 -0.062165 3121.854972 \n", + "1 -0.062165 3121.854972 \n", + "2 -0.062165 3121.854972 \n", + "3 -0.062165 3121.854972 \n", + "4 -0.083381 3465.585233 \n", + ".. ... ... \n", + "65 -0.016879 3213.858553 \n", + "66 -0.016879 3213.858553 \n", + "67 -0.028894 3438.229965 \n", + "68 -0.028894 3438.229965 \n", + "69 -0.028894 3438.229965 \n", + "\n", + " Linear_test_R_2_before_ablation Linear_test_MSE_after_ablation_1 \\\n", + "0 0.453451 3802.338138 \n", + "1 0.453451 3803.232973 \n", + "2 0.453451 3782.799439 \n", + "3 0.453451 3739.288445 \n", + "4 0.419299 4161.596525 \n", + ".. ... ... \n", + "65 0.423066 4037.406723 \n", + "66 0.423066 4218.066221 \n", + "67 0.373749 4269.577351 \n", + "68 0.373749 4250.446715 \n", + "69 0.373749 4154.543994 \n", + "\n", + " Linear_test_R_2_after_ablation_1 Linear_test_MSE_after_ablation_2 \\\n", + "0 0.334317 4944.247196 \n", + "1 0.334160 4703.872125 \n", + "2 0.337738 4640.935068 \n", + "3 0.345355 4678.676433 \n", + "4 0.302674 5338.566511 \n", + ".. ... ... \n", + "65 0.275227 5200.381743 \n", + "66 0.242796 5356.336721 \n", + "67 0.222325 5222.916628 \n", + "68 0.225809 5168.535770 \n", + "69 0.243278 5271.242084 \n", + "\n", + " Linear_test_R_2_after_ablation_2 Linear_test_MSE_after_ablation_3 \\\n", + "0 0.134401 5658.191138 \n", + "1 0.176484 5324.761627 \n", + "2 0.187502 5146.024758 \n", + "3 0.180895 5452.652247 \n", + "4 0.105458 5866.474772 \n", + ".. ... ... \n", + "65 0.066456 5884.153057 \n", + "66 0.038460 5997.063026 \n", + "67 0.048681 5812.610512 \n", + "68 0.058586 5904.704003 \n", + "69 0.039878 5923.989444 \n", + "\n", + " Linear_test_R_2_after_ablation_3 Linear_test_MSE_after_ablation_4 \\\n", + "0 0.009409 6066.312661 \n", + "1 0.067783 5773.709727 \n", + "2 0.099075 5560.543096 \n", + "3 0.045393 5808.699092 \n", + "4 0.017001 6058.949364 \n", + ".. ... ... \n", + "65 -0.056290 6556.102398 \n", + "66 -0.076559 6524.414652 \n", + "67 -0.058728 6323.222346 \n", + "68 -0.075502 6346.397918 \n", + "69 -0.079015 6127.787889 \n", + "\n", + " Linear_test_R_2_after_ablation_4 Linear_test_MSE_after_ablation_5 \\\n", + "0 -0.062042 6021.472063 \n", + "1 -0.010815 5977.826552 \n", + "2 0.026504 5746.434317 \n", + "3 -0.016941 6069.614343 \n", + "4 -0.015251 6186.505044 \n", + ".. ... ... \n", + "65 -0.176915 6885.746921 \n", + "66 -0.171227 7015.708280 \n", + "67 -0.151733 6789.017275 \n", + "68 -0.155954 6559.339739 \n", + "69 -0.116136 6595.262987 \n", + "\n", + " Linear_test_R_2_after_ablation_5 Linear_test_MSE_after_ablation_6 \\\n", + "0 -0.054191 6101.326312 \n", + "1 -0.046550 5986.809965 \n", + "2 -0.006040 5832.336892 \n", + "3 -0.062620 5915.356963 \n", + "4 -0.036624 6078.148133 \n", + ".. ... ... \n", + "65 -0.236091 6917.122114 \n", + "66 -0.259421 7106.531998 \n", + "67 -0.236574 6888.956923 \n", + "68 -0.194740 6702.852473 \n", + "69 -0.201283 6947.470195 \n", + "\n", + " Linear_test_R_2_after_ablation_6 Linear_test_MSE_after_ablation_7 \\\n", + "0 -0.068172 6090.259226 \n", + "1 -0.048123 5983.111169 \n", + "2 -0.021079 5952.085807 \n", + "3 -0.035613 6006.034824 \n", + "4 -0.018468 6079.932688 \n", + ".. ... ... \n", + "65 -0.241723 6905.819125 \n", + "66 -0.275725 6990.755293 \n", + "67 -0.254778 6342.579611 \n", + "68 -0.220880 6652.209705 \n", + "69 -0.265435 6558.722886 \n", + "\n", + " Linear_test_R_2_after_ablation_7 Linear_test_MSE_after_ablation_8 \\\n", + "0 -0.066234 6039.050269 \n", + "1 -0.047475 5939.508997 \n", + "2 -0.042044 5999.332220 \n", + "3 -0.051489 5993.584111 \n", + "4 -0.018767 6124.462336 \n", + ".. ... ... \n", + "65 -0.239694 6489.716483 \n", + "66 -0.254941 6853.979093 \n", + "67 -0.155259 5805.435651 \n", + "68 -0.211656 6360.483378 \n", + "69 -0.194628 6060.428514 \n", + "\n", + " Linear_test_R_2_after_ablation_8 Linear_test_MSE_after_ablation_9 \\\n", + "0 -0.057269 5875.871694 \n", + "1 -0.039842 5810.251492 \n", + "2 -0.050315 5843.222894 \n", + "3 -0.049309 5835.219347 \n", + "4 -0.026228 6098.814817 \n", + ".. ... ... \n", + "65 -0.164998 5999.861947 \n", + "66 -0.230388 6484.153190 \n", + "67 -0.057421 5647.333250 \n", + "68 -0.158520 5807.268863 \n", + "69 -0.103867 5729.046317 \n", + "\n", + " Linear_test_R_2_after_ablation_9 Linear_test_MSE_after_ablation_10 \\\n", + "0 -0.028701 5743.289993 \n", + "1 -0.017212 5743.289993 \n", + "2 -0.022985 5743.289993 \n", + "3 -0.021584 5743.289993 \n", + "4 -0.021931 6050.073529 \n", + ".. ... ... \n", + "65 -0.077062 5585.176699 \n", + "66 -0.163999 5585.176699 \n", + "67 -0.028624 5535.318508 \n", + "68 -0.057755 5535.318508 \n", + "69 -0.043508 5535.318508 \n", + "\n", + " Linear_test_R_2_after_ablation_10 XGB_Regressor_test_MSE_before_ablation \\\n", + "0 -0.005489 3565.479582 \n", + "1 -0.005489 3565.479582 \n", + "2 -0.005489 3565.479582 \n", + "3 -0.005489 3565.479582 \n", + "4 -0.013764 3931.667854 \n", + ".. ... ... \n", + "65 -0.002620 3725.748845 \n", + "66 -0.002620 3725.748845 \n", + "67 -0.008221 3761.115159 \n", + "68 -0.008221 3761.115159 \n", + "69 -0.008221 3761.115159 \n", + "\n", + " XGB_Regressor_test_R_2_before_ablation \\\n", + "0 0.375784 \n", + "1 0.375784 \n", + "2 0.375784 \n", + "3 0.375784 \n", + "4 0.341201 \n", + ".. ... \n", + "65 0.331174 \n", + "66 0.331174 \n", + "67 0.314938 \n", + "68 0.314938 \n", + "69 0.314938 \n", + "\n", + " XGB_Regressor_test_MSE_after_ablation_1 \\\n", + "0 4362.897831 \n", + "1 4417.125378 \n", + "2 4491.207741 \n", + "3 4237.764376 \n", + "4 4787.549007 \n", + ".. ... \n", + "65 4237.968847 \n", + "66 4433.523117 \n", + "67 4551.081588 \n", + "68 4484.427719 \n", + "69 4499.283634 \n", + "\n", + " XGB_Regressor_test_R_2_after_ablation_1 \\\n", + "0 0.236179 \n", + "1 0.226685 \n", + "2 0.213715 \n", + "3 0.258086 \n", + "4 0.197788 \n", + ".. ... \n", + "65 0.239223 \n", + "66 0.204119 \n", + "67 0.171051 \n", + "68 0.183191 \n", + "69 0.180486 \n", + "\n", + " XGB_Regressor_test_MSE_after_ablation_2 \\\n", + "0 5082.947380 \n", + "1 5059.030994 \n", + "2 5325.002424 \n", + "3 5120.520406 \n", + "4 5654.969990 \n", + ".. ... \n", + "65 5811.342427 \n", + "66 5404.224345 \n", + "67 5212.816093 \n", + "68 5230.083512 \n", + "69 4657.567836 \n", + "\n", + " XGB_Regressor_test_R_2_after_ablation_2 \\\n", + "0 0.110118 \n", + "1 0.114305 \n", + "2 0.067741 \n", + "3 0.103540 \n", + "4 0.052441 \n", + ".. ... \n", + "65 -0.043220 \n", + "66 0.029864 \n", + "67 0.050520 \n", + "68 0.047375 \n", + "69 0.151655 \n", + "\n", + " XGB_Regressor_test_MSE_after_ablation_3 \\\n", + "0 5443.059555 \n", + "1 5123.918062 \n", + "2 5404.375561 \n", + "3 5318.162829 \n", + "4 5475.757988 \n", + ".. ... \n", + "65 7035.886520 \n", + "66 6252.311144 \n", + "67 5727.578800 \n", + "68 6147.504065 \n", + "69 5698.794307 \n", + "\n", + " XGB_Regressor_test_R_2_after_ablation_3 \\\n", + "0 0.047073 \n", + "1 0.102945 \n", + "2 0.053845 \n", + "3 0.068939 \n", + "4 0.082470 \n", + ".. ... \n", + "65 -0.263043 \n", + "66 -0.122380 \n", + "67 -0.043240 \n", + "68 -0.119727 \n", + "69 -0.037997 \n", + "\n", + " XGB_Regressor_test_MSE_after_ablation_4 \\\n", + "0 5747.170461 \n", + "1 5524.767115 \n", + "2 6105.030874 \n", + "3 5673.859855 \n", + "4 5690.431182 \n", + ".. ... \n", + "65 6466.436133 \n", + "66 6135.927928 \n", + "67 6311.016611 \n", + "68 6596.737184 \n", + "69 6048.504854 \n", + "\n", + " XGB_Regressor_test_R_2_after_ablation_4 \\\n", + "0 -0.006169 \n", + "1 0.032768 \n", + "2 -0.068820 \n", + "3 0.006666 \n", + "4 0.046499 \n", + ".. ... \n", + "65 -0.160819 \n", + "66 -0.101488 \n", + "67 -0.149510 \n", + "68 -0.201552 \n", + "69 -0.101695 \n", + "\n", + " XGB_Regressor_test_MSE_after_ablation_5 \\\n", + "0 5782.250032 \n", + "1 5776.289705 \n", + "2 6161.928219 \n", + "3 6080.111206 \n", + "4 5921.843788 \n", + ".. ... \n", + "65 6318.690304 \n", + "66 6393.470622 \n", + "67 6614.314282 \n", + "68 6460.519172 \n", + "69 6602.231271 \n", + "\n", + " XGB_Regressor_test_R_2_after_ablation_5 \\\n", + "0 -0.012310 \n", + "1 -0.011267 \n", + "2 -0.078781 \n", + "3 -0.064457 \n", + "4 0.007723 \n", + ".. ... \n", + "65 -0.134296 \n", + "66 -0.147720 \n", + "67 -0.204753 \n", + "68 -0.176740 \n", + "69 -0.202552 \n", + "\n", + " XGB_Regressor_test_MSE_after_ablation_6 \\\n", + "0 5830.867264 \n", + "1 6083.961808 \n", + "2 6084.476971 \n", + "3 6056.849952 \n", + "4 5940.795730 \n", + ".. ... \n", + "65 6248.073414 \n", + "66 6529.782934 \n", + "67 6483.378328 \n", + "68 6583.652258 \n", + "69 6440.659192 \n", + "\n", + " XGB_Regressor_test_R_2_after_ablation_6 \\\n", + "0 -0.020822 \n", + "1 -0.065131 \n", + "2 -0.065222 \n", + "3 -0.060385 \n", + "4 0.004547 \n", + ".. ... \n", + "65 -0.121619 \n", + "66 -0.172190 \n", + "67 -0.180904 \n", + "68 -0.199168 \n", + "69 -0.173123 \n", + "\n", + " XGB_Regressor_test_MSE_after_ablation_7 \\\n", + "0 5832.799073 \n", + "1 5755.751419 \n", + "2 6072.037858 \n", + "3 6114.234944 \n", + "4 6009.317532 \n", + ".. ... \n", + "65 6390.760993 \n", + "66 6440.441698 \n", + "67 5960.523436 \n", + "68 6573.851529 \n", + "69 6118.444678 \n", + "\n", + " XGB_Regressor_test_R_2_after_ablation_7 \\\n", + "0 -0.021160 \n", + "1 -0.007671 \n", + "2 -0.063044 \n", + "3 -0.070431 \n", + "4 -0.006934 \n", + ".. ... \n", + "65 -0.147234 \n", + "66 -0.156152 \n", + "67 -0.085670 \n", + "68 -0.197383 \n", + "69 -0.114434 \n", + "\n", + " XGB_Regressor_test_MSE_after_ablation_8 \\\n", + "0 5886.180420 \n", + "1 5791.839463 \n", + "2 6164.297845 \n", + "3 6259.056809 \n", + "4 6309.394957 \n", + ".. ... \n", + "65 6417.178461 \n", + "66 6627.164328 \n", + "67 6015.960917 \n", + "68 6295.371009 \n", + "69 6293.345882 \n", + "\n", + " XGB_Regressor_test_R_2_after_ablation_8 \\\n", + "0 -0.030505 \n", + "1 -0.013989 \n", + "2 -0.079196 \n", + "3 -0.095786 \n", + "4 -0.057216 \n", + ".. ... \n", + "65 -0.151976 \n", + "66 -0.189672 \n", + "67 -0.095767 \n", + "68 -0.146660 \n", + "69 -0.146291 \n", + "\n", + " XGB_Regressor_test_MSE_after_ablation_9 \\\n", + "0 5843.408829 \n", + "1 5875.728030 \n", + "2 6121.536055 \n", + "3 6129.607419 \n", + "4 6453.157959 \n", + ".. ... \n", + "65 6340.479231 \n", + "66 6234.587550 \n", + "67 6115.491296 \n", + "68 6204.552633 \n", + "69 6083.916220 \n", + "\n", + " XGB_Regressor_test_R_2_after_ablation_9 \\\n", + "0 -0.023017 \n", + "1 -0.028676 \n", + "2 -0.071710 \n", + "3 -0.073123 \n", + "4 -0.081305 \n", + ".. ... \n", + "65 -0.138207 \n", + "66 -0.119198 \n", + "67 -0.113896 \n", + "68 -0.130118 \n", + "69 -0.108145 \n", + "\n", + " XGB_Regressor_test_MSE_after_ablation_10 \\\n", + "0 6007.922958 \n", + "1 6007.922958 \n", + "2 6007.922958 \n", + "3 6007.922958 \n", + "4 6395.094041 \n", + ".. ... \n", + "65 6392.430662 \n", + "66 6392.430662 \n", + "67 6154.257530 \n", + "68 6154.257530 \n", + "69 6154.257530 \n", + "\n", + " XGB_Regressor_test_R_2_after_ablation_10 \\\n", + "0 -0.051819 \n", + "1 -0.051819 \n", + "2 -0.051819 \n", + "3 -0.051819 \n", + "4 -0.071576 \n", + ".. ... \n", + "65 -0.147533 \n", + "66 -0.147533 \n", + "67 -0.120957 \n", + "68 -0.120957 \n", + "69 -0.120957 \n", "\n", - " sample_test_14 sample_test_15 sample_test_16 sample_test_17 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 124.0 58.0 132.0 127.0 \n", - "78 124.0 58.0 132.0 127.0 \n", - "79 124.0 58.0 132.0 127.0 \n", + " RF_Plus_Regressor_test_MSE_before_ablation \\\n", + "0 3068.863830 \n", + "1 3068.863830 \n", + "2 3068.863830 \n", + "3 3068.863830 \n", + "4 3392.891623 \n", + ".. ... \n", + "65 3043.279335 \n", + "66 3043.279335 \n", + "67 3139.516608 \n", + "68 3139.516608 \n", + "69 3139.516608 \n", "\n", - " sample_test_18 sample_test_19 sample_test_20 sample_test_21 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 88.0 135.0 138.0 35.0 \n", - "78 88.0 135.0 138.0 35.0 \n", - "79 88.0 135.0 138.0 35.0 \n", + " RF_Plus_Regressor_test_R_2_before_ablation \\\n", + "0 0.462728 \n", + "1 0.462728 \n", + "2 0.462728 \n", + "3 0.462728 \n", + "4 0.431480 \n", + ".. ... \n", + "65 0.453687 \n", + "66 0.453687 \n", + "67 0.428158 \n", + "68 0.428158 \n", + "69 0.428158 \n", "\n", - " sample_test_22 sample_test_23 sample_test_24 sample_test_25 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 80.0 17.0 131.0 108.0 \n", - "78 80.0 17.0 131.0 108.0 \n", - "79 80.0 17.0 131.0 108.0 \n", + " RF_Plus_Regressor_test_MSE_after_ablation_1 \\\n", + "0 3818.286646 \n", + "1 3824.162442 \n", + "2 3827.072282 \n", + "3 3732.654148 \n", + "4 4191.710491 \n", + ".. ... \n", + "65 3747.546011 \n", + "66 3916.359829 \n", + "67 3949.965025 \n", + "68 3882.799563 \n", + "69 3761.727998 \n", "\n", - " sample_test_26 sample_test_27 sample_test_28 sample_test_29 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 112.0 36.0 83.0 102.0 \n", - "78 112.0 36.0 83.0 102.0 \n", - "79 112.0 36.0 83.0 102.0 \n", + " RF_Plus_Regressor_test_R_2_after_ablation_1 \\\n", + "0 0.331525 \n", + "1 0.330496 \n", + "2 0.329987 \n", + "3 0.346517 \n", + "4 0.297628 \n", + ".. ... \n", + "65 0.327261 \n", + "66 0.296957 \n", + "67 0.280540 \n", + "68 0.292774 \n", + "69 0.314826 \n", "\n", - " sample_test_30 sample_test_31 sample_test_32 sample_test_33 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 28.0 46.0 69.0 107.0 \n", - "78 28.0 46.0 69.0 107.0 \n", - "79 28.0 46.0 69.0 107.0 \n", + " RF_Plus_Regressor_test_MSE_after_ablation_2 \\\n", + "0 4914.443118 \n", + "1 4707.799112 \n", + "2 4716.561876 \n", + "3 4726.437509 \n", + "4 5399.696626 \n", + ".. ... \n", + "65 4388.732777 \n", + "66 4555.396175 \n", + "67 4609.805293 \n", + "68 4562.861560 \n", + "69 4420.406856 \n", "\n", - " sample_test_34 sample_test_35 sample_test_36 sample_test_37 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 60.0 78.0 70.0 52.0 \n", - "78 60.0 78.0 70.0 52.0 \n", - "79 60.0 78.0 70.0 52.0 \n", + " RF_Plus_Regressor_test_R_2_after_ablation_2 \\\n", + "0 0.139619 \n", + "1 0.175796 \n", + "2 0.174262 \n", + "3 0.172533 \n", + "4 0.095215 \n", + ".. ... \n", + "65 0.212159 \n", + "66 0.182241 \n", + "67 0.160355 \n", + "68 0.168905 \n", + "69 0.194852 \n", "\n", - " sample_test_38 sample_test_39 sample_test_40 sample_test_41 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 34.0 144.0 105.0 89.0 \n", - "78 34.0 144.0 105.0 89.0 \n", - "79 34.0 144.0 105.0 89.0 \n", + " RF_Plus_Regressor_test_MSE_after_ablation_3 \\\n", + "0 5558.586043 \n", + "1 5259.040670 \n", + "2 5153.033770 \n", + "3 5427.336730 \n", + "4 5851.776337 \n", + ".. ... \n", + "65 5042.162467 \n", + "66 5116.362836 \n", + "67 5102.378012 \n", + "68 5160.712830 \n", + "69 5086.133038 \n", "\n", - " sample_test_42 sample_test_43 sample_test_44 sample_test_45 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 74.0 15.0 75.0 136.0 \n", - "78 74.0 15.0 75.0 136.0 \n", - "79 74.0 15.0 75.0 136.0 \n", + " RF_Plus_Regressor_test_R_2_after_ablation_3 \\\n", + "0 0.026847 \n", + "1 0.079289 \n", + "2 0.097848 \n", + "3 0.049825 \n", + "4 0.019464 \n", + ".. ... \n", + "65 0.094859 \n", + "66 0.081539 \n", + "67 0.070636 \n", + "68 0.060011 \n", + "69 0.073595 \n", "\n", - " sample_test_46 sample_test_47 sample_test_48 sample_test_49 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 16.0 12.0 137.0 101.0 \n", - "78 16.0 12.0 137.0 101.0 \n", - "79 16.0 12.0 137.0 101.0 \n", + " RF_Plus_Regressor_test_MSE_after_ablation_4 \\\n", + "0 5832.603810 \n", + "1 5575.386841 \n", + "2 5434.084925 \n", + "3 5680.278030 \n", + "4 6018.755220 \n", + ".. ... \n", + "65 5459.350264 \n", + "66 5520.772874 \n", + "67 5422.380406 \n", + "68 5366.841728 \n", + "69 5394.059982 \n", "\n", - " sample_test_50 sample_test_51 sample_test_52 sample_test_53 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 3.0 71.0 72.0 7.0 \n", - "78 3.0 71.0 72.0 7.0 \n", - "79 3.0 71.0 72.0 7.0 \n", + " RF_Plus_Regressor_test_R_2_after_ablation_4 \\\n", + "0 -0.021126 \n", + "1 0.023906 \n", + "2 0.048644 \n", + "3 0.005542 \n", + "4 -0.008516 \n", + ".. ... \n", + "65 0.019968 \n", + "66 0.008942 \n", + "67 0.012350 \n", + "68 0.022466 \n", + "69 0.017508 \n", "\n", - " sample_test_54 sample_test_55 sample_test_56 sample_test_57 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 79.0 64.0 59.0 119.0 \n", - "78 79.0 64.0 59.0 119.0 \n", - "79 79.0 64.0 59.0 119.0 \n", + " RF_Plus_Regressor_test_MSE_after_ablation_5 \\\n", + "0 5784.351708 \n", + "1 5723.134442 \n", + "2 5554.591693 \n", + "3 5833.784358 \n", + "4 6071.573392 \n", + ".. ... \n", + "65 5555.680287 \n", + "66 5789.702012 \n", + "67 5611.746572 \n", + "68 5591.524535 \n", + "69 5571.039679 \n", "\n", - " sample_test_58 sample_test_59 sample_test_60 sample_test_61 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 113.0 2.0 142.0 57.0 \n", - "78 113.0 2.0 142.0 57.0 \n", - "79 113.0 2.0 142.0 57.0 \n", + " RF_Plus_Regressor_test_R_2_after_ablation_5 \\\n", + "0 -0.012678 \n", + "1 -0.001961 \n", + "2 0.027546 \n", + "3 -0.021332 \n", + "4 -0.017366 \n", + ".. ... \n", + "65 0.002675 \n", + "66 -0.039335 \n", + "67 -0.022142 \n", + "68 -0.018459 \n", + "69 -0.014728 \n", "\n", - " sample_test_62 sample_test_63 sample_test_64 sample_test_65 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 54.0 94.0 68.0 5.0 \n", - "78 54.0 94.0 68.0 5.0 \n", - "79 54.0 94.0 68.0 5.0 \n", + " RF_Plus_Regressor_test_MSE_after_ablation_6 \\\n", + "0 5793.649629 \n", + "1 5771.443274 \n", + "2 5635.787161 \n", + "3 5714.152885 \n", + "4 6010.857279 \n", + ".. ... \n", + "65 5702.488350 \n", + "66 5781.533396 \n", + "67 5650.413900 \n", + "68 5634.800732 \n", + "69 5549.016093 \n", "\n", - " sample_test_66 sample_test_67 sample_test_68 sample_test_69 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 1.0 91.0 56.0 14.0 \n", - "78 1.0 91.0 56.0 14.0 \n", - "79 1.0 91.0 56.0 14.0 \n", + " RF_Plus_Regressor_test_R_2_after_ablation_6 \\\n", + "0 -0.014306 \n", + "1 -0.010418 \n", + "2 0.013331 \n", + "3 -0.000388 \n", + "4 -0.007192 \n", + ".. ... \n", + "65 -0.023679 \n", + "66 -0.037869 \n", + "67 -0.029185 \n", + "68 -0.026341 \n", + "69 -0.010716 \n", "\n", - " sample_test_70 sample_test_71 sample_test_72 sample_test_73 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 20.0 104.0 47.0 123.0 \n", - "78 20.0 104.0 47.0 123.0 \n", - "79 20.0 104.0 47.0 123.0 \n", + " RF_Plus_Regressor_test_MSE_after_ablation_7 \\\n", + "0 5799.895490 \n", + "1 5830.381002 \n", + "2 5763.684469 \n", + "3 5797.828571 \n", + "4 6042.684405 \n", + ".. ... \n", + "65 5680.464377 \n", + "66 5764.376455 \n", + "67 5624.395688 \n", + "68 5614.899058 \n", + "69 5631.833473 \n", "\n", - " sample_test_74 sample_test_75 sample_test_76 sample_test_77 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 76.0 125.0 95.0 134.0 \n", - "78 76.0 125.0 95.0 134.0 \n", - "79 76.0 125.0 95.0 134.0 \n", + " RF_Plus_Regressor_test_R_2_after_ablation_7 \\\n", + "0 -0.015399 \n", + "1 -0.020737 \n", + "2 -0.009060 \n", + "3 -0.015038 \n", + "4 -0.012525 \n", + ".. ... \n", + "65 -0.019725 \n", + "66 -0.034789 \n", + "67 -0.024446 \n", + "68 -0.022716 \n", + "69 -0.025801 \n", "\n", - " sample_test_78 sample_test_79 sample_test_80 sample_test_81 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 38.0 13.0 129.0 22.0 \n", - "78 38.0 13.0 129.0 22.0 \n", - "79 38.0 13.0 129.0 22.0 \n", + " RF_Plus_Regressor_test_MSE_after_ablation_8 \\\n", + "0 5799.531819 \n", + "1 5789.080541 \n", + "2 5807.287765 \n", + "3 5811.450208 \n", + "4 6090.457960 \n", + ".. ... \n", + "65 5695.898765 \n", + "66 5799.731329 \n", + "67 5597.750571 \n", + "68 5613.153894 \n", + "69 5591.152466 \n", "\n", - " sample_test_82 sample_test_83 sample_test_84 sample_test_85 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 32.0 110.0 62.0 11.0 \n", - "78 32.0 110.0 62.0 11.0 \n", - "79 32.0 110.0 62.0 11.0 \n", + " RF_Plus_Regressor_test_R_2_after_ablation_8 \\\n", + "0 -0.015336 \n", + "1 -0.013506 \n", + "2 -0.016694 \n", + "3 -0.017422 \n", + "4 -0.020530 \n", + ".. ... \n", + "65 -0.022496 \n", + "66 -0.041135 \n", + "67 -0.019593 \n", + "68 -0.022399 \n", + "69 -0.018391 \n", "\n", - " sample_test_86 sample_test_87 sample_test_88 sample_test_89 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 23.0 128.0 65.0 145.0 \n", - "78 23.0 128.0 65.0 145.0 \n", - "79 23.0 128.0 65.0 145.0 \n", + " RF_Plus_Regressor_test_MSE_after_ablation_9 \\\n", + "0 5783.277353 \n", + "1 5778.531386 \n", + "2 5761.554160 \n", + "3 5807.028565 \n", + "4 6081.173795 \n", + ".. ... \n", + "65 5664.517560 \n", + "66 5737.201421 \n", + "67 5626.025263 \n", + "68 5620.507263 \n", + "69 5590.145323 \n", "\n", - " sample_test_90 sample_test_91 sample_test_92 sample_test_93 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 44.0 116.0 39.0 45.0 \n", - "78 44.0 116.0 39.0 45.0 \n", - "79 44.0 116.0 39.0 45.0 \n", + " RF_Plus_Regressor_test_R_2_after_ablation_9 \\\n", + "0 -0.012490 \n", + "1 -0.011659 \n", + "2 -0.008687 \n", + "3 -0.016648 \n", + "4 -0.018975 \n", + ".. ... \n", + "65 -0.016863 \n", + "66 -0.029910 \n", + "67 -0.024743 \n", + "68 -0.023738 \n", + "69 -0.018208 \n", "\n", - " sample_test_94 sample_test_95 sample_test_96 sample_test_97 \\\n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - ".. ... ... ... ... \n", - "75 NaN NaN NaN NaN \n", - "76 NaN NaN NaN NaN \n", - "77 103.0 63.0 18.0 19.0 \n", - "78 103.0 63.0 18.0 19.0 \n", - "79 103.0 63.0 18.0 19.0 \n", - "\n", - " sample_test_98 sample_test_99 ablation_seed_0 ablation_seed_1 \\\n", - "0 NaN NaN 224 4847 \n", - "1 NaN NaN 224 4847 \n", - "2 NaN NaN 224 4847 \n", - "3 NaN NaN 224 4847 \n", - "4 NaN NaN 224 4847 \n", - ".. ... ... ... ... \n", - "75 NaN NaN 3861 146 \n", - "76 NaN NaN 3861 146 \n", - "77 43.0 99.0 6734 8731 \n", - "78 43.0 99.0 6734 8731 \n", - "79 43.0 99.0 6734 8731 \n", - "\n", - " ablation_seed_2 ablation_seed_3 ablation_seed_4 ablation_seed_5 \\\n", - "0 6229 7033 4246 4462 \n", - "1 6229 7033 4246 4462 \n", - "2 6229 7033 4246 4462 \n", - "3 6229 7033 4246 4462 \n", - "4 6229 7033 4246 4462 \n", - ".. ... ... ... ... \n", - "75 5855 1493 3971 5711 \n", - "76 5855 1493 3971 5711 \n", - "77 5921 9043 526 8382 \n", - "78 5921 9043 526 8382 \n", - "79 5921 9043 526 8382 \n", - "\n", - " ablation_seed_6 ablation_seed_7 ablation_seed_8 ablation_seed_9 \\\n", - "0 2467 704 6974 7100 \n", - "1 2467 704 6974 7100 \n", - "2 2467 704 6974 7100 \n", - "3 2467 704 6974 7100 \n", - "4 2467 704 6974 7100 \n", - ".. ... ... ... ... \n", - "75 8760 4156 1273 9581 \n", - "76 8760 4156 1273 9581 \n", - "77 3923 2646 9942 5732 \n", - "78 3923 2646 9942 5732 \n", - "79 3923 2646 9942 5732 \n", - "\n", - " fi_time MSE_before_ablation R_2_before_ablation MSE_after_ablation_1 \\\n", - "0 87.258065 3015.657705 0.493287 4431.464328 \n", - "1 2.991500 3015.657705 0.493287 4403.317011 \n", - "2 3.529108 3015.657705 0.493287 4350.242507 \n", - "3 1.448320 3015.657705 0.493287 4450.729741 \n", - "4 0.166827 3015.657705 0.493287 4425.135054 \n", - ".. ... ... ... ... \n", - "75 0.651751 3364.534109 0.472198 4589.284370 \n", - "76 0.071407 3364.534109 0.472198 4644.131916 \n", - "77 29.754058 3058.202408 0.478782 4223.564334 \n", - "78 0.437314 3058.202408 0.478782 4118.945235 \n", - "79 68.105400 3058.202408 0.478782 4213.920895 \n", - "\n", - " R_2_after_ablation_1 MSE_after_ablation_2 R_2_after_ablation_2 \\\n", - "0 0.255393 5395.476701 0.093413 \n", - "1 0.260123 5510.475704 0.074090 \n", - "2 0.269041 5528.366306 0.071084 \n", - "3 0.252156 5401.335532 0.092429 \n", - "4 0.256457 5571.449691 0.063845 \n", - ".. ... ... ... \n", - "75 0.280069 5510.440643 0.135565 \n", - "76 0.271465 5625.114534 0.117576 \n", - "77 0.280166 5540.213154 0.055766 \n", - "78 0.297996 5522.440952 0.058795 \n", - "79 0.281809 5618.801778 0.042372 \n", - "\n", - " MSE_after_ablation_3 R_2_after_ablation_3 MSE_after_ablation_4 \\\n", - "0 5961.563954 -0.001705 6127.256083 \n", - "1 6062.766174 -0.018710 6420.107254 \n", - "2 6008.104990 -0.009525 6190.662160 \n", - "3 5872.831654 0.013205 6229.387859 \n", - "4 6052.897939 -0.017051 6391.870115 \n", - ".. ... ... ... \n", - "75 6269.197133 0.016537 6802.626607 \n", - "76 6479.673837 -0.016480 7087.133723 \n", - "77 6100.799366 -0.039777 6404.189310 \n", - "78 6139.370419 -0.046350 6561.148099 \n", - "79 6167.544944 -0.051152 6554.712486 \n", - "\n", - " R_2_after_ablation_4 MSE_after_ablation_5 R_2_after_ablation_5 \\\n", - "0 -0.029546 6329.519071 -0.063531 \n", - "1 -0.078753 6550.611119 -0.100681 \n", - "2 -0.040200 6400.736746 -0.075498 \n", - "3 -0.046707 6497.063836 -0.091683 \n", - "4 -0.074008 6662.404069 -0.119465 \n", - ".. ... ... ... \n", - "75 -0.067143 7182.245130 -0.126694 \n", - "76 -0.111774 7414.971343 -0.163203 \n", - "77 -0.091484 6705.799392 -0.142889 \n", - "78 -0.118235 6779.508319 -0.155451 \n", - "79 -0.117138 6770.764955 -0.153961 \n", - "\n", - " MSE_after_ablation_6 R_2_after_ablation_6 MSE_after_ablation_7 \\\n", - "0 6440.261355 -0.082139 6543.210590 \n", - "1 6699.697074 -0.125731 6768.142298 \n", - "2 6540.444309 -0.098973 6621.351976 \n", - "3 6638.438945 -0.115438 6708.991358 \n", - "4 6724.232910 -0.129854 6712.329030 \n", - ".. ... ... ... \n", - "75 7383.240571 -0.158225 7500.322118 \n", - "76 7523.826113 -0.180279 7625.821932 \n", - "77 6918.319441 -0.179109 7039.701464 \n", - "78 6876.299938 -0.171947 6935.213602 \n", - "79 6933.509996 -0.181698 6983.510919 \n", - "\n", - " R_2_after_ablation_7 MSE_after_ablation_8 R_2_after_ablation_8 \\\n", - "0 -0.099437 6598.214822 -0.108680 \n", - "1 -0.137232 6787.349203 -0.140459 \n", - "2 -0.112567 6725.345707 -0.130041 \n", - "3 -0.127293 6692.120871 -0.124458 \n", - "4 -0.127854 6746.616969 -0.133615 \n", - ".. ... ... ... \n", - "75 -0.176592 7560.531068 -0.186037 \n", - "76 -0.196279 7658.318127 -0.201377 \n", - "77 -0.199796 7041.718704 -0.200140 \n", - "78 -0.181988 7002.733329 -0.193496 \n", - "79 -0.190220 7023.012024 -0.196952 \n", - "\n", - " MSE_after_ablation_9 R_2_after_ablation_9 MSE_after_ablation_10 \\\n", - "0 6668.503871 -0.120490 6754.906732 \n", - "1 6725.982194 -0.130148 6754.906732 \n", - "2 6728.526559 -0.130575 6754.906732 \n", - "3 6704.867772 -0.126600 6754.906732 \n", - "4 6754.743785 -0.134981 6754.906732 \n", - ".. ... ... ... \n", - "75 7623.677720 -0.195943 7620.889900 \n", - "76 7654.377608 -0.200759 7620.889900 \n", - "77 7051.753892 -0.201851 7018.716589 \n", - "78 7019.751192 -0.196396 7018.716589 \n", - "79 7014.183445 -0.195447 7018.716589 \n", - "\n", - " R_2_after_ablation_10 ablation_time split_seed \\\n", - "0 -0.135008 2.449821 7 \n", - "1 -0.135008 2.449706 7 \n", - "2 -0.135008 2.461490 7 \n", - "3 -0.135008 2.445521 7 \n", - "4 -0.135008 2.448545 7 \n", - ".. ... ... ... \n", - "75 -0.195506 1.181488 5 \n", - "76 -0.195506 1.182896 5 \n", - "77 -0.196220 23.125059 5 \n", - "78 -0.196220 23.535761 5 \n", - "79 -0.196220 22.972130 5 \n", - "\n", - " rf_model index var \\\n", - "0 NaN 0 0 \n", - "1 NaN 1 0 \n", - "2 NaN 2 0 \n", - "3 NaN 3 0 \n", - "4 NaN 4 0 \n", - ".. ... ... ... \n", - "75 NaN 3 0 \n", - "76 NaN 4 0 \n", - "77 RandomForestRegressor(max_features=0.33, min_s... 5 0 \n", - "78 RandomForestRegressor(max_features=0.33, min_s... 6 0 \n", - "79 RandomForestRegressor(max_features=0.33, min_s... 7 0 \n", - "\n", - " true_support \n", - "0 1.0 \n", - "1 1.0 \n", - "2 1.0 \n", - "3 1.0 \n", - "4 1.0 \n", - ".. ... \n", - "75 1.0 \n", - "76 1.0 \n", - "77 1.0 \n", - "78 1.0 \n", - "79 1.0 \n", - "\n", - "[80 rows x 159 columns]" + " RF_Plus_Regressor_test_MSE_after_ablation_10 \\\n", + "0 5775.798475 \n", + "1 5775.798475 \n", + "2 5775.798475 \n", + "3 5775.798475 \n", + "4 6099.151078 \n", + ".. ... \n", + "65 5655.363927 \n", + "66 5655.363927 \n", + "67 5636.734002 \n", + "68 5636.734002 \n", + "69 5636.734002 \n", + "\n", + " RF_Plus_Regressor_test_R_2_after_ablation_10 test_data_ablation_time \\\n", + "0 -0.011181 8.891757 \n", + "1 -0.011181 8.881537 \n", + "2 -0.011181 8.914796 \n", + "3 -0.011181 8.867040 \n", + "4 -0.021987 8.382616 \n", + ".. ... ... \n", + "65 -0.015219 7.412112 \n", + "66 -0.015219 7.402059 \n", + "67 -0.026693 7.036491 \n", + "68 -0.026693 7.033576 \n", + "69 -0.026693 6.885340 \n", + "\n", + " split_seed rf_model \n", + "0 4 NaN \n", + "1 4 NaN \n", + "2 4 NaN \n", + "3 4 NaN \n", + "4 4 RandomForestRegressor(max_features=0.33, min_s... \n", + ".. ... ... \n", + "65 6 NaN \n", + "66 6 NaN \n", + "67 6 RandomForestRegressor(max_features=0.33, min_s... \n", + "68 6 RandomForestRegressor(max_features=0.33, min_s... \n", + "69 6 RandomForestRegressor(max_features=0.33, min_s... \n", + "\n", + "[70 rows x 302 columns]" ] }, "execution_count": 4, @@ -2564,6 +6126,7 @@ } ], "source": [ + "pd.set_option('display.max_columns', None)\n", "combined_df" ] }, @@ -2577,14 +6140,13 @@ "output_type": "stream", "text": [ " fi fi_time\n", - "0 Kernel_SHAP_RF_plus 53.592039\n", - "1 LFI_with_raw_CV_RF 70.349461\n", - "2 LFI_with_raw_OOB_RF 2.535222\n", - "3 LFI_with_raw_RF 3.045225\n", - "4 LFI_with_raw_RF_plus 0.706900\n", - "5 LIME_RF_plus 124.873722\n", - "6 MDI_RF 1.098270\n", - "7 TreeSHAP_RF 0.108346\n" + "0 Kernel_SHAP_RF_plus 277.088223\n", + "1 LFI_with_raw_OOB_RF 6.107385\n", + "2 LFI_with_raw_RF 6.842227\n", + "3 LFI_with_raw_RF_plus 1.639075\n", + "4 LIME_RF_plus 612.684298\n", + "5 MDI_RF 2.537897\n", + "6 TreeSHAP_RF 0.334840\n" ] } ], @@ -2603,21 +6165,20 @@ "name": "stdout", "output_type": "stream", "text": [ - " fi ablation_time\n", - "0 Kernel_SHAP_RF_plus 37.999997\n", - "1 LFI_with_raw_CV_RF 1.801137\n", - "2 LFI_with_raw_OOB_RF 1.750226\n", - "3 LFI_with_raw_RF 1.777164\n", - "4 LFI_with_raw_RF_plus 38.591149\n", - "5 LIME_RF_plus 37.662260\n", - "6 MDI_RF 1.775139\n", - "7 TreeSHAP_RF 1.757286\n" + " fi train_data_ablation_time\n", + "0 Kernel_SHAP_RF_plus 10.402297\n", + "1 LFI_with_raw_OOB_RF 10.521922\n", + "2 LFI_with_raw_RF 10.535834\n", + "3 LFI_with_raw_RF_plus 10.385392\n", + "4 LIME_RF_plus 10.394773\n", + "5 MDI_RF 10.534780\n", + "6 TreeSHAP_RF 10.418015\n" ] } ], "source": [ "# Print the ablation time\n", - "averages = combined_df.groupby('fi')['ablation_time'].mean().reset_index()\n", + "averages = combined_df.groupby('fi')['train_data_ablation_time'].mean().reset_index()\n", "print(averages)" ] }, @@ -2632,6 +6193,7 @@ "########################################################################################\n", "methods_rf = [\"LFI_with_raw_RF\", \"LFI_with_raw_CV_RF\", \"LFI_with_raw_OOB_RF\", \"MDI_RF\", \"TreeSHAP_RF\"]\n", "methods_rf_plus = [\"Kernel_SHAP_RF_plus\",\"LFI_with_raw_RF_plus\", \"LIME_RF_plus\"]\n", + "methods_all = methods_rf + methods_rf_plus\n", "n_testsize = combined_df[['train_size', 'test_size']].drop_duplicates()\n", "num_features = combined_df['num_features'].drop_duplicates()[0]\n", "metrics = {\"regression\": [\"MSE\", \"R_2\"], \"classification\": [\"AUROC\",\"AUPRC\", \"F1\"]}" @@ -2647,12 +6209,12 @@ "output_type": "stream", "text": [ "Model: RF\n", - "MSE before ablation: 3161.100213831893\n", - "R2 before ablation: 0.4470820005009606\n", + "MSE before ablation: 3160.159277609703\n", + "R2 before ablation: 0.4474091923958154\n", "\n", "Model: RF_plus\n", - "MSE before ablation: 2943.1783568546443\n", - "R2 before ablation: 0.4856215513988536\n", + "MSE before ablation: 3058.492966541393\n", + "R2 before ablation: 0.4653868933792268\n", "\n" ] } @@ -2679,10 +6241,86 @@ "cell_type": "code", "execution_count": 9, "metadata": {}, + "outputs": [], + "source": [ + "ablation_models = {\"regression\": [\"RF_Regressor\", \"Linear\", \"XGB_Regressor\", \"RF_Plus_Regressor\"], \"classification\": [\"RF_Classifier\",\"Logistic\", \"SVM\", \"XGBoost_Classifier\", \"RF_Plus_Classifier\"]}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Training Data" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1j0lEQVR4nOzdd3gUVffA8e/2JJtk0xsl9BqaoDRpggJS7KgoNsSCggi89gIWsGPBigiKvGJ79ScqAVESumBoobcEUkkCyaZn2/39sbAQEiBgYCnn8zzzkJ05M3Mm2WQPd+69o1FKKYQQQgghLmFabycghBBCCOFtUhAJIYQQ4pInBZEQQgghLnlSEAkhhBDikicFkRBCCCEueVIQCSGEEOKSJwWREEIIIS55UhAJIYQQ4pInBZEQQgghLnlSEIlLhkajqdGSkJDwr84zadIkNBpN7SRdQwkJCbWSu7dkZWXx3HPP0bVrV8LCwggMDKRjx4589tlnOJ3OKvFr1qyhf//+BAQE4O/vT58+fVixYkW1x7bb7bzzzju0adMGX19fgoKC6NatGytXrjytHFNTU2v8HkpNTT2Tb0MlmZmZTJo0iQ0bNvzrYx3hjfdmbXvuuecYPHgwderUQaPRcM8999RovzvvvBONRsPgwYOr3Z6Xl8djjz1GgwYNMJlMREZGMnDgQA4dOlSL2Yvzmd7bCQhxrqxatarS65dffpklS5bw119/VVrfqlWrf3We+++/nwEDBvyrY5yuyy67jFWrVv3r3L0lKSmJr776irvuuovnn38eg8HAggULePjhh1m9ejVffPGFJ3bt2rX07NmTK664gjlz5qCU4o033qBv374sWbKErl27emKdTic33HADy5cv54knnqBbt26UlJSQlJRESUnJaeUYHR1d5T00evRorFYrc+fOrRL7b2VmZjJ58mQaNGhA+/bt//XxwDvvzdo2bdo02rZty9ChQyu9L07mt99+4+effyYwMLDa7ZmZmfTo0QO9Xs/zzz9P06ZNycvLY8mSJdhsttpMX5zPlBCXqLvvvluZzeZTxpWUlJyDbC5thw4dUjabrcr6Rx55RAFq//79nnX9+/dXkZGRlX4uhYWFKiwsTHXr1q3S/tOmTVNarVatWrXqrOTdq1cv1bp167Ny7LVr1ypAzZo166wc/0LldDo9X5vNZnX33XefNL6goEDVqVNHvfPOOyo2NlYNGjSoSsx1112n6tSpow4dOlTb6YoLiNwyE+IYvXv3Ji4ujqVLl9KtWzf8/Py47777APj222+55ppriI6OxtfXl5YtW/LUU09VaWmo7rZEgwYNGDx4MPHx8Vx22WX4+vrSokWLGv8P9+OPP6Zdu3b4+/sTEBBAixYteOaZZzzbj79ldqrbO8davHgxffv2JTAwED8/P7p3786ff/55ut+6fyU4OBiDwVBl/RVXXAFAenq6Z92KFSvo3bs3fn5+nnUBAQH07NmTlStXkpWV5Vn/3nvv0bNnT7p06XIWs6+ssLCQiRMn0rBhQ4xGI3Xq1GHcuHFV3ifff/89nTt3xmKx4OfnR6NGjTzvtYSEBC6//HIA7r33Xs/PbdKkSSc8b2lpqee8Pj4+hISE0KlTJ7755htPzPHvzdmzZ5/wPdK7d29PnFKKjz76iPbt2+Pr60twcDA333wze/furYXv2OnRak/vY2vChAlER0czduzYarenpqbyyy+/MGrUKIKDg2sjRXGBkltmQhwnKyuLO++8kyeeeIIpU6Z4/gDv2rWLa6+9lnHjxmE2m9m+fTuvv/46a9asqXLbrTobN25kwoQJPPXUU0RGRvL5558zcuRImjRpQs+ePU+437x58xg9ejRjxozhrbfeQqvVsnv3brZu3XrCfaq7vZObm8udd95JnTp1POu+/vpr7rrrLq677jq+/PJLDAYDn376Kf3792fhwoX07dv3pNfkcDhOed0AOp3ujPqu/PXXX+j1epo1a+ZZZ7PZMJlMVWKPrEtOTiY6Opq0tDRSU1MZMmQIzzzzDDNnzuTgwYM0b96cJ554grvvvvu08zmV0tJSevXqRXp6Os888wxt27Zly5YtvPDCCyQnJ7N48WI0Gg2rVq3i1ltv5dZbb2XSpEn4+Piwb98+z/vosssuY9asWdx7770899xzDBo0CIC6deue8Nzjx49nzpw5vPLKK3To0IGSkhI2b97MwYMHT7jPoEGDqrxPVq1axfjx42ndurVn3YMPPsjs2bMZO3Ysr7/+OocOHeKll16iW7dubNy4kcjIyBOeQylVbT+w6uj1tfuRtHjxYr766ivWrl2LTqerNmbZsmUopYiJieH2229n/vz5OBwOunTpwtSpUyvdghUXOS+3UAnhNdXdMuvVq5cC1J9//nnSfV0ul7Lb7SoxMVEBauPGjZ5tL774ojr+Vys2Nlb5+Pioffv2edaVlZWpkJAQ9eCDD570XI8++qgKCgo6acySJUsUoJYsWVLt9pKSEnXFFVeo6OholZqa6lkXEhKihgwZUinW6XSqdu3aqSuuuOKk51RKKaBGy5nc9lm4cKHSarXq8ccfr7S+ffv2qlmzZpVundjtdtWoUSMFqP/+979KKaVWrVqlABUYGKhatWqlvvvuO7Vw4UJ18803K0B99tlnp53T8Y6/ZTZ16lSl1WrV2rVrK8X98MMPClC///67Ukqpt956SwGqoKDghMc+3VtmcXFx6vrrrz9pTHXvzWNt375dhYaGqj59+qiKigql1NHv49tvv10pNi0tTfn6+qonnnjipOc88t6syZKSklKjaz3iZLfMioqKVIMGDdTTTz/tWVfdLbOpU6d63ifXXXedio+PVz/++KNq27at8vHxqfS7LS5u0kIkxHGCg4O56qqrqqzfu3cvzz33HH/99Rc5OTkopTzbtm3bRtu2bU963Pbt21O/fn3Pax8fH5o1a8a+fftOut8VV1zB9OnTuf3227ntttvo3r07YWFhNb4ep9PJrbfeyrZt21i6dCmxsbEArFy5kkOHDnH33XdXaekZMGAAb7zxBiUlJZjN5hMee+3atTXKoWHDhjXOF2DdunUMGzbM87/0Y40ZM4aRI0fy6KOP8uyzz+JyuZg8ebLn+3ikRc/lcgFQXl7O77//7rnuq6++mk6dOvHSSy8xatSo08rrVH799Vfi4uJo3759pe9p//79Pbc0Bw4c6LkdNmzYMEaOHEn37t0rtdydiSuuuIK5c+fy1FNPMWDAADp37oyvr2+N98/OzmbAgAFER0fz008/YTQaPdek0Wi48847K11TVFQU7dq1O+XIxo4dO9b4fRITE1PjfE/lqaeewmAw8MILL5w07sj7pG7duvz444+elqSuXbvSpEkT3njjDb7++utay0ucv6QgEuI41Y0QKi4upkePHvj4+PDKK6/QrFkz/Pz8SEtL48Ybb6SsrOyUxw0NDa2yzmQynXLfESNG4HA4mDFjBjfddBMul4vLL7+cV155hauvvvqU533ooYeIj4/nt99+qzRa6cCBAwDcfPPNJ9z30KFDJy2Iajr66US3K6qzfv16rr76apo2bcrvv/9e5fbYfffdR25uLq+88goff/wx4P7wmjhxIq+//rqnsDjy/W7RooWnGAL39Av9+/dn6tSp5OTkEBERUePcTuXAgQPs3r272v5Q4B7aDdCzZ09+/vln3n//fe666y4qKipo3bo1zz77LLfffvsZnfv999+nbt26fPvtt7z++uv4+PjQv39/3nzzTZo2bXrSfYuKirj22mux2+0sWLAAi8VS6ZqUUie8LdaoUaOTHtvf37/G75PaumW2Zs0aPvroI/73v/9RXl5OeXk54C5+HA4HBQUF+Pr6YjKZPO+Tfv36VXqfRkdH065dO9atW1crOYnznxREQhynur4uf/31F5mZmSQkJNCrVy/P+oKCgnOS07333su9995LSUkJS5cu5cUXX2Tw4MHs3Lmz0of98SZNmsTnn3/OrFmzuOaaayptO9LK9MEHH5yw0/HJ+oYAJ/zgP96sWbNqNF/M+vXr6devH7GxsSxatKjSB/OxnnzyScaNG8euXbsICAggNjaWBx98ELPZTMeOHQFo3LhxpY7XxzrSune6HXRPJSwsDF9f3xN2lj+2Ze+6667juuuuo6KigtWrVzN16lSGDx9OgwYNzqjfitlsZvLkyUyePJkDBw6wYMECnnrqKYYMGcL27dtPuJ/dbuemm25iz549LFu2rEo/pbCwMDQaDcuWLTtp360TSUxMpE+fPjW6hpSUFBo0aFCj2JPZunUrSiluuOGGKtvS0tIIDg5m2rRpjBs37qQtu0qpWn+PiPOXFERC1MCRIun4P/6ffvrpOc3DbDYzcOBAbDYb119/PVu2bDlhQTRz5kwmT57MSy+9VG0x0r17d4KCgti6dSuPPvroGeVTm7fMNmzYQL9+/ahbty5//PHHKUf8mEwm4uLiANi/fz/ffvsto0aN8twm0uv1XHfddfzwww+kpqZ6PmiVUsTHx9O4cePTuvVYE4MHD2bKlCmEhobW+DahyWSiV69eBAUFsXDhQtavX0/Xrl0977WatD4eLzIyknvuuYeNGzfy7rvvUlpaesLicOTIkSQkJLBgwYJqi4PBgwfz2muvkZGRwbBhw047F2/cMhswYABLliypsv62226jYcOGTJ06lSZNmgDQuXNn6taty6JFi3A6nZ5WoszMTDZu3Mjw4cNrJSdx/pOCSIga6NatG8HBwTz00EO8+OKLGAwG5s6dy8aNG8/6uY98yHfv3p3o6Giys7OZOnUqFovF0xfleKtWreKhhx6ie/fuXH311axevbrS9i5duuDv788HH3zA3XffzaFDh7j55puJiIggNzeXjRs3kpub67kldSKdOnWqlWvcsWMH/fr1A+DVV19l165d7Nq1y7O9cePGhIeHA7B582Z+/PFHOnXqhMlkYuPGjbz22ms0bdqUl19+udJxX375ZRYsWMCAAQOYNGkSgYGBfP7552zcuJHvvvuuUmzv3r1JTEys1DfsdI0bN44ff/yRnj178vjjj9O2bVtcLhf79+9n0aJFTJgwgc6dO/PCCy+Qnp5O3759qVu3LgUFBbz33nsYDAZPC2Tjxo3x9fVl7ty5tGzZEn9/f2JiYk5YNHTu3JnBgwfTtm1bgoOD2bZtG3PmzKFr164nLIbefPNN5syZw5gxYzCbzZXeJ4GBgbRq1Yru3bvzwAMPcO+99/LPP//Qs2dPzGYzWVlZLF++nDZt2vDwww+f8HsSEBBQa+8TcLc45ebmAu7+cfv27eOHH34AoFevXoSHhxMVFUVUVFSVfX18fAgNDa00pYBWq2XatGkMGzaM6667jocffpiSkhJefvlljEYjTz/9dK3lLs5zXuzQLYRXnWiU2Ykm2lu5cqXq2rWr8vPzU+Hh4er+++9X69atqzIS6ESjzKqbEK5Xr16qV69eJ83zyy+/VH369FGRkZHKaDSqmJgYNWzYMLVp0yZPzPGjzGbNmnXS0TzHSkxMVIMGDVIhISHKYDCoOnXqqEGDBqnvv//+pHnVplPle+z3d8eOHapnz54qJCREGY1G1aRJE/Xcc8+p4uLiao+dnJysBg0apAICApSPj4/q0qWLmj9/fpW4jh07qqioqNPKu7r3S3FxsXruuedU8+bNldFoVBaLRbVp00Y9/vjjKjs7Wyml1K+//qoGDhyo6tSpo4xGo4qIiFDXXnutWrZsWaVjffPNN6pFixbKYDAoQL344osnzOWpp55SnTp1UsHBwcpkMqlGjRqpxx9/XOXl5Xlijn9v3n333Sf8nh//vvziiy9U586dldlsVr6+vqpx48bqrrvuUv/8889pfc/+rSMjQatbTjTK8ogT/R4qpdTPP/+sLr/8cuXj46MsFosaOnSo2rJly1m4AnG+0ij1L/47JIQQF4GioiJCQkJ49913eeSRR7ydjhDCC6S3mBDikrd06VLq1KlT68PwhRAXDmkhEkIIIcQlT1qIhBBCCHHJk4JICCGEEJc8KYiEEEIIccmTgkgIIYQQlzyZmLGGXC4XmZmZBAQEVPtoByGEEEKcf5RSFBUVERMTc9JHsUhBVEOZmZnUq1fP22kIIYQQ4gykpaVVeVbfsaQgqqGAgADA/Q0NDAz0cjZCCCGEqInCwkLq1avn+Rw/Ea8WRA0aNGDfvn1V1o8ePZoPP/wQpRSTJ0/ms88+Iz8/n86dO/Phhx/SunVrT2xFRQUTJ07km2++oaysjL59+/LRRx9VqgLz8/MZO3Ysv/zyCwBDhw7lgw8+ICgoqMa5HrlNFhgYKAWREEIIcYE5VXcXr3aqXrt2LVlZWZ7ljz/+AOCWW24B4I033uCdd95h+vTprF27lqioKK6++mqKioo8xxg3bhw//fQT8+bNY/ny5RQXFzN48GCcTqcnZvjw4WzYsIH4+Hji4+PZsGEDI0aMOLcXK4QQQojzlzcfpHa8xx57TDVu3Fi5XC7lcrlUVFSUeu211zzby8vLlcViUZ988olSSqmCggJlMBjUvHnzPDEZGRlKq9Wq+Ph4pZRSW7duVYBavXq1J2bVqlUKUNu3b69xblarVQHKarX+28sUQgghxDlS08/v82bYvc1m4+uvv+a+++5Do9GQkpJCdnY211xzjSfGZDLRq1cvVq5cCUBSUhJ2u71STExMDHFxcZ6YVatWYbFY6Ny5syemS5cuWCwWT0x1KioqKCwsrLQIIYQQ4uJ03hREP//8MwUFBdxzzz0AZGdnAxAZGVkpLjIy0rMtOzsbo9FIcHDwSWMiIiKqnC8iIsITU52pU6disVg8i4wwE0IIIS5e501BNHPmTAYOHEhMTEyl9cd3glJKnbJj1PEx1cWf6jhPP/00VqvVs6SlpdXkMoQQQghxATovCqJ9+/axePFi7r//fs+6qKgogCqtODk5OZ5Wo6ioKGw2G/n5+SeNOXDgQJVz5ubmVml9OpbJZPKMKJORZUIIIcTF7bwoiGbNmkVERASDBg3yrGvYsCFRUVGekWfg7meUmJhIt27dAOjYsSMGg6FSTFZWFps3b/bEdO3aFavVypo1azwxf//9N1ar1RMjhBBCiEub1ydmdLlczJo1i7vvvhu9/mg6Go2GcePGMWXKFJo2bUrTpk2ZMmUKfn5+DB8+HACLxcLIkSOZMGECoaGhhISEMHHiRNq0aUO/fv0AaNmyJQMGDGDUqFF8+umnADzwwAMMHjyY5s2bn/sLFkIIIcR5x+sF0eLFi9m/fz/33XdflW1PPPEEZWVljB492jMx46JFiyrNNjlt2jT0ej3Dhg3zTMw4e/ZsdDqdJ2bu3LmMHTvWMxpt6NChTJ8+/exfnBBCCCEuCBqllPJ2EheCwsJCLBYLVqtV+hMJIYQQF4iafn6fF32IhBBCCCG8SQoiIYQQQlzyvN6HSAghxMXt+HnfyopsaLQatDr3otNp0WhPPr+cEGebFERCCCGAyoWLciny0ouxVzix25zYy53YK5w4bO5/A0J8aHr50bncFnySjK3c4Y4/bqnTNIghY9t7Yr956W/KiuyVzq3RgFanJbJhIDdMuMyz/qe311FaaEOn16DVaT1FlFanxRLuS587W3hiV/28h7JCG1q99phiyx3r42+g3VVHnziwZ30OFaUOT0HmOa5ei8GoJabp0ScgFB4sAwV6ow6DSYfeIAXcxUgKIiGEuIC5nC4OZpbgOLYIOaaACYr0o1H7cAAcNieLZm6ptmhxVDhp0DaM/qPiAFDAd1PWnvC89VuHVCqI0rYdwl7hrDb2+PUuZ9WxPEqB0+HC5XRVWm/NLaOkoKLa45YX2yq93rs+l4IDpdXGBob5VCqI/vk9lby04mpjfQMM3PdmD8/rP2dvI3NXQaUYvUGL3qTDx2zgjsldPOvX/pbCwYwSDCatu4Ay6tCb3P8aTFpa96zjKTrzs0uwVzg9hZY7VotOrz3lExlE7ZOCSAghLhDlJXZSk/PwCzBSv3Uo4C42vnv1xIVL004RnoJIq9OQsjHvhLHHFi5arYbAMB80Wo37w/q4JbSOf6V9e93eDI1Oc/iDX4fBpHe3ppi0GH0qf9SMfLsHLpfC5TyyuHA5FE6nC+1xLS/XPtwGh82J03E01ulQuFwujKbKx+1wdX3Kim24nOpwcXV4H4cLk9lQKbZO02D8g0zuWOcxsU6Fya/ycbU6DXqDFof9aLHmsLtw2F0cP1A7Y2c+GTsKqv3+avUa4nrV9bxe+b89pG6q+vPQaNytUSPf7oFO7+7qu+bXFDJ3FRwunNzF2JGCy2DS0v7q+ugN7ulm8tKLKLHa0Om1hxeN52utXoN/sI/n+6xcCjTVP+LqUiMFkRBCnMeK8ytI2ZjL3g25ZOwsQLkU9VoGewoivUmHX6DR/UHpozumIHG3TEQ1PDrMWKvT0ufOFugM2qPxpqP7GH0rfySMeKXms/k37xJd41iNxn0r65jp4k4oIrbm05y0ujLm1EGHXTmsaY1jrxvXAXAXD3abE4fN5bl1eHxrV7u+9WnUPhyHzeVprXMc/vd4PmY9/sEmT5zL4T6WUu6CS6s7WqTkpRWRsSO/yjGOaN+vvufrDYvT2LH6xA8vv++tK/H1NwKQOG8nW5ZlVCqetMcUUdeOicMcZAIF21ZkkbrpoPs25OHiSns4TqvXEHdVND4BehSKnNQiDqWVHr4NeXjRgUbvvjUZXNcHvUHhqLBRnFdC6aF8tC4r9Vq0Iyis5j/H2iTzENWQzEMkhDiXNizez65/cshJLay0PrSOmSYdI+h0bUMvZXZxsLvs2Jw2yh3lVDgrPEu5o9y93nl0vd1px6mcuJQLp3LidDmrvHYpFw7lqLKu2njlxOWqJt6pUA5QDi3YNZT5WT3x/gfDMZb6o3Fo0Tr0aJw6tA4dWqcencPA2ua/4MR93LZ7rqLuoebolA6tS4/OpUOr9IcXHatingdVjt4FjfNvJ7yiywm/T3muZ9E6reid4Ku7GYOh9wljg9Mm41ORg94JhaFDsYb1P2Hs5f9MJaA4HYDU+v3Z22goHdZPI+/OZgwd8/YZ/1yrU9PPb2khEkIIL1NKkZ9VSkiM2bNu/5aD7mJIA1ENLTRqH07D9mEERfh5MdPa51Iud+HhOKYocZafsljxFC3V7Xd4/fGFTYXjaIxTVd/f6XyiKVb4lYN/GVSUQ0CZIqAM/MrA//DXAWXu7X2WKPwPf+1n+/Gkx736mK8duu9w6v4Pl0aP0upxafW4NDrP1xZrEdrD7SbWgLWUmNNxaQ/HanTueK0epTEQu78Yg8N93GxnFka1/vDxjj22+2ud89h+YQqt04bCDvbK/cLOJWkhqiFpIRJC1CaX00Xmbit7N+SSsiGX4vwK7nmtu/v2BJCanEdxfgUN24Vhtpi8nC04XA5KHaWU2g8vh78usZe4v65mW6nj6PYye5n7X0dZpcLG7rKf+uRnmUlnwqgz4qPzwaQzuRe9CR+dD0adEYPWgE6rQ6fRodVo0Wv0aLVadJqj63QaXaUYrUaHy6XB6QSHSwOlDnRFFWgLy9EVVWAoqkBfVI6hpBxjcTmmknJMJRX4lpbjU1aBuawcc0WFpxg5Uy4t7hkHtaDRKTRahVbrQqMFtO7XaEGjVWgO/+t5rTu6TqNVaDTuY6AB7ZF1OlBaDU69CZfehMvgg9PogzL6oUx+KJMZfMzgG4DWNxCdnwW9fxC6gGD0gSEY/IMxBoVjCghGZ/KtjR9nFdJCJIQQ5xmHzUnatkPs3ZBL6qaDlJccLQb0Jh15GcWegqhBm7AzPo/T5axUlFRbpBxZV12R43BvL3OUeWJtrrP/P3e9Ro9JbzpalFRTnPjofCrFeNbrfarud3jfI3HHrztSCGk1lecotjtd5JfayC+xc6jEhrXMTkmFg+IKByWlFVTk5+MosOIqKEBZrWiLrGiLCtGXFmEsKca3rBjf8mICbKUE2koJsJVgcjnO+Pvi0GlxGnVgAp1JYTQ58THa8DGWoze50Bld6Ewu9EYX2sNf6wxHOkuf+LhKo0UZA8AUCD4BaEyBaHwCwRRweAk8vO34dQGV1+t9Tn6iC4QUREIIcY7sWZ/L4llbPa99zAYatAujUftw6rUIRm88eS/jMkcZOw7tYHPeZrYe3MrB8oOVipwyRxml9lLKneVn7Rr0Gj1+Bj/MBjN+ej/8DIcX/dF/j93mq/et9NpH73PClhi9tnY/kpRyd9otOGilIMdKwaFCCvOLKC4sorSgiPKiYsqLSrGXlOAoLsFZVoYqK0VXXo6P04bJYcPHacPfXkawrYz6thL8HWf+vXVptNh9jLh89GhMWnQ+YDC5MBntmAzl+OhLMRgq3AXNkcLG6EJ70reFBvxCwBx+eAkDc4R73ZHixSewcoFzuLjRGM0yuuwYUhAJIUQtK7FWkLIxj70bcqnfKsQzAig2LpTAcF8axIXSqH040U0saHXVP0HJ7rSzM38nWw5uYXPeZrYc3MKegj2n1fdFp9FVKlbMerPnta+hcqFyZJuv3rdywXNk++HXBp3h1Cc+TcrhwFVShr20DFdpCaqsDFdZGa7SMlylpbjKSlFlZTiLSygrKqGssJjy4hLsRSXYS0txlpTiKitDU16Gprwcva0cg60co8OGTh0dKm8+vNQGh48vLj9fNH5GdH569D5a9D4Kk8mBwVCBUVeCXlOEHqunuNHqVc0aUvS+4B9Vtcip9Doc/CPANwR08lFeG+S7KIQQtaAgp9TTHyg7pdA9syFgK3N4CiIfs4E7X+pS5X/lDpeDvda9bMnb4imAdubvrLZ/TZhvGHGhcbQKa0Ud/zqY9WZ8Db5HW2aOKYCMWqPXWgCUw4E9IwPbvn3YUvdh278f2759OPPzPUXOkYIH++n3IzIcXmrKrtVh05uwG004jT64fHzR+Pig8fVF5+eHwd+M0d8Pk78ffkYHvtoydM4CtLZDaF1WdBSiw4rOeRCdrhzN6TwJVKMFv7DKxUy1S5i7yDHWVtkmTocUREII8S8opfjxjSQOpFQeHh/ZMJBG7cM9kyJ64lGkWlPZcnCLpwDafmg7ZY6yKse2mCy0Dm3tXsJaExcaR4RfxHlzm0M5ndizstwFz75Ud/Gzbx/21H3YMjLAcXr9ZpwaLeU6I+V6I2U6IxV64zGvTZTrjVTojLhMPnC4kNGb/dyFTIA/voH++AX6ExDkT0BQIJaQQIJCAwkODsTgc0zHdKWg9CDk7YKDu+Dgbsjb7f76UApUHFegaav52uh/XHFzbCvOcUWPXwinuO8lzgNSEAkhRA25XIrsPQVk7rbSaWADwD3JoDnIhFarIaZZkHt4fLtw/INNKKXILMnk79RlngJo68GtFNurPjLCbDDTKrSVp/hpHdqauv51vV78KJcLR3a2p9hxFz+HC5+0NNRJWncqtHoy/cPINB9e/MM46BN4uMhxFzgaH198Asz4BvkT6O9HiL+JYD8jIWYjwWYjIX5GYswGQg5/HeRnxKivYfOMvRwO7YG9Kw8XP7uP/ltecOL99D4Q2gRCG0NoUwiOrVrsGC+u6Q+EFERCCHFSDruT9O35h0eG5XkeStrksgiCIt0fit1vakKfO1tQqMlnS94WElJ/YkvSFrbmbSW/ourswiadiRYhLYgLi/MUQA0CG1QZ7XSuKKVw5ORUbenZtw/b/jRURfXPEgP3ragscygZ5nAy/cPIOFz4ZJjDKQ4IokF4AA1CzTQIM3NVmJnoIB93cWM2EuxnxMfwL1tOXC4oyjyu4Dn8dUEannuXVWjAUs9d9IQ1dRc+YU3chVBgXdB652chvEcKIiGEqEb2Xisb/0xj3+aDlZ7xZfLT06BtGIXlhWzJWM/mvM1sPriZrXlbySnLqXIcvVZPs+BmtA5t7SmAGgc1rvURVaeilMKRm4v9cF+eY1t6bPv3o8qq3rI7wqHRkm0OPabYCSPTP5wMcxjWgGDqhPrTKMxMg1Az3cPM7q/DzEQF+lR5NtkZKy90FzpHbm0duc11aA/Yq3+gKwAmy+FC55iCJ7SpuxAynJ15b8SFSQoiIYQASgvd8+z4Bbqf8VRWZGN3krvA8bMY8G8G1ph0tpmS+CF/MxkJGVWOodVoaWRp5Cl84sLiaBrcFJPu3EysqJTCeehQ1YLncGuPq/TEhYNToyXbL4RMcyiZ/uFkmsPI8HcXQLl+wcSEBtDgcLFzeajf4a/9iQnyQX+CkXKnzWmH/H3HFDzH/FtStdj00OohuOHhlp7DRc+RVh9z2EUxR444+6QgEkJc0jJ35bPm1xQydhbQcUAs7QbFsOPQDpI1mylsXc4W/9Vs1KwBjYLjPpMbBDagVWgrTwHUIqQFfoaz37dEuVxU7NhBxc6dVYofV3HV/klHONGQ4xdcqZXnSOFzwC+EyGB3y06DMDNtw8wMPXyrq36IX8377ZwyeQUluUeLHU+rz27IT4GTTWDoH3m0dcdzm6spBNWHszAdgLi0SEEkhLgkFRwoZeX/dpOyMc+z7rcNf/CQ9ZOjc/0cM8t/jDnG09k5LiyOlqEtCTSeu8f4OPLzKVmxkpJlyyhevhznwYPVxrnQkOtrqdzKYw4jwz+cA34hWCxHbmn50TzMzMDDBVBsiBnfU0wMedqUgoJ9kP4PZKyDjCTI2QYV1hPvY/A73Jm5ydGC58hrH0vt5ifEMaQgEkJcUsqKbaz9LZXNiRkol0LhYmvkStbXWUyxKR/U0bl+jhRArcNaE+ITck7zVC4X5Zs3U7xsGUWJyyjfnIzGdXSSwVK9iV1BdY8pesLJ8A8jyxyKOcCPBqHuwqdhmJk+h291xYb6EeBzFltSSg9B5jpIT3IXPxlJUJpXTaAGguodU/Acc5srIEY6NAuvkIJICHFJWf6/nexc6b73tS9oC6tj/w+fcC23N7rZc+sr0hzpldwchw5Rsnw5B/9KpHTlCnSFR1tSNEBKYDT/RDTnn8gW7I5sRMOoIBoeLnq6H27paRhqJthsPAfJVkD2Zsj4x134pP/j7uB8PK0BotpA3U5QpyNEtYWQRmDwOfs5CnEapCASQlzUlFLYK5w4dDa+3fEt36r/cbn/9ayt/zvUKWFsm4e4rvF1Z+WRFKfMzemkdOMm9i/8i5KlS/FL3YXm8NPNdUCJ3of14U35J7IFexvG0ahVIzrFhvBibDBxdQIx6c/RZH9KwaG9h299HS6AspPBWc0DX0MaQZ3DxU/dTu5iSH9uOpUL8W9IQSSEuGhl7S5g2Q87OajL5pt6bx2dE6jr9zzQ9gGGNB6CQXtuC6HCzGx2zl9M0dKlWLasw7e8BDj6jK09gTEkRbUgu3kHQjp35LKG4TzTIJj6IX7nbpLGkryjrT5Hbn1VN5Ghb8jhlp/DBVCdy9yzMgtxAZKCSAhx0bHmlrLshx3s2+gugGxaPRVBTuqF1uOBtg8wqNGgc1YIZeQVseXPVRQmLsWSvJa6ufsrPWS0yOBLcmQz8lp3xP/KK2ndtjHj6gdj8T1HhZq9DLI2Vb71VbCvapzOBNHtjt76qtMRghvIkHZx0ZCCSAhx0SgvsbNy/k62Lc0GlwYXLrZHrCar1SaevfxJrm147VmdENHhdLEtq4hNG3eTn7iUwI1raZG5nXr2ypMepobUI691R/yuvJLmfbpwd53g2pvL52RcLsjbebjV53ABdGBL9UPdw5ofvu11uPiJaA36c9A3SQgvkYJICHFR2LMjk/iPtkCFDtCwP2gr+1v9wx1X3syABk+dlULIWmZn3f581u/N5cCqfwjYtJb2mdu4rDCzUlyJyUxei/b4dL+SJoP6MbBx3VrPpVpF2cfc+voHMjdARWHVOHNE5ZafOpfJEHdxyZGCSAhxQbNWWPl629fMS/6OIa7HKPcrJbXV39x81UD6N3gYXS09ZVwpxb6DpSTty+efffns2bKXkK1JdMzeTs/cXZgd5Udj0VAY2wRjt+40vLYfQZe1R6M7yx2gK4oha8MxBdA6KEyvGmfwg+j2h1t+DhdBlrpy60tc8qQgEkJckHbvyCB+wSrmhr9DsaMIgA1df2FE59t4tuG7/7oQqnA42ZxhdRdAqflsTMklcv9OOh3YTo+c7dxVmF0p3h5gwdilK1H9+uDf40r0IWexc7HLCbnbjxn1tQ5ytoJyVY7TaCG8pbvF50gLUHhL0MmffiGOJ78VQogLSlpGNj/PXYl2bxAaQohxtEA1K+Chtg/RL7bfGT8x/mBxBUn78j3LpgwrlsKDdDqwnc4HtvNg3m78HEef+q40GgxxbQjq3RP/Hj3wad367LUClR5yFz/payBtjbsAshVVjQusc/S2V91O7k7QpoCzk5MQFxkpiIQQF4TsQzl8981fsDkEnQpC4SK77g7uHzCc/q2vOqNCqNzu5Md16Xy5MpWdB4oxOB20PriXTge2c3/ODmKLDlSK14WE4N+jB+YePTB374Y+OLi2Lu8ol9P9eIv0te4lbY37eV/HM/pDTIfKw94Do2s/HyEuEVIQCSHOa7klecz9/nec/wTj44gAID8sncuuq8sjnUaf0dw8heV25q7ez8zlKVitJVyVlsTt2VvokLcH0zGtQGi1+LZvj3/PHpiv7IFPq5ZoavuxEjVt/QltAnWvgHqXu/+NaAm11D9KCCEFkRDiPJVXlseszbP4bvt3DNz8MJEOMyX+h2g5KJSHe92J9gwKk5zCcr5Ykcrc1fsoKrfTI3Mjo7YtILz46INS9eHhmHv0cBdBXbuis9TiaKsjfX/S1py69afOZYcLoCug7uUy4aEQZ5nXC6KMjAyefPJJFixYQFlZGc2aNWPmzJl07NgRgHvuuYcvv/yy0j6dO3dm9erVntcVFRVMnDiRb775hrKyMvr27ctHH31E3bpHh7bm5+czduxYfvnlFwCGDh3KBx98QFBQ0Nm/SCFEjeWW5jJ7ybf8mPsNJRr3EPED7TbRIbARQwfdgO4MHleRmlfCp0v38mNSOjani5YHUxmz4zca5qQA7iIo+I478O/VE1OLFrU3I7S0/ghxwfBqQZSfn0/37t3p06cPCxYsICIigj179lQpUgYMGMCsWbM8r43GypODjRs3jvnz5zNv3jxCQ0OZMGECgwcPJikpCd3hTo7Dhw8nPT2d+Ph4AB544AFGjBjB/Pnzz+5FCiFq5EDJAWat/pqcJYrGeZfRqs6VVHRM5+F2D9M9pvsZFSmbM6x8nLiHBclZuBREl+QxPuUP4nYnAaDx9SV05EhC77sXrZ/fv7sAaf0R4oLm1YLo9ddfp169epWKnQYNGlSJM5lMREVFVXsMq9XKzJkzmTNnDv369QPg66+/pl69eixevJj+/fuzbds24uPjWb16NZ07dwZgxowZdO3alR07dtC8efPavzghRI1kl2QzM2k2+xNLaJV5JY2VAYWif9S1DBvY87QLIaUUq/Yc5OPEPSzblQeAv62UJ3NX0HH9n2gcDtBqCbrpRsLGjMEQEXFmiZ9u60/dTu4CKKKVtP4IcR7yakH0yy+/0L9/f2655RYSExOpU6cOo0ePZtSoUZXiEhISiIiIICgoiF69evHqq68ScfiPWFJSEna7nWuuucYTHxMTQ1xcHCtXrqR///6sWrUKi8XiKYYAunTpgsViYeXKldUWRBUVFVRUHO1cWVhYzeyuQogzllWcxecbZ7J9RTYd9l9DW4c/AAENtQy4/TIi6gee1vGcLsWiLdl8nLiHTelWAEzKyRPlyXRb+QsUuX+HzVdeScR//oNP82Y1P7i0/ghx0fNqQbR3714+/vhjxo8fzzPPPMOaNWsYO3YsJpOJu+66C4CBAwdyyy23EBsbS0pKCs8//zxXXXUVSUlJmEwmsrOzMRqNBB83/DUyMpLsbPfEadnZ2Z4C6lgRERGemONNnTqVyZMn1/IVCyEyijP4PPlzft79M532DqJb1o0A+IRp6Tssjtg2oafVKlThcPLz+gw+TdzL3jz3k+N99BommjK4csm3qMwMAEzNmhHxn//g3+PKUx/U0/qz1t0ClJ5UfetPSOOjhY+0/ghxQfNqQeRyuejUqRNTpkwBoEOHDmzZsoWPP/7YUxDdeuutnvi4uDg6depEbGwsv/32GzfeeOMJj62UqvRHtbo/sMfHHOvpp59m/PjxnteFhYXUq1fv9C5QCOGRVpTG58mfM3/XfOzYAdC3LcRYoqHroKa0ujIG7Wk84LSo3M43a9xD5w8UultzLb4GHosqo8ef/8WxaRMK0IWHEfHYY1huuOHEEyfm7oR9K6T1R4hLmFcLoujoaFq1alVpXcuWLfnxxx9Puk9sbCy7drn/YEVFRWGz2cjPz6/USpSTk0O3bt08MQcOHKhyrNzcXCIjI6s9j8lkwmQynfY1CSEq21+4nxnJM/hr6zI67RtIT3U7pb128VC7h7gs8jJcQ12nVQjlFVcwa0UKc1bto7Dc/ZT2qEAfHmnhQ4+E7yn7ZiEODneYvu8+d4dps7nqgWwlsPl/kDTb/fiL40nrjxCXFK8WRN27d2fHjh2V1u3cuZPY2NgT7nPw4EHS0tKIjnbPyNqxY0cMBgN//PEHw4YNAyArK4vNmzfzxhtvANC1a1esVitr1qzhiiuuAODvv//GarV6iiYhRO3aV7iPzzZ9xqKdi2mbcRXDMp9Cr4yggTvaP0JQhHtUV02Lof0HS5mxbC/f/ZNGhcP9zK5G4WZGd4qg28pfsL74X8rsdtBosNx0I+FjxmKIrKbDdNYmdxG06bujt8G0eqjfFep1dhdAdS8Hc2htfBuEEBcIjVJKeevka9eupVu3bkyePJlhw4axZs0aRo0axWeffcYdd9xBcXExkyZN4qabbiI6OprU1FSeeeYZ9u/fz7Zt2wgIcD+j5+GHH+bXX39l9uzZhISEMHHiRA4ePFhp2P3AgQPJzMzk008/BdzD7mNjY2s87L6wsBCLxYLVaiUw8PQ6ewpxKUmxpvDZps9YsDee5tmduTxtIL4O9+9qTNMgut/chIjYmv8Obc0s5JPEPfy6KRPX4b9W7eoF8XC3+nTa+BcHP/4Yl9XdidrcrRsRTz6Bz/EDJSqKYfOP7kIoc93R9cENoeM90H44+J/haDMhxHmtpp/fXm0huvzyy/npp594+umneemll2jYsCHvvvsud9xxBwA6nY7k5GS++uorCgoKiI6Opk+fPnz77beeYghg2rRp6PV6hg0b5pmYcfbs2Z5iCGDu3LmMHTvWMxpt6NChTJ8+/dxesBAXMaUUs7bM4v117xNQGsrNO/5DcJl7uoygSD+63tCYhu3CatRhWinF3ymH+CRxDwk7cj3rezYL5+GejWi1+x9yn7yf3P37ATA1bULEE0/g36NH5QNlbnAXQcnfg63YvU5rgJZD3IVQgx5Q24/iEEJckLzaQnQhkRYiIU6s1F7K8yueZ9G+RQD0jrqKtotvQOvScfnghrTuGYOuBrfGXC7F4m0H+DhxD+v3FwCg1cCgtjE82LMRjXNTOPD6G5StXw+4O0yHjx1L0A03oNEf/v9dRREk/+AuhLI2HD14SOOjrUHmsNq7eCHEee2CaCESQlz49hXuY9yScRSm2dAH6nm689Pc0uwWcpoVERTpi8nPcMpj2Bwu/m9DBp8u3cvuHHdLjlGvZVinuozq0Yjosnxy3ppE6gL3TPMaHx93h+mR97k7TCsFGUmHW4N+BLt7+D06I7Qcerg16EqorUdyCCEuOlIQCSHOWGJaIs8mPkfrPX3ol9WbxkP8GNC8CwCRDU/dklpS4WDe2jQ+X7aXLGs5AAE+ekZ0ieXe7g0JcZWT98mH7P36a9SRDtM33kD42LEYIiOh3AprP3cXQtnJRw8c2tRdBLW7XTpHCyFqRAoiIcRpcykXn278lDl/z+PqnfcRUeIeGRrkCK/R/odKbMxemcqXK1OxlrnnJAoPMHH/lQ0Z3rk+/lpF/rx57PnwI5yeDtNdiXjicIfpjCT4v5fcw+btpe6D6kzQ6jp3IRTbTVqDhBCnRQoiIcRpKbIV8cyyZ0jddJCbd/8Hk9MPk5+evve0omHbk/fNSc8v5fNlKcxbu59yu3vofMMwMw/0bMQNHepg0mspWvQHe95+G/vhDtPGJo2JfOIJzJ3aoNn8A3wyEg5sPnrQsOaHW4Nuk4kShRBnTAoiIUSN7c7fzeN/jSdmc3sGZN0AuG+NXXN/awJDfU+4347sIj5J3MMvGzNxHh4736aOhYd7N6Z/6yh0Wg1lGzey7/U3KFvnHhavCwsjfMwYgjrXQ7NhDrwzDBxl7gPqfaDV9e5CqH4XaQ0SQvxrUhAJIWpkUeoinlvxHAH5EbTJ6glA+6vr0+X6RiccQbY29RCfJOzhz+05nnVXNgnj4d6N6dbY/cwyW3o62e+8Q+HvC4DDHaZH3E5IR190W6fB7K1HDxjeEjrdC22HgW/w8acTQogzJgWREOKknC4n769/ny82fwFA26ZRXNakLtExYdXeInO5FEt25PBxwh7+2ZcPuBtwro2L5qFejWlT1+I+rtVK3qefkT9nztEO09d0J7yDA0P625Dg7mSN3hfibnS3BtW9XFqDhBBnhRREQogTKigv4ImEJ1FrwrBERHBDp2t57LLH0Gur/9PxT+ohnvt5M9uz3Y/EMOq03NSxDqN6NKJRuD8AymYjf9635H34oafDtF+rekS2PYQP30Hq4YNFtHa3BrW5BXyDzvKVCiEudVIQCSGqte3gNp7+/QXabbiWiJJYrrD3YeSoq9BWM7Nzud3J24t28PnyFJQCf5OeO7rUZ2T3hkQE+gDu2aeL/viDnLffxr7vcIfpCD8iW2VjjvwbDYDB73Br0L1Qp6O0BgkhzhkpiIQQVczfM59Zv/5Az513Y3L6offV0u/mNtU+iHVjWgETvt/omVDx5o51eX5QKyzHTMhYtmmTe4bppCQAdL4awlvnE9QoE40WiGwDne5xtwb5WM7FJQohRCVSEAkhPOwuO2+tfpuUP0rom3U3AGGxZgY+0LbKKDKbw8X7f+7i48Q9OF2K8AATr93Yhr4tI4/GpGeQ+847FP7+OwAanSKkeTGhLYvR+flBm7vcfYNiLpPWICGEV0lBJIQAIK8sjycXPkud5Z1pV9wAgHb96tL1+ibo9JVbhrZmFjLh+41syyoEYGi7GCYPbU2w2QiAs7CQvOnvkv/fb1EOF6CwNCgjvG0hhkZx7r5BcTeDjzwXUAhxfpCCSAjBxtyNjF8ynrySPOpqu6D1gQH3tqFhu8ozTzucLj5J3MN7f+7C7lSEmI28cn0c17aJBkA5HORPf5W8r37AWeoAwC+igsjL7fj0PjxSLKbDub48IYQ4JSmIhLjEfbfte15f8zo2KmgU3IhbH7mSuv51q9wi251TxITvNrIx3T0y7JpWkbx6QxvCA0wAOFI3kzn6Xkr2Hn44a6CdiKvC8b/5ATRtbgZTwLm9MCGEOA1SEAlxibI5bbz259s4FkVyWcAA/HuW8MqVr2A2mCvFOV2Kmcv38taindgcLgJ99Ey+rjXXt6+DRqMBl5PSuZPJmPYtjlItGp0iYmgrgkc/i6ZeRy9dnRBCnB4piIS4BGWXZPPKvHdptO5KTE4/Iu31uLdjT/wMpkpxqXklTPx+o2eCxd7Nw3ntxrZEWQ4Ppc/aRP7k+zmQWAhKizFET91pb2Hq3P+cX5MQQvwbUhAJcYn5O30Nc2f/Qcv0awDwq6PhptFX4hd4tBhyuRRzVu/jtQXbKbM78TfpeX5wS4Z1quduFbKV4ox/mawP5lGU5gNoCOzSgqgPvkIXILfGhBAXHimIhLhEKKWY8/c89vxQTvPirgA07hnM1cPaVRpFlp5fyhM/bGLlnoMAdGscyhs3t6VusJ87YPdiyr98nIz4cmxFPqDTEDl+DMH3PeQuloQQ4gIkBZEQl4AyRxmTl79E0P86EmGLxGW0c/U9cbS4rI4nRinFt2vTeOW3bRRXOPA16Hj62hbc2TkWrVYDxbmw8BkKfplP9j8WlFOPPiyIutM/xrd9e+9dnBBC1AIpiIS4yKUXpfN4wuNsP7Sdpg2yuMZ6G3eO6YklzM8Tc6CwnCd/3ETCjlwAOsUG89Yt7WgQZgalYP3XuH5/jgMrXBTsdT9l3ty1CzHvvIM+WJ46L4S48ElBJMRFLGHLCt5Z/j4pPtsJ8Qnh6eGP0DGik7vFB3er0M8bMnjx/7ZQWO7AqNcy8ZpmjLyyETqtBvJ2w6/jsG1eScaKYMrzfUGjIeyRRwh7+CE0Op2Xr1AIIWqHFERCXISUUnz2yzeULAqkh/Z2gnvP5/UBrxJljvLE5BZV8NzPySzccgCAtnUtvH1LO5pGBoDDBsveg6VvUrQfMv8Ox2XTogsKIubNN/HvcaW3Lk0IIc4KKYiEuMgUlhXxwcfzCNrZGBNgDy5kWs9phJiPPibj9+Qsnvt5M4dKbBh0GsZe1ZSHezdGr9PC/tUw/zHUge3kJgdwcJt71Jhvu3bUeXcahuhoL12ZEEKcPVIQCXER2Zq6k58+XkuQtTEAvh3LeOjeoZ5RZPklNl74ZQvzN2YC0CIqgHeGtadVTCCUFcDiSZA0C0eZlow1UZRmufcLHjGCyP9MRGM0euOyhBDirJOCSIiLxC+L/2L3z2UEOaKx6ctoNyyCq3pe5dn+57YDPPW/ZHKLKtBpNYzu3ZgxVzXFqNPAlp9gwZNQfIDSHCPpa2NwFtnQ+vkR/eorBA4c6MUrE0KIs08KIiEucC7l4uONH7MzoZhmjsspDsrltjE9iK0TA0BhuZ2X5m/lh6R0AJpE+PP2Le1oVy8ICtLg94mwMx6l4ND+WHL+doLLhqlpE+q89x6mRo28eHVCCHFuSEEkxAWs0FbIU0ufYlnGMvSNjNSvH8Vj99yGj9E96/SyXbk8+cMmMq3laDQwqkcjxl/dDB8dsOoj+OsVsJfgdBjJ3NWB4o1pAAQOGUL05Elo/fxOcnYhhLh4SEEkxAVqxcpNzF+cwLL6yzDpTbx45YsMaTwEgJIKB1MXbOPr1fsBiA31461b2nF5gxDI2gi/jIWsDQCUmzqSvtSFPTMNjcFA5LPPEHTrrTLrtBDikiIFkRAXGKfTxTdf/ol1jY56xHFF0NVMuON+WoW2AuDvvQf5zw+b2H+oFIC7u8by5MAW+FEBC5+F1R+DcoLJQoHxJrK//Atls2GIiaHOe+/h2ybOm5cnhBBeIQWREBeQ/Nxivv5gCdocMwA5Tbbzxn3PEeofQrndyZsLd/DFihSUgjpBvrxxc1u6NwmDXX/Ar+PB6m4xcjW9juwNYVjnLwDAv1cvYl5/DV1QkLcuTQghvEoKIiEuEMn/pPLXl9vQ281U6ErRXnWAF254EJ1Wx/r9+Uz4fiN7c0sAuO3yejw7qCUBjnz44T7Y/KP7IJZ62Do8Rfq0H6jYsRa0WsIfe4zQUfej0WpPcnYhhLi4SUEkxAVgwU9r2LuwGD0m8vzT6HRnNIPaj6TC4eStRdv5NHEPLgWRgSZeu6ktfZqGwfo58MfzUG4FjRa6jKbQ0ZmsiS/jKi5GFxpKnbffwtyli7cvTwghvE4KIiHOc/+3+//4OGs212oeZn/9jTxw//U0C2/K5gwrE77byI4DRQDc0KEOk4a0xlKSAl/eA/tWuA8Q3Q418G1yvlnCoVlPAuB72WXUmfYOhshIL12VEEKcX6QgEuI8ZXPaeHPtm8zbMQ/MkDJwMZMHPIevzp93F+9k+l+7cbgUoWYjr97QhgEtgmH527DsbXDawOAHfZ7F3vBGMiY+QVlSEgAh995LxPjH0RgMXr5CIYQ4f3i900BGRgZ33nknoaGh+Pn50b59e5IO/+EG90MqJ02aRExMDL6+vvTu3ZstW7ZUOkZFRQVjxowhLCwMs9nM0KFDSU9PrxSTn5/PiBEjsFgsWCwWRowYQUFBwbm4RCFOW1mxjU8mL+Cvf1YB8HC7h3l7yGtk52u44aMVvLt4Fw6XYmBcFIse78mAgL3wyZWQMNVdDDW9BkavpkTbiZSbh1GWlITW3586779H5JNPSDEkhBDH8WpBlJ+fT/fu3TEYDCxYsICtW7fy9ttvE3TMSJc33niDd955h+nTp7N27VqioqK4+uqrKSoq8sSMGzeOn376iXnz5rF8+XKKi4sZPHgwTqfTEzN8+HA2bNhAfHw88fHxbNiwgREjRpzLyxWiRlwuxXcfrUCXE0CvPbfxRs83ebDtw3yamMLg95ezOaMQi6+B925rz0c3NiL0r4kwayDk7QRzBNw8C3XbPPK+jWf/fSNxHjyIqXlzGv7wPYHXXOPtyxNCiPOSRimlvHXyp556ihUrVrBs2bJqtyuliImJYdy4cTz5pLvvQ0VFBZGRkbz++us8+OCDWK1WwsPDmTNnDrfeeisAmZmZ1KtXj99//53+/fuzbds2WrVqxerVq+ncuTMAq1evpmvXrmzfvp3mzZufMtfCwkIsFgtWq5XAwMBTxgtxphJ+2syWhTnYtTbsQ3dyU8f7mPj9RtbtLwCgb4sIpt4QR0Ta77DgKSjJce942d1w9WScFRoyn3yK4sREACw33kjUC8+j9fHx0hUJIYT31PTz26stRL/88gudOnXilltuISIigg4dOjBjxgzP9pSUFLKzs7nmmP/VmkwmevXqxcqVKwFISkrCbrdXiomJiSEuLs4Ts2rVKiwWi6cYAujSpQsWi8UTI8T5YN+WPDYvPADArjZLCfIfwLXvL2Pd/gICTHreuLktn18XTsT8Ee7h9CU5ENYc7l0AQ9+nbHcGKTfeRHFiIhqTiehXXyFmyqtSDAkhxCl4tSDau3cvH3/8MU2bNmXhwoU89NBDjB07lq+++gqA7OxsACKPGwkTGRnp2ZadnY3RaCQ4OPikMREREVXOHxER4Yk5XkVFBYWFhZUWIc6mokPl/DpjPRo07Ij6m5D6fXn1112U2130aBpG/GPdGGb7Gc1HXWH3H6AzQu9n4KFlqPpdyZ83j33Dh2PPzMRQrx4N5n1D0E03efuyhBDiguDVUWYul4tOnToxZcoUADp06MCWLVv4+OOPueuuuzxxxz9TSSl1yucsHR9TXfzJjjN16lQmT55c42sR4t9wOlz8/PFaKNeRa04jslcUMxaWA/DcoJaMbGRF8921kL3JvUNsdxj8LoQ3w1VaStaLT1I4fz4A/n37EjN1Cjq5tSuEEDXm1Rai6OhoWrVqVWldy5Yt2b/f/XiBqKgogCqtODk5OZ5Wo6ioKGw2G/n5+SeNOXDgQJXz5+bmVml9OuLpp5/GarV6lrS0tDO4QiFqpqismJ0VW6nQlXLoyu18tywGgPuvCOf+ks/RfH6VuxjyscDQD+DuXyG8GRV7U0i99VZ3MaTTEfGfidSd/oEUQ0IIcZq8WhB1796dHTt2VFq3c+dOYmNjAWjYsCFRUVH88ccfnu02m43ExES6desGQMeOHTEYDJVisrKy2Lx5syema9euWK1W1qxZ44n5+++/sVqtnpjjmUwmAgMDKy1CnC1vbnydnxtNJ/GKr9ib2QdrqYOhUfk8m3ovrP4QlAviboZH/4HL7gKtlsIFC0i9+WYqdu1GFx5G7OxZhI4cKU+pF0KIM+DVW2aPP/443bp1Y8qUKQwbNow1a9bw2Wef8dlnnwHu21zjxo1jypQpNG3alKZNmzJlyhT8/PwYPnw4ABaLhZEjRzJhwgRCQ0MJCQlh4sSJtGnThn79+gHuVqcBAwYwatQoPv30UwAeeOABBg8eXKMRZkKcLeUldhZnL+KXPb+g1WqpZx7Gr9vs1Pcp5x3Xa2gK0yGoPgyaBk3d72dls3HgzbfInzMHAL8rrqDO22+hDw/35qUIIcQFzasF0eWXX85PP/3E008/zUsvvUTDhg159913ueOOOzwxTzzxBGVlZYwePZr8/Hw6d+7MokWLCAgI8MRMmzYNvV7PsGHDKCsro2/fvsyePRudTueJmTt3LmPHjvWMRhs6dCjTp08/dxcrxHHsFU6+e+NvNrl2oG9opFedYfy8xBcdTn6OnIH+QBoEN4BRS8AvxL1PVhYZ4x6nbONGAEJHjSL8sbFo9DLpvBBC/BtenYfoQiLzEInapJRi0awt7F6TQ4nBysaev7Eh+QZKbPBdw1+5Iuu/YDDD/X9AZGsAipevIHPiRJwFBWgDA4l57TUCrurj5SsRQojzW00/v+W/lUJ4wZZlmexek4MLJytafkdx5jBKbDAhaoO7GAK4/iOIbI1yOsn7+BPyPvwQlMKnVSvqvPcuxnr1vHsRQghxEZGCSIhzLGdfIUu/dQ8m+Lv+r/gH92bjRiNX+mfwaPH77qAeE6D19Tjy88mc+B9KVrifXB80bBiRzz6D1mTyUvZCCHFxkoJIiHOovMTO759uQjkhJXgTtNSz4u+6hGkKmWmahqak3P1g1j7PUrFnD/vvH4UjKwuNjw9Rk14k6PrrvX0JQghxUZKCSIhz6K+vtlFyyIbVlMe2NkvZte5u9Dj4v8gZmAoyIaQx3DgDZ1ExaaNH48jKwhgbS53338eneTNvpy+EEBctKYiEOIcONtlN0XYnS1p8RemBYdjsej4P/546BUlg9Ifb/osyBpAx5iHs+/ZjiIkh9pv/og8J8XbqQghxUZOCSIhzZFf+Lt47MAV7ezv1dcPYtS+U+wNW0a/oJ3fADZ9CRAty33qLkuXL0fj4UPfD6VIMCSHEOSAFkRBnWUlBBUUlpTzxzxNUOCuINXckeV1bOupTeMblnoSUXk9Cy8FYf/2Ng5/PBCBmyqv4tGzpxcyFEOLSIQWREGeR0+li4eebyUw9REUTPYERIWxPvpYwivjK/3205RXQbCD0eoryrVvJeu45AEJH3U/gtdd6OXshhLh0ePVZZkJc7Fb/vJes3VZsykahz0EqsoahsZv4NvgjzOUHILQp3PgZjoIC0h59FFVejrlHD8LHjfN26kIIcUmRgkiIs2Tv+lw2/LEfgITG/8Vo6kBebgPeCviGxmXJYAqE279B6XzJGPc4jswsDLH1qfPWm2iOeeyMEEKIs08KIiHOAmtuKX9+uRWAjdFLKIwqZu+OntxpTOQ6+wJAAzfOgLCmHHj9DUrXrEHr50e9Dz9EZ7F4N3khhLgESUEkRC1z2Jws+HQztnInWQF7WddgEfu330AHTQqT9V+4g/o8A80HUPDj/8j/+msAYt58A1OTJl7MXAghLl1SEAlRyzYtSedgejGlhiIWN52NPW8IoTY9X5rfR+eyQ4vB0GMiZRs3kj1pEgBhjz5KQN++3k1cCCEuYTLKTIha1rhnEF+vW8NW81o0uqaU5bZmnv9rBDoOQngLuOET7Hl5pI8Zi7Lb8e/Xl7DRD3s7bSGEuKRJQSRELVJKMWXtFP6I+R2zNpzsbcN50+drWjq2g8kCt/0Xl8ZExtgHcOTkYGzSmJjXXkejlcZaIYTwJimIhKgFFWUOkpekk9FkE7+n/I4WLTl7b2a4ZgW3sBjQwM0zUSGNOPDCC5Rt2IA2MNDdidrf7O30hRDikicFkRD/klKKv77cxt4NuaSE74Em4Dp0DR3Ky3nZ50tQQN8XoOnV5P/3vxR8/wNotdR5+22MsbHeTl8IIQTSqVqIf23D4jT2bsjFpXGyLmoxRntTfA/EMdP3fXTKAa2uhysfp3TtWg5MmQpAxPjH8e9xpXcTF0II4SEFkRD/QubuAlb9tAeAFQ3+R4H/QYpTh/KFz/sEufIhojVc9yH2rCzSHxsHDgeB115LyMiR3k1cCCFEJVIQCXGGSgttLJyxGeVS7Ar7hy2RyylMv4GXNT8Rx27wCYLb5uJSetIfHYPz0CFMLVsS/eoraDQab6cvhBDiGNKHSIgz4HIpFs3cTKnVRqFfLomNvsVZ2JnbSzMZZkgAjRZu/gIV3ICsJ56kfOtWdMHB1Jv+AVpfX2+nL4QQ4jjSQiTEGTiUWUJOahEunYPfm85AqRBaZTfhRcMcd0C/ydCkL4dmzaZw/nzQ6ajz7rsY6tTxbuJCCCGqJQWREGcgrK4/PrdmEd90Jla/gxj3D2CG8UP0OCHuZug2huIVK8h56y0AIp96CnPnK7yctRBCiBORW2ZCnIEdh3bw7p43sAfbcWQPYq6aQ7CmEKLawNAPsKWlkTF+ArhcWG68keA77/B2ykIIIU5CCiIhashpd7Hgs2Ra9YnkPzv/g91lx1nckpeLk2mjSwHfELh1Li67Iv2RR3FZrfi0bUvUiy9IJ2ohhDjPSUEkRA0t/34X+5IPkrIri7S2GWgI5PrsYG7WLURpdGhumY0Kqk/mY+Oo2LULXXgYdT/4AK3J5O3UhRBCnIL0IRKiBnb8nc3mpRmAYkGDmTi0dmIzr+Bl3XcAaK55BRr14uAnn1C0aBEYDNR9/30MkRHeTVwIIUSNSEEkxCkczCwmYe52AJLrJ5AWvB3ToU58Zf8eHS5oext0eZiiv5aQ+/4HAES98Dx+HTp4M20hhBCnQQoiIU7CVu4g/tPNOGwurOGZrIz5P1RZHWYWrCVYUwTR7WHIu1SkpJD5n/+AUgQPv53gW27xdupCCCFOgxREQpyAUoolc7ZTcKAUzHZ+ip2OUkbGH3DSTrsf/MLg1q9xljtIH/0IrpISfDt1JPKpp7yduhBCiNMkBZEQJ+ByKrQ6DRot/NzoQ8oNJXQ+0ID71BqUVg/DvkQFxJA58T/YUlPRR0dT97330BiN3k5dCCHEaZKCSIgT0Om1XHFHXf68YibZ/ikEWxvwadliADT9p0KDK8l9/wOKExPRmEzU/eAD9KGhXs5aCCHEmZCCSIjj2ModKJdCKcXLq19mp2YTWpuF/x5ah06joP2dcMUoCuPjOfjppwBEv/IyvnGtvZy5EEKIMyXzEAlxDJdLEf/ZZnR6LeU99rAwdSEoLa/kFFCXYqjTEQa9TfnOnWQ+/QwAIffei2XIEC9nLoQQ4t/wagvRpEmT0Gg0lZaoqCjP9nvuuafK9i5dulQ6RkVFBWPGjCEsLAyz2czQoUNJT0+vFJOfn8+IESOwWCxYLBZGjBhBQUHBubhEcYH55/dU0rYeYv+2g3yyciYA/Q+aGWJPQ5kjYNgcHMVlpD/yKKqsDHO3bkRMGO/lrIUQQvxbXr9l1rp1a7KysjxLcnJype0DBgyotP3333+vtH3cuHH89NNPzJs3j+XLl1NcXMzgwYNxOp2emOHDh7Nhwwbi4+OJj49nw4YNjBgx4pxcn7hw7N96kLW/pQCwtdWfZPvsI7LUwhtFW1BaA5pb56DMkWSMH489PR1DvXrUeedtNHppaBVCiAud1/+S6/X6Sq1CxzOZTCfcbrVamTlzJnPmzKFfv34AfP3119SrV4/FixfTv39/tm3bRnx8PKtXr6Zz584AzJgxg65du7Jjxw6aN29e+xclLjhFh8r5Y+ZWUGBvnkuC3/+hcxj5Oner+38NA1+H+l3ImfoapatWo/Hzo+706eiCgrycuRBCiNrg9RaiXbt2ERMTQ8OGDbntttvYu3dvpe0JCQlERETQrFkzRo0aRU5OjmdbUlISdruda665xrMuJiaGuLg4Vq5cCcCqVauwWCyeYgigS5cuWCwWT4y4tDkdLhbO2Ex5iR3fKA2zg14D4NW8PKJcTrjsbuh0H9b/+z8OffklADFTp+LTvJk30xZCCFGLvNpC1LlzZ7766iuaNWvGgQMHeOWVV+jWrRtbtmwhNDSUgQMHcssttxAbG0tKSgrPP/88V111FUlJSZhMJrKzszEajQQHB1c6bmRkJNnZ2QBkZ2cTEVH1eVIRERGemOpUVFRQUVHheV1YWFhLVy3ON6t+2sOBlEIMvjq+j30Hp9bBQKtiUFkBqu4VaK59k7LNW8h6/gUAQh9+iMD+15ziqEIIIS4kXi2IBg4c6Pm6TZs2dO3alcaNG/Pll18yfvx4br31Vs/2uLg4OnXqRGxsLL/99hs33njjCY+rlEKj0XheH/v1iWKON3XqVCZPnny6lyQuQE06RbBnfQ7JzReTzl6iKvS8nL8XlzkS7a1zcBQUkT5mDMpmw793b8LHjPF2ykIIIWqZ12+ZHctsNtOmTRt27dpV7fbo6GhiY2M926OiorDZbOTn51eKy8nJITIy0hNz4MCBKsfKzc31xFTn6aefxmq1epa0tLQzvSxxnotqaEHdupuF/IDOpeGT3P0YNEa0t81FmUJIf2wcjuxsjA0bEvPmG2i059WvjRBCiFpwXv1lr6ioYNu2bURHR1e7/eDBg6SlpXm2d+zYEYPBwB9//OGJycrKYvPmzXTr1g2Arl27YrVaWbNmjSfm77//xmq1emKqYzKZCAwMrLSIi4e9wsnBjGIAth7cyrsb3wXgqYMHaWx3oB30FtS7nOwpUyhLSkLr70/dDz9EFxDgxayFEEKcLV69ZTZx4kSGDBlC/fr1ycnJ4ZVXXqGwsJC7776b4uJiJk2axE033UR0dDSpqak888wzhIWFccMNNwBgsVgYOXIkEyZMIDQ0lJCQECZOnEibNm08o85atmzJgAEDGDVqFJ8enlX4gQceYPDgwTLC7BKllCLhv9vZsy6XK4c34onMJ3AqBz1LKri1uBjVaSSajneT/+13FMz7FjQaYt56E1Ojht5OXQghxFni1YIoPT2d22+/nby8PMLDw+nSpQurV68mNjaWsrIykpOT+eqrrygoKCA6Opo+ffrw7bffEnDM/9KnTZuGXq9n2LBhlJWV0bdvX2bPno1Op/PEzJ07l7Fjx3pGow0dOpTp06ef8+sV54etyzPZ+fcBNFoN/8v8nrTifYQ6FFPycnHW7YJ+wGuUrltH9iuvABD+2GME9O7t3aSFEEKcVRqllPJ2EheCwsJCLBYLVqtVbp9dwHL2FfLjm0m4HIqQ3g6mVExAo2Bm9gHa64IxPLwMe4ki5aabceblEdC/P3XenXbSDvhCCCHOXzX9/Pb6xIxCnCvlJXbiP9uMy6GIau3Pa/axAIwqsHKZTaEb+V9cBgvpj47AmZeHqVkzYqa8KsWQEEJcAqQgEpcE5VL8OXsrRQfLCQzz4cc6H1FeVEK78goeLrCive5DVMxlZD/9DOXJyegsFup+OB2t2ezt1IUQQpwD59UoMyHOli3LM0lNPohOryW/5xaSi5Iwu1y8npsHnR5A0+FO8ud8jfXnn0Grpc60dzDWq+fttIUQQpwj0kIkLgnNu0ThtLvItKXxZNYHALyYd4iQiCvQD5xCyerVHHj9dQAinvgP5pNMySCEEOLiIy1E4pJgMOpocGUgU/KfRaG4rqiYXi4Lvnd8jS0rh4xxj4PTieW6oYTcfbe30xVCCHGOSQuRuKi5XAoNgAaeSHiOAnsesXY7/zlUgt/9P+HS+JH+6CicBQX4xMURNXmydKIWQohLkBRE4qK2a0026xbtx9Upl5W5CeiV4o2cPMxDPkBFtyNrwgQqtm9HFxpK3Q/eR+vj4+2UhRBCeIHcMhMXLeVSJMXv41BmCQkbVwLwSL6VenH3oe9wOwc//5zC3xeAXk/d997FcIJHxgghhLj4SUEkLlp71ueSn12KxqRIilhEiNNJf2MLAgZNoXjpUnLfmQZA1HPP4tepk5ezFUII4U1SEImLklKKpPhUALZELMOur+AOazF1bvsMW1o6GRMmglIEDRtG8G23eTdZIYQQXid9iMRFad/mg+SlFaMxKP6OXECA08WVgT1RpnDS7roNV1ERvh06EPXcs95OVQghxHlAWojERUcpRdKCVAB2RqyhwlDKrYXFNB38AplPPIltzx70ERHUff89NEajd5MVQghxXpCCSFx0DqQUkr23EI0OVkbNx9flore5GwXfLaL4r7/QGI3Unf4B+vBwb6cqhBDiPCEFkbjoRDYMZPCYdmxpsIQyYxE3FZVQP2IoeR9+CEDU5Mn4tm3r5SyFEEKcT6QgEhcdjUZDdnAKSyN+xqAUVxk6cejjrwAIvuMOgm643rsJCiGEOO9IQSQuKg67E4A3l74GwHVFJTQw9MKWmoouOJjwx8d5MTshhBDnKxllJi4aeelF/PzOeiK7mNhRvgMdin6athTM+RGAsIceROfv7+UshRBCnI+khUhcNJIW7KOi1MG6zcmggYHFpTS2d8Fx4AD66GiCZL4hIYQQJyAFkbgo5GeXsHtdDgB/RX2PRimusbegcN7/ARD+6KNoTSZvpiiEEOI8JgWRuCisi98HCgrC0zhkzqRvSRlNizrgtFoxNm6M5bqh3k5RCCHEeUwKInHBK8wrY8eaAwD8FfkdAANKm1D8czwA4eMeQ6OX7nJCCCFOTAoiccFbv2g/yqUoDj1ATsB+riwto0VuS1RpKT5t2xLQr5+3UxRCCHGek4JIXNBsZQ62r84CICHC3To0KD+W0gV/ARAx/nE0Go3X8hNCCHFhkIJIXNCMvnpuffYKDjXfRrplN53Kymmd3gjsdszdumHu0sXbKQohhLgASEEkLnjOwDJ+Cv4UNHBddjTlS1YAEP74417OTAghxIVCCiJxwbKVOQCYlvgmdo0irqKC1nvqgFIE9O+Pb5s4L2cohBDiQnFaBdEbb7xBWVmZ5/XSpUupqKjwvC4qKmL06NG1l50QJ1BR5uCr51by62frWZK2BICbUsNwrN0AOh3hjz3m3QSFEEJcUE6rIHr66acpKiryvB48eDAZGRme16WlpXz66ae1l50QJ7A5MZ2KEgd7d6VTaCijSYWNNtvCAAi68QZMjRp6OUMhhBAXktMqiJRSJ30txLlgr3CyYXEaAKvDfwaN4vYdQbi27UJjNBL2yCPeTVAIIcQFR/oQiQvO1uWZlBfbUeZyNkf8Q32bnbZbAgEIvuMODFFRXs5QCCHEhUYKInFBcdpdrF+0D4C1EfNRGhd3bfJHpaaj9fcn9IFRXs5QCCHEhei0n2fw+eef4+/vD4DD4WD27NmEhbn7bhzbv0iIs2H76ixKrDbws7MhYhXRFQ7abAwCSggdeR/64GBvpyiEEOICdFoFUf369ZkxY4bndVRUFHPmzKkSI8TZsnV5JgAbwn7HpXUy8h9fNDl56EJDCbnrLi9nJ4QQ4kJ1WgVRamrqWUpDiJq57vEOzPnvj/zDciLLHbTZ5AeUEfbQQ2jNZm+nJ4QQ4gIlfYjEBUVv0vIdb+LQ2XhglQlNQSGGOnUIunWYt1MTQghxATutgujvv/9mwYIFldZ99dVXNGzYkIiICB544IFKEzWeyqRJk9BoNJWWqGNGCCmlmDRpEjExMfj6+tK7d2+2bNlS6RgVFRWMGTOGsLAwzGYzQ4cOJT09vVJMfn4+I0aMwGKxYLFYGDFiBAUFBadz6cLLSgttKKX4ef1cMnUVRJY4ab3J/dDW8LFj0BqNXs5QCCHEhey0CqJJkyaxadMmz+vk5GRGjhxJv379eOqpp5g/fz5Tp049rQRat25NVlaWZ0lOTvZse+ONN3jnnXeYPn06a9euJSoqiquvvrpS5+1x48bx008/MW/ePJYvX05xcTGDBw/G6XR6YoYPH86GDRuIj48nPj6eDRs2MGLEiNPKU3iPUor5H2zguylr+W6l+4n2Dy3Xoy0tx9S0KYGDB3s5QyGEEBc8dRqioqLU2rVrPa+feeYZ1b17d8/r7777TrVs2bLGx3vxxRdVu3btqt3mcrlUVFSUeu211zzrysvLlcViUZ988olSSqmCggJlMBjUvHnzPDEZGRlKq9Wq+Ph4pZRSW7duVYBavXq1J2bVqlUKUNu3b69xrlarVQHKarXWeB9RO1I25arpD/6pPnxkseo0o7Pq935LtSUuTm1t3kIV/vmnt9MTQghxHqvp5/dptRDl5+cTGRnpeZ2YmMiAAQM8ry+//HLS0tJOqyDbtWsXMTExNGzYkNtuu429e/cCkJKSQnZ2Ntdcc40n1mQy0atXL1auXAlAUlISdru9UkxMTAxxcXGemFWrVmGxWOjcubMnpkuXLlgsFk9MdSoqKigsLKy0iHNPKUXSAve8Q/vCVlBuKGF0og6N3YFv+/b49+nj5QyFEEJcDE6rIIqMjCQlJQUAm83GunXr6Nq1q2d7UVERBoOhxsfr3LkzX331FQsXLmTGjBlkZ2fTrVs3Dh48SHZ2tuecx+dwZFt2djZGo5Hg4+aeOT4mIiKiyrkjIiI8MdWZOnWqp8+RxWKhXr16Nb4uUXsydxaQvdeKRqdIqLOQuodcNN/qAiBiwng0Go2XMxRCCHExOK2CaMCAATz11FMsW7aMp59+Gj8/P3r06OHZvmnTJho3blzj4w0cOJCbbrqJNm3a0K9fP3777TcAvvzyS0/M8R94SqlTfggeH1Nd/KmO8/TTT2O1Wj3L6bZ8idrxz4JUADJD11JqLOThvzRoXC7MPXvgd/nl3k1OCCHEReO0CqJXXnkFnU5Hr169mDFjBp999hnGY0b3fPHFF5VuX50us9lMmzZt2LVrl2e02fGtODk5OZ5Wo6ioKGw2G/n5+SeNOXDgQJVz5ebmVml9OpbJZCIwMLDSIs6t7BQr6dvzQaP4q84CGmW7aLrL3Vk+4vHHvZydEEKIi8lpFUTh4eEsW7aM/Px88vPzufHGGytt//7775k0adIZJ1NRUcG2bduIjo6mYcOGREVF8ccff3i222w2EhMT6datGwAdO3bEYDBUisnKymLz5s2emK5du2K1WlmzZo0n5u+//8ZqtXpixPlp5xp3IZsXupEin0M8+Jd7feC11+LTsqUXMxNCCHGxOa2Zqu+7774axX3xxRc1ips4cSJDhgyhfv365OTk8Morr1BYWMjdd9+NRqNh3LhxTJkyhaZNm9K0aVOmTJmCn58fw4cPB8BisTBy5EgmTJhAaGgoISEhTJw40XMLDqBly5YMGDCAUaNG8emnnwLwwAMPMHjwYJo3b346ly/OsR63NEWFZvPM7vm02uei4T4X6PWEPzbW26kJIYS4yJxWQTR79mxiY2Pp0KEDSql/ffL09HRuv/128vLyCA8Pp0uXLqxevZrY2FgAnnjiCcrKyhg9ejT5+fl07tyZRYsWERAQ4DnGtGnT0Ov1DBs2jLKyMvr27cvs2bPR6XSemLlz5zJ27FjP7byhQ4cyffr0f52/OLs0Wg3fpE+m0CeXUUvc77egm2/CePj9IYQQQtQWjTqNymb06NHMmzeP+vXrc99993HnnXcSEhJyNvM7bxQWFmKxWLBardKf6CwrK7KhN+rYn7eBG/+4mw67FU/+4ELj40PjhQsxRFYdNSiEEEJUp6af36fVh+ijjz4iKyuLJ598kvnz51OvXj2GDRvGwoULa6XFSAiAlT/t4atnVzLr29koBfcebh0KGXGnFENCCCHOitN+uKvJZOL222/njz/+YOvWrbRu3ZrRo0cTGxtLcXHx2chRXEIKD5axc3U25cV21hhSuHKrIuKgQhsYSOj993s7PSGEEBepf/W0+yMPZFVK4XK5aisncQlbv2g/Lpei3LKPHHMqdya631eh99+PzmLxcnZCCCEuVqddEFVUVPDNN99w9dVX07x5c5KTk5k+fTr79+/H39//bOQoLhEl1gq2rcgCYEn0L/RbrwguBH14OCEj7vRydkIIIS5mpzXK7NhO1ffeey/z5s0jNDT0bOUmLjEbFqfhdLiwB2SS7beLF1a4W4fCRj+M1tfXy9kJIYS4mJ1WQfTJJ59Qv359GjZsSGJiIomJidXG/e9//6uV5MSlo7zYzualGQAsi/6Fa/9RBJSCoX59gm6+2cvZCSGEuNidVkF01113ycM0xVmRtu0QDpsTpzmXTJ+tPLva3ToUPnYsmtN4YLAQQghxJk57YkYhzoaml0diDirmoQVvcf3fLnxtYGrRgsBrB3o7NSGEEJeAfzXKTIja9EPSM1g1+xmQ5J53KOLxcWi08hYVQghx9p1WC5EQtc1uc1JqteHja+V/JZu5eYXC6ADfTh0x9+zp7fSEEEJcIqQgEl61dXkmK37YjabeBowmDX02uvsORYwfL/3VhBBCnDNSEAmvcTpcbPhjP8qlWM9WblvqQqfAv08f/C67zNvpCSGEuIRIBw3hNTtWZ1OcX4HGVEoOa+m6XaE0GsLHjfN2akIIIS4xUhAJr3A5XSQt3AfA1vAF3LbUBoBlyGB8mjfzZmpCCCEuQVIQCa/YnZRDYW4ZGkM5h+wraZ+iUHo94WPGeDs1IYQQlyApiMQ5p1yKfxa4W4d2hS/itqXlAITceivGevW8mZoQQohLlBRE4pzLP1BKSX45Wr2NotJlNM0CZTIR9vBD3k5NCCHEJUoKInHOhUSbGfFCGzbFfsSty0oBCLv3HvRhYV7OTAghxKVKCiLhFatXvYouew91D4LT35/QkSO9nZIQQohLmBRE4pzKTrGiyouYm/o7w5a5J2GMfvhhdAEBXs5MCCHEpUwmZhTnTOaufH56ez0BoYcIydcRXujEHhJC8B3DvZ2aEEKIS5y0EIlz5sjIsjTXZm5c5QSg3mOPofXx8WZaQgghhBRE4tw4kFpI2tZDoFG4cv8isAzKo6IIuulGb6cmhBBCSEEkzo2kBakAlPr/zaA1uQA0euIJNHq5ayuEEML7pCASZ93BjGJSNuYBCl32H/jaoCi2HoED+ns7NSGEEAKQgkicA0nx7r5DNr/19FuXDUCL515Ao5W3nxBCiPODfCKJs8ppd3EwoxgAU+YiDE442LwJAVd293JmQgghxFFSEImzSmfQcuuTbbGHTaPXxjQA2k16GY1G4+XMhBBCiKOkIBJnXe6ajwnZtButgsy2LQno0N7bKQkhhBCVSEEkzprMXQU4Skv5v0UzuHwnuDTQadIUb6clhBBCVCFjnsVZUVpo45f3N2DQVRC0IwgoIOXytrRu1cLbqQkhhBBVSEEkzooNi/fjtLvAlU5cSgF2HfSY/Ia30xJCCCGqJbfMRK0rL7GzOTEDgLDUeDTAjq4dsDSM9W5iQgghxAlIQSRq3aa/0rBXONFr0mm1ZzPlBrhq0lveTksIIYQ4ofOmIJo6dSoajYZx48Z51t1zzz1oNJpKS5cuXSrtV1FRwZgxYwgLC8NsNjN06FDS09MrxeTn5zNixAgsFgsWi4URI0ZQUFBwDq7q0mMrd7Bpifv7H5WyEA2wqUcnQuvGeDcxIYQQ4iTOi4Jo7dq1fPbZZ7Rt27bKtgEDBpCVleVZfv/990rbx40bx08//cS8efNYvnw5xcXFDB48GKfT6YkZPnw4GzZsID4+nvj4eDZs2MCIESPO+nVdijYnZlBR6sBANk1T11PoC/2fl9YhIYQQ5zevd6ouLi7mjjvuYMaMGbzyyitVtptMJqKioqrd12q1MnPmTObMmUO/fv0A+Prrr6lXrx6LFy+mf//+bNu2jfj4eFavXk3nzp0BmDFjBl27dmXHjh00b9787F3cJaggpxSAmJQ/0KBI6n0FnaMjvZyVEEIIcXJebyF65JFHGDRokKegOV5CQgIRERE0a9aMUaNGkZOT49mWlJSE3W7nmmuu8ayLiYkhLi6OlStXArBq1SosFounGALo0qULFovFE1OdiooKCgsLKy3i1K4a3oSG9ik03L+GgwEaBj8lI8uEEEKc/7zaQjRv3jzWrVvH2rVrq90+cOBAbrnlFmJjY0lJSeH555/nqquuIikpCZPJRHZ2NkajkeDg4Er7RUZGkp3tfohodnY2ERERVY4dERHhianO1KlTmTx58r+4ukuTbdUsIpLS0SoNK6/qzJWR0jokhBDi/Oe1gigtLY3HHnuMRYsW4ePjU23Mrbfe6vk6Li6OTp06ERsby2+//caNN954wmMrpSo9K6u652YdH3O8p59+mvHjx3teFxYWUq9evZNe06Use68Vc6COTZ+8S0i5hoxQDdePe83baQkhhBA14rWCKCkpiZycHDp27OhZ53Q6Wbp0KdOnT6eiogKdTldpn+joaGJjY9m1axcAUVFR2Gw28vPzK7US5eTk0K1bN0/MgQMHqpw/NzeXyJO0XphMJkwm07+6xkuFy+li8aytFB0spcW+5sB2Eq+6gpejq+/7JYQQQpxvvNaHqG/fviQnJ7NhwwbP0qlTJ+644w42bNhQpRgCOHjwIGlpaURHRwPQsWNHDAYDf/zxhycmKyuLzZs3ewqirl27YrVaWbNmjSfm77//xmq1emLEv7N7XQ7W3DI0jlLCDqWwO1rDrQ+/6u20hBBCiBrzWgtRQEAAcXFxldaZzWZCQ0OJi4ujuLiYSZMmcdNNNxEdHU1qairPPPMMYWFh3HDDDQBYLBZGjhzJhAkTCA0NJSQkhIkTJ9KmTRtPJ+2WLVsyYMAARo0axaeffgrAAw88wODBg2WEWS1QLkXSgn0A1Nv/J3pnBUuuuoIhMXW8nJkQQghRc14fdn8iOp2O5ORkvvrqKwoKCoiOjqZPnz58++23BAQEeOKmTZuGXq9n2LBhlJWV0bdvX2bPnl2phWnu3LmMHTvWMxpt6NChTJ8+/Zxf08UoZVMehzJL0LnKqJe+lE0NNNx2t3RGF0IIcWHRKKWUt5O4EBQWFmKxWLBarQQGBno7nfOCUoofXvuHnH1F1N8XT5OU+bxzz+XMeOorb6cmhBBCADX//Pb6PETiwpW27RA5+4rQumzUT1/C6uYa7rjlWW+nJYQQQpw2KYjEGSs6WI5e56ROxnJ0jmL+6NGe3o2lX5YQQogLz3nbh0ic/1p1i8Ix+Xo02YqEthqGD3rS2ykJIYQQZ0RaiMQZK/nvmxjTi1GqhD+6tWFwy3beTkkIIYQ4I9JCJE7bocwSygrLKPx0DgALO2oY3vtxL2clhBBCnDkpiMRpW/t7Crv/yaGh+Roii+JZfEULFrbtfOodhRBCiPOU3DITp6XEWsHedbkAhOUl80tnLbd1GXvS58IJIYQQ5ztpIRKnZevyTFwuhcW6B6fKIKF9UxI69vJ2WkIIIcS/Ii1EosacThdblmYAUCcjkZ+6abml/UPSOiSEEOKCJwWRqLHUjXmUWG0YbIWYCzeyqlU9Hu48wNtpCSGEEP+aFESixpIT0wGIyVrB0jZOBrYaiU4nbyEhhBAXPvk0EzViK3NQmFUIykV05gr+ahvI492u93ZaQgghRK2QTtWiRoy+eq4ums7+dUVsr1tA3ab342s0eDstIYQQolZIQSRqxFVo5dCKzQTaNCwaYOClXnd7OyUhLikulwubzebtNIQ47xgMBnQ63b8+jhRE4pSsuaXYZk9Ba9OQGQL5zfoQGxzq7bSEuGTYbDZSUlJwuVzeTkWI81JQUBBRUVH/atSzFETipJRS/P5xMsX7utImMJn4y/bxWJcHvJ2WEJcMpRRZWVnodDrq1auHVitdP4U4QilFaWkpOTk5AERHR5/xsaQgEieVtdvKocwStFoTWns2G1s1482mrb2dlhCXDIfDQWlpKTExMfj5+Xk7HSHOO76+vgDk5OQQERFxxrfP5L8a4qSODLWPOrCW5a3KGdz+fi9nJMSlxel0AmA0Gr2ciRDnryP/WbDb7Wd8DCmIxAmVWCvYs87dDFkncxkJ7YIY3Xmgl7MS4tIkM8ILcWK18fshBZE4oa3LM1EusFj3sCc8g4at7kQvEzEKIYS4CMmnm6iWy+liy1L37bI6GUv54zIDz/S608tZCSHEv3PPPfdw/fXXnzQmISEBjUZDQUHBOclJnB+kIBLVytxVQInVjsFWiMu+gcLW/YkMCPR2WkKIC8jJio8GDRqg0WgqLXXr1q20/d133631nN577z1mz57ted27d2/GjRtX6+fxtnvuucfzfdXr9dSvX5+HH36Y/Pz8SnGn+jlcSmSUmahWnebBXL7zNcorgvi9g4uJV8pQeyFE7XrppZcYNWqU53VtTK53KhaL5ayf43h2ux2D4dzP7D9gwABmzZqFw+Fg69at3HfffRQUFPDNN99UivPGz+F8JC1Eolql8d8SkJlGQGEym9u0pkv9Jt5OSQhxkQkICCAqKsqzhIeHn/YxJkyYwJAhQzyv3333XTQaDb/99ptnXfPmzfn000+Byq1W99xzD4mJibz33nue1pHU1FTPfklJSXTq1Ak/Pz+6devGjh07apTTpEmTaN++PV988QWNGjXCZDKhlCI+Pp4rr7ySoKAgQkNDGTx4MHv27PHsd9NNNzFmzBjP63HjxqHRaNiyZQvgnoIhICCAhQsX1igPk8lEVFQUdevW5ZprruHWW29l0aJFVeJq4+dwMZCCSFThsDvJmjEdgKVxGm68/CEvZySEOEIpRanN4ZVFKeXty6+id+/eLFu2zDOLd2JiImFhYSQmJgKQnZ3Nzp076dWrV5V933vvPbp27cqoUaPIysoiKyuLevXqebY/++yzvP322/zzzz/o9Xruu+++Gue1e/duvvvuO3788Uc2bNgAQElJCePHj2ft2rX8+eefaLVabrjhBk/uvXv3JiEhwXOM469l7dq1lJeX071799P6HgHs3buX+Ph4r7RUXSjklpmoxFbuYM7Ty7GoQTTXfcfSdv58f1lvb6clhDiszO6k1Qs1ayGobVtf6o+fsfY+Np588kmee+45z+spU6YwduzY0zpGz549KSoqYv369Vx22WUsW7aMiRMn8r///Q+AJUuWEBkZSYsWLarsa7FYMBqN+Pn5ERUVVWX7q6++6imknnrqKQYNGkR5eTk+Pj6nzMtmszFnzpxKrS033XRTpZiZM2cSERHB1q1biYuLo3fv3jz22GPk5eWh0+nYsmULL774IgkJCYwePZqEhAQ6duyIv79/jb43v/76K/7+/jidTsrLywF45513qsTVxs/hYiAFkahk55oDlJe50AY0YEs9G0063CuPChBCnBX/+c9/uOeeezyvw8LCTvsYFouF9u3bk5CQgMFgQKvV8uCDD/Liiy9SVFREQkJCta1DNdG2bVvP10ceCZGTk0P9+vVPuW9sbGyVW0979uzh+eefZ/Xq1eTl5Xlahvbv309cXBxxcXGEhoaSmJiIwWCgXbt2DB06lPfffx/gtK+lT58+fPzxx5SWlvL555+zc+fOSrfkjqiNn8PFQAoi4aGUInnJfsA9EeMPnQy80fM2L2clhDiWr0HH1pf6e+3ctSksLIwmTf59/8Qjt5qMRiO9evUiODiY1q1bs2LFChISEs54FNmxt5eOTPxX0wfsms3mKuuGDBlCvXr1mDFjBjExMbhcLuLi4rDZbJ5z9OzZ03MtvXv3Ji4uDqfTSXJyMitXrjytazGbzZ7v7/vvv0+fPn2YPHkyL7/8cqW42vo5XOikIBIeWbutHMoqQ+u0oS9dTWn7IQT5yrOThDifaDSaWr1tdTHo3bs3M2fORK/X069fPwB69erFvHnzTth/6Aij0eh5PMrZdPDgQbZt28ann35Kjx49AFi+fHmVuN69e/PZZ59hNBp56aWX0Gg09OjRg7feeouysrIz6j90xIsvvsjAgQN5+OGHiYmJOePjXKzkXojwSE5wT8QYeWAtf7ar4IleMtReCPHvWK1WNmzYUGnZv39/rZ7jSD+i+fPn07t3b8BdWHz99deEh4fTqlWrE+7boEED/v77b1JTUyvdxqptwcHBhIaG8tlnn7F7927++usvxo8fXyWud+/ebNmyheTkZE/h1Lt3b+bOnctll11GYOCZzwfXu3dvWrduzZQpU874GBczKYgEcOS5ZQcAiDiwlO1t29M2ut4p9hJCiJNLSEigQ4cOlZYXXnihVs9hsVjo0KEDISEhnuKnR48euFyuU/a5mThxIjqdjlatWhEeHl7rxdoRWq2WefPmkZSURFxcHI8//jhvvvlmlbi4uDjCwsJo166dp/jp1asXTqfzjPtCHWv8+PHMmDGDtLS0f32si41GnY/jKM9DhYWFWCwWrFbrv6rQz1drf0thzfwUAq17KVDvEPnMTIa17erttIS45JWXl5OSkkLDhg1rNLpJiEvRyX5Pavr5LTeiBQDNG5aRu/dnAkqy+HBwBN+06eLtlIQQQohzRm6ZCQCKZrxEw/1/cMC8mZZXPOAZUSGEEN40d+5c/P39q11at27tlZxat259wpzmzp171s+/f//+E57f39//rN32u9idNy1EU6dO5ZlnnuGxxx7zPNBPKcXkyZP57LPPyM/Pp3Pnznz44YeVfgkqKiqYOHEi33zzDWVlZfTt25ePPvqo0sPp8vPzGTt2LL/88gsAQ4cO5YMPPiAoKOhcXuJ5y1VWyqElG9EDS9r78EaPm065jxBCnAtDhw6lc+fO1W7z1qzLv//+O3a7vdptkZGRZ/38MTExntmvT7RdnL7zoiBau3Ytn332WaVJsADeeOMN3nnnHWbPnk2zZs145ZVXuPrqq9mxYwcBAQGA+1kv8+fPZ968eYSGhjJhwgQGDx5MUlKS5wF1w4cPJz09nfj4eAAeeOABRowYwfz588/thZ6H8rNLWPzmQiICOqA1rqe8042YjSZvpyWEEID7OVtH/t6fL2JjY716fr1eL/MGnQVev2VWXFzMHXfcwYwZMwgODvasV0rx7rvv8uyzz3LjjTcSFxfHl19+SWlpKf/9738B93DOmTNn8vbbb9OvXz86dOjA119/TXJyMosXLwZg27ZtxMfH8/nnn9O1a1e6du3KjBkz+PXXX2v8oL6LWXJCOjklQWRHXsHi9lqe7itD7YUQQlx6vF4QPfLIIwwaNMgzmdYRKSkpZGdnc80113jWmUwmevXqxcqVKwH3k4jtdnulmJiYGOLi4jwxq1atwmKxVGpy7dKlCxaLxRNTnYqKCgoLCystFxtbuYPtKw7PPZSVyM7LOtEk9Ow39wohhBDnG6/eMps3bx7r1q1j7dq1VbZlZ2cDVe/HRkZGsm/fPk+M0Wis1LJ0JObI/tnZ2URERFQ5fkREhCemOlOnTmXy5Mmnd0EXmJ1rDmC3a/AtzWFLnZ3c1ftrb6ckhBBCeIXXWojS0tJ47LHH+Prrr086t8bxo52UUqccAXV8THXxpzrO008/jdVq9SwX2yRWSimSF+8FoE7mUta0i2Rgiw5ezkoIIYTwDq8VRElJSeTk5NCxY0f0ej16vZ7ExETef/999Hq9p2Xo+FacnJwcz7aoqChsNhv5+fknjTlw4ECV8+fm5p50NIDJZCIwMLDScjHJ2mPlUI4drdNGsXY1bXo86u2UhBBCCK/xWkHUt29fkpOTKz3fplOnTtxxxx1s2LCBRo0aERUVxR9//OHZx2azkZiYSLdu3QDo2LEjBoOhUkxWVhabN2/2xHTt2hWr1cqaNWs8MX///TdWq9UTcylK/tM9T0VkzlqWtoWx3YZ6OSMhhDj77rnnHq6//vqTxiQkJKDRaCgoKDgnOYnzg9cKooCAAOLi4iotZrOZ0NBQ4uLi0Gg0jBs3jilTpvDTTz+xefNm7rnnHvz8/Bg+fDjgfn7NyJEjmTBhAn/++Sfr16/nzjvvpE2bNp5O2i1btmTAgAGMGjWK1atXs3r1akaNGsXgwYNp3ry5ty7f66Lyl2Mp2E3AoaWobrdh1J8XMzAIIS4iJys+GjRogEajqbQcO39cgwYNPHPS1ab33nuP2bNne1737t2bcePG1fp5zgfZ2dmMGTOGRo0aYTKZqFevHkOGDOHPP//EZrMRFhbGK6+8Uu2+U6dOJSwsDJvNdtJzzJ49u9LPMDIykiFDhrBly5ZKcffcc0+Vn7dGo2H37t21dr3/1nn9KfjEE09QVlbG6NGjPRMzLlq0qNKcFNOmTUOv1zNs2DDPxIyzZ8/2zEEE7plOx44d6xmNNnToUKZPn37Or+d8ohZ+QscsO9/30PFk3/u9nY4Q4hL00ksvMWrUKM/rY/9uny0Wi+Wsn+N4drv9nE8imZqaSvfu3QkKCuKNN96gbdu22O12Fi5cyCOPPML27du58847mT17Ns8++2yVPrWzZs1ixIgRGI3GU54rMDCQHTt2oJQiIyODJ554gkGDBrFz585K+w8YMIBZs2ZV2jc8PLx2Lrg2KFEjVqtVAcpqtXo7lX+tNGG+2tq8hdrYqoW6+5OR3k5HCHESZWVlauvWraqsrMzbqZy2u+++W1133XXVbouNjVXTpk074b6n2n7E+PHj1eDBgz2vp02bpgD166+/etY1a9ZMffLJJ1VyuvvuuxVQaUlJSVFLlixRgFq8eLHq2LGj8vX1VV27dlXbt28/ZT5KKfXiiy+qdu3aqZkzZ6qGDRsqjUajXC6XWrBggerevbuyWCwqJCREDRo0SO3evduz34033qgeffRRz+vHHntMAWrz5s1KKaXsdrvy9/dX8fHxp8xh4MCBqk6dOqq4uLjKtvz8fKWUUps2bVKASkhIqLR96dKlClDJycmnPM+sWbOUxWKptO6XX35RgNq0aZNn3cneC7XhZL8nNf389vo8ROLcStt6iISZK7AZzKxqoWHkNRO8nZIQ4nQoBbYS7yxKefvqq+jduzfLli3D5XIBkJiYSFhYGImJiYD7ttHOnTvp1atXlX3fe+89unbtyqhRo8jKyiIrK4t69ep5tj/77LO8/fbb/PPPP+j1eu67774a57V7926+++47fvzxR89jNkpKShg/fjxr167lzz//RKvVcsMNN3hy7927NwkJCZ5jHH8ta9eupby8nO7du5/03IcOHSI+Pp5HHnkEs9lcZfuRx1a1adOGyy+/vEqrzRdffMEVV1xBXFxcja/3iIKCAs/kyd56tMqZOq9vmYnalzR/Oxl+V+Os6+KfDut4sGFLb6ckhDgd9lKY4qVnVT2TCcaqH7Bn6sknn+S5557zvJ4yZQpjx449rWP07NmToqIi1q9fz2WXXcayZcuYOHEi//vf/wBYsmQJkZGRtGjRosq+FosFo9GIn58fUVFRVba/+uqrnkLqqaeeYtCgQZSXl590qpgjbDYbc+bMqXRL6KabKj8ncubMmURERLB161bi4uLo3bs3jz32GHl5eeh0OrZs2cKLL75IQkICo0ePJiEhgY4dO+Lv73/Sc+/evRulVLXXfLz77ruPiRMnMn36dPz9/SkuLub777/nnXfeOeW+R1itVvz9/VFKUVpaCri7phx//l9//bVS7gMHDuT777+v8XnONmkhuoTkZ5eQkVIOykWFczmX9Xvc2ykJIS5h//nPfyqNNL7rrrtO+xgWi4X27duTkJBAcnIyWq2WBx98kI0bN1JUVERCQkK1rUM1cezzNaOjowH3tC41ERsbW6V/zJ49exg+fDiNGjUiMDCQhg0bAnieTh8XF0doaCiJiYksW7aMdu3aMXToUE8LUU2vRR1uyTvVnH0At99+Oy6Xi2+//RaAb7/9FqUUt912W42uE9yDpDZs2EBSUhKffPIJjRs35pNPPqkS16dPn0o/7/fff7/G5zgXpIXoEpL8l/uXLuzgZla2KeeNywd4OSMhxGkz+Llbarx17loUFhZWKw8pPXKryWg00qtXL4KDg2ndujUrVqwgISHhjEeRHXvL50hxceT21qlUd6tqyJAh1KtXjxkzZhATE4PL5SIuLs4zkkuj0dCzZ0/PtfTu3Zu4uDicTifJycmsXLmyRtfStOn/t3ffUVFc7//A30vvS2dBEDAgVUEkUVAEKxIFoyaaqAjBEivY+BhLlKAiRI0ae8dEIpioiRVrEEVBRVACCBYQoiAWRETqMr8//DFf1wVZERjK8zpnznFn7t55Zhbchzu3mIPH4yE9Pb3eKQb4fD6+/PJL7NmzBxMmTMCePXvw5ZdfftDce1JSUuznaGlpifz8fIwePRqxsbEi5ZSVlVv0orTUQtROVJYLcTvuzWzb/GexkHbxhrQ0ffyEtDo83pvHVlxsErQ4cKGmH9H58+fh5uYGAHB1dUVkZGSd/YdqyMnJQSgUNnmMz549Q3p6OhYvXoz+/fvDyspKbFJh4P+Su5iYGLi5uYHH48HFxQWrV69GaWlpvf2HAEBTUxPu7u7YtGkTSkpKxI6/O7/ShAkTEBcXh2PHjiEuLg4TJkxo8HUCwOzZs3Hz5k0cPnz4o+ppbvSN2E5kXs1HpVAGiq8LcMP0Dv438ON+4AkhRBJFRUUij0mSk5PZR0SNpaYf0dGjR9mEyM3NDfv27YOOjg6sra3rfK+JiQkSEhKQnZ2Np0+fStwC9KE0NDSgpaWF7du34+7duzh//jzmzJkjVs7NzQ2pqalISUmBi4sLuy8iIgIODg4St9xs3rwZQqEQn332GQ4ePIg7d+4gPT0dv/zyC5ycnETKurq6wszMDOPHj4eZmRn69OnzUdeqpqaGiRMnYunSpezju9aAEqJ2gGEY3DyRDgDQz7uInB69oK2sWs+7CCHk48XExKBbt24i25IlSxr1HHw+H926dYOmpiab/Li4uKC6urrePjfz5s2DtLQ0rK2toaOj0+jJWg0pKSlERkYiMTERtra2mD17NlatWiVWztbWFtra2rCzs2OTH1dXVwiFwg/qC2VqaoobN26gb9++mDt3LmxtbTFw4ECcO3cOW7ZsESvv5+eHwsLCDxpJ9z4BAQFIT09vUZ2m68NjWlP6xqGXL1+Cz+ejqKio1a1rVlkuxOGpG1AoZQapwqXovv5POBiach0WIUQCZWVlyMrKgqmpqUSjmwhpj973eyLp9zd1qm4HeM/+g3XCVoCRw9avDTCJkiFCCCFEBD0yawdyflkMaSEPWbqV6DFkPtfhEEKIxCIiIqCiolLrZmNjw0lMNjY2dcYUERHR5OfPycmp8/wqKiqN+tiP62ttTtRC1MY9uPkYjy49hBaAOHsVhHRr2HwchBDCBS8vL/To0aPWY1zNhHzixAlUVlbWekxPT6/Jz29gYMDOfl3X8cbC9bU2J0qI2rBqYTXO7bqBUtvFMMvYDMWB/SElRY2ChJDWQ1VVVWRB75bA2NiY0/PLyMg023w+XF9rc6KEqA3LTnmG0gp5yFYU46bxXczpv4/rkAghhJAWiZoL2rCbR24BAAT5V5Dn5AJVGqFCCCGE1IpaiNqowvwSPHrEA5hqPFG8hO9GHOA6JEIIIaTFohaiNiolOhMAoPUsFan2arDU4Wh1bEIIIaQVoISoDaosFyI94TEAQOZ1LPp88QPHERFCCCEtGyVEbdDz/14CFeVQfF2AW5/8hy+6ONX/JkIIaQd8fX3rXQE+JiYGPB5PbBFU0rZRQtQG8S7uQO/Li/HJnS1Q/XwS1+EQQtqp9yUfJiYm4PF4IpuhoaHI8XXr1jV6TOvXr0d4eDj72s3NDbNmzWr087QEubm5mDBhAgwMDCAnJwdjY2MEBATg2bNnYmVTU1MxatQo6OjoQF5eHubm5vjhhx/w+vVrkXJvf27S0tIwMDDAhAkTUFhYKFFMNclmzaalpYV+/fohLi5OpFxQUJDYzwePx8PZs2cbfkPqQQlRG3T/9whIMVVINH+OmQN8uA6HEEJqFRwcjLy8PHZLSkpq8nPy+Xyoq6s3+XneVtfEhk3p/v37cHR0RGZmJvbv34+7d+9i69atOHfuHJycnPD8+XO2bHx8PHr06IGKigocP34cmZmZCAkJwd69ezFw4EBUVFSI1F3zueXk5CAiIgKxsbHw9/f/oPgyMjKQl5eHmJgY6OjoYMiQISgoKBApY2NjI/LzkZeXhz59+jT8ptSDEqI25r/o81DLqUQ1D3jiMgAKHM3kSggh9VFVVYVAIGA3HR2dD65j7ty58PT0ZF+vW7cOPB4Px48fZ/dZWFhg27ZtAERbrXx9fXHhwgWsX7+ebYHIzs5m35eYmAhHR0coKSnB2dkZGRkZEsUUFBQEe3t77N69G506dYK8vDwYhkF0dDR69+4NdXV1aGlpYejQobh37x77vpEjR2LmzJns61mzZoHH4yE1NRUAUFVVBVVVVZw6dareGKZPnw45OTmcPn0arq6u6NixIzw8PHD27Fk8fPgQixYtAgAwDIMJEybAysoKhw4dwmeffQZjY2N89dVXOHr0KK5cuYK1a9eK1F3zuXXo0AF9+/bF+PHjcePGDYnuTQ1dXV0IBAJ06dIFixcvRlFRERISEkTKyMjIiPx8CAQCyMnJfdB5PgQlRG3I65cVOHJYiCs9luJaZxVM+XIR1yERQhoZwzB4Xfmak41hGK4vX4ybmxsuXryI6upqAMCFCxegra2NCxcuAADy8/ORmZkJV1fxZYvWr18PJycnTJo0iW2BMDIyYo8vWrQIa9aswfXr1yEjIwM/Pz+J47p79y4OHDiAgwcPsstslJSUYM6cObh27RrOnTsHKSkpDB8+nI3dzc0NMTExbB3vXsu1a9dQVlaGXr16vffcz58/x6lTpzBt2jQoKiqKHBMIBBg7diyioqLAMAySk5ORlpaGOXPmiK1kYGdnhwEDBmD//v11nuvhw4c4duxYncur1Of169fYs2cPAO6WYqlB8xC1IamnM8DwpCFX+QrpDnrw1dDmOiRCSCMrrSpFj98b9uXzsRLGJEBJVqnR6ps/fz4WL17Mvg4JCfngRy99+vRBcXExkpKS4ODggIsXL2LevHk4dOgQAOCff/6Bnp4eLC0txd7L5/MhJycHJSUlCAQCseMrVqxgE6nvv/8eQ4YMQVlZGRQkmOS2oqICv/32m0ir18iRI0XK7Nq1C7q6ukhLS4OtrS3c3NwQEBCAp0+fQlpaGqmpqVi6dCliYmIwbdo0xMTEoHv37lBRUXnvue/cuQOGYWBlZVXrcSsrKxQWFuLJkyfIzMxk99VV9tKlSyL7aj43oVCIsrIy9OjRAz///HO99+RtNf3FXr9+k2h3794d/fv3FymTkpIicq3W1ta4evXqB53nQ1ALURtRLazGzfNZAACFl7HoP2Y5xxERQsj7BQYGIjk5md3Gjx//wXXw+XzY29sjJiYGKSkpkJKSwnfffYebN2+iuLgYMTExtbYOSaJr167sv/X19QFArJ9LXYyNjcUeAd67dw9jxoxBp06doKamBlNTUwBgV6e3tbWFlpYWLly4gIsXL8LOzg5eXl5sC9HHXMvbalr6eDyeRGXfLVfzud26dQvnzp0DAAwZMgRCoVDiGC5evIgbN25g//79MDY2Rnh4uFgLkYWFhcjPx8GDByWuvyGohaiNyL5ZgPJqFchWFCPD5C4Wm9tzHRIhpAkoyigiYUxC/QWb6NyNSVtbu1EWKa151CQnJwdXV1doaGjAxsYGcXFxiImJafAosre/oGuSgprHW/VRVlYW2+fp6QkjIyPs2LEDBgYGqK6uhq2tLdtpmcfjoU+fPuy1uLm5wdbWFkKhECkpKbh8+bJE12JmZgYej4e0tLRaR/ndvn0bGhoa0NbWRufOnQEAaWlpsLe3r7Wsubm5yL63Pzdzc3OsW7cOTk5O+OeffzBgwIB64wMAU1NTqKuro3PnzigrK8Pw4cPx77//Ql5eni0jJyfXbIvYAtRC1GYkRsUDALSfXIHmsCkcR0MIaSo8Hg9KskqcbJK0KHChph/R+fPn4ebmBgBwdXVFZGRknf2HasjJyX1Qy0ZDPXv2DOnp6Vi8eDH69+/PPrZ6V01yFxMTAzc3N/B4PLi4uGD16tUoLS2tt/8QAGhpaWHgwIHYvHkzSktLRY7l5+cjIiICo0ePBo/Hg729PSwtLbF27VqxZO/mzZs4e/Ysvvnmm/eeT1paGgDEziUpb29vVFdXY/PmzQ16f2OhhKgNePH4NQqK1ACmGv+pX8GkfmO4DokQQgAARUVFIo89kpOT2UdEjaWmH9HRo0fZhMjNzQ379u2Djo4OrK2t63yviYkJEhISkJ2djadPn0rcAvShNDQ0oKWlhe3bt+Pu3bs4f/485syZI1bOzc0NqampSElJgYuLC7svIiICDg4OUFNTk+h8GzduRHl5Odzd3REbG4vc3FxER0dj4MCB6NChA1asWAHgTYK9c+dOpKWlYeTIkbh69SpycnLwxx9/wNPTE05OTmKtUsXFxcjPz0deXh6uXr2KwMBAaGtrw9nZuUH3RkpKCrNmzUJoaKjYvEfNiRKiNuD2sTfN51rPUvHC9VPI/v9snRBCuBYTE4Nu3bqJbEuWLGnUc/D5fHTr1g2ampps8uPi4oLq6up6+9zMmzcP0tLSsLa2ho6OTqMnazWkpKQQGRmJxMRE2NraYvbs2Vi1apVYOVtbW2hra8POzo5NflxdXSEUCj+o/5C5uTmuX7+OTz75BKNHj8Ynn3yCyZMno2/fvrhy5Qo0NTXZsr169UJ8fDykpaXx+eefw8zMDAsWLICPjw/OnDkj8hgLAJYsWQJ9fX0YGBhg6NChUFZWxpkzZ6ClpdXAuwP4+fmhsrISGzdubHAdH4vHtMRxlC3Qy5cvwefzUVRUJHGG3lwuebtCOlMVmQYVcP/1DwhU+VyHRAhpJGVlZcjKyoKpqalEo5sIaY/e93si6fc3tRC1csLnBVBNfgz1onvItlOkZIgQQghpAEqIWjGGYXBzzQLIVfLwnxYwyCeU65AIIaRRRUREQEVFpdbNxsaGk5hsbGzqjCkiIqLJz5+Tk1Pn+VVUVJrssZ8kPDw86owrJCSEs7gkQcPuW7G8u4VIKBgBw056SDM9j/mmtU+sRQghrZWXl1edsyBzNbPxiRMn6lyfTE9Pr8nPb2BgwM5+XddxruzcubPO0WZv91tqiSghasWu/noe1dKaKFVQhuDL2VyHQwghjU5VVRWqqqpchyHC2NiY0/PLyMg06/w8H6JDhw5ch9Bg9MislXr9sgKPCt50DnuidAnerl9xHBEhhBDSenGaEG3ZsgVdu3aFmpoa1NTU4OTkhJMnT7LHfX192RWIa7aePXuK1FFeXo6ZM2dCW1sbysrK8PLywn///SdSprCwEN7e3uDz+eDz+fD29saLFy+a4xKbTPKfV8DwZKD6Mhuv+9qJLcpHCCGEEMlx+i1qaGiI0NBQXL9+HdevX0e/fv0wbNgwpKamsmUGDx7MrkKcl5eHEydOiNQxa9YsHD58GJGRkbh06RJevXqFoUOHisw8OmbMGCQnJyM6OhrR0dFITk6Gt7d3s11nY6uuZvBv/HMAAFMZi0ljGndOD0IIIaS94bQPkaenp8jrFStWYMuWLYiPj2dHD8jLy9e6CjHwZgbUXbt24bfffmPXT9m3bx+MjIxw9uxZuLu7Iz09HdHR0YiPj2c75u3YsQNOTk7IyMiAhYVFE15h08iKz0KlFB+yla+QZ/0K6oqNt/o0IYQQ0h61mOcsQqEQkZGRKCkpgZOTE7s/JiYGurq66Ny5MyZNmiSy0nBiYiIqKysxaNAgdp+BgQFsbW1x+fJlAMCVK1fA5/NFRin07NkTfD6fLVOb8vJyvHz5UmRrKa7sjwMAqBVexpBJYRxHQwghhLR+nCdEKSkpUFFRgby8PKZMmYLDhw+zU697eHggIiIC58+fx5o1a3Dt2jX069cP5eXlAN4sUicnJwcNDQ2ROvX09JCfn8+W0dXVFTuvrq4uW6Y2K1euZPsc8fl8GBkZNdYlfxSmuhodbm2F8YNTyNO7hS6Gn3AdEiGEENLqcZ4QWVhYIDk5GfHx8Zg6dSp8fHyQlpYGABg9ejSGDBkCW1tbeHp64uTJk8jMzMTx48ffWyfDMCKrMte2QvO7Zd61YMECFBUVsVtubm4Dr7Bx3d+/FoLHz2Hw8AiMv5nMdTiEEFKnmoExU6ZMETs2bdo08Hg8+Pr6ipTl8XiQlZWFnp4eBg4ciN27d4stuGpiYoJ169ZJFIOJiQlbr6KiIiwtLbFq1Sq8vWpVdna22AAeHo+HcePGNfjaSevDeUIkJycHMzMzODo6YuXKlbCzs8P69etrLauvrw9jY2PcuXMHACAQCFBRUYHCwkKRcgUFBezkWAKBAI8fPxar68mTJ++dQEteXp4d/VaztQTZv/8KAEi0lsVwl2EcR0MIIe9nZGSEyMhIkcn6ysrKsH//fnTs2FGkbM0gmuzsbJw8eRJ9+/ZFQEAAhg4diqqqqgbHEBwcjLy8PKSnp2PevHlYuHAhtm/fLlbu7NmzIoN4Nm3a1OBzktaH84ToXQzDsI/E3vXs2TPk5uZCX18fANC9e3fIysrizJkzbJm8vDz8+++/cHZ2BgA4OTmhqKgIV69eZcskJCSgqKiILdNa3IiKxRNFPxTyzVDh7vXeFi5CCGkJHBwc0LFjRxw6dIjdd+jQIRgZGaFbt24iZWsG0XTo0AEODg5YuHAh/v77b5w8eRLh4eENjkFVVRUCgQAmJiaYOHEiunbtitOnT4uV09LSgkAgYDc+n9aGbE84HWW2cOFCeHh4wMjICMXFxYiMjERMTAyio6Px6tUrBAUFYeTIkdDX10d2djYWLlwIbW1tDB8+HADA5/MxYcIEzJ07F1paWtDU1MS8efPQpUsXdtSZlZUVBg8ejEmTJmHbtm0AgMmTJ2Po0KGtaoQZwzC4cS4X5dpdUC51F75jF3MdEiGEAwzDgKljaYSmxlNUbNAfYt9++y327NmDsWPHAgB2794NPz8/xMTE1Pvefv36wc7ODocOHcLEiRM/+NxvYxgGFy5cQHp6OszNzT+qLtL2cJoQPX78GN7e3sjLywOfz0fXrl0RHR2NgQMHorS0FCkpKfj111/x4sUL6Ovro2/fvoiKihKZxn3t2rWQkZHBqFGjUFpaiv79+yM8PBzS0tJsmYiICPj7+7Oj0by8vLBx48Zmv96P8ehWLsql9CElrEChxTMoyylwHRIhhANMaSkyHLpzcm6LG4ngKX34NB/e3t5YsGAB21cnLi6O/QNYEpaWlrh169YHn7fG/PnzsXjxYlRUVKCyshIKCgrw9/cXK+fs7Cwyye3FixfFWrFI28VpQrRr1646jykqKuLUqVP11qGgoIANGzZgw4YNdZbR1NTEvn37GhRjS3FhdzQAM6i+SET/ZbSqPSGk9dDW1saQIUOwd+9eMAyDIUOGQFtbW+L31zcIpj6BgYHw9fXFkydPsGjRIvTr16/WLhNRUVGwsvq/RbJbyuhi0jxocddWoKSoDC9KjQEpoEgrCZ0Fi7gOiRDCEZ6iIixuJHJ27oby8/PDjBkzAOCDOyunp6fD1NS0wefW1taGmZkZzMzMcPDgQZiZmaFnz55s14oaRkZGLXbRVNL0KCFqBWK3/AlGygAqxdkQzPiW63AIIRzi8XgNemzFtcGDB6OiogIA4O7uLvH7zp8/j5SUFMyePbtR4tDQ0MDMmTMxb948JCUl0eAUwmpxo8yIqOpqBjl33/QXquDFwd1pCMcREULIh5OWlkZ6ejrS09NF+ni+rby8HPn5+Xj48CFu3LiBkJAQDBs2DEOHDsX48eMbLZbp06cjIyMDBw8ebLQ6SetHLUQt3NNbl2F6/xSe6HZH+SB6nk0Iab3qm88tOjoa+vr6kJGRgYaGBuzs7PDLL7/Ax8dHpLPzx9LR0YG3tzeCgoIwYsSIRquXtG485u3pOkmdXr58CT6fj6KiomadpPHkt64wuVKAjI48eBy/CXlZ2WY7NyGEe2VlZcjKyoKpqSkUFGh0KSG1ed/viaTf3/TIrAWrevkcOklvFrPNc7KhZIgQQghpIpQQtWCHf9yGF5q9ka8hj6EzfuE6HEIIaVEiIiKgoqJS62ZjY8N1eKSVoT5ELVRFWSWevuyCgs49IM1Uoq+OPtchEUJIi+Ll5YUePXrUekyWWtTJB6KEqIX6Z9M+VEsbQ77sKTpPHcN1OIQQ0uKoqqqKrFxAyMegR2YtEMMwyEl9MyyVJ4xDnx6DOI6IEEIIadsoIWqB0s5cQoWcIaSqK6Hkqsd1OIQQQkibRwlRC3T1j+sAAMVXiRj17fccR0MIIYS0fZQQtTBFjwpQyrMGAFSZPIS0NH1EhBBCSFOjTtUtTMzGpdB8bolSBRUMDVnKdTiEEEJIu0DNDy0IwzBQibsAu3+3Akq/QkdTl+uQCCGEkHaBEqIWJP73NTB4zKBCGrCbHMR1OIQQ0iA8Hu+9m6+vb5Oct6SkBPPnz0enTp2goKAAHR0duLm54dixY2wZNzc3zJo1S+y94eHhUFdXF9tfWloKDQ0NaGpqorS0VOy4iYkJe11KSkqwtbXFtm3bJIo3PDxc5L7o6enB09MTqampIuV8fX1rvY93796V6DxEMpQQtSBZRzNRJq+BdEs5ODj25TocQghpkLy8PHZbt24d1NTURPatX79epHxlZWWjnHfKlCn466+/sHHjRty+fRvR0dEYOXIknj171uA6Dx48CFtbW1hbW+PQoUO1lgkODkZeXh5u3bqFL774AlOmTEFUVJRE9dfcm0ePHuH48eMoKSnBkCFDUFFRIVJu8ODBIvcwLy8PpqamDb4uIo4SohYiLfYSCtW/xpUeP0LegyZiJIS0XgKBgN34fD54PB77uqysDOrq6jhw4ADc3NygoKCAffv2AQD27NkDKysrKCgowNLSEps3bxap9+HDhxg9ejQ0NDSgpaWFYcOGITs7mz1+9OhRLFy4EJ9//jlMTEzQvXt3zJw5Ez4+Pg2+ll27dmHcuHEYN24cdu3aVWsZVVVVCAQCmJmZYfny5TA3N8dff/0lUf0190ZfXx+Ojo6YPXs2Hjx4gIyMDJFy8vLyIvdVIBBAWlq6wddFxFFC1EIk/BYDAFB4nY5hfoGcxkIIafkqy4V1blWVQsnLVkhWtrHNnz8f/v7+SE9Ph7u7O3bs2IFFixZhxYoVSE9PR0hICH744Qfs3bsXAPD69Wv07dsXKioqiI2NxaVLl6CiooLBgwezrSkCgQAnTpxAcXFxo8R47949XLlyBaNGjcKoUaNw+fJl3L9/v973KSgoNKjV68WLF/j9998B0NIjXKBRZi1A8bNnKGfsAADSBrmQkqI8lRDyftsDLtR5zNhWC0Nn2LGvdwdeRFVFda1lDczVMXyuA/v610WXUfZK/Mt8+tZ+HxGtuFmzZmHEiBHs62XLlmHNmjXsPlNTU6SlpWHbtm3w8fFBZGQkpKSksHPnTvB4PABvWpTU1dURExODQYMGYfv27Rg7diy0tLRgZ2eH3r1748svv0SvXr1Ezr1582bs3LlTZF9VVRUUFBRE9u3evRseHh7Q0NAA8Oax1e7du7F8+fJar6mqqgr79u1DSkoKpk6dKtF9KCoqgoqKChiGwevXrwG8WaPN0tJSpNyxY8egoqLCvvbw8MAff/wh0TmIZOibtwX4O2wDhDLKkCt/Cs/v53MdDiGENDlHR0f230+ePEFubi4mTJggsmL98uXLce/ePQBAYmIi7t69C1VVVfa4pqYmysrK2DJ9+vTB/fv3ce7cOYwcORKpqalwcXHBsmXLRM49duxYJCcni2zBwcEiZYRCIfbu3Ytx48ax+8aNG4e9e/dCKBRtMZs/fz5UVFSgqKiI6dOnIzAwEN99951E90FVVRXJyclITEzE1q1b8cknn2Dr1q1i5fr27SsS7y+//CJR/URy1ELEMYZhUFZgAigAUjI3oKk5iuuQCCGtwOT1rnUe473zp67fKpe6y/JEX49f4fwxYUlMWVmZ/Xd19ZvWqx07doitXl/TT6a6uhrdu3dHRESEWF06Ojrsv2VlZeHi4gIXFxd8//33WL58OYKDgzF//nzIyckBAPh8PszMzETq0NUVnebk1KlTbJ+ltwmFQpw+fRoeHh7svsDAQPj6+kJJSQn6+vpsC5YkpKSk2FgsLS2Rn5+P0aNHIzY2VqScsrKyWMykcVFCxLETWzejXMEKvOpKOH7rznU4hJBWQlZe8g61TVW2sejp6aFDhw64f/8+xo4dW2sZBwcHREVFQVdXF2pqahLXbW1tjaqqKpSVlbEJkSR27dqFr7/+GosWLRLZHxoail27dokkRNra2o2WrMyePRs///wzDh8+jOHDhzdKnUQylBBxrDD2BqSVTSFbmQI7Z3pcRghpn4KCguDv7w81NTV4eHigvLwc169fR2FhIebMmYOxY8di1apVGDZsGIKDg2FoaIicnBwcOnQIgYGBMDQ0hJubG7755hs4OjpCS0sLaWlpWLhwIfr27ftBSdSTJ09w9OhRHDlyBLa2tiLHfHx8MGTIEDx58kSkZaqxqKmpYeLEiVi6dCm++OKLD2ptIh+H+hBxSFhVBZXiq3C6shAd+lBuSghpvyZOnIidO3ciPDwcXbp0gaurK8LDw9m5dpSUlBAbG4uOHTtixIgRsLKygp+fH0pLS9lkx93dHXv37sWgQYNgZWWFmTNnwt3dHQcOHPigWH799VcoKyujf//+Ysf69u0LVVVV/Pbbbx9/0XUICAhAeno6dZpuZjyGYRiug2gNXr58CT6fj6Kiog/6S0MSyZf+hn3vYY1aJyGkbSgrK0NWVhZMTU3FRkERQt543++JpN/f1ELUAlAyRAghhHCLEiJCCCGkCdjY2IhMI/D2VttoOcIt6rhCCCGENIETJ07UOWO1np5eM0dD6kMJESGEENIEjI2NuQ6BfAB6ZEYIIYSQdo8SIkIIaQVoQDAhdWuM3w9KiAghpAWrWbqiZkV3Qoi4moVxZWVlG1wH9SEihJAWTEZGBkpKSnjy5AlkZWUhJUV/xxJSg2EYvH79GgUFBVBXV2f/gGgIThOiLVu2YMuWLcjOzgbwZojikiVL2DViGIbBjz/+iO3bt6OwsBA9evTApk2bYGNjw9ZRXl6OefPmYf/+/SgtLUX//v2xefNmGBoasmUKCwvh7++PI0eOAAC8vLywYcMGqKurN9u1EkJIQ/B4POjr6yMrKwsPHjzgOhxCWiR1dXUIBIKPqoPTmaqPHj0KaWlpdlG8vXv3YtWqVUhKSoKNjQ3CwsKwYsUKhIeHo3Pnzli+fDliY2ORkZEBVVVVAMDUqVNx9OhRhIeHQ0tLC3PnzsXz58+RmJjIZooeHh7477//sH37dgDA5MmTYWJigqNHj0oca1POVE0IIfWprq6mx2aE1EJWVva9LUMSf38zLYyGhgazc+dOprq6mhEIBExoaCh7rKysjOHz+czWrVsZhmGYFy9eMLKyskxkZCRb5uHDh4yUlBQTHR3NMAzDpKWlMQCY+Ph4tsyVK1cYAMzt27cljquoqIgBwBQVFX3sJRJCCCGkmUj6/d1iHkYLhUJERkaipKQETk5OyMrKQn5+PgYNGsSWkZeXh6urKy5fvgwASExMRGVlpUgZAwMD2NrasmWuXLkCPp+PHj16sGV69uwJPp/PlqlNeXk5Xr58KbIRQgghpG3iPCFKSUmBiooK5OXlMWXKFBw+fBjW1tbIz88HID6bp56eHnssPz8fcnJy0NDQeG8ZXV1dsfPq6uqyZWqzcuVK8Pl8djMyMvqo6ySEEEJIy8V5QmRhYYHk5GTEx8dj6tSp8PHxQVpaGnucx+OJlGcYRmzfu94tU1v5+upZsGABioqK2C03N1fSSyKEEEJIK8P5sHs5OTm2U7WjoyOuXbuG9evXY/78+QDetPDo6+uz5QsKCthWI4FAgIqKChQWFoq0EhUUFMDZ2Zkt8/jxY7HzPnny5L1rycjLy0NeXp59zfz/vuf06IwQQghpPWq+t5n6xpA1fXemD9OvXz/Gx8eH7VQdFhbGHisvL6+1U3VUVBRb5tGjR7V2qk5ISGDLxMfHf3Cn6tzcXAYAbbTRRhtttNHWCrfc3Nz3fs9z2kK0cOFCeHh4wMjICMXFxYiMjERMTAyio6PB4/Ewa9YshISEwNzcHObm5ggJCYGSkhLGjBkDAODz+ZgwYQLmzp0LLS0taGpqYt68eejSpQsGDBgAALCyssLgwYMxadIkbNu2DcCbYfdDhw6FhYWFxLEaGBggNzcXqqqq9T6y+xAvX76EkZERcnNzaTh/E6N73TzoPjcPus/Ng+5z82jK+8wwDIqLi2FgYPDecpwmRI8fP4a3tzfy8vLA5/PRtWtXREdHY+DAgQCA//3vfygtLcW0adPYiRlPnz7NzkEEAGvXroWMjAxGjRrFTswYHh4uMidBREQE/P392dFoXl5e2Lhx4wfFKiUlJTLZY2NTU1OjX7ZmQve6edB9bh50n5sH3efm0VT3mc/n11uG04kZCU342JzoXjcPus/Ng+5z86D73Dxawn3mfJQZIYQQQgjXKCHimLy8PJYuXSoyoo00DbrXzYPuc/Og+9w86D43j5Zwn+mRGSGEEELaPWohIoQQQki7RwkRIYQQQto9SogIIYQQ0u5RQkQIIYSQdo8SIo5t3rwZpqamUFBQQPfu3XHx4kWuQ2pTVq5ciU8//RSqqqrQ1dXFF198gYyMDK7DavNWrlzJzjZPGtfDhw8xbtw4aGlpQUlJCfb29khMTOQ6rDanqqoKixcvhqmpKRQVFdGpUycEBwejurqa69BatdjYWHh6esLAwAA8Hg9//fWXyHGGYRAUFAQDAwMoKirCzc0NqampzRIbJUQcioqKwqxZs7Bo0SIkJSXBxcUFHh4eyMnJ4Tq0NuPChQuYPn064uPjcebMGVRVVWHQoEEoKSnhOrQ269q1a9i+fTu6du3KdShtTmFhIXr16gVZWVmcPHkSaWlpWLNmDdTV1bkOrc0JCwvD1q1bsXHjRqSnp+Onn37CqlWrsGHDBq5Da9VKSkpgZ2dX52oRP/30E37++Wds3LgR165dg0AgwMCBA1FcXNz0wUm8uilpdJ999hkzZcoUkX2WlpbM999/z1FEbV9BQQEDgLlw4QLXobRJxcXFjLm5OXPmzBnG1dWVCQgI4DqkNmX+/PlM7969uQ6jXRgyZAjj5+cnsm/EiBHMuHHjOIqo7QHAHD58mH1ds6h7aGgou6+srExkUfemRC1EHKmoqEBiYiK7vlqNQYMG4fLlyxxF1fYVFRUBADQ1NTmOpG2aPn06hgwZwi6uTBrXkSNH4OjoiK+++gq6urro1q0bduzYwXVYbVLv3r1x7tw5ZGZmAgBu3ryJS5cu4fPPP+c4srYrKysL+fn5It+L8vLycHV1bZbvRU4Xd23Pnj59CqFQCD09PZH9enp6yM/P5yiqto1hGMyZMwe9e/eGra0t1+G0OZGRkbhx4wauXbvGdSht1v3797FlyxbMmTMHCxcuxNWrV+Hv7w95eXmMHz+e6/DalPnz56OoqAiWlpaQlpaGUCjEihUr8M0333AdWptV891X2/figwcPmvz8lBBxjMfjibxmGEZsH2kcM2bMwK1bt3Dp0iWuQ2lzcnNzERAQgNOnT0NBQYHrcNqs6upqODo6IiQkBADQrVs3pKamYsuWLZQQNbKoqCjs27cPv//+O2xsbJCcnIxZs2bBwMAAPj4+XIfXpnH1vUgJEUe0tbUhLS0t1hpUUFAglh2Tjzdz5kwcOXIEsbGxMDQ05DqcNicxMREFBQXo3r07u08oFCI2NhYbN25EeXk5pKWlOYywbdDX14e1tbXIPisrKxw8eJCjiNquwMBAfP/99/j6668BAF26dMGDBw+wcuVKSoiaiEAgAPCmpUhfX5/d31zfi9SHiCNycnLo3r07zpw5I7L/zJkzcHZ25iiqtodhGMyYMQOHDh3C+fPnYWpqynVIbVL//v2RkpKC5ORkdnN0dMTYsWORnJxMyVAj6dWrl9i0EZmZmTA2NuYoorbr9evXkJIS/YqUlpamYfdNyNTUFAKBQOR7saKiAhcuXGiW70VqIeLQnDlz4O3tDUdHRzg5OWH79u3IycnBlClTuA6tzZg+fTp+//13/P3331BVVWVb5Ph8PhQVFTmOru1QVVUV65elrKwMLS0t6q/ViGbPng1nZ2eEhIRg1KhRuHr1KrZv347t27dzHVqb4+npiRUrVqBjx46wsbFBUlISfv75Z/j5+XEdWqv26tUr3L17l32dlZWF5ORkaGpqomPHjpg1axZCQkJgbm4Oc3NzhISEQElJCWPGjGn64Jp8HBt5r02bNjHGxsaMnJwc4+DgQMPBGxmAWrc9e/ZwHVqbR8Pum8bRo0cZW1tbRl5enrG0tGS2b9/OdUht0suXL5mAgACmY8eOjIKCAtOpUydm0aJFTHl5OdehtWr//PNPrf8n+/j4MAzzZuj90qVLGYFAwMjLyzN9+vRhUlJSmiU2HsMwTNOnXYQQQgghLRf1ISKEEEJIu0cJESGEEELaPUqICCGEENLuUUJECCGEkHaPEiJCCCGEtHuUEBFCCCGk3aOEiBBCCCHtHiVEhBAAQHZ2Nng8HpKTk7kOhXX79m307NkTCgoKsLe3r7UMwzCYPHkyNDU1W1z8XIqJiQGPx8OLFy/qLBMeHg51dfVmi+ldJiYmWLduHWfnJ+RtlBAR0kL4+vqCx+MhNDRUZP9ff/3VLCs9t0RLly6FsrIyMjIycO7cuVrLREdHIzw8HMeOHUNeXl6jLRXi6+uLL774olHqaksoiSFtFSVEhLQgCgoKCAsLQ2FhIdehNJqKiooGv/fevXvo3bs3jI2NoaWlVWcZfX19ODs7QyAQQEamZS3RKBQKaUFQQloBSogIaUEGDBgAgUCAlStX1lkmKChI7PHRunXrYGJiwr6uad0ICQmBnp4e1NXV8eOPP6KqqgqBgYHQ1NSEoaEhdu/eLVb/7du34ezsDAUFBdjY2CAmJkbkeFpaGj7//HOoqKhAT08P3t7eePr0KXvczc0NM2bMwJw5c6CtrY2BAwfWeh3V1dUIDg6GoaEh5OXlYW9vj+joaPY4j8dDYmIigoODwePxEBQUJFaHr68vZs6ciZycHPB4PPYeMAyDn376CZ06dYKioiLs7Ozw559/su8TCoWYMGECTE1NoaioCAsLC6xfv17kHu/duxd///03eDweeDweYmJian0MlZycDB6Ph+zsbAD/9xjq2LFjsLa2hry8PB48eICKigr873//Q4cOHaCsrIwePXqI3NsHDx7A09MTGhoaUFZWho2NDU6cOFHrvQOAffv2wdHREaqqqhAIBBgzZgwKCgrEysXFxcHOzg4KCgro0aMHUlJS6qzz3r17GDZsGPT09KCiooJPP/0UZ8+eZY+7ubnhwYMHmD17Nntfaly+fBl9+vSBoqIijIyM4O/vj5KSEvZ4QUEBPD09oaioCFNTU0RERNQZByFcoISIkBZEWloaISEh2LBhA/7777+Pquv8+fN49OgRYmNj8fPPPyMoKAhDhw6FhoYGEhISMGXKFEyZMgW5ubki7wsMDMTcuXORlJQEZ2dneHl54dmzZwCAvLw8uLq6wt7eHtevX0d0dDQeP36MUaNGidSxd+9eyMjIIC4uDtu2bas1vvXr12PNmjVYvXo1bt26BXd3d3h5eeHOnTvsuWxsbDB37lzk5eVh3rx5tdZRk1Tl5eXh2rVrAIDFixdjz5492LJlC1JTUzF79myMGzcOFy5cAPAmGTM0NMSBAweQlpaGJUuWYOHChThw4AAAYN68eRg1ahQGDx6MvLw85OXlwdnZWeJ7//r1a6xcuRI7d+5EamoqdHV18e233yIuLg6RkZG4desWvvrqKwwePJi93unTp6O8vByxsbFISUlBWFgYVFRU6jxHRUUFli1bhps3b+Kvv/5CVlYWfH19xcoFBgZi9erVuHbtGnR1deHl5YXKyspa63z16hU+//xznD17FklJSXB3d4enpydycnIAAIcOHYKhoSGCg4PZ+wIAKSkpcHd3x4gRI3Dr1i1ERUXh0qVLmDFjBlu3r68vsrOzcf78efz555/YvHlzrQkcIZxpliVkCSH18vHxYYYNG8YwDMP07NmT8fPzYxiGYQ4fPsy8/au6dOlSxs7OTuS9a9euZYyNjUXqMjY2ZoRCIbvPwsKCcXFxYV9XVVUxysrKzP79+xmGYZisrCwGABMaGsqWqaysZAwNDZmwsDCGYRjmhx9+YAYNGiRy7tzcXAYAk5GRwTDMm1Xu7e3t671eAwMDZsWKFSL7Pv30U2batGnsazs7O2bp0qXvrefda3/16hWjoKDAXL58WaTchAkTmG+++abOeqZNm8aMHDmSff3251GjZqXuwsJCdl9SUhIDgMnKymIYhmH27NnDAGCSk5PZMnfv3mV4PB7z8OFDkfr69+/PLFiwgGEYhunSpQsTFBT03mt9n6tXrzIAmOLiYpFYIyMj2TLPnj1jFBUVmaioKDZWPp//3nqtra2ZDRs2sK+NjY2ZtWvXipTx9vZmJk+eLLLv4sWLjJSUFFNaWspkZGQwAJj4+Hj2eHp6OgNArC5CuNKyHrYTQgAAYWFh6NevH+bOndvgOmxsbCAl9X+NwHp6eiIdjqWlpaGlpSX2V7qTkxP7bxkZGTg6OiI9PR0AkJiYiH/++afWlot79+6hc+fOAABHR8f3xvby5Us8evQIvXr1Etnfq1cv3Lx5U8IrrF1aWhrKysrEHtVVVFSgW7du7OutW7di586dePDgAUpLS1FRUVHnSLYPJScnh65du7Kvb9y4AYZh2PtTo7y8nO0b5e/vj6lTp+L06dMYMGAARo4cKVLHu5KSkhAUFITk5GQ8f/6c7aeUk5MDa2trttzbn6empiYsLCzYz/NdJSUl+PHHH3Hs2DE8evQIVVVVKC0tZVuI6pKYmIi7d++KPAZjGAbV1dXIyspCZmYm+7NUw9LSktMRboS8ixIiQlqgPn36wN3dHQsXLhR7DCIlJQWGYUT21fYIRFZWVuQ1j8erdZ8kHX5r+opUV1fD09MTYWFhYmX09fXZfysrK9db59v11mAY5qNH1NVcz/Hjx9GhQweRY/Ly8gCAAwcOYPbs2VizZg2cnJygqqqKVatWISEh4b111ySYb9//2u69oqKiyHVUV1dDWloaiYmJkJaWFilbk1xOnDgR7u7uOH78OE6fPo2VK1dizZo1mDlzplj9JSUlGDRoEAYNGoR9+/ZBR0cHOTk5cHd3l6gTe133ODAwEKdOncLq1athZmYGRUVFfPnll/XWWV1dje+++w7+/v5ixzp27IiMjIz3npeQloASIkJaqNDQUNjb24u1Kujo6CA/P18keWjMuXfi4+PRp08fAEBVVRUSExPZviAODg44ePAgTExMPmo0l5qaGgwMDHDp0iX2XMCbjrmfffbZR8Vf05E5JycHrq6utZa5ePEinJ2dMW3aNHbfvXv3RMrIyclBKBSK7NPR0QHwpn+ThoYGAMnufbdu3SAUClFQUAAXF5c6yxkZGbF9uxYsWIAdO3bUmhDdvn0bT58+RWhoKIyMjAAA169fr7XO+Ph4dOzYEQBQWFiIzMxMWFpa1lr24sWL8PX1xfDhwwG86VNU01m8Rm33xcHBAampqTAzM6u1XisrK1RVVeH69evs55uRkfHeOZIIaW7UqZqQFqpLly4YO3YsNmzYILLfzc0NT548wU8//YR79+5h06ZNOHnyZKOdd9OmTTh8+DBu376N6dOno7CwEH5+fgDedPx9/vw5vvnmG1y9ehX379/H6dOn4efnJ/YlWZ/AwECEhYUhKioKGRkZ+P7775GcnIyAgICPil9VVRXz5s3D7NmzsXfvXty7dw9JSUnYtGkT9u7dCwAwMzPD9evXcerUKWRmZuKHH35gO2TXMDExwa1bt5CRkYGnT5+isrISZmZmMDIyQlBQEDIzM3H8+HGsWbOm3pg6d+6MsWPHYvz48Th06BCysrJw7do1hIWFsSPJZs2ahVOnTiErKws3btzA+fPnYWVlVWt9HTt2hJycHDZs2ID79+/jyJEjWLZsWa1lg4ODce7cOfz777/w9fWFtrZ2nfMrmZmZ4dChQ0hOTsbNmzcxZswYsRZEExMTxMbG4uHDh+zowvnz5+PKlSuYPn06kpOTcefOHRw5coRN5iwsLDB48GBMmjQJCQkJSExMxMSJE6GoqFjvvSOkuVBCREgLtmzZMrHHY1ZWVti8eTM2bdoEOzs7XL16tdYRWA0VGhqKsLAw2NnZ4eLFi/j777+hra0NADAwMEBcXByEQiHc3d1ha2uLgIAA8Pl8kf5KkvD398fcuXMxd+5cdOnSBdHR0Thy5AjMzc0/+hqWLVuGJUuWYOXKlbCysoK7uzuOHj0KU1NTAMCUKVMwYsQIjB49Gj169MCzZ89EWosAYNKkSbCwsICjoyN0dHQQFxcHWVlZ7N+/H7dv34adnR3CwsKwfPlyiWLas2cPxo8fj7lz58LCwgJeXl5ISEhgW3iEQiGmT58OKysrDB48GBYWFti8eXOtdeno6CA8PBx//PEHrK2tERoaitWrV9daNjQ0FAEBAejevTvy8vJw5MgRyMnJ1Vp27dq10NDQgLOzMzw9PeHu7g4HBweRMsHBwcjOzsYnn3zCtph17doVFy5cwJ07d+Di4oJu3brhhx9+EHmMumfPHhgZGcHV1RUjRozA5MmToaurK9G9I6Q58Jh3/7clhBBCCGlnqIWIEEIIIe0eJUSEEEIIafcoISKEEEJIu0cJESGEEELaPUqICCGEENLuUUJECCGEkHaPEiJCCCGEtHuUEBFCCCGk3aOEiBBCCCHtHiVEhBBCCGn3KCEihBBCSLtHCREhhBBC2r3/ByTdtg0qUOrhAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAHFCAYAAADIX0yYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADygElEQVR4nOzdd3iT5cLH8W922rRNd0snHbTQsofsLYKCuBEHbmW4UHGgx+0BxaPH97hwowxBxQEKKAKKyhDZLdCyCt17Nzv3+0doILSFlj3uD1eukif3s5I0+fVej0IIIZAkSZIkSZJOK+XZPgBJkiRJkqSLgQxdkiRJkiRJZ4AMXZIkSZIkSWeADF2SJEmSJElngAxdkiRJkiRJZ4AMXZIkSZIkSWeADF2SJEmSJElngAxdkiRJkiRJZ4AMXZIkSZIkSWfABRu6/ve//6FQKGjfvn2jj2dlZaFQKPjPf/5z3G3NmjULhUJBVlZWi49jzZo1vPDCC1RUVDR4bNCgQQwaNKjF27wQtG7dmjvuuOOE1lUoFLzwwgun9HiOp3Xr1igUCvfNYDDQtWtX3nnnHY6+qMNvv/3mUfbI2/XXX9/sfda/7+pvarWaVq1aMXbsWHbv3n2qT/Gi98ILLzT5uh15OxW/s2fjPXy+f958++233HTTTSQmJuLl5UXr1q255ZZbGv1dsFqtPPfcc8TFxaHVaomNjWXq1KmYTKZGt52WlsYNN9xASEgIOp2O1q1bM2nSpBYf4x133NGs99CJfvYdbd68ebz11lunZFv1zsZ781T6888/ueeee+jWrRs6na7Z3907duxwl//nn38aLfPDDz8wcOBA/Pz8MBgMpKam8uGHH7bo+NQtKn0e+fTTTwFIT09n/fr19OzZ86wcx5o1a3jxxRe544478Pf393jsvffeOyvHJJ2Yvn37ukN6Xl4eb775Jg8++CBVVVU8/fTTDcpPmzaNwYMHeywLCgpq8X4/++wz2rZti9ls5q+//uLf//43q1atYteuXQQEBJzYyUgN3HPPPYwYMcJ9Pz8/n2uvvZYHH3yQm2++2b3cz8/vpPe1du1aoqKiTno7LXG+f9689tprhIeH88wzzxAfH092djbTpk2ja9eurFu3jtTUVHfZm266iSVLlvDcc8/Ro0cP1q5dyyuvvEJ6ejqLFi3y2O6qVasYOXIk/fv3Z+bMmQQHB3Pw4EE2b97c4mN89tlnmTBhgvv+pk2buP/++xt8FoSEhJzAM9DQvHnzSEtLY/Lkyadke3B23pun0ooVK/j111/p0qULfn5+/Pbbb8ddx+FwcNdddxEcHExeXl6jZV599VWeeeYZJkyYwNSpU9FoNOzatQur1dqyAxQXoA0bNghAjBw5UgDi3nvvbVBm//79AhCvv/76cbf32WefCUDs37+/xcfy+uuvn/C6F7LY2Fhx++23n9C6gHj++edP6fEcT2xsrBg5cqTHssrKSmE0GkVMTIzH8lWrVglAfP311ye1z/r33YYNGzyWv/jiiwIQn3766Ult/0TU1dWd8X2ejNra2hNet7mfEVarVdhsthPej9Q8hYWFDZbl5uYKjUYj7r77bveytWvXCkC88cYbHmWnTZsmAPHLL7+4l9XW1opWrVqJkSNHCqfTecqP+VR9FjRl5MiRIjY29rRs+3zlcDjc/2/u9+/rr78uIiMjxf/93/81+pn7zz//CKVSKV577bWTPr4Lsnnxk08+AVzJtE+fPsyfP5+6urpGyzqdTv79738TExODXq+ne/furFix4rj7WL58OVdddRVRUVHo9XoSExMZP348JSUl7jIvvPACjz/+OABxcXHuquX65N1YdX9ZWRmTJk0iMjISrVZLfHw8zzzzDBaLxaOcQqHggQceYPbs2bRr1w5vb286derEjz/+eNxjr2/+mjdvHk8++SStWrXCx8eHK6+8ksLCQqqrq7nvvvsIDg4mODiYO++8k5qaGo9tmM1mpk6d6q6+j4yM5P7772/QjGqz2XjiiScIDw/H29ubfv368ffffzd6XAUFBYwfP56oqCi0Wi1xcXG8+OKL2O32457T2eDn50dSUhKFhYVndL/du3cHaLDff/75h9GjRxMYGIher6dLly589dVXDdb/888/6d27N3q9nsjISJ599lk+/vjjBtXwrVu3ZtSoUXz77bd06dIFvV7Piy++CDT/tXr//ffp1KkTPj4++Pr60rZtW49awbq6OqZMmUJcXBx6vZ7AwEC6d+/Ol19+6bGdRYsW0bt3b7y9vfH19WXYsGGsXbvWo0x98+CmTZu4/vrrCQgIICEhoeVP8DHU/+7Mnj2bxx57jMjISHQ6HXv27KG4uJhJkyaRkpKCj48PoaGhDBkyhD/++KPBdo5uwqlvSl61ahUTJ04kODiYoKAgrr322ib/8j7Svn37GDt2LBEREeh0OsLCwhg6dChbtmxxlzn68+ZYTWFHHltVVZX7Nar/XZ88eTK1tbUn8hSesNDQ0AbLIiIiiIqKIjs7273sr7/+AuCKK67wKDtq1CgAFi5c6F729ddfk5+fz+OPP45CoTgdh92oX3/9laFDh+Ln54e3tzd9+/Zt8L1TXFzMfffdR3R0NDqdjpCQEPr27cuvv/4KuF7Pn376iQMHDni8dseycuVKBg0aRFBQEF5eXsTExHDdddd5fD8e/fof3bXiyNuRtUi7d+/m5ptvJjQ0FJ1OR7t27Xj33XdP/slqIaWyZbFm9+7dPPfcc7z33ntN1mK/88476HQ6HnzwwZM+vguuedFkMvHll1/So0cP2rdvz1133cU999zD119/ze23396g/DvvvENsbCxvvfUWTqeTGTNmcPnll/P777/Tu3fvJvezd+9eevfuzT333IPRaCQrK4s333yTfv36sX37djQaDffccw9lZWW8/fbbfPvtt7Rq1QqAlJSURrdpNpsZPHgwe/fu5cUXX6Rjx4788ccfTJ8+nS1btvDTTz95lP/pp5/YsGEDL730Ej4+PsyYMYNrrrmGjIwM4uPjj/tcPf300wwePJhZs2aRlZXFlClTuOmmm1Cr1XTq1Ikvv/ySzZs38/TTT+Pr68v//vc/AIQQXH311axYsYKpU6fSv39/tm3bxvPPP8/atWtZu3YtOp0OgHvvvZcvvviCKVOmMGzYMNLS0rj22muprq72OJaCggIuueQSlEolzz33HAkJCe4mgaysLD777LPjns/RHA5Hg/5WjVEqlS3+RQWw2+1kZ2eTlJTU6ONOp7NBCFGrT/5Xbv/+/QAe+121ahUjRoygZ8+ezJw5E6PRyPz587nxxhupq6tz9yHZtm0bw4YNIykpic8//xxvb29mzpzJnDlzGt3Xpk2b2LlzJ//617+Ii4vDYDA0+7WaP38+kyZN4sEHH+Q///kPSqWSPXv2sGPHDvf2H330UWbPns0rr7xCly5dqK2tJS0tjdLSUneZefPmccstt3DZZZfx5ZdfYrFYmDFjBoMGDWLFihX069fP45ivvfZaxo4dy4QJE05bMJg6dSq9e/dm5syZKJVKQkNDKS4uBuD5558nPDycmpoavvvuO/dxNqc/1T333MPIkSOZN28e2dnZPP7449x6662sXLnymOtdccUVOBwOZsyYQUxMDCUlJaxZs6bRvqT1jm4KA3j33XeZM2eO+zOqrq6OgQMHkpOTw9NPP03Hjh1JT0/nueeeY/v27fz666/H/KJ3Op04nc7jnrdCoUClUh233NH27dvHgQMHuPrqq93L6pt76j+D6tXf37Ztm3vZ6tWrAddnRf0fhAaDgREjRvDGG28QERHR4mM6njlz5nDbbbdx1VVX8fnnn6PRaPjggw8YPnw4P//8M0OHDgVg3LhxbNq0iX//+98kJSVRUVHBpk2b3L8b7733Hvfddx979+7lu+++O+5+s7Ky3M2on376Kf7+/uTm5rJs2TKsVive3t6Nrvfdd995/NHvdDqZMGEC+/btIyYmBnD1h+rTpw8xMTG88cYbhIeH8/PPP/PQQw9RUlLC888/f8xjO92f1U0RQnDPPfcwatQoRo8ezaxZsxott3r1atq1a8fChQt5+eWX2bNnD61ateLWW2/lpZdeQqvVtminF5QvvvhCAGLmzJlCCCGqq6uFj4+P6N+/v0e5+qaDiIgIYTKZ3MurqqpEYGCguPTSS93Ljte86HQ6hc1mEwcOHBCA+OGHH9yPHat6c+DAgWLgwIHu+zNnzhSA+OqrrzzKvfbaaw2qxQERFhYmqqqq3MsKCgqEUqkU06dPb/oJEoervK+88kqP5ZMnTxaAeOihhzyWX3311SIwMNB9f9myZQIQM2bM8Ci3YMECAYgPP/xQCCHEzp07BSAeeeQRj3Jz584VgEfz4vjx44WPj484cOCAR9n//Oc/AhDp6eke596c5sXY2FgBHPfW3G1dccUVwmazuV/re++9V2g0GvHjjz96lK1/fhu77d69+7j7qlf/vlu3bp2w2WyiurpaLFu2TISHh4sBAwZ4NGm1bdtWdOnSpUEz16hRo0SrVq3cVe433HCDMBgMori42F3G4XCIlJSUBu/T2NhYoVKpREZGhsc2m/taPfDAA8Lf3/+Y59i+fXtx9dVXN/m4w+EQERERokOHDh7NBtXV1SI0NFT06dPHvez5558XgHjuueeOuc/maqx5sf61HTBgwHHXt9vtwmaziaFDh4prrrnG47Gj33f1r/WkSZM8ys2YMUMAIj8/v8n9lJSUCEC89dZbxzyeoz9vjvbVV18JhUIhnn76afey6dOnC6VS2aC55ZtvvhGAWLJkyTH3Wf+aHO92Ik1kNptNDBo0SPj5+YmDBw+6l3///fcCELNnz/Yo/8knnwhAJCUluZcNHz5cAMLf31888cQTYuXKlWLmzJkiKChIJCYmnlTztBANmxdra2tFYGBgg89eh8MhOnXqJC655BL3Mh8fHzF58uRjbr8lzYv1r9mWLVuOWe54n4kPPPCAUKvVHq/98OHDRVRUlKisrGxQVq/Xi7KysmPuc+DAgc16n7S0S8rxmhfffvttERAQIAoKCoQQTXfp0Ol0wtfXVwQEBIh33nlHrFy5UjzzzDNCpVKJm2++uUXHdMGFroEDBwovLy9RUVHhXnbnnXcKQGRmZrqX1X+gPvDAAw22cfvttwutVivsdrsQovHQVVhYKMaPHy+ioqKEUqn0eGO8+uqr7nItCV1jxowRBoOhQd+CwsJCAYgnn3zSvQwQY8eObbDN8PBwMWHChKafIHH4g+CDDz7wWP7BBx8IQPz8888ey6dOnSoAUV1dLYQQ4oknnhCAKCoq8ijndDqFwWAQN954oxBCiPfee08A4p9//vEoZ7PZhFqt9vgFioyMFFdeeaU71NTf0tPTBSDee+89j3NvTlDatm2b2LBhw3Fvubm5x91WUwGuPtwfqf75fe211xrsy2w2H3df9erfd0ff2rVrJ8rLy93ldu/eLQDxn//8p8HzV/8a7NixQwghRGhoaIMPfCGEeOGFFxoNXV26dGlQtrmvVf0fQGPHjhXff/+9R9Crd9dddwmdTieefPJJsWrVqgZ9xnbs2NFowBdCiIkTJwqlUun+Yqz/gt+6devxn9xmOFbo+r//+79G13n//fdFly5dhE6n83jN2rZt61GuqdC1bNkyj3L1f+CsW7euyeN0Op0iISFBREZGijfeeENs2rTJI6DWO1bo+u2334ROpxPjxo3zWN63b1/RsWPHBq91dXW1UCgU4oknnmjyuIRw9blqzu/gtm3bjrmdxs75tttuEyqVSnz//fcej1ksFpGYmCgiIiLEL7/8IsrLy8XSpUtFWFiYUKlUHq/FsGHDBCDGjx/vsY364PbRRx+16LiOdnToWr58uQDEN9980+A5ffLJJ4VCoRA1NTVCCCGGDBki/P39xcsvvyzWrl0rrFZrg+23JHTt2bNHaLVacckll4hZs2aJvXv3NlruWJ+v06dPF4D4+OOP3ctMJpNQq9XiwQcfbHBOS5YsaVY437VrV7PeJy3tG32s79+srCzh4+PjcS5NhS6NRiMA8eWXX3osr6+oaMkf0xdU8+KePXtYvXo11113HUIId9X69ddfz2effcann37K9OnTPdYJDw9vsJ3w8HCsVis1NTUYjcYGjzudTi677DLy8vJ49tln6dChAwaDAafTSa9evZoclnw8paWlhIeHN6iuDw0NRa1WezS5QOMj4XQ6XbP3HxgY6HG/voq0qeVmsxkfHx9KS0tRq9UNRuAoFArCw8Pdx1n/8+jnWK1WNzj2wsJCFi9ejEajafRYj+wr11wpKSnNrrJujn79+vHf//4Xh8PB7t27efbZZ3nggQdITU1t0MQFEB8f7+5/dTK++OIL2rVrR3V1NQsWLOCDDz7gpptuYunSpcDhvl1TpkxhypQpjW6j/vkrLS0lLCysweONLQPcTeJHau5rNW7cOOx2Ox999BHXXXcdTqeTHj168MorrzBs2DDANbVLVFQUCxYs4LXXXkOv1zN8+HBef/112rRp434PNXYcEREROJ1OysvLPZpGGit7qjW2jzfffJPHHnuMCRMm8PLLLxMcHIxKpeLZZ59l586dzdru0b8X9U1ix/qdVigUrFixgpdeeokZM2bw2GOPERgYyC233MK///1vfH19j7nP9PR0rr76avr37+/uD1uvsLCQPXv2nPDvZXh4eKN9sRo7h+YSh5qE5syZw+eff85VV13l8bhWq2Xp0qWMGzeOyy67DACDwcC0adN4+eWXiYyMdJetf76HDx/usY3hw4e7+weeSvW/q8eaOqasrAyDwcCCBQt45ZVX+Pjjj3n22Wfx8fHhmmuuYcaMGY1+bx1PQkICv/76KzNmzOD++++ntraW+Ph4HnroIR5++OHjrj9nzhyefvppnnvuOe6++2738tLSUux2O2+//TZvv/12o+se732SmJh4Sj+rm+P++++nffv2XHfdde6sUN+3raamhsrKSvf3f1BQEAUFBQ3eJ5dffjlvvfUWmzZtIjExsVn7vaBC16effooQgm+++YZvvvmmweOff/45r7zyikffgYKCggblCgoK0Gq1+Pj4NLqftLQ0tm7dyqxZszz6ie3Zs+ekjj8oKIj169cjhPD4ECoqKsJutxMcHHxS2z9VgoKCsNvtFBcXewQvIQQFBQX06NHDXQ5cz+eRH3R2u71BgAwODqZjx478+9//bnSfJ9K3IiEhgQMHDhy33PPPP9+seWmMRqM7RPXs2ZOePXvSqVMnJk2axJYtW07pB8KR2rVr597v4MGDcTgcfPzxx3zzzTdcf/317vfF1KlTufbaaxvdRnJyMuB6TRrr+N/Y7wE0/mXYktfqzjvv5M4776S2tpbVq1fz/PPPM2rUKDIzM4mNjcVgMPDiiy/y4osvUlhYyNKlS3nqqae48sor2bVrl/s9lJ+f32A/eXl5KJXKBtNmnIkO0Y3tY86cOQwaNIj333/fY/nR/RdPh9jYWHdgyszM5KuvvuKFF17AarUyc+bMJtfLyclhxIgRxMTEsHDhwgbhKjg4GC8vL/cUPEc73mfSSy+95B58cbzjb85cSvWB67PPPuOTTz7h1ltvbbRcYmIia9euJTc3l7KyMhISEqisrOThhx9mwIAB7nIdO3Zk/vz5Te7vVP9O1z9fb7/9Nr169Wq0TP0fQMHBwbz11lu89dZbHDx4kEWLFvHUU09RVFTEsmXLTmj//fv3p3///jgcDv755x/efvttJk+eTFhYGGPHjm1yveXLl3PXXXdxxx13NHg9AwICUKlUjBs3jvvvv7/R9ePi4o55XEOHDuX3338/7vHffvvtTfa7aqm0tDQOHDjQ6LQ7gwcPxmg0usNYx44dG/2MrA+KLXmfXDChy+Fw8Pnnn5OQkMDHH3/c4PEff/yRN954g6VLl7pHsYBrwr3XX38dvV4PuD4gFy9eTP/+/Zvs2Fn/gXt0R80PPvigQdnm/KVab+jQoXz11Vd8//33XHPNNe7lX3zxhfvxc8HQoUOZMWMGc+bM4ZFHHnEvX7hwIbW1te7jrO84PHfuXLp16+Yu99VXXzXoYD5q1CiWLFlCQkLCKZt7avHixQ1GfTbmRDvLtmnThieeeIIXX3yRBQsWcNNNN53QdlpqxowZLFy4kOeee45rr72W5ORk2rRpw9atW5k2bdox1x04cCBLliyhpKTE/QXgdDr5+uuvm73/E3mtDAYDl19+OVarlauvvpr09HRiY2M9yoSFhXHHHXewdetW3nrrLerq6khOTiYyMpJ58+YxZcoU9+9ebW0tCxcudI9oPBcoFIoGnwnbtm1j7dq1REdHn7HjSEpK4l//+hcLFy48Zk1NZWUll19+OQqFgiVLljQ6cmvUqFFMmzaNoKCg435xNua+++7z+LxtytHPW2OEENx777189tlnfPDBB9x5553HXScyMtL9B9+//vUvDAaDRy3NNddcwzPPPMPSpUs9PnOXLl2KEKLJYHSi+vbti7+/Pzt27OCBBx5o9noxMTE88MADrFixwj06E1rWsnEklUpFz549adu2LXPnzmXTpk1Nhq4tW7Zw3XXXMWTIkEYnAvX29mbw4MFs3ryZjh07tqxT+SEffPBBs/44OZUVD/Pnz8dsNnssW7ZsGa+99hozZ870mPftuuuu45dffmHp0qUec/YtWbIEpVLprmhojgsmdC1dupS8vDxee+21RkcJtW/fnnfeeYdPPvnE40NApVIxbNgwHn30UZxOJ6+99hpVVVXH/Ousbdu2JCQk8NRTTyGEIDAwkMWLF7N8+fIGZTt06ADA//3f/3H77bej0WhITk5utMr/tttu49133+X2228nKyuLDh068OeffzJt2jSuuOIKLr300hN4Zk69YcOGMXz4cJ588kmqqqro27eve/Rily5dGDduHOCqobn11lt566230Gg0XHrppaSlpfGf//ynwQf8Sy+9xPLly+nTpw8PPfQQycnJmM1msrKyWLJkCTNnzmzxhH31z/3pNGXKFGbOnMmLL77ImDFjTmgEVksFBAQwdepUnnjiCebNm8ett97KBx98wOWXX87w4cO54447iIyMpKysjJ07d7Jp0yZ3qHrmmWdYvHgxQ4cO5ZlnnsHLy4uZM2e6R/k15y+25r5W9957L15eXvTt25dWrVpRUFDA9OnTMRqN7g+pnj17MmrUKDp27EhAQAA7d+5k9uzZHmFqxowZ3HLLLYwaNYrx48djsVh4/fXXqaio4NVXX23Wc5aVlUVcXNwp/Uv5aKNGjeLll1/m+eefZ+DAgWRkZPDSSy8RFxd3Wqc92bZtGw888AA33HADbdq0QavVsnLlSrZt28ZTTz3V5Ho333wzO3bs4MMPPyQ7O9tj2oWoqCiioqKYPHkyCxcuZMCAATzyyCN07NgRp9PJwYMH+eWXX3jssceOOfF0RETEKRsB+NBDD/HJJ59w11130aFDB9atW+d+TKfT0aVLF/f9+ia4mJgYCgsL3X/Mzp4926PWvW3bttx///289957+Pr6cvnll5OZmcm//vUvunTpwpgxY9xlf/vtNwYPHtzsmvHG+Pj48Pbbb3P77bdTVlbG9ddf7x75unXrVoqLi3n//feprKxk8ODB3HzzzbRt2xZfX182bNjAsmXLPGqzO3TowLfffsv7779Pt27dUCqVTXZpmDlzJitXrmTkyJHExMRgNpvdNZhNfbdUVVVxxRVX4OXlxZQpUxrM1J6SkoKfnx//93//R79+/ejfvz8TJ06kdevWVFdXs2fPHhYvXnzc0bf1NfGnQnFxsbvWbPv27YArH4SEhBASEsLAgQMBGg3U9bWt3bp183ge77zzTj744AMmTZpESUkJKSkp/Prrr7z77rtMmjSpwR+Qx9Ts3l/nuKuvvlpotdoGnbuPNHbsWKFWq0VBQYG7k+xrr70mXnzxRREVFSW0Wq3o0qVLg47kjXWk37Fjhxg2bJh7RMMNN9wgDh482GgnxKlTp4qIiAh3h/tVq1YJIRrv2FpaWiomTJggWrVqJdRqtYiNjRVTp05t0AEbEPfff3+Dc2zOpKNNTdjXVCfC+g7KR3aENplM4sknnxSxsbFCo9GIVq1aiYkTJ3p08BbC1an1scceE6GhoUKv14tevXqJtWvXNnqcxcXF4qGHHhJxcXFCo9GIwMBA0a1bN/HMM8+4O5fWn/u5MDlqvXfffVcA4vPPPxdCnP7JUYVwPf8xMTGiTZs27gEfW7duFWPGjBGhoaFCo9GI8PBwMWTIkAad/f/44w/Rs2dPodPpRHh4uHj88cfdI2SPHIByrHNuzmv1+eefi8GDB4uwsDCh1WpFRESEGDNmjEen6aeeekp0795dBAQECJ1OJ+Lj48UjjzwiSkpKPPb3/fffi549ewq9Xi8MBoMYOnSo+OuvvzzKNPY+rbd9+3YBiKeeeupYT7mHY3Wkb+y1tVgsYsqUKSIyMlLo9XrRtWtX8f3334vbb7+9QWfno9/DTb3W9fur/8xoTGFhobjjjjtE27ZthcFgED4+PqJjx47iv//9r/u9IUTDz5tjje498thqamrEv/71L5GcnCy0Wq0wGo2iQ4cO4pFHHnGP+joTjnW8Rz+/L774okhISBA6nU74+/uLESNGiNWrVze6XbvdLl599VWRmJh4zM+yxYsXNzl4pilNvV9+//13MXLkSBEYGCg0Go2IjIwUI0eOdJczm81iwoQJomPHjsLPz094eXmJ5ORk8fzzz3uMqCwrKxPXX3+98Pf3FwqFQhzrK33t2rXimmuuEbGxsUKn04mgoCAxcOBAsWjRIo9yR77+9b8DTd2OfF/u379f3HXXXSIyMlJoNBoREhIi+vTpI1555ZVmP1+nwrFGjx9r9K4Qx/7MLS0tFePHjxdhYWFCo9GIpKQk8frrrzc6aOVYFEI0o/eaJEkXtMsuu4ysrCwyMzPP9qGcFu+99x5PPPEEe/fubXLQgCQdyxNPPMGXX37J7t273d1RJKmlLpjmRUmSmufRRx+lS5cuREdHU1ZWxty5c1m+fHmDkWsXklWrVvHQQw/JwCWdsFWrVvHss8/KwCWdFFnTJUlnWHNm6T4VM9c35eGHH2bRokUUFBSgUChISUlh8uTJTY4EkyRJkk4NGbok6Qx74YUXjjuMfv/+/bRu3frMHJAkSZJ0RsjQJUlnWF5e3nEvYnyiQ68lSZKkc5cMXZIkSZIkSWfA6ZlCW5IkSZIkSfIgRy82k9PpJC8vD19f3zNymRFJkiRJkk6eEILq6moiIiJO2+XamkuGrmbKy8s7o5fykCRJkiTp1MnOzm7xlU1ONRm6mqn+sj3Z2dmNXqNMkiRJkqRzT1VVFdHR0Y1efu9Mk6GrmeqbFP38/GTokiRJkqTzzLnQNUh2pJckSZIkSToDZOiSJEmSJEk6A2TokiRJkiRJOgNk6JIkSZIkSToDZOiSJEmSJEk6A2TokiRJkiRJOgNk6JIkSZIkSToDZOiSJEmSJEk6A2TokiRJkiRJOgNk6JIkSZIkSToDZOiSJEmSJEk6A2TokiRJkiRJOgPkBa8lSZIk6ShCCOw2J1aTHYfdiVKpQKFQoFAq0BvUKFWuOguHzYnD4UShVKBQuC6qrFBw6P7Zv8CydG6RoUuSJEm6YDjsTmxmB1azHZ9APUqlK/gU7K+kNKcGq8mB1WLHZnKVcd0cDLszBS9fLQBrv9vD5l8OIkTj+xj77CUERfoAsOmXA/y9eH+Tx3PdE90IjzcCsHVFNut+2OsOZO6QpnT9HH5feyIS/QHI/LuA9Yv3Hwp7wFHl+49pQ0SbAAAOpJeycUmWO/ihUKDRqfAJ0OEbqKd1x2ACWxlO/smVTpoMXZIkSdI5o7rMTG2FxRWGTA5sFtdPq9mOzezgktFxqDUqADYuy2LPxiKsJjs2iwOryYHD7nRv647X+mIw6gDI/LuQ7atymtyvudbmDl1KlfJw4FKASqVECIEQrhowjqjAEs4mkln96kfUdjkcTuxWZ5NlhePwtix1dqqKTU2WtZod7v/XVVrJ31vZZFnfIL07dGVtK+G3eRn4BurwCdDjE6h3hzPfQD3GUC+0ehkNThf5zEqSJEknTTgFFpMdc40Nc52N8Dij+7Fda/PJ31uJudaGpc6O7VDtUn0t092v90OtdQWp9Yv2kbGuoMn9dB4W4w5dtRVWSrJrGi2n1iqxWw8Hk+AoH1p3DEbrpUKrV6PVq9Do1a7/e6ncgQug09Bo2g+IRKNXodGqUCibbibsfkVrug6PdQcyIVzPhRAC4QSd4fDXbGr/SBK6hLqC26HyTufh//sFe7nLxncJITja91BZ17bEET9DYnzdZSOT/Rkxvr37MQRYTHZqys3UlFk8armqSk3UVliorbAAVQ3O57J7UmnTPQyA/L2V7PgzF59APb4Benzqg1qATgazEySfNUmSJMmDw+HEUnsoQNVaMdfYsZhstOsT4S6z4af9HEwvw1xrw1xjw1Jn82iOm/D2IFQaV7+nnF3lZKxvOkhZzQ536DIYdfgF6w8FoiMCkpcrIClVhwNQav8IWncIOlzW61BZncrd56peSt8IUvpG0Bx6g6ZZ5cBVK6ZUNa+szkuNzqt5X7sGo85dS9cUIQTCZsOgteMdo0JYLAirFafFCn4CZYwOhVcQSp0dp9mMQqcjuWc4YXFGasrM1JRbqC4zU1NmprrcQk2ZGd9AvXv7xQer2LW28ddN561m2N2pxKYGAVBRWEfRgSp3zZnBX4dKJcfqHU2GLkmSpAuY3eY4FJ5sh37aMddYXbVOJgd9r0t0l105eyd7NxZ5NF0dKalHuDtIVRaZKNjXsElLq1eh99Fgtdjx0rhqj+I7h2AM9UJv0KDzVh8OR4dqmvRH1Ab1viaB3tckNOvcgiJ93H2rzqT6sFMfco4MO8JqRVjr79c/fni5a9kR61otOI8sU78t61HlLIfKHVFGWK0tO3CFAoVOh1KvR6HX46PX46vXu+8r9Xrs/9OTp9ej0OvQKoJoHxyESeipc+ios2mos6iw2RVY6uw49+7CZDOg0OvZl2Zh7a+lR+4Kb6PO3YzZ7fJYgqNctXMWkx2n3YneR3PRDTaQoUuSJOk8U1thobyglroqV3gy1diwHApWNouDkfd3cpdd9mEaB7aXNrmtnkf0kXI6xOHApXDVZnj5aNEb1OgNGux2pzt0tR8YSVznYPQGDXofjeunQYNK3bB2I75LCPFdQk7hM3CYOwCZzTjN5sM/LZZD/7cgLEf8NJkP3TcjzBacFtfP+sfc981mV0Aym10B6KhQdC5SaDQodDoUWi0oFO7nAseh11QIhNmMw2xuZGUVKJSgVIJChULh+hmmVLqW1y9TqnCovLDqjZi3V5ONExQqbAHJxAd3wKbxwa7xQaFUoai1oqi1YMkuZ++qhRygFodaTY0ujFp9OA61HrvChE1pAmEi3O7E9/J2dB8x9Mw+cWeQDF2SJEnnGCEEpmobFUV1VBTWUVthocfIOPfjv87aQc6u8ibXt9sc7iClN2hc0xy4g9ERQcpHgziiX/clo+LoNiIWvY8GnbfGPfKvMfUj8pp7Po6KCmw5OTgqKg+HILPpiFDkGYKcZpNnKDoyBNWHq0P3mxxmeIYotFrX7VDgUR51X6HTHlquO2K5BmX941pd48sObceh1mBVqrGgxGSBGrONWosVi9mG1WrHaXGAVaCyOtFaQW9TonUoUQoFCgEqpwKlUKA6dFOidP+s/3eyvIEIBCasmBRW6hQWBBDjDAY0YBjCcs02ShXVmBSVOBSe718/pxf9rX1Iz8yEESd9OOessx66cnNzefLJJ1m6dCkmk4mkpCQ++eQTunXrBrh+WV988UU+/PBDysvL6dmzJ++++y6pqanubVgsFqZMmcKXX36JyWRi6NChvPfee0RFRbnLlJeX89BDD7Fo0SIARo8ezdtvv42/v/8ZPV9JkqTG7FqXz8H0MioK66gsqmvQxNdpSDTaQ/2BAiMMVJeZ8QnQoTdo0fto8KoPVT4aFEcMrxt8S1uG3t6uWc04R3bkbimnxYItNxdbdjbWnBxs2TnYcnOwZudgy87GWVt7wttuNqXS1Uym07mbyzzuu5frUOj0KL30KHSupjRl/U+9a5lSr0Oh9zpUVncoBB0RinSu5ajV2J1gsjqos9ldP60OTDbHEf+3Y7I6qbFYqLRUU2WtxmSqwWmqQ2GxoLLa0Jps6KsseNkteDuU+DrU+DjV+Dl1+Dn1+Dm88RY6vHEFHFAdup0+TuFE4MSitFGrsFCrNCMcgjCbDwInQjhZr8uiQmXCrLBhVtgRR7zNvJxqhlTEIHDiFE7KjRXUqGzux9VCgdapRudU4+VQsb9mI8bE1EaO5MJxVkNXeXk5ffv2ZfDgwSxdupTQ0FD27t3rEYRmzJjBm2++yaxZs0hKSuKVV15h2LBhZGRk4Ovrah+ePHkyixcvZv78+QQFBfHYY48xatQoNm7ciErlelPefPPN5OTksGzZMgDuu+8+xo0bx+LFi8/4eUuSdPGwWRxUFNVRWWRyB6qKojoqi02Me6UPGp3rMyp/byW7NxQeXlEBvoF6/EO9MIZ6e0yF0H9MEv3HNG//9c2BJ0s4ndiLiz1DVU421hxX0LIXFR13G+rQUFRBQU2HokNhyB2CvPSNh6H6n15eHoEKTfP6CNkdTmotDqrMNqrNdmosdqoP/b/abKPaYnf9v8RGjdlOjcVCna2KWmsttfYaTI5azPZarM46LM469AorRgT+CoEfCoyoMAoVfkKNUWjxc+owOvVEOrzxc/jg6zCgF36AX4tfBwdOapS11CrqMAkzVqcZu92C3WYiI1aJRQNWrYKQPYX4FpYjEO7wJIQT56GfddcOR+3thcIpEJu2I3aku5pqcVIX0gqH3gs0WpxqDeKIkQLePjpSfXXovQzovL0pO1BHpcmzudJgMODj44O/0UjqqJFo9V6oNBoisrNRKBT4+Pjg4+ODRtP8AQsXCoUQZ69e9qmnnuKvv/7ijz/+aPRxIQQRERFMnjyZJ598EnDVaoWFhfHaa68xfvx4KisrCQkJYfbs2dx4440A5OXlER0dzZIlSxg+fDg7d+4kJSWFdevW0bNnTwDWrVtH79692bVrF8nJycc91qqqKoxGI5WVlfj5tfwXRZKkC5fD5qSy2ERFUR2xqUHuoPPnN7vZ+mt2k+vd+K8e7s7FB3eUUpJTg3+oN/6h3viF6N1NhGeKo6amkVBVX2uVe9y+TEpvbzTR0Wiio9BGRaOJikIbHeVaFhGBUq8/5vrHI4TAYne6w1FNfTgy26gy26kxH75fH6YaC1Z17qkkBCgtKNVVKA7dlJoqtKoaghVOQlEQKtQECC1Gpxe+DgNGhwFfhw9+DoP7phEnFh7sCgc1KjN1agsmjQ2L1oFNJ3DqFaABhbCjiwzG4G/A19+XnD/+ZPefv2EzNT5/1z1vf4wxNByr1cqGJYso2bMLjd4Lrd6LvDoLJocTm1NgsTuwOZ2YLRYAjH5+3D52DFq9Fxq9F5/PmU1eXr7HtuvDUmBgIHfeead7+Z49e3A4HPj4+ODr64vBYHBXdpwrzqXv77Na07Vo0SKGDx/ODTfcwO+//05kZCSTJk3i3nvvBWD//v0UFBRw2WWXudfR6XQMHDiQNWvWMH78eDZu3IjNZvMoExERQfv27VmzZg3Dhw9n7dq1GI1Gd+AC6NWrF0ajkTVr1jQrdEmSJAGU5NSQm1lOZaGrxqqiyER1mRkO/fl65Gzl3ofmftL7aNw1Vv6h3hhDvfAP9SYg7PD8STEpQcSkBJ3WYxc2G7b8fGw5h5r9jgxVOTk4KiqOvQGVCk2rVo2HqqgoVP7+TdY0OZyCKnN9zdHhoFTtDksNg5JnsHLdtzmaWU+gsKJQV7sCleZQoNJXoTXUEKcQhAoVIWgItfsSbA8g2OZPsDWO4Fp/Ah3N769Wz650YNU5sOkcOPUKhJcChbcatUGLxkeHzscbva8Bg9EXrY8XSm81Cp2KisJ8CvfuxlGQR11+HpX5eZQX5GGuqQbg3nc/xS84FIDKzVtdgUuhwC84BHVoJCo/f9DpsStVzP/2eyqrqqirq8Pf35/JU/7lPr4PP/yQ/Ly8BsetVqvR6nQERhzujtO3bz+sVqs7SPn4+ODt7Y1S2bDWNDExscEyqWlnNXTt27eP999/n0cffZSnn36av//+m4ceegidTsdtt91GQYFrfpCwsDCP9cLCwjhw4AAABQUFaLVaAgICGpSpX7+goIDQ0NAG+w8NDXWXOZrFYsFy6K8AcCVlSZIubMIpqKmwHNEM6Kq96j+mDcYQV0+arO0lrP9hX4N1NXoV/qHe2G2HmwFT+0eQ0i+iRfM+ndTxC4GjrKzxUJWdja2gAJxNz4gOoAoIQBMdjToyEsIjcIRHYAkJwxQUTq1/EDV2qLXYXTerg1qLnZosO3UZ2dRY9x9+zOKg1nr4/yZb49NQtJwdpaYGg1cteq8atLoaVNpqFOoqVFTj63DiZ1Xgb9MTYgs4FKgCCK6LIcQWQICjeTUdTqXA7gMKoxq1rx6tjx6trxcagw6lQY3SW+O61f9f23jtjs1qoaIgn/L8XPL2plFRkEf/m27HW+8PwPaVv7Dhh2/c5QUgVGqE3oDWP5C1a9dhV6qorKzEbnVwxxvvYQwNR63V8uGHH3IgLw+obrBfq9WKEMIdgrt3747JZPIIUr6+vuj1+gZB+cg+09KpdVZDl9PppHv37kybNg2ALl26kJ6ezvvvv89tt93mLnf0G+LIN1JTji7TWPljbWf69Om8+OKLzT4XSZLOX5t/OciudflUFptw2BqGktR+Ee7QFdbaj4QuIRjra6zCXLVXXr4N+xPpvE9P2LKXlWFOT8e6P8vdWd2anY0tJwfRRNNTPYdGS01AKFX+IZQZgyn2CabIEEiOVyDZen/KnRpqLHYsdieU47rtNANZh24nR6NS4KvX4KtX46NT46tX46vX4KNTotHWotJUI1SV2BWVWKnALMqpsZdislSiqLGiMyldYcrmT7A1gODaQILt8S0LVCqB01eJyk+HLtCAzt8blVGLyqhz3fx1rpqoZs4h5bDbcDpAeahZbff6NWz55UfK8vOoKS3xKCuAmG698A4Np6KigkqllojkFALCIwhoFcE/B3IprnDNf1YHrN24yb2uSqUiICLKXeMUHx+P0WjE39+/wU8vL89BEV27dm3WuUin11kNXa1atSIlJcVjWbt27Vi4cCEA4eHhgKumqlWrVu4yRUVF7tqv8HBX+3V5eblHbVdRURF9+vRxlyksPKKD6iHFxcUNatHqTZ06lUcffdR9v6qqiujo6BM5TUmSzjEOmxOHw+m+lIl/mBdlea7RdUqlAr8Qr8PNgWHeBEUdnoAzul0g0e0Cz9yxVlVh3rED07btlG3einl7GpqShp9n9ZwoKPXyo8A7kALvIAoMR/4MpFzvi1A00rneBtgE4NlvS6tSYtCpMOjUGLTqo/6vxqf+vk6NQXv4/95aFTqNA6eiDpQm7NRhE7VUWcspNmVTbCqmqK6I4rpiDtaUQrWdQJvxcKA6VEMVYo8m2Obf7EAlVICfCo3RC02AF2qjHpW/FpXfiQUq9/PqcFBVXER5fi7lBXmU5+dRUZBHeX4uVcXFjHlhOlFtU7Hb7ZQUF3EwbZt7XUerWIRfAA61BptTsOCnpe7HVCoVz7zwqjtIHfjqK4orKvH19W00TB3p0ksvbdE5SGffWQ1dffv2JSMjw2NZZmYmsbGxAMTFxREeHs7y5cvp0qUL4Koy/f3333nttdcA6NatGxqNhuXLlzNmjGs4T35+PmlpacyYMQOA3r17U1lZyd9//80ll1wCwPr166msrHQHs6PpdDp0umNfgkGSpPNLXZWVtNW5pK3Opf2ASC4Z5Zr7KrZDMKMe7IR/qBe+gfoGl5A5U5x1dZh37sS0fTvVW7dTs3UbqjzPizTX153l+IRwwDeMAkMQ+d6BFBiCKPAOpNIvCJ23F946FQatqzbJoFPTWqci9VBQqg9OPkcHqSPu++jU6DVKrKKOKksVVdYqqq3Vh38eWlZlraLEWsV+azVVlVVUWQ6XszltKIWSILuRUFsgIbYAd5Nfki2Avva4lgUqNSj9tGj8vVC7a6UOBSp/1/0TCVTgClU1ZaVUlRRRXVJMVUkxbXr2cfd12rbiZ1Z88p67vMPLgEPnjdBocbZqzbc/LcP641JqampQqVRcM3EygRGR+IdHsHjpMnbu3AmHLo6tVCoxGo3uIGW329FqXf3/rrzySq699lrU6rM+o5N0GpzVV/WRRx6hT58+TJs2jTFjxvD333/z4Ycf8uGHHwKuJsHJkyczbdo02rRpQ5s2bZg2bRre3t7cfPPNABiNRu6++24ee+wxgoKCCAwMZMqUKXTo0MH9V0C7du0YMWIE9957Lx988AHgmjJi1KhRshO9JF0ESnKq2boyh8y/C3DaXV98WdtK6DGyNQqFAqVS4b6G3JnitFiwZGRg2r4d0/Y0qrZuR2TtR3HEbKX1vYQKvAPY7R/N3sAYbInJBHftSGpSJN0Cvd2hqr52SXNUYLQ6rO5w5ApEZR4BqshSRXVVtUdYqr/VWGsQHLvjut6pI9QWQKgtkEhbIF1srd0BK9QWSLDdH1Vz5pNSK1AZdUeEKZ2rye8UBCoAS10d1SVFGAIC8fJ1hbyDaVv566u5VJcUU1NWijj03AuVCofWi2KzDW1QCGVlZZQWFqLSaAkIb4V/eAQ5aCiuqXNvv6z6cL8qhUJBXI/eGAyugRI9evSgXbt27horX1/fRjulAw2aBaULy1kNXT169OC7775j6tSpvPTSS8TFxfHWW29xyy23uMs88cQTmEwmJk2a5J4c9ZdffnHP0QXw3//+F7VazZgxY9yTo86aNctj2OrcuXN56KGH3KMcR48ezTvvvHPmTlaSpDMua3sJW349SG5GhXtZaGs/Og+NJr5ryBm77puw2bDs2YMpLQ3z9jSqt23Hvmc3Crvdo5wCKNX7kekfzW7/KCpiEvHt2IF27WLoEe3P7RF+aFVKsquz2VG6ne3VRVSVNl0LVW2txuxo5JIvzaQQCgLsfkQ5w4kVkUQ4QglzBBFiDcDf4oOfyRudrRn91pQKVP461P5HBar6gHWSgepIFQX5ZK7/i6qSYqpLig79LMZS52o+HjHpEVIHDsXpdFJZWUVuxg73VLLWsGhs/sE4D81L9U/GbmC3e9uPvTcL30NTDqxdu5asrCx3bdWRTYDe3t4e5xIfH3/S5yVdGM7qPF3nk3Npng9Jkppn1eyd7PgrH4VSQULXEDoNiW7R5WtOhHA4sO7f7w5YddvTMO/aiaKROa4qtd6HAlY02aGt0bVPoU27eDpH+9M5xp9gHx2FtYWklaaRXpJOWkka6aXpVFlbNppagQIfrQ9+Wj/3zVfrS4DanzB7MME2I4EWP/xM3njX6dDXqlBXg6LaCc2YokGhV7sCVYDucLjy17v+H6BD6aNFcYxLCh2P3WqlsqjAHaCqjghTVSXF9Bs7jnb9BgGQtWUjC6c/715XKBQ4tXqcWj1KXyOBCcnYVGpKS0ux2+1cM6g/oZFR+AaH8NffG1i7di3gakUJDg4mODiYwMBA/P39iYuLczcDSuePc+n7WzYaS5J0QagsNrF9VQ7JvcIJiXHVhHccGo3eR0P7gVH4Bp7cxJyNEUJgO3jQFbDS0l1Nhek7wFTnUU4B1Kr17PaPYndAFHsCorEltqV1agJdYgIZF+NPQogP1dZK0krTSCtZxQ/r00kvTafYVNxgvxqlhraBbYnyjfIIUn46V5jy0/rhp/HF12HAYNKhrVHhrLDiqLDgqDBjr7DgqLDgrLE12LbLEdM7KDjcxHcoRKkOhSr1oWVK/Yl/lQink9rKCqqKi6guLXaHqcQevYlp3xGAnB3bPYLU0SoLC6irq6OkpISciiqS+g4iIDQMv+AQduYVsnPffnfZupLDF/9WqVQEt2lLq8hIwNX60qFDB4KCgmSfXum0kKFLkqTzlhCCvN0VbF2Rzf5tJSDAXGfj0jtco6KDInzofc2pmbxRCIG9oADT9u2Y09Ixp22nbnsaorrhHElmlYa9xkgyA1y1WCVRCbRKSaRzbCDDogN4LMoISgs7SneQXrKCD3elkfZnGrk1uQ22pVKoSPBPoH1we1KDUkkNTiXJPwk1KhyV1sMhqtCCo9KCvdx8KFyVI2yl1ALHuuqhQqM8VEOlP6K2Su/qWxWgQ+WnRXESAwucDgfVpcVUFhXiGxxCQHgEAAV7MvnxfzOoLinB6bA3WM/bz+gOXb7BoegMBvyCQvANDkFpDMSk0mBFQZ3Vzu97DrDs0MApgLvvvts92tz6zz/sz8snODiYkJAQd+1VcHAw/v7+Ht1QAgPP3KhU6eIkQ5ckSecdh83J7n8K2boym5LsGvfymJRAki5pfBqYlrKXlLgDlinN9dNRWtqgnE2pYp9fxKGAFcX+4FgC2rahY2wQXWL8uS3an2BfJZnlmaSV/M2P+em8uj2N/ZX7G+2kHusXS2pQKu2D29M+uD1tA9vipXZ1rraXmjBnllOZkYllbwWikTnFjqb01XjUSrma/w43/Sm8Tk1fKoCaslLSVi2nsriQyiLXrbq0GHFoQta+Y26l13VjAdDovagsdE1OrVAo8QkMwi8kBN+gEAyBQejDI0hLS6O4uJiSkhLGvPq2e5Lr9evXs3Tp0gb7r28SPPJ8unbtSrdu3c5Y/z1JOhYZuiRJOu8sfH0jxQddNUxqjZLkXuF0HBxNYIThOGs2zlFZ6e6DZU5Pw7Q9DXsjV6twKJRk+Ya7A9bugGhE63g6xoXQOdqfETH+JIZ6k12zn/TSdDaVpPHFn2nsrtiN3dmwNifcEO4OWKlBqaQEpWDUHe5zJmwOLHsrqcjIw5xZjr3kqIlP1Qp3gFIZG2n6M+pQnOQFr4UQmGuqqSwqpOqIMFUfrDoMuYweV14LgKWulr++mtNgGyqNBr+QMNRHNNkZw8IZ8/x0jKFh+AQEcTA7mz///JPdJSVU7DkIew56bCMpKckduiIiIkhJSXHXWIWEhBAUFNRof6umRglK0tkgQ5ckSee8kpwaAlt5u+fPSugaQl2VlQ6DIkntF4nep+UzvwshMG3eQvncuVT9/DMcNZLQiYIc3xB3R/fMgCiKQmNIjQulS7Q/Y2IC6BDlR42j4FBH9595fVsau8p2NTpiMEAXQGrwoRqsoPakBqcS7BXc4JhsJSbMGWWYM8qx7KsE+xG1WUoF2lhf9MmB6JMC0IQbTqqDej2b2UxlUYE7SAVGRtO6o2tuxLLcHGY9NrHJdctyD88j5hcSSuqgSzGGhmEMDccYEoYxNAyDfwBV1dVkZmayaNEid+3VyJEjiT50XUGbzcaePXvc29Lr9R7NgREREe7HoqOj5WTV0nlJhi5Jks5JTqcga1sJ21Zmk5tZwfB725PYzfUF3XFINJ2HxaA6gb5GTrOZqp+WUD53LuYdO9zL872DyAyIJvNQDdb+gChiokLoEuNP/2h/Hoz2x+Bdw46ydNJK1jL3YBo7Nu2g2tawT5dBYyAlKMUdrtoHtyfCENFoE5fT6sCytwJzZjnmjHIcZZ6BTWXUok8KRJ8cgC7R/4Q6rTvsNuxWKzpvV01gXVUlKz+d6Q5ZpqpKj/LtB1/mDl1+ISGgUGAw+uMXGuYOUn6HfgZGHr5QskanZ8TEye771dXV/LNxI7t27Wr0OrfFxYcHCURERDBq1Ch3yDIYDLJJULrgyNAlSdI5xWqys3NNPttWZVNV4gogCqWC8oLD3cE1TVxc+FhsubmUz59Pxdff4KiocO1Lqea3qC4siu9LdXQCXWMC6Bzjz43R/kQFO9hbtYv0kj/5rTSNd/emU2pu2KdLq9TSNqgt7YNcfbBSg1Np7dcaZWOX2uFQh/ziQ7VZmYdqs46clkGlQNfaz12bpQ7zblb4cNht5GdmHApSBR7NgDVlpXQYchmX3fcgAGqtloy1f3isrzMYMIaEYwwNo1Viknu5RqfnoS++QaM9/mg+u92OyWRyz6NosVj47bff3I9HR0cTFxfnrsEKCjo8Ia3BYKB79+7H3Ycknc9k6JIk6ZzgcDhZu3AvO9bkYTO7pizQeatJ7R9xwlM+CCGoW7+e8rlzqV6xEg516C7yCuDHuN78HNuTpKQonhgUib9/AemlW0krSeO7Tenk1eY12J5KoSLRP9EdrtoHtScxIBGN8tjNm06LHcueSsyZrmZDR4XFc7v+OvTJAeiTA9ElGFHqGv9oFkJQVVxEXuZO8jJ3EdAqgq6Xj3Y9f3Y7C158qsljOPLCy1q9F0PumoBPQKC7xkpv8Gly3WMFLpPJxJ49e9i1axd79uwhPj6eG2+8EYDg4GB69OhBREQESUlJ7hnaJeliJUOXJEnnBJVKScH+SmxmBwHh3nQcEk1yz3A0upbXajlra6lctIiyuXOx7tnrXr4lJJHFcX1ZF55CrzahvNrXn63V3/H0P99gdTacvLS1X2v3KMLUoFSSA5PdIwmPRQiBvbAOc0Y55owyLAeqGtZmxRvdzYbqEK9Ga7OE00nBvt3kZewiL2MHeZk7qSkvcz8e27GLO3Rp9V6EJyah9fJ29akKCfNoDvQ2+ntsu8vwUcc9j6ZUVFSQkZHBrl27OHDgAE7n4X5nBQUFOJ1Odwf2kSNHnvB+JOlCI0OXJElnXP2UDzv+zOOKSR3RG1w1Rb2vScBucxLTLvCEOohbs7Io//JLKr79Dueh+bOsGh2/RHVlcVxfDvqFMyg5hA/7GtlQ/i3PbjwctsIN4XQI7uAeTZgSlIKv1vdYu/PgNNsx765whazMchxVniFOFaRHn3SoNiveiLKRJlJTTTVVxUWExSW4l307/QXMNYf7jSlVKkLjEohIakdUu1SP9W/595vNPt6WEEJ4hMJvvvmGnJzDHehDQkJITk4mOTmZyMhIOWJQkpogQ5ckSWdMXZWVtNW5pK3OxXQolOz4M4+uw2MBiEwKaPE2hdNJ7R9/UDZ3LrWrD/dTKg8IY0FUL36N7k6t1othKWG81MfImtKveXL9QnfY6hralYmdJ9IzvGeLOm4LIbDl17prs6wHq+DIabPUSvQJRvRJAeiSA9EEezVYvzw/l9yMHe6arLK8HHyDQ7jv3c8AUCiVxHXpjqW2hoikdkQmpxCWkIhGd+pn1z+a3W4nKyvL3Ww4fvx498WY27Vrh0qlcgetI/tmSZLUNBm6JEk67Upyqtm6MofMvwtw2l3NbAZ/HR0GRZLSN+I4azfOUVVF5XffUTZvHrYDh+d02hPfiVlhPdgUmgRKJVd0aMVNvf34vXABj65diM3puvRN19CuTOo8iUvCL2l22HLW2TDvqXAFrcwynNWel9FRB3sd7psV54dC03jT6G9ffEz66pWYqxteQ1Gj1WGpq0Pn7Q3AFQ881qxjOxVMJhO7d+92By3rEdeL3L17Nx07umaI79OnD3379j1jxyVJFwoZuiRJOq3MNTa+nv4PzkN9msLi/Og0JJr4riEnNOWDOTOT8nnzqFy0GFHnusah0+DD32378GFAV/J9glEq4OrOkdzYy4df8+fz0J/feoSt+zvfT4/wHscNW8IpsOXVHApZ5a7arCO6Zik0SnQJ/q6glRSAOuhwbVZNWemhDu87yd+dyfXPvuLukO50ODBXV6HWaAlPTCIiqS0RySlEJLXFy/fsXJB3165dLFiwACEOn6CPj4+7NisuLs69XE7lIEknRoYuSZJOKavJTvbOMhK6uubU0vtoSOoRht3upNOQaMLjjcfZQkPCbqd65UrK586jbv1693J7TBw/JfZjlndbzGodaqWCG7tGcX1PH37Oncek1YfDVrewbkzqNOm4YctRa8Oyu9wdtJy1R9VmhXof6psVgC7OiELtCo4VBflk/bzS1VyYuYuq4kKP9Qr37CYqpT0AnYePpF3/QYS2jkelbvnErifD6XSSn59PRkYGYWFhpKa6+oVFREQghCA0NNQdtCIiImT/LEk6hWTokiTplNmzsYhVc3ZhNdkZ+9wlBEW4piEYcnu7E6odsZeXU/H1N5TP/xJ7Xr5roVJJ3SX9mBN+Cd+JMFAo0KqUjOsRzTU9vPnp4Fzu++1b92V3uod1Z1JnV9hqijWnGtNO17xZtpxqz9osrQpd4hG1WQF6LHW15O/OILQ23j0qcO/G9fz2xceH11MoCY5t7eqLldSWoOgY92OBEYcnFD0T7HY7+/fvZ9euXWRmZlJ9aJBBfHy8O3T5+fnxyCOPYDS2PBRLktQ8MnRJknTSnE7B34v2sXHZAQACwr0x1xyuIWpp4DKlpbsuz/PTT4hD/YpUAQGUDLyct306sLbGVTuk1yq5+ZJYru7hxff7Z3P3yu/cYatHeA8mdprYZNgSToF5VxnVv+dgPeDZt0oT7o3u0OSk2hhfqsqKOZixg7yFO8nL2Elx9gEQghGTHiF14FAAotq1J7ZjF3eH9/DEJHe/rLNFCMHChQvJzMz06J+l1WpJTEykXbt2HuVl4JKk00uGLkmSToqlzsYvn+zgYLprtvbOw2LofXW8+zqJzSWsVqp+/oXyuXMxbdniXq5LTSWr/0hmWKPZVWaBGjBoVYzr3ZpRXfUs3Pc5ty//3h22Lgm/hAmdJjQdtuxO6jYXUb06B3vxoQtIqxR4tQ1E39YVtFRGV9+r/D0ZfH//A9RVVjTYjjEsHKfT4b4fFp/I9c+83KJzPtXKysrIzs6mU6dOgCvs1tXVYbVa8fX1dTcbtm7dGo3mzDZrSpIkQ5ckSSehLK+WJTO3UVlkQqVRMmRcW5IuCW/RNmyFRVR89RXlXy3AUXxo1nSNBp/LLmNL98t4I1tNVoEJsOCrV3Nnn9aM6Kzjqz2zGPfzD9iFK2z1DO/JhE4T6B7e+KVknGY7NevyqfkrD2e1q9ZHoVfhfUkY5f6l7Nu/nrwfdxLXpQc9r74BAGNIGHWVFShVasLiE4hITiEyqR2tktriExB4Yk/aKeR0OsnLy2PXrl1kZGS4r2UYFxeHn5+rQ/7gwYMZOnQorVq1kv2zJOksk6FLkqQTlre7nMoiEz6BOq6Y0JGQmOZNJiqEwLR5M+Vz5lL1yy9gdwUndUgIvmPG8Fubvry9pZzcrSbARoC3hrv7xXFpRw3zM2dxy7IjwlarnkzsNJFuYd0a3Zej0kL1X3nUrs9HWFw1U0o/LSJZQ0bpBnZ++47H1A0qjdYduryN/tz87zcIiYlDrdWe6NN0yuXm5rJx40YyMzOpqalxL1coFLRu3RqTyeQOXdHR0WfrMCVJOooMXZIknbDUAZHYbU6Se4bj5Xv8UOI0m6n6aQllc+dg2bHTvdyra1d8xt7EYr8kZq45SOFvruseBvvouG9AHINSVczN+Iyblixyh61erXoxsdNEuoZ1bXRftsJaqlfnUrelyH0JHnWYNz79I/huwXSKvtrnLmvwDyC+aw9XTVbbFI/ttEpMbtmTchrU1NSgVCrxPtRHrLS0lE2bNgGu/llt2rQhOTmZNm3auCcwlSTp3CNDlyRJzWY12Vn3/V56XhWPzluDQqGg86Uxx13PlptL+fz5VHz9DY6KCgAUOh1+o0aiv2EsX1V68/Ef+yip2Q1AuJ+e8QPj6Z+i5IsdnzDmp0U4hKuWqner3kzsPJEuoV0a7EcIgTWriurfczDvOnyNQkcQhF6Zij4pAIVSgf8fEZQV5tKmR29S+g8mpkNnlKqWX+PxdBFCUFxcTEZGBhkZGeTk5HDppZfSr18/ABITE+nRo4e7f5ZaLT/KJel8oBBHzoQnNamqqgqj0UhlZaW72l6SLiblBbUsnbmd8oI64juHcPmEDscsL4Sgbv16yubMoWblKjh0UWRNRAQBN9+EctRVzEmv4JO/9lNR5xrpGBXgxcRBCfRKEsza8QmL9y52h60+EX2Y2GkinUM7N9yXU2DeUUr16hysB13TIQigUlfCpoO/UFyXzR1vvk9QpKupraqkGL3BgNbr7I4uPJLT6eTAgQPuoFVeXu7xeJcuXbjqqqvO0tFJ0vnrXPr+ln8eSZJ0XFnbSlj+aTpWswODv46uI2KbLOusraVy0SLK5s7Fumeve7l3714E3north59+GzdQWbN3ES12dVUGBdsYNKgBLomOvgs7SNeX/yjO2z1jejLhE4TGg9bNie1mwupWZ2LvcQ1EtGpcHKwbifpJX9RY3cFl+DoWExVlXAodPkFh5yS5+VkORwOVIdq2BwOB/PmzcNmcwVQlUpFfHw8ycnJJCUlnfUvC0mSTp4MXZIkNUk4BRuXZbF+8X4Q0CrRyIj7OuDt13j/reqVq8h76imcVa6O6Qpvb/yvvoqAm2+mKiyad/7Yx+z//E6d1RWo2oT68MCQRDq0tvFJ2kz+veinw2Ersi8TO02kU0inBvtxmuzUrM+n5q9c9/UPhQZ2Fq9hd9UmzI5aDP4BdOt7NSkDhhASG3fOXLqmvLzcXZtVV1fHxIkTAdBoNHTs2BGHw0FycjLx8fHodLqzfLSSJJ1KMnRJktQoq9nOis93sm+zaxqC9gMj6XdDG1TqhtMOCCEonz2bwumvghBoY2MJuOUWjNdcTbFTw6ur9/Ll5ysx21xNjO1a+fHQkETaRlv4OO09nlv0I07heqxfZD8mdppIx5CODfZjr7BQ82cutX/nI6yu8iqjFp9+Uei6BLHkiU+I693jnOqnVT+tQ33QKioq8ni8vLycgIAAAK688sqzcYiSJJ0hMnRJktQoh81J0YEqlGoFA8cmk9IvotFywm6ncNp0yufNA8B/zBjCn/0XuTU23vh1L1//k4PV4QpInaKMPDikDfERtXy0/X88tXmJO2z1j+zPxE4T6RDSsK+YraCWqt+yqdtajOJQL9QKazEHRQYjHn8CpdoVru59+5NzImgd6eeff2b9EdeLVCgUxMTEuCcqrQ9ckiRd+GTokiSpUV6+Wq6Y0BGH3dnkRaodNbXkPvYotb+vBiD08cepGj2GJ3/YwbebcrE7XQmpR+sAHhzShqjQaj7c/l+W/rPUHbYGRA1gYqeJtA9u77FtIQTW/VWULMtAHLQAoAAKTQfYVfk3tiA7KQOHIHACrqB1NgNXdXU1u3fvJiMjg4EDBxIR4QqpcXFxbN682T2tQ2JionvqB0mSLi5y9GIznUujHyTpdBBCsOnnA3j76WjXp9Vxy9sKCsieMBHLrl0odDpazXiN73ySePmnnTgOha2+iUE8OKQNoUGVfLD1A5ZlLXOHrYFRA5nYaSKpwamex+EUmNJLqVmdgzW72n1sOXUZZNl30Kp3Cu36DyG0dfxZ7aclhKCoqMjdbJibm+t+bMCAAQwZMgRwdZAXQshpHSTpLDmXvr/lp4AkSdgsDlZ+sZM9G4tQqhVEtPHHGNL0JJum9HRyJk7CXlSEKiiIVu+8w/QsFfNW7QCgf5tgJl+aRICxnJnbXmPZH8sQuILYoKhBTOg8gdQgz7BlrqrmwPd/o9xpxUv4uBaqlRCvZlfFehKH9KVnh7vOiebD8vJyPv/8cyoOzTlWLyIiguTkZFJSDk+wqjoHjleSpHODDF2SdJGrLDaxdOY2SnNrUaoU9B+TdMzAVb1yFbmPPYYwmdAmJmB8623Grypkzd5SFAp4akRbhnYUfLhtOsuyjghb0YOY0MkzbDnsdrI2bKR0xW4CK4MxqAyAFofSgf+g1vj0iUDloyWKnqf7aWiSyWRiz5492O12unRxTcjq5+eHxWKR0zpIktQiMnRJ0kUse0cZP3+chqXOjpeflsvva0+rRP9Gyx49QtHQpw/WZ//N9d/sJKu0DoNWxcvXtWZd5Qe8u+hw2BocPZgJnSaQEnS49sdSV8f6uV8i0kzE6NoRoYwFFZhELZbWDqKv6o4xIuxMPAWNOnJahwMHDuB0OvHz86Nz584oFApUKhXjxo0jODgY7Tl0TUZJks5tMnRJ0kVq8/KDrP12D0JAaGs/Lh/fAZ+AxueFEnY7hdNfpXzuXAD8b7iBPTdPZNLnW6k224n09+KJq/T8L+1+iupcUyIMiR7ChE4TaBfUDgCr2YRW74WtoJaa37JpvScRpZdr+gmLzox3n3AShvZxj0Q8G9atW8emTZsaTOsQEhJCcnIydrsdjUYD4O4oL0mS1FwydEnSRcpmtiMEtO3TioE3JaHWNB52Go5QnMJP7Ybw4uzNOJyCrrH+XNFnPy/88wZ2p504Yxyv9n+VlKAULHV1bF/1Czt/X4WiRDCo6y1YMisAUCqUOEOVBF+RjFdy0FnpFO90OlEqD887Vl5eTlFREQqFgtjYWHezYVBQ0Bk/NkmSLjxy9GIznUujHyTpVBBOQVZaKa07NB14jh6hGPbqq7xpiWL2ugMAXNU5GK+I7/lp/48ADIsdxgs9n6dkZyY7Vq9k7z9/E65pTVv/SwjSHaoZUoBXh2B8B0ShjfI9I+d6NKfTyfbt2/ntt9+49tpriY52XR6ooKCAoqIi2rRpg5dX0/3aJEk6f5xL39+ypkuSLhI5GeVs/vkAl0/ogFqrQqFUENcxuMnyR49QDPjv/3hgm5W/9hxAoYDxQ/z5x/Q6GfszUCqUPNL1Efqb2zFv8gOYK6tp7dOey8Jux1dzaPJPtQJD93B8+0eiDjo7gUYIQUZGBitXrnQ3Ia5du9YdusLDwwkPDz8rxyZJ0oVPhi5JusAJIdi2Moe/Fu5xXUvx5wP0vDL+mOscPUKRaW9y4y957CupxVurYvxwCwsOPk61tZpAfSCvD3idS1pdQk5aGjG0JTmmBzqlK1gpvNT49InAp3crVD5nr9P5vn37WLFihXs+Lb1eT9++fenZ8+yNjJQk6eIiQ5ckXcDsVge/zcsgY10BAEk9w+g2PLbJ8o2NUMx5+FkmfJtBldlOK6OWEf3S+GTPZwgEHYM78lLHZ0holYK9zIxmlY2OAQMAUAXo8O0fhXf3MJTasztX1XfffcfWrVsB14Wle/XqRZ8+fWQToiRJZ5QMXZJ0gaouM7Psg+0UHahGoVTQ97pEOg6JarL/VmMjFFcMv53nF+zA4RR0jNEQGr+Qb/b9BcCNra+j2w4jP85/lpsnTMe6vBRhtqP0VmO8MgHvjiEoVGdvxvgjxcTEsH37drp3786AAQPw8fE524ckSdJFSIYuSboAFe6v4qf3tmKqtqE3aLjs3lSi2wY2Wf7oEYrBjz3G2yE9+eLHXQAM7WQjR/M26wtz0al0PBZyF9VfbWBnSQntA/pjWVwIgDbal8Bb2qH2b3zqiTOhvLyc3377jfj4eDp16gRA586dSUhIwN/f/6wdlyRJkgxdknQB8vLTIAQERflwxYQO+AU33Yx29AhF/1em8WhREH+sOwjA6L65rKn8EIvVQrQ+krvKBnJg8RJ0Sm+GxowjSOW6TqNPnwiMV8ShUCub3NfpVF1dzerVq9m4cSNOp5MDBw7QoUMHlEolKpVKBi5Jks46Gbok6QIhnAKF0tWc5xfkxVWTO2MM8Uaja7o/1dEjFFXT3uDmf0zsKy7BSyPo33sNq4oXA3Cp+hJS/oIDhX8RrItkQPSNaBwaFFolAde1wbtT6Bk5zwbnYDLx119/sW7dOux2OwDx8fEMHTrUYw4uSZKks02GLkm6ANSUW/j5o+10HR5LXKcQAIKPMwfW0SMUi6dOZ/yv+VSabIQFmIlI+oq1xTtQoGBip4l02mNkbeE8OrQaRDuvnigcoA71IujWFDSh3mfiNBvYtm0bS5YswWw2AxAVFcXQoUOJi4s7K8cjSZJ0LDJ0SdJ5Ln9PBcs+TKOuysofC3YTkxqE6jhNfGVfzKZw+nT3CMW/xj3Gsz9lYXcKklsXUuc/iz1V5fipfZk+8FUGRA3AlmgmeE8Q3hXeIMCrUwgB17ZBeYyatNPNz88Ps9lMaGgoQ4YMITk5+azMbC9JktQcMnRJ0nks/Y9cVs/PxOkQBEYYuGJih2MGrqNHKPpdfz0fd7uez37eDwg6t9/CfufXCJOToXkJdKyKpO+NvbEV1FI6Z6crcKkU+I+Kx9Cr1RkNOE6nk23btmE2m+nVqxcArVu3Zty4ccTFxcmmREmSznkydEnSechhd/LHgkzS/8gDIKFrCENua4dW3/Sv9NEjFP0mP8JT6o78sT4HlBY6dl7KXtM6jNUarsxIQl1kopwD7PtmDd7paoTNicqoI/CWtuhiztylNIQQ7Ny5k5UrV1JSUoJGoyE1NRVfX1fzaUJCwhk7FkmSpJMhQ5cknWfsVgc/vLWFgn2VoIBeV8XTdXjsMWudjh6hqHn2JW474Mfe4lK8vEuISFpAVl02HbL86bY7AOwmvA1Ghncfj3aLAoETXVIAgTcmozJozsh5CiHcs8jn5bnCpV6vp1+/fuh0Z29KCkmSpBMlQ5cknWfUWhUh0T6U5ddy2d2pxLYPOmb5o0colj/9b8ZvtFBRV0tw6C4UoQswldm4Mi2KwFIV4CS5Y1+6eV+K46AZFOA3NAbfITHu0ZGnW3FxMT/99BNZWVmAaxb53r1706dPH/R6/Rk5BkmSpFNNhi5JOk84bE5UGle/pb5j2tB5WMwx59+ChiMUt0x8jif/KsHutBOV8BuV2uXggJF72uBbakWj92LY5ffhl+GDo9CM0ltN4Ni26JMCzsAZHqbRaMjOzkalUtGjRw/69esnZ5GXJOm8J0OXJJ3jHA4nf321m7KCOkY/1AmlSolKpTxu4DpyhKJX7958eflEPvijCIWqmuiUb6kQOwG4M/VObr9sDKs//4S+Sddj/bsMgf3Q7PJtUfuf/pqlsrIyMjMz3R3k/f39ueaaa4iKipKTmkqSdMGQoUuSzmF1VVZ+/iiNvN0VAORklBOTcuzmxKNHKHpfex0vxF3Bqk1FKPUHCU2YT9BBC0nmYG68eyqXtb4MR42VfkHXYPm7DABD71b4j4w/7bPLV1VVsXr1ajZt2oTT6SQ6OprIyEgA2rdvf1r3LUmSdKbJ0CVJ56jygloW/d8WasotaPQqht2ZctzAdfQIRc2kh7jb1o49e8vwDlqPn/8Sem4wElMYDEB7awyWrEpK5+3CWWU9Y7PL19XV8ddff7F+/Xr3LPIJCQloNGemk74kSdLZIEOXJJ2DbBYHSz9Io6bcgn+YN1dM7EBAuOHY6xw1QrHmsWe5J8uXClM5AbGLiaxMp/fqUPRWFUqVij7X34JPgYHiZdvBKc7I7PJWq5W1a9eyZs0aLBYLANHR0QwdOpTWrVuftv1KkiSdC2TokqRzjBCC3+dlUJ5fi7dRyzWPdcXbT3vMdY4eobjrged4dLsdh6qA8NZf0nWXmYQ81+WBQmLjGHHvZFTrLVQtyQLO7OzyGzZswGKxEBYWxpAhQ0hKSpKzyEuSdFGQoUuSzjHVpWb2bSlGoVQw/J7U4wau6pWryJ0yBVFXhzYhge9vnMLbW2tRGXbhH/0Vl/5hJKDGAAoFPa8eQ/d+o6mYvxtrick1u/zIeAy9T8/s8g6Hg507d5KSkoJSqUSr1TJixAiEEKSmpspZ5CVJuqgohBDibB/E+aCqqgqj0UhlZSV+fmduNm7p4lRRWEf+3kra9Wl1zHJlX8ym8NVXwelE17MXM3rdxrIDNWiDV6ALWQkIBlW1pcNuP6588An8qv2p+G7PaZ9d3ul0snPnTlatWkVJSQnXXnstHTt2POX7kSRJOp5z6ftb1nRJ0jnIP8wb/7Cm+1YdPUJRfeXVTAwbRkZ2CQl+X6JSZJOP4MbkG3m8++MorVDz80HK12cCoGvjT+DYtqdldvk9e/awYsUK8vPzAfDy8sLpdJ7y/UiSJJ1vZOiSpHOAEILV8zNJ6BpKVPKxJyI9eoSi5a5J3GJOproyk6G2b0nZqsWkCyb18Tu5psMY7GVmSufuxJZbAwrwHRKD39BTP7u83W5n2bJl/PPPPwBotVp69+5N79695SzykiRJyNAlSeeEbatySPs9l51r8rnt332a7Md19AjFrPFP8GCuPyGKXxmVtxVjrWu9pB59GJk4CtOuMsoWZCBM9tM+u/x3331Heno6AD179mTAgAEYDMcecSlJknQxkaFLks6ygv2VrFm4B4De1yQ0GbiOHqG44tbHef2Agz7Wz+mUW4MSDXZvFSMnPkpq9wFULT9A9apsgDMyu3zfvn05cOAAo0ePJikp6bTtR5Ik6XwlQ5cknUXmGhs/f5SG0yFI6BpKx8FRjZY7coSiOj6B9y6bxE/ZxYwt/oqgGgWgQJUawcRHXken8KLk0zQseyqA0ze7vBCCkpISQkJcU1FERETw8MMPywlOJUmSmiBDlySdJcIp+HXWDmrKLBhDvBgyrm2j0zYcOUJR1aMnj6eOZXtVJl4J8yg36/GxepNy0zVcfcW9WA5UUTR3M4762eWvbYN351M/u7zVauXHH38kPT2du+++m4iICAAZuCRJko5Bhi5JOks2/XKAA2mlqDRKRoxvj9bL89dROBwUTpvuHqFoG3Elk7w7U+r4Be+YX0EhKO8bxaM9XyQxMoXqP3OpXLL/8Ozyt7RDE3bq+1SVl5ezYMECCgoKUCgUFBQUuEOXJEmS1DQZuiTpLBBCUF5QB8CAsUkER/k2KFP0xpvuwJV/4928U2JixP555AfXsSJSMDphNP/q9S90dg1l83Zh2l4CnN7Z5ffs2cPChQsxmUx4e3tzww03EBcXd8r3I0mSdCGSoUuSzgKFQsHQ29uR3Cu80SkiqlesoOzTTwFYf/29bD2wnb6mYgBUTiVPd3mSsR1vwV5YR9GcLdhP8+zyQgj+/PNPVqxYAUBkZCRjxozBaDSe0v1IkiRdyM7qNTheeOEFFAqFxy08PNz9uBCCF154gYiICLy8vBg0aJB7SHo9i8XCgw8+SHBwMAaDgdGjR5OTk+NRpry8nHHjxmE0GjEajYwbN46KioozcYqS5MHpFNRfBEKhUBDdNrBBQLLm5JA39WkE8EfXXuTv/Z0oUzE2lZPtXa2Me/4/3NTpVuq2FFP0ritwqYw6QsZ3xKdPxGm5nE96ero7cHXt2pU77rhDBi5JkqQWOusXPktNTSU/P9992759u/uxGTNm8Oabb/LOO++wYcMGwsPDGTZsGNXV1e4ykydP5rvvvmP+/Pn8+eef1NTUMGrUKBwOh7vMzTffzJYtW1i2bBnLli1jy5YtjBs37oyepyQBbPhxP0ve34651tbo406rldxHHsVZVcWWxASqHcVonQ4KAszsvyaENx76kk4BHSn/bjflCzIQNie6Nv6EPtTltFzOp15KSgrt2rXjyiuvZPTo0bLDvCRJ0gk4682LarXao3arnhCCt956i2eeeYZrr70WgM8//5ywsDDmzZvH+PHjqays5JNPPmH27NlceumlAMyZM4fo6Gh+/fVXhg8fzs6dO1m2bBnr1q2jZ8+eAHz00Uf07t2bjIwMkpOTz9zJShe1g+ml/LM0CwTk7ConsVvDUYVFM17HvH07Jl8/9huV6O1ONiaV0+3Ka5ne/WGosFM0d+tpn10eXP23YmNj0Wg0KJVKxowZc1pq0SRJki4WZ72ma/fu3URERBAXF8fYsWPZt28fAPv376egoIDLLrvMXVan0zFw4EDWrFkDwMaNG7HZbB5lIiIiaN++vbvM2rVrMRqN7sAF0KtXL4xGo7tMYywWC1VVVR43STpRNeVmln+2AwSkDohsNHBVLVtG+Zw5ALzZoy+L+h9kfbsyxt7xJI9d8hi2zCoK396MLbcGpbea4DvbYxwWe8oDl9PpZMWKFcyZM4cff/zRozlUkiRJOnFntaarZ8+efPHFFyQlJVFYWMgrr7xCnz59SE9Pp6CgAICwsDCPdcLCwjhw4AAABQUFaLVaAgICGpSpX7+goIDQ0IZfcKGhoe4yjZk+fTovvvjiSZ2fJAE4HE5+/igdc42NkBhf+t2Q2KCMNSuL/Gf+BcAvnQezuds6lGoH7YeP4Mq4K6n8Ocs9u7wm2peg0zS7fF1dHQsXLmTv3r2A62LVQggZuCRJkk6Bsxq6Lr/8cvf/O3ToQO/evUlISODzzz+nV69eQMO/rpvzBXB0mcbKH287U6dO5dFHH3Xfr6qqIjo6+tgnJEmNWPfdXgr2VaL1UjP83vaoNZ5TOTjNZnIeeRRHbS1r2yXyc3I+SnU1sb7xPJYy+YzMLg+Qn5/PggULqKioQK1WM3r0aDp27HjK9yNJknSxOuvNi0cyGAx06NCB3bt3u/t5HV0bVVRU5K79Cg8Px2q1Ul5efswyhYWFDfZVXFzcoBbtSDqdDj8/P4+bJLXUvi3FbPnVVUM19PZ2GEO8GpQpnDYdy86d7IptRYVWMGC3BR+rjjfbT6Pq3Z1Y9lSg0CoJHJtMwFWJpyVwbdu2jU8++YSKigoCAgK45557ZOCSJEk6xc6p0GWxWNi5cyetWrUiLi6O8PBwli9f7n7carXy+++/06dPHwC6deuGRqPxKJOfn09aWpq7TO/evamsrOTvv/92l1m/fj2VlZXuMpJ0ungbtfgE6Oh0aTTxnUMaPF65eDEVX31Fvr8P+/29AVjToZSHL3kUvx/qcFRZUYd4EXp/59NyOR8Ak8nE0qVLsdvtJCYmcu+99zY6uEWSJEk6OQpR30v2LJgyZQpXXnklMTExFBUV8corr/D777+zfft2YmNjee2115g+fTqfffYZbdq0Ydq0afz2229kZGTg6+uawXvixIn8+OOPzJo1i8DAQKZMmUJpaSkbN25EpXI141x++eXk5eXxwQcfAHDfffcRGxvL4sWLm32sVVVVGI1GKisrZa2X1CLmWhsavQqVyvNvHMvevey/YQyVTjt/JscAgu3xlXgP6chLuRMx7ypH5a8j9MEuqAynd4qGffv2kZWVxaBBg1Aqz6m/xSRJkk7KufT9fVb7dOXk5HDTTTdRUlJCSEgIvXr1Yt26dcTGxgLwxBNPYDKZmDRpEuXl5fTs2ZNffvnFHbgA/vvf/6JWqxkzZgwmk4mhQ4cya9Ysd+ACmDt3Lg899JB7lOPo0aN55513zuzJSheVmnILPgE6APSNBCZnXR25kydjsZj5OyUeEOQGm9jfUcVXjgcx7yoGtZKgcSmnJXBlZ2djNptp06YNAPHx8cTHx5/y/UiSJEmHndWarvPJuZSUpXNb5t8FrJy9iwFjk0jp2/BC0EII8p+aSvkPP/B3UgxlXhqqvG382KeAj9q9R+hPThAQcEMShm5N9zs8EUIINm7cyJIlS9BoNNx3330EBQWd0n1IkiSdS86l7++zPjmqJF1IyvJrWTU3A4fNSXWpudEyld9+S+UPP4BSSXpAa4JtOazsVsx9be4l7FclQjgx9Gp1ygOXzWZjyZIlbN68GXDVbvn4+JzSfUiSJElNk6FLkk4Rm8XBzx+lYbc4iEz2p8eouAZlzBkZFLz0MgC/XHIlP12yCz9lLonhKVy1uTd2cx3aGF/8R53apr6Kigq++uor8vLyUCgUDBkyhH79+sn5tyRJks4gGbok6RQQQvD7lxmU5dXi7adl2F2pKI+aKd5RU0vuw5OpFQ4q2nZmZoodrWEvDqWe6VWPYi+sQ+mjIejWdqd0Woj9+/fz9ddfU1dXh5eXF9dddx2JiQ0naJUkSZJOLxm6JOkU2Lkmn4x1BSgUcNk9qRiMOo/HhRAUPPcc1TnZrEuO4YCPCh/jCqzA/3xeQrneBEoFQbe0Q+Wna3wnJ3psO3dSV1dHeHg4N954Y4MrOEiSJElnhgxdknSSKgrrWD0/E4CeV8UTmdQw1FQsWEDFkiVsSozErFaiU5YhVA7u9L2JmA2uflX+I+PQxRlP+fFddtll+Pj40Lt3bzSa0zv1hCRJktQ0OSGPJJ0kvxAvug6PpXXHYLpeFtvgcVN6OoX/nsbOyGDKDXqsKgUru+eT6NWGG9MHgxO8u4Ri6NNwpOOJKC0t5ccff8ThcACgVqsZMGCADFySJElnmazpkqSTpFQquGRUHMIpUBzdj6u6mtzJj3DQV8+BYCMCWN25ELO3kteKH0XU2tG0MuB/TeIp6dSemZnJt99+i9lsxmAwMHjw4JPepiRJknRqyNAlSScoZ1cZ4QlG9wWsjw5cQgjyn36GotIi0hIjAdicWE1OmIn3rS+jKXCi8FITNC4FpVbVYPst4XQ6+eOPP1i1ahUA0dHRdOvW7aS2KUmSJJ1aMnRJ0gko2F/J4re3Ehhh4KrJXRqddb589myqli9nW9sYhELB/mDBtjZl3OsYS+u9QaCAoJvaog7Un9SxmM1mvv32WzIzXf3KunfvzogRI1Cr5a+3JEnSuUR+KktSC5lrbfz8URpOh8AY7IXOu+GvkWnLFgpnvI4CqA3rzj7FHtZ03Ulnezuu3T8AAL/LYtE30um+JYqKipg/fz5lZWWoVCpGjRpFly5dTmqbkiRJ0ukhQ5cktYBwClbM2kFNmQVjiBeDb2vXoC+Wo6KCnEcfBbudwi59eS8iDK/Yxfg7DLyUfz84QJ8ShO/A6JM/HiGorq7GaDRy4403EhFxajrjS5IkSaeeDF2S1AKblx8ka3spKrWS4fe1R+fl+SsknE7ynprKflMNutho7o8eiD7yA1QoeKPsKTS1StTBXgSOSWrQB+xEhIWFcdNNNxEWFobBYDjp7UmSJEmnj5wyQpKaKW93Oet+2AdA/xvbEBLt26BM2aefcnDDOtKiQ9jgryMgYBFKTSUPV44jsjQQhVZF0Lh2KPUn9vdObW0tc+bM4eDBg+5l8fHxMnBJkiSdB2TokqRmEE7B719mIpyC5J7hpPRr2IxXt3EjB955m02x4QiFgj3+/lS22sWg6h5clt8TgIAbktCEnVhAys3N5cMPP2TPnj18//337nm4JEmSpPODbF6UpGZQKBWMvL8jfy/az8Cbkxv047KXlXHwkUfZGB2CVaOiWGdkbY8dxFpa8VjB7QD4DozCu0PwCe1/8+bN7glPAwMDGTt2LCrVyU0zIUmSJJ1ZMnRJUjP5BXlx6Z0pDZYLh4PcKY+zWQdV3nrMSh0ruxbjpVTx79yHUduV6BL98busdYv3abfbWbZsGf/88w8AycnJXHPNNej1JzfNhCRJknTmydAlSceQvbMMh91J62PUUJV88AHpmenkRQYjULA8yQ+z/25eznuAIJMfKn8dgTe1RaFqWcf52tpavvzyS3JycgAYPHgw/fv3R6mUvQIkSZLORzJ0SVITasrN/PJJOuYaG5dP6EB855AGZWrXraP47XeoinKFsj9bJVIa/ys3FV9Ot6p2oFYQdGs7VI1Mnno8Go0GX19f9Ho91157LUlJSSd9TpIkSdLZI0OXJDXC4XDyy8euwBUc7UNMamCDMraiInKnPI5CCFrFduZ9n1hK23/DJTWpjCsZBUDA1W3QRjUc5dgcWq2WG264gZqaGvz8/E7qfCRJkqSzT7ZTSFIj1n2/j/y9lWj1Kkbc1959fcV6wm4n+9HHsJeUIOISuD9oMEVt1hAh9DyVdzcKFBh6tcLQPazF+967dy9CCACUSqUMXJIkSRcIGbok6Sj7thSzZblrHqwht7fDGOLdoEzR22+zrjibTQmRvNx5DJbAvzF4Z/FczgS8HXq0Mb74j4pv8b43bdrE7Nmz+fbbb3E6nSd9LpIkSdK5QzYvStIRqkpMrPxiJwCdhkST0CW0QZmaP/5gw7dfkR8RBCjIcuSjD13Kw/njaG2JQOmjIeiWdijULfubZt++ffz4448ABAQEyA7zkiRJFxj5qS5JR9i7qRhLnZ2wOD96X5vQ4HFbfj5bnn2GjFauPl4rg/tQlfgzV1UMYHDVJaBUEHRLO1RGXYv2W1RUxIIFC3A6nXTo0IHBgwefkvORJEmSzh2ypkuSjtDlshgM/lpaJfqjOqqmSths7HpkMhuDDKBQkOHXlj1t9tDN7s+9hdcBYBwZhy7O2KJ91tTUMG/ePCwWC9HR0YwePbrB5KuSJEnS+U/WdEnSUZIuCcc3sOHko7n/+Q9rTOXY1SqqvUL5LSaIVj4ZTM29GxVKvDuH4NOn4eWBjsVmszF//nwqKioICAhg7NixaDQtn15CkiRJOvfJ0CVd9MoLalny/jbqqqxNlqleuZLVq5ZRo9eCWs/X4X3wiVjMM7n3EuDwQ9PKgP+1bVpcQ5WTk0NeXh56vZ5bbrlFXrhakiTpAiabF6WLms3qYNmHaZTl1aLWZHLZPe0blLHm5JL31FTibBbKgoOYHXo5IvYHxhePpJ0pHoVeRdCt7VBqW34txLi4OG677TYAgoNP7LqMkiRJ0vlBhi7porb6ywzK8mrx8tPS94Y2DR4XViu5jzyCs6qKgJT2fNz6VuoCVnOlNZyRFQMQQNBNbVEHebVovw6Hw33B6tatW5+CM5EkSZLOdbJ5Ubpo7VyTx661BSgUMPzuVAyNjDjMfPklCvdkoDQaeanrLVTpcmnvk8n9BWMBMA6LxSu54Wz1x7Jv3z7effddioqKTsl5SJIkSecHGbqki1JJTg2/f5kJwCWj44lMDmhQpviHRazc/jdrEyNZPvQa1tQ5iAhfzL9y70ErNOjbBeI7OLpF+y0uLmbBggWUlZWxbt26U3IukiRJ0vlBhi7pomM12fn5ozQcNicxqYF0Gx7boIx5/36WfvQ2dTotGo2ed2zxeIf9wJOF1xJqD0QZpCPwxmQUyuZ3nK+pqWHu3LnuqSEuv/zyU3lakiRJ0jlOhi7polNXbUUIgU+AjkvvTGkQnJwWC8sff5higw4lsDDqKuwBu7jXGkuXurYIDYTclopS3/wukXJqCEmSJEl2pJcuOv6h3oyZ2oPqcjNePtoGj2946nEyVa7rHu5vPYQsrYLLfbK4Ie8OAIJuaIsmrPlTOzidTr7//ntycnLk1BCSJEkXMVnTJV00HPbDF5DWeqkJivBpUGbfF7NYm73HVaZVOxYpEkkJ+5VH8l0d5w39I/DuGNKi/a5bt4709HSUSiU33nijnBpCkiTpIiVDl3RRMNfa+PKl9WxdkY0QotEyln372Dj3cxwqJf7e/rypG0BA0G88WzQaL6FH0doL/xHxLd53ly5daN26NaNHjyYuLu4kz0SSJEk6X8nQJV0U1i/aR2WRiW2rsrFZHA0ed5pM5D78MKkHCmin9OKjqOtRee9jqiWeKGsYNh8n4bd2RKFq+TURvby8uO222+jcufMpOBNJkiTpfCVDl3TBq620sPOvfAAG39oWbSMd4AteehnL7j2og4P5uvvdFDit3GUopk9NJ+xKB5F3dEXVSP+vphQXF/PPP/+47yuV8ldNkiTpYic70ksXvK0rsnHYnYTH+zU6H9c/b77O3g1/kqpSse6mh1mVbWdgyD/cWjwSAOPoeLRRvs3eX21tLXPnzqWiogKHw0HPnj1P2blIkiRJ5y8ZuqQLmrnWRtrvuQB0G9G6wQWpD65awR9rf8MZ5IdXh+68lONFjO9WniodghIl1k56onrFNHt/NpuNL7/80j01RPv2Da/lKEmSJF2cZJuHdEFL+z0Hm8VBUKSB2A5BHo9V5+Xx43tv4lQqCFNqeSXgMvTqIl6xxuHrNFAZbCbuhm7N3tfRU0PcfPPNcmoISZIkyU2GLumC5XA42bYqB4CuI2I9arnsNhvfPfkwJqUCg93JHz3uoqjOzNN6E/GWKGo0JpLu6YdC3fxfkVWrVnlMDRES0rKpJSRJkqQLm2xelC5YKpWSax7ryo6/8knsGurx2C/PPUWx1YTa4UTXfyw/Fyi4yW8fg6t64MBB4M3JaPy9mr2vzZs388cffwDIqSEkSZKkRsnQJV3QAsIN9L0u0WPZpjmz2LkvA4B2yd2ZUBhEF68cxld1BaCin4rYdg2vx3gsZrMZgP79+8upISRJkqRGydAlXZDsNgdqjarBckd1Nea5X6LxVpLoE8Bz3gMIrCvlJWs0alRkRRXTd+Q1Ld5f7969iY6OJiIi4lQcviRJknQBkn26pAuO0yn46t8b+OWTdGorLe7lQgjyn36GgP0HGVxlY3GveympNjFdrSDA4Uuedwk97r68wQjHptTW1rpruACioqLkfFySJElSk+Q3hHTB2bupiPKCOg7uKEWjc9V22W02Dn4wk+rly0GjIX3cFJYeqONRfQXtLK2oUdYRPC4VnVfz+nHVTw3x6aefUlFRcRrPRpIkSbpQyOZF6YIihGDjsgMAdBoS7Z59/q8P3mbLb7/SxdcL/9sm8q9dTq5QVzPa3BonTrKHmhkWl9SsfRw9NYTNZjtt5yNJkiRdOGRNl3RBOZBWSmlODRqdig6DogAw1VSz5Y+V2FVKFJ06M6k2ngSnnSmOMADWJuzi0iGjm70POTWEJEmSdCJk6JIuGEIINi511XKlDohEb9AAsOHDd7EDPhYbP3S9ieoKC9NVGrRCzRZjBsNvvbHZ/biOnBriyiuvlFNDSJIkSc0mQ5d0wcjfU0HBvkqUagWdL40GwGKqY+u6PwEIDk3gu4NWXlI5CHX4kKstJPymjvh7+Tdr+/v372fx4sWAa2qILl26nJbzkCRJki5MMnRJF4xtK12zz7fr3QqDUQfAhvf+h1UB3lY7r/oO5F6FoJvDH5PCzM7BZXRvfUmztu10Olm6dClOp5PU1FQGDx582s5DkiRJujDJjvTSBWPIbe0Ibe1HwqHZ562mOras/xMU4PSJIUXjx63CB4Bvk//g0YHPNnvbSqWSW2+9ld9++43LL79cTg0hSZIktZgMXdIFQ+ulpuvwwzPJZ37+GRYEepuTxZHD+Z9CBwJ+CP6Nm6+7F41S06Lt+/n5MXp08zvcS5IkSdKR5J/r0nnPZnUghPBYJux29N8ton9GNkr/JO7S6/EWGrZ4ZxB7dReifaOPu936qSHS0tJO16FLkiRJFxEZuqTz3ur5mXw9/R/y91S4l1X+8AO2Awfx0RtYEjCEPk4/HDjZfkkeoxJHNWu7q1atYsuWLXz33XdUVlaepqOXJEmSLhayeVE6r1WXmclcV4DTKVAoXdM+2E0mst5/Dx3wV48ruEmnBCf8YdzEXf3HN2u7R04NMWrUKIxG4+k6BUmSJOkiIUOXdF7bsvwgTqcgMtmf8HhXMNr8vzf5I1BPrDaKhd6d+djpjxMnJd3shBnCjrtNOTWEJEmSdDrI5kXpvFVXZWXHn3kAdBvRGgBHbS2b1v+JUCjIj0zmJrWr9usvvy1c12vscbdZXFzMggUL5NQQkiRJ0iknQ5d03tq2Mhu7zUlorC9RbQMA2PJ/b1KjUaF2Cn70H8pgpx8AOZ1qiPY7dud5k8nEvHnzMJvNREVFcfXVV8upISRJkqRTRn6jSOcli8nO9t9zAeh2eWsUCgX26ho2bfgLAFVgAtdrtChRsMZnK1f3GXPcbep0OlJSUvD39+emm25Co2nZlBKSJEmSdCyyT5d0Xtr9dwFWk52AVgbiOgYDsP3/3qBKq0YlBIuNg/jQ6ZoIdU/7YsYEtDnuNpVKJcOGDaN///7o9frTevySJEnSxUeGLum8lNo/Em+jDpVGiUKpwF5RwaYNa0CvQR2cyDUqPSqh5G9DGqP73XDMbaWnp5OUlOSu2ZKBS5IkSTodZPOidF5SKBXEdw4hNjUIgIMz36dGo0QpYJHvQEYIAwDb22bTPrh9k9vZvHkzX3/9NbNnz8Zut5+RY5ckSZIuTudM6Jo+fToKhYLJkye7lwkheOGFF4iIiMDLy4tBgwaRnp7usZ7FYuHBBx8kODgYg8HA6NGjycnJ8ShTXl7OuHHjMBqNGI1Gxo0bR0VFxRk4K+lUczic2KwOj2X2sjKsX33D4B0H8U7sy2ilF2qUbDLs5Ir+1zS5rSOnhoiNjUWtlhW/kiRJ0ulzToSuDRs28OGHH9KxY0eP5TNmzODNN9/knXfeYcOGDYSHhzNs2DCqq6vdZSZPnsx3333H/Pnz+fPPP6mpqWHUqFE4HIe/mG+++Wa2bNnCsmXLWLZsGVu2bGHcuHFn7PykU2f334XMfmYNab8fDtalH32MqKvDKymZ2YouXCG8ANiQsJvuYd0b3Y6cGkKSJEk601oUumbMmIHJZHLfX716NRaLxX2/urqaSZMmtegAampquOWWW/joo48ICAhwLxdC8NZbb/HMM89w7bXX0r59ez7//HPq6uqYN28eAJWVlXzyySe88cYbXHrppXTp0oU5c+awfft2fv31VwB27tzJsmXL+Pjjj+nduze9e/fmo48+4scffyQjI6NFxyqdXU6nYOOyA5iqbVjNrlBtKywia+HXCGDNwOu5zglaVGz33s2wAVeiUCgabKe2tlZODSFJkiSdcS36ppk6dapHLdOoUaPIzc1136+rq+ODDz5o0QHcf//9jBw5kksvvdRj+f79+ykoKOCyyy5zL9PpdAwcOJA1a9YAsHHjRmw2m0eZiIgI2rdv7y6zdu1ajEYjPXv2dJfp1asXRqPRXaYxFouFqqoqj5t0du3fUkxFYR06bzXtB0QCkPnWG/wZF8b6Tkl8WhrAaOHqBP9nXBr9I/s32IbNZmP+/PmUl5fLqSEkSZKkM6pFoUsIccz7LTV//nw2bdrE9OnTGzxWUFAAQFiY52VbwsLC3I8VFBSg1Wo9asgaKxMaGtpg+6Ghoe4yjZk+fbq7D5jRaCQ6+tgTa0qnlxCuWi6ADoOi0HqpseXmsnnLBgDqwuIYaVeiQ8VOr30M6De80VqusrIyiouL0el03HLLLRgMhjN6HpIkSdLF66y1qWRnZ/Pwww8zZ86cYw7RP/qLUwjR6Jfpsco0Vv5425k6dSqVlZXuW3Z29jH3KZ1e2TvLKD5YjVqrpOOQKAB2//cNCv28AVji04dr0AKwImYTl8Ze2uh2wsLCuOeee7jpppsICQk5MwcvSZIkSZzF0LVx40aKioro1q0barUatVrN77//zv/+9z/UarW7huvo2qiioiL3Y+Hh4VitVsrLy49ZprCwsMH+i4uLG9SiHUmn0+Hn5+dxk86ejUtdtVwp/SLw8tFi2b+fLds3AaAPi6ev04gXajL1B+jVbzAqparJbQUHB9O6deszcdiSJEmS5NbiMfIff/wxPj6umb7tdjuzZs0iONg1I/iR/b2OZ+jQoWzfvt1j2Z133knbtm158skniY+PJzw8nOXLl9OlSxcArFYrv//+O6+99hoA3bp1Q6PRsHz5csaMcV3mJT8/n7S0NGbMmAFA7969qays5O+//+aSSy4BYP369VRWVtKnT5+Wnr50FpQX1JK3uwKlSkHnS2MA2PfWf8k3upoGf/Hpwwynq5br58j1vJLwpsf6VquVuXPn0qNHD1JTU49bUypJkiRJp0OLQldMTAwfffSR+354eDizZ89uUKY5fH19ad/ec9JKg8FAUFCQe/nkyZOZNm0abdq0oU2bNkybNg1vb29uvvlmAIxGI3fffTePPfYYQUFBBAYGMmXKFDp06ODumN+uXTtGjBjBvffe6+7kf9999zFq1CiSk5NbcvrSWRIQbmDsc5dQuL8K30A95sxMtu7YCoG+6MPj6eYMxICafbocuvTri0bp2TF+7dq1HDhwgIqKCpKTk2XHeUmSJOmsaFHoysrKOk2H0bgnnngCk8nEpEmTKC8vp2fPnvzyyy/4+vq6y/z3v/9FrVYzZswYTCYTQ4cOZdasWahUh5uX5s6dy0MPPeQe5Th69GjeeeedM3ou0skJivAhKMJVw1r4v7ep8nLVbK306ckrDtfb+MdWf/JSmzc81quurubPP/8E4NJLL5WBS5IkSTprFOJkhyBeJKqqqjAajVRWVsr+XWeQudaG3nA4KJnS0sm6/nqEQsHmh55m14FQxuPFQW0+GTfUcmeHOz3WX7RoEZs2bSIyMpJ77rlHNi1KkiRdZM6l7+8WdaRfv349S5cu9Vj2xRdfEBcXR2hoKPfdd5/HZKmSdDIqiuqY9eRfrJi1A6fDCUDx//4PAL9Ro/i0MoKxClct1w/hvzOm7RiP9QsKCti8eTMAw4c3PoWEJEmSJJ0pLQpdL7zwAtu2bXPf3759O3fffTeXXnopTz31FIsXL250zi1JOhGblx/EYXdiqrGhVCmp27SJ7I0bcKjVbBp0HZdU2DEKDbmaIlr3SsWgOTznlhCCX375BSEEKSkpze5rKEmSJEmnS4tC15YtWxg6dKj7/vz58+nZsycfffQRjz76KP/73//46quvTvlBShefmnILu9bmA9BtRCwA2W+9xd/xrfi9Y8L/t3fncVWU+wPHP3MO+3bYQRQBxRUUtzRXsFTcM+1auXJdyqu567Wy0izNdjUzc8VfWVpXM5fCNRA1NxQ1cRfFFHNDRNnPmd8fXM71BCgochC/79drXi9n5plnvjNHOF+eeeZ5WBz/Fy8pef32fvLcRp+gvibHX7x4kbNnz6LVagvMdiCEEEKYQ4k60qekpJiMbRUTE0PHjh2N60899ZQMIipKRfzWJAy5KpUCdVQKdObO7t0kJJ3B4OWC4upFjVvWuClWXLa8hmez6uisdSbHV6lShQEDBnD16lVcXV3NdBVCCCHE/5SopcvLy4vExEQgb+yjAwcO0Lx5c+P+tLQ0eTtMPLTM2zkc3Z43p2fjTv6oqsrFz2dx3j0vsdrn0oy+mry/F1a7b6N/cP9C66lWrZrJnJtCCCGEOZUo6erYsSOvv/46sbGxvPHGG9jZ2dG69f8mFT58+DDVq1cv9SDFk+XQbxfIzTbg7utA1bqu3I6J4djlJPRaDTbuldBlV8FDteKqRQoOTbzxsPvfdD5ZWVncvn3bjNELIYQQhSvR48X333+fnj17EhoaioODA5GRkVhZWRn3L1myxDgWlhAPwmBQOfF73tRPjTv6g6pyac5szv23lSverRmvZuf15VrlvoV/hUwyOT42Npa9e/cSHh5O48aNyzR2IR4lg8FAdna2ucMQotyxtLQ0GZuzPCtR0uXh4UFsbCypqak4ODgUuMgff/zRZOBSIUpKo1HoPfkpTuy+TLWGHqRt3sypa5fJreSGjasn1lm+eCtW3NCmommoo7JDZeOxN2/e5Pfff0ev12Nvb3+PswjxeMnOziYxMRGDwWDuUIQol5ydnfH29i73QwOVKOkaNGhQscotWbLkgYIRAsDG3pKQZ31R9XqufjGHO1Z5/QT/8GhGRHbef9lVbluIaDDK5LgtW7ag1+vx9/eXKZ5EhaGqKsnJyWi1Wnx9fdFoStQrRIgKTVVV0tPTuXLlCgCVKlUyc0T3VqKkKzIyEj8/Pxo2bIgMZC9KW/qtbGwdLY1/qdz65ReyT5+hgU6H+6Q3OLUljcqKFanaNDLqW1JNV8147J9//skff/wBQIcOHcr9XztCFFdubi7p6en4+PhgZ2dn7nCEKHdsbW0BuHLlCp6enuX6UWOJkq5hw4axYsUKzp49y6BBg+jXr5+8ji9KhUFvYNVH+7F1tKL9oLo4OVty9b/zY7oNGsR75zT8S8lr8VrlupV/NhxiPFZVVTZu3AhASEgIPj4+ZX8BQjwier0ewKT/rBDCVP4fJDk5OeU66SpRO/W8efNITk5m0qRJrFu3Dl9fX3r37s3GjRul5Us8lFP7r3DrWiapVzOw01lzc80a/rp2hWwPN86HdsHqzC38sCJNc4frQdnUcatjPDYhIYELFy5gYWFhMnivEBWJtN4KUbTH5eejxJ0DrK2tefnll9m8eTMJCQkEBQUxfPhw/Pz85FV98UBUg8qBjecBCHnGFy16rsz7ikNVPdlW2YXIdTsY+N9G2TWu24hoZNq38ObNm2g0Glq2bGn2yUyFEEKIopTo8eLfKYqCoiioqipv1YgHdu7INW5cuoOljZZ6YZW5+cMPJGXeJsPKEyt7R9KuOlJdY8UdTQbna92koWdDk+NbtmxJ7dq1cXBwMNMVCCEeFxEREdy8eZM1a9YUWSY6Opq2bduSkpKCs7NzmcUmKr4St3RlZWXx/fff0759e2rVqsWRI0eYO3cuSUlJ8qUnSkxVVeKi8lq56oVWxlLJ5erX8znt5QzApSrNGKCxBmCtSzQDGkUUWo+bmxvW1tZlEbIQopgiIiLo0aNHofv8/f2Nf7jnL1WqVDHZP2vWrFKPafbs2URGRhrXw8LCGDNmTKmfx9wiIiKM99XCwoKqVavyr3/9i5SUFJNy9/scROkqUUvX8OHDWbFiBVWrVuWf//wnK1aswM3N7VHFJp4AF0/e5K/EW2gtNYQ8W5WU777lz5xM0q11WNrZ82dGdWpqrMhQMjkWeJEJPv+bdmrfvn1UrlxZOs4L8ZiaNm0aQ4cONa6XRQdonU53/0KlLCcnxyxT5HXs2JGlS5eSm5tLQkICgwYN4ubNm3z//fcm5czxOTypStTSNX/+fJycnAgICCAmJoahQ4fSs2fPAosQxXViT97o83VbVMJak821hQs57ekMwNWqzeivyXsjZb3rdvo2GmDsLHnt2jV+/fVXFixYYByfRQjxeHF0dMTb29u4eHh43P+gvxk/fjzdunUzrs+aNQtFUdiwYYNxW61atfj6668B09a3iIgIYmJimD17trGV59y5c8bj4uLiaNKkCXZ2drRo0YITJ04UK6apU6fSoEEDlixZQrVq1bC2tkZVVaKiomjVqhXOzs64ubnRtWtXzpw5YzyuV69ejBw50rg+ZswYFEXh6NGjQN7wIY6Ojsa3te/H2toab29vqlSpQocOHXjxxRfZtGlTgXKl8TmI4ilR0jVgwADatm2Ls7MzOp2uyEWI4mrbrzbhQ4Np0KEqN/7v/7hkyOa2rTUWNraczahBXSzJVLKJ8z9N26ptjcdt3rwZg8FAzZo18fT0NOMVCFG2VFUlPTvXLEt5fEs9LCyM2NhYY7/imJgY3N3diYmJAeDy5cucPHmS0NDQAsfOnj2b5s2bM3ToUJKTk0lOTsbX19e4f/LkyXz66afs378fCwuLYg8QDnD69Gl++OEHVq1aRXx8PAB37txh3Lhx7Nu3j61bt6LRaHj++eeNsYeFhREdHW2s4+/Xsm/fPjIzM2nZsmWJ7hHA2bNniYqKMkuLm/ifEg+OKkRp0mgUAht7or95k+QlS8mytsDCwoKbfk3pk503lc+vLrG82KgPGiXvb4TExEROnDiBoii0b9/enOELUeYycvTUfad4LR2lLWFaOHZWD/X+lYlJkybx1ltvGddnzJjBqFGj7nFEQW3atCEtLY2DBw/SqFEjYmNjmTBhAqtXrwbgt99+w8vLi9q1axc4VqfTYWVlhZ2dHd7e3gX2T58+3Zisvf7663Tp0oXMzExsbGzuG1d2djbffPONSatRr169TMosXrwYT09PEhISCA4OJiwsjNGjR3Pt2jW0Wi1Hjx5lypQpREdHM3z4cKKjo2ncuHGx+0+vX78eBwcH9Ho9mZmZAHz22WcFypXG5yCKp/R+eoQogYzb2Vhaa7GwzOs7cH1pJIbbt6npU5PAGfN4a94BBiuWZCs57PD9g38F5P1CMBgMxqb1Jk2aSDO4EI+xiRMnEhERYVx3d3cvcR06nY4GDRoQHR2NpaUlGo2GV199lSlTppCWlkZ0dHShrVzFUb9+feO/86eXuXLlClWrVr3vsX5+fgV+P505c4a3336b3bt3c+3aNWMLV1JSEsHBwQQHB+Pm5kZMTAyWlpaEhITQvXt35syZA1Dia2nbti1fffUV6enpLFq0iJMnT5o8vsxXGp+DKB5JuoRZ7PzxNBeO3yCsb218Kyvc+OYbADxGj+LDg9d5Scnry7XReRe9GvXGQpP3X/Xw4cNcvnwZa2trwsLCzBW+EGZja6klYVq42c5dmtzd3QkMDHzoevIfy1lZWREaGoqLiwtBQUHs3LmT6OjoB3478e5Hcfn9SYs7PJK9vX2Bbd26dcPX15eFCxfi4+ODwWAgODiY7Oxs4znatGljvJawsDCCg4PR6/UcOXKEXbt2leha7O3tjfd3zpw5tG3blnfffZf33nvPpFxpfQ7i/iTpEmXu1rUMTu77C9WgYq+z4vrCr7ip5qINrsOdJi04+uF2hmFHDrlsq3yA5YH/BvKa67du3QrkPVIo7JeaEBWdoiil+oivIggLC2Px4sVYWFjQrl07AEJDQ1mxYkWR/bnyWVlZGadaepSuX7/OsWPH+Prrr2ndujUAO3bsKFAuLCyMBQsWYGVlxbRp01AUhdatW/PJJ5+QkZHxQP258k2ZMoVOnTrxr3/9S976NhOZrl6UuYObklANKr51XHCxySDlu+84XsmN7dpsln4dSV9D3l+XW5x3061hD6y0eXPOabVa2rRpQ+XKlWnatKk5L0EIUUypqanEx8ebLElJSaV6jvx+XevWrTO2gIeFhfHtt9/i4eFB3bp1izzW39+fPXv2cO7cOZNHfqXNxcUFNzc3FixYwOnTp9m2bRvjxo0rUC4sLIyjR49y5MgRY3IWFhbG8uXLadSo0UPNuhEWFkZQUBAzZsx44DrEw5GkS5SpO6lZHNuVDEDjjv5cmz+fGxYK1x3tULRaDt/w4mks0aMnqtLvvFDzBeOxWq2Wp556iiFDhsgbOEI8JqKjo2nYsKHJ8s4775TqOXQ6HQ0bNsTV1dWYYLVu3RqDwXDfPlATJkxAq9VSt25dPDw8Sj0hzKfRaFixYgVxcXEEBwczduxYPv744wLlgoODcXd3JyQkxJhghYaGotfrH7hv2t3GjRvHwoULuXDhwkPXJUpOUcvjO8Dl0K1bt9DpdKSmpsr8fg9h1+rTHNyUhHc1J7q+7MXZzl3YV8WNq072GGo0xTe3Fa2wZItuN1mdnXg15FUgrx+FRiN/I4gnT2ZmJomJiQQEBBTrrTkhnkT3+jkpT9/f8i0mykzmnRz+iLkIQKOO/lz/aj6pFgpXnexRFA0HcoNohSUGDKz12s5LtV8C8sbZmTt3rnGAQCGEEOJxJEmXKDNJR6+Tk6XHrbI9lRxukbpmDWc8XfJ2VmtAZ/L+vd0pjjYhz6Kz1qGqKhs3buTGjRskJCSYMXohhDksX74cBweHQpegoCCzxBQUFFRkTMuXL3/k58+f67io5VE9IhUPT16BEWWmZlNvXCrZk5Ol5/qX75NmqeWyc94gf/sM9fiYvH5aqzy3sajuMgBOnTpFYmIiWq3W+FaSEOLJ0b17d5o1a1boPnP17fzll1/IyckpdJ+Xl9cjP7+Pj49xlPui9ovySZIuUaY8fB3JPHGSxF9+IdvOGicXV+44V6EDeROn73A8QNN6LXGzdUOv1xvnCXv66adxcXExZ+hCCDNwdHTE0dHR3GGY8PPzM+v5LSwsZFytx5Q8XhSPnD7XwO2UTOP61S/mgKri3yaMPp8vItayBc/8N///wWMz/wz+J5A32ey1a9ews7MzvjothBBCPK6kpUs8cif2XCbmuxM0bF+VkOoZ3N6yFTQaPF57jeVxFwnPsUWLwm6HwwQHNcLb3pvMzEzjxK9hYWHy1pYQQojHnrR0iUfKYFA5sPE8Br2KjYMlV+fMIcNSy9WwluT6VGZN9Bk6/Lcv1wqPKAbXGwxAQkIC6enpuLu707hxY3NeghBCCFEqpKVLPFJnDlwh9UoG1vYWBDhc4VJsLGereHD++iUOf/ABHbPbYIHCfvujVKtdBz+nvL4SjRo1QqfTodFo0GpLd743IYQQwhykpUs8MqqqEhd1HoD6batw88s5ZFloueCuAyAutwad/tvK9b37r8ZWrnzVq1cnICCgbIMWQgghHhFJusQjk3T0Btf/vI2ltZZA+2TS9+0j0dsVg6pi5VONhnpvLFGItzuBZ82q1HKtxbVr17h9+7a5QxdCVFARERH06NHjnmWio6NRFIWbN2+WSUziySFJl3hk4qLOARDU2ofU+XPI1mpI8nAG4LBdY7ooeRNZf+/+K0PqD0FVVdasWcOcOXM4efKkmaIWQpSWeyU4/v7+KIpislSpUsVk/6xZs0o9ptmzZxMZGWlcDwsLY8yYMaV+nvLg8uXLjBw5kmrVqmFtbY2vry/dunVj69atZGdn4+7uzvvvv1/osR988AHu7u5kZ2ff8xyRkZEmn6GXlxfdunUrMINIREREgc9bURROnz5datf7OJCkSzwSt65ncDUpDY2FQqDdBTIPHeZcJXdyDQasvXypnVsZaxSO2p7GtpoLIR4hHD16lD///BNVVfH29jb3JQghHrFp06aRnJxsXA4ePPjIz6nT6XB2dn7k57lbUQOpPkrnzp2jcePGbNu2jY8++ogjR44QFRVF27ZtGTFiBFZWVvTr14/IyEgKm4J56dKl9O/fHysrq/uey8nJieTkZC5dusSGDRu4c+cOXbp0KZCwdezY0eTzTk5OfuK6kEjSJR4JJzdbBsxoQfiQIO4snEuORsN5T2cAjjg9xXNKXl+u79x/ZWjIUHJyctiyZQsALVu2NPukpEKIR8/R0RFvb2/j4uHhUeI6xo8fT7du3Yzrs2bNQlEUNmzYYNxWq1Ytvv76a8C09S0iIoKYmBhmz55tbHk5d+6c8bi4uDiaNGmCnZ0dLVq04MSJE8WKaerUqTRo0IAlS5YYW5lUVSUqKopWrVrh7OyMm5sbXbt25cyZM8bjevXqxciRI43rY8aMQVEUY6tRbm4ujo6ObNy48b4xDB8+HEVR2Lt3Ly+88AI1a9YkKCiIcePGsXv3bgAGDx7MmTNn2L59u8mxsbGxnDp1isGDBxdWdQGKouDt7U2lSpVo0qQJY8eO5fz58wXul7W1tcnn7e3t/cS9KCVJl3hkbB2scL98kKxjx9A7OuBTqy7WHj5Uy6mKDRqO2ySS62dJU++m7N27l5s3b+Lo6EiLFi3MHboQ5ZeqQvYd8yyFtIiYW1hYGLGxsRgMBgBiYmJwd3cnJiYGyHvEdvLkSUJDQwscO3v2bJo3b87QoUONLS++vr7G/ZMnT+bTTz9l//79WFhYMGjQoGLHdfr0aX744QdWrVplnLLnzp07jBs3jn379rF161Y0Gg3PP/+8MfawsDDj+ISFXcu+ffvIzMykZcuW9zz3jRs3iIqKYsSIEdjb2xfYn9/SV69ePZ566imWLl1qsn/JkiU0bdqU4ODgYl9vvps3b/Ldd98B5pumqTyTISNEqUu5fAcXb3tUvZ6rX3wBQJV+/Wnw2gj6fraVqVf/98bi0JBXSU9PN/6l9eyzzxarOVuIJ1ZOOsww09x6b14Cq4Jf4g9q0qRJvPXWW8b1GTNmMGrUqBLV0aZNG9LS0jh48CCNGjUiNjaWCRMmsHr1agB+++03vLy8qF27doFjdTodVlZW2NnZFdqlYfr06cZk7fXXX6dLly5kZmYWa7Dm7OxsvvnmG5PWu169epmUWbx4MZ6eniQkJBAcHExYWBijR4/m2rVraLVajh49ypQpU4iOjmb48OFER0fTuHFjHBwc7nnu06dPo6pqodf8d4MGDWLChAnMnTsXBwcHbt++zY8//shnn31232Pzpaam4uDggKqqpKenA3lzZv79/OvXrzeJvVOnTvz444/FPk9FIC1dolSlXL7Dd+/u4adPD5Dy83qyz5xBq9PhGjGQ6JNXqXsV7NBw2jqJFN8s2lRpQ3R0NFlZWVSqVIn69eub+xKEEGVk4sSJxMfHG5cBAwaUuA6dTkeDBg2Ijo7myJEjaDQaXn31VQ4dOkRaWhrR0dGFtnIVx92/jypVqgTAlStXinWsn59fgcelZ86coU+fPlSrVg0nJydjf6akpCQAgoODcXNzIyYmhtjYWEJCQujevbuxpau415LfR0tRlPuWffnllzEYDKxcuRKAlStXoqoqL730UrGuE/IeE8fHxxMXF8f8+fOpXr068+fPL1Cubdu2Jp/3nDlzin2OikJaukSpOrApCVSwstFw46sv0SsKf7ZtQaWcbBZtPsnbxnG5ohhafygKChYWFmg0Gjp06IBGI38HCHFPlnZ5LU7mOncpcnd3L5WJm/Mfy1lZWREaGoqLiwtBQUHs3LmT6OjoB3478e7HY/kJTP6jwPsp7LFet27d8PX1ZeHChfj4+GAwGAgODjZ2OFcUhTZt2hivJSwsjODgYPR6PUeOHGHXrl3FupYaNWqgKArHjh277/AYOp2OF154gaVLlzJ48GCWLl3KCy+8UKJ+tRqNxvg51q5dm8uXL/Piiy8W6Ctmb2//xE/ULd9wotSk3cjk5O7LANS0OkvOhQtc9PXmcOJJ/u/tSdS4kIEDGhKtL3LR5wYd/DqgKArh4eGMGTPmiXuLRYgHoih5j/jMsRSj5cQc8vt1bdu2jbCwMABCQ0NZsWJFkf258llZWaHX6x95jNevX+fYsWO89dZbPPvss9SpU4eUlJQC5fITyOjoaMLCwlAUhdatW/PJJ5+QkZFx3/5cAK6uroSHh/Pll19y586dAvv/Pv7Y4MGD2blzJ+vXr2fnzp3F7kBflLFjx3Lo0CF++umnh6qnIpKkS5Sa+M1JGAwqPjV0sPwLDAokVnIHING1Eb3/Oy7XSrcoBtUfjFbzv7dW5G1FISqm1NRUk0dK8fHxxsdppSW/X9e6deuMSVdYWBjffvstHh4e1K1bt8hj/f392bNnD+fOnePatWvFbskqKRcXF9zc3FiwYAGnT59m27ZtjBs3rkC5sLAwjh49ypEjR2jdurVx2/Lly2nUqFGxf1fOmzcPvV5P06ZNWbVqFadOneLYsWPMmTOH5s2bm5QNDQ0lMDCQAQMGEBgYSJs2bR7qWp2cnBgyZAhTpkwpdDiKJ5kkXaJUpN/KJmFH3iOPWpZnyL18mWS/KtzJTMfKUYdtVnWc0HDB6jInvC/Sxb8L69evJzk52cyRCyEepejoaBo2bGiyvPPOO6V6Dp1OR8OGDXF1dTUmWK1bt8ZgMNy3D9SECRPQarXUrVsXDw+PUk8I82k0GlasWEFcXBzBwcGMHTuWjz/+uEC54OBg3N3dCQkJMSZYoaGh6PX6EvVNCwgI4MCBA7Rt25bx48cTHBxM+/bt2bp1K1999VWB8oMGDSIlJaVEb2jey+jRozl27NgT11H+fhRV0tBiuXXrFjqdjtTUVGmVKcTuNWeIizqPp6899X+dQO61a+xs0YC0O2lcrRlO35z6uKDhk0rLeKpDW+pk1GHt2rXY2toyduxYeWNRiCJkZmaSmJhIQEBAsd6aE+JJdK+fk/L0/S0tXeKhqapKUsINAGpancFw7RpXqvuRdicNSzsHlKwauKAh2fIqh7zO0NWvK9u2bQPy/hqVhEsIIcSTQJIu8dAUReGFSY3pMDAQm/98gQqc9cnry/VXlWa8qLEFYIX7RvoG9eXAngPcvn0bFxcXmjZtasbIhRDl3fLly3FwcCh0CQoKMktMQUFBRca0fPnyR37+pKSkIs/v4OBQqo9IzX2tFY0MGSFKhUarwfnAOq6l3kRbrRoBzVuR8PsOcrJq4a7R8JfFdfa6JTDeZwpLfl4CQLt27bCwkP+CQoiide/enWbNmhW6z1wjnv/yyy9Fzqfo5eX1yM/v4+NjHOW+qP2lxdzXWtHIN554KDeS76DzsIXbt7ixNBKASiNfo1anTqy1aET/hAwAfnTfRO+g3uyN3Utubi6+vr73fKNICCEgb+BNR0dHc4dhws/Pz6znt7CwKLPxrsx9rRWNJF3igen1BtZ9EQ8qNHc8hOH2baxr18YxPJwzV29jSLiJF7Zcs7hJrFs8S13H8N3PeXNyhYeHF2u0ZCGEEKKikKRLPLBTe//i9o0sbB0syPlPJApw5qkQbM+cYv6BDPphDcB/3DbzXO0eVK9Snc6dO3Pt2jWqVKli3uCFEEKIMiZJl3ggBoNKXNR5AAItzqJJT+NW/SAOH97P0WOHyKk8BB/FiRTtLba47uHnupPRarXScV4IIcQTS95eFA8kMf4qN/9Kx8pGg+vGeQCcreIJwB2/Jryo5M07tsptCx0DO+Fm7Wa2WIUQQojyQJIuUWKq+r9WrgBtItqMNNIbNeDSxSQ0Wi1Xc+rhi5ZU7W1+dd3B07lP8+WXX3Ly5EkzRy6EEEKYjyRdosQuHLvB1aQ0tBYKHlu/BuBM1bxXh7P8G9NLkzfi7xrXbbSt+iyHdh8iJSWF1NRUs8UshBAAERER9OjR455loqOjURSlwMTQQjwsSbpEiSUdzRt93l9zHqvMVLKaN+VC4mkUjYZkfX0C0JKmSWetSzQNbzckIyMDDw8PGjVqZObIhRBl6V4Jjr+/P4qimCx3v2Dj7+/PrFmzSj2m2bNnExkZaVwPCwtjzJgxpX6e8uDChQsMHjwYHx8frKys8PPzY/To0Vy/fr1A2aNHj9K7d288PDywtramRo0avP3226Snp5uUu/tz02q1+Pj4MHjwYFJSUooVU35Cm7+4ubnxzDPPsHPnTpNyU6dOLfD/Q1EUtmzZ8uA3pByQpEuUWKt/1OD5CB+8ty8A4KxvXitXrn8DnlecAVjr+hstvVtz8lDeI8UOHTqg1WrNEq8QonyaNm0aycnJxuXgwYOP/Jw6nQ5nZ+dHfp67FTW46KN09uxZmjRpwsmTJ/n+++85ffo08+fPZ+vWrTRv3pwbN24Yy+7evZtmzZqRnZ3Nhg0bOHnyJDNmzGDZsmW0b9+e7Oxsk7rzP7ekpCSWL1/O9u3bGTVqVIniO3HiBMnJyURHR+Ph4UGXLl24cuWKSZmgoCCT/x/Jycm0adPmwW9KOSBJl3gg6g8LsM5Mwf6ZZ6jeOgwHdy/+NDQgEC3pmgzWuP5G3et10ev1VK9evcwG8hNCPD4cHR3x9vY2Lh4eHiWuY/z48XTr1s24PmvWLBRFYcOGDcZttWrV4uuv87pC3N36FhERQUxMDLNnzza2pJw7d854XFxcHE2aNMHOzo4WLVpw4sSJYsU0depUGjRowJIlS6hWrRrW1taoqkpUVBStWrXC2dkZNzc3unbtypkzZ4zH9erVi5EjRxrXx4wZg6IoHD16FIDc3FwcHR3ZuHHjfWMYMWIEVlZWbNq0idDQUKpWrUqnTp3YsmULFy9eZPLkyUBeH93BgwdTp04dVq9eTdOmTfHz8+Mf//gH69at4/fff+fzzz83qTv/c6tcuTJt27ZlwIABHDhwoFj3Jp+npyfe3t7Uq1ePt956i9TUVPbs2WNSxsLCwuT/h7e392M/V68kXaLYDHoDmXdyyDxxglu//AqA5+hRhLTvzO3uE+iuuAKw1iWGxrqn+PPMnyiKQocOHWQgVCFKiaqqpOekm2VRVdXcl19AWFgYsbGxGAwGAGJiYnB3dycmJgaAy5cvc/LkSUJDQwscO3v2bJo3b87QoUONLSm+vr7G/ZMnT+bTTz9l//79WFhYMGjQoGLHdfr0aX744QdWrVplnLLnzp07jBs3jn379rF161Y0Gg3PP/+8MfawsDCio6ONdfz9Wvbt20dmZiYtW7a857lv3LjBxo0bGT58OLa2tib7vL296du3LytXrkRVVeLj40lISGDcuHFoNKYpQUhICO3ateP7778v8lwXL15k/fr1RU7VdD/p6eksXboUMN+0TmVJxukSxXb+j+tsXHgUf07jBzh17oRNrVrcyszh6I4/eREbMpUs1rhu4xXNvzjLWRo2bCjzcwlRijJyM2j23YN9wT2sPX32YGdpV2r1TZo0ibfeesu4PmPGjBI/pmrTpg1paWkcPHiQRo0aERsby4QJE1i9ejUAv/32G15eXtSuXbvAsTqdDisrK+zs7PD29i6wf/r06cZk7fXXX6dLly5kZmZiY2Nz37iys7P55ptvTFrvevXqZVJm8eLFeHp6kpCQQHBwMGFhYYwePZpr166h1Wo5evQoU6ZMITo6muHDhxMdHU3jxo1xcHC457lPnTqFqqrUqVOn0P116tQhJSWFq1evGt8qv1fZHTt2mGzL/9z0ej2ZmZk0a9aMzz777L735G75/ffS0/OS+caNG/Pss8+alDly5IjJtdatW5e9e/eW6DzljSRdotiO7riEPtdAzp+JAJwJ9ONmzFZ+y65M75y8/0obXGKp5lOD/h37c6beGUm4hBBFmjhxIhEREcZ1d3f3Eteh0+lo0KAB0dHRWFpaotFoePXVV5kyZQppaWlER0cX2spVHPXr1zf+u1KlSgBcuXKFqlWr3vdYPz+/Ao9Lz5w5w9tvv83u3bu5du2asYUrKSmJ4OBggoODcXNzIyYmBktLS0JCQujevTtz5swBeKhruVt+i2VxnkCoqlqgXP7npqoqFy5c4M0336RLly5s37692H13Y2Njsbe35+DBg0yaNInIyMgCLV21atVi7dq1xnVra+ti1V2eSdIliiXtRiZJf+S98eJzcQeGBiHsj92KGrOZ8wED6YE3WUoOq9y2ML3eTBRFkX5cQjwCtha27Omz5/4FH9G5S5O7u3up/J7IfyxnZWVFaGgoLi4uBAUFsXPnTqKjox/47cS7k4D8xCM/Ubofe3v7Atu6deuGr68vCxcuxMfHB4PBQHBwsLGjuqIotGnTxngtYWFhBAcHo9frOXLkCLt27SrWtQQGBqIoCgkJCYW+PXr8+HFcXFxwd3enZs2aACQkJNCgQYNCy9aoUcNk292fW40aNZg1axbNmzfnt99+o127dveNDyAgIABnZ2dq1qxJZmYmzz//PH/88YdJYmVlZVXhvkfM2qfrq6++on79+jg5OeHk5ETz5s359ddfjftVVWXq1Kn4+Phga2tLWFiYsUNhvqysLEaOHIm7uzv29vZ0796dP//806RMSkoK/fv3R6fTodPp6N+/v4y/UkLHdl5CVcEl/Rx2GVc4F1gV1WDAwrcW7cn76zTKeQfVbWrS0LmhmaMVouJSFAU7SzuzLOW1b2Z+v65t27YRFhYGQGhoKCtWrCiyP1c+Kysr9Hr9I4/x+vXrHDt2jLfeeotnn33W+Ijv7/ITyOjoaMLCwlAUhdatW/PJJ5+QkZFx3/5cAG5ubrRv35558+aRkZFhsu/y5cssX76cF198EUVRaNCgAbVr1+bzzz8vkFAeOnSILVu28PLLL9/zfPmtW38/V3H1798fg8HAvHnzHuj4x4lZk64qVaowc+ZM9u/fz/79+3nmmWd47rnnjInVRx99xGeffcbcuXPZt28f3t7etG/fnrS0NGMdY8aM4aeffmLFihXs2LGD27dv07VrV5Mfoj59+hAfH09UVBRRUVHEx8fTv3//Mr/ex5XBoHJsVzIAlc5tI9vdlVOJef0Azlo2pSEW5Ci5/OwcTbVz1ZgzZ06BV3+FEE+m1NRU4uPjTZakpKRSPUd+v65169YZk66wsDC+/fZbPDw8qFu3bpHH+vv7s2fPHs6dO2fyyK+0ubi44ObmxoIFCzh9+jTbtm1j3LhxBcrlNy4cOXKE1q1bG7ctX76cRo0a4eTkVKzzzZ07l6ysLMLDw9m+fTsXLlwgKiqK9u3bU7lyZaZPnw7kJfGLFi0iISGBXr16sXfvXpKSkvjxxx/p1q0bzZs3L9C6lpaWxuXLl0lOTmbv3r1MnDgRd3d3WrRo8UD3RqPRMGbMGGbOnFlgXLCKxqxJV7du3ejcuTM1a9akZs2aTJ8+HQcHB3bv3o2qqsyaNYvJkyfTs2dPgoODWbZsGenp6Xz33XdA3g/z4sWL+fTTT2nXrh0NGzbk22+/5ciRI8YB1I4dO0ZUVBSLFi2iefPmNG/enIULF7J+/fpiv/77pEs6ep3bKVlYqpl4XDvExcb10efmYlk5kDA1b77FTbrfqZFdB32OHjc3twfqmyGEqHiio6Np2LChyfLOO++U6jl0Oh0NGzbE1dXVmGC1bt0ag8Fw3z5QEyZMQKvVUrduXTw8PEo9Icyn0WhYsWIFcXFxBAcHM3bsWD7++OMC5YKDg3F3dyckJMSYYIWGhqLX60vUn6tGjRrs37+f6tWr8+KLL1K9enVeeeUV2rZty++//46rq6uxbMuWLdm9ezdarZbOnTsTGBjIG2+8wcCBA9m8eXOBvlTvvPMOlSpVwsfHh65du2Jvb8/mzZtxc3vwOXYHDRpETk4Oc+fOfeA6HgeKWk7eAdbr9fz4448MHDiQgwcPYmNjQ/Xq1Tlw4AANG/7vcdVzzz2Hs7Mzy5YtY9u2bTz77LPcuHEDFxcXY5mQkBB69OjBu+++y5IlSxg3blyBx4nOzs58/vnn/POf/yxWfLdu3UKn05GamlrsvzQqil++OkzioWv4XthKwLk1RDepQ3ZmJhcDXmYcVclFz8iqH9L4ajNQ88a+8ff3N3fYQlQImZmZJCYmEhAQUKy35oR4Et3r56Q8fX+bvSP9kSNHaN68OZmZmTg4OPDTTz9Rt25ddu3aBVDg7TcvLy/On8+bbPny5ctYWVmZJFz5ZS5fvmws4+npWeC8np6exjKFycrKIisry7h+69atB7vACiC0Ty3sk+Kx37ODq081IDsjFQtXL55WK4EC23R7qJZeE1SoXbu2JFxCCCFEIcw+OGqtWrWIj49n9+7d/Otf/2LgwIEkJCQY9/+942Zhr6/+3d/LFFb+fvV88MEHxo73Op3OZMC8J42ttUqlbfOwz7hC5fbh+AaHcNmhKS0USwwY+NVhDy63XdBoNLRv397c4QohKpDly5fj4OBQ6BIUFGSWmIKCgoqMafny5Y/8/ElJSUWe38HB4ZE9Ii2OTp06FRnXjBkzzBZXeWH2lq67Xwlt0qQJ+/btY/bs2UyaNAnIa6nKHx8F8sZIyW/98vb2Jjs7m5SUFJPWritXrhg79Hl7e/PXX38VOO/Vq1fvOYbUG2+8YdLJ8datW09s4nXr1yj0qalY+vhQ/aW+HDt8mXor8vrDbXPci9/tagA89dRTD/VMXwgh/q579+5FjnZurhHMf/nllyLnUyyLsQl9fHyMo9wXtd9cFi1aVORbjHf3I3tSmT3p+jtVVcnKyiIgIABvb282b95s7NOVnZ1NTEwMH374IQCNGzfG0tKSzZs307t3bwCSk5P5448/+OijjwBo3rw5qamp7N27l6ZNmwKwZ88eUlNT7/mmhbW1dYUYiO1hJB29zoFN5/Hevwsd4PzSS6DRsH7LGaYqlhhQ+dFtM884hGNIvn+HVSGEKClHR0ccHR3NHYYJPz8/s57fwsKi3I5fVblyZXOHUK6ZNel688036dSpE76+vqSlpbFixQqio6OJiopCURTGjBnDjBkzqFGjBjVq1GDGjBnY2dnRp08fIO+NlcGDBzN+/Hjc3NxwdXVlwoQJ1KtXzzhAW506dejYsSNDhw41Tnj6yiuv0LVrV2rVqmW2a38cHN1xiYsnbqKkWqO1t+WaFWQdOE2r67mAJbGOB7ipu8OwF4ZhYbB44pNUIYQQ4l7MmnT99ddf9O/fn+TkZHQ6HfXr1zeOIwLw73//m4yMDIYPH05KSgrNmjVj06ZNJn/1fP7551hYWNC7d28yMjJ49tlniYyMNJmKYPny5YwaNYoOHToAec3VFf211Id1JzWLc4euAeCTvJOLIXU58+vP6A9c4EW7vIT2B/eN9KvTD3vLgiMvCyGEEMJUuRkyorwrT6+cloW4qHPsXnMWXdo56sV/SnSDmuTm5uDkO5ROFq78bneE32z+YNxL4wisWj6buYWoCGTICCHu73EZMsLsby+K8kc1qCTsuASAz8VYkmtVIzc3B8XZjzBt3gsLu61O4JnuSezWWHOGKoQQQjw2JOkSBfx5PIVb1zKxMGTifiWOc052ANjYtcJWUThgfRLHzLzkK/+RrRBCCCHuTZIuUcDR/7ZyeSXv4Ya7I3cy7qCxdqK1Vd5ryLst8+ZdrFevnrypIoQQQhSTJF2igGoN3XFVruNzaSdJ1asCYOnSFhdFwwnLC1jl2qIoCm3btjVzpEKI8iwiIgJFURg2bFiBfcOHD0dRFCIiIkzKKoqCpaUlXl5etG/fniVLlhSYhNrf359Zs2YVKwZ/f39jvba2ttSuXZuPP/6Yu7sznzt3zljm7qVfv34PfO1CFEaSLlFAQFWFBtvfxf7ORTyDglGs7Ghqk9dZPsb6DwDq168vA90JIe7L19eXFStWmAyYmZmZyffff0/VqlVNynbs2JHk5GTOnTvHr7/+Stu2bRk9ejRdu3YlNzf3gWOYNm0aycnJHDt2jAkTJvDmm2+yYMGCAuW2bNlCcnKycfnyyy8f+JxCFEaSLlHAzR//A3o99k0a8+zYN7gY+Ao+igUXtFfR5FoB0KpVKzNHKYR4HDRq1IiqVauyevVq47bVq1fj6+trHPg6n7W1Nd7e3lSuXJlGjRrx5ptv8vPPP/Prr78SGRn5wDE4Ojri7e2Nv78/Q4YMoX79+mzatKlAOTc3N7y9vY2LTqd74HMKURhJuoTR5bOpHIxK5MqqdQC4vPwyvxy+RHhG3nBu23X7SKueRrNmzfDw8DBnqEI8sVRVxZCebpblQUcY+uc//8nSpUuN60uWLGHQoEHFOvaZZ54hJCTEJGl7UKqqEh0dzbFjx8w2hZB4spW7aYCE+RzedoFT+69Q2aE5LpWz0FXz57cNiUxAS7aSwzq3aL4In0dDz4b3rUsI8WioGRmcaNTYLOeudSAOxc6uxMf179+fN954w9h3aufOncYZSIqjdu3aHD58uMTnzTdp0iTeeustsrOzycnJwcbGhlGjRhUo16JFCzSa/7VFxMbGFmiNE+JhSNIlAMi4nc2Z+KsAeCfv5EBtF/ZPncSzVf8FWic2Of1OdZ+aknAJIUrM3d2dLl26sGzZMlRVpUuXLri7uxf7eFVVURTlgc8/ceJEIiIiuHr1KpMnT+aZZ54pdO7dlStXUqdOHeO6r6/vA59TiMJI0iUAOLH7MoZcFce089y2uklGjhV29lVpqHXiFumc0afQ2abzQ//yE0I8HMXWlloH4sx27gc1aNAgXnvtNYASd1A/duwYAQEBD3xud3d3AgMDCQwMZNWqVQQGBvL0008b5+jN5+vrW24nkhYVgyRdAlVVORqbNzZXpUs7SPKvAvpsPHVhAGyyO4B9rgNZF7Ik4RLCzBRFeaBHfObWsWNHsrOzAQgPDy/2cdu2bePIkSOMHTu2VOJwcXFh5MiRTJgwgYMHD8rvNFGmpCO9IPn0TW7+lY5Wn4VN2hFS9NnYWDrTyMqbdLK4Ych71bt169ZmjlQI8bjSarUcO3aMY8eOodVqCy2TlZXF5cuXuXjxIgcOHGDGjBk899xzdO3alQEDBpRaLCNGjODEiROsWrWq1OoUojikpUsYW7k8/9rPn1XcAHB3fRZLRWGjzSE0aKjiWwV/f38zRimEeNzdb7LhqKgoKlWqhIWFBS4uLoSEhDBnzhwGDhxo0sH9YXl4eNC/f3+mTp1Kz549S61eIe5HUR/0HeAnTHmapbw0qarK1mXHOPn7RYIPfcJ+fysssCTcbxRaRc//2cSgQUPfvn2pUaOGucMV4omTmZlJYmIiAQEB2NjYmDscIcqle/2clKfvb3m8+IRTFIWWjXJptfMNtGoKds4ueLiFYq9o2WV9DA0avL29pXOpEEII8ZAk6RKkfPc9lrl3CAh7Bru+71DHIYRscjmjXAEgNDRUOpsKIcqd5cuX4+DgUOgSFBRk7vCEKED6dD3Bbl5JJycllVu//gqA00svcXL9nzyjaLlmkcKhyofo7z6AWrVqmTlSIYQoqHv37jRr1qzQfTLivCiPJOl6gsX9co7juy8T4BWKzvE8iaoLHe7cBOBn12jaNWlPr4a9zBukEEIUwdHREUdHR3OHIUSxyePFJ1TmnRxOxeU9PtRknmS3RS5/fb2Aami5o0lnm9s++tTpY+YohRBCiIpDkq4n1Mm9f6HPMWB/+yJXnXIBqO7wFLnoWWm9i3aaDtgr9maOUgghhKg4JOl6AqmqSsKOiwC4/RXDFXtrXK0qUc3SjePaixhUBdsrtkUOYCiEEEKIkpOk6wn017lbXL94B40+m0z1NAC+bmEYMLDPMm+9davWWFhIlz8hhBCitEjS9QRK+O8I9O5X93HJzREHC2dqWvtyWnsZPSo2djY0atTIzFEKIYQQFYskXU8Yg97AhWM3ANDe3k0uKv4urUCB3ZYnAWjdsrW8bi2EEEKUMkm6njAarYbuLW9R78jX5NjmYK2xo4Z9bRI1f5GNHitrK5o0aWLuMIUQjzFFUe65REREPJLz3rlzh0mTJlGtWjVsbGzw8PAgLCyM9evXG8uEhYUxZsyYAsdGRkbi7OxcYHtGRgYuLi64urqSkZFRYL+/v7/xuuzs7AgODubrr78uVryRkZEm98XLy4tu3bpx9OhRk3IRERGF3sfTp08X6zyi/JCk6wl0a+X3eFw/TJtnu4DfACwVDXutTgHQskVLrK2tzRyhEOJxlpycbFxmzZqFk5OTybbZs2eblM/JySmV8w4bNow1a9Ywd+5cjh8/TlRUFL169eL69esPXOeqVasIDg6mbt26rF69utAy06ZNIzk5mcOHD9OjRw+GDRvGypUri1V//r25dOkSGzZs4M6dO3Tp0oXs7GyTch07djS5h8nJyQQEBDzwdQnzkKTrCZKdmUvmqVOk79sHWi27AlvSFkcUFM45n8YvyI+mTZuaO0whxGPO29vbuOh0OhRFMa5nZmbi7OzMDz/8QFhYGDY2Nnz77bcALF26lDp16mBjY0Pt2rWZN2+eSb0XL17kxRdfxMXFBTc3N5577jnOnTtn3L9u3TrefPNNOnfujL+/P40bN2bkyJEMHDjwga9l8eLF9OvXj379+rF48eJCyzg6OhrnqH3//fepUaMGa9asKVb9+femUqVKNGnShLFjx3L+/HlOnDhhUs7a2trkvnp7e8sb5o8hSbqeIDv/c5oVs05xySMIy9A2nDh4Bx0aki2vklI9k4gXIrC1tTV3mEKIYsjJ0he55Oboi182u3hlS9ukSZMYNWoUx44dIzw8nIULFzJ58mSmT5/OsWPHmDFjBm+//TbLli0DID09nbZt2+Lg4MD27dvZsWMHDg4OdOzY0dgq5O3tzS+//EJaWlqpxHjmzBl+//13evfuTe/evdm1axdnz56973E2NjYP1Hp38+ZNvvvuO0CmMaqoZEyAJ0R2Zi4n914mV29DsmMmh1Mu0dkhG73GilWuWxlcf7BMai3EY2TB6Jgi9/kFu9H1tRDj+pKJseRmGwot61PDmefH/+9t5f+bvIvM2wUThhHzn3mIaAsaM2YMPXv2NK6/9957fPrpp8ZtAQEBJCQk8PXXXzNw4EBWrFiBRqNh0aJFxt9VS5cuxdnZmejoaDp06MCCBQvo27cvbm5uhISE0KpVK1544QVatmxpcu558+axaNEik225ubnY2NiYbFuyZAmdOnXCxcUFyHvEt2TJEt5///1Cryk3N5dvv/2WI0eO8K9//atY9yE1NRUHBwdUVSU9PR3Im1Oydu3aJuXWr1+Pg4ODcb1Tp078+OOPxTqHKD+kpesJcWrfX+RmG7C5c55rDiqVbQNx19iw3mo/WaoVDRwbmDtEIcQT5O4Xdq5evcqFCxcYPHgwDg4OxuX999/nzJkzAMTFxXH69GkcHR2N+11dXcnMzDSWadOmDWfPnmXr1q306tWLo0eP0rp1a9577z2Tc/ft25f4+HiTZdq0aSZl9Ho9y5Yto1+/fsZt/fr1Y9myZej1pi1/kyZNwsHBAVtbW0aMGMHEiRN59dVXi3UfHB0diY+PJy4ujvnz51O9enXmz59foFzbtm1N4p0zZ06x6hfli7R0PSGO7sgbm8s6ZSs37RUCnVuQrKRwVZOG821nLC2kKVuIx8krs0OL3Kf87c/pQR+3Lrrs3xq4B0xv8TBhFZu9/f+mGTMY8lrhFi5cSLNmzUzK5fdbMhgMNG7cmOXLlxeoy8PDw/hvS0tLWrduTevWrXn99dd5//33mTZtGpMmTcLKygoAnU5HYGCgSR2enp4m6xs3bjT2IbubXq9n06ZNdOrUybht4sSJREREYGdnR6VKlUr01ECj0RhjqV27NpcvX+bFF19k+/btJuXs7e0LxCweP5J0PQGuJqVx9Xwa6LNItbqBp40/nlYebLCMA6Bhw4Y4OTmZOUohRElYWhe/E/WjKltavLy8qFy5MmfPnqVv376FlmnUqBErV67E09OzRL+v6tatS25uLpmZmcakqzgWL17MSy+9xOTJk022z5w5k8WLF5skXe7u7qWWEI0dO5bPPvuMn376ieeff75U6hTlhyRdT4D8Vi6H69u4ZqmhiXNzriipJGtugpI35Y8QQpjT1KlTGTVqFE5OTnTq1ImsrCz2799PSkoK48aNo2/fvnz88cc899xzTJs2jSpVqpCUlMTq1auZOHEiVapUISwsjJdffpkmTZrg5uZGQkICb775Jm3bti1Ronb16lXWrVvH2rVrCQ4ONtk3cOBAunTpwtWrV01a2EqLk5MTQ4YMYcqUKfTo0UP62lYw0qergsvJ0nNyTzIAWfpj6Cw9qGzrz0GLcwAE1ws2dhIVQghzGTJkCIsWLSIyMpJ69eoRGhpKZGSkcSwqOzs7tm/fTtWqVenZsyd16tRh0KBBZGRkGBOq8PBwli1bRocOHahTpw4jR44kPDycH374oUSx/N///R/29vY8++yzBfa1bdsWR0dHvvnmm4e/6CKMHj2aY8eOSUf5CkhRVVU1dxCPg1u3bqHT6UhNTX2sHsWpqsrxWctJ2HqIJLtjNPHsipNjVX6y3gvAa6+9hru7u5mjFEIUJTMzk8TERAICAgq8XSeEyHOvn5Py9P0tLV0VncGA5YZl1D29noA6nfC1r8NR7QUAatWpJQmXEEIIUUYk6arg7uzYQc6ff6JxcuJybi0sFA32lgrWda15Jqx0x90RQgjxP0FBQSZDYNy9FPYWpqj4pCN9Bbb75zPc+PU4rvYe6Fu05Rl93se9ziOGD7rOwsOu9DuBCiGEyPPLL78UOTK9l5dXGUcjygNJuiqonGw9R7ZdIEsN4HSAE1VyXPCxgbPWf1K1QS1JuIQQ4hHz8/MzdwiinJGkq4I6E3eF7CwD2jtx5FhoCbarzR6LUxy1SKSbroe5wxNCCCGeONKnq4I6uv1PVFXFkLEff/sgVK0FJ7WX0Oqt8LT3vH8FQgghhChV0tJVAV2/dJvLiWmoOX+SZZFFTeemHLE4j0FR8fDxwN/f39whCiGEEE8caemqgBL+OwK9Ni0aH7tArCwdOaa9CED4M+FmjEwIIYR4cknSVcHkZus5vvMiqiGNDOUqtXXN+MPiAnrFgLOHM9WrVzd3iEIIIcQTSZKuCkafa8Df4jzaW7G42VTGycaLhP8Ohhr+TLjM4yWEeOKdO3cORVGIj483dygV1tSpU2nQoIG5wyh3JOmqYCwMWVT97QtaHdqAr9uznNX+RY6ix97Fnlq1apk7PCHEEyQiIoIePXqYbPvPf/6DjY0NH330kXmCegCrVq2iWbNm6HQ6HB0dCQoKYvz48cb9kZGRODs7F3qsoiisWbOmwPZXXnkFrVbLihUrCuybOnUqiqKgKAparRZfX1+GDBnC1atXixVv/rGKouDg4EBISAiRkZEmZaKjo03K5S9vvfVWsc4hHox0pK9gUteuxZCejt4/hBrW3ih6+CVgJ/3b9kejkRxbCGE+ixYtYsSIEXz55ZcMGTKkxMdnZ2djZWX1CCIr2pYtW3jppZeYMWMG3bt3R1EUEhIS2Lp16wPXmZ6ezsqVK5k4cSKLFy/mpZdeKlAmKCiILVu2oNfrOXjwIIMHD+bixYv8+uuvxTrH0qVL6dixI3fu3GHlypX885//pFKlSoSHm/brPXHihMl8hA4ODg98XeL+5Fu4Ajn2ezInV+/CgMKVGt3QoLDb4TAdnu0ifbmEEGb10Ucf8dprr/Hdd98ZE65du3bRpk0bbG1t8fX1ZdSoUdy5c8d4jL+/P++//z4RERHodDqGDh1qbFXauHEjderUwcHBgY4dO5KcnGxyvqVLl1KnTh1sbGyoXbs28+bNe6C4169fT6tWrZg4cSK1atWiZs2a9OjRgy+++OKB78WPP/5I3bp1eeONN9i5cyfnzp0rUMbCwgJvb28qV65M165dGTVqFJs2bSIjI6NY53B2dsbb25vq1avz5ptv4urqyqZNmwqU8/T0xNvb27gUJ+nK/wzWrFlDzZo1sbGxoX379ly4cKHIY8LCwhgzZozJth49ehAREWFcnzdvHjVq1MDGxgYvLy9eeOGFYl3r40SSrgoiN0fPzhXH2atrwq769aluV4lsctle5TDt/dqbOzwhRCnLycwscsnNzi522ZzsrGKVfRivv/467733HuvXr6dXr14AHDlyhPDwcHr27Mnhw4dZuXIlO3bs4LXXXjM59uOPPyY4OJi4uDjefvttIK+l6JNPPuGbb75h+/btJCUlMWHCBOMxCxcuZPLkyUyfPp1jx44xY8YM3n77bZYtW1bi2L29vTl69Ch//PHHQ9wBU4sXL6Zfv37odDo6d+7M0qVL73uMra0tBoOB3NzcEp1Lr9fzww8/cOPGDSwtLR805ALS09OZPn06y5YtY+fOndy6davQFrvi2r9/P6NGjWLatGmcOHGCqKgo2rRpU2rxlhfyeLGCOBt/lawsFTV9D36uDTlj8Rd7LU8R7N4YC418zEJUNHMGFt0KENCwCT1fn2pcn/dKX3KzsgotW6VuMC9OmWlcX/jaIDLSbhUoN37l+geK89dff+Xnn39m69atPPPMM8btH3/8MX369DG2ftSoUYM5c+YQGhrKV199hY2NDQDPPPOMSUK1Y8cOcnJymD9/vrEF/7XXXmPatGnGMu+99x6ffvopPXv2BCAgIICEhAS+/vprBg4cWKL4R44cSWxsLPXq1cPPz4+nn36aDh060LdvX6ytrY3lUlNTi9VKdOrUKXbv3s3q1asB6NevH6NGjWLKlClFdgE5fvw4X331FU2bNsXR0bFYcb/88stotVoyMzPR6/W4uroW+ki3SpUqJuvnz5/Hzc3tvvXn5OQwd+5cmjVrBsCyZcuoU6cOe/fupWnTpsWK8W5JSUnY29vTtWtXHB0d8fPzo2HDhiWup7yTlq4K4ui28xj0N8HwFwGODThscZ5cDNT3qG/u0IQQT7D69evj7+/PO++8Q1pamnF7XFwckZGRODg4GJfw8HAMBgOJiYnGck2aNClQp52dnUmXiUqVKnHlyhUArl69yoULFxg8eLBJ3e+//z5nzpwpcfz29vZs2LCB06dP89Zbb+Hg4MD48eNp2rQp6enpxnKOjo7Ex8cXWP5u8eLFhIeH4+7uDkDnzp25c+cOW7ZsMSl35MgRHBwcsLW1pW7duvj6+rJ8+fJix/35558THx/P5s2badCgAZ9//jmBgYEFysXGxprE6+LiUqz6LSwsTD6b2rVr4+zszLFjx4od493at2+Pn58f1apVo3///ixfvtzk/lYU0gRSAdz8K51LiXfQZx6gulN9kqxuclvJRGutpUmjgr+whBCPv1HL/lPkPuVvLSbDF9zjy1pjOozM0LlLHiquv6tcuTKrVq2ibdu2dOzYkaioKBwdHTEYDLz66quMGjWqwDFVq1Y1/tve3r7A/r8/JlMUBVVVATAYDEDeI8b8Vph8Wq32ga+jevXqVK9enSFDhjB58mRq1qxp7KAOoNFoCk1q7qbX6/m///s/Ll++jIWFhcn2xYsX06FDB+O2WrVqsXbtWrRaLT4+PiatasXh7e1NYGAggYGB/PjjjzRs2JAmTZpQt25dk3IBAQFFvnl5P4UNQVTUsEQajcb4GeXLyckx/tvR0ZEDBw4QHR3Npk2beOedd5g6dSr79u174PjKI0m6KoCjsX+iqlmoWUcJ9BrMr9qjALRu1bpUn+ELIcoPy/8+fjNn2eKqWrUqMTExtG3blg4dOrBx40YaNWrE0aNH75uolJSXlxeVK1fm7Nmz9O3bt1Trzufv74+dnZ1Jp//i+OWXX0hLS+PgwYMmCeDx48fp27cv169fNz7as7KyKrV7ExgYSK9evXjjjTf4+eefS6XO3Nxc9u/fb3yUeOLECW7evEnt2rULLe/h4WHysoNer+ePP/6gbdu2xm0WFha0a9eOdu3aMWXKFJydndm2bZvxMXFFIEnXY06fa+B47J/os47i61CDK1YZ3NJkoFgqNG/a3NzhCSEEkNd3KDo62ph4ff311zRv3pwRI0YwdOhQ7O3tOXbsGJs3b36oNwMhb5yrUaNG4eTkRKdOncjKymL//v2kpKQwbty4EteVnp5O586d8fPz4+bNm8yZM4ecnBzaty/ZS0qLFy+mS5cuhISEmGwPCgpizJgxfPvtt4wePbpEdRbX+PHjCQkJYf/+/YU+si0pS0tLRo4cyZw5c7C0tOS1117j6aefLrI/1zPPPMO4cePYsGED1atX5/PPP+fmzZvG/evXr+fs2bO0adMGFxcXfvnlFwwGQ4UbX1L6dD3mbqdkYpGRgiHzALV0TYm3OAfA008/XeLmaCGEeJQqV65MTEwMN2/eZOjQocTExHDq1Clat25Nw4YNefvtt6lUqdJDn2fIkCEsWrSIyMhI6tWrR2hoKJGRkQQEBJS4rtDQUM6ePcuAAQOoXbs2nTp14vLly2zatKlECcFff/3Fhg0bjG9v3k1RFHr27MnixYtLHF9x1atXj3bt2vHOO++USn12dnZMmjSJPn360Lx5c2xtbQsd6DXfoEGDGDhwIAMGDCA0NJSAgACTVi5nZ2dWr17NM888Q506dZg/fz7ff/89QUFBpRJveaGof3/IKgp169YtdDodqampJgPJmVt2UhKnwjty268ZVg1f4GerfWABkyZMwtbW1tzhCSEeUmZmJomJiQQEBBjf6BPCnCIjIxkzZoxJS5W53evnpDx9f8vjxcdcysqVaFQVu4C2uKhOONsqPNWhnSRcQgghRDkjjxcfY3+dvs6Nn9ah0VXFRReAHj0ZjbS0bNTS3KEJIcRjYdiwYSZDS9y9DBs2zNzhFTBjxowi4+3UqVOpnKNTp05FnmPGjBmlco4nlTxeLKby1DwJeR3oI8dt4/aN32jhUBVH52rsczpCyxE9qKarZu7whBClRB4vPlpXrlzh1q2Cg8ECODk54enpWcYR3duNGze4ceNGoftsbW2pXLnyQ5/j4sWLRU435Orqiqur60Ofo7TJ40XxSJ07fI2MzCys1QsYXJ5ipdVOcFDp51TyjqJCCPGk8vT0LHeJ1b2URdJTGombKJw8XnxMHYk6iT77CDWdGnLYIglVgWo+gUUOTCeEEEII85Kk6zF061oGf57PQJN9HEedPxe1NwCVrs92NXdoQgghhCiCJF2PoaO/ncOQc4ZAx5ocsbwIQOWaVYo9Z5YQQgghyp4kXY8Zvd7Ase1/omYdwt25Fknaa4DK8x2eN3doQgghhLgHsyZdH3zwAU899RSOjo54enrSo0cPTpw4YVJGVVWmTp2Kj48Ptra2hIWFcfToUZMyWVlZjBw5End3d+zt7enevTt//vmnSZmUlBT69++PTqdDp9PRv3//cjWwW3H9lZjKnfSr+Nm6kWD1FwDu/h7GGeuFEEIIUT6ZNemKiYlhxIgR7N69m82bN5Obm0uHDh1MJhH96KOP+Oyzz5g7dy779u3D29ub9u3bk5aWZiwzZswYfvrpJ1asWMGOHTu4ffs2Xbt2Ra/XG8v06dOH+Ph4oqKiiIqKIj4+nv79+5fp9ZYG3bWTNIn/ikDHxlzSpADQq2PBaSWEEEIUFBERQY8ePe5ZJjo6GkVRHss/zMuTc+fOoSgK8fHx5g6l/FDLkStXrqiAGhMTo6qqqhoMBtXb21udOXOmsUxmZqaq0+nU+fPnq6qqqjdv3lQtLS3VFStWGMtcvHhR1Wg0alRUlKqqqpqQkKAC6u7du41lfv/9dxVQjx8/XqzYUlNTVUBNTU196Ot8GBdGj1FPtu2jXpi0XT30xjo1cuNSs8YjhHi0MjIy1ISEBDUjI8PcoZTYwIED1eeee67QfX5+fipgslSuXNlk/+eff17qMd28eVNNSUkxroeGhqqjR482KfPbb7+pgEm5x83AgQON91Wr1aq+vr7qsGHD1Bs3bpiUu9/n8DASExNVQD148GCp1Hcv9/o5KS/f36qqquWqT1dqaiqAcQySxMRELl++TIcOHYxlrK2tCQ0NZdeuXQDExcWRk5NjUsbHx4fg4GBjmd9//x2dTkezZs2MZZ5++ml0Op2xzN9lZWVx69Ytk8XcMi5eJm3LFqwCwwGIcT9En3Z9zRyVEEI8mGnTppGcnGxcDh48+MjPqdPpcHZ2fuTnuVtOTk6Zni9fx44dSU5O5ty5cyxatIh169YxfPjwAuXM8Tk8qcpN0qWqKuPGjaNVq1YEBwcDcPnyZQC8vLxMynp5eRn3Xb58GSsrqwJv7v29TGGD33l6ehrL/N0HH3xg7P+l0+nw9fV9uAt8SAa9ge8/OMChht255eZBlpKNR5sALDWWZo1LCCEelKOjI97e3sbFw8OjxHWMHz+ebt26GddnzZqFoihs2LDBuK1WrVp8/fXXgOnjxYiICGJiYpg9ezaKoqAoCufOnTMeFxcXR5MmTbCzs6NFixYF+hwXZerUqTRo0IAlS5ZQrVo1rK2tUVWVqKgoWrVqhbOzM25ubnTt2pUzZ84Yj+vVqxcjR440ro8ZMwZFUYz9mHNzc3F0dGTjxo3FisPa2hpvb2+qVKlChw4dePHFF9m0aVOBcg/6OSiKwldffUWnTp2wtbUlICCAH3/8scjykZGRBRLeNWvWmIwveejQIdq2bYujoyNOTk40btyY/fv3Fyuex0G5Sbpee+01Dh8+zPfff19g398H/FRV9b6DgP69TGHl71XPG2+8QWpqqnG5cOFCcS7jkTl/+Cq375zF29Wfn6z2ssJmJ+G1S2eeLSHE40NVVQzZerMsajmcNS4sLIzY2FgMBgOQ11fY3d2dmJgYIO+P7pMnTxIaGlrg2NmzZ9O8eXOGDh1qbOW5+w/syZMn8+mnn7J//34sLCwYNGhQseM6ffo0P/zwA6tWrTL2abpz5w7jxo1j3759bN26FY1Gw/PPP2+MPSwsjOjoaGMdf7+Wffv2kZmZScuWJZ9f9+zZs0RFRWFpWbp/qL/99tv06tWLQ4cO0a9fP15++WWOHTv2wPX17duXKlWqsG/fPuLi4nj99ddLPWZzKhfTAI0cOZK1a9eyfft2qlSpYtzu7e0N5P3QVKpUybj9ypUrxtYvb29vsrOzSUlJMWntunLlCi1atDCW+euvvwqc9+rVqwVa0fJZW1tjbW398BdXSg79fAQ7/VmuOgZhUFQsnaxwcZBxuYR40qg5Bi69U3i3iEfNZ1oLFCttqdU3adIk3nrrLeP6jBkzGDVqVInqaNOmDWlpaRw8eJBGjRoRGxvLhAkTWL16NQC//fYbXl5e1K5du8CxOp0OKysr7OzsjN83d5s+fboxWXv99dfp0qULmZmZxZoDMzs7m2+++cak1ahXL9OXnhYvXoynpycJCQkEBwcTFhbG6NGjuXbtGlqtlqNHjzJlyhSio6MZPnw40dHRNG7cGAcHh2Ldm/Xr1+Pg4IBeryczMxOAzz77rEC5h/kc/vGPfzBkyBAA3nvvPTZv3swXX3zBvHnzinX83yUlJTFx4kTj51WjRo0Hqqe8MmtLl6qqvPbaa6xevZpt27YREGA6b2BAQADe3t5s3rzZuC07O5uYmBhjQtW4cWMsLS1NyiQnJ/PHH38YyzRv3pzU1FT27t1rLLNnzx5SU1ONZcqz2ymZXLhwCX+nAI5r8wZD7dKpi5mjEkKIhzNx4kTi4+ONy4ABA0pch06no0GDBkRHR3PkyBE0Gg2vvvoqhw4dIi0tjejo6EJbuYqjfv36xn/n/+F/5cqVYh3r5+dX4DHdmTNn6NOnD9WqVcPJycn4nZeUlARAcHAwbm5uxMTEEBsbS0hICN27dze2dJX0Wtq2bUt8fDx79uxh5MiRhIeHmzy+zPcwn0Pz5s0LrD9MS9e4ceMYMmQI7dq1Y+bMmSaPXysCs7Z0jRgxgu+++46ff/4ZR0dHY/8qnU6Hra0tiqIwZswYZsyYQY0aNahRowYzZszAzs6OPn36GMsOHjyY8ePH4+bmhqurKxMmTKBevXq0a9cOgDp16tCxY0eGDh1qfK7/yiuv0LVrV2rVqmWeiy+BIxsSsMg5Tqp3IHrlOpZ2FtSrVc/cYQkhzECx1OAzzTx/LCqWpft3uru7O4GBgQ9dT/5jOSsrK0JDQ3FxcSEoKIidO3cSHR3NmDFjHqjeux9r5XdFyX8UeD/29vYFtnXr1g1fX18WLlyIj48PBoOB4OBgsrOzjedo06aN8VrCwsIIDg5Gr9dz5MgRdu3aVaJrsbe3N97fOXPm0LZtW959913ee+89k3Kl9TnkK6rbjkajKfCI+u8vGUydOpU+ffqwYcMGfv31V6ZMmcKKFSt4/vmKMQC4WVu6vvrqK1JTUwkLC6NSpUrGZeXKlcYy//73vxkzZgzDhw+nSZMmXLx4kU2bNuHo6Ggs8/nnn9OjRw969+5Ny5YtsbOzY926dWi1/2sGX758OfXq1aNDhw506NCB+vXr880335Tp9T4Ig0Hl6I7T+Nu7cNwir5WrQ8dwmdhaiCeUoihorLRmWcrr7538fl3btm0jLCwMgNDQUFasWFFkf658VlZWJmM6PirXr1/n2LFjvPXWWzz77LPUqVOHlJSUAuXyE8jo6GjCwsJQFIXWrVvzySefkJGR8UD9ufJNmTKFTz75hEuXLj3MpZjYvXt3gfXCHuUCeHh4kJaWZjIWZ2FjeNWsWZOxY8eyadMmevbsydKlS0stXnMza0tXcTplKorC1KlTmTp1apFlbGxs+OKLL/jiiy+KLOPq6sq33377IGGa1fn4ZDIzTpJZ2YccJQmttZbGwY3NHZYQQhRLampqgS/W/GGBSkt+v65169bx/vvvA3nJS69evfDw8KBu3bpFHuvv78+ePXs4d+4cDg4OpR5bPhcXF9zc3FiwYAGVKlUiKSmJ119/vUC5/H5dFhYWtG7d2rht/PjxNGrUCCcnpweOISwsjKCgIGbMmMHcuXMfuJ67/fjjjzRp0oRWrVqxfPly9u7dy+LFiwst26xZM+zs7HjzzTcZOXIke/fuJTIy0rg/IyODiRMn8sILLxAQEMCff/7Jvn37CvSFe5yVm7cXReEcTu0mRLXkL4u8ccLaPNsajUY+NiHE4yE6OpqGDRuaLO+8806pnkOn09GwYUNcXV2NCVbr1q0xGAz37QM1YcIEtFotdevWxcPDw9i/qrRpNBpWrFhBXFwcwcHBjB07lo8//rhAueDgYNzd3QkJCTEmWKGhoej1+gfum3a3cePGsXDhwlJ7I//dd99lxYoV1K9fn2XLlrF8+fIik9z8xo9ffvmFevXq8f3335s0qGi1Wq5fv86AAQOoWbMmvXv3plOnTrz77rulEmt5oKjl8R3gcujWrVvodDpSU1Mf6i+NkjrdqzdWVfqh2DrzQ+XfGTtioiRdQjxBMjMzSUxMJCAgoFhvzQlRVhRF4aeffrrvtEpl4V4/J+b6/i6MfHuXYxlHjqDeckBj60KKNpWuLz4nCZcQQgjxmJJv8HJKNaisnhvN9XrtyUXPzkqnqeVZeOdEIYSoqJYvX46Dg0OhS1BQkFliCgoKKjKm5cuXP/LzJyUlFXl+BweHUnlEWh7ve0VQLgZHFQWdj/sTRX+LWMfb6DnLU82fNndIQghR5rp3724yb+7dzDVS+S+//FLkfIpFDbhdmnx8fAp96+/u/Q+rOPddeieVnCRd5dS+H7Zj6+LCHeUKWhTa1G9j7pCEEKLMOTo6mgwRVB74+fmZ9fwWFhalOq5WYcrjfa8IJOkqh+7czOTO9YvcqJL3V4RfvWoVau4pIYQQ4kkkfbrKoYPfxeLoYsMtTQZaVeHFrr3NHZIQQgghHpK0dJUzqkHldNwhblbOm2rCM9CnXE28LYQQQogHIy1d5cy5Xaewd7LgpiYdrarQr1cfc4ckhBBCiFIgSVc589fGTWjt8jov6rxdsbcrOGmqEEIIIR4/8nixHFFzctCdSKZKtY7o9AqN+laMWdWFEEIUFBERwc2bN1mzZo25QxFlRFq6ypFL66Kwr9wKgD/raXFxcjFzREII8eAiIiKKnCLG39+fWbNmmawrisKKFSsKlA0KCkJRFJPJkfPL/32ZOXPmfeM6d+6cyTE6nY6nn36adevWmZSLjIws9ByLFi0q1vUL8XfS0lVOqKpK3KZT1HAJRs25Ss+ePc0dkhBClClfX1+WLl3KSy+9ZNy2e/duLl++jL19wa4W06ZNY+jQoSbbSjK21JYtWwgKCuLmzZvMmzePXr16ceDAAYKDg41lnJycOHHihMlxOp2u2OcQ4m7S0lVOJGzYw0V3lR+sfme7SyKOtjIonRDiydK3b19iYmK4cOGCcduSJUvo27cvFhYF2wgcHR3x9vY2WQpLzori5uaGt7c3tWvXZvr06eTk5PDbb7+ZlFEUpcA5bG1t71v31KlTadCgAV9//TW+vr7Y2dnxj3/8g5s3bxZ5zN9b/wAaNGjA1KlTTeqtWrUq1tbW+Pj4MGrUqGJfrzA/SbrKiUMbd/CXRRoAz/TrYd5ghBDlXnZ2dpHL36eoKY2yZcHLy4vw8HCWLVsGQHp6OitXrmTQoEGP9Lw5OTksXLgQKN2phU6fPs0PP/zAunXriIqKIj4+nhEjRjxwff/5z3/4/PPP+frrrzl16hRr1qyhXr16pRavePTk8WI5cOvSNW45KQC45VpR06+6mSMSQpR3M2bMKHJfjRo16Nu3r3H9448/LnKuQD8/P/75z38a12fNmkV6enqBcne3tjxKgwYNYvz48UyePJn//Oc/VK9enQYNGhRadtKkSbz11lsm29avX09YWFixztWiRQs0Gg0ZGRkYDAb8/f3p3dt0MOrU1FQcHByM6w4ODly+fLlY9WdmZrJs2TKqVKkCwBdffEGXLl349NNP8fb2LlYdd0tKSsLb25t27dphaWlJ1apVadq0aYnrEeYjLV3lwPpP/4/LlmkoKjTt1d7c4QghhNl06dKF27dvs337dpYsWXLPVq6JEycSHx9vshQ1SXNhVq5cycGDB1m7di2BgYEsWrQIV1dXkzKOjo4m9e/atavY9VetWtWYcAE0b94cg8FQoI9Ycf3jH/8gIyODatWqMXToUH766Sdyc3MfqC5hHtLSZWYGg4E067w5Fj2ybWnaqImZIxJCPA7efPPNIvcpimKyPnHixGKXHTNmzEPF9bAsLCzo378/U6ZMYc+ePfz0009FlnV3d3+oiZ99fX2pUaMGNWrUwMHBgV69epGQkICnp6exjEajKbXJpfPv9d/v+d3nUlXVZNvdLZS+vr6cOHGCzZs3s2XLFoYPH87HH39MTEyMzM/7mJCWLjP76ZMlJFvm9eUKaFzbzNEIIR4XVlZWRS5//wIujbJladCgQcTExPDcc8/h4lI2Q+eEhoYSHBzM9OnTS63OpKQkLl26ZFz//fff0Wg01KxZs9DyHh4eJCcnG9dv3bpFYmKiSRlbW1u6d+/OnDlziI6O5vfff+fIkSOlFrN4tKSly8w0f2Vi6aDFJduaTi88Z+5whBCiVKWmphIfH2+y7e+P8P6uTp06XLt2DTs7u3uWS0tLK9C/ys7ODicnpweKdfz48fzjH//g3//+N5UrV36gOu5mY2PDwIED+eSTT7h16xajRo2id+/eRfbneuaZZ4iMjKRbt264uLjw9ttvo9VqjfsjIyPR6/U0a9YMOzs7vvnmG2xtbfHz83voWEXZkKTLjLKzc/DPUKhn0ZxjVf80dzhCCFHqoqOjadiwocm2gQMH3vc4Nze3+5Z55513eOedd0y2vfrqq8yfP79kQf5X165d8ff3Z/r06cybN++B6rhbYGAgPXv2pHPnzty4cYPOnTvfs9433niDs2fP0rVrV3Q6He+9955JS5ezszMzZ85k3Lhx6PV66tWrx7p164p1r0T5oKh/f4AsCnXr1i10Oh2pqakP/FdUUeJ37CKkZfMin/MLIZ5cmZmZJCYmEhAQgI2NjbnDEcU0depU1qxZU6CVTzwa9/o5eZTf3yUlLV3lQINWLcwdghBCCCEeMelIL4QQokIZNmwYDg4OhS7Dhg0rlXMEBQUVeY7ly5eXyjlExSOPF4upPDVPCiGeHPJ4seSuXLnCrVu3Ct3n5ORkMiTEgzp//nyRA856eXmVaA5I8fDk8aIQQghhBp6enqWSWN2LvDEoHoQ8XhRCCCGEKAOSdAkhxGNAeoIIUbTH5edDki4hhCjH8gfHzM7ONnMkQpRf+ZO0l/fpkKRPlxBClGMWFhbY2dlx9epVLC0t0Wjkb2Uh8qmqSnp6OleuXMHZ2dlkBP/ySJIuIYQoxxRFoVKlSiQmJnL+/HlzhyNEueTs7Fzk9ErliSRdQghRzllZWVGjRg15xChEISwtLct9C1c+SbqEEOIxoNFoZJwuIR5z0jlACCGEEKIMSNIlhBBCCFEGJOkSQgghhCgD0qermPIHXitqPi8hhBBClD/539vlYQBVSbqKKS0tDQBfX18zRyKEEEKIkkpLS0On05k1BkUtD6nfY8BgMHDp0iUcHR1RFKXU6r116xa+vr5cuHDB7LOfV3Ryr8uG3OeyIfe5bMh9LhuP8j6rqkpaWho+Pj5mH1xYWrqKSaPRUKVKlUdWv5OTk/xAlxG512VD7nPZkPtcNuQ+l41HdZ/N3cKVTzrSCyGEEEKUAUm6hBBCCCHKgCRdZmZtbc2UKVOwtrY2dygVntzrsiH3uWzIfS4bcp/LxpNyn6UjvRBCCCFEGZCWLiGEEEKIMiBJlxBCCCFEGZCkSwghhBCiDEjSJYQQQghRBiTpMrN58+YREBCAjY0NjRs3JjY21twhVSgffPABTz31FI6Ojnh6etKjRw9OnDhh7rAqvA8++ABFURgzZoy5Q6lwLl68SL9+/XBzc8POzo4GDRoQFxdn7rAqnNzcXN566y0CAgKwtbWlWrVqTJs2DYPBYO7QHmvbt2+nW7du+Pj4oCgKa9asMdmvqipTp07Fx8cHW1tbwsLCOHr0qHmCfQQk6TKjlStXMmbMGCZPnszBgwdp3bo1nTp1IikpydyhVRgxMTGMGDGC3bt3s3nzZnJzc+nQoQN37twxd2gV1r59+1iwYAH169c3dygVTkpKCi1btsTS0pJff/2VhIQEPv30U5ydnc0dWoXz4YcfMn/+fObOncuxY8f46KOP+Pjjj/niiy/MHdpj7c6dO4SEhDB37txC93/00Ud89tlnzJ07l3379uHt7U379u2N8x8/9lRhNk2bNlWHDRtmsq127drq66+/bqaIKr4rV66ogBoTE2PuUCqktLQ0tUaNGurmzZvV0NBQdfTo0eYOqUKZNGmS2qpVK3OH8UTo0qWLOmjQIJNtPXv2VPv162emiCoeQP3pp5+M6waDQfX29lZnzpxp3JaZmanqdDp1/vz5Zoiw9ElLl5lkZ2cTFxdHhw4dTLZ36NCBXbt2mSmqii81NRUAV1dXM0dSMY0YMYIuXbrQrl07c4dSIa1du5YmTZrwj3/8A09PTxo2bMjChQvNHVaF1KpVK7Zu3crJkycBOHToEDt27KBz585mjqziSkxM5PLlyybfi9bW1oSGhlaY70WZ8NpMrl27hl6vx8vLy2S7l5cXly9fNlNUFZuqqowbN45WrVoRHBxs7nAqnBUrVnDgwAH27dtn7lAqrLNnz/LVV18xbtw43nzzTfbu3cuoUaOwtrZmwIAB5g6vQpk0aRKpqanUrl0brVaLXq9n+vTpvPzyy+YOrcLK/+4r7Hvx/Pnz5gip1EnSZWaKopisq6paYJsoHa+99hqHDx9mx44d5g6lwrlw4QKjR49m06ZN2NjYmDucCstgMNCkSRNmzJgBQMOGDTl69ChfffWVJF2lbOXKlXz77bd89913BAUFER8fz5gxY/Dx8WHgwIHmDq9Cq8jfi5J0mYm7uztarbZAq9aVK1cKZPni4Y0cOZK1a9eyfft2qlSpYu5wKpy4uDiuXLlC48aNjdv0ej3bt29n7ty5ZGVlodVqzRhhxVCpUiXq1q1rsq1OnTqsWrXKTBFVXBMnTuT111/npZdeAqBevXqcP3+eDz74QJKuR8Tb2xvIa/GqVKmScXtF+l6UPl1mYmVlRePGjdm8ebPJ9s2bN9OiRQszRVXxqKrKa6+9xurVq9m2bRsBAQHmDqlCevbZZzly5Ajx8fHGpUmTJvTt25f4+HhJuEpJy5YtCwx5cvLkSfz8/MwUUcWVnp6ORmP6FanVamXIiEcoICAAb29vk+/F7OxsYmJiKsz3orR0mdG4cePo378/TZo0oXnz5ixYsICkpCSGDRtm7tAqjBEjRvDdd9/x888/4+joaGxZ1Ol02Nramjm6isPR0bFAPzl7e3vc3Nyk/1wpGjt2LC1atGDGjBn07t2bvXv3smDBAhYsWGDu0Cqcbt26MX36dKpWrUpQUBAHDx7ks88+Y9CgQeYO7bF2+/ZtTp8+bVxPTEwkPj4eV1dXqlatypgxY5gxYwY1atSgRo0azJgxAzs7O/r06WPGqEuReV+eFF9++aXq5+enWllZqY0aNZKhDEoZUOiydOlSc4dW4cmQEY/GunXr1ODgYNXa2lqtXbu2umDBAnOHVCHdunVLHT16tFq1alXVxsZGrVatmjp58mQ1KyvL3KE91n777bdCfycPHDhQVdW8YSOmTJmient7q9bW1mqbNm3UI0eOmDfoUqSoqqqaKd8TQgghhHhiSJ8uIYQQQogyIEmXEEIIIUQZkKRLCCGEEKIMSNIlhBBCCFEGJOkSQgghhCgDknQJIYQQQpQBSbqEEEIIIcqAJF1CCADOnTuHoijEx8ebOxSj48eP8/TTT2NjY0ODBg0KLaOqKq+88gqurq7lLn5zio6ORlEUbt68WWSZyMhInJ2dyyymv/P392fWrFlmO78QZU2SLiHKiYiICBRFYebMmSbb16xZg6IoZorKvKZMmYK9vT0nTpxg69athZaJiooiMjKS9evXk5ycXGrTDkVERNCjR49SqasikURJiAcnSZcQ5YiNjQ0ffvghKSkp5g6l1GRnZz/wsWfOnKFVq1b4+fnh5uZWZJlKlSrRokULvL29sbAoX1PK6vV6mSRZCAFI0iVEudKuXTu8vb354IMPiiwzderUAo/aZs2ahb+/v3E9v5VmxowZeHl54ezszLvvvktubi4TJ07E1dWVKlWqsGTJkgL1Hz9+nBYtWmBjY0NQUBDR0dEm+xMSEujcuTMODg54eXnRv39/rl27ZtwfFhbGa6+9xrhx43B3d6d9+/aFXofBYGDatGlUqVIFa2trGjRoQFRUlHG/oijExcUxbdo0FEVh6tSpBeqIiIhg5MiRJCUloSiK8R6oqspHH31EtWrVsLW1JSQkhP/85z/G4/R6PYMHDyYgIABbW1tq1arF7NmzTe7xsmXL+Pnnn1EUBUVRiI6OLvSRXXx8PIqicO7cOeB/j+zWr19P3bp1sba25vz582RnZ/Pvf/+bypUrY29vT7NmzUzu7fnz5+nWrRsuLi7Y29sTFBTEL7/8Uui9A/j2229p0qQJjo6OeHt706dPH65cuVKg3M6dOwkJCcHGxoZmzZpx5MiRIus8c+YMzz33HF5eXjg4OPDUU0+xZcsW4/6wsDDOnz/P2LFjjfcl365du2jTpg22trb4+voyatQo7ty5Y9x/5coVunXrhq2tLQEBASxfvrzIOISoqCTpEqIc0Wq1zJgxgy+++II///zzoeratm0bly5dYvv27Xz22WdMnTqVrl274uLiwp49exg2bBjDhg3jwoULJsdNnDiR8ePHc/DgQVq0aEH37t25fv06AMnJyYSGhtKgQQP2799PVFQUf/31F7179zapY9myZVhYWLBz506+/vrrQuObPXs2n376KZ988gmHDx8mPDyc7t27c+rUKeO5goKCGD9+PMnJyUyYMKHQOvITt+TkZPbt2wfAW2+9xdKlS/nqq684evQoY8eOpV+/fsTExAB5CV+VKlX44YcfSEhI4J133uHNN9/khx9+AGDChAn07t2bjh07kpycTHJyMi1atCj2vU9PT+eDDz5g0aJFHD16FE9PT/75z3+yc+dOVqxYweHDh/nHP/5Bx44djdc7YsQIsrKy2L59O0eOHOHDDz/EwcGhyHNkZ2fz3nvvcejQIdasWUNiYiIREREFyk2cOJFPPvmEffv24enpSffu3cnJySm0ztu3b9O5c2e2bNnCwYMHCQ8Pp1u3biQlJQGwevVqqlSpwrRp04z3BeDIkSOEh4fTs2dPDh8+zMqVK9mxYwevvfaase6IiAjOnTvHtm3b+M9//sO8efMKTRKFqNDMO9+2ECLfwIED1eeee05VVVV9+umn1UGDBqmqqqo//fSTeveP6pQpU9SQkBCTYz///HPVz8/PpC4/Pz9Vr9cbt9WqVUtt3bq1cT03N1e1t7dXv//+e1VVVTUxMVEF1JkzZxrL5OTkqFWqVFE//PBDVVVV9e2331Y7dOhgcu4LFy6ogHrixAlVVVU1NDRUbdCgwX2v18fHR50+fbrJtqeeekodPny4cT0kJESdMmXKPev5+7Xfvn1btbGxUXft2mVSbvDgwerLL79cZD3Dhw9Xe/XqZVy/+/PI99tvv6mAmpKSYtx28OBBFVATExNVVVXVpUuXqoAaHx9vLHP69GlVURT14sWLJvU9++yz6htvvKGqqqrWq1dPnTp16j2v9V727t2rAmpaWppJrCtWrDCWuX79umpra6uuXLnSGKtOp7tnvXXr1lW/+OIL47qfn5/6+eefm5Tp37+/+sorr5hsi42NVTUajZqRkaGeOHFCBdTdu3cb9x87dkwFCtQlREVWvjo/CCEA+PDDD3nmmWcYP378A9cRFBSERvO/xmwvLy+TTuZarRY3N7cCrQ3Nmzc3/tvCwoImTZpw7NgxAOLi4vjtt98KbYE5c+YMNWvWBKBJkyb3jO3WrVtcunSJli1bmmxv2bIlhw4dKuYVFi4hIYHMzMwCjzWzs7Np2LChcX3+/PksWrSI8+fPk5GRQXZ2dpFvSJaUlZUV9evXN64fOHAAVVWN9ydfVlaWsa/aqFGj+Ne//sWmTZto164dvXr1Mqnj7w4ePMjUqVOJj4/nxo0bxn5jSUlJ1K1b11ju7s/T1dWVWrVqGT/Pv7tz5w7vvvsu69ev59KlS+Tm5pKRkWFs6SpKXFwcp0+fNnlkqKoqBoOBxMRETp48afy/lK927dpmfXNSCHOQpEuIcqhNmzaEh4fz5ptvFnhkpNFoUFXVZFthj4ssLS1N1hVFKXRbcTp55/fdMRgMdOvWjQ8//LBAmUqVKhn/bW9vf9867643n6qqD/2mZv71bNiwgcqVK5vss7a2BuCHH35g7NixfPrppzRv3hxHR0c+/vhj9uzZc8+685PYu+9/Yffe1tbW5DoMBgNarZa4uDi0Wq1J2fwEdsiQIYSHh7NhwwY2bdrEBx98wKeffsrIkSML1H/nzh06dOhAhw4d+Pbbb/Hw8CApKYnw8PBivbhQ1D2eOHEiGzdu5JNPPiEwMBBbW1teeOGF+9ZpMBh49dVXGTVqVIF9VatW5cSJE/c8rxBPCkm6hCinZs6cSYMGDQq0jnh4eHD58mWTBKU0x6bavXs3bdq0ASA3N5e4uDhj35xGjRqxatUq/P39H+otQScnJ3x8fNixY4fxXJDXGbtp06YPFX9+5/WkpCRCQ0MLLRMbG0uLFi0YPny4cduZM2dMylhZWaHX6022eXh4AHn9zVxcXIDi3fuGDRui1+u5cuUKrVu3LrKcr6+vsa/dG2+8wcKFCwtNuo4fP861a9eYOXMmvr6+AOzfv7/QOnfv3k3VqlUBSElJ4eTJk9SuXbvQsrGxsURERPD8888DeX288l8QyFfYfWnUqBFHjx4lMDCw0Hrr1KlDbm4u+/fvN36+J06cuOcYYkJURNKRXohyql69evTt25cvvvjCZHtYWBhXr17lo48+4syZM3z55Zf8+uuvpXbeL7/8kp9++onjx48zYsQIUlJSGDRoEJDX2fvGjRu8/PLL7N27l7Nnz7Jp0yYGDRpU4Iv4fiZOnMiHH37IypUrOXHiBK+//jrx8fGMHj36oeJ3dHRkwoQJjB07lmXLlnHmzBkOHjzIl19+ybJlywAIDAxk//79bNy4kZMnT/L2228bO+Hn8/f35/Dhw5w4cYJr166Rk5NDYGAgvr6+TJ06lZMnT7JhwwY+/fTT+8ZUs2ZN+vbty4ABA1i9ejWJiYns27ePDz/80PiG4pgxY9i4cSOJiYkcOHCAbdu2UadOnULrq1q1KlZWVnzxxRecPXuWtWvX8t577xVadtq0aWzdupU//viDiIgI3N3dixx/LDAwkNWrVxMfH8+hQ4fo06dPgZZQf39/tm/fzsWLF41vrU6aNInff/+dESNGEB8fz6lTp1i7dq0xYaxVqxYdO3Zk6NCh7Nmzh7i4OIYMGYKtre19750QFYkkXUKUY++9916BR4l16tRh3rx5fPnll4SEhLB3795C3+x7UDNnzuTDDz8kJCSE2NhYfv75Z9zd3QHw8fFh586d6PV6wsPDCQ4OZvTo0eh0OpP+Y8UxatQoxo8fz/jx46lXrx5RUVGsXbuWGjVqPPQ1vPfee7zzzjt88MEH1KlTh/DwcNatW0dAQAAAw4YNo2fPnrz44os0a9aM69evm7R6AQwdOpRatWrRpEkTPDw82LlzJ5aWlnz//fccP36ckJAQPvzwQ95///1ixbR06VIGDBjA+PHjqVWrFt27d2fPnj3Gliq9Xs+IESOoU6cOHTt2pFatWsybN6/Qujw8PIiMjOTHH3+kbt26zJw5k08++aTQsjNnzmT06NE0btyY5ORk1q5di5WVVaFlP//8c1xcXGjRogXdunUjPDycRo0amZSZNm0a586do3r16saWv/r16xMTE8OpU6do3bo1DRs25O233zZ55Lx06VJ8fX0JDQ2lZ8+evPLKK3h6ehbr3glRUSjq33+jCyGEEEKIUictXUIIIYQQZUCSLiGEEEKIMiBJlxBCCCFEGZCkSwghhBCiDEjSJYQQQghRBiTpEkIIIYQoA5J0CSGEEEKUAUm6hBBCCCHKgCRdQgghhBBlQJIuIYQQQogyIEmXEEIIIUQZkKRLCCGEEKIM/D/4Dp+RPApftQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHFCAYAAAA9occoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyr0lEQVR4nOzdeXhM1//A8ffMZN/3VTaCRGJXaokk9rW1tKg1RVu1r1Wltpa2dKGL2kXRoqVa+57EvoeICEFESZAgieyZub8/8s38jElIiExwXs9zH+bec+/53JnMzGfOOfdcmSRJEoIgCIIgCEKJyXUdgCAIgiAIwstGJFCCIAiCIAilJBIoQRAEQRCEUhIJlCAIgiAIQimJBEoQBEEQBKGURAIlCIIgCIJQSiKBEgRBEARBKCWRQAmCIAiCIJSSSKAEQRAEQRBK6aVIoH788UdkMhn+/v5Fbo+Pj0cmk/Htt98+9VihoaHIZDLi4+NLHcfhw4eZPn06Dx480NoWFBREUFBQqY/5KvD09CQkJOSZ9pXJZEyfPr1M43kaT09PZDKZejE1NaVevXr8/PPPPD4xf1hYmEbZR5d33nmnxHUW/t0VLnp6ejg7O9OrVy8uX75c1qf42ps+fXqxr9ujS1m8Z3XxN/yyf95s3LiR9957D29vb4yNjfH09KRPnz5Fvhdyc3OZOnUqXl5eGBgY4OHhwaRJk8jKyiry2OfPn+fdd9/F3t4eQ0NDPD09GTp0aKljDAkJKdHf0LN+9j3u999/Z968eWVyrEK6+NssSwcPHmTw4MHUr18fQ0PDEn93X7hwQV3+5MmTRZb5559/CAwMxMLCAlNTU/z8/Fi8eHGp4tMrVWkdWb58OQDR0dEcO3aMRo0a6SSOw4cPM2PGDEJCQrCystLYtmDBAp3EJDybpk2bqhPuW7du8f333zNixAjS0tL47LPPtMrPnj2b4OBgjXW2tralrnfFihX4+PiQnZ3NoUOHmDVrFvv37+fixYtYW1s/28kIWgYPHky7du3UjxMTE+nWrRsjRoygd+/e6vUWFhbPXdeRI0eoVKnScx+nNF72z5tvvvkGJycnJk+eTOXKlblx4wazZ8+mXr16HD16FD8/P3XZ9957j23btjF16lTeeOMNjhw5wpdffkl0dDT//vuvxnH3799Px44dCQgIYOHChdjZ2ZGQkMCZM2dKHePnn3/OkCFD1I9Pnz7NsGHDtD4L7O3tn+EZ0Pb7779z/vx5Ro8eXSbHA938bZalvXv3smfPHurWrYuFhQVhYWFP3UepVDJw4EDs7Oy4detWkWW+/vprJk+ezJAhQ5g0aRL6+vpcvHiR3Nzc0gUoVXAnTpyQAKljx44SIH3wwQdaZa5duyYB0ty5c596vBUrVkiAdO3atVLHMnfu3Gfe91Xm4eEhDRgw4Jn2BaRp06aVaTxP4+HhIXXs2FFjXWpqqmRpaSm5u7trrN+/f78ESH/++edz1Vn4d3fixAmN9TNmzJAAafny5c91/GeRmZlZ7nU+j4yMjGfet6SfEbm5uVJeXt4z1yOUzO3bt7XW3bx5U9LX15cGDRqkXnfkyBEJkL777juNsrNnz5YAadeuXep1GRkZkrOzs9SxY0dJpVKVecxl9VlQnI4dO0oeHh4v5NgvK6VSqf5/Sb9/586dK7m6ukrz588v8jP35MmTklwul7755pvnjq/Cd+EtW7YMKMgYmzRpwtq1a8nMzCyyrEqlYtasWbi7u2NkZESDBg3Yu3fvU+vYvXs3b7/9NpUqVcLIyAhvb28++ugjkpOT1WWmT5/OhAkTAPDy8lI33xZmxEU1qd+7d4+hQ4fi6uqKgYEBlStXZvLkyeTk5GiUk8lkDB8+nFWrVuHr64uJiQm1a9dmy5YtT429sIvp999/Z+LEiTg7O2NmZkbnzp25ffs26enpfPjhh9jZ2WFnZ8f777/Pw4cPNY6RnZ3NpEmT1E3krq6uDBs2TKurMi8vj08++QQnJydMTExo1qwZx48fLzKupKQkPvroIypVqoSBgQFeXl7MmDGD/Pz8p56TLlhYWFCtWjVu375drvU2aNAAQKvekydP8tZbb2FjY4ORkRF169Zl/fr1WvsfPHiQxo0bY2RkhKurK59//jlLly7Vaur29PSkU6dObNy4kbp162JkZMSMGTOAkr9Wv/76K7Vr18bMzAxzc3N8fHw0WusyMzMZP348Xl5eGBkZYWNjQ4MGDfjjjz80jvPvv//SuHFjTExMMDc3p3Xr1hw5ckSjTGEX3OnTp3nnnXewtramSpUqpX+Cn6DwvbNq1SrGjRuHq6srhoaGxMXFcffuXYYOHUqNGjUwMzPDwcGBFi1acODAAa3jPN5NUthdu3//fj7++GPs7OywtbWlW7duxf4iftTVq1fp1asXLi4uGBoa4ujoSMuWLYmMjFSXefzz5kndTY/GlpaWpn6NCt/ro0ePJiMj41mewmfm4OCgtc7FxYVKlSpx48YN9bpDhw4B0KFDB42ynTp1AmDDhg3qdX/++SeJiYlMmDABmUz2IsIu0p49e2jZsiUWFhaYmJjQtGlTre+du3fv8uGHH+Lm5oahoSH29vY0bdqUPXv2AAWv59atW7l+/brGa/ck+/btIygoCFtbW4yNjXF3d6d79+4a34+Pv/6PD194dHm0defy5cv07t0bBwcHDA0N8fX15Zdffnn+J6uU5PLSpSiXL19m6tSpLFiwoNjW5Z9//hlDQ0NGjBjx3PFV6C68rKws/vjjD9544w38/f0ZOHAggwcP5s8//2TAgAFa5X/++Wc8PDyYN28eKpWKOXPm0L59e8LDw2ncuHGx9Vy5coXGjRszePBgLC0tiY+P5/vvv6dZs2ZERUWhr6/P4MGDuXfvHj/99BMbN27E2dkZgBo1ahR5zOzsbIKDg7ly5QozZsygVq1aHDhwgK+++orIyEi2bt2qUX7r1q2cOHGCmTNnYmZmxpw5c+jatSuxsbFUrlz5qc/VZ599RnBwMKGhocTHxzN+/Hjee+899PT0qF27Nn/88Qdnzpzhs88+w9zcnB9//BEASZLo0qULe/fuZdKkSQQEBHDu3DmmTZvGkSNHOHLkCIaGhgB88MEH/Pbbb4wfP57WrVtz/vx5unXrRnp6ukYsSUlJNGzYELlcztSpU6lSpYq62T0+Pp4VK1Y89Xwep1QqtcYnFUUul5f6TQeQn5/PjRs3qFatWpHbVSqVVkKhp/f8b59r164BaNS7f/9+2rVrR6NGjVi4cCGWlpasXbuWnj17kpmZqR5zce7cOVq3bk21atVYuXIlJiYmLFy4kNWrVxdZ1+nTp4mJiWHKlCl4eXlhampa4tdq7dq1DB06lBEjRvDtt98il8uJi4vjwoUL6uOPHTuWVatW8eWXX1K3bl0yMjI4f/48KSkp6jK///47ffr0oU2bNvzxxx/k5OQwZ84cgoKC2Lt3L82aNdOIuVu3bvTq1YshQ4a8sC/5SZMm0bhxYxYuXIhcLsfBwYG7d+8CMG3aNJycnHj48CF///23Os6SjD8aPHgwHTt25Pfff+fGjRtMmDCBvn37sm/fvifu16FDB5RKJXPmzMHd3Z3k5GQOHz5c5NjLQo93NwH88ssvrF69Wv0ZlZmZSWBgIP/99x+fffYZtWrVIjo6mqlTpxIVFcWePXue+KWtUqlQqVRPPW+ZTIZCoXhqucddvXqV69ev06VLF/W6wi6Vws+gQoWPz507p14XEREBFHxWFP64MzU1pV27dnz33Xe4uLiUOqanWb16Nf379+ftt99m5cqV6Ovrs2jRItq2bcvOnTtp2bIlAP369eP06dPMmjWLatWq8eDBA06fPq1+byxYsIAPP/yQK1eu8Pfffz+13vj4eHVX5fLly7GysuLmzZvs2LGD3NxcTExMitzv77//1vgBr1KpGDJkCFevXsXd3R0oGD/UpEkT3N3d+e6773BycmLnzp2MHDmS5ORkpk2b9sTYXvRndXEkSWLw4MF06tSJt956i9DQ0CLLRURE4Ovry4YNG/jiiy+Ii4vD2dmZvn37MnPmTAwMDEpVaYX122+/SYC0cOFCSZIkKT09XTIzM5MCAgI0yhU2z7u4uEhZWVnq9WlpaZKNjY3UqlUr9bqndeGpVCopLy9Pun79ugRI//zzj3rbk5oQAwMDpcDAQPXjhQsXSoC0fv16jXLffPONVtMzIDk6OkppaWnqdUlJSZJcLpe++uqr4p8g6f+blTt37qyxfvTo0RIgjRw5UmN9ly5dJBsbG/XjHTt2SIA0Z84cjXLr1q2TAGnx4sWSJElSTEyMBEhjxozRKLdmzRoJ0OjC++ijjyQzMzPp+vXrGmW//fZbCZCio6M1zr0kXXgeHh4S8NSlpMfq0KGDlJeXp36tP/jgA0lfX1/asmWLRtnC57eo5fLly0+tq1Dh393Ro0elvLw8KT09XdqxY4fk5OQkNW/eXKPbyMfHR6pbt65WV1KnTp0kZ2dndbP2u+++K5mamkp3795Vl1EqlVKNGjW0/k49PDwkhUIhxcbGahyzpK/V8OHDJSsrqyeeo7+/v9SlS5dityuVSsnFxUWqWbOmRtN8enq65ODgIDVp0kS9btq0aRIgTZ069Yl1llRRXXiFr23z5s2fun9+fr6Ul5cntWzZUuratavGtsf/7gpf66FDh2qUmzNnjgRIiYmJxdaTnJwsAdK8efOeGM/jnzePW79+vSSTyaTPPvtMve6rr76S5HK5VpfGX3/9JQHStm3bnlhn4WvytOVZuqHy8vKkoKAgycLCQkpISFCv37RpkwRIq1at0ii/bNkyCZCqVaumXte2bVsJkKysrKRPPvlE2rdvn7Rw4ULJ1tZW8vb2fq4uYEnS7sLLyMiQbGxstD57lUqlVLt2balhw4bqdWZmZtLo0aOfePzSdOEVvmaRkZFPLPe0z8Thw4dLenp6Gq9927ZtpUqVKkmpqalaZY2MjKR79+49sc7AwMAS/Z2UdtjH07rwfvrpJ8na2lpKSkqSJKn4YROGhoaSubm5ZG1tLf3888/Svn37pMmTJ0sKhULq3bt3qWKq0AlUYGCgZGxsLD148EC97v3335cA6dKlS+p1hR+Ow4cP1zrGgAEDJAMDAyk/P1+SpKITqNu3b0sfffSRVKlSJUkul2u8yF9//bW6XGkSqB49ekimpqZaffG3b9+WAGnixInqdYDUq1cvrWM6OTlJQ4YMKf4Jkv7/Tb1o0SKN9YsWLZIAaefOnRrrJ02aJAFSenq6JEmS9Mknn0iAdOfOHY1yKpVKMjU1lXr27ClJkiQtWLBAAqSTJ09qlMvLy5P09PQ03gyurq5S586d1QlK4RIdHS0B0oIFCzTOvSRJz7lz56QTJ048dbl58+ZTj1VcMlaYqD+q8Pn95ptvtOrKzs5+al2FCv/uHl98fX2l+/fvq8tdvnxZAqRvv/1W6/krfA0uXLggSZIkOTg4aH14S5IkTZ8+vcgEqm7dulplS/paFf6Y6dWrl7Rp0yaNpK3QwIEDJUNDQ2nixInS/v37tcZYXbhwochkXZIk6eOPP5bkcrn6S67wy/rs2bNPf3JL4EkJ1Pz584vc59dff5Xq1q0rGRoaarxmPj4+GuWKS6B27NihUa7wx8rRo0eLjVOlUklVqlSRXF1dpe+++046ffq0RrJZ6EkJVFhYmGRoaCj169dPY33Tpk2lWrVqab3W6enpkkwmkz755JNi45KkgjFKJXkPnjt37onHKeqc+/fvLykUCmnTpk0a23JyciRvb2/JxcVF2rVrl3T//n1p+/btkqOjo6RQKDRei9atW0uA9NFHH2kcozAJW7JkSanietzjCdTu3bslQPrrr7+0ntOJEydKMplMevjwoSRJktSiRQvJyspK+uKLL6QjR45Iubm5WscvTQIVFxcnGRgYSA0bNpRCQ0OlK1euFFnuSZ+vX331lQRIS5cuVa/LysqS9PT0pBEjRmid07Zt20qUaF+8eLFEfyelHUv8pO/f+Ph4yczMTONcikug9PX1JUD6448/NNYXNjqU5odxhe3Ci4uLIyIigu7duyNJkrr5+p133mHFihUsX76cr776SmMfJycnreM4OTmRm5vLw4cPsbS01NquUqlo06YNt27d4vPPP6dmzZqYmpqiUql48803i71U9mlSUlJwcnLSahJ3cHBAT09Po1sDir6iy9DQsMT129jYaDwubIYsbn12djZmZmakpKSgp6endSWJTCbDyclJHWfhv48/x3p6elqx3759m82bN6Ovr19krI+OLSupGjVqlLhZuCSaNWvGDz/8gFKp5PLly3z++ecMHz4cPz8/rW4kgMqVK6vHKz2P3377DV9fX9LT01m3bh2LFi3ivffeY/v27cD/j4UaP34848ePL/IYhc9fSkoKjo6OWtuLWgeou50fVdLXql+/fuTn57NkyRK6d++OSqXijTfe4Msvv6R169ZAwXQjlSpVYt26dXzzzTcYGRnRtm1b5s6dS9WqVdV/Q0XF4eLigkql4v79+xrdD0WVLWtF1fH9998zbtw4hgwZwhdffIGdnR0KhYLPP/+cmJiYEh338fdFYbfTk97TMpmMvXv3MnPmTObMmcO4ceOwsbGhT58+zJo1C3Nz8yfWGR0dTZcuXQgICFCPHy10+/Zt4uLinvl96eTkVOTYpaLOoaSk/3W7rF69mpUrV/L2229rbDcwMGD79u3069ePNm3aAGBqasrs2bP54osvcHV1VZctfL7btm2rcYy2bduqx9OVpcL36pOmM7l37x6mpqasW7eOL7/8kqVLl/L5559jZmZG165dmTNnTpHfW09TpUoV9uzZw5w5cxg2bBgZGRlUrlyZkSNHMmrUqKfuv3r1aj777DOmTp3KoEGD1OtTUlLIz8/np59+4qeffipy36f9nXh7e5fpZ3VJDBs2DH9/f7p3767OFQrHgj18+JDU1FT197+trS1JSUlafyft27dn3rx5nD59Gm9v7xLVW2ETqOXLlyNJEn/99Rd//fWX1vaVK1fy5ZdfavS1JyUlaZVLSkrCwMAAMzOzIus5f/48Z8+eJTQ0VGNcVVxc3HPFb2try7Fjx5AkSeMD5c6dO+Tn52NnZ/dcxy8rtra25Ofnc/fuXY0kSpIkkpKSeOONN9TloOD5fPRDKz8/XysZtLOzo1atWsyaNavIOp9lLEKVKlW4fv36U8tNmzatRPOeWFpaqhOiRo0a0ahRI2rXrs3QoUOJjIws0zf3o3x9fdX1BgcHo1QqWbp0KX/99RfvvPOO+u9i0qRJdOvWrchjVK9eHSh4TYoa9F7U+wCK/mIrzWv1/vvv8/7775ORkUFERATTpk2jU6dOXLp0CQ8PD0xNTZkxYwYzZszg9u3bbN++nU8//ZTOnTtz8eJF9d9QYmKiVj23bt1CLpdrTeVQHoOBi6pj9erVBAUF8euvv2qsf3y834vg4eGhTn4uXbrE+vXrmT59Orm5uSxcuLDY/f777z/atWuHu7s7GzZs0EqU7OzsMDY2Vk8L87infSbNnDlTfeHB0+IvyVw9hcnTihUrWLZsGX379i2ynLe3N0eOHOHmzZvcu3ePKlWqkJqayqhRo2jevLm6XK1atVi7dm2x9ZX1e7rw+frpp5948803iyxT+GPGzs6OefPmMW/ePBISEvj333/59NNPuXPnDjt27Him+gMCAggICECpVHLy5El++uknRo8ejaOjI7169Sp2v927dzNw4EBCQkK0Xk9ra2sUCgX9+vVj2LBhRe7v5eX1xLhatmxJeHj4U+MfMGBAseOUSuv8+fNcv369yKlggoODsbS0VCdWtWrVKvIzsjDpK83fSYVMoJRKJStXrqRKlSosXbpUa/uWLVv47rvv2L59u/pqDCiYnG3u3LkYGRkBBR92mzdvJiAgoNhBjYUfno8PUly0aJFW2ZL8gizUsmVL1q9fz6ZNm+jatat6/W+//abeXhG0bNmSOXPmsHr1asaMGaNev2HDBjIyMtRxFg6aXbNmDfXr11eXW79+vdbg6k6dOrFt2zaqVKlSZnMbbd68WevqxaI860DRqlWr8sknnzBjxgzWrVvHe++990zHKa05c+awYcMGpk6dSrdu3ahevTpVq1bl7NmzzJ49+4n7BgYGsm3bNpKTk9Uf5iqVij///LPE9T/La2Vqakr79u3Jzc2lS5cuREdH4+HhoVHG0dGRkJAQzp49y7x588jMzKR69eq4urry+++/M378ePV7LyMjgw0bNqivzKsIZDKZ1mfCuXPnOHLkCG5ubuUWR7Vq1ZgyZQobNmx4YgtKamoq7du3RyaTsW3btiKvQOrUqROzZ8/G1tb2qV+CRfnwww81Pm+L8/jzVhRJkvjggw9YsWIFixYt4v3333/qPq6uruofb1OmTMHU1FSj9aRr165MnjyZ7du3a3zmbt++HUmSik1ynlXTpk2xsrLiwoULDB8+vMT7ubu7M3z4cPbu3au+yhBK1+PwKIVCQaNGjfDx8WHNmjWcPn262AQqMjKS7t2706JFiyInjTQxMSE4OJgzZ85Qq1at0g2o/p9FixaV6IdGWTYirF27luzsbI11O3bs4JtvvmHhwoUa84p1796dXbt2sX37do054bZt24ZcLlc3GpREhUygtm/fzq1bt/jmm2+KvNrF39+fn3/+mWXLlmm8oRUKBa1bt2bs2LGoVCq++eYb0tLSnvirycfHhypVqvDpp58iSRI2NjZs3ryZ3bt3a5WtWbMmAPPnz2fAgAHo6+tTvXr1IpvV+/fvzy+//MKAAQOIj4+nZs2aHDx4kNmzZ9OhQwdatWr1DM9M2WvdujVt27Zl4sSJpKWl0bRpU/VVeHXr1qVfv35AQctJ3759mTdvHvr6+rRq1Yrz58/z7bffan1Yz5w5k927d9OkSRNGjhxJ9erVyc7OJj4+nm3btrFw4cJST+5W+Ny/SOPHj2fhwoXMmDGDHj16PNOVRKVlbW3NpEmT+OSTT/j999/p27cvixYton379rRt25aQkBBcXV25d+8eMTExnD59Wp0gTZ48mc2bN9OyZUsmT56MsbExCxcuVF+tVpJfUiV9rT744AOMjY1p2rQpzs7OJCUl8dVXX2Fpaan+wGnUqBGdOnWiVq1aWFtbExMTw6pVqzQSozlz5tCnTx86derERx99RE5ODnPnzuXBgwd8/fXXJXrO4uPj8fLyKtNfsI/r1KkTX3zxBdOmTSMwMJDY2FhmzpyJl5fXC52K49y5cwwfPpx3332XqlWrYmBgwL59+zh37hyffvppsfv17t2bCxcusHjxYm7cuKExFUClSpWoVKkSo0ePZsOGDTRv3pwxY8ZQq1YtVCoVCQkJ7Nq1i3Hjxj1xkmIXF5cyu5Jt5MiRLFu2jIEDB1KzZk2OHj2q3mZoaEjdunXVjwu7udzd3bl9+7b6h+mqVas0WsN9fHwYNmwYCxYswNzcnPbt23Pp0iWmTJlC3bp16dGjh7psWFgYwcHBJW6xLoqZmRk//fQTAwYM4N69e7zzzjvqKzjPnj3L3bt3+fXXX0lNTSU4OJjevXvj4+ODubk5J06cYMeOHRqtzDVr1mTjxo38+uuv1K9fH7lcXuywgYULF7Jv3z46duyIu7s72dnZ6pbF4r5b0tLS6NChA8bGxowfP15rhu4aNWpgYWHB/PnzadasGQEBAXz88cd4enqSnp5OXFwcmzdvfupVpIUt5GXh7t276tasqKgooCA/sLe3x97ensDAQIAik+PCVtD69etrPI/vv/8+ixYtYujQoSQnJ1OjRg327NnDL7/8wtChQ7V+DD5RiUdLlaMuXbpIBgYGWgObH9WrVy9JT09PSkpKUg8Q/eabb6QZM2ZIlSpVkgwMDKS6detqDaIuahD5hQsXpNatW6tH5r/77rtSQkJCkQPwJk2aJLm4uKgHm+/fv1+SpKIHdaakpEhDhgyRnJ2dJT09PcnDw0OaNGmS1uBjQBo2bJjWOZZkgsriJncrbgBd4eDcRwcBZ2VlSRMnTpQ8PDwkfX19ydnZWfr44481BjdLUsGAznHjxkkODg6SkZGR9Oabb0pHjhwpMs67d+9KI0eOlLy8vCR9fX3JxsZGql+/vjR58mT1wMrCc68IE2kW+uWXXyRAWrlypSRJL34iTUkqeP7d3d2lqlWrqi92OHv2rNSjRw/JwcFB0tfXl5ycnKQWLVpoDXQ/cOCA1KhRI8nQ0FBycnKSJkyYoL7S89GLL550ziV5rVauXCkFBwdLjo6OkoGBgeTi4iL16NFDY8Dwp59+KjVo0ECytraWDA0NpcqVK0tjxoyRkpOTNerbtGmT1KhRI8nIyEgyNTWVWrZsKR06dEijTFF/p4WioqIkQPr000+f9JRreNIg8qJe25ycHGn8+PGSq6urZGRkJNWrV0/atGmTNGDAAK2Bvo//DRf3WhfWV/iZUZTbt29LISEhko+Pj2RqaiqZmZlJtWrVkn744Qf134YkaX/ePOkq1Udje/jwoTRlyhSpevXqkoGBgWRpaSnVrFlTGjNmjPrqpfLwpHgff35nzJghValSRTI0NJSsrKykdu3aSREREUUeNz8/X/r6668lb2/vJ36Wbd68udgLR4pT3N9LeHi41LFjR8nGxkbS19eXXF1dpY4dO6rLZWdnS0OGDJFq1aolWVhYSMbGxlL16tWladOmaVwZeO/ePemdd96RrKysJJlMJj3p6/nIkSNS165dJQ8PD8nQ0FCytbWVAgMDpX///Vej3KOvf+F7oLjl0b/La9euSQMHDpRcXV0lfX19yd7eXmrSpIn05Zdflvj5KgtPugr6SVehStKTP3NTUlKkjz76SHJ0dJT09fWlatWqSXPnzi3ygo0nkUlSCUZ7CYLw0mjTpg3x8fFcunRJ16G8EAsWLOCTTz7hypUrxQ6YF4Qn+eSTT/jjjz+4fPmyesiHIJRWhezCEwShZMaOHUvdunVxc3Pj3r17rFmzht27d2tdgfUq2b9/PyNHjhTJk/DM9u/fz+effy6SJ+G5iBYoQXgOJZmduSxmLC/OqFGj+Pfff0lKSkImk1GjRg1Gjx5d7BVNgiAIQtkQCZQgPIfp06c/9dLua9eu4enpWT4BCYIgCOVCJFCC8Bxu3br11BvEPuvlwIIgCELFJRIoQRAEQRCEUnox0y0LgiAIgiC8wl67q/BUKhW3bt3C3Ny8XG4TIQiCIAjC85MkifT0dFxcXF7Y7bZK47VLoG7dulWut2IQBEEQBKHs3Lhxo9R3s3gRXrsEqvC2Kzdu3CjyflGCIAiCIFQ8aWlpuLm5FXn7NF147RKowm47CwsLkUAJgiAIwkumogy/0X0noiAIgiAIwktGJFCCIAiCIAilJBIoQRAEQRCEUnrtxkAJgiDomlKpJC8vT9dhCEKFY2BgUCGmKCgJkUAJgiCUE0mSSEpK4sGDB7oORRAqJLlcjpeX10tx+yuRQAmCIJSTwuTJwcEBExOTCnM1kSBUBIUTXScmJuLu7l7h3x8igRIEQSgHSqVSnTzZ2trqOhxBqJDs7e25desW+fn56Ovr6zqcJ3o5OhoFQRBecoVjnkxMTHQciSBUXIVdd0qlUseRPJ1IoARBEMpRRe+WEARdepneHyKBEgRBEARBKCWRQAmCIAgvnZCQELp06fLEMmFhYchkMnHVo/BCiARKEARBeKInJSuenp7IZDKNpVKlShrb582bV+YxzZ8/n9DQUPXjoKAgRo8eXeb16FpISIj6edXT08Pd3Z2PP/6Y+/fva5R72usglD2RQJWh65fj2P/bOl2HIQiCUK5mzpxJYmKiejlz5swLr9PS0hIrK6sXXs+jdDX5abt27UhMTCQ+Pp6lS5eyefNmhg4dqlVOF6/D60wkUGVk78q1SIuuIp3PJeVOiq7DEQRBKDfm5uY4OTmpF3t7+1IfY9y4cXTu3Fn9eN68echkMrZu3apeV716dRYtWgRotoqFhIQQHh7O/Pnz1a0v8fHx6v1OnTpFgwYNMDExoUmTJsTGxpYopunTp1OnTh2WL19O5cqVMTQ0RJIkduzYQbNmzbCyssLW1pZOnTpx5coV9X7du3dnxIgR6sejR49GJpMRHR0NQH5+Pubm5uzcubNEcRgaGuLk5ESlSpVo06YNPXv2ZNeuXVrlyuJ1EEpOJFBlpE7HVmwzPk+EyRU2fb9c1+EIgvASkCSJzNx8nSySJOn69DUEBQVx4MABVCoVAOHh4djZ2REeHg4UTEJ66dIlAgMDtfadP38+jRs35oMPPlC3vri5uam3T548me+++46TJ0+ip6fHwIEDSxxXXFwc69evZ8OGDURGRgKQkZHB2LFjOXHiBHv37kUul9O1a1d17EFBQYSFhamP8fi5nDhxguzsbJo2bVqq5wjg6tWr7Nixo8LPkfQ6EBNplhFbOzuMM5VgDvf188jNy8VAv+JPRS8Igu5k5SmpMbVkrRBl7cLMtpgYlM1XwMSJE5kyZYr68ezZsxk5cmSpjtG8eXPS09M5c+YM9erV48CBA4wfP56NGzcCsH//fhwdHfHx8dHa19LSEgMDA0xMTHByctLaPmvWLHXi9emnn9KxY0eys7MxMjJ6aly5ubmsWrVKozWne/fuGmWWLVuGg4MDFy5cwN/fn6CgIEaNGkVycjIKhYLo6GimTZtGWFgYQ4cOJSwsjPr162NmZlai52bLli2YmZmhVCrJzs4G4Pvvv9cqVxavg1ByogWqDPkHNsBQ0uOhIpdV3/+q63AEQRDKxYQJE4iMjFQv/fv3L/UxLC0tqVOnDmFhYURFRSGXy/noo484e/Ys6enphIWFFdn6VBK1atVS/9/Z2RmAO3fulGhfDw8Pra6wK1eu0Lt3bypXroyFhQVeXl4AJCQkAODv74+trS3h4eEcOHCA2rVr89Zbb6lboEp7LsHBwURGRnLs2DFGjBhB27ZtNboIC5XF6yCUnGiBKkNvvBVMdMRp4s3SefAwA5VK9dLcVVoQhPJnrK/gwsy2Oqu7rNjZ2eHt7f3cxyns+jIwMCAwMBBra2v8/Pw4dOgQYWFhz3yV3aPdXYUTNRZ2tz2Nqamp1rrOnTvj5ubGkiVLcHFxQaVS4e/vT25urrqO5s2bq88lKCgIf39/lEolUVFRHD58uFTnYmpqqn5+f/zxR4KDg5kxYwZffPGFRrmyeh2EkhEJVBmztbbmZm4m6YpcVq9aTf8B4heAIAhFk8lkZdaN9ioICgpi2bJl6Onp0apVKwACAwNZu3ZtseOfChkYGJTL7T9SUlKIiYlh0aJFBAQEAHDw4EGtckFBQSxevBgDAwNmzpyJTCYjICCAb7/9lqysrGca/1Ro2rRptG/fno8//hgXF5dnPo7wfETzSBlrN64flbIK+rXvXv6vwg3UFARBeBapqaka3UORkZHqLquyUjgOavPmzQQFBQEFicjq1auxt7enRo0axe7r6enJsWPHiI+PJzk5ucQtTKVlbW2Nra0tixcvJi4ujn379jF27FitckFBQURHRxMVFaVOtIKCglizZg316tXDwsLimWMICgrCz8+P2bNnP/MxhOcnEqgypm+kj2EW6ElyTGTGhJ86rOuQBEEQnltYWBh169bVWKZOnVqmdVhaWlK3bl1sbGzUyVJAQAAqleqpY4bGjx+PQqGgRo0a2Nvbl3lyV0gul7N27VpOnTqFv78/Y8aMYe7cuVrl/P39sbOzo3bt2upkKTAwEKVS+cxjuR41duxYlixZwo0bN577WMKzkUmvWRNJWloalpaWpKamPtcvgCdJufQfV+dtx8miOieMoug2fdgLqUcQhJdHdnY2165dw8vLq0RXfwnC6+hJ75Py+P4uDdEC9QLYVquETBmPDBn1Mn2Ivn5R1yEJgiAIglCGdJ5ALViwQJ1p1q9fnwMHDhRb9tF7Aj26+Pn5lWPEJVP9g24oHySQL5cRtnqzrsMRBEHQqTVr1mBmZlbkoqvPcD8/v2JjWrNmzQuvPyEhodj6zczMXlg3pFA2dHr5x7p16xg9ejQLFiygadOmLFq0iPbt23PhwgXc3d21ys+fP5+vv/5a/Tg/P5/atWvz7rvvlmfYJWJWvx7hv+4nyvAaOXn5nI4+TT2/eroOSxAEQSfeeustGjVqVOQ2Xc2qvW3btmLvb+fo6PjC63dxcVHPbl7cdqHi0mkC9f333zNo0CAGDx4MFNz7aOfOnfz666989dVXWuUtLS2xtLRUP960aRP379/n/fffL7eYS0omk6G0t8c5P414/RR2/bNDJFCCILy2zM3NMTc313UYGjw8PHRav56enpi36SWmsy683NxcTp06RZs2bTTWt2nThsOHS3bl2rJly2jVqtUT3wQ5OTmkpaVpLOWlyeAOmN7PAQmyc3O5eE2MhRIEQRCEV4HOEqjk5GSUSqVWM6mjoyNJSUlP3T8xMZHt27erW6+K89VXX6lbriwtLTVuMPmi2Xvbk5FniIfSFoB/Nmwqt7oFQRAEQXhxdD6IvHBa/UKSJGmtK0poaChWVlZ06dLlieUmTZpEamqqeinvOTPqtm2C5YMcALLSs7l+63q51i8IgiAIQtnTWQJlZ2eHQqHQam26c+fOUwfvSZLE8uXL6devHwYGBk8sa2hoiIWFhcZSnmp0rsPdDBlu+bYggz83/Fmu9QuCIAiCUPZ0lkAZGBhQv359du/erbF+9+7dNGnS5In7hoeHExcXx6BBg15kiGVC31CBR5Vq2KflI5NkGCdLZOdn6zosQRAEQRCeg0678MaOHcvSpUtZvnw5MTExjBkzhoSEBIYMGQIUdL/17699M95ly5bRqFEj/P39yzvkZ1K/TzOk23d4L7sJb+e8yb+H/9V1SIIgCC+1kJCQpw7hCAsLQyaT8eDBg3KJSXi96DSB6tmzJ/PmzWPmzJnUqVOHiIgItm3bpr6qLjExUWsisdTUVDZs2PBStD4VsveypvGbjujfigYg9/Bt8lX5Oo5KEAShZJ6UrHh6empNblypUiWN7fPmzSvzmObPn09oaKj6cVBQEKNHjy7zeiqCpKQkRowYQeXKlTE0NMTNzY3OnTuzd+9ecnNzsbOz48svvyxy36+++go7Oztyc3OfWEdoaKjGa+jo6Ejnzp2Jjo7WKFfchNZxcXFldr4vC50PIh86dCjx8fHk5ORw6tQpmjdvrt4WGhpKWFiYRnlLS0syMzP54IMPyjnS52Pdswe5Vwq6K2ukerJmy4uf5VYQBKE8zJw5k8TERPVy5syZF16npaUlVlZWL7yeRxU36eaLFB8fT/369dm3bx9z5swhKiqKHTt2EBwczLBhwzAwMKBv376EhoZS1K1tV6xYUaLxwgAWFhYkJiZy69Yttm7dSkZGBh07dtRKvtq1a6fxeicmJuLl5VVm5/yy0HkC9brQd3EhpWYD4nKv8q/hKeJPX+Phw4e6DksQBOG5mZub4+TkpF7s7e1LfYxx48bRuXNn9eN58+Yhk8nYunWrel316tVZtGgRoNkqFhISQnh4OPPnz1e3iMTHx6v3O3XqFA0aNMDExIQmTZoQGxtbopimT59OnTp1WL58ubr1R5IkduzYQbNmzbCyssLW1pZOnTpx5coV9X7du3dnxIgR6sejR49GJpOpW3Py8/MxNzdn586dT41h6NChyGQyjh8/zjvvvEO1atXw8/Nj7NixHD16FIBBgwZx5coVIiIiNPY9cOAAly9fLnGPjUwmw8nJCWdnZxo0aMCYMWO4fv261vNlaGio8Xo7OTmhUChKVMerRCRQ5SjdO4hbDy5hpzJHAv7cvl7XIQmCoEuSBLkZulmKaK3QpaCgIA4cOIBKpQIKLhays7MjPDwcKOjGunTpEoGBgVr7zp8/n8aNG/PBBx+oW0QenfNv8uTJfPfdd5w8eRI9PT0GDhxY4rji4uJYv349GzZsUN92JSMjg7Fjx3LixAn27t2LXC6na9eu6tiDgoI0ek8eP5cTJ06QnZ1N06ZNn1j3vXv32LFjB8OGDcPU1FRre2ELXM2aNXnjjTdYsWKFxvbly5fTsGHDZxov/ODBA37//XdAd7faqeh0eiuX102dd+qydmYkvtnWJJukk3AhgaysLIyNjXUdmiAIupCXCbN1dL+zz26BgfaX8rOYOHEiU6ZMUT+ePXs2I0eOLNUxmjdvTnp6OmfOnKFevXocOHCA8ePHs3HjRgD279+Po6MjPj4+WvtaWlpiYGCAiYkJTk5OWttnzZqlTrw+/fRTOnbsSHZ2NkZGRk+NKzc3l1WrVmm0qnXv3l2jzLJly3BwcODChQv4+/sTFBTEqFGjSE5ORqFQEB0dzbRp0wgLC2Po0KGEhYVRv359zMzMnlh3XFwckiQVec6PGzhwIOPHj+fnn3/GzMyMhw8f8ueff/L9998/dd9CqampmJmZIUkSmZmZQME9DB+vf8uWLRqxt2/fnj//fP2m6BEtUOXIwdMSG0tv0u5dwVpliiTBpj2bdB2WIAjCc5kwYQKRkZHqpairp5/G0tKSOnXqEBYWRlRUFHK5nI8++oizZ8+Snp5OWFhYka1PJVGrVi31/52dnYGCOQdLwsPDQ6tL8sqVK/Tu3ZvKlStjYWGhHv9TeNGTv78/tra2hIeHc+DAAWrXrs1bb72lboEq6bkUjmkqyeTS7733HiqVinXr1gGwbt06JEmiV69eJTpPKOiKjYyM5NSpUyxcuJAqVaqwcOFCrXLBwcEar/ePP/5Y4jpeJaIFqhzJZDJqta1O2B+n8c114rDRFS6diSWnTQ6Ghoa6Dk8QhPKmb1LQEqSrusuInZ1dmdwUt7Dry8DAgMDAQKytrfHz8+PQoUOEhYU981V2j3ZBFSYjhd1tT1NU11nnzp1xc3NjyZIluLi4oFKp8Pf3Vw+2lslkNG/eXH0uQUFB+Pv7o1QqiYqK4vDhwyU6l6pVqyKTyYiJiXnqlA2Wlpa88847rFixgkGDBrFixQreeeedUk0eLZfL1a+jj48PSUlJ9OzZU2tslampqbgJMqIFqtz5BFVG39CfnHvXsFAZI6lge8Q2XYclCIIuyGQF3Wi6WErQqlHeCsdB7du3j6CgIAACAwNZu3ZtseOfChkYGKBUKl94jCkpKcTExDBlyhRatmyJr68v9+/f1ypXmAyGhYURFBSETCYjICCAb7/9lqysrKeOfwKwsbGhbdu2/PLLL2RkZGhtf3x+q0GDBnHo0CG2bNnCoUOHnnu6nzFjxnD27Fn+/vvv5zrOq0okUOXM0FgPbz8n4rPS8c9zxUjS52LcBV2HJQiC8ESpqaka3TaRkZFa8/Q9r8JxUJs3b1YnUEFBQaxevRp7e3tq1KhR7L6enp4cO3aM+Ph4kpOTS9zCVFrW1tbY2tqyePFi4uLi2LdvH2PHjtUqFxQURHR0NFFRUQQEBKjXrVmzhnr16pW4ZWjBggUolUoaNmzIhg0buHz5MjExMfz44480btxYo2xgYCDe3t70798fb29vjWmBnoWFhQWDBw9m2rRpRU6R8LoTCZQO1Ozsh5nCA/OkZHrlNKX2HRcS0sr2g0gQBKEshYWFUbduXY1l6tSpZVqHpaUldevWxcbGRp0sBQQEoFKpnjpmaPz48SgUCmrUqIG9vX2ZJ3eF5HI5a9eu5dSpU/j7+zNmzBjmzp2rVc7f3x87Oztq166tTpYCAwNRKpWlGsvl5eXF6dOnCQ4OZty4cfj7+9O6dWv27t3Lr7/+qlV+4MCB3L9/v1RXGj7JqFGjiImJeS0HiT+NTHrN0sq0tDQsLS1JTU0t9xsLP+rBX3+R9OV3mLaZjUyux4bGxxn19jidxSMIwouVnZ3NtWvX8PLyKtHVX4LwOnrS+6SifH8XEi1QOmLRoQMyfSX5N44hIWFyVuL4ueO6DksQBEEQhBIQCZSOyE1MMH67O1HZt4hV3OKm6iE7t+14Yf32giAIurRmzRrMzMyKXPz8/HQSk5+fX7ExrVnz4m+3lZCQUGz9ZmZmZdoNqetzfRWJaQx0KNY6mKsWO2mYnoGhtR452fmciDxBo3qNdB2aIAhCmXrrrbdo1KjozzZdzXS9bdu2Yu9v5+jo+MLrd3FxUc9uXtz2sqLrc30ViQRKh/zbViP2bBJxqTvwN3+TU/pX2bNvN2/UeQO5XDQOCoLw6jA3N8fc3FzXYWjw8PDQaf16enrlNp+Srs/1VSS+pXXIqYolVpampKhMccrUQ19SkPcwn6gLUboOTRAEQRCEJxAJlA7JZDL8W1dBz7AuVx+cpIay4OaX2/ZsE3NuCIIgCEIFJhIoHfNp4oqevgO3cjLwzDZDT5KT8yCH2Muxug5NEARBEIRiiARKx4zM9Klc0xqFUR2uP4jER+mKlWTCidsndB2aIAiCIAjFEAlUBVCzdWUU+pW5m3qbmtnOdM95k8sXzqJUvfj7OgmCIAiCUHoigaoAnL2t6NHTnGZRB+FqBDJktLxVj73X9+o6NEEQhAopJCSELl26PLFMWFgYMplM66a7glAWRAJVAchkMuyCG2Pg6Ynq8h5ypTzccpyJ+HcfN2/e1HV4giC85p6UrHh6eiKTyTSWSpUqaWyfN29emcc0f/58QkND1Y+DgoIYPXp0mddTEdy4cYNBgwbh4uKCgYEBHh4ejBo1ipSUFK2y0dHR9OjRA3t7ewwNDalatSqff/45mZmZGuUefd0UCgUuLi4MGjSI+/fvlyimwuS0cLG1taVFixYcOnRIo9z06dO1/j5kMhl79ux59iekghAJVAUhk8mwfq8X941MSbp3juN6cejdN2LTrk26Dk0QBOGJZs6cSWJiono5c+bMC6/T0tISKyurF17Po4qbiPJFunr1Kg0aNODSpUv88ccfxMXFsXDhQvbu3Uvjxo25d++euuzRo0dp1KgRubm5bN26lUuXLjF79mxWrlxJ69atyc3N1Th24euWkJDAmjVriIiIYOTIkaWKLzY2lsTERMLCwrC3t6djx47cuXNHo4yfn5/G30diYiLNmzd/9ielghAJVAUSZ9GIU3WGcjbzOH75lUCCu9fvkpSUpOvQBEEQimVubo6Tk5N6sbe3L/Uxxo0bR+fOndWP582bh0wmY+vWrep11atXZ9GiRYBmq1hISAjh4eHMnz9f3cIRHx+v3u/UqVM0aNAAExMTmjRpQmxsya5ynj59OnXq1GH58uVUrlwZQ0NDJElix44dNGvWDCsrK2xtbenUqRNXrlxR79e9e3dGjBihfjx69GhkMhnR0dEA5OfnY25uzs6dO58aw7BhwzAwMGDXrl0EBgbi7u5O+/bt2bNnDzdv3mTy5MkASJLEoEGD8PX1ZePGjTRs2BAPDw/effddNm/ezJEjR/jhhx80jl34urm6uhIcHEz//v05ffp0iZ6bQg4ODjg5OVGzZk2mTJlCamoqx44d0yijp6en8ffh5OSEgYFBqeqpiEQCVYG4+DogV9iTLZmT9jABL5UDAJv3bNZxZIIgvAiSJJGZl6mTpaLNNRcUFMSBAwfU9wMNDw/Hzs6O8PBwAJKSkrh06RKBgYFa+86fP5/GjRvzwQcfqFs43Nzc1NsnT57Md999x8mTJ9HT02PgwIEljisuLo7169ezYcMG9W1XMjIyGDt2LCdOnGDv3r3I5XK6du2qjj0oKIiwsDD1MR4/lxMnTpCdnU3Tpk2fWPe9e/fYuXMnQ4cOxdjYWGObk5MTffr0Yd26dUiSRGRkJBcuXGDs2LFad7KoXbs2rVq14o8//ii2rps3b7Jly5Zib7fzNJmZmaxYsQLQ3a15ypu4lUsF4lrNGgtLBfdzGxCbepT65t25prjDf3H/kZycjJ2dna5DFAShDGXlZ9Hod93c+/JY72OY6JuUybEmTpzIlClT1I9nz55d6q6g5s2bk56ezpkzZ6hXrx4HDhxg/PjxbNy4EYD9+/fj6OiIj4+P1r6WlpYYGBhgYmKCk5OT1vZZs2apE69PP/2Ujh07kp2djZGR0VPjys3NZdWqVRqtat27d9cos2zZMhwcHLhw4QL+/v4EBQUxatQokpOTUSgUREdHM23aNMLCwhg6dChhYWHUr18fMzOzJ9Z9+fJlJEnC19e3yO2+vr7cv3+fu3fvcunSJfW64soePHhQY13h66ZUKsnOzqZRo0Z8//33T31OHlU43i0zsyApr1+/Pi1bttQoExUVpXGuNWrU4Pjx46WqpyISLVAViEwuw6+FJ3J9L1JzH5KXmYK70g4ZMrbt3abr8ARBEIo0YcIEIiMj1Uv//v1LfQxLS0vq1KlDWFgYUVFRyOVyPvroI86ePUt6ejphYWFFtj6VRK1atdT/d3Z2BtAap1McDw8PrS7JK1eu0Lt3bypXroyFhQVeXl4AJCQkAODv74+trS3h4eEcOHCA2rVr89Zbb6lboJ7nXB5V2Iook8lKVPbxcoWv27lz59i7t+Cq744dO6JUlnwKnQMHDnD69Gn++OMPPDw8CA0N1WqBql69usbfx4YNG0p8/IpMtEBVMD6NnTm2KQ6l8RtcTD1GHZN2JCiSuRpzhfv372Ntba3rEAVBKCPGesYc633s6QVfUN1lxc7OrkxuilvY9WVgYEBgYCDW1tb4+flx6NAhwsLCnvkqu0e/0AuTiMLutqcxNTXVWte5c2fc3NxYsmQJLi4uqFQq/P391YO0ZTIZzZs3V59LUFAQ/v7+KJVKoqKiOHz4cInOxdvbG5lMxoULF4q8CvLixYtYW1tjZ2dHtWrVALhw4QJ16tQpsmzVqlU11j36ulWtWpV58+bRuHFj9u/fT6tWrZ4aH4CXlxdWVlZUq1aN7Oxsunbtyvnz5zE0NFSXMTAwKLebJpcn0QJVwZhYGOBZyw6FoR93MhPQz86mktIWuZ6S25m3dR2eIAhlSCaTYaJvopOlJK0W5a1wHNS+ffsICgoCIDAwkLVr1xY7/qmQgYFBqVpOnlVKSgoxMTFMmTKFli1bqrvRHleYDIaFhREUFIRMJiMgIIBvv/2WrKysp45/ArC1taV169YsWLCArKwsjW1JSUmsWbOGnj17IpPJqFOnDj4+Pvzwww9ayeHZs2fZs2cP77333hPrUygUAFp1lVS/fv1QqVQsWLDgmfZ/2YgEqgLyD3RDJjPEQN+f/+6dpk1ebbpmNebv+I26Dk0QhNdUamqqRjdMZGSkusuqrBSOg9q8ebM6gQoKCmL16tXY29tTo0aNYvf19PTk2LFjxMfHk5ycXOIWptKytrbG1taWxYsXExcXx759+xg7dqxWuaCgIKKjo4mKiiIgIEC9bs2aNdSrVw8LC4sS1ffzzz+Tk5ND27ZtiYiI4MaNG+zYsYPWrVvj6urKrFmzgIJkfOnSpVy4cIHu3btz/PhxEhIS+PPPP+ncuTONGzfWavVKT08nKSmJxMREjh8/zoQJE7Czs6NJkybP9NzI5XJGjx7N119/rTXv1KtIJFAVUCUfa1q85UDQmS14nPiXe1IO1koL0k4mkpyVrOvwBEF4DYWFhVG3bl2NZerUqWVah6WlJXXr1sXGxkadLAUEBKBSqZ46Zmj8+PEoFApq1KiBvb19mSd3heRyOWvXruXUqVP4+/szZswY5s6dq1XO398fOzs7ateurU6WAgMDUSqVpRr/VLVqVU6ePEmVKlXo2bMnVapU4cMPPyQ4OJgjR45gY2OjLtu0aVOOHj2KQqGgQ4cOeHt7M2nSJAYMGMDu3bs1utUApk6dirOzMy4uLnTq1AlTU1N2796Nra3tMz47MHDgQPLy8vj555+f+RgvC5lU0a5lfcHS0tKwtLQkNTW1xL8AdCVh0GAyDh3iv6Dh+FrV4qJBAsc9rjOq16gi++UFQai4srOzuXbtGl5eXiW6+ksQXkdPep9UtO9v0QJVgVm/1wsVoB/7D1mqHGK5Te6NXCIOReg6NEEQBEF4rYkEqgJLtq3J8TenE2VnzrW0U9TO9wDg+PHjzzzITxAEQRfWrFmDmZlZkYufn59OYvLz8ys2pjVr1rzw+hMSEoqt38zM7IV1Q5ZE+/bti41r9uzZOourIhHTGFRgcn09Mo3skakacjntNB0s38BaZcr9/AwOHz1My+CWTz+IIAhCBfDWW28VO8u1rmau3rZtW7H3t3N0dHzh9bu4uKhnNy9uu64sXbq02B/qj467ep2JBKoCc6thg5mlPulSHfLuHSQhPZraCk/CDKI5dOQQzZo00xoUKAiCUBGZm5tjbm6u6zA0eHh46LR+PT29Cjs/kqurq65DqPB03oW3YMEC9WCx+vXrc+DAgSeWz8nJYfLkyXh4eGBoaEiVKlVYvnx5OUVbvuRyGTWaV0Im08dIXpnYtBN4Ke2xUBmjylVx4uQJXYcoCIIgCK8lnSZQ69atY/To0UyePJkzZ84QEBBA+/btn9jv26NHD/bu3cuyZcuIjY3ljz/+KPLeSK8K3ybOyGSQbxFMem4KiZlXqK30BCDsYFixzc+CIAiCILw4Ou3C+/777xk0aBCDBw8GYN68eezcuZNff/2Vr776Sqv8jh07CA8P5+rVq+o+WE9Pz/IMudyZWRvh4W9LfBSYKa24mHqMYNM+RCtucMX8OkqVEn1ejztfC4IgCEJFobMWqNzcXE6dOkWbNm001rdp04bDhw8Xuc+///5LgwYNmDNnDq6urlSrVo3x48c/8Yq0nJwc0tLSNJaXjV9AQV+00rw5WZm3uKZMp2tuQzwyLDly+4iOoxMEQRCE14/OEqjk5GSUSqXWlQ6Ojo4kJSUVuc/Vq1c5ePAg58+f5++//2bevHn89ddfDBs2rNh6vvrqKywtLdWLm5tbmZ5HeXD3s8G3kT21r+2l+fmrXDfLRYaMjvebsypyJa/ZXKiCIAiCoHM6H0T++A0tJUkq9iaXKpUKmUzGmjVraNiwIR06dOD7778nNDS02FaoSZMmkZqaql5u3LhR5ufwoskVclq8X5PKgb7Ikah/ax/x5GGiMsItxo4la5a8sPs+CYIgCIKgTWcJlJ2dHQqFQqu16c6dO8XOv+Hs7IyrqyuWlpbqdb6+vkiSxH///VfkPoaGhlhYWGgsLyvr93oV/OdIBLHSDfJRYpBpya24W0RHR+s2OEEQXlkhISHIZDKGDBmitW3o0KHIZDJCQkI0yspkMvT19XF0dKR169YsX75c64eep6cn8+bNK1EMnp6e6uMaGxvj4+PD3LlzNVrg4+Pj1WUeXfr27fvM5y4IxdFZAmVgYED9+vXZvXu3xvrdu3cXeyfopk2bcuvWLR4+fKhed+nSJeRyOZUqVXqh8VYEOXaeXHvzI0571iEtfiO5ylxq/W928t1hu0UrlCAIL4ybmxtr167VaO3Pzs7mjz/+wN3dXaNsu3btSExMJD4+nu3btxMcHMyoUaPo1KkT+fn5zxzDzJkzSUxMJCYmhvHjx/PZZ5+xePFirXJ79uwhMTFRvfzyyy/PXKcgFEenXXhjx45l6dKlLF++nJiYGMaMGUNCQoL6V86kSZPo37+/unzv3r2xtbXl/fff58KFC0RERDBhwgQGDhyIsbGxrk6j3KTcfMg1o1pk2rRHkvKJSz1ODWUlFJKctJQ0Ll26pOsQBUF4RdWrVw93d3c2btyoXrdx40bc3NyoW7euRllDQ0OcnJxwdXWlXr16fPbZZ/zzzz9s376d0NDQZ47B3NwcJycnPD09GTx4MLVq1WLXrl1a5WxtbXFyclIvj/ZaCEJZ0WkC1bNnT+bNm8fMmTOpU6cOERERbNu2TT07bGJiosacUGZmZuzevZsHDx7QoEED+vTpQ+fOnfnxxx91dQrlyqOmLSYW+iiNHLHOMuBKeiRI4K8sGBi/e/9uMaBcEF4ikiShyszUyfIsnxXvv/8+K1asUD9evnw5AwcOLNG+LVq0oHbt2hoJ2LOSJImwsDBiYmJ0dhsYQdD5rVyGDh3K0KFDi9xW1C8VHx8frW6/14VCIce3iQundlxHZvwGearDXE2LxN+yNlF6CaTcTuHKlSsV9tYAgiBokrKyiK1XXyd1Vz99CpmJSan26devH5MmTVKPNTp06BBr164lLCysRPv7+Phw7ty5Z4i2wMSJE5kyZQq5ubnk5eVhZGTEyJEjtco1adIEufz/2wcOHDig1UomCM9L5wmUUDo1mhUkUBk2b2JxK4LLqSeoZlGfGvmVOK93g71he0UCJQjCC2FnZ0fHjh1ZubJg+pSOHTtiZ2dX4v2fdJV1SUyYMIGQkBDu3r3L5MmTadGiRZFjZtetW4evr6/68cs4fY1Q8YkE6iVjYWeMWw0bbly4h6nkSaLyP65lxlLT1Is4/VukOKQ894eUIAjlQ2ZsTPXTp3RW97MYOHAgw4cPByj14OyYmBi8vLyeqV4oSOC8vb3x9vZmw4YNeHt78+abb9KqVSuNcm5ubuKHpPDC6XweKKH0/Jq5APDQtjVG+Uouyv/DFCPey2rOkeQDpOak6jhCQRBKQiaTITcx0cnyrD+y2rVrR25uLrm5ubRt27bE++3bt4+oqCi6d+/+TPU+ztramhEjRjB+/Hgx9lPQCZFAvYQ8a9th7WSCS9Ylmly6TYsGfhwlDwVyOtxtyu8Xf9d1iIIgvKIUCgUxMTHExMSgUCiKLJOTk0NSUhI3b97k9OnTzJ49m7fffptOnTppXFn9vIYNG0ZsbCwbNmwos2MKQkmJBOolpFDIeW9aI95sYYtRXhb6WzYS62EKQNCDhpw4cJy///lbx1EKgvCqetqkxDt27MDZ2RlPT0/atWvH/v37+fHHH/nnn3+KTbqehb29Pf369WP69OliHjyh3Mmk16ztMy0tDUtLS1JTU1/qWckB8lNSuBwUDHl53P9qHqrDElZ68JfhEUDGxx9/XOys7oIglK/s7GyuXbuGl5cXRkZGug5HECqkJ71PKtr3t2iBeokpbGzIadmL/xxrc3TtT9xM2YOVZEollS0A4RHhOo5QEARBEF5NIoF6iV07m8yh7DeJr9wDm4wcbmbEkqLM5I28gqtPLkRfIDk5WcdRCoIgPNmaNWswMzMrcvHz89N1eIJQJDGNwUvMw88WIzN9srHCMcucFNNc4lKP0simBQ6SBXdkaRw4eICuXbrqOlRBEIRivfXWWzRq1KjIbWKmcaGiEgnUS0yhL8ensTORuxPIsG6OiWo3N9LO4GcVwJu51fjX8CTnzp4jOCgYKysrXYcrCIJQJHNzc8zNzXUdhiCUiujCe8kVzgl1z9Yf17uZKKV8Lmacw0GyxApjJEni4MGDOo5SEARBEF4tIoF6yVk5muBS1QpkcmSGtdCTyfjv3iFyJBVNc3xJN3yAwr3sLhsWBEEQBEEkUK8Ev4CCVqjbzgG4JqeSr1ByNO8OzpI1zfJ9WHdrnY4jFARBEIRXi0igXgGV69pjaKqHnoGCSvdVvFO/OfH1vFEi8UaGHynXk4i8E6nrMAVBEAThlSESqFeAnr6CHpPeoEtnAywzUsj6+2/eCfYknHwA3kppwdqNawkLC9NtoIIgCILwihAJ1CvCws4Yi7atUdjakn/nDs7RJ7hu8xCAag+9MEoy4tDhQ2RlZek4UkEQBEF4+YkE6hUiNzDAvNu7PDRxZtfKxZicWsyl/AdUVjkil0nk5eZx4sQJXYcpCMJLRCaTPXEJCQl5IfVmZGQwceJEKleujJGREfb29gQFBbFlyxZ1maCgIEaPHq21b2hoaJFTt2RlZWFtbY2NjU2RPyY9PT3V52ViYoK/vz+LFi0qUbyhoaEaz4ujoyOdO3cmOjpao1xISEiRz2NcXFyJ6hEqDpFAvUJux6ex5UZtztUcgtm1GwBcTzuMDBlv5lUH4NDhQ+Tk5OgyTEEQXiKJiYnqZd68eVhYWGismz9/vkb5vLy8Mql3yJAhbNq0iZ9//pmLFy+yY8cOunfvTkpKyjMfc8OGDfj7+1OjRg02btxYZJmZM2eSmJjIuXPn6NKlC0OGDGHdupJdiFP43Ny6dYutW7eSkZFBx44dyc3N1SjXrl07jecwMTERLy+vZz4vQTdEAvUKsXUxRSaXk21shzHOGCj0uJcaxQ1VFj75riBTkZOdw6lTp3QdqiAILwknJyf1YmlpiUwmUz/Ozs7GysqK9evXExQUhJGREatXrwZgxYoV+Pr6YmRkhI+PDwsWLNA47s2bN+nZsyfW1tbY2try9ttvEx8fr96+efNmPvvsMzp06ICnpyf169dnxIgRDBgw4JnPZdmyZfTt25e+ffuybNmyIsuYm5vj5OSEt7c3X375JVWrVmXTpk0lOn7hc+Ps7EyDBg0YM2YM169fJzY2VqOcoaGhxvPq5OSEQiGmm3nZiATqFaJnoKBaIyegYEoDt5Q0AC4+jESOnHp5Bb9wDh46WGa/EgVBeH55Ocpil/w8ZcnL5pasbFmbOHEiI0eOJCYmhrZt27JkyRImT57MrFmziImJYfbs2Xz++eesXLkSgMzMTIKDgzEzMyMiIoKDBw9iZmZGu3bt1K01Tk5ObNu2jfT09DKJ8cqVKxw5coQePXrQo0cPDh8+zNWrV5+6n5GR0TN9Xj548IDff/8dELejeVWJW7m8YvyauRC1/z+S7WpR/+qfXLU25UHKQZLN36B2fmVO6l8lMyOTM2fO0LBhQ12HKwgCsHhUeLHbPPxt6TS8tvrx8gkHyM9VFVnWpaoVXcfVUz/+bfJhsh9qf/kPW9jiOaLVNnr0aLp166Z+/MUXX/Ddd9+p13l5eXHhwgUWLVrEgAEDWLt2LXK5nKVLlyKTyYCCFisrKyvCwsJo06YNixcvpk+fPtja2lK7dm2aNWvGO++8Q9OmTTXqXrBgAUuXLtVYl5+fj5GRkca65cuX0759e6ytrYGCbrTly5fz5ZdfFnlO+fn5rF69mqioKD7++OMSPQ+pqamYmZkhSRKZmZlAwX3+fHx8NMpt2bIFMzMz9eP27dvz559/lqgOoeIQLVCvGFtXMxy9LJBkCu7bNcRFKUOFijNZsSiQU0vpxhWbK3hU89B1qIIgvCIaNGig/v/du3e5ceMGgwYNwszMTL18+eWXXLlyBYBTp04RFxeHubm5eruNjQ3Z2dnqMs2bN+fq1avs3buX7t27Ex0dTUBAAF988YVG3X369CEyMlJjmTlzpkYZpVLJypUr6du3r3pd3759WblyJUqlZovcxIkTMTMzw9jYmGHDhjFhwgQ++uijEj0P5ubmREZGcurUKRYuXEiVKlVYuHChVrng4GCNeH/88ccSHV+oWEQL1CvIL8CF29fSuOXSlGrnD3DT25XU7DOkG/vyZq4vO+Rh/JvwLx9YfaDrUAVBAD6cH1jsNtljP3MHzg0ovqxM83H/WU2eJ6wSMzU1Vf9fpSpoHVuyZAmNGjXSKFc4zkelUlG/fn3WrFmjdSx7e3v1//X19QkICCAgIIBPP/2UL7/8kpkzZzJx4kQMDAwAsLS0xNvbW+MYDg4OGo937typHnP1KKVSya5du2jfvr163YQJEwgJCcHExARnZ2d1C1lJyOVydSw+Pj4kJSXRs2dPIiIiNMqZmppqxSy8fEQL1CvIu74jBkYKsozt0ZM7EOTkRY+vv2ezrKAp/92U1qyOWU1WfhaSJOk4WkEQ9A0VxS56+oqSlzUoWdkXydHREVdXV65evYq3t7fGUnilWb169bh8+TIODg5aZSwtLYs9do0aNcjPzyc7O7tUMS1btoxevXpptVT16dNHazC5nZ0d3t7euLi4lCp5KsqYMWM4e/Ysf//993MdR6iYRAL1CtI3VNByQA2697LEMj0B07ADOMrzSPe3IRcJvyxvvJIq8eOiHzl//ryuwxUE4RUzffp0vvrqK+bPn8+lS5eIiopixYoVfP/990BBt5udnR1vv/02Bw4c4Nq1a4SHhzNq1Cj+++8/oGCOp0WLFnHq1Cni4+PZtm0bn332GcHBwVhYWJQ4lrt377J582YGDBiAv7+/xjJgwAD+/fdf7t69+0KeBwsLCwYPHsy0adPEj9VXkEigXlGV69rjGFgPQ19fpJwcHvy9iZ7NPdmvKhjY+EZqLbLuZhFxIELd5C4IglAWBg8ezNKlSwkNDaVmzZoEBgYSGhqqboEyMTEhIiICd3d3unXrhq+vLwMHDiQrK0udHLVt25aVK1fSpk0bfH19GTFiBG3btmX9+vWliuW3337D1NSUli1bam0LDg7G3NycVatWPf9JF2PUqFHExMSIQeKvIJn0mqXFaWlpWFpakpqaWqpfMS+r++vXc2vaDNK93Ih0cyBb7sQ7lp3JIoeVxmHoSXr06tVL6yoRQRDKVnZ2NteuXcPLy0vrCjFBEAo86X1S0b6/RQvUK+zh/WyOJlfjRMPJGCb8R1baA5T3LnBCmYExhljJDQGIiIgQzcuCIAiCUAoigXqFGRjrcSM2lQxjJ7JMvXDTNwbgak4kAO0z30ApU3Lr1i1iYmJ0GKkgCELF5ufnpzEtw6NLUVcTCq8+MY3BK8zASI+qDR25cOAWt1ya4Rq9luvernD3CBfc36AGphjpQV4e7N69m2rVqqGnJ/4kBEEQHrdt27ZiZyR3dHQs52iEikC0QL3i/Jq5AHDXoR6mOQrsza1ApeRs7iUA3spoTLY8m/v37xMVFaXDSAVBECouDw8PrSkXChdzc3NdhyfogEigXnEOHhbYu5ujkilIdGqI+/VbACjuR3BDUmKtMsfAMJ973veoXbv2U44mCIIgCAKIBOq1UON/rVCJlZpjdyMRUxMzpKx09ilvA9AlPYCI/HCiUkQLlCAIgiCUhM4TqAULFqgvV6xfvz4HDhwotmxYWBgymUxruXjxYjlG/PKp9oYjegZyMowcSLesQp1cGX2/no+suT8pqHDIt6FlaiOWnltKbm5umd39XBAEQRBeVTpNoNatW8fo0aOZPHkyZ86cISAggPbt25OQkPDE/WJjY0lMTFQvVatWLaeIX04GxnrUa+tB43aOmGbfxvJUJFZKif4BXqyT5QLQM7kdMZdi+GH+D2zZskXHEQuCIAhCxabTBOr7779n0KBBDB48GF9fX+bNm4ebmxu//vrrE/dzcHDAyclJvRTeoFIo3hsdvajXxQ/rgIKbe95fu45K1iaofM15gAqXPHv8s6uQmZlJbGws165d03HEgiAIglBx6SyBys3N5dSpU7Rp00ZjfZs2bTh8+PAT961bty7Ozs60bNmS/fv3v8gwXznW770HwP1Nm9jx03c47Z7LJlVBl12P+624ZlaQOO3cuVPc4kUQhAotPj4emUxGZGSkrkN5ZU2fPp06deroOowKSWcJVHJyMkqlUmv+DEdHR5KSkorcx9nZmcWLF7NhwwY2btxI9erVadmyJREREcXWk5OTQ1pamsbyusrPU5KAJxfrf4z08CH3YmNQ5uag0oshHQn3XCfM9RRIehJJSUmcO3dO1yELglABhISE0KVLF411f/31F0ZGRsyZM0c3QT2DDRs20KhRIywtLTE3N8fPz49x48apt4eGhmJlZVXkvjKZjE2bNmmt//DDD1EoFKxdu1Zr2/Tp09VjdRUKBW5ubgwePLjENy9+dKyvmZkZtWvXJjQ0VKNMcWODp0yZUqI6hGen81kTZTKZxmNJkrTWFapevTrVq1dXP27cuDE3btzg22+/pXnz5kXu89VXXzFjxoyyC/glpsxTEbH2Mkpzf5wtvPC4lUyiPlglnmSDQy1CZCb0uteWn2w2UuN+Dfbu3UuNGjUwMDDQdeiCIFQgS5cuZdiwYfzyyy8MHjy41Pvn5uaW++fKnj176NWrF7Nnz+att95CJpNx4cIF9u7d+8zHzMzMZN26dUyYMIFly5bRq1cvrTJ+fn7s2bMHpVLJmTNnGDRoEDdv3mT79u0lqmPFihW0a9eOjIwM1q1bx/vvv4+zszNt27bVKBcbG6txfzgzM7NnPi+hZHTWAmVnZ4dCodBqbbpz506pZnV98803uXz5crHbJ02aRGpqqnq5cePGM8f8sjM00adqfQcAblVqjvWFWCxtbMnLzCDHMI4MJLxyXAvukWcM6enpT+1OFQTh9TJnzhyGDx/O77//rk6eDh8+TPPmzTE2NsbNzY2RI0eSkZGh3sfT05Mvv/ySkJAQLC0t+eCDD9StPTt37sTX1xczMzPatWtHYmKiRn0rVqzA19cXIyMjfHx8WLBgwTPFvWXLFpo1a8aECROoXr061apVo0uXLvz000/P/Fz8+eef1KhRg0mTJnHo0CHi4+O1yujp6eHk5ISrqyudOnVi5MiR7Nq1i6ysrBLVYWVlhZOTE1WqVOGzzz7DxsaGXbt2aZV7fGxwSRKowtdg06ZNVKtWDSMjI1q3bv3E78mgoCBGjx6tsa5Lly6EhISoHy9YsICqVatiZGSEo6Mj77zzTonO9WWjswTKwMCA+vXrs3v3bo31u3fvpkmTJiU+zpkzZ3B2di52u6GhIRYWFhrL66xGgCsAdxzqo1QY4SMruKGww63D/C1lA/BeSjtOWZwCIDU1VTeBCsJrJC87u9glPze3xGXzcnNKVPZZffrpp3zxxRds2bKF7t27AxAVFUXbtm3p1q0b586dY926dRw8eJDhw4dr7Dt37lz8/f05deoUn3/+OVDQgvPtt9+yatUqIiIiSEhIYPz48ep9lixZwuTJk5k1axYxMTHMnj2bzz//nJUrV5Y6dicnJ6Kjozl//vwzn//jli1bRt++fbG0tKRDhw6sWLHiqfsYGxujUqnIz88vVV1KpZL169dz79499PX1nzVkLZmZmcyaNYuVK1dy6NAh0tLSimxJK6mTJ08ycuRIZs6cSWxsLDt27Ci2h+hlp9MuvLFjx9KvXz8aNGhA48aNWbx4MQkJCQwZMgQoaD26efMmv/32GwDz5s3D09MTPz8/cnNzWb16NRs2bGDDhg26PI2XilNlC6ydTbmfmEGS4xu4HjiKebO6pN9LIc3lClm5flTNdsdeaYpZczPebvG2rkMWhFfejwOK/4XuVbcB3T6drn684MM+5OfkFFm2Ug1/ek77Wv14yfCBZKVrj/sct670U5Vs376df/75h71799KiRQv1+rlz59K7d291q0TVqlX58ccfCQwM5Ndff8XIyAiAFi1aaCRHBw8eJC8vj4ULF1KlShUAhg8fzsyZM9VlvvjiC7777ju6desGgJeXFxcuXGDRokUMGDCgVPGPGDGCAwcOULNmTTw8PHjzzTdp06YNffr0wdDQUF0uNTW1RK03ly9f5ujRo2zcuBGAvn37MnLkSKZNm4ZcXnTbxMWLF/n1119p2LBhiW//8t5776FQKMjOzkapVGJjY1Nkt2mlSpU0Hl+/fh1bW9unHj8vL4+ff/6ZRo0KrtBeuXIlvr6+HD9+nIYNG5YoxkclJCRgampKp06dMDc3x8PDg7p165b6OC8DnU5j0LNnT+bNm8fMmTOpU6cOERERbNu2DQ8PDwASExM15oTKzc1l/Pjx1KpVi4CAAA4ePMjWrVvVby7h6WQymfr+eImVW0FeHn4OBW+8SvdOs0kq+LX7Xkp7/kr8i9Qc0QIlCALUqlULT09Ppk6dqjHZ7qlTpwgNDcXMzEy9tG3bFpVKpTEdSoMGDbSOaWJiok6eoOBCoTt37gBw9+5dbty4waBBgzSO/eWXX3LlypVSx29qasrWrVuJi4tjypQpmJmZMW7cOBo2bEhmZqa6nLm5OZGRkVrL45YtW0bbtm2xs7MDoEOHDmRkZLBnzx6NclFRUZiZmWFsbEyNGjVwc3NjzZo1JY77hx9+IDIykt27d1OnTh1++OEHvL29tcodOHBAI15ra+sSHV9PT0/jtfHx8cHKyoqYmJgSx/io1q1b4+HhQeXKlenXrx9r1qzReH5fJTofRD506FCGDh1a5LbHrzb45JNP+OSTT8ohqldb9TedOPL3FdKxI93cA7tDx2kyZCC123RgxKpocm7k45tVmaqplVh7cS09PXoSFRVFs2bNih3gLwjCsxu58q9it8kea80YuvgJX75yzffnBz8vf664HuXq6sqGDRsIDg6mXbt27NixA3Nzc1QqFR999BEjR47U2sfd3V39f1NTU63tj3dFyWQyJEkCUE+jsmTJEnXrSKHnmfuvSpUqVKlShcGDBzN58mSqVaumHpwNIJfLi0xQHqVUKvntt99ISkpCT09PY/2yZcs0puepXr06//77LwqFAhcXF43WrpJwcnJS37T4zz//pG7dujRo0IAaNWpolPPy8ir2CsKnKepzvbjPerlcrn6NCuXl5an/b25uzunTpwkLC2PXrl1MnTqV6dOnc+LEiWeOr6LSeQIllD8jU3286zuQcT8Leawpqv8uUMPAFBMLS0LaVOXfZWd5F0N6J3fgm+jfuLftHjk5OTg6OlKtWjVdhy8Irxz9/3Vz6bJsSbi7uxMeHk5wcDBt2rRh586d1KtXj+jo6KcmHaXl6OiIq6srV69epU+fPmV67EKenp6YmJhoDHgviW3btpGens6ZM2c0krmLFy/Sp08fUlJS1N1nBgYGZfbceHt70717dyZNmsQ///xTJsfMz8/n5MmT6u662NhYHjx4gI+PT5Hl7e3tNQb6K5VKzp8/T3BwsHqdnp4erVq1olWrVkybNg0rKyv27dv3yvUWiQTqNdVigC9yuYxks3bc/f4Cd3/+BYv27WnmbccKe3j7rkTNzKo4p1pj5GlETmwOu3btokqVKmLmd0F4jVWqVImwsDB1ErVo0SIaN27MsGHD+OCDDzA1NSUmJobdu3c/1xVuUDCP0siRI7GwsKB9+/bk5ORw8uRJ7t+/z9ixY0t9rMzMTDp06ICHhwcPHjzgxx9/JC8vj9atW5fqWMuWLaNjx47Url1bY72fnx+jR49m9erVjBo1qlTHLKlx48ZRu3ZtTp48WWS3aGnp6+szYsQIfvzxR/T19Rk+fDhvvvlmseOfWrRowdixY9m6dStVqlThhx9+4MGDB+rtW7Zs4erVqzRv3hxra2u2bduGSqXSmILoVaHzmwkLuiH/X1O/Td8+KGxtyUtIIGH1b6yfMYl6V9extXAsVHJ7trMdYxNjkpOTOXXqlC7DFgShAnB1dSU8PJwHDx7wwQcfEB4ezuXLlwkICKBu3bp8/vnnT7w6uqQGDx7M0qVLCQ0NpWbNmgQGBhIaGoqXl1epjxUYGMjVq1fp378/Pj4+tG/fnqSkJHbt2lWqL/fbt2+zdetW9VWIj5LJZHTr1o1ly5aVOr6SqlmzJq1atWLq1KllcjwTExMmTpxI7969ady4McbGxkVOClpo4MCBDBgwgP79+xMYGIiXl5dG65OVlRUbN26kRYsW+Pr6snDhQv744w/8/PzKJN6KRCY93pn5iktLS8PS0pLU1NTXfkoDgIwHOUQv3oL58ilILs7s87AjJzOThGrvMCavMnrIGOM5h5aVOpJ0MgkTExNGjhypvrJGEISSyc7O5tq1a3h5eYn3j1AhhIaGMnr0aI0WJF170vukon1/ixao11hudj6rpx7hxFVr0j3fQHYrER/Xgl92VVOPsUMqGBj43t0ObMrehK2dLZmZmRw4cECXYQuCIAiCzokE6jVmYKRHtUZOAPxXr+Amw04RR9A3NCTn9g3O699CiUTDDH+Mk+VY1yy4LPbo0aPcv39fZ3ELgiA8bsiQIRrTHTy6FM4tWJHMnj272Hjbt29fJnW0b9++2Dpmz55dJnW8zkQX3msu9W4ma6YeRZKgccJyjK+eIuHtdpyPv4yhixdGBl1oJzPgsFkkv/vtpUdWD5ycnGjatGmpL8cVhNeZ6MJ7se7cuVPszeItLCxwcHAo54ie7N69e9y7d6/IbcbGxri6uj53HTdv3iz2ljE2NjbY2Ng8dx1l7WXqwhNX4b3mLO1N8G7gyOUTt7n5Rj+8r57C+cAxYio7knPrGue9k2ijdKPJwzqsurMVh7YOtPBs8fQDC4IglCMHB4cKlyQ9SXkkMGWRhAnFE114AvXaFsz8nnBHn7yq9dC/d5+qDgWzldfSj2M/Bfdsei+5HUvOL1FPoiZJktaEaoIgCILwOhAJlIBdJTM8a9mBBLcahwDgeugkbd8fwsBJn7Htf7eFapZel/Rb9zhy6wgJCQksXbqU6Oho3QUuCIIgCDoiEigBgPrtPNDTl2NW1QOD6tUxTE3D4cJljAz16diyMhHkIUdOr+R2LI5azNWrV7l58yZ79uzRmMZfEARBEF4HIoESAHCqbMmAr5vS7N1qOIwquKfVvVWryE9JoXsdJ7YbFNwMMjCtAYk3EjDxNsHc3JwHDx5w/PhxXYYuCIIgCOVOJFCCmpFpwY09zYKDMapZEykri/PfzWX1uCE0yD3MYfJQIKdncltWXFxBy5YtAYiIiCj1vaQEQRAE4WUmEihBy+1raaS/NRyAvF27eXgvhfxr59glK7jktkVqIy5du4B+JX2cnZ3JyckhLCxMhxELgvC6CQkJoUuXLk8sExYWhkwmq1Azbb+M4uPjkclkREZG6jqUCkUkUIKGm5fus2HOKY6dBr0Gb2L2MBN3cysA/GRnOUE+eijokdKWZeeX0aZNGwBOnjzJ3bt3dRi5IAgvypOSFU9PT2QymcZSqVIlje3z5s0r85jmz59PaGio+nFQUBCjR48u83p0LSQkRP286unp4e7uzscff6w1mfHTXgeh7IkEStDg4m2FtZMJuVn5pAQNAsD9zAUApKtn2UrBm7ZN6puciTuJZC1RvXp1JEkSNxoWhNfUzJkzSUxMVC9nzpx54XVaWlpiZWX1wut5lK4umGnXrh2JiYnEx8ezdOlSNm/ezNChQ7XK6eJ1eJ2JBErQIJPLqNeuYF6oC7ESRk0CsHiYiauJBZKkwlcvijPkoy/p805KK5adX0br1q3p0qWLujVKEITXi7m5OU5OTurF3t6+1McYN24cnTt3Vj+eN28eMpmMrVu3qtdVr16dRYsWAZqtYiEhIYSHhzN//nx160t8fLx6v1OnTtGgQQNMTExo0qQJsbGxJYpp+vTp1KlTh+XLl1O5cmUMDQ2RJIkdO3bQrFkzrKyssLW1pVOnTly5ckW9X/fu3RkxYoT68ejRo5HJZOppX/Lz8zE3N2fnzp0lisPQ0BAnJycqVapEmzZt6NmzJ7t27dIq96yvg0wm49dff6V9+/YYGxvj5eXFn3/+WWz50NBQreR106ZNyGQy9eOzZ88SHByMubk5FhYW1K9fn5MnT5YonpeFSKAELVXfcMTcxois9DzutypohfI4dxEA2dXTbCIVgHYPmnLoUgQ5RjnUqVMHuVz8OQlCaUiShCpXqZOlok2CGxQUxIEDB1CpVACEh4djZ2dHeHg4AElJSVy6dInAwECtfefPn0/jxo354IMP1K0vbm5u6u2TJ0/mu+++4+TJk+jp6TFw4MASxxUXF8f69evZsGGDegxQRkYGY8eO5cSJE+zduxe5XE7Xrl3VsQcFBWmMC338XE6cOEF2djZNmzYt1XMEcPXqVXbs2IG+vn6p932Szz//nO7du3P27Fn69u3Le++9R0xMzDMfr0+fPlSqVIkTJ05w6tQpPv300zKPWdfErVwELQqFnLpt3IlYe4nz55UEBreE/XtxNDThdk4m1WzvEJViSU3JgK7JLVhxfgVT3pwCQG5uLsnJybi4uOj4LASh4pPyVNyaelgndbvMbILMQFEmx5o4cSJTpkxRP549ezYjR44s1TGaN29Oeno6Z86coV69ehw4cIDx48ezceNGAPbv34+joyM+Pj5a+1paWmJgYICJiQlOTk5a22fNmqVOvD799FM6duxIdnZ2ie5JmJuby6pVqzRac7p3765RZtmyZTg4OHDhwgX8/f0JCgpi1KhRJCcno1AoiI6OZtq0aYSFhTF06FDCwsKoX78+ZmZmJXputmzZgpmZGUqlkuzsbAC+//57rXLP8zq8++67DB48GIAvvviC3bt389NPP7FgwYIS7f+4hIQEJkyYoH69qlat+kzHqchEk4FQJN8mzhib65N+L5u01gW/1qqei+WdD0fx/pD+/C4vGAvQ8X4Ae2N2cTfzLnfu3OGnn37i999/JycnR5fhC4JQjiZMmEBkZKR66d+/f6mPYWlpSZ06dQgLCyMqKgq5XM5HH33E2bNnSU9PJywsrMjWp5KoVauW+v/Ozs5Awc2HS8LDw0OrK+zKlSv07t2bypUrY2FhgZeXF1CQNAD4+/tja2tLeHg4Bw4coHbt2rz11lvqFqjSnktwcDCRkZEcO3aMESNG0LZtW40uwkLP8zo0btxY6/HztECNHTuWwYMH06pVK77++muNLs5XhWiBEoqkZ6CgTit3osL/w8jdFeP27WD7DuR//4NDy9ZUaeRCzJG7+EqGdEwO4LcLvzGqzij09PS4f/8+hw4dokULcdNhQXgSmb4cl5lNdFZ3WbGzs8Pb2/u5j1PY9WVgYEBgYCDW1tb4+flx6NAhwsLCnvkqu0e7jgrH6RR2tz2Nqamp1rrOnTvj5ubGkiVLcHFxQaVS4e/vT25urrqO5s2bq88lKCgIf39/lEolUVFRHD58uFTnYmpqqn5+f/zxR4KDg5kxYwZffPGFRrmyeh0KPTqm6VFyuVyrC/jxAfbTp0+nd+/ebN26le3btzNt2jTWrl1L165dyyw+XRMtUEKxarWoRN8vGlO1gSP2w4eDXM7DPXvJijpPvzo2rKNg8sy37geyNfpfMpQZtG7dGoDDhw+Tmpqqy/AFocKTyWTIDRQ6WYr7ctSlwnFQ+/btIygoCIDAwEDWrl1b7PinQgYGBiiVyhceY0pKCjExMUyZMoWWLVvi6+urNaUA/H8yGBYWRlBQEDKZjICAAL799luysrKeafxToWnTpvHtt99y69at5zkVDUePHtV6XFR3KYC9vT3p6ekaEygXNUdUtWrVGDNmDLt27aJbt26sWLGizOKtCEQCJRRLT1+BQlHwJ2JYpQqW/7tC5vDc2WyePAwPwxjiUGKiMqbN3casiVmDr68v7u7u5Ofns2/fPl2GLwhCGUpNTdXoHoqMjFR3WZWVwnFQmzdvVidQQUFBrF69Gnt7e2rUqFHsvp6enhw7doz4+HiSk5NL3MJUWtbW1tja2rJ48WLi4uLYt28fY8eO1SoXFBREdHQ0UVFRBAQEqNetWbOGevXqYWFh8cwxBAUF4efnx+zZs5/5GI/7888/Wb58OZcuXWLatGkcP36c4cOHF1m2UaNGmJiY8NlnnxEXF8fvv/+uMSdXVlYWw4cPJywsjOvXr3Po0CFOnDiBr69vmcVbEYgESngqpVLFxaOJ5L/1PujpobgYizIvD4v44/whPQTg7XvBbDz/F5n5merpDM6ePVumv5AEQdCdsLAw6tatq7FMnTq1TOuwtLSkbt262NjYqJOlgIAAVCrVU8cMjR8/HoVCQY0aNbC3ty/z5K6QXC5n7dq1nDp1Cn9/f8aMGcPcuXO1yvn7+2NnZ0ft2rXVyVJgYCBKpfKZx3I9auzYsSxZsoQbN24897EAZsyYwdq1a6lVqxYrV65kzZo1xSasNjY2rF69mm3btlGzZk3++OMPpk+frt6uUChISUmhf//+VKtWjR49etC+fXtmzJhRJrFWFDKpol3L+oKlpaVhaWlJamrqc/0CeJ0c+/cqJ7fF41rdikb3/+H++vUcrlONVElJmk8LWuXUwwsFofb/4NrWj/f932fDhg1ERUXh4eGhnklXEF5n2dnZXLt2DS8vrxJd/SUI5UUmk/H3338/9dY45eFJ75OK9v0tWqCEp6rRzAW5XMbN2AcoOw9AbmBA5Ws3AbBNOMbvUiYAXe+1ZO25P8jOz6Zly5bo6elhamqqs9l7BUEQBOFFEQmU8FTmNkZUf7NgbpWzJx5i1asnTqkZmCEjLzMDG+PL3ECJpdKMxkl+bIrbhJWVFSNGjKBHjx4YGBjo+AwEQdC1NWvWYGZmVuTi5+enk5j8/PyKjWnNmjUvvP6EhIRi6zczMyuTbsiK+Ly/KkQXnlAiD25nsmb6UZDgnWFVud//bW4YKTjn7oiBmQWxtv34VG7GfUUan9VawMZ3N6Evf7VmnRWE5/G6d+Glp6dz+/btIrfp6+vj4eFRzhHB9evXi20hd3R0xNzc/IXWn5+fr3HLmcd5enqip/d8sw1VxOf9SV6mLjwxD5RQIlaOJlSp68CV03c4ezyNOn37oFyylDg3R3JystFzfMitu8a4KC2ofasK265u423vt4GCq3ciIiJo1aoVxsbGOj4TQRB0wdzc/IUnJKWl6+RBT0+vTOdtKkpFfN5fFaILTyix+v+7yXDcydso3u6DnqkpteP+o1e3voT0aM0aCiaReyelNaFnV6BUFczJsm7dOk6dOkVERITOYhcEQRCEsiQSKKHE7N3NcfezxaWaFRibYRMSgnVmDhnLllPbxZzUKhbcRoldvhXVb7iwJ2EPgHpG8mPHjpGSkqLDMxAEQRCEsiESKKFU2n3kT5cx9bB1NcMmZAByS0tyr1whbcsW+vno8YdUcA+8d5PbsOLsciRJwtvbmypVqqBSqdizZ4+Oz0AQBEEQnp9IoIRS0X/k7u0Kc3NsBw8CYMeKhUT+PJ1co+sko8Qx3xbXeCsO3DwAQJs2bZDJZMTExHD9+nWdxC4IgiAIZUUkUMIzyUzL5di/VzHp0gOFrS2mKQ8AqJ58nLVSwVioXsltWXZ2KZIk4ejoSL169QDYuXPnC7vNgiAIgiCUB50nUAsWLFBfrli/fn0OHDhQov0OHTqEnp4ederUebEBCkXavjCKk9viOX/sHnYffYh7Sir6Kons5CRSjW7wACXOefZYXdHn5O2TAAQHB2NgYMCtW7eIjo7W8RkIgiAIwrPTaQK1bt06Ro8ezeTJkzlz5gwBAQG0b9/+qZOHpaam0r9/f1q2bFlOkQqPq9WiEgDn9t3A5O3uGNs74Hmn4I7k/vdOsFYqmFulV3I7lp5dCoCZmRlBQUEEBARQrVo13QQuCIJQxkJCQirEbVCE8qXTBOr7779n0KBBDB48GF9fX+bNm4ebmxu//vrrE/f76KOP6N27N40bNy6nSIXHVanngKWDMTmZ+cQcT8Hu44/xSE5FTyWRfec/Eg3/Iw0lbrlO6F3K4XzyeQCaNGlCy5YtMTQ01PEZCIJQUk9KEDw9PZk3b57GY5lMxtq1a7XK+vn5IZPJCA0N1Sr/+PL1118/Na74+HiNfSwtLXnzzTfZvHmzRrnQ0NAi61i6dGmJzl8QiqKzBCo3N5dTp07Rpk0bjfVt2rTh8OHDxe63YsUKrly5wrRp00pUT05ODmlpaRqL8Pzkchn12hbMCxW5JwHzzm9j6uyCe/IDAOqln2L9I61QS84u0TqGJEniPnmC8Apyc3NjxYoVGuuOHj1KUlISpqamWuVnzpxJYmKixjJixIgS17dnzx4SExM5duwYDRs2pHv37pw/f16jjIWFhVYdffr0ebYTFAR0mEAlJyejVCpxdHTUWO/o6EhSUlKR+1y+fJlPP/2UNWvWlHh6+6+++gpLS0v14ubm9tyxCwWqN3LCzNqQzNRcYk+nYDdsGF53U5GrJPSy0zlvmcNDlHjluJJ9IYW4+3HqfW/dusXSpUvZsWOHDs9AECqG3NzcYpfHf2SURdkXrU+fPoSHh3Pjxg31uuXLl9OnT58iP7vNzc1xcnLSWIpKtIpja2uLk5MTPj4+zJo1i7y8PPbv369RRiaTadVRkjsjTJ8+nTp16rBo0SLc3NwwMTHh3Xff5cGDB8Xu83irHECdOnWYPn26xnHd3d0xNDTExcWFkSNHlvh8hYpB57dykclkGo8lSdJaB6BUKunduzczZswo1fiZSZMmMXbsWPXjtLQ0kUSVEYWenDqt3Dn452VO77yOz+cdMV+8mDev3MSreTscmtVhw7qLDEDBe8ntWRq1lK+bFzTL5+XlcfPmTW7dukXDhg21EmlBeJ3Mnj272G1Vq1bVaCmZO3dusS23Hh4evP/+++rH8+bNIzMzU6vco1/kL4KjoyNt27Zl5cqVTJkyhczMTNatW0d4eDi//fbbC6s3Ly+PJUsKWrv19cvuXpxxcXGsX7+ezZs3k5aWxqBBgxg2bNgz33D4r7/+4ocffmDt2rX4+fmRlJTE2bNnyyxeoXzorAXKzs4OhUKh1dp0586dIr9M09PTOXnyJMOHD0dPTw89PT1mzpzJ2bNn0dPTY9++fUXWY2hoiIWFhcYilJ0azVwwtTLErYYtSpUM+5EjsMrMIXXlb3RwN+GwlYJMVHjnuJMclcCN9IJfpB4eHvj6+iJJErt379bxWQiCUNYGDhxIaGgokiTx119/UaVKlWKvmp44cSJmZmYaS1hYWInratKkCWZmZhgZGTFu3Dg8PT3p0aOHRpnU1FSN4zs5OZX4+NnZ2axcuZI6derQvHlzfvrpJ9auXVtsb8nTJCQk4OTkRKtWrXB3d6dhw4Z88MEHz3QsQXd01gJlYGBA/fr12b17N127dlWv3717N2+//bZWeQsLC6KiojTWLViwgH379vHXX3/h5eX1wmMWtOkbKuj3RWMU+gW5uH7bthhWr05ObCz3V6zg3cp+/H1ajz4Y0utuO5ZHLWdak4Lxa61btyY2Npa4uDji4uJe+E01BaGi+uyzz4rd9niL/IQJE0pcdvTo0c8V1/Po2LEjH330ERERESxfvpyBAwcWW3bChAmEhIRorHN1dS1xXevWrcPHx4dLly4xevRoFi5ciI2NjUYZc3NzTp8+rX4sl5e8/cDd3Z1KlSqpHzdu3BiVSkVsbGypErFC7777LvPmzaNy5cq0a9eODh060Llz5xIPTREqBp2+WmPHjqVfv340aNCAxo0bs3jxYhISEhgyZAhQ0P128+ZNfvvtN+RyOf7+/hr7Ozg4YGRkpLVeKF+FyROATC7HftRIrg8bxqZDu8k4sZ8z3n3ornTBJ9uL389u53bt2ziaOmJjY0OjRo04cuQIO3fuxMvLC4VC8YSaBOHVZGBgoPOyZU1PT49+/foxbdo0jh07xt9//11sWTs7u+f6AeXm5kbVqlWpWrUqZmZmdO/enQsXLuDg4KAuI5fLy+xHWmGiWtRwk8K6JEnSWPdot6ubmxuxsbHs3r2bPXv2MHToUObOnUt4eHiZdj0KL5ZOpzHo2bMn8+bNY+bMmdSpU4eIiAi2bduGh0fB1V2JiYlPnRNKqDjuXE/jyKYrmAYFYepfE6uHBWMvmqrO8S8FHx497rRhZfRK9T7NmzfH2NiYu3fvcubMGZ3ELQjCizFw4EDCw8N5++23sba2Lpc6AwMD8ff3Z9asWWV2zISEBG7duqV+fOTIEeRyebHjce3t7UlMTFQ/TktL49q1axpljI2Neeutt/jxxx8JCwvjyJEjWr0sQsWm8/bCoUOHMnTo0CK3PTpXSFGmT5/+wgdDCiWTk5nHxm9Po8xT4e5rg/2oUVQZ9jE3rc3JvRrFEe86dFE64Z/lzbozu7hf6z7WRtYYGxsTGBjIjh07iImJoUGDBro+FUEQipCamkpkZKTGuse7yR7n6+tLcnIyJiYmTyyXnp6uNZ7IxMTkmcesjhs3jnfffZdPPvmkVF2BxTEyMmLAgAF8++23pKWlMXLkSHr06FFs912LFi0IDQ2lc+fOWFtb8/nnn2u0roeGhqJUKmnUqBEmJiasWrUKY2NjdeOB8HLQ+a1chFeDoYk+NZo4A3BqRzymTZtgX7MWzg8eAhBANFv/1wrV/XYLVsesVu/7xhtv0L17dzEniyBUYGFhYdStW1djmTp16lP3s7W1fep0AVOnTsXZ2Vlj+eSTT5451k6dOuHp6VlmrVDe3t5069aNDh060KZNG/z9/VmwYEGx5SdNmkTz5s3p1KkTHTp0oEuXLlSpUkW93crKiiVLltC0aVNq1arF3r172bx5M7a2tmUSr1A+ZNLjHbWvuLS0NCwtLUlNTRVX5JWxtOQsVk89iqSSeOfTBpjfjSXqg8EcrO4GMhmHKw/gO5U9esiZUmUBPw1YjLmBua7DFoRykZ2dzbVr19T3/hReDtOnT2fTpk1arW/Ci/Gk90lF+/4WLVBCmbGwM6Zaw4IpKE7vuI7JG2/gXK8BjqkZIEk0U0Sz/X+tUG8nBbIudp3WMXJzc7lw4UK5xi0IgiAIpSUSKKFM1WvrATK4GnmXe7cysB89iiq3C24y7Jifyt8G+SiReCPDj0Mn9pGVn6XeNycnh59//pn169fz33//6eoUBEGoIIYMGaI1P1ThUni19vPy8/Mrto5nnShTeD2ILjyhzG1fGMXVyLtUf9OJViE1uDF0GLcOH6RSi1asbfchFvtu0B5DjpidJbe7NX18/3/s099//83Zs2dxd3fn/fffL/YyYUF42YguvNK7c+dOsfcvtbCw0Jim4Fldv3692JndHR0dMTcXwwzK08vUhfdMV+GpVKoiJyFTqVT8999/uLu7P3dgwsurXjsPbl9LxcGj4IPHfuQIHu7bR9q2bfTr/z599ZW0zZNo/LA2nx9fSI9qPdBXFMx90qJFC6Kjo0lISCAmJoYaNWro8lQEQdAhBweHMkmSnkRc+SY8q1J14aWlpdGjRw9MTU1xdHRk2rRpKJVK9fa7d++KGcEFHD0t6De7CbWCC+45aOTjg3n7dgCkLv6FFm4Z7KPghqZt/mvI5qub1ftaWlrSpEkToGBW+vz8/HKOXhBerNes0V8QSuVlen+UKoH6/PPPOXv2LKtWrWLWrFmsXLmSt99+W+Pu3i/TyQsvjkKh+adlP3w4GUYGbL1zHaPwVfxNwfQGTdPrsO34JvJV/58oNW3aFDMzM+7fv8+JEyfKNW5BeFEKZ5gu6ua+giAUKMwnXoa7UpSqC2/Tpk2sXLmSoKAgALp27UrHjh3p3Lkz//77L1D81PbC60elVBF3+g45GfnUDKqCc5t2mF04RapCTiPjOMKyzAjCkMDrtdl9fTftvdoDBTeAbtGiBf/++y/h4eHUrl37qRPxCUJFp1AosLKy4s6dO0DBRJHi81IQ/p9KpeLu3buYmJi8FPcFLFWEycnJGv3Ftra27N69m7Zt29KhQweWLl1a5gEKL68bMffZvewC+kYKqjV0xH7EcLzf7c4pUyNMLx/mz0rVCMKQ5mkNmH18JW092yKXFbRc1alTh2PHjmFrayu68YRXRuHM1YVJlCAImuRyOe7u7i/Fj4tSJVBubm7ExMRojHMyNzdn165dtGnThq5du5Z5gMLLy72GDTYupty7lUFU2E0adPCkWpv2XIo8TDrQwDiOQ1k1aYoRja76EPFfBEFuQUDBm2jgwIEYGhrq9BwEoSzJZDKcnZ1xcHAo9sovQXidGRgYFHmRWkVUqgSqTZs2rFixgg4dOmisNzMzY+fOnbRu3bpMgxNebjK5jPrtPNi9/AJn992gdks37Id+TNXuOzldyRDLuEP87lqNphjRMrUhc4+vJbBSoPqXh0iehFeVQqF4KcZ4CIJQvFKleTNmzCj25r3m5ubs2bOHffv2lUVcwivCu74DFnZGZD/M48LBW+g7OVG9Q2dMs3PJy82htvEVjpONAgW1LrtzPOm41jFSU1PZuHGj1t3MBUEQBEFXSpVAWVtb4+fnV+x2MzMzAgMD1Y9r1qzJjRs3nj064aUnV8gLZicHIvckoMxX4fDhh3jfz0CukqhPCqEUTIXR+kFj1h3Xnvn30KFDnDt3jp07d6JSqco1fkEQBEEoygvtaIyPjxf9/AI+bzpjYmnAw/s5xB5LQs/eHv+3uhB48To1z0ThVtOO07Js9NHD+6I9Z++e1dg/MDAQQ0NDkpKSOHfunI7OQhAEQRD+38sxUkt4qSn05dRt7Y5zFUss7Y0BsBs0GFMDI3IuXmS4/AahUkErVLsHTfnjxGqN/U1NTQkICABg7969GvOOCYIgCIIuiARKKBe1WrjRbUJ9XKtZA6BnbY1NSAgAmWuW4mZznyhZFgaSPi7nTYm9F6uxf6NGjbCysiI9PZ3Dhw+Xd/iCIAiCoEEkUEK5kMu15/SwCRnAHSd7wkxlVIvexMr/zUbe4X4Av59cpVFWX1+fVq1aAQVjooq7waggCIIglAeRQAnlKjsjj+NbrnEj5h4Kc3Oq9+qNQV4+2dkZOBldJ0aWhZFkgNVZGdfTrmvs6+fnR6VKlcjLy+PgwYM6OgNBEARBeAEJ1M2bN8v6kMIr5PTO65zYco0TWwumJHDo358qGQUXGlS7Hk6oqmAsVMf7zVl96jeNfWUyGW3btqVZs2a0aNGifAMXBEEQhEeUWQKVlJTEiBEj8Pb2Vq9btGgRjo6OZVWF8Aqo3cINuZ6MxLhUbl1+gNzEhPo9e6OfryQr6yFWhglckmVhojLC8FQ2iQ8TNfZ3c3OjVatWGBkZ6egMBEEQBKGUCdSDBw/o06cP9vb2uLi48OOPP6JSqZg6dSqVK1fm6NGjLF++XF2+d+/emJqalnnQwsvL1MoQn8bOAJzaUdBFZ9+nL5WzCsY/1UwIY+X/5nrqdK85ayJXFX0gCm48uX//fjEeShAEQSh3pUqgPvvsMyIiIhgwYAA2NjaMGTOGTp06cfDgQbZv386JEyd47733XlSswiuiXht3ZDJIiE7hbkI6ckNDGvTqj55SSUZWOoYGCVyVZWGmMkF5/D4pWSlFHmfnzp2Eh4fzxx9/iKkNBEEQhHJVqgRq69atrFixgm+//ZZ///0XSZKoVq0a+/bt05iBXBCexNLeBO8GBV27ha1Qjr164pUjYZiXz1vZV/lNkgDonNKcP85qz04OBVMbmJiYkJiYyIYNG8Qs5YIgCEK5KVUCdevWLWrUqAFA5cqVMTIyYvDgwS8kMOHVVnh7lytn7vDgdiYyAwPe7DeQoJgEqkaEkWIjI0GWhYXSjPSjt0jNSdU6ho2NDb169UKhUBAbG8uuXbvK+zQEQRCE11SpEiiVSoW+vr76sUKhEGOchGdiV8mMKnXt8W3sjEK/4M/Qvls3jD09UaWmMuHhGX6T/jcW6m4A68+vK/I47u7udO3aFYCjR49y4sSJ8jkBQRAE4bWmV5rCkiQREhKCoaEhANnZ2QwZMkQridq4cWPZRSi8stp+6I9M9v8TbMr09LAfOYL/xowlJ3wzGc0cuKVyxUVpwd1DEWTWysRE30TrOP7+/ty7d499+/axbds2rKysqFq1anmeiiAIgvCaKVUL1IABA3BwcMDS0hJLS0v69u2Li4uL+nHhIggl8WjyVMi8bVuu+Xlz2smK5v/tZtX/WqE63mnGxpgNxR4rICCAOnXqoFAoyM/Pf2ExC4IgCAKUsgVqxYoVLyoO4TWW/N9DIncn0PQdb4zNDajbfxCxa5aQlp3GAxK4LfPCMd+K6wcOkeuXi4HCQOsYMpmMTp060bhxYzH3mCAIgvDCiVu5CDq3f1UMsceSOLf/PwCc33ob9//l9oG39rNGKpidvH1iY/6J3VTscfT09DSSp9TUVDG9gSAIgvBCiARK0Ln67TwBOLf/P3Kz8pHJZLzZbxBIEqk56dzOTyBZlo1Dvg2XIk6Tr3p6F93NmzdZsmSJmN5AEARBeCFEAiXonFdtO6ydTMjNyud8RMG9FF07dcZNXtBV1zJpH79LBUlTm5sN2X5l+1OPqVQqycrKIjY2lt27d7+44AVBEITXkkigBJ2TyWXUa1cwL1TkngTyc5XIZDIa9y+YY+x+bjoJuTe4L8vBOc+eqLAjqKQntyq5u7vTpUsXAI4cOSKmNxAEQRDKlEighAqh6huOmNsYkZWeR8zhghsIu3XoiKvCEKvMHPqnnGQteQC0uFGP/fH7n3rMmjVrEhwcDMC2bduIi4t7cScgCIIgvFZ0nkAtWLAALy8vjIyMqF+/PgcOHCi27MGDB2natCm2trYYGxvj4+PDDz/8UI7RCi+KQiGnbht3AM7sSkCpLGhh6jB2Eo3jbuJ14hAX8lJIleVQKdeRE2H7kf53u5cnad68ObVr10aSJNavX8/t27df6HkIgiAIrwedJlDr1q1j9OjRTJ48mTNnzhAQEED79u1JSEgosrypqSnDhw8nIiKCmJgYpkyZwpQpU1i8eHE5Ry68CL5NnLGtZIZ/oCuSqiA5smjQAPMWLUClYlRiBOvJASDgWk02xBY/L1QhmUxG586d8fT0JDc3l3379r3QcxAEQRBeDzKpJD/jX5BGjRpRr149fv31V/U6X19funTpwldffVWiY3Tr1g1TU1NWrVpVovJpaWlYWlqSmpqKhYXFM8UtvDiSJGlNsJl98SKXuncn3s6StbX6MdWsOmaSPuvtd9Fl0Pv/1959x0dR538cf832zab3SggtCb0jHSxgOaynnPU4K4oV9e7U+50e3ol49oKKWE9F7BURFCmCtNAhhRJIJ71u353fHxsWYoISCSSEz/Px2MdmZ747852JZN5+v9/5Dt1Cu/3mdq1WK8uXL+ess87yz6QvhBDi1NHRrt/t1gLldDrJyMhg0qRJTZZPmjSJNWvWHNM2Nm/ezJo1axg/fvxRyzgcDmpra5u8RMfV0uzkprQ0dg7py+7YcM49+ANPqb65na4om8Q7n7+C0/Pbcz0FBARw/vnnS3gSQgjRJtotQJWXl+PxeJrNGh0TE0NJScmvfjcxMRGj0cjQoUOZMWMGN95441HLzp49u8ljZpKSktqk/uLEUb0qezeV8sM7mf5xTsOvmQZAhWqlsjaHj5Q6AK7KOZv5y18+2qZa3r6qsnLlSpYsWdKm9RZCCHH6aPdB5L9scWipC+eXVq1axcaNG3nllVd49tlnWbBgwVHLPvDAA9TU1Phf+fn5bVJvceLYrS6+f3MXWWuKKcisAqDbOecSaTTj1Wi4vGwFL6oq27S1BHjNDFgRy0/7jn7zwS8VFBSwbNky1qxZw8aNG0/UYQghhOjE2i1ARUZGotVqm7U2lZaW/uazzFJSUujXrx833XQT99xzD4888shRyxqNRoKDg5u8RMdmDjTQe0w8ABnf7Qd8QfuMq/8CQIlqY1rAQf7hUajU2kh2xnPwwx2UWcuOaftJSUn+6Q2++eYbmd5ACCFEq7VbgDIYDAwZMqTZLNFLly5l1KhRx7wdVVVxOBxtXT3Rzgae0wWNRqEwu5qSfTUA9Jp0HmFGMx6thkG7viEg1MgDHicuPIyo7sui9xf85gSbh8j0BkIIIY5Hu3bhzZw5k/nz5/PGG2+QmZnJPffcQ15eHtOnTwd83W/XXXedv/xLL73EV199xe7du9m9ezdvvvkmTz75JNdcc017HYI4QYLCTaSeEQtAxuIDgK8VauRV0wDY67byjGUv2RoNz2krAJiwZwCLfvjtqQ0ObWvKlCkkJyfjdDp5//33qaura/sDEUII0Sm1a4CaOnUqzz77LLNmzWLgwIGsXLmSRYsWkZzse6xHcXFxkzmhvF4vDzzwAAMHDmTo0KG88MILPP7448yaNau9DkGcQIMnJ4MC+7eVU1FYD0DapPMICwwmtrqBgNfnMquvgc89JhYbC9GioduPgWTt23FM29fpdEydOpWIiAhqampYsGABHo/nRB6SEEKITqJd54FqDx1tHgnx6757bQd7MkrpOSyGSTf0AcBWV0vpvfdhXbkKfZcuPHXZQ/yQW8s8g4MezmjyLCUMuPc8LAGBx7SPyspK3njjDSZOnMiQIUNO5OEIIYT4nTra9bvd78IT4tcMPjeZ6K7B9Bwa7V9mDgomYc4cdHFxOPPyuHHTe0QEm/i7G2q1DXRpiGXdm98c06NeAMLDw7njjjskPAkhhDhmEqBEhxaVFMTlfx9KyoCoJst1YWHEPPE4G7vHs6KygNneDZRh5hFdER689MqPZ+O3v/3A4UOOnGCzoaGBzMzMNjsGIYQQnY8EKHHKCho6DEvPnqgahe2bV/KPpHrWO2J4M9A3BipqlUJxdm6rttnQ0MD8+fP58MMPZXoDIYQQRyUBSpwSHDY3GYv3s3HRfv8yRVGYMvsZQrQGnDot3qVvMSlex1v1SawOzEKn6qh6Lxtnje2Y9xMQEECXLl1kegMhhBC/SgKUOCWU7K1h7ef7yPjuAPZ6l3+5wWzm0n8/gd6rUq3XcPa614kKMPIvu5EDhhKCnRay5q9E9Rzb/FAyvYEQQohjIQFKnBK69AknMikQt8PDth+bPo4nvFsPzvvzzaCq5Lut/KNmCTZPBP8w7KdBYyO8LIA9H68/5n21NL2B0/nbDywWQghx+pAAJU4JiqL45oUCtv1YgNPubrK+5x8uYnj/YQDsP5DJP+Jqya1P579hvmfkmTe7qNhw4Jj3FxAQwFVXXYXZbKaoqIjPPvsMr/fYWrGEEEJ0fhKgxCmj++BoQqLNOKxudq4qarZ+9IP/JC0oghF7Cxn78StMjNHzfdVAPghfDkDtZ7k4Co+9Oy4iIoI//elP/mc2NjQ0tNWhCCGEOMVJgBKnDI3mcCvUlu/zcDk8v1iv4bzn5hIVn4SntJQHNy8g3GDhFWsEGyw70Xu1FLyZgdfqamnzLUpOTuZPf/oTN954I0FBQW16PEIIIU5dEqDEKSV1RCyB4UasNU7WfbGv2XqNxULic8+imM2U79jC/Qc/w23rwr8NuRTryzDWayl8dwuq99gn4O/ZsycWi8X/2W63t8mxCCGEOHVJgBKnFK1Ow9nTetOldziDz01usYyxRw/C/v431nWLp6iykPvV9VRUjeHRqEXYFSfKPjvVS1o3P9QhGRkZPPfcczK9gRBCnOYkQIlTTkKvMP5wxwACgg1HLRMzdSqD4roAYN+fwfm6QraXTuSF2I8AaFheiG1neav26/V62bZtGzabTaY3EEKI05wEKHFKUhTF//OejFIcNnezMmOeeIZkjwKKQtrur0lwa/imviufhy0DoGxhJq4y6zHvU6PRMHXqVMLDw2V6AyGEOM1JgBKntPVf7eO713aw7J3MZg8P1prNXPD404TanbiAqws+RalJY64hn+0Bu9E4ofTtHXgdzcPX0QQEBHD11VfL9AZCCHGakwAlTmnJfSPRaBX2bS5j27KCZuvNPXpy/p9vxuhyY3XZmFHzLdaD5/NY9GeU66pRyx1UfpjTLHz9miOnN8jMzOT7779vy0MSQghxCpAAJU5pMSnBjP5jTwDWfLKHkn01zcrEXfpHxqcORPGqRBbuY6zFS2HxFP6T8AYu3Nh3VlC3onn4+jXJyclcdNFFvv2uWUNu7u8blC6EEOLUJAFKnPL6TUigx5BovF6V717bga2++bikvv+axQTFzOA9BTy06QOCPQlsqUvl5dgPAaj5bj/23VWt2m///v2ZOHEiZ555Jl27dm2LQxFCCHGKkAAlTnmKojDx2jRCYwKor3Lw/Ru7ms3zpBgM9H36ObQhIaiZO3mp/ie0ZUP4SlfKdyFrUFSoWJCFu7J1czyNHz+ecePGNRnULoQQovOTACU6BYNJx7k390Wn15C3q5LCnOatSYbEBOIfn41HUcjbtYabSz7BW3ARL0V9TY7pAKrVTcV7maguTwt7+G0Oh4OvvvqK+vr64z0cIYQQHZwEKNFpRCQEMvG6NC6Y0Z/EtPAWywRNnEjQdddQaTGjOuuZWraGmqKL+XfiPGq0dbgK66n6bE+rBpUf8sUXX5CRkSHTGwghxGlAApToVHoNi6Vrv8hfLdPl/r8yyhyKxuslpL6AMUXVFNb2ZnbC63jxYt1USsPa4lbv+6yzzsJsNlNYWCjTGwghRCcnAUp0WrUVNlZ+kIPX0zTIKDodfZ95jv5VNgD6V20mMTeNTdo63oj+HIDqr/bhOFDbqv39cnqDH374oU2OQwghRMcjAUp0Sh6Pl8+f3sz25QWs+7L5Q4f1MTGcMes/dC3zTXtwftmPBOw7n09CV7AyKAO8KhXvZuKpbV1XXHJyMhdeeCEAq1evJiMj4/gPRgghRIcjAUp0SlqthlGX9gBg03d57N/W/Ll3llGjGHPJFUTUWUH1cEnhehwHL+CZ+HfJMxbjrXP6BpW7W9cVN2DAACZMmADA119/zd69e4/7eIQQQnQsEqBEp9VjSDT9JyYC8P1bu6gttzUrE33bbYyO6UKI1c74qirMNYOpq+/BrIRXsWkdOA/UUrOo9ZNkjh8/nv79+2OxWDCZTMd9LEIIIToWCVCiUxt1WQ9iUoJxWN1899oOPK5fjIfSakl58inGVTuJ2LufuQe/x150KQUaO3Pi3gCgfk0RDZsOtmq/iqJw4YUXctNNN5GQkNBmxyOEEKJjkAAlOjWtTsPkm/pitOgoPVDH6o93Nyuji4gg8ZmnQasl/Odl3GfNJCZrIusCd/Be5DcAVH26B2dh6+Z30ul0hISE+D+XlJRgszVvBRNCCHHqkQAlOr2gcBPn/KUPAMX7anA5m0+UGTB0KNH33E2dUY+ncB3nFmwnMG8k70UuYlNQJri9VLy7C0+D63fVISsri/nz5/Paa69x8GDrWrOEEEJ0PBKgxGkhuW8E503vx2V/HYLeoG2xTPj11xNzxijCGuxoVA/nZlWjq01kdtx8Kky1eKocVH6Q1ewxMcciJCQEi8VCZWUl8+fPZ8eOHcd7SEIIIdqRBChx2ug2MAqd/nB4+uVs44pGQ+KcxxnqVAhwOAn0NDB+Uwz1Xi//iHsBj9aLY3c1tUsPtHrfcXFx3HzzzaSkpOByufj4449ZsmQJHs/ve2yMEEKI9iUBSpx2vF6V9V/tY9nbmc1ClDY0lJRnnmFIQQVaj5dEWxmDNw9kv6mQp2LfBqDux3xsO5pPi/BbLBYL11xzDaNHjwZgzZo1vPvuuzQ0NBz/QQkhhDipJECJ005FQT0bF+0na20Ju34qarbe3L8/Pe66hwF5pQD0Ly+ha05vfgzewJKYtQBUfpiDq9Ta6n1rtVrOOeccLr/8cvR6Pbm5uWzduvX4DkgIIcRJJwFKnHaiugQx4qJuAKxauJuyvLpmZcKuuZqeI8fQo6QSgJ4FQXgd4Twf9i4F4eWoTg8V/9uF1+7+XXXo06cPN910E8OHD+eMM874/QcjhBCiXUiAEqelwZOS6dovAo/by+LXduCwNQ1CiqIQ9+9H6W0Kom9+KRc32LEXTsUN3B/xX5wBHtxlNio/ymnWDXisoqOjOf/889FofP8MXS4XK1euxO3+faFMCCHEydPuAWru3LmkpKRgMpkYMmQIq1atOmrZTz/9lHPOOYeoqCiCg4MZOXIk33333UmsregsFI3CWdN6ExRuorbM1vJ4qKAgkp57juR6B1E7MrivuARn2TlUa+v4v7gXUbVg31lB3YqCNqnT119/zbJly3jrrbeorW3dg4yFEEKcXO0aoBYuXMjdd9/NQw89xObNmxk7diznnXceeXl5LZZfuXIl55xzDosWLSIjI4OJEycyZcoUNm/efJJrLjoDk0XP5Jv6otEq7NtSxtYf8puXSUsj5v/+AcC4nz7h0p12RmzpyjZDNh+n/AhA7Xf7sedUHXd9+vTpg8lkoqCggFdffZUDB1p/t58QQoiTQ1F/b/9DGxgxYgSDBw/m5Zdf9i9LT0/n4osvZvbs2ce0jT59+jB16lT++c9/HlP52tpaQkJCqKmpITg4+HfVW3Qu234sYM2nexh/ZS/SR8U3W6+qKsV//zu5S5ewtkc8KAqre9exO7mSlxz/oltuFJoAHdG3D0IXfnzPvauoqGDhwoWUlpai0WiYNGkSI0aMQFGU49quEEKc6jra9bvdWqCcTicZGRlMmjSpyfJJkyaxZs2aY9qG1+ulrq6O8PDwo5ZxOBzU1tY2eQlxpH4TErjq4REthifwjYeKffhhYuMT6NU4qPyMzGCiq4zcbXgURwx4rW7foPIWZjlvjYiICG688Ub69u2L1+tl8eLFfPbZZzidzuParhBCiLbVbgGqvLwcj8dDTExMk+UxMTGUlJQc0zaeeuopGhoauOKKK45aZvbs2YSEhPhfSUlJx1Vv0fkoikJwpNn/2WF1NZttXBMQQOJzz9GjzkFsdT1aVWVCRjx6p8pfo56CAC2u4gaqP9vzuweVH2IwGLjsssuYPHkyiqKwZ88erNbWT5kghBDixGn3QeS/7JpQVfWYuisWLFjAI488wsKFC4mOjj5quQceeICamhr/Kz+/+TgXIQ45mFvLB/9ez8Zv9zdbZ+zenfh/PUL//FKCbA4CXF4mboxnr3MvC9K/BwWsm0tpWFt83PVQFIWRI0dy3XXXcfnllxMaGnrc2xRCCNF22i1ARUZGotVqm7U2lZaWNmuV+qWFCxdyww038OGHH3L22Wf/almj0UhwcHCTlxBHU1XSQH2lg/Vf55KfVdlsfciFFxL5x8sZsr8EvcdLVK2GETsiecf6EfuGVANQ/dU+HPtr2qQ+KSkppKSk+D9nZWWxatWq427lEkIIcXzaLUAZDAaGDBnC0qVLmyxfunQpo0aNOur3FixYwLRp03j//fe54IILTnQ1xWkmbWQc6aPjQIWlr++kodrRrEzMQw8S1r0ng/aXoFVhvz4dgLutj+BOM4JXpeK9TDy1bTtuqb6+ns8++4wffviBDz/8ELvd3qbbF0IIcezatQtv5syZzJ8/nzfeeIPMzEzuuece8vLymD59OuDrfrvuuuv85RcsWMB1113HU089xRlnnEFJSQklJSXU1LTN/+0LATBuai8iEgOx1bn4bv4OvB5vk/Uao5HEZ58hGi1n7sjlsgID7vpUXKqT+4OeQBtjxlvnouK9TFS39yh7ab3AwEAmTZqEVqslMzOT+fPnU1ZW1mbbF0IIcezaNUBNnTqVZ599llmzZjFw4EBWrlzJokWLSE5OBqC4uLjJnFCvvvoqbrebGTNmEBcX53/ddddd7XUIohPSGbSce1Nf9CYtxXtqWPvFvmZlDMnJxP3nP+i9XsZmfMfIbQMx1weTX7aHj/qtQDFpcR6opfqb5t89HkOGDOEvf/kLQUFBlJeX89prr5GZmdmm+xBCCPHb2nUeqPbQ0eaREB3X3k2lLJ63A4ALZvSna7/IZmVKHnuMqnf+R2V4KMuTY2gIbGDRyIPM6/E88Yu0AIRd3gvLkF8f19da9fX1fPTRR/7JNseOHcuZZ54p80UJITqtjnb9bve78IToqLoPjmbAmUl07R9JbLeQFsvE3HcfpgH9MdfVE+h2E1FrZNT2CO4p+AeacREAVH22B2dhfZvWLTAwkOuuu87/IGK73S7hSQghTiJpgRLiV3g9XhSN8qvhxFVURO4ll1LmdrC2ewIosCGtisCR6cwuvhtHdhXaUCPRdwxCa9G3eR1zcnLo1q0bOp0OOPapQIQQ4lTS0a7f0gIlxK/QaDX+MKKqKkW7q5uV0cfHEzfnccIb7PQu9A3qHpIVSv6OrXzbfyPaCBOeageVH2S16aDyQ3r16uUPTx6PhwULFrB169Y2348QQojDJEAJcQxUVeWHtzL57KlN7N5wsNn6oAkTiLj5ZpIrakmosaJBYfyWSF5d/wJVfzCg6DU4dldT+uo23NUnbvqBLVu2kJOTw2effca3336Lx3N8j5YRQgjRMglQQhwDRVEIDDcCsOzdLKpKGpqVibrzDixDh9L3QDGBTi9Gl5YBOcHM3PkAlqu6oZh1uPLrKH1+M/bs5pN0toVBgwYxbtw4ANatW8fbb79NXV3dCdmXEEKcziRACXGMhk/pRkJqKG6Hh8XzduByNG3dUXQ64p96CkN4BMN352H0mPgpzUVhQz7/rXiJmDsGoU8IxGt1U/7WTmqWHmj2zL3jpdFoOPPMM/nTn/6EwWAgLy+PefPmySOMhBCijUmAEuIYaTQK51zfh4BgA5VFDax4P7vZI1X0MdEkPPlfTB4vZ+3YyZj1g1BVhS/3fsHSmh+Jnj4Ay4hYUKHuhzzK39yBp75tZywHSEtL4+abbyYyMpK6ujrefPNNtm/f3ub7EUKI05UEKCFawRJiZNKNfVAUyF5Xwq6fipqXGTmSyDtuB2DGhlXEZg+l/54QXvlkNpsrtxB2SU/Cruh1eFzUC5txHKht87pGRkZy0003kZ6ejlar/c1nTAohhDh2Mo2BEL9DxuL9rP18HzqDhuseG4U50NBkver1kn/TzTSsXk12l0T2hhlx6rysGVDJn6bcwVVpV+E+aKXivUzcZTbQKIScn0Lg6Pg2n4JAVVXKy8uJioryL3O5XOj1bT+lghBCnCgd7fotLVBC/A6DJyWTPiqOC27r3yw8ASgaDfH/fQJdTAw98wvQe3QY3BomZESyet5rPLD0flwRCtG3D8TcPxK8KjVf76NyQRZeh7tN66ooSpPwdODAAZ5//nlyc3PbdD9CCHE6kQAlxO+gaBTOvC6dxLTwo5bRhYeT8MzTaDRaztyZjdsUjxfoXhRIwLs7mDH/SvIdhYRfmUbIlG6gUbBtK6f0xS24WrjLr6389NNP1NXV8c4777BmzZpm47iEEEL8NglQQrSB6oNWsteVNFseMHgw0TNnolXhwk1r0XYdS5UhAItDR9/lHh556i8sz19O0OgEom7pjzbEgLvMRulLW2jYXHpC6nrFFVcwYMAAVFVlyZIlfPzxxzidbT+QXQghOjMJUEIcp+pSKx/O3sCytzMp3lvTbH349X8haNIkcLk478u3GZI0lC0hqXgV2B9ew50/3snzm55Hl2Qh+o5BGHuGorq8VC3Mpuqz3aiutp29XK/Xc/HFF3P++eej0WjYuXMn8+fPp6Kiok33I4QQnZkEKCGOU0iUmeQ+EXi9Kkvm78D2i2kJFEUh4aknCZ06FVSVtE/f5PYAPR91uZIi71AAXtv+Gvf+7waqPFVE/qUvQWd1AQUa1pVQ+spW3JVtO3u5oigMHz6cadOmERgYSGlpKfPmzaOy8sRM8CmEEJ2NBCghjpOiKEy8No3QmADqqxx8/8auZhNkKno9sY88TPT994OiELz4C946uIz4uguxFf6JkNoA4heXMXfm9aze+C0h5yQTOa0PmgAdrsJ6Dr6wGVtW24ebLl26cPPNN5OUlESPHj0ICwtr830IIURnJNMYCNFGKgrr+fjxjbhdXoZPSWHYBSktlqtdsoSiv/4N1W5H27MX/x5zI3vLdzH54AosDg1eVMLGDWDazf+CBg8V72Xhyvc9jiVoYhLBZyejaNt2qgO3243X68Vg8N1R6HA48Hq9mM3mNt2PEEL8Xh3t+i0tUEK0kYiEQMZflQrA+q9zyT9Ki1HwpEkk/+8dtJGReHbn8I9vnmRyXC/ei7uG3dFaNCjUrNzG03ddRUlFLtG39McyMg6Auh/zKX99O566th30rdPp/OFJVVU+//xzXnvtNQ4ebP7gZCGEEBKghGhTaSPjSB8dByps/7HgqOXM/fqRsvADjD174Ckt5Yp3H+WROFhsuZHvuidgM3jQVthY8ND9fP/Jm4Rd1IPwK1NRDBoc+2o4+PxmHLnNB6y3hfr6eoqKiqisrGT+/Pn8+OOP2O1tOwZLCCFOddKFJ0Qbczs9bF9eSP+zEtFqf/3/UTx1dRTedTcNa9aARkPFtNu4sa4bWs02zqr6nuSDRnb2tnPjTbMYFT8KV6mVind34S61gQZCzk0hcGxCm89e3tDQwCeffMK+ffsAMJvNjB07lmHDhskM5kKIdtHRrt8SoIRoZ6rLRcmsWVR/9DEA3kuu4EbLGEpsJaRZ3qcwrgBFq+H2gbczNeFiAgJCqPliH7YtZQCY+kQQfnkvNCZdm9bL6/WSmZnJsmXL/FMcBAUFce211xIdHd2m+xJCiN/S0a7fEqCEOIE8Hi9rP99HfI8QUgZEHbWcqqpUvv46pU8+BYB+zDge6H05G8rqMcd+iS50A1oPTF3fg6Sobpx/20wMBxSqv9oHHhVdhInwq9MxxAeegGPwsHXrVpYvX45Go+H2229Hp2vbsCaEEL+lo12/JUAJcQJt/SGfnz7ajTFAxxUPDiM48tfvaqtd/B1Ff/sbqsOBIT2deZNvY+F+B/rQ9XQxL+bs9REY3Bq0BgPjr7me3uljqXw/G0+1A3Qawi7ujmVo7Ak5FrfbTVVVlf+5eh6Ph48++ohBgwbRq1evNu9GFEKII3W067cEKCFOII/by2dPbeJgbi1RXYK4eOYgDL/R1WbbsoX822bgqaxEFxPDyr88yKNZLjSmAhJiFjBiu464ChMAXfoO4Jxpt+P+vgJ7dhUAAUNjCLuoO4pee0KPLSMjg6+++gqApKQkzjrrLLp27XpC9ymEOH11tOu3BCghTrC6SjsL/7MeR4ObsDgL50/vR2hMwK9+x1lQQP4t03Hu3YsmIIDCO//BbXtNOLx1hCd/SLfiIoZmhaLzatCbzUy87ia6qKnUfZ8HKujjLERck44u4sTN42S1Wlm9ejXr1q3D7XYD0L17d8466yzi4+NP2H6FEKenjnb9lgAlxElwMLeWRa9sw1rjxGDWMemGPiT3jfjV73hqaym48y6sa9eCRoNnxkxuqEnmYK2N4PgfCNStYOzWCKKrTcSmpXHVw0/g2FtD5QfZeBtcKCYt4Zf3wtwn8oQeW21tLStXrmTTpk14vb7n9vXu3ZtLLrlE7tgTQrSZjnb9lnmghDgJYlKCueLBYcR2C8Zpc7P0zZ04be5f/Y42OJgu814l5LJLwetF+8KTLHCtpX9cCLVF51BRfRXLRtexIa2K97puYnPZFkw9w4ia0R9DchCq3UPF/zKpXpSL6jlx/58UHBzMH/7wB26//Xb69+8PgM1mk/AkhOjUpAVKiJPI4/Ky6sMcUgZE/WYL1CGqqlIx7zXKnnkGAPPEM3lm+NV8kV2FYigjoddCajwF6BQd9w69l9g1Ndhq6jgj5SIc68sBMHQNJuKqdLTBhhN2bIccPHgQRVH8Ux00NDTw008/MXr0aAID2/4uQSHE6aGjXb8lQAnRzop2V2MJNRIS9Rt36C1aRNHfH0B1OjH26cPiK+/jiY0VoDhJTv2GSmUdgVYtl61MRPFCQEgok8+7DeMWUB0eNIF6wq9Mw9Q99KQc1yGLFy9m7dq16PV6zjjjDEaNGiXP2BNCtFpHu35LgBKiHdWUWflo9kZQYPKNfUlKD//V8tZNmymYMQNPVRW6uDj2zpzFXevqcLg9JHTJoCHwM0KrtZy5Iw5L45NeBo48j97e4XhK7aBA8OSuBI1LRNGcnGkH9u3bx/fff09RUREAJpOJMWPGMHz4cP/z94QQ4rd0tOu3BCgh2lF9lYNvX91O6f5aFAVGXtqDgWcn/eqcSs68PN8derm5aCwW7A89yk2ZekrrHISGFxCY9D71tkqG740mda8ZVAgOj2bygJvQ7PeNuzKlh/tmLw84OeOUVFUlKyuLZcuWUVbmm0E9MDCQCRMmMHTo0JNSByHEqa2jXb8lQAnRztwuDysW5JC1phiAnsNimHhtGnrD0edx8tTUUHDHnVjXrwetFvN9f+P2+q7sKKxFb6ijZ7/PybfuJKrKyAVZ3aDKiikomGumzaZucT64VbThJiKuTseQcPLGJXm9XrZt28by5cuprq5m2LBhXHDBBSdt/0KIU1dHu35LgBKiA1BVlR0rCvnpw914vSqRSYGcN70fwb8yj5PqdFL8z4ep+fxzAIKv+zP/TjqLb3eWAh6GDl5Ntm0RWo/CH/LTuWTCNIaMPw9nQR0V72fhqbSDTiF0Sncsw2NP6kzibrebTZs2kZ6eTlBQEOAbfF5ZWUlaWprMai6EaKajXb8lQAnRgRTmVLF43g7s9S76n5nI2Ct6/Wp5VVWpePVVyp59DoDAs8/m43Nv4rmf8gEYmL6PQu072D124ixxPD3hafpG9mX36jV4f6zGUu8LLwGDowm9uAeaX2n1OtHee+89du/eTXx8PGeddRbdu3dvt7oIITqejnb9bvd5oObOnUtKSgomk4khQ4awatWqo5YtLi7mqquuIjU1FY1Gw913333yKirESZDQK4wrHhxG79FxjLzktwOEoihETp9O/JNPouj11H//PRe//W9ePLcLBp2GLZndCK68l3hLEsUNxVz37XV8tOMDvn97Ll9vn0uOezMoYN1UStncLbjKrCfhKJvzer3Exsai1+spKirif//7H2+//TYFBQXtUh8hhPgt7RqgFi5cyN13381DDz3E5s2bGTt2LOeddx55eXktlnc4HERFRfHQQw8xYMCAk1xbIU6OoHATE69NR9f4LDuvV2XrD/m4XZ6jfifkDxfQ5a030YaGYt++ndRZd/HhOVFEBhrZWxREWdZ0BkWMweV1MSvjP5SPjyQgNIzN+Uv4sfgDPDoPrhIrpS9uwbq97GQdqp9Go+Gss87irrvuYsSIEWi1WnJzc5k/fz4LFizg4MGDJ71OQgjxa9q1C2/EiBEMHjyYl19+2b8sPT2diy++mNmzZ//qdydMmMDAgQN59tlnW7XPjtYEKMRvWfvFXjK+PUB0chDnTe9HYJjpqGWdBw6Qf/MtOA8cQBMYiOk/T3Brlo5dxbUYtHD+2Cx+LH0Hr+qlX2A6lx7oy4F16zFpLYxPuoJQxTf5ZeCYBELO64qibZ//x6qurmb58uVs3boVVVU577zzGDFiRLvURQjRMXS063e7tUA5nU4yMjKYNGlSk+WTJk1izZo17VQrITqehF5hGC06Sg/U8eFjGyjaU33UsobkZJI/WEDA0KF46+uxzryDN6MKmdwnBqcHPl+exoSQBwk1hrK9PpPn4pfSa9qlKAFalux/i6zaDQDU/1RI2bzteGocJ+komwoNDeXiiy/mtttuY+jQoQwZMsS/rrCwkLq6unaplxBCHNJuAaq8vByPx0NMTEyT5TExMZSUlLTZfhwOB7W1tU1eQpxKktLDueKBYUQkBGKrc/HF05vZsaKAozUe68LCSHrjdYIvnAIeD5Wz/sWsgyuYMT4FgC9+DiTF8RDp4b2pdlTzUOmzaG8YRbdhI/D01xFxbTqKSYvzQC0Hn99E3coCvPZff27fiRIVFcUf/vAHdDodAB6Ph08//ZTnnnuOpUuXYrW2z5gtIYRo90Hkv7xdWVXVNr2Fefbs2YSEhPhfSUlJbbZtIU6W4Egzl/11CD2GRuP1qqxYkMPyd7PwuLwtltcYDMTPmUPk7bcDUDl/Plcunsezl6Rh0GlYmemhdt8tnJt8ESoqL+a8yg+DShh+3TWY+0QSc8cgNNFGvA1uahblUvz4emq+zcVT6zyZh91MQ0MDZrMZt9vN6tWree6551i5ciUOR/u0lAkhTl/tFqAiIyPRarXNWptKS0ubtUodjwceeICamhr/Kz8/v822LcTJpDdqmXRDH9/deQrkrD9IdenRW2AURSHq9hnEPzEHRa+n7rvvGPD0gyz4Yy8iAw1kFdv48afx/KXXXzFoDCwvWME1i68lpyoHbbiJtbZvWF+2iFp3JardQ92KAornrKfy4xxcv7LfEyk4OJgbbriBK6+8kpiYGBwOB8uWLeO5555j7dq1uN3t01ImhDj9tFuAMhgMDBkyhKVLlzZZvnTpUkaNGtVm+zEajQQHBzd5CXGqUhSFwZOTmXL7AM78czoRxzCLeMiFF9LljdfRhoRg37qNkHtv4dML4kmPC6a83skrX0fyl27/Jc4SR15dHtcsuoZF+xbR44xRVFrK+Db/NVYd/IQyewF4VKwbD3Lw6QzK39mFY3/NSTjqphRFITU1lVtuuYXLLruM8PBwrFYrixcv5sCBAye9PkKI01O73oW3cOFCrr32Wl555RVGjhzJvHnzeO2119i5cyfJyck88MADFBYW8s477/i/s2XLFgBuvPFGUlNTuf/++zEYDPTu3fuY9tnRRvEL0RYO5tZSUVRP79HxRy3jyM0lf/p0XAfy0AQFEfnU0/x9v4mlu3xTBNwwPoo87XzWFv8MwNXpVzNzyEzKdu9h16pl5Pz8ExZ3CGkhw0m0HJ7g05AcTNC4REzp4SftAcVH8ng8bN68mQMHDnDppZf6hwCsWLECi8VCr1695N+6EJ1AR7t+t/tM5HPnzuWJJ56guLiYvn378swzzzBu3DgApk2bxv79+1m+fLm/fEvjo5KTk9m/f/8x7a+j/QKEOF72ehcf/Hs9DdUO+o5PYMzlPdHqWm5cdldVUXD7HdgyMkCnI/bhh5kX1JeXl+8FYFLvKFLTf+atXfMBGBQ9iAdHPEhaeBpul4vcTRvYtWoZXZL60VXXm4ZNB8Hj+xPisaiEntWV4OGJKEfZ/8nidDp54okn/F16cXFxpKamkpqaSmzsyX1sjRCibXS063e7B6iTraP9AoQ4XqpXJWPxAdZ9tQ9UiOsRwrk39yMg2NBiea/TSfGDD1H79dcARNx8Mz+Nu4y/f7YTp8dL77hgbphk5cnNj1DvqgfgzKQzmT5gOukR6U225al1sv/DtSjZDgxa3/xULo0TTT8LCRcOQmcxnsAjPzq73c6GDRvIzs5uNpt5cHAwo0aN4owzzmiXugkhfp+Odv2WACVEJ7F/WzlL39iJ0+7BEmrkvOn9iOna8n/jqqpS/sKLlM+dC0DQeedy8Na/cvPCHVQ0OIkMNPLvy2NZVvIOi/cvRsX3Z2JC0gRuHXArvSMOd5nXlpWy84cfaFhfQhdNLwJ0vn26VCf1kfV0uWI4IclxJ/joj66+vp6cnByys7PZu3cvbrebc845h9GjRwNgtVrJycmhZ8+eWCyWdqunEOLXdbTrtwQoITqRqpIGvn1lO1UlVrQ6DROuSSXtjKOHl+rPP6f4//4JLhfmgQPRPPYkN3+5l6ySOgw6Df/9Y3/6drXz6rZXWZx7RJBKnMD0gdPpE9HHvy1VVSnKyqTw2y0EFgUQrIvwrdBAwMBogsYloo02odG03wOLXS4Xubm5xMTEEBISAvjGVX7++ecoikJSUpK/qy8yMrLd6imEaK6jXb8lQAnRyThtbpa+uYv928rp2j+S82/t96tjfhrWrafgjjvw1taiT0oi4oUXuX9dDd9nlgIwpkckd5zZg6iIGuZtm8e3ud/iVX3zT41LHMetA26lb2TfJtt0u5zkfbsR79YGTA2HHz1To6+gQLeXxPED6XnGKAwm8wk4A62zY8cOVq1a1ex5exEREaSmpjJy5EiCgoLaqXZCiEM62vVbApQQnZDqVdm2vID0kXEYzLrfLO/Yl0v+Lbfgys9HExxM/HPP8XJNKK+u3IfH6/sTMbxrOHec1YOEqDpe2/4ai3IX+YPU2ISx3DrgVvpF9Wu2bWd+HXUrC7BtL/cvq7AXkWPdhKVvFOnjJpLcbyAabfu1TIHv+XvZ2dnk5OSQm5uL1+s7tvvuu4/AQN90EZWVlVgsFozG9hnbJcTprKNdvyVACXEaUFWVnz/dS89hMUR1abk1xV1ZScGM27Ft3gw6HXGzZlE3YTIvr9jLxxsLcHp8gWJgUih3nNmDbvFW5m+fz9f7vvYHqTEJY7h1wK30j+rfbPuuchuVS3bj3F6NovpaxOpclWTXrKdUW8iwSy5j0LlTTtAZaB273c7evXspLS1l4sSJ/uVvv/02eXl5dO3a1d/Vd6grUAhxYnW067cEKCFOA7t+KuLHd7PQ6TVMvDaNXsNjWyzndTgofuABahd9C0DE9FuIuu02SmweXl2xjwXr83C4fWGpd1wwd5zZg7QkB/N3vMY3+77Bo3oAGB0/mukDpjMwemCzfXjqndSvKaLupwJw+v782D0NeHpo6HntRDQBepw2Kw6rlaCIjjMOyePx8PLLL1NeXt5keWxsLKmpqaSlpREX136D5YXo7Dra9VsClBCnAYfVxZLXd5G3swKAgWcnMfKS7mi0zedrUr1eyp5/nopXXgVAGxlJ2BVXEDp1KtUBIcxftY//rT2A1ekLSz2jA7n9zB707+rmjZ3z+WrvV/4gNSp+FLcOuLXFIOV1eGjYWEL9ygI8Nb5n7CkGDZZhsRSwh+/ee5EuffqTPnYivUaMwmAOOBGnplVUVaW8vNzf1Zefn+9/qHOPHj245ppr/GXdbrf/IchCiOPX0a7fEqCEOE14vSrrv9xHxmLf404S08KYfGNfTIH6FsvXfPklpU8+hbvUN5gcnY7gSecQds012Hr14a01+3lr9X7qHL7JKlMiLdw6oTtDe3h5a+frfLn3S3+QOiPuDG4dcCuDYwY324/q8WLbXk7digJcxQ2+ZagcqN9Fds06qp1l6AxGegw7g95jJ5Lcf1C7j5c6pKGhgd27d5OdnU2vXr0YNGgQADU1Nbz44ot0796d1NRUevXqJVMkCHGcOtr1WwKUEKeZPRml/PD2LtxOL8GRJs6b3p/IxJafqae6XNT98AOV776LbWOGf7kxPZ3wa66GMyfxv00lvL46l2qrC4DEMDO3TujOyFSFd3a9wRd7vsCt+kLWiLgR3DrgVobEDGm+L1XFsbuaupUFOPZU+5eXe4rYXrqSUrsv+AWGhXP986+hN3TcgdwZGRl89dVXTZYdmiKhV69eREVFyWzoQrRSR7t+S4AS4jRUUVjPope3UVfp4MK7BpKYGvab37FnZVH13nvUfPU1qt0OgDYkhNDL/4jhsiv4IM/F/FX7KK/3dcfFBpu4ZXw3xqVr+V9W0yA1PHY4tw64laGxQ1vcl7Ow3nfn3rYyGqeewm60saNsFZ4EDZc99C9/2cxVP5KQ3ofgyOjjOSVtSlVViouL/V19xcXFTdZPnTqV9PT0o3xbCNGSjnb9lgAlxGnK3uCiaHc13QZGtep7nupqqj/5lKr338dVWOhbqNEQOHEilqlX8oUmjldX5lJS6wtZkYEGbhrbjTP76nk/500+3/M5bq8vSA2LHcatA25lWOywFvflrrRT/1MhDRtKUF2+weuaED3BE7oQMCSGhroq5s34CwBJ6X1JHzeRXiPGYAxo//FSR6qpqfHPhp6Xl8fMmTMxmXzzY61du5bCwkJSU1Pp0aOHf7kQoqmOdv2WACWEAHyzmK//KpfxV6VisrQ8LupIqsdD/YoVVL37Hg1r1viXG7p3J+jKK/khaQgv/lxEYbUNgNAAPTeMTmHyQAMLc97h0z2f+oPU0Jih/iDVUteWp8FFw89F1P9chLfB9x1NgA7Szfy88xP2Z272l9XqdMR070VCajrpYycS1aXr8ZyWNudyudDrD5/f1157jcLGIKrRaEhJSZEpEoRoQUe7fkuAEkKgqiofPraB8vx6QqLMnHdrPyLiWx4X1RLHvn1UvfseNZ9/jtdqBUATGEjQxRezfsCZPJtlZ3+Fb3mQSce0UV25YJCJj/f+j093f4rL6xs/NTh6MLcNvI3hscNbDFJepwdrxkHqVhXiqfS1cCl6Dbo+weSrOWxfv5TKosMPD54y8wF6jfA98648/wBF2ZnE90ojIrELiqb5HYjt4cCBA2RnZ5OdnU1FRUWTdcnJyUybNk3GSwlBx7t+S4ASQgBQllfHt69sp67Sjt6o5expvek2qJXde/X11Hz2OVXvvYdz/37/8oAxY9g96lyeqAonp8wXpAIMWq49I5kLhwTwWW7zIDV9wHTOiDujxfCgelRsOxvv3Cus9y1UwNw3Em9vIwer91G0O5PRV1yDJdQ3vmvtJx+w+sN3ATAGWIjrmUp8r3Tie6UT26NXh+j2Kysr84ep/Px8evfuzRVXXAH4Qu7y5ctJTk4mOTkZbQe5E1GIk6WjXb8lQAkh/Gz1Tr57bQeF2dUADD2/K0POS0anb93FWvV6aVjzM1Xvvkv9ihXQ+GdGn5TEwYl/4CldKpsqfV1xRp2GK4d34bLhgXx14D0+yfkEp9c3EH1g1EBuHXgrI+NGthykVBXHvhrqVhTgyKnyL9eGmzD1CsPUKwxj91A0Ri27Vv3IzuXfU7w7G5fD3mQ7iqLhz0++RERiEgAuhx2dwdiuLT/19fU4nU7Cw8MBX7h66aWXADAajfTs2ZO0tDQZNyVOGx3t+i0BSgjRhNfjZc0ne9m6LB8Ac5CeK/85AnOQ4Xdtz5mfT9X7C6j+5BO8tbUAKGYz9WPPZl7kUJZYffMjGbQa/jg0kcuHB7G4YAEf53zsD1IDogZw64BbGRU/6qihxlncQP3KAqzbysBzxJ81rYIxJcQXqFLD0EQYqSjIoyg7k6Ic38taW8vtb3zgn19q8cvPkrt5o6+FKjWdhNR0olN6oNP/9tiwE6W8vJzVq1eTk5NDQ0ODf7lGo6Fr166MHTuWlJSUdqufECdaR7t+S4ASQrQoe10Jaz/fS1CEiUvvOzxvU32Vg8Cw1s/B5LVaqfn6a6refQ9HTo5/ubPfID7tMpL/aZPxarToNAqXDEpg6sgQfihayEc5H+HwOADoH9mfWwfeyuj40UcNUl6HB8feauw5VdizK/FUOZqs14YYMaU2tk71CEVj0mGvr8cUeHjM19v3zaA8/0DT7+l0xHTrSXxqOuOumtZuY6i8Xi8FBQX+rr5Dj5a56qqr6NWrF+B7MLLNZiM2NlbGT4lOo6NdvyVACSGOyuPxYqt1+QOTrc7J2w+uIaZrMAPOSqJr/0g0mtZdoFVVxbZxI5Xvvkfd99+DxzdbuTcqmhVp43g1sC81xkA0CkwZEM9VI0NZfvDDJkGqX2Q/bh1wK2MSxvxqQFBVFXe5DXt2FfacKhz7qsF9xJ88jYIhOdgfqPRxFhRFwe10cnDfHn8LVWF2JrbaGgAiErsw7am5/k2s/XQh5qAg4nulE5HUBY3m5I5NKi8vJycnh2HDhvnv7vv+++/56aefCA4O9j+nLzk5WR4tI05pHe36LQFKCHHM9m0u47vXduD1+v5sBEea6D8xifRRcRjMrb84u4qLqVq4kOoPP8JTWQmAqjewM3U4r0YOZU9oIgDn9Y3l6lFh/FzxCR9mf4jd4xvD1DeiL7cOvJWxCWOPqaXF6/TgyK3Bke1rnXJXNB0LpQk2+MdOmXqGoWk8JlVVqT5YTFF2Joqi0HvcmQB43G5e/MtU3E5fsDOYzcT1TCOuZxoJvdKI65WGMeDkP8Jl8eLFZGRk4HK5/MuMRiM9evQgLS2N3r17yyB0ccrpaNdvCVBCiFapr7KzfUUhO1cV4mick0lv0pI+Ko4h53YlILj1Y6W8Dgd1ixdT+e572Ldv9y8vTujBO7HD+SmhP26NjrPSorl2TDgbqz5jYfZCf5DqE9GHWwfcyrjEca3qsnKX23xdfTlVOPZW+yfrBEADhqTG1qnUcF/r1C9a25w2Kxu//oyinCyKd2fhtNmarO82eBiX/O1h/+fqgyWERMeclG41l8vFvn37/F19h8ZNBQQEcN9996Fp7IK02+0yCF2cEjra9VsClBDid3E5PeSsK2HrsgKqihvQ6BT+/Njo3xWgjmTbupXK996j9tvF0NiCYrWE8HnScL5JPoNKcwhje0Zy3egIttd/yQfZH2Bz+4JL74je3Nz/ZkbGjSRA37ppCVSXF0dujX/slLusaRjSBOoP39nXMwztLyYb9Xo9VOTn+br9sjMpysmi78RzGHGJbxqCuopy5t02DXNwSOP0CWnEp6YT063HCX+un9frpbCwkOzsbLRaLRMnTvQvf+aZZwgICCAtLY3U1FTi4uJk3JTokDra9VsClBDiuKiqSkFmFZXFDQw4K8m/fMWCbKKTg+k5LLrV0yAAuMvLqfrwQ6o/WIi7tBQAr0bLT/H9+CJlNLvCuzK8WwTTxkSSZfuqSZDSKBq6h3anb0Rf+kb2pU9kH3qF9kKvPfa76NyV9sOtU3uqUZ2ewysVMCQFNd7ZF44+IbBZ6xT4pnM4NNj8wLYtfDbnETxud5MyGq2O6JRujLhkKj2GjgDAZbdjq6slMCLihI6pKisrY+7cuRx5GTg0bio1NZWuXbvKuCnRYXS067cEKCFEmysvqGPhvzcAvmkQ+o5LoO/4xN/VOqW6XNR9/z2V772HbWOGf/m+kHi+6DaG5YmD6N01iuvHRbLP+S1f7v2SMltZs+0YNAZSw1PpE9GHvpG+YNU1uCvaYwgoqtuLY3/t4dapg9Ym6zUWHcaevjBl6hmKNrDl43S7XJTm7vG3UBVm78JaUw3A+XfcR/qYCb5j27SBz+b8C41WS1BkFCFRMYRExxASHUtwdAwJqb0JjmzdJKdH09DQwO7du8nOzmbPnj1Nxk2NGjWKSZMmtcl+hDheHe36LQFKCNHm7A0udv1UxPblBdQ3TiOg0Sn0GhpD/7OSiEoK+n3bzcz0de999TWqw7fdWkMA3yUP5+uUUUT16MqMiT1IS1TJrctkZ/lOdpTvYGfFTmqdtc22F6ALoHdEb3+o6hPZh8TAxN/swnLXOHwD0XMqse+uRnU0bZ3SJwT6W6cMiUEo2pa3p6oqtWUHKdm7m/he6QRFRAKwc8UPLHn1Bbwed4vfO//2e0kf6+uGK8jayYYvPiY4KroxaPlCVkh0DCbLsT+OB3zjpnJzc8nKyiInJ4c//vGPdO3aFYB9+/axcuVKf1dfWFhYq7YtxPHqaNdvCVBCiBPG4/Gyb3MZ25blU7LvcID5w+0DSO4b8fu3W11N9SefUPX+AlyND+L1KArrYvvwdcoodkWmkBIfzsCkUP/LaK4is3InOyp2sLN8J5mVmf4uvyOFGkPpE9GHPpF9/F2AUQFHb+1RPV6cB+r8rVOu4oYm6xWzDlPPUEy9wjH1CkN7jK1wXq+H+spKaksPUlN2kJrSEmpKD1JbVsqE624kplsPADZ/9zXL3nilxW0YLRbOm3Ev3YcMB6C2rJTy/AOERMcQHBWN3nj0weNer29A/aHB5t988w0bNmzwr4+OjiYhIYHIyEgiIyNJSUnBYDi+8W9C/JqOdv2WACWEOClKcmvYtqyA4j3VXPPoSLQ634W5LK+OkCjz75oGQfV4qF+xgqp336Vhzc/+5W5Fw/7gOHLCktgdmkhOaBLlkQn06RLBoC6+QNUvMZA6b5G/lWpHxQ5yqnJwe5u3+kQHRDcZT9Unog8hxpAW6+SpdTaOnWpsnbI13Z4+ztI471Q4huQgFO3xTchZWVRAwa4d/oBVU+YLWYe6Bv/0rydISOsNwJYli/jh9cNzWAWEhPq7BkOiY+gz4WzCYuNb3E9VVRVZWVlkZWWRl5fHLy8d9957L0FBvpbFrVu3Ul5e7g9XkZGRGI0ndqC86Pw62vVbApQQ4qRyuzz+QeVer8p7//wZW72L9FFx9J+YSEjU73uor2PvXqree4/axd/555Rqsl6jY19IAjlhSeSEJrE7LBE1sQsDksMZlBTKoC6h9Iwxc6BuDzsrDnf97a3ei0rzP5Ndgro0aaVKC09rduef6lFxFtRhz67EnlOFq6C+yXrFqMXUIxRjrzD00QFoQ41og41H7fJrDZfdTk3ZQUKiY/wtTTtX/EDGN59TU3oQp83a7DtT/zWHxLQ+AGz7YTFrP13oC1hRsY1BK4bg6BgMQcGUVtVQXl5OeXk5NTU1XH/99f6uzwULFpCdnd1k28HBwf4wdc455/gn/RTiWHW067cEKCFEu6mrtPPV81uoKmm8mCuQ0j+SAWcmEd8r9HfdTq+qKu6iImw7dmLfsR3b9h3Yd+zAW1/frKxVZ2TPoVAVlkRueBfCe3RlUJcwBnYJZWBSGNHBkFmZ6Q9VO8p3UFBf0Gxbx3Lnn6feiX13NfbsShw5VXitLYxx0oA22Ig21Igu1Ig2zOT7ufFdG2pEYzi+O/NUVcXeUO/rHjzUclV6kFGXX0VASCgAK959g41ffXrUbUx95HES0/sCkLdjGwWZOwiOjCI4KprCymrKqqupqKikvLy8ybP79Ho9Dz74oP93+/nnn1NaWtqktSoyMpLw8HC5A1A00dGu3xKghBDtSlVV8jMr2fpDAXk7K/zLIxIDGXN5TxJTj3+wsur14jxwAPuRoWrXLlS7vVnZWn0Au8N83X45YUmUxqXQJbUrg5IaQ1ViKKqm4XCgahxT1dKdf3qNntSwVF9LVWRf+kb0JSUkBa1Gi+pVcRXW+8LU/lrclXY8NY6mD0I+Co1FhzbU1CRk6RrDlTbMhCZAd9xzOdnqaqksKqT2iK5B3xisg9SWl3HTi2/4B72vfP8tNnzxcdMNKAqW0DCCI6OYcP2tePRGX2tVRTl9evYgOCoaY4CFl156ibKy5udOURSio6OZPn26/1gqKioICAjAbDYf17GJU1NHu35LgBJCdBhVJQ1sW1ZA1tpi3E4vl94/hLjuLY81Ol6q241j7z7sO3Zg27Ed+/Yd2LOywN28VajCFOzr9gtNJCcsCWePVHr2TGRQlzAGJYWSGhtEpb3MH6YOhauj3fmXHpHepKXq0J1/qlfFW+/EXeXAU23HU+1o/Nn32V3laHrH31Eoeo0/TPkClhFt6BE/Bx1fN6HX40HRaPzBZvf6NeRu3khteRm15WXUlZf5H28DcNNLb/qnXTgybBnMAZii49CFhoE5ELdGh8dgpLKqCqfTSXR0NLfddpt/O6+88golJSVYLJZmLVZRUVGEhob+7mMSHV9Hu35LgBJCdDj2Bhf7tpSRPurwrNirP96Nvd51XNMg/Bav04kjOwf7zh3Ytm/Htm0Hjr17ULzeZmVLAsLY3dhKtT+yC6bevUnvEe/r/ksKJTbYSGF9ITsqdvi7/o5251+QIYhIcyRBhiCCDcH+V5AhiBBjyOFlxmCCvBaCbGYCGgzo6sBT48DTGLLc1Xa8da5m22/myG7CI7oG26qbUFVVbHW11JaVUldeRvdhI/wTgq56/y22LVuCva55uARf2AqKiKSuro41n39M4cafCY6KIjA8iu01VqzOlo8vMjKS22+/3f9548aNmEwmf3eg3CF46uto128JUEKIDs9pd/Pm31bjbmx9SegVSv8zk+jaPxJNCzOAtyWvzYY9M9PXUrV9Bw3btuE5cKDFsvmBUf5QVRbfjbABfejbLZZBXULplxCCSa+wr2aff4D6jvIdZFdlt3jn37HQKJpmoStUG0KcN4poVzgRzhBC7BYCrSbMVj36Og2aOi9K8zzYfNuN3YRHdg22ZTeh026jrrHFqraslNpyX9g697Z70DQ+6Pjr554ge83KJt9TNRq8BhNeg4kBF11OndVGeXk5JgW6B5kIjowiKDKKhd/90GRS0NDQUCIiIggPDychIYGBAwce3qaqyuNrTgEd7fotAUoIcUo4NA3C3oxSvF7fn63gSBP9JyaRPirud02D8Ht56uqw79yJfccOrNu2U79tO5QUNy+naDgQFENOWBJ7whJxdE8jZkBfBqREMqhLKN2jAnGrLvbX7qfGUUOto5Za5xEvRy11rromy+ucvs9Or/N31V2jKoS5g4lyhdNFjSfJE0uMJ5JoVzjhjmBC7BYM7t8+l/5uwpBDL4P/s65xmWLSHlcwqa+soPpgsT9k+QJXKbVlpdRXVTLj9QX+sPXN8/8la/UKAFRFwRHbBY/BjGo0o2qbtqalJHdhyuTJhETHoNFqefLJJzGZTISGhhIaGkpISIj/57CwMP/0DKJ9dbTrtwQoIcQppb7KzvYVhexcVYijwddyM+TcZM64uHu71stdWdnYSrWdhm07aNi2HU1VRbNyLo2WfcHx5IQlkR+ZjLZ3b+IGpBMRZMZi1GEx6gg0arEYDv18+N2kPzzuyO62Hw5UjWHrl+GryfpDgcxZh9XdfAoDPxUsXjPRrnCiXeHEuCKIcoX5P0e7wgn3HOO4NIPG12oVcvilC2lsxQoxoA0xojH9vuD7y1aj7J9XUZST5QtaFb7AZaur9U1AoTdw2aNPUVlZSXV1NQWb1lG+cQ2KRkNgTCxFoS3PfQXQq1cvrrrqKv8+v/nmGwIDA5uEreDgYLTaE/fMQuHT0a7f7R6g5s6dy3//+1+Ki4vp06cPzz77LGPHjj1q+RUrVjBz5kx27txJfHw8f/3rX5k+ffox76+j/QKEEL+Py+khZ10J25cXcsGM/gSF++Y6OphbS35mBSHRAYTGBBAaHYDeePIvbqqq4i4txb7dd9dfzZZtOHbuQFtf16ysXaun2BJBSUAEJZbwI97DKbFE4GycCkGrUbAYtP5QdThgaZuFLYuh6bIjy5r0Kl7FhtVd3zxg/aLF65fhrN5Zj86rJcodRqQrjChXWOPPoUS6fZ8j3aEEe47xMTJGjS9YhZrQBhuaBq7GnzW/8/fnctipLS/DWl1FUp/+/uWLXnyK3evX4HY4UAFVb8CrN/reDSbSzpxMbW0t1dXVhJsMdA0OICw2noCISP732ZfN9qMoCsHBwfTt25dzzjkH8P3+c3NzCQkJISQkRKZkaAMd7frdrgFq4cKFXHvttcydO5fRo0fz6quvMn/+fHbt2kWXLl2alc/NzaVv377cdNNN3HLLLaxevZrbbruNBQsWcNlllx3TPjvaL0AI0ba+emFrk+kQACyhRkJjzIRGBzD6jz39gepkj31RVRVXQQH27dtp2Ladqs3b8GZnorU3H1h+pApTsC9MNQaqEks4xQERHLSEU2EKRlV+32zmBp3mcAAz/CKAGVsKYFrMeg06nRNV04BTrcbqrabeXUGVo5xSWyll1jJKraXU1FcTYDP4g1akO9QXrvyBK4wg77FNmqoaFTQhBgyhZl/QCjncguUPWa0c9K6qKg1VlVQVF1JVXERVSRFVxYV4XC4ue3CWv9z7/7iX4t2+SUFVjRZnWDSKOQCNJRCvzoBb0eDx+MbmDR0yhD9MmQKAzWZjzpw5/u0c2WoVGhpKcnIyPXv2bFWdT3cd7frdrgFqxIgRDB48mJdfftm/LD09nYsvvpjZs2c3K/+3v/2NL7/8kszMTP+y6dOns3XrVn7++edm5VvS0X4BQoi2o3pVNi/No6qkgeqDNqpLrdjrDw8k1uo13PLceJTGgedLXt9J6YFaf0uV791MaEwAlhCjv9wJrbPHgys/H2d+Aa6Cxvf8fJwFvveWJgA9klevxxkRgzUyhrrQaKpCo6gIjqTUEklxQDhV6Kl3uGlwumlweKh3uHG6j2EUeSsZtBqCTDqCTDqCzXqCTDrMBjd6Yx1afR2qtgaPpgYX1di9VTR4KnHYa9FZPYQ5gg4HLPeRISuUwGMMWR4jKME69KFmjGGWI7oKj+gu/B13Fm7/cQll+3Mbg1YhtWVlqKrv/AVHxXDD86/R0NBAdXU1P7z2ItbiAsJi4zFHx7Kn3onN7cLjaX6+hw0bxgUXXAD4wtYLL7zQ4hisQz+bTEd/buHpoqNdv9utTdHpdJKRkcHf//73JssnTZrEmjVrWvzOzz//zKRJk5osmzx5Mq+//joul6vFRwM4HA4cjsPzkdTWtnzrrBDi1KdoFAZPTm6yzN7gorrUSs1BK3aru0koqixuoKbURk2pjQM0bbUyBui44cmx/vJFu6vQaDWExgRgsrTdY0gUrRZD164YunZttk5VVbw1NYfDVUEBriODVlERGpcLU0kBppICwoHkX2xDGxqKPikJQ1Ii+oRE9KmJaBIScUXHYguNxOpRfAGr8eX/2enx/3x4vYe6I8rW2X3rAJweLxUNTioaWhrcbml8tTTWSAWtFY2uDr2xjgBzPYbg/Wj121F0NRhUGyEeCHFqG8NVaJNuwyh3GAFeM1oHUObGU1aHlebdpABuoxdvgIJi1qKx6NFZjBgsJgxBZnQBBjQWHZoAPZqAw+/9Jja95rhdLmoOlvhaq9wuNBoNQUFBBAUFYSspxFZbg622BnIyUQAzoGp1mCNjOHP6XVRXV1NdXY3BYWNvxjrC4hKweVWsVitWq5WioqJm9R4+fDjnn38+AFarlS+//JKgoCACAwObvVssFv8DoMWJ1W4Bqry8HI/HQ0xMTJPlMTExlJSUtPidkpKSFsu73W7Ky8uJi4tr9p3Zs2fzr3/9q+0qLoQ4pZgsemJTQohNaT7w+Q8zBlBdaqX6oNUfsqpLbdSW2Qj4RQvUTx/toSzPd2E2WnRHtFgFEB5nodugqDavu6IoaENDMYeGYu7Xt9l61e3GVXKwMVDlN4arAn/rlaeqCk91NZ7qauzbtzffgVaLPi6OyKRE4hOT0Ccm+oJWku9nbehvP07H41Wpd7ips7uos7sbXy7/e23jstojljV9d1PvsOD1WHA4YnEc9f9xvSi6ehRdLYquFo2+AMW8C0VfS6DGTjQK0aqeKK+JKP9YrEPjtEIxqyZ0Dg04gCov4EDFgYNaHEfbJeDQuXEZPXhMKl4TYNaisejQWYzoLcEUrd+NOSiQgGAL02a9SE1dOdVlvu7A6uIiX/dgcSHRUZH07t3bv91Xpl/H1qpK/+8hJiYBU0QUuuAQtJYgtIHB/rB15F2AtbW1ZGVlHbW+I0aM4LzzzgN8Yev7778/atiSge/Hp91Htf3yH+dvjUloqXxLyw954IEHmDlzpv9zbW0tSUlJv7e6QohOJDDMSGCYsdnjYjweb5Ouv0NlbXVO6qscOBrcHMyt5WCu72ofGhPQJECtXJCNqkJIY3dgaHQAQZEmtNq2bRlQdDoMiQkYEhOwnHFGs/We+gZchQWHuwjz83EWFviDlup04irw/WxlbbPvayyWw61XiUnoExMwJCX5fk6IR2M0otUohJj1hJh/f6vc0UJY7RGfa48S0OqsvmWZDjeZAIq7MWTVodFVolj2o2hrCdLZiUYlFC3Bqo5gVU+w10CI10Kwx0KQ5/B7iDsQi9eMBg1Gtw6jWwcNv6y1E3DipZYGmq7WK24suhAUXQBmSzIRfby49V6+nv8xilmLNkBPdEwfHAFV1FcexOaoxVqUh7UoD4DE3n2Z+vDj/u29fvct7P70PQwmMxqjiQS9Ca9Wh0ejAYMRjSmAuro6GhoacFRXsmfjOgwmE7VWO5s2bTrqeR8zZgxnn3024OtGXL16dYthSx783LJ2C1CRkZFotdpmrU2lpaXNWpkOiY2NbbG8TqcjIiKixe8YjUaMRmPbVFoIcVrQajVYQpr+3Tj/Vt9dXC6nh5pSm6/VqrHlyhx0eJZrVVXJ2XAQxy8eFKzRKARHmUnoFcqEq9P8y231TkwW/QkZzK4NtKBNTcWUmtpsner14i4rO2K81RFdgwUFuEtL8TY04MjKwnGUFg/FYEAxmdCYTL53oxHFbPa9m0xoTEYUk9n3bjShMZt87y0s1xpNhJuMRBxaHmhCE2lCMYWgMRpB/+vn6FAIq7X9ooXL0TSE2ZwerE4PVpeHcqebBqeVBrcVm6sOq6cBp6cEu7cBj9dKoOIhFJUQRSEEhWC0BKtaQrwGQlQDQV4jwV4TwV4LwW4LwZ5AdGgxqnqMLj3hLuCo9weMAgMQ6/vkxoMNKzbVRr3dxsf/nk+91olV66abrSte1Yva4MWregnEi1e1oaLSEOSktHcguvAwQiLCqf9hE+u/W4dX9eLSQmigEbdOg0erwWM04LWYcTtdoKrsWP4jeUsWoTUYcBuN5HtaPr8mk4l+vXoysE9vDCYTqkZD5p69hISGERIa6u/CPN2ute0WoAwGA0OGDGHp0qVccskl/uVLly7loosuavE7I0eO5KuvvmqybMmSJQwdOlQSshDipNAbtEQmBhKZ2PJt+qoKY67o2RiwbP6uQbfLS/VBK8GRTR+E+/4j63A7PJiDDJgC9b6XxfeKTAqk9+jD44YqCusxmHWYAvXoj+NRKwCKRoM+JgZ9TAwBQ4c2W++123EVFrbYNegsKEC1WlGdTlSnE+/JGFuq1R4RzHyBTTEZ0bQQxMIag5hiMqI5Irj5PhtRgowoegOK0YDGEIpijEExGn2B0GBAYzCAwYBTo8PmAZvLg83pxur0+AKYy/duc/pCWK7DSq2jjhpHHU57DarNhsZhR+d0Y3B5MLq9WDwKAR4NgR4dQV5f+Arxmgj2BGBSDejQEkQQQUoQ0Sp0O/Legd96nvbeI36O7HX0cm6gBlRU7LjQoGDU6MENtR4rQdp8rIoDq+LEigOb4sSjeLHb7bg31mBdk0s9KpVKHT9amodqrarB5NXTzR5KcoOboXPvaMUv+NTTrl14M2fO5Nprr2Xo0KGMHDmSefPmkZeX55/X6YEHHqCwsJB33nkH8N1x9+KLLzJz5kxuuukmfv75Z15//XUWLFjQnochhBB+Go1C2hlNx2OqXpWGGgdVB61odYe78Zw2Nw6rG9WrUldpp67S3uR7yX0jmgSoj5/I8D/ORqvX+IJWY+CK7RbMGRcdnkx07+ZSdHrt4TKBegytmBlcYzJh7N4dY/fmE5SqqoqnuhrVasXrcKDa7Xjt9sZ3B6rd5nt32PHa7L53+y/KORyoNlvz7/9iOYduFPd48FqtYLXy249TbkM6nT9UmQ0GAoxGIo2HglZj6GoMXxqjoTGYHVpuaGyVM6AYjljWGNDcWj0ujRa7F6wuLw0ON1anE4fTg9vpwePyglNF4/b6Xh4vGo+KxuNF6wGNF7Re0Kig9SpoVdCoGrSqggYNGlVBi4bGT2gUDQpaNIoGo6IFRYOqeFEUDcFqAKPcTVsqVVScuLEqDoyqHrPO18LkVLR088RgVRzYcGJVHLgUDx7FS4PWgdkQRKSr/e+SO9HaNUBNnTqViooKZs2aRXFxMX379mXRokUkJ/vuIykuLiYvL89fPiUlhUWLFnHPPffw0ksvER8fz/PPP3/Mc0AJIUR7UDQKgWEmAsOa3opuMOu45YXx1FfasdW5sDc0vup9r5Dow61VHo8Xg0mL1+3F61HxuLw0VDtoqPYNgdbpm46v+v6tTH/YOkSjUTAG6klMDWPSDX38yzMW70ej9QUy85GtYIF6jGZds+kcFEVBFxYGYb/VNHJ8VFX1tXK1FMz8gc2O6nDgtdlQ7Q68Djuqze57tzvw2psuV51OvE4HqtOF6nD4tt/47m38mSMfHu12o7rdeKy/Mnt7G1CAwMZXWzp0JL8MnR6NHocxFLsxHI/OSFTlLlA0oNGys88N1AV3x6s1oFFAwYgGUHChV52kuZfSR6vFpdNzUO2NmwA0OhWPzoZba8fqqWZXTA1d2/hYOpp2n4n8ZOto80gIIURrqKqKy+HxhazGsGWrd2EO0tOlt28sqNfj5asXtjYJY27X4VCQ3C+CP8wY4P/86p3LcTtbnhsqtlswl/31cBffsncyUfHd3Wg0a9EbdRjMWgwmHZZQI7HdDt/t6LS70Rm0J/yBz21Ndbt9oayxi7JJyHI0hi/n4fDlC16NZVyHyjQuczr9Zb2OX2zryCB3ZIhrKchpNP7uS/+Ys5bezSYUgwmnIZAAiw7FbEJjNLHrYCiV9UYaHFqsNgX7EbceGk0apv2jr38c21cv7yR/l+8OQXOQvjH8GwkMNxEUZmLg2Un+UH0yJ6PtaNfvdr8LTwghxLFTFAWDSYfBpGs2nuoQjVbDRXcParLM7fRgb/CFrSPvBlS9Kr1Hxx8OW41l7A0uXHYPxl/MebV748Gjhq247iFcev8Q/+f3Hl6LtcaJ3qhFb9I21luL3qQjIsHC2CsOj9fZuaoQr0f1rzeYfWUNjT8HBBta2uUJoeh0KDodGovlpO2zJYeCHHo9SguD6AtzqqgsaqC+yk5dpYP6Kjv1lQ4aDjrQm7Tc+MA4f9mq57eQv7eyyfd1Bg1B4SYCw00oYeH+/y7GXtETRVEIDDOi+42xdidzJv+ORgKUEEKcBnQGLYEGbbNuREWjMHZqywOPPW5vk5YrVVUZc3lPf9hy2j047W6cNg8uh5uIhKYdUC67r+PI5fDgcniw1hyeZNPjahrCNnydS0NNS5NwQni8hSv/OcL/+YtnN2OtdfoDlv6I96BwEwPPPvwosOI91agqjWV8Y8BUVUX1+o49JOpwCK0qacDl8KCqjVPkqL6AqaoqGq2mSetayb4a7A2uxvX4t6mqKhqNQvfB0f6yB3ZW0FDl8JU5YpuNE5oz4KzDU+vsySil+mADXu+hbarYap3UVTlw2tz88W+HWwM3LT5A3q6moegQp92Dy+nx32zQe0w8XftH+lqRwo0EhpkwBuhaDEBhse0bHE8VEqCEEEK0SKvTNBn0rigKfcYmHPP3r//vGN+F3OELWU67G1dj6DKYm15+UgZGYat14nR4cNrcvu/Zfe/GX5StKrH6x379UlicpUmA+vG9bKqKm03iBEBIlJlrHh3p//zd/J1UFLT86JyAEAN/mTPG/3n1x3so2VfTYlmDSdskQG1ZmkdBVlWLZTUapUmAyllfQu7W8hbLgq9b1GDynY+4HqFo9Rp/11pguNHXohRmJCDE2KTr9Mj6iLYhAUoIIcQJoTNoG7uAfrv7bfyVzeeqOuSXQ3UvuK0/DmvzFjCnzYPR0vSyFhxpQvWqvlDm8ICqomgUFEVBb2raPWUJNuAIM4LiCzYoCoriC47moKZdmeFxAXg9Xv+2FI2vnKKAzth0u7HdQtAZtP5tHVn2lwP0u/QOxxxsQFEUNAqgUTAH6v1jkI4MtEPP7/pbp1WcQDKIXAghhBAdXke7fssTB4UQQgghWkkClBBCCCFEK0mAEkIIIYRoJQlQQgghhBCtJAFKCCGEEKKVJEAJIYQQQrSSBCghhBBCiFaSACWEEEII0UoSoIQQQgghWkkClBBCCCFEK0mAEkIIIYRoJQlQQgghhBCtJAFKCCGEEKKVJEAJIYQQQrSSrr0rcLKpqgpAbW1tO9dECCGEEMfq0HX70HW8vZ12Aaqurg6ApKSkdq6JEEIIIVqrrq6OkJCQ9q4GitpRotxJ4vV6KSoqIigoCEVR2nTbtbW1JCUlkZ+fT3BwcJtuWxwm5/nkkPN8csh5PnnkXJ8cJ+o8q6pKXV0d8fHxaDTtPwLptGuB0mg0JCYmntB9BAcHyz/Ok0DO88kh5/nkkPN88si5PjlOxHnuCC1Ph7R/hBNCCCGEOMVIgBJCCCGEaCUJUG3IaDTy8MMPYzQa27sqnZqc55NDzvPJIef55JFzfXKcLuf5tBtELoQQQghxvKQFSgghhBCilSRACSGEEEK0kgQoIYQQQohWkgAlhBBCCNFKEqDayNy5c0lJScFkMjFkyBBWrVrV3lXqdGbPns2wYcMICgoiOjqaiy++mOzs7PauVqc3e/ZsFEXh7rvvbu+qdDqFhYVcc801REREEBAQwMCBA8nIyGjvanUqbrebf/zjH6SkpGA2m+nWrRuzZs3C6/W2d9VOeStXrmTKlCnEx8ejKAqff/55k/WqqvLII48QHx+P2WxmwoQJ7Ny5s30qewJIgGoDCxcu5O677+ahhx5i8+bNjB07lvPOO4+8vLz2rlqnsmLFCmbMmMHatWtZunQpbrebSZMm0dDQ0N5V67Q2bNjAvHnz6N+/f3tXpdOpqqpi9OjR6PV6vv32W3bt2sVTTz1FaGhoe1etU5kzZw6vvPIKL774IpmZmTzxxBP897//5YUXXmjvqp3yGhoaGDBgAC+++GKL65944gmefvppXnzxRTZs2EBsbCznnHOO/5m0pzxVHLfhw4er06dPb7IsLS1N/fvf/95ONTo9lJaWqoC6YsWK9q5Kp1RXV6f27NlTXbp0qTp+/Hj1rrvuau8qdSp/+9vf1DFjxrR3NTq9Cy64QL3++uubLLv00kvVa665pp1q1DkB6meffeb/7PV61djYWPXxxx/3L7Pb7WpISIj6yiuvtEMN2560QB0np9NJRkYGkyZNarJ80qRJrFmzpp1qdXqoqakBIDw8vJ1r0jnNmDGDCy64gLPPPru9q9IpffnllwwdOpTLL7+c6OhoBg0axGuvvdbe1ep0xowZww8//EBOTg4AW7du5aeffuL8889v55p1brm5uZSUlDS5NhqNRsaPH99pro2n3cOE21p5eTkej4eYmJgmy2NiYigpKWmnWnV+qqoyc+ZMxowZQ9++fdu7Op3OBx98wKZNm9iwYUN7V6XT2rdvHy+//DIzZ87kwQcfZP369dx5550YjUauu+669q5ep/G3v/2Nmpoa0tLS0Gq1eDwe/vOf/3DllVe2d9U6tUPXv5aujQcOHGiPKrU5CVBtRFGUJp9VVW22TLSd22+/nW3btvHTTz+1d1U6nfz8fO666y6WLFmCyWRq7+p0Wl6vl6FDh/LYY48BMGjQIHbu3MnLL78sAaoNLVy4kHfffZf333+fPn36sGXLFu6++27i4+P585//3N7V6/Q687VRAtRxioyMRKvVNmttKi0tbZa8Rdu44447+PLLL1m5ciWJiYntXZ1OJyMjg9LSUoYMGeJf5vF4WLlyJS+++CIOhwOtVtuONewc4uLi6N27d5Nl6enpfPLJJ+1Uo87p/vvv5+9//zt/+tOfAOjXrx8HDhxg9uzZEqBOoNjYWMDXEhUXF+df3pmujTIG6jgZDAaGDBnC0qVLmyxfunQpo0aNaqdadU6qqnL77bfz6aefsmzZMlJSUtq7Sp3SWWedxfbt29myZYv/NXToUK6++mq2bNki4amNjB49utk0HDk5OSQnJ7dTjTonq9WKRtP0UqfVamUagxMsJSWF2NjYJtdGp9PJihUrOs21UVqg2sDMmTO59tprGTp0KCNHjmTevHnk5eUxffr09q5apzJjxgzef/99vvjiC4KCgvytfiEhIZjN5nauXecRFBTUbFyZxWIhIiJCxpu1oXvuuYdRo0bx2GOPccUVV7B+/XrmzZvHvHnz2rtqncqUKVP4z3/+Q5cuXejTpw+bN2/m6aef5vrrr2/vqp3y6uvr2bNnj/9zbm4uW7ZsITw8nC5dunD33Xfz2GOP0bNnT3r27Mljjz1GQEAAV111VTvWug21702AncdLL72kJicnqwaDQR08eLDcWn8CAC2+3nzzzfauWqcn0xicGF999ZXat29f1Wg0qmlpaeq8efPau0qdTm1trXrXXXepXbp0UU0mk9qtWzf1oYceUh0OR3tX7ZT3448/tvg3+c9//rOqqr6pDB5++GE1NjZWNRqN6rhx49Tt27e3b6XbkKKqqtpO2U0IIYQQ4pQkY6CEEEIIIVpJApQQQgghRCtJgBJCCCGEaCUJUEIIIYQQrSQBSgghhBCilSRACSGEEEK0kgQoIYQQQohWkgAlRCe0f/9+FEVhy5Yt7V0Vv6ysLM444wxMJhMDBw5ssYyqqtx8882Eh4d3uPq3p+XLl6MoCtXV1Uct89ZbbxEaGnrS6vRLXbt25dlnn223/QtxskmAEuIEmDZtGoqi8PjjjzdZ/vnnn3eaJ5G31sMPP4zFYiE7O5sffvihxTKLFy/mrbfe4uuvv6a4uLjNHh0zbdo0Lr744jbZVmcioUeI308ClBAniMlkYs6cOVRVVbV3VdqM0+n83d/du3cvY8aMITk5mYiIiKOWiYuLY9SoUcTGxqLTdazHdXo8HnkIrRACkAAlxAlz9tlnExsby+zZs49a5pFHHmnWnfXss8/StWtX/+dDrSePPfYYMTExhIaG8q9//Qu32839999PeHg4iYmJvPHGG822n5WVxahRozCZTPTp04fly5c3Wb9r1y7OP/98AgMDiYmJ4dprr6W8vNy/fsKECdx+++3MnDmTyMhIzjnnnBaPw+v1MmvWLBITEzEajQwcOJDFixf71yuKQkZGBrNmzUJRFB555JFm25g2bRp33HEHeXl5KIriPweqqvLEE0/QrVs3zGYzAwYM4OOPP/Z/z+PxcMMNN5CSkoLZbCY1NZXnnnuuyTl+++23+eKLL1AUBUVRWL58eYvdYlu2bEFRFPbv3w8c7hb7+uuv6d27N0ajkQMHDuB0OvnrX/9KQkICFouFESNGNDm3Bw4cYMqUKYSFhWGxWOjTpw+LFi1q8dwBvPvuuwwdOpSgoCBiY2O56qqrKC0tbVZu9erVDBgwAJPJxIgRI9i+fftRt7l3714uuugiYmJiCAwMZNiwYXz//ff+9RMmTODAgQPcc889/vNyyJo1axg3bhxms5mkpCTuvPNOGhoa/OtLS0uZMmUKZrOZlJQU3nvvvaPWQ4jOSgKUECeIVqvlscce44UXXqCgoOC4trVs2TKKiopYuXIlTz/9NI888gh/+MMfCAsLY926dUyfPp3p06eTn5/f5Hv3338/9957L5s3b2bUqFFceOGFVFRUAFBcXMz48eMZOHAgGzduZPHixRw8eJArrriiyTbefvttdDodq1ev5tVXX22xfs899xxPPfUUTz75JNu2bWPy5MlceOGF7N6927+vPn36cO+991JcXMx9993X4jYOhbDi4mI2bNgAwD/+8Q/efPNNXn75ZXbu3Mk999zDNddcw4oVKwBfeEtMTOTDDz9k165d/POf/+TBBx/kww8/BOC+++7jiiuu4Nxzz6W4uJji4mJGjRp1zOfearUye/Zs5s+fz86dO4mOjuYvf/kLq1ev5oMPPmDbtm1cfvnlnHvuuf7jnTFjBg6Hg5UrV7J9+3bmzJlDYGDgUffhdDp59NFH2bp1K59//jm5ublMmzatWbn777+fJ598kg0bNhAdHc2FF16Iy+VqcZv19fWcf/75fP/992zevJnJkyczZcoU8vLyAPj0009JTExk1qxZ/vMCsH37diZPnsyll17Ktm3bWLhwIT/99BO33367f9vTpk1j//79LFu2jI8//pi5c+e2GPiE6NTa91nGQnROf/7zn9WLLrpIVVVVPeOMM9Trr79eVVVV/eyzz9Qj/9k9/PDD6oABA5p895lnnlGTk5ObbCs5OVn1eDz+ZampqerYsWP9n91ut2qxWNQFCxaoqqqqubm5KqA+/vjj/jIul0tNTExU58yZo6qqqv7f//2fOmnSpCb7zs/PVwE1OztbVVVVHT9+vDpw4MDfPN74+Hj1P//5T5Nlw4YNU2+77Tb/5wEDBqgPP/zwr27nl8deX1+vmkwmdc2aNU3K3XDDDeqVV1551O3cdttt6mWXXeb/fOTv45BDT5KvqqryL9u8ebMKqLm5uaqqquqbb76pAuqWLVv8Zfbs2aMqiqIWFhY22d5ZZ52lPvDAA6qqqmq/fv3URx555FeP9desX79eBdS6uromdf3ggw/8ZSoqKlSz2awuXLjQX9eQkJBf3W7v3r3VF154wf85OTlZfeaZZ5qUufbaa9Wbb765ybJVq1apGo1GtdlsanZ2tgqoa9eu9a/PzMxUgWbbEqIz61gDDITohObMmcOZZ57Jvffe+7u30adPHzSaww3GMTExTQZYa7VaIiIimrUCjBw50v+zTqdj6NChZGZmApCRkcGPP/7YYsvI3r176dWrFwBDhw791brV1tZSVFTE6NGjmywfPXo0W7duPcYjbNmuXbuw2+3Nug6dTieDBg3yf37llVeYP38+Bw4cwGaz4XQ6j3qnX2sZDAb69+/v/7xp0yZUVfWfn0McDod/bNedd97JrbfeypIlSzj77LO57LLLmmzjlzZv3swjjzzCli1bqKys9I+zysvLo3fv3v5yR/4+w8PDSU1N9f8+f6mhoYF//etffP311xQVFeF2u7HZbP4WqKPJyMhgz549TbrlVFXF6/WSm5tLTk6O/7+lQ9LS0tr1DkAh2oMEKCFOsHHjxjF58mQefPDBZt0yGo0GVVWbLGupS0av1zf5rChKi8uOZYDzobEuXq+XKVOmMGfOnGZl4uLi/D9bLJbf3OaR2z1EVdXjvuPw0PF88803JCQkNFlnNBoB+PDDD7nnnnt46qmnGDlyJEFBQfz3v/9l3bp1v7rtQ4H0yPPf0rk3m81NjsPr9aLVasnIyECr1TYpeyiM3njjjUyePJlvvvmGJUuWMHv2bJ566inuuOOOZttvaGhg0qRJTJo0iXfffZeoqCjy8vKYPHnyMQ3aP9o5vv/++/nuu+948skn6dGjB2azmT/+8Y+/uU2v18stt9zCnXfe2Wxdly5dyM7O/tX9CnG6kAAlxEnw+OOPM3DgwGatFlFRUZSUlDQJG20599HatWsZN24cAG63m4yMDP9YlsGDB/PJJ5/QtWvX47rbLTg4mPj4eH766Sf/vsA3EHn48OHHVf9DA7fz8vIYP358i2VWrVrFqFGjuO222/zL9u7d26SMwWDA4/E0WRYVFQX4xmeFhYUBx3buBw0ahMfjobS0lLFjxx61XFJSkn9s2gMPPMBrr73WYoDKysqivLycxx9/nKSkJAA2btzY4jbXrl1Lly5dAKiqqiInJ4e0tLQWy65atYpp06ZxySWXAL4xUYcGxx/S0nkZPHgwO3fupEePHi1uNz09HbfbzcaNG/2/3+zs7F+do0qIzkgGkQtxEvTr14+rr76aF154ocnyCRMmUFZWxhNPPMHevXt56aWX+Pbbb9tsvy+99BKfffYZWVlZzJgxg6qqKq6//nrAN9C5srKSK6+8kvXr17Nv3z6WLFnC9ddf3+yi+lvuv/9+5syZw8KFC8nOzubvf/87W7Zs4a677jqu+gcFBXHfffdxzz338Pbbb7N37142b97MSy+9xNtvvw1Ajx492LhxI9999x05OTn83//9n38A+iFdu3Zl27ZtZGdnU15ejsvlokePHiQlJfHII4+Qk5PDN998w1NPPfWbderVqxdXX3011113HZ9++im5ubls2LCBOXPm+O+0u/vuu/nuu+/Izc1l06ZNLFu2jPT09Ba316VLFwwGAy+88AL79u3jyy+/5NFHH22x7KxZs/jhhx/YsWMH06ZNIzIy8qjzW/Xo0YNPP/2ULVu2sHXrVq666qpmLZRdu3Zl5cqVFBYW+u++/Nvf/sbPP//MjBkz2LJlC7t37+bLL7/0h7/U1FTOPfdcbrrpJtatW0dGRgY33ngjZrP5N8+dEJ2JBCghTpJHH320WXddeno6c+fO5aWXXmLAgAGsX7++xTvUfq/HH3+cOXPmMGDAAFatWsUXX3xBZGQkAPHx8axevRqPx8PkyZPp27cvd911FyEhIU3GWx2LO++8k3vvvZd7772Xfv36sXjxYr788kt69ux53Mfw6KOP8s9//pPZs2eTnp7O5MmT+eqrr0hJSQFg+vTpXHrppUydOpURI0ZQUVHRpDUK4KabbiI1NZWhQ4cSFRXF6tWr0ev1LFiwgKysLAYMGMCcOXP497//fUx1evPNN7nuuuu49957SU1N5cILL2TdunX+FiSPx8OMGTNIT0/n3HPPJTU1lblz57a4raioKN566y0++ugjevfuzeOPP86TTz7ZYtnHH3+cu+66iyFDhlBcXMyXX36JwWBosewzzzxDWFgYo0aNYsqUKUyePJnBgwc3KTNr1iz2799P9+7d/S1y/fv3Z8WKFezevZuxY8cyaNAg/u///q9Jt+6bb75JUlIS48eP59JLL+Xmm28mOjr6mM6dEJ2Fov7yL7oQQgghhPhV0gIlhBBCCNFKEqCEEEIIIVpJApQQQgghRCtJgBJCCCGEaCUJUEIIIYQQrSQBSgghhBCilSRACSGEEEK0kgQoIYQQQohWkgAlhBBCCNFKEqCEEEIIIVpJApQQQgghRCtJgBJCCCGEaKX/B1Zlmv8JeR/lAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD37klEQVR4nOzddXgU197A8e/6bmzjHpIQSAgSnODu2mJVSt3bl9Le6r0tVKBy6y60pdxSb2kp3uISoEgEAgRJiLuv7877x8KGkARCSdHzeZ59YGfOzJzZzM789qhMkiQJQRAEQRCEq5j8YmdAEARBEAThYhMBkSAIgiAIVz0REAmCIAiCcNUTAZEgCIIgCFc9ERAJgiAIgnDVEwGRIAiCIAhXPREQCYIgCIJw1RMBkSAIgiAIVz0REAmCIAiCcNUTAVELe+edd5DJZHTs2LHR9ZmZmchkMv773/+edV9ffvklMpmMzMzMc87H1q1bmTNnDhUVFQ3WDR48mMGDB5/zPq8EUVFR3HrrrX9rW5lMxpw5c1o0P2cTFRXF+PHjz5jm1ltvJSoq6sJk6AKQyWTNeq1fv/68jjNnzhxkMlnLZLqZ1q9f3yJ5v1jy8/P597//TZ8+ffD398fLy4vu3bvzySefYLfbG6TfsWMHo0aNwtPTEw8PD4YMGcKWLVsa3bfVauWNN96gU6dO6HQ6vL296du3L1u3bj2nPJ68xzbn9XfurafLy8tjzpw57N2797z3ddLFuDZb2r///W/Gjx9PWFgYMpms2ffdm2++GZlM1uR9r6SkhP/7v/8jKioKjUZDUFAQY8aMoays7LzzrDzvPQj1fP755wDs27eP7du3k5iYeFHysXXrVubOncutt96Kt7d3vXUffPDBRcmT8M/4z3/+w//93/9d7Gy0mG3bttV7/8ILL7Bu3TrWrl1bb3n79u3P6zh33nkno0ePPq99nKtu3bqxbdu28877xbJr1y6++uorbrnlFv7zn/+gUqlYsWIF9913H0lJSa77H8DOnTsZOHAgvXr1YtGiRUiSxKuvvsqwYcNYt24dffr0caW12+1ce+21bN68mccff5y+fftSW1vLrl27qK2tPac8hoSENLiG7r//fiorK/n6668bpD1feXl5zJ07l6ioKLp06XLe+4OLc222tDfffJOEhAQmTpxY77o4k2XLlrFkyRK8vLwaXZ+Xl8eAAQNQKpX85z//oW3btpSUlLBu3TosFst551kERC3or7/+Ijk5mXHjxrFs2TIWLFhw0QKiM7lcb8ZC42JiYi52Fs5IkiRMJhM6na5Z6Xv37l3vfUBAAHK5vMHy0xkMBtzc3Jqdr/DwcMLDw5udviV4eXmd9TwuZf369ePIkSOoVCrXshEjRmCxWHj//feZO3cuERERgDNQ9/b2ZuXKla6/y/Dhw2ndujWPPfZYvZKid999lxUrVrBly5Z6n8+4cePOOY8ajabBZ+zl5YXFYrlsPvuLcW22tOrqauRyZyXUokWLzpq+srKSe+65hxdeeIG333670TT3338/ZrOZv/76Cx8fH9fyyZMnt0ieRZVZC1qwYAEAL7/8Mn379uXbb7/FYDA0mtbhcPDSSy/RqlUrtFotPXr04M8//zzrMdasWcOkSZMIDw9Hq9XSpk0b7rnnHkpKSlxp5syZw7/+9S8AoqOjG1QxNFZlVlZWxv33309YWBhqtZrWrVvzzDPPYDab66WTyWQ8+OCDLFq0iPj4eNzc3OjcuTO///77WfN+srpg8eLFPPHEE4SEhODh4cGECRMoLCykurqau+++G39/f/z9/bntttuoqamptw+TycRTTz1FdHQ0arWasLAwHnjggQZVg1arlccff5zg4GDc3Nzo378/O3bsaDRfBQUF3HPPPYSHh6NWq4mOjmbu3LnYbLazntOloLEqs3P5O2VkZHDjjTcSGBiIRqMhPj6e999/v14ak8nEo48+SpcuXdDr9fj6+tKnTx9+/fXXBvs7eeyPPvqI+Ph4NBoNCxcubNFzHjx4MB07dmTjxo307dsXNzc3br/9dgC+++47Ro4cSUhICDqdjvj4eJ588skGJQ2NVUucrKJcuXIl3bp1Q6fT0a5du2b/wv3www/p3LkzHh4eeHp60q5dO55++mnX+tOrzM5WvXOqP/74g2HDhuHl5YWbmxv9+vVr1j2jJfn4+NQLhk7q1asXADk5Oa5lW7ZsYfDgwfWCVE9PTwYOHMjWrVvJz893LX/77bcZOHDgBQ1YqqqqeOyxx+rdS2bNmtXgOvnhhx9ITExEr9fj5uZG69atXdfa+vXr6dmzJwC33Xab6+92pqp1g8HgOq5Wq8XX15cePXrwzTffuNKcfm2ebD7R2OvUe7kkSXzwwQd06dIFnU6Hj48PU6dO5ejRoy3wiZ2bk8FQcz366KOEhITw8MMPN7o+MzOT3377jbvuuqteMNSSRAlRCzEajXzzzTf07NmTjh07cvvtt3PnnXfyww8/MHPmzAbp33vvPSIjI3nrrbdwOBy8+uqrjBkzhg0bNtQrSj7dkSNH6NOnD3feeSd6vZ7MzEzeeOMN+vfvT2pqKiqVijvvvJOysjLeffddfv75Z1excFMlQyaTiSFDhnDkyBHmzp1LQkICmzZtYv78+ezdu5dly5bVS79s2TJ27tzJ888/j4eHB6+++irXXnstBw8epHXr1mf9rJ5++mmGDBnCl19+SWZmJo899hg33HADSqWSzp07880337Bnzx6efvppPD09eeeddwDnl/2aa67hzz//5KmnnmLAgAGkpKTw3HPPsW3bNrZt24ZGowHgrrvu4quvvuKxxx5jxIgRpKWlMXnyZKqrq+vlpaCggF69eiGXy3n22WeJiYlh27ZtvPjii2RmZvLFF1+c9XxOZ7fbkSTprOnkcvk53zTORXP+Tvv376dv3760atWK119/neDgYFatWsXDDz9MSUkJzz33HABms5mysjIee+wxwsLCsFgs/PHHH0yePJkvvviCW265pd6xlyxZwqZNm3j22WcJDg4mMDCwxc8vPz+fm2++mccff5x58+a5PsuMjAzGjh3LrFmzcHd358CBA7zyyivs2LGjQbVbY5KTk3n00Ud58sknCQoK4rPPPuOOO+6gTZs2DBw4sMntvv32W+6//34eeugh/vvf/yKXyzl8+DD79+9vcpvGqneKi4u5+eabCQsLcy373//+xy233MKkSZNYuHAhKpWKjz/+mFGjRrFq1SqGDRt2xnNqbnCvUCj+VtuVtWvXolQqiY2NdS2zWCyu7+OpTi5LTU0lJCSE7OxsMjMzmTBhAk8//TQLFiygtLSUuLg4Hn/88Ubvn+fLYDAwaNAgcnJyePrpp0lISGDfvn08++yzpKam8scffyCTydi2bRvXXXcd1113HXPmzEGr1ZKVleW6jrp168YXX3zBbbfdxr///W9XidaZSndmz57NokWLePHFF+natSu1tbWkpaVRWlra5Dbjxo1rcJ1s27aN2bNn06FDB9eye+65hy+//JKHH36YV155hbKyMp5//nn69u1LcnIyQUFBTR5DkqRG24E1Rqls2dDhjz/+4KuvvmLnzp0oFIpG02zatAlJkggNDeWGG25g6dKl2Gw2evfuzfz588/43Gw2SWgRX331lQRIH330kSRJklRdXS15eHhIAwYMqJfu2LFjEiCFhoZKRqPRtbyqqkry9fWVhg8f7lr2xRdfSIB07NixRo/pcDgkq9UqZWVlSYD066+/uta99tprTW47aNAgadCgQa73H330kQRI33//fb10r7zyigRIq1evdi0DpKCgIKmqqsq1rKCgQJLL5dL8+fOb/oAkSVq3bp0ESBMmTKi3fNasWRIgPfzww/WWX3PNNZKvr6/r/cqVKyVAevXVV+ul++677yRA+uSTTyRJkqT09HQJkB555JF66b7++msJkGbOnOlads8990geHh5SVlZWvbT//e9/JUDat29fvXN/7rnnzniOkiRJkZGREnDWV3P3NW7cuDOmmTlzphQZGVlvWXP/TqNGjZLCw8OlysrKets/+OCDklarlcrKyho9ps1mk6xWq3THHXdIXbt2bXBsvV7f5LbnaubMmZK7u3u9ZYMGDZIA6c8//zzjtie/Ixs2bJAAKTk52bXuueeek06/BUZGRkparbbe9WA0GiVfX1/pnnvuOeOxHnzwQcnb2/uMaU5+B9atW9fo+traWqlXr15SSEiIlJmZ6Vrm6+vb4Htjt9ulzp07S7169TrjMSVJatb1CEhffPHFWfd1ulWrVklyubzB961Lly5SbGysZLfbXcusVqvUunVrCZAWL14sSZIkbdu2TQIkLy8vqX379tL3338vrVq1Spo6dWq97/X5GDRokNShQwfX+/nz50tyuVzauXNnvXQ//vijBEjLly+XJKnuPlBRUdHkvnfu3HlOn13Hjh2la6655oxpGrs2T3XgwAHJz89PGjJkiGQ2myVJqvscX3/99Xpps7OzJZ1OJz3++ONnPObJa7M5r6aeSU1xd3evd989VXV1tRQVFSU99dRTrmWN3ffmz5/vuk4mTZokrVy5Uvrpp5+khIQESavV1vtu/12iyqyFLFiwAJ1Ox/XXXw+Ah4cH06ZNY9OmTWRkZDRIP3nyZLRareu9p6cnEyZMYOPGjWeM0ouKirj33nuJiIhAqVSiUqmIjIwEID09/W/lfe3atbi7uzN16tR6y0/2Cji9WH7IkCF4enq63gcFBREYGEhWVlazjnd674H4+HigYXuB+Ph4ysrKXNVmJ3+Vnd5bYdq0abi7u7vyuW7dOgBuuummeummT5/e4JfN77//zpAhQwgNDcVms7leY8aMAWDDhg3NOqdTLV26lJ07d571dffdd5/zvs/F2f5OJpOJP//8k2uvvRY3N7d65z927FhMJhNJSUmu7X/44Qf69euHh4eH69pbsGBBo9fd0KFD/7Fi7ZN8fHwYOnRog+VHjx7lxhtvJDg4GIVCgUqlYtCgQUDzviNdunShVatWrvdarZbY2NizXt+9evWioqKCG264gV9//bVeNXZz2O12rrvuOtLT01m+fLnre71161bKysqYOXNmvb+Rw+Fg9OjR7Ny586wNj5tzPe7cuZMJEyacU553797N9OnTXb/ST/XQQw9x6NAhHnzwQXJzc8nOzubee+91fY4nS/QcDgfgvB6XL1/OtGnTGDlyJN9//z3dunXj+eefP6c8Ncfvv/9Ox44d6dKlS73PdNSoUfWqNE9Wh02fPp3vv/+e3Nzc8z52r169WLFiBU8++STr16/HaDSe0/YFBQWMHj2akJAQfvnlF9RqteucZDIZN998c71zCg4OpnPnzmft2di9e/dmXyehoaF/9/QbePLJJ1GpVDz77LNnTHfyOgkPD+enn35i1KhRTJ48mZUrVyKXy3n11VfPOy+iyqwFHD58mI0bNzJlyhQkSXK1Z5k6dSpffPEFn3/+eYObRXBwcIP9BAcHY7FYqKmpQa/XN1jvcDgYOXIkeXl5/Oc//6FTp064u7vjcDjo3bv3OX+xTiotLSU4OLhBUXlgYCBKpbJBUa6fn1+DfWg0mmYf39fXt977k1/oppabTCY8PDwoLS1FqVQSEBBQL51MJiM4ONiVz5P/nv4ZK5XKBnkvLCxk6dKljbaLAM75oQbOqkmpmVVm/6Sz/Z1KS0ux2Wy8++67vPvuu43u4+T5//zzz0yfPp1p06bxr3/9i+DgYJRKJR9++GGj7WtaovfO2TR2jJqaGgYMGIBWq+XFF18kNjYWNzc3srOzmTx5crOu0b97fc+YMQObzcann37KlClTcDgc9OzZkxdffJERI0ac9bj33nsvK1euZNmyZfV6KxUWFgI0+MFyqrKyMtzd3Ztc39zeT01VVzRmz549jBgxgrZt27J8+fIG1WO33347xcXFvPjii3z44YcA9OnTh8cee4xXXnnFVSV48vNu166dKwgE5/d61KhRzJ8/n6Kiohatdi0sLOTw4cNn/d4PHDiQJUuW8M4773DLLbdgNpvp0KEDzzzzDDfccMPfOvY777xDeHg43333Ha+88gparZZRo0bx2muv0bZt2zNuW11dzdixY7FaraxYsaLec6KwsBBJkpqsFjtbcwYPD49mXyctVWW2Y8cOPvjgA37++WdMJhMmkwlwPutsNhsVFRXodDo0Go3rOhk+fHi96zQkJITOnTuze/fu886PCIhawOeff44kSfz444/8+OOPDdYvXLiQF198sd4fsaCgoEG6goIC1Go1Hh4ejR4nLS2N5ORkvvzyy3r16ocPHz6v/Pv5+bF9+3YkSaoXFBUVFWGz2fD39z+v/bcUPz8/bDYbxcXF9YIiSZIoKChw/Zo7+cUpKCio1w7DZrM1CO78/f1JSEjgpZdeavSYf+eXUExMTLNKy5577rkLPq7RqXx8fFAoFMyYMYMHHnig0TTR0dGAsw1LdHQ03333Xb1r5PRG9yddiDFUGjvG2rVrycvLY/369a5SIaDR8bj+Cbfddhu33XYbtbW1bNy4keeee47x48dz6NCheg/7082ZM4fPPvuML774gpEjR9Zbd/L79+677zbZ6PhMbUOAJh/8p/viiy+aNV7Mnj17GD58OJGRkaxevbrRH3AATzzxBLNmzSIjIwNPT08iIyO55557cHd3p3v37oDz+9JU78CTPyxa+seDv78/Op2uycbyp97zJk2axKRJkzCbzSQlJTF//nxuvPFGoqKi/la7FXd3d+bOncvcuXMpLCx0lRZNmDCBAwcONLmd1WplypQpHDlyhE2bNjVop+Tv749MJmPTpk1nbLvVlA0bNjBkyJBmncOxY8daZOyz/fv3I0kS1157bYN12dnZ+Pj48OabbzJr1iwSEhKa3I8kSS1yjYiA6DzZ7XYWLlxITEwMn332WYP1v//+O6+//jorVqyoV1X0888/89prr7mqzaqrq1m6dCkDBgxo8lfayQfA6Rf2xx9/3CDtyTTN+UU8bNgwvv/+e5YsWVLvwvzqq69c6y8Fw4YN49VXX+V///sfjzzyiGv5Tz/9RG1trSufJ3tdfP31166bLsD333/foHHp+PHjWb58OTExMS1WxbN06dImA4VTtWSx89/h5ubGkCFD2LNnDwkJCa4SucbIZDLUanW9IKSgoKDRXmYX07l8R/5J7u7ujBkzBovFwjXXXMO+ffuaDIgWLFjA3Llzef755xsNRvr164e3tzf79+/nwQcf/Fv52blzZ7PSnQyAz2Tv3r0MHz6c8PBw1qxZc9bvjUajcQ1Ue/z4cb777jvuuusu1zAMSqWSSZMm8eOPP5KZmel60EqSxMqVK4mJiWnxH2Xjx49n3rx5+Pn5NeucT57HoEGD8Pb2ZtWqVezZs4c+ffqc0732dEFBQdx6660kJyfz1ltvnXHoiDvuuIP169ezYsWKRoOD8ePH8/LLL5Obm8v06dPPOS8nq8yao6XuXaNHj3Y1cTjV9ddfT3R0NPPnz6dNmzYAJCYmEh4ezurVq7Hb7a7nZF5eHsnJydx4443nnR8REJ2nFStWkJeXxyuvvNLo6M8dO3bkvffeY8GCBfUCIoVCwYgRI5g9ezYOh4NXXnmFqqoq5s6d2+Sx2rVrR0xMDE8++SSSJOHr68vSpUtZs2ZNg7SdOnUCnN1ZZ86ciUqlIi4url6bkpNuueUW3n//fWbOnElmZiadOnVi8+bNzJs3j7FjxzJ8+PC/8cm0vBEjRjBq1CieeOIJqqqq6Nevn6uXWdeuXZkxYwbgbHt0880389Zbb6FSqRg+fDhpaWn897//bTDg1/PPP8+aNWvo27cvDz/8MHFxcZhMJjIzM1m+fDkfffTROY8HcvKzbykFBQWNljxGRUXRo0eP89r322+/Tf/+/RkwYAD33XcfUVFRVFdXc/jwYZYuXepqtzV+/Hh+/vln7r//fqZOnUp2djYvvPACISEhjbaRa8qtt97KwoULW+wX5un69u2Lj48P9957L8899xwqlYqvv/6a5OTkFj/W6U4+5Pv160dISAgFBQXMnz8fvV7vKr083bZt27j33nvp168fI0aMqNdmC5xjMnl4ePDuu+8yc+ZMysrKmDp1KoGBgRQXF5OcnExxcbGrSqop53udnHTw4EHX/eCll14iIyOj3t8/JibGVXqblpbGTz/9RI8ePdBoNCQnJ/Pyyy/Ttm1bXnjhhXr7feGFF1ixYgWjR49mzpw5eHl58dlnn5GcnMz3339fL+3gwYPZsGFDs6qlmzJr1ix++uknBg4cyCOPPEJCQgIOh4Pjx4+zevVqHn30URITE3n22WfJyclh2LBhhIeHU1FRwdtvv12vXVpMTAw6nY6vv/6a+Ph4PDw8CA0NbTJoSExMZPz48SQkJODj40N6ejqLFi2iT58+TQZDr732GosWLeKhhx7C3d293nXi5eVF+/bt6devH3fffTe33XYbf/31FwMHDsTd3Z38/Hw2b95Mp06duO+++5r8TDw9PVvsOgFniVNxcTHgLDjIyspy3ccGDRpEQEAAwcHBjTYf0Wq1+Pn51XumyuVy3nzzTaZPn86kSZO47777qK2t5YUXXkCtVvPUU0+df6bPu1n2Ve6aa66R1Gq1VFRU1GSa66+/XlIqlVJBQYGrl9krr7wizZ07VwoPD5fUarXUtWtXadWqVfW2a6yX2f79+6URI0ZInp6eko+PjzRt2jTp+PHjjfZaeuqpp6TQ0FBJLpfX69lyei8zSZKk0tJS6d5775VCQkIkpVIpRUZGSk899ZRkMpnqpQOkBx54oME5RkZGNtmL4KSTvRh++OGHRs/z9B4fJ3taFBcXu5YZjUbpiSeekCIjIyWVSiWFhIRI9913n1ReXl5vW7PZLD366KNSYGCgpNVqpd69e0vbtm1rNJ/FxcXSww8/LEVHR0sqlUry9fWVunfvLj3zzDNSTU1NvXNvTs+wlnSmHmsnz6OpXmbN/TsdO3ZMuv3226WwsDBJpVJJAQEBUt++faUXX3yxXrqXX35ZioqKkjQajRQfHy99+umnjfaGaerYkiRJU6ZMkXQ6XYO/15k01cvs1F5Dp9q6davUp08fyc3NTQoICJDuvPNOaffu3Q16AjXVy6yxXn2NfWdOt3DhQmnIkCFSUFCQpFarpdDQUGn69OlSSkqKK83pvcxOXvtNvU61YcMGady4cZKvr6+kUqmksLAwady4cQ2+T/+ks+X31M/34MGD0sCBAyVfX19JrVZLbdq0kf7973/X+06dKjU1VRo3bpzk6enp+s4uXbq0Qbru3btLwcHB55Tvxq6Xmpoa6d///rcUFxcnqdVqSa/XS506dZIeeeQRqaCgQJIkSfr999+lMWPGSGFhYZJarZYCAwOlsWPHSps2baq3r2+++UZq166dpFKpznqfePLJJ6UePXpIPj4+kkajkVq3bi098sgjUklJiSvN6dfmzJkzm/zMT78uP//8cykxMVFyd3eXdDqdFBMTI91yyy3SX3/9dU6f2fk62RO0sVdTvSxPOlPv2iVLlkg9e/aUtFqtpNfrpYkTJ9brDXw+ZJJ0HmG2IAjCOQgODmbGjBm89tprFzsrwmWouroaX19f3nrrrSbbvQnC3yW63QuCcEHs27cPg8HAE088cbGzIlymNm7cSFhYGHfdddfFzopwBRIlRIIgCIIgXPVECZEgCIIgCFc9ERAJgiAIgnDVEwGRIAiCIAhXPREQCYIgCIJw1RMDMzaTw+EgLy8PT0/PCzItgSAIgiAI50+SJKqrqwkNDT3jFB8iIGqmvLw8IiIiLnY2BEEQBEH4G7Kzs88484AIiJrp5JQX2dnZDaZ/EARBEATh0lRVVUVERESjU1edSgREzXSymszLy0sERIIgCIJwmTlbcxfRqFoQBEEQhKueCIgEQRAEQbjqiYBIEARBEISrngiIBEEQBEG46omASBAEQRCEq54IiARBEARBuOqJgEgQBEEQhKueCIgEQRAEQbjqiYBIEARBEISrngiIBEEQBEG46omASBAEQRCEq54IiARBEARBuOqJgEgQBOEyY7c5sNsdFzsbgnBFEbPdC4IgXCSSJGE12THVWjHVWtEH6NC4qQAoOFrJoe0FrnWmWhumGuf/rWY74x5IIKqTPwCFx6rY+8dxvPy1ePrp0Pvr8PTX4umrRaEUv3sFoTlEQCQIgtACHHaHM2g5GcCcCF5atffDw0cDwLGUEvasznKlM9dacdgl1z5ODXIqigykbsht8nimWqvr/yU51RzeVdQgjUwG7t4aBt0Y59pvbaWZymIjXn463PVqZHJZi5y/IFzuREAkCIJwGpvVjrG6Lqg5NcAx1VrpNCgc7yA3APZvyWPLj4exGG2N7mvc/QmugMhisJJ/uLJBGqVKjtZDheSoC44CIjzpPiYSrbsKrYeq/r/uKjS6utt3cIyeflPbUFVqoqrESFWJieoSIzarg5pyMyq1wpU2M6WE9V8fBEChlOPpp8XLX4uXn7NUqU23QLz8def/IQrCZUYERIIgXLUkSSInvZzUDTn0mhCNf7gnAPs25rH5h4wmt4to5+sKiBQKWb1gSOOmrBe8qN3qbrMhbb0ZeWcH1zrdiX+VpwQsJ/mFeeAX5tGs8/AL9cAvtH5aSZIwVlupKjHiG+ruWi6TyfD001JTbsZuc1BRaKCi0OBaHxjp5QqIDu0oYM+a43j56/Dy0zr/9dedqJrTolQ1zLcgXK5EQCQIwlXH4ZA4uqeY3auyKD5eDUB8v1BXQKT1UCFXylylMaeXznj6aV37iuzkz41zEtF6qNC4qZCfoQrKy0+Hl9+FKX2RyWS4ealx81LXW96+fyjt+4ditzuoLTdTWWKkuuREyVKpCZ8TgR5AWX4tJdk1lGTXNHqMax/tRmhbbwCKj1dTklPtPMcAHe7emjN+FoJwqREBkSAIVw271cHB7QXsXp1FZZERAKVaTvv+oQRE1JWwxPYMIrZXEDLZ2R/oJ4Oky41CIXeV+DSlw4AwgqP1dUFTqbM6rqrEiNVsd1UFAhzZU8SuFVmu93KFDA9fratkqfuYyAsWDArC3yECIkEQrgoWk41v5m6nptwMOKu2EoaE02lIODqP+qUooqGxk6evs6fa6SRJwlRrdfWIA9AH6Iho70tViZHqUhMOu0RVsZGqYiNQTrdRka60x/eVUllspE2PwAafvSBcLCIgEgThimU121FpnO1c1FolQVFeSFIVXYZH0L5/KGqtuAX+HTKZrEEgE983lPi+oYCzSrK2wkz1iRKlyhIjHr51pUl7/zhOdno5m7/PoFVHP+ISg4lK8BNtkoSLSiZJknT2ZEJVVRV6vZ7Kykq8vLwudnYEQTiD6jITe9ccJ31bPtc90wt9gLOqxlBlQaNTolCJsXkuppR12RzYVuBqvwWg1ilp0y2AuN7BhLb1uYi5E640zX1+i59HgiBcMcryatmzOotDOwpxnOjCnrGzkB5jowAaNDAGyCk38Gd6EUarHTe1Aje18sS/9f/vrlGiUytwUylQKi5+QOUwm5HJZMjUl1+VU8KQCBKGRFCWV8vBHQUc2l5ATbmZ/VvyqSgycu2jIiASLjwREAmCcNkrOFbJ7pVZHEsucS0Lb+dDt1GRhLdr+HDNqzCyPDWf31Py2Ztdcc7HUyvlziBJ7QyS3NWKE/+eCJpOCabcNUp0KgXuGgU6tRI3lQI3jXP96dtplPJGG3Lbq6ow7k/HlHYQ06GjWI7lYCuqRDJVIZPVoPD3Qennj9L/xCvAH4W/v3NZgHOZwscHmeLSqpLyDXWnzzUx9J7YmryMCg7uKCA8ru7vZaiysPzDFNr2CKJtz6BGA1pBaCmiyqyZRJWZIFyarGY7Xz65xTkWkAxiugTQdVQkQVH1v6eFVSaWpeSzLDWfXVnlruUyGfSK8iXMR4fBbMdgtWMw2zBY7BitdmrNNowWO7UWG44WuFsqAE9keCLD67SXHhnBkp1Qmwk/uw0vh4QWBUqlFlRuyGQNS6Ykhw1HVR72iiwclcexVxzHUZULdkv9hHI5Cl/fuqDpZODk54fSP8D1Xunnh1yvb1YPu39a8tpsNn/vHA9KJpcREe9LXO8gojsH1BtsUhDOpLnPbxEQNZMIiATh0uBwSGTvL6NVB1/XQ3vH0qNUl5vpNrIVPsF1gxAWVZtYkVrAspR8dmaVcfJuJ5NBz0hfxiWEMKZjMIFeDXtSnU6SJMw2BwaLHYPFhtFgxVBtwVxjwVptxWawYjdYkYw2MNmRm2wozA6UFjtqm4TGJqG1SejO845rddiokexUymT4yZR4NhYkSRKSrQKpNg972TFseQewVxwHm6lZx5CpVM4SJtfL75T3ASj9/Vzr5O7uZ9/h32SstpDxVxEHtxdQlFnlWq7SKIjpGkCvia0b7QUnCKcSAVELEwGRIFxcdquDA0n57Fl9nMpiIxMf7kJEe98G6UpqzKxIK2BZSh7bj9UFQQDdI30Y1ymEsZ1CCNY7H6R2h529WbsxldegsiicL7MchVl24gVyE8hNEjITyEwOZEYHWM/v1ilZjUiWGiRLLZLV4Pz35P/dVdh89ZgD/DAEB1MREkqVuzuVkkSN3YHBbKPWYiezuIbivGpCzRKxKIhFThwK/Gi8jZPkLkPt5UCmNCDZSpFq8rCXFmArKcFWWoqtpARHZcOpRc5E5ubmDI78/JqsrlP6O5fJz6O9U3lBLYd2FHJwewHVpSbkChm3vdIfrYez67/FZBO9BoVGiYCohYmASBAuDovJxr6Neez98ziGSmc1kMZdyYDpscQlBgNQVmthZVoBy1Lz2HaktF7VVpcIb8YnOIOgUO+6gQEL83NJ3rgVVYaVmJow5E0EEWdix0GNwkC1opYa+cl/a5EsBrQGA27VtejLa/EtrkZpdAY8WA1IVgNIDuxyKAzWUBDmRmGYG4URHpSFeyJpNSjkChQyBQq5AqVM6XqvlCtRypUoZAoC3QKJ84nDRxVNUZmW9Pxq9udXkpdbhUeF1RUgxaIguInzc3iq0EZ4og3zRBXmgTJADeYqZ5BUUoqtpBhbSQl21/sS56u4GMloPKfPS+7lhTY2Fs+xY/AaNQqln985f+aSJJF/pJKy3Bo6Dgp3Lf/p1b+wWhzEJQYT2ysId73mDHsRriYiIGphIiAShAvLZrWza0UWqetzMBucc4V5+GjoMrwV7fuHUmu3s2pfAb+n5LP1SCn2U6KghHA94xNCGNMxhAjfuqkozMW1HNy2G3NaGSFV9UuXqlUGapUmDEoTtUojNQoDNQrnv1WKWqoUNVTLa6mU11ClqKZCVo3ZVkN4kZ3oAonoQucrohhU9obnY1ZCViAcC5ZxLEjGsWAZ2f5gU7ZMWx0fjQ/tfNvRzq8d8b7xhLu1oabGmwMFNezPqyIrpwpFsZHWDpmrNCmCxtvh2NyUaMI8cIvwRB3mgSrMA4Ve06BdkaO21lWyZCsuwVZSjL209MT/6172khIkq7X+QeRy3Hv3xmvsGDxHjECh1//tczdUWVj49BYcNuc1IJM5G9XHJQYT3SVAlBxd5URA1MJEQCQIF5bkkPjm+e2UFxjwDnKj26hWBHXy48+DRSxLzWdzRgm2U4KgjmFejOsUyrhOIbTyqwuCrEUGSnZnUbY3B31FXXsTBw6y9IUo2+tJ6N8Hd78zf6/tVVWY0g9g2r8fU/p+TPv3Yzl6DByOBmllHh4o2rVBEdcW4lpD22gcrUKwyyRskg27w45dsmNz2LBL9gbvbQ5bk+vsDjs2yYbVYSW7Kpv0snSOVR7DLjWMwnRKHXE+cc5AybcdbfRxyGzBZBSYSM+v4mhOJea8WsIskqs0qRVyFDQM0mwaOYpgdzwj9ajDPVCHeaDw1Tar8bUkSTiqqrAWFlK7dStVy1dgSkmpS6BS4dGvH17jxuIxZCgKj3Nvl2SqtXJ4VxGHtheQf6Su2k+plpM4sTVdhrc6530KVwYRELUwERAJwj+rNK+GtPW59JvaxjX7e2ZqCTUGKweVNpanFrAxoxirve6WFR/i5aoOi/Z3PkQlScKaX4shtZiy5BzUZXXHsGNnn8dRjG3kdBnQl5iw2EbzYispcQY++9NPBEDpWLOzG02r8PdH2z4ebXx7tO3bo20fjyo8/IL20jLZTByuOEx6WToHSg9woPwAh8oOYbI3bEStlClp7d2adr7OkqQ43zi8FVFkFTvYn19FRk4lhpxq9NXWEyVJClojR9lYkKSSIQW64RnphS7CC3WoO8oAt2ZNfWLJzqZq+Qqqli/HfPCga7lMo8Fj0CC8xo7FY9BA5Lpzn/+sstjIoR0FHEwqoLLYyMg7O9C2RxDgLE2qrTTjH+5xSfSkE/55l01AlJubyxNPPMGKFSswGo3ExsayYMECunfvDsCtt97KwoUL622TmJhIUlKS673ZbOaxxx7jm2++wWg0MmzYMD744APCw+vql8vLy3n44Yf57bffAJg4cSLvvvsu3t7ezcqnCIgE4Z9RcLSSXSuzyExxjiE08PpYovsE82d6Ib+n5LPhYDEWe10pTFyQJ+NOBEFtAp0TskqShDWnBmNaCdWphVBWVz1jxcYe9wPkhJXRJrEzQ+OGo1XWlRRJkkTt5i0Y9+zGtM9Z8mMrLm40r6qwMGfw0749mnjnv6rAwH/iYzlvdoedrKosZ5BUdsD1b6W58UbTEZ4RrpKkdr7tCHdvQ0mFlv15lRzMraQyuxpNiYnWkrMkKQY5msaCJIUMm58Wj0gvPCO9UIV6oApyQ3aGwSzNR464giPLsWOu5XI3NzyGDsVr7Fjc+/c750bZkiRRmFmFX5iHq5v+Xysy2f7rUXxD3V3tjTx8RE+1K9llERCVl5fTtWtXhgwZwn333UdgYCBHjhwhKiqKmJgYwBkQFRYW8sUXX7i2U6vV+PrW1f/fd999LF26lC+//BI/Pz8effRRysrK2LVrF4oTA5GNGTOGnJwcPvnkEwDuvvtuoqKiWLp0abPyKgIiQWg5kiRxfH8Zu1dmkZdR4VwoA120JymeEitySzHb6oKgmAB3xieEMj4hhLZBns59OCQs2dUYU0swppVgrzC70ptlFna572eX7wGCEqKZ1PFaYrxjGuTDuG8fhS/Nw7h7d/0VMhnq6Gi0J4IebYf2aNu1Q9HMH1CXKkmSKKgtIL0snYNlB11BUn5tfqPp/bR+rjZJ7Xzb0cY7DovRhwMF1aTnVFJ6vAqp0ECExdnLrS0K3BoJkuwyMPto0IZ74hvrg66dL4pGJnWVJAnzgQOu4Miam+taJ/fywnPEcLzGjMW9dyIy5d9rF7T1p8OkrMvBfvL6kkFYrA9xiUHEdA1ErRPtja40l0VA9OSTT7JlyxY2bdrUZJpbb72ViooKlixZ0uj6yspKAgICWLRoEddddx0AeXl5REREsHz5ckaNGkV6ejrt27cnKSmJxMREAJKSkujTpw8HDhwgLi7urHkVAZEgtAybxc5Pr+2iJLvGuUAO5QFqfrfUUHBKO5hof3fGJ4QwPiGU2CBn9YbkkDAfq8SYVoJxXymOqrrBB40yEzs99rHZaw/WaCUT469hROSIeqVBrjyUllL81ltU/PgTSBIynQ6v0aPRdujgDIDiYv/R8XUuNRWmCg6UH+BAaV1JUmZVJg6pYfsod5V7vXZJ7Xzb4S4PI6PAyP7cSgqyKrHn1+JbYyMWBXEo8DwtSHIAhgAtfp0D8e4cgCrArcFxJEnClJJC1fLlVK1Yia2oyLVO4euL56iR6MeORde9OzL5ufUQNBusHNldzMHtBXUBOaD1UHHrK/1QXAJTswgt57IIiNq3b8+oUaPIyclhw4YNhIWFcf/993PXXXe50tx6660sWbIEtVqNt7c3gwYN4qWXXiLwRDH12rVrGTZsGGVlZfj41A353rlzZ6655hrmzp3L559/zuzZs6moqKh3fG9vb958801uu+22Bnkzm82YzXW/OKuqqoiIiBABkSD8DQ6HhPxEuxKT1c43r++i5ngNKRo721QWak48fyL93BjXyRkExYd4OoMguwPzkVOCoNq66rBauZHtHqls9trDQZ/jjG07jqmxUxstDQKQrFbKFy+m+L33cVQ7Jxb1mjCBwMceRRUU9M9+CJcZo81IRnlGXXVb6QEyKjIw280N0qrkKtp4t3EFSPF+8YTqWnO81M7+3EpyMisx51bjUW6hu+QMkk5V465E086XkB5BaCL1DdogSQ4Hxl27qFy+nOqVq7CX1400rgwMxGvMaLzGjkWbkHDO7YKqSowc2lnIoe0FBER6MuK2Dq51fy3PJKK9L4GRnqK90WXssgiItFrnL7fZs2czbdo0duzYwaxZs/j444+55ZZbAPjuu+/w8PAgMjKSY8eO8Z///AebzcauXbvQaDQsXryY2267rV7wAjBy5Eiio6P5+OOPmTdvHl9++SWHDh2qlyY2NpbbbruNp556qkHe5syZw9y5cxssFwGRIDSfxWgjbVMuqetyCLimFauOlfDH/kIURgcWmYRJDuE+Old1WIdQL2cQZHNgyijHmFaKcX+pc/TnE2oUBrZ67GWz1x72uh2kU3ACU2OnNlka5Npu8xYK58/HcuQIANr27Qn69zO4dev2j38Op5McDqxmE2aDAYvRgNlQi8VgwGw0oHH3ICqhqyvtmk/ew1hT5Up7Mp3FYCAgqjU3PP+qK+2uZb8ik8tw9/bF3ccHd28fPLx9UWlbpo2MzWHjWOWxem2SDpQdoNpS3SCtDBmtvFrVBUm+8cToYzlaKGPH3nwM6WXE1TjohgLVKSVIRqUMa5QnYT1D8Iz3Q37aFB2SzUZt0naqViynevUaV2ALzjZeXmPH4DV2LJp27c4piJEkCZvFgUrjPF5JTjXfvbgTAJ9gNzoOCiOudwgaUaV22bksAiK1Wk2PHj3YunWra9nDDz/Mzp072bZtW6Pb5OfnExkZybfffsvkyZObDIhGjBhBTEwMH330EfPmzWPhwoUcPKUnA0Dbtm254447ePLJJxscR5QQCcLfZ6iysOeP46Ssz8FhcVa7bNNY2axzBjZh3jrGJYQwrlMICeHOebMcFjvmQ+UY0kowpZchmeuqz2rVJja6/8Umj92kuB/CTePOpJhJTGk7hTY+bc6YF8vx4xS+/Ao1a9cCzuqWgEdm4T158jlPdipJEjazGbPRgEwmw93bWSrtcNjZv3EdFkMtZqOhQfASGNWaATfMdO3jrZuuxWG3NXqMiA4JTH92nuv9+3feiKm6qtG0rTp2Ztp/XnK9/+DOGzE2klat0xEe35Frn3jOtSx13WoUCmVd8OTji9b93HteSZJEXm1eveq29LJ0igxFjaaP0ccwLW4aE2ImUFGtZENqPvl7CwkoNNFbUtarXrPJoDJQi3+3IIK7BqM4bXJXh8VC7eYtVC1fTvXatUgGQ905R0fjNXYsXmPHoIlpvMTwTErzati1PJOjySXYrc5rWKlRENsriE6DwvAP9zznfQoXR3MDoosa6oaEhNC+fft6y+Lj4/npp5/OuE1kZCQZGc4J/4KDg7FYLJSXl9erMisqKqJv376uNIWFhQ32VVxcTFATxeQajQaNRox0Kgjnwmyw8sui/RQnlyI/0fykVO5gu8ZGub+KOzpHMC4hhK4R3s4gyGzDmOJsFG06UIZkrWuzYtJZ2eK5l1XazexzO4xDJtE1sCsvxL541tIgcA4aWPLRx5R9+aVzUEClEt+bbsL/gftRnHJTrK0o59jeXdSWl+EdHEpcn/4A2KxWfnzxmXolMmajAenEuENte/Vl4qNPAyCTyVn98TuudQ3yYqsLfmQyGWqtFlNtDXKFArWbOxo3N9Q6NzQ6NwKjoutt22/aTQCoT6Zxc8MhU6DSavHwPNHAXJKw2+3E9x9MTXkZtRVl1JaXU1NRhs1sxmI0YrPUn+x149dfNgi0FEolbt4+hMW1Z9zD/3ItP5S0GYVKjYePL+7ePrjpvZGfCCZlMhlhHmGEeYQxLHKYa5syU1m9IOlA2QGyqrI4UnmEl3e8zNu732Zs9Fimd5pO+8F9qTXb2HKomEO78lEcraS7RU6oJMev0IS0Iov8FVmUeCrRxPsS3TsMTYg7crUaz6FD8Bw6BIfRSM2GjVQtX07Nhg1Yjh2j5P33KXn/fTRxca7gSB0Rccbr5iS/UA9G3tkRs9HGoe0FpG7IpTy/lv2b8ti/KY+Js7oQ0a7h1DHC5euiBkT9+vVrUGpz6NAhIiMjm9ymtLSU7OxsQkJCAOjevTsqlYo1a9Ywffp0wFmKlJaWxquvOouS+/TpQ2VlJTt27KBXr14AbN++ncrKSlfQJAjC+amoMbPguW1oax3IgXyFgwPe0LFXMHM7h9KtlQ9yuQyH0YZhTxHGtFJMh8rAVldIbfOEvb6H+Fa2lP3ao0gyCU+1JzfE3MjUtlPPWhoEzuCgaulSil77r6v7vHv//gQ99aSrpKAsL4fDO5M4/FcS+RkHOTnhWdtefV0BkUKpJO/gAaRGGhbLZHIcDvsp72W07dUXmVyORueG2s2t7l83d7z8A+ptf9tbH6PSalGq1E2WyDgcDsrLy9FFtaGkpISskhJKSo5SWlqKwWBg0KBBDBkyBICamhpef/11VCoVOp0OXXA0uuj2BOt0aFQqgv39aRvjDLTsdjtZWVkEdeyCuaoSc2UFhvJSzLU12G02qkuKMYTU75q/5tP3MdWcUi0mk+Hmpcfdx5fQ2HiG33Gfa1Vm8m5UWh0ePj70CuhB37C6e2y1pZrlR5fz7cFvOVxxmJ8yfuKnjJ9I8E9getx0RsWPYmSnECRJYn9eJX/+lYdhfxkxlTbao8C/2gY7iijZUUSFWoY5ypPIxFD82vkh1+nwGj0Kr9GjsNfUUrNuLVXLllOzZQvmgwcpPniQ4jffRNupkzM4GjMaVXDwGa4kJ41OSafB4XQcFEb+4QpSN+RSeKyKsLberjTZB8rQ++vw8j/3MZOES8dFrTLbuXMnffv2Ze7cuUyfPp0dO3Zw11138cknn3DTTTdRU1PDnDlzmDJlCiEhIWRmZvL0009z/Phx0tPT8Tzx6+i+++7j999/58svv8TX15fHHnuM0tLSBt3u8/Ly+PjjjwFnt/vIyEjR7V4QWkBabiUPLt5NUK6F7mYlpu7ejBwSSa9oP+RyGfZaK6b9pc6SoMMVcMrgijJfFYeDC1jMErY6dnGyxqRrYFemxU5rVmnQScbUNApfegnj3r0AqFq1IujJJ/EYMthZIuWw878n/o/i45n1tguOaYt/q2iCY9rQecRY1/KMndtQqTUnSmbcUbvp0Li5o9I0b4TmZuXZaKS0tJSSkhK8vLxo3bo14Pzx9+677za5XY8ePRg/fjzgLO1+//33m0ybmJjImDFjAKiurub111+vt14ul6PTatGo1URHhNOraxeCWrfBZrOxedMmDm3dgK22FmtNFeaqSmQ2KzKHDex2ohK6MvWZF1z7ev/26zHV1rjea9zdcdc7q+RC2sYx4IaZSJLEnqI9fHvwW9ZkrcHmcJag6TV6rom5hulx02nlVTeydFmtha3JeeTvKsQv30hnR/0xkGrlUB6kxb9rENE9Q1DoVK519ooKqv/4g6rly6lN2l5vZHFdj+54jTkxr5q/f5Of3+nsVgcKlbMngMPu4KtntlFbaSayox8dB4bRqoOfqxOBcPFdFm2IAH7//XeeeuopMjIyiI6OZvbs2a5eZkajkWuuuYY9e/ZQUVFBSEgIQ4YM4YUXXiDilGJPk8nEv/71LxYvXlxvYMZT05SVlTUYmPG9994TAzMKwnmQJIn/bc3ihRXpWGwOwvQ63ri2E4ntArBXWzDuK8GYVor5aIWzr/UJyiA3SloZ+FX1Bz+W/4YN5wPRU+3JxJiJzS4NOslWUkLRm29S+fMvzm70bm743H03hp5dKTqeSeK1011pf5r3LMfTkonokECbnn2I6dELT9/mPwzPh8ViYdeuXZSUlLiCoJqauuChU6dOTJkyBXCW5Lz66qt4e3vj7+9f7+Xn54f6lEEKHQ4HZrMZo9HY6CssLIw2bZyfZ3l5ueteaTQasdvrT/lxtuDpVK3DwxjStzcR7Tths9n4+uuvKTmSgcNiwm6oRbJakNmdgZPcaqJ1XHy94GnTNwvRhQawxy2TH7N+Ja82z7Wub2hfrou7joHhA1HK6yozbHYHuw+XcmhHLsojVXQwSficMnGtDYl8vQp1O1/i+kfgcUqXfltJCVWrV1O1fDnGv3bVnYhcjnvvRLzGjsVz+PBzGm+qttLMn1/uJzu9ruebp5+WjgPDiO8bgs7z3AaTFFreZRMQXS5EQCQI9VUZLbzx5k4cuUa+8TAzqH0gr03uhCqtDENyMZasKjjl7qIKcUdq58Zat+18VfQNuTV1g+51DezK1NipjIwc2ezSIADJYqHsf19T8sEHOGpqsMpl1A4dSElEKJnpaViMzka2d3/wJZ5+zqCnvCAPnacXWnePlvkgTmE2m12BzslXQECAq2rLZrPx0ksvcfpt19PTE39/f2JiYujfv3/d+UnSP9rdW5IkrFZrveDJw8ODgABnFV9tbS1r165tNMiyWCznFDxFBgcxOLEn0V17AJCenMyyec8gA2RyOaGx7aC1P0naQ6w17kCSOT+jILcgpsVOY0rsFPx1DQPX7JJa9iTlULuvlKhyKxHUH0MoT+OsWovuE0ZYnJ/r87QWFFC1cmXj86r17eucV23oUBQezbtOKgoNpG3K5cDWfNdkxHKljIHXxdJhQFiz9iH8M0RA1MJEQCQIdVKyyvn63T20OlG4oezjz+0T21K++CCW7FO6QUd4ouvoS3rAcb4t/In12euxSfVLg6a0nUJbn7bnnIeajRspnP+ys/Gsh46s1uEUK2T12va4e/sQ0yORXpOmoQ9smXGGHA4HFovFNWyIw+Hg66+/pri4mKqqhj28wsPDufPOO13vly1bhlarrVfao22hbvEXkt1ux+FwoFI5q6fMZjMHDhxoNHgymUzExsYycOBAAEpKSnjvvfdQKeRoDdXY87KQmwyuSjCdjzem3iEs0W6n3OwseVHKlAxtNZTr211Pj6AejQaKRoudnbvzKNxVgE+egVi7DPkpVWtlconiYB3+XYJonxiKSuMseXLNq7ZiBeYDB1zpZRoNHgMHOoOjQYOaNa+a1WLn8F+FpG3IpSirmmlP9SAw0vnMMFRZUKrlqLWi6/6FJAKiFiYCIkE4UUW2/igHfzpGiE2OA4k2YyMZHOtL+fcHcRhsyHRKvIZGYGqrYEnR7/yU8VOLlAadZMnMJOOlF7FuS0Jjs6Pw86N66iTWJ20AwCckjDa9+tCmR29C2sSe8yjGJ1mt1galPSerukJCQrj99ttdad966y3XwK/u7u6uQMff35/g4GBXuyDB6dChQyxZsgTDKd3kPXVa3K0mDEcOIBlqGD/rSaJ79WJ11mqWJC2m9kAWOYFGKjystPZuzfS46UyMmYinuvHu75IkcfBYORlbc1AcraStQUJ3SnBkQCJLr0LdzoeOA1rh5++sWjvjvGrDhuE1dgwe/foha8a8aqW5NfiF1ZUwrVuUzuFdRcT1CaHjwDB8Q66e0dAvJhEQtTAREAlXu2qTlTlf7cVvTyV6SY5NCaPv7EBwgYHq9TkAqMI9yBxu4Nv8H1u0NEhyOMhNSyFtwSdkZh2hVqMitrCcXmMm4X//fdgUcvauWkabXn3wC2tet2rXviWJnJwcamtradeunWv5G2+80WiJDziruB599FHX+8OHD6PRaPDz88PNreE0FEJDdrudw4cPk5KSwsGDB7GdMjTBqP596NZ3AJoTn+W2H79h6w9fA2DQ2skOMJAbYKQ8WMbItmO4Lu464v3iz3i88koTyZuPU7u/lIhSK76njneExNETVWuRvUOJb+esMnTOq7acquUr6s+rptfjOWI4+nHjcOvVq1njWUkOie/m7aQ0p67NWFicNx0HhhPdxV9MF/IPEgFRCxMBkXA125dXyZzPdtE3T0KNDDyVXH9vJ+x/HMdyzBk0yHt684rXp6zNW+farktAF6bFOXuK6ZTn1iXZYbdzPHUvGTu3cXjzRgymutIEGZDQbwjDH3606R2chc1mIzU1laSkJAoLCxsEOQsXLiQ/P79Bg2Z/f398fHxcPViF82cymdi/fz8pKSkUFhYye/ZsV1Xc/v37KTh8kLK0veTuT8VmrRtPyS6TKPQ1salzKW0jOnBd3HWMihqFRnHmMeRsNgf7djl7rfnk1RJmq1/9dlzuoChIh1+XQLolhuGmUWJKSaFy2TKqV6x0DecAoPD3x2vUKLzGjUXXpcsZSyQlh0T2gTLSNuSSmVJycrQH3PRquo2KpPPQcwvmheYRAVELEwGRcDWSJInFO44zd+l+NBaJmTUagiI8mTShNTVLDuOosSLTKDjYt5RnSudRY61BJVcxNXYq02KnnXNpkMNhRy53Bho2i4X3b7/e9QBU2h0E2aHduInE3zgDjdvfq26ora1l586d7Ny5k9raWgBUKhVRUVFcf/31rkDHYrGgUqnEHFYXmMlkcrWpkiSJd999l7KyMnQ6HfHx7Qhyd6Mm6wjH9u6isjAfh1rON8OzsZ7oqdihOICe4YlcO/R2Wgc27/rLPVm1dqSKVgY7ilNKj0pxcNhLiSPWm7ieobQP9cS8e7dzdOxVq7CfMkemMjTE2Y1/7Fi07duf8dqpLjOxf3Me+zbnYayy0HN8NL3GO8eKkhwSyBDXXgsRAVELEwGRcLWpNll5+udUlqbkAzC0XSDPDWyL/kgFNWuzQQIpUMV70d+zvGoNAAn+CTzf7/kmJ1dtTE1ZKUd2befwziRqysuY+dp72IqLKXrjTbbs2IQEhJjtxN0yE/9bb0PejLYbTdmzZw+///67q6u5p6cniYmJdOvWTVR1XYKsVitr164lNTW13vAEPj4+JCQkEBUShKO2Bn371vyS8Qs/HPyBvstkeBpV2OUS5mAtbbv3ZuigaQSERzYrwDBUmti/JQfDvhKCSy24nRIcVeJgu8JBaZgbwQmB9G7tTXBGCtXLV1D9xx84TgTYAOrISLzGjXXOq9am6SEk7DYHR/cWE9rWG3e9s2Tr6N5itv1yhI4Dw2jXJxiNm6rJ7YWzEwFRCxMBkXA12ZdXySOLdtM520aK1s6UiW25rUsEFT8cxJxRAUBem2pma16k0lGNVqHlwa4PcnP8zSjkZ69KKs3N5vDOJI7sTCL/cP3R6if3G4Fl4SLXw0V/zTUEzH4EVWDgOZ+HJElYLBbXNDz5+fl8/PHHhIaG0qdPH9q3by+qvi4DDoeDo0ePkpKSQnp6OlarFYAuXbpwzTXXuNKZTUa++/gl8lJSUdXUH19J5u1G56GjGXbd7TSXw2rn2O4CincV4pNbi/spu6xBYjNW9upk6GJ96BXpRc+iAyg3/EHNuvVIJpMrrSY21jk69rixzZo6ZNkHKWSmlACgVMlp2yuIToPCCWgl5k/7O0RA1MJEQCRcDU5Wkb21ZD8TKlX4OeSo3JTcdF8nqn44hL3KgqSS8UPrtXwh/wGAnsE9mdNnTr2Rhc9k0+Iv2fHrj/WWhbSNI8IvEM/V69AcywJAm5BA8DNPo+vc+ZzPw2q1kpycTFJSEhEREUyaNMm1rqCggKCgIFEdcZk62b0/JSWF/v37Ex3trGbKy8tjw4YNJCQkEBsby6Fje1m59muK0tLxK1WicMg4GFmD17geXBd3Hd38u5K8ZgXRXbrhE3L2cYIku4ThaAV52/OQHapAa6kbadSAxFZsrMdKvq+axFbuDC07RMTezVi2bYUTARw4r2uvsWPwGjMGVRNzaVpMNg7tKCRtQw6luXWlTkHRXnQcFEZcr2BkYiTsZhMBUQsTAZFwpasx23j651R27yrgmlo1OkmGm17FmH6h2JLywAE1XmaeDHiTI+rjuKvcmd19NlNjpyKXNWxIarNayd6XwuGd20gYPoagaGc12pFdO1j6xjwiOnamTY/eRASEUPPBB9Ru3ASAIsCfwNmPop808Zy7zFdXV7vaBxmNRgDc3Nx45JFHXI10hSvTypUrSUpKApyTc3fo0IGEhASCw4NZdWg5qzd+R6o1g3IvZ3DS1dyazn86i3y8g0KI7tqD6C7dCe/QCZX6zI2yJYeE5XgV1cnF1KQUo6yt6yFnQmIbNjZgZQs24n0VXFuTQaeD29Gk7qmbOkQmw617d7zGj8Nz5EiUvg0nipUkifwjlaRtyOXI7iIcdonASE+mPdWzJT6yq4YIiFqYCIiEK9n+vCoeWLwbt1wTo4wqFMgIjfCgb5AO6+EKAHb5H+RFv48wyc0MCBvAs32eJdi9/uSYDoedjO1bydi+lWN7/8JyIihJvHY6/a+/BQC7zYrNYkXpcFDy/geULVoENhuoVPjNvAW/e+9t9ujAJxUUFLBt2zZSU1NxnHjgeHt7k5iYSNeuXS/LgQ+Fc1NcXExycjIpKSn1hkvQ6/UkJCTQv39/Mmsz+e7gd/x+9Hc8ixx0ydATVKZFIdWVtihVaiI6dKLPtBsJaRN31uNKDglLTjXGtFJqU4qRKsyudWYkdmBjAzY2Y0VrqWG6IYN+x3fjezS9bicKBe59+jinDhkxHIVnw6oxQ5WF9K15eAe5EdPVWX1sNlj5c2E68f1Ciewo5k9rigiIWpgIiIQrkSRJfLMjmzm/7aN3jZxEs7MUpWN7X9oaLDgqzNjlDj4M+p5l+o3otXqe6PkE41uPb1DlVHj0MGs+fZ/CoxmuZe4+vrTpkUh8/yGEtWvvPKbDQeUvv1D0xpvYS0sB8Bg8mKAnn0AdFfW3zmP9+vWsX78egIiICPr06UNcXJxoH3QVcjgcZGVlkZKSwv79+zGbzbi7uzN79mzX9VBuKGfl8ZV8d+A7skqPElqiJaxYR3SpF2qD85F440uvuwKi4qxjGKoqCY/vgELZdEmjJElY82oxppVgTC3BVmJ0rbMhsRMb67GxCRsaQxlDC1IYVZhKSGGmK51MpcJ90ED0Y8fiMXgw8jM09k9em83m753fNw9fzYn500Jx8xLzp51KBEQtTAREwpXmZBXZb8nOCTVv0XoRVGBlUFd/vI9XgV2iWFPO3NAPOaLNYUTkCJ5OfLrR+aSsJhOfPHAbpppqNG7uJIwYQ9uefQiOaVuv2su4dy8FL83DlJoKgDoqiqCnn8LjxJQOzWE2m0lOTsbf3981AnRNTQ2rVq0iMTGR8PDw8/lYhCuI1Wrl4MGDWK1WunbtCjgDprfffpuAgAASEhIw+hj58eiP/HH8D2x2G97VKmIqfOg0eizT46YT4RXBqo/eIW3datQ6N6I6dyOmey+iunTHzUvf5LElScJWaMCQWoIxrQRbYd04Wg4gReFgjd3MRmzoaooYmJvM0Ny9RFQVuNLJdDo8hwzBa/w43Pv3b9DDsrLYSNrGXNK35mE+UW0nV8iI6RZIp8HhhMQ0nb+riQiIWpgIiIQrSXp+FQ98vZujJbUo5DIeHxXHbd0jKPxfOrJMZ3XDFs89vBGyCJ27O8/0foYRkSPOuM+9q5aRc2AfQ2behbu3T7111sIiit94ncpffwNA7u6O/wMP4HvzTc2aAgGgsrKSHTt2sGvXLkwmE1FRUdx6663nfvLCVS07O5sFCxa43qvVauLj44lqF8UOyw5+zPiRgtq6oKRfWD/6ZgRRs/swxqpK13KZTE5IbDtad+tJz4mTXeNnNcVaZHCVHFnz6xpKS0CWm5zlFhOrrCY8q/IZlLuXQTl7CTGU1u3AwwP9yJF4jR2Le+9EZMq6+dBsFjuHdxWRuiGXohPfX5kMZrzUF09fUV0sAqIWJgIi4UogSRLf7nRWkelNEgMdGq57sDOdtVrKFh/AVmLEJrPzWeDP/OqzjoltJvJ4z8fRa+r/0qwqKWbtFx+TMHwUrbv2dO379Go0h8VC2ZcLKfnoIySDAWQy9JOvJfCRR1D6NyxpakxOTg5JSUns27fPNUu8r68viYmJ9OrVS/QWE85ZaWkpKSkppKSkUF5e7lru6enJ6DGjKfIo4rtD37E1dysSzmtOJVMxQNGZ9hVBKI9VUJHtnK7GNyyC29740LWPosyj+IVHnLFqzVZqxJhWgiG1BOspU3kAlHqr2Kq0s7isCl1pJoNy9jIwdy/+prp2UXYvbzxGjSRw0gR03brVK4UtyqoidUMuMmDoLXXTmZTm1uAb6n5Vfl9EQNTCREAkXO5qzDae+SWVX/fm0dYiZ4JJg8IBA3sE4JNZCTaJImUZ88M/o9zPyHN9nmNA+IB6+3DY7exZuZQt3/0Pq9mET0got77xYYNfx5IkUbNuHYUvv4L1+HEAdF26EPTMM+g6dWx2npcuXcquXbtc76OioujduzexsbHI/+akrYJwkiRJZGdnk5KSQlpaGiaTiTvvvNNV7bo/Zz/LM5eztmgt2dXZ9bbtoG5DoiGGuIB4Ro2/FYVc4Rxd/c4bkMvlRCZ0JaZ7ItFduuOm924yD7ZyE8a0UoxpJViy6s+dZw7Qku6p4DdjLQX79jIgew8DclPQW+pKmAx6XxyDhtP6umvx7dbZFfCc+gOlvKCWxXO3ExTlRc9x0bTq4HtVBUYiIGphIiASLmeuKrLiWnpblAwwqlAAfUJ0+BmdbQ92uKfx39CFjGk/jke6P4KHun5Pr4LDh1jz6fsUZR4BIDSuPSPuegD/iMh66cxHjlA4bz61W7YAoAwIIPCxR/GaMOGs3ehNJhNyuRz1iWq0lJQUlixZQqdOnejduzchISEt8XEIQgM2m41jx47Rpk0bV7Dw22+/sXv3biIiIvDw96BIVUSyKZmd1TtxUDcOka/Wl/5h/UlUdiT382UYKivqdiyTEdI2jphuvWib2A/f0KbHPLJXmp0lR2mlWDIr4ZSnszzYjcIQHRsdFo7+lUTr1C30y0vD3VY3AGSpPpDyxEEETppAl0Hd0CidP1QO7Shg7aID2K3OPAdGetJjXDRRnfyuisBIBEQtTAREwuVIkiS+25nNc7/tw2Z1MMmmJaZWhocc+gdo0Jgd2HHwVcBSkqL2M6ffXHoG1x/jxGyoZfO3i9i7ehlIElp3DwbcdBudhoxoEOBU/PwL+c8+CzYbMpUK31tvxe+ee1B4nHnesfLycrZv387u3bsZPHgwffv2BZwPKaPRiGcj3ZAF4Z+2ePFiDh061GC5Wq1G46uhsF0hm/M2U22tdq1TypT0VyTQoTIE1bFKKo7XlSz1v2EmiddMA5xz9QEom2hDZ6+2YNznLDkyH63glPgLZZAbxPmQqrGTsXUj7lvXk3A8Ga29bgDILH0IxQNG0e3OG+jQrhW1lWb2/pFN2oYcbCcGlfSP8KDn2GiiO/tf0QM9ioCohYmASLjc1J6oIluyNw+dA2ZK7nhWOwhXy+niIUfhkFGmqOSV8C/o2qMPD3R9oNEZ6Y/s2sGSV58HIH7AEAbPuKNBFYAkSZQtWEDRf18HwH3QQIKffhp1ZOTpu6u3zfHjx0lKSuLAgQOu9kFt2rTh5ptvbqFPQRDOT3l5OVlZWeTn55OXl0d+fj42m43AwEDuv/9+rA4re4v2svKnlZQby8lX5FOuKadcXY5BaSBe3ZpEYxv8ciXG3PoQQa2cI2unb1rHmk/fJzKhC6279aJ1t54NOiOcZK+1YtrvDI5MhyvAXvfYVgbo0HX0pzJIRfrGtdj/XEV4RjIqh7Pk1yJXsq9NNzynTGXwdaNRWiX2/pFN6vocrGY7Gnclt7zUF7VW2eixrwQiIGphIiASLifp+c6BFo8WO3uRPda7Neq1hcQroZXSWaqz1+0A37Vbx7+GPElCQEK97W1WK8pTRnZet/BTWnftSWRClwbHkhwOil59jbIvvwTA947bCXzssTMWxaelpbF161by8vJcy2JiYujdu3e9KgtBuNTY7XZKSkowmUxEngj47XY78+bNc00afJJFbqFcXU6hWyEZ+gz0Gj0DwgYwKHwQjtXppK/9s1764Ji2tO7ei9bdehEY1brR74HDYMWYXuYMjjLKwVb3CFf4atF18kcdpSV91e/ULvmJgIIs1/o8jwDy+4+k8x030jY6gr1/HkfnoabzMOf8apIkkZlaesUN8igCohYmAiLhcnBqFZnZ5iDYS8t7N3als4eWIx/vwKNagQMH3/mvQjcklLu73I1aUVdkb7fZ2LVsCXtWLuXm+W81+YvVdTyrlbxnnqHqt6UABP7rX/jdcfbJM3/44Qf27duHQqGgc+fO9O7dm8C/MXmrIFwKHA4HhYWFrlKkvLw8CgoKXKOm2wPsrPVdS5WlCiRILE6kVlVLsJueGLMet5wayjOz6u3zno++wsPHOZ1HYz04ARwmG6YDZRhTSzAdKkey1tWrKbw16Dr6YVSUkf7zYnyS1qG1OkfRtsnk7G/dBd21kxl843i83JxTlWSmlrDs/RS8g9zoPiaS2J5ByBWXf+cFERC1MBEQCZe6U6vIAKZ5e3P7mLborZUYfjmO1q6mUlHNN3F/MmP83cT51p+WIO9QOms+fZ+S45kA9LtuBr0nX9fk8RwGAzmzZjnnIFMoCHnpRbxPmXn8pJKSErZv305iYiL+J7ra5+bmkpGRQY8ePfA4x2k6BOFyYLPZKCoqIi8vDy8vL1q3aU1ycTLrDq6jZm39rvZGhRGr1oy/UodvjQ1vu5zr57ziWr/ktReRHHZnr7VuPfD0bThkhcNix3TwRHB0oAzplMlnFXo1mjg9OZl7KVv2NUG5h13ritx8yOkzgg533ITG7MmWHzIwG5zVbV4BOnqMiSQ2MRjFZRwYiYCohYmASLiUnVpFppTJeCQgANmhajp4yIg5MYDbfrejFI2C63vehFJe117AVFPDpm++JOXPVc5G055eDLr5djoMGtZk1ZW9ooLse+7FmJyMTKsl7K038Rw82LVekiQyMzPZtm2bq1Fqz549GTdu3D/3IQjCZcBgMJCWlkZGVgZZOVmYK83IqPueHdQfJCsoi/7h/ekX2A91lpLUH75FZqhGbncGKoHRMbTu1ouY7r0Iio5p0LlBstoxHarAmFqMMb0MyVxXlSf3VEOwjMy969Bs+B43i3MEbTsyDkR2Qjl+MgGR3TmwMR9TjbORtqeflu6jI4nvG3JZlhiJgKiFiYBIuBSdXkUW4aHlHo0ey9Eqergr8D3RXmhjeDJ9bhxLtG/retsf2LqRdV9+4uom3GHQcAbefNsZpySwFhRw/M47sRw+glyvJ+LDD3HrVjctQmpqKtu2baOgoG6039jYWPr27UvU35yrTBCuVBaLhaM5R0k6kMTR7KMkK5I5qjoKQIAxgIEFddPaKCQ7suoq5KZaFMZaFCYD7RL7Mn7WE03uX7I5MGWUY0wtwbi/FMl0SnDkrqRGWUHprpV47/sDJGepUqnWi+OJI/HqOYGig2aM1Vb8wjy47pmel2VvtOY+v6/cZuWCcIWrNdv495I0ftmTC8CISD8GFUpoCqrp46lEI5dRIzeQOaiW60fej1zW8Jdd7oH9GCor8AkNZ8Sd9xPRIaFBmlOZjxzh+J13YcvPRxkURKvPPkXTti3gDIYWLlxIVpazLYRKpaJLly71qsoEQahPrVbTrnU72rVuB4DdYSe1JJX12evZcXAHx6uP42PxwdPqiV2mAC8f5wtwK8l1TZpcVVVF9rGj7F++hLbdexHdpTteAYHIlHJ08X7o4v2cwdGRCme12v5SHLU23PDArc1U6DCNitrj2Pcsxy9vL34bfoQNP2KO6ISmz/V0GhHnCoasZjsHtuUT3zcEpfrKmUBZlBA1kyghEi4lBwqquP/rul5ks7tFotlWTGs7xGqdN6hczxLCbulKeESUazu7zYq5ttbVbd5sqCXlj5V0HTOxXq+yxhiTk8m++x7slZWoo6NpteAzVKGh9dKsX7+erVu3MmDAALp3747bGWbqFgTh7HKqc9iYs5GNmRs5kn0ET5MnPmYffMw+pAWn0DGqI4Oih6Av0rN21VoAZGYTClMtbjKJ4OBgYuLaEd6uA0HRMa5xjyS7A/ORSuf8avtKcJyYHBbAoXBQVXwA1YE/cBSng2SnQuNBVo/BtL31RuQmX7b+dASdl5puI1vRYUAYKs2lGxiJKrMWJgIi4VIgSRLf/5XNs7/W9SJ747qO7F+yjR75PvifqCIrbG+k6w3DkKvqblI5B/bxx6fv46b3Ztp/Xjqnru01mzaR8/D/IRmNaBMSiPj4I5Q+PuTk5KBUKgkODgacDUkNBoP4jgjCP6DWWsu2vG2sz17PptxNlJnKXOtaV7emU2VHlNZGfthIDtyyDjLloUeJ6d4Li8WCuaYaJAlPP38ku4T5mLPkyLivFEdN3QCPdsmKKT8Z2fEk7EX7wWEjOXY8Fa2GY7c5j6XzVNFleCs6Dgq7JMczEgFRCxMBkXCxnV5FNig2gHtGqPlt/RfcdGAkPnYvLAorumtaEdKzjWs7Y001G//3BWnrVgPgpvfmxhf/iz4wuFnHrVy6lLynngabDff+/Ql/+y1sKhVr165l+/btBAYGcvfdd6NQXLq/EAXhSuOQHKSWpLIhewMbcjZwqNzZeUFtV+Nj9iHCHk6oIRC1UYskyfHJPcTMV9/G2yeA1atXsyMpCamqAq3MQXBAAK1jY4lu34mAyNY4cg0YUkswppXgqD4lOLJbsOftwZ63C0vRAbKCE8mKGYdD7hyJXuuuosuICLqNirykxhITAVELEwGRcDEdLKjm/q93ceREFdn/DW6FlLsHY+k+bigZgwI5Rl87kbf2Qh3orKaSJIn0TetYv2gBxqpKADoNG8WAG29F59G8qTDKFi6kcP7LAHiNG0fo/Hkcy8nht99+o6KiAoCEhATGjRuHRqNp+RMXBKFZ8mvy2ZDjDI525O/A4nBODYIEOrsOo8KIXC6nlWcrOh/vjLK8YUmOzGpGaTYSpVNx7b/+jc7DC8vxKmfJUWoJ9iqLK63DZsZekIwlbw95koZDUWOxaXyI6ODNxIe6XajTbhYRELUwERAJF4MkSfzwVw7P/paGyeogyEvDg4OVFP6ax1BbGIEqZxWZoqs3wZPbIztRRWaorGDZO69yPC0FAL/wVgy/6wHC23Vo9nGL33iT0k8/BcDnlhl4/d//seaPP9izZw8AXl5eTJgwgbYnGlULgnBpMFgNHCw/SEZ5hvNV4fy3ylIFgEyS4WXxwt/oS0iNPz4WX1S4I5PJkNmseGUf4Ib33iPII5g1a9ZwLDUZtc1Cm6BYohTRKHPs2CvrgiPJZsZWmEZJTQWWgr8oiG5FxIwbie3elYNJhXQeFoHW/cxtFP9JIiBqYSIgEi40k9XO0z+n8vOJKrJ+sZ7EBfxF2J8xDFT7oJPLcMgl/KbE4d49qN62dpuVRU/8H5WFBfSecj09JlyLQtm8G5Jks5H/3HNU/vQzAAGPPIJ82lQ+//xzamqcA8r16tWLYcOGiVIhQbhMSJJEsbGYw+WHXQHS4YrDHKk4gsluQulQ4m3yxtvoRq2jiPwAE55qT4YeG4rSckppksOO0mzET+NFa7dI4i2tkRtOOY7dgq0wDVvebnb6dqHctzNKtZyEoRF0GR6BzqPxyWz/SSIgamEiIBIutKd+TuGbHdnIZXDdQBM5mX9w/cHJdNJokMtk4K0m6NaOqIKd9fe5B/YT3KatK/ApyjyKWueGd1Dz2goBOEwmcmc/Ss3atSCXEzx3Dj7TpuFwOPjyyy8xGAxMnDiRVq1a/SPnLAjChWV32MmtyXWVJB2uOExGeQZZVVnYHXZCa0OJqAzA1+yLTvJCdsqgrnJjDT7mYobfNZvALDf27k3Bo0ZJgMMLNUocDhulZjPHHRoKbBIOOXQaEkG3kZG4eV24wEgERC1MBETChbTuQBG3fbkT5EZG9NuBI9nKvaWTCDlRJabp4Iff9DjkGgWGqko2/u9z9m34k/7X30LitdP/1jHtVVVk338/xr92gVpN9ZNP0HnKFFcpUHV1NVqtFtVZuucLgnD5s9gtHKs85gySTpQqHS47THV5NWHVAQTV+qEyWihUHSM1pgqlQ8nErImuUbc97RqC8SXA4UWgwwu9w51Sm4w8q4NCq52YfoEMvfnM4561lOY+vy/6GNy5ubncfPPN+Pn54ebmRpcuXdi1a5drvSRJzJkzh9DQUHQ6HYMHD2bfvn319mE2m3nooYfw9/fH3d2diRMnkpOTUy9NeXk5M2bMQK/Xo9frmTFjhqtRqCBcSioMFp74KQW5poCAdu9gPJLN4xXXEKJS4JCB16QY/G+OR6aWk7ZuDV88ci/7NvwJMhnG6qq/dUxrYRFZN8/A+NcuDIGBJN19F8sPHWLdunWuNJ6eniIYEoSrhFqhJs43jvGtxzOr+yzeH/Y+q6atYvWtq3lmxlwGXz+WwGs6oOvXDh+ND0qHknxtLg67EYBqhZkMRT5bVQdZotnJFvUBglVyurkpGemlwn17GptufYkd36zEbrOfJTcXxkUdMKC8vJx+/foxZMgQVqxYQWBgIEeOHMHb29uV5tVXX+WNN97gyy+/JDY2lhdffJERI0Zw8OBBPD2dPWVmzZrF0qVL+fbbb/Hz8+PRRx9l/Pjx7Nq1y9UV+MYbbyQnJ4eVK1cCcPfddzNjxgyWLl16wc9bEM7k2V/3UVRdi3eb7xle2om7i6aiksux65QE39ERTbgnpTnZ/PHZ++SkpwEQ0CqK4Xc9SGhsu3M+nvnYMbLvvAtzXh5HunUlNT4ea0kJSqVSlIYKglCPh9qDLoFd6BLYxbVMkiRKTaWu6rbDhRkUZ+QiK7ThafZCI/OiuGwfa7xy6WJvj1Lhwwq/Q2h8VQTsP8TRpw/isCqIGdGZxLEDLtq5XdQqsyeffJItW7awadOmRtdLkkRoaCizZs3iiSecc7WYzWaCgoJ45ZVXuOeee6isrCQgIIBFixZx3XXOmbnz8vKIiIhg+fLljBo1ivT0dNq3b09SUhKJiYkAJCUl0adPHw4cOEBcXFyjxz+VqDITLoRlKfk8sHg3Wv813IiS20smAaDt4Ifv1FjkOiX7N65l1Ufv4LDbUGo09J12E93GTEShPPffN8a0fWTffTeldju7+vej5MSPjKioKCZMmICfn1+Lnp8gCFcPh+Rwtk8qyyAjP52jlUc5ZDqKW5aGtqVxcNpYRUPNHTBo8xn93MMtmo/LYi6z3377jVGjRjFt2jQ2bNhAWFgY999/P3fddRcAx44do6CggJEjR7q20Wg0DBo0iK1bt3LPPfewa9curFZrvTShoaF07NiRrVu3MmrUKLZt24Zer3cFQwC9e/dGr9ezdevWRgMis9mM2Wx2va+q+ntVEYLQXEXVJv69JBW5JpeJRh9m1gwBGXiNjMRzSIRroLPgNrHIZNC6W0+G3X4fXgGBf+t4tVu3kvPgQ2T5+ZLUpw8OuRyNRsPIkSPp2rUrcvlFr1EXBOEyJpfJifCMIMIzgqGRQ13LrXYrh0sz2L17K0Upx1GWqTCrFARK3pT1bt4Yaf+EixoQHT16lA8//JDZs2fz9NNPs2PHDh5++GE0Gg233HKLa7bsoKD6XYqDgoJcE0gWFBSgVqvx8fFpkObk9gUFBQQGNnxoBAYG1puR+1Tz589n7ty5532OgtAckiTx1E+plBuMdAnaw61516NQyLAGuSHv6sH+jWvpMGgYAL6h4cx49V18Q8P/9miwVStWkPv4E2C1EtG1K7t0OqKiohg3bpwoARUE4R+lUqiID2xP/Oj2MLpu+aFtyfRKbN5Yaf+EixoQORwOevTowbx58wDo2rUr+/bt48MPP+SWW25xpTv9pi9J0lkfBKenaSz9mfbz1FNPMXv2bNf7qqoqIiIizn5SgvA3/PBXDn8eKMLfZzsP50zGSyXHqpBRHVfMskdfxWww4BsWTkgbZ2mmX9jfvxYLFy1i99eLibJa8Rw9mtBXX+E+gwG9Xn9JDbcvCMLVJbZP54t6/ItaJh4SEkL79u3rLYuPj+f48eMArgkjTy/FKSoqcpUaBQcHY7FYKC8vP2OawsLCBscvLi5uUPp0kkajwcvLq95LEP4J2WUGnv99P0p1HveUdCJWpQWgJKqANQvfw1xbS2Bk62YPrNgUSZLY/frrfJWczPbeiVTdcD1hr/8XuVqNt7e3CIYEQbiqXdSAqF+/fhw8eLDeskOHDhEZGQlAdHQ0wcHOocNPslgsbNiwgb59+wLQvXt3VCpVvTT5+fmkpaW50vTp04fKykp27NjhSrN9+3YqKytdaQThYnA4JB7/MYUas5lJsmqGyMIAMEfJ2PjnQgD6X38LN817g8Co1n/7OIaaGr6dO5ffqqup9fDAQy4nYMYMZGJCVkEQBOAiV5k98sgj9O3bl3nz5jF9+nR27NjBJ598wieffAI4q7lmzZrFvHnzaNu2LW3btmXevHm4ublx4403AqDX67njjjt49NFH8fPzw9fXl8cee4xOnToxfPhwwFnqNHr0aO666y4+/vhjwNntfvz48c3qYSYI/5SF2zLZdrSUDroD3FCViFYlw+ohY82uT0CS6DRs1N8eaPGkfSkp/P7jjxjlcpAkOvv6Mvbee8W0G4IgCKe4qAFRz549+eWXX3jqqad4/vnniY6O5q233uKmm25ypXn88ccxGo3cf//9lJeXk5iYyOrVq11jEAG8+eabKJVKpk+fjtFoZNiwYXz55ZeuMYgAvv76ax5++GFXb7SJEyfy3nvvXbiTFYTTHCmu4eUVB5Br8unuUUCwUY5dJpFm2UBtVRkBkdEMufXu8zrG70uW8NfevSCX41VVxdg+fWk3bWrLnIAgCMIVREzd0UxiHCKhJdnsDqZ8tI3k7FK6Rv/IfzNnopHUeI6JJL10G3/9/jM3vfQGPiFhf/8YJSVseewx1rdqRfvDhxn5wAPo+/VrwbMQBEG49F0W4xAJwtXqow1HSD5eQUePdGbljUYjqZHHuOM1IILe8lZ0GTkOrYfHOe+3rKyMsrIyWmk0HL/jTgKPH2didg7t3nkbXYeL151VEAThUicCIkG4wPblVfL2nxl0c9TyUGkiMVoFVrWDkGvbIJM7e3qdazDkcDhISkpi7dq1KOVyxvz5J+rcPFTh4cQs+Az1iY4KgiAIQuPEULSCcAGZbXZmf5eMv9nBVKMfbTTOr+Ah206+e+VpyvNzz3mfhYWFLFiwgNWrV2Oz2fDKy8NaXoGmXTsiF38tgiFBEIRmECVEgnABvbkmg+P51dxtktHTTYVMJqNMX0ra3vWodW7IZM3/jWKz2di0aRObNm3C4XCgVijovHMn0YcycO/Rg/APP0DhefGGwRcEQbiciIBIEC6QXVllfLrhCJON0FftgU4uw6A1sTbZOd7Q6Ptm4R0c0qx9Wa1WPv30U4qKigBo7elJh8WLcas14DF8GGGvv45cdKsXBEFoNhEQCcIFYLDYePT7ZHobFQxAQ5hajh0HO/J+wy5Z6TZmIm0Tmz9IqEqlIioqitraWgaoVHh99DEywHvaVIKfew6ZUny1BUEQzoVoQyQIF8DLKw5QXmRkqFVJgptzfKxj7KOw8hjBbWIZePNtZ93H4cOHKS0tdb0fNnQo00xm9CeCIb977yH4+edFMCQIgvA3iDunIPzDNmeU8NW2LFTaQtpoPVBaQyjXlLH7wAo07u6M/78nzjhPmcFgYNWqVSQnJxMZGcnMmTOR2WyUPP0MxuXLAQh65hl8Z9x8oU5JEAThiiMCIkH4B1Uarfzrx2TAzv0+RcQUtcWksBBxSw9CFm6h58Qp6AMbn2AYYN++fSxfvpza2lrAOVGxrbqagtmPUrtlC6hUhM6fj378uAt0RoIgCFcmERAJwj9o7tJ9RBTaSAjJZHJRbwDcJkTgHRPG9XNeRiZvutZ627ZtrFq1CgB/f38mTZpEiLs72XfehSk1FZmbG+HvvINHfzH6tCAIwvkSAZEg/ENW7SvgYFIBE01qBpUmoJArKAwsp3vvAQBnDIZycnJYs2YNAH379mXo0KFIhYVk3XgTlsxMFN7eRHzyMbqEhAtyLoIgCFc60ahaEP4BJTVmXvsulREGFR11CjzkCqplVWzZuZBtP35z1u1Xr16Nw+Ggffv2jBgxAtvRo2TecCOWzEyUoSFELv5aBEOCIAgtSAREgtDCJEni2R9SGVwio5VKTqRGjgMHO3KXYnWYCY5pe9Z9XH/99XTv3p2JEydi3LOHrJtnYCsqQtO2DVGLF6Np3foCnIkgCMLVQwREgtDCftmTg2p3OSGSnM5uzq/YgeqdlJhz6DVpKtFde5x1H25ubkyYMAHrtm0cv+12HFVV6Lp2JXLRIlTBwf/0KQiCIFx1REAkCC0ov9LIz98cINaqoKu7HI1MTomtgLSSjYS160C/62Y0uW1ubi579uxxva/+809yHnwIyWzGY9AgWn2+AIW39wU4C0EQhKuPaFQtCC1EkiQe/yGZCAPEaOQEKhVYJAvb839D6+XJ+P97HLlC0ei2JpOJH3/8kfLycqxWKwleXuT+63Gw29FPmkjIiy8iUzU9VpEgCIJwfkQJkSC0kP9tP86mw6Wk+pXSTudclly6lhp7BWMfegwPX79Gt5Mkid9++43y8nK8vb2JDw0l+777kQwG3Pv2IeSll0QwJAiC8A8TJUSC0AKOFdcwb1k6ahw8K9ehRMEB/+PEjx9FaEkXohK6Nrntzp072b9/P3K5nCnXXEPpvx7Hlp+POiqKsDffFFNxCIIgXADiTisI58nukPjonV30rJIxNLiW0MowypVVtLtlAOGBrc64bV5enmvwxeHDh6P4+BNq9uxB7uVF+IcfoNDrL8QpCIIgXPVEQCQI5+mTxWm0KrbTQ6mmT2UYADm9a+h0lmDIZDLxww8/YLfbiYuLI3Z/OsW//AIKBWFvvoEmOvpCZF8QBEFAtCEShPOyO60Y45Yi1DJI8JQAOFT5F1m/L8NiNJxx2yNHjlBeXo5er2eYvz/Fr78OQNCTT+LRT0zHIQiCcCGJEiJB+Jtqa62s/jQVT0lGB72Eu6SmwlJEcvl6ek+7HrXO7Yzbd+jQAa1Wi6yoiPIHHwJJwnv6dHxuvukCnYEgCIJwkgiIBOFvkCSJBW//hacZQjXQSqbGLtlIKvqdiE4JJF47vVn7ifT1JfPe+3DU1uLWsyfB/34GmUz2D+deEARBOJ2oMhOEv2HVb4dRHDfiJpfo7OYMYFLKNmDzsDP2wUeRyxsfb8hsNvPDDz9QVlaGZLGQ+/D/Yc3ORhURQdg7byNTqy/kaQiCIAgniBIiQThHJqudb/bk0BWJTj4SaruSAuMxMmp2M/0/83DTeze6nSRJ/P777+zbt4+ioiKuLSzCsHMncnd3Ij54H6WPz4U9EUEQBMFFlBAJwjl6deVBNpgMaAIsBNs1GB0Gthcvp991Mwhv37HJ7fbs2UNqaioymYxBKjWV338PMhmhr/8XTduzT/gqCIIg/HNECZEgNJPkkNi8r4jPtxyjK3LGWd0BWNJ+C4MHTKPHuGub3LawsJDly5cD0D8mBsW8+QAEPvYYnoMH/+N5FwRBEM5MBESC0ExbfjtC0prjxOrkPK9TIbfKWOOTxPWT7yLCK6LJ7SwWCz/88AM2m43WoWGEvf0OksOB/tpr8b39tgt4BoIgCEJTREAkCM1wfF8pe1cexw34P7UaH6uaYlkJ2tGhZwyGAJYtW0ZJSQme7u50/+03pOpqdF27Ejx3juhRJgiCcIkQbYgE4Syqy0ws/zQNGeDQOejsUOOQHOzNWU43Y+QZtzWbzRQXFyOTyRhw9Cjyw4dRhoYQ/u47yEWPMkEQhEuGCIgE4QzsVgfLPkrBbrJTq3QwRucsVE0r34wm3p/YxDOPKK3RaLj99tsZK5PjuW49Mp2OiA8+QOnvfyGyLwiCIDSTCIgE4Qw2/5hB6fEaTDKJXno5WoeCYlM2B0nh2oefbrLKS5Ik1/+rf/wJj8WLAQh99RW07dpdkLwLgiAIzSfaEAlCE47sLiJtQy4AKg+JNnY1FoeZbSW/M/3ZOeg8PJvcdunSpbi5uZHo5k7Biy8CEDBrFl4jRlyQvAuCIAjn5qKWEM2Z42xUeuorODjYtf7WW29tsL5379719mE2m3nooYfw9/fH3d2diRMnkpOTUy9NeXk5M2bMQK/Xo9frmTFjBhUVFRfiFIXLmDbcnaNaB9laO9conO19dpespu3kEYTFxje5XUpKCrt372bz5s2kzp0DNhte48bhd8/dFyjngiAIwrm66FVmHTp0ID8/3/VKTU2tt3706NH11p8cy+WkWbNm8csvv/Dtt9+yefNmampqGD9+PHa73ZXmxhtvZO/evaxcuZKVK1eyd+9eZsyYcUHOT7g8SZLEv5ftY7nGzHR3FXJkZNbsIz+8kuHX3trkdiUlJSxduhSAhNw8fLKOo+3UiZCXXhQ9ygRBEC5hF73KTKlU1isVOp1Go2lyfWVlJQsWLGDRokUMHz4cgP/9739ERETwxx9/MGrUKNLT01m5ciVJSUkkJiYC8Omnn9KnTx8OHjxIXFxcy5+UcNmSJIljySVsNxtYd7CYp+VaAu0KCpWlfNdtKy9Pe7fJwMZqtfLDDz9gtVoJMZuJ27wZZWAg4e+9h1yrvcBnIgiCIJyLi15ClJGRQWhoKNHR0Vx//fUcPXq03vr169cTGBhIbGwsd911F0VFRa51u3btwmq1MnLkSNey0NBQOnbsyNatWwHYtm0ber3eFQwB9O7dG71e70rTGLPZTFVVVb2XcOVL/jObFR+lkrT4EAMlJWMlNQ4cvB2+mNlT5uLuqW9y25UrV1JYWIgO6LliJQqNhvD330cVFHjhTkAQBEH4Wy5qQJSYmMhXX33FqlWr+PTTTykoKKBv376UlpYCMGbMGL7++mvWrl3L66+/zs6dOxk6dChmsxmAgoIC1Go1PqdNihkUFERBQYErTWBgwwdSYGCgK01j5s+f72pzpNfriYg48+B7wuUvL6OCrT8fAaBS7uDfcg0ASz3+ZGj/sUTro5vcNi0tjV27dgHQa916dCYTofPnoevU9NxmgiAIwqXjolaZjRkzxvX/Tp060adPH2JiYli4cCGzZ8/muuuuc63v2LEjPXr0IDIykmXLljF58uQm9ytJUr1qjcaqOE5Pc7qnnnqK2bNnu95XVVWJoOgKVltpZtVnaUgOif0qG1M0StwkBWXmfPLZx9z2z51xe0mSUCkUtE3bR3BhIf7334/XKde3IAiCcGm76G2ITuXu7k6nTp3IyMhodH1ISAiRkZGu9cHBwVgsFsrLy+uVEhUVFdG3b19XmsLCwgb7Ki4uJigoqMm8aDQaNBrN+ZyOcJlw2B2s/mwfhkoLpQoHeh10RY3NYeGPmiXMePx5FHLFGffRztcXy/oNaPPy8Bw5Ev8HH7hAuRcEQRBawkVvQ3Qqs9lMeno6ISEhja4vLS0lOzvbtb579+6oVCrWrFnjSpOfn09aWporIOrTpw+VlZXs2LHDlWb79u1UVla60ghXt+2/HSUvowKbHPa42bj7RFXZ7vK1eFzXg7iQDk1ua7FYcNTWkn3/A7jl5qJr147Ql+cjk19SXy1BEAThLC5qCdFjjz3GhAkTaNWqFUVFRbz44otUVVUxc+ZMampqmDNnDlOmTCEkJITMzEyefvpp/P39ufbaawHQ6/XccccdPProo/j5+eHr68tjjz1Gp06dXL3O4uPjGT16NHfddRcff/wxAHfffTfjx48XPcwEqkqM7P0jG4DVWjP/katQIie3NoP18Qd5Y+i3TW67b98+Vq5cycDsbDwOHkTh70/EB+8jd3O7UNkXBEEQWshF/Rmbk5PDDTfcQFxcHJMnT0atVpOUlERkZCQKhYLU1FQmTZpEbGwsM2fOJDY2lm3btuHpWTdC8Jtvvsk111zD9OnT6devH25ubixduhSFoq6K4+uvv6ZTp06MHDmSkSNHkpCQwKJFiy7GKQuXGC9/HQkzYtmiszJKKSdcpsFoq+FH1c88fNvLKOWN/2YoKyvjt99+o7q6miN5+cjUaiLeexdVE6WbgiAIwqVNJp066ZLQpKqqKvR6PZWVlXh5eV3s7AgtxGS1M/G9zfgUGnkddwCWVyxGdldn7up+b6Pb2Gw2Pv/8c/Ly8vArLmHo2rWEvzwf/aRJFzLrgiAIQjM09/l9STWqFoQLQZIkdvx+jDbdA/kkOZuiwlpel3mABL/6rCOpWylfdL2zye3XrFlDXl4earOFvtu2EnDnHSIYEgRBuMyJgEi46uzfnMdfyzLZveY4X+lqmYsaH2RkavJYFLyMRSP+12RVWXp6Otu3bwcgcXsSgYm9CZg16wLmXhAEQfgniK4wwlWlKKuKTd85h23Y6+FgnCTRV6bFJtn4b/AX3NH1Ttr6tG102/Lycn5dsgSAuAMHiHb3IPS115ApztwlXxAEQbj0iRIi4aphqrWy8pM07DYHpgA16eZKFsqc7YZ21K5FF+zFbR1va3J7rVZLSHU1lVXVdD2eTfj336HwcL9Q2RcEQRD+QSIgEq4KkkPijy/2U11qQq1X84G5ks8coFIqyTce44P4VXwyuOmqMoCazz+n58+/YNPpaPXJx6jDwy/gGQiCIAj/JBEQCVeFtI25ZKWVIlfK+Fln5r5qCxEqf8x2I+8G/I8b+t9BrE9so9uWl5cjT9pOybvvIQNaPfM0bj17XtgTEARBEP5RIiASrgpH9xYDUBilw6uggElKPwB+4xdMnb25vdPtjW5XUVHBxx98gH9mFr2USoJuuhHvqVMvWL4FQRCEC0M0qhauChMe7kLwuHCWFJXwnEyLTCYj3bSHr9sn8UK/F1DJVQ22sdvt/PDNN5isVgxaDZ59+hD4r39dhNwLgiAI/zRRQiRcFcoMFl7am8X/yd3wQkWVrYz5MV9zR7e7ifNtfAqXP9esIbewEJXFwsDsHFot+gqZUnxlBEEQrkTi7i5c0cxGG0qVnPfWHqZ7rYMRaHHIHDzX+jP8IlpxZ6fGB2A8dOgQW5OSAEhM20f7d95GccqUMYIgCMKVRQREwhVt5+/HOLSjgAJHKY8pfUAG//NbxmGPHL7p902jVWWVlZX8/K1zUtc2GYfp89STqKOiLnDOBUEQhAtJtCESrlhWs530rfkYq61MstXiLpNzVH2c7/xXcVfCXbTzbddgG0mS+PHzzzE5HPiUlTFyzGjc+/S5CLkXBEEQLiQREAlXrEM7CrAYbViVZuI1zlnoF7v/QhvfNtzV6a5GtzEfOkTssuV4VVYy2s+PwJtvvpBZFgRBEC4SUWUmXJEkSSJ1fQ4AXrJSlPJISm1FJAUddlaVKRpWldnKysi573788/KYHB5O5KuvXuhsC4IgCBeJCIiEK1L+4QpKc2txKKC72guADdqtzOw0k3i/+Abpq0pLOfroY2jy8lC1akXEW28iUzUMmgRBEIQrk6gyE65IKetyATApSvFT+WBzWPk5Iomb4m9qkNZut/PN22+zNDyMvJgYIj78AIW39wXOsSAIgnAxiYBIuOIYqy0cOzEydQe5FYB9UioJbbsT6BbYIP3Kd94hXy5HJkm0ffghNDExFzS/giAIwsUnAiLhiqPzVDPt6Z4c95focKIx9a/+G5ga23DKjX1LlrCzogKAYaGhtBo16kJmVRAEQbhEiIBIuCIVyOw4bA4UMiV55HE0qop+of3qpSlNS2NpUhLIZLRzOOh9//0XKbeCIAjCxSYCIuGKIjkkAL7ZnsUknI2ifw7ewOS4ySjkClc6S2kpP3y2AJNWi7fZzOQnnkAmk12UPAuCIAgXn+hlJlxRfn17D1ovNXlHCohCh1FmYp3XXyxp8x9XGslqZcNzz1Hg74/Cbuf6O+5A7e5+EXMtCIIgXGwiIBKuGMXHq8k9WAFymKouA20YSbrddGvVnRCPEFe6gnnzCP1zLR26diHqllsIbtPm4mVaEARBuCSIKjPhinFyIMYydxsdNUEAbFQnMbVtXWPqssWLqfjmW+TA6DvvpOfo0Rcjq4IgCMIlRgREwhXBVGPl0M5CAPwtxShkSoqt+RyOrmBgxEAAarZuZcs332KXywmY/QieQ4dezCwLgiAIlxBRZSZcEfZvzcNudWDxVDLcoQdgg3Yb17S9BpVchSUri9XvvkdK927kdunM3XfccZFzLAiCIFxKRAmRcNlzOCTSNjhHpi63FeGj0mN1mPkpYguT20wGIPWtt0lt62wr1HPCBORycekLgiAIdcRTQbjsZaWVUl1qQqaR0xsbAGmOFNq17kyEVwTmo8fYYTQgyeW0j4qiW8+eFznHgiAIwqVGBETCZS+4tRe9r2lNlqeVDupgAH7138iU2CkAHPnicwqDg5FJEiMmTRLjDQmCIAgNiIBIuOzpPNSoOnqjtNhRyBTk23M4FFnG0IihWIuK2J2ZCUCbkBB8fHwubmYFQRCES5IIiIQrwuKkLMbLtQB8G76eiW0molaoKVi4kMxWrQDoM3LkxcyiIAiCcAkTAZFw2bKYbCx9dy+p2/LI3lNIBAoMciMbvXYxJXYK9upqin9bSlBBIQHu7kRHR1/sLAuCIAiXKNHtXrhsHdpewPF9ZeRkVzPdVgtqHes9d9IhpCPR+mhKPv0UXXExQ/VetPrwA9F2SBAEQWjSRS0hmjNnDjKZrN4rODjYtV6SJObMmUNoaCg6nY7Bgwezb9++evswm8089NBD+Pv74+7uzsSJE8nJyamXpry8nBkzZqDX69Hr9cyYMYOKiooLcYrCP0SSJFLWO7vaH1Wb6Kpytg3aIdvBlLZTcJjNlH31FQB+t9+BSq2+aHkVBEEQLn0XvcqsQ4cO5Ofnu16pqamuda+++ipvvPEG7733Hjt37iQ4OJgRI0ZQXV3tSjNr1ix++eUXvv32WzZv3kxNTQ3jx4/Hbre70tx4443s3buXlStXsnLlSvbu3cuMGTMu6HkKLSv3UAXl+bXIVXIiaouRyxQUWXJJb1XCiMgRVP76Kwf1eoxRUejHj7vY2RUEQRAucRe9ykypVNYrFTpJkiTeeustnnnmGSZPdg6ut3DhQoKCgli8eDH33HMPlZWVLFiwgEWLFjF8+HAA/ve//xEREcEff/zBqFGjSE9PZ+XKlSQlJZGYmAjAp59+Sp8+fTh48CBxcXEX7mSFFpN2Yt6yykAl4yu9Adig28qENhPQyFTsX7yYXT16sAeItVjwECVEgiAIwhlc9BKijIwMQkNDiY6O5vrrr+fo0aMAHDt2jIKCAkae0jNIo9EwaNAgtm7dCsCuXbuwWq310oSGhtKxY0dXmm3btqHX613BEEDv3r3R6/WuNI0xm81UVVXVewmXhuoyE0eTSwAoqizCW+mJxWHip/BtTGk7heo//mS/uzsAbdq0wcPD42JmVxAEQbgMXNSAKDExka+++opVq1bx6aefUlBQQN++fSktLaWgoACAoKCgetsEBQW51hUUFKBWqxuMLXN6msDAwAbHDgwMdKX5//buPKyKsn3g+Pew7wfZRQFRcAN3U9EUXNFcKi1700xezTLNXV8rLclyaXVrd8M3LazUSi1yC9w3FEVBXBEXEBcEZOcwvz94OT+PgAKiB+H+XNdclzPzzMw9c4Rz88yzlGTevHnaNkdqtRo3N7eHuldReU7uuoJSoGDoYkav/70aPaE5hodHQ7xsvUhcsYL4evUA6NCxox4jFUII8aTQa0LUp08fBg0aRLNmzejRowebN28GCl+NFbm3Z5CiKA/sLXRvmZLKP+g877zzDqmpqdrl0qVLZbon8eg5edjgUt+Gk2TS1KQw2f3NIYIXvF8g88BBYrOyyDc2xtHOTrraCyGEKBO9vzK7m6WlJc2aNePMmTPadkX31uIkJydra41cXFzIzc0lJSXlvmWuXbtW7FrXr18vVvt0N1NTU2xsbHQWUTXUb+mI578a4JyRg4HKgGu5l4h1v0FgvUBuLFvG2f9N4tq+Y0fpai+EEKJMqlRClJOTQ2xsLLVr18bT0xMXFxe2bt2q3Z+bm0tERAQd//capE2bNhgbG+uUSUxM5MSJE9oyfn5+pKamcvDgQW2ZAwcOkJqaqi0jnjw/7b9IoGFh26A1bjt4pv4zGJy9yNlz57hjbY2ZiQnNmzfXc5RCCCGeFHrtZTZ16lT69++Pu7s7ycnJfPTRR6SlpTF8+HBUKhUTJ05k7ty5eHt74+3tzdy5c7GwsGDIkCEAqNVqRo4cyZQpU7C3t8fOzo6pU6dqX8EBNGnShN69ezNq1Ci+++47AF5//XX69esnPcyeMNcvpXMp9hZ1WzuSdCyZ2piTbpBBhO0RVjecws25y8k2N8NEUWjVpg0m0rNMCCFEGek1Ibp8+TIvv/wyN27cwNHRkQ4dOrB//348PDwA+M9//kNWVhZjxowhJSWF9u3bs2XLFqytrbXnWLBgAUZGRgwePJisrCy6d+9OSEgIhoaG2jJr1qxh/Pjx2t5oAwYM4Msvv3y8Nyse2rHtl4jbn4TRsWsMzM0DQ3O2qw/g5ehNgyxrzv31F/ULCug8fz5GXl76DlcIIcQTRKUoilLWwp988gnjxo3D3NwcgJ07d9K+fXtMTU0BSE9PZ/r06Xz99dePJlo9SktLQ61Wk5qaKu2J9CArPZdV7+xFk1/AMVeFmRlGGKgMmO4wj2f7B9FlbRwpP/6IZceOuK9Yru9whRBCVBFl/f4uVxuid955R2eU6H79+nHlyhXtemZmpva1lBCVKWbPVTT5BVi6mNMs5QYGKgOSchI463yDQLUfyX/8wTUnJ+xeG6nvUIUQQjyBypUQ3VuZVI7KJSEqrEBTwImdhYl3vK2K7kZqACLM9tG7QR9yf97ABdfahHfrymYZHkEIIUQFVKleZkKUJD76Jndu5WBqaUTylURsDC3J0WTym9t+BtXpy801P3LG2xuA+vXr6zlaIYQQTyJJiESVF/2/ecs09Sx5TlNQuE0ThWNdd+r8E8sVCwvuWFtjamoqXe2FEEJUSLl7mS1btkw7N1R+fj4hISE4ODgA6LQvEqIyaDQFWNiYYGhswN602/QxLvy/9ofjLgZ5DubWghDONCysHWrdurW2gb8QQghRHuVKiNzd3Vm6dKl23cXFhR9++KFYGSEqi6GhAT1H+GB16joZy/ZiYGRHYs5FouskMSfOmIQ7d0iqXRuAp556Ss/RCiGEeFKVKyGKj49/RGEIcX+/Rl1mqJEtAOudI+jp0ZOsz/6/7VDDhg2xs7PTY4RCCCGeZNKGSFRZV06ncOtqBrczc7l5/DpOGJBqeIe/nQ/z4q0GZJ85yy0nRwDat2+v52iFEEI8ycqVEB04cIC//vpLZ9t///tfPD09cXJy4vXXXycnJ6dSAxQ1k6IohK+J46fZB/j5t9P01xRO0rpVvY+6tdyo9Ws4KmBwbVeGDx8uvcuEEEI8lHIlRMHBwRw/fly7Hh0dzciRI+nRowdvv/02GzduZN68eZUepKh5Lp9K4fa1TIzNDAmPT6IdhY2lw833MbygA1mRkWBsjH3QcDw9PWVWeyGEEA+lXAlRVFQU3bt3166HhobSvn17li5dyuTJk1m8eDE///xzpQcpap6irva1mtrS6UYKKpWKq9nxXLK5Sast8WRamGM5oD/Gzs56jlQIIUR1UK6EKCUlBee7voAiIiLo3bu3dv2pp57ikowULB5S2o0s4o/fAOCwQS7dDQvnnokw38fzpu3ICd/Foaee4icrK06fPq3PUIUQQlQT5UqInJ2duXDhAgC5ubkcOXIEPz8/7f709HSMjY0rN0JR45zcdQVFARdvW+6cuYqVoQXZmgz+cDtI//0FpFtbkVS7Nlk5OdoxsIQQQoiHUa6EqHfv3rz99tvs2rWLd955BwsLCzp37qzdf/z4cRo0aFDpQYqaIz9XQ8zuRABu1Dbh+bzCkamP5x+lrrkdJtv3SVd7IYQQla5c4xB99NFHDBw4EH9/f6ysrAgJCcHExES7f8WKFfTq1avSgxQ1R0pSJioDsLIz5c+LSTxjbA/AHw67GBnjRJ6SSLyXFyBd7UXNUlBQQG5urr7DEKLKMTY2xtDQ8KHPU66EyNHRkV27dpGamoqVlVWxAH755Resra0fOihRczm6WzN8bid2Hk3EP3QfKhNnrmSf55zHVequSyLO05M8AwMcHBykq72oMXJzc7lw4QIFBQX6DkWIKsnW1hYXF5eH6nFcroRoxIgRZSq3YsWKCgUjBIChsQG/n73Gv40LB138y3Y3r11wpyDzDOd8mgLQrl076WovagRFUUhMTMTQ0BA3NzcMDGQ8XSGKKIpCZmYmycnJANT+31ROFVGuhCgkJAQPDw9atWqFoigVvqgQJblxOR17VytSsvK4c+IG9ipzUozS2FznACHLzbhlZ0eamRmmpqa0aNFC3+EK8Vjk5+eTmZmJq6srFhYW+g5HiCrH3NwcgOTkZJycnCr8+qxcCdHo0aMJDQ3l/PnzjBgxgldeeUUatYpKkZmWyy/zD2NVy4zMLvb0LSjsrfi3ei/9zlhhcDsFZ9fajB09muu3bsms9qLG0Gg0ADrtNYUQuor+WMjLy6twQlSuutevv/6axMREpk+fzsaNG3Fzc2Pw4MH8/fffUmMkHkrM7qsU5CuYWxnzT+RlnsIIBYVtlrvpf6Cw3YR90L9xdHGhadOmeo5WiMdPXhELUbrK+Pko98toU1NTXn75ZbZu3UpMTAw+Pj6MGTMGDw8P7ty589ABiZqnQFPAiZ1XADBrqsb/egoAV7LP43HxJubXUlHs7bF9YZA+wxRCCFGNPVTrPJVKhUqlQlEU6f0gKuzCsRtk3M7B3NqYrSmpdDP438jUZnsZcsSCPCMjfu/Vk3WbN5Odna3naIUQT7KgoCCee+65+5YJDw9HpVJx+/btxxKTqBrKnRDl5OTw008/0bNnTxo1akR0dDRffvklCQkJWFlZPYoYRTVXNG+ZZ3tnNCeuYGloRlZ+Oqc5hNOldOK9vclRFK5duyZth4R4gtwv+ahXr572j+qipW7dujr7Fy5cWOkxLVq0iJCQEO16QEAAEydOrPTr6FtQUJD2uRoZGeHu7s6bb75JSkqKTrkHfQ41SbkaVY8ZM4bQ0FDc3d3597//TWhoKPb29o8qNlED3Lxyhyunb6MyUHHKUmGgBjCA45qj9IspQAHOtWgOSFd7Iaqb2bNnM2rUKO16ZQyu9yBqtfqRX+NeeXl5epnWqnfv3qxcuZL8/HxiYmIYMWIEt2/f5qefftIpp4/PoSoqVw3Rt99+i42NDZ6enkRERDBq1CgGDhxYbBGirM5HXQfAs4UD4VGXaWhsh6Io7DHZRePzuSS5upIK0tVeiGrI2toaFxcX7eLo6Fjuc0yZMoX+/ftr1xcuXIhKpWLz5s3abY0aNeK7774DdGutgoKCiIiIYNGiRdrakfj4eO1xkZGRtG3bFgsLCzp27EhcXFyZYgoODqZly5asWLGC+vXrY2pqiqIohIWF8fTTT2Nra4u9vT39+vXj3Llz2uMGDRrEuHHjtOsTJ05EpVJx8uRJoHAIBmtra/7+++8yxWFqaoqLiwt169alV69evPTSS2zZsqVYucr4HKqDciVEr776Kl27dsXW1ha1Wl3qIkRZtX2mHs9PaY1xc1u63UgF4Er2OZqeTgDgQsfCyYNbtWolr8uE4H8D0eXm62Wpir2JAwIC2LVrl7Yda0REBA4ODkRERACQlJTE6dOn8ff3L3bsokWL8PPzY9SoUSQmJpKYmIibm5t2/4wZM/j88885fPgwRkZGZR6cGODs2bP8/PPPrFu3jqioKAAyMjKYPHkyhw4dYvv27RgYGPD8889rYw8ICCA8PFx7jnvv5dChQ2RnZ9OpU6dyPSOA8+fPExYWJhOw30e5B2YUojKpVCpcvW2Zv/8cbxgVjmm1x3gvvU8ppFtZccmo8L/oU089pc8whagysvI0NH2/bDUElS1mdiAWJuX62riv6dOnM3PmTO363LlzGT9+fLnO0aVLF9LT0zl69CitW7dm165dTJ06lfXr1wPwzz//4OzsTOPGjYsdq1arMTExwcLCAhcXl2L758yZo02k3n77bfr27Ut2djZmZmYPjCs3N5cffvhBp7Zl0CDdnrLLly/HycmJmJgYfH19CQgIYMKECdy4cQNDQ0NOnjzJrFmzCA8PZ8yYMYSHh9OmTZsyt9fdtGkTVlZWaDQabYeUL774oli5yvgcqoPK+58tRDkoBQp5uRpMzIy4np5DdsxN1CpzbhqnYnxxHwYKXAwo/EXk7e0tbdWEqIamTZtGUFCQdt3BwaHc51Cr1bRs2ZLw8HCMjY0xMDDgjTfeYNasWaSnpxMeHl5i7VBZNG/eXPvvoikhkpOTcXd3f+CxHh4exV49nTt3jvfee4/9+/dz48YNbc1QQkICvr6++Pr6Ym9vT0REBMbGxrRo0YIBAwawePFigHLfS9euXfnmm2/IzMxk2bJlnD59WueVXJHK+ByqA0mIhF5cir3F30tP0KxrXY6qob9SWI37j/kuukUXjszb7bnnqWOgok6dOvoMVYgqxdzYkJjZgXq7dmVycHDAy8vroc9T9KrJxMQEf39/atWqhY+PD3v27CE8PLzCvcjufr1U1KGjrEPMWFpaFtvWv39/3NzcWLp0Ka6urhQUFODr60tubq72Gl26dNHeS0BAAL6+vmg0GqKjo9m7d2+57sXS0lL7fBcvXkzXrl354IMP+PDDD3XKVdbn8KSThEjoRXT4ZXKzNeRma4g4eYnPMKGAApRzuzDOB7PmzbHr1JGO0qtMCB0qlapSX1tVBwEBASxfvhwjIyN69OgBgL+/P6GhoaW2HypiYmKinR7lUbp58yaxsbF89913dO7cGYDdu3cXKxcQEMD333+PiYkJs2fPRqVS0blzZz777DOysrIq1H6oyKxZs+jTpw9vvvkmrq6uFT5PdSXTJovHLvV6FvEnbgKQW8+CbjfTALiSdZaOR26jAPavjZQu9kJUA6mpqURFReksCQkJlXqNonZEGzduJCAgAChMLFavXo2jo+N9p/upV68eBw4cID4+Xuc1VmWrVasW9vb2fP/995w9e5YdO3YwefLkYuUCAgI4efIk0dHR2sQpICCANWvW0Lp1a2xsbCocQ0BAAD4+PsydO7fC56jOJCESj92JnVdAAfemdvwWl0SAoTUAcVn7sMlSuNmiBWvj47VdTYUQT67w8HBatWqls7z//vuVeg21Wk2rVq2ws7PTJj+dO3emoKDggW1upk6diqGhIU2bNsXR0bHSk7UiBgYGhIaGEhkZia+vL5MmTeLTTz8tVs7X1xcHBwdatGihTX78/f3RaDQVbgt1t8mTJ7N06VIuXbr00OeqblRKFelHOW/ePN59910mTJigHZ00KCiIVatW6ZRr3749+/fv167n5OQwdepUfvrpJ7KysujevTtff/21zkibKSkpjB8/nj/++AOAAQMGsGTJEmxtbcscX1paGmq1mtTU1IfK0Gu6vFwNq97eQ05mPp3+3ZiV6yKZZmBLRn4qF/fOwO1WLgdeG0n8nTu0b9+ePn366DtkIfQqOzubCxcu4OnpWabeTULURPf7OSnr93eVqCE6dOgQ33//vU6L/iK9e/fWjg+RmJjIn3/+qbN/4sSJbNiwgdDQUHbv3s2dO3fo16+fzjvhIUOGEBUVRVhYGGFhYURFRTFs2LBHfl+iuDOHrpGTmY+Ngxl77mQw8H+106czj+B2K5dMd3fi/zdJcLt27fQYqRBCiJpE7wnRnTt3GDp0KEuXLqVWrVrF9heNtFm02NnZafelpqayfPlyPv/8c3r06EGrVq1YvXo10dHRbNu2DYDY2FjCwsJYtmwZfn5++Pn5sXTpUjZt2lTmUUdF5Tn5v1ntfTrXYfeBSzQwsqVAKSA/vnDgsUu9egLg5eUlXe2FEKxZswYrK6sSFx8fH73E5OPjU2pMa9aseeTXL5o7tLTlUb32q+703lVh7Nix9O3blx49evDRRx8V2x8eHo6TkxO2trb4+/szZ84cnJycgMJh1fPy8ujVq5e2vKurK76+vuzdu5fAwED27duHWq2mffv22jIdOnRArVazd+9eGjVq9OhvUmgFjvLl5K6rpLiYFDamNrbnStYZvC8kkmdjTez/up/e/XkJIWquAQMGlPr7QF+jLv/555/k5eWVuM/Z2fmRX9/V1VU7+nVp+0X56TUhCg0N5ciRIxw6dKjE/X369OHFF1/Ew8ODCxcu8N5779GtWzciIyMxNTUlKSkJExOTYjVLzs7OJCUlAYXDthclUHdzcnLSlilJTk4OOTk52vW0tLSK3KK4h42DOX7PN2DsqkOMNyqc5iXp+l5sFYXk558nJycHe3t7GjRooOdIhRBVgbW1NdbW1voOQ4eHh4der29kZCTjBj0CekuILl26xIQJE9iyZUupDQVfeukl7b99fX1p27YtHh4ebN68+b6TyCqKotNlu6Tu2/eWude8efP44IMPynIrogzuft7Jadkop1KwVJmTYpBCg2MH0BgZctLcHHJyaNeuHQYGen+bK4QQogbR27dOZGQkycnJtGnTBiMjI4yMjIiIiGDx4sUYGRmVOFBW7dq18fDw4MyZMwC4uLiQm5tLSkqKTrnk5GRttaWLiwvXrl0rdq7r16/ft2rznXfeITU1VbtIF8WHc/jPeDZ/fZyk86n8fPiSdmTqlMQIjAsKsHluAD0CA/H29pZZ7YUQQjx2ekuIunfvTnR0tM5gXW3btmXo0KFERUVhaFh8iPibN29y6dIl7Zwybdq0wdjYmK1bt2rLJCYmcuLECTp27AiAn58fqampHDx4UFvmwIEDpKamasuUxNTUFBsbG51FVIxGU8CJnVeIP36D29ez2L33Es0wQkMBTkf2oKjAeeQomjRpwtChQ6VrsRBCiMdOb6/MrK2t8fX11dlmaWmJvb09vr6+3Llzh+DgYAYNGkTt2rWJj4/n3XffxcHBgeeffx4oHIxr5MiRTJkyBXt7e+zs7Jg6dSrNmjXTDt/epEkTevfuzahRo/juu+8AeP311+nXr580qH5Mzh+9TmZqLuY2Jly1hp6308HIjsSMOGxyUlEF+GHq6anvMIUQQtRgVbahhqGhIdHR0Tz77LM0bNiQ4cOH07BhQ/bt26fTwG7BggU899xzDB48mE6dOmFhYcHGjRt1apjWrFlDs2bN6NWrF7169aJ58+b88MMP+ritGik6/DIAPp1d+eXgJfwNrABIvbIPFZDYvQ8RERHc+d/4Q0IIIcTjpvdu93cLDw/X/tvc3Jy///77gceYmZmxZMkSlixZUmoZOzs7Vq9eXRkhinK6cTmdxLOpGBiocGrpgNmSGMwM1NzJS8H2/FFSWzTgwNmz5Jw8iaurK97e3voOWQhRjQUFBXH79m1+++23UsuEh4fTtWtXUlJSyjWjgXiyVdkaIlE9RIcXDsRYv5UjG09fY1BBYU+zK7ciscnOIWvAS+Tk5GBnZydd7YWoZoKCgnjuuedK3FevXj1UKpXOcveUS/Xq1dNO41SZFi1aREhIiHY9ICCAiRMnVvp1qoKkpCTGjRtH/fr1MTU1xc3Njf79+7N9+3Zyc3NxcHAocfw/KOxp7eDgQO7/xoYrTUhIiM5n6OzsTP/+/YvNRRkUFFTs81apVJw9e7bS7vdhSUIkHpnsjDxOHygc68nHvw779iZQz8iGAkUD53dxy92WkympQOFAjNLVXoiaZfbs2TpTMx09evSRX1OtVj/2Wp/SBnF8lOLj42nTpg07duzgk08+ITo6mrCwMLp27crYsWMxMTHhlVdeISQkhJKmNF25ciXDhg3DxMTkgdeysbEhMTGRq1evsnnzZjIyMujbt2+xZOreqbgSExPxrELtR+UbSDwyhsYGdHrBC682TsRpcuiZmgHAlTuncbqeRM7gl7lx4wYmJibS1V6IGsja2lpnaiZHR8dyn2PKlCn0799fu75w4UJUKhWbN2/WbmvUqJG2U83dtVZBQUFERESwaNEibY1FfHy89rjIyEjatm2LhYUFHTt2LPN0T8HBwbRs2ZIVK1Zoa2cURSEsLIynn34aW1tb7O3t6devH+fOndMeN2jQIMaNG6ddnzhxIiqVSlvbkp+fj7W1dZmak4wZMwaVSsXBgwd54YUXaNiwIT4+PkyePFk7QfrIkSM5d+4cO3fu1Dl2165dnDlzhpEjR5bpflUqFS4uLtSuXZu2bdsyadIkLl68WOx53TsVl4uLS4k9yvVFEiLxyBibGOLrX5fAUb6s23+JLoaFjeHTruwlzdaIJPPCucpatmwpXe2FKCtFgdwM/Swl1CToW0BAALt27aKgoHCm6IiICBwcHIiIKJwfMSkpidOnT+Pv71/s2EWLFuHn58eoUaO0NRZubm7a/TNmzODzzz/n8OHDGBkZMWLEiDLHdfbsWX7++WfWrVunnWYjIyODyZMnc+jQIbZv346BgQHPP/+8NvaAgACdtrT33suhQ4fIzs6mU6dO9732rVu3CAsLY+zYsVhaWhbbX1RD1qxZM5566ilWrlyps3/FihW0a9euWE/wsrh9+zY//vgjoL+pVSqqSjWqFtVTYmoWhnEpmKnMycm6jsP5I1x5tSen/zfApsxqL0Q55GXCXD3NVfXuVTAp/gVbUdOnT2fmzJna9blz5zJ+/PhynaNLly6kp6dz9OhRWrduza5du5g6dSrr168H4J9//sHZ2ZnGjRsXO1atVmNiYoKFhQUuLi7F9s+ZM0ebSL399tv07duX7OzsMv0Bl5ubyw8//KBT6zVo0CCdMsuXL8fJyYmYmBh8fX0JCAhgwoQJ3LhxA0NDQ06ePMmsWbMIDw9nzJgxhIeH06ZNG6ysrO577bNnz6IoSon3fK8RI0YwdepUvvzyS6ysrLhz5w6//PILX3zxxQOPLZKamoqVlRWKopCZmQkUzkF37/U3bdqkE3ufPn345ZdfynydR01qiMQjsevn05zcdYW8HA1rD11iAIXvoZVzEeQb5dFy8BhatWpF48aNcXBw0HO0Qgh9mDZtms7gvK+++mq5z6FWq2nZsiXh4eFER0djYGDAG2+8wbFjx0hPTyc8PLzE2qGyaN68ufbfRQMCJycnl+lYDw+PYq8Az507x5AhQ6hfvz42Njba9jNFs9P7+vpib29PREQEu3btokWLFgwYMEBbQ1TWeylqE3S/6amKvPzyyxQUFLB27VoA1q5di6Io/Otf/yrTfULhq8+oqCgiIyP59ttvadCgAd9++22xcl27dtX5vBcvXlzmazwOUkMkKt3t5EyO77gMKnDxUnNw3yVewASlIJ/8hL1c6NOU9u4NcHdvUGJjPiHEfRhbFNbU6OvalcjBwaFSJiktetVkYmKCv78/tWrVwsfHhz179hAeHl7hXmR3v/IpSi6KXm89SEmvqvr374+bmxtLly7F1dWVgoICfH19tY2PVSoVXbp00d5LQEAAvr6+aDQaoqOj2bt3b5nuxdvbG5VKRWxsbKm9/Iqo1WpeeOEFVq5cyciRI1m5ciUvvPBCuWZnMDAw0H6OjRs3JikpiZdeeqlY2yRLS8sqPSmt1BCJSnciorCrvYePPUdTMrSNqW+mnCRLuUPjUZO0ZcvyF4wQ4i4qVeFrK30sVfTntagd0Y4dOwgICADA39+f0NDQUtsPFTExMSlx7szKdvPmTWJjY5k5cybdu3enSZMmxebhhP9P7sLDwwkICEClUtG5c2c+++wzsrKyHth+CArH3gsMDOSrr74iIyOj2P7bt2/rrI8cOZI9e/awadMm9uzZU+bG1KWZNGkSx44dY8OGDQ91nsdNEiJRqfJyNMTuTQSgWUBd1u27SJf/jUyddOMgh9rX4kZ8NomJifoMUwjxmKSmpuq8JomKitK+IqosRe2INm7cqE2IAgICWL16NY6OjjRt2rTUY+vVq8eBAweIj4/nxo0bZa4BKq9atWphb2/P999/z9mzZ9mxYweTJ08uVi4gIICTJ08SHR1N586dtdvWrFlD69aty1xz8/XXX6PRaGjXrh3r1q3jzJkzxMbGsnjxYvz8/HTK+vv74+XlxauvvoqXlxddunR5qHu1sbHhtddeY9asWU/UWwBJiESlOn0widysfGwczTFyNccy7jqmBsak5d7E+uIxjPoNZvfu3axcufKBA34JIZ584eHhtGrVSmd5//33K/UaarWaVq1aYWdnp01+OnfuTEFBwQPb3EydOhVDQ0OaNm2Ko6NjpSdrRQwMDAgNDSUyMhJfX18mTZrEp59+Wqycr68vDg4OtGjRQpv8+Pv7o9FoytUWytPTkyNHjtC1a1emTJmCr68vPXv2ZPv27XzzzTfFyo8YMYKUlJRy9aS7nwkTJhAbG1ulGk0/iEp5ktI3PUpLS0OtVpOamlqud6s1iaIorP3oIDevZNDpBS92FGTRYet53A2tiE3awoWMDZg99x/OnzlPu3bteOaZZ/QdshBVXnZ2NhcuXMDT01OGpxCiFPf7OSnr97fUEIlKk3j2NjevZGBkYoB3e2cO77+Eu6EVmoJ8VOd3c6N/AOfPnAekq70QQoiqRRIiUWmMTAzxaGZPow612XvpNoFpWQBczjjFVZtk6lg/BUCDBg2kq70QokzWrFmDlZVViYuPj49eYvLx8Sk1pjVr1jzy6yckJJR6fSsrq0p97afve32cpNu9qDROHjb0G9sCpUDhzRUH+c//GlOnXdnLoW51cD1V2FW4ffv2+gxTCPEEGTBgQKm/M/Q1EvKff/5Z6vxkzs7Oj/z6rq6u2tGvS9tfWfR9r4+TJESi0l1JzcL8bComBuZkZV4jNfM43g1GcuvoLezs7Kr0OBRCiKrF2toaa2trfYehw8PDQ6/XNzIyemy/R/V9r4+TvDITD02TX8DBTRdIv5UNwNqDCTynFObaqnPhbG2v0MqlFdbW1rRr105mtRdCCFHlSA2ReGjnjiRzaNMFYvdc5eXZHThy4AovqUxQNHnEZ+zDtmsPOrfvTMe2HR/ZGB9CCCHEw5A/1cVDiw6/DEDTp1355/R1eqcVTu6XnhzFb22yGdT4BQAMDQ2fuNmPhRBC1AySEImHcj0hnaTzaRgYqmj6tCvr916k8/8aU5/OOMKVVvVR31Y/lqHxhRBCiIqShEg8lKLaoQatnbil0VDrzA2MDIxIzb3OYbsYOqn8+eXnX/jtt9/0G6gQQghxH5IQiQrLvpPH6UPXgMJ5y0IPXuSl/MKBzxNSDvNPa8hLKOyu6evrq7c4hRCiSFBQ0ANngA8PD0elUhWbBFVUb5IQiQqL2XsVTV4BDm5W2HtYcWz/FRxN1OQX5HFSs5eOVt3JycmhVq1aeHt76ztcIcRjdr/ko169eqhUKp2lbt26OvsXLlxY6TEtWrSIkJAQ7XpAQAATJ06s9OtUBZcuXWLkyJG4urpiYmKCh4cHEyZM4ObNm8XKnjx5ksGDB+Po6IipqSne3t689957ZGZm6pS7+3MzNDTE1dWVkSNHkpKSUqaYipLNosXe3p5u3bqxZ88enXLBwcHF/n+oVCq2bdtW8QfyAJIQiQoryFcwNjWkWUBddpxK5sWUWwBcuhPL5ta3cLrpBCBd7YUQJZo9ezaJiYna5ejRo4/8mmq1Gltb20d+nbuVNrDho3T+/Hnatm3L6dOn+emnnzh79izffvst27dvx8/Pj1u3bmnL7t+/n/bt25Obm8vmzZs5ffo0c+fOZdWqVfTs2bPYRNxFn1tCQgJr1qxh586djB8/vlzxxcXFkZiYSHh4OI6OjvTt25fk5GSdMj4+Pjr/PxITE+nSpUvFH8oDyLeUqLC2z9QjaH4nGrZzZt3ei7Q0LZyO49ydvdipvclIycDY2JiWLVvqN1AhRJVkbW2Ni4uLdnF0dCz3OaZMmUL//v216wsXLkSlUrF582bttkaNGvHdd98BurVWQUFBREREsGjRIm0NRHx8vPa4yMhI2rZti4WFBR07diQuLq5MMQUHB9OyZUtWrFhB/fr1MTU1RVEUwsLCePrpp7G1tcXe3p5+/fpx7tw57XGDBg1i3Lhx2vWJEyeiUqk4efIkAPn5+VhbW/P3338/MIaxY8diYmLCli1b8Pf3x93dnT59+rBt2zauXLnCjBkzgMJJuUeOHEmTJk1Yv3497dq1w8PDgxdffJGNGzeyb98+FixYoHPuos+tTp06dO3alVdffZUjR46U6dkUcXJywsXFhWbNmjFz5kxSU1M5cOCAThkjIyOd/x8uLi6YmJiU6zrlIQmReCgm5kZcTcuh/snLGBoYk56VxKYGp2iT2waAli1bYm5urucohag+FEUhMy9TL4uiKPq+/WICAgLYtWuXdoyziIgIHBwciIiIACApKYnTp0/j7+9f7NhFixbh5+fHqFGjtDUQbm5u2v0zZszg888/5/DhwxgZGTFixIgyx3X27Fl+/vln1q1bp51mIyMjg8mTJ3Po0CG2b9+OgYEBzz//vDb2gIAAwsPDtee4914OHTpEdnY2nTp1uu+1b926xd9//82YMWOK/f51cXFh6NChrF27FkVRiIqKIiYmhsmTJxeryW/RogU9evTgp59+KvVaV65cYdOmTRWekikzM5OVK1cC+puKpYgMzCjKLe1mFhm3c3Gpb4NKpeKngxd5jsL/yJfSdnCmVT7dc2txjWsyq70QlSwrP4v2P+pnPsADQw5gYWxRaeebPn06M2fO1K7PnTu33K9eunTpQnp6OkePHqV169bs2rWLqVOnsn79egD++ecfnJ2dady4cbFj1Wo1JiYmWFhY4OLiUmz/nDlztInU22+/Td++fcnOzsbMzOyBceXm5vLDDz/o1HoNGjRIp8zy5ctxcnIiJiYGX19fAgICmDBhAjdu3MDQ0JCTJ08ya9YswsPDGTNmDOHh4bRp0wYrK6v7XvvMmTMoikKTJk1K3N+kSRNSUlK4fv06p0+f1m4rrezu3bt1thV9bhqNhuzsbNq3b88XX3zxwGdyt6L2YpmZhYl2mzZt6N69u06Z6OhonXtt2rQpBw8eLNd1ykMSIlFux7Zd4vg/l2nerS7tB3pxOSIWa3NHlPwcljU6RKe6nXizx5tcv369QlXgQoiaYdq0aQQFBWnXHRwcyn0OtVpNy5YtCQ8Px9jYGAMDA9544w1mzZpFeno64eHhJdYOlUXz5s21/65duzYAycnJuLu7P/BYDw+PYr//zp07x3vvvcf+/fu5ceOGtmYoISEBX19ffH19sbe3JyIiAmNjY1q0aMGAAQNYvHgxwEPdy92KavpUKlWZyt5bruhzUxSFS5cu8e6779K3b1927tyJoaFhmWLYtWsXlpaWHD16lOnTpxMSElKshqhRo0b88ccf2nVTU9MynbuiJCES5ZKbnc+pfYkAePjYsy32GoNvp4KtI8lpkcQ2y2Fhw8K/giQZEqLymRuZc2DIgQcXfETXrkwODg6VMklp0asmExMT/P39qVWrFj4+PuzZs4fw8PAK9yK7+wu6KCko6/RDlpaWxbb1798fNzc3li5diqurKwUFBfj6+mobLatUKrp06aK9l4CAAHx9fdFoNERHR7N3794y3YuXlxcqlYqYmJgSe/mdOnWKWrVq4eDgQMOGDQGIiYkpsb3nqVOnivUSvvtz8/b2ZuHChfj5+fHPP//Qo0ePB8YH4Onpia2tLQ0bNiQ7O5vnn3+eEydO6CQ9JiYmj3UycGlDJMrl9MFr5GZrUDua49bEjrDtJ/GwKZwNeZfhMTxUHjxl/5SeoxSi+lKpVFgYW+hlKUuNgj4UtSPasWMHAQEBAPj7+xMaGlpq+6EiJiYmj2Uk/Zs3bxIbG8vMmTPp3r279rXVvYqSu/DwcAICAlCpVHTu3JnPPvuMrKysB7YfArC3t6dnz558/fXXZGVl6exLSkpizZo1vPTSS6hUKlq2bEnjxo1ZsGBBsWTv2LFjbNu2jZdffvm+1yuqFbr3WmU1bNgwCgoK+Prrryt0fGWRhEiUmaIonIgoHJna178OF29l0ulYDAYGxqTkJLGxQRztrrdjycIlOj0nhBA1V2pqKlFRUTpLQkJCpV6jqB3Rxo0btQlRQEAAq1evxtHRkaZNm5Z6bL169Thw4ADx8fE6r7EqW61atbC3t+f777/n7Nmz7Nixg8mTJxcrFxAQwMmTJ4mOjqZz587abWvWrKF169bY2NiU6XpffvklOTk5BAYGsnPnTi5dukRYWBg9e/akTp06zJkzByhMsJctW0ZMTAyDBg3i4MGDJCQk8Msvv9C/f3/8/PyK1Uqlp6eTlJREYmIiBw8eZNq0aTg4ONCxY8cKPRsDAwMmTpzI/Pnzi4179DhJQiTKLPFcKjevZGBkbEBjv9r8sus0bazrAHAqMxLFUk1BeuEvE1dXV32GKoSoIsLDw2nVqpXO8v7771fqNdRqNa1atcLOzk6b/HTu3JmCgoIHtrmZOnUqhoaGNG3aFEdHx0pP1ooYGBgQGhpKZGQkvr6+TJo0iU8//bRYOV9fXxwcHGjRooU2+fH390ej0ZSr/ZC3tzeHDx+mQYMGvPTSSzRo0IDXX3+drl27sm/fPuzs7LRlO3XqxP79+zE0NOSZZ57By8uLd955h+HDh7N169ZibXfef/99ateujaurK/369cPS0pKtW7dib29fwacDI0aMIC8vjy+//LLC53hYKqUq9qOsgtLS0lCr1aSmppY5Q69utiw7wZnDyTTtVJtOLzfi+zcW8JxjO/IKcgk2/QgXx3aY3zKnbdu29OvXT9/hClEtZGdnc+HCBTw9PcvUu0mImuh+Pydl/f6WGiJRJhpNAdcv3QHAN6AuW45fxr+g8K+GhDsxnHfNxjylsMGldLUXQgjxpKkyCdG8efNQqVQ67yoVRSE4OBhXV1fMzc2171bvlpOTw7hx43BwcMDS0pIBAwZw+fJlnTIpKSkMGzYMtVqNWq1m2LBhMmlfORkaGvDyrPY8P6UVjm7WnP7hN9SOPgDsMtmHV15jUKB+/fo4OTnpOVohRHWxZs0arKysSlx8fHz0EpOPj0+pMa1Zs+aRXz8hIaHU61tZWT2y135l0adPn1Ljmjt3rt7iKosq0e3+0KFDfP/99zpjPgB88sknfPHFF4SEhNCwYUM++ugjevbsSVxcHNbW1kDh0OYbN24kNDQUe3t7pkyZQr9+/YiMjNS2fB8yZAiXL18mLCwMgNdff51hw4axcePGx3ujTzgDAxWu3rU4f/0OTyckY+BtxK2cRHa5ncUv/RmACo9WKoQQJRkwYECpv1f0NbLxn3/+Wer8ZM7Ozo/8+q6urtrRr0vbry/Lli0rtbfZ3e2WqiK9J0R37txh6NChLF26lI8++ki7XVEUFi5cyIwZMxg4cCAAq1atwtnZmR9//JE33niD1NRUli9fzg8//KAd+2D16tW4ubmxbds2AgMDiY2NJSwsTDt5HcDSpUvx8/MjLi6ORo0aPf6bfsLcScnG3NoEQ6PCCsUdIRvoVbslABucw8mzsEKVoUJtq5ZZ7YUQlcra2lr7B3BV4eHhodfrGxkZPdbxecqjTp06+g6hwvT+ymzs2LH07du32GBOFy5cICkpiV69emm3mZqa4u/vz969e4HCiffy8vJ0yri6uuLr66sts2/fPtRqtc5fGB06dECtVmvLlCQnJ4e0tDSdpabaFhLDqnf3cinmFunZebhH7MPAypl8JZdNzgdx93Rn0sRJDBw4UGa1F0II8UTSaw1RaGgoR44c4dChQ8X2JSUlAcWrH52dnbl48aK2jImJCbVq1SpWpuj4pKSkEtu0ODk5acuUZN68eXzwwQflu6Fq6NbVDK7E3UalAlsXCzb9vJ2nHArnvDlge4xsgxxeaPgCNjY2Nbb3nRBCiCef3v6cv3TpEhMmTGD16tX37Up678ioJc2rcq97y5RU/kHneeedd0hNTdUuly5duu81q6uigRjrNXfATG2C8a9/YOpc2NbrwJ3dOBg40NOjpz5DFEIIIR6a3hKiyMhIkpOTadOmDUZGRhgZGREREcHixYsxMjLS1gzdW4uTnJys3efi4kJubm6x4c/vLXPt2rVi179+/fp9G7+Zmppqaz1qau1HbnY+pw4UPv9m/nX5e+thmlu5oVIZcCXjDHF21/E/78/PP/5Mfn6+nqMVQgghKk5vCVH37t2Jjo7WGc69bdu2DB06lKioKOrXr4+Liwtbt27VHpObm0tERIR2ePA2bdpgbGysUyYxMZETJ05oy/j5+ZGamsrBgwe1ZQ4cOEBqamqFhxmvKU4fSCIvW4PayZw6jWy5teJHzOp2AGCfZjc2qrqgFE52aGSk9/b5QgghRIXp7VvM2toaX19fnW2WlpbY29trt0+cOJG5c+fi7e2Nt7c3c+fOxcLCgiFDhgCFw7WPHDmSKVOmYG9vj52dHVOnTqVZs2baRtpNmjShd+/ejBo1iu+++w4o7Hbfr18/6WF2H4qiEB1xBSisHdpz9BztCqwxMDDiRvZltnnE0Cqj8FWZdLUXQgjxpKvSXYL+85//MHHiRMaMGUPbtm25cuUKW7Zs0emCuWDBAp577jkGDx5Mp06dsLCwYOPGjdoxiKBwYK9mzZrRq1cvevXqRfPmzfnhhx/0cUtPjBuX7nDragZGJgY09nPh9Df/xbxe4USDR3L3obJwxFBjiK2tLQ0bNtRztEKIqigoKAiVSsXo0aOL7RszZgwqlYqgoCCdsiqVCmNjY5ydnenZsycrVqwoNuFqvXr1WLhwYZliqFevnva85ubmNG7cmE8//ZS7Z62Kj4/Xlrl7eeWVVyp87+LJU6Xec4SHh+usq1QqgoODCQ4OLvUYMzMzlixZwpIlS0otY2dnx+rVqyspyprB0d2af73XjhuX73A26RbtbmZh6GhOau4N/nA9ROOMp4HCaTqkq70QojRubm6EhoayYMECzM0Lp/fJzs7mp59+wt3dXads7969WblyJRqNhmvXrhEWFsaECRP49ddf+eOPPyr8an727NmMGjWK7Oxstm3bxptvvomNjQ1vvPGGTrlt27bpjH5dFK+oGeSbTJTKvo4Vjdq7sP+r/2JTLwCA6Kz9pNmbYZltibGxMa1atdJvkEKIKq1169a4u7uzfv167bb169fj5uZW7PeHqakpLi4u1KlTh9atW/Puu+/y+++/89dffxESElLhGKytrXFxcaFevXq89tprNG/enC1bthQrZ29vj4uLi3ZRq9UVvqZ48khCJIrRaP6/evrKzTu0OH0FQzM1uapMvm2yg4Y5hW2vmjdvLn9BCfGYKYpCQWamXpa7XzOVx7///W9WrlypXV+xYgUjRowo07HdunWjRYsWOglVRSmKQnh4OLGxsXqb9kNUXVXqlZnQP42mgB9n7celgZqnX/Bmyzdr6ebeCYBNLnu4qc6mY+uONMluQv369fUcrRA1j5KVRVzrNnq5dqMjkagsLMp93LBhw3jnnXe0bXX27NlDaGhosWYSpWncuDHHjx8v93WLTJ8+nZkzZ5Kbm0teXh5mZmaMHz++WLmOHTvqNAHYtWuX1ILXIJIQCR0Xom6QdiObvNwCMpUCPA9EYegzmHwllzXWf2FnZseLTV7E3EhqhoQQZePg4EDfvn1ZtWoViqLQt29fHBwcynx8WQbkvZ9p06YRFBTE9evXmTFjBt26dStx2JW1a9fSpEkT7bqbm1uFrymePJIQCR1FI1P7PO3KltAwnqrbDoCT2YfRKArDGg+TZEgIPVKZm9PoSKTerl1RI0aM4K233gLgq6++KtexsbGxeHp6VvjaDg4OeHl54eXlxbp16/Dy8qJDhw7F5tB0c3OrspOmikdPEiKhdfPqHa6cvo3KQIW3nws3XluIWZMX0RTkE2YeQYebHbgTfoeEWgnFeocIIR4PlUpVoddW+ta7d29yc3MBCAwMLPNxO3bsIDo6mkmTJlVKHLVq1WLcuHFMnTqVo0ePPlTNk6hepFG10Drxv4EYPZs7sGfvERr+bxLXCxknOF0nG4dMB9JS07CystJnmEKIJ5ChoSGxsbHExsbqjBN3t5ycHJKSkrhy5QpHjhxh7ty5PPvss/Tr149XX3210mIZO3YscXFxrFu3rtLOKZ58khAJAHKz8onbXzhvma+/K9mr12Pu6IuiKPxt9g/eWU0BaNmyJXZ2dvoMVQjxhHrQvJBhYWHUrl2bevXq0bt3b/755x8WL17M77//XmoSVRGOjo4MGzaM4ODgYoM+ippLpVS0H2UNk5aWhlqtJjU1tVpO9Bodfpmdoaep5WJBnZ5WOH8bhlWd9lzKiOOjBj/x1O3OGBgYMG7cOGrVqqXvcIWoMbKzs7lw4QKenp6YmZnpOxwhqqT7/ZyU9ftb2hAJALzaOJGXo8HS1pTD3yzB07VwnrIdhv/gmVP46qxVq1aSDAkhhKiW5JWZAMDc2oTWgR7k1SqgTaYpBipDrmVd5GDd6zhkOWBgYEDnzp31HaYQQmitWbMGKyurEpe7p+AQoiykhkjoOLJkFV3d/QBY5fonNobOQOHw+7a2tnqMTAghdA0YMID27duXuE9GohblJQlRDXcnJYdtISfx6VwHUzdTWl25g6qhGbe4xj/O0fyr8b8Y4jwEe3t7fYcqhBA6rK2tsba21ncYopqQhKiGO7n7ClfiblOgUchIO0iXeoXTdKxw3oyRgREjfEdQ26q2nqMUQgghHi1pQ1SDafILiNl1FYD6HVzwPhGPoYk1GfmpnFKdZ4D7AEmGhBBC1AiSENVg56Ouk5mWi7mNCbFHduPoVth2KCpzH95ZzTHZY0JcXJyeoxRCCCEePUmIarCikakbd3TBOfwQpub25Ggy+dvlJPY59iiKQu3aUkMkhBCi+pOEqIa6eeUOV88UzluWlHYRt9qtAYjJOISVUeEMz23btq2Wg1AKIYQQ95KEqIaKLpq3rIUDJpu2YG7tRn5BHn85RGGXa4+RkRGdOnXSc5RCCCHE4yEJUQ3l1qQWtb3UFNhm423rDcCZjCiMzVwBeOqpp6Q7qxCiQlQq1X2XoKCgR3LdjIwMpk+fTv369TEzM8PR0ZGAgAA2bdqkLRMQEMDEiROLHRsSElLiWGtZWVnUqlULOzs7srKyiu2vV6+e9r4sLCzw9fXlu+++K1O8ISEhOs/F2dmZ/v37c/LkSZ1yQUFBJT7Hs2fPluk6omwkIaqhGrRyYuDUNuRs/gNLu0YUKAWE2UZSK9dOaoeEEA8lMTFRuyxcuBAbGxudbYsWLdIpn5eXVynXHT16NL/99htffvklp06dIiwsjEGDBnHz5s0Kn3PdunX4+vrStGlT1q9fX2KZ2bNnk5iYyPHjx3nuuecYPXo0a9euLdP5i57N1atX2bx5MxkZGfTt25fc3Fydcr1799Z5homJiXh6elb4vkRxkhDVYMdPXqS5UjhzfbTBERLss1EZqGjXrh1WVlZ6jk4I8aRycXHRLmq1GpVKpV3Pzs7G1taWn3/+mYCAAMzMzFi9ejUAK1eupEmTJpiZmdG4cWO+/vprnfNeuXKFl156iVq1amFvb8+zzz5LfHy8dv/GjRt59913eeaZZ6hXrx5t2rRh3LhxDB8+vML3snz5cl555RVeeeUVli9fXmIZa2trXFxc8PLy4qOPPsLb25vffvutTOcveja1a9embdu2TJo0iYsXLxbr4WtqaqrzXF1cXDA0NKzwfYniJCGqYRLPpXLk74tk3ckl5qs1mLoWNqb+3uNv7Jo5MGH8BJ5++mk9RymEeJC8HE2pS36epuxlc8tWtrJNnz6d8ePHExsbS2BgIEuXLmXGjBnMmTOH2NhY5s6dy3vvvceqVasAyMzMpGvXrlhZWbFz5052796NlZUVvXv31tamuLi48Oeff5Kenl4pMZ47d459+/YxePBgBg8ezN69ezl//vwDjzMzM6tQrdft27f58ccfAZl6RB9kpOoaJmpbAuePXifxUiq+qQaobAw4p8Rw3vwKs5rPlfnKhHhCfD8hotR9Hr729HurhXZ9xbRd5OcWlFjW1duW56e01q7/d8Zesu8U/zIf+223h4i2uIkTJzJw4EDt+ocffsjnn3+u3ebp6UlMTAzfffcdw4cPJzQ0FAMDA5YtW4ZKpQIKa5RsbW0JDw+nV69efP/99wwdOhR7e3tatGjB008/zQsvvFCsCcDXX3/NsmXLdLbl5+djZmams23FihX06dOHWrVqAYWvrVasWMFHH31U4j3l5+ezevVqoqOjefPNN8v0HFJTU7GyskJRFDIzM4HCOdoaN26sU27Tpk06Nfd9+vThl19+KdM1RNlIDVENciclmwvHbgBw+/Q+rOu0A2CLyUH8rPxo7dz6focLIUSladu2rfbf169f59KlS4wcOVJnxvqPPvqIc+fOARAZGcnZs2extrbW7rezsyM7O1tbpkuXLpw/f57t27czaNAgTp48SefOnfnwww91rj106FCioqJ0ltmzZ+uU0Wg0rFq1ildeeUW77ZVXXmHVqlVoNLo1ZtOnT8fKygpzc3PGjh3LtGnTeOONN8r0HKytrYmKiiIyMpJvv/2WBg0a8O233xYr17VrV514Fy9eXKbzi7KTGqIa5OSuqygFCk71bfA8eg1Dj6bczLlKtqUNrtFqjnsfp3nz5voOUwhRBq8v8i91n+qeP3VHfNq59LIq3fVX53R8mLDKzNLSUvvvgoLC2qulS5cWm72+qJ1MQUEBbdq0Yc2aNcXO5ejoqP23sbExnTt3pnPnzrz99tt89NFHzJ49m+nTp2NiYgKAWq3Gy8tL5xxOTk4663///be2zdLdNBoNW7ZsoU+fPtpt06ZNIygoCAsLC2rXrq2twSoLAwMDbSyNGzcmKSmJl156iZ07d+qUs7S0LBazqFySENUQmvwCTu4unLcsN+MC9nUKf+nsMDyAtUaNiYmJ/LAJ8QQxNi17g9pHVbayODs7U6dOHc6fP8/QoUNLLNO6dWvWrl2Lk5NTuQaMbdq0Kfn5+WRnZ2sTorJYvnw5//rXv5gxY4bO9vnz57N8+XKdhMjBwaHSfn9OmjSJL774gg0bNvD8889XyjlF2UhCVEOcP3qdrP/NW1bv1AmMPXuQlneTq2qwLIAOHTpgYWGh7zCFEDVUcHAw48ePx8bGhj59+pCTk8Phw4dJSUlh8uTJDB06lE8//ZRnn32W2bNnU7duXRISEli/fj3Tpk2jbt26BAQE8PLLL9O2bVvs7e2JiYnh3XffpWvXruVKoq5fv87GjRv5448/8PX11dk3fPhw+vbty/Xr13VqpiqLjY0Nr732GrNmzeK5554rV22TeDjShqiGiI64DICJTQYurm0A2MkBLAtsMDU1xc/PT5/hCSFquNdee41ly5YREhJCs2bN8Pf3JyQkRDvWjoWFBTt37sTd3Z2BAwfSpEkTRowYQVZWljbZCQwMZNWqVfTq1YsmTZowbtw4AgMD+fnnn8sVy3//+18sLS3p3r17sX1du3bF2tqaH3744eFvuhQTJkwgNjZWGk0/ZipFURR9B/EkSEtLQ61Wk5qa+sTN76XJL2DHf2M5f+wG9a9H0MS9Kxn56ayw3oG5YoW/vz9du3bVd5hCiBJkZ2dz4cIFPD09i/WCEkIUut/PSVm/v6WGqAYwNDKg5wgfvHqa0qBWIwD2FBzEXLHC1NSUDh066DlCIYQQQr8kIapBctaGYWLtSr4mm+2uxzE2M8bPzw9zc3N9hyaEENWOj4+PzjACdy8l9ZYT+qXXhOibb76hefPm2NjYYGNjg5+fH3/99Zd2f0kT2t1bm5GTk8O4ceNwcHDA0tKSAQMGcPnyZZ0yKSkpDBs2DLVajVqtZtiwYdy+fftx3KLeXY5L4ebVOxw9eoYmpm4ARJjtIrVBLlMmTaFjx8fTxVYIIWqaP//8s9h4R0XLgAED9B2euIdee5nVrVuX+fPna7srrlq1imeffZajR4/i4+MDFI4MunLlSu0x93abnDhxIhs3biQ0NBR7e3umTJlCv379iIyM1I5fMWTIEC5fvkxYWBgAr7/+OsOGDWPjxo2P4zb1RlEUIn6M4/a1TJwL4ujg4EtBQT4hHv8wodkUzEylPYIQQjwqHh4e+g5BlINeE6L+/fvrrM+ZM4dvvvmG/fv3axOiogntSpKamsry5cv54Ycf6NGjBwCrV6/Gzc2Nbdu2ERgYSGxsLGFhYezfv1874NfSpUvx8/MjLi6ORo0aPcI71K/Lp1K4fS0TIxMDGmcVdt08oImktsqNZzyf0XN0QgghRNVRZdoQaTQaQkNDycjI0OkCHh4ejpOTEw0bNmTUqFEkJydr90VGRpKXl0evXr2021xdXfH19WXv3r0A7Nu3D7VarTP6aYcOHVCr1doyJcnJySEtLU1nedJEhxe+OrRSklHbNaWAAo5b3aThpYYcO3JMz9EJIYQQVYfeE6Lo6GisrAp7O40ePZoNGzbQtGlToHDyujVr1rBjxw4+//xzDh06RLdu3cjJyQEgKSkJExMT7cR7RZydnUlKStKWuXdIdigcpr2oTEnmzZunbXOkVqtxc3OrrFt+LNJvZRN/vHDessYZyahUKg7lH8NQZYq5hblM0SGEEELcRe8jVTdq1IioqChu377NunXrGD58OBERETRt2lRnDhlfX1/atm2Lh4cHmzdv1pkl+V6KouiM7lnSSJ/3lrnXO++8w+TJk7XraWlpT1RSdHLnFRQFrEyzcLTxoYACoi2SABM6deyEqampvkMUQgghqgy91xAVzaHVtm1b5s2bR4sWLVi0aFGJZWvXro2HhwdnzpwBwMXFhdzcXFJSUnTKJScn4+zsrC1z7dq1Yue6fv26tkxJTE1Ntb3fipYnhSavgJg9hfOWeadfxMDAiCMFMWBggoWFBe3atdNzhEIIIUTVoveE6F6Komhfid3r5s2bXLp0idq1awPQpk0bjI2N2bp1q7ZMYmIiJ06c0HYn9/PzIzU1lYMHD2rLHDhwgNTU1Grb5TzlWiYApsYFuNp7U0ABx8yuANCpU6dyTXAohBDVTXx8PCqViqioKH2HUm0FBwfTsmVLfYdRLnpNiN5991127dpFfHw80dHRzJgxg/DwcIYOHcqdO3eYOnUq+/btIz4+nvDwcPr374+Dg4N2BmC1Ws3IkSOZMmUK27dv5+jRo7zyyis0a9ZM2+usSZMm9O7dm1GjRrF//37279/PqFGj6NevX7XtYeZQ14phH3WkUepxjAzNOKacRjEwwsLSgqeeekrf4QkhaoigoCCee+45nW2//vorZmZmfPLJJ/oJqgLWrVtH+/btUavVWFtb4+Pjw5QpU7T7Q0JCsLW1LfFYlUrFb7/9Vmz766+/jqGhIaGhocX2BQcHa8feMzQ0xM3Njddee43r16+XKd67x+6zsrKiRYsWhISE6JQJDw8vNs6fSqVi5syZZbpGdaTXNkTXrl1j2LBhJCYmolarad68OWFhYfTs2ZOsrCyio6P573//y+3bt6lduzZdu3Zl7dq1WFtba8+xYMECjIyMGDx4MFlZWXTv3p2QkBDtGEQAa9asYfz48dreaAMGDODLL7987Pf7OO0O20ODWt4AHDc/jnEtF55+6mmpHRJC6M2yZcsYO3YsX331Fa+99lq5j8/NzX3sv8O2bdvGv/71L+bOncuAAQNQqVTExMSwffv2Cp8zMzOTtWvXMm3aNJYvX86//vWvYmV8fHzYtm0bGo2Go0ePMnLkSK5cuaIzePH9rFy5kt69e5ORkcHatWv597//Te3atQkMDNQpFxcXp9MkxMrKqsL39cRTRJmkpqYqgJKamqrvUO7rxpV0pUBToOwYNke5NH2ncnry78rTP3RSbmffVvLz8/UdnhCinLKyspSYmBglKytL36GU2/Dhw5Vnn31WURRF+fjjjxVTU1Pl119/1e7fs2eP0rlzZ8XMzEypW7euMm7cOOXOnTva/R4eHsqHH36oDB8+XLGxsVFeffVVZeXKlYparVbCwsKUxo0bK5aWlkpgYKBy9epVnWuvWLFCady4sWJqaqo0atRI+eqrr7T7Lly4oADK0aNHH3gPEyZMUAICAu5bpiimkgDKhg0bdLaFhIQoHTp0UG7fvq2Ym5srFy5c0Nk/a9YspUWLFjrbPvroI8XAwEDJzMx8YMwlXdPOzk6ZPHmydv2ff/5RACUlJeWB57tX0f1u2LBB8fb2VkxNTZUePXooCQkJpd6Dv7+/MmHCBJ3zPPvss8rw4cO161999ZXi5eWlmJqaKk5OTsqgQYPKHNP9fk7K+v1d5doQiYrLyczj1/mHWT59J+62jQHYbLOdF5sORm2q1qk1E0I82fKys0td8nNzy1w2LzenTGUfxttvv82HH37Ipk2bGDRoEFA45EpgYCADBw7k+PHjrF27lt27d/PWW2/pHPvpp5/i6+tLZGQk7733HlBYw/LZZ5/xww8/sHPnThISEpg6dar2mKVLlzJjxgzmzJlDbGwsc+fO5b333mPVqlXljt3FxYWTJ09y4sSJh3gCupYvX84rr7yCWq3mmWee0ZmNoTTm5uYUFBSQn59frmtpNBp+/vlnbt26hbGxcUVDLiYzM5M5c+awatUq9uzZQ1paWok1XWV1+PBhxo8fz+zZs4mLiyMsLIwuXbpUWrxlofdu96LynNqXRH5uAY75qZjaOBKrSiDaMoU5DQbrOzQhRCVbPPyFUvd5tmrLwLeDtetfvz6U/FI6q9Rt6stLs+Zr15e+NYKs9OID0U5Zu6lCcf7111/8/vvvbN++nW7dumm3f/rppwwZMoSJEycC4O3tzeLFi/H39+ebb77BzKxwaqFu3brpJDu7d+8mLy+Pb7/9lgYNGgDw1ltvMXv2bG2ZDz/8kM8//1w7PIunpycxMTF89913DB8+vFzxjxs3jl27dtGsWTM8PDzo0KEDvXr1YujQoTrDl6SmppbpddOZM2fYv38/69evB+CVV15h/PjxzJo1CwODkusoTp06xTfffEO7du10mozcz8svv4yhoSHZ2dloNBrs7OxKfE1Zt25dnfWLFy9ib2//wPPn5eXx5Zdfagc9XrVqFU2aNOHgwYMV6smckJCApaUl/fr1w9raGg8PD1q1alXu8zwMqSGqJpQCheiIwpGpGxnlo6GAg0ZncLtTn4S4BD1HJ4SoqZo3b069evV4//33SU9P126PjIwkJCREZwb4wMBACgoKuHDhgrZc27Zti53TwsJCmwxB4ZAsRbMYXL9+nUuXLjFy5Eidc3/00UecO3eu3PFbWlqyefNmzp49y8yZM7GysmLKlCm0a9eOzMxMbTlra+sSJ3G91/LlywkMDMTBwQGAZ555hoyMDLZt26ZTrmjQYnNzc5o2bYqbmxtr1qwpc9wLFiwgKiqKrVu30rJlSxYsWKCdN/Ruu3bt0on33oGOS2NkZKTz2TRu3BhbW1tiY2PLHOPdevbsiYeHB/Xr12fYsGGsWbNG5/k+DlJDVE1cPpVCanIWdobZqC1cOGFwkTxDsLSyfOxZthDi0Ru/6tdS96nuqWkY8/19vkgNdAeoHfXlioeK61516tRh3bp1dO3ald69exMWFoa1tTUFBQW88cYbjB8/vtgx7u7u2n9bWloW23/vqx+VSoWiKAAUFBQAha/N7p6yCXioZgMNGjSgQYMGvPbaa8yYMYOGDRtqGysDGBgYlJhw3E2j0fDf//6XpKQkjIyMdLYvX75cZxqqRo0a8ccff2BoaIirq2u5B9N1cXHBy8sLLy8vfvnlF1q1akXbtm21M0EU8fT0LLWH3IOUNLhxaQMeGxgYaD+jInl5edp/W1tbc+TIEcLDw9myZQvvv/8+wcHBHDp0qMLxlZckRNWEtnZIlUY+FhwxLPxLyL+Lf6W+NxZCVA3G/3ulpM+yZeXu7k5ERARdu3alV69e/P3337Ru3ZqTJ08+MIkoL2dnZ+rUqcP58+cZOnRopZ67SL169bCwsCAjI6Ncx/3555+kp6dz9OhRneTs1KlTDB06lJs3b2pfVxUNWlwZvLy8GDRoEO+88w6///57pZwzPz+fw4cPa1+PxcXFcfv2bRo3blxieUdHRxITE7XrGo2GEydO0LVrV+02IyMjevToQY8ePZg1axa2trbs2LHjvjNTVCZJiKqBonnLrFQanKzqcMIggVxDBStrK1q3bq3v8IQQgrp16xIeHq5Nir777jv8/PwYO3Yso0aNwtLSktjYWLZu3cqSJUse6lrBwcGMHz8eGxsb+vTpQ05ODocPHyYlJUVnSqayniszM5NnnnkGDw8Pbt++zeLFi8nLy6Nnz57lOtfy5cvp27cvLVq00Nnu4+PDxIkTWb16NRMmTCjXOctqypQptGjRgsOHD5f4GrK8jI2NGTduHIsXL8bY2Ji33nqLDh06lNp+qFu3bkyePJnNmzfToEEDFixYwO3bt7X7N23axPnz5+nSpQu1atXizz//pKCg4LGOFyhtiKqBc0eSURRoaHiTfDQcMSqsHQrwD9CplhVCCH2qU6cOERER3L59m1GjRhEREcGZM2fo3LkzrVq14r333tPORPAwXnvtNZYtW0ZISAjNmjXD39+fkJAQPD09y30uf39/zp8/z6uvvkrjxo3p06cPSUlJbNmypVxf1teuXWPz5s3aXnZ3U6lUDBw4kOXLl5c7vrIqGrD4/fffr5TzWVhYMH36dIYMGYKfnx/m5uYlDjJZZMSIEQwfPpxXX30Vf39/PD09dWqHbG1tWb9+Pd26daNJkyZ8++23/PTTT/j4+FRKvGWhUu59qSdKlJaWhlqtJjU1tcrNa6YoChvnb6DlbTtijK6w3/gMVjZWTBw/URIiIZ5w2dnZXLhwAU9PT23PKyH0KSQkhIkTJ+rU8Ojb/X5Oyvr9LTVE1UCBAnVj4zFQGWKWnYbGKZ9uAd0kGRJCCCHKSBKiJ1xeroZda7fh6NQMgF9r/8O/h46QtkNCCFEGo0eP1umef/cyevRofYdXzNy5c0uNt0+fPpVyjT59+pR6jblz51bKNaoieWVWRlXxldn1hHQ2fHEEr+yLNLT1JDXnEiufPcJnAZ/pOzQhRCWRV2aPVnJyMmlpxQeiBLCxscHJyekxR3R/t27d4tatWyXuMzc3p06dOg99jStXrpCVlVXiPjs7O+zs7B76GpWtMl6ZyTuVJ1h0+GU02Ro8rF04bniRo1bRvOT2kr7DEkKIJ4aTk1OVS3ru53EkJJWRVD2J5JXZEyo7I4/Th67hZpSOgaExxwzjyTM0xyhNclwhhBCivCQhekKd2pdIQV4BXqbGxBheJscgHyu1Fc2bN9d3aEIIIcQTRxKiJ1DhvGVXcDHMwMTYnGNGFwHo2a2nzGgvhBBCVIAkRE+ghNhbpF3PwtsUYgwvk6vKx9LWEl9fX32HJoQQQjyRJCF6Ap2IuIKDQRaWJlYc/1/tUGC3QKkdEkIIISpIEqInUNv+7jQ2zCJWaoeEEKJcgoKCeO655+5bJjw8HJVKVaVGYn4SxcfHo1KpiIqK0ncoZSIJ0RPoxI9/Ym/pTOO82uSoU+kX2A8DA/kohRBVy/2Sj3r16qFSqXSWunXr6uxfuHBhpce0aNEiQkJCtOsBAQFMnDix0q+jb0FBQdrnamRkhLu7O2+++SYpKSk65R70OdQk0kf7CZOXr8ElLhWc3LiUd4w+Lz5Pk7pN9B2WEEKU2+zZsxk1apR2/XG89ler1Y/8GvfKy8vD2Nj4sV+3d+/erFy5kvz8fGJiYhgxYgS3b9/mp59+0imnj8+hKpJqhSdI3IEk1s/YgqVjYxQU/mwWR+c6nfUdlhBCVIi1tTUuLi7axdHRsdznmDJlCv3799euL1y4EJVKxebNm7XbGjVqxHfffQfo1loFBQURERHBokWLtLUj8fHx2uMiIyNp27YtFhYWdOzYkbi4uDLFFBwcTMuWLVmxYgX169fH1NQURVEICwvj6aefxtbWFnt7e/r168e5c+e0xw0aNIhx48Zp1ydOnIhKpeLkyZMA5OfnY21tzd9//12mOExNTXFxcaFu3br06tWLl156iS1bthQrV9HPQaVS8c0339CnTx/Mzc3x9PTkl19+KbV8SEgItra2Ott+++03VCqVdv3YsWN07doVa2trbGxsaNOmDYcPHy5TPA9LEqInSPQ/l3HJzOCY8UV+NdpNe59Anf9IQojqT1EUCnI1elmq4kxPAQEB7Nq1i4KCAgAiIiJwcHAgIiICgKSkJE6fPo2/v3+xYxctWoSfnx+jRo0iMTGRxMRE3NzctPtnzJjB559/zuHDhzEyMmLEiBFljuvs2bP8/PPPrFu3TtuGJiMjg8mTJ3Po0CG2b9+OgYEBzz//vDb2gIAAwsPDtee4914OHTpEdnY2nTp1KtczAjh//jxhYWGVXlP13nvvMWjQII4dO8Yrr7zCyy+/TGxsbIXPN3ToUOrWrcuhQ4eIjIzk7bfffmy1a/LK7AmRfDGNW/EpNLOxYbdhLHkqDY2tGus7LCHEY6bkFXD1/b16ubbr7I6oTCrvdcr06dOZOXOmdn3u3LmMHz++XOfo0qUL6enpHD16lNatW7Nr1y6mTp3K+vXrAfjnn39wdnamcePivy/VajUmJiZYWFjg4uJSbP+cOXO0idTbb79N3759yc7OLtOccrm5ufzwww86tS2DBg3SKbN8+XKcnJyIiYnB19eXgIAAJkyYwI0bNzA0NOTkyZPMmjWL8PBwxowZQ3h4OG3atMHKyqpMz2bTpk1YWVmh0WjIzs4G4IsvvihW7mE+hxdffJHXXnsNgA8//JCtW7eyZMkSvv766zIdf6+EhASmTZum/by8vb0rdJ6KkIToCREdcQVPo9vEmmSQp9JgbmtOkybSdkgI8eSaNm0aQUFB2nUHB4dyn0OtVtOyZUvCw8MxNjbGwMCAN954g1mzZpGenk54eHiJtUNlcffI/7Vr1wYKJ4N1d3d/4LEeHh7FXj2dO3eO9957j/3793Pjxg1tzVBCQgK+vr74+vpib29PREQExsbGtGjRggEDBrB48WKAct9L165d+eabb8jMzGTZsmWcPn1a55VckYf5HPz8/IqtP0yvssmTJ/Paa6/xww8/0KNHD1588UUaNGhQ4fOVhyRET4DsO3mc3X+VzpaWbDA8BUC/XtKzTIiaSGVsgOvsjnq7dmVycHDAy8vroc9T9KrJxMQEf39/atWqhY+PD3v27CE8PLzCvcjuflVT1DyhKIl5EEtLy2Lb+vfvj5ubG0uXLsXV1ZWCggJ8fX3Jzc3VXqNLly7aewkICMDX1xeNRkN0dDR79+4t171YWlpqn+/ixYvp2rUrH3zwAR9++KFOucr6HIqU1pTDwMCg2GvXvLw8nfXg4GCGDBnC5s2b+euvv5g1axahoaE8//zzlRZfaeQb9QkQuzeRuqpbxJleI0+lwUxtRtMmTfUdlhBCD1QqFQYmhnpZqmqbxaJ2RDt27CAgIAAAf39/QkNDS20/VMTExASNRvPIY7x58yaxsbHMnDmT7t2706RJk2Jd4OH/k7vw8HACAgJQqVR07tyZzz77jKysrAq1Hyoya9YsPvvsM65evfowt6Jj//79xdZLej0J4OjoSHp6OhkZGdptJdUmNWzYkEmTJrFlyxYGDhzIypUrKy3e+5GEqIpTChSObY+nrrkpJw0vA9C/d/8q+4tJCCHulpqaSlRUlM6SkJBQqdcoake0ceNGbUIUEBDA6tWrcXR0pGnT0v+ArFevHgcOHCA+Pl7nNVZlq1WrFvb29nz//fecPXuWHTt2MHny5GLlAgICOHnyJNHR0XTu3Fm7bc2aNbRu3RobG5sKxxAQEICPjw9z586t8Dnu9csvv7BixQpOnz7NrFmzOHjwIG+99VaJZdu3b4+FhQXvvvsuZ8+e5ccff9QZEyorK4u33nqL8PBwLl68yJ49ezh06NBjax4iCVEVV6Ao1M65xBXTNPJVGsxsTGjaWGqHhBBPhvDwcFq1aqWzvP/++5V6DbVaTatWrbCzs9MmP507d6agoOCBbW6mTp2KoaEhTZs2xdHRsdKTtSIGBgaEhoYSGRmJr68vkyZN4tNPPy1WztfXFwcHB1q0aKFNfvz9/dFoNBVuC3W3yZMns3TpUi5duvTQ5wL44IMPCA0NpXnz5qxatYo1a9aUmoDa2dmxevVq/vzzT5o1a8ZPP/1EcHCwdr+hoSE3b97k1VdfpWHDhgwePJg+ffrwwQcfVEqsD6JSqmI/yiooLS0NtVpNamrqQ2Xo5ZWeeofr727G2Lo2W5QtdHljON71H1+reyGEfmVnZ3PhwgU8PT3L1LtJiMdFpVKxYcOGB06F8jjc7+ekrN/fUkNUxUUuXI+JtStKfg6WLzSSZEgIIYR4BCQhqsKObruIzU0T8tBwomAvz7V6Ud8hCSHEY7VmzRqsrKxKXHx8fPQSk4+PT6kxrVmz5pFfPyEhodTrW1lZVcprv6r43B816XZfReXnaojdEIVJrQzOGu5B7WuFmZFUlwshapYBAwbQvn37EvfpY34wgD///LNYd/Eizs7Oj/z6rq6u9x3rx9XV9aGvUZbnXt1a3EhCVEWdOXyNOsYZ7DS8gkZVQL+nntV3SEII8dhZW1tjbW2t7zB0eHh46PX6RkZGlTpuUEmq4nN/1PT6yuybb76hefPm2NjYYGNjg5+fH3/99Zd2v6IoBAcH4+rqirm5ubY74t1ycnIYN24cDg4OWFpaMmDAAC5fvqxTJiUlhWHDhqFWq1Gr1QwbNozbt28/jlussKh1R7hmlYlGVYCpiQqfhtWzilIIIYSoCvSaENWtW5f58+dz+PBhDh8+TLdu3Xj22We1Sc8nn3zCF198wZdffsmhQ4dwcXGhZ8+epKena88xceJENmzYQGhoKLt37+bOnTv069dPZ6CtIUOGEBUVRVhYGGFhYURFRTFs2LDHfr9ldS0+DYf828QZFg6e1Xfg8zLukBBCCPEIVblu93Z2dnz66aeMGDECV1dXJk6cyPTp04HC2iBnZ2c+/vhj3njjDVJTU3F0dOSHH37gpZdeAuDq1au4ubnx559/EhgYSGxsLE2bNmX//v3a96H79+/Hz8+PU6dO0ahRozLF9Ti73f82dwc5mWeJNbqKmQFMf2+WJERC1FDS7V6IB6tW3e41Gg2hoaFkZGTg5+fHhQsXSEpKolevXtoypqam+Pv7s3dv4UzPkZGR5OXl6ZRxdXXF19dXW2bfvn2o1WqdxmEdOnRArVZry5QkJyeHtLQ0neVxyLqTi0nSJeIMEwHo8+JzkgwJIYQQj5jeE6Lo6GisrKwwNTVl9OjRbNiwgaZNm5KUlAQUb7Hv7Oys3ZeUlISJiQm1atW6bxknJ6di13VyctKWKcm8efO0bY7UajVubm4PdZ9ldelEAkaWRhSoFMwVheaNWzyW6wohhBA1md4TokaNGhEVFcX+/ft58803GT58ODExMdr999aOKIrywBqTe8uUVP5B53nnnXdITU3VLpU1zPmDJIb+SVPFnWdS69N32AtSOySEENVUUFBQlRjlWRTSe0JkYmKCl5cXbdu2Zd68ebRo0YJFixbh4uICUKwWJzk5WVtr5OLiQm5ubrEZg+8tc+3atWLXvX79+n3HizA1NdX2fitaHrXU67ephycAl2wv4evV7JFfUwghHpX7feHXq1ePhQsX6qyrVCpCQ0OLlfXx8UGlUulMBFpU/t5l/vz5D4wrPj5e5xi1Wk2HDh3YuHGjTrmQkJASr7Fs2bIy3b94sug9IbqXoijk5OTg6emJi4sLW7du1e7Lzc0lIiKCjh07AtCmTRuMjY11yiQmJnLixAltGT8/P1JTUzl48KC2zIEDB0hNTdWWqSr+mRdKhrkpeTkptH/rVX2HI4QQj5WbmxsrV67U2bZ//36SkpKwtLQsVn727NkkJibqLOPGjSvz9bZt20ZiYiIHDhygXbt2DBo0iBMnTuiUsbGxKXaNoUOHVuwGRZWm14To3XffZdeuXcTHxxMdHc2MGTMIDw9n6NChqFQqJk6cyNy5c9mwYQMnTpwgKCgICwsLhgwZAhTOcDxy5EimTJnC9u3bOXr0KK+88grNmjWjR48eADRp0oTevXszatQo9u/fz/79+xk1ahT9+vUrcw+zxyH5UgqpZvn8YrKPHSbHqWv/eNosCSFEVTF06FAiIiJ0miisWLGCoUOHYmRUfBxha2trXFxcdJaSEqfS2Nvb4+LiQuPGjZkzZw55eXn8888/OmVUKlWxa5ibmz/w3MHBwbRs2ZLvvvsONzc3LCwsePHFF+87Bt69tWYALVu21JkRPjg4GHd3d0xNTXF1dWX8+PFlvl9xf3odqfratWsMGzaMxMRE1Go1zZs3JywsjJ49ewLwn//8h6ysLMaMGUNKSgrt27dny5YtOqNnLliwACMjIwYPHkxWVhbdu3cnJCQEQ0NDbZk1a9Ywfvx4bW+0AQMG8OWXXz7em32AfxasJd76JopKwaufn77DEUJUcbm5uaXuU6lUOtNaVEZZExOTCkRZPs7OzgQGBrJq1SpmzpxJZmYma9euJSIigv/+97+P7Lp5eXksXboUqNzpQM6ePcvPP//Mxo0bSUtLY+TIkYwdO7bC8539+uuvLFiwgNDQUHx8fEhKSuLYsWOVFm9Np9eEaPny5ffdr1KpCA4O1smO72VmZsaSJUtYsmRJqWXs7OxYvXp1RcN85HKycsk0y0FRKdjmGuHfubu+QxJCVHFz584tdZ+3t7fOa51PP/201Lm3PDw8+Pe//61dX7hwIZmZmcXK3e/3cGUaMWIEU6ZMYcaMGfz66680aNCAli1bllh2+vTpzJw5U2fbpk2bCAgIKNO1OnbsiIGBAVlZWRQUFFCvXj0GDx6sUyY1NRUrKyvtupWV1X17KN8tOzubVatWUbduXQCWLFlC3759+fzzz7XtZMsjISEBFxcXevTogbGxMe7u7rRr167c5xElq3JtiGqi3+eFkGB8G4Am7WWKDiFEzdW3b1/u3LnDzp07WbFiBSNGjCi17LRp04iKitJZSpuQtCRr167l6NGj/PHHH3h5ebFs2TLs7Ox0ylhbW+uc/37j193L3d1dmwxBYZvWgoIC4uLiynyOu7344otkZWVRv359Ro0axYYNG8jPz6/QuURxMrmrnimKQlreHRRTBftcUwKffV7fIQkhngDvvvtuqfvuHa5j2rRpZS47ceLEh4rrYRkZGTFs2DBmzZrFgQMH2LBhQ6llHRwcHmqSUzc3N7y9vfH29sbKyopBgwYRExOjM3adgYFBpU2kWvSsSxtOxcDAoNgM8nfX7Lm5uREXF8fWrVvZtm0bY8aM4dNPPyUiIqJSX/XVVFJDpGe/Lf4vV0wKR8F286r7gNJCCFHIxMSk1OXeL8fKKPs4jRgxgoiICJ599tliA+8+Kv7+/vj6+jJnzpxKO2dCQgJXr17Vru/btw8DAwMaNmxYYnlHR0cSExO162lpaVy4cEGnjLm5OQMGDGDx4sWEh4ezb98+oqOjKy3mmkxqiPRMdfEORtaG2Oaa8tyIqjvhrBBCVERqaipRUVE62+59LXWvJk2acOPGDSwsLO5bLj09vVh7HgsLiwqPGzdlyhRefPFF/vOf/1CnTp0KneNuZmZmDB8+nM8++4y0tDTGjx/P4MGDS20/1K1bN0JCQujfvz+1atXivffe0+kgFBISgkajoX379lhYWPDDDz9gbm6Oh4fHQ8cqJCHSq9ycXDyywdfYjxi3K/oORwghKl14eDitWrXS2TZ8+PAHHmdvb//AMu+//z7vv/++zrY33niDb7/9tnxB/k+/fv2oV68ec+bM4euvv67QOe7m5eXFwIEDeeaZZ7h16xbPPPPMfc/7zjvvcP78efr164darebDDz/UqSGytbVl/vz5TJ48GY1GQ7Nmzdi4cWOZnpV4sCo3231V9Shnu4/auZuWXZ6u1HMKIaoHme3+yRQcHMxvv/1WrHZMPBrVarb7mkySISGEEEK/JCESQghRrYwePRorK6sSl9GjR1fKNXx8fEq9RkUHXhT6Ja/MyuhRvjITQojSyCuz8ktOTiYtLa3EfTY2Njrd6ivq4sWLpQ526ezsrDOjgnj0KuOVmTSqFkIIUa04OTlVStJzP9Kzq/qRV2ZCCCGEqPEkIRJCiCeAtG4QonSV8fMhCZEQQlRhRQPz3W/GeiFquqIJiR9mChNpQySEEFWYkZERFhYWXL9+HWNjYwwM5O9YIYooikJmZibJycnY2trqjOxdXpIQCSFEFaZSqahduzYXLlzg4sWL+g5HiCrJ1ta21ClRykoSIiGEqOJMTEzw9vaW12ZClMDY2PihaoaKSEIkhBBPAAMDAxmHSIhHSF5GCyGEEKLGk4RICCGEEDWeJERCCCGEqPGkDVEZFQ36VNr8OEIIIYSoeoq+tx80eKMkRGWUnp4OgJubm54jEUIIIUR5paeno1arS90vs92XUUFBAVevXsXa2hqVSlVp501LS8PNzY1Lly7ddxZe8fDkWT8e8pwfD3nOj4c858fjUT5nRVFIT0/H1dX1vgObSg1RGRkYGFC3bt1Hdn4bGxv5YXtM5Fk/HvKcHw95zo+HPOfH41E95/vVDBWRRtVCCCGEqPEkIRJCCCFEjScJkZ6Zmpoya9YsTE1N9R1KtSfP+vGQ5/x4yHN+POQ5Px5V4TlLo2ohhBBC1HhSQySEEEKIGk8SIiGEEELUeJIQCSGEEKLGk4RICCGEEDWeJER69vXXX+Pp6YmZmRlt2rRh165d+g6pWpk3bx5PPfUU1tbWODk58dxzzxEXF6fvsKq9efPmoVKpmDhxor5DqXauXLnCK6+8gr29PRYWFrRs2ZLIyEh9h1Xt5OfnM3PmTDw9PTE3N6d+/frMnj2bgoICfYf2RNu5cyf9+/fH1dUVlUrFb7/9prNfURSCg4NxdXXF3NycgIAATp48+Vhik4RIj9auXcvEiROZMWMGR48epXPnzvTp04eEhAR9h1ZtREREMHbsWPbv38/WrVvJz8+nV69eZGRk6Du0auvQoUN8//33NG/eXN+hVDspKSl06tQJY2Nj/vrrL2JiYvj888+xtbXVd2jVzscff8y3337Ll19+SWxsLJ988gmffvopS5Ys0XdoT7SMjAxatGjBl19+WeL+Tz75hC+++IIvv/ySQ4cO4eLiQs+ePbXziT5SitCbdu3aKaNHj9bZ1rhxY+Xtt9/WU0TVX3JysgIoERER+g6lWkpPT1e8vb2VrVu3Kv7+/sqECRP0HVK1Mn36dOXpp5/Wdxg1Qt++fZURI0bobBs4cKDyyiuv6Cmi6gdQNmzYoF0vKChQXFxclPnz52u3ZWdnK2q1Wvn2228feTxSQ6Qnubm5REZG0qtXL53tvXr1Yu/evXqKqvpLTU0FwM7OTs+RVE9jx46lb9++9OjRQ9+hVEt//PEHbdu25cUXX8TJyYlWrVqxdOlSfYdVLT399NNs376d06dPA3Ds2DF2797NM888o+fIqq8LFy6QlJSk871oamqKv7//Y/lelMld9eTGjRtoNBqcnZ11tjs7O5OUlKSnqKo3RVGYPHkyTz/9NL6+vvoOp9oJDQ3lyJEjHDp0SN+hVFvnz5/nm2++YfLkybz77rscPHiQ8ePHY2pqyquvvqrv8KqV6dOnk5qaSuPGjTE0NESj0TBnzhxefvllfYdWbRV995X0vXjx4sVHfn1JiPRMpVLprCuKUmybqBxvvfUWx48fZ/fu3foOpdq5dOkSEyZMYMuWLZiZmek7nGqroKCAtm3bMnfuXABatWrFyZMn+eabbyQhqmRr165l9erV/Pjjj/j4+BAVFcXEiRNxdXVl+PDh+g6vWtPX96IkRHri4OCAoaFhsdqg5OTkYtmxeHjjxo3jjz/+YOfOndStW1ff4VQ7kZGRJCcn06ZNG+02jUbDzp07+fLLL8nJycHQ0FCPEVYPtWvXpmnTpjrbmjRpwrp16/QUUfU1bdo03n77bf71r38B0KxZMy5evMi8efMkIXpEXFxcgMKaotq1a2u3P67vRWlDpCcmJia0adOGrVu36mzfunUrHTt21FNU1Y+iKLz11lusX7+eHTt24Onpqe+QqqXu3bsTHR1NVFSUdmnbti1Dhw4lKipKkqFK0qlTp2LDRpw+fRoPDw89RVR9ZWZmYmCg+xVpaGgo3e4fIU9PT1xcXHS+F3Nzc4mIiHgs34tSQ6RHkydPZtiwYbRt2xY/Pz++//57EhISGD16tL5DqzbGjh3Ljz/+yO+//461tbW2Rk6tVmNubq7n6KoPa2vrYu2yLC0tsbe3l/ZalWjSpEl07NiRuXPnMnjwYA4ePMj333/P999/r+/Qqp3+/fszZ84c3N3d8fHx4ejRo3zxxReMGDFC36E90e7cucPZs2e16xcuXCAqKgo7Ozvc3d2ZOHEic+fOxdvbG29vb+bOnYuFhQVDhgx59ME98n5s4r6++uorxcPDQzExMVFat24t3cErGVDisnLlSn2HVu1Jt/tHY+PGjYqvr69iamqqNG7cWPn+++/1HVK1lJaWpkyYMEFxd3dXzMzMlPr16yszZsxQcnJy9B3aE+2ff/4p8Xfy8OHDFUUp7Ho/a9YsxcXFRTE1NVW6dOmiREdHP5bYVIqiKI8+7RJCCCGEqLqkDZEQQgghajxJiIQQQghR40lCJIQQQogaTxIiIYQQQtR4khAJIYQQosaThEgIIYQQNZ4kREIIIYSo8SQhEkIAEB8fj0qlIioqSt+haJ06dYoOHTpgZmZGy5YtSyyjKAqvv/46dnZ2VS5+fQoPD0elUnH79u1Sy4SEhGBra/vYYrpXvXr1WLhwod6uL8TdJCESoooICgpCpVIxf/58ne2//fbbY5npuSqaNWsWlpaWxMXFsX379hLLhIWFERISwqZNm0hMTKy0qUKCgoJ47rnnKuVc1YkkMaK6koRIiCrEzMyMjz/+mJSUFH2HUmlyc3MrfOy5c+d4+umn8fDwwN7evtQytWvXpmPHjri4uGBkVLWmaNRoNDIhqBBPAEmIhKhCevTogYuLC/PmzSu1THBwcLHXRwsXLqRevXra9aLajblz5+Ls7IytrS0ffPAB+fn5TJs2DTs7O+rWrcuKFSuKnf/UqVN07NgRMzMzfHx8CA8P19kfExPDM888g5WVFc7OzgwbNowbN25o9wcEBPDWW28xefJkHBwc6NmzZ4n3UVBQwOzZs6lbty6mpqa0bNmSsLAw7X6VSkVkZCSzZ89GpVIRHBxc7BxBQUGMGzeOhIQEVCqV9hkoisInn3xC/fr1MTc3p0WLFvz666/a4zQaDSNHjsTT0xNzc3MaNWrEokWLdJ7xqlWr+P3331GpVKhUKsLDw0t8DRUVFYVKpSI+Ph74/9dQmzZtomnTppiamnLx4kVyc3P5z3/+Q506dbC0tKR9+/Y6z/bixYv079+fWrVqYWlpiY+PD3/++WeJzw5g9erVtG3bFmtra1xcXBgyZAjJycnFyu3Zs4cWLVpgZmZG+/btiY6OLvWc586d49lnn8XZ2RkrKyueeuoptm3bpt0fEBDAxYsXmTRpkva5FNm7dy9dunTB3NwcNzc3xo8fT0ZGhnZ/cnIy/fv3x9zcHE9PT9asWVNqHELogyREQlQhhoaGzJ07lyVLlnD58uWHOteOHTu4evUqO3fu5IsvviA4OJh+/fpRq1YtDhw4wOjRoxk9ejSXLl3SOW7atGlMmTKFo0eP0rFjRwYMGMDNmzcBSExMxN/fn5YtW3L48GHCwsK4du0agwcP1jnHqlWrMDIyYs+ePXz33Xclxrdo0SI+//xzPvvsM44fP05gYCADBgzgzJkz2mv5+PgwZcoUEhMTmTp1aonnKEqqEhMTOXToEAAzZ85k5cqVfPPNN5w8eZJJkybxyiuvEBERARQmY3Xr1uXnn38mJiaG999/n3fffZeff/4ZgKlTpzJ48GB69+5NYmIiiYmJdOzYsczPPjMzk3nz5rFs2TJOnjyJk5MT//73v9mzZw+hoaEcP36cF198kd69e2vvd+zYseTk5LBz506io6P5+OOPsbKyKvUaubm5fPjhhxw7dozffvuNCxcuEBQUVKzctGnT+Oyzzzh06BBOTk4MGDCAvLy8Es95584dnnnmGbZt28bRo0cJDAykf//+JCQkALB+/Xrq1q3L7Nmztc8FIDo6msDAQAYOHMjx48dZu3Ytu3fv5q233tKeOygoiPj4eHbs2MGvv/7K119/XWICJ4TePJYpZIUQDzR8+HDl2WefVRRFUTp06KCMGDFCURRF2bBhg3L3j+qsWbOUFi1a6By7YMECxcPDQ+dcHh4eikaj0W5r1KiR0rlzZ+16fn6+Ymlpqfz000+KoijKhQsXFECZP3++tkxeXp5St25d5eOPP1YURVHee+89pVevXjrXvnTpkgIocXFxiqIUznLfsmXLB96vq6urMmfOHJ1tTz31lDJmzBjteosWLZRZs2bd9zz33vudO3cUMzMzZe/evTrlRo4cqbz88sulnmfMmDHKoEGDtOt3fx5FimbqTklJ0W47evSoAigXLlxQFEVRVq5cqQBKVFSUtszZs2cVlUqlXLlyRed83bt3V9555x1FURSlWbNmSnBw8H3v9X4OHjyoAEp6erpOrKGhodoyN2/eVMzNzZW1a9dqY1Wr1fc9b9OmTZUlS5Zo1z08PJQFCxbolBk2bJjy+uuv62zbtWuXYmBgoGRlZSlxcXEKoOzfv1+7PzY2VgGKnUsIfalaL9uFEAB8/PHHdOvWjSlTplT4HD4+PhgY/H8lsLOzs06DY0NDQ+zt7Yv9le7n56f9t5GREW3btiU2NhaAyMhI/vnnnxJrLs6dO0fDhg0BaNu27X1jS0tL4+rVq3Tq1Elne6dOnTh27FgZ77BkMTExZGdnF3tVl5ubS6tWrbTr3377LcuWLePixYtkZWWRm5tbak+28jIxMaF58+ba9SNHjqAoivb5FMnJydG2jRo/fjxvvvkmW7ZsoUePHgwaNEjnHPc6evQowcHBREVFcevWLW07pYSEBJo2baotd/fnaWdnR6NGjbSf570yMjL44IMP2LRpE1evXiU/P5+srCxtDVFpIiMjOXv2rM5rMEVRKCgo4MKFC5w+fVr7f6lI48aN9drDTYh7SUIkRBXUpUsXAgMDeffdd4u9BjEwMEBRFJ1tJb0CMTY21llXqVQlbitLg9+itiIFBQX079+fjz/+uFiZ2rVra/9taWn5wHPefd4iiqI8dI+6ovvZvHkzderU0dlnamoKwM8//8ykSZP4/PPP8fPzw9ramk8//ZQDBw7c99xFCebdz7+kZ29ubq5zHwUFBRgaGhIZGYmhoaFO2aLk8rXXXiMwMJDNmzezZcsW5s2bx+eff864ceOKnT8jI4NevXrRq1cvVq9ejaOjIwkJCQQGBpapEXtpz3jatGn8/ffffPbZZ3h5eWFubs4LL7zwwHMWFBTwxhtvMH78+GL73N3diYuLu+91hagKJCESooqaP38+LVu2LFar4OjoSFJSkk7yUJlj7+zfv58uXboAkJ+fT2RkpLYtSOvWrVm3bh316tV7qN5cNjY2uLq6snv3bu21oLBhbrt27R4q/qKGzAkJCfj7+5dYZteuXXTs2JExY8Zot507d06njImJCRqNRmebo6MjUNi+qVatWkDZnn2rVq3QaDQkJyfTuXPnUsu5ublp23a98847LF26tMSE6NSpU9y4cYP58+fj5uYGwOHDh0s85/79+3F3dwcgJSWF06dP07hx4xLL7tq1i6CgIJ5//nmgsE1RUWPxIiU9l9atW3Py5Em8vLxKPG+TJk3Iz8/n8OHD2s83Li7uvmMkCfG4SaNqIaqoZs2aMXToUJYsWaKzPSAggOvXr/PJJ59w7tw5vvrqK/76669Ku+5XX33Fhg0bOHXqFGPHjiUlJYURI0YAhQ1/b926xcsvv8zBgwc5f/48W7ZsYcSIEcW+JB9k2rRpfPzxx6xdu5a4uDjefvttoqKimDBhwkPFb21tzdSpU5k0aRKrVq3i3LlzHD16lK+++opVq1YB4OXlxeHDh/n77785ffo07733nrZBdpF69epx/Phx4uLiuHHjBnl5eXh5eeHm5kZwcDCnT59m8+bNfP755w+MqWHDhgwdOpRXX32V9evXc+HCBQ4dOsTHH3+s7Uk2ceJE/v77by5cuMCRI0fYsWMHTZo0KfF87u7umJiYsGTJEs6fP88ff/zBhx9+WGLZ2bNns337dk6cOEFQUBAODg6ljq/k5eXF+vXriYqK4tixYwwZMqRYDWK9evXYuXMnV65c0fYunD59Ovv27WPs2LFERUVx5swZ/vjjD20y16hRI3r37s2oUaM4cOAAkZGRvPbaa5ibmz/w2QnxuEhCJEQV9uGHHxZ7PdakSRO+/vprvvrqK1q0aMHBgwdL7IFVUfPnz+fjjz+mRYsW7Nq1i99//x0HBwcAXF1d2bNnDxqNhsDAQHx9fZkwYQJqtVqnvVJZjB8/nilTpjBlyhSaNWtGWFgYf/zxB97e3g99Dx9++CHvv/8+8+bNo0mTJgQGBrJx40Y8PT0BGD16NAMHDuSll16iffv23Lx5U6e2CGDUqFE0atSItm3b4ujoyJ49ezA2Nuann37i1KlTtGjRgo8//piPPvqoTDGtXLmSV199lSlTptCoUSMGDBjAgQMHtDU8Go2GsWPH0qRJE3r37k2jRo34+uuvSzyXo6MjISEh/PLLLzRt2pT58+fz2WeflVh2/vz5TJgwgTZt2pCYmMgff/yBiYlJiWUXLFhArVq16NixI/379ycwMJDWrVvrlJk9ezbx8fE0aNBAW2PWvHlzIiIiOHPmDJ07d6ZVq1a89957Oq9RV65ciZubG/7+/gwcOJDXX38dJyenMj07IR4HlXLvb1shhBBCiBpGaoiEEEIIUeNJQiSEEEKIGk8SIiGEEELUeJIQCSGEEKLGk4RICCGEEDWeJERCCCGEqPEkIRJCCCFEjScJkRBCCCFqPEmIhBBCCFHjSUIkhBBCiBpPEiIhhBBC1HiSEAkhhBCixvs/lImwtc+/Aq8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADqGUlEQVR4nOzdd3xN9//A8dfN3nsPScSKBDFqZ9i7pVraUlL0SxW1WlVqtWirA+2XtnZVrVL92hSJFLVqBKkdMRIRZEhk3Xt+f6S5P1cSEsJNeD8fj/PgnvM557zPne98Pp/z+agURVEQQgghhHhOGeg7ACGEEEIIfZJkSAghhBDPNUmGhBBCCPFck2RICCGEEM81SYaEEEII8VyTZEgIIYQQzzVJhoQQQgjxXJNkSAghhBDPNUmGhBBCCPFck2SoDM2ePRuVSkVQUFCR2+Pi4lCpVHz55ZcPPdbixYtRqVTExcWVOo69e/cyadIkUlJSCm0LDw8nPDy81Md8Fvj6+hIREfFI+6pUKiZNmlSm8TyMr68vnTt3fmCZiIgIfH19n05AT4FKpSrREhkZ+VjnmTRpEiqVqmyCLqHIyMgyiV1fEhISGD9+PE2aNMHJyQkbGxvq16/Pjz/+iFqtLlT+wIEDtGvXDmtra6ysrGjRogV79uwp8ti5ubl8/fXX1KpVC3Nzc+zs7GjatCl79+4tVYwF37ElWR7lu/V+165dY9KkSRw9evSxj1VAH+/NsjZ+/Hg6d+6Mp6cnKpWqxN+7vXv3RqVSFfu9l5yczHvvvYevry+mpqa4urrSoUMHbt269dgxGz32EYTWwoULATh58iT79++nUaNGeolj7969TJ48mYiICOzs7HS2zZkzRy8xiSfj448/5r333tN3GGVm3759Oo8/+eQTdu3axc6dO3XW16xZ87HOM2DAANq3b/9YxyitevXqsW/fvseOXV8OHz7MTz/9RJ8+ffj4448xNjZm8+bNvPPOO/z111/a7z+AgwcPEhoaSsOGDVm6dCmKovDFF1/QqlUrdu3aRZMmTbRl1Wo13bp1488//+SDDz6gadOmZGRkcPjwYTIyMkoVo7u7e6H30ODBg0lNTWXZsmWFyj6ua9euMXnyZHx9fQkODn7s44F+3ptl7ZtvvqF27dq8+OKLOu+LB9m4cSPr1q3DxsamyO3Xrl0jJCQEIyMjPv74Y6pWrUpycjK7du0iJyfnsWOWZKiMHDp0iGPHjtGpUyc2btzIggUL9JYMPUhF/SIWRfP399d3CA+kKApZWVmYm5uXqHzjxo11Hjs7O2NgYFBo/f0yMzOxsLAocVxeXl54eXmVuHxZsLGxeeh1lGfNmjXj/PnzGBsba9e1adOGnJwc/vvf/zJ58mS8vb2B/CTdzs6OLVu2aF+X1q1bU7lyZUaPHq1TQ/Ttt9+yefNm9uzZo/P8dOrUqdQxmpqaFnqObWxsyMnJqTDPvT7em2UtPT0dA4P8hqelS5c+tHxqaioDBw7kk08+YdasWUWWGTx4MNnZ2Rw6dAh7e3vt+pdffrlMYpZmsjKyYMECAD777DOaNm3KihUryMzMLLKsRqNh6tSpVKpUCTMzMxo0aMCOHTseeo7t27fz0ksv4eXlhZmZGVWqVGHgwIEkJydry0yaNIn3338fAD8/v0LNCkU1k926dYvBgwfj6emJiYkJlStXZty4cWRnZ+uUU6lUDBkyhKVLlxIQEICFhQV16tRhw4YND429oIngl19+YcyYMbi7u2NlZUWXLl24fv066enp/Oc//8HJyQknJyfeeust7ty5o3OMrKwsxo4di5+fHyYmJnh6evLuu+8Wag7Mzc3lgw8+wM3NDQsLC5o3b86BAweKjCsxMZGBAwfi5eWFiYkJfn5+TJ48mby8vIdeU3lQVDNZaV6ns2fP8sYbb+Di4oKpqSkBAQH897//1SmTlZXFqFGjCA4OxtbWFgcHB5o0acLvv/9e6HgF5/7+++8JCAjA1NSUJUuWlOk1h4eHExQUxO7du2natCkWFhb069cPgJUrV9K2bVvc3d0xNzcnICCADz/8sFANQ1FNEQXNklu2bKFevXqYm5tTo0aNEv9lO3fuXOrUqYOVlRXW1tbUqFGDjz76SLv9/mayhzXp3OuPP/6gVatW2NjYYGFhQbNmzUr0nVGW7O3tdRKhAg0bNgTgypUr2nV79uwhPDxcJ0G1trYmNDSUvXv3kpCQoF0/a9YsQkNDn2qykpaWxujRo3W+S4YPH17ofbJ69WoaNWqEra0tFhYWVK5cWftei4yM5IUXXgDgrbfe0r5uD2pOz8zM1J7XzMwMBwcHGjRowPLly7Vl7n9vFnSZKGq597tcURTmzJlDcHAw5ubm2Nvb88orr3DhwoUyeMZKpyARKqlRo0bh7u7OsGHDitweFxfH//73P95++22dRKgsSc1QGbh79y7Lly/nhRdeICgoiH79+jFgwABWr15N3759C5X/7rvv8PHxYebMmWg0Gr744gs6dOhAVFSUTvXx/c6fP0+TJk0YMGAAtra2xMXF8fXXX9O8eXNiYmIwNjZmwIAB3Lp1i2+//Za1a9dqq4KLqxHKysqiRYsWnD9/nsmTJ1O7dm2io6OZPn06R48eZePGjTrlN27cyMGDB5kyZQpWVlZ88cUXdOvWjdOnT1O5cuWHPlcfffQRLVq0YPHixcTFxTF69Ghef/11jIyMqFOnDsuXL+fIkSN89NFHWFtbM3v2bCD/g961a1d27NjB2LFjCQkJ4fjx40ycOJF9+/axb98+TE1NAXj77bf56aefGD16NG3atOHEiRO8/PLLpKen68SSmJhIw4YNMTAwYMKECfj7+7Nv3z4+/fRT4uLiWLRo0UOv535qtRpFUR5azsDAoNRfGKVRktfp1KlTNG3alEqVKvHVV1/h5ubG1q1bGTZsGMnJyUycOBGA7Oxsbt26xejRo/H09CQnJ4c//viDl19+mUWLFtGnTx+dc69bt47o6GgmTJiAm5sbLi4uZX59CQkJ9O7dmw8++IBp06Zpn8uzZ8/SsWNHhg8fjqWlJf/88w+ff/45Bw4cKNTUVpRjx44xatQoPvzwQ1xdXZk/fz79+/enSpUqhIaGFrvfihUrGDx4MEOHDuXLL7/EwMCAc+fOcerUqWL3KapJ58aNG/Tu3RtPT0/tup9//pk+ffrw0ksvsWTJEoyNjfnhhx9o164dW7dupVWrVg+8ppIm9oaGho/UV2Xnzp0YGRlRrVo17bqcnBzt5/FeBetiYmJwd3fn8uXLxMXF0aVLFz766CMWLFjAzZs3qV69Oh988EGR35+PKzMzk7CwMK5cucJHH31E7dq1OXnyJBMmTCAmJoY//vgDlUrFvn376NmzJz179mTSpEmYmZlx6dIl7fuoXr16LFq0iLfeeovx48dra7IeVKszcuRIli5dyqeffkrdunXJyMjgxIkT3Lx5s9h9OnXqVOh9sm/fPkaOHElgYKB23cCBA1m8eDHDhg3j888/59atW0yZMoWmTZty7NgxXF1diz2HoihF9vsqipFR2aYNf/zxBz/99BMHDx7E0NCwyDLR0dEoioKHhwevv/4669evJy8vj8aNGzN9+vQH/m6WmCIe208//aQAyvfff68oiqKkp6crVlZWSkhIiE65ixcvKoDi4eGh3L17V7s+LS1NcXBwUFq3bq1dt2jRIgVQLl68WOQ5NRqNkpubq1y6dEkBlN9//127bcaMGcXuGxYWpoSFhWkff//99wqgrFq1Sqfc559/rgDKtm3btOsAxdXVVUlLS9OuS0xMVAwMDJTp06cX/wQpirJr1y4FULp06aKzfvjw4QqgDBs2TGd9165dFQcHB+3jLVu2KIDyxRdf6JRbuXKlAig//vijoiiKEhsbqwDKiBEjdMotW7ZMAZS+fftq1w0cOFCxsrJSLl26pFP2yy+/VADl5MmTOtc+ceLEB16joiiKj4+PAjx0KemxOnXq9MAyffv2VXx8fHTWlfR1ateuneLl5aWkpqbq7D9kyBDFzMxMuXXrVpHnzMvLU3Jzc5X+/fsrdevWLXRuW1vbYvctrb59+yqWlpY668LCwhRA2bFjxwP3LfiMREVFKYBy7Ngx7baJEycq93/9+fj4KGZmZjrvh7t37yoODg7KwIEDH3iuIUOGKHZ2dg8sU/AZ2LVrV5HbMzIylIYNGyru7u5KXFycdp2Dg0Ohz41arVbq1KmjNGzY8IHnVBSlRO9HQFm0aNFDj3W/rVu3KgYGBoU+b8HBwUq1atUUtVqtXZebm6tUrlxZAZRffvlFURRF2bdvnwIoNjY2Ss2aNZVVq1YpW7duVV555RWdz/XjCAsLUwIDA7WPp0+frhgYGCgHDx7UKffrr78qgLJp0yZFUf7/eyAlJaXYYx88eLBUz11QUJDStWvXB5Yp6r15r3/++UdxdHRUWrRooWRnZyuK8v/P41dffaVT9vLly4q5ubnywQcfPPCcBe/NkizF/SYVx9LSUud7917p6emKr6+vMnbsWO26or73pk+frn2fvPTSS8qWLVuUNWvWKLVr11bMzMx0PtuPSprJysCCBQswNzfntddeA8DKyopXX32V6Ohozp49W6j8yy+/jJmZmfaxtbU1Xbp0Yffu3Q/MzpOSkhg0aBDe3t4YGRlhbGyMj48PALGxsY8U+86dO7G0tOSVV17RWV/Q+//+qvgWLVpgbW2tfezq6oqLiwuXLl0q0fnuv0sgICAAKNw/ICAggFu3bmmbygr+Grv/roRXX30VS0tLbZy7du0CoFevXjrlevToUegvmg0bNtCiRQs8PDzIy8vTLh06dAAgKiqqRNd0r/Xr13Pw4MGHLv/5z39KfezSeNjrlJWVxY4dO+jWrRsWFhY619+xY0eysrL466+/tPuvXr2aZs2aYWVlpX3vLViwoMj3XcuWLZ9YVXYBe3t7WrZsWWj9hQsXeOONN3Bzc8PQ0BBjY2PCwsKAkn1GgoODqVSpkvaxmZkZ1apVe+j7u2HDhqSkpPD666/z+++/6zRdl4RaraZnz57ExsayadMm7ed679693Lp1i759++q8RhqNhvbt23Pw4MGHdjIuyfvx4MGDdOnSpVQx//333/To0UP71/m9hg4dypkzZxgyZAhXr17l8uXLDBo0SPs8FtTkaTQaIP/9uGnTJl599VXatm3LqlWrqFevHlOmTClVTCWxYcMGgoKCCA4O1nlO27Vrp9OMWdAE1qNHD1atWsXVq1cf+9wNGzZk8+bNfPjhh0RGRnL37t1S7Z+YmEj79u1xd3fnt99+w8TERHtNKpWK3r1761yTm5sbderUeegdjPXr1y/x+8TDw+NRL7+QDz/8EGNjYyZMmPDAcgXvEy8vL9asWUO7du14+eWX2bJlCwYGBnzxxRePHYs0kz2mc+fOsXv3brp3746iKNr+K6+88gqLFi1i4cKFhb4o3NzcCh3Hzc2NnJwc7ty5g62tbaHtGo2Gtm3bcu3aNT7++GNq1aqFpaUlGo2Gxo0bl/pDVeDmzZu4ubkVqh53cXHByMioUPWto6NjoWOYmpqW+PwODg46jws+zMWtz8rKwsrKips3b2JkZISzs7NOOZVKhZubmzbOgn/vf46NjIwKxX79+nXWr19fZD8IoNQ/aJDfHKmUsJnsSXrY63Tz5k3y8vL49ttv+fbbb4s8RsH1r127lh49evDqq6/y/vvv4+bmhpGREXPnzi2yP01Z3KXzMEWd486dO4SEhGBmZsann35KtWrVsLCw4PLly7z88ssleo8+6vv7zTffJC8vj3nz5tG9e3c0Gg0vvPACn376KW3atHnoeQcNGsSWLVvYuHGjzl1J169fByj0x8q9bt26haWlZbHbS3qXU3FNFEU5cuQIbdq0oWrVqmzatKlQk1i/fv24ceMGn376KXPnzgWgSZMmjB49ms8//1zbDFjwfNeoUUObAEL+57pdu3ZMnz6dpKSkMm1qvX79OufOnXvo5z40NJR169Yxe/Zs+vTpQ3Z2NoGBgYwbN47XX3/9kc49e/ZsvLy8WLlyJZ9//jlmZma0a9eOGTNmULVq1Qfum56eTseOHcnNzWXz5s06vxPXr19HUZRim8Ie1oXBysqqxO+TsmomO3DgAHPmzGHt2rVkZWWRlZUF5P/W5eXlkZKSgrm5Oaamptr3SevWrXXep+7u7tSpU4e///77seORZOgxLVy4EEVR+PXXX/n1118LbV+yZAmffvqpzguYmJhYqFxiYiImJiZYWVkVeZ4TJ05w7NgxFi9erNOOfu7cuceK39HRkf3796Moik5ClJSURF5eHk5OTo91/LLi6OhIXl4eN27c0EmIFEUhMTFR+1dcwYcmMTFRp99FXl5eocTOycmJ2rVrM3Xq1CLP+Sh/Afn7+5eolmzixIlPfdyie9nb22NoaMibb77Ju+++W2QZPz8/IL/Pip+fHytXrtR5j9zfwb7A0xgjpahz7Ny5k2vXrhEZGamtDQKKHG/rSXjrrbd46623yMjIYPfu3UycOJHOnTtz5swZnR/6+02aNIn58+ezaNEi2rZtq7Ot4PP37bffFtvB+EF9QYBif/Tvt2jRohKNB3PkyBFat26Nj48P27ZtK/KPN4AxY8YwfPhwzp49i7W1NT4+PgwcOBBLS0vq168P5H9eirsLsOCPirL+w8HJyQlzc/NiO8bf+5330ksv8dJLL5Gdnc1ff/3F9OnTeeONN/D19X2kfiqWlpZMnjyZyZMnc/36dW0tUZcuXfjnn3+K3S83N5fu3btz/vx5oqOjC/VLcnJyQqVSER0d/cC+WsWJioqiRYsWJbqGixcvlsnYZqdOnUJRFLp161Zo2+XLl7G3t+ebb75h+PDh1K5du9jjKIpSJu8RSYYeg1qtZsmSJfj7+zN//vxC2zds2MBXX33F5s2bdZqH1q5dy4wZM7RNZenp6axfv56QkJBi/zor+PK//039ww8/FCpbUKYkfwm3atWKVatWsW7dOp035U8//aTdXh60atWKL774gp9//pkRI0Zo169Zs4aMjAxtnAV3Vyxbtkz7hQuwatWqQh1JO3fuzKZNm/D39y+zZp3169cXmyTcqyyrmh+FhYUFLVq04MiRI9SuXVtbE1cUlUqFiYmJTgKSmJhY5N1k+lSaz8iTZGlpSYcOHcjJyaFr166cPHmy2GRowYIFTJ48mSlTphSZiDRr1gw7OztOnTrFkCFDHimegwcPlqhcQfL7IEePHqV169Z4eXmxffv2h35uTE1NtYPQxsfHs3LlSt5++23tUAtGRka89NJL/Prrr8TFxWl/ZBVFYcuWLfj7+5f5H2SdO3dm2rRpODo6luiaC64jLCwMOzs7tm7dypEjR2jSpEmpvmvv5+rqSkREBMeOHWPmzJkPHB6if//+REZGsnnz5iITg86dO/PZZ59x9epVevToUepYCprJSqKsvrvat2+v7dZwr9deew0/Pz+mT59OlSpVAGjUqBFeXl5s27YNtVqt/Z28du0ax44d44033njseCQZegybN2/m2rVrfP7550WO6hwUFMR3333HggULdJIhQ0ND2rRpw8iRI9FoNHz++eekpaUxefLkYs9Vo0YN/P39+fDDD1EUBQcHB9avX8/27dsLla1VqxaQf8tq3759MTY2pnr16jp9SAr06dOH//73v/Tt25e4uDhq1arFn3/+ybRp0+jYsSOtW7d+hGem7LVp04Z27doxZswY0tLSaNasmfZusrp16/Lmm28C+X2NevfuzcyZMzE2NqZ169acOHGCL7/8stBgXlOmTGH79u00bdqUYcOGUb16dbKysoiLi2PTpk18//33pR7vo+C5LyuJiYlF1jj6+vrSoEGDxzr2rFmzaN68OSEhIbzzzjv4+vqSnp7OuXPnWL9+vbafVufOnVm7di2DBw/mlVde4fLly3zyySe4u7sX2SeuOBERESxZsqTM/rK8X9OmTbG3t2fQoEFMnDgRY2Njli1bxrFjx8r8XPcr+IFv1qwZ7u7uJCYmMn36dGxtbbW1lvfbt28fgwYNolmzZrRp00anjxbkj7lkZWXFt99+S9++fbl16xavvPIKLi4u3Lhxg2PHjnHjxg1tM1RxHvd9UuD06dPa74OpU6dy9uxZndff399fW2t74sQJ1qxZQ4MGDTA1NeXYsWN89tlnVK1alU8++UTnuJ988gmbN2+mffv2TJo0CRsbG+bPn8+xY8dYtWqVTtnw8HCioqJK1BRdnOHDh7NmzRpCQ0MZMWIEtWvXRqPREB8fz7Zt2xg1ahSNGjViwoQJXLlyhVatWuHl5UVKSgqzZs3S6Yfm7++Pubk5y5YtIyAgACsrKzw8PIpNGBo1akTnzp2pXbs29vb2xMbGsnTpUpo0aVJsIjRjxgyWLl3K0KFDsbS01Hmf2NjYULNmTZo1a8Z//vMf3nrrLQ4dOkRoaCiWlpYkJCTw559/UqtWLd55551inxNra+sye59Afk3TjRs3gPxKg0uXLmm/x8LCwnB2dsbNza3ILiNmZmY4Ojrq/KYaGBjwzTff0KNHD1566SXeeecdMjIy+OSTTzAxMWHs2LGPH/Rjd8F+jnXt2lUxMTFRkpKSii3z2muvKUZGRkpiYqL2brLPP/9cmTx5suLl5aWYmJgodevWVbZu3aqzX1F3k506dUpp06aNYm1trdjb2yuvvvqqEh8fX+TdSWPHjlU8PDwUAwMDnTtY7r+bTFEU5ebNm8qgQYMUd3d3xcjISPHx8VHGjh2rZGVl6ZQDlHfffbfQNfr4+BR7t0CBgrsVVq9eXeR13n9nR8EdFTdu3NCuu3v3rjJmzBjFx8dHMTY2Vtzd3ZV33nlHuX37ts6+2dnZyqhRoxQXFxfFzMxMady4sbJv374i47xx44YybNgwxc/PTzE2NlYcHByU+vXrK+PGjVPu3Lmjc+0luQOsLD3ozrSC6yjubrKSvk4XL15U+vXrp3h6eirGxsaKs7Oz0rRpU+XTTz/VKffZZ58pvr6+iqmpqRIQEKDMmzevyLteiju3oihK9+7dFXNz80Kv14MUdzfZvXcH3Wvv3r1KkyZNFAsLC8XZ2VkZMGCA8vfffxe646e4u8mKunuvqM/M/ZYsWaK0aNFCcXV1VUxMTBQPDw+lR48eyvHjx7Vl7r+brOC9X9xyr6ioKKVTp06Kg4ODYmxsrHh6eiqdOnUq9Hl6kh4W773P7+nTp5XQ0FDFwcFBMTExUapUqaKMHz9e5zN1r5iYGKVTp06KtbW19jO7fv36QuXq16+vuLm5lSruot4vd+7cUcaPH69Ur15dMTExUWxtbZVatWopI0aMUBITExVFUZQNGzYoHTp0UDw9PRUTExPFxcVF6dixoxIdHa1zrOXLlys1atRQjI2NH/o98eGHHyoNGjRQ7O3tFVNTU6Vy5crKiBEjlOTkZG2Z+9+bffv2LfY5v/99uXDhQqVRo0aKpaWlYm5urvj7+yt9+vRRDh06VKrn7HEV3PFZ1FLc3ZQFHnQX7bp165QXXnhBMTMzU2xtbZUXX3xR567fx6FSlMdIsYUQooTc3Nx48803mTFjhr5DERVQeno6Dg4OzJw5s9h+bkI8Krm1XgjxxJ08eZLMzEzGjBmj71BEBbV79248PT15++239R2KeAZJzZAQQgghnmtSMySEEEKI55okQ0IIIYR4rkkyJIQQQojnmiRDQgghhHiuyaCLD6HRaLh27RrW1tZPZZoBIYQQQjw+RVFIT0/Hw8PjoVN2SDL0ENeuXcPb21vfYQghhBDiEVy+fPmhswlIMvQQBVNYXL58udB0DkIIIYQon9LS0vD29i5yKqr7STL0EAVNYzY2NpIMCSGEEBVMSbq4SAdqIYQQQjzXJBkSQgghxHNNkiEhhBBCPNekz5AQQpRzarWa3NxcfYchRLlibGyMoaFhmRxLkiEhhCinFEUhMTGRlJQUfYciRLlkZ2eHm5vbY48DKMmQEEKUUwWJkIuLCxYWFjLwqxD/UhSFzMxMkpKSAHB3d3+s40kyJIQQ5ZBardYmQo6OjvoOR4hyx9zcHICkpCRcXFweq8lMOlALIUQ5VNBHyMLCQs+RCFF+FXw+HrdPnSRDQghRjknTmBDFK6vPhyRDQgghhHiuSTIkhBDimRcREUHXrl0fWCYyMhKVSiV37z2HJBkSQghRph6UePj6+qJSqXSWe2cU9/X1ZebMmWUe06xZs1i8eLH2cXh4OMOHDy/z8+hbRESE9nk1MjKiUqVKvPPOO9y+fVun3MNeh+eN3E2mR5Er1uJZswZVa9fUdyhCCPHUTJkyhbffflv7uKwGznsQW1vbJ36O++Xm5mJsbPzUz9u+fXsWLVpEXl4ep06dol+/fqSkpLB8+XKdcvp4HcorqRnSk+ihX+Fx1IZji7foOxQhhHiqrK2tcXNz0y7Ozs6lPsaoUaPo0qWL9vHMmTNRqVRs3LhRu6569er88MMPgG5tVUREBFFRUcyaNUtbKxIXF6fd7/DhwzRo0AALCwuaNm3K6dOnSxTTpEmTCA4OZuHChVSuXBlTU1MURWHLli00b94cOzs7HB0d6dy5M+fPn9fu1717d4YOHap9PHz4cFQqFSdPngQgLy8Pa2trtm7dWqI4TE1NcXNzw8vLi7Zt29KzZ0+2bdtWqFxZvA7PCkmG9CTB3phVpnv5x/oOJw7/re9whBAVgKIoZObkPfVFURR9X3oh4eHhREdHo9FoAIiKisLJyYmoqCggf8DKM2fOEBYWVmjfWbNm0aRJE95++20SEhJISEjA29tbu33cuHF89dVXHDp0CCMjI/r161fiuM6dO8eqVatYs2YNR48eBSAjI4ORI0dy8OBBduzYgYGBAd26ddPGHh4eTmRkpPYY91/LwYMHycrKolmzZqV6jgAuXLjAli1b9FJDVZFIM5medP5gAPM+/47bhpnsWbWVoPr19B2SEKKcu5urpuaEktUOlKVTU9phYVJ2Pxdjxoxh/Pjx2sfTpk1j2LBhpTpGaGgo6enpHDlyhHr16hEdHc3o0aNZu3YtALt27cLV1ZUaNWoU2tfW1hYTExMsLCxwc3MrtH3q1KnaJOrDDz+kU6dOZGVlYWZm9tC4cnJyWLp0qU4tS/fu3XXKLFiwABcXF06dOkVQUBDh4eG89957JCcnY2hoyMmTJ5k4cSKRkZEMHjyYyMhI6tevj5WVVYmemw0bNmBlZYVarSYrKwuAr7/+ulC5sngdnhWSDOmJhZUFjpnG3LaGJLNc4i6ex9fPX99hCSHEE/f+++8TERGhfezk5FTqY9ja2hIcHExkZCTGxsYYGBgwcOBAJk6cSHp6OpGRkUXWCpVE7dq1tf8vmOYhKSmJSpUqPXRfHx+fQs1N58+f5+OPP+avv/4iOTlZWyMUHx9PUFAQQUFBODo6EhUVhbGxMXXq1OHFF19k9uzZAKW+lhYtWjB37lwyMzOZP38+Z86c0WmGK1AWr8OzQpIhPWo5+DVuL/6Zm4YZbPxxOe9OH//wnYQQzy1zY0NOTWmnl/OWJScnJ6pUqfLYxyloXjIxMSEsLAx7e3sCAwPZs2cPkZGRj3y32L1NSgWD+hUkMA9jaWlZaF2XLl3w9vZm3rx5eHh4oNFoCAoKIicnR3uO0NBQ7bWEh4cTFBSEWq0mJiaGvXv3lupaLC0ttc/v7NmzadGiBZMnT+aTTz7RKVdWr8OzQJIhPfLwd8fpjhk3bTO4ZaLmWtI1PFw89B2WEKKcUqlUZdpcVdGFh4ezYMECjIyMaN26NQBhYWGsWLGi2P5CBUxMTFCr1U88xps3bxIbG8sPP/xASEgIAH/++WehcuHh4fz444+YmJgwZcoUVCoVISEhfPnll9y9e/eR+gsVmDhxIh06dOCdd97Bw0N+Y4oiHaj1rGbHcJzU1qhVCmu+m6/vcIQQokykpqZy9OhRnSU+Pr5Mz1HQb2j9+vWEh4cD+UnFzz//jLOzMzVrFj9sia+vL/v37ycuLk6n6aqs2dvb4+joyI8//si5c+fYuXMnI0eOLFQuPDyckydPEhMTo02awsPDWbZsGfXq1cPGxuaRYwgPDycwMJBp06Y98jGedZIM6Vnt1kG4pVtgoKhwyLEjW52t75CEEOKxRUZGUrduXZ1lwoQJZXoOW1tb6tati4ODgzbxCQkJQaPRPLSPzejRozE0NKRmzZo4OzuXeaJWwMDAgBUrVnD48GGCgoIYMWIEM2bMKFQuKCgIJycn6tSpo018wsLCUKvVj9z36V4jR45k3rx5XL58+bGP9SxSKeXxnskHmDNnDjNmzCAhIYHAwEBmzpypzaLvFxkZSYsWLQqtj42NLfIOg6KkpaVha2tLamrqY2XmD7J/7T7s/krD0sCCg9Vi6NZv8BM5jxCi4sjKyuLixYv4+fmV6C4mIZ5HD/qclOb3u0LVDK1cuZLhw4czbtw4jhw5QkhICB06dHhoRn/69GntWBIJCQlUrVr1KUVcMo1ebkJ6Wv6gXj5/Q646V88RCSGEEM+PCpUMff311/Tv358BAwYQEBDAzJkz8fb2Zu7cuQ/cz8XFRWeUzfI45Lhhh7ooigaVtQ+Lvp+t73CEEEKvli1bhpWVVZFLYGCgXmIKDAwsNqZly5Y98fPHx8cXe34rK6sn1tT3PKgwtyXk5ORw+PBhPvzwQ531bdu2Ze/evQ/ct27dumRlZVGzZk3Gjx9fZNOZvtXq2JTIyGX8aXsBVRLcSrmFg52DvsMSQgi9ePHFF2nUqFGR2/Q1mvKmTZvIzS265t7V1fWJn9/Dw0M7qnVx28WjqTDJUHJyMmq1utAbztXVlcTExCL3cXd358cff6R+/fpkZ2ezdOlSWrVqRWRkJKGhoUXuk52dTXb2/3diTktLK7uLeAAjY0NuqSxw09iRaJDCsp8XMHTI+0/l3EIIUd5YW1tjbW2t7zB0+Pj46PX8RkZGMi7QE1JhkqECBQNgFVAUpdC6AtWrV6d69erax02aNOHy5ct8+eWXxSZD06dPZ/LkyWUXcCnU6xXCheVbSbRK4daNDG6n3Mbezl4vsQghhBDPiwrTZ8jJyQlDQ8NCtUBJSUmlqp5s3LgxZ8+eLXb72LFjSU1N1S5P8zbEysHOpN41w11th6KCX1YveWrnFkIIIZ5XFSYZMjExoX79+mzfvl1n/fbt22natGmJj3PkyBHtXDNFMTU1xcbGRmd5WgwMDfBqE0y1rPx5bZKvpHD79u2ndn4hhBDieVRhkiHIHzRq/vz5LFy4kNjYWEaMGEF8fDyDBg0C8mt1+vTpoy0/c+ZM1q1bx9mzZzl58iRjx45lzZo1DBkyRF+X8FC1W/iQkmGMh9oeRQUrf/9F3yEJIYQQz7QK1WeoZ8+e3Lx5kylTppCQkEBQUBCbNm3SdmpLSEjQubUwJyeH0aNHc/XqVczNzQkMDGTjxo107NhRX5fwUJa2phgGVKbmZUgxz0Rz9toD+0UJIYQQ4vFUuBGon7anMQL1/W7Ep3Psi9VUtfInN+sGSaPdaer16JP0CSEqHhmBumxFRESQkpLCunXrii1TMGvB7du3sbOze2qxiUf3XI5A/bxwrmRN1UEtUOVkYmbmyrFl6/QdkhBClFhERARdu3Ytcpuvry8qlUpn8fLy0tk+c+bMMo9p1qxZLF68WPs4PDyc4cOHl/l5yoPExESGDh1K5cqVMTU1xdvbmy5durBjxw5ycnJwcnLi008/LXLf6dOn4+TkRE5OzgPPsXjxYp3X0NXVlS5dunDy5EmdchEREYVeb5VKxblz58rsesuCJEPllE+QH9cyz6JBwSe5Mj//vlTfIQkhRJko6OpQsBw5cuSJn9PW1vap1/YUN0DjkxQXF0f9+vXZuXMnX3zxBTExMWzZsoUWLVrw7rvvYmJiQu/evVm8eDFFNQwtWrSIN998ExMTk4eey8bGhoSEBK5du8bGjRvJyMigU6dOhRKp9u3b67zeCQkJ+Pn5ldk1lwVJhsqx9HovkKSkcMDyOueOnOPmzZv6DkkIIR6btbW1zhRJzs7OpT7GqFGj6NKli/bxzJkzUalUbNy4UbuuevXq/PDDD4BubVVERARRUVHMmjVLW1MRFxen3e/w4cM0aNAACwsLmjZtyunTp0sU06RJkwgODmbhwoXaWhlFUdiyZQvNmzfHzs4OR0dHOnfuzPnz57X7de/enaFDh2ofDx8+HJVKpa1lycvLw9ramq1btz40hsGDB6NSqThw4ACvvPIK1apVIzAwkJEjR/LXX38B0L9/f86fP8/u3bt19o2Ojubs2bP079+/RNerUqlwc3PD3d2dBg0aMGLECC5dulTo+TI1NdV5vcvjtFiSDJVjZraOZGRm4a12BFSs27pO3yEJIfRJUSAn4+kv5bBraXh4ONHR0Wg0GgCioqJwcnIiKioKyG8qOnPmDGFhYYX2nTVrFk2aNOHtt9/W1lR4e3trt48bN46vvvqKQ4cOYWRkRL9+/Uoc17lz51i1ahVr1qzRTp2RkZHByJEjOXjwIDt27MDAwIBu3bppYw8PDycyMlJ7jPuv5eDBg2RlZdGs2YP7jt66dYstW7bw7rvvYmlpWWh7Qc1YrVq1eOGFF1i0aJHO9oULF9KwYUOCgoJKfL0FUlJS+OWX/Luf9TVdyuOoUHeTPW+Cwjz5LfICwbnmXDa8yeUz8SQnJ+Pk5KTv0IQQ+pCbCdP0MP/UR9fApPCP66MaM2YM48eP1z6eNm0aw4YNK9UxQkNDSU9P58iRI9SrV4/o6GhGjx7N2rVrAdi1axeurq7UqFGj0L62traYmJhgYWGBm5tboe1Tp07VJlEffvghnTp1Iisrq0Qd2XNycli6dKlObVf37t11yixYsAAXFxdOnTpFUFAQ4eHhvPfeeyQnJ2NoaMjJkyeZOHEikZGRDB48mMjISOrXr4+VldUDz33u3DkURSnymu/Xr18/Ro8ezXfffYeVlRV37txh9erVfP311w/dt0BqaipWVlYoikJmZiaQP6fc/effsGGDTuwdOnRg9erVJT7P0yA1Q+WYvZslDtVcyL6bTSW1E6Bi/fb1+g5LCCEey/vvv8/Ro0e1y73jw5WUra0twcHBREZGEhMTg4GBAQMHDuTYsWOkp6cTGRlZZK1QSdSuXVv7/4JBepOSkkq0r4+PT6Fmv/Pnz/PGG29QuXJlbGxstP1lCoaCCQoKwtHRkaioKKKjo6lTpw4vvviitmaopNdS0AeoJEOxvP7662g0GlauXAnAypUrURSF1157rUTXCfnNnUePHuXw4cN8//33+Pv78/333xcq16JFC53Xe/bs2SU+x9MiNUPlXO1wb/b8mEi9PD/iDZO5dDqOGzduPFIbuxCigjO2yK+l0cd5y5CTk1OZTDha0LxkYmJCWFgY9vb2BAYGsmfPHiIjIx/5brF7m3kKEouCJq2HKap5qkuXLnh7ezNv3jw8PDzQaDQEBQVpOxqrVCpCQ0O11xIeHk5QUBBqtZqYmBj27t1bomupWrUqKpWK2NjYYu/mK2Bra8srr7zCokWL6N+/P4sWLeKVV14p1RAyBgYG2texRo0aJCYm0rNnz0J9kSwtLcv9BLNSM1TO+dZ2RG1rg/puDj7/1g5t3L7xofsJIZ5BKlV+c9XTXsrpoK8F/YZ27txJeHg4AGFhYaxYsaLY/kIFTExMUKvVTzzGmzdvEhsby/jx42nVqhUBAQFFTrNUkNhFRkYSHh6OSqUiJCSEL7/8krt37z60vxCAg4MD7dq147///S8ZGRmFtqekpOg87t+/P3v27GHDhg3s2bOnxB2nizNixAiOHTvGb7/99ljH0QdJhso5A0MDgkI9OZttRL28yriobYhTndF3WEII8UCpqak6TSNHjx7VmSGgLBT0G1q/fr02GQoPD+fnn3/G2dmZmjVrFruvr68v+/fvJy4ujuTk5BLX/JSWvb09jo6O/Pjjj5w7d46dO3cycuTIQuXCw8M5efIkMTExhISEaNctW7aMevXqlbjGZs6cOajVaho2bMiaNWs4e/YssbGxzJ49myZNmuiUDQsLo0qVKvTp04cqVaoQGhr6WNdqY2PDgAEDmDhxYpG37ZdnkgxVADWbe2Jd2xvz9ExezH2BakfVXEq7pO+whBCiWJGRkdStW1dnmTBhQpmew9bWlrp16+Lg4KBNfEJCQtBoNA/tYzN69GgMDQ2pWbMmzs7OZZ6oFTAwMGDFihUcPnyYoKAgRowYwYwZMwqVCwoKwsnJiTp16mgTn7CwMNRqdan6Pvn5+fH333/TokULRo0aRVBQEG3atGHHjh3MnTu3UPl+/fpx+/btUt0x9yDvvfcesbGx5a6D9MPIdBwPoY/pOIqzc/gcqpnVIi/3Dku6/MXE8Ml6jUcI8eTIdBxCPJxMx/EcqjL0RdQZN1Abm2K9PYdffpUZ7YUQQojHJclQBWJtaU+s+i4ZqmzSjEw5c+IMiYmJ+g5LCCHK3LJly7CysipyCQwM1EtMgYGBxca0bNmyJ37++Pj4Ys9vZWVVpk19+r7Wp01ura9Arp5J4YLajSp5aiobuXDBMImtO7bSt1dffYcmhBBl6sUXX6RRo0ZFbtPXCMebNm0qdr4xV1fXJ35+Dw8P7ajWxW0vK/q+1qdNkqEKpFpDV/atPcf5u6nUNfLjgkESF89eJCEhQTswmBBCPAusra2xtrbWdxg6fHx89Hp+IyOjpzZej76v9WmTZrIKxMTMiOpN3InLs8VabYK/Jj8737Zzm54jE0IIISouSYYqmFphnuSh4uLdFOrm+YECF89e5No1PYxKK4QQQjwDJBmqYOzdLPGqYc+FXBtsNGb4a/InGdyxa4eeIxNCCCEqJkmGKqCgME+yMOTK3WTq5fnhkW3Gbd/Cw7sLIYQQ4uEkGaqA/Go74VzJmqsmYKtY0EHThD9jt5Oek67v0IQQQogKR5KhCsjA0IBXxzag7cSOZCadQqUy4M3TjVl5euVTmXhQCCEqmoiIiIfO5B4ZGYlKpSo0oal49kkyVEGpVCpsrS244JA/DkRlg2Bi1x9n2S/P3mBYQoiK5UGJh6+vLyqVSmfx8vLS2T5z5swyj2nWrFksXrxY+zg8PJzhw4eX+XnKg8uXL9O/f388PDwwMTHBx8eH9957j5s3bxYqe/LkSXr06IGzszOmpqZUrVqVjz/+mMzMTJ1y975uhoaGeHh40L9/f27fLlkXjYJEs2BxdHSkZcuW7NmzR6fcpEmTCr0/VCoVf/zxx6M/ISUgyVAFpmgUXDq1Jy3zOioDI6yzHbhw/gKXL1/Wd2hCCFGsKVOmkJCQoF2OHDnyxM9pa2uLnZ3dEz/PvYobtPBJunDhAg0aNODMmTMsX76cc+fO8f3337Njxw6aNGnCrVu3tGX/+usvGjVqRE5ODhs3buTMmTNMmzaNJUuW0KZNG3JycnSOXfC6xcfHs2zZMnbv3s2wYcNKFd/p06dJSEggMjISZ2dnOnXqRFJSkk6ZwMBAnfdHQkICoaGhj/6klIAkQxXY9bg09q2MJzbPDBvFgip5LgDs3LVTz5EJIUTxrK2tcXNz0y7Ozs6lPsaoUaPo0qWL9vHMmTNRqVRs3LhRu6569er88MMPgG5tVUREBFFRUcyaNUtb8xAXF6fd7/DhwzRo0AALCwuaNm3K6dOnSxTTpEmTCA4OZuHChVSuXBlTU1MURWHLli00b94cOzs7HB0d6dy5M+fPn9fu1717d4YOHap9PHz4cFQqFSdPngQgLy8Pa2trtm7d+tAY3n33XUxMTNi2bRthYWFUqlSJDh068Mcff3D16lXGjRsHgKIo9O/fn4CAANauXUvDhg3x8fHh1VdfZf369ezbt49vvvlG59gFr5unpyctWrSgT58+/P333yV6bgq4uLjg5uZGrVq1GD9+PKmpqezfv1+njJGRkc77w83NDRMTk1Kdp7QkGarAXP1scPS0JFFjwZ3s29TXVAFF4eKFi2U6R40QonxQFIXM3MynviiKou9LLyQ8PJzo6Gg0Gg0AUVFRODk5ERUVBUBiYiJnzpwhLCys0L6zZs2iSZMmvP3229qaB29vb+32cePG8dVXX3Ho0CGMjIzo169fieM6d+4cq1atYs2aNdqpMzIyMhg5ciQHDx5kx44dGBgY0K1bN23s4eHhREZGao9x/7UcPHiQrKwsmjVr9sBz37p1i61btzJ48GDMzc11trm5udGrVy9WrlyJoigcPXqUU6dOMXLkSAwMdFOBOnXq0Lp1a5YvX17sua5evcqGDRuKnTLlYTIzM1m0aBGgv+lV7iXTcVRgKpWKoDAvon45zdmsXOqa2uOf58J54xvs2rWLvn1lzjIhniV38+7S6JdH+/F5HPvf2I+FsUWZHW/MmDGMHz9e+3jatGmlbm4JDQ0lPT2dI0eOUK9ePaKjoxk9ejRr164FYNeuXbi6ulKjRo1C+9ra2mJiYoKFhQVubm6Ftk+dOlWbRH344Yd06tSJrKwszMzMHhpXTk4OS5cu1ant6t69u06ZBQsW4OLiwqlTpwgKCiI8PJz33nuP5ORkDA0NOXnyJBMnTiQyMpLBgwcTGRlJ/fr1sbKyeuC5z549i6IoBAQEFLk9ICCA27dvc+PGDc6cOaNdV1zZP//8U2ddweumVqvJysqiUaNGfP311w99Tu5V0D8sMzM/ya5fvz6tWrXSKRMTE6NzrTVr1uTAgQOlOk9pSc1QBVetoSsmZoZcUezJyr1DA03V/Nqhixe5dOmSvsMTQohC3n//fY4ePapd+vTpU+pj2NraEhwcTGRkJDExMRgYGDBw4ECOHTtGeno6kZGRRdYKlUTt2rW1/y+Y9/H+fi3F8fHxKdTsd/78ed544w0qV66MjY0Nfn5+ANoa/KCgIBwdHYmKiiI6Opo6derw4osvamuGHuda7lVQw6dSqUpU9v5yBa/b8ePH2bEjf6DfTp06leou5ujoaP7++2+WL1+Oj48PixcvLlQzVL16dZ33x5o1a0p8/EclNUMVXMF8ZTG7rnAx4yYBxj5UznXigslN9u3b99xNtifEs8zcyJz9b+x/eMEncN6y5OTkVCYTjhY0L5mYmBAWFoa9vT2BgYHs2bOHyMjIR75b7N4f54KEoKBJ62EsLS0LrevSpQve3t7MmzcPDw8PNBoNQUFB2g7KKpWK0NBQ7bWEh4cTFBSEWq0mJiaGvXv3luhaqlSpgkql4tSpU0XezffPP/9gb2+Pk5MT1apVA+DUqVMEBwcXWbZq1ao66+593apWrcrMmTNp0qQJu3btonXr1g+ND8DPzw87OzuqVatGVlYW3bp148SJE5iammrLmJiYPLUJaQtIzdAzoFaYJwAXcCdXnUVDTQ3U3MIs+OFVukKIikOlUmFhbPHUl5LUJOhDQb+hnTt3Eh4eDkBYWBgrVqwotr9QARMTk6cyLtvNmzeJjY1l/PjxtGrVSttUdb+CxC4yMpLw8HBUKhUhISF8+eWX3L1796H9hQAcHR1p06YNc+bM4e7duzrbEhMTWbZsGT179kSlUhEcHEyNGjX45ptvCiV6x44d448//uD1119/4PkMDQ0BCp2rpN588000Gg1z5sx5pP3LkiRDz4CC+cpsPK1IuvEPVpjxUnpdFv6zELVGBmEUQjx9qampOk0dR48eLfMbOwr6Da1fv16bDIWHh/Pzzz/j7OxMzZo1i93X19eX/fv3ExcXR3JycolrfkrL3t4eR0dHfvzxR86dO8fOnTsZOXJkoXLh4eGcPHmSmJgYQkJCtOuWLVtGvXr1sLGxKdH5vvvuO7Kzs2nXrh27d+/m8uXLbNmyhTZt2uDp6cnUqVOB/MR6/vz5nDp1iu7du3PgwAHi4+NZvXo1Xbp0oUmTJoVqo9LT00lMTCQhIYEDBw7w/vvv4+TkRNOmTR/puTEwMGD48OF89tlnhcY1etokGXpGtP9PEK+Nb0hSTVsUdS5uxlWwvgzbL20nIyND3+EJIZ4zkZGR1K1bV2eZMGFCmZ7D1taWunXr4uDgoE18QkJC0Gg0D+1jM3r0aAwNDalZsybOzs5P7A5cAwMDVqxYweHDhwkKCmLEiBHMmDGjULmgoCCcnJyoU6eONvEJCwtDrVaXqr9Q1apVOXToEP7+/vTs2RN/f3/+85//0KJFC/bt24eDg4O2bLNmzfjrr78wNDSkY8eOVKlShbFjx9K3b1+2b9+u03QFMGHCBNzd3fHw8KBz585YWlqyfft2HB0dH/HZgX79+pGbm8t33333yMcoCyqlPN4zWY6kpaVha2tLampqiTNzfUq7c5cr78zFxvMFjucdYbfTVaq6VKPfW/3KbVW3EKKwrKwsLl68iJ+fX4nuYhLiefSgz0lpfr+lZugZY2ZkzEkXJxRFg79RTUzvmnI5/jIXLlzQd2hCCCFEuSTJ0DMkL0fN0nH7SMrw4lbKWSwxxSsrf2yQXbt2lcuB04QQoijLli3DysqqyCUwMFAvMQUGBhYb07JlT35eyPj4+GLPb2VlpdfBdjt06FBsXNOmTdNbXCUlt9Y/Q4xMDPEOsOfsoSROG1jSFGhOXZazhytXrnD+/PmnfruiEEI8ihdffLHY0Y31NWLxpk2bip1vzNXV9Ymf38PDQzuqdXHb9WX+/PnF3lV2bz+l8kqSoWdMUJgXZw8lcdPQjbS0i9jY+OFx15hEczW7du3C399f+g4JIco9a2trrK2t9R2GDn2P22ZkZFRu/6D19PTUdwiPRZrJnjHuVWxx9LREk6dwNicLgFClPhrUXL16lXPnzuk5QiGEEKJ8kWToGVMwXxnADftqZGYmYmNgjUtm/uBYp06d0md4QgghRLkjydAzqGC+sux0DRdTLwMQptTjsMMBKjWupOfohBBCiPJFkqFnUMF8ZajgdmBt1HdvYW9oT/3MSsyLmafv8IQQQohyRZKhZ1S9tj68+UkTuo9qybXEIwD0SG7Nnit/cizhGMnJyXqOUAghhCgfKlwyNGfOHO1Ik/Xr1yc6OrpE++3ZswcjI6MiZ+d9FlnZm2LjZI6xoQHXm1ZHycnAxsiVbnHNWbNgDb/++quMOySEEEJQwZKhlStXMnz4cMaNG8eRI0cICQmhQ4cODx1oKjU1lT59+tCqVaunFGn50uiVTiQlHAKgY1ozNGoNiYmJ/PPPP3qOTAjxLIqIiEClUjFo0KBC2wYPHoxKpSIiIkKnrEqlwtjYGFdXV9q0acPChQsLTZ7q6+vLzJkzSxSDr6+v9rjm5ubUqFGDGTNm6PwRGBcXpy1z79K7d+9HvnZRMVWoZOjrr7+mf//+DBgwgICAAGbOnIm3tzdz58594H4DBw7kjTfeoEmTJk8p0vJj17J/WPvpIWK9fVFrcvEwqYRJ9h0gfyLFJzVTsxDi+ebt7c2KFSt0BuLLyspi+fLlVKqkeyNH+/btSUhIIC4ujs2bN9OiRQvee+89OnfuTF5e3iPHMGXKFBISEoiNjWX06NF89NFH/Pjjj4XK/fHHHyQkJGiX//73v498TlExVZhkKCcnh8OHD9O2bVud9W3btmXv3r3F7rdo0SLOnz/PxIkTn3SI5ZKVnSkoYGRXlZR/a4daZtQiT5XL9evXpXZICPFE1KtXj0qVKrF27VrturVr1+Lt7U3dunV1ypqamuLm5oanpyf16tXjo48+4vfff2fz5s0sXrz4kWOwtrbGzc0NX19fBgwYQO3atdm2bVuhco6Ojri5uWkXW1vbRz6nqJgqTDKUnJyMWq0uNOS5q6sriYmJRe5z9uxZPvzwQ5YtW4aRUckG287OziYtLU1nqchqNvfAwFDFzfgMYm3NURQNvubVUHJvA1I7JERFoigKmszMp748av/Ct956i0WLFmkfL1y4kH79+pVo35YtW1KnTh2dZOpRKYpCZGQksbGxepvKQ5RvFW46jvunklAUpcjpJdRqNW+88QaTJ0+mWrVqJT7+9OnTmTx58mPHWV5Y2priX9eZs4eSMA1oStrhvdi6BNMqNZAdTtdISkri1KlTBAUF6TtUIcRDKHfvcrpe/ad+3up/H0ZlYVHq/d58803Gjh2r7ZuzZ88eVqxYQWRkZIn2r1GjBsePHy/1eQuMGTOG8ePHk5OTQ25uLmZmZgwbNqxQuaZNm2Jg8P91A9HR0YVqr8SzrcIkQ05OThgaGhaqBUpKSipygrz09HQOHTrEkSNHGDJkCAAajQZFUTAyMmLbtm20bNmy0H5jx45l5MiR2sdpaWl4e3uX8dU8XQXzlSX9k45Gc5tGQBWLIDarj2Fs4EFSUpK+QxRCPIOcnJzo1KkTS5YsQVEUOnXqhJOTU4n3L+6P3ZJ6//33iYiI4MaNG4wbN46WLVvStGnTQuVWrlxJQECA9nFF/84XpVdhkiETExPq16/P9u3b6datm3b99u3beemllwqVt7GxISYmRmfdnDlz2LlzJ7/++it+fn5FnsfU1BRTU9OyDV7PCuYru3k1A6OQ9tw5EIOVfTWaZlTmm5qbGNSo8B0fQojyR2VuTvW/D+vlvI+qX79+2j9IS9sxOTY2ttjv6pJwcnKiSpUqVKlShTVr1lClShUaN25M69atdcp5e3uX2wlQxdNRYZIhgJEjR/Lmm2/SoEEDmjRpwo8//kh8fLz29s2xY8dy9epVfvrpJwwMDAo1/bi4uGBmZvbcNQkVzFcW9ctpsq+rOJ92njr21ahn+AJ5rGPxycV82PBDfYcphHgIlUr1SM1V+tS+fXtycnIAaNeuXYn327lzJzExMYwYMaJM4rC3t2fo0KGMHj2aI0eOPFaNk3j2VKhkqGfPnty8eVN7u2RQUBCbNm3Cx8cHgISEhIeOOfS8qtbQVfvvzi1ZqLfEY2hXiZ4JoSw1/ZVXPF/BRG1S6JZXIYR4HIaGhsTGxmr/X5Ts7GwSExNRq9Vcv36dLVu2MH36dDp37kyfPn3KLJZ3332Xzz//nDVr1vDKK6+U2XFFxVdh7iYrMHjwYOLi4sjOzubw4cOEhoZqty1evPiBHfMmTZrE0aNHn3yQ5ZCJmRFBoZ6YmBnRukszLiTnNyF2Tm1J1Wvu/DzvZ37//Xe5s0wIUeZsbGywsbEpdvuWLVtwd3fH19eX9u3bs2vXLmbPns3vv/9ebAL1KJydnXnzzTeZNGmSfNcJHSpF5mR4oLS0NGxtbUlNTX3gh7kiURSFNd//Rr1/DDAxdyTqzmZOuoCJxoRu3bpRp04dfYcoxHMvKyuLixcvaqcfEkIU9qDPSWl+vytczZB4PHExyaz89CAuLrW4fuUvAOqbNuG64UUAoqKiUKvV+gxRCCGEeKokGXrOqPM03Lx6h3N/JXIx2J/c3DtYGdvRKNGVHIMcbt26VeguPCGEKE+WLVuGlZVVkUtgYKC+wxMVUIXqQC0en19tJyztTMlIyaZWhzakzF2As39bmhg150+T1VTOCiAqKopatWqVaVu9EEKUlRdffJFGjRoVuU1GmBaPQpKh54yBoQGBIR4cWH+R+EM3yfK2obk6B3tTV4ITbUl2zOH27dscP35cRmAVQpRL1tbWWFtb6zsM8QyRZrLnUM3mHhgYqEi8kEqNnq+S/m/foTAlhEumZzEwNpB+Q0IIIZ4bkgw9hyxtTalczxmAtLNZxFjkoChqXM19scnVEOUXRVDw8zUwpRBCiOeXJEPPqVphXgCcOZBIpX6vc/da/hD/XbNbkZSbxJqza/QZnhBCCPHUSDL0nHKvYkutcC/a/6cWTRpX43judQBqZgfinuPMophFxJ6O5Z9//tFzpEIIIcSTJcnQc0qlUhH6WjV8ghwxMDTAuu/L5CXGoFIZ8O6lzlheM2Xl8pVs3ryZvLw8fYcrhBBCPDGSDAkAWrVtyKm0MwAE59TFI0lDjlEOqampHDlyRM/RCSGEEE+OJEPPuYzUbPatO0/0L6e5+2Ib7qbGYWhgxIu3w/jH6hQA0dHRUjskhHgolUr1wCUiIuKJnDcjI4MxY8ZQuXJlzMzMcHZ2Jjw8nA0bNmjLhIeHM3z48EL7Ll68GDs7u0Lr7969i729PQ4ODty9e7fQdl9fX+11WVhYEBQUxA8//FCieBcvXqzzvLi6utKlSxdOnjypUy4iIqLI5/HcuXMlOo8oOUmGnnPZmXn8veUSsXsTCGkfxtV/O1JXt6qP9e00coxzSEtL4++//9ZzpEKI8i4hIUG7zJw5ExsbG511s2bN0imfm5tbJucdNGgQ69at47vvvuOff/5hy5YtdO/enZs3bz7yMdesWUNQUBA1a9Zk7dq1RZaZMmUKCQkJHD9+nK5duzJo0CBWrlxZouMXPDfXrl1j48aNZGRk0KlTJ3JycnTKtW/fXuc5TEhIwM/P75GvSxRNkqHnnIO7JZ7V7VEUuPDXda40q0t2ZhImhma8dCOEU9b5f6lER0eX2ReXEOLZ5Obmpl1sbW1RqVTax1lZWdjZ2bFq1SrCw8MxMzPj559/BmDRokUEBARgZmZGjRo1mDNnjs5xr169Ss+ePbG3t8fR0ZGXXnqJuLg47fb169fz0Ucf0bFjR3x9falfvz5Dhw6lb9++j3wtCxYsoHfv3vTu3ZsFCxYUWcba2ho3NzeqVKnCp59+StWqVVm3bl2Jjl/w3Li7u9OgQQNGjBjBpUuXOH36tE45U1NTnefVzc1NZgd4AiQZEtQK8wTg1J5rtOrXnZtxewAIsmiIccpNcoxzSE9P5/Dhw/oMUwjxr9xsdbFLXq665GVzHl62rI0ZM4Zhw4YRGxtLu3btmDdvHuPGjWPq1KnExsYybdo0Pv74Y5YsWQJAZmYmLVq0wMrKit27d/Pnn39iZWVF+/bttbUobm5ubNq0ifT09DKJ8fz58+zbt48ePXrQo0cP9u7dy4ULFx66n5mZ2SP90ZiSksIvv/wCyHQi+iLTcQj86vz/fGXpF+5wKsAL55w0LExs6JrYhJU1TtBc0xwHBwd9hyqEAH58L6rYbT5BjnQeUkf7eOH70eTlaIos61HVjm6j6mkf/zRuL1l3dH/M3/2+5WNGq2v48OG8/PLL2seffPIJX331lXadn58fp06d4ocffqBv376sWLECAwMD5s+fj0qlAvJrkuzs7IiMjKRt27b8+OOP9OrVC0dHR+rUqUPz5s155ZVXaNasmc6558yZw/z583XW5eXlYWZmprNu4cKFdOjQAXt7eyC/qWrhwoV8+umnRV5TXl4eP//8MzExMbzzzjsleh5SU1OxsrJCURQyMzOB/DnXatSooVNuw4YNWFlZaR936NCB1atXl+gcouSkZkho5ysDiIm8SrMhfUiL2w1AsEVTkoyvcNj/MFWrVtVnmEKIZ0CDBg20/79x4waXL1+mf//+OjPPf/rpp5w/fx6Aw4cPc+7cOaytrbXbHRwcyMrK0pYJDQ3lwoUL7Nixg+7du3Py5ElCQkL45JNPdM7dq1cvjh49qrNMmTJFp4xarWbJkiX07t1bu653794sWbKk0DRFY8aMwcrKCnNzc959913ef/99Bg4cWKLnwdramqNHj3L48GG+//57/P39+f777wuVa9GihU68s2fPLtHxRelIzZAA8ucrO7QxjsQLqYRiyp/O5rTKvYutsRN1lVr8eetv/rz6JyFeIfoOVYjn3n9mhRW7TXXfn7j9ZhT/mf23okWrz9SmjxNWiVhaWmr/r9Hk11jNmzev0Cz0Bf1iNBoN9evXZ9myZYWO5ezsrP2/sbExISEhhISE8OGHH/Lpp58yZcoUxowZg4mJCQC2trZUqVJF5xguLi46j7du3arto3QvtVrNtm3b6NChg3bd+++/T0REBBYWFri7u2trrkrCwMBAG0uNGjVITEykZ8+e7N69W6ecpaVloZhF2ZNkSAD585XVaOKGgZEBpuZGBL3bl6wpi7Co0oZBSV350+9vfjz6I4bxhpiZmVGvXr2HH1QI8UQYm5a8A+2TKlsWXF1d8fT05MKFC/Tq1avIMvXq1WPlypW4uLhgY2NT4mPXrFmTvLw8srKytMlQSSxYsIDXXnuNcePG6az/7LPPWLBggU4y5OTkVGaJyogRI/j666/57bff6NatW5kcU5ScJENCq8WbAdr/N3D0ZZlxJmGaPByznGhzJYgz6bfZdmgbNjY21KlTR+5oEEI8tkmTJjFs2DBsbGzo0KED2dnZHDp0iNu3bzNy5Eh69erFjBkzeOmll5gyZQpeXl7Ex8ezdu1a3n//fby8vAgPD+f111+nQYMGODo6curUKT766CNatGhRqgTqxo0brF+/nv/9738EBelOVt23b186derEjRs3dGqkyoqNjQ0DBgxg4sSJdO3atVS1TOLxSZ8hUSSVSoVr/zfIvrwfgB6JrclUX0dtpCYtLa3Q7Z9CCPEoBgwYwPz581m8eDG1atUiLCyMxYsXa8fSsbCwYPfu3VSqVImXX36ZgIAA+vXrx927d7WJTrt27ViyZAlt27YlICCAoUOH0q5dO1atWlWqWH766ScsLS1p1apVoW0tWrTA2tqapUuXPv5FF+O9994jNjZWOkjrgUpRFEXfQZRnaWlp2NrakpqaWqq/MCoqRVFIPJ/K+b9v0Phlf9a9OozG1fPbzudnf0tsJRUBqQH4+Pjw1ltv6TlaIZ5dWVlZXLx4ET8/v0J3Owkh8j3oc1Ka32+pGRI68nI0rP/uGMd2XibhTAqqHl25e/0YAC1zwkgyikdB4dKlSyQmJuo5WiGEEOLxSTIkdBibGlKjsTsAMVFX6Ni9BeeSTgDgYxVIvUuOXLW8CsCBAwf0FqcQQpRXgYGBOkMF3LsUdVec0D/pQC0KCQrzJCbyCnHHk8m7k8uNtuFknTqPmb0/7TPC+dJsE14ZXhw/fpzWrVtjYWGh75CFEKLc2LRpU7EjUbu6uj7laERJSDIkCimYr+zq6duc3H2VDv26crrncHzt/aliHYzf1a3csb/DC74vkJ2dLcmQEELcw8fHR98hiFKSZjJRpHvnK3MwMyG2Xi2y7yRgbGBKiLop21y34dXcSztcvRBCCFFRSTIkilQwX9nd9FzOH0mi5bu9SL2YPzJqQ6PGqIA1Z9foN0ghhBCiDEgyJIpUMF+ZtaMZKpUKf3c7Dvm6oeRkYK5Y0eBOTXbF7+LctXPs379f3+EKIYQQj0z6DIli1W1TifodfDEwyB8JNfidvmRMWYRV5Rb0u9aGfwzP8/O8n0EBX19f6RgohBCiQpKaIVEsIxNDbSIE8EKgF3tN8wDwVleh/iUXbtncApDaISGEEBWWJEPiodR5Gs4cSCTnbh7Gr3UlM+U8BioD2qc044RpDADHjx8nMzNTz5EKIUTx4uLiUKlUHD16VN+hPLMmTZpEcHCwvsMoNUmGxEOt//YY2xee4p99ibzYohbH0y4DUMWqDtYpWWgsNeTl5XHkyBE9RyqEKA8iIiLo2rWrzrpff/0VMzMzvvjiC/0E9QjWrFlDo0aNsLW1xdramsDAQEaNGqXdvnjxYuzs7IrcV6VSsW7dukLr//Of/2BoaMiKFSsKbZs0aRIqlQqVSoWhoSHe3t4MGDCAGzdulCjegn1VKhVWVlbUqVOHxYsX65SJjIzUKVewjB8/vkTneFZJMiQeqkq9/BmaT+y+io2ZEaeav0BubgYWRjZ0uhLMcYvjQP6I1BqNRp+hCiHKofnz59OrVy++++47Pvjgg1Lvn5OT8wSierA//viD1157jVdeeYUDBw5w+PBhpk6d+lixZGZmsnLlSt5//30WLFhQZJnAwEASEhKIj49n7ty5rF+/nj59+pT4HIsWLSIhIYFjx47Rs2dP3nrrLbZu3Vqo3OnTp0lISNAuH3744SNf17NAkiHxUNUauWFsZkjK9Uyu/HObTp0aEn8zf9b6YKOGJHMZAxMDUlNTZTZ7IYSOL774giFDhvDLL78wYMAAAPbu3UtoaCjm5uZ4e3szbNgwMjIytPv4+vry6aefEhERga2tLW+//ba2Fmbr1q0EBARgZWVF+/btSUhI0DnfokWLCAgIwMzMjBo1ajBnzpxHinvDhg00b96c999/n+rVq1OtWjW6du3Kt99++8jPxerVq6lZsyZjx45lz549xMXFFSpjZGSEm5sbnp6edO7cmWHDhrFt2zbu3r1bonPY2dnh5uaGv78/H330EQ4ODmzbtq1QORcXF9zc3LSLlZXVQ49d8BqsW7eOatWqYWZmRps2bbh8+XKx+4SHhzN8+HCddV27diUiIkL7eM6cOVStWhUzMzNcXV155ZVXSnStZUmSIfFQJmZGOvOV1atkzwb3/NoiN/PKNDvvToJdAmZmZtJvSIinIDcrq9gl776aiweVzc3JfmjZx/Hhhx/yySefsGHDBrp37w5ATEwM7dq14+WXX+b48eOsXLmSP//8kyFDhujsO2PGDIKCgjh8+DAff/wxkF+z8uWXX7J06VJ2795NfHw8o0eP1u4zb948xo0bx9SpU4mNjWXatGl8/PHHLFmypNSxu7m5cfLkSU6cOPEYz4CuBQsW0Lt3b2xtbenYsSOLFi166D7m5uZoNPldEUpDrVazatUqbt26hbGx8aOGXEhmZiZTp05lyZIl7Nmzh7S0NF577bVHPt6hQ4cYNmwYU6ZM4fTp02zZsoXQ0NAyi7ek5NZ6USJBof8/X9md29kEdm7CrWV7cLDxoWVmU8aa/spbvd+ivld9fYcqxDNvdt/i/3L2q9uAlz+cpH085z+9yMvOLrKsV80gek78TPt43pB+3E1P0ykzauWGR4px8+bN/P777+zYsYOWLVtq18+YMYM33nhDW1tQtWpVZs+eTVhYGHPnzsXMzAyAli1b6iQ6f/75J7m5uXz//ff4+/sDMGTIEKZMmaIt88knn/DVV1/x8ssvA+Dn58epU6f44Ycf6Nu3b6niHzp0KNHR0dSqVQsfHx8aN25M27Zt6dWrF6amptpyqampJapVOXv2LH/99Rdr164FoHfv3gwbNoyJEydiYFB0vcQ///zD3LlzadiwIdbW1iWK+/XXX8fQ0JCsrCzUajUODg7aGrl7eXl56Ty+dOkSjo6ODz1+bm4u3333HY0aNQJgyZIlBAQEcODAARo2bFiiGO8VHx+PpaUlnTt3xtraGh8fH+rWrVvq4zwuqRkSJeLgYYlndTsUBU7uvkq3el5sVOX/pVLDrBbm2Xn8Hve7nqMUQpQXtWvXxtfXlwkTJpCenq5df/jwYRYvXqwzk3u7du3QaDRcvHhRW65BgwaFjmlhYaFNhADc3d1JSkoC4MaNG1y+fJn+/fvrHPvTTz/l/PnzpY7f0tKSjRs3cu7cOcaPH4+VlRWjRo2iYcOGOjXg1tbWHD16tNByvwULFtCuXTucnJwA6NixIxkZGfzxxx865WJiYrCyssLc3JyaNWvi7e1dqpnuv/nmG44ePcr27dsJDg7mm2++oUqVKoXKRUdH68Rb0qmVjIyMdF6bGjVqYGdnR2xsbIljvFebNm3w8fGhcuXKvPnmmyxbtkwvLQxSMyRKrFaYF1dPp5CSlImtuTG3Q+qQe+A6xmZ2vH0iiP/abOODFz7g5tWbuLu7Y25uru+QhXgmDVvya7HbVPfVMgz+8QE/pPeMIwbw9ncLHyuue3l6erJmzRpatGhB+/bt2bJlC9bW1mg0GgYOHMiwYcMK7VOpUiXt/y0tLQttv7+5R6VSoSgKgPbmjXnz5mlrLQoYGho+8nX4+/vj7+/PgAEDGDduHNWqVWPlypW89dZbABgYGBSZbNxLrVbz008/kZiYiJGRkc76BQsW0LZtW+266tWr87///Q9DQ0M8PDx0aqFKws3NjSpVqlClShVWr15N3bp1adCgATVr1tQp5+fnV+ydcA+jUqlKtA7yn5+C16hAbm6u9v/W1tb8/fffREZGsm3bNiZMmMCkSZM4ePDgI8f3KCQZEiXmV8eJ1z5uiKNnfpVwzya+7IuOJdTEkpCcEOZkHGf+z/NJv5xO27Ztadq0qZ4jFuLZZPxvU5I+y5ZEpUqViIqKokWLFrRt25atW7dSr149Tp48+dAEorRcXV3x9PTkwoUL9OrVq0yPXcDX1xcLCwudzt4lsWnTJtLT0zly5IhOYvbPP//Qq1cvbt68qW2iMjExKbPnpkqVKnTv3p2xY8fy++9lU3Ofl5fHoUOHtE1ip0+fJiUlhRo1ahRZ3tnZWaeTu1qt5sSJE7Ro0UK7zsjIiNatW9O6dWsmTpyInZ0dO3fu1DZ3Pg2SDIkSMzA00CZCAPUq2THbx53QW2DiGMhrB3w51SwWL7w4cOAAjRs3LrYtXAjxfPDy8iIyMlKbEP3www80adKEd999l7fffhtLS0tiY2PZvn37Y92pBfnj9AwbNgwbGxs6dOhAdnY2hw4d4vbt24wcObLUx8rMzKRjx474+PiQkpLC7Nmzyc3NpU2bNqU61oIFC+jUqRN16tTRWR8YGMjw4cP5+eefee+990p1zJIaNWoUderU4dChQ0U2PZaWsbExQ4cOZfbs2RgbGzNkyBAaN25cbH+hli1bMnLkSDZu3Ii/vz/ffPMNKSkp2u0bNmzgwoULhIaGYm9vz6ZNm9BoNFSvXv2xYy0N+aUSjyQzLYc7t7NpFeJH/N1EVCoVtQ2bcTTvIMamxqSkpHD27Fl9hymEKAc8PT2JiooiJSWFt99+m6ioKM6ePUtISAh169bl448/xt3d/bHPM2DAAObPn8/ixYupVasWYWFhLF68GD8/v1IfKywsjAsXLtCnTx9q1KhBhw4dSExMZNu2baX6ob5+/TobN27U3k13L5VKxcsvv1zsmENloVatWrRu3ZoJEyaUyfEsLCwYM2YMb7zxBk2aNMHc3LzIASQL9OvXj759+9KnTx/CwsLw8/PTqRWys7Nj7dq1tGzZkoCAAL7//nuWL19OYGBgmcRbUirl/sa8cm7OnDnMmDGDhIQEAgMDmTlzJiEhIUWW/fPPPxkzZgz//PMPmZmZ+Pj4MHDgQEaMGFHi86WlpWFra0tqaio2NjZldRkV2snoq+xeeYZqDVx54bWqjJ20jbHYcDfvDvPvTsL8hQ4QB5UrVy7VYGFCiP+XlZXFxYsX8fPz095hJYQ+LV68mOHDh+vU7Ojbgz4npfn9rlA1QytXrmT48OGMGzeOI0eOEBISQocOHYiPjy+yvKWlJUOGDGH37t3ExsYyfvx4xo8fz48//viUI3+2OHpZoclTOHsoCeNcBau6ntzNy8TcyIqmqQ3YpexEpVJx4cIF7Z0eQgghRHlVoZKhr7/+mv79+zNgwAACAgKYOXMm3t7ezJ07t8jydevW5fXXXycwMBBfX1969+5Nu3btiI6OfsqRP1tcfW1w8bFGnafh1J5rvNbEhy1K/uBsHg4NqXI6Fat/+xYdOHBAn6EKIUSRBg0apHML/r3LoEGD9B1eIdOmTSs23g4dOpTJOTp06FDsOaZNm1Ym5yivKkwH6pycHA4fPlxo/pS2bduyd+/eEh3jyJEj7N27l08//bTYMtnZ2WTfM0BZWlpasWWfVyqVilrhXuxYEsuJ3Vfp3dqbrz0c6HYD3C0q0/KsNztqn6QSlbh27RoajUY6UgshypUpU6boDOp4r/LYJWLQoEH06NGjyG1lNYzJ/Pnzi532w8HBAQcHB51pNJ4lFSYZSk5ORq1W4+rqqrPe1dWVxMTEB+7r5eXFjRs3yMvLY9KkSUWOxllg+vTpTJ48uUxifpZVaeDCnl/PcedWNpdO3KJts0rErj5GgLE97o7NSbnwMxHdIwgJCil2/AkhhNAXFxcXXFxc9B1GiRUkI0+Sp6fnEz1+eVbh/ly//4dVUZSH/thGR0dz6NAhvv/+e2bOnMny5cuLLTt27FhSU1O1y4MmoHueGRkbUrO5BwDHd13hpWAPVv87OFhly9q8dEDF7ozdkggJIYQo9ypMzZCTkxOGhoaFaoGSkpIK1Rbdr+C2ylq1anH9+nUmTZrE66+/XmRZU1PTUo/4+bwKDPXgyLZLJJ5PxTBbg2OwG7cP3cLe1JrGd+qw7sD/yKw/EiPFiMzMzKc6mqgQQghRUhWmZsjExIT69euzfft2nfXbt28v1UjHiqLo9AkSj87G0Zy2A4LoO70plramvNbEh/8ZqAEw9Q2l9Z93WL1nNV9//TXr16/Xc7RCCCFE0SpMzRDAyJEjefPNN2nQoAFNmjThxx9/JD4+Xtvzf+zYsVy9epWffvoJgP/+979UqlRJO0z4n3/+yZdffsnQoUP1dg3Pmir1/7/NvbaXLV+5mKK5rmDkEkDVy378fmk7zllVOH/+PDdu3MDZ2VmP0QohhBCFVahkqGfPnty8eZMpU6aQkJBAUFAQmzZtwsfHB4CEhASdMYc0Gg1jx47l4sWLGBkZ4e/vz2effcbAgQP1dQnPtJwsNW2bVuLErzHUNrLF2DeUSjuW4Ng6nCsXrnDgwAE6deqk7zCFEEIIHRVuBOqnTUagfriUpEx2/hTL3fRcuoypx6hPdzFRY0GWOoMLeydwZFQn7h5XMDExYeTIkTKarhAlICNQl62IiAhSUlJYt25dsWUK5lC7ffu29HF8DHFxcfj5+XHkyBGCg4Of6LmeyxGoRflkYWNC8pU7pFzPJDXuDs713UjVZGFmaIni3YjcHf/DycmJnJwcjh49qu9whRBPWEREBF27di1ym6+vLyqVSmfx8vLS2T5z5swyj2nWrFksXrxY+zg8PJzhw4eX+Xn0LSIiQvu8GhkZUalSJd555x1u376tU+5hr8PzRpIh8dhMzIyo0SR/ksXjkVd4vZEvm/4dkdrJtRHND2Zj6ZOfsR84cACNRqO3WIUQ+lfQ1aFgOXLkyBM/p62t7VOv7cnNzX2q5yvQvn17EhISiIuLY/78+axfv57BgwcXKqeP16G8kmRIlIlaYfmDdcXFJONjZsJxDzs0igZXcx+y7SuTcmAdpqam3Lp1i2vXruk5WiGEPllbW+Pm5qZdHuXGilGjRtGlSxft45kzZ6JSqdi4caN2XfXq1fnhhx8A3dqqiIgIoqKimDVrlrZWJC4uTrvf4cOHadCgARYWFjRt2pTTp0+XKKZJkyYRHBzMwoULqVy5MqampiiKwpYtW2jevDl2dnY4OjrSuXNnzp8/r92ve/fuOjf2DB8+HJVKxcmTJwHIy8vD2tqarVu3ligOU1NT3Nzc8PLyom3btvTs2ZNt27YVKveor4NKpWLu3Ll06NABc3Nz/Pz8WL16dbHlFy9eXCgRXbdunc44dMeOHaNFixZYW1tjY2ND/fr1OXToUIniKQuSDIkyYe9miXeAPShwYvdVOjT1IUadP5WJqU9zav9xnqatGzNkyJDnuipWiMehKAqaHPVTX8pj19Lw8HCio6O1Nc1RUVE4OTkRFRUFQGJiImfOnCEsLKzQvrNmzaJJkya8/fbb2loRb29v7fZx48bx1VdfcejQIYyMjOjXr1+J4zp37hyrVq1izZo12m4BGRkZjBw5koMHD7Jjxw4MDAzo1q2bNvbw8HAiIyO1x7j/Wg4ePEhWVhbNmjUr1XMEcOHCBbZs2YKxsXGp932Qjz/+mO7du3Ps2DF69+7N66+/Tmxs7CMfr1evXnh5eXHw4EHt1FtlHfODVKi7yUT5Vivci8uxtzm15xqvTGrEaBNj6mjAx6Y26enGnDiwhrAXWug7TCEqLCVXw7UJJZuLsSx5TGmKysSwzI43ZswYxo8fr308bdo0hg0bVqpjhIaGkp6ezpEjR6hXrx7R0dGMHj2atWvXArBr1y5cXV21Q6vcy9bWFhMTEywsLHBzcyu0ferUqdok6sMPP6RTp05kZWWVqCN7Tk4OS5cu1all6d69u06ZBQsW4OLiwqlTpwgKCiI8PJz33nuP5ORkDA0NOXnyJBMnTiQyMpLBgwcTGRlJ/fr1sbKyKtFzs2HDBqysrFCr1WRl5XdZ+PrrrwuVe5zX4dVXX9VObfXJJ5+wfft2vv32W+bMmVOi/e8XHx/P+++/r329qlat+kjHeVRSMyTKjE8tJ6wdzcjOyCPx5C1cG3hwXdFgbGSJuVtdHNZEkZOXAyADXwrxHHv//fc5evSodunTp0+pj2Fra0twcDCRkZHExMRgYGDAwIEDOXbsGOnp6URGRhZZK1QStWvX1v7f3T2/P2RSUlKJ9vXx8SnU3HT+/HneeOMNKleujI2NjXZWhIKhYIKCgnB0dCQqKoro6Gjq1KnDiy++qK0ZKu21tGjRgqNHj7J//36GDh1Ku3btihxf73FehyZNmhR6/Dg1QyNHjmTAgAG0bt2azz77TKcZ8WmQmiFRZgwMVDTp5g8KVK7rzOvXLVhz4Dr9McPILxSf6APsXjeXWxp3Lly4wPDhw+WWYSFKQWVsgMeUko+4X5bnLUtOTk5UqVLlsY9T0LxkYmJCWFgY9vb2BAYGsmfPHiIjIx/5brF7m2cK+rWU9MYPS0vLQuu6dOmCt7c38+bNw8PDA41GQ1BQEDk5OdpzhIaGaq8lPDycoKAg1Go1MTEx7N27t1TXYmlpqX1+Z8+eTYsWLZg8eTKffPKJTrmyeh0KFDcXpYGBQaGm1vs7l0+aNIk33niDjRs3snnzZiZOnMiKFSvo1q1bmcX3IFIzJMpU1QauVH3BFUMjA4I8bTnvZoZaUTB2rMYtN19yl64gKSmJrKwsjh07pu9whahQVCoVBiaGT30prxMuF/Qb2rlzJ+Hh4QCEhYWxYsWKYvsLFTAxMUGtVj/xGG/evElsbCzjx4+nVatWBAQEFLrNHf4/sYuMjCQ8PByVSkVISAhffvkld+/efaT+QgUmTpzIl19+WaY3r/z111+FHhfVJAng7OxMeno6GRkZ2nVFDbNSrVo1RowYwbZt23j55ZdZtGhRmcX7MJIMiSdGURQ6NvXh+L8dqXOrtcTndApVXO0Auc1eiGdZamqqThPM0aNHdWYIKAsF/YbWr1+vTYbCw8P5+eefcXZ2pmbNmsXu6+vry/79+4mLiyM5OfmJfRfZ29vj6OjIjz/+yLlz59i5cycjR44sVC48PJyTJ08SExNDSEiIdt2yZcuoV6/eYw36Gx4eTmBgINOmTXvkY9xv9erVLFy4kDNnzjBx4kQOHDjAkCFDiizbqFEjLCws+Oijjzh37hy//PKLzphPd+/eZciQIURGRnLp0iX27NnDwYMHCQgIKLN4H0aSIVHmFI3C31sv8cuk/bTyc+J30/wqZ2/bOty0tcZw02pMTU25efPmU28XFkI8HZGRkdStW1dnmTBhQpmew9bWlrp16+Lg4KBNfEJCQtBoNA/tYzN69GgMDQ2pWbMmzs7OZZ6oFTAwMGDFihUcPnyYoKAgRowYwYwZMwqVCwoKwsnJiTp16mgTn7CwMNRq9SP3fbrXyJEjmTdvHpcvX37sYwFMnjyZFStWULt2bZYsWcKyZcuKTT4dHBz4+eef2bRpE7Vq1WL58uVMmjRJu93Q0JCbN2/Sp08fqlWrRo8ePejQoQOTJ08uk1hLQqbjeAiZjuPRrPniMIkXUmnYxY//5aTTY28i9obmxMb9isexbVyYNInDsbFUrVqVXr166TtcIcodmY5DlFcqlYrffvut2FHGnyaZjkOUa7Va5A/CeHL3VXo0qKQzInWOoSHWhyIBOHv2LDdv3tRXmEIIIYQkQ+LJ8K/rgrmNCRmpOZgn5XCykgMaRYOzuTfJnlVw3LKbKj4+QP6AYkIIca9ly5ZhZWVV5BIYGKiXmAIDA4uNadmyZU/8/PHx8cWe38rKqkya+srj8/40yK314okwNDIgMMSDQxvjiIm8QudQH46u+Jt6xg4Y+4VgeOk0/tev4N+u3ROf1VgIUfG8+OKLNGrUqMhtT3Nk4ntt2rSp2PnGXF1dn/j5PTw8HjjZtYeHx2OfoyTP+7PYu0aSIfHEBIV48vfmS1w7m8JLL1dmgpkp9dRQyaY2KabmWK5eQ+CQkRiam+s7VCFEOWNtbY21tbW+w9Dh829ttr4YGRmV6bhARSmPz/vTIM1k4omxtDOlct38kVjP7k3Es4EniUoeJgZmqCsHY5yRze1VK4H8vzSexb82hBBClH+SDIknqnYLL6o1dCWgqTtvNPbhd1Ve/oZq4QAkLpzHiWPHmDdvHhcuXNBfoEIIIZ5b0kwmnij3Kna4V7EDwA245GlO3lUN7io/Lnr54HTlEqd3R3PtZjL79+/H399fr/EKIYR4/kjNkHiqujTx4aD6DgA51dqiAF47/wDgzJkz3Lp1S4/RCSGEeB5JMiSeilvXMoj65TR1jc3YbJr/tvOzrEWCow2WsafxtbcH8qfoEEIIIZ4mSYbEU3Fq7zVO7L5K7O5reDfw5KY6AxNDM27XzJ+B2z8mBoAjR46QnZ2tz1CFEEI8ZyQZEk9FUKgnqCD+5E26VnVj478jUlexakSGiSGOf+7BztKS7Oxsjh8/rudohRDiyYmIiCgXU1mI/yfJkHgq7Fws8Al0BCDjVApnfJ1RKxqcTD2JqVMNFVA9IQGA/fv3y232QlRgD/qx9/X1ZebMmTqPVSoVK1asKFQ2MDAQlUqlM8N5Qfn7l88+++yhccXFxensY2trS+PGjVm/fr1OucWLFxd5jvnz55fo+kXFI8mQeGpqhXsBELs3gY4NvDmSdxsAL7sQ1IDH9j/w9/CgdevWkgwJ8Rzx9vZm0aJFOuv++usvEhMTsbS0LFR+ypQpJCQk6CxDhw4t8fn++OMPEhIS2L9/Pw0bNqR79+6cOHFCp4yNjU2hc8ik0s8uSYbEU1OppgM2zubk3M2j2l0V68xNAahiXosDAdaY5ObS6vwFatSogYGBvDWFKE5OTk6xy/3TRTxu2aehV69eREVFcfnyZe26hQsX0qtXL4yMCo8AY21tjZubm85SVNJUHEdHR9zc3KhRowZTp04lNzeXXbt26ZRRqVSFzmFegtHyJ02aRHBwMD/88APe3t5YWFjw6quvkpKSUuw+99eWAQQHBzNp0iSd41aqVAlTU1M8PDwYNmxYia9XPJyMMySeGpWBilphnuz59Ryx0dfwbeBF4t5E3AzMuBFcF2J3k7pxI87vDcO4DObYEeJZNW3atGK3Va1aVacGY8aMGcXOp+Xj48Nbb72lfTxz5kwyMzN1ytz7g/ykuLq60q5dO5YsWcL48ePJzMxk5cqVREVF8dNPPz2x8+bm5jJv3jygbOc7O3fuHKtWrWL9+vWkpaXRv39/3n333UeezPXXX3/lm2++YcWKFQQGBpKYmMixY8fKLF4hNUPiKavRxB1rRzP86jjx2guVWPPvO7AhoZzwUUFeHlcWLyYyMpLo6Gj9BiuEeGr69evH4sWLURSFX3/9FX9//2IncR4zZkyhGdUjIyNLfK6mTZtiZWWFmZkZo0aNwtfXlx49euiUSU1N1Tm+m5tbiY+flZXFkiVLCA4OJjQ0lG+//ZYVK1aQmJhY4mPcKz4+Hjc3N1q3bk2lSpVo2LAhb7/99iMdSxRNaobEU2VmacybnzRBZaAC4JqXBTlX1FS9W4nNL1Qi6NIlLu6OZndODmZmZjRq1AgTExM9Ry1E+fLRRx8Vu02lUuk8fv/990tcdvjw4Y8V1+Po1KkTAwcOZPfu3SxcuJB+/foVW/b9998nIiJCZ52np2eJz7Vy5Upq1KjBmTNnGD58ON9//z0ODg46Zaytrfn777+1j0vTdF+pUiW8vLy0j5s0aYJGo+H06dOlSqoKvPrqq8ycOZPKlSvTvn17OnbsSJcuXYpsQhSPRp5J8dQVJEIALzX1Yc+Kk7QwsKBVensuus7DNy4Om2ZNScvK4vjx4zRo0ECP0QpR/pTmD4QnVbasGRkZ8eabbzJx4kT279/Pb7/9VmxZJyenx5q93dvbm6pVq1K1alWsrKzo3r07p06dwsXFRVvGwMCgzGaIL0g6708+7z3X/TeN3Nu06e3tzenTp9m+fTt//PEHgwcPZsaMGURFRZVp897zTJrJhF4oGoW4mGSqZRnwh4kGgGqmQeyqY4MKqHLyJCC32QvxPOnXrx9RUVG89NJL2P87Kv2TFhYWRlBQEFOnTi2zY8bHx3Pt2jXt43379mFgYEC1atWKLO/s7EzCv0OLAKSlpXHx4kWdMubm5rz44ovMnj2byMhI9u3bR8y/g9WKxyc1Q0IvLh5PZvP3MZhbG+Pf1JvkPZdxMrKiqnEzbjlsw+fkKWICArhx4wZxcXH4+fnpO2QhRCmkpqZy9OhRnXX3N0XdLyAggOTkZCwsLB5YLj09vVD/GwsLC2xsbB4p1lGjRvHqq6/ywQcflKq5rThmZmb07duXL7/8krS0NIYNG0aPHj2KbSJr2bIlixcvpkuXLtjb2/Pxxx9jaGio3b548WLUajWNGjXCwsKCpUuXYm5ujo+Pz2PHKvJJzZDQC59ajljamXI3PZdwKys2kD8idWNNI9bVUzDJzcXvav5fVvv379dnqEKIRxAZGUndunV1lgkTJjx0P0dHx4fewj5hwgTc3d11lg8++OCRY+3cuTO+vr5lVjtUpUoVXn75ZTp27Ejbtm0JCgpizpw5xZYfO3YsoaGhdO7cmY4dO9K1a1f8/f212+3s7Jg3bx7NmjWjdu3a7Nixg/Xr1+Po6Fgm8QpQKdIG8UBpaWnY2tqSmpr6yH91iKId2nSR/f+7iKufDRsts5l0ORdDlSGzjWbz+pYzZBuYsaVjB1QqFcOGDXtq1eZClAdZWVlcvHgRPz8/zMzM9B2OKKFJkyaxbt26QrVi4sl40OekNL/fUjMk9KZmc08MDFVcv5hGh2puHM67BUCb9OZsrAe2aWl4paYSHBxcbMdDIYQQ4nFJMiT0xsLGhCr18+/esLuaxe8W+Vl9FdMgjvhZojYzoenmLbRycMTOzk6PkQohKoJBgwYVGn+oYBk0aFCZnCMwMLDYczzqoIpC/6SZ7CGkmezJSryQypovDmNoZEByC0fa/3UVN0NL5jqtwP/0MZpE38SiUSN8lizWd6hCPFXSTFZ6SUlJpKWlFbnNxsZG59b5R3Xp0qViR/R2dXXF2tr6sc8hSq6smske6W4yjUZT5ABUGo2GK1euUKlSpUc5rHgOufrZ4FzJGo1GoWFVV5YfTOQ9oN2d5kyoFUXjvYZk7t/Pxd27uZCbS8uWLaXJTAhRJBcXlzJJeB5E7uB6NpWqmSwtLY0ePXpgaWmJq6srEydORK1Wa7ffuHFDboEWpaJSqXhxWDA9x71Avdou3KhkSTYKlbO8cDLx41Ijb3KNjFi2YwfR0dFcunRJ3yEL8VRJ5b0QxSurz0epkqGPP/6YY8eOsXTpUqZOncqSJUt46aWXdGY2lg+uKC0zK2NtbU+3pj5EKvnvp4jzrZhXKxnjvDx8zl8A5DZ78fwoGFn4/olThRD/r+Dz8bgjcZeqmWzdunUsWbKE8PBwALp160anTp3o0qUL//vf/4DihxsX4mFysvKooTZiqkkO7XJNCVLVIlsx4c4LNah6+gznq/jzzz//kJKSIh2qxTPP0NAQOzs7kpKSgPxBBeX7VYh8iqKQmZlJUlISdnZ2OoNUPopSJUPJyck67aWOjo5s376ddu3a0bFjR+bPn/9YwYjnV05WHj99tJfszDwCwjxJOnwFFyMbul5rxppGp+l7MA2XpCSSXFw4ePAgbdq00XfIQjxxBSMWFyREQghddnZ2jzT57f1KlQx5e3sTGxur0y/I2tqabdu20bZtW7p16/bYAT3MnDlzmDFjBgkJCQQGBjJz5kxCQkKKLLt27Vrmzp3L0aNHyc7OJjAwkEmTJtGuXbsnHqcoHRMzIzyq2nHxWDJBWYZsULLohw2NNY343nQLfWvl1w4lubjw999/Ex4eLhMUimeeSqXC3d0dFxeXYu9gEuJ5ZWxs/Ng1QgVKlQy1bduWRYsW0bFjR531VlZWbN269Yn/tb5y5UqGDx/OnDlzaNasGT/88AMdOnTg1KlTRd7Btnv3btq0acO0adOws7Nj0aJFdOnShf3791O3bt0nGqsovVotvLh4LJmEoze5XNWNvMs52Ju40OJyAH+1dKTh7NNYZmaSAcTExFCvXj19hyzEU2FoaFhmX/pCiMJKNc7Q7du3uXbtGoGBgUVuv3PnDocPHyYsLKzMArxXo0aNqFevHnPnztWuCwgIoGvXrkyfPr1ExwgMDKRnz54lmiMHZJyhp0lRFJZP3s/txEzsm7ti/HcsTUxc+SfrGBNfWMaSXxyIMTbmXP36tOnSheDgYH2HLIQQopx6YtNx2NvbF5sIQX4N0b2JUK1atbh8+XJpTlGsnJwcDh8+TNu2bXXWt23blr1795boGBqNhvT09AfOnJydnU1aWprOIp4OlUpFrXAvADRn01j/78zVVUxqYpdkyJUuDahy9hwvbv+D2jVr6jNUIYQQz5AnOh1HXFxcmbVzJycno1arcXV11Vnv6upKYmJiiY7x1VdfkZGRQY8ePYotM336dGxtbbWLt7f3Y8UtSqd6YzeMzQxJvX6XoCruXM9LxcjAmOZ3X2CJ5wXMnJ3RJCWR+vvv+g5VCCHEM6LCzU12/62liqKU6HbT5cuXM2nSJFauXPnAEUrHjh1Lamqqdimrmi1RMiZmRtRo7I5KBfWsrVhmmN9JOjSrCYduHkXp2RmA5AULORkTIzV3QgghHtsjTcehD05OThgaGhaqBUpKSipUW3S/lStX0r9/f1avXk3r1q0fWNbU1BRTU9PHjlc8unrtfAhu7Y2NkznLk5O5ezEXnxx3Au/6szEwm442Nux2d+fymjWEhITQqlUrfYcshBCiAqswNUMmJibUr1+f7du366zfvn07TZs2LXa/5cuXExERwS+//EKnTp2edJiiDFjZm2LjZA5AtyY+7CC/qbXnlXB+u7oFm9d6UulyPACHDx+WW46FEEI8lgqTDAGMHDmS+fPns3DhQmJjYxkxYgTx8fEMGjQIyG/i6tOnj7b88uXL6dOnD1999RWNGzcmMTGRxMREUlNT9XUJopQau9iyxzQ/2amXWwfrRIWYFt54Jt/EIiODzMxMTpw4oecohRBCVGRlngxdvXq1rA+p1bNnT2bOnMmUKVMIDg5m9+7dbNq0STsqdkJCAvHx8dryP/zwA3l5ebz77ru4u7trl/fee++JxSjKTtQvp1k5eT913J1JyE3B0MCIl681Y9WNrdh360qVs+eA/PnKZE48IYQQj6rMkqHExESGDh1KlSpVtOt++OGHh/bnKa3BgwcTFxdHdnY2hw8fJjQ0VLtt8eLFREZGah9HRkaiKEqhZfHixWUak3gyrB3NQAG3pFw2KFkANNY04nD8AXJ6dKByXByGeXkkJiZKR3chhBCPrFTJUEpKCr169cLZ2RkPDw9mz56NRqNhwoQJVK5cmb/++ouFCxdqy7/xxhtYWlqWedDi+RDQzB1DIwNSr2Vy29OdXE0utsZOtLkSxLq7+3Bu2YJKl/JrAmU2eyGEEI+qVMnQRx99xO7du+nbty8ODg6MGDGCzp078+eff7J582YOHjzI66+//qRiFc8ZcysTqr6QPwxCPZUZB/OSAWif2pzfzv6Gbb8Iqp49C0DazZuo1Wq9xSqEEKLiKlUytHHjRhYtWsSXX37J//73PxRFoVq1auzcufOJTcEhnm8FI1LfPZ/OVnMrAPxNArC8pmG/9Q28atak/abNdLqRLHM3CSGEeCSlSoauXbtGzX+nQahcuTJmZmYMGDDgiQQmBICLjw2ufjZo1ApBzs4k5N7GUGVE+5TG/Hr2VxzfHoBtWhopa9aQd+uWvsMVQghRAZUqGdJoNBgbG2sfGxoaSp8g8cQV1A453Mxj1b+Djb+gNGTPlT2kBvlgFhiIkpVFwk9LuX79uh4jFUIIURGVagRqRVGIiIjQjtCclZXFoEGDCiVEa9euLbsIxXOvSj0X8nLUVH3BlXeWHiLzfA5eOa7UyqzKb+d/4823B3Do88/ZczMZl7Vr+c+gQSWaokUIIYSAUtYM9e3bFxcXF+0kpr1798bDw0NnYlNbW9snFat4ThkaGxAY4omJmRGvNvFh278jUr90I4Tfzv6GRauWuFhYoAAJ169z5coV/QYshBCiQilVzdCiRYueVBxClEjLGi4sMTtB1yxolBnMT1fXsPf6X9R6sw8+mzZysXJl9u/bh7e3t75DFUIIUUFUqOk4xPPtcuwt1k4/RCMza67m3sJQZcjL10L59cyv2HbrSo2kGwCcOnVKZrMXQghRYpIMiQrD0EjFzasZmF3NYrPm3xGp1Q3Zd/FPktWp+HfrhnNSEhrg0KFD+g1WCCFEhSHJkKgw3KvY4ehpiTpXQ66jBzmaHGyMHWh5uSbrzq3D/vXXqBafPy3HoX37yMvL03PEQgghKgJJhkSFoVKptLfZ+6TDgZz8ZrH2ac1Ze3YtKmsrAkNCMM/M5G5OzhOdNFgIIcSzQ5IhUaFUa+iGqYURuam5/GX274jUxjUwunyXvxL+wjmiL00OHKTL7//D+aYMwiiEEOLhJBkSFYqxqSE1mroDUNnUnqs5NzFQGfJyYnN+PfMrxq6uVGnWFPOsLG7On6/naIUQQlQEkgyJCico1BNUYJiUzSbyJ2etZVyfyPhIbt69iWP//qBScWfnTm4eP67naIUQQpR3kgyJCsfOxYKGnf3oPKQOCTU9SUfBPdeZWulV+N/5/2FauTKmrVoSGR7Gf9esIT09Xd8hCyGEKMckGRIV0gud/PAJdOTVpn5s/XdE6g63m7Pm7BoURcF9wADyDI3QqFQciIzUb7BCCCHKNUmGRIXWorozeyzz5yFrml4bVfwdDl0/hHlwMEHq/FvrDx0+LLfZCyGEKJYkQ6LCyrqTy8H/XSQ0x5TLOckYqAzpfi2EX8/8CkC9nj3zb7MHTsggjEIIIYohyZCouFRwfNdlDG5kE6XOH5G6kbohked3kJKVgk14ONVTUgCI2r6dnJwcPQYrhBCivJJkSFRYZpbGVGvkBoBi7k62JgtrIztaXg5k/YX1qFQqGnfogNndu9xWq1n/8896jlgIIUR5JMmQqNBqheWPSG2TquHgvyNSt0tpxpoz+R2pXV96iZZZ2ag0Gq6eOEFGfLw+wxVCCFEOSTIkKjQnLys8qtqBAqcMrQGobFwddfxtjt04hsrAgPpTp9Ly/AVabtnK9feGo8nM1G/QQgghyhVJhkSFVzBfmUueNZdzbmCgMuCVq+HajtSGVpY0/uJzTOzsyI6N5dqYD9Go1foMWQghRDkiyZCo8PyCnbC0NUGVrWGPOr+TdB3D+my/uI20nDQAjD098fruWxQTE/YmJvDr55/rM2QhhBDliCRDosIzNDQguE0laoV7EV/dl1Q0OGnsCUz1Z9OFTdpyFvXqofrgA07VrMmpnBz+WrxEj1ELIYQoLyQZEs+E4NaVCH2tGl1b+rH53xGpO6b8/4jUBQJ696KBiQkAf5w7y5U//9RLvEIIIcoPSYbEMyWsmgv7rfPf1g3Tg8i+kMypm6d0ynT44APcc3LIMzLi199+I/PyZX2EKoQQopyQZEg8MxRFIelCKqEqC+JzkvI7UieEsvrMap1yhsbG9Bz2Hma5uaRYW/PbF1/IHWZCCPEck2RIPFOiV53FID6TQ3nZADTKa8j2s1vJzNVNduzcXOna5UVQFM46OhI9YQKKRqOPkIUQQuiZJEPimaFSqbS32Wtw5a76LpZGNoRdqsHmi5sLla/RuBFNqlXDMC+PzJgTJH/33dMOWQghRDkgyZB4plRt4IKZpTHGOSqOZicB0D61OUtOLSFHXXhustavvUbvwCB8L10iec5cUjdufNohCyGE0DNJhsQzxcjEkJrN3QG4hA0AvkZVUOLv8P2x7wuVNzQ0xO/113Do1w+Ayx9P4O7x408vYCGEEHonyZB45gSGeKJSgXmOFfHZ1zFQGdDjWhgLTyzkZPLJIvdxGTWSO23asLF1K/ZOnkzu9etPOWohhBD6IsmQeObYOJnjW9sJgGO5+U1jzVQhuGQ7MH7P+CKby1SGhqR07MBdCwv+ql6dU8NHoLl796nGLYQQQj8kGRLPpFrhXtg4mXHZqxLHlGxMFGM+ShjAxdsX+OH4D0Xu07JtW7xcXck1MSHS2YnLH46VO8yEEOI5IMmQeCZ51bCn15QmdOhenSmqHO6gUCXTm96JHVlwfEGhgRghv//Qq2+8gbmxMbcdHPjzRhLJ3/1XD9ELIYR4miQZEs8klUqFgYGK5lWcqBfkygzym7x63G5P2/MBjN8znlx1bqH9bG1t6fbqqwCcrVaNo//7nbRNmwqVE0II8eyQZEg80zRqhQGVXLhqYsD+f0el7pfxBnfPJ/JjzI9F7lOtWjWaNm0KwIGGDTnzyafcjYl5mmELIYR4iiQZEs+0v36/wF+/nKWnqQ0fG5mSos7AytiOD+J68dOhBcTejC1yv1atWuHl5YWnWoPxnTtcGfyu3GEmhBDPKEmGxDMtsLkHhkYGZF7O4HVnRz5W5aBRNFQ1r03fE834+M+im8sMDQ3p3bs3vcePw9rXh7wbN7gy+F25w0wIIZ5BFS4ZmjNnDn5+fpiZmVG/fn2io6OLLZuQkMAbb7xB9erVMTAwYPjw4U8vUFEu2LlaEPp6NQAcL9xFZW7Fr+oUANobv4jj4Uzmxcwrcl8zMzOMrK3xmjMHAzs7bsZd5NpHH6EoytMKXwghxFNQoZKhlStXMnz4cMaNG8eRI0cICQmhQ4cOxMfHF1k+OzsbZ2dnxo0bR506dZ5ytKK8qNnMg4Bm7igKtEsz5CcDYy6q0zExNOM/qb34LWoJ/9z6p9j9FRcX/n4rgq3t2pG4ezfJ/53zFKMXQgjxpFWoZOjrr7+mf//+DBgwgICAAGbOnIm3tzdz584tsryvry+zZs2iT58+2NraPuVoRXkS2rMaTt5W5N1VE2FgzTgV5Ch5uJr7EJrbjPF/jidXU7i5DPKbzO4YGJBrYsLeJk25PmcOaVu2POUrEEII8aRUmGQoJyeHw4cP07ZtW531bdu2Ze/evXqKSlQURiaGdBhYC1MLI8wy1LhYm/MN2QC8ebMLedcymR8zv+h9jYx45ZVXMDMz45aTIzG1a3Htw7HcjTnxNC9BCCHEE1JhkqHk5GTUajWurq46611dXUlMTCyz82RnZ5OWlqaziGeDjZM57d4OovsH9fmobzAbVWoiycVIMWLMtbfYsGsZp2+dLnJfe3t7XnrpJQBO16jBFQcHrrwrd5gJIcSzoMIkQwVUKpXOY0VRCq17HNOnT8fW1la7eHt7l9mxhf55Bzjg7G1NvUr2vNPCny/I4iYavHPcGH3mVb747aNim8sCAgJo1KgRAAeaNiH1zh2uvDtE7jATQogKrsIkQ05OThgaGhaqBUpKSipUW/Q4xo4dS2pqqna5fPlymR1blC+v+7vxcq45n2nyk5mqNvVo/pcH8/8qug8aQJs2bfDw8CDHyIj9zZtx98QJEsaNkzvMhBCiAqswyZCJiQn169dn+/btOuu3b9+uHS24LJiammJjY6OziGePRq0hckkszhkKrlmGrPo3IQqx68S15Ts4fbPou8sK+g85OzvTqmNHVEZGpG3aTPIcucNMCCEqqgqTDAGMHDmS+fPns3DhQmJjYxkxYgTx8fEMGjQIyK/V6dOnj84+R48e5ejRo9y5c4cbN25w9OhRTp0qPEmneL4YGBrQpl8gBoYqquYYciBH4RI5mBla0kXVjblzxxbbXObg4MA777xDjfbtcZs4AYDkb7+TO8yEEKKCUikVrH5/zpw5fPHFFyQkJBAUFMQ333xDaGgoABEREcTFxREZGaktX1R/Ih8fH+Li4kp0vrS0NGxtbUlNTZVaomfQiagrRC0/gwbYY5XLZ0ZmGGHAoeRtJLxozjsvfvTQY/wzdSoZv67BUlHw+flnzIMCn3zgQgghHqg0v98VLhl62iQZerYpisIfi09xZv91MlQKt63VvGtgTp4ml99vLqT95+Op7lSj2P3PnDnD6tWrcbhzh9B1v2Pi4oLv6lUYu7g8xasQQghxv9L8fleoZjIhyppKpSK8Vw0cPS2xVFSQoeIgORgZGNPAvTNT9k4hT5NX7P5OTk4YGBhw3dSU2JAQ8q5fz7/DLCvrKV6FEEKIxyHJkHjuGZsY8n/t3Xd4VFXCx/HvnT7pvXcggUDoEDooShUruNYVe0Gxr219bauI3bW77qqrruKujSLNQpFOSAhJSEJCSEjvmZTp975/DEyICQgaCITzeZ48ZO7ccu6QzPxy6oxbUtAZ1Hh46VikWGlWycQ6IhmV25ePsj866rEBAQFceOGFAGRFhFPVpw+WPXuoeFSMMBMEQThTiDAkCLgWdJ378EhueGgUZqOav8mump259eeze/XPbNu++qjHDhw4kFGjRgGwbdw42ry8MH3/PXXvvntKyi4IgiD8MSIMCcIh/mGeRAZ48OScgWxSHKzABsBdlVex6e0PaKytPuqx06ZNIywsDLPdxq7L5yFLEjWv/x3T6jWnqviCIAjC7yTCkCD8ypyBYdyk9aHWpFCpduCh8WGs93Q+XvwXZKezy2O0Wi3z5s1Dp9NR1tZG1VVXAlD+0EOYs7NPZfEFQRCEEyTCkCD8isMmE24DP1nFyhYHTmSiPZOIrg9nxSdvHfW4wMBA5syZw4QJE5j0l7/gOWECisVC6R0LsFcfvVZJEARB6FkiDAnCr3j46Jh1SwqoIMCqZoXDNZpsWOBUytZup2DX9qMem5KSwnnnnYdGryfy1VfQJSS4RpjdeZcYYSYIgnCaEmFIELoQ3tePCZf1A8DRAvtUdrQqPWOD57Ds7y9gqq35zXMoRiNVC+9C8vXFkplJxWN/FSPMBEEQTkMiDAnCUQw+N4rYoUGokdjTqGBWOQk0RDBAP5J1yz475rGKovDZZ5+xZutWSu68EzQaTCtWUPfee6eo9IIgCMLxEmFIEI5CkiSmzU9GH6BHLUusa3N1nk72H8tWQwlOuevO1IePHTp0KACbCwuw3XsvADWvvY5pjRhhJgiCcDoRYUgQjkFn0HDpnUNxGFX8W21jnc6MChWX5Ezk893Hrh0aMmQIw4YNA2BNfR36a64BoPyhh7GIxYIFQRBOGyIMCcJvCIjw5MbnxqMOM7DIZqdOayXcHoSyspZv3n0BU83RR4rNnDmTkJAQWltb2RgViXHCBBSzmYN3LMBR89v9jgRBEISTT4QhQTgOXkYtL18+FLMEiy0OZGTOMY3Cvr2apa8uwumwd3mcTqdj3rx5aLVaig4coGjeXHTx8TgqKzl4553IVuspvhNBEATh10QYEoTjNCLWnzuSoxjZrCXT5uovNCJoGqYDlWz47KOjHhccHMzs2bMB2JaeTtBrr6Ly9cWyW4wwEwRBOB2IMCQIJ+CGmf1ALVHSBlWSDb3KSGrwbNK/X8q+7ZuPetzQoUM599xzufnmm/FNSiLq9ddcI8yWL6fuvfdP3Q0IgiAInYgwJAgnICDIg9SrEnGisKdJwiY5CTXGkuQ7ilXvvE5jVeVRj500aRKBgYEAeI4ZQ9hfHwOg5rXXMK1de0rKLwiCIHQmwpAgnKDx46NQDfanVYY9ra4mrkH+k/B0eLH8tedx2LvuP3SkwsJC8uPj8b/6agDK//IQlr17T2q5BUEQhK6JMCQIv8Mttwyh2kdFqU3hoMOBWlKTGjIHU3UtDRVlxzy2oqKCTz75hFWrVmG5+io8x40TI8wEQRB6kAhDgvA7aDVqrrprKI1qmT2tCi2SDV9tIOHJEwiMjjnmsWFhYQwePBhFUfjqm2/we/ZvrhFmFRWuNczECDNBEIRTSoQhQfidkqL9CJ8ZzWadnb9pGgEYVTOQ1Wu/ATjqKDFJkpg9ezZBQUE0Nzez9McfiXr7LVS+vph376bi8cfFCDNBEIRTSIQhQfgD5s9KxDbIl1/sBlb5lgIQs97I9jXL+e/Tj+Kw2bo8Tq/XM2/ePDQaDQUFBewoK3ONMFOrMS1dRt0/PjiFdyEIgnB2E2FIEP4AlUrixXlD8NZreKnRi2pVG75Ob5TvazmYs4efPz76sPnQ0FBmzpwJwI8//khdRET7CLNXXxUjzARBEE4REYYE4Q+K9DPyf3OSGW/Wk9WoxaHIRBr60NdnGJk/rGLvL+uOeuzw4cNJSUlBURRyc3Pxv/JK/K+6ChSF8vvux7Rq1am7EUEQhLOUCEOC0A3mjohCN8iPKkVhr9nV32dw4Dn4aANZ+/6b1JUd7PI4SZK44IILuOyyyzj//PMBCH30EbynT0ex2ym79z4aPv/8lN2HIAjC2UiEIUHoBpIk8fSVQ9gQIFNoc1Jll9GiZXTEhTitdpa/+jx2q6XLY/V6PSkpKUiS5DqXRkPkKy/jd8WfQFGofOppat58S3SqFgRBOElEGBKEbhLsreeOKwaxyeAgvc2JVVYIVIUwOPQcag8W89OH7/3mOdra2liyZAml5eWEPfEEQQsWAFD75ptUPfMMitN5sm9DEAThrCPCkCB0o5kp4YSmBrNX7SSjzRVckjxGEGqMRaPTI8vHDjPr1q1j7969/O9//8NsNhN8152E/vWvIEk0/Odzyh54APkoI9QEQRCE30eEIUHoZk9dlMKOUBW5spNCm2tpjuHRc5jypxtQqdTHPPbcc88lICCApqYmvvjiCxobGwm45moiX34JtFqaV66i9LbbcLa0nopbEQRBOCuIMCQI3czXQ8szfxrMdx42HtFVUqqrxsfuyZ5P1qEoCrLTid3W9SzTBoOBefPmodVqKSkp4a233mLbtm14zZhB9LvvIHl40Lp5CyXz5+Oorz+1NyYIgtBLiTAkCCfB5MRgzh8fTTm+vOqzHwdOgg4YOfBDOv/922P88P6bR+0QHR4ezq233kpMTAx2u52VK1fyr3/9C2XwYGI//gi1nx+WrCyKr7oaW+mx10ETBEEQfpsIQ4Jwkjw6awAxAR5sq+3P9z7ZACg/NdK4r5ycjT+T9fPRJ1UMCgpi/vz5zJ49G51Oh81mw2g0YkxJIfY//0ETEY7twAGKr7oKS37+qbolQRCEXkmEIUE4STz1Gl6+fAgSKirL+1DrkNEpWsb3mYeExE//epea4qKjHq9SqRg1ahQLFizgsssuQ6PRAKCOicbw97+j79cXR3U1xddcS9uuXafqtgRBEHodEYYE4SQaFRfALZMSWGqU2Wq2YlcU/Kx+pCZejMNuY9mrz2Mztx3zHL6+voSGhrofb9q0iX999RX5N9+MZtgwZJOJkhtupHndupN8N4IgCL2TCEOCcJLde34iIRGe/NfgYPeh4fbR9n5EByfTUFHGmmP0H/o1RVFobGxEURS27trFitGjaDr/PBSLhdIFd9L47bcn8U4EQRB6JxGGBOEkM2jVvHL5UIr18JW2kYM2GRUSwwKmo9MYydu8gcwfjm8NMkmSuOiii7j66qvx8fGhsamJVYGBZMy9DJtKRcXDj1D3rw9P8h0JgiD0LiIMCcIpMCjSl4VT+/GLVscqamiTFYw2HecMnk9AZDSR/ZNP6Hz9+vVjwYIFjBo1CoA8jYbVl11KdUgw1S+8QNWLL4rlOwRBEI6TCEOCcIrcMaUPg6N9+VKjZ5OtGRkFvwYfLrvqrwRFx57w+fR6PbNnz+aGG24gKCgIq1pN5JVXAlD/z39R8ehjKA5Hd9+GIAhCryPCkCCcIhq1ipcvH4qs0/CKZx1fBq4BoH5pAY5G1ySMdaUlJ1yjExMTw6233sq1115L39tvJ/zZZ0GlonDDBg7etRDZ0vUCsYIgCIKLCEOCcAr1DfHiLzP60+wM5N8qJ7mGIjQ2FeWfZJK2/Ds+fvBO0lctP+HzarVa4uLiAPC77FJUzz3Lj+dNZYUik33rbTibmrr5TgRBEHoPEYYE4RS7flwcYxICMNWM4+3gDdhwoiqzoD+gQ5Fl1n/yTyoL9/2ha1ji49Go1VSFhfFtdBTf3/8A1orKbroDQRCE3kWEIUE4xVQqiRfnDsFLryOrcgLb7a5aG59ST1KGnY/sdLD8teextLb87msMGTKEO+68k5iQEJwaDWlRkbz30ouUiskZBUEQOhFhSBB6QHSAB49fMACbPZjXAzIotdtRIZHQNhz/kAiaqqv47sW/0VRd9buvERAQwPW3386siRPROhzUe3vzz2+/Zd1XX3XjnQiCIJz5zrgw9PbbbxMfH4/BYGDEiBFs3LjxmPuvX7+eESNGYDAYSEhI4N133z1FJRWEY7t8ZDTn9g+honkYb4asxiwrGGwwoe91aHR6Svdm8dH9d7B77crffQ1Jkhg9dSp33HQT0U1NKCoVbf/+hNatW7vxTgRBEM5sZ1QYWrJkCffccw+PPfYY6enpTJw4kZkzZ1JSUtLl/kVFRcyaNYuJEyeSnp7Oo48+ysKFC/lK/GUsnAYkSeL5S1Pw8zCwuTWJrwxpAHhUyFx81ZNEJ6fgsFkxeHn94Wv5x8Vx3dNPM72ikri8PA7efAumVauprKzEarX+4fMLgiCcySTlDJqZLTU1leHDh/POO++4tw0YMICLL76YRYsWddr/oYceYunSpezdu9e97bbbbmP37t1s2bLluK5pMpnw9fWlqakJHx+fP34TgvAryzPLufM/6RgC1/NyzTiGqAKxSRD98CjKirKJHTIcSZIAKMvbS0BkFEYv7991LdlqpfzBv9C8Zg12rZY1f7oclYcHc+bMoV+/ft15W4IgCL+ptr6GtM9WEDtxKP2HDu3Wc5/I57emW698EtlsNtLS0nj44Yc7bJ82bRqbN2/u8pgtW7Ywbdq0DtumT5/OP//5T+x2O1qtttMxVqu1w1/KJpOpG0ovCEd3weAIVmdXsWz3BF6I/Zy/l9xIIHoaPs8j+poUdxAyN5v47sVnQJKYcu2NDJh4jvu546XS64l89RUqn36GA6tWoTQ2YnI4+Oyzzxg8eDDTp0/H09PzZNymIAhnMZvTxv7G/WQVZbI/LQtK7ahlD1o1MmMdiRz8dG23h6ETccaEodraWpxOZ4fVuwFCQ0OprOx6yHBlZWWX+zscDmprawkPD+90zKJFi3jqqae6r+CCcByeuWgg2/bXcbD6PB5PeIWXD9wLB6D67+n4/SkJYx8/2poa8fD1o660hJVvvUL2+h+YeuMdBEREndC1JLWasCefQBMYiNd777EnJYV9/ZPIzMykoKCAmTNnMmjQoBMOWoIgCHbZzkHTQfY17iO/Io+yonxKW4vZqytjaGMS0Q1JgArUelC7Fq6uwUSo0rPvN2dMGDrs12/QiqIc8027q/272n7YI488wn333ed+bDKZiI6O/r3FFYTj4uehY/Flg7n+Iyu5pmTuiX+Rx0pvIsYUTu0/9qAdH0Ho7ASuXfw6O5d9w9avvqAkK5N/P3gnoy6aR+rF89DodMd9PUmSCF54F+qAADTPPktMSQlpU8+loa2Nr776ij179nD55Zej0ZxxbxGCIJwCTtlJaUspBY0FFDQUUFhXSNXBMtRlDgIs/ngovqjURoJafZhqP594XT/0Kk++0G/CU9ET6PBA39KMwxDEpDsuICQuuEfv54x5pwsKCkKtVneqBaquru5U+3NYWFhYl/trNBoCAwO7PEav16PX67un0IJwAs7pH8KVo6P5fPskKryauDvuBV7IfYp+Kh8cm8opPWAi8sZBpF5yOUnjJvHjv97hQEYaW7/6nLzNG7j2+dfRGgwndM2Aa65G7e8HDz/C1K++pnDa+ewOCECn04kgJAgCsiJT0VpBQUMBBY0FFDYWUtBYwP7G/VhlKygwuWIygZYA4qVD/Q6PGJrlYwhlgHoYAFZZYVzDcCz2DCKuSWXA+GE9cEddO2Pe7XQ6HSNGjGDt2rVccskl7u1r167loosu6vKYsWPHsmzZsg7b1qxZw8iRI7vsLyQIPe2x2cn8UlDLweKLGTtwPC8Nfp8rM69mohSGuqyFkhd2EH7DIPxiwrj04SfJ37qJnz9+n6gBA084CB3mO3s2al8/ShcuJHHVamJGjiDhhhvczzc3N2O1WgkKCuqu2xQE4TSjKApVbVXusHNk8JEtMsHmQCJMQQRaAkh0RNC/sonvz6kjwS+BwLpAJKuETlYRovgRKvsRrPgQLPuAU0WRw0m5XaFBcTD4/AQmzzoPjU7d07fcwRk1mmzJkiVce+21vPvuu4wdO5b333+ff/zjH2RnZxMbG8sjjzxCWVkZ//73vwHX0PpBgwZx6623cvPNN7NlyxZuu+02Pv/8cy677LLjuqYYTSacatv213HlP7YiK9A/XMfQQVvw+tmPudaheKkl12r3sxPwnhCJJElY21pRFAWDp2sIfmNVJSV7Mkg5dxqS6vhnzzBnZnLwlltxNjaii4sj5p8foI2MZMmSJeTn5zNlyhTGjRuHWn16vYkJgnD8FEWhzlLXIfQUNLiCT7O92b1fbHMscY0R+NkC0KgMvz4Jvvl7uPr2RahLZUpzD6CzqfHCgISEw9pMmUNFiayn3qmgNUiMnJnAoMmR6Aynrg7mRD6/z6gwBK5JF1944QUqKioYNGgQr776KpMmTQJg/vz5HDhwgHXr1rn3X79+Pffeey/Z2dlERETw0EMPcdtttx339UQYEnrC+vwa7l2SQX2rDS+9hlvPlyjesoN5FROI1LkCjpTkTfiVg1Ad8eaiKApfP/8kBzLSCE/sz/k330lwTNxxX9e6fz8lN92Eo7wCTUgI4e+9yzc7d1JYWAi4mp4vvPBCIiIiuvV+BUHofo2WRncNz77Gfe4A1GhtdO2ggI/dhyBzAKEtgbRaCzEP8icuuC/BBcFYSw+NrFYUVFYzRhRivKOJ18QSZvJH5Wzveyu31eEoT8NetousoFgqI+di8NIyfFosgyZHotWf+j+ienUYOtVEGBJ6SmWThYVfpLO9qB6AK0aHEeLYTeKmGFKMWtSosPo4ibpuBPpI17xDiiyza+UyNn35KXaLGUmlYsTsixk396rjbkazV1ZSctNN2AoKUfn6EvX22xRo1KxatQqz2YwkSYwbN44pU6aI5mZBOE202dvYUrGFnZU73TU+tebaDvvoHXoCLYGEtQURbglF7/RCOqKDj0dhFpc/+Bhxg4eRn5/Pvj2ZOKqrSfJPxq/FD8eBFnC0Rwa5tQZbeToVdic1DidSnIZBN19Dv2EDKEirJjYlEG0PNoeJMNSNRBgSepLDKfPaD/t4a10BigLJ4T7cMVrPzwWfcFX+VELtgThUTnQzwgmfmOgeJdlcV8vPH73Pvu2uObh8gkM49/rb6DNi9HFd19nYyMHbbseckYFkMBD52qtII0eycuVKsrOzAdfaZ1deeSXBwT07CkQQzlYHmw+yoXQDG0s3sr1yO3bZ7n5OI2vwt/rj4WskLiCGhKB+eBzwoHLPr6aicTpRW1oxKDJxYcGMv/BSwqL6Ys6px5xVi2VfAzjbY4KjtRpn6U5sFbsp9oqjKG4mssYTtUbFtc+OxdP39BmAJMJQNxJhSDgdbDjUbFbXasNTp+bZS5NpcKzFZ5WN1JZBANQkmEn58zloDO21NYVp2/nxX+/QXFsDwOyFD9J//OTjuqbc1kbpPffQumEjqNWEP/s3/C6+mNzcXFasWIFKpeKOO+4Qoy8F4RRxyA4yqjPYULqB9aXr2d+0HwCVosLX5ks88SQ449A2qbFZZAA8y/czbd6VDDl/Jvn5+axeuRJTUT7+np5ERUfTZ1AK0UnJeBj9sObU05ZVi7WgEeT2aGA110HxZhzlu7C31JAfN42qmKnIuKbz8ArQM2JGHAPGhqPWnj6rfIkw1I1EGBJOF1UmC3d93t5sdnVqDOd5ObAubyLZoEIlSdQYGwm4uj+xfduX1rBbLGz+338oSt/JNYteO6H5iBS7nfLHHsO01DUqM+Shhwi8fj4Wi4XGxkbCwsIAkGWZ4uJi4uPju/GOBUFotDTyS/kvbDi4gV/Kf6HF2oJKUeFUOVFLasZpxhGyLwS6+CSXbFb01aWMHDOG825aALia0h02G1qDAWezDXN2HeasWqz7G0FuP9bsaMKxfxOqg9uQmytwSiqyBsygMWImTocr8PgEGRgxI46kMWGoNadPCDpMhKFuJMKQcDpxOGVe/3Efb/7sajYbEObNnUFBmLZUMdJTjVElYZVsFIxpZOqci9Co2jtXOx121BpXrZHsdLL63dcZNmMOYX2OvSaZIstUL36B+o8/BiDwphsJvv/+DhOX7tixgxUrVpCYmMj48eOJiYkRM1gLwu+gKAr7GvexoXQDGw5uoKisCF+rL/5Wf/yt/vjZ/ZDjHYzqn8I5Q2djabTw9ttvIznsqCxtqC1t+Ht5EhMXR9yAgUQk9scvLML9++g0WTFn1dG2pxbbgaYOIcqqtWDavw1j3g8oLVUA1HgGUDNpOkNvvoawiEg++esWPP31jJwZR2JqKGr16ReCDhNhqBuJMCScjn7dbPZYcgxtGysZZlATeqiaenvIXgZdM5nEkKROx+/6/jt+/vgfSJKKodNnM/5P16L38Djq9RRFoe6DD6h5+RUAfC+9lPCnn0I6NDHjhg0b+Pnnn90zvEdERDBmzBiSk5PF5I2C8BssDgvbK7e7AlDpBpoamxhdMxpfmy8apfPvj7apjj4+Rq546gVkWcZkMpG9ZjkB4ZHEDR2B0bvjZ5Wj0Yo5qxZzVi22YlOHAKT4qagq3Y12xzfomkpd+0sq8vqNwTl6Lj6hUcy8OcW9f9UBE8HRXqhO4xB0mAhD3UiEIeF0VWWysPDzdLYdaja7vl8YkdmtxDplkg41mx3Ql1M4tZmrxl+HVt3el6i1sYF1//6A3E3rAfDyD+Cc+bfQL3X8MWt0Gr/6iorH/w9kGa9zzyXylZdRHRqlVl1dzdatW9m9ezdOp2vNIW9vb0aPHs2ECRNETZEgHCLLMvll+WzM2UhBSQFtdW3U6mvJCsgCwCgZmbl/JhISKklCa7cgNzWgNreitrQh2a0ERcVw7eLX3bW9v+aot7QHoJLmDs9pIj2obiqiccP/CC7Z7d5e6R1MzaTZ+AyaxsHdJmwW1+/xvEdGEhJ75n3+iTDUjUQYEk5nv242GxnozQWNGjyabQzxceDp0NOmsvBlnx+56MKrSQlO6XB8cWYGP/zzLRorKwCIHzaSqTfcjm9I10vcADT/+CNl996HYrNhHDmC6LffRn3E70Zrays7d+5kx44dtLS00K9fP66++uqT8wIIwhnC7rCzZPkSDpQewFpvRS13HHJuMprwT/Vmct+pjAobRXFBMRnf/ZfSXduQAJVaTdSAgSQMH03C8FH4h0d2uoaj1kzboQBkL21pf0ICXawPZo9WCtZ9S8D21RgcNle5VGryE0fiffE8PL0SydlYjt3qCkEBEZ6MnBVHn+EhqFRn3h8zIgx1IxGGhDPBkc1mARo1D6UmcNnkWAo+2oJXuetNd4X/Rlon67l95B0YNUb3sQ6bjW3f/pcd3/0Xp8NB7OBhzH3smWNer23HDg7esQC5uRl9YiLRH/wDbUhIh30cDgfZ2dkEBAS4FztubGxkxYoVpKam0qdPH1FbJPQqiqLQ1NREeXk55eXl2GU7UqLExtKNbCzdyJh9Y/BwupqjnZITu4eNAF9fwhQjVFRTm5fNDa++h19YOAC5m9ZTlL6ThBGjiR08zD3L/JHsVa2Ys1ydoO0Vre1PSKCP90XTx5PcHT9iXfE/QmsOup8u8wml4ZyZjLrlGgwqL757LQPHoRAUGOXFqNlxJAwJRjoDQ9BhIgx1IxGGhDPFr5vNrkqN4fFZA6j+LhfVrnokJAr0JXyYtII7z72XUWGjOhxfV3aQnz96nynX3kjQoVmrFUU5amCx5OZScvPNOGtq0UZGEvPPD9DFxR2zjGvWrGHzZtfcR8HBwYwZM4bBgweLyRuFM1ZBQQElJSXuANTW1uZ+zqqysjxmORz6FRrQOoA+fgn0N0QQXA8Ve/a4a2UPm377PQyact5Rr6coCvaKVncTmKPa3P6kCvQJfhhTgqhuKKTgs88I2bUJvdN+qDwa8vuPJuiKyxl70VSMeld/JKdd5tP/24LRW8fIWXHEDwnqFX+oiDDUjUQYEs4kv242GxjqzWXVaryabYz0VqNTJFpVZl4J/4SIkX25b8R9eOu8j3q+9Z/+C2trCxOvvh6jV+f9bAcPUnLjTdhLSlAHBBD9/vsYBw086vnq6+vZtm0b6enp2Gyuanqj0cjIkSMZPXo03t5HL4sg9KSWlhbKy8upr69nzJgx7u3/+vBflBSXuB/LyJh0Jhp0DTToGyAKJkdNYlL0ZIaGDOVA2k6WvvSse3+1RkNUcgp9Rriav3xDwjpdW1EU7KUtmLNqacuqxVlnaX9SLWHo6wpAzgCF3Uv+h7LsW4Lry927lPhF0HTuLFJvvppAP3/S1xRTlt/A5Y+OcneEbq634OWv7xUh6DARhrqRCEPCmWjjvhru+cLVbJasaLigVYfeqTDGT4vvod/4b/1/YmncJv46/q9MiprU6RzNdbV8cNeNyE4nRh9fplx7IwMmntPpzdJRW0vJLbdgzdkLWi0Bf76WoNtvR+3VuUr/MIvFwq5du9i2bRtNTU2AKxTdf//9YvSZ0OMURaGiooKCggJ3jY/JZHI/f/PdN7O91jX6qzy7HKPFSIO+gQZdA62GVkaEDWecfigRVXrqsvKIHTyMcfOuAsBmMfPR/XcQM2gIfUaMJjZlKDpj55GciqxgKzG5m8Ccjdb2JzUqDIn+6AYGUKAys3/5SgwbfyKuJAf1oaFiFrWWvOSxhFx5ORMunILVZGfX6mJyNpUjH1pSY/Ydg4kbHHQSX8meJcJQNxJhSDhTHdlsFuyUuMbugdYiM8hbQ4LaFWhyDUUsivonIxPH8PDoh/E3+Hc4R+neLH744G3qSl1/+UYPHMx5N91BQERUh/2cLS2UP/gXWn7+GQB1cBAh992P70UXIqmOPgTX6XSSm5vL1q1biYiIYObMmYDrw2j//v3Ex8ejOsbxgnAyLF++nJ07d3barvZWU6+rZ5PHJsya9uapIGMQE0PHM8waj0dJGyUZGZhqqtzPh8T14drFr7sfH635WXEqWA80HWoCq0Nutrmfk3Qq9EkBNER5srnNRNXPPxG2cyNDK/aiVZzu/YqCYmk5ZyZjbrmSmOgQTLVm0lYXk7u5AvnQshrhfX0ZdUE8UUn+vaom6NdEGOpGIgwJZzKHU+bvP+7jjZ8L8HDCVTYP/CwK4ToVI321qOwyzapWXor4mH1BZTyS+ggz4mZ0eIN0OuzsXP4tW7/6AofNilqjYdRF80i9eF6n2ayb162jetHz2IqLATAMGUzYY49hHDz4N8vqdDpRq12dvYuLi/nwww/x9/cnNTWVYcOGiWU/hJPCYrGQk5NDnz598PX1BWDPnj18++23+EX5UauvZbd1N8UU41A53McNDBzIpKhJTI6aTP+A/vzzrpvcy94AaLQ6YlKGkDB8FPHDRuET1PUafopTxlp4KABl1yG3tq8vJunVOPv4stdbzeqmBlo3b2JY4U5SK3MwONv3qw2JxjpxKvGXX0zC4PY1Chur2vj8qW3Ih5bWiEzyY9TseCITO/7R01uJMNSNRBgSeoPDzWZNLTbmWPT0tapI6OfLcL3KPQT3y8DVfBy8jEkxk3h8zOOEeHQcHdZUXcmP/3yHoow0dEYPrn/lHbwCAjtdS7bZaPj3v6l9+x3kQ51JfS+9lJB770FznIu6ZmZm8v3332OxuPpG6PV6hg8fzujRo/H3PzveyIWTx+l0UlBQQGZmJnl5eTgcDqZOncrEiRM5aDrIFzlfsLxgOfXOevcxRo2RceFjSdUMIqRcRfPBCi564DF38Fjx9xcpzdnjGvo+YhQxg4ag1Ru6vL7ikLHsa3A1geXUoZjbQxZGNbVhRjapnXxV1YB/QSaTSzMYV5GFp6O9r5A5JBz9tBkkzLsYY1Kie7vV7EBvdDU1K4rCNy/vQqNVMXJWPBH9/LrxVTz9iTDUjUQYEnqLKpOFu79IZ2thPSOsapLGhvP4hclYfyihZZOrs2W2RyGLIj7A5iFz/8j7ubTfpR1qiRRFYd+2TditVgZOnurebm1rRe/h2eF69upqal5+habvvgNA5elJ0B13EHDtNUjHsT6azWZj9+7dbN26lbq6OgAkSaJ///7MmTMHj2PMmC0Iv6YoCmVlZWRmZpKVldVh1FdQUBBBA4JYp6xjU9km9/YwzzCmhk8hpS0aTVEjB9LTaKmvcz//5xffJPjQyEtrWys6o8dRm51kmxNrfgNtWbVY9tajWNubthwGNft8NaywmlnRYKJ/7X4ml2UwoTwTX1t7OeWgEPwvmI3/BbMxDEx2X0tRFErzGshaX0ZpbgPXPDMGo5frd8xudaLVd5zT6GwhwlA3EmFI6E2cssLrP+7jjZ/2oSjQP8ybt64ejmXNQXzzG8DqpEVjZlH4B+zy2ktqeCpPjH2CaO/oo56zKCONFX9/gUlXXU/KudM69REyZ2RQ+bdnsWS5ZtfVxcUR+ugjeE3q3Gm7K7IsU1BQwNatW9m/fz/+/v7cddddoi+RcEJsNhsvvvgidrurecnT05N+A/pR4VPBd9XfUdZa5t53fOR4rky6Ep+9LWz45F84bO2dlzV6PbEpw0gYPorE1PEYjjFQQLY6sOTWY86qw5Jbj2JvXwm1Tadiu07m69Y2MmQ7/RpKmFKawcTy3QRa2jtrqwIC8J0xA58LZmMcOrTD75e1zU7ulkqyNpTRWNUemqZeN4D+Y8P/2AvWC4gw1I1EGBJ6o1/21XLPknRqW2yMcmqZ0qwhyE/HhCADSq0ZBYUvg9fw78Cl6LUG7hp2F1f1vwq1qvNfmEtfeY5921xzBwVERpM4Zjx9R44hJL59UkVFlmn65luqX3kF56FaHq8pUwh9+KHfnJvoSFVVVbS2tpKQkAC4Jnb85z//SXJyMiNGjBC1RQIAbW1tZGdnU1ZWxsUXX+zevmzZMmw2G96x3qxvW8+q4lXYZBsqGeKaA5hoTea8869k6FBXUD+wexdfPfd/eAcGkzBiNH2GjyJ64OBOfeWOJJsdmPfWYd5Ti2VfAzjaP2LrNfCj08YPip0cxUGcqYLJpRlMrdhNUEt7jZPKxwfvaefjO2sWHqNHu9cAPKylwcKO5UXkb6/CcShgaQ1q+qeGMXByJIERRw9oZxMRhrqRCENCb1VtsrDwi3T27mvg0lYdQbIKnU7FtJRA1IWNAOz3K+ex4Ndp1DQzOHgwT497mj5+fTqcR3Y6yVi9nF+WfIrd0j7CxjswmMQx45l87Y3tK2Y3N1P79jvUf/IJOByg1RI4/zoCb70NtVfHZrbjsXv3br755hsANBoNQ4cOJTU1leDj7Jsk9B4Oh4P8/HwyMzPJz89Hll0h4bbbbiMsLAyzw8yqolV8kfcFOXU5eJjVRNYYGdAUQmCVCsXmqjEaccElTLn2Rtc57XYayksJiok75qgrZ6sdS45rJXhrYSM42z9WSyWZnxU767CTh0xkczWza/YwpXw3/rXtcwFJHh54T52Kz6yZeI0ff8ym5DaTjY8f2YTsVAiM9GTQ5CgSR4eiM4hpKY4kwlA3EmFI6M0ON5u99+M+5rToiHeoQYIpY8PwK2hAscnYjE6eDX+f7fo9aFVabh18Kzek3IBW1XHWaEtLC/t3badgx1aKdqfhsFqJGzKcyx592r3Pgd27iEjsj1JRSdWi52nduBEATXAwwfffh++Fxx6K/2sOh4OsrCy2bNlCVVX7UOa+ffsyduxYEhISevXQYcG1QPC2bdvIzs52d7gHCA0NZfDgwQT3Dea7ku/4tuBbTDYTBquK6dvD8G/u+PPr4etH/NAR9B83ibihI37zus5mG+Zs1xB4a2Fjh5Xg9+NkHQ7WYWc/MglOE1e05DG8cCeeJYXu/SSdDq/Jk/GZPQuvyZNRGY2drtNU00b2hnJMtWZm3Nq+tuCedaUERnkR3sdX/IwfhQhD3UiEIeFs8Mu+Wu79Ip0hNQrDbK6/LgePCKZfsw1HdRtIsK5PJi9o3kORFBL9E3l6/NMMDOx6tmm7zUrJnt3oDAaiB7qG1TfX1fL+HfNRazSuCedGjiHM5qT59Tewl7jmMTIOGULoXx/DmJLS5XmPRlEUDhw4wNatW8nLy3NvX7Bggagl6oVkWXb3GcvLy+Pzzz8HwNvbm8GDBzNw0EDyHfn8N/0zyjP3oHFK5Ma1EOkVybzEeVjf/BlzUxPhfROJHzaShGGjCIlL+M0g7mi0Ys6qpTmzBmdJM0dGkHycrMPOOhxUaeCcIBUz67Ppm7UFVU5W+44aDZ7jxuI7ezZeU6d2OTmpLCsUZ9WRtb6Ukpx6d9C68v9SCYg48RrUs5UIQ91IhCHhbHG42cy6t4lzzVokJGYvSME3t4G2NFetiynawQO+z3PQWY5aUnPdwOu4fcjtGDRdDyE+UlneXla99QqNVUesxSRJhPfpRzgafNeuw2hqBknC99JLCLn3XjRBJz47bl1dHdu2bcNkMnHFFVe4t+fk5BAdHS2W/DhDtbS0kJ2dze7du+nTpw9Tp7pGMzqdTlauXElycjJewZ58s/FjMrevw7fMTqDJNTeVw6Ai9en7mBg9EbVKTXl+Ln5h4Xj4+P7mdR31FpoyqqnfVYWx1tLhuRyc/IydXyQHQdE+TAnTMb5iD4HbN2DZsQMONdUhSXiMHo3PrFl4TzsfzVGmh2gz2di7uZzsDeU017dfK2ZgAIMmRxE7KPCMXD2+p4gw1I1EGBLOJoebzZatLsTXKWGJ9eCtq4cTVtxC43eFKHYZyUfDkuR1fNj0HwDifOJ4ctyTjAj97aYFRVGoKy2hcOc2CnZsobJwn/u56X++hYANm2j6bilOSULj6UnwggUEXH3VcQ3F7+pah5sPmpubefXVV5EkiUGDBjFmzBjCw8Vom9Od3W4nNzeXzMxMCgoKOPxx5e/vz8KFC5EkCUVR2FO7h+8+fA11ZiV6e8fanYC4WJJGjmPUhZcddd6fIymKgrW8lQPbyrDtrSeguX0OIBmFPYeawMqC9SQlBjIh3MjAAxnY1q6mddNmV1+4Q4xDh7oC0IzpaENCurpcB3nbKvnhwxwA9J4aBoyLYODECPxCxMCA30OEoW4kwpBwNjpytJmHTs0z5yWRqjWg2VyGo8YMKomaMQ7uNz9NjcU16+4VSVdwz4h78NQefzV+c30thTu3U5i2jdkLH8Tg6UVbejobnn2KAtlCiKmVKKM3A+9/EN8p5/zu+6mqqmLZsmWUlpa6t8XFxTFmzBgSExPFMP3T0OrVq0lLS3Mv6AsQERFBSkoKIZ5GSnMyqE3xYMn+/7G3fi/Dc/0YvN8Xhw58kxIYO342/Yan4uHr95vXUpwydXvrKNlWjv5AM7729o9FJwrpOMn0kKCfH0OTQxgT4YkhbSumFStoWb8e5Ygy6gcMwGfWTHxmzkIXFXnUa9osDvK3V6HVq0lKdS3O6rTLfP9uJv1GhtJ3RAga3dk5P1B3EWGoG4kwJJytqk0W7v4ig7TCOq5u1hOoqJg4ty9R1W2Yd7sCkKa/D/+KW8bnxUsA8NP7cWGfC7ks8TISfBN+97W/fPpRDmZnuh+rnTLhRi+SL51Hv/NnHnNul2MpLS1l69atZGdnu2sZjEYj8+fPJzQ0FIDGxkacTid+fn7u5UGEk6+6uprg4GB3bd6yZctIS0vD19eX5P5J+EkKtfk57N+9E1tLKwA/jKymNMSMTqVjVsA5TAuawviRM1Edx/+bs81O0fZyajOqCayyYDzik9CKQrrKSX24BwFDQ0gdGEqUl4aWTZswfb+Slh9/dM+uDqCLj8dn9mx8Zs1En3Dsn/u68hay15eRu60Su8WJT7CRa54agySav7qdCEPdSIQh4WzmlBX+viafwhXFDLC7OlbHjQtlUj9/mpbvB6eC2l9P+XQHj+//GwebD7qPHRE6grmJczk/9nz06hNbV8zpsHMwew/7Nm9g36YNmO3tf3nr1Bpuf/ffaP7A72NTUxPbt28nLS0Ni8XCX/7yF/ccRStXrmTbtm2oVCoCAgJcsxMHBREYGEhQUBDh4eFoNGIIc3dobm5mz5497N69m6qqKm644QZiYmIAqK2tpTg3h9yV31FZmA9HfFTZNDJlQWZqkvVMH385l/S9pNMiw11pqWol75eD2PIaCDfZ0RzRBboemSyDhNzHl8TUCIb3CUSNQtv27TStWEHz2h+Qm5rc+2sjI/GZNQuf2bPQJyUde+i9Q2Z/Rg1Z68so39fo3u4X6sGgSZEMmhyJWiNqJ7ubCEPdSIQhQYBf9tXw4T92M9zkesM2xHpxxZ8SMf1vH856C6glfGbFkRGzn//u+y8bSjcgK67Oo756Xy7scyFz+80lwe/Ea4sUWebgxnXs+eA9Spsa8LLaGG1WCHngfnzmzGH5q88TFBtH31FjCYqOPaFhxna7ndra2g79h1asWEF6ejqOI/p+HOmBBx7A61DNVE5ODo2Nje6wJGqTfpvVaiU3N5fdu3dTVFTkrqFTqVQMT+zL0MGDiUoeBEBRUTZfP/wQAPXeNkqDzZSFWOg3cARXJl/F+IjxXU4EepgiK5TureXA1nKMxc2E2Tp+3B3ASUmADs9BQYxIjSQq0BNFljFnZGBa8T2m1atx1ta699cEB+M9cwa+s2ZhGDLkuH/Wfv4sl5yNrjmFJJVE/JAgBk2O7PWrxvc0EYa6kQhDguBS3Wzhmbd20veAFQ0SNm8119w1FGl9GZZs1+y5+r5+eAwNoTnOybdlS/l639dUtLaPHhseMtxdW3Q8I9COpCgKLT+vo3zRIuSDrhoo+5AU1tLeXOEbEkrfUWPoM3IMkUnJx9Vc0hVZljGZTNTW1lJbW0tdXR21tbW0tLRwxx13uD/A/vOf/5Cfn+8+Tq1WExAQ4K5FmjJlyllfi3RkR/aamhref/9995IYAH4eRvQtjbQW5CI57fRLHU/stbP4IvcLVhetJrpUR2WABa2fF5f0vYTLEy8n2ufoy8PYLA6yt5TSsLuG4Goz/nJ72HCikKtWaIryJGJEGCOHhWPQqlEUBUt2Dqbvv8e0ciWOivafWbWvL97Tp+MzezYeI0cg/cbPlCIrlOY24BNsxDfYNW9QeUEjq9/PInliBAMnRODlf2I/+8LvI8JQNxJhSBDaOWWFN77Mwra+Gk9FotJL4roHRxK6z0TT90UgH3o7UUno+/iiTw5gT+B+viz9H+tL1+NUXItT+uh8XH2L+l1GX/++J1QG2Wql/qOPqX3vPWwWC5V+XtT170OV1YzT0f4ha/D2YdLV80k5Z1q33f+vbdu2jeLiYurq6qirq+tQm6TT6XjkkUfcQWDp0qXU1dV1aHILCgrCz8/vjOjAbbfbMZvNmM2uWcYP97EC2LBhA83Nze7nLRaL+/ugoCBuvNE1o7Msy7z++utYW5rRNNaiVJWhsrev+6UN8aMorJUfogrc2wYGDuSK/lcwI27GUQN0TVULOb8cxJHXQKzJgeGI5q82FPZ5qJD7+pI0Lop+sX7u/xNrQYErAK34HltxsfsYlacn3uedh8+smXiOG4ek1Xa65q9ZWu3kbqkga0MZTdVmUs6JYtKfXKvJK4qCLCuo1af//3NvIsJQNxJhSBA6+zmtnNWf7GWZzoJiUPPcJSnMjg7AnFGNOasOe2Vr+84S6GJ9cCYZWGvYxGdlSyhvbV+GYFjIMOYmzmVa7LQTqi2yV1VR/fLLmJYuA0D28cF66YVUeerZn74TS2sLF//lcfqMSAWgruwgFfm5JIwYfVzzy5woWZZpampy1yLZ7XYmTpzofv7NN9+k9ogml8PUajWhoaHcfPPN7g/p+vp6PDw8MBi6twbB6XRisVg6hJXD4cVgMDB48GD3vp9++ilNTU3u548MepGRkdx8883ux6+++ipNR/SnOZKHTkdqTBiTr7kBcL2nLlv8FJUFeWj1BoL696MsxMJqaQdVGtc5dCodM+JncGX/KxkUNKjTOWVZISe7moPbKjCWNBNvU1AfEYBqJYXSQB3eg4IYMj4aP+/2Pmu2khJM36/E9P33WI+o1ZMMBrzOmYLPrFl4TZqESn98/dyqi01krS9j3472dcJ0BjUpU6IYc3Gf3zhaOJlEGOpGIgwJQteqmy3c80UGmwtdTWTX9Q3j4T8PwajT4Kg105ZVizmrFntpS4fjtFFeVMe08rVqFd/UL3fXFnnrvJmTMIe5iXPp59/vuMvRtiudqmefxZKdDYCuTx+CH3qIpkBfwvolodW5PtR++eLfbPvmSyRJRWT/ZPqMTKXvyDH4hZ2a+YYqKiqoqalxN70dbn5zOp2EhoZy++23u/d95513qKqqwsvLq1NNUlBQEP5HTNpXVFTUIdgcWTMTEBDAeeed59530aJFWK1WunI8AUcCtFoNPkYDQyNCmXDFtQBs3LiRnE3rqS8uQnI6kJwOcDrd36ucDu7+5Gv3Aqf7M3aypzaLVY4t/FK1ub0MXpH8KelPXNz34k4dok1tNtK3lNKQWUN4tYVIpWMtS4kWmiM9iBgVzoChYWiOqIWxV1VhWrkS0/crsWS2j1JEq8VrwgRXADrnnBNeH2/5W7sp3tO+wGpglBcpkyPpN0qsE3Y6EGGoG4kwJAhH55QV3vhpH6tX7ueCVh0lRgXfUUHMnBDD0GhXc4Sj0YI5qw5zVi22YlOHNZykUD35IaV8onzNDsduDv9xPyR4CHMT5zI9bjpGTef1mn5NcTpp/Ppral59DWd9PQBeU6cS+tBf0B0anZT5wyp2r11J9YHCDsd6+vlj8PLmupfectfMZKxeQUNFGToPD/RGD3QeHuiMh7/3JKJfknvphiP7xJyow7VJFovF3YlbURT+/ve/09DQ0OUxwcHBLFiwwP349wQcnU6H0WBAp9WiVatRS2DUqIn392Hs3CsBKCwsZMfSryjNTEexW5GcTpCdHZagWPjJV+6wueqd18he9wOSpMLDzw9PX388/fzw8PPH08+f1EsupwUzX+/7mi/zvnT3JZOQmBA5gSv6X9GhQ7SiKOwvN5GzqRTnvgb6Njvx44iAg0KJpxr6+ZE0Poqw6I61fY76eppXr8a04nva0tLaR6OpVHiOGYPP7Fl4n3ceat/jryVsqjHjE2hwD4Pf8k0hGT+W0HdECCmTowiN9xEdok8jIgx1IxGGBOG3Lf06j+I1pagOfVQWaJzsD1KTOjqc2SnhDI5yLSbpWtzSFYys+xtBbj+H3Q92BeTxubKUPH0RSOCt9WZ2wmzmJs4lKSDpN8vhNJmofest6j/7DzgcSFotATfcQNAtN6PydP3Vb6qppmDnNgp3buFgThaKLKP38OTOD5e4z/O/Zx+nODO964tIEvf95zt3GFr22mKK0neiNxrRHQpOeg9PdIcen3fTAjSH+pyU7s2ipaHeFaqMHug92oOWzmhEdcTIKIvF4m5yO7ImKSQkhLlz57r3+/e//43dbsdoNGLQ69GoVagUBcnpQCM78dNpSL14HgBms5n1H79P/pZfsFvMXd7ewo//h/ZQ89zhgANg8PLG088fD18/PP1cQWfs3KvRH5qSoLWxAUmSMHh7u+9DURQqWivYW7+XH4p/YPWB1dhlV78uX70vl/a9lHlJ84j2dnWItjqc7Myq4uD2CjwPtpBsl9AfEb9aJYXKID3eKcEMGBeJ0atjU5bTZKJ57Q+Yvv+e1q1bwel0P2ccMcI1GeL06Se0zIssKxTvqSVrfRklOfXMuWsIMQMDXa9niw0UMHqf+AzpwsknwlA3EmFIEI5PWVETa7/Kp6WgfQHLErWTbQYHjmA9s4eEc0FKBIMiXX89y212zDn1mLNqsexrAGf7W1Gbp41fvNJZZdhIrrEIRVIYHDTYXVvkoT328gTWggKqnltE62ZXE4wmJISQBx/A54ILOvzlbmltoam6CqfdRkTiAPf2nA0/UVdagtVsxmZuc321tWE1t6HIMn9+4Q33vl89938c2L3rqGW57/Ol7cHp1efJ3/rLUfe988Ml6D1coW3bt//lYHamO1QdrpXSG41IKhUjZl/sPu6Hf75D3paNWJpNXZ73yICz+t2/k/XzGtfrotPj6e9/qBbHHw8/fyZccS0GT9fUAc31tSiygoevnzvQHY1TdlLcXExuXS576/eyt34vufW5NFk7NrUNChzEn/r/yd0huqLRzPYdZTRl1hBRa6W/0nG0Vp0WmqO8iB4VTsyQEKRfdUKW29po/vlnTN+vpHXDBpQjRqoZBg1yzQU0cwbaE1x+pbXJyt7NFWRvLKOl/lDNmwSjL4hn1Oz4EzqX0DNEGOpGIgwJwolpqGxl56pi8rdXggyVGplPPK3uJrDYQA9mp4Qze3A4yeGHgpHFgSW3HnN2HZbcehR7e5VRi97Meo+dbPROY49HAR46D2YnzGZe4rxj1hYpikLLTz9R9fxi7IeG4huHDyf0sUcxDhzYbfdrbmnG2tKC1dyGra21PUC1tWG3WRk151L3vpv/+x9Kc/Yc2tcVrmzmNpyHPsDv/fw7d63K8tcWk7dl41Gve9fH/0VncDUhHhlwVGr1EbU3/nj4+jP5mhvcs3abaqpxOux4+vmjNRh/V7OO3WmnoLHAFXrqXKEnryEPs6NzbZNG0tDHrw+Dgwdzab9LGRAwkIwD9WRvK0Pe10Rym0zEEc1fMgrVnhqkfn70Gx+Fd5R3pzLKViutGzdi+v57mn9eh2Juv66+X1/XbNAzZ6KLjT3he7NZHKx6bw+luQ3uljWDp5YB48MZODHSPVxeOP2JMNSNRBgShN+npcFCxtqDhPTzpUDjZEVmBRtzqohtk8jROXFKEB/k6Q5G/cNcH3qyzYk1vwFzVi3mvfUo1vamjmZNG5s809nkk06GZx4DgpOZmziXGXEzjlpbJFut1H/4EbXvvef60JQk/ObOJfjee9AEBJyql+OYHHY7NnNbh1Fu5fm5NFZVdAhNNnMb1rY2UBTOmX8LRm/Xe1JjZQUOmxUPP3+MXt7umqju0GZvI68hzx169tbvpaCxAIfceVJKo8ZIon8i/QP6kxyYTP+A/vTx7UNjm8KO3GpK0yrxLm1luFON9xHNXzYJ6gL1+A4OJmFMBBqfziO5FLud1q3bXAFo7VrklvaO+dqYGFcT2KxZGBITT+j+ZKdMfUUbQVHtS7x88cw26spaCe/jy8CJEfQZEYJGKybTPNOIMNSNRBgShO6zZfl+di0/gF0nsVVrJ01jx37oMzEh2JMLUsKZPTiCxFAv14rkDhlLQaOrKS2nDrmt/QO4VWVmm9ceNnmns9e/mPP7TGNu4lwGBA7o8tr2ykqqX3oZ0/LlAKi8vQm+6078r7zyuOaRORs0Whrbm7gONXcVm4pR6Pwx4aPzYUDAAAYEDqB/QH8GBAwgwjOa4joLe0sbqSxsxFrajEeDlViHRCKqDstftGok2qI9iRwVTtCgYFRdLEqqyDJtO3e6AtDqNTiP6FSuCQvDZ+ahADRo4AnVcCmKQk1JM/nbqsjfWYXd4uD6Fya4R4BVFDbh4aMTtUBnOBGGupEIQ4LQfXJ+KWf7sv20NrnWGlPpVVSEaPi2tRmT3N401jfEi9kp4VwwOJx+od4AKE4Fa1GTq8Youw65uX29MotkZYdXNpu8M2iOcTAn+SJmxs/EU9t5qHTbrl1U/e1ZLDk5AKiDgjCmpGBITsYwMBlDcjKa0NBePSpIURSq2qo61Pbsrd9LZWtll/uHGEM6hJ4BgQPwVAeRW9FM3sFGaosacVa04Wuy01dRkfCr4HNYo4cadaI/sanhGGN9u1ycVFEULHv2YFqxAtPKVTiqq93PqQMC8JkxHZ9ZszAOH37CNWCmOjP526vI31ZJQ2X7zOUGLy1z7hpCSKx4j+9NRBjqRiIMCUL3ctpl8rZVsmt1MU01rr4eGp0KQ7IfGw12NuyrxeZsD0aJoV7MTolg9uBw+oa4mjIUWcFWYnIP2Xc2tg8tt0t2dnnmssMvG7+USC4cdDHJgckdyqA4nTR+9ZVrKH4XQ9jVAQGucHT4a2Ay2qioMzIgyYpMiamkPfQcCkAN1q6H7sd4x7hCT+AABgQMIMk/CbPFg70VJvIPNtJU1IRUYyakzUkSamJQdZjw8DCLRsISoMcQ5U1wX388Y33QBHZd06IoCtb8fNd6YN9/j7201P2cytsb72nn4zNrFp6pqUi/c3mT3C0V/PjxXvdjtVZF/JAgklLDiE4OELND90IiDHUjEYYE4eSQZYXCXdXsWl1M7cEWklLDOO/6ZEwWOz/kVLEis4IN+2qwHzHKrH+YNxcMDmdWSjgJwYeCkaJgL2vBnFVHy54qlLr2GiMnTnZ75rM/rJK4UQM5f+CMDrVFstmMJScHS3aO69+cHKyFhR2GZB+m8vbuFJB0sbG/uVbVqWSX7exv3E9OXQ659bnurzZHW6d91ZKaBL8EV01PgKvWJ96nLxUNEjkVJvaXNNJabEJXZyHmUDNXNF3fq1mnwhFkwCvWh4AEP/RR3qj99L8ZHq1FRa7lML5fia2wff4nyWjE+9xz8Zk9C88JE1DpTmzoutMhU5xVh9FLS3hfPwBMtWY+fXwLEYl+JKWG0WdYCDqjmBixNxNhqBuJMCQIJ5eiKBzMqccnyIhfqKsTdH15K9uXF5E4JZJdza2syCxn475aHHL721VyuA+zB7vmMYoL8nSfy1HVRltWLfUZB9HWtu8vI7PXowhTgpOB40YxID6lyw9r2WLBmp/fISRZ8/M7DNk+TPLwwNC/vyscDRiAYWAy+j59TkkfpDZ7G/kN+e7Ak1OXQ0FjgXsenyPp1XoS/RNdoSewP8kByQToYthfbWVveRPFJU1YS1vwarLRV1GRhJpQuq4pMRvVKKEe+MX54h3niy7CC7XP8YcVe1kZplWrMK343t1UCSDpdHhNnuSaDXryZFQex54+4dcURaFyv4m8bZUUpFVhbXUQmxLIBQuGuPdpM9nwOIGyCmc2EYa6kQhDgnDq/fhRDrlbXf1XopMDGDE9Fo8oD9burWZFZgWbCjoGo0GRPq6mtJRwYgLbP0TttWbqMw5Sm16Mb13Hdb5KvKpQkozEpCSCQY3DoCDrFBw4kRUZp+LEITtc39usKAcOIuUVod53APW+EjSFpaisNn5N1mqwxIbQmhBKa3wozfHBNEcH4NBIOBWn60t2XcOhuM7vvs6R15Sd7fv/6piathoOmA4gK3Kn63trvekf2N/dvyfJvz8qRwj5VW3klDVRXtKEs7KVkDaZRFQkoibwaMHHS4Mmwgu/eF+MUd5oI7xQex5/0JNtNpx1dThq6zBnZGD6/nvM6UdMZqlW4zluHD6zZuF93lTU3t7Hfe7DGqvayNteSf62Sky1Fvd2D18d/ceEMebiPmdk86bwx/XKMNTQ0MDChQtZunQpABdeeCFvvPEGfn5+Rz3m66+/5r333iMtLY26ujrS09MZOnToCV1XhCFBOPXqylrYtbqYfTurUQ6FntB4H0bMiCUuJYhGs501OZUsz6xgc2EdziOC0eAoX2anuJrSogOOCEYNZvZt2U1zViXh9f6ouggAMjKtKgst6laa1W00q1sPfbXRompzf9+sbqVFasWjpY3A2hZCq1qJrXSQUKXg0cXKGE4JDgZDUahEUZjr60AIWHV/7EM6yBjUoVNzvHcizS0+7K1oJqe8kdqDzaiq2oh1SiShJhE1Pl3071EAm58OfaQ3vnE+6CK90UZ4oupifa0jA46jtuaI72tx1NXirK3DUed6LJu6mARSkvAYNcoVgKZPQ3PEOmu/x1cv7KRyv+s6Gr2aPsOCSRodRmR/f1RddNAWzh69MgzNnDmT0tJS3n//fQBuueUW4uLiWLZs2VGP+eSTTygqKiIiIoKbb75ZhCFBOMM01ZjJWFvC3s0VOB2uWpDIJD8uvne4e5/6VhursytZkVnB5sJajshFDIn244KUcGYNDifSr73zbn1NDem/bELObSawzQdvpwdG+Y+tEG9TObBobdglK7KzDcnSgqalGV1DA+rWZhR7G4qt1fVlb0W2t9EaoMEU40NLQght8aG0xYeBjydqSY1aUqOSVGhUGlSSyrVN5druo/MhSBdPVYOOnAoTueUmmg6a8Gyw0Q8V/Q4FH48ugo8sgTPQgEe0N54xPmgjvVAHaFGaG39/wDkWjQZNQADamGh8zj8f7xkz0YaGnPDr67A5KcqsZd+OKs69dgAGL1cNVfbGMvZn1JCUGkb8kGC0+tOnD5fQs3pdGNq7dy/Jycls3bqV1NRUALZu3crYsWPJzc0lKenYaxYdOHCA+Ph4EYYE4QzV2mQl86eD7FlfxvBpMYyc5VoOQZEVnA4ZzaE5ampbrO5gtHV/XYdgNCzGz11jFOHXeVST4pCRzY72rzY7ctsR37u3u/5VjtjWxTQ8x02RnSj2VhRbG9hbceDAqtPQZtTT5OVJjbcf9ToDjYqTBlmhQXbSbLIRYnaSiJok1PRB1WENr8NkFSjeEnpvB2p1K4qtFqepDGd9zR8POIGBaAIDUQcFogkMQhMUhCYoEHWg619NUBDqwEDUvr6/exJIRVYo29dI3rZKCndVY7e4OrZPviqJQZMif9c5hbPHiXx+nxFd6bds2YKvr687CAGMGTMGX19fNm/e/Jth6ERYrdYOK0CbTvRNQhCEbufpq2fsJX0ZPj22w9w0B/bU8vNneQw5N4pBk6MI8tJzdWosV6fGUtNsZVVWBcszK9h+oJ70kkbSSxr524q9jIj1dwejMF9XjZCkUaF4aDBrJcwGFW2eatpsDsw2J602HWabgzabkzabE/Ohf9vsDsxWB06zE8ViB4sTlcWJxiajtcvo7DIGp4LRCR4K+CC1fykSOklCUqmR9D6gd71ZqwE94AOEmSHJDPDrtrfOnYBl2Y5iq0FpLsNZU4CjIg+5pRIUmc5jybrwmwHn8Pd/LOAcjzaTjd0/lpC/vYqWhvZ79wrQkzQ6jKj+f6xpTRB+7YwIQ5WVlYSEdK5WDQkJobKy60nCfq9Fixbx1FNPdes5BUHoHnqPjp1387ZWYjbZ2PrtfnatKmbQlCiGnBuNh4+OYG89146N49qxcVSbLKzMctUY7SiuJ624gbTiBp5ZkUOotwGz3RVwjpzf6GRRSeCh02DUqfHVqglSqwlUqwhUqwmyW4kwNRDUYsK3tRUPsxWdEyStB5LOE0nriaTzRJGdyE0lOBtL3P8qrTV0qqLSaNAEBrcHnCDX9z0RcH6L7JRRHTHXT/ragyiygs6ooe+IEJJSQwnv49flRI2C8Ef1aBh68sknfzN47NixA6DL0QCKonT7KIFHHnmE++67z/3YZDIRHR3drdcQBKF7nH/TQOJ3VJG2uoSGilZ2rSpm948HGTAunGHnx+AT5GoOC/ExcN24OK4bF0dlk4WVWRWsyKxgZ3EDlSZLp/MeDiweOjUeOjXGI7/XdtzmecT3xkP7uPZrP8ZDr8FD63per1Gd0PuWs6UVa17uoWH+27Hk5OBsakITGIg2KBBN/xg0gcNOy4DzW2wWB/szasjfVoksw8X3DgPAw0fH6Avi8Q/zIDYlUKwLJpx0PRqG7rzzTq644opj7hMXF0dmZiZVVVWdnqupqSE0NLRby6TX69HrOy8SKAjC6UetVpE0JpzE0WEUZdaya3UxVUUmstaXUV3czLyHR3Y6JszXwPXj47l+fDxVJgtVJkt7uPmdgeVkUnt54jFiBB4jRvR0UbqF7JQ5mNtA3tZKinbX4LAdqo2TXH3DPH1d778jZ8X1XCGFs06PhqGgoCCCgoJ+c7+xY8fS1NTE9u3bGT16NADbtm2jqamJcePGnexiCoJwmpNUEglDg4kfEkRZfiO7Vh0geUJ7B1ubxUF9eSthCb4djgv1MRDq88dGkQnHL3tjGduWFWE2tc/P5BtiJCk1jMTRoe4gJAin2hnRZ2jAgAHMmDGDm2++mffeew9wDa2/4IILOnSe7t+/P4sWLeKSSy4BoL6+npKSEsrLywHIy8sDICwsjLCwsFN8F4IgnGySJBGV5E9Ukj9HDpTN2lDGlq8LiUz0Y/iMWKIHBJw2NT+9hcPupLnOgqnWgqnWfOjLQso5UUQluTo8a7QqzCYbBi8t/UaGkpQaRkict/i/EHrcGRGGAD777DMWLlzItGnTANeki2+++WaHffLy8mhqanI/Xrp0Kddff7378eEmuSeeeIInn3zy5BdaEIQec+QHrLXVjkolUZbfSFl+I8Ex3gyfHkvCsGAxMd9xUmSF1iYrploz3oFGvANcNWqlufX88GEOrU2dZ+MGCO/r6w5D8UODmX2HluiBYmFU4fRyRswz1JPEPEOC0Ds011vI+KGEnF/K3f1U/EI9SL0wgb4jXKNVFVmhvrIVg6cWg5f2rP3AbmmwsG9Htat2p85Vw2OqMyM7XB8XE+b1Y8hU18CS6mIT/120EwCtXo1PkBGfIMOhf41EJvoRGOnVY/cinL163TxDgiAIf5R3gIGJlycyclYcmT+XsufnUhqr2ijLb3CHIUubnS+e3u4+RmdQY/DSusKRp5a4wUGkTIkCXB2BC3fVuIOT3lODwVOLVq8+bZt9nA75UFOWGVOdBVNNe9gZODGCgRNd/axam2xs/rqg0/EqlYRXgL7D8PaAcE/mPjQSn2ADBk/taXvvgnAsIgwJgnBWMXrpSJ2TwLDzY9i7qcLd3ANgMzvRe2qwtrlmlbZZnNgsTvcCoL7B7TNXW9scrPlndqfzqzUqDJ4aElPDGHdpX8AVnLYvK+oQrI78Xu+h6Zb5cxRFoc1kOxRyLPiGGAmLd3Uarylp5stFO446W3Z9Rav7e99gI/1GheITaMAn2Oj6N8iIl7++w1xAABqdmtB4UWsunNlEGBIE4aykM2jcTT2H+QYbuenlSciygq3NgaXVjqXVjrnFjqXFjl9o+8KvslMhop+fex9Lqx3Z4VoepLXJ1j5kHLC0OkhbVXzUsvQbFcq0GwcC4HTKrHovC8OhmiZ3aDr0r3eAwT1/UmuTlbSVxa7anRozzXUWHPb26w4+N8odhrz89aCARqdyN2H5BBnwCTTiE2wkMMLTfZzBU+sujyCcDUQYEgRB+BWVSnKFDy/tUffx9NNzyf3tC8YqioLd6nQFoxY7eo/2t1dJBSlTotqDU0t7gLJbnB2uY211cCCz9qjXPTI4SZLEnnWlHZ6XJPAKMOATZMA3uD28Gby0XP/CBIzeoilLEH5NhCFBEIRuIEkSOoMGnUGDT2DHhWCNXjomXZHY5XFOh4zsbG+70uhUTLk66VehyeH+3iewvVnP6K1lxMxYd22RT5ARrwB9lx2/JUnCw6fzmmaCIIgwJAiC0KPUGhXqI96JdQaNuyPzb5EkiTEX9TlJJROEs8fZOW5UEARBEAThEBGGBEEQBEE4q4kwJAiCIAjCWU2EIUEQBEEQzmoiDAmCIAiCcFYTYUgQBEEQhLOaCEOCIAiCIJzVRBgSBEEQBOGsJsKQIAiCIAhnNRGGBEEQBEE4q4kwJAiCIAjCWU2EIUEQBEEQzmoiDAmCIAiCcFYTYUgQBEEQhLOapqcLcLpTFAUAk8nUwyURBEEQBOF4Hf7cPvw5fiwiDP2G5uZmAKKjo3u4JIIgCIIgnKjm5mZ8fX2PuY+kHE9kOovJskx5eTne3t5IktSt5zaZTERHR3Pw4EF8fHy69dxCO/E6nxridT41xOt8aojX+dQ4ma+zoig0NzcTERGBSnXsXkGiZug3qFQqoqKiTuo1fHx8xC/bKSBe51NDvM6nhnidTw3xOp8aJ+t1/q0aocNEB2pBEARBEM5qIgwJgiAIgnBWE2GoB+n1ep544gn0en1PF6VXE6/zqSFe51NDvM6nhnidT43T5XUWHagFQRAEQTiriZohQRAEQRDOaiIMCYIgCIJwVhNhSBAEQRCEs5oIQ4IgCIIgnNVEGOohb7/9NvHx8RgMBkaMGMHGjRt7uki9yqJFixg1ahTe3t6EhIRw8cUXk5eX19PF6vUWLVqEJEncc889PV2UXqmsrIxrrrmGwMBAPDw8GDp0KGlpaT1drF7F4XDw17/+lfj4eIxGIwkJCTz99NPIstzTRTujbdiwgTlz5hAREYEkSXz77bcdnlcUhSeffJKIiAiMRiNTpkwhOzv7lJVPhKEesGTJEu655x4ee+wx0tPTmThxIjNnzqSkpKSni9ZrrF+/ngULFrB161bWrl2Lw+Fg2rRptLa29nTReq0dO3bw/vvvM3jw4J4uSq/U0NDA+PHj0Wq1rFy5kpycHF5++WX8/Px6umi9yuLFi3n33Xd588032bt3Ly+88AIvvvgib7zxRk8X7YzW2trKkCFDePPNN7t8/oUXXuCVV17hzTffZMeOHYSFhXH++ee71wc96RThlBs9erRy2223ddjWv39/5eGHH+6hEvV+1dXVCqCsX7++p4vSKzU3Nyv9+vVT1q5dq0yePFm5++67e7pIvc5DDz2kTJgwoaeL0evNnj1bueGGGzpsu/TSS5Vrrrmmh0rU+wDKN998434sy7ISFhamPP/88+5tFotF8fX1Vd59991TUiZRM3SK2Ww20tLSmDZtWoft06ZNY/PmzT1Uqt6vqakJgICAgB4uSe+0YMECZs+ezXnnndfTRem1li5dysiRI5k3bx4hISEMGzaMf/zjHz1drF5nwoQJ/Pjjj+Tn5wOwe/dufvnlF2bNmtXDJeu9ioqKqKys7PC5qNfrmTx58in7XBQLtZ5itbW1OJ1OQkNDO2wPDQ2lsrKyh0rVuymKwn333ceECRMYNGhQTxen1/niiy/YtWsXO3bs6Omi9Gr79+/nnXfe4b777uPRRx9l+/btLFy4EL1ez5///OeeLl6v8dBDD9HU1ET//v1Rq9U4nU6effZZrrzyyp4uWq91+LOvq8/F4uLiU1IGEYZ6iCRJHR4ritJpm9A97rzzTjIzM/nll196uii9zsGDB7n77rtZs2YNBoOhp4vTq8myzMiRI3nuuecAGDZsGNnZ2bzzzjsiDHWjJUuW8Omnn/Kf//yHgQMHkpGRwT333ENERATXXXddTxevV+vJz0URhk6xoKAg1Gp1p1qg6urqTqlY+OPuuusuli5dyoYNG4iKiurp4vQ6aWlpVFdXM2LECPc2p9PJhg0bePPNN7FarajV6h4sYe8RHh5OcnJyh20DBgzgq6++6qES9U4PPvggDz/8MFdccQUAKSkpFBcXs2jRIhGGTpKwsDDAVUMUHh7u3n4qPxdFn6FTTKfTMWLECNauXdth+9q1axk3blwPlar3URSFO++8k6+//pqffvqJ+Pj4ni5SrzR16lT27NlDRkaG+2vkyJFcffXVZGRkiCDUjcaPH99peoj8/HxiY2N7qES9U1tbGypVx49GtVothtafRPHx8YSFhXX4XLTZbKxfv/6UfS6KmqEecN9993HttdcycuRIxo4dy/vvv09JSQm33XZbTxet11iwYAH/+c9/+O677/D29nbXxPn6+mI0Gnu4dL2Ht7d3p35Ynp6eBAYGiv5Z3ezee+9l3LhxPPfcc1x++eVs376d999/n/fff7+ni9arzJkzh2effZaYmBgGDhxIeno6r7zyCjfccENPF+2M1tLSQkFBgftxUVERGRkZBAQEEBMTwz333MNzzz1Hv3796NevH8899xweHh5cddVVp6aAp2TMmtDJW2+9pcTGxio6nU4ZPny4GPLdzYAuvz788MOeLlqvJ4bWnzzLli1TBg0apOj1eqV///7K+++/39NF6nVMJpNy9913KzExMYrBYFASEhKUxx57TLFarT1dtDPazz//3OV78nXXXacoimt4/RNPPKGEhYUper1emTRpkrJnz55TVj5JURTl1MQuQRAEQRCE04/oMyQIgiAIwllNhCFBEARBEM5qIgwJgiAIgnBWE2FIEARBEISzmghDgiAIgiCc1UQYEgRBEAThrCbCkCAIgiAIZzURhgRB4MCBA0iSREZGRk8XxS03N5cxY8ZgMBgYOnRol/soisItt9xCQEDAaVf+nrRu3TokSaKxsfGo+3z00Uf4+fmdsjL9WlxcHK+99lqPXV8QjiTCkCCcBubPn48kSTz//PMdtn/77benbNXm080TTzyBp6cneXl5/Pjjj13us2rVKj766COWL19ORUVFty0BMn/+fC6++OJuOVdvIgKM0FuJMCQIpwmDwcDixYtpaGjo6aJ0G5vN9ruPLSwsZMKECcTGxhIYGHjUfcLDwxk3bhxhYWFoNKfXcotOp1Ms8CkIZwARhgThNHHeeecRFhbGokWLjrrPk08+2anJ6LXXXiMuLs79+HCtxnPPPUdoaCh+fn489dRTOBwOHnzwQQICAoiKiuJf//pXp/Pn5uYybtw4DAYDAwcOZN26dR2ez8nJYdasWXh5eREaGsq1115LbW2t+/kpU6Zw5513ct999xEUFMT555/f5X3IsszTTz9NVFQUer2eoUOHsmrVKvfzkiSRlpbG008/jSRJPPnkk53OMX/+fO666y5KSkqQJMn9GiiKwgsvvEBCQgJGo5EhQ4bwv//9z32c0+nkxhtvJD4+HqPRSFJSEq+//nqH1/jjjz/mu+++Q5IkJEli3bp1XTY9ZWRkIEkSBw4cANqbnpYvX05ycjJ6vZ7i4mJsNht/+ctfiIyMxNPTk9TU1A6vbXFxMXPmzMHf3x9PT08GDhzI999/3+VrB/Dpp58ycuRIvL29CQsL46qrrqK6urrTfps2bWLIkCEYDAZSU1PZs2fPUc9ZWFjIRRddRGhoKF5eXowaNYoffvjB/fyUKVMoLi7m3nvvdb8uh23evJlJkyZhNBqJjo5m4cKFtLa2up+vrq5mzpw5GI1G4uPj+eyzz45aDkHoCSIMCcJpQq1W89xzz/HGG29QWlr6h871008/UV5ezoYNG3jllVd48sknueCCC/D392fbtm3cdttt3HbbbRw8eLDDcQ8++CD3338/6enpjBs3jgsvvJC6ujoAKioqmDx5MkOHDmXnzp2sWrWKqqoqLr/88g7n+Pjjj9FoNGzatIn33nuvy/K9/vrrvPzyy7z00ktkZmYyffp0LrzwQvbt2+e+1sCBA7n//vupqKjggQce6PIchwNVRUUFO3bsAOCvf/0rH374Ie+88w7Z2dnce++9XHPNNaxfvx5wBbGoqCi+/PJLcnJy+L//+z8effRRvvzySwAeeOABLr/8cmbMmEFFRQUVFRWMGzfuuF/7trY2Fi1axAcffEB2djYhISFcf/31bNq0iS+++ILMzEzmzZvHjBkz3Pe7YMECrFYrGzZsYM+ePSxevBgvL6+jXsNms/HMM8+we/duvv32W4qKipg/f36n/R588EFeeuklduzYQUhICBdeeCF2u73Lc7a0tDBr1ix++OEH0tPTmT59OnPmzKGkpASAr7/+mqioKJ5++mn36wKwZ88epk+fzqWXXkpmZiZLlizhl19+4c4773Sfe/78+Rw4cICffvqJ//3vf7z99ttdhjdB6DGnbElYQRCO6rrrrlMuuugiRVEUZcyYMcoNN9ygKIqifPPNN8qRv6ZPPPGEMmTIkA7Hvvrqq0psbGyHc8XGxipOp9O9LSkpSZk4caL7scPhUDw9PZXPP/9cURRFKSoqUgDl+eefd+9jt9uVqKgoZfHixYqiKMrjjz+uTJs2rcO1Dx48qABKXl6eoiiuFeuHDh36m/cbERGhPPvssx22jRo1Srnjjjvcj4cMGaI88cQTxzzPr++9paVFMRgMyubNmzvsd+ONNypXXnnlUc9zxx13KJdddpn78ZH/H4cdXnW7oaHBvS09PV0BlKKiIkVRFOXDDz9UACUjI8O9T0FBgSJJklJWVtbhfFOnTlUeeeQRRVEUJSUlRXnyySePea/Hsn37dgVQmpubO5T1iy++cO9TV1enGI1GZcmSJe6y+vr6HvO8ycnJyhtvvOF+HBsbq7z66qsd9rn22muVW265pcO2jRs3KiqVSjGbzUpeXp4CKFu3bnU/v3fvXgXodC5B6CmnVwO7IAgsXryYc889l/vvv/93n2PgwIGoVO0Vv6GhoR06F6vVagIDAzv9dT527Fj39xqNhpEjR7J3714A0tLS+Pnnn7ussSgsLCQxMRGAkSNHHrNsJpOJ8vJyxo8f32H7+PHj2b1793HeYddycnKwWCydmudsNhvDhg1zP3733Xf54IMPKC4uxmw2Y7PZjjpi7UTpdDoGDx7sfrxr1y4URXG/PodZrVZ3X6iFCxdy++23s2bNGs477zwuu+yyDuf4tfT0dJ588kkyMjKor69390sqKSkhOTnZvd+R/58BAQEkJSW5/z9/rbW1laeeeorly5dTXl6Ow+HAbDa7a4aOJi0tjYKCgg5NX4qiIMsyRUVF5Ofnu3+WDuvfv3+PjmQThF8TYUgQTjOTJk1i+vTpPProo52aPlQqFYqidNjWVbOHVqvt8FiSpC63HU/n3sN9Q2RZZs6cOSxevLjTPuHh4e7vPT09f/OcR573MEVR/vDIucP3s2LFCiIjIzs8p9frAfjyyy+59957efnllxk7dize3t68+OKLbNu27ZjnPhwuj3z9u3rtjUZjh/uQZRm1Wk1aWhpqtbrDvoeD5U033cT06dNZsWIFa9asYdGiRbz88svcddddnc7f2trKtGnTmDZtGp9++inBwcGUlJQwffr04+qwfrTX+MEHH2T16tW89NJL9O3bF6PRyNy5c3/znLIsc+utt7Jw4cJOz8XExJCXl3fM6wrC6UCEIUE4DT3//PMMHTq0U21CcHAwlZWVHYJDd86ts3XrViZNmgSAw+EgLS3N3fdj+PDhfPXVV8TFxf2hUVs+Pj5ERETwyy+/uK8Frk64o0eP/kPlP9xpuaSkhMmTJ3e5z8aNGxk3bhx33HGHe1thYWGHfXQ6HU6ns8O24OBgwNWfyd/fHzi+137YsGE4nU6qq6uZOHHiUfeLjo529+V65JFH+Mc//tFlGMrNzaW2tpbnn3+e6OhoAHbu3NnlObdu3UpMTAwADQ0N5Ofn079//y733bhxI/Pnz+eSSy4BXH2IDncMP6yr12X48OFkZ2fTt2/fLs87YMAAHA4HO3fudP//5uXlHXMOJEE41UQHakE4DaWkpHD11VfzxhtvdNg+ZcoUampqeOGFFygsLOStt95i5cqV3Xbdt956i2+++Ybc3FwWLFhAQ0MDN9xwA+Dq5FtfX8+VV17J9u3b2b9/P2vWrOGGG27o9AH5Wx588EEWL17MkiVLyMvL4+GHHyYjI4O77777D5Xf29ubBx54gHvvvZePP/6YwsJC0tPTeeutt/j4448B6Nu3Lzt37mT16tXk5+fz+OOPuztfHxYXF0dmZiZ5eXnU1tZit9vp27cv0dHRPPnkk+Tn57NixQpefvnl3yxTYmIiV199NX/+85/5+uuvKSoqYseOHSxevNg9Yuyee+5h9erVFBUVsWvXLn766ScGDBjQ5fliYmLQ6XS88cYb7N+/n6VLl/LMM890ue/TTz/Njz/+SFZWFvPnzycoKOio8yf17duXr7/+moyMDHbv3s1VV13VqeYwLi6ODRs2UFZW5h5F+NBDD7FlyxYWLFhARkYG+/btY+nSpe4gl5SUxIwZM7j55pvZtm0baWlp3HTTTRiNxt987QThVBFhSBBOU88880ynJrEBAwbw9ttv89ZbbzFkyBC2b9/e5Uir3+v5559n8eLFDBkyhI0bN/Ldd98RFBQEQEREBJs2bcLpdDJ9+nQGDRrE3Xffja+vb4f+Scdj4cKF3H///dx///2kpKSwatUqli5dSr9+/f7wPTzzzDP83//9H4sWLWLAgAFMnz6dZcuWER8fD8Btt93GpZdeyp/+9CdSU1Opq6vrUEsEcPPNN5OUlMTIkSMJDg5m06ZNaLVaPv/8c3JzcxkyZAiLFy/mb3/723GV6cMPP+TPf/4z999/P0lJSVx44YVs27bNXbPjdDpZsGABAwYMYMaMGSQlJfH22293ea7g4GA++ugj/vvf/5KcnMzzzz/PSy+91OW+zz//PHfffTcjRoygoqKCpUuXotPputz31Vdfxd/fn3HjxjFnzhymT5/O8OHDO+zz9NNPc+DAAfr06eOuKRs8eDDr169n3759TJw4kWHDhvH44493aDr98MMPiY6OZvLkyVx66aXccssthISEHNdrJwingqT8+t1WEARBEAThLCJqhgRBEARBOKuJMCQIgiAIwllNhCFBEARBEM5qIgwJgiAIgnBWE2FIEARBEISzmghDgiAIgiCc1UQYEgRBEAThrCbCkCAIgiAIZzURhgRBEARBOKuJMCQIgiAIwllNhCFBEARBEM5qIgwJgiAIgnBW+3+pZDcdX/SWTAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAHFCAYAAABcueVqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADaPklEQVR4nOzdd3RU1drA4d9MpqRPem/0ktBBehMQlKKCoiIoFkTxqgg2rOCHcMHeFUVARBHFhgKCSFM60ntv6b3OZMr+/oiZy5AAARJC4H3WmgVzzj777DPlzJtdNUophRBCCCGEqDba6i6AEEIIIcS1TgIyIYQQQohqJgGZEEIIIUQ1k4BMCCGEEKKaSUAmhBBCCFHNJCATQgghhKhmEpAJIYQQQlQzCciEEEIIIaqZBGRCCCGEENWsRgdk7733HhqNhoSEhHL3Hz16FI1GwxtvvHHevGbOnIlGo+Ho0aMXXI41a9Ywfvx4srOzy+zr1q0b3bp1u+A8rwZxcXEMHz78oo7VaDSMHz++UstzLvv27cPT05MhQ4aU2ZeVlUVkZCRt27bFbre77Pvrr7+46667iImJwWg04uXlRXx8PGPHjmXv3r0uaYcPH45Go3E+3NzciIqKYvDgwezcufOCyxwXF+eSn5eXFy1btuSDDz5AFuCofKe/1ud6rFix4pLOM378eDQaTeUUuoJWrFhRKWWvLklJSbz44ou0b9+eoKAgfH19adWqFdOmTSvznQXYsGEDvXv3xsfHB29vb7p3787ff/9dbt5Wq5W33nqLJk2a4OHhgZ+fHx06dGDNmjUXVMbS36OKPC7md+hMiYmJjB8/nq1bt15yXqWq47NZ2V588UX69etHZGQkGo2mwr9RQ4cORaPR0K9fv3L3p6en88QTTxAXF4fRaCQ0NJQbb7yRzMzMCpdNV+GUV6AvvvgCgF27drF+/Xratm1bLeVYs2YNEyZMYPjw4fj5+bns++ijj6qlTOLCNGjQgEmTJvHkk08yaNAgBg0a5Nw3atQoMjMzWbZsGW5ubs7tL774Iq+99hrt27fnxRdfpF69ethsNrZv386sWbN46623sNlsLsd4eHjw559/AmCz2Th48CATJ06kQ4cO7Nmzh8jIyAsqd8eOHZ1/cCQmJvLWW2/x2GOPkZuby/PPP38pL4k4w9q1a12e/9///R/Lly93vp+lGjdufEnnefDBB+nTp88l5XGhWrZsydq1ay+57NVl8+bNfPnll9xzzz289NJL6PV6Fi1axCOPPMK6deucvxUAGzdupEuXLlx33XXMnj0bpRRTp06lR48eLF++nPbt2zvT2u12br31Vv766y+eeeYZOnToQEFBAZs3b6agoOCCyhgeHl7mMzRq1ChycnKYM2dOmbSXKjExkQkTJhAXF0fz5s0vOT+ons9mZXv77bdp2rQpAwYMcPlcnMtvv/3GTz/9hK+vb7n7ExMT6dy5Mzqdjpdeeol69eqRnp7O8uXLKS4urnjhVA21ceNGBai+ffsqQI0YMaJMmiNHjihAvf766+fNb8aMGQpQR44cueCyvP766xd97NUsNjZW3XvvvRd1LKBeeeWVSi3P+TgcDtWlSxcVHBysUlJSlFJKzZs3TwHqzTffdEn79ddfK0A9/PDDyuFwlJvXBx98oGw2m3Pbvffeq7y8vMqkXbZsmQLUp59+ekHljY2NVX379nXZlpOTo0wmk4qJibmgvCpDYWFhua/FlcrhcKjCwsKLPv5s7+eZCgoKLvocomIyMzNVcXFxme2PPvqoAtTx48ed23r37q1CQ0Nd3pfc3FwVFBSkOnTo4HL822+/rbRarVq7dm2VlLtr164qPj6+SvIu/Y2cMWNGleRfU9ntduf/vby8zvsblZ2drSIjI9Vbb71V7j1XKaVuvvlmFRkZqTIzMy+pbDW2yXL69OkA/Pe//6VDhw7MnTuXwsLCctM6HA5ee+01YmJicHd3p3Xr1ixbtuy851i6dCk333wzUVFRuLu7U7duXUaOHEl6erozzfjx43n66acBqFWrVplmi/KaLDMzMxk1ahSRkZEYDAZq167NCy+8gMVicUmn0Wj4z3/+w+zZs2nUqBGenp40a9aMX3/99bxlL22C+Prrr3n22WcJDw/H29ub/v37k5KSQl5eHg899BBBQUEEBQVx3333kZ+f75KH2Wxm3Lhx1KpVC4PBQGRkJI8++miZplmr1cozzzxDWFgYnp6edOrUiQ0bNpRbruTkZEaOHElUVBQGg4FatWoxYcIEbDbbea+pqmk0GmbMmEFhYSEPP/wwycnJPPLII3Tu3JnRo0e7pJ04cSJBQUG8/fbb5VbhazQaHn30UZfasbMxmUwA6PX6S74GX19f6tevT0pKisv24uJiJk6cSMOGDTEajQQHB3PfffeRlpbmks5isTB27Fjne9mlSxc2b95cpvm5tIl/yZIl3H///QQHB+Pp6en8DH/77be0b98eLy8vvL296d27N1u2bHE51+HDh7nzzjuJiIhwVvH36NHDpYnlzz//pFu3bgQGBuLh4UFMTAyDBg1y+a5f6Pfpk08+oVGjRhiNRmbNmnUpL3cZ3bp1IyEhgVWrVtGhQwc8PT25//77na/JDTfcQHh4OB4eHjRq1IjnnnuuTE1Lec1CcXFx9OvXj8WLF9OyZUs8PDxo2LBhhf/C//jjj2nWrBne3t74+PjQsGFDlxrUM5ssz9e8dro//viDHj164Ovri6enJx07dqzQ/bUy+fv7l/v9ue666wA4efKkc9vff/9Nt27d8PT0dG7z8fGhS5curFmzhqSkJOf2d999ly5dutCuXbsqLL2r3NxcnnrqKZf77ujRo8t8Tr777jvatm2LyWTC09OT2rVrOz9rK1asoE2bNgDcd999zvftXN1ACgsLned1d3cnICCA1q1b88033zjTnPnZLL0PlPc4/XdPKcVHH31E8+bN8fDwwN/fn9tuu43Dhw9Xwit2YbTaCwt7xo4dS3h4OI8//ni5+48ePcovv/zCiBEj8Pf3v6Sy1cgmy6KiIr755hvatGlDQkIC999/Pw8++CDfffcd9957b5n0H3zwAbGxsbzzzjs4HA6mTp3KjTfeyMqVK12qp8906NAh2rdvz4MPPojJZOLo0aO89dZbdOrUiR07dqDX63nwwQfJzMzk/fff54cffnBWNZ+t6t9sNtO9e3cOHTrEhAkTaNq0KatXr2by5Mls3bqV3377zSX9b7/9xsaNG3n11Vfx9vZm6tSp3Hrrrezbt4/atWuf97V6/vnn6d69OzNnzuTo0aM89dRT3HXXXeh0Opo1a8Y333zDli1beP755/Hx8eG9994DSr5At9xyC8uWLWPcuHF07tyZ7du388orr7B27VrWrl2L0WgEYMSIEXz55Zc89dRT9OrVi507dzJw4EDy8vJcypKcnMx1112HVqvl5Zdfpk6dOqxdu5aJEydy9OhRZsyYcd7rOZPdbq9QfymtVluhL2Lt2rV5/fXXGTVqFNu3b8dsNjNjxgyXYxMTE9m9ezd33XUX7u7uF1zm0uCztMny6aefxt/fn759+15wXuXlfeLECerXr+/c5nA4uPnmm1m9erWz2eXYsWO88sordOvWjU2bNuHh4QGU3Ly//fZbnnnmGa6//np2797NrbfeSm5ubrnnu//+++nbty+zZ8+moKAAvV7PpEmTePHFF7nvvvt48cUXKS4u5vXXX6dz585s2LDB+d246aabsNvtTJ06lZiYGNLT01mzZo0z4D969Ch9+/alc+fOfPHFF/j5+XHq1CkWL15McXExnp6eF/x9+umnn1i9ejUvv/wyYWFhhISEXPJrfqakpCSGDh3KM888w6RJk5yfnQMHDnDTTTcxevRovLy82Lt3L1OmTGHDhg1lmj3Ls23bNsaOHctzzz1HaGgon3/+OQ888AB169alS5cuZz1u7ty5jBo1iscee4w33ngDrVbLwYMH2b1791mPKa95LS0tjaFDh7o0q3/11Vfcc8893HzzzcyaNQu9Xs+nn35K7969+f333+nRo8c5r6mif4i5ubldVN+lP//8E51O5/J9KC4udt67Tle6bceOHYSHh3PixAmOHj1K//79ef7555k+fToZGRk0aNCAZ555ptzfmktVWFhI165dOXnyJM8//zxNmzZl165dvPzyy+zYsYM//vgDjUbD2rVrueOOO7jjjjsYP3487u7uHDt2zPk5atmyJTNmzHB+B0vvLVFRUWc995gxY5g9ezYTJ06kRYsWFBQUsHPnTjIyMs56TN++fct8TtauXcuYMWOIj493bhs5ciQzZ87k8ccfZ8qUKWRmZvLqq6/SoUMHtm3bRmho6FnPoZQqtx9geXS6yg1p/vjjD7788ks2btx41j+uV69ejVKKiIgI7rrrLhYsWIDNZqNdu3ZMnjz5nDFGGZdUv1ZNvvzySwWoTz75RCmlVF5envL29ladO3d2SVfaZBkREaGKioqc23Nzc1VAQIDq2bOnc9v5miwdDoeyWq3q2LFjClA///yzc9+5miy7du2qunbt6nz+ySefKEDNmzfPJd2UKVMUoJYsWeLcBqjQ0FCVm5vr3JacnKy0Wq2aPHny2V8gpdTy5csVoPr37++yffTo0QpQjz/+uMv2W265RQUEBDifL168WAFq6tSpLum+/fZbBahp06YppZTas2ePAtSTTz7pkm7OnDkKcKkOHjlypPL29lbHjh1zSfvGG28oQO3atcvl2ivSZBkbG6uA8z4upPnT4XCohg0bKkC98cYbZfavW7dOAeq5554rs89msymr1ep8nN6Ed++995ZbtvDwcPXXX39VuHynX/tNN93kPNexY8fUiBEjlF6vV7/++qsz3TfffKMANX/+fJfjS5s0PvroI6WUUrt27VKAevbZZ13SlR5/+ntZ+n255557XNIeP35c6XQ69dhjj7lsz8vLU2FhYWrw4MFKKaXS09MVoN55552zXt/333+vALV169azprnQ75PJZLrkZoVS5TVZdu3aVQFq2bJl5zy29H6ycuVKBaht27Y5973yyivqzFtzbGyscnd3d/nuFBUVqYCAADVy5Mhznus///mP8vPzO2ea0vvF8uXLy91fUFCgrrvuOhUeHq6OHj3q3BYQEFDmHmO321WzZs3Uddddd85zKqUq9N3lIpvdfv/9d6XVasvcm5o3b67q16/v0nRltVpV7dq1FaC+/vprpZRSa9euVYDy9fVVjRs3VvPmzVO///67uu2221zugZfizCbLyZMnK61WqzZu3OiSrvS7sHDhQqXU/+6Z2dnZZ837QpssExIS1C233HLONOV9Nk+3d+9eFRgYqLp3764sFotS6n+v45ndPk6cOKE8PDzUM888c85zln42K/K40G5D52qyzMvLU3FxcWrcuHHObeU1WU6ePNn5Obn55pvV4sWL1fz581XTpk2Vu7u7y3f7fGpkk+X06dPx8PDgzjvvBMDb25vbb7+d1atXc+DAgTLpBw4c6FKT4ePjQ//+/Vm1atU5I+/U1FQefvhhoqOj0el06PV6YmNjAdizZ89Flf3PP//Ey8uL2267zWV7aXPQmVX93bt3x8fHx/k8NDSUkJAQjh07VqHznTkipFGjRgBlamMaNWpEZmams9my9C+tM0eg3H777Xh5eTnLuXz5cgDuvvtul3SDBw8u89fKr7/+Svfu3YmIiMBmszkfN954IwArV66s0DWdbsGCBWzcuPG8j4ceeqjCeS5evJi9e/ei1Wr5448/Lqg8gYGB6PV652P+/Pku+z08PJxlWr9+PT/88AP169fnpptuKvOXZkUsXLjQea7Y2Fg+++wz3n//fZf399dff8XPz4/+/fu7vO7NmzcnLCzM2UxV+voPHjzY5Ry33XbbWf/yPH3wA8Dvv/+OzWbjnnvucTmXu7s7Xbt2dZ4rICCAOnXq8Prrr/PWW2+xZcsWHA6HS17NmzfHYDDw0EMPMWvWrHKbNy70+3T99ddfcrPC+fj7+3P99deX2X748GGGDBlCWFgYbm5u6PV6unbtClTsftK8eXNiYmKcz93d3alfv/557wXXXXcd2dnZ3HXXXfz8888uXS4qwm63c8cdd7Bnzx4WLlzovAeuWbOGzMxM7r33Xpf32uFw0KdPHzZu3Hjeju8V+e5u3LiR/v37X1CZ//nnHwYPHuyspTjdY489xv79+/nPf/7DqVOnOHHiBA8//LDzdSyt0Sz9PJrNZhYuXMjtt9/ODTfcwLx582jZsiWvvvrqBZWpIn799VcSEhJo3ry5y2vau3dvlybl0ubIwYMHM2/ePE6dOnXJ577uuutYtGgRzz33HCtWrKCoqOiCjk9OTqZPnz6Eh4fz448/YjAYnNek0WgYOnSoyzWFhYXRrFmz847sbdWqVYU/JxERERd7+WU899xz6PV6Xn755XOmK/2cREVFMX/+fHr37s3AgQNZvHgxWq2WqVOnVvicNa7J8uDBg6xatYpBgwahlHI2b9x2223MmDGDL774oswXMCwsrEw+YWFhFBcXk5+f7+zDczqHw8ENN9xAYmIiL730Ek2aNMHLywuHw0G7du0u+MNaKiMjg7CwsDLV7yEhIeh0ujLVw4GBgWXyMBqNFT5/QECAy/PSL8nZtpvNZry9vcnIyECn0xEcHOySTqPREBYW5ixn6b9nvsY6na5M2VNSUliwYMFZ+0pd6A8FlDQNqwo2WVZEdnY2Dz74IG3atOGhhx5ixIgRTJ8+nQceeMCZJjo6GqDcH8IVK1Zgs9nYvHkzDz/8cLnlaN26tcu23r17Ex0dzZgxYy44KOvUqRNvv/02drudAwcO8NJLL/Gf//yH+Ph4OnXqBJS87tnZ2c73+Eylr3vpe3lm80F572WpM0eDlfZdK/3BOFPp+6DRaFi2bBmvvvoqU6dOZezYsQQEBHD33Xfz2muv4ePjQ506dfjjjz+YOnUqjz76KAUFBdSuXZvHH3+cJ554wlnmC/k+VcbotfMp7xz5+fl07twZd3d3Jk6cSP369fH09OTEiRMMHDiwQt/ni70XDBs2DJvNxmeffcagQYNwOBy0adOGiRMn0qtXr/Oe9+GHH2bx4sX89ttvLqP1St/rM4Ph02VmZuLl5XXW/RUd/VeRvpiltmzZQq9evahXrx4LFy4s0zx5//33k5aWxsSJE/n4448BaN++PU899RRTpkxxNsmWvt4NGzZ0BqFQ8tnt3bs3kydPJjU1tVKbvVNSUjh48OB575FdunThp59+4r333uOee+7BYrEQHx/PCy+8wF133XVR537vvfeIiori22+/ZcqUKbi7u9O7d29ef/116tWrd85j8/LyuOmmm7BarSxatMjlNzUlJQWl1FmbJc/X9cbb27vCn5PKarLcsGEDH330ET/88ANmsxmz2QyUxAU2m43s7Gw8PDwwGo3Oz0nPnj1dPqfh4eE0a9aMf/75p8LnrXEB2RdffIFSiu+//57vv/++zP5Zs2YxceJElxcmOTm5TLrk5GQMBgPe3t7lnmfnzp1s27aNmTNnuvQVOHjw4CWVPzAwkPXr16OUcvkRSU1NxWazERQUdEn5V5bAwEBsNhtpaWkuQZlSiuTkZOcPbumHMTk52aVvic1mK/NjGBQURNOmTXnttdfKPefF/HVTp06dCtUWvvLKKxWa1+yxxx4jMzOTP/74g0aNGvHjjz8yZswYevfu7ex/ERERQXx8PEuXLsVsNrvUvpbeOM4cIHEunp6e1KlTh23btlX4mFImk8kZ4LVt25a2bdvSrFkzRo0axdatW9FqtQQFBREYGMjixYvLzaO0Brb0vUxJSTnve1nqzECo9PP7/fffu/yIlSc2NtY5OGf//v3MmzeP8ePHU1xczCeffAJA586d6dy5M3a7nU2bNvH+++8zevRoQkNDufPOOy/4+3Q55lAq7xx//vkniYmJrFixwlkrBpQ7d2FVuO+++7jvvvsoKChg1apVvPLKK/Tr14/9+/ef830aP348n3/+OTNmzOCGG25w2Vf62r7//vtn7fR+rr5BUPGBLDNmzKjQfFFbtmyhZ8+exMbGsmTJknL/2AZ49tlnGT16NAcOHMDHx4fY2FhGjhyJl5cXrVq1AkruLad3/D9d6R+BF9pB/HyCgoLw8PA462CN0z/PN998MzfffDMWi4V169YxefJkhgwZQlxc3IX1W/qXl5cXEyZMYMKECaSkpDhry/r3719mTsXTWa1WBg0axKFDh1i9enWZfmpBQUFoNBpWr159zr57Z7Ny5Uq6d+9eoWs4cuQIcXFxFUp7Lrt370Ypxa233lpm34kTJ/D39+ftt99m9OjRNG3a9Kz5KKUu6DNSowIyu93OrFmzqFOnDp9//nmZ/b/++itvvvkmixYtcmmq++GHH3j99dedP5x5eXksWLCAzp07n/Uvr9Kb6pkflk8//bRM2tI0Ffkrt0ePHsybN4+ffvrJ5c3+8ssvnfuvBD169GDq1Kl89dVXPPnkk87t8+fPp6CgwFnO0pE0c+bMcd7IAObNm1emw26/fv1YuHAhderUqbRmowULFpQZTVeeigR7P//8M1999RWvv/66s2l32rRpJCQkMGLECBYtWuRM+8ILLzBkyBDGjBnDhx9+eEk/9Pn5+Rw8eLBS/tKuV68ezzzzDBMmTODbb7/lrrvuol+/fsydOxe73X7OufpKO4Z/++23tGzZ0rn9+++/r3Dn6969e6PT6Th06FCZ5sxzqV+/Pi+++CLz588v9y9KNzc32rZtS8OGDZkzZw7//PMPd955Z435Pl3I/aQqeXl5ceONN1JcXMwtt9zCrl27zhqQTZ8+nQkTJvDqq6+WGwx17NgRPz8/du/ezX/+85+LKs/GjRsrlK5WrVrnTbN161Z69uxJVFQUS5cuPe89xmg0OicVP378ON9++y0jRoxwDnDR6XTcfPPNfP/99xw9etT5Q6+UYvHixdSpU6fS/4Du168fkyZNIjAwsELXXHodXbt2xc/Pj99//50tW7bQvn37C/pdOlNoaCjDhw9n27ZtvPPOOxQWFp41OH3ggQdYsWIFixYtKjc46devH//97385depUme4QFVHaZFkRldVk2adPH2d3nNPdeeed1KpVi8mTJ1O3bl2g5A/hqKgolixZgt1ud8YUiYmJbNu2rdzJxs+mRgVkixYtIjExkSlTppQ7+31CQgIffPAB06dPdwnI3Nzc6NWrF2PGjMHhcDBlyhRyc3OZMGHCWc/VsGFD6tSpw3PPPYdSioCAABYsWMDSpUvLpG3SpAlQMkT63nvvRa/X06BBA5e+X6XuuecePvzwQ+69916OHj1KkyZN+Ouvv5g0aRI33XQTPXv2vIhXpvL16tWL3r178+yzz5Kbm0vHjh2doyxbtGjBsGHDgJK+Z0OHDuWdd95Br9fTs2dPdu7cyRtvvFFmEr1XX32VpUuX0qFDBx5//HEaNGiA2Wzm6NGjLFy4kE8++eSco4DKU/raX6r09HRGjhxJhw4dGDNmjHN7ZGQkb7/9Nvfdd59L0+Vdd93Frl27eO2119i2bRvDhw+nXr16OBwOTpw4wezZswHKfAYcDgfr1q1z/v/UqVO89957ZGVlVdrKBE899RSffPIJEyZMYPDgwdx5553MmTOHm266iSeeeILrrrsOvV7PyZMnWb58OTfffDO33nor8fHx3HXXXbz55pu4ublx/fXXs2vXLt58801MJlOF/tKLi4vj1Vdf5YUXXuDw4cP06dMHf39/UlJS2LBhg/Ov8O3bt/Of//yH22+/nXr16mEwGPjzzz/Zvn07zz33HACffPIJf/75J3379iUmJgaz2eysOSj9nlTW92n48OHMmjWr0v7CPlOHDh3w9/fn4Ycf5pVXXkGv1zNnzpyLqhW9UKVBRseOHQkPDyc5OZnJkydjMpnO2rS8du1aHn74YTp27EivXr2cn9lS7dq1w9vbm/fff597772XzMxMbrvtNkJCQkhLS2Pbtm2kpaU5mwTP5szm+4u1b98+53v92muvceDAAZf+xHXq1HHW9O/cuZP58+fTunVrjEYj27Zt47///S/16tXj//7v/1zy/b//+z8WLVpEnz59GD9+PL6+vnz++eds27aNefPmuaTt1q0bK1euvKRVMkaPHs38+fPp0qULTz75JE2bNsXhcHD8+HGWLFnC2LFjadu2LS+//DInT56kR48eREVFkZ2dzbvvvuvSL7FOnTp4eHgwZ84cGjVqhLe3NxEREWcNWtq2bUu/fv1o2rQp/v7+7Nmzh9mzZ9O+ffuzBmOvv/46s2fP5rHHHsPLy8vlc+Lr60vjxo3p2LEjDz30EPfddx+bNm2iS5cueHl5kZSUxF9//UWTJk145JFHzvqa+Pj4VNrnBEpq3Eqn+7Hb7Rw7dszZ2ta1a1eCg4MJCwsrt6uTu7s7gYGBLvGHVqvl7bffZvDgwdx888088sgjFBQU8H//938YDAbGjRtX8cJVuPv/FeCWW25RBoNBpaamnjXNnXfeqXQ6nUpOTnaOspwyZYqaMGGCioqKUgaDQbVo0UL9/vvvLseVN8py9+7dqlevXsrHx0f5+/ur22+/XR0/frzcUXvjxo1TERERSqvVuoxWOnOUpVJKZWRkqIcffliFh4crnU6nYmNj1bhx45TZbHZJB6hHH320zDVWZMLV0pEp3333XbnXeeYontLRM2lpac5tRUVF6tlnn1WxsbFKr9er8PBw9cgjj6isrCyXYy0Wixo7dqwKCQlR7u7uql27dmrt2rXlljMtLU09/vjjqlatWkqv16uAgADVqlUr9cILL6j8/HyXa7+cE8PefvvtytPTU+3fv7/c/TfddJPy9fV1mWBSKaVWrVql7rjjDhUVFaX0er3y9PRUjRs3Vo888ojatGmTS9ryRlmGhISorl27qh9//PGCy3y2SQqVUurDDz9UgJo1a5ZSqmQU2RtvvKGaNWum3N3dlbe3t2rYsKEaOXKkOnDggPM4s9msxowZU+a9NJlMLqPVzvY5KvXTTz+p7t27K19fX2U0GlVsbKy67bbb1B9//KGUUiolJUUNHz5cNWzYUHl5eSlvb2/VtGlT9fbbbzsn0127dq269dZbVWxsrDIajSowMFB17dpV/fLLLy7nutTvk1JKDRo0SHl4eJT5bJ/L2UZZnm2izzVr1qj27dsrT09PFRwcrB588EH1zz//lBkJd7ZRluW91+XdX840a9Ys1b17dxUaGqoMBoOKiIhQgwcPVtu3b3emOXOUZen7e7bH6VauXKn69u2rAgIClF6vV5GRkapv375l7j1V6XzlPf313bdvn+rSpYsKCAhQBoNB1a1bV7344osu95/T7dixQ/Xt21f5+Pg4vxMLFiwok65Vq1YqLCzsgspd3uclPz9fvfjii6pBgwbKYDAok8mkmjRpop588kmVnJyslFLq119/VTfeeKOKjIxUBoNBhYSEqJtuukmtXr3aJa9vvvlGNWzYUOn1+vPeU5977jnVunVr5e/vr4xGo6pdu7Z68sknVXp6ujPNmZ/Ns40cB8p8Lr/44gvVtm1b5eXlpTw8PFSdOnXUPffcU+Y+WdVKR0KX9zjbKONS57rn/vTTT6pNmzbK3d1dmUwmNWDAAJeZAypCo5QseieEOLs1a9bQsWNH5syZc0HV7zVJWFgYw4YN4/XXX6/uoogaKC8vj4CAAN555x0effTR6i6OqKEkIBNCOC1dupS1a9fSqlUrPDw8nM05JpOJ7du3X9REuFe6Xbt20b59ew4fPnzFDKoRNctvv/3Go48+yv79+886mlmI85GATIgrzPk60Fd01YGLsX79esaOHcvu3bvJy8sjKCjIOcT/ckwZIYQQ1yoJyIS4wpxvxOa9997LzJkzL09hhBBCXBY1apSlENeC8w3xlmY1IYS4+kgNmRBCCCFENauRa1kKIYQQQlxNpMmyghwOB4mJifj4+FyW5VeEEEIIcemUUuTl5REREVFlA6IqgwRkFZSYmOhcVFoIIYQQNcuJEycueDWYy0kCsgoqXQLnxIkTZZYEEkIIIcSVKTc3l+jo6HKXM7ySSEBWQaXNlL6+vhKQCSGEEDXMld7d6MptTBVCCCGEuEZIQCaEEEIIUc0kIBNCCCGEqGYSkAkhhBBCVDMJyIQQQgghqpkEZEIIIYQQ1UwCMiGEEEKIaiYBmRBCCCFENZOATAghhBCimklAJoQQQghRzSQgE0IIIYSoZhKQCSGEEEJUMwnIhBBCCFFtlFIc37ufP+cvICstrbqLU2101V0AIYQQQlxdlFI4cnOxZWRgTU2jIDGN44eTycjMwlpUQHSBDp3dC4dvPH96byXbrZCBlrZsy/mDbvffVd3FrxYSkAkhhBDivJTDgT0nB3tGBrb0dGzpGdgzSv61ZWRgy0jHlpnPSX1Tjvk7KPLQUmwAi5uDQm0xdo0CA3jr3Glh7OjM16DRA5DtyKEoO6+6Lq/aSUAmhBBCXKOUw4E9OxtbWnpJcJWRUW6glZ9tJdesJcPHj/zAIMy+Ptg8DNgMWqw6B1qtL7d4dcbg70VtYKdhE6naHJdzaZQGL2XA065lt3UL2UYrNnd/fP0CaN6yA23bt8bNza16XogrgARkQgghxFVEORzYMzPLrcU6M9CyZ2bhcGgwu/tjdg8g19OfTD9fbJ5uGLRFtEpWuHk1xNKsJ1u8/iFDl3/amYqd/9MoDRg8AMhTRQRaPdFhx4KNPKMDc6A7fvXq0LZBM1pGRuFhkPDjTPKKCCGEEDWUslqxHD6MefcezLt3Y96zG8uevTgKCpxpbG5GzMYAHG56vPOOowE0Gi17WzxBastCzO5F2HQOLG52irUO53EaZaJjeDe0aAkH/DReZKoCvJU7nkqP3gEObORpC0nUF/B02BK0gUHUC6nDdZHX0z0mmmAfIxqN5vK/MDWQBGRCCCFEDeAoKsKybx/mPXucAZjlwAFU8f9qqjL9G5Ie0oX0AF8KvfQ4PLQovcKhc2DVKYrdHNyjOuFm1dNGafhTv5Mkt2yX8xiVDh/lgbvDjc3uu0j0SCdJn04yhRzHQabemxCvaBoE1qN1RAM6RUZSJ8QLo+7abW6sDBKQCSGEEFcYe07O/wKvPXsw79lN8eEj4PhfDZbZ6Ee2dyw6twwiYmvj1bgJJzJbccz4D5n6AsBabt5FFgfeaCjGir/DnVjlS4FbPhmGTI57JXPUUEiyw4jDGkKweyz1/BvTIqwhfSLDaBDmQ7CP8TK9CtcWCciEEEKIaqKUwpaahnn3Lsx79mD5Nwiznjrlks6OhnT/CNLC4sj19iFfmbHaM3Hz9kXr34KwsOuxpmtprAM7EWxVR/BVnng5DLgBNszk6fNJcU/j/4I+5pQxnXSlxV4cjN0Sio82ktp+HWgaUo8BkSE0DPOldrAXejeZrvRykYBMCCGEuAyUw4H1xImSGq9du/+t+dqDPSPDJZ1VqyXPyx1TQBB+DRtxMKATO0+dwpK3DKVJwehlRGsKx+wejk1TUmN2PCOZBo4IjhoT2em1mx1eezjhnkyWNh9lDcReHILDEorWFkGMphMtTXWIjwimUbgPDcN8CfAyVMdLIk4jAZkQQghRyVw62+/ZXdLf64zO9goo0uvI9fMmLyKKTB8TeXYLxdaSubh6PfQYod2vZ+f8rfhk2NAEdSDLaCNf4wBKAjEvZcRHY2Cl3zr+67OHkw4jDnMU9pxWBBbG0Ca4Do1jA2gY5kujcB/iAr3QSa3XFUmjlFLVXYiaIDc3F5PJRE5ODr6+vtVdHCGEEFeIMp3t9+zBsn+/S2d7u0ZDvrseg9YN/1p1UA2ac0jvx/Y9i8rNU+tlwq1uDAGaEFrnxaN1aPna+BdowFMZcddqOWrIZbWukCxrMPaiSALdw+lWP5RuDYLpWCcIf6n1AmrO77fUkAkhhBAVVJHO9hY3LXkeRvKCQygIDiTHqCPXUoRSijb9bqXlsAfYsz6RfdP/AbRo3ALRuAWDpzd6f08waMjWFBBcZKKbtSUAOW6F+GkC2YVitd2E2RKAm8WNljF+DG8QQtf6wTQO90WrlSkmaiqpIaugmhJhCyGEqBz27GyKduzAvHNnyRxfZ3S2V0CBQQ8aMHn74t64Mfbatfhh69/l5qfRG7E2D2JH4wJOJqbQcd/t2D2TCXbT4W43kEURNo3dmd5TGcHamNUOPbtQOIAQHyNd6wfTrUEIneoGYfLUV/GrUPPVlN9vqSETQghxzVM2G5YDByjato2irdso2raN4iNHnPttWg157gZyA30pCPQnz8eLHIcNm8NOnWataD1uPHkZZn79cCtoNqHReKBxC0brFozGLYRioyfbIjeyLWgZjY7V5ta8DnTwCGKHo5jjmnTyNCXNm0ZlpMgeyD92f3YqD9y0WlrF+TO2QTDdGpTUgslEq1enag/ITp06xbPPPsuiRYsoKiqifv36TJ8+nVatWgElQ4InTJjAtGnTyMrKom3btnz44YfEx8c787BYLDz11FN88803FBUV0aNHDz766COioqKcabKysnj88cf55ZdfABgwYADvv/8+fn5+l/V6hRBCVD9berpL8FW0cyeqsBAoqfkq1rlhBAyxsRgSEpifeAC7w35aBhYANG46UuyZ/HfDf9mTupfWyUMwmkaS45FJss8Rkn0Ok+m9ikYqkusLmtPtSB06WhrghTsAmW7FJGnyyHUEstHux2HlSYiPO13rBzOqYQgd6wZh8pBasGtBtQZkWVlZdOzYke7du7No0SJCQkI4dOiQS5A0depU3nrrLWbOnEn9+vWZOHEivXr1Yt++ffj4+AAwevRoFixYwNy5cwkMDGTs2LH069ePzZs3OxcqHTJkCCdPnmTx4sUAPPTQQwwbNowFCxZc9usWQghx+ajiYsx795YEX1u3UrRtm0vTo10DOR7uZEeGkBMaSAYOfP0DuXviG7j5+XFyXxYe775AYV4WaILQaP9X85XlXciMmNdhb0leKY1yMfvk0jigLt3N1+GbWJvk5AxOaNI5qskADQS4+ZNuD2M1NjbavbGoprSKCWCQ1IJd06q1D9lzzz3H33//zerVq8vdr5QiIiKC0aNH8+yzzwIltWGhoaFMmTKFkSNHkpOTQ3BwMLNnz+aOO+4AIDExkejoaBYuXEjv3r3Zs2cPjRs3Zt26dbRt2xaAdevW0b59e/bu3UuDBg3OW9aa0gYthBDXMqUUtqQkl9ov8+7dLiMeAdBoON6wDikmTzItRdhP65QPoPNwp9a4oezJ2YdubgOMBR5oNCU1VRa3IlJ8jpDsc4RMv5ME1HancWBjWugSqJ8Whe1AAX+lbOGENgO75rS1IR1GUhwBrLMHovfxc/YFk1qwqlVTfr+rtYbsl19+oXfv3tx+++2sXLmSyMhIRo0axYgRIwA4cuQIycnJ3HDDDc5jjEYjXbt2Zc2aNYwcOZLNmzdjtVpd0kRERJCQkMCaNWvo3bs3a9euxWQyOYMxgHbt2mEymVizZk2FAjIhhBBXHkdREeZdu1wCMFtqqksas86N7IgQ8qPCadeuC57Nm3MoP5QTv80gJ3lrSSKNJ1pdBFpdFA5DMNPbvYFa9xIA7fwG4OXhR4bfCbyitdSKC6dTcGPiA24kPDeQ/J1ppK88hU+GG5CLAxvHjek4NAoc7pxw+LPdEUCtmEi6NQzhP/VDaBTuI7VgwkW1BmSHDx/m448/ZsyYMTz//PNs2LCBxx9/HKPRyD333ENycjIAoaGhLseFhoZy7NgxAJKTkzEYDPj7+5dJU3p8cnIyISEhZc4fEhLiTHMmi8WCxWJxPs/Nzb34CxVCCHHJlFJYjx//X/C1dSvmffvA/r++XQrI9vEjo3Y9srw8ybHmUFxcMtEqlnwSendlv3s2277chS2/LjrPELS6SBxuPuR5pJPtnkqWx17c3TypF1yXhMAE4jvFEx8YT5xvHFqHBvOhbHL/SWbf3m2sLE7ipDYDf+VFP9qwBTursXLUGkeep4mWDWpxW8MQ3q4XhK+71IKJs6vWgMzhcNC6dWsmTZoEQIsWLdi1axcff/wx99xzjzPdmX9FKKXO+5fFmWnKS3+ufCZPnsyECRMqfC1CCCEqlz0/H/OOHSX9vv6t/bJnZwOg0GB2D8DosKMLDsareXP2BnRn78ndWPLXAplQkPlvTho0bsGciM1gyJKh5HvaqGNojk+dILI9Usj1TCM41I/4kMZcFxhPQtAN1PN/Fb22JIByFFop2pdF6s5d7DuwnyMqhZOlzZEl3ZRJVlZu0+RQJy6Ibg1iGNGgHQ3DpBZMVFy1BmTh4eE0btzYZVujRo2YP38+AGFhYUBJDVd4eLgzTWpqqrPWLCwsjOLiYrKyslxqyVJTU+nQoYMzTUpKSpnzp6Wllal9KzVu3DjGjBnjfJ6bm0t0dPTFXKYQQojzUA4HxYcOldR+/VsDZjl4ELtGT6FnKAWeoRT6dSQ/Kpg8H3cKHLk4bIloNMn0H/M8oc2as3nOZhwnMwEdyhBMoacnWT4akgMKyfROI8XnOHatjVjfWBrUiiAhKIGEoAQaBjTEQ+cBgMNiw5pciOVAGvlJBVhO5WM9lY9GwZ/6nRx2+99vicXhTqIumIja9ejSrC7P1AuWWjBx0ao1IOvYsSP79u1z2bZ//35iY2MBqFWrFmFhYSxdupQWLVoAUFxczMqVK5kyZQoArVq1Qq/Xs3TpUgYPHgxAUlISO3fuZOrUqQC0b9+enJwcNmzYwHXXXQfA+vXrycnJcQZtZzIajRiNxsq/aCGEENiysjBv307Rtm0Ubt1Gzp4j5CtvCjzDCEvZgM5e0mXkcLO7OeZTD7vlHxy2RJR9HxS6jkX7aNFklu86ikehCUMLI7nuaRTrDwEQ4hlCQmAC1wfdRHxQSdOjyWhCKYU9y4I1KR/r9lQKkwooTirAnmmmEAvH3dI5qk2jra0u/sqbQ9g5ZvejSJNDoW849Rs1pmfL+jQMkxGRonJUa0D25JNP0qFDByZNmsTgwYPZsGED06ZNY9q0aUBJM+Po0aOZNGkS9erVo169ekyaNAlPT0+GDBkCgMlk4oEHHmDs2LEEBgYSEBDAU089RZMmTejZsydQUuvWp08fRowYwaeffgqUTHvRr18/6dAvhBCXgS0ri/w//6Rww0ZSdieSbPGj0DOMQs8wCjwHYm/mgVIK5ciGFkFEN6tH3Rv7Yd1pJvHHjRTnbnHmZTZqSfGzcCool5QACzneVnCAh6mY+kH1SQjqS0JgSe1XsGcwjmI7tpRCik/mY92YRmrSUaxJBSjL//qe5WqKOKpN5ZghjRRNDvwbY+1yeHLYM47GjYLpUq8BHesG4usha0SKylftSyf9+uuvjBs3jgMHDlCrVi3GjBnjHGUJ/5sY9tNPP3WZGDYhIcGZxmw28/TTT/P111+7TAx7ehNjZmZmmYlhP/jggwpPDFtThs0KIcSVIvd4KkcXrCFx6wlCN32Le1EGAMejunOw7m0o5UDZU3HYEnHYToEjEYe9AABto3D2d9KxK203WZZMWu/1J8NkIcXfQqGHHQ+dB40CGjmbHRMCE4j0jsSRZ8WaVFBS85VUgDWpAFt6UUlv/zNYUezRFPCPfic2bYHLPo2XP1FxdenQujkN4yKkFqwGqym/39UekNUUNeUNFUKI6uCwO8g4VUDijkROrj9EaoqVQo2Pc3/j3TOJDsrD1K07eVHN2J/syd41U7BbzS752LWKdJOF46GF7KpdMjpSp9VR37++s9YrISiBWp5xONItLoGXNbkAR6Gt3PJl4eAAdvZrskjUWNnlMJGoVdQP96Z51io0yk5oeBTNm8bTuFEjTCZT1b1Y4rKqKb/f1b50khBCiJqnKL9kolUPbwO29HR2f7Oa1btKgxh3lAKH9Rh62zH0+iwONNZx0CcEz16B7ExfzE7NThI8zPgoHan+FlIDSmq/MkzFxAXUJj6oLTf/W/NVV18LTaoVa1I+xZsLsCblkpy2Dhxly2UHjmHnIA4OYucQVnK02QRoM4nT52BQVkI8fRl+xw00jjDhrnfjyJFoQkND8fT0vGyvnxBnkoBMCCHEOTkciszEApIP55ByOIekwznkpBbRJDaP2D0/ULhpEw6dD7rrXkTlLqJYk4KVkpovK8C/UzrasxUfrPsvDm3J8+Q2WgIDwokPakGvoAQS/OOp76iFLl2V1HztK6n5ysjfUm65CrWwX9nZr2zOAOwoDoqBeK984t2zaWxOQ9n/rTVT4O7uTv26cSSEe2PQl8xZUatWrap78YSoIAnIhBBClKswt5ilX+wi5WguVrMdpRSofBy2FBz2VHZt3sseayqdHQ6IMxEc+R27fHLwTCwJgPI8bGT4Wsg0WcnwteAI9qJTdBcSghJo6plAfWss7hnakubGbQVYUwvJs+8tUw4FpBs07LXb2G23chAHh7CT6ijpceNt1NEi3J3rY0NoHu1Hs2g/NqxYwpYtSSjAx8eHhg0b0rBhQ+Li4pxrHAtxJZGATAghrmHKochKKST5cA7Jh3Pw8jPStn9tANy9dCQfzsGctwNVvAdlS/63/qlEoRvgZuDp+4wcD0sEEgnKNqCP0lIYoKVeeGOaBTTlNrcE6lpj8crSYzteQPH6Ahy5xVg4huWM8lh1GpINGnbbrWy1FHMQO4dxYPn3tHo3DY3Cfekd5UejAC3e5hTSThzmxIkT3N33AaKjS+asbN68OZ6enjRq1IiIiAi0Wm3Vv5hCXAIJyIQQ4hpzcm8mSYdKArCUI7mYC4pRjkyULRW9MYsj67LpEtcQ8/LlNDzuINkzm5P+//5cKIVNV0xSoJXEoGIyfIvJ9tPQyL8R7bxa0zyqMbWKI/HJcse2pxBbWhE4FIoU8s8oR5GXjkQD7LLaWF9QxH5lI8mm4LR++bWDvegbVVLr1TTKRKC2kEMH9rNnzyr2b3Vds/LUqVPO0fWxsbHOOS2FqAkkIBNCiKuUUoqc1CJy0oqITQh0bl/17QEyThzAXrwHhy0VZU+jNAqyFkJhFhz8fTnB+UWEAEmxRvK83NlSt5hjYVbq+tSjs6EtAxwNiDaH4ZNlxP5PEcpcOq9XPubTwi+7Xkuut44kA+yyWlmdU8Aeu42iAuC02SZCfIzc8G+TY7MoP5pEmTB5/G/m+xMnTjD98+nO5xqNhri4OGdzpIyMFDWZBGRCCHGVKDbbSD2W52x+TD6YQVFeIhqVRt3WWlrdNIDg2FrUbhaE3bGN1L3bnMe62R34mi34FlowFRWT4l/MwnZ6chvWJ8GvLd3sdbm7KAjPFD1qv/W0s1qxlXTdx6GBDKOWo1oHe6xWdlqtHMJOilVBlmtZfYw6OkabaBpVEnw1j/YjzORekqPVypEjR1i5dA1eXl706NEDgMjISPz8/AgLC6Nhw4bUr19fRkaKq4bMQ1ZBNWUeEyHEtUEp5TJZ6epv97Ptzz3YLftx2FNRtlSUI5PTZ0TV944n0TsNr7920HCPBTebL6YiC75FFjy1PqTWjqa4fmN8QxoTbA3GPVtb7tQSAOlaxQGHnUOUPA7j4BgOzpwFzN9TT3SAJ9EBnsQEeFI32Jtm0X7UDvJCq/1f+c1mMwcOHGDv3r0cOHCA4uKSTmPe3t6MGTPG2QfM4XBIfzBxQWrK77fUkAkhRA2hlCL9ZD771iez9+9/aHCdg1rNmhDVOAEPXwPKloOtaKXLMRajIsejCG9LMQ2+WUyvJDfcfCPR+kaiDYjEHhqHwTMCNwyYoCR++9/62eSjOIydQzic/x7BTt6/gZrBTUtUgAfR/p50+DfoKgnAPIgO8KzQYtsLFixgy5YtOBz/i/5KR0Y2atTIJa0EY+JqJQGZEEJc4XIzijiwMYV965NJP7YTm3kdyp7Mhp8gLa8L63X72GnYy6Hr9xGwvog0XwtKa6VVmh9dUsMIz48sCcIaRaJtFVjuOWwojuHg8L9TSpT+m4IixMforOHqFuDJPQGeRPt7EBPoSaiPu0tN1/lkZmayb98+2rRpg05X8hNkMBhwOBwEBQU5+4PJyEhxrZGATAghrlAZp/JZ+c0+Eg9k4bAexGZe/28HfFBaDSdDzaxMn0/eKiO1LBG0yIqgua4ZUTmRuHuEojHpoJx+7ilnBF2JOiDQg/AA75JmxQAPuv8bgEX5e+JhuLR5uwoLC9m+fTtbt24lOTkZgODgYOrWrQtA27ZtadmyJcHBwZd0HiFqMgnIhBDiCmErtlOYW4xvkAcAHj4Gkg/nUpz/Pcp2EgC7Dk5EO6hnak2f4lrUyovAK/e0ju2Gfx+AzWYhyVbITr2eRG8PzH4GdKGehIZ4ER3gyQ3/Bl2BXoZKXzzb4XBw6NAhtmzZwr59+7DbS0Zglo6MPH1yVj8/v0o9txA1kQRkQghRjRwOxan9WezfkMLhf1IJivah/+NNcHNzw9PXQJd767BqQyC5609wPMZBE5/2PJnTCUPO//pmKYcdR34y9txTZLlZSY8KpahtcwIaNCAm0ItWfh4YdJe3+S8pKYk5c+Y4n4eHh9O8eXOaNGkiIyOFKIcEZEIIcZkppUg/kc++Dckc3JhCQU7xv9utpBzewuePvUvrIXfyl9c+5h78Fg+DG7fF9+TpnC7o/w3EbOkHsB5bjT0vEUPDaPxvugGfnvdROyDgsl+PxWJh9+7dFBYW0rFjRwAiIiKIi4sjNDSUFi1aEBYWdtnLJURNItNeVFBNGTYrhLjyLZ+9h91/JzmfG9ztePsdIOP4X1gKcgE4GWJmU/NChiT3ok9uF/SaknZIe8ZBLHsXYIg0Yhp4Kz69eqHz97/s16CU4vjx42zdupWdO3ditVoxGAw89dRTGAyGy14eIc6mpvx+Sw2ZEEJUIXO+lYObU4hrGoy3vxGAiHp+7FufQlQjdzT27RzZsozcpJIp6/M8bByubaWHtQNP7OuKTmsEDdgzD1N8ZAleHesTOnYS7g0bVsv15Obmsm3bNrZs2UJmZqZze0BAAC1atHCZukIIUXESkAkhRCWzFts5uj2d/RtSOL4zA4dDUWyx0/KGkrUV67QMIa5ZMD9NeZGTe3YCkO1l5URMMTfnduC+vO64uRlBC/asIzgKtmLq1w5Tv2m4eXtV56WxefNmVq4smetMr9cTHx9PixYtiImJqfSBAUJcSyQgE0KISuBwKE7tzWL/hmQObU3D6lzXEYKivfH2M5Kbnoa7lxcYdPx0+Bd+9N1ObV8bOYHFDMzuQL387mgNJcsH2XOOo/NLI3hUdzyaDquWYCc5OZktW7ZQt25d6tWrB0Dz5s05cuQILVq0oHHjxhiNxsteLiGuRhKQCSFEJbBZ7Pz28Xbs1pImO59Ad+pfF0r968LQanLZ8PM8fntnGY729fjWbwN2SyY9Tnhwa1FPwqzd0fiVTHXhKErGvb6GgOf6oquG6SAKCwvZuXMnW7ZsISmppJ9bVlaWMyDz9/fn/vvvv+zlEuJqJwGZEEJcoJy0Ig5sTCYjsYDeDyYAYPDQ0bB9OBqg/nWhhNUxkXnqBOu+/5i9f6+kdPxU8q7NDMsvoFdRX7zieqCJKgnEUDl4dwjCt/+gyz5DvVLKOWfY3r17nXOGabVaGjZsSMuWLS9reYS4FklAJoQQFVCUX8zBTans35BC8uEc5/br+hXgH1bSr6vbkAYApBw+yIK3PuLAhjXOdAUehdRPK+QWc2cMdXui0ZfMxaUxWDDdWAevtp3QXMASRJVJo9Hw559/kpiYCOCcqqJJkyZ4eVVvnzUhrhUSkAkhxDkkHczmn9+PcXxXJg5HSS2XRgORDfxp0DYMLz/XPlRKKX6Y8ymFO/cA4NDm0/p4ETFBnTE06InGUBLgaH3Ar18DPJoEX9ZArLi4mN27d7N9+3Zuv/12PDxKaujatm3LqVOnaNGiBeHh4ZetPEKIEhKQCSHEaRx2BzarA4N7ye2xKN/K0R0ZAATH+FD/ulDqtQnFy1QSiCmlOLZjK3pTAJ8f/JvfDs2hZc5JmhSbaHOskICoLhja9nIGYm4BBkx9auOREHTZAjGlFCdOnHDOGVZcXDIR7a5du2jdujUAzZo1o1mzZpelPEKIsiQgE0Jc85RSpB7LY/+GZA5sSiW+UwRtB9QGIDY+kDZ946jXJtTZNFl6zOF/NrJy3hyyjh7iRFAxgeaTvLVNEVBkxFC7JfquN6A1egOgC/bAt2fMZa0RKyoqYvPmzWzZsoWMjAzndn9/f1q0aEH9+vUvSzmEEOcnAZkQ4pqWfjKfpV/sIjOxwLnt+O5MZ0DmptdyXf/azn0Oh51969awbO5XWFJOlWxUDjrvKaRRih5jre7o6/dGa/g3EAv6NxBrenmbJgFsNhvLli1DKYVer6dx48a0aNGC2NhYmTNMiCuMBGRCiGvWkW1pLPliNzaLHZ1eS61mQdS/LozoxuWvB/nPyhX8+fUMNNkltU1ah4O49BxqZRTiHdMZ40390LiV9MnSBbrj0yMGz2YhaNyqPvhJSUlhy5Yt5Ofnc9tttwHg4+NDhw4dCAgIID4+Hnd39yovhxDi4khAJoS4Ju1bl8Qfs/aAKumg32dEAu7e+nLTbj2RzYd/rcB7xRdEZTvQ2e3EpeUQl1WIR53r8WzXF1TJ+o1uge74Xh+DZ/OqD8SKiorYsWMHW7dudY6QBOjZsyd+/85h1qtXryotgxCickhAJoS4JkXU98fTx0Ct5sF0vqMebm6uc3/l5Rfy7VfzWJ18lJCTy7lzdyrBOVqOB/gSk1WIsc0teEddj7JqQYFbgDu+10fj2SIEjVvVziOWnp7OqlWr2LVrl8ucYQ0aNKB58+b4+PhU6fmFEJVPAjIhxDXDZrWj07sB4BPgzh0vXoeHj96lP9XBk2l8/9Vc2PYHeoedToVmOh5IRQMUe+hp0HEIXh4tcRQ5UFZw8zeW1Ii1rPpArNShQ4fYvn07ACEhIbRo0YKmTZvKnGFC1GASkAkhrgkZp/JZ+PF2OgysS52WIQB4+pY0M9odimVbD/Pnt3MIOLqB0oZLD4uVmIxcsmKCiLzxMUyFMTjyrDiKHLj5GfG5PhqvlqFodFUbiOXm5pKbm0tUVBQArVq1Ijk5mVatWhEZGSkd9IW4CkhAJoS46h3dkc6S6buwmu1s/O0otZoHo/13xOP6wxnMfX0yURl7CP43sPEyFxOXnoU+PpZGd76E5ogee0oxDqy4mQz4dI/Bq3XVB2IFBQX89ddfbNy4EV9fXx599FHc3NzQ6XTcfPPNVXpuIcTlJQGZEOKqpZRi27ITrJl/EKUgop4fN45sglarwWp38MFvW7F/8RL9klPZGhuKT5GFoKJcfHp1oGXrhylen4N9qwUoxs3XgE/3aLzahFV5IFZUVMTatWtZt26dcxJXLy8vCgoK8PX1rdJzCyGqhwRkQoirkt3mYNXc/ez+q2T0YeOO4XS5qwFuOi2HT2Xy4dvv02/VfMJyrSggKcZIxH130Cp8IIUrTlG0JBUAra8B327/BmL6qg3ELBYL69evZ82aNZjNZgDCw8O5/vrrqVu3rjRNCnEVk4BMCHHVsdscLHh/K6f2ZaPRQIdBdWnWIxqNRsPX8xaS+P1HxNlsBBTYSffVkP3k3dxS937ylp8kb/1hALQ+eny6ReN9XXiVB2KlTp48yZ9//gmUdNbv3r07DRs2lEBMiGuABGRCiKuOm05LULQPqcfyuOGBeOKaBJGZncu0F8ahTz+GRgNuSrGlZTDXP/oe9VZbyN52EACt97+BWNswNP+OyKwqNpuNlJQUIiMjAahduzYtWrSgdu3axMfHo9VenkBQCFH9NEopVd2FqAlyc3MxmUzk5ORIHw4hrlDKoZzLEzkciryMIkzBnixd/CfbZ7zlTBeSk4P/7b1p73UbRVvTANB66fHpGoVXu3C0hqoNxOx2O9u3b2flypUUFhYyevRoPD09q/ScQlyrasrvt9SQCSGuCjtWnOTQljT6P9YMN50WrVaDl7+Rd8Y8gf3UIQA8iq24u1vo+vR76P42U1SYBhrw7hCB7w2xaI1Ve0t0OBzs3r2b5cuXOxf79vb2Jj09nZiYmCo9txDiyiYBmRCiRnPYHayed4CdK0sW+t6/IZlGHSI4npzJT08/RFhyKqcCfAnNycF0cx/a6QdgWZqNA9CHeeE/qB6G6Kqd2V4pxb59+1i+fDkpKSkAeHh40KlTJ9q0aYPBYKjS8wshrnwSkAkhaixzgZXfP9vJyb1ZoIH2t9ShdnMT3836Er9P36RXZjFWrZaiAC1dRr2N20YLFms26LT49ozBp3PkZZldPzc3l3nz5uFwODAajbRv35527drJYt9CCCcJyIQQNVJ2SiG/fbSd7JRCdEY3et3XGIvlIB/e/x8CcwqIzywm2wvS7x3GTdyAdU0BCjDWNuE3sB76II8qLV96ejpBQUEAmEwm2rZti5ubGx06dJD+YkKIMiQgE0LUOIkHsln48XYshTa8/Y30vL8uy758nbT9uwEoMOrZ1CSYLgPfIHq7BasqQOOhw69vLTxbhVbpNBKnTp1i+fLlHDx4kIcffpiwsDAAevfuXWXnFELUfBKQCSFqHA8fPUpBaC1fGrWzMO/lETgcDgDCs3Pw7NaXttrrsW+zlKRvFoxfv9q4+VRdX62UlBSWL1/O3r17AdBqtZw4ccIZkAkhxLlU6yQ348ePR6PRuDxOv3kppRg/fjwRERF4eHjQrVs3du3a5ZKHxWLhscceIygoCC8vLwYMGMDJkydd0mRlZTFs2DBMJhMmk4lhw4aRnZ19OS5RCFEF/MO86DuqEVbz9yz+aDIOhwMPi5Ugu5V2t02hdU5H7FkW3PyMBA6PJ/CuhlUWjGVkZDB//nw+/vhjZzDWtGlT/vOf/9CmTZsqOacQ4upT7bMOxsfHk5SU5Hzs2LHDuW/q1Km89dZbfPDBB2zcuJGwsDB69epFXl6eM83o0aP58ccfmTt3Ln/99Rf5+fn069cPu93uTDNkyBC2bt3K4sWLWbx4MVu3bmXYsGGX9TqFEBfPUmTjt4+2c3JvJgCO4mJWf/Is2Vv+ASA8K4eIZr3o2XQ8hkP2kqksOkYQ+mQrPBoGVFm57HY7M2fOdN63GjduzKhRoxg4cCABAVV3XiHE1afamyx1Ol25VfpKKd555x1eeOEFBg4cCMCsWbMIDQ3l66+/ZuTIkeTk5DB9+nRmz55Nz549Afjqq6+Ijo7mjz/+oHfv3uzZs4fFixezbt062rZtC8Bnn31G+/bt2bdvHw0aNLh8FyuEuGA5aUX89tF2spIKSDmaTsdbNRwdN5amyUVkexo5XDuKNjdOxiNFobBV+VQW+fn5eHp6otVqnZ30Dx8+zPXXX094eHiVnFMIcfWr9hqyAwcOEBERQa1atbjzzjs5fLhkHbkjR46QnJzMDTfc4ExrNBrp2rUra9asAWDz5s1YrVaXNBERESQkJDjTrF271jnCqVS7du0wmUzONEKIK1PigSy+/+8mspIK0BtOkXvyfQ48M46Y5CLyPbSk9bmfro3G4ZGiSqay6BNHyGPNqyQYKywsZMmSJbzzzjvs2bPHub1du3bcfffdEowJIS5JtdaQtW3bli+//JL69euTkpLCxIkT6dChA7t27SI5ORmA0NBQl2NCQ0M5duwYAMnJyRgMBvz9/cukKT0+OTmZkJCQMucOCQlxpimPxWLBYrE4n+fm5l7cRQohLsruvxNZ+fU+7DYzWscq8lJKmgVP+ftgDQmjcasxhOdqwOHAWMeE361VM5WF2Wxm7dq1rF27luLiYgD2799PfHw8gCz8LYSoFNUakN14443O/zdp0oT27dtTp04dZs2aRbt27YCyNzul1HlvgGemKS/9+fKZPHkyEyZMqNB1CCEqj3Io1vx4iK1Lj2O3HsVeuAiHowiA6OwCvJoMppk+AXKp0qksiouLWb9+PX///TdmsxmAsLAwrr/+eurVq1ep5xJCiGrvQ3Y6Ly8vmjRpwoEDB7jllluAkhqu05sCUlNTnbVmYWFhFBcXk5WV5VJLlpqaSocOHZxpSpcqOV1aWlqZ2rfTjRs3jjFjxjif5+bmEh0dfUnXJ4SoAA3kZ+RgLViCvXgnAJ4WKxHGUBq1expPixZU1U9lMW/ePA4ePAhAcHAw3bt3p2HDhmi11d7TQwhxFbqi7iwWi4U9e/YQHh5OrVq1CAsLY+nSpc79xcXFrFy50hlstWrVCr1e75ImKSmJnTt3OtO0b9+enJwcNmzY4Eyzfv16cnJynGnKYzQa8fX1dXkIIaqestsxn5yOw1ISjMXmWqlX+w5a1RqBp0VbZVNZ2O12rFar83nbtm3x9/fn1ltv5ZFHHqFx48YSjAkhqoxGKaWq6+RPPfUU/fv3JyYmhtTUVCZOnMjKlSvZsWMHsbGxTJkyhcmTJzNjxgzq1avHpEmTWLFiBfv27cPHp6TT7iOPPMKvv/7KzJkzCQgI4KmnniIjI4PNmzfj5uYGlDSNJiYm8umnnwLw0EMPERsby4IFCypc1tzcXEwmEzk5ORKcCVHJkg5ms/vvk9RrXcDesY8RfTSPY4G+ENuaOnGD8XBoS6ay6BCB7w1xaI1ulXZupRQ7duxg+fLlNG/enK5duzq3OxwO531ECFEz1ZTf72ptsjx58iR33XUX6enpBAcH065dO9atW0dsbCwAzzzzDEVFRYwaNYqsrCzatm3LkiVLnMEYwNtvv41Op2Pw4MEUFRXRo0cPZs6c6XITnTNnDo8//rhzNOaAAQP44IMPLu/FCiHKtW9dEkunL6I4/w+y53rS+GgeFlMQ3u0eIU4fDQ6qbCqLvLw8fv75Z2fT5Pbt2+ncuTNarRaNRiPBmBDisqnWGrKapKZE2ELUFMqh+Ov7nWxe8BX24pIVOEJzzMQFNicyuj96tCVTWfSMwadzJBq3ym0u3LVrF7/++itFRUW4ubnRtWtX2rVrh8FQdcsrCSEuv5ry+31FdeoXQlwbis02fnrjB07s/AFUPihoYPYiPP4+QvUl09QY65jwv7UeukqeysJsNrNw4UK2b98OlAz8GThwYLnT4wghxOUiAZkQ4rJKP5nBtxNex5z77whKu5FmPs2Jqt0VLZoqncoCICcnh127dqHRaOjUqRNdu3ZFp5NboRCiesldSAhx2TgcDha/OwFzbsmKHA0dscTF3YhJZwKqbiqL0+cdDA0NpV+/fgQGBhITE1Op5xFCiIslAZkQ4rI4dXArO8Y+Qst92Wyt34z6YZ0IC2gGgJufEb9b6lbJQuBJSUn8/PPP9O/fn8jISABatGhR6ecRQohLIQGZEKJKHdy4nkUffkTC/iRiM7Mhth1tGtyFh5tHlU1lASW1cWvWrOHPP//E4XCwZMkS7rvvvko9hxBCVBYJyIQQVcKcn8+v70/l2NZ/ADhSrxshniGYTA0A0IV5EjCofpUsBJ6ZmclPP/3E8ePHAWjYsCH9+/ev9PMIIURlkYBMCFHpDm5az2/v/hdbsRUNGhoF3EIj3zroNG4oNw2mXrFVMpWFUootW7awePFiiouLMRgM3HjjjTRv3lwWARdCXNEkIBNCVBqr2cyC9yZzZPNmAALc69Em6Cb89O4AuNXyJXhQ/UqfyqLU/v37+eWXXwCIiYnh1ltvdVnnVgghrlQSkAkhKs23rz1Nyv4juGn0NA0aRD2vGDQaDTaDluABdfFsFVKlNVX16tWjfv36xMTE0KFDB1l7UghRY0hAJoSoFH+tmkPcwhXoEm6iRUhvvNz0AKhG/kQPqo+bd+XPgG+xWFi1ahVdunTBaDSi1Wq56667pHlSCFHjSEAmhLgkDoedP9d+g+eTrxEaeRNx4f0AKDBqibqjAV6Ng6rkvMePH+eHH34gOzubwsJCbr75ZgAJxoQQNZIEZEKIi1aUn8f05x/F/1AO7WrfgbFODwDyGvvT4I5GlT6VBYDNZmPFihX8/fffKKUwmUw0a9as0s8jhBCXkwRkQoiLUpibw+fPj8KelkdcrZsxetcHwNItgkZ96lTJOVNTU/nhhx9ITk4GoHnz5vTp0wd3d/cqOZ8QQlwuEpAJIS5YYU42055/BDLMdAobTLhHLHalcBtQmzodo6rknHv37uW7777Dbrfj4eFB//79ady4cZWcSwghLjcJyIQQFyQ/K5Npzz+CPttOl/AhBBrDsCqF15AGhDQLrbLzRkVFYTQaiYyMZMCAAfj4VP6EskIIUV0kIBNCVFheRjqfvvAInrk6uoYPwWQIwIyD4IeaYqpTufN9KaU4fvw4sbGxAHh7ezNixAj8/Pyk474Q4qojk/QIISrE7rDz/lcv4JvvQY+IYZgMARRiJ+LxVpUejBUWFvLdd98xY8YMdu3a5dzu7+8vwZgQ4qokNWRCiPOyOWy8uPoF6m09wfVho9HrPMjHSu1n2mMIqNxZ9w8cOMDPP/9Mfn4+Wq2WvLy8Ss1fCCGuRBKQCSHOKSM1kVe3TqbxT0ncEPgkGp07+doi6j7fDV0lTvZaXFzMkiVL2LRpEwBBQUEMHDiQiIiISjuHEEJcqSQgE0KcVfLJw8x86Uk66JrTwX8gGq2OArdc6r/cp1LnGDt16hTz588nMzMTgLZt29KzZ0/0en2lnUMIIa5kEpAJIcp16tgBZr88lkb6ZrQM6IFGo6FQm0b9Cbeg0VVu99PCwkIyMzPx8fHhlltuoU6dqpnHTAghrlQSkAkhyjh6eBdzx4+juUd7Evw7AZBnT6LBa7ehcaucYMxqtTprwOrVq8ctt9xCgwYN8PCo3D5pQghRE8goSyGEi4P7t/LtK+No693jf8FY8UEa/HcQ2koIxpRSrF+/nnfffZfs7Gzn9ubNm0swJoS4ZkkNmRDCac+ejSx47TU6+/UjxrsRSikKCrbT8O2RaNwuvc9Ybm4uP//8M4cOHQJg06ZN9OzZ85LzFUKImk4CMiEEACfzTjL+j1d5OvAOwjxicShFUeZq6n/wFJpK6Fy/c+dOfv31V8xmMzqdjl69etGmTZtKKLkQQtR8EpAJITicc5hRPz/GuNQ7CfOIxe6wY05aTN2PX0RrNF5S3kVFRSxcuJAdO3YAEB4ezsCBAwkODq6MogshxFVBAjIhrnHrNv3OhyunMSFrOJG2MByWfGzHvqfO9Ddw8/a+9PzXrWPHjh1oNBq6dOlCly5dcKuE5k8hhLiaSEAmxDVs5dqf2fPJj7wU/ACeOh8chZkUH5hD7Iz30PlXznJInTp1IiUlhY4dOxIdHV0peQohxNVGRlkKcY36fdV3HPrkN3qFDMFT50NBcRHmHZ8S8/FU9GFhF51vYmIiP/30Ew6HAwC9Xs+dd94pwZgQQpyD1JAJcQ366Y/Z5M3ZyPWhd6DTGsg156PZ8Ca1pr+PIS7uovPdtm0bP//8Mw6Hg5CQEDp06FB5hRZCiKuYBGRCXGPm/jYN7Q8H6RoyEK3GjayCbNzWTib20/dxb9ToovNdv349ixYtAqBhw4Y0a9assooshBBXPQnIhLiGzFz0Cf4/JdEquD8AabmpGFa/RsyH7+DZqtVF5amUYtWqVSxfvhwoWYeyd+/eaLXSI0IIISpKAjIhrhEfb/qagu0n6BnYB4DkjBN4/jWJqDen4t2ly0Xl6XA4WLJkCevWrQOgW7dudO3aFY1GU2nlFkKIa4EEZEJcA6b8PQ3/1encmV0SjKUf24jnls8InzAB35tuuuh8MzMz2bRpEwB9+vShXbt2lVJeIYS41khAJsRV7tWPx9HxcH0auHVGKYVl2xyMR1cRPHYM/ncMvqS8g4KCuOOOOygsLJQ+Y0IIcQkkIBPiKqWU4qX3nuLWwy0I9YjFrhxYNn2O/dQmAh98gKARIy4qX4vFQm5urnOm/Xr16lVmsYUQ4pokvW6FuAo5lIPn33iCwUfbEeoRi9Vh4/iBldhPbcLv9tsJHjv2ovItLCxk1qxZzJw5k4yMjEoutRBCXLukhkyIq4zNbuPF/47m3sxe+BgDMNstJB1YTtDeH/Dp04ew8a9cVKf73NxcZs+eTVpaGh4eHpjN5ioovRBCXJskIBPiKlJktfB/rz3FA/k34aH3ocBWROqBJQTt+w2vjh2JnDoFzUWsI5mRkcHs2bPJzs7Gx8eHYcOGERISUgVXIIQQ1yYJyIS4SmQXFfLSRy/yZMEADDp3cqx5ZB/8naB9S/Bo0YKo999DYzBccL7JycnMnj2bgoICAgICuOeee/Dz86v8CxBCiGuYBGRCXAWSc3N5deZExqb3xeBmIL04m6LDSwnYtxRjgwZEf/IxWk/PC883OZmZM2diNpsJDQ1l2LBheHt7V8EVCCHEtU0CMiFquEPp6Xw6802eTb8JN9zICC7GY9UcjPu2oY+JIebzz3AzmS4qb39/fwIDA9FqtQwZMgQPD49KLr0QQgi4gkZZTp48GY1Gw+jRo53blFKMHz+eiIgIPDw86NatG7t27XI5zmKx8NhjjxEUFISXlxcDBgzg5MmTLmmysrIYNmwYJpMJk8nEsGHDyM7OvgxXJUTV2nLqFMve+IjH/w3GMmMd+K7/HMe+behCQoj54gt0/05PcTGMRiN33303w4YNk2BMCCGq0BURkG3cuJFp06bRtGlTl+1Tp07lrbfe4oMPPmDjxo2EhYXRq1cv8vLynGlGjx7Njz/+yNy5c/nrr7/Iz8+nX79+2O12Z5ohQ4awdetWFi9ezOLFi9m6dSvDhg27bNcnRFVYvv8Ae977mpvoDsAhayq+G2Zi3r4VN5OJmC+mY4iKvOB8N2/ezOrVq53PPT09MVxE3zMhhBAVV+0BWX5+PnfffTefffYZ/v7+zu1KKd555x1eeOEFBg4cSEJCArNmzaKwsJCvv/4agJycHKZPn86bb75Jz549adGiBV999RU7duzgjz/+AGDPnj0sXryYzz//nPbt29O+fXs+++wzfv31V/bt21ct1yzEpfpp6w7yPl9CF03JUkU7C44RZNlC0dp1aD09if78M4x1615wvn///TcLFixg2bJlHDlypLKLLYQQ4iyqPSB79NFH6du3Lz179nTZfuTIEZKTk7nhhhuc24xGI127dmXNmjVAyV/yVqvVJU1ERAQJCQnONGvXrsVkMtG2bVtnmnbt2mEymZxphKhJZvy9Hu+vN9BS2xSHcrCl4AhxHkfR/jEfjcFA1Ecf4dGkyQXlqZTijz/+YOnSpQB07NiRuLi4Kii9EEKI8lRrp/65c+fyzz//sHHjxjL7kpOTAQgNDXXZHhoayrFjx5xpDAaDS81aaZrS45OTk8udLykkJMSZpjwWiwWLxeJ8npubW8GrEqLqvLN4BW3+PEWstj52h43N5mM0C86i+Os54OZG5Ntv4dWu7fkzOo3D4eC3335j8+bNAPTs2ZNOnTpVRfGFEEKcRbXVkJ04cYInnniCr776Cnd397OmO3NGcaXUeWcZPzNNeenPl8/kyZOdgwBMJhPR0dHnPKcQVUkpxYT5i2n5dwqx2hiKHRY2WI7Sqo6V4q+nARD+2kR8evS4oHxtNhvz5893BmP9+/eXYEwIIapBtQVkmzdvJjU1lVatWqHT6dDpdKxcuZL33nsPnU7nrBk7sxYrNTXVuS8sLIzi4mKysrLOmSYlJaXM+dPS0srUvp1u3Lhx5OTkOB8nTpy4pOsV4mLZ7A6enf0TN24torY1glxtITs8U+nQ3J3Cj98CIPT5cfjdcssF53348GF27dqFVqvl9ttvp1WrVpVceiGEEBVRbQFZjx492LFjB1u3bnU+Wrduzd13383WrVupXbs2YWFhzj4tAMXFxaxcuZIOHToA0KpVK/R6vUuapKQkdu7c6UzTvn17cnJy2LBhgzPN+vXrycnJcaYpj9FoxNfX1+UhxOVmttoZ+9m33LvHSIQ1iDRDDpGPtaZbKx9yp7wKQNCjjxJwzz0XlX/9+vW54YYbGDJkCPHx8ZVZdCGEEBeg2vqQ+fj4kJCQ4LLNy8uLwMBA5/bRo0czadIk6tWrR7169Zg0aRKenp4MGTIEAJPJxAMPPMDYsWMJDAwkICCAp556iiZNmjgHCTRq1Ig+ffowYsQIPv30UwAeeugh+vXrR4MGDS7jFQtxYXLNVl765GseT4rEqDGSrsmh3ujOqK3/cPK5cQD4Dx1K0H8evaB88/Pz0Wg0eHl5AZzzDxMhhBCXxxU9U/8zzzxDUVERo0aNIisri7Zt27JkyRJ8fHycad5++210Oh2DBw+mqKiIHj16MHPmTNxOW0B5zpw5PP74487RmAMGDOCDDz647NcjREUppZg0/XueTIpGp9GTaj7BXk87dfbv5dSTT4LdjunmAYQ+P+68fSpPl52dzZdffom7uzv33HPPOftvCiGEuHw0SilV3YWoCXJzczGZTOTk5Ejzpahyny3dTKelqfhovTlVeJDDJgP9BjYj8cHhOAoK8L7+eqLefQeNXl/hPNPS0vjyyy/Jy8vDZDIxfPjwMiOUhRDialNTfr+v6BoyIa5F209kELtsNz7aOHKK0zkSYOTmIW05ee8wHAUFeF53HZFvv3VBwdipU6f46quvKCoqIigoiHvuueeKvjEJIcS1ptonhhVC/E+e2crS6XNpTBx2h40ttuPcfF8XTj30IPasLNwTEoj66CO0RmOF8zxy5AizZs2iqKiIiIgI7rvvPgnGhBDiCiM1ZEJcIZRSTJr9Cw8XxYMGtuZu5aYxg0kc+SC25GQMdeoQ/dk03Ly9KpzngQMHmDt3Lna7nbi4OO666y6MFxDMCSGEuDwkIBPiCjF79S5uPeaGm8aNw5pTNLq7D9nPPkbx0aPoIyKImf45ugvs8xUYGIiHhweRkZHcdttt6C+gmVMIIcTlIwGZEFeAvYk5aFasJ8JWnzR9Ns3H9ibnuefJ37MHt8BAYr6Yjj4s7ILzDQgI4IEHHsDX19dl5LEQQogri/QhE6KaFRbbWPjhLLoX1seOHY/bY7B8/Q35K1agMRiI/vRTDBVc6FspxcqVK9m/f79zm7+/vwRjQghxhZOATIhqNmXatwy0lkyGvNt6jKicXNLfL5knL+yVV/BIqNgM+g6Hg8WLF7N8+XLmzZtHdnZ2VRVZCCFEJZMmSyGq0dxV27jtiCc6vZ4kcyLNhrbj1KP3glL43XEHfoMGVigfu93OL7/8wrZt2wDo2bMnfn5+VVhyIYQQlUkCMiGqycHkHPx+WIe/e2OK7IW49aqL+bVxOHJycG/WlNAXnq9QPlarle+//559+/ah0Wi45ZZbaNasWRWXXgghRGWSJkshqoHZamfRG5+R4N4YpRQHQ4sIW/09lj17cAsIIOrdd9EaDOfNx2KxMGfOHPbt24ebmxt33HGHBGNCCFEDSUAmRDV4+/3Z9NWUBE77HKe4LqKInJ9+Aq2WyLfeqvCIyg0bNnD06FEMBgNDhw6lYcOGVVhqIYQQVUWaLIW4zH7ZcoRO6Z4Y3NxJL86k+cA6pD7yIAAhY8fi1a5thfPq2LEj2dnZtGzZksjIyKoqshBCiComNWRCXEYnMgs59Nvv1HKEU6ApwuuWGLKefxqsVnx69ybg/vvOm0dOTg52ux0ArVZL//79JRgTQogaTgIyIS4Ti9XOh5/O4fb8kmks8noZMXz2NrbUVAx16hD+2mtoNJpz5pGcnMy0adP45ZdfcDgcl6PYQgghLgMJyIS4TD7470c8mBkDwJ7YZKI3rqdw40a0Xl5Evf/eedeoPH78ODNnzqSgoIDk5GQsFsvlKLYQQojLQPqQCXEZzP/5T7qm++Hu4UmmPY/mER6kvzsDgPDJkzDWrn3O4w8ePMjcuXOx2WxER0czZMgQPDw8LkfRhRBCXAYSkAlRxQ4eOYlx4UbC/Dtgc9jw6OlDxrjRAASOeBDfG2445/E7d+7khx9+wOFwULduXQYPHoyhAlNiCCGEqDmkyVKIKmSxWPhz0gc09WsHwPFGhWjfnoQqLMSzfTuCn3jinMf/888/fP/99zgcDuLj47nzzjslGBNCiKuQ1JAJUYU+fnEKN5o6odVoOeSRTu3Ny8g/ehRdeDiRb76JRnfur6DJZEKr1dKiRQv69u2LVit/QwkhxNVIAjIhqsiP8xbSzhyBl5eJHFVA/eAUsr9ZhkavJ+q9d9EFBJw3jzp16jBy5EhCQkLOOwJTCCFEzSV/bgtRBdLyLGzaf5QorwbYlQNDKwvZH7wPQOhLL+LRpMlZjz1x4gRZWVnO56GhoRKMCSHEVU4CMiEqmcOhmDD7Jx4oKFnG6GSjdNRb/wWHA9Ntg/AfPPisx6ampjJnzhymT59Oenr65SqyEEKIaiYBmRCVyOGw88HETxiaaMCg9BwMSCJiwTfYs7NxT0gg7KWXznpsTk4OX331FWazGT8/P3x9fS9jyYUQQlQnCciEqERzpn5IixRFlC2ITF0etbN2YN61Czc/P6LefQet0VjucUVFRXz11Vfk5uYSFBTEkCFDZDSlEEJcQyQgE6KSrFv0Bx77T1LLpwkOpTCEJVHw4/eg1RL51pvoz7LepNVq5ZtvviEtLQ0fHx+GDh2Kp6fnZS69EEKI6iQBmRCVIOXIEbbNmUOroN4AnIw4CZ++C0Dw6NF4dehQ7nEOh4P58+dz/PhxjEYjQ4cOxc/P73IVWwghxBVCAjIhLpGlsIBvxk+gQ/BN6LUGTnikEfzT5yirFZ9ePQkc8eDZj7VYyMnJwc3NjTvvvJPQ0NDLWHIhhBBXigsKyKZOnUpRUZHz+apVq1wWOM7Ly2PUqFGVVzohrnDK4WDWS/9HU89m+BvDKNCYCTnyO7akJAxxcYRPnnzOKSs8PDwYPnw4Q4cOpVatWpex5EIIIa4kFxSQjRs3jry8POfzfv36cerUKefzwsJCPv3008ornRBXuKOHjuCdaaW+qTUADv1WitetQuPpSdQH7+Pm7V3ucZmZmc7/G41GCcaEEOIad0EBmVLqnM+FuJYopXhn9R5ahpUsDn7K5yDM+wKAiEmvYaxbt9zj9u3bxwcffMDq1avlOySEEAKQPmRCXLRZf++nz7FsvJUnScZUTD98DEDAfffh26dPucecOHGC7777DofDIRO/CiGEcJK1LIW4QFaLmc/HjMPLO54mmgYUas34bf0eW0EentddR8jYMeUel56eztdff43NZqNu3boMGDBAlkQSQggBXERA9vnnn+P9b78Ym83GzJkzCQoKAnDpXybE1UgpxXeTXsc730I37/oA2HP+gn1b0YWGEvn2W2h0Zb9Wubm5zJ49m6KiIiIiIrj99ttxc3O73MUXQghxhbqggCwmJobPPvvM+TwsLIzZs2eXSSPE1eqvud+TuX87vSPvR6PRkKLdi+eyeaDXE/XuO+gCA8scYzabmTNnDjk5OQQEBHD33XdjPMuM/UIIIa5NFxSQHT16tIqKIcSV7/A/W9nw02w6hw7EQ+dNhls6nr98BEDYC8/j0bx5ucft3buXlJQUvLy8GDp0KF5eXpex1EIIIWoC6UMmRAXkpqfz81v/pb5vKyI862DFise6WditZky33orfHXec9djmzZtjt9sJDw8nICDgMpZaCCFETXFBoyzXr1/PokWLXLZ9+eWX1KpVi5CQEB566CGXiWKFuBrYrFa+eXk8fhpvmgZ0BcCS9Af2U/swNm5E2Csvl+mcr5TCZrM5n7dq1YqIiIjLWm4hhBA1xwUFZOPHj2f79u3O5zt27OCBBx6gZ8+ePPfccyxYsIDJkydXeiGFqE5KOShw+NI+5GbcNG5kFe9Frf8RrclE1HvvoXV3L3PMmjVrmDlzJoWFhdVQYiGEEDXNBQVkW7dupUePHs7nc+fOpW3btnz22WeMGTOG9957j3nz5lV6IYWoTgt3pRAcXgtvvR95ZKFb+jFoNES+8QaGqKgy6bdt28bSpUs5efIke/bsqYYSCyGEqGkuKCDLyspyWfx45cqV9DltAsw2bdpw4sSJyiudENUoMymFQ0k5rFr0M92LGmLHjnbN52AtIvjxx/Du3KnMMQcPHuTnn38GoH379rRq1epyF1sIIUQNdEEBWWhoKEeOHAGguLiYf/75h/bt2zv35+XlodfrK7eEQlSDgpxsZj87hiUvTGFUXmMALEd/x5F6AO/u3QkcObLMMYmJiXz77bc4HA4SEhLo1avX5S62EEKIGuqCArI+ffrw3HPPsXr1asaNG4enpyedO3d27t++fTt16tSp9EIKcTk57HbmvvIqqriAzn7XYVQG8vP3Y9/6M/rYGCKm/BeN1vWrk5mZyZw5c7BardSqVYtbbrkFrVZWJhNCCFExFzTtxcSJExk4cCBdu3bF29ubmTNnYjAYnPu/+OILbrjhhgrn9/HHH/Pxxx875zeLj4/n5Zdf5sYbbwRKRqpNmDCBadOmkZWVRdu2bfnwww+Jj4935mGxWHjqqaf45ptvKCoqokePHnz00UdEnda3Jysri8cff5xffvkFgAEDBvD+++/j5+d3IZcvrhELP/iU7KT9tArsg58hELMjF1Z/isbDnaj338fN19clvVKKH374gYKCAsLCwrjjjjvQlTNbvxCXwuFwUFxcXN3FEOKKo9frr4qVTzRKKXWhB+Xk5ODt7V3mBcjMzMTHx6fCzZYLFizAzc2NunXrAjBr1ixef/11tmzZQnx8PFOmTOG1115j5syZ1K9fn4kTJ7Jq1Sr27duHj48PAI888ggLFixg5syZBAYGMnbsWDIzM9m8ebOzfDfeeCMnT55k2rRpADz00EPExcWxYMGCCl9zbm4uJpOJnJwcfM/4QRZXjy1LlvHn9LeJ8mxAx9BbcODA/Pe72NP2EPHGG5j69S33uIyMDH799VcGDhzo/GwKUVmKi4s5cuQIDoejuosixBXJz8+PsLCwctcHrim/3xcUkN1///0VSvfFF19cdIECAgJ4/fXXuf/++4mIiGD06NE8++yzQEltWGhoKFOmTGHkyJHk5OQQHBzM7NmzuePfiTkTExOJjo5m4cKF9O7dmz179tC4cWPWrVtH27ZtAVi3bh3t27dn7969NGjQoELlqilvqLh4yYcO8/WLY/HUenJD5P0YtAaKDi/Btv17/O8ZRtjzz1d3EcU1SCnF8ePHsVqtRERESFO4EKdRSlFYWEhqaip+fn6Eh4eXSVNTfr8vqF1l5syZxMbG0qJFCy6iYu2c7HY73333HQUFBbRv354jR46QnJzs0gRqNBrp2rUra9asYeTIkWzevBmr1eqSJiIigoSEBNasWUPv3r1Zu3YtJpPJGYwBtGvXDpPJxJo1ayockImrm3I4+OG/k8Bhp13YIAxaA+a8I9h2/IhH61aEPv20a3ql+O2332jQoAH16tWrplKLa4HNZqOwsJCIiAg8PT2ruzhCXHE8PDwASE1NJSQkpMY2X15QQPbwww8zd+5cDh8+zP3338/QoUMveSmYHTt20L59e8xmM97e3vz44480btyYNWvWALhMs1H6/NixYwAkJydjMBjw9/cvkyY5OdmZJiQkpMx5Q0JCnGnKY7FYXFYdyM3NvbgLFDWCRqslou+9eCzdTpAxGKu9ENuaT9EFBRD19ttozmiG/+OPP9i0aRNbt27liSeekGZKUWXsdjuAS39dIYSr0j9WrFZrjQ3ILqju+6OPPiIpKYlnn32WBQsWEB0dzeDBg/n9998vusasQYMGbN26lXXr1vHII49w7733snv3buf+8pakKa+N+Fxpykt/vnwmT56MyWRyPqKjoyt6SaIGSsk188ueHcT7NAXAtmkWyppL5LvvogsOdkm7bt06/v77bwD69u0rwZi4LM533xPiWnY1fD8uuDOC0WjkrrvuYunSpezevZv4+HhGjRpFbGws+fn5F1wAg8FA3bp1ad26NZMnT6ZZs2a8++67hIWFAZSpxUpNTXXWmoWFhVFcXExWVtY506SkpJQ5b1paWpnat9ONGzeOnJwc50MmvL067Vu7ga1L/+HZOYsZkx8HQPGRFdiSthD63HN4tmzhkn7nzp0sXrwYgB49etCiRYszsxRCCCEu2CX1DtVoNGg0GpRSlTb6RymFxWKhVq1ahIWFsXTpUue+4uJiVq5cSYcOHYCSBZv1er1LmqSkJHbu3OlM0759e3JyctiwYYMzzfr168nJyXGmKY/RaMTX19flIa4uGSdPsvD9qfz5+asMP2bFz+6DNe8klh3z8B3QH/+7h7ikP3LkCD/++CNQsipFp05lZ+oXQlzZhg8fzi233HLONCtWrECj0ZCdnX1ZyiQEXERAZrFY+Oabb+jVqxcNGjRgx44dfPDBBxw/fhxvb+8Lyuv5559n9erVHD16lB07dvDCCy+wYsUK7r77bjQaDaNHj2bSpEn8+OOP7Ny5k+HDh+Pp6cmQISU/lCaTiQceeICxY8eybNkytmzZwtChQ2nSpAk9e/YEoFGjRvTp04cRI0awbt061q1bx4gRI+jXr5906L+GWc1mvp0wAYfdTEP/btQlDLvdQvH6aRjr1yV8wgSXKvCMjAzmzp2L3W6nUaNG3HjjjVdFFbkQVelcwU9cXJzzj/rSx+nzR8bFxfHOO+9UepneffddZs6c6XzerVs3Ro8eXennqW7Dhw93vq46nY6YmBgeeeSRMi1K53sfxOVzQZ36R40axdy5c4mJieG+++5j7ty5BAYGXvTJU1JSGDZsGElJSZhMJpo2bcrixYudS84888wzFBUVMWrUKOfEsEuWLHHps/P222+j0+kYPHiwc2LYmTNnunTqmzNnDo8//rhzNOaAAQP44IMPLrrcomZTSvH9a1Moyk0iyL0O8X4lzY7F274GbSFR781C+++onVJ+fn40btyYzMxMBg4cKFMPCFEJXn31VUaMGOF8fjk6Y5tMpio/x5msVmu1LCvYp08fZsyYgc1mY/fu3dx///1kZ2fzzTffuKSrjvdBlHVBvyqffPIJvr6+1KpVi5UrVzJixAgGDhxY5lFR06dP5+jRo1gsFlJTU/njjz9c1v/TaDSMHz+epKQkzGYzK1euJCEhwSUPd3d33n//fTIyMigsLHQONjhdQEAAX331Fbm5ueTm5vLVV1/JLP3XsFVz5pG4fyMGrSetw2/EDS3WE+uwHV9LxNQpGGJiyhzj5ubGgAEDuPvuu2W9ViEqiY+PD2FhYc5H8BkDaCpi7Nix9O/f3/n8nXfeQaPR8Ntvvzm3NWjQgE8//RRwrbUbPnw4K1eu5N1333XWDpWuHAOwefNmWrdujaenJx06dGDfvn0VKtP48eNp3rw5X3zxBbVr18ZoNKKUYvHixXTq1Ak/Pz8CAwPp168fhw4dch43aNAgHnvsMefz0aNHo9Fo2LVrF1AyBYqPjw+///57hcphNBoJCwsjKiqKG264gTvuuIMlS5aUSVcZ74O4dBcUkN1zzz10794dPz8/lxGIZz6EuFId3PQPmxZ8BUDz8Nsx4YW9IAXztjkEPfooPt26OdMWFxfz119/Oacd0Gg0MvWAqHZKKQqLbdXyqOz5JytDt27dWL16tbMf88qVKwkKCmLlypVAycCw/fv307Vr1zLHvvvuu7Rv354RI0aQlJREUlKSyx/0L7zwAm+++SabNm1Cp9NVeHJ0gIMHDzJv3jzmz5/P1q1bASgoKGDMmDFs3LiRZcuWodVqufXWW51l79atGytWrHDmcea1bNy4EbPZTMeOHS/oNQI4fPgwixcvlj8or2AXPDGsEDXZhp9/AxS1/W+gliEM5bBh3vAZXh3bEvToKGc6u93O999/z/79+0lLS+PWW2+tvkILcZoiq53GL1eshqSy7X61N56Gylun9dlnn+XFF190Pp80aRKPP/74BeXRpUsX8vLy2LJlCy1btmT16tU89dRT/PDDDwAsX76c0NBQGjZsWOZYk8mEwWDA09PTObL/dK+99pozkHvuuefo27cvZrMZd3f385aruLiY2bNnu9Q2DRo0yCXN9OnTCQkJYffu3SQkJNCtWzeeeOIJ0tPTcXNzY9euXbzyyiusWLGCUaNGsWLFClq1alXh/tq//vor3t7e2O12zGYzAG+99VaZdJXxPohLJysgi2vKjc8+zUcvvE9zjyYAWHZ+j5uvInLqVDT/9gsrnYV///796HQ6WrVqVZ1FFuKq9fTTTzN8+HDn86CgoAvOw2Qy0bx5c1asWIFer0er1TJy5EheeeUV8vLyWLFiRbm1YxXRtGlT5/9Ll+RJTU0lppxuDWeKjY0t0/R36NAhXnrpJdatW0d6erqzZuz48eMkJCSQkJBAYGAgK1euRK/X06xZMwYMGMB7770HcMHX0r17dz7++GMKCwv5/PPP2b9/v0uTaKnKeB/EpZOATFwzlFI8+93f3OdbG71Vhy15G7bENcTN/Qa305raV6xYwT///INGo+G2226r0M1XiMvFQ+/G7ld7V9u5K1NQUBB169a95HxKm/oMBgNdu3bF39+f+Ph4/v77b1asWHHRoyhPb94rHVVd0SmevLy8ymzr378/0dHRfPbZZ0REROBwOEhISKC4uNh5ji5dujivpVu3biQkJGC329mxYwdr1qy5oGvx8vJyvr7vvfce3bt3Z8KECfzf//2fS7rKeh/EpZGATFz1MpOSWDptHnltutHu5AGirfE4irIw/zOL8IkTcD+tKWPjxo3O/hp9+/Ytt5lDiOqk0WgqtdnwatCtWzemT5+OTqdzTnnUtWtX5s6de9b+Y6UMBoOzn2hVysjIYM+ePXz66ad07twZgL/++qtMum7dujFt2jQMBgOvvvoqGo2Gzp0788Ybb1BUVHRR/cdKvfLKK9x444088sgjREREXHQ+omrIt1pc9Ra+P42UQxuJTiymg387lHJg3vQ5frffjGnAAGe6PXv2sHDhQqDkZt66devqKrIQV42cnBxnp/ZSl7oG8plK+5EtWLCAiRMnAiWBzaBBgwgODqZx48ZnPTYuLo7169dz9OhRvL29K71spfz9/QkMDGTatGmEh4dz/PhxnnvuuTLpSvuR6XQ6Z+DWrVs3xo4dS8uWLS9pkvJu3boRHx/PpEmTZOqnK5BMpiSuake37ybl0Ea8df608i/pC1a8dwGGGG9Cn33GJa2bmxs6nY6WLVvS7bTRlkKIi7dixQpatGjh8nj55Zcr9Rwmk4kWLVoQEBDgDL46d+6Mw+E4b5+rp556Cjc3Nxo3bkxwcDDHjx+v1LKV0mq1zJ07l82bN5OQkMCTTz7J66+/XiZdQkICQUFBNGvWzBl8de3aFbvdftF94U43ZswYPvvsM1kO8AqkUVfiOOYrUG5uLiaTiZycHFlGqYZQSjHt0dHkZxyiU8Q9RBrDsaXvo3jvLGrNn48+NKTMMampqQQGBsrEiOKKYTabOXLkCLVq1arQ6D4hrkXn+p7UlN9vabIUV62tS1aRn3GIMI86RBrDS6a42PYVMR+95QzGcnJysNlszhUnQkLKBmlCCCFEVZMmS3FVsttsrP56Bho0NAkq6eRrPbyc4IfvwbNNGwCKioqYM2cO06dPJzExsTqLK4Q4izlz5uDt7V3uIz4+vlrKFB8ff9YyzZkzp8rPX7p29NkeVdXsKqqW1JCJq9KK2T9gNadTy6cVATo/VHEBSh0gYPgrQMnacnPnziU1NRVvb288PT2rucRCiPIMGDCAtm3blruvumadX7hwIVartdx9oaGhVX7+iIiIMgMlztwvah4JyMRVqWnPzuzYsJV4nw4AWPb9RsTEZ9C4ueFwOPjhhx84duwYRqORoUOHytqmQlyhfHx88PHxqe5iuIiNja3W8+t0Opk37CokTZbiqmT2MlEUHomX1hNHQRoeTU14tmiBUopFixaxZ88e3NzcuPPOO8tdMkUIIYS4nCQgE1cVq8WKUoq3FqzizoIGAJgP/Uro02OAkokYN27cCMCtt95KrVq1qq2sQgghRClpshRXla9fnERebgHtAuqj1zTAnnGIoKG90AUEYLPZ2LdvHwB9+vQhISGhmksrhBBClJCATFw1Dm7cRfrxjZj0wXTw6wcaMOetIeaOj4GSfhf33HMPu3fvpnnz5tVbWCGEEOI00mQprgpKKZZ+Pg2ApkF90Gg0WE9tImbco2hOm+TVYDBIMCaEEOKKIwGZuCps/GUFhdklk8BGuEegHDZUZDYezZqxevVqVqxYcdZh6kKIa8fw4cO55ZZbzplmxYoVaDQasrOzL0uZhAAJyMRVwGa1snb+l2jQ0CywBwDmE6uIeXY0mZmZrFixghUrVnDo0KFqLqkQ15ZzBT9xcXFoNBqXR1RUlMv+d955p9LL9O677zJz5kzn827dujF69OhKP8+VIDk5mccee4zatWtjNBqJjo6mf//+LFu2jOLiYoKCgpyLsZ9p8uTJBAUFUVxcfM5zzJw50+U9DA0NpX///uzatcsl3fDhw8u83xqNhoMHD1ba9dZ0EpCJGu+Pz3/AZkmjlk8L/PT+qOICfPrUxc3Pj0WLFmG326lduzYNGjSo7qIKIU7z6quvkpSU5Hxs2bKlys9pMpku+7yD1VE7f/ToUVq1asWff/7J1KlT2bFjB4sXL6Z79+48+uijGAwGhg4dysyZMylvSesZM2YwbNgwDAbDec/l6+tLUlISiYmJ/PbbbxQUFNC3b98ywVyfPn1c3u+kpCQZ6X4aCchEjeZwODiw8U90Gj1N/Eomgc3P+IvQoXeyd+9eDhw4gFar5aabbkKj0VRzaYUQp/Px8SEsLMz5CA4OvuA8xo4dS//+/Z3P33nnHTQaDb/99ptzW4MGDfj0008B11q74cOHs3LlSt59911njc3Ro0edx23evJnWrVvj6elJhw4dnKO0z2f8+PE0b96cL774wlk7pZRi8eLFdOrUCT8/PwIDA+nXr59Lzf2gQYN47LHHnM9Hjx6NRqNx1jbZbDZ8fHz4/fffz1uGUaNGodFo2LBhA7fddhv169cnPj6eMWPGsG7dOgAeeOABDh06xKpVq1yOXb16NQcOHOCBBx6o0PVqNBrCwsIIDw+ndevWPPnkkxw7dqzM62U0Gl3e77CwMNxO6+N7rZOATNRoWq2WAZMmExPSE3edF/b8VKKfGITVbmfx4sUAdOzYkaCgoGouqRCVRCkoLqieRzk1KdWtW7durF69GofDAcDKlSsJCgpi5cqVQEmz3f79++natWuZY999913at2/PiBEjnDU20dHRzv0vvPACb775Jps2bUKn03H//fdXuFwHDx5k3rx5zJ8/37nMUUFBAWPGjGHjxo0sW7YMrVbLrbfe6ix7t27dWLFihTOPM69l48aNmM1mOnbseM5zZ2ZmsnjxYh599FG8vLzK7C+tIWzSpAlt2rRhxowZLvu/+OILrrvuuouaGig7O5uvv/4aqL6lrWoqmfZC1Hgf/76JUcaS5sh89z3EthzEsmXLyMnJwWQy0blz52ouoRCVyFoIk6pprcLnE8FQ9gf+Yj377LO8+OKLzueTJk3i8ccfv6A8unTpQl5eHlu2bKFly5asXr2ap556ih9++AGA5cuXExoaSsOGDcscazKZMBgMeHp6lrtix2uvveYM5J577jn69u2L2WzG3d39vOUqLi5m9uzZLrV+gwYNckkzffp0QkJC2L17NwkJCXTr1o0nnniC9PR03Nz+v737Doviah8+/l16X6ogioBioSigJnbBWLAn0UQTK7FEH3uNSWzExJKmxhh7faKJJlET22MPiBobikFEbChGIXYsdHbeP3zZnyugqOhS7s91zXU5M2fO3DMr7M05Z84YEhsby+TJkwkPD2fQoEGEh4dTp04drKysnnjuc+fOoShKvtf8uD59+jBmzBjmzp2LlZUV9+/f59dff2XmzJlPPTZXSkoKVlZWKIpCamoq8PAdpI+ff/PmzTqxt2nThl9//bXQ5yntpIVMlFhHNv9FzKVbBB87jYGhKZm3z1Ptk0Gkp6dz+PBh4OGYhcKMgRBCvHpjx44lOjpau/Tq1euZ61Cr1QQEBBAeHk5MTAwGBgYMGDCAEydOcO/ePcLDw/NtHSuMWrVqaf9dvnx5AK5du1aoY93d3fN0wZ4/f55u3bpRuXJlbGxstOOnEhMTAfDz88PBwYGIiAgiIyPx9/enY8eO2haywl5L7piwwgzTeP/999FoNKxduxaAtWvXoigK7733XqGuEx52PUdHRxMVFcWCBQuoUqUKCxYsyFOuWbNmOp/3nDlzCn2OskBayESJdCoyhr0/TsPGvCqtnd8EIMs/G2MHe4yBAQMGEBMTU6i/EIUoUYwtHrZU6evcRcjR0bFIXpKd29VnYmJCUFAQdnZ2+Pr6sn//fsLDw5/7KcpHu9xyk5vc7sWnya+rsEOHDri5ubF48WJcXV3RaDT4+flpB7+rVCqaNm2qvZbg4GD8/PzIyckhJiaGAwcOFOpaqlatikqlIi4u7qlTfKjVat555x2WL19O3759Wb58Oe+88w42NjaFuk54OHQk93OsUaMGycnJdO3aNc/YNEtLS3kp+hNIC5kocTQahT9XLgUUAtWvoVIZcO/2CaoN/L/xHfb29gQFBclAflH6qFQPuw31sRTTn6fccWR79uwhODgYgKCgINasWVPg+LFcJiYm5OTkvPQYb968SVxcHBMmTKB58+Z4e3tz+/btPOVyk8vw8HCCg4NRqVQ0adKEb775hrS0tKeOH4OHv/9CQkL44YcfePDgQZ79j8+v1rdvX/bv38/mzZvZv39/oQfzF2TkyJGcOHGCDRs2vFA9ZY0kZKLE2ffLHtLvncPFvDIu5hVRNNlYv1eTzKws/vnnH32HJ4R4REpKik43VXR0tLaLrqjkjiPbtGmTNiELDg5m1apVODk54ePjU+CxHh4eHDp0iIsXL3Ljxo1Ct4A9Kzs7OxwcHFi0aBHnzp1jz549jBo1Kk+54OBgYmNjiYmJ0Y5/DQ4OZvXq1dSuXbvQLVfz5s0jJyeH119/nXXr1nH27Fni4uKYM2cODRo00CkbFBSEl5cXvXr1wsvLi6ZNm77QtdrY2NCvXz8mT56c75QaIn+SkIkSJSM1k2ObV6NCRaDdw0lgb2SdoGKzICIiIliyZAl//vmnnqMUQuQKDw8nMDBQZ5k0aVKRnkOtVhMYGIi9vb02+WrSpAkajeapY67GjBmDoaEhPj4+ODk5FXmymMvAwIA1a9YQFRWFn58fI0eO5Ouvv85Tzs/PD0dHR/z9/bXJV1BQEDk5Oc80Fs7T05Njx47RrFkzRo8ejZ+fHy1btmT37t3Mnz8/T/k+ffpw+/btZ3qS9EmGDx9OXFycDNp/BipF0tdCuXv3Lmq1mpSUlGfqWxdFa+Osnzl7cDWVrWrzmlNLNFkPsBnhTaapOQsWLECj0dCtWzeqVaum71CFKBLp6ekkJCTg6elZqKf7hCiLnvRzUlK+v6WFTJQYt5LucO7wRoxUxtT6/5PAJjtcQF2xElu2bEGj0VC9enVJxoQQQpQ4kpCJEiM1JQVjCzU1bBthamxJRvp1/Ed9QExMDJcuXcLIyIjWrVvrO0whRBFavXo1VlZW+S6+vr56icnX17fAmFavXv3Sz5+YmFjg+a2srIq021Xf11qWyLQXosSoWMMdxes1fG55AHD7tWwqoGLHjh3Aw4G9dnZ2eoxQCFHUOnbsSL169fLdp6+Z4Ldu3Vrg+ymdnZ1f+vldXV21s/8XtL+o6PtayxJJyESJEX/lNs1O30JVvhp3Mi9R+/1u7Nixg/v372Nvb0/Dhg31HaIQoohZW1tjbW2t7zB0uLu76/X8RkZGr2w+L31fa1kiCZko9o5tiyZufziZN+/RwuXh49iqdz0xMDDAxcUFCwsL2rZti5GR/HcWQghRMsk3mCjWsjJz2L92JZmpZ2lerhsqlQH/GJ6hfoOHExcGBATg7e2NqampniMVQgghnp8M6hfFWviPu8lMPYuLeWUcLd3QaLJw/TBYZ7JBScaEEEKUdJKQiWLr/q00Tu5ZiwoVdWybAXDO+RJO5VxZtGgRJ0+elFmghRBClAqSkIlia9uC9Wiy/8XTOgArM0cych5Qu29H9uzZQ1JSEuHh4S/tNSdCCCHEqyQJmSiWks/f5FLMFoxUxvirHz49meB/l9TUDI4ePQpA27ZtMTQ01GeYQogSJjQ0lLfeeuuJZcLDw1GpVHlewi3EyyQJmSiWdiz5GTR38VY3xMTYijvKDRq/04EtW7agKAp+fn5UrlxZ32EKIZ7gScmPh4cHKpVKZ6lYsaLO/tmzZxd5TN999x0rVqzQrgcHBzNixIgiP09xcPnyZfr27YurqysmJia4u7szfPhwbt68madsbGwsXbp0wcnJCVNTU6pWrcrEiRNJTU3VKffo52ZoaIirqyt9+/bl9u3bhYopN9nNXRwcHHjjjTfYv3+/TrmwsLA8/z9UKhW7du16/htSzElCJoqlNgM7YWtchRo2tQG409yc2NhTXLlyBRMTE1q1aqXnCIUQL2rKlCkkJSVpl+PHj7/0c6rVamxtbV/6eR5V0MSqL9OFCxeoW7cuZ86c4eeff+bcuXMsWLCA3bt306BBA27duqUte/DgQerVq0dmZiZbtmzhzJkzTJs2jZUrV9KyZUsyMzN16s793BITE1m9ejV79+5l2LBhzxRffHy8duiJk5MT7dq149q1azplfH19df5/JCUl0bRp0+e/KcWcJGSiWLpzKo43cspjYGhCosk/BDRsrP3LKDg4uFi/IFYIUTjW1ta4uLhoFycnp2euY/To0XTo0EG7Pnv2bFQqFVu2bNFuq169OgsXLgR0W+1CQ0OJiIjgu+++07bAXLx4UXtcVFQUdevWxcLCgoYNGxIfH1+omMLCwggICGDZsmVUrlwZU1NTFEVh27ZtNG7cGFtbWxwcHGjfvj3nz5/XHte5c2eGDh2qXR8xYgQqlYrY2FgAsrOzsba2Zvv27U+NYfDgwZiYmLBjxw6CgoKoVKkSbdq0YdeuXVy5coXx48cDoCgKffv2xdvbm/Xr1/P666/j7u7Ou+++y6ZNm/jrr7+YNWuWTt25n1uFChVo1qwZvXr14tixY4W6N7nKlSuHi4sLNWvWZMKECaSkpHDo0CGdMkZGRjr/P1xcXDAxMXmm85QkkpCJYuXOv/fQZGRwa+ZCjCo1AMDy7SrEx8eTlpZGuXLlCnyNihBlgaIopGal6mUpjk81BwcHExkZqX3AJyIiAkdHRyIiIgBITk7mzJkzBAUF5Tn2u+++o0GDBvTv31/bAuPm5qbdP378eL799luOHj2KkZERffr0KXRc586d45dffmHdunXa1xw9ePCAUaNGceTIEXbv3o2BgQFvv/22Nvbg4GDCw8O1dTx+LUeOHCE9PZ1GjRo98dy3bt1i+/btDBo0CHNzc519Li4udO/enbVr16IoCtHR0Zw6dYpRo0ZhYKCbEvj7+9OiRQt+/vnnAs915coVNm/e/Ny/l1NTU1m+fDmgv1dhFRd6nRh2+vTprF+/ntOnT2Nubk7Dhg358ssvqV69uraMoih89tlnLFq0iNu3b1OvXj1++OEHnZfKZmRkMGbMGH7++WfS0tJo3rw58+bN0xmPcPv2bYYNG8bGjRuBh+9H+/77719507UoWOrdTFZ+NBlDsmntHoJKZcAp+wRaBfYCwM7ODmNjYxnIL8q0tOw06v2knz9KDnU7hIWxRZHVN27cOCZMmKBdnzZt2jN3fTVt2pR79+5x/PhxateuTWRkJGPGjGH9+vUA/Pnnnzg7O1OjRo08x6rVakxMTLCwsMDFxSXP/qlTp2oTuY8//ph27dqRnp6OmZnZU+PKzMzkxx9/1Gn169y5s06ZpUuXUq5cOU6dOoWfnx/BwcEMHz6cGzduYGhoSGxsLJMnTyY8PJxBgwYRHh5OnTp1sLKyeuK5z549i6IoeHt757vf29ub27dvc/36dc6cOaPdVlDZffv26WzL/dxycnJIT0+nXr16zJw586n35FG538+pqQ8T/Tp16tC8eXOdMjExMTrX6uPjw+HDh5/pPCWJXlvIIiIiGDx4MAcPHmTnzp1kZ2fTqlUrHjx4oC3z1VdfMXPmTObOncuRI0dwcXGhZcuW3Lt3T1tmxIgRbNiwgTVr1rBv3z7u379P+/btycnJ0Zbp1q0b0dHRbNu2jW3bthEdHU3Pnj1f6fWKJ9uzcg/Z6WewU4GZYzWylSyqdm2g3V+5cmWdv16FECXb2LFjiY6O1i69evV65jrUajUBAQGEh4cTExODgYEBAwYM4MSJE9y7d4/w8PB8W8cKo1atWtp/ly9fHiDPOKeCuLu75+mCPX/+PN26daNy5crY2Njg6ekJQGJiIgB+fn44ODgQERFBZGQk/v7+dOzYUdtC9iLX8qjclk6VSlWoso+Xy/3c/v77b3bv3g1Au3btdL5znyYyMpJjx47x888/4+7uzooVK/K0kFWvXl3n/8e6desKXX9JpNcWsm3btumsL1++nHLlyhEVFUXTpk1RFIXZs2czfvx4OnXqBMDKlStxdnbmp59+YsCAAaSkpLB06VJ+/PFHWrRoAcCqVatwc3Nj165dhISEEBcXx7Zt27QDFwEWL15MgwYNiI+P12mRE/px4597nPlrHSpU1P3/k8CerHyVGlmVSElJQa1W6zlCIYoHcyNzDnU79PSCL+ncRcnR0bFIXpKd29VnYmJCUFAQdnZ2+Pr6sn//fsLDw5/7KcpHE4TcpKSwcx9aWlrm2dahQwfc3NxYvHgxrq6uaDQa/Pz8tIPmVSoVTZs21V5LcHAwfn5+5OTkEBMTw4EDBwp1LV5eXqhUKk6dOpXvU66nT5/Gzs4OR0dHqlWrBsCpU6cICAjIt2zVqlV1tj36uVWtWpXZs2fToEED/vzzT+338NN4enpia2tLtWrVSE9P5+233+bkyZM6b14xMTF5ZS9RLw6K1RiylJQUAOzt7QFISEggOTlZ54k6U1NTgoKCOHDgAPBw0GVWVpZOGVdXV/z8/LRl/vrrL9RqtU4fd/369VGr1doyj8vIyODu3bs6i3g5FEVh+8LfUXKSqGzlj6WZI/dVD/Bv14TffvuNuXPncvXqVX2HKUSxoFKpsDC20MtSmBYVfcgdR7Znzx6Cg4MBCAoKYs2aNQWOH8tlYmLyTC07z+vmzZvExcUxYcIEmjdvru02fFxuchkeHk5wcDAqlYomTZrwzTffkJaW9tTxYwAODg60bNmSefPmkZaWprMvOTmZ1atX07VrV1QqFQEBAdSoUYNZs2blSTZPnDjBrl27eP/99594vtxhJI+fq7B69uyJRqNh3rx5z3V8aVFsEjJFURg1ahSNGzfGz88PePgfB8DZ2VmnrLOzs3ZfcnIyJiYm2NnZPbFMuXLl8pyzXLly2jKPmz59Omq1WrtIV9nLcyE6mX/PbcNIZUIt24e/bBIC7hF19Djp6ek4ODjk+T8ghCgZUlJSdLqdoqOjtV10RSV3HNmmTZu0CVlwcDCrVq3CyckJHx+fAo/18PDg0KFDXLx4kRs3bry0t3/Y2dnh4ODAokWLOHfuHHv27GHUqFF5ygUHBxMbG0tMTAxNmjTRblu9ejW1a9cu9BPmc+fOJSMjg5CQEPbu3cvly5fZtm0bLVu2pEKFCkydOhV4mOAvWbKEU6dO0blzZw4fPkxiYiK//vorHTp0oEGDBnla5e7du0dycjJJSUkcPnyYsWPH4ujoSMOGDZ/r3hgYGDBixAhmzJiRZ96zsqTYJGRDhgzh77//zvdpjsf/KsuvT/txj5fJr/yT6vnkk09ISUnRLpcvXy7MZYhnlJOjYfeyX1A0KXjb1MfE2Ipk4xt41fHXPpnUrl07GcgvRAkVHh5OYGCgzjJp0qQiPYdarSYwMBB7e3tt8tWkSRM0Gs1Tx1yNGTMGQ0NDfHx8cHJyKvJkMZeBgQFr1qwhKioKPz8/Ro4cyddff52nnJ+fH46Ojvj7+2uTr6CgIHJycp5p/FjVqlU5evQoVapUoWvXrlSpUoUPP/yQZs2a8ddff2l7ogAaNWrEwYMHMTQ0pG3btnh5efHJJ5/Qu3dvdu7cqdONCDBp0iTKly+Pq6sr7du3x9LSkp07d+Lg4PCcdwf69OlDVlYWc+fOfe46SjqVUgyeYx46dCi///47e/fu1Q5yhIcT21WpUoVjx44RGBio3f7mm29ia2vLypUr2bNnD82bN+fWrVs6rWT+/v689dZbfPbZZyxbtoxRo0bleQ2Gra0ts2bN4oMPPnhqjHfv3kWtVpOSkiJzYBWhO/8+YOWYIRjnpNG+Qn8MDE0488Zd4s8n8u+//xIYGMibb76p7zCF0Jv09HQSEhLw9PQs1NN9QpRFT/o5KSnf33ptIVMUhSFDhrB+/Xr27Nmjk4zBw0F/Li4u7Ny5U7stMzOTiIgIbdNonTp1MDY21imTlJTEyZMntWUaNGhASkqKzuOyhw4dIiUl5bmbWEXRsHW2pLm5OQ3NGz1Mxiz/wdzann///RczM7NCDxAVQgghSjK9JmSDBw9m1apV/PTTT1hbW5OcnExycrJ2YKBKpWLEiBFMmzaNDRs2cPLkSUJDQ7GwsKBbt27Aw6bqvn37Mnr0aHbv3s3x48fp0aMHNWvW1H6Ze3t707p1a/r378/Bgwc5ePAg/fv3p3379vKEpZ7dj4zE+MRZHBwfPl5u0txZOzFi8+bN831SSQhRdqxevRorK6t8l0fno3yVfH19C4xp9erVL/38iYmJBZ7fysrqpXW7FkabNm0KjGvatGl6i6sk0Ou0F/PnzwfQDsLMtXz5ckJDQwH46KOPSEtLY9CgQdqJYXfs2IG1tbW2/KxZszAyMqJLly7aiWFXrFihM+5o9erVDBs2TPs0ZseOHct0X7W+3fk3lWPb9uO48htsfN9FpTLghGMCLep0Je1BDomJidSpU0ffYQoh9Kxjx44FzgKvr5ndt27dWuD7KV/FA0iurq7aMbYF7deXJUuWFPi05aPj1kRexWIMWUlQUvqgS4rfZmzh0vH5uJl507B8R7LIIntAeap6PpwtWqPR5HmNhxBlkYwhE+LpZAyZEM8hMe4miTEbUaHC3+7hTPzRHpep4v5/3ceSjAkhhChL5FtPvFIajcLuZZtRsq/8/0lgnbhr+ABLLxeWLVtGUlKSvkMUQgghXjm9jiETZU/s3svc/mfnw0lg1Q+fcI2rfo34w/+QmZlJUlKS9p1xQgghRFkhLWTilclMyyby5/Uomjv42NTDxMSaJJMbZJoYk5mZScWKFfN9l5oQQghR2kkLmXhlDm2MIy1lP+aG1lRT1wXgou8D4uPOoVKpaNeunYwdE0IIUSZJQiZeGRfHBxgrJgSoG2FoaEKcRSLJ1x6+XPe1116TrkohhBBlljRHiFfGbN2PtLx4DTebh5M5XquWw82bN7G0tKRZs2Z6jk4IUdRCQ0NRqVQMHDgwz75BgwahUqm0c07mllWpVBgbG+Ps7EzLli1ZtmxZnhd+e3h4MHv27ELF4OHhoa3X3NycGjVq8PXXX/PojE8XL17Ulnl06dGjx3NfuxDPShIy8dLl5Gi49+ef3N+zBzO/h5PARtmfJTMtB4CWLVtibm6u5yiFEC+Dm5sba9as0ZksND09nZ9//plKlSrplG3dujVJSUlcvHiR//3vfzRr1ozhw4fTvn17srOznzuGKVOmkJSURFxcHGPGjOHTTz9l0aJFecrt2rWLpKQk7fLDDz889zmFeFbSZSleKkWjsCZsE5lntvNahboYO3mTpcqi6jt1qeHhR1xcHD4+PvoOUwjxktSuXZsLFy6wfv16unfvDsD69etxc3OjcuXKOmVNTU1xcXEBoEKFCtSuXZv69etr377Sr1+/54rB2tpaW2+/fv2YP38+O3bsYMCAATrlHBwctOWEeNWkhUy8VKcPJXHtwv+4zWWMar4FwLFKl/CpXAsDAwN8fX1RqVT6DVKIEkRRFDSpqXpZnvfFLh988AHLly/Xri9btow+ffoU6tg33ngDf39/1q9f/1znfpSiKISHhxMXF6e31y4JURBpIRMvTVZGDntXbUOT/Q9VrAKwMivHLcO7WFRxJisrS34hCvEclLQ04mvr5z2v1Y9FobKweObjevbsySeffKIdq7V//37WrFlDeHh4oY6vUaMGf//99zOfN9e4ceOYMGECmZmZZGVlYWZmxrBhw/KUa9iwoc6T3pGRkQQGBj73eYV4FpKQiZfm2LYLPLgVjpHKhJp2jQDY73Kefw/c4urlJPr06SOtY0KUAY6OjrRr146VK1eiKArt2rXD0dGx0McrivJCvyvGjh1LaGgo169fZ/z48bzxxhs0bNgwT7m1a9fi7e2tXXdzc3vucwrxrCQhEy/F/dvpHP5jC4rmFj7qJpgaWXHO5Ao3UlKAh9NcSDImxLNTmZtT/ViU3s79vPr06cOQIUMAnnmwfFxcHJ6ens99bkdHR7y8vPDy8mLdunV4eXlRv359WrRooVPOzc0NLy+v5z6PEC9CEjLxUuxbe5LM1AOYG1pT1fbhJLDR9lfIuZODh4cHNWvW1HOEQpRMKpXquboN9a1169ZkZmYCEBISUujj9uzZQ0xMDCNHjiySOOzs7Bg6dChjxozh+PHj8oehKDZkUL8ocun3szh7cCsoqfjbNsHIwIQDFqe4c+ceBgYGtG3bVn4JClHGGBoaEhcXR1xcHIaGhvmWycjIIDk5mStXrnDs2DGmTZvGm2++Sfv27enVq1eRxTJ48GDi4+NZt25dkdUpxIuSFjJR5AxuXuX1UztI9PClkrUv2eRwwfQWpEH9+vUpV66cvkMUQuiBjY3NE/dv27aN8uXLY2RkhJ2dHf7+/syZM4fevXsX6WvVnJyc6NmzJ2FhYXTq1KnI6hXiRaiU532OuYy5e/cuarWalJSUp/5SKcsUReHygAE82BtJzhtjsbWpymbrIyRn3cXa2pohQ4Zgamqq7zCFKDHS09NJSEjA09MTMzMzfYcjRLH0pJ+TkvL9LS1koshkZ+VwZs1u2BuJysUfW5uqZKqy8G/7Orbx/1CzZk1JxoQQQoh8SEImiszx/11g37Y/sPCrRyP3DgAcdbtAl8B+NAjkuSeVFEKI/KxevTrPbPu53N3diY2NfcURCfH8JCETReJBSgaHN4ajyb6Es9ofW+Ny3DC8Q/13/u+xchnIL4QoSh07dqRevXr57pOJp0VJIwmZKBIHVkeT8WAfRioTfBwak0UOW8yj8dmfjVNrZ3l5uBCiyFlbW2Ntba3vMIQoEjLthXhh1y/f49Thgyiam3ir62FhYEWkaSxZ2TlcvHixwEfchRBCCPGQJGTihSiKwp8L9pOdnjsJ7GvcUT0gweA68HAySBMTEz1HKYQQQhRvkpCJF3LhyBWS/okC5QF+dk0xUhmx0/QEigJVq1alRo0a+g5RCCGEKPYkIRMv5P72rWgyTmJrUg4Pax8SDK6RQhqGhoa0adNGBvILIYQQhSCD+sVzy0hIwOSXubyRo/Cg9cdkoyHS9BQo0LhxY+zt7fUdohBCCFEiSAuZeC6KovDvF1MhK4s7NVtQyaQSNw3uYmBqhK2tLY0bN9Z3iEIIIUSJIQmZeC6Rs3dz9EoO2SbmmFUOAuBchSRGjhjFe++9J3MACVGGqVSqJy6hoaEv5bwPHjxg3LhxVK5cGTMzM5ycnAgODmbz5s3aMsHBwYwYMSLPsStWrMDW1jbP9rS0NOzs7LC3tyctLS3Pfg8PD+11WVhY4Ofnx8KFCwsV74oVK3Tui7OzMx06dMgzoW1oaGi+9/HcuXOFOo8oGaTLUjyzmwk3ORGTSKb6OgZub1JXcSDF8D71OrfAzMwMFxcXfYcohNCjpKQk7b/Xrl3LpEmTiI+P1257fF7CrKysIvkjbuDAgRw+fJi5c+fi4+PDzZs3OXDgADdv3nzuOtetW4efnx+KorB+/Xq6d++ep8yUKVPo378/9+/fZ8WKFQwcOBBbW1u6du361PptbGyIj49HURSuXLnCRx99RLt27Thz5ozOE+qtW7dm+fLlOsc6OTk993WJ4kdayMQzURSFXbP3kpUeiZHKhBr29bhocJ1I1zN4OlfRd3hCiGLAxcVFu6jValQqlXY9PT0dW1tbfvnlF4KDgzEzM2PVqlUALF++HG9vb8zMzKhRowbz5s3TqffKlSt07doVOzs7HBwcePPNN7l48aJ2/6ZNm/j0009p27YtHh4e1KlTh6FDh9K7d+/nvpalS5fSo0cPevTowdKlS/MtY21tjYuLC15eXnzxxRdUrVqV33//vVD1596b8uXLU7duXUaOHMmlS5d0ElgAU1NTnfvq4uIiczyWMpKQiWdyYu1Rku/+g5Jzneq29TFRmRJpfIrk67eJjo7Wd3hClBlZGTkFLtlZOYUvm1m4skVt3LhxDBs2jLi4OEJCQli8eDHjx49n6tSpxMXFMW3aNCZOnMjKlSsBSE1NpVmzZlhZWbF371727duHlZUVrVu3JjMzE3iYCG7dupV79+4VSYznz5/nr7/+okuXLnTp0oUDBw5w4cKFpx5nZmZGVlbWM5/vzp07/PTTT4C8+qkski5LUWj3rt3jr12JZKdFYG5oTXXbukQZXSBDlY29vT01a9bUd4hClBmLhkcUuM/dz4H2Q/y168vGRpKdqcm3rGtVW94eXVu7/t/xB0i/nzeZGLzgjReINq8RI0bQqVMn7frnn3/Ot99+q93m6enJqVOnWLhwIb1792bNmjUYGBiwZMkS7XQ6y5cvx9bWlvDwcFq1asWiRYvo3r07Dg4O+Pv707hxY9555x0aNWqkc+558+axZMkSnW3Z2dmYmZnpbFu2bBlt2rTBzs4OeNhtuGzZMr744ot8ryk7O5tVq1YRExPDf/7zn0Ldh5SUFKysrFAUhdTUVODhOzofn8Nx8+bNWFlZadfbtGnDr7/+WqhziJJBWshEoSiKws6vdpOeHglKOtUdg7mrSuek0WUA2rZti5GR5PdCiMKpW7eu9t/Xr1/n8uXL9O3bFysrK+3yxRdfcP78eQCioqI4d+4c1tbW2v329vakp6dryzRt2pQLFy6we/duOnfuTGxsLE2aNOHzzz/XOXf37t2Jjo7WWaZMmaJTJicnh5UrV9KjRw/tth49erBy5UpycnRbDMeNG4eVlRXm5uYMHjyYsWPHMmDAgELdB2tra6Kjo4mKimLBggVUqVKFBQsW5CnXrFkznXjnzJlTqPpFySHfoKJQkv86xT83/kGTdQ47Exe8LKqz1fg4AD4+Pnh5eek5QiHKlg+/Cypwn+qxP7X7fN2k4LKPzd3ca2rDFwmr0CwtLbX/1mgett4tXryYevXq6ZTLHSel0WioU6cOq1evzlPXo4PbjY2NadKkCU2aNOHjjz/miy++YMqUKYwbN047SF6tVuf5nVWuXDmd9e3bt2vHrD0qJyeHHTt20KZNG+22sWPHEhoaioWFBeXLl3+mCbENDAy0sdSoUYPk5GS6du3K3r17dcpZWlrK79lSThIy8VRKdjbpsz6j1j+3OOXhhHf51pw3uMa/BikYGxsTEhKi7xCFKHOMTQs/oPtllS0qzs7OVKhQgQsXLuT7FCNA7dq1Wbt2LeXKlcPGxqbQdfv4+JCdnU16evozvVd36dKlvPfee4wfP15n+4wZM1i6dKlOQubo6FhkydLIkSOZOXMmGzZs4O233y6SOkXJIF2W4qlurVxJekwMLll3USq3p7yBI4eMzwIQFBSEWq3Wc4RCiJIuLCyM6dOn891333HmzBliYmJYvnw5M2fOBB52Mzo6OvLmm28SGRlJQkICERERDB8+nH/++Qd4OMfYwoULiYqK4uLFi2zdupVPP/2UZs2aPVMSd/36dTZt2kTv3r3x8/PTWXr37s3GjRu5fv36S7kPNjY29OvXj8mTJ6Moyks5hyieJCETT5QQfoqzS9cDcCS4J+1zKmKEIQ6VbfDx8aF+/fp6jlAIURr069ePJUuWsGLFCmrWrElQUBArVqzA09MTAAsLC/bu3UulSpXo1KkT3t7e9OnTh7S0NG2yFRISwsqVK2nVqhXe3t4MHTqUkJAQfvnll2eK5b///S+WlpY0b948z75mzZphbW3Njz/++OIXXYDhw4cTFxcng/bLGJUiKXih3L17F7VaTUpKyjP9pVWSpT/I5L/DN3Dv/jrKo8arypu45qg54HCSjiM/wMzI7OmVCCFeSHp6OgkJCXh6euZ5ClAI8dCTfk5Kyve3tJCJAv351XYepP8FSirOTnWwzjHhnPE/1OoRJMmYEEIIUYQkIRP5Sog8w9nLl9FknaOCRTWqWnrzp8lJIozPQIr8txFCiKfx9fXVmcbj0SW/p0VF2SZPWYo8MtOz2fPfKLJS92BmaElguRCOGyVwzeAupsamODs76ztEIYQo9rZu3VrgjP3ye1Q8ThIykcfeb7dzN+0QKOnULteFFMMMjhtdBKBDhw7aWauFEEIUzN3dXd8hiBJEr31Pe/fupUOHDri6uqJSqfK8jFVRFMLCwnB1dcXc3Jzg4GBiY2N1ymRkZDB06FAcHR2xtLSkY8eO2kegc92+fZuePXuiVqtRq9X07NmTO3fuvOSrK5mST1zi1LmLaLLOUcW6Nk5mFQk3PglAYGAgfn5+eo5QCCGEKH30mpA9ePAAf39/5s6dm+/+r776ipkzZzJ37lyOHDmCi4sLLVu21Hlx7IgRI9iwYQNr1qxh37593L9/n/bt2+u82qJbt25ER0ezbds2tm3bRnR0ND179nzp11fSKIpC5sKvcf73IDbGjtRyCCLS+BSpqkwcHBx0JkIUQgghRNHRa5dlmzZtCvySVxSF2bNnM378eO3LZleuXImzszM//fQTAwYMICUlhaVLl/Ljjz/SokULAFatWoWbmxu7du0iJCSEuLg4tm3bxsGDB7Wv5Fi8eDENGjQgPj6e6tWrv5qLLQHu/e9/PNizm5rGptypNZF/DG5zyfAGhoaGvPPOO880y7UQQgghCq/YPi6XkJBAcnIyrVq10m4zNTUlKCiIAwcOAA9fNpuVlaVTxtXVFT8/P22Zv/76C7VarfN+tPr166NWq7Vl8pORkcHdu3d1ltLs9vlk/pn6JQCXmnxAJcphr7Kgeq2qtGrVivLly+s5QiGEEKL0KraD+pOTk4G8T6I4Oztz6dIlbRkTE5M8g8ydnZ21xycnJ+d5aSw8fJFsbpn8TJ8+nc8+++yFrqGk0ORo2PT1bm65eeDrGoiPTQAAMXX/5f23P9BvcEIIIUQZUGxbyHKpVCqddUVR8mx73ONl8iv/tHo++eQTUlJStMvly5efMfKS4+CCP7l5/wgq7lHRvTmXDK6zzz6Wdzr20HdoQghR5C5evIhKpSI6OlrfoZRaYWFhBAQE6DuMEqXYJmQuLi4AeVqxrl27pm01c3FxITMzk9u3bz+xzL///pun/uvXrz9xHhhTU1NsbGx0ltLo5vlrRB05hSbrHLUdWnDDJIM9Jie5ZpGBSnly4iuEEE8SGhrKW2+9pbPtt99+w8zMjK+++ko/QT2HdevWUa9ePdRqNdbW1vj6+jJ69Gjt/hUrVmBra5vvsfnNIADw4YcfYmhoyJo1a/LsCwsLQ6VSoVKpMDQ0xM3NjX79+hX6hea5x6pUKqysrPD392fFihU6ZcLDw3XK5S4TJkwo1DlE0Su2CZmnpycuLi7s3LlTuy0zM5OIiAgaNmwIQJ06dTA2NtYpk5SUxMmTJ7VlGjRoQEpKCocPH9aWOXToECkpKdoyZZWiUdj27Q4y0yOoaFENR2svIo1PA+BTwxcjo2Lboy2EKIGWLFlC9+7dmTt3Lh999NEzH5+ZmfkSonqyXbt28d577/HOO+9w+PBhoqKimDp16gvFkpqaytq1axk7dixLly7Nt4yvry9JSUkkJiYyf/58Nm3aRK9evQp9juXLl5OUlMSJEyfo2rUrH3zwAdu3b89TLj4+nqSkJO3y8ccfP/d1iRej14Ts/v37REdHa5uNExISiI6OJjExEZVKxYgRI5g2bRobNmzg5MmThIaGYmFhQbdu3QBQq9X07duX0aNHs3v3bo4fP06PHj2oWbOm9qlLb29vWrduTf/+/Tl48CAHDx6kf//+tG/fvsw/YXl0+V6u3Y3CzMCIQKcQwk1iyVRlU6FCBZo1a6bv8IQQpchXX33FkCFD+Omnn+jXrx8ABw4coGnTppibm+Pm5sawYcN48OCB9hgPDw+++OILQkNDUavV9O/fX9satX37dry9vbGysqJ169YkJSXpnG/58uV4e3tjZmZGjRo1mDdv3nPFvXnzZho3bszYsWOpXr061apV46233uL7779/7nvx66+/4uPjwyeffML+/fu5ePFinjJGRka4uLhQoUIF2rdvz7Bhw9ixYwdpaWmFOoetrS0uLi5UqVKFTz/9FHt7e3bs2JGnXLly5XBxcdEuVlZWT6079zP4/fffqVatGmZmZrRs2fKJQ3uCg4MZMWKEzra33nqL0NBQ7fq8efOoWrUqZmZmODs788477xTqWksLvSZkR48eJTAwkMDAQABGjRpFYGAgkyZNAuCjjz5ixIgRDBo0iLp163LlyhV27NiBtbW1to5Zs2bx1ltv0aVLFxo1aoSFhQWbNm3C0NBQW2b16tXUrFmTVq1a0apVK2rVqsWPP/74ai+2mEn55xaHIk+gyTrL645tiTNJ5l+DFExMTHjnnXd07p8QovjJSk8vcMl+rPXmSWWzMjMKVfZFfPzxx3z++eds3ryZzp07AxATE0NISAidOnXi77//Zu3atezbt48hQ4boHPv111/j5+dHVFQUEydOBB62MH3zzTf8+OOP7N27l8TERMaMGaM9ZvHixYwfP56pU6cSFxfHtGnTmDhxIitXrnzm2F1cXIiNjeXkyZMvcAd0LV26lB49eqBWq2nbti3Lly9/6jHm5uZoNBqys7Of6Vw5OTn88ssv3Lp1C2Nj4+cNOY/U1FSmTp3KypUr2b9/P3fv3uW999577vqOHj3KsGHDmDJlCvHx8Wzbto2mTZsWWbwlgV77pIKDg1EUpcD9KpWKsLAwwsLCCixjZmbG999//8S/Vuzt7Vm1atWLhFrq3Fq6BMMH56hqWxssbYk2PAbIq5GEKCnm9C649cAzsC6dPg7Trs/7sDvZGRn5lq3o40fXyTO064uH9CHtXt5pfkav3fxccf7vf//jjz/+YPfu3bzxxhva7V9//TXdunXTtppUrVqVOXPmEBQUxPz58zEzMwPgjTfe0Em29u3bR1ZWFgsWLKBKlSoADBkyhClTpmjLfP7553z77bfaOSw9PT05deoUCxcupHfv3s8U/9ChQ4mMjKRmzZq4u7tTv359WrVqRffu3TE1NdWWS0lJKVTr0tmzZzl48CDr168HoEePHgwbNozJkydjYJB/G8np06eZP38+r7/+uk6DxJO8//77GBoakp6eTk5ODvb29tqWyUdVrFhRZ/3SpUs4ODg8tf6srCzmzp2rnVJq5cqVeHt7c/jwYV5//fVCxfioxMRELC0tad++PdbW1ri7u2sba8qKYjuGTLw8qVFRpP+8nOCL5/CzD+KAcTyKCgICAqhZs6a+wxNClCK1atXCw8ODSZMm6bxlJSoqihUrVmBlZaVdQkJC0Gg0JCQkaMvVrVs3T50WFhbaZAygfPnyXLt2DXj4wNbly5fp27evTt1ffPEF58+ff+b4LS0t2bJlC+fOnWPChAlYWVkxevRoXn/9dVJTU7XlrK2ttUNwHl0et3TpUkJCQnB0dASgbdu2PHjwgF27dumUi4mJwcrKCnNzc3x8fHBzc2P16tWFjnvWrFlER0ezc+dOAgICmDVrFl5eXnnKRUZG6sRb2D/IjYyMdD6bGjVqYGtrS1xcXKFjfFTLli1xd3encuXK9OzZk9WrV+vc37JARm2XMVkPUkkaPwFUhuQ0+hATlQluJraUr+Eur0YSogQZtvK3AvepHmtpGbToCV/kBrpPU/efu+yF4npchQoVWLduHc2aNaN169Zs27YNa2trNBoNAwYMYNiwYXmOqVSpkvbflpaWefY/3vWmUqm0vS0ajQZ42G356ITgwAsNxahSpQpVqlShX79+jB8/nmrVqrF27Vo++ODhXI0GBgb5JjyPysnJ4b///S/Jyck6D03l5OSwdOlSnUnOq1evzsaNGzE0NMTV1VWnNa4wXFxc8PLywsvLi19//ZXAwEDq1q2Lj4+PTjlPT88CnxB9mvymjipoOikDA4M8PWJZWVnaf1tbW3Ps2DHCw8PZsWMHkyZNIiwsjCNHjjx3fCWNJGRlzMYJ67lhVYEGAQ2xN6tAiuF9qnevh69nLX2HJoR4Bsb/v0tPn2ULq1KlSkRERNCsWTNatWrF9u3bqV27NrGxsU9NYp6Vs7MzFSpU4MKFC3Tv3r1I687l4eGBhYWFzgMIhbF161bu3bvH8ePHdZLD06dP0717d27evKntLjQxMSmye+Pl5UXnzp355JNP+OOPP4qkzuzsbI4ePartnoyPj+fOnTvUqFEj3/JOTk46D17k5ORw8uRJnQfIjIyMaNGiBS1atGDy5MnY2tqyZ88ebddzaScJWRkS90cUidejsLcwQnGtw2WDm1x+7T5dPKVlTAjxclWsWJHw8HBtUrZw4UIaNGjA4MGD6d+/P5aWlsTFxbFz584XeoIRHs7jNWzYMGxsbGjTpg0ZGRkcPXqU27dvM2rUqGeuKzU1lbZt2+Lu7s6dO3eYM2cOWVlZtGzZ8pnqWrp0Ke3atcPf319nu6+vLyNGjGDVqlUMHz78meosrNGjR+Pv78/Ro0fz7QZ+VsbGxgwdOpQ5c+ZgbGzMkCFDqF+/foHjx9544w1GjRrFli1bqFKlCrNmzeLOnTva/Zs3b+bChQs0bdoUOzs7tm7dikajKVOzIcgYsjIi7U4qf26IxDD7EnWd2hBuEst2k2iqVPLWd2hCiDKiQoUKREREcOfOHfr3709ERARnz56lSZMmBAYGMnHixCJ5b26/fv1YsmQJK1asoGbNmgQFBbFixQo8PT2fua6goCAuXLhAr169qFGjBm3atCE5OZkdO3Y8U7Lw77//smXLFu1Tpo9SqVR06tSpwDnJikLudFC5sxi8KAsLC8aNG0e3bt1o0KAB5ubm+U5ym6tPnz707t2bXr16ERQUhKenp07rmK2tLevXr+eNN97A29ubBQsW8PPPP+Pr61sk8ZYEKuVJjzkKrbt376JWq0lJSSmRs/b/MXY15y7/zusOzbhiZ8xpoyuYW5gzeNDgQj0ZJITQj/T0dBISEvD09NQ+eSiEPq1YsYIRI0botHDp25N+TkrK97e0kJUB53b8zYWkKCqaVwK1M6eNrgDwTud3JBkTQgghigFJyEq5zAcZ7PppN6aaq3g7BRNp/PCR5EaNGuk8Ni6EEGXRwIEDdabHeHQZOHCgvsPLY9q0aQXGW1RPyrdp06bAc0ybNq1IziHyki7LQiopTZ6POzvnv2w+sItGzs05pr5NssEdnMs782G/D2U2fiFKAOmyfLmuXbvG3bt5J8IFsLGxoVy5cq84oie7desWt27dynefubk5FSpUeOFzXLlypcBXNNnb22Nvb//C5yhqpaHLUp6yLMUyEhLIWTqTEPdm3LK0JtkgAUMjQ7q+21WSMSGE4OG7HItb0vUkryIhKoqkTjw7SchKKUWjIWniRFQm9ljV6ICNxhjnco40DWpWLP+6EUIIIcoySchKqfCpa7l1Q0Ptun0xMDAm2vo8fT7sj6nRs832LIQQQoiXTwb1l0JXj57nRPxhrD0COGWv4V/D21TrUU+SMSGEEKKYkoSslMnOzmHLDxuwN0wHezeOGJ9nm8XfeLoW7etJhBBCCFF0JCErZSK/3kBa+nGqO7/BIeOzAAQ3a5bnZbxCCCGEKD4kIStFrp+8zInYffg7NOKg2UVyVBrc3N1oUL+BvkMTQohiITQ0lLfeeuuJZcLDw1GpVMVqJvqS6OLFi6hUKqKjo/UdSokgCVkpocnRsHHmGlxNjEi2Nea2wQOMTYzp+m5XDAzkYxZCvHpPSn48PDxQqVQ6S8WKFXX2z549u8hj+u6771ixYoV2PTg4mBEjRhT5efQtNDRUe1+NjIyoVKkS//nPf7h9+7ZOuad9DuLVkacsS4kz/91CRsYpqriFEG50GoCuXbrKq5GEEMXWlClT6N+/v3b9VcyPqFarX/o5HpeVlaWXYSOtW7dm+fLlZGdnc+rUKfr06cOdO3f4+eefdcrp43MQeUnTSSmQfesWqkUzaGbdjFiTqwC8Vu81vLxkIL8QoviytrbGxcVFuzg5OT1zHaNHj6ZDhw7a9dmzZ6NSqdiyZYt2W/Xq1Vm4cCGg22oXGhpKREQE3333nbZ16OLFi9rjoqKiqFu3LhYWFjRs2JD4+PhCxRQWFkZAQADLli2jcuXKmJqaoigK27Zto3Hjxtja2uLg4ED79u05f/689rjOnTszdOhQ7fqIESNQqVTExsYCkJ2djbW1Ndu3by9UHKampri4uFCxYkVatWpF165d2bFjR55yz/s5qFQq5s+fT5s2bTA3N8fT05Nff/21wPIrVqzA1tZWZ9vvv/+OSqXSrp84cYJmzZphbW2NjY0NderU4ejRo4WKp6SThKwU+HfqNAztA7G29aRZli9VvasS0jJE32EJIV4CRVHQZOboZSmOb9oLDg4mMjISjUYDQEREBI6OjkRERACQnJzMmTNnCAoKynPsd999R4MGDejfvz9JSUkkJSXh5uam3T9+/Hi+/fZbjh49ipGREX369Cl0XOfOneOXX35h3bp12jFUDx48YNSoURw5coTdu3djYGDA22+/rY09ODiY8PBwbR2PX8uRI0dIT0+nUaNGz3SPAC5cuMC2bduKvKVu4sSJdO7cmRMnTtCjRw/ef/994uLinru+7t27U7FiRY4cOUJUVBQff/xxmXkoTbosS7gTyzaTFnWJCq/9B4Bo73/p3rWXnqMSQrwsSpaGq5MO6OXcrlMaojIpuu6scePGMWHCBO36tGnTGDZs2DPV0bRpU+7du8fx48epXbs2kZGRjBkzhvXr1wPw559/4uzsTI0aNfIcq1arMTExwcLCAhcXlzz7p06dqk3kPv74Y9q1a0d6enqh3imamZnJjz/+qNPa1LlzZ50yS5cupVy5cpw6dQo/Pz+Cg4MZPnw4N27cwNDQkNjYWCZPnkx4eDiDBg0iPDycOnXqFHooyubNm7GysiInJ4f09HQAZs6cmafci3wO7777Lv369QPg888/Z+fOnXz//ffMmzevUMc/LjExkbFjx2o/r6pVqz5XPSWRJGQl2N1/brB3925q1u3AKZNkMswzead7N32HJYQQhTJ27FhCQ0O1646Ojs9ch1qtJiAggPDwcIyNjTEwMGDAgAFMnjyZe/fuER4enm/rWGHUqlVL++/y5csDD19GXqlSpace6+7unqfr7/z580ycOJGDBw9y48YNbctYYmIifn5++Pn54eDgQEREBMbGxvj7+9OxY0fmzJkD8MzX0qxZM+bPn09qaipLlizhzJkzOl2iuV7kc2jQoEGe9Rd5qnLUqFH069ePH3/8kRYtWvDuu+9SpUqV566vJJGErIRSFIU/PltGVRtXjlpe5b4qnbp16mJiaKLv0IQQL5HK2ADXKQ31du6i5OjoWCRjXXO7+kxMTAgKCsLOzg5fX1/2799PeHj4cz9F+WhXWe44p9wk6mksLS3zbOvQoQNubm4sXrwYV1dXNBoNfn5+ZGZmas/RtGlT7bUEBwfj5+dHTk4OMTExHDhw4JmuxdLSUnt/58yZQ7Nmzfjss8/4/PPPdcoV1eeQ69ExYY8yMDDI0+2dlZWlsx4WFka3bt3YsmUL//vf/5g8eTJr1qzh7bffLrL4iisZQ1ZCHV+xHU3WVZIdLbivSsfE1ISWb7TUd1hCiJdMpVJhYGKol6WgL1p9yx1HtmfPHoKDgwEICgpizZo1BY4fy2ViYkJOTs5Lj/HmzZvExcUxYcIEmjdvjre3d54pKOD/ksvw8HCCg4NRqVQ0adKEb775hrS0tOcaP5Zr8uTJfPPNN1y9evVFLkXHwYMH86zn1z0M4OTkxL1793jw4IF2W36tadWqVWPkyJHs2LGDTp06sXz58iKLtziThKwESr12h4O7d+Lo4s9Fw+sA9O7VG1NTeVelEKJ4SUlJITo6WmdJTEws0nPkjiPbtGmTNiELDg5m1apVODk54ePjU+CxHh4eHDp0iIsXL+p0IxY1Ozs7HBwcWLRoEefOnWPPnj2MGjUqT7ng4GBiY2OJiYmhSZMm2m2rV6+mdu3a2NjYPHcMwcHB+Pr6Mm3atOeu43G//vory5Yt48yZM0yePJnDhw8zZMiQfMvWq1cPCwsLPv30U86dO8dPP/2kMydcWloaQ4YMITw8nEuXLrF//36OHDmCt7d3kcVbnElCVgJtmLSQKg4eHDO9DECjJg2pUKGCnqMSQoi8wsPDCQwM1FkmTZpUpOdQq9UEBgZib2+vTb6aNGmCRqN56pirMWPGYGhoiI+PD05OTkWeLOYyMDBgzZo1REVF4efnx8iRI/n666/zlPPz88PR0RF/f39t8hUUFEROTs5zj4V71KhRo1i8eDGXL19+4boAPvvsM9asWUOtWrVYuXIlq1evLjABtre3Z9WqVWzdupWaNWvy888/ExYWpt1vaGjIzZs36dWrF9WqVaNLly60adOGzz77rEhiLe5USnF8jrkYunv3Lmq1mpSUlBf6C+VFxf7yJyd37CLZ1Y7bBvextbdj2JChMhu/EKVUeno6CQkJeHp6FurpPiFeFZVKxYYNG576KqpX4Uk/J8Xl+/tp5Fu8BNGkp5Oz/AcqOAZwR/UAQ5UB/fr0lWRMCCGEKOHkm7wEufrd99i4huCBC4FKJd7p+o68GkkIUaqtXr0aKyurfBdfX1+9xOTr61tgTKtXr37p509MTCzw/FZWVkXS7Voc73tpJ9NelBD/7DnEg8h/sPSrTyYZuHYJwLtGwQNVhRCiNOjYsSP16tXLd5++ZnDfunVrnukacjk7O7/087u6uj5xri9XV9cXPkdh7ruMeCpakpCVAFn309i5ciOmAT745dwnxvsW3f1a6DssIYR46aytrbG2ttZ3GDrc3d31en4jI6OX/q7i4njfSztJyEqA3z+Zi1X5isQaJZFg+C+juozVd0hCCCGEKEIyhqyYO7f9EIYqA06ZXgPg9eBGmJuZ6zkqIYQQQhQlSciKsez0TA6u/R8X7LJQVApqWztaNmuu77CEEEIIUcQkISvGNnw8h8zydtxXpWOqGPKfgQP0HZIQQgghXgJJyIqpi+FRaAyNSTS+jUqBN7t1lkkhhRBCiFJKErJiSNFouLx0PfcsHn48lSp74lNdprgQQojSJDQ0tFjMci+KB0nIiqGYOQvxKNeUVln+VDC0o3fPnvoOSQghntmTEg4PDw9mz56ts65SqVizZk2esr6+vqhUKp0XUeeWf3yZMWPGU+O6ePGizjFqtZr69euzadMmnXIrVqzI9xxLliwp1PUL8Sxk2oti5s6581jFGqNysODfnER6jh0or0YSQpQJbm5uLF++nPfee0+77eDBgyQnJ2NpaZmn/JQpU+jfv7/OtmeZO2vXrl34+vpy584d5s2bR+fOnTl27Bh+fn7aMjY2NsTHx+scp1arC30OIQpLvumLEY1Gw9Y56znqDBk5adDTDzMzU32HJYQQr0T37t2JiIjg8uXL2m3Lli2je/fuGBnlbT+wtrbGxcVFZ8kvcSuIg4MDLi4u1KhRg6lTp5KVlcWff/6pU0alUuU5h7n506ceCgsLIyAggIULF+Lm5oaFhQXvvvsud+7cKfCYx1sNAQICAggLC9Opt1KlSpiamuLq6sqwYcMKfb2ieJOErBj5bdxsLtllcMroH3ZYx1C3lr++QxJCFFOZmZkFLo+/1qcoyr4Kzs7OhISEsHLlSgBSU1NZu3Ytffr0eannzcrKYvHixUDRvo7p3Llz/PLLL2zatIlt27YRHR3N4MGDn7u+3377jVmzZrFw4ULOnj3L77//Ts2aNYssXqFf0mVZTJw9EM11Uw0Zqmxssk3pO2movkMSQhRj06ZNK3Bf1apV6d69u3b966+/LvDdi+7u7nzwwQfa9dmzZ5Oampqn3KOtNC9Tnz59GD16NOPHj+e3336jSpUqBAQE5Ft23LhxTJgwQWfb5s2bCQ4OLtS5GjZsiIGBAWlpaWg0Gjw8POjSpYtOmZSUFKysrLTrVlZWJCcnF6r+9PR0Vq5cScWKFQH4/vvvadeuHd9++y0uLi6FquNRiYmJuLi40KJFC4yNjalUqRKvv/76M9cjiqcy1UI2b948PD09MTMzo06dOkRGRuo7JOBhV+X+9bu4bnQfI8WAJm+1xMTERN9hCSHEK9euXTvu37/P3r17WbZs2RNbx8aOHUt0dLTOUtALsfOzdu1ajh8/zsaNG/Hy8mLJkiXY29vrlLG2ttap/8CBA4Wuv1KlStpkDKBBgwZoNJo8Y9IK69133yUtLY3KlSvTv39/NmzYQHZ29nPVJYqfMtNCtnbtWkaMGMG8efNo1KgRCxcupE2bNpw6dYpKlSrpNbafPpnFJcsHAJQ3UfNa3bp6jUcIUfx9+umnBe5TqVQ662PHFvz+28fLjhgx4oXielFGRkb07NmTyZMnc+jQITZs2FBgWUdHxxd6ybabmxtVq1alatWqWFlZ0blzZ06dOkW5cuW0ZQwMDIrsRd659/rxe/7ouRRF0dn2aMumm5sb8fHx7Ny5k127djFo0CC+/vprIiIiirSrVehHmWkhmzlzJn379qVfv354e3sze/Zs3NzcmD9/vl7jOh7+F0mmGSgqBecMc/p8KgM0hRBPZ2JiUuDy+JdzUZR9lfr06UNERARvvvkmdnZ2r+ScQUFB+Pn5MXXq1CKrMzExkatXr2rX//rrLwwMDKhWrVq+5Z2cnEhKStKu3717l4SEBJ0y5ubmdOzYkTlz5hAeHs5ff/1FTExMkcUs9KdMtJBlZmYSFRXFxx9/rLO9VatWBTY/Z2RkkJGRoV2/e/dukcel0Wi49ns0WWoNlhoT2vTrWuBfTkIIURKlpKQQHR2ts+3xbsHHeXt7c+PGDSwsLJ5Y7t69e3nGc1lYWGBjY/NcsY4ePZp3332Xjz76iAoVKjxXHY8yMzOjd+/efPPNN9y9e5dhw4bRpUuXAsePvfHGG6xYsYIOHTpgZ2fHxIkTMTQ01O5fsWIFOTk51KtXDwsLC3788UfMzc1xd3d/4ViF/pWJFrIbN26Qk5ODs7OzznZnZ+cCB2dOnz4dtVqtXdzc3Io8rtTUVOyyMnkrvS6eakc8qngU+TmEEEKfwsPDCQwM1FkmTZr01OMcHByeOr3EpEmTKF++vM7y0UcfPXes7du3x8PDo8hayby8vOjUqRNt27alVatW+Pn5MW/evALLf/LJJzRt2pT27dvTtm1b3nrrLapUqaLdb2try+LFi2nUqBG1atVi9+7dbNq0CQcHhyKJV+iXSnm8w7oUunr1KhUqVODAgQM0aNBAu33q1Kn8+OOPnD59Os8x+bWQubm5kZKS8tx/fRXk0Lbd1GvdvEjrFEKUDunp6SQkJGgfSBIlQ1hYGL///nue1kHxcjzp5+Tu3buo1eqX8v1dlMpEl6WjoyOGhoZ5WsOuXbuWp9Usl6mpKaamr2ZSVknGhBBCiLKtTHRZmpiYUKdOHXbu3KmzfefOnTRs2FBPUQkhhHgZBg4ciJWVVb7LwIEDi+Qcvr6+BZ5j9erVRXIOUbaUiS5LeDjtRc+ePVmwYAENGjRg0aJFLF68mNjY2EINiCwpTZ5CiNJFuiyf3bVr1wp8EMvGxkZnWovndenSpQIn23V2dn6md2qKFyddliVI165duXnzJlOmTCEpKQk/Pz+2bt0qT6cIIUQpU65cuSJJup5EvjtEUSszCRnAoEGDGDRokL7DEEIIIYTQUSbGkAkhRElXRkaXCPFcSsPPhyRkQghRjOVODJqZmannSIQovlJTUwFK9CukylSXpRBClDRGRkZYWFhw/fp1jI2NMTCQv6OFyKUoCqmpqVy7dg1bW1udNxuUNJKQCSFEMaZSqShfvjwJCQlcunRJ3+EIUSzZ2toW+EqqkkISMiGEKOZMTEyoWrWqdFsKkQ9jY+MS3TKWSxIyIYQoAQwMDGQeMiFKMRmMIIQQQgihZ5KQCSGEEELomSRkQgghhBB6JmPICil30rmC3o8mhBBCiOIn93u7uE8eKwlZId27dw8ANzc3PUcihBBCiGd179491Gq1vsMokEop7iljMaHRaLh69SrW1taoVKoiq/fu3bu4ublx+fLlYv0W+tJA7vWrIff51ZD7/GrIfX41XuZ9VhSFe/fu4erqWqwnVpYWskIyMDCgYsWKL61+Gxsb+WF/ReRevxpyn18Nuc+vhtznV+Nl3efi3DKWq/imikIIIYQQZYQkZEIIIYQQeiYJmZ6ZmpoyefJkTE1N9R1KqSf3+tWQ+/xqyH1+NeQ+vxpyn2VQvxBCCCGE3kkLmRBCCCGEnklCJoQQQgihZ5KQCSGEEELomSRkQgghhBB6JgmZns2bNw9PT0/MzMyoU6cOkZGR+g6pVJk+fTqvvfYa1tbWlCtXjrfeeov4+Hh9h1XqTZ8+HZVKxYgRI/QdSqlz5coVevTogYODAxYWFgQEBBAVFaXvsEqd7OxsJkyYgKenJ+bm5lSuXJkpU6ag0Wj0HVqJtnfvXjp06ICrqysqlYrff/9dZ7+iKISFheHq6oq5uTnBwcHExsbqJ9hXTBIyPVq7di0jRoxg/PjxHD9+nCZNmtCmTRsSExP1HVqpERERweDBgzl48CA7d+4kOzubVq1a8eDBA32HVmodOXKERYsWUatWLX2HUurcvn2bRo0aYWxszP/+9z9OnTrFt99+i62trb5DK3W+/PJLFixYwNy5c4mLi+Orr77i66+/5vvvv9d3aCXagwcP8Pf3Z+7cufnu/+qrr5g5cyZz587lyJEjuLi40LJlS+37pEs1RejN66+/rgwcOFBnW40aNZSPP/5YTxGVfteuXVMAJSIiQt+hlEr37t1TqlatquzcuVMJCgpShg8fru+QSpVx48YpjRs31ncYZUK7du2UPn366Gzr1KmT0qNHDz1FVPoAyoYNG7TrGo1GcXFxUWbMmKHdlp6erqjVamXBggV6iPDVkhYyPcnMzCQqKopWrVrpbG/VqhUHDhzQU1SlX0pKCgD29vZ6jqR0Gjx4MO3ataNFixb6DqVU2rhxI3Xr1uXdd9+lXLlyBAYGsnjxYn2HVSo1btyY3bt3c+bMGQBOnDjBvn37aNu2rZ4jK70SEhJITk7W+V40NTUlKCioTHwvysvF9eTGjRvk5OTg7Oyss93Z2Znk5GQ9RVW6KYrCqFGjaNy4MX5+fvoOp9RZs2YNx44d48iRI/oOpdS6cOEC8+fPZ9SoUXz66accPnyYYcOGYWpqSq9evfQdXqkybtw4UlJSqFGjBoaGhuTk5DB16lTef/99fYdWauV+9+X3vXjp0iV9hPRKSUKmZyqVSmddUZQ820TRGDJkCH///Tf79u3TdyilzuXLlxk+fDg7duzAzMxM3+GUWhqNhrp16zJt2jQAAgMDiY2NZf78+ZKQFbG1a9eyatUqfvrpJ3x9fYmOjmbEiBG4urrSu3dvfYdXqpXV70VJyPTE0dERQ0PDPK1h165dy/PXgXhxQ4cOZePGjezdu5eKFSvqO5xSJyoqimvXrlGnTh3ttpycHPbu3cvcuXPJyMjA0NBQjxGWDuXLl8fHx0dnm7e3N+vWrdNTRKXX2LFj+fjjj3nvvfcAqFmzJpcuXWL69OmSkL0kLi4uwMOWsvLly2u3l5XvRRlDpicmJibUqVOHnTt36mzfuXMnDRs21FNUpY+iKAwZMoT169ezZ88ePD099R1SqdS8eXNiYmKIjo7WLnXr1qV79+5ER0dLMlZEGjVqlGfaljNnzuDu7q6niEqv1NRUDAx0vyINDQ1l2ouXyNPTExcXF53vxczMTCIiIsrE96K0kOnRqFGj6NmzJ3Xr1qVBgwYsWrSIxMREBg4cqO/QSo3Bgwfz008/8ccff2Btba1tkVSr1Zibm+s5utLD2to6z7g8S0tLHBwcZLxeERo5ciQNGzZk2rRpdOnShcOHD7No0SIWLVqk79BKnQ4dOjB16lQqVaqEr68vx48fZ+bMmfTp00ffoZVo9+/f59y5c9r1hIQEoqOjsbe3p1KlSowYMYJp06ZRtWpVqlatyrRp07CwsKBbt256jPoV0e9DnuKHH35Q3N3dFRMTE6V27doyHUMRA/Jdli9fru/QSj2Z9uLl2LRpk+Ln56eYmpoqNWrUUBYtWqTvkEqlu3fvKsOHD1cqVaqkmJmZKZUrV1bGjx+vZGRk6Du0Eu3PP//M93dy7969FUV5OPXF5MmTFRcXF8XU1FRp2rSpEhMTo9+gXxGVoiiKnnJBIYQQQgiBjCETQgghhNA7SciEEEIIIfRMEjIhhBBCCD2ThEwIIYQQQs8kIRNCCCGE0DNJyIQQQggh9EwSMiGEEEIIPZOETAgBwMWLF1GpVERHR+s7FK3Tp09Tv359zMzMCAgIyLeMoih8+OGH2NvbF7v49Sk8PByVSsWdO3cKLLNixQpsbW1fWUyP8/DwYPbs2Xo7vxDFiSRkQhQToaGhqFQqZsyYobP9999/R6VS6Skq/Zo8eTKWlpbEx8eze/fufMts27aNFStWsHnzZpKSkorsVU2hoaG89dZbRVJXaSJJlBAvhyRkQhQjZmZmfPnll9y+fVvfoRSZzMzM5z72/PnzNG7cGHd3dxwcHAosU758eRo2bIiLiwtGRsXrFb05OTnyQmohxFNJQiZEMdKiRQtcXFyYPn16gWXCwsLydN/Nnj0bDw8P7Xpu6860adNwdnbG1taWzz77jOzsbMaOHYu9vT0VK1Zk2bJleeo/ffo0DRs2xMzMDF9fX8LDw3X2nzp1irZt22JlZYWzszM9e/bkxo0b2v3BwcEMGTKEUaNG4ejoSMuWLfO9Do1Gw5QpU6hYsSKmpqYEBASwbds27X6VSkVUVBRTpkxBpVIRFhaWp47Q0FCGDh1KYmIiKpVKew8UReGrr76icuXKmJub4+/vz2+//aY9Licnh759++Lp6Ym5uTnVq1fnu+++07nHK1eu5I8//kClUqFSqQgPD8+3GzA6OhqVSsXFixeB/+sG3Lx5Mz4+PpiamnLp0iUyMzP56KOPqFChApaWltSrV0/n3l66dIkOHTpgZ2eHpaUlvr6+bN26Nd97B7Bq1Srq1q2LtbU1Li4udOvWjWvXruUpt3//fvz9/TEzM6NevXrExMQUWOf58+d58803cXZ2xsrKitdee41du3Zp9wcHB3Pp0iVGjhypvS+5Dhw4QNOmTTE3N8fNzY1hw4bx4MED7f5r167RoUMHzM3N8fT0ZPXq1QXGIURZJAmZEMWIoaEh06ZN4/vvv+eff/55obr27NnD1atX2bt3LzNnziQsLIz27dtjZ2fHoUOHGDhwIAMHDuTy5cs6x40dO5bRo0dz/PhxGjZsSMeOHbl58yYASUlJBAUFERAQwNGjR9m2bRv//vsvXbp00alj5cqVGBkZsX//fhYuXJhvfN999x3ffvst33zzDX///TchISF07NiRs2fPas/l6+vL6NGjSUpKYsyYMfnWkZvUJSUlceTIEQAmTJjA8uXLmT9/PrGxsYwcOZIePXoQEREBPEwGK1asyC+//MKpU6eYNGkSn376Kb/88gsAY8aMoUuXLrRu3ZqkpCSSkpJo2LBhoe99amoq06dPZ8mSJcTGxlKuXDk++OAD9u/fz5o1a/j777959913ad26tfZ6Bw8eTEZGBnv37iUmJoYvv/wSKyurAs+RmZnJ559/zokTJ/j9999JSEggNDQ0T7mxY8fyzTffcOTIEcqVK0fHjh3JysrKt8779+/Ttm1bdu3axfHjxwkJCaFDhw4kJiYCsH79eipWrMiUKVO09wUgJiaGkJAQOnXqxN9//83atWvZt28fQ4YM0dYdGhrKxYsX2bNnD7/99hvz5s3LN4EUoszS77vNhRC5evfurbz55puKoihK/fr1lT59+iiKoigbNmxQHv1RnTx5suLv769z7KxZsxR3d3edutzd3ZWcnBztturVqytNmjTRrmdnZyuWlpbKzz//rCiKoiQkJCiAMmPGDG2ZrKwspWLFisqXX36pKIqiTJw4UWnVqpXOuS9fvqwASnx8vKIoihIUFKQEBAQ89XpdXV2VqVOn6mx77bXXlEGDBmnX/f39lcmTJz+xnsev/f79+4qZmZly4MABnXJ9+/ZV3n///QLrGTRokNK5c2ft+qOfR64///xTAZTbt29rtx0/flwBlISEBEVRFGX58uUKoERHR2vLnDt3TlGpVMqVK1d06mvevLnyySefKIqiKDVr1lTCwsKeeK1PcvjwYQVQ7t27pxPrmjVrtGVu3rypmJubK2vXrtXGqlarn1ivj4+P8v3332vX3d3dlVmzZumU6dmzp/Lhhx/qbIuMjFQMDAyUtLQ0JT4+XgGUgwcPavfHxcUpQJ66hCiritdgCyEEAF9++SVvvPEGo0ePfu46fH19MTD4v0ZwZ2dnnQHvhoaGODg45GmlaNCggfbfRkZG1K1bl7i4OACioqL4888/8225OX/+PNWqVQOgbt26T4zt7t27XL16lUaNGulsb9SoESdOnCjkFebv1KlTpKen5+kqzczMJDAwULu+YMEClixZwqVLl0hLSyMzM7PAJzmflYmJCbVq1dKuHzt2DEVRtPcnV0ZGhnZs3LBhw/jPf/7Djh07aNGiBZ07d9ap43HHjx8nLCyM6Ohobt26pR2nlpiYiI+Pj7bco5+nvb091atX136ej3vw4AGfffYZmzdv5urVq2RnZ5OWlqZtIStIVFQU586d0+mGVBQFjUZDQkICZ86c0f5fylWjRg29PuEpRHEjCZkQxVDTpk0JCQnh008/zdMNZWBggKIoOtvy64IyNjbWWVepVPluK8yA89yxQhqNhg4dOvDll1/mKVO+fHntvy0tLZ9a56P15lIU5YWfKM29ni1btlChQgWdfaampgD88ssvjBw5km+//ZYGDRpgbW3N119/zaFDh55Yd26C++j9z+/em5ub61yHRqPB0NCQqKgoDA0NdcrmJrf9+vUjJCSELVu2sGPHDqZPn863337L0KFD89T/4MEDWrVqRatWrVi1ahVOTk4kJiYSEhJSqIcoCrrHY8eOZfv27XzzzTd4eXlhbm7OO++889Q6NRoNAwYMYNiwYXn2VapUifj4+CeeVwghCZkQxdaMGTMICAjI06ri5OREcnKyTvJSlHNvHTx4kKZNmwKQnZ1NVFSUdixQ7dq1WbduHR4eHi/0NKONjQ2urq7s27dPey54ODD89ddff6H4cwfSJyYmEhQUlG+ZyMhIGjZsyKBBg7Tbzp8/r1PGxMSEnJwcnW1OTk7Aw/FtdnZ2QOHufWBgIDk5OVy7do0mTZoUWM7NzU07tu+TTz5h8eLF+SZkp0+f5saNG8yYMQM3NzcAjh49mm+dBw8epFKlSgDcvn2bM2fOUKNGjXzLRkZGEhoayttvvw08HFOW+7BCrvzuS+3atYmNjcXLyyvfer29vcnOzubo0aPazzc+Pv6Jc6QJUdbIoH4hiqmaNWvSvXt3vv/+e53twcHBXL9+na+++orz58/zww8/8L///a/IzvvDDz+wYcMGTp8+zeDBg7l9+zZ9+vQBHg48v3XrFu+//z6HDx/mwoUL7Nixgz59+uT5kn6asWPH8uWXX7J27Vri4+P5+OOPiY6OZvjw4S8Uv7W1NWPGjGHkyJGsXLmS8+fPc/z4cX744QdWrlwJgJeXF0ePHmX79u2cOXOGiRMnah8IyOXh4cHff/9NfHw8N27cICsrCy8vL9zc3AgLC+PMmTNs2bKFb7/99qkxVatWje7du9OrVy/Wr19PQkICR44c4csvv9Q+STlixAi2b99OQkICx44dY8+ePXh7e+dbX6VKlTAxMeH777/nwoULbNy4kc8//zzfslOmTGH37t2cPHmS0NBQHB0dC5xfzcvLi/Xr1xMdHc2JEyfo1q1bnhZUDw8P9u7dy5UrV7RP144bN46//vqLwYMHEx0dzdmzZ9m4caM2maxevTqtW7emf//+HDp0iKioKPr164e5uflT750QZYUkZEIUY59//nme7klvb2/mzZvHDz/8gL+/P4cPH873CcTnNWPGDL788kv8/f2JjIzkjz/+wNHREQBXV1f2799PTk4OISEh+Pn5MXz4cNRqtc54tcIYNmwYo0ePZvTo0dSsWZNt27axceNGqlat+sLX8PnnnzNp0iSmT5+Ot7c3ISEhbNq0CU9PTwAGDhxIp06d6Nq1K/Xq1ePmzZs6rWUA/fv3p3r16tStWxcnJyf279+PsbExP//8M6dPn8bf358vv/ySL774olAxLV++nF69ejF69GiqV69Ox44dOXTokLaFKycnh8GDB+Pt7U3r1q2pXr068+bNy7cuJycnVqxYwa+//oqPjw8zZszgm2++ybfsjBkzGD58OHXq1CEpKYmNGzdiYmKSb9lZs2ZhZ2dHw4YN6dChAyEhIdSuXVunzJQpU7h48SJVqlTRthjWqlWLiIgIzp49S5MmTQgMDGTixIk63djLly/Hzc2NoKAgOnXqxIcffki5cuUKde+EKAtUyuO/7YUQQgghxCslLWRCCCGEEHomCZkQQgghhJ5JQiaEEEIIoWeSkAkhhBBC6JkkZEIIIYQQeiYJmRBCCCGEnklCJoQQQgihZ5KQCSGEEELomSRkQgghhBB6JgmZEEIIIYSeSUImhBBCCKFnkpAJIYQQQujZ/wPaYfXhuP7tbQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAHFCAYAAADffdxRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADSAUlEQVR4nOzdd1gUV/vw8e8uvfcuzQqCiiUaCwL2Gms0lii2aCyoqLHGFksSjVGTx5jEGiV2Y6IidhB7RbFXxAIqKkUQgd15//DHvq6AAoILej7XNZfuzJk59+wuu/eec+aMTJIkCUEQBEEQBKFIyDUdgCAIgiAIwodEJFeCIAiCIAhFSCRXgiAIgiAIRUgkV4IgCIIgCEVIJFeCIAiCIAhFSCRXgiAIgiAIRUgkV4IgCIIgCEVIJFeCIAiCIAhFSCRXgiAIgiAIRahEJFcLFy5EJpPh7e2d6/aYmBhkMhlz585967FWrFiBTCYjJiamwHEcPnyYqVOnkpiYmGObv78//v7+BT7mh8DNzY3AwMBC7SuTyZg6dWqRxvMmV65cwdDQkO7du+fY9vTpU5ycnKhTpw4KhUJt28GDB+nWrRsuLi7o6elhZGSEl5cXo0aN4vLly2plAwMDkclkqkVLS4syZcrQpUsXzp8/X+CY3dzc1I5nZGREjRo1+PXXXxE3UCh6rz7Xb1rCw8PfqZ6pU6cik8mKJuh8Cg8PL5LYNSUuLo5JkyZRt25drK2tMTU1pWbNmvzxxx85/mYBjh8/TvPmzTExMcHY2JiAgAAOHTqU67EzMzOZN28eVapUwcDAAHNzc+rVq8fhw4cLFGP291F+lsJ8D73u/v37TJ06laioqHc+VjZNvDeL2qRJk2jTpg1OTk7IZLJ8f0f17NkTmUxGmzZtct2ekJDA8OHDcXNzQ09PDzs7O1q2bMmTJ08KFJ92gUoXk2XLlgFw4cIFjh07Rp06dTQSx+HDh5k2bRqBgYGYm5urbVu0aJFGYhIKplKlSsyaNYuRI0fSqVMnOnXqpNo2ePBgnjx5wt69e9HS0lKtnzRpEjNnzqRu3bpMmjSJChUqkJWVxblz51i5ciXz5s0jKytLbR8DAwP27dsHQFZWFtevX2fGjBnUq1ePS5cu4eTkVKC469evr/rxcP/+febNm8ewYcNITk5mwoQJ7/KUCK85cuSI2uPvvvuO/fv3q17PbJUrV36nevr370+LFi3e6RgFVaNGDY4cOfLOsWvKqVOn+Ouvv+jVqxfffvstOjo67Nixg6+//pqjR4+qvisATpw4QcOGDalduzarVq1CkiR+/PFHGjduzP79+6lbt66qrEKhoEOHDhw8eJBvvvmGevXqkZqayqlTp0hNTS1QjA4ODjneQ4MHDyYpKYmQkJAcZd/V/fv3mTZtGm5ubvj4+Lzz8UAz782i9vPPP1O1alU+++wztffFm2zfvp0tW7Zgamqa6/b79+/j6+uLtrY23377LRUqVCAhIYH9+/eTkZFRsAAlDTtx4oQESK1bt5YAacCAATnK3Lp1SwKkOXPmvPV4y5cvlwDp1q1bBY5lzpw5hd73Q+bq6ir17t27UPsC0pQpU4o0nrdRKpVSw4YNJRsbG+nBgweSJEnS+vXrJUD66aef1Mr+/fffEiANGjRIUiqVuR7r119/lbKyslTrevfuLRkZGeUou3fvXgmQfv/99wLF6+rqKrVu3VptXVJSkmRmZia5uLgU6FhFIS0tLdfnoqRSKpVSWlpaoffP6/V8XWpqaqHrEPLnyZMnUkZGRo71Q4YMkQApNjZWta558+aSnZ2d2uuSnJwsWVtbS/Xq1VPb/+eff5bkcrl05MiRYonbz89P8vLyKpZjZ39HLl++vFiOX1opFArV/42MjN76HZWYmCg5OTlJ8+bNy/UzV5IkqV27dpKTk5P05MmTd45P492CS5cuBeD777+nXr16rF27lrS0tFzLKpVKZs6ciYuLC/r6+tSqVYu9e/e+tY7du3fTrl07ypQpg76+PuXLl2fgwIEkJCSoykydOpUxY8YA4O7unqNrILduwSdPnjB48GCcnJzQ1dWlbNmyTJw4kRcvXqiVk8lkDB06lFWrVuHp6YmhoSHVqlVj27Ztb409u5n/77//ZuzYsTg4OGBsbEzbtm158OABKSkpfPXVV1hbW2NtbU2fPn149uyZ2jHS09MZP3487u7u6Orq4uTkxJAhQ3J0f2ZmZvLNN99gb2+PoaEhDRo04Pjx47nGFR8fz8CBAylTpgy6urq4u7szbdo0srKy3npOxU0mk7F8+XLS0tIYNGgQ8fHxfP311/j6+jJixAi1sjNmzMDa2pqff/4512ZymUzGkCFD1Fqt8mJmZgaAjo7OO5+DqakpFStW5MGDB2rrMzIymDFjBh4eHujp6WFjY0OfPn149OiRWrkXL14watQo1WvZsGFDTp06laOLN7sbfdeuXfTt2xcbGxsMDQ1V7+F169ZRt25djIyMMDY2pnnz5pw5c0atrps3b/LFF1/g6OioakZv3LixWjfGvn378Pf3x8rKCgMDA1xcXOjUqZPa33pB/54WL16Mp6cnenp6rFy58l2e7hz8/f3x9vbmwIED1KtXD0NDQ/r27at6Tpo1a4aDgwMGBgZ4enoybty4HC0guXW9uLm50aZNG8LCwqhRowYGBgZ4eHjk+5f3b7/9RrVq1TA2NsbExAQPDw+1ls3XuwXf1oX1qj179tC4cWNMTU0xNDSkfv36+fp8LUoWFha5/v3Url0bgLt376rWHTp0CH9/fwwNDVXrTExMaNiwIYcPHyYuLk61fsGCBTRs2JBPP/20GKNXl5yczOjRo9U+d0eMGJHjfbJhwwbq1KmDmZkZhoaGlC1bVvVeCw8P55NPPgGgT58+qtftTUMt0tLSVPXq6+tjaWlJrVq1WLNmjarM6+/N7M+B3JZXv/ckSWLRokX4+PhgYGCAhYUFnTt35ubNm0XwjBWMXF6w9GXUqFE4ODgQFBSU6/aYmBj+++8/BgwYgIWFxTvHp9FuwefPn7NmzRo++eQTvL296du3L/3792fDhg307t07R/lff/0VV1dX5s+fj1Kp5Mcff6Rly5ZERESoNQG/7saNG9StW5f+/ftjZmZGTEwM8+bNo0GDBkRHR6Ojo0P//v158uQJv/zyC5s3b1Y15+bVvJ6enk5AQAA3btxg2rRpVK1alcjISGbPnk1UVBTbt29XK799+3ZOnDjB9OnTMTY25scff6RDhw5cuXKFsmXLvvW5mjBhAgEBAaxYsYKYmBhGjx5Nt27d0NbWplq1aqxZs4YzZ84wYcIETExMWLhwIfDyj6F9+/bs3buX8ePH4+vry7lz55gyZQpHjhzhyJEj6OnpATBgwAD++usvRo8eTdOmTTl//jwdO3YkJSVFLZb4+Hhq166NXC5n8uTJlCtXjiNHjjBjxgxiYmJYvnz5W8/ndQqFIl/ji+Ryeb7+qMqWLcucOXMYPHgw586dIz09neXLl6vte//+fS5evEi3bt3Q19cvcMzZiWR2t+CYMWOwsLCgdevWBT5Wbse+c+cOFStWVK1TKpW0a9eOyMhIVdfG7du3mTJlCv7+/pw8eRIDAwPg5QfxunXr+Oabb2jUqBEXL16kQ4cOJCcn51pf3759ad26NatWrSI1NRUdHR1mzZrFpEmT6NOnD5MmTSIjI4M5c+bg6+vL8ePHVX8brVq1QqFQ8OOPP+Li4kJCQgKHDx9WJe8xMTG0bt0aX19fli1bhrm5Offu3SMsLIyMjAwMDQ0L/Pe0ZcsWIiMjmTx5Mvb29tja2r7zc/66uLg4evbsyTfffMOsWbNU751r167RqlUrRowYgZGREZcvX+aHH37g+PHjOboWc3P27FlGjRrFuHHjsLOzY8mSJfTr14/y5cvTsGHDPPdbu3YtgwcPZtiwYcydOxe5XM7169e5ePFinvvk1oX16NEjevbsqdZ1vXr1anr16kW7du1YuXIlOjo6/P777zRv3pydO3fSuHHjN55Tfn9UaWlpFWqsz759+9DW1lb7e8jIyFB9dr0qe110dDQODg7cuXOHmJgY2rZty4QJE1i6dCmPHz+mUqVKfPPNN7l+17yrtLQ0/Pz8uHv3LhMmTKBq1apcuHCByZMnEx0dzZ49e5DJZBw5coSuXbvStWtXpk6dir6+Prdv31a9j2rUqMHy5ctVf4PZny1lypTJs+7g4GBWrVrFjBkzqF69OqmpqZw/f57Hjx/nuU/r1q1zvE+OHDlCcHAwXl5eqnUDBw5kxYoVBAUF8cMPP/DkyROmT59OvXr1OHv2LHZ2dnnWIUlSruPmcqOtXbSpyZ49e/jrr784ceJEnj+UIyMjkSQJR0dHunXrxtatW8nKyuLTTz9l9uzZb8wxcvXObV/v4K+//pIAafHixZIkSVJKSopkbGws+fr6qpXL7hZ0dHSUnj9/rlqfnJwsWVpaSk2aNFGte1u3oFKplDIzM6Xbt29LgPTvv/+qtr2pW9DPz0/y8/NTPV68eLEESOvXr1cr98MPP0iAtGvXLtU6QLKzs5OSk5NV6+Lj4yW5XC7Nnj077ydIkqT9+/dLgNS2bVu19SNGjJAAKSgoSG19+/btJUtLS9XjsLAwCZB+/PFHtXLr1q2TAOmPP/6QJEmSLl26JAHSyJEj1cqFhIRIgFqT68CBAyVjY2Pp9u3bamXnzp0rAdKFCxfUzj0/3YKurq4S8NalIF2MSqVS8vDwkABp7ty5ObYfPXpUAqRx48bl2JaVlSVlZmaqlle7yXr37p1rbA4ODtLBgwfzHd+r596qVStVXbdv35YGDBgg6ejoSNu2bVOVW7NmjQRImzZtUts/u9tg0aJFkiRJ0oULFyRAGjt2rFq57P1ffS2z/1569eqlVjY2NlbS1taWhg0bprY+JSVFsre3l7p06SJJkiQlJCRIgDR//vw8z2/jxo0SIEVFReVZpqB/T2ZmZkXSdC9JuXcL+vn5SYC0d+/eN+6b/XkSEREhAdLZs2dV26ZMmSK9/hHr6uoq6evrq/3tPH/+XLK0tJQGDhz4xrqGDh0qmZubv7FM9ufF/v37c92empoq1a5dW3JwcJBiYmJU6ywtLXN8xigUCqlatWpS7dq131inJEn5+tulkF1bO3fulORyeY7PJh8fH6lixYpq3UOZmZlS2bJlJUD6+++/JUmSpCNHjkiAZGpqKlWuXFlav369tHPnTqlz585qn4Hv4vVuwdmzZ0tyuVw6ceKEWrnsv4XQ0FBJkv7/Z2ZiYmKexy5ot6C3t7fUvn37N5bJ7b35qsuXL0tWVlZSQECA9OLFC0mS/v/z+PrQijt37kgGBgbSN99888Y6s9+b+VkKOjTnTd2CKSkpkpubmzR+/HjVuty6BWfPnq16n7Rr104KCwuTNm3aJFWtWlXS19dX+9vOD412Cy5duhQDAwO++OILAIyNjfn888+JjIzk2rVrOcp37NhRrYXBxMSEtm3bcuDAgTdmxA8fPmTQoEE4Ozujra2Njo4Orq6uAFy6dKlQse/btw8jIyM6d+6stj67y+X15vSAgABMTExUj+3s7LC1teX27dv5qu/1Kxs8PT0BcrSSeHp68uTJE1XXYPYvoNevpPj8888xMjJSxbl//34AevTooVauS5cuOX5FbNu2jYCAABwdHcnKylItLVu2BCAiIiJf5/SqrVu3cuLEibcuX331Vb6PGRYWxuXLl5HL5ezZs6dA8VhZWaGjo6NaNm3apLbdwMBAFdOxY8fYvHkzFStWpFWrVjl+AeZHaGioqi5XV1f+/PNPfvnlF7XXd9u2bZibm9O2bVu1593Hxwd7e3tVV1D289+lSxe1Ojp37pznL8JXB/4D7Ny5k6ysLHr16qVWl76+Pn5+fqq6LC0tKVeuHHPmzGHevHmcOXMGpVKpdiwfHx90dXX56quvWLlyZa5dCAX9e2rUqFGRNN2/iYWFBY0aNcqx/ubNm3Tv3h17e3u0tLTQ0dHBz88PyN/niY+PDy4uLqrH+vr6VKxY8a2fBbVr1yYxMZFu3brx77//qg1ryA+FQkHXrl25dOkSoaGhqs/Aw4cP8+TJE3r37q32WiuVSlq0aMGJEyfeOug7P3+7J06coG3btgWK+fTp03Tp0kXVevCqYcOGcfXqVYYOHcq9e/e4c+cOgwYNUj2P2S2N2e/H9PR0QkND+fzzz2nWrBnr16+nRo0aTJ8+vUAx5ce2bdvw9vbGx8dH7Tlt3ry5Wrdtdpdfly5dWL9+Pffu3XvnumvXrs2OHTsYN24c4eHhPH/+vED7x8fH06JFCxwcHPjnn3/Q1dVVnZNMJqNnz55q52Rvb0+1atXeeoVqzZo18/0+cXR0LOzp5zBu3Dh0dHSYPHnyG8tlv0/KlCnDpk2baN68OR07diQsLAy5XM6PP/5YoHo11i14/fp1Dhw4QKdOnZAkSdWF0LlzZ5YvX86yZcty/DHZ29vnOI69vT0ZGRk8e/ZMNeblVUqlkmbNmnH//n2+/fZbqlSpgpGREUqlkk8//bTAb7xsjx8/xt7ePkcTt62tLdra2jmaYK2srHIcQ09PL9/1W1paqj3OfsPntT49PR1jY2MeP36MtrY2NjY2auVkMhn29vaqOLP/ff051tbWzhH7gwcP2Lp1a55jiwr6oQ8vu1+lfHYL5kdiYiL9+/fnk08+4auvvmLAgAEsXbqUfv36qco4OzsD5PqlFh4eTlZWFqdOnWLQoEG5xlGrVi21dc2bN8fZ2Zng4OACJ1gNGjTg559/RqFQcO3aNb799luGDh2Kl5cXDRo0AF4+74mJiarX+HXZz3v2a/l6E31ur2W2169qyh7rlf3h/7rs10Emk7F3716mT5/Ojz/+yKhRo7C0tKRHjx7MnDkTExMTypUrx549e/jxxx8ZMmQIqamplC1blqCgIIYPH66KuSB/T0VxFdbb5FbHs2fP8PX1RV9fnxkzZlCxYkUMDQ25c+cOHTt2zNffc2E/C7788kuysrL4888/6dSpE0qlkk8++YQZM2bQtGnTt9Y7aNAgwsLC2L59u9pVZ9mv9euJ7auePHmCkZFRntvzexVbfsYuZjtz5gxNmzalQoUKhIaG5ugC7Nu3L48ePWLGjBn89ttvANStW5fRo0fzww8/qLo9s59vDw8PVUIJL9+7zZs3Z/bs2Tx8+LBIu5YfPHjA9evX3/oZ2bBhQ7Zs2cLChQvp1asXL168wMvLi4kTJ9KtW7dC1b1w4ULKlCnDunXr+OGHH9DX16d58+bMmTOHChUqvHHflJQUWrVqRWZmJjt27FD7Tn3w4AGSJOXZ9fe24S3Gxsb5fp8UVbfg8ePHWbRoEZs3byY9PZ309HTgZV6QlZVFYmIiBgYG6Onpqd4nTZo0UXufOjg4UK1aNU6fPl2gujWWXC1btgxJkti4cSMbN27MsX3lypXMmDFD7STj4+NzlIuPj0dXVxdjY+Nc6zl//jxnz55lxYoVan3r169ff6f4raysOHbsGJIkqX0hPHz4kKysLKytrd/p+EXFysqKrKwsHj16pJZgSZJEfHy86ssz+40VHx+vNhYjKysrxxebtbU1VatWZebMmbnWWZhfHeXKlctXK96UKVPyNW/WsGHDePLkCXv27MHT05N//vmH4OBgmjdvrhqv4OjoiJeXF7t37yY9PV2tVTT7Q+D1iwPexNDQkHLlynH27Nl875PNzMxMlazVqVOHOnXqUK1aNQYPHkxUVBRyuRxra2usrKwICwvL9RjZLaPZr+WDBw/e+lpmez2pyX7/bty4Ue0LKTeurq6qC1OuXr3K+vXrmTp1KhkZGSxevBgAX19ffH19USgUnDx5kl9++YURI0ZgZ2fHF198UeC/p/cxR09udezbt4/79+8THh6uaq0Ccp0brzj06dOHPn36kJqayoEDB5gyZQpt2rTh6tWrb3ydpk6dypIlS1i+fDnNmjVT25b93P7yyy95Dvh+01gayP9FHMuXL8/XfERnzpyhSZMmuLq6smvXrlx/OAOMHTuWESNGcO3aNUxMTHB1dWXgwIEYGRlRs2ZN4OVny6uD3l+V/YOuoIOj38ba2hoDA4M8L1R49f3crl072rVrx4sXLzh69CizZ8+me/fuuLm5FXycD2BkZMS0adOYNm0aDx48ULVitW3bNsecfa/KzMykU6dO3Lhxg8jIyBzjuqytrZHJZERGRr5xrFteIiIiCAgIyNc53Lp1Czc3t3yVfZOLFy8iSRIdOnTIse3OnTtYWFjw888/M2LECKpWrZrncSRJKvB7RCPJlUKhYOXKlZQrV44lS5bk2L5t2zZ++uknduzYodYdtnnzZubMmaP6EkxJSWHr1q34+vrm+Yso+wPy9Rf+999/z1E2u0x+fn02btyY9evXs2XLFrUX7q+//lJtLwkaN27Mjz/+yOrVqxk5cqRq/aZNm0hNTVXFmX1FSEhIiOpDCWD9+vU5Bqu2adOG0NBQypUrV2RdM1u3bs1xVVhu8pO4/fvvv6xevZo5c+aouk//+OMPvL29GTBgADt27FCVnThxIt27dyc4OJj//e9/7/Sl/ezZM65fv14kv4ArVKjAN998w7Rp01i3bh3dunWjTZs2rF27FoVC8ca54LIHRa9bt44aNWqo1m/cuDHfA4+bN2+OtrY2N27cyNFl+CYVK1Zk0qRJbNq0KddfelpaWtSpUwcPDw9CQkI4ffo0X3zxRan5eyrI50lxMjIyomXLlmRkZNC+fXsuXLiQZ3K1dOlSpk2bxvTp03NNbOrXr4+5uTkXL15k6NChhYrnxIkT+Srn7u7+1jJRUVE0adKEMmXKsHv37rd+xujp6akmoI6NjWXdunUMGDBAdXGHtrY27dq1Y+PGjcTExKi+tCVJIiwsjHLlyhX5j+E2bdowa9YsrKys8nXO2efh5+eHubk5O3fu5MyZM9StW7dA30uvs7OzIzAwkLNnzzJ//nzS0tLyTDT79etHeHg4O3bsyDXRaNOmDd9//z337t3LMeQgP7K7BfOjqLoFW7RooRry8qovvvgCd3d3Zs+eTfny5YGXP2rLlCnDrl27UCgUqpzi/v37nD17NteJqd9EI8nVjh07uH//Pj/88EOus557e3vz66+/snTpUrXkSktLi6ZNmxIcHIxSqeSHH34gOTmZadOm5VmXh4cH5cqVY9y4cUiShKWlJVu3bmX37t05ylapUgV4edlu79690dHRoVKlSmpjpbL16tWL//3vf/Tu3ZuYmBiqVKnCwYMHmTVrFq1ataJJkyaFeGaKXtOmTWnevDljx44lOTmZ+vXrq64WrF69Ol9++SXwcqxWz549mT9/Pjo6OjRp0oTz588zd+7cHBOuTZ8+nd27d1OvXj2CgoKoVKkS6enpxMTEEBoayuLFi994NUtusp/7d5WQkMDAgQOpV68ewcHBqvVOTk78/PPP9OnTR617sFu3bly4cIGZM2dy9uxZAgMDqVChAkqlkjt37rBq1SqAHO8BpVLJ0aNHVf+/d+8eCxcu5OnTp0U2I/3o0aNZvHgx06ZNo0uXLnzxxReEhITQqlUrhg8fTu3atdHR0eHu3bvs37+fdu3a0aFDB7y8vOjWrRs//fQTWlpaNGrUiAsXLvDTTz9hZmaWr19gbm5uTJ8+nYkTJ3Lz5k1atGiBhYUFDx484Pjx46pfx+fOnWPo0KF8/vnnVKhQAV1dXfbt28e5c+cYN24cAIsXL2bfvn20bt0aFxcX0tPTVb/os/9OiurvKTAwkJUrVxbZL9/X1atXDwsLCwYNGsSUKVPQ0dEhJCSkUK2VBZWdMNSvXx8HBwfi4+OZPXs2ZmZmeXbfHjlyhEGDBlG/fn2aNm2qes9m+/TTTzE2NuaXX36hd+/ePHnyhM6dO2Nra8ujR484e/Ysjx49UnW75eX1LvLCunLliuq1njlzJteuXVMbf1uuXDlVC/z58+fZtGkTtWrVQk9Pj7Nnz/L9999ToUIFvvvuO7Xjfvfdd+zYsYMWLVowdepUTE1NWbJkCWfPnmX9+vVqZf39/YmIiHinuyOMGDGCTZs20bBhQ0aOHEnVqlVRKpXExsaya9cuRo0aRZ06dZg8eTJ3796lcePGlClThsTERBYsWKA2jq9cuXIYGBgQEhKCp6cnxsbGODo65pmA1KlThzZt2lC1alUsLCy4dOkSq1atom7dunkmVnPmzGHVqlUMGzYMIyMjtfeJqakplStXpn79+nz11Vf06dOHkydP0rBhQ4yMjIiLi+PgwYNUqVKFr7/+Os/nxMTEpMjeJ/CyJSx7ChqFQsHt27dVvWB+fn7Y2Nhgb2+f63AifX19rKys1PIPuVzOzz//TJcuXWjXrh1ff/01qampfPfdd+jq6jJ+/PiCBVig4e9FpH379pKurq708OHDPMt88cUXkra2thQfH6+6WvCHH36Qpk2bJpUpU0bS1dWVqlevLu3cuVNtv9yuFrx48aLUtGlTycTERLKwsJA+//xzKTY2Nterz8aPHy85OjpKcrlc7aqb168WlCRJevz4sTRo0CDJwcFB0tbWllxdXaXx48dL6enpauUAaciQITnOMT+Tc2ZfYbFhw4Zcz/P1q1GyrwJ59OiRat3z58+lsWPHSq6urpKOjo7k4OAgff3119LTp0/V9n3x4oU0atQoydbWVtLX15c+/fRT6ciRI7nG+ejRIykoKEhyd3eXdHR0JEtLS6lmzZrSxIkTpWfPnqmd+/ucRPTzzz+XDA0NpatXr+a6vVWrVpKpqanaZISSJEkHDhyQunbtKpUpU0bS0dGRDA0NpcqVK0tff/21dPLkSbWyuV0taGtrK/n5+Un//PNPgWPOa0I7SZKk//3vfxIgrVy5UpKkl1dDzZ07V6pWrZqkr68vGRsbSx4eHtLAgQOla9euqfZLT0+XgoODc7yWZmZmaldd5fU+yrZlyxYpICBAMjU1lfT09CRXV1epc+fO0p49eyRJkqQHDx5IgYGBkoeHh2RkZCQZGxtLVatWlX7++WfVxKtHjhyROnToILm6ukp6enqSlZWV5OfnJ/33339qdb3r35MkSVKnTp0kAwODHO/tN8nrasG8JoU8fPiwVLduXcnQ0FCysbGR+vfvL50+fTrHFV15XS2Y22ud2+fL61auXCkFBARIdnZ2kq6uruTo6Ch16dJFOnfunKrM61cLZr++eS2vioiIkFq3bi1ZWlpKOjo6kpOTk9S6descnz3F6W3xvvr8XrlyRWrYsKFkaWkp6erqSuXLl5cmTZqk9vnzqujoaKl169aSiYmJ6m9i69atOcrVrFlTsre3L1Dcub1fnj17Jk2aNEmqVKmSpKurK5mZmUlVqlSRRo4cKcXHx0uSJEnbtm2TWrZsKTk5OUm6urqSra2t1KpVKykyMlLtWGvWrJE8PDwkHR2dt36mjhs3TqpVq5ZkYWEh6enpSWXLlpVGjhwpJSQkqMq8/t7M6wpoIMf7ctmyZVKdOnUkIyMjycDAQCpXrpzUq1evHJ+TxS37it7clryuls32ps/cLVu2SJ988omkr68vmZmZSZ999pnaFfD5JZMkcfMyQfgYHD58mPr16xMSElLgJu7Swt7eni+//JI5c+ZoOhShFEpJScHS0pL58+czZMgQTYcjlGIiuRKED9Du3bs5cuQINWvWxMDAQNVlYmZmxrlz5wo1aWpJd+HCBerWrcvNmzdLzAUlQumyfft2hgwZwtWrV/O8KlcQ8kMkV4JQTN42eDy/s80XxrFjxxg1ahQXL14kJSUFa2tr1WXn72MaA0EQhI+ZSK4EoZi87crD3r17s2LFivcTjCAIgvDeaPTegoLwIXvbZcei60oQBOHDJFquBEEQBEEQipBG7y0oCIIgCILwofnougWVSiX379/HxMTkvdxCQxAEQRCEdydJEikpKTg6OhbbxUBF5aNLru7fv6+6Ya8gCIIgCKXLnTt3CnwXkPfto0uusm9jcufOnRy3dREEQRAEoWRKTk7G2dk511vSlTQfXXKV3RVoamoqkitBEARBKGVKw5Cekt1pKQiCIAiCUMqI5EoQBEEQBKEIieRKEARBEAShCH10Y64EQRA0TaFQkJmZqekwBKHE0dXVLfHTLOSHSK4EQRDeE0mSiI+PJzExUdOhCEKJJJfLcXd3R1dXV9OhvBORXAmCILwn2YmVra0thoaGpeKqJ0F4X7In+Y6Li8PFxaVU/32I5EoQBOE9UCgUqsTKyspK0+EIQolkY2PD/fv3ycrKQkdHR9PhFFrp79gUBEEoBbLHWBkaGmo4EkEoubK7AxUKhYYjeTciuRIEQXiPSnNXhyAUtw/l70MkV4IgCIIgCEVIo8nVgQMHaNu2LY6OjshkMrZs2fLWfSIiIqhZsyb6+vqULVuWxYsXF3+ggiAIQokSGBhI+/bt31gmPDwcmUwmrs4U3juNJlepqalUq1aNX3/9NV/lb926RatWrfD19eXMmTNMmDCBoKAgNm3aVMyRCoIgfLzelMi4ubkhk8nUljJlyqhtnz9/fpHHtGDBAlasWKF67O/vz4gRI4q8Hk0LDAxUPa/a2tq4uLjw9ddf8/TpU7Vyb3sdhPdLo1cLtmzZkpYtW+a7/OLFi3FxcVH9oXp6enLy5Enmzp1Lp06diinK/Is+doKnt+7Q8IuOmg5FEAThvZk+fToDBgxQPdbS0ir2Os3MzIq9jtdlZmZq5Aq2Fi1asHz5crKysrh48SJ9+/YlMTGRNWvWqJXTxOsg5K5Ujbk6cuQIzZo1U1vXvHlzTp48medsxy9evCA5OVltKQ77VqzFZH0CSVFPuXT6XLHUIQiCUBKZmJhgb2+vWmxsbAp8jFGjRtG2bVvV4/nz5yOTydi+fbtqXaVKlfj9998B9da0wMBAIiIiWLBggarVJiYmRrXfqVOnqFWrFoaGhtSrV48rV67kK6apU6fi4+PDsmXLKFu2LHp6ekiSRFhYGA0aNMDc3BwrKyvatGnDjRs3VPt16tSJYcOGqR6PGDECmUzGhQsXAMjKysLExISdO3fmKw49PT3s7e0pU6YMzZo1o2vXruzatStHuaJ4HYSiUaqSq/j4eOzs7NTW2dnZkZWVRUJCQq77zJ49GzMzM9Xi7OxcLLF5Nm5AhP4NTunfIXxDGJIkFUs9giB8OCRJIi0jSyNLSfuM8vf3JzIyEqVSCbwcX2ttbU1ERATw8vP/6tWr+Pn55dh3wYIF1K1blwEDBhAXF0dcXJzaZ/3EiRP56aefOHnyJNra2vTt2zffcV2/fp3169ezadMmoqKigJdDWoKDgzlx4gR79+5FLpfToUMHVez+/v6Eh4erjvH6uZw4cYL09HTq169foOcI4ObNm4SFhZXqOaA+BqVuEtHXL9PM/oDI6/LN8ePHExwcrHqcnJxcLAmWg3MZdLSVyCQZD/TSWDrlZ/pPD377joIgfLSeZyqoPDl/rRdF7eL05hjqFs1XwNixY5k0aZLq8axZswgKCirQMRo2bEhKSgpnzpyhRo0aREZGMnr0aDZv3gzA/v37sbOzw8PDI8e+ZmZm6OrqYmhoiL29fY7tM2fOVCVl48aNo3Xr1qSnp6Ovr//WuDIyMli1apVaK9Drw1CWLl2Kra0tFy9exNvbG39/f4YPH05CQgJaWlpcuHCBKVOmEB4ezuDBgwkPD6dmzZoYGxvn67nZtm0bxsbGKBQK0tPTAZg3b16OckXxOghFo1QlV/b29sTHx6ute/jwIdra2nnOeKynp4eent77CI/u04JYPnout42fESd7xsHwSBr4+76XugVBEDRlzJgxBAYGqh5bW1sX+BhmZmb4+PgQHh6Ojo4OcrmcgQMHMmXKFFJSUggPD8+11So/qlatqvq/g4MD8PK7w8XF5a37urq65uheu3HjBt9++y1Hjx4lISFB1WIVGxuLt7c33t7eWFlZERERgY6ODtWqVeOzzz5j4cKFAAU+l4CAAH777TfS0tJYsmQJV69eVet2zFYUr4NQNEpVclW3bl22bt2qtm7Xrl3UqlWrxDSRNuvfkX9XbeahzjOO7z1IrU8/ydevI0EQPj4GOlpcnN5cY3UXFWtra8qXL//Ox8nuTtPV1cXPzw8LCwu8vLw4dOgQ4eHhhb4a8NXvh+xejuyE6G2MjIxyrGvbti3Ozs78+eefODo6olQq8fb2JiMjQ1VHw4YNVefi7++Pt7c3CoWC6OhoDh8+XKBzMTIyUj2/CxcuJCAggGnTpvHdd9+plSuq10F4dxodc/Xs2TOioqJU/di3bt0iKiqK2NhY4GWXXq9evVTlBw0axO3btwkODubSpUssW7aMpUuXMnr0aE2Enysnj7LY6xiiJ+mQrPWCJbMWajokQRBKKJlMhqGutkaWkjgTdva4q3379uHv7w+An58fa9euzXO8VTZdXd33csuUx48fc+nSJSZNmkTjxo3x9PTMMS0C/P9EMTw8HH9/f2QyGb6+vsydO5fnz58XarxVtilTpjB37lzu37//LqciFCONJlcnT56kevXqVK9eHYDg4GCqV6/O5MmTAYiLi1MlWgDu7u6EhoYSHh6Oj48P3333HQsXLiwR0zC8quPUwbg8fXl/pKeydHbv26fhiARBEN5NUlKS6sdw9vLq53NRyB53tXXrVlVy5e/vz+rVq7GxsaFy5cp57uvm5saxY8eIiYlR66orahYWFlhZWfHHH39w/fp19u3bpzauN5u/vz8XLlwgOjoaX19f1bqQkBBq1KiBqalpoWPw9/fHy8uLWbNmFfoYQvHSaLegv7//G69YeXWCuGx+fn6cPn26GKMqGk0Hd0ZnWSgeWmWRtj/k2aepGBvmbF4WBEEoDcLDw1U/hLP17t27SOswMzOjevXqxMbGqhIpX19flErlW8cojR49mt69e1O5cmWeP3/OrVu3ijS2bHK5nLVr1xIUFIS3tzeVKlVi4cKFqmQwm7e3N9bW1ri6uqoSKT8/PxQKRaHHjr0qODiYPn36MHbs2GK7Cl4oPJlU0q7HLWbJycmYmZmRlJT0Tr8c8uPCqrWYnDZDrmfMMZMLdJo4qFjrEwSh5EpPT+fWrVu4u7uLcZiCkIc3/Z28z+/vd1Wq5rkqbSr37EpcUjgAbilOLFu2XLMBCYIgCIJQ7ERyVYxkMhk1vh/F5Wfn2aZ3mju3bxMVfVbTYQmCILx3ISEhGBsb57p4eXlpJCYvL688YwoJCSn2+mNjY/Os39jYuMjHtAnvT6maiqE00rG1Jd0SnLPMidV5yo6N/1GpfEUMDAw0HZogCMJ789lnn1GnTp1ct2lqKp3Q0NA8b532+t1AioOjo6Pqavm8tgulkxhz9R4oFUpCvvqOB056PJOnY2JsQvCo4BJ5KbQgCMVDjLkShLcTY66EfJNryWky9Avcnmohk2SkPEshdFeYpsMSBEEQBKEYiOTqPXGoXgl9EyM8X7y8HcGpw8e5Hy8mgBMEQRCED41Irt6jltMHkhr/AAeFOUqZxLq/1mo6JEEQBEEQiphIrt4jLW0tmgzsgtXDVOplVqL942ocOnlU02EJgiAIglCERHL1njnX9ebTmk5UvPcYHZku8i13SElN1nRYgiAIgiAUEZFcaYBTvy9JSz2G8kUydlnWLJn/O8nJIsESBEHIr8DAQNq3b//GMuHh4chkMhITE99LTIKQTSRXGiDT0qLcD9O4HbOXSJ1LJGWm8ufSJcV2o1FBEIR38aZExs3NDZlMpraUKVNGbfv8+fOLPKYFCxao3X/W39+fESNGFHk9JUF8fDzDhg2jbNmy6Onp4ezsTNu2bdm7dy8ZGRlYW1szY8aMXPedPXs21tbWZGRkvLGOFStWqL2GdnZ2tG3blgsXLqiVCwwMzPF6y2Qyrl+/XmTn+yEQyZWG6JUty+Ny5bBNzEBbkpOSlMyOXTs0HZYgCEKBTZ8+nbi4ONVy5syZYq/TzMwMc3PzYq/nVXlNOFqcYmJiqFmzJvv27ePHH38kOjqasLAwAgICGDJkCLq6uvTs2ZMVK1aQ27SVy5cv58svv0RXV/etdZmamhIXF8f9+/fZvn07qamptG7dOkdi1qJFC7XXOy4uDnd39yI75w+BSK40qPX0/sQkxlM9/eWvvBNHTxB7R9zuQBCE0sXExAR7e3vVYmNjU+BjjBo1irZt26oez58/H5lMxvbt21XrKlWqxO+//w6ot6YFBgYSERHBggULVC0pMTExqv1OnTpFrVq1MDQ0pF69ely5ciVfMU2dOhUfHx+WLVumajWSJImwsDAaNGiAubk5VlZWtGnThhs3bqj269SpE8OGDVM9HjFiBDKZTNUKlJWVhYmJCTt37nxrDIMHD0Ymk3H8+HE6d+5MxYoV8fLyIjg4mKNHX14Q1a9fP27cuMGBAwfU9o2MjOTatWv069cvX+crk8mwt7fHwcGBWrVqMXLkSG7fvp3j+dLT01N7ve3t7dHS0spXHR8LkVxpkI6hHk17dOJhfDTuWbYArPprFenp6RqOTBCE90KSICNVM0sJuzmHv78/kZGRquERERERWFtbExERAbzsGrt69Sp+fn459l2wYAF169ZlwIABqpYUZ2dn1faJEyfy008/cfLkSbS1tenbt2++47p+/Trr169n06ZNqlvVpKamEhwczIkTJ9i7dy9yuZwOHTqoYvf39yc8PFx1jNfP5cSJE6Snp1O/fv031v3kyRPCwsIYMmQIRkZGObZnt9xVqVKFTz75hOXLl6ttX7ZsGbVr18bb2zvf55stMTGRv//+G9Dc7YlKM3FvQQ0r3+ITzoUdRSfhKY9s9XmWmc7qNSH0C+wrbo8jCB+6zDSYpaH7x024D7o5v7ALY+zYsUyaNEn1eNasWQQFBRXoGA0bNiQlJYUzZ85Qo0YNIiMjGT16NJs3bwZg//792NnZ4eHhkWNfMzMzdHV1MTQ0xN7ePsf2mTNnqpKycePG0bp1a9LT0/N1G6KMjAxWrVql1hrXqVMntTJLly7F1taWixcv4u3tjb+/P8OHDychIQEtLS0uXLjAlClTCA8PZ/DgwYSHh1OzZk2MjY3fWPf169eRJCnXc35d3759GT16NL/++ivGxsY8e/aMDRs2MG/evLfumy0pKQljY2MkSSItLQ14eU/I1+vftm2bWuwtW7Zkw4YN+a7nYyBarkqA1tP7cftZMjVS7ZBJMh7cvk/CkwRNhyUIgpAvY8aMISoqSrX06tWrwMcwMzPDx8eH8PBwoqOjkcvlDBw4kLNnz5KSkkJ4eHiurVb5UbVqVdX/HRwcAHj48GG+9nV1dc3RzXnjxg26d+9O2bJlMTU1VY03io19OazD29sbKysrIiIiiIyMpFq1anz22Weqlqv8nkv2GKr8/NDu1q0bSqWSdevWAbBu3TokSeKLL77I13nCy+7dqKgoTp06xeLFiylXrhyLFy/OUS4gIEDt9V64cGG+6/hYiJarEkDP1JAmndtzYNNf+On64yhZsfOfbfTs30fToQmCUJx0DF+2IGmq7iJibW1N+fLl3/k42d1purq6+Pn5YWFhgZeXF4cOHSI8PLzQVwO+2q2Vnajk9+rs3Lrj2rZti7OzM3/++SeOjo4olUq8vb1VA79lMhkNGzZUnYu/vz/e3t4oFAqio6M5fPhwvs6lQoUKyGQyLl269NZpJ8zMzOjcuTPLly+nX79+LF++nM6dOxfoBsdyuVz1Onp4eBAfH0/Xrl1zjOUyMjIqktf7QyZarkoIj/Z1+aRsRRxP78EQPepfd+PAiUhNhyUIQnGSyV52zWliKYHDDrLHXe3btw9/f38A/Pz8WLt2bZ7jrbLp6uqiUCiKPcbHjx9z6dIlJk2aROPGjfH09OTp06c5ymUniuHh4fj7+yOTyfD19WXu3Lk8f/78reOtACwtLWnevDn/+9//SE1NzbH99fm7+vXrx6FDh9i2bRuHDh3K90D2vIwcOZKzZ8/yzz//vNNxPkYiuSpBqo3/Ghl3yIyLQgdtHm29wvYd29++oyAIQjFLSkpS6wqKiopSdYMVlexxV1u3blUlV/7+/qxevRobGxsqV66c575ubm4cO3aMmJgYEhISim3eQAsLC6ysrPjjjz+4fv06+/btIzg4OEc5f39/Lly4QHR0NL6+vqp1ISEh1KhRI98tSosWLUKhUFC7dm02bdrEtWvXuHTpEgsXLqRu3bpqZf38/Chfvjy9evWifPnyNGzY8J3O1dTUlP79+zNlypRcp3kQ8iaSqxJErq+P08wZPL24iTjlI6Lldzlx7ES+LxsWBEEoLuHh4VSvXl1tmTx5cpHWYWZmRvXq1bG0tFQlUr6+viiVyreOURo9ejRaWlpUrlwZGxubIk/8ssnlctauXcupU6fw9vZm5MiRzJkzJ0c5b29vrK2tqVatmiqR8vPzQ6FQFGjsmLu7O6dPnyYgIIBRo0bh7e1N06ZN2bt3L7/99luO8n379uXp06cFuiLyTYYPH86lS5fEgPUCkkkfWTqanJyMmZkZSUlJBeqLfp82DJlPZupNdMpU44L2HbS1tQkKCiqx8QqC8Hbp6encunULd3f3fF2lJggfozf9nZSG7+9souWqBGr5bSAJCiOsnqRgpTQmKyuLNevWiNvjCIIgCEIpIJKrEsjY3hzfxk2ITjzDJ2ll0JbkxN2LI/KgGOAuCELpFBISgrGxca6Ll5eXRmLy8vLKM6aQkJBirz82NjbP+o2NjYu0a1PT5/qxEVMxlFA+vRtx4chFLj7Yw6fOjTmoe4X9+/ZT1r2s2szDgiAIpcFnn31GnTp1ct2mqRnAQ0ND87xfoJ2dXbHX7+joqJr1Pa/tRUXT5/qxEclVCSWTyWg7sRsrJsbxIuEGZe3suKn1gCMnj4jkShCEUsfExAQTExNNh6HG1dVVo/Vra2u/t/miNH2uHxvRLViCmblY82l9P66mXMEzxYwWGT6YR2eQ+iLnfCeCIAiCIJQMIrkq4Wp/1QwPiyroHFmBQ4YRldNc+Wfl35oOSxAEQRCEPIjkqoSTyWU0nTkAQ61UMs6tAaDazTIs+HU+CQni/oOCIAiCUNKI5KoU0LawwH7yt2TEHuFx4g1O6dzkaUIia9etJSsrS9PhCYIgCILwCpFclRImzZtzvWEfDiRtp3q6E/qSDgmPEti9e7emQxMEQRAE4RUiuSolZDIZdYO6odCuxPlHe2mY+fLWEMeOHePq1asajk4QBOH9CgwMpH379m8sEx4ejkwmy3GDY0EobiK5KkVsvZ3x8f6EBy+ekv40Bq+sl1MybNq8ieTkZA1HJwjCh+pNiYybmxsymUxtKVOmjNr2+fPnF3lMCxYsYMWKFarH/v7+jBgxosjrKQnu3LlDv379cHR0RFdXF1dXV4YPH87jx49zlL1w4QJdunTBxsYGPT09KlSowLfffktaWppauVdfNy0tLRwdHenXrx9Pnz7NV0zZiWv2YmVlRaNGjTh06JBaualTp+Z4f8hkMvbs2VP4J6QUEMlVKdMguA1mhvU59zSCSmnmWCmNeZH+gk2bN4nb4wiCoBHTp08nLi5OtZw5c6bY6zQzM8Pc3LzY63lVXpNwFqebN29Sq1Ytrl69ypo1a7h+/TqLFy9m79691K1blydPnqjKHj16lDp16pCRkcH27du5evUqs2bNYuXKlTRt2pSMjAy1Y2e/brGxsYSEhHDgwAGCgoIKFN+VK1eIi4sjPDwcGxsbWrduzcOHD9XKeHl5qb0/4uLiaNiwYeGflFJAJFeljLaOFi0HNwfdKpx8FIpfRuWXt8eJu5/jl4kgCML7YGJigr29vWqxsbEp8DFGjRpF27ZtVY/nz5+PTCZj+/btqnWVKlXi999/B9Rb0wIDA4mIiGDBggWqlpGYmBjVfqdOnaJWrVoYGhpSr149rly5kq+Ypk6dio+PD8uWLaNs2bLo6ekhSRJhYWE0aNAAc3NzrKysaNOmDTdu3FDt16lTJ4YNG6Z6PGLECGQyGRcuXAAgKysLExMTdu7c+dYYhgwZgq6uLrt27cLPzw8XFxdatmzJnj17uHfvHhMnTgRAkiT69euHp6cnmzdvpnbt2ri6uvL555+zdetWjhw5ws8//6x27OzXzcnJiYCAAHr16sXp06fz9dxks7W1xd7enipVqjBp0iSSkpI4duyYWhltbW2194e9vT26uroFqqe0EclVKeRYsyzeFWqQmPWCO09O0TKjBh1SanHpznlNhyYIQgFIkkRaZppGFkmSNH36avz9/YmMjFS1wEdERGBtbU1ERAQA8fHxXL16FT8/vxz7LliwgLp16zJgwABVy8ird7KYOHEiP/30EydPnkRbW5u+ffvmO67r16+zfv16Nm3apLpVTWpqKsHBwZw4cYK9e/cil8vp0KGDKnZ/f3/Cw8NVx3j9XE6cOEF6ejr169d/Y91Pnjxh586dDB48GAMDA7Vt9vb29OjRg3Xr1iFJElFRUVy8eJHg4GDkcvWv9mrVqtGkSRPWrFmTZ1337t1j27Zted6i6G3S0tJYvnw5oLnbGZUk4vY3pZTfmDbED45B6/I+DKq4YGJSlnsbrpM42gMzAzNkMpmmQxQE4S2eZz2nzt+F+zJ7V8e6H8NQx7BIjjV27FgmTZqkejxr1qwCdy81bNiQlJQUzpw5Q40aNYiMjGT06NFs3rwZgP3792NnZ4eHh0eOfc3MzNDV1cXQ0BB7e/sc22fOnKlKysaNG0fr1q1JT09HX1//rXFlZGSwatUqtda4Tp06qZVZunQptra2XLx4EW9vb/z9/Rk+fDgJCQloaWlx4cIFpkyZQnh4OIMHDyY8PJyaNWtibGz8xrqvXbuGJEl4enrmut3T05OnT5/y6NEj1YVNbyp78OBBtXXZr5tCoSA9PZ06deowb968tz4nr8oeX5eW9jJhr1mzJo0bN1YrEx0drXaulStX5vjx4wWqp7QRLVellI6+Dl2mdsIt5R7yI3/yQkqnYpoLKxf9yebNm0vcr1JBED5cY8aMISoqSrX06tWrwMcwMzPDx8eH8PBwoqOjkcvlDBw4kLNnz5KSkkJ4eHiurVb5UbVqVdX/HRwcAHKMC8qLq6trjm7OGzdu0L17d8qWLYupqSnu7u4AxMbGAuDt7Y2VlRURERFERkZSrVo1PvvsM1XL1bucy6uyP+fz82NakqQc5bJft3PnzrF3714AWrdujUKhyHcMkZGRnD59mjVr1uDq6sqKFStytFxVqlRJ7f2xadOmfB+/tBItV6WYrosLtiNH8GDWbJ5cDkW3clMSU1J5Gh1N2bJlqV69uqZDFAThDQy0DTjW/djbCxZT3UXF2tq6SG5AnN2dpquri5+fHxYWFnh5eXHo0CHCw8MLfTXgq1/22QlGfi8AMjIyyrGubdu2ODs78+eff+Lo6IhSqcTb21s1YFwmk9GwYUPVufj7++Pt7Y1CoSA6OprDhw/n61zKly+PTCbj4sWLuV6tefnyZSwsLLC2tqZixYoAXLx4ER8fn1zLVqhQQW3dq69bhQoVmD9/PnXr1mX//v00adLkrfEBuLu7Y25uTsWKFUlPT6dDhw6cP38ePT09VRldXd33doPqkkK0XJVyFj16EPdJBw7ox5Caco+aWeUA2L59u7g9jiCUcDKZDEMdQ40sJXHoQPa4q3379uHv7w+An58fa9euzXO8VTZdXd0CtbgU1uPHj7l06RKTJk2icePGqq6512UniuHh4fj7+yOTyfD19WXu3Lk8f/78reOtAKysrGjatCmLFi3i+fPnatvi4+MJCQmha9euyGQyfHx88PDw4Oeff86ROJ49e5Y9e/bQrVu3N9anpaUFkKOu/Pryyy9RKpUsWrSoUPt/SERyVcrJtLRwDeyBll5VTj3eSfkXljgqLMjKymLDxg3i9jiCIBSJpKQkta6dqKgoVTdYUcked7V161ZVcuXv78/q1auxsbGhcuXKee7r5ubGsWPHiImJISEhodimprGwsMDKyoo//viD69evs2/fPoKDg3OU8/f358KFC0RHR+Pr66taFxISQo0aNTA1Nc1Xfb/++isvXrygefPmHDhwgDt37hAWFkbTpk1xcnJi5syZwMtEfcmSJVy8eJFOnTpx/PhxYmNj2bBhA23btqVu3bo5WstSUlKIj48nLi6O48ePM2bMGKytralXr16hnhu5XM6IESP4/vvvP/qr10Vy9QEo19iLco5VyMTg5fQMmV7oSTo8iH/wwU/UJgjC+xEeHk716tXVlsmTJxdpHWZmZlSvXh1LS0tVIuXr64tSqXzrGKXRo0ejpaVF5cqVsbGxKfLEL5tcLmft2rWcOnUKb29vRo4cyZw5c3KU8/b2xtrammrVqqkSKT8/PxQKRYHGW1WoUIGTJ09Srlw5unbtSrly5fjqq68ICAjgyJEjWFpaqsrWr1+fo0ePoqWlRatWrShfvjzjx4+nd+/e7N69W62rDmDy5Mk4ODjg6OhImzZtMDIyYvfu3VhZWRXy2YG+ffuSmZnJr7/+WuhjfAhk0kc28jk5ORkzMzOSkpLy/cuhNHie9JwVI0NIS92Cj2UjDCzc2aV7FoDu3bur+uMFQdCM9PR0bt26hbu7e76uUhOEj9Gb/k5K0/e3aLn6QBiYGRDQsSZaejU59zQC03QJryxnZMDT5PzdzkAQBEEQhHcnkqsPiEeb6rjaeCPJTDn2aCs1Mt3o+OJTrl45q+nQBEH4yIWEhGBsbJzr4uXlpZGYvLy88owpJCSk2OuPjY3Ns35jY+Ni69rMj5YtW+YZ16xZszQWV2khugU/MKkJz/hrzBoMnhzExbIiFe0a8lyWzsPuOnxa2Vd1NYggCO/Xx94tmJKSwoMHD3LdpqOjg6ur63uOCG7fvp3n/QLt7OwwMTEp1vqzsrLUbtPzOjc3N7S1NTNj0r179/K8atDS0lJtrFdR+lC6BcU8Vx8YI2tjegyrw72e80F5ghtty1JOqwyPNl1h4b4zdO7YWe22EIIgCO+DiYlJsScrBaWJhO5V2traJXb+JycnJ02HUKqJbsEPkGmNqlj2CQQkTI6FkEY6KYoskp4msWnTJtLT0zUdoiAIgiB8sERy9YGyGTaMtAq1iHSw4OzDXdTPrISxUp/ExES2bdsmbo8jCIIgCMVEJFcfKLm+PrIuXyPplSM29RL3Uq/RKNMbmQTnz59X3d1dEARBEISiJZKrD1j1HnWxN/NCJrfgTMJO9BUy1e1xQkNDxe1xBEEQBKEYiOTqAyaTy2g2qhG6Bk3IVGZw6sF2vBXOOCosyMzMZOPGjeL2OIIgCIJQxDSeXC1atEh1yWXNmjWJjIx8Y/mQkBCqVauGoaEhDg4O9OnTh8ePH7+naEsfSzcrPqnrjpZeTR6mx3I16Qx+mV7oStpI2so8L0MWBEEQBKFwNJpcrVu3jhEjRjBx4kTOnDmDr68vLVu2zHPitIMHD9KrVy/69evHhQsX2LBhAydOnKB///7vOfLS5ZO+DbAx8UYmt+TCk3CeKZLpkFEbxwc6ZMpFciUIwpsFBgYik8kYNGhQjm2DBw9GJpMRGBioVlYmk6Gjo4OdnR1NmzZl2bJlOW6m7Obmxvz58/MVg5ubm+q4BgYGeHh4MGfOHLWLc2JiYlRlXl169uxZ6HMXhMLQaHI1b948+vXrR//+/fH09GT+/Pk4Ozvz22+/5Vr+6NGjuLm5ERQUhLu7Ow0aNGDgwIGcPHnyPUdeusi15DQd7ouuYRO0MCc28Qx6aFMzxYPN61YBFNsd5AVB+DA4Ozuzdu1atYkl09PTWbNmDS4uLmplW7RoQVxcHDExMezYsYOAgACGDx9OmzZt3mkowvTp04mLi+PSpUuMHj2aCRMm8Mcff+Qot2fPHuLi4lTL//73v0LXKQiFobHkKiMjg1OnTtGsWTO19c2aNePw4cO57lOvXj3u3r1LaGgokiTx4MEDNm7cSOvWrd9HyKWabUU7WrcsQ+OzJ/A4tJmd0svWwVqX3Fm09Fe2b9+u4QgFQSjJatSogYuLC5s3b1at27x5M87OzlSvXl2trJ6eHvb29jg5OVGjRg0mTJjAv//+y44dO1ixYkWhYzAxMcHe3h43Nzf69+9P1apV2bVrV45yVlZW2NvbqxYzM7NC1ykIhaGx5CohIQGFQoGdnZ3aejs7O+Lj43Pdp169eoSEhNC1a1d0dXWxt7fH3NycX375Jc96Xrx4QXJystrysXLv3Ajztm1AqaThmfWck8eRThYP7yRw6tQp7t69q+kQBeGjIkkSyrQ0jSyFmeuuT58+LF++XPV42bJl9O3bN1/7NmrUiGrVqqklZ4UlSRLh4eFcunQJHR2ddz6eIBQ1jd/+RiaTqT2WJCnHumwXL14kKCiIyZMn07x5c+Li4hgzZgyDBg1i6dKlue4ze/Zspk2bVuRxl1Z2E8aTdPg4Rw3teBHzD+Vc+lBBYc81rXi2b9/OgAEDkMs1fp2DIHwUpOfPuVKjpkbqrnT6FDJDwwLt8+WXXzJ+/HjV2KZDhw6xdu1awsPD87W/h4cH586dK0S0L40dO5ZJkyaRkZFBZmYm+vr6BAUF5ShXr149tc+xyMjIHK1rglCcNJZcWVtbo6WllaOV6uHDhzlas7LNnj2b+vXrM2bMGACqVq2KkZERvr6+zJgxAwcHhxz7jB8/nuDgYNXj5OTkj/reetoWFjztMoGUU4dRvDjJpafH+MSiLjHyR8TFxXHq1Ck++eQTTYcpCEIJZG1tTevWrVm5ciWSJNG6dWusra3zvf+bfjznx5gxYwgMDOTRo0dMnDiRRo0aUa9evRzl1q1bh6enp+rxx/yZL2iGxpIrXV1datasye7du+nQoYNq/e7du2nXrl2u+6SlpeW4Q7iWlhZAnk3cenp66OnpFVHUH4bagxpxNegZTzNvcivxJOXMfKiVVY4jOlfZu3cvlStXxsjISNNhCsIHT2ZgQKXTpzRWd2H07duXoUOHAhR4oPilS5dwd3cvVL3wMrkrX7485cuXZ9OmTZQvX55PP/2UJk2aqJVzdnYusTdEFj4OGu3/CQ4OZsmSJSxbtoxLly4xcuRIYmNjVZf7jh8/nl69eqnKt23bls2bN/Pbb79x8+ZNDh06RFBQELVr18bR0VFTp1Hq6Ohp07h/DXSMmqNEycVH4XgqnLBQGpGens6ePXs0HaIgfBRkMhlyQ0ONLIVtQWrRogUZGRlkZGTQvHnzfO+3b98+oqOj6dSpU6HqfZ2FhQXDhg1j9OjR4l6pQomj0TFXXbt25fHjx6rLa729vQkNDcXV1RWAuLg4tTmvAgMDSUlJ4ddff2XUqFGYm5vTqFEjfvjhB02dQqnl8okblXZf5uLlqtxNO8ujjHgayDzZqneSa9eu8fz5cwwK+ctWEIQPl5aWFpcuXVL9PzcvXrwgPj4ehULBgwcPCAsLY/bs2bRp00btB/O7GjJkCD/88AObNm2ic+fORXZcQXhXGh/QPnjwYAYPHpzrttwu2R02bBjDhg0r5qg+Dn4jG3M7KInkFxeJTthHE8ee+GVUJqu+sUisBEHIk6mp6Ru3h4WF4eDggLa2NhYWFlSrVo2FCxfSu3fvIr1gxsbGhi+//JKpU6fSsWPHIjuuILwrmfSRtacmJydjZmZGUlLSWz8gPgYXtkWzZ8M2FOknqebYmkp6FThrcp2m43qgq6Wr6fAE4YORnp7OrVu3VLf7EgQhpzf9nZSm729xzf1HrnIrb6o4OuF75T5WUf+SSRbVUsqzY88WoqOjefbsmaZDFARBEIRSRSRXHzmZXIb/t50xtzBAL+4q15JfzkHz6HAcmzZtYvfu3RqOUBCED11ISAjGxsa5Ll5eXpoOTxAKTONjrgTNkxsaYjd+HHeDhqO8Gs7zmp7UyCjHXb2TnD17lho1aqguMhAEQShqn332GXXq1Ml1m5iBXSiNRHIlAGDcpAln6/Xjfmo4mU+OUN2qEW5Ka2LkCYSGhvLVV1/leWWQIAjCuzAxMcHExETTYQhCkRHdggIAcrkc54aNkGu7cT35NMlZT2mQ4YlcJuPBgwecOHFC0yEKgiAIQqkgkitBpXbXqhga10WJkujHEeijyycZ5YCXEwCmpKRoOEJBEARBKPlEciWo6BpoU79LPbR0vbibdoWE9Ht4K1wwkOuQkZHBrl27NB2iIAiCIJR4IrkS1FQOcMPKti6gTdST/ciQ0eR5VYxNjahZs6amwxMEQRCEEk8kV4IauVyGf/8GaOnX4vGLe9x5dhk7yRzPNBucXJw0HZ4gCIIglHgiuRJycPa0wr1yQ7TkDjy7doAsKYtqz8qxZ982ADIzMzUcoSAIgiCUXCK5EnLV9OtP6fqJN2Vun+RZ7EEAjCMz2Bu+l/nz55OcnKzhCAVBeB9kMtkbl8DAwGKpNzU1lbFjx1K2bFn09fWxsbHB39+fbdu2qcr4+/szYsSIHPuuWLECc3PzHOufP3+OhYUFlpaWPH/+PMd2Nzc31XkZGhri7e3N77//nq94V6xYofa82NnZ0bZtWy5cuKBWLjAwMNfn8fr16/mqRygdRHIl5MrQVBe7r79C29EBrfNbeKFMw+2FA6eOHSc1NVUMbheEj0RcXJxqmT9/PqampmrrFixYoFa+qFq2Bw0axJYtW/j111+5fPkyYWFhdOrUicePHxf6mJs2bcLb25vKlSuzefPmXMtMnz6duLg4zp07R/v27Rk0aBDr1q3L1/Gzn5v79++zfft2UlNTad26NRkZGWrlWrRoofYcxsXF4e7uXujzEkoekVwJeZIbGGD1zVjOuFTgypOjyJBRJ6UsMpmM8+fPc/PmTU2HKAhCMbO3t1ctZmZmyGQy1eP09HTMzc1Zv349/v7+6Ovrs3r1agCWL1+Op6cn+vr6eHh4sGjRIrXj3rt3j65du2JhYYGVlRXt2rUjJiZGtX3r1q1MmDCBVq1a4ebmRs2aNRk2bBi9e/cu9LksXbqUnj170rNnT5YuXZprGRMTE+zt7SlfvjwzZsygQoUKbNmyJV/Hz35uHBwcqFWrFiNHjuT27dtcuXJFrZyenp7a82pvby8maf7AiORKeKN4E28emFtwJeU0qRlPKZfliIWhEQChoaFkZWVpOEJBKP0yXyjyXLIyFfkvm5G/skVt7NixBAUFcenSJZo3b86ff/7JxIkTmTlzJpcuXWLWrFl8++23rFy5EoC0tDQCAgIwNjbmwIEDHDx4EGNjY1q0aKFq5bG3tyc0NLTI5te7ceMGR44coUuXLnTp0oXDhw/n6weivr5+oVrjEhMT+fvvvwFxC5+Pkbj9jfBGlT514NjmRjy5u5KziQeoZ9uOJk+8+dfsDAkJCRw9epQGDRpoOkxBKNX+GB6R5zZXbyvaDK2merxsTCRZGcpcyzpWMKfDqBqqx39NPEz6s5yJwZDFjd4h2pxGjBhBx44dVY+/++47fvrpJ9U6d3d3Ll68yO+//07v3r1Zu3YtcrmcJUuWIJPJgJctXebm5oSHh9OsWTP++OMPevTogZWVFdWqVaNBgwZ07tyZ+vXrq9W9aNEilixZorYuKysLfX19tXXLli2jZcuWWFhYAC+75pYtW8aMGTNyPaesrCxWr15NdHQ0X3/9db6eh6SkJIyNjZEkibS0NODlfRM9PDzUym3btg1jY2PV45YtW7Jhw4Z81SGUDqLlSngjLS05Ab0DkOt6cif1Mk/T7mIqGWEje9l6FRERQVJSkoajFARBk2rVqqX6/6NHj7hz5w79+vXD2NhYtcyYMYMbN24AcOrUKa5fv46JiYlqu6WlJenp6aoyDRs25ObNm+zdu5dOnTpx4cIFfH19+e6779Tq7tGjB1FRUWrL9OnT1cooFApWrlxJz549Vet69uzJypUrUSjUW/LGjh2LsbExBgYGDBkyhDFjxjBw4MB8PQ8mJiZERUVx6tQpFi9eTLly5Vi8eHGOcgEBAWrxLly4MF/HF0oP0XIlvJVrFSvKeLYg9uxVTiWG08SwJ02eVuVfpyiSniZz584dzMzMNB2mIJRaXy3wy3Ob7LWfwH3n+OZdVqb+uNfMeu8SVr4ZGRmp/q9UvmxV+/PPP6lTp45auexxRUqlkpo1axISEpLjWDY2Nqr/6+jo4Ovri6+vL+PGjWPGjBlMnz6dsWPHoqurC4CZmRnly5dXO4atra3a4507d6rGeL1KoVCwa9cuWrZsqVo3ZswYAgMDMTQ0xMHBQdWylh9yuVwVi4eHB/Hx8XTt2pUDBw6olTMyMsoRs/BhEcmV8FYymYyAXnUImVCdxy9Oci/lMk4mHjgnG9Pt6+7Y2ti+/SCCIORJRy//g5mLq2xRsbOzw8nJiZs3b9KjR49cy9SoUYN169Zha2uLqalpvo9duXJlsrKySE9PVyVX+bF06VK++OILJk6cqLb++++/Z+nSpWrJlbW1dZElPiNHjmTevHn8888/dOjQoUiOKZQOoltQyBfrMsZ4BXwGMn2iEg+gVGZRO6US584f13RogiCUMFOnTmX27NksWLCAq1evEh0dzfLly5k3bx7wsivP2tqadu3aERkZya1bt4iIiGD48OHcvXsXeDmH1e+//86pU6eIiYkhNDSUCRMmEBAQUKCE7NGjR2zdupXevXvj7e2ttvTu3Zv//vuPR48eFcvzYGpqSv/+/ZkyZQqSJBVLHULJJJIrId/qdfLGoWw7KsQ+JetmOAAGEc9Jy0jj3r17nD17VrMBCoJQIvTv358lS5awYsUKqlSpgp+fHytWrFDN5WRoaMiBAwdwcXGhY8eOeHp60rdvX54/f65KnJo3b87KlStp1qwZnp6eDBs2jObNm7N+/foCxfLXX39hZGRE48aNc2wLCAjAxMSEVatWvftJ52H48OFcunRJDFj/yMikjyydTk5OxszMjKSkpAL9+hH+v4cLFvB4yV8YNpuJlo4RB72uc/nGbbS1tRk6dGiuMyMLwscuPT2dW7du4e7unuNKNkEQXnrT30lp+v4WLVdCgVl/9RXaNuYk39gNgMcVaxzLOJKVlUVYWJiGoxMEQRAEzRLJlVBgko4ep2s1Z4/eDZ6/eIp1ljnGWS/vj3X58mWuXbum6RAFQRCKlJeXl9rUEq8uuV31KHzcxNWCQoHJtWRk6VdAyQHOJB6gnl07PrntjnYtUy5GXyI0NJTBgweLWYkFQfhghIaG5jlTu52d3XuORijpRHIlFJhMJqNJn8b8/W0kd9Iuk5hWC3NDJ7Rjn2FiYsLTp085fPgwfn55z90jCIJQmri6umo6BKEUEd2CQqHYuZtS4dP2gJyTifsBqPmgPBUrlwUgMjKSxMREjcUnCIIgCJoikiuh0Py610bHoDqPX9zjfsoVtJCjcyaFypUr06JFixJ/NYcgCIIgFAeRXAmFZmKpT43WnUGmx5nEcJTKLLyT3bGzN6VWrVrI5eLtJQiCIHx8xLef8E5qt/XEwLwezxTPefTwDADa+1JIz0wHICMjI89BoIIgCILwIRID2oV3oquvTdvhvdBJbc7jAQOQLCvjij37t22jvHc1tm3bho+PDwEBAZoOVRAEQRDeC9FyJbwzZ08b7Gt5Y9GrKy+uhgLgdFKfp0lPSEpK4uDBgzx+/FjDUQqC8KGJiYlBJpMRFRWl6VA+WFOnTsXHx0fTYZQ6IrkSiozdwK+4QALp6U+xVJgRd+4qZcuWRaFQsGPHDnHjUkEopQIDA2nfvr3auo0bN6Kvr8+PP/6omaAKYdOmTdSpUwczMzNMTEzw8vJi1KhRqu0rVqzI8/ZdMpmMLVu25Fj/1VdfoaWlxdq1a3Nsmzp1KjLZywmWtbS0cHZ2pn///vm+UXT2vjKZDGNjY6pVq8aKFSvUyoSHh6uVy14mTZqUrzqE4iGSK6HIHP7vDNeNkjmddAAAr2sO1KhVFblczvXr17l8+bKGIxQEoSgsWbKEHj168Ouvv/LNN98UeP+MjIxiiOrN9uzZwxdffEHnzp05fvw4p06dYubMme8US1paGuvWrWPMmDEsXbo01zJeXl7ExcURGxvLb7/9xtatW+nVq1e+61i+fDlxcXGcPXuWrl270qdPH3bu3Jmj3JUrV4iLi1Mt48aNK/R5Ce9OJFdCkanauDpauuX/b2LR++hLetzafZb69esDEBYWppEPVUEQis6PP/7I0KFD+fvvv+nfvz8Ahw8fpmHDhhgYGODs7ExQUBCpqamqfdzc3JgxYwaBgYGYmZkxYMAAVSvRzp078fT0xNjYmBYtWhAXF6dW3/Lly/H09ERfXx8PDw8WLVpUqLi3bdtGgwYNGDNmDJUqVaJixYq0b9+eX375pdDPxYYNG6hcuTLjx4/n0KFDxMTE5Cijra2Nvb09Tk5OtGnThqCgIHbt2sXz58/zVYe5uTn29vaUK1eOCRMmYGlpya5du3KUs7W1xd7eXrUYGxu/9djZr8GWLVuoWLEi+vr6NG3alDt37uS5j7+/PyNGjFBb1759ewIDA1WPFy1aRIUKFdDX18fOzo7OnTvn61w/JCK5EoqMmY0h3o27AHJOJe4DoFqcG5Y2xqo7mUdGRmo2SEEogTLT0/Ncsl77QfKmspkZL/JVtrDGjRvHd999x7Zt2+jUqRMA0dHRNG/enI4dO3Lu3DnWrVvHwYMHGTp0qNq+c+bMwdvbm1OnTvHtt98CL1t+5s6dy6pVqzhw4ACxsbGMHj1atc+ff/7JxIkTmTlzJpcuXWLWrFl8++23rFy5ssCx29vbc+HCBc6fP1/o83/d0qVL6dmzJ2ZmZrRq1Yrly5e/dR8DAwOUSiVZWVkFqkuhULB+/XqePHlSpLcWS0tLY+bMmaxcuZJDhw6RnJzMF198UejjnTx5kqCgIKZPn86VK1cICwujYcOGRRZvaSGuFhSKlG/X2lyK9CHh2Wnup1zF0aQiCduu0aJDC9atW0diYiKSJCGTyTQdqiCUGAt75/3L3r16LTqOm6p6vOirHmS9eJFr2TKVvek65XvV4z+H9uV5SnKOcqPWbStwjDt27ODff/9l7969NGrUSLV+zpw5dO/eXdWaUaFCBRYuXIifnx+//fYb+vr6ADRq1EgtcTp48CCZmZksXryYcuXKATB06FCmT5+uKvPdd9/x008/0bFjRwDc3d25ePEiv//+O7179y5Q/MOGDSMyMpIqVarg6urKp59+SrNmzejRowd6enqqcklJSflq9bl27RpHjx5l8+bNAPTs2ZOgoCCmTJmS5xx/ly9f5rfffqN27dqYmJjkK+5u3bqhpaVFeno6CoUCS0tLVYvhq8qUKaP2+Pbt21hZWb31+JmZmfz666/UqVMHgJUrV+Lp6cnx48epXbt2vmJ8VWxsLEZGRrRp0wYTExNcXV2pXr16gY9T2omWK6FI6RloU//zboAuZxL3o1Rm4ZnsypNH9+jfvz+dOnUSiZUglEJVq1bFzc2NyZMnk5KSolp/6tQpVqxYgbGxsWpp3rw5SqWSW7duqcrVqlUrxzENDQ1ViRWAg4MDDx8+BODRo0fcuXOHfv36qR17xowZ3Lhxo8DxGxkZsX37dq5fv86kSZMwNjZm1KhR1K5dm7S0NFU5ExMToqKiciyvW7p0Kc2bN8fa2hqAVq1akZqayp49e9TKRUdHY2xsjIGBAZUrV8bZ2ZmQkJB8x/3zzz8TFRXF7t278fHx4eeff6Z8+fI5ykVGRqrFa2Fhka/ja2trq702Hh4emJubc+nSpXzH+KqmTZvi6upK2bJl+fLLLwkJCVF7fj8WouVKKHI+TStxcnt9Uh7u50byWSqY10Rn91NsJ9tqOjRBKJGCVm7Mc5vstVaQwX+84YtZrv7DZcCvy94prlc5OTmxadMmAgICaNGiBWFhYZiYmKBUKhk4cCBBQUE59nFxcVH938jIKMf217u3ZDKZ6qpipVIJvOwazG5VyaalpVXo8yhXrhzlypWjf//+TJw4kYoVK7Ju3Tr69OkDgFwuzzV5eZVCoeCvv/4iPj4ebW1ttfVLly6lWbNmqnWVKlXiv//+Q0tLC0dHR7VWsvywt7enfPnylC9fng0bNlC9enVq1apF5cqV1cq5u7vneaXj2+T2gzevH8FyuTzHld+vThRtYmLC6dOnCQ8PZ9euXUyePJmpU6dy4sSJQsdXGomWK6HIybXkNOnXHR0Ddx4m30XKSMUx056I0O0ApKSkEBoayos8ujYE4WOjo6+f56Ktq5vvsjq6evkqW1guLi5ERETw8OFDmjVrRnJyMjVq1ODChQuqBODVRfe12AvCzs4OJycnbt68meO47u7uhT7uq9zc3DA0NFQbfJ8foaGhpKSkcObMGbXWog0bNrBlyxa1ef10dXVVMRc0sXpd+fLl6dSpE+PHj3+n47wqKyuLkydPqh5fuXKFxMREPDw8ci1vY2OjdtGBQqHIMY5NW1ubJk2a8OOPP3Lu3DliYmLYt29fkcVcGoiWK6FYlPVxYMifC0iOieFh8AKMvDpT5og2SY2e8vfqtTx48AAdHR2aNm2q6VAFQSiAMmXKEB4eTkBAAM2aNeP333+nbt26DBkyhAEDBmBkZMSlS5fYvXv3O12JBy/niQoKCsLU1JSWLVvy4sULTp48ydOnTwkODi7wsdLS0mjVqhWurq4kJiaycOFCMjMzC/w5tHTpUlq3bk21atXU1nt5eTFixAhWr17N8OHDC3TM/Bo1ahTVqlXj5MmTuXa1FpSOjg7Dhg1j4cKF6OjoMHToUD799NM8x1s1atSI4OBgtm/fTrly5fj5559JTExUbd+2bRs3b96kYcOGWFhYEBoailKppFKlSu8ca2kiWq6EYqOlI8eiQlnuVrZBkZqACeYcXh+qGgx75MiRfE+mJwhCyeHk5ERERASJiYkMGDCAiIgIrl27hq+vL9WrV+fbb7/FwcHhnevp378/S5YsYcWKFVSpUgU/Pz9WrFhRqJYrPz8/bt68Sa9evfDw8KBly5bEx8eza9euAn3xP3jwgO3bt6uulnyVTCajY8eOec55VRSqVKlCkyZNmDx5cpEcz9DQkLFjx9K9e3fq1q2LgYFBrhOiZuvbty+9e/emV69e+Pn54e7urnZ7M3NzczZv3kyjRo3w9PRk8eLFrFmzBi8vryKJt7SQSR/ZtNnJycmqaQFMTU01Hc4HT5GlYPvC5bw4f526tq3JVKajN9KD8P2RXL16FXd3d3r16iUGuQsfvPT0dG7duoW7u7vqCjpB0KQVK1YwYsQItZYnTXvT30lp+v4WLVdCscpIV3Ar6hyxqedJfB6Hjlyfi3/toWXLlmhra3Pr1i0uXLig6TAFQRAEociI5EooVgbGutRo3R2QcerpXgAqPSnLg/hYGjRoAMDOnTvF4HZBEN7JoEGD1KZseHUZNGiQpsPLYdasWXnG27JlyyKpo2XLlnnWMWvWrCKpQ8id6BYUip0iU8niIZNJT4rC16YTjsbluaN1g1pTe7Bo0SKePn1Kw4YN1SYmFIQPjegWLF4PHz4kOTnnhKkApqam2NqWrKlgnjx5wpMnT3LdZmBggJOT0zvXce/evTxvs2NpaYmlpeU711HUPpRuQXG1oFDstHTk+H/Zi7BfL3Dm6V4cDN1xphxRByNo1aoVN27coF69epoOUxCEUszW1rbEJVBv8j6Sm6JI0ITCEd2CwntRuUEFLJwa8CwrkWsp5wAw2P4YN3c3WrRoIX7JC4IgCB8MkVwJ74VMJqPF171AZsSFxEgUmc8x13bkWMj/n5lakiSePn2qwSgFQRAE4d2J5Ep4bxwr2FCtWR8afD2ZWw8OvFx31phnz5JJTk5m+fLlLF26lPT0dA1HKgiCIAiFJ5Ir4b1q0rcF1RtWIbZdUxRpCejqmnP2l78xNDTk2bNnPHv2jPDwcE2HKQiCIAiFJpIrQSO6dmjA4bSX96NyflyOx3djadWqFQDHjh0jPj5ek+EJgiAIQqGJ5ErQiF2/ruZ+ynGePo9Hrq3PnV9DKV++PJ6enkiSRGhoaI47rwuCIGQLDAykffv2bywTHh6OTCYrUTOQl0YxMTHIZDKioqI0HUqpofHkatGiRar5LGrWrElkZOQby7948YKJEyfi6uqKnp4e5cqVY9myZe8pWqGo2JXzBCROP93z8rFWFa7v30+LFi3Q0dEhNjaWs2fPajZIQRCANycybm5uyGQytaVMmTJq2+fPn1/kMS1YsIAVK1aoHvv7+zNixIgir0fTAgMDVc+rtrY2Li4ufP311zku/nnb6yC8XxpNrtatW8eIESOYOHEiZ86cwdfXl5YtWxIbG5vnPl26dGHv3r0sXbqUK1eusGbNGjw8PN5j1EJR+KT1JxhZViPhxT3upt5AJpOTufE6pqam+Pn5AbB79+48J8ATBKHkmD59OnFxcarlzJkzxV6nmZkZ5ubmxV7PqzIzM99rfdlatGhBXFwcMTExLFmyhK1btzJ48OAc5TTxOgi502hyNW/ePPr160f//v3x9PRk/vz5ODs789tvv+VaPiwsjIiICEJDQ2nSpAlubm7Url1bTEBZCsnkMpoO6AdocfbJHiSlAhMTD87/sYJPP/0UKysrjI2NSU1N1XSogiC8hYmJCfb29qrFxsamwMcYNWoUbdu2VT2eP38+MpmM7du3q9ZVqlSJ33//HVBvTQsMDCQiIoIFCxaoWm1iYmJU+506dYpatWphaGhIvXr1uHLlSr5imjp1Kj4+PixbtoyyZcuip6eHJEmEhYXRoEEDzM3NsbKyok2bNty4cUO1X6dOnRg2bJjq8YgRI5DJZKr7qGZlZWFiYsLOnTvzFYeenh729vaUKVOGZs2a0bVrV3bt2pWjXGFfB5lMxm+//UbLli0xMDDA3d2dDRs25Fl+xYoVORLbLVu2IJPJVI/Pnj1LQEAAJiYmmJqaUrNmTU6ePJmveD4EGkuuMjIyOHXqFM2aNVNb36xZMw4fPpzrPv/99x+1atXixx9/xMnJiYoVKzJ69GjRulFKlatRFhv3hi8nFn32cnC70Tl9pLQ0vvzyS7766iusra01HKUgFB9JklBmKDSylLQxjf7+/kRGRqJUKgGIiIjA2tqaiIgIAOLj47l69aqqZftVCxYsoG7dugwYMEDVauPs7KzaPnHiRH766SdOnjyJtrY2ffv2zXdc169fZ/369WzatEk15ig1NZXg4GBOnDjB3r17kcvldOjQQRW7v7+/2lXPr5/LiRMnSE9Pp379+gV6jgBu3rxJWFgYOjo6Bd73Tb799ls6derE2bNn6dmzJ926dePSpUuFPl6PHj0oU6YMJ06c4NSpU4wbN67IYy7JNHb7m4SEBBQKBXZ2dmrr7ezs8rxS7ObNmxw8eBB9fX3++ecfEhISGDx4ME+ePMlz3NWLFy/Ubgqc172nBM1oNTSQlaOPcuFpOO5GldA1KcOF2Yvxmf2NpkMThGInZSq5Pzn3H5PFzXF6PWS6WkVyrLFjxzJp0iTV41mzZhEUFFSgYzRs2JCUlBTOnDlDjRo1iIyMZPTo0WzevBmA/fv3Y2dnl+swEDMzM3R1dTE0NMTe3j7H9pkzZ6qSsnHjxtG6dWvS09PzdWeIjIwMVq1apdYK1KlTJ7UyS5cuxdbWlosXL+Lt7Y2/vz/Dhw8nISEBLS0tLly4wJQpUwgPD2fw4MGEh4dTs2ZNjI2N8/XcbNu2DWNjYxQKhWoewHnz5uUo9y6vw+eff07//v0B+O6779i9eze//PILixYtytf+r4uNjWXMmDGq16tChQqFOk5ppfEB7a82I8LLX3Kvr8umVCqRyWSEhIRQu3ZtWrVqxbx581ixYkWerVezZ8/GzMxMtbz6a0bQPOsyVrjXbE2GBCefXwXAMs2DpPMvm88zMzOJiIgQg9sFoQQbM2YMUVFRqqVXr14FPoaZmRk+Pj6Eh4cTHR2NXC5n4MCBnD17lpSUFMLDw3NttcqPqlWrqv7v4OAAvLzRc364urrm6F67ceMG3bt3p2zZspiamuLu7g6gGi/s7e2NlZUVERERREZGUq1aNT777DNVy1VBzyUgIICoqCiOHTvGsGHDaN68uVq3Y7Z3eR3q1q2b4/G7tFwFBwfTv39/mjRpwvfff6/Wbfox0FjLlbW1NVpaWjlaqR4+fJijNSubg4MDTk5OmJmZqdZlX7p/9+7dXDPj8ePHExwcrHqcnJwsEqwSpuXXX/DsaWvWXX3I8+1XMTCw5s6CzZj+UZmoqCj279+PoaEhFSpUwNDQUNPhCkKRkenIcZyumTGjMp2i+21tbW1N+fLl3/k42d1purq6+Pn5YWFhgZeXF4cOHSI8PLzQVwO+2h2V/eM9uwvvbYyMjHKsa9u2Lc7Ozvz55584OjqiVCrx9vYmIyNDVUfDhg1V5+Lv74+3tzcKhYLo6GgOHz5coHMxMjJSPb8LFy4kICCAadOm8d1336mVK6rXIVteDR1yuTxHt/Lrg/2nTp1K9+7d2b59Ozt27GDKlCmsXbuWDh06FFl8JZnGWq50dXWpWbMmu3fvVlu/e/fuPAeo169fn/v37/Ps2TPVuqtXryKXy/O85FRPTw9TU1O1RShZDIz1sXG2oX9DD/4yvgeAmdmn3N+4mRo1amBjY0NaWhr79u3TcKSCULRkMhlyXS2NLHl9cWpS9rirffv24e/vD4Cfnx9r167Nc7xVNl1dXRQKRbHH+PjxYy5dusSkSZNo3Lgxnp6eud4TNTtRDA8Px9/fH5lMhq+vL3PnzuX58+eFGm+VbcqUKcydO5f79++/y6moOXr0aI7HeV2Jb2NjQ0pKitoFR7nNgVWxYkVGjhzJrl276NixI8uXLy+yeEs6jXYLBgcHs2TJEpYtW8alS5cYOXIksbGxDBo0CHjZ6vRqs2b37t2xsrKiT58+XLx4kQMHDjBmzBj69u2LgYGBpk5DKCJ62nLcHRxIePEAmbY+qVuvwfN0WrduDcDJkyeL9MNEEIT8S0pKUutyioqKeuO0OYWRPe5q69atquTK39+f1atXY2NjQ+XKlfPc183NjWPHjhETE0NCQkK+W6YKysLCAisrK/744w+uX7/Ovn371HpHsvn7+3PhwgWio6Px9fVVrQsJCaFGjRrv9EPf398fLy8vZs2aVehjvG7Dhg0sW7aMq1evMmXKFI4fP87QoUNzLVunTh0MDQ2ZMGEC169f5++//1abc+z58+cMHTqU8PBwbt++zaFDhzhx4gSenp5FFm9Jp9HkqmvXrsyfP5/p06fj4+PDgQMHCA0NxdXVFYC4uDi1P15jY2N2795NYmIitWrVokePHrRt25aFCxdq6hSEInTj9GWehi/n7OOXrZkGDnW59dOvuLm5UaVKFQC2b99ebB+agiDkLTw8nOrVq6stkydPLtI6zMzMqF69OpaWlqpEytfXF6VS+dYxSqNHj0ZLS4vKlStjY2NT5IlfNrlcztq1azl16hTe3t6MHDmSOXPm5Cjn7e2NtbU11apVUyVSfn5+KBSKQo8de1VwcDB//vknd+7ceedjAUybNo21a9dStWpVVq5cSUhISJ7JrKWlJatXryY0NJQqVaqwZs0apk6dqtqupaXF48eP6dWrFxUrVqRLly60bNmSadOmFUmspYFMKmnX4xaz5ORkzMzMSEpKEl2EJdCfwyaQ/PAcde264GLoTuaDaBwnNiPDzo5ffvmFjIwM2rZtS82aNTUdqiAUSHp6Ordu3VLdkUIQSgqZTMY///zz1tsJvQ9v+jspTd/fGr9aUBBe1eLrrwAtoh/vQikp0LGrwq1ZizA2NiYgIAB4+Qs6KytLs4EKgiAIQh5EciWUKM6V3bCv4PtyYtGUiwAY6NUiafsOateuTe3atenTpw/a2hq70FUQhEIICQnB2Ng418XLy0sjMXl5eeUZU0hISLHXHxsbm2f9xsbGRdK1WRKf94+B6BYUSpzEh09ZFjQAHRm0dh6ErlyP1CvrKL/qB7SMc14WLQilwcfeLZiSksKDBw9y3aajo6Maa/s+3b59O8/7BdrZ2WFiYlKs9WdlZandpud1bm5u7/xDsiQ+72/yoXQLip//QoljbmtBhU/bcPXIRi4knqC6ZQMMXJoR/+v/cBr3/2duP3/+PMbGxri5uWkuWEEQ8sXExKTYk5WC0nRioa2tXaTzUuWmJD7vHwPRLSiUSM2/7oaheUWuuznzhMfIDSx4fvQRL65fB+DKlSts3LiRNWvW5PmrTBAEQRA0QSRXQomkq6fH17/P46tRX/Cn2cvkSa98M+5+9wOSJFG2bFlcXFx48eIFq1evJjExUbMBC4IgCML/EcmVUKIZ6WlTN6Ap17XuItPWR5buRnJoKDo6OnTr1k01U/Dq1atJS0vTdLiCIAiCIJIroWSTJAmzk5HE3D0CgI5bAx4sWIriWSoGBgb07NkTU1NTEhISWLNmTZ6DUwVBEAThfRHJlVCiyWQy4q9d5nH6TWKf30Ymk6Pr2ISERYuAlzM69+zZE319fe7cucPGjRvfy/3FBEEQBCEvIrkSSryWQwcCcqITdqKQFGjbVyFx+zHSzpwBwNbWlm7duqGlpYWVlVWJvCGtIAiC8PEQyZVQ4jlWcMPJ05dnWU+5/uwyAPqVO3Jv+EiyEhKAl5dUDxkyhGbNmiGXi7e1IAjvT2BgYIm4dYxQcohvIaFUaB3UH5lcj4tP9pAuvUDLzBm5RS3ujQxG+r9b4VhaWqrKZ2ZmcuPGDU2FKwgflDclD25ubsyfP1/tsUwmY+3atTnKenl5IZPJWLFiRY7yry/ff//9W+OKiYlR28fMzIxPP/2UrVu3qpVbsWJFrnUsWbIkX+cvCAUlkiuhVDCxtMCjQRsylOlEPT4AgK5HW17cTOTh3J/UymZkZLB69WpWr17N5cuXNRGuIHzUnJ2dWb58udq6o0ePEh8fj5FRzrssTJ8+nbi4OLVl2LBh+a5vz549xMXFcezYMWrXrk2nTp04f/68WhlTU9McdfTo0aNwJygIbyGSK6HUaNK/G1q6ZtxOOUOUMgaZTI5+rf48CdlAcmioqpyOjg6WlpZIksTGjRuL5P5cglCcMjIy8lxevwK2KMoWtx49ehAREcGdO3dU65YtW0aPHj1yvZ2LiYkJ9vb2aktuSVherKyssLe3x8PDg5kzZ5KZmcn+/fvVyshkshx1GBgYvPXYU6dOxcfHh99//x1nZ2cMDQ35/PPP3zi33uuteQA+Pj5MnTpV7bguLi7o6enh6OhIUFBQvs9XKPnE7W+EUkNXT5/G/YahrWvC3MvxWN16hDM2GNQI5P6kb9GrUAG9ChWQyWS0adOG1NRUrl69yt9//02/fv2wsbHR9CkIQq5mzZqV57YKFSqotbDMmTMnzylHXF1d6dOnj+rx/Pnzc53/7dUv+eJgZ2dH8+bNWblyJZMmTSItLY1169YRERHBX3/9VWz1ZmZm8ueffwIvf2QVlevXr7N+/Xq2bt1KcnIy/fr1Y8iQIYW+ufPGjRv5+eefWbt2LV5eXsTHx3P27Nkii1fQPNFyJZQqVfw/xbOeF3O6+jLPKJlMWSbaDtXQtq/D3aHDUKSkAKClpUXnzp0pU6YM6enprF69muTkZA1HLwgfj759+7JixQpVC3K5cuXw8fHJtezYsWMxNjZWW8LDw/NdV7169TA2NkZfX59Ro0bh5uZGly5d1MokJSWpHd/e3j7fx09PT2flypX4+PjQsGFDfvnlF9auXUt8fHy+j/Gq2NhY7O3tadKkCS4uLtSuXZsBAwYU6lhCySRaroRSydJIlz7eFTkedob6xlXR8+5MWsT33B83njK/LEQml6Orq0u3bt1YtmwZjx8/ZvXq1fTp0ydfXQGC8D5NmDAhz22vTy0yZsyYfJcdMWLEO8X1Llq3bs3AgQM5cOAAy5Yto2/fvnmWHTNmDIGBgWrrnJyc8l3XunXr8PDw4OrVq4wYMYLFixerXeACL7seT58+rXpckKuKXVxcKFOmjOpx3bp1USqVXLlypUBJWrbPP/+c+fPnU7ZsWVq0aEGrVq1o27Ztrl2mQukkXkmhVHr25AmXVv8IUha39Gxx17FH/5OveBY+g8d//In1oIEAGBkZ0bNnT5YuXUpycjJPnz4VyZVQ4ujq6mq8bFHT1tbmyy+/ZMqUKRw7dox//vknz7LW1taUL1++0HU5OztToUIFKlSogLGxMZ06deLixYvY2tqqysjl8neq41XZSWxec+rJ5XIkSVJb92pXrrOzM1euXGH37t3s2bOHwYMHM2fOHCIiIoq0O1PQHNEtKJRKxpaWVGvSEYCo+xtIIhUtYzv0q3bj0YIFPDt4SFXWwsKCnj170rdvXxwdHTUVsiB8dPr27UtERATt2rXDwsLivdTp5+eHt7c3M2fOLLJjxsbGcv/+fdXjI0eOIJfLqVixYq7lbWxsiIuLUz1OTk7m1q1bamUMDAz47LPPWLhwIeHh4Rw5coTo6Ogii1nQLNFyJZRajft9Sdz1qzy8FcXJuJ0EOLRHx6UeWY8uc3/UKNw2bUK3zMuuhdeb7pOSkjA1NRWzuQtCPiUlJREVFaW27vWut9d5enqSkJCAoaHhG8ulpKTkGL9kaGiIqalpoWIdNWoUn3/+Od98802Buhfzoq+vT+/evZk7dy7JyckEBQXRpUuXPLsEGzVqxIoVK2jbti0WFhZ8++23aGlpqbavWLEChUJBnTp1MDQ0ZNWqVRgYGODq6vrOsQolg2i5EkotmUzG59+OR8/IhoT0a1xIOgeArk93lFl63AsKQpmenmO/W7dusWjRIg4ePPi+QxaEUis8PJzq1aurLZMnT37rflZWVm/tip88eTIODg5qyzfffFPoWNu0aYObm1uRtV6VL1+ejh070qpVK5o1a4a3tzeL/u/+prkZP348DRs2pE2bNrRq1Yr27dtTrlw51XZzc3P+/PNP6tevT9WqVdm7dy9bt27FysqqSOIVNE8mvd4x/IFLTk7GzMxM1XIhlH4PYm4TMn4kKDNp6NQHe10bMpNjSQ//HrP2n+Ewc4ZaC9XRo0cJCwsDoH379nlewSQIRSk9PZ1bt27h7u6Ovr6+psMR8mnq1Kls2bIlR6udUDze9HdSmr6/RcuVUOrZubnSuF8QEhJHnh4lWZ6KjqkLul6dSNq8mcR169XKf/rpp9SrVw+Af//9l2vXrmkibEEQBOEDJZIr4YNQrYk/zb+eRNvvJ/GTcQwAeuUao2VflfiZM3n+2gR9TZo0oWrVqkiSxPr167l3754GohYE4U0GDRqUY/6r7GXQoEFFUoeXl1eedRR2klBBEN2Cwgdn54V4Lm3aTOe0KmRmPePFnulomenhvnkT2q+MacjKymLNmjXcuHEDQ0ND+vXrJ8Y8CMVGdAsW3MOHD/Oc/NfU1FRtqoXCun37dp4z3tvZ2WFiYvLOdQj596F0CxbqakGlUpnrBGxKpZK7d+/i4uLyzoEJQmH5lzXjfNwdnhg4YalriaLuV2Tun8O9kcG4LFuK7P8m6tPW1qZLly6sWLGCuLg4Dh06xGeffabh6AVByGZra1skCdSbiCv0hOJQoG7B5ORkunTpgpGREXZ2dkyZMgWFQqHa/ujRI9zd3Ys8SEEoiIQ7d+HpRY482EimlIW+WXm0vT4j7fhxHs77Wa2snp4ePXr0oF69erRq1UpDEQsfk4+ss0AQCuRD+fsoUHL17bffcvbsWVatWsXMmTNZuXIl7dq1U7vL+ofyxAill1PFCvh2+4pnWU859WgHAHoVWqJlVYEny5aR/H9XCmYzNjamWbNmqltPSJKEUql873ELH7bsmbdzu5GyIAgvZecTr84LVhoVaMyVq6srK1euxN/fH4DHjx/TunVrzMzM+O+//0hMTMTR0VGtNaukKU19tsK72fz9T9w6s5/a1m1wN/EiTZGIImwaMh0J9/Xr0MvlVhhKpZKwsDCeP39Ohw4dCnT/MUF4m7i4OBITE7G1tcXQ0FBMYisIr1Aqldy/fx8dHR1cXFxy/H2Upu/vAo25SkhIUOuftrKyYvfu3TRv3pxWrVqxZMmSIg9QEArrs1FBLBtxi9OPd2Kl74SpjjkpDQcg7Z3P3aHDcNu4AS1jY7V94uPjOXnyJEqlEhMTE5o1a6ah6IUPUfaM3g8fPtRwJIJQMsnl8lwTq9KmQC1XHh4ezJs3L8fYlGfPntGsWTPS0tKIjo4WLVdCiZGckMCyEUMwkRnRxLEXWjItUm9sQRkdiknTJjgtXJjjjzgqKootW7YA0Lx5c+rWrauByIUPmUKhyPMKNUH4mOnq6ubZY1Cavr8LlFwFBQURFxfHhg0bcmxLSUmhadOmnDhxQiRXQoly8/QZ/v3pB/ScGvGZ3JMssngR+SPKxzHYBAdj/dWAHPscPHiQPXv2ANCpUyeqVKnyvsMWBEEQXlGavr8LlFw9ffqU+/fv4+Xllev2Z8+ecerUKfz8/IoswKJWml4coehkpKez+WwcsrBw6j8vT5KUgHz7NFBm4rLkT4z+b8b2bJIkERYWxrFjx5DL5fTs2ZOyZctqKHpBEAShNH1/F2i0roWFRZ6JFby86urVxKpKlSrcuXOn8NEJQhHR1dena203Dru7kSBPwkxmTWaTr0Cp5F7wKDJfm6FdJpPRvHlzKleujFKpZP369Tx//lxD0QuCIAilSbFeChUTEyPGFQglhkwmo5eTLmfvhaGUlFjqV4FarVEkJnI3aDjKFy/Uysvlcjp06ED58uVp164dBgYGGopcEARBKE3EdebCR8WtkiuPM+O4kHgIAB3nFsjty5J+4QLx332Xo7yOjg49evTA09PzfYcqCIIglFIiuRI+KlZlytByyCguJR7hwfPb6Et6pNYPBG1dkjZu4un69Tn2efVqwsTERDZv3qw2ca4gCIIgvEokV8JHx7N+Pao06cDRR9tIV6Rhq7An9bOBADz4bgbPz53LdT+lUsnff//NuXPn2LBhQ4m+KlYQBEHQHJFcCR+lJv0CMXRy4/ij7QDYK6sgNeqAlJnJ3eEjyHryJMc+crmcNm3aoK2tzbVr19i6dau43ZMgCIKQQ5EnV/deu+pKEEoimVxOtymTeEQiV5JOvFxn3hDtCl5kxcVxL3gUUlZWjv1cXFzo3LkzMpmMqKgo9u3b975DFwRBEEq4Ikuu4uPjGTZsGOVfuV/b77//jp2dXVFVIQhFSt/YmK6Tp3Be/znXdOIwURqRULMzMkND0o4e5dH8+bnu5+HhQZs2bQCIjIzk+PHj7zFqQRAEoaQrUHKVmJhIjx49sLGxwdHRkYULF6JUKpk8eTJly5bl6NGjLFu2TFW+e/fuGBkZFXnQglBU7MuWY9hPE1jvqEeaLB3ndCeedhkEwOMlS0neuSvX/WrWrKm6gXloaChXrlx5XyELgiAIJVyBkqsJEyZw4MABevfujaWlJSNHjqRNmzYcPHiQHTt2cOLECbp161ZcsQpCsZDLZXz3ZQsWGd0AwCmxInTpDUDc+PG8uHEj1/38/PyoWbMm9vb2ODo6vrd4BUEQhJKtQMnV9u3bWb58OXPnzuW///5DkiQqVqzIvn37SvQtbwThbayN9fAhjVsp0ciRo8jyQbdOPZRpadwdFoTi2bMc+8hkMlq3bk2fPn0wMTHRQNSCIAhCSVSg5Or+/ftUrlwZgLJly6Kvr0///v2LJTBBeN86DwnkdNIRkjMeY6404m6F5mjb25Nx8yZx4yfkemWgXC5HT09P9fj8+fMkJSW9z7AFQRCEEqZAyZVSqURHR0f1WEtLS4ypEj4YxhaWtBv3DYcfbUOhzKLcMwcedumHTEeHlN27ebxkyRv3P336NBs3bmT16tXiPoSCIAgfMZlUgIl65HI5LVu2VP1S37p1K40aNcqRYG3evLlooyxCpemu2oJm7Fm7idQ9UdS0boZCUpDucg3lL/NALsdl6RKM6tbNdb/ExESWLl1KSkoKLi4ufPnll2o/RgRBEITCK03f3wVquerduze2traYmZlhZmZGz549cXR0VD3OXgShNGvctSMP7HS4m3oVLZkW6XfLYNS+AyiV3AseReb9+7nuZ25uTs+ePdHT0yM2NpZNmzahVCrfc/SCIAiCphWo5epDUJoyX0FzMjNesOjrEbSwaIORtimX7O9Q/sAm0i9eRN/bG9eQ1chfGWv1qpiYGFatWoVCoaBWrVq0bt1a7f6EgiAIQsGVpu9vcfsbQciFjq4e3WdM5i+ThyhQ4hnvTFyXHmiZmZF+/jwPZszIc183Nzc6duwIwMmTJzlw4MD7ClsQBEEoAURyJQh5sHFwYNCwrqw2vvzy8VlT5N+MB5mMxA0bebphQ577enl50bJlSwBxg2dBEISPjOgWFIS32Bp1B8P1h6ikdOIRKTi43ObpwoXIdHRw/TsEgypV8tz37t27lClT5j1GKwiC8GEqTd/fouVKEN6irY8z0c/Oka5IwwYTzj+1w7hxY6TMTO4GDSfryZM89301sUpPT+f27dvvI2RBEARBgzSeXC1atAh3d3f09fWpWbMmkZGR+drv0KFDaGtr4+PjU7wBCgLQ97vxHHq6HwCPFBtiGrRF182NrLg47o0ahZSV9cb9MzMzWbNmDX/99ReXLl16HyELgiAIGqLR5GrdunWMGDGCiRMncubMGXx9fWnZsiWxsbFv3C8pKYlevXrRuHHj9xSp8LEzNTOhytBALiedBMDxjDaysZOQGRqSduQojxYseOP+MpkMQ0NDFAoF69ev58yZM+8jbEEQBEEDNJpczZs3j379+tG/f388PT2ZP38+zs7O/Pbbb2/cb+DAgXTv3p26eUzmKAjFoYaPB3fquPDkRRx6cl2ehj7FZup0AB7/uYTkXbvy3FdbW5vOnTtTvXp1JEni33//5ejRo+8rdEEQBOE90lhylZGRwalTp2jWrJna+mbNmnH48OE891u+fDk3btxgypQpxR2iIOTQJ7ATu3RvkKl8gZ2WGaeiXmAZGAhA3LjxvLh5M899tbS0+Oyzz1Q/CsLCwti/f3+u9ywUBEEQSi+NJVcJCQkoFArs7OzU1tvZ2REfH5/rPteuXWPcuHGEhISgra2dr3pevHhBcnKy2iII72LglGAOPDsCQKU0K+IDfDH85BOUaWncHToMxbPUPPeVyWQ0a9aMgIAAACIiIoiIiHgvcQuCIAjvh8YHtL8+c7UkSbnOZq1QKOjevTvTpk2jYsWK+T7+7Nmz1W7N4+zs/M4xCx83E0M9ao4dRJjBVbSQw9YnGE6ZhLadHRk3bxI3YcIbW6NkMhl+fn60bNkSQ0NDKleu/B6jFwRBEIqbxua5ysjIwNDQkA0bNtChQwfV+uHDhxMVFZXj13xiYiIWFhZoaWmp1imVSiRJQktLi127dtGoUaMc9bx48YIXL16oHicnJ+Ps7Fwq5skQSraVBy5TcfdFnDNtuKkTj3fLsjwY2AcyM7EdMxqrfv3eeoznz59jYGDwHqIVBEEo3cQ8V/mgq6tLzZo12b17t9r63bt3U69evRzlTU1NiY6OJioqSrUMGjSISpUqERUVRZ06dXKtR09PD1NTU7VFEIpCL99K/OOsRZaURdlMe47+ex3b8eMBePjTPFLzMWD91cTq1q1bhISEqP0YEARBEEofjXYLBgcHs2TJEpYtW8alS5cYOXIksbGxDBo0CIDx48fTq1evl4HK5Xh7e6sttra26Ovr4+3tjZGRkSZPRfgIyWQyJn7Ziv0vTgHghS3Hn1hg1r49KJXcGxlMZlxcvo6VmZnJ5s2buXbtGn/99RdpaWnFGLkgCIJQnDSaXHXt2pX58+czffp0fHx8OHDgAKGhobi6ugIQFxf31jmvBEGTzAx0qDrsS26l30BLpo3brSweNe2JXmVPFE+fcnf4CJQZGW89jo6ODl988QUGBgbcu3eP5cuXi4svBEEQSilxb0FBKAK/bY6k0eFkjLRNiUmLpVxgHZK/7okyKQnzLl1wmD4tX8d5+PAhq1atIiUlBXNzc3r16oWlpWUxRy8IglDylabvb41fLSgIH4KB7Ruwxvo+SkmJm6ELx1ZGYjN7DshkJK5fT+KmTfk6jq2tLX379sXCwoLExESWLVvGgwcPijl6QRAEoSiJ5EoQioBcLiNoWG/2SOcAqKbnwsWncmyChgEQP206z6PP5+tYFhYW9O3bF1tbW549e8bx48eLLW5BEASh6InkShCKiKWRLh79uxCjuIuOXBfZ+TgMe3+JcUAAUkYGd4cHkZWQkK9jmZiYEBgYSP369WnVqlUxRy4IgiAUJZFcCUIRqlfRjlMNy5Ko9QzX53bsXfEvjj98j46rC1n344jtPwBFPgeqGxoa0rRpU9Xcbkqlkrt37xZn+IIgCEIREMnV/2vvvuOjqvL/j7/uTJKZSe+FNEJJIUBCUXpVARWw7eJv14bYWHtZ13V3XV1dReyuii66on5dERuIXZQqvSQBAiSUQEJ679Puvb8/AqOR6CJOEiZ8no9HHpI7d845cyM5b8499xwh3OzWC8/m7ch6AIYUJrDswf8S9PhLGMPDse3bR9HcP6C1tv6iMnVd54svvuA///kP2dnZndBqIYQQ7iLhSgg3MxoU7r72Yj627AMg06svX7y1iphXFmIIDKR1xw6O3n4H+kks0XCcrus4HA50XWfZsmVsOokFSoUQQnQPCVdCdILIQDNpv7mQo3oZJqOFgbof33xVSNzLL6NYLDSvW0fxffehq+pJlWcwGJg5cyYjR44E4Msvv2T16tU/u4ehEEKI7iHhSohOMjm9F+uGR2LXbUSa4/Hdn8vGnSqxzz8P3t40fvElZf94+KQDksFgYOrUqUyaNAmA1atX8+WXX6JpWmd+DCGEEL+QhCshOtGdl47jzbAiANKChlG//gu+2+tFzBNPgMFA3XvvUfnMMyddnqIoTJgwgfPPPx+AzZs389lnn3VK24UQQpwaCVdCdCJvo4EbbricL015GBQDI8InoW5fy876SKL/8RAA1a++RtWrr/6ickeMGMEll1yC0WikX79+ndByIYQQp0rClRCdLC7El0FXX8xy0x4AMkNHY6s/TPBvfkPkvX8EoPLpZ6hd8t4vKjcjI4M77riDtLQ0t7dZCCHEqZNwJUQXGNE3nAk3XM7bvm0ruKcVRLBywUeEXHMtoTfcCEDZQw/R8Pnnv6jcH+6vVVtby5IlS2hpaXFfw4UQQvxiEq6E6CLpccFcceu1vBSyGxWNlKJINv3tfdZaB+I36/eg6xTf92ea1q37xWXrus4HH3zA3r17eeONN2hsbOyETyCEEOJkSLgSogvFh/pyzy1zeD5iLw4cJNCLvpXVbFSGYz5/JjgcHL3tdlp27PhF5SqKwkUXXYS/vz8VFRW8/vrr1NTUdNKnEEII8XMkXAnRxcL9Tfzjlut4KXIfds1KpDmWAQ2tbPYdh9f4c9CtVopumot1795fVG5kZCRz5swhJCSE2tpaXn/9dSoqKjrpUwghhPgpEq6E6AYBZm8evf0mFiQepkVrJsQUQYZVZ0fIFJThY9EaGym8/gbshw//onJDQ0OZM2cOkZGRNDU1sWjRItmPUAghupiEKyG6icnLyPw/XM+i1HIa1DoCvIMZqvqwM/pCtPSzUKurKZxzHY6ysl9UbkBAALNnzyY2NpbW1la+/vprWcldCCG6kIQrIbqR0aDw2LVX8+GwFqqc5Vi8/Bhu8Kdp2lx8EhNxlJRQeN31OGtrf1G5vr6+XH311QwdOpRZs2ahKEonfQIhhBA/JuFKiG6mKAoP/L/LWT3RTImjCB+DifBDVkx/modXdDT2gwcpuuFG1KamX1SuyWRi5syZ+Pv7u45VVla6u/lCCCF+RMKVEKeJO6dPZ/dlcWzyy8Wke6OuaEC5+Z9Yo/tj3b2bozffgma1nnL5O3bs4KWXXmLz5s1ubLUQQogfk3AlxGlkzujxGGaexYqA7RgxYN6hUZExh6aIFFq2bKH4rrvRHY5TKvv4qNUXX3zB6tWrZR6WEEJ0EglXQpxmLs0YRuKs89jo3ARAuiWMpqFzqA9PoWnVKkr++ld0TfvF5U6ZMoWJEycCsHr1ar766iu0UyhHCCHEz5NwJcRpaHL/dBJvmcm61pUA9LeEoA6/nprQNBqWf0L5Y/N+8ciToihMnDiRadOmAbBp0yaWL1+Oqqpub78QQpzJJFwJcZo6OymFjPtm81Xr52i6RqI5CO8R11MdMZjat9+m6oUXT6nckSNHcvHFF6MoCtnZ2bz//vsygiWEEG4k4UqI09iAXomc98DtfGJdhqo56WUKwO+sa6mKGk7VggXUvPnmKZWbmZnJrFmzMBqNREZGYjDIrwIhhHAXRT/DZrU2NDQQFBREfX09gYGB3d0cIU5KRWM1//fA37nE5xJ8DCaatAb46mF0WwMxjz1G8KWXnFK5VVVVhIWFyTpYQojTnif13/LPVSE8QGRAGNc/No//M3xAvaEJf0Mgxil/R/GNoPRvf6Pxm29Oqdzw8HBXsLLb7SxfvpzGxkZ3Nl0IIc44Eq6E8BBBvoH8+Z/P82TqV5R6V2IxBuJ9zt+oTJpO8V1307xx468q/7PPPmPHjh28/vrr1P7CFeGFEEJ8T8KVEB7E5GXi1Suf5N/pGyhWSjEZLcSln09Fv99QdMuttObknHLZEyZMICQkhNraWl5//XUqKirc2HIhhDhzSLgSwsN4G7z596z5fGn4igprET4GI4nJE6js9zsKb7wJ2/79p1RuaGgoc+bMITIyksbGRhYtWkRxcbGbWy+EED2fhCshPJDRYOSBhxfyeeBKipv3Y1QMJCadTVW/qzhy3fXYjx49pXIDAgKYPXs2sbGxtLa28uabb7Jz505ZzV0IIX4BCVdCeCiD0chfHlrIqsgtFDTuwqAoJMYPprrPNRy5dg6OU7yt5+vry9VXX01SUhJ2u51vv/0WxyluuSOEEGciWYpBCA+n6zrPzL+dwYcTSQseAUB16R4Caj8n8a03MQYHn1K5qqqybt06EhMTSUpKcmOLhRDil/Ok/ltGroTwcIqicPd9/2JfShnZNasACIsZgOI3iqKb/oDW0nJK5RqNRiZOnNguWG3fvp3PPvsMu93ulrYLIURPJOFKiB5AURRuvfNJKi8I5Omo/0NFxTtxDLp5NIW33oXmhjDU0tLCV199xdatW3nllVc4eorzuoQQoqeTcCVED6EoCtdefCeTZ1zMP+New44d75hMmgMupvCeB9B/5QbNvr6+XH755QQGBlJTU8N//vMfVq5cKRs/CyHEj8icKyF6oJWHV5HzzGIuMv0WH6OZJlsrFvNWEh77y6/e6qa1tZXPP/+cXbt2ARATE8Oll15KRESEO5ouhBAd8qT+W0auhOiBJveeRPxZqawqe4dWZxP+Jgt2+0iK/vnir15WwWKxcNlll/Gb3/wGs9lMaWkpCxcupLm52U2tF0IIzybhSoge6jdX3U34hcP5tvRtGh21WLx9cDQMpPCZt9xS/sCBA7n55pvp27cvI0eOxM/Pzy3lCiGEp5PbgkL0cF98+CqHPvyG8VG/JcQUhUPTIL6KpNsuc0v5uq6jaRpGoxGAyspKSkpKGDx48K++BSmEEMd5Uv8tI1dC9HDnX3YDKZdfwKrSd6hoLcTbYMBYFErRq5+5pXxFUVzBSlVVPvroI5YuXcr7779PyykuAyGEEJ5MwpUQZ4BzL7qGjKt+y8rq9yluPYTB4AUH/Dn82jdurys1NRWDwcCePXtYsGAB+09xr0MhhPBUcltQiDNIQWk+t6y9kwdWjyM+aCwADb00Btw+wa31FBcXs3TpUqqqqgAYPnw4U6ZMwcfHx631CCHOHJ7Uf8vIlRBnkKSYZN6a+RbzJ2+ioKptNffAEgO7nlnn1s2ZY2Njuemmmxgxom07nm3btvHKK69QV1fntjqEEOJ0JeFKiDNMuCWcV6f8m/X2rWRXrwQgpAJ2PrEeXXVfwPL29ub888/n6quvJjAwEIvFQkBAgNvKF0KI05XcFhTiDJWz/htWvPAcSX4DOSv8fAyKgaoAhYw/jULxNrq1rtbWVmw2G8HHNpF2Op3U1tbKwqNCiJPmSf23jFwJcYbKGHMu5995LwXNu1lf/hGqrhLeqLPz0Q2oLQ631mWxWFzBCmDlypW88sorbNy4EU3T3FqXEEJ0NwlXQpzB0kdOYMYf/0Kx7SCrSxdj1+yEWSF33ibsdbZOqVPTNKqqqlBVla+++or/+7//k7lYQogeRcKVEGe4lOGjufhPf6fSUcLKkrexqlZCHZD/9BZaypvcXp/BYOB3v/sdF154Id7e3hQUFPDyyy+Tk5Pj1kn1QgjRXWTOlRACgIKdO/ho4TzG5DTRK+N6DP6RNBogfFYKEZmRnVJndXU1S5cu5ejRowCkpaUxffp02UpHCHECT+q/ZeRKCAFA0uCh3Pmvd9l5Yyq1G+aj1hUSoIHt3TzyFmajNtrdXmdYWBjXXnstkydPxmAwcPDgQex299cjhBBdSUauhBDt6LrOO4v+iGlJHiF9Z5AckIaiKNi8FMKn9yHw7BgUg/v3DCwpKaG+vp60tDTXMVVVXVvrCCHObJ7Uf8vIlRCiHUVRuOjiv1AYbiC7+hNWlC6h1tGKyanTuOwgRQuycVS4f8/AXr16tQtWBw8e5KWXXqKwsNDtdQkhRGfq9nC1YMECkpKSMJvNDBs2jHXr1v3kuR999BHnnXceERERBAYGMmrUKL766qsubK0QZwb/0DCufPQ5/CPCqLUdYcXRF8iu24VT1zAcbaL0ue3Uf3ME3dk5yyjous6qVauoqalh0aJFfPPNNzidzk6pSwgh3K1bw9WSJUu48847+etf/0pWVhbjxo3j/PPP/8l/qa5du5bzzjuPzz//nO3btzNp0iRmzJhBVlZWF7dciJ4vsncfrnvmVYbNvBQdnbzaz/mi+E3KrPUYNGj8ppDS53ZgO1zv9roVReGKK65g8ODB6LrOd999x2uvvUZ5ebnb6xJCCHfr1jlXI0aMYOjQobz88suuY2lpaVx88cXMmzfvpMpIT0/n8ssv5+9///tJne9J92yFOF2UHdzPsqf/SXN1NeDD2cooYmPT8fFu287Gb0Q0QdOSMFi83F73nj17+OSTT2htbcVoNHLOOecwcuRIDIZuH3gXQnQhT+q/u+23k91uZ/v27UyZMqXd8SlTprBhw4aTKkPTNBobGwkNDf3Jc2w2Gw0NDe2+hBC/THTf/lz//GsMnXEpARG98ct9HdvXD9BS2HYbv3lzGWVPb6NlZ6Xb16oaMGAAN998M/3790dVVb7++msOHTrk1jqEEMKdui1cHV+hOSoqqt3xqKgoysrKTqqMp59+mubmZmbNmvWT58ybN4+goCDXV3x8/K9qtxBnKi9vbyZdOYcbX3wGn//7FwW9NIoPfMzGox/TbK1Ea3JQ884+qt/cg7PO6ta6AwIC+P3vf8/06dMZMmQI/fr1c2v5QgjhTt0+rq4o7R/p1nX9hGMdWbx4MQ899BBLliwhMvKnFzi8//77qa+vd30VFRX96jYLcaYbmHkek5atI7tfIoWOfXxRtpiSo6tRdRXrvhrKn9lO43fF6Jr7RrEURWH48OFcdNFFrmPNzc0sX76c5uZmt9UjhBC/VreFq/DwcIxG4wmjVBUVFSeMZv3YkiVLuO6663jvvfc499xzf/Zck8lEYGBguy8hxK9nsfhz/m1/w+Adgaq3ss6xmc0HFlHbXIBu16j/9BAVC7Kxl7h/C53jPv/8c3bs2MGCBQvIy8vrtHqEEOKX6LZw5ePjw7Bhw1ixYkW74ytWrGD06NE/+b7Fixcze/Zs3nnnHS688MLObqYQ4mekjhrMnOdeJCByAmCgyKuab8vep+jA+1h1O46jTVS8mEXdFwVodtXt9Y8dO5aIiAiam5tZvHgxy5cvx2brnA2nhRDiZHXr04JLlizhqquu4pVXXmHUqFEsXLiQV199ldzcXBITE7n//vspLi7mrbfeAtqC1dVXX83zzz/PpZde6irHYrEQFBR0UnV60tMGQngKh03l0xe+pWDHu+hqBQBjjjRizJxFTPBgAIyhZkIu7oc5OcS9dTscrFy5ko0bNwIQEhLCeeedR1pa2klNMRBCeAZP6r+7ffubBQsW8MQTT1BaWsrAgQN59tlnGT9+PACzZ8/m8OHDrF69GoCJEyeyZs2aE8q45ppreOONN06qPk/64QjhSXRNZ+Oy/Wz9+AN0rYqxu9bjZ23AmpiBKfNaAhVfAHwzIwia3gejv49b6y8oKGDZsmXU17etuzV9+nSGDx/u1jqEEN3Hk/rvbg9XXc2TfjhCeKK8zWUEhJmpKV9L+f1/I6xGIz8uhuiEc0gKHYMCGHy9CLqgD77DIt06umS1WtmwYQM7d+7kD3/4AyaTyXXcbDa7rR4hRNfzpP5bwpUQotNYWxv5z9wbsVob8XKqpFl9iRx8LeF62218U98ggi/pj3e4xa31/nDDZ13XWbhwIRaLhcmTJxMXF+fWuoQQXcOT+m/3L6cshBDHNNcoKH6/weD8HCfl7PK3EZn9LJGxI0mLmobtYD3lz20n8JwEAsbFoXi55xmb48EKoLy8nPLycjRN49ChQyQnJzNp0iRiYmLcUpcQQvyYjFwJITqNvdXJ1//J5fCuSlTbNpyt6wEdL1WlX5NO5Fl/IMbRtsOCV5QvIZf2x5To/r+XtbW1rFmzhpycHNcK8unp6UycOJGIiAi31yeEcD9P6r8lXAkhOpWm6Wz44AA5K4vQ1Gp0x5c4Wts2YB5wtBJ76giGxF+OwaqBAn4jYgia1huD2f0D61VVVaxevZrdu3cDbQuTXn/99cTGxrq9LiGEe3lS/y3hSgjRJXLXFbN2cT6qqmK27KK5bCWTdx7ES9OpCAvAdMF9xDW27bZgCPQh5KK+WNLDO6UtZWVlrFq1ioaGBm644QbXJtBOpxMvL5ktIcTpyJP6bwlXQoguc3RfDV8u3I2txcnQ8+Nxqhvg8ScJa1DJiw7F1m8AY/rNQalzAmBODyNkZl+MQaZOaY/dbsfHp21JCJvNxoIFC0hLS2Ps2LH4+/t3Sp1CiFPjSf23hCshRJeqK28h+9sixl/eH4PRQGNNJe/ecg0NmgEvVaNXfQOx599BQlUMaDqKyUjQtN74jYhBMXTeoqBZWVl8/PHHAHh7ezNixAjGjBmDxeLeJxmFEKfGk/pvCVdCiG6lqho7v93Fxo+eorW2FoCwxhaMsb2YPOgO9BIrAD4JAYRc2h/vaL9OaYeu6xw8eJCVK1dSUlICtO1NOnr0aEaOHOlaM0sI0T08qf+WcCWE6Da6rrP6nTz2rCshbXQUitc2dix7DxQFo6oR3VBHwmV3klgSh25TwaAQMCGOwMnxKN7G/13BKbYpLy+PlStXUlHRtpWPr68vt912m4xiCdGNPKn/7raNm4UQAiA02g9Fgb0byqkvG8QV817GJzAY1WigOCSUo++/wDfVz2FM9gdNp3FVEeXP7cB6oK5T2qMoCqmpqcydO5fLLruMsLAwkpKS2gUrTdM6pW4hRM8gI1dCiG53eFcVX/8nF4dVJSjCwgV/GMi2bz5k96fvM2p/McGtNg5HGQm56UESDiegNdgB8B0WRdAFSRj9vDutbaqqYrPZ8PVt2xuxpqaGt99+m7Fjx5KRkdFuwVIhROfxpP5bwpUQ4rRQXdzEZy/tpLHGisnXi6k3DCQ0zpv/+9e/GPL+OwRaNYpC/Dl6VgIXjP8Hzu21oIPBz4ug6X3xzYxw6z6FP+Xzzz9ny5YtAISGhjJp0iTS09NdyzkIITqHJ/XfEq6EEKeNlgY7X7yyi7JD9Zj8vLj6n6PxsXixcXsu+/5+K3W+vii6TlhLHX1vvJM+BX1xlrcAYOofTMjF/fAK69x5UQ6Hg61bt/Ldd9/R0tJWd2RkJJMmTSI1NbVLAp4QZyJP6r8lXAkhTitOh8qa/+bRb3gUiQPDXMeLCo+y5IE/olibAAhubkVLDWLmeY/hWFcFTh3F20DguQn4j4l12z6FP8Vms7Fp0yY2bNiAzWYDICkpiauvvloClhCdwJP6bwlXQojTXmVhI4ERFrx9FN584d/UbvgMXVEwaBqhrXX0u/0ukg+nYDtUD4AxyETA5Hj8hkV1eshqbW1lw4YNbNq0idGjRzNp0qROrU+IM5Un9d8SroQQp7X6yhY+eHw7lkAfLrx5MEERFnLzDvHpI3/Gy9F2Wy6kqQV9SAgzLngC56oqtMa2Ce/GYBMBk7omZDU1NeHt7e1aD+vgwYOsX7+eyZMnExcX16l1C3Em8KT+W2ZgCiFOa3aritFLoba0mQ/mb6Nkfx3pKX24643FGDPPRdF0IhtaGf3BHtY/fAn7Jx0maHofDAHeqHU26pYeoOypbTRtKUVXO28JBX9//3YLja5Zs4ZDhw7x2muvsXjxYsrKyjqtbiHE6UVGroQQp72mWhufv7yTysJGDEaFSVemkjoqBoC12/P44sV/MWvrKsxOnUp/H/IHhZI8+wYyDeNpWnMUrckBgDHERODkBHyHRqIYO/fflrW1taxevZqdO3dy/Ndseno6kyZNIjy8czakFqIn86T+W8KVEMIjOOwq3y7aw8GsSgCGTk1k5EV9UAwK9S0O5v3nC4Z9OI+aoACazD6ENbZiUZoJmTmVs/pfTeuGyu9DVqiZwEnxXRKyKisrWb16Nbm5uUDbIqXjx4+XuVlC/EKe1H9LuBJCeAxd09n8ySG2f3EEgLG/7U/GOfFtr+k6763dy67XnyKktRyOPbEX3GylV30dhpEDyRh9G1quo33ImhyP75AoFGPnPuFXVlbGypUryc/P57LLLmPQoEGdWp8QPY0n9d8SroQQHidvcxl7vithxm0ZePm0XyHdoWp8sWkPW5a8RXD5Ho5HpoBWG6kl1ahJEfQ553a8K0PRmp0AGMPMBE5KwHdIZKeHrJKSEqKjo12Ljm7fvp3KykpGjhxJcHBwp9YthCfzpP5bwpUQwiPpmo5iUFx/rqtoISTar905uQePsvyttzHmrceo65x1qISIxlYAmkICCJ42F19S0VtVALzCzARMTsA3s/NDFrQtSPr888/T1NS2dlefPn0YMmQIqampeHt33pY+QngiT+q/JVwJITzepo8Pkv1NEefOHkC/YZEnvF5TU8tH73/CiqoyMnKXc87eamp8A1GAmEY7pvH/j4DQ0ehtKzjgFW4hYHI8vhmdG7J0XXct2VBQUOA6bjabGTRoEEOHDiUmJqbT6hfCk3hS/y3hSgjh0TRN5/OXd3JkVzUAZ89IYti0RAwdTFTXdZ3sojpe/fYren/1NkYdTA4nSRV1JNTb8B44Df+kKaB5AcdC1jkJ+GZEuEbJOkttbS3Z2dlkZ2dTX9+2GOqQIUO46KKLOrVeITyFJ/XfEq6EEB5P03Q2fHiAnG+LALAEeNN/eBTJZ0cT2TvghO1onHY7m7/4jE0fvwfNjQB4O1WSKutIrLVh6TMRc+oFKErbulVeERYCJydg6YKQpWkaBQUFZGVlMWLECOLj2ybsFxcX89133zFkyBD69u2L0Wj8HyUJ0bN4Uv8t4UoI0WPsWV/CxqUHsR57GhDg3NlppIzs+Naa6nSwe/W3rPngXRy1VQAYNJXMIxVEt6j4JE3CO2UaBi9f4FjIOicBy+DOD1k/9umnn7Jt2zYAAgICyMjIYMiQIYSFhf2PdwrRM3hS/y3hSgjRo6iqRtGeGvK3lFOYW82Vj4zC7Nc2OfxgVgVNtTb6D4/CN9DH9R5NVcnbuI517y+mobyYrf0bGbu/krG5OibdjKnPZLz7nYfBp23CvFfksZA1qOtCVnl5OVlZWeTk5NDa2uo6npCQwJAhQxg8eLCMZokezZP6bwlXQogeS3VqGH+wp+AH87dRXtCAYlCITw0heUQ0SRnh+Jjb5ljpmkbZof2EJPblXxs/4fPcNzlnUy1x1RoZxVaC4sfj0+88lOMhK9xM4Hm9sQwK77KQ5XQ6yc/PJysriwMHDqDrOgEBAdx1112u5R2E6Ik8qf+WcCWEOCPous7OVUfJ31xGxZFG13EvHwNJGRGkjowmIb39LbaGygpevW0O6KCj4601cfbhViJ7jcen77mukGUMNhJ0QX8sA7suZEHb77OcnBx8fHwYMWIEAKqq8tZbb9G/f38yMjIICAjosvYI0Zk8qf+WcCWEOOPUlbeQv6WM/C3l1Fe23WLrPTicC28e7DpH13UUReHont1sWrqEIzuz2o6jY/dpJvNoKymB49pGsrzb5mQZfFWCpqfgmxnd5XOyjsvLy2Px4sVA21Y7/fv3Z8iQISQnJ8ttQ+HRPKn/lnAlhDhj6bpO+eEG8reUk5AWSu/BbRsqN1S1svz5bPqfFUXy2VGERPtReiCPzUvf4+C2za73H4wtZ1SBxkh9Mua+57pCFsZmAs9JIGBiWpeHLJvNRm5uLllZWRQVFbmO+/r6kpGRwYgRI2QleOGRPKn/lnAlhBA/su2Lw2z++JDr+8jEAJLPjqbf8Eha6krYvPQ9juzOwXzjVBbt/y+G2hKm7vRlZt1EguPPRfG2AKA7avDN9CNk1ngMJp+fqq7TVFVVuSbBH18F/qabbpKFSYVH8qT+W8KVEEL8iMOmUpBT2fbE4Z4adK3t16SiQFxaKBN/n4LJV8fk64uqqXx7ZCUbHn+BVlpw+tq4pG40iaHnuEKW2lSCKb6V0CvPwyc2tss/j6qqHDhwgIKCAqZNm+Y6/tlnn2Gz2cjMzKR3794yIV6c1jyp/5ZwJYQQP6Olwc6B7RXkbymjvKABL5OROU+MxdvUNn+pvrIVW0s57/z1LlRH2/pa1YF2yqNtXFo7ikHmyRi8joWs+kIUYwHBl40lYPw4lG6cA2Wz2XjqqadwHGtzcHAwmZmZZGZmym1DcVrypP5bwpUQQpykuooWaoqb6TMkAmibs7X44S20NtpJTDdjb97KgS0rcdisbef7OzjU28aFTaMYo03GaDQDoNYV4iz/jsApGYT85jK8IiK6/LPouk5xcTFZWVns3r0bm83meq1Pnz6MHDmS5OTkLm+XED/Fk/pvCVdCCHGKmuttLHl0K60Ndtcx/xANi+9eyg+uw97aAsC6EY1UBNm4ungyU5sm4W04HrKOYMv/DN9BUQTNnIHf2LEYTKYu/xx2u529e/eSlZXF4cOHAZg0aRITJkwA2oIYcMI2QkJ0JU/qvyVcCSHEr6CpGkf31ZK/pZyD2ZU4bSoAum4jOuEIulbEBX+6n2WHPubN3W/hc7SVc63jmFk3CZ9jexeqdUdwlu/G2VqFLSkS33NGEzdtMmZ/3y7/PDU1NeTk5DB06FCCgoIAyM3NZe3ata6V4H19u75dQnhS/y3hSggh3MRhUynY2TYRvii3hvP/MIjeg9qWd6grb+HIvlJWvXEfVtXKgQQbA/1HMr1uPGbM7crRVQfOpjIq1RaKggOo6JuId2IIkdH+JIT5kRDqS4ivd5eNJL3zzjvk5+cDYDQaSUlJYciQIfTp00fWzhJdxpP6bwlXQgjRCVob7fj4emE0tj2Bt3HpAbZ9vh1H03J0rR4A1UfhULydiNBkEhwxpDbGEufs5bpt+GPNqoN8ReeAQeeoF7QEmfCKtBAT4Ud8qC8Jx75igy34eLnvyb+WlhZ2795NVlYWpaWlruMWi4WUlBRmzpwpTxqKTudJ/beEKyGE6AK71xwlZ+VRasua0Oz7cFq3oGs1bS8ajTRFGliXWkaFuZkoeyijSnsxsrwXfayxWCxxGPwjUZQTA4yGTjEah9A4iMZBVArQ0IJMxIVZSAz1IyHMt134+jWjXqWlpWRnZ7Nr1y5aWlqIj4/nuuuuc72en59PbGwsfn5+p1S+ED/Fk/pvCVdCCNFFdF2nsrCR/C3l5G8po6k6ty1kqRUAXPfif6jyamT7rj0U7Pia1oOFFPvVo6hWkstUxpaEEW6MxRgYiyEwDkNgLAZzUId1WdEpQOMQKgeO/fcgGnXo+Ju8iA/1JTHU94TgdbKjXqqqUlRUhKZp9OnTB2gb4XryyScBSEhIIDU1ldTUVEJCQtx0BcWZzJP6bwlXQgjRDTRNp3hfLXmbS7G1ltE7HQaMnwzAf/64jsbyD9Ach9q9R/dSsPqq+DQ3MrSgmthaHcUnAENgLHpILM1xvTGF9cFfC8OodRyQql2jXKprpOswGsefdzQoEBNkIT70l496lZWVsWzZMsrKytodj46OJjU1lUGDBhEWFtbhe4X4Xzyp/5ZwJYQQp5GWBjvLntlBdfFRdGcpmlqB5ixHVyuBtgU/vXxMjJh3DwXbV6GvXI+SV4/RYSCo1UZQqw2Tw8GBlEjK+iUSHJtBXz2JyOYQTA1GOopFGlBu1MnXVPJ1pyt8laLz4w7ih6NeA3oFkhEfTEZcEMG+32/vU1tbS15eHnv37qWwsNC1lMP06dMZPnw4AA6HA6PRKHO1xEnzpP5bwpUQQpyGrM0Oyg7VU17QQNmhesoO1WFvrSYxXSUu2czQCy7C2uxg6dM7qDmyEGtTueu9iqYTYLUT2GrD32qlOqSJTSkKu/qa6O3dj1Fewxig9qNXczi+tV7QqnXYBodRodJs4Iiiket0kG21cRCVxg7O7R3meyxoBZMRH0x6r0DM3kaam5vJz89n3759TJ8+nYCAAAA2b97MmjVrSE5OJjU1lb59++Lt7d0Zl1L0EJ7Uf0u4EkIID6BpOjUlTfiYvQgMb9tO58juaj59MQfVnn9sdKscXa1A162u9/m32hmfXwSAwwgbkkM4Eqmzs4+dknAHTqNOP+8kxnmPYLCeSlxrFIF1JrRKG6gddw8OXy/q/IwcUjS2t9jY2NRCIRrqD87xMiikxgS4wlZGXDD9Iv0xGtrGzhYvXkxeXp7rfG9vb/r27UtqairJycmylpY4gSf13xKuhBDCQ9laHJTsrzs2stVAxeEGHHYVtEY0tZz4NCcx4d70bbRR9s1GKuq92BlZjXYs4KDrOLwdlITZKQ+xUxFqoyq4bfZVkn8SYyxnk6kPIMkeS3C9L2p5K2qtrcO2aEaFel8jhw06O1qtZNvtHPjRKJefj5GBsUFkxgczODaQSEMjlUWHyMvLo76+3nWet7c3f/rTn2QkS7TjSf23hCshhOghVFWj+miTK2ydPT2J4Ki2EaBdq4+yZvFunNZt4CxFd5ShKe2DklegkbUTrOSrJaDDgMMB1AY4qAm0o5oM9A/pT2bQYIYbBtPXluAKXI7SZnS72lGTaPYxcMSok2OzsVdzcgCNo2gcvxEZ7m8iMy6Q9BCdEEclTeWFBAcFcuWVV7rKWLp0KaGhoaSmphIZGSnb8JyhPKn/lnAlhBBngPwtZexafZSKwkY0Z9uvfV1rRlMr0J1lBFVvIKq2it71LXidfRZlmYlsWb/V9f5Gi5PqQBs1QXaqA+1UBdsx+JpIC00jPSydYT6DSbb3JrDOjKOsBUdZM2qNtcO2OAxQbIRch538Y0tFHESl6djrfcPMDIwPJSMumORQI9+897rrvSEhIa4lHuLj42VC/BnEk/pvCVdCCHEGUR0alUWNx0a36ik7WE9Lg51L0vNpXfEltrw89ve9lNLw/qgta9GMDdj0E0NSXt8WNqZUAmBQwb/ViwY/J0HmIAaGDSQ9PJ3B/gNJVfvgV+uNo7S57ausGd3R8QT6SoNO3rHRrQPHQlcFDpK8akmzNBLkrEHRv3+vr68vkydPdj2BKHo2T+q/JVwJIcQZTNd1Whrs+AW1bSJtKyhg2Yt7qGq2fH+OZkV3lmFSj2A0N6CYmhh1+ZWY0uPZXb2b3VnfYXp/D1YflfIQG+WhVspDbNQE2tENEOUbxcDwgW1foemkKv3wqcIVthylzah1Hc/lakV3rcl1ADtVhhqMxhp6GerwUVS8+o5kaGYGGfHB+OpWioqK6N+/PxaLpcPyhOfypP5bwpUQQoh2nHaViiONFO84TPGOQiprDdgNbXO3fGz1jNn8N/zOPhu/kSPYaRtAVf0hivctQ1Od7cpRvaA8yEpWci2VIfZ2r/UO7E16eDqDwgeRHpZOsqUfxkon9h+McDnKWsDZ8ShXEU5yDTUUa34cROEAKgmWclL1I6AohETFkjkwncxBAwgK6ngVe+FZPKn/lnAlhBDiZ+m6TvXOQxz5citNO/cQuf1912vfjXoUuykYXXeiqxVozqNozhJ0tQRda7udOPSeGyj0q2N3WS6le3fhfbSZipC20S2bqS08eSle9A/pT3p4OgPD2ka5+gT0gVoHjtKm728rljajNtg7bGeO8Si7jUW0GlraHXeagwmPTWLUqBEM6R3p1k2tRdfxpP5bwpUQQohfxH70KE0rV9KSlc3hgzYabD60+EbT4htFi28UqtGErusEqvvpE1XA4CkX4jckk/8+vpv6sk+xN+90leX0N1MebONQaBXloVaaLE6OLyNvNppJC0tru514LHDFB8SjtTh/ELaa2ka5yltc63LVKy0cMVRyxFhJuVIPCii6Ec12Nnu8FEL7hzCmTyCTB8YTFyLraXkKT+q/uz1cLViwgCeffJLS0lLS09N57rnnGDdu3E+ev2bNGu6++25yc3Pp1asXf/rTn5g7d+5J1+dJPxwhhPAEjvIKWnfmYM3JoTk7m/r8ozQbg1F0jZC6/QCoBm/WjHsW1VmAZj+E5ixG16pPLOzWsexp2U99nkajWkZlYAUOr+9HqgJ9AhkYPpD0sHQGhg9kUPggInwj0FUNZ2XbshD2Y7cV7SVNNDc1UWiswoaDDLU3ALVoLPPZRCs6VeYoEvonMyEjmbP7hGLyMnbFJROnwJP6724NV0uWLOGqq65iwYIFjBkzhn//+9+89tpr7Nmzh4SEhBPOLygoYODAgdxwww3cdNNNrF+/nptvvpnFixdz2WWXnVSdnvTDEUIIT6Q7HFjz8mnNyaY1J4fW7BwchYU4jSZaLJGuUa7GwAga/bxp0erwNpbgF+zFNc+8jOrQ+Pftq7E1vI+mVqCYorD7BVHh76A0pInywCIq/Qtd9UX6RrpGtgaGtz2pGOjT9vtdbbK7RrlsRY205NXQam/hPdNGVOX7+VxOzUwhofjF9WHUwL5MSo0iPlRGtU4nntR/d2u4GjFiBEOHDuXll192HUtLS+Piiy9m3rx5J5x/3333sXz5cvbu3es6NnfuXHJycti4ceNJ1elJPxwhhOgpnDU1rqDVmpODdedOtJa2uVE6CqrRhFG14pOYgGHw2WxlNMVH30DXmn9UkhFjQCRNA2F7UhUFdYcZv/9y6i0V1FoqqLNUUG+uID44rt3txNTQVMxeZnRVw1ZQT8Oucvbm7uWQrYSjhur2QcvZi9XOeHwiLExIjmBiSiQjkkIxe8uoVnfypP6728KV3W7H19eX999/n0suucR1/I477iA7O5s1a9ac8J7x48czZMgQnn/+edexpUuXMmvWLFpaWjrcKsFms2Gzff+Ib0NDA/Hx8R7xwxFCiJ5KV1VsBw60ha3sthEu+6FD7c7RgLqwSKoT+1Jj8abeVovT0RbIkjKHcen9/6C0uJqPHsnB0boegzEMg1csusGPRlM1dZYKDoTvYH/ENoyKsW3CfFg6A8IGMCBsAP2D+6NUOGjYWca+XXs50FBIkaGacxyDSNDCKUBlrVJPobGcXYSS3CeeiSmRTEyJpHe4XzdctTObJ4Urr+6quKqqClVViYqKanc8KiqKsrKyDt9TVlbW4flOp5OqqipiYmJOeM+8efP4xz/+4b6GCyGE+NUUoxFzSgrmlBRCLp8FgFpfT+vOna7RrdacHEKrKwitrgBAB1p8vKiP60VgURk1b72FT//BZE4OZtOHm10bRyuGQCxesfh5xeIfnEqNqYBqWzVHyooZ9s0sNvgf5qPAVVQGHSGsVwADwtMYMHMAZ3uP44JCP7T9TTgLGknSjFQaa3B4lRBDCYbDB9h+KJRXPg3GHBLOhGNBa2SfMCw+Mqolvtdt4eq4H+8Rpev6z+4b1dH5HR0/7v777+fuu+92fX985EoIIcTpxRgUhP+4cfgfe6hJ1zTsBQXtRreU/fvxO1QIhwopX7kWAF9fC/36J1JjMVFrbUbXGtDtDWj2vfhlwYMxV5D2mxlsWL+Lkm3QrzWd/tXDALDtaqXc/zCfBW7mhdCFNPlX0z+6P5nJgxnZMpiIggiSyq0UUolqsBJmKGGaVwleTWbqtoZyz8YYmry8GJEUemxUK4I+4X6y/+EZrtvCVXh4OEaj8YRRqoqKihNGp46Ljo7u8HwvLy/CwsI6fI/JZMJkMrmn0UIIIbqMYjBg6tsXU9++BF92KQBqUxPWXbvaRray2gKXua6O5Jx9ADgNCrW+ZuqjwqkLCaRatRNq9CbSGMyMCZPZqW5i9Rvz8PIJQlfCMCgRxLZGEFczGtW3lRzfdeyt2cvRkgo2N+dRFnAIrY+NqfoEBtSlYKt3UKxV4zRYCVcq+dCZzG6nzrr9Dby9v5RHPvUiPtS3ba5WciSj+obhZ+r2cQzRxbrtJ+7j48OwYcNYsWJFuzlXK1as4KKLLurwPaNGjeKTTz5pd+zrr79m+PDhHc63EkII0bMY/f3xGzUKv1GjgLa7F47CQtfIVmt2Dl55eUQcLAJAU0DPnk/e/Gcwp6bS0isCAKe9HqgHDrluJ561w8St1z1KQ28z+1ZVYNgRDkCjuZGygAI+DthBWfghwgwmzq7PoL8tDm+MDAEyMbLYtA0VcDSEsXNzFf/ddARvo5GzkkKYmNw2qtUv0l9Gtc4Ap8VSDK+88gqjRo1i4cKFvPrqq+Tm5pKYmMj9999PcXExb731FvD9Ugw33XQTN9xwAxs3bmTu3LmyFIMQQggXraUFa24urTk5tGRn05qdg1pV5XrdYTDQaPGhwddMc2QYjb5m6p0OVE1l1n0PEj/0LPZ8V8Kmj5ZTW/wpiiEIxRiBYgzHYIzA6RPIssGvU+tXRpQ9jJGNg8lsTGOfVonzB08dWnQTuhrGPjWE9boFBwqxwRbGJ0cwMSWC0X3DCDDLwMDJ8qT++7RYRPSJJ56gtLSUgQMH8uyzzzJ+/HgAZs+ezeHDh1m9erXr/DVr1nDXXXe5FhG97777ZBFRIYQQP0nXdZwlJW1LQOzZg3XvPqx796LW1Hx/DtBs8sZid2Lu1QtTWip7zUZ2FR3ssEwvs5nE6y+iwLeK+pVmDKVe1PgXE+oD/qqJFs3RLmilq/HYlSDW6k42OHxpxIiXQWF47xDXXK2UqAAZ1foZntR/d3u46mqe9MMRQgjROXRdx1lRcSxs7cW2dy/WPXtxFBe3O89uNNBo9qEpLJjmiDDqfbyot7agaRpzX3kLv5BQ3v3nFsryv0C1bUUxBKMYI9AtQSihZjApNCs2ptmHEK0HA1Ci1LDNdIgio511BpUSeziaLYroQP9j62pFMKZ/OIEyqtWOJ/XfEq6EEEKIY9T6eqz78rDu3eMKXLZDh0BVXedotI1yBRq9MScnoyZnsqGmhIrKjke5FF8zwReNx1xqJLk4gQOUsc+rLcT56iZCsFBpqWSTuZg83QvNFotui2NIVCoTU2IYnhhCakwgQZYzO2x5Uv8t4UoIIYT4GZrVim3/fqx797aNcu3ZizUvD91qbXeezctIg5+FpthYagJDadAcWO31eJtN3LroPdDhP/eso6VlBQQZabAY2t069NV9iNIDafKtYXPALnZaCrDbI1Bt0WjWaEK940kJ68/g6HgG9AoiLSaQxFBfDIYz41aiJ/XfEq6EEEKIX0hXVeyHD2Pds/dY6NqDbc9e1Pr6duepCli9vQmOjMKYOpidfuMpKP4E1VGGrigo/uEYQ2JpsnjjNOj4a2Yut49GQaHJ0MIW827yfQ9TbKmgxKeScu9qnJoPqi0KzRaF0RlDnH8S6eHJDOkVx4BeQaREB/TIifKe1H9LuBJCCCHcQNd1nGVlbWHrB6HLWVLa7jwNaPALpzK2H7XBYTTixOasQfWFmMhkpg+/nJbcatRmG/81rcOOEz/MBGhm/HUL3rqOQ7HT6N3A0cAKSrwrKfGpoNTQit0ejmaPIsgYR1JgXzKiUhgaF09aTADxIZ49yuVJ/beEKyGEEKITOWtrse3b53pK0bp3D/ZDBaB9f0vQ4WXBaTBgMCsE90umJnEU2U0JFIfsQDV0XG5fNZpJjnQANDS+8d6Fj25A1x00ezVR7VPLYf9SinwaKNG80dQIoiy9SQ7px9CYNIbGxZIaHeAxi5x6Uv8t4UoIIYToYlprK7b8/O9Hufbtw5aXh26ztb2uGGjyj6c2sDf1AaE0BJlpthhRTYCPDt4q8ZofYwPScdgtNNhsfGje2GFdvrqJFGcMsYYgSr2rKDPWUKlVUWKqZ7+3k0aTP5H+iaSF9Wdk3ACGxvciLsRy2i0L4Un9t4QrIYQQ4jSgO53YCwra3Va07dt3wjwuh5cFRdfwUtuCWENAAgd6T6Y6wopuNqJ5Kzi9NKxeGqrS1sVnOnsz3NkXgEZaWWLeAIBRNxCgW/DVvPDSFRyKlTqvRg4E2GmymLGERjEgJpnR8QPIjIvG16f7Rrk8qf+WcCWEEEKcxjSrFbW6Gmd1Nc6qatSatv86q6u/P15dhVpVjVpXh2rwxmoOpdUUSl1AKLpSTpDVSozDTGPMWRxNHMxev11YDSp0MDiV4UzkLGc/AJqxssI7Bx/VgKJrtCpOmk3gjA6gV/oAJqQOpm9YaJeMcnlS/+0ZN1qFEEKIM5TBbMYQG4t3bOz/PFd3OnHW1BwLXTWo1VVtQaymGrWqGnN1EUEFO+nd4KDeZqA6MJjGkFBsgQE4LT5oXk4sLdWoDi8I6EWDdytVxiYw/rASoNRKSck6cj87SJ3NSB1WGg1manxqCIgM5pzLphAWH99p1+R0J+FKCCGE6CEULy+8IyPxjoz8n+fqmoZaX49aU9M2IlZdhbO6pm0UrDqfhspsGlt96Wc2YDN54zB54fAGq1GlxeBAVTT8DP5E+8QSDZQqteT4HMFca2XUv/Lx+2cUZpNP53/o05CEKyGEEOIMpBgMeIWE4BUSgqlv3xNejwFSjv1Z13X0lhac1dU4KqtoKK6kqvAIem0pVbWHsVqDqDX5EWy04IcZu7XqjA1WIOFKCCGEEP+Doigofn74+Pnhk5CA37C28PVj59MWxMqrqru6iaeVn1g9QwghhBDil1MUheiI8O5uRreScCWEEEII4UYSroQQQggh3EjClRBCCCGEG0m4EkIIIYRwIwlXQgghhBBuJOFKCCGEEMKNJFwJIYQQQriRhCshhBBCCDeScCWEEEII4UYSroQQQggh3EjClRBCCCGEG0m4EkIIIYRwIwlXQgghhBBu5NXdDehquq4D0NDQ0M0tEUIIIcTJOt5vH+/HT2dnXLhqbGwEID4+vptbIoQQQohfqrGxkaCgoO5uxs9SdE+IgG6kaRolJSUEBASgKIpby25oaCA+Pp6ioiICAwPdWrb4nlznriHXuWvIde46cq27RmddZ13XaWxspFevXhgMp/espjNu5MpgMBAXF9epdQQGBspf3C4g17lryHXuGnKdu45c667RGdf5dB+xOu70jn5CCCGEEB5GwpUQQgghhBtJuHIjk8nEgw8+iMlk6u6m9GhynbuGXOeuIde568i17hpync/ACe1CCCGEEJ1JRq6EEEIIIdxIwpUQQgghhBtJuBJCCCGEcCMJV0IIIYQQbiThyk0WLFhAUlISZrOZYcOGsW7duu5uUo8zb948zjrrLAICAoiMjOTiiy8mLy+vu5vV482bNw9FUbjzzju7uyk9TnFxMVdeeSVhYWH4+vqSmZnJ9u3bu7tZPYrT6eRvf/sbSUlJWCwW+vTpw8MPP4ymad3dNI+3du1aZsyYQa9evVAUhWXLlrV7Xdd1HnroIXr16oXFYmHixInk5uZ2T2O7mIQrN1iyZAl33nknf/3rX8nKymLcuHGcf/75FBYWdnfTepQ1a9Zwyy23sGnTJlasWIHT6WTKlCk0Nzd3d9N6rK1bt7Jw4UIGDx7c3U3pcWpraxkzZgze3t588cUX7Nmzh6effprg4ODublqPMn/+fF555RVefPFF9u7dyxNPPMGTTz7JCy+80N1N83jNzc1kZGTw4osvdvj6E088wTPPPMOLL77I1q1biY6O5rzzznPt8duj6eJXO/vss/W5c+e2O5aamqr/+c9/7qYWnRkqKip0QF+zZk13N6VHamxs1Pv376+vWLFCnzBhgn7HHXd0d5N6lPvuu08fO3Zsdzejx7vwwgv1OXPmtDt26aWX6ldeeWU3tahnAvSlS5e6vtc0TY+OjtYff/xx1zGr1aoHBQXpr7zySje0sGvJyNWvZLfb2b59O1OmTGl3fMqUKWzYsKGbWnVmqK+vByA0NLSbW9Iz3XLLLVx44YWce+653d2UHmn58uUMHz6c3/72t0RGRjJkyBBeffXV7m5WjzN27Fi+/fZb8vPzAcjJyeG7777jggsu6OaW9WwFBQWUlZW16xtNJhMTJkw4I/rGM27jZnerqqpCVVWioqLaHY+KiqKsrKybWtXz6brO3XffzdixYxk4cGB3N6fHeffdd9mxYwdbt27t7qb0WIcOHeLll1/m7rvv5i9/+Qtbtmzh9ttvx2QycfXVV3d383qM++67j/r6elJTUzEajaiqyqOPPsrvfve77m5aj3a8/+uobzxy5Eh3NKlLSbhyE0VR2n2v6/oJx4T73HrrrezcuZPvvvuuu5vS4xQVFXHHHXfw9ddfYzabu7s5PZamaQwfPpzHHnsMgCFDhpCbm8vLL78s4cqNlixZwttvv80777xDeno62dnZ3HnnnfTq1Ytrrrmmu5vX452pfaOEq18pPDwco9F4wihVRUXFCYlduMdtt93G8uXLWbt2LXFxcd3dnB5n+/btVFRUMGzYMNcxVVVZu3YtL774IjabDaPR2I0t7BliYmIYMGBAu2NpaWl8+OGH3dSinunee+/lz3/+M//v//0/AAYNGsSRI0eYN2+ehKtOFB0dDbSNYMXExLiOnyl9o8y5+pV8fHwYNmwYK1asaHd8xYoVjB49upta1TPpus6tt97KRx99xMqVK0lKSuruJvVI55xzDrt27SI7O9v1NXz4cK644gqys7MlWLnJmDFjTlhKJD8/n8TExG5qUc/U0tKCwdC+qzMajbIUQydLSkoiOjq6Xd9ot9tZs2bNGdE3ysiVG9x9991cddVVDB8+nFGjRrFw4UIKCwuZO3dudzetR7nlllt45513+PjjjwkICHCNFgYFBWGxWLq5dT1HQEDACfPY/Pz8CAsLk/ltbnTXXXcxevRoHnvsMWbNmsWWLVtYuHAhCxcu7O6m9SgzZszg0UcfJSEhgfT0dLKysnjmmWeYM2dOdzfN4zU1NXHgwAHX9wUFBWRnZxMaGkpCQgJ33nknjz32GP3796d///489thj+Pr68vvf/74bW91FuvdhxZ7jpZde0hMTE3UfHx996NChsjxAJwA6/Fq0aFF3N63Hk6UYOscnn3yiDxw4UDeZTHpqaqq+cOHC7m5Sj9PQ0KDfcccdekJCgm42m/U+ffrof/3rX3WbzdbdTfN4q1at6vB38jXXXKPrettyDA8++KAeHR2tm0wmffz48fquXbu6t9FdRNF1Xe+mXCeEEEII0ePInCshhBBCCDeScCWEEEII4UYSroQQQggh3EjClRBCCCGEG0m4EkIIIYRwIwlXQgghhBBuJOFKCCGEEMKNJFwJ0QMdPnwYRVHIzs7u7qa47Nu3j5EjR2I2m8nMzOzwHF3XufHGGwkNDT3t2t+dVq9ejaIo1NXV/eQ5b7zxBsHBwV3Wph/r3bs3zz33XLfVL8TpRMKVEJ1g9uzZKIrC448/3u74smXLzogd4Tvy4IMP4ufnR15eHt9++22H53z55Ze88cYbfPrpp5SWlrptu53Zs2dz8cUXu6WsnkQCkRCdQ8KVEJ3EbDYzf/58amtru7spbmO320/5vQcPHmTs2LEkJiYSFhb2k+fExMQwevRooqOj8fI6vbY/VVVVNvwVQvxPEq6E6CTnnnsu0dHRzJs37yfPeeihh064Rfbcc8/Ru3dv1/fHR10ee+wxoqKiCA4O5h//+AdOp5N7772X0NBQ4uLieP31108of9++fYwePRqz2Ux6ejqrV69u9/qePXu44IIL8Pf3JyoqiquuuoqqqirX6xMnTuTWW2/l7rvvJjw8nPPOO6/Dz6FpGg8//DBxcXGYTCYyMzP58ssvXa8risL27dt5+OGHURSFhx566IQyZs+ezW233UZhYSGKoriuga7rPPHEE/Tp0weLxUJGRgYffPCB632qqnLdddeRlJSExWIhJSWF559/vt01fvPNN/n4449RFAVFUVi9enWHt9qys7NRFIXDhw8D399q+/TTTxkwYAAmk4kjR45gt9v505/+RGxsLH5+fowYMaLdtT1y5AgzZswgJCQEPz8/0tPT+fzzzzu8dgBvv/02w4cPJyAggOjoaH7/+99TUVFxwnnr168nIyMDs9nMiBEj2LVr10+WefDgQS666CKioqLw9/fnrLPO4ptvvnG9PnHiRI4cOcJdd93lui7HbdiwgfHjx2OxWIiPj+f222+nubnZ9XpFRQUzZszAYrGQlJTEf//7359shxBnIglXQnQSo9HIY489xgsvvMDRo0d/VVkrV66kpKSEtWvX8swzz/DQQw8xffp0QkJC2Lx5M3PnzmXu3LkUFRW1e9+9997LPffcQ1ZWFqNHj2bmzJlUV1cDUFpayoQJE8jMzGTbtm18+eWXlJeXM2vWrHZlvPnmm3h5ebF+/Xr+/e9/d9i+559/nqeffpqnnnqKnTt3MnXqVGbOnMn+/ftddaWnp3PPPfdQWlrKH//4xw7LOB7QSktL2bp1KwB/+9vfWLRoES+//DK5ubncddddXHnllaxZswZoC3ZxcXG899577Nmzh7///e/85S9/4b333gPgj3/8I7NmzWLatGmUlpZSWlrK6NGjT/rat7S0MG/ePF577TVyc3OJjIzk2muvZf369bz77rvs3LmT3/72t0ybNs31eW+55RZsNhtr165l165dzJ8/H39//5+sw26388gjj5CTk8OyZcsoKChg9uzZJ5x377338tRTT7F161YiIyOZOXMmDoejwzKbmpq44IIL+Oabb8jKymLq1KnMmDGDwsJCAD766CPi4uJ4+OGHXdcFYNeuXUydOpVLL72UnTt3smTJEr777jtuvfVWV9mzZ8/m8OHDrFy5kg8++IAFCxZ0GAaFOGN1777RQvRM11xzjX7RRRfpuq7rI0eO1OfMmaPruq4vXbpU/+FfuwcffFDPyMho995nn31WT0xMbFdWYmKirqqq61hKSoo+btw41/dOp1P38/PTFy9erOu6rhcUFOiA/vjjj7vOcTgcelxcnD5//nxd13X9gQce0KdMmdKu7qKiIh3Q8/LydF3X9QkTJuiZmZn/8/P26tVLf/TRR9sdO+uss/Sbb77Z9X1GRob+4IMP/mw5P/7sTU1Nutls1jds2NDuvOuuu07/3e9+95Pl3Hzzzfpll13m+v6HP4/jVq1apQN6bW2t61hWVpYO6AUFBbqu6/qiRYt0QM/Oznadc+DAAV1RFL24uLhdeeecc45+//3367qu64MGDdIfeuihn/2sP2fLli06oDc2NrZr67vvvus6p7q6WrdYLPqSJUtcbQ0KCvrZcgcMGKC/8MILru8TExP1Z599tt05V111lX7jjTe2O7Zu3TrdYDDora2tel5eng7omzZtcr2+d+9eHTihLCHOVKfXhAYheqD58+czefJk7rnnnlMuIz09HYPh+4HmqKiodpO9jUYjYWFhJ4wejBo1yvVnLy8vhg8fzt69ewHYvn07q1at6nBE5eDBgyQnJwMwfPjwn21bQ0MDJSUljBkzpt3xMWPGkJOTc5KfsGN79uzBarWecDvSbrczZMgQ1/evvPIKr732GkeOHKG1tRW73f6TTyT+Uj4+PgwePNj1/Y4dO9B13XV9jrPZbK65ZLfffjt/+MMf+Prrrzn33HO57LLL2pXxY1lZWTz00ENkZ2dTU1PjmtdVWFjIgAEDXOf98OcZGhpKSkqK6+f5Y83NzfzjH//g008/paSkBKfTSWtrq2vk6qds376dAwcOtLvVp+s6mqZRUFBAfn6+6/+l41JTU7v1SUUhTjcSroToZOPHj2fq1Kn85S9/OeFWj8FgQNf1dsc6us3j7e3d7ntFUTo8djKTrY/PrdE0jRkzZjB//vwTzomJiXH92c/P73+W+cNyj9N1/Vc/GXn883z22WfExsa2e81kMgHw3nvvcdddd/H0008zatQoAgICePLJJ9m8efPPln08rP7w+nd07S0WS7vPoWkaRqOR7du3YzQa2517PKhef/31TJ06lc8++4yvv/6aefPm8fTTT3PbbbedUH5zczNTpkxhypQpvP3220RERFBYWMjUqVNP6gGCn7rG9957L1999RVPPfUU/fr1w2Kx8Jvf/OZ/lqlpGjfddBO33377Ca8lJCSQl5f3s/UKISRcCdElHn/8cTIzM08Y7YiIiKCsrKxdEHHn2k6bNm1i/PjxADidTrZv3+6aOzN06FA+/PBDevfu/aueygsMDKRXr1589913rrqgbVL02Wef/avaf3wSeWFhIRMmTOjwnHXr1jF69Ghuvvlm17GDBw+2O8fHxwdVVdsdi4iIANrmg4WEhAAnd+2HDBmCqqpUVFQwbty4nzwvPj7eNRfu/vvv59VXX+0wXO3bt4+qqioef/xx4uPjAdi2bVuHZW7atImEhAQAamtryc/PJzU1tcNz161bx+zZs7nkkkuAtjlYxyfqH9fRdRk6dCi5ubn069evw3LT0tJwOp1s27bN9fPNy8v72TW4hDjTyIR2IbrAoEGDuOKKK3jhhRfaHZ84cSKVlZU88cQTHDx4kJdeeokvvvjCbfW+9NJLLF26lH379nHLLbdQW1vLnDlzgLZJ1zU1Nfzud79jy5YtHDp0iK+//po5c+ac0OH+L/feey/z589nyZIl5OXl8ec//5ns7GzuuOOOX9X+gIAA/vjHP3LXXXfx5ptvcvDgQbKysnjppZd48803AejXrx/btm3jq6++Ij8/nwceeMA1Gf643r17s3PnTvLy8qiqqsLhcNCvXz/i4+N56KGHyM/P57PPPuPpp5/+n21KTk7miiuu4Oqrr+ajjz6ioKCArVu3Mn/+fNcTgXfeeSdfffUVBQUF7Nixg5UrV5KWltZheQkJCfj4+PDCCy9w6NAhli9fziOPPNLhuQ8//DDffvstu3fvZvbs2YSHh//k+l39+vXjo48+Ijs7m5ycHH7/+9+fMLLZu3dv1q5dS3Fxsesp0fvuu4+NGzdyyy23kJ2dzf79+1m+fLkrGKakpDBt2jRuuOEGNm/ezPbt27n++uuxWCz/89oJcaaQcCVEF3nkkUdOuAWYlpbGggULeOmll8jIyGDLli0dPkl3qh5//HHmz59PRkYG69at4+OPPyY8PByAXr16sX79elRVZerUqQwcOJA77riDoKCgdvO7Tsbtt9/OPffcwz333MOgQYP48ssvWb58Of379//Vn+GRRx7h73//O/PmzSMtLY2pU6fyySefkJSUBMDcuXO59NJLufzyyxkxYgTV1dXtRrEAbrjhBlJSUhg+fDgRERGsX78eb29vFi9ezL59+8jIyGD+/Pn885//PKk2LVq0iKuvvpp77rmHlJQUZs6cyebNm10jT6qqcsstt5CWlsa0adNISUlhwYIFHZYVERHBG2+8wfvvv8+AAQN4/PHHeeqppzo89/HHH+eOO+5g2LBhlJaWsnz5cnx8fDo899lnnyUkJITRo0czY8YMpk6dytChQ9ud8/DDD3P48GH69u3rGskbPHgwa9asYf/+/YwbN44hQ4bwwAMPtLtVvGjRIuLj45kwYQKXXnopN954I5GRkSd17YQ4Eyj6j3/bCyGEEEKIUyYjV0IIIYQQbiThSgghhBDCjSRcCSGEEEK4kYQrIYQQQgg3knAlhBBCCOFGEq6EEEIIIdxIwpUQQgghhBtJuBJCCCGEcCMJV0IIIYQQbiThSgghhBDCjSRcCSGEEEK4kYQrIYQQQgg3+v+RChJxcfObFAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnIAAAHFCAYAAAB2CRTFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyEUlEQVR4nOzdd3wUZf7A8c9s32ySTW8QEgi99ypNkCIIiogVsQFWxPKzF/BUTr07PfU8u2A5wXJ6Ik0QBZTeeyeQkN7r1nl+f2wysCSBhBbK83699pWdmWdmntnM7n73qYoQQiBJkiRJkiRddHT1nQFJkiRJkiTp9MhATpIkSZIk6SIlAzlJkiRJkqSLlAzkJEmSJEmSLlIykJMkSZIkSbpIyUBOkiRJkiTpIiUDOUmSJEmSpIuUDOQkSZIkSZIuUjKQkyRJkiRJukhdEIHc22+/jaIotG3bttrtycnJKIrC3/72t1Mea+bMmSiKQnJycp3zsXLlSqZNm0ZBQUGVbQMGDGDAgAF1PualIDExkTvuuOO09lUUhWnTpp3V/JxKYmIiiqJoD5vNRufOnXn33Xc5cSKT33//3S/t8Y+xY8fW+pyV913lw2Aw0LBhQ+68806OHj1a5Xy///772brcOqvL6yOduZrurxMfZ3pPTJs2DUVRzk6ma+lCuJ/PRHp6Os899xy9evUiIiKC4OBgunTpwocffojX662Sfu3atQwdOpSgoCACAwMZOHAgf/75Z7XHdrvd/OMf/6Bdu3ZYrVZCQkLo3bs3K1eurFMeK7//avM4ne+9E6WlpTFt2jQ2b958xseqVB/35tn23HPPMXLkSBo0aICiKLX+TrzttttQFIWRI0dWuz0nJ4eHH36YxMREzGYz0dHRDB8+nLy8vFrnzVDrlOfQp59+CsCOHTtYs2YNPXr0qJd8rFy5kunTp3PHHXcQEhLit+29996rlzxJp6dPnz5a4J+WlsY//vEPHnroIYqKinjmmWeqpH/11VcZOHCg37rw8PA6n/ezzz6jZcuWlJeXs3z5cmbMmMGyZcvYtm0bNpvt9C7mHKjr6yOdvlWrVvkt/+Uvf+G3335j6dKlfutbt259Rue55557GDZs2Bkdo646d+7MqlWrzjjv9WXDhg18/vnn3H777Tz//PMYjUYWLFjAfffdx+rVq7XvJoB169bRr18/unfvzhdffIEQgtdff51Bgwbx22+/0atXLy2t1+vluuuu448//uCJJ56gd+/elJaWsmHDBkpLS+uUx9jY2Cr30P33309hYSFfffVVlbRnKi0tjenTp5OYmEjHjh3P+HhQP/fm2fbmm2/Svn17Ro0a5XdfnMy8efP48ccfCQ4OrnZ7Wloaffv2xWAw8Pzzz9OsWTNycnL47bffcLlctc+cqGfr1q0TgBgxYoQAxMSJE6ukOXTokADEG2+8ccrjffbZZwIQhw4dqnNe3njjjdPe91KWkJAgJkyYcFr7AuLFF188q/k5lYSEBDFixAi/dYWFhcJut4tGjRr5rf/tt98EIL799tszOmflfbdu3Tq/9c8//7wAxJdfful3vt9+++2Mzncm6vL6nA9lZWVCVdXzft7TpaqqKCsrO+39J0yYIGw22ynTlZaWnvY5pNrJy8sTLperyvoHHnhAAOLIkSPauqFDh4ro6Gi//0tRUZGIiIgQvXv39tv/zTffFDqdTqxateqc5Lt///6iTZs25+TYld/Jn3322Tk5/sXK6/Vqz2022ym/EwsKCkSDBg3EP/7xj2o/c4UQYvTo0aJBgwYiLy/vjPJW71Wrn3zyCQB//etf6d27N7Nnz6asrKzatKqq8sorr9CoUSMsFgtdu3bl119/PeU5Fi9ezOjRo2nYsCEWi4WmTZsyefJkcnJytDTTpk3j//7v/wBo3LhxleqO6qpW8/LyuP/++2nQoAEmk4kmTZrw7LPP4nQ6/dIpisKDDz7IF198QatWrQgICKBDhw78/PPPp8x7ZdXFf/7zH5588kliY2MJDAzkmmuuITMzk+LiYiZNmkRERAQRERHceeedlJSU+B3D4XDw9NNP07hxY0wmEw0aNOCBBx6oUoXsdrt54okniImJISAggCuuuIK1a9dWm6+MjAwmT55Mw4YNMZlMNG7cmOnTp+PxeE55TfUhODiY5s2bk5mZeV7P27NnTwAOHz5cY5qaqu3vuOMOEhMT/db9+9//pkOHDgQGBhIUFETLli3PSglaTa+Py+Xi5ZdfpmXLlpjNZiIjI7nzzjvJzs72S+d0Onnssce0e6dfv35s2LChSrV8ZRX0L7/8wl133UVkZCQBAQHae2bOnDn06tULm81GYGAgQ4cOZdOmTX7nOnjwIDfddBNxcXFaVcSgQYP8qoKWLl3KgAEDCA8Px2q10qhRI66//nq/z5a6vn/ff/99WrVqhdlsZtasWWfyclcxYMAA2rZty/Lly+nduzcBAQHcdddd2msyZMgQYmNjsVqttGrViqeeeqpKyU511VeJiYmMHDmShQsX0rlzZ6xWKy1btqx1icKp7rcTq1ZPVQ14vCVLljBo0CCCg4MJCAigT58+tfo8P5tCQ0MxGo1V1nfv3h2A1NRUbd2ff/7JgAEDCAgI0NYFBQXRr18/Vq5cSXp6urb+n//8J/369dPe/+dDUVERjz/+uN/n/NSpU6vcJ99++y09evTAbrcTEBBAkyZNtHvt999/p1u3bgDceeed2v/tZM1jysrKtPNaLBbCwsLo2rUrX3/9tZbmxHvzxKYoxz+O/ywUQvDee+/RsWNHrFYroaGhjB07loMHD56FV6xudLq6hUuPPfYYsbGxTJkypdrtycnJ/PTTT0ycOJHQ0NAzylu9Vq2Wl5fz9ddf061bN9q2bctdd93FPffcw7fffsuECROqpH/33XdJSEjgrbfeQlVVXn/9dYYPH86yZcv8irVPdODAAXr16sU999yD3W4nOTmZf/zjH1xxxRVs27YNo9HIPffcQ15eHu+88w7//e9/tSLqmqoMHA4HAwcO5MCBA0yfPp327duzYsUKZsyYwebNm5k3b55f+nnz5rFu3TpeeuklAgMDef3117nuuuvYs2cPTZo0OeVr9cwzzzBw4EBmzpxJcnIyjz/+ODfffDMGg4EOHTrw9ddfs2nTJp555hmCgoJ4++23Ad8b4dprr+XXX3/l6aefpm/fvmzdupUXX3yRVatWsWrVKsxmMwATJ07k888/5/HHH+eqq65i+/btjBkzhuLiYr+8ZGRk0L17d3Q6HS+88AJJSUmsWrWKl19+meTkZD777LNTXs+JvF5vrdpn6XS6Or+hADweDykpKTRv3rza7aqqVglCDYYzf3vs378fgMjIyDM+1uzZs7n//vt56KGH+Nvf/oZOp2P//v3s3LnzjI9d3eujqiqjR49mxYoVWvXQ4cOHefHFFxkwYADr16/HarUCvg/9OXPm8MQTT3DllVeyc+dOrrvuOoqKiqo931133cWIESP44osvKC0txWg08uqrr/Lcc89x55138txzz+FyuXjjjTfo27cva9eu1d6LV199NV6vl9dff51GjRqRk5PDypUrtR8mycnJjBgxgr59+/Lpp58SEhLC0aNHWbhwIS6Xi4CAgDq/f3/88UdWrFjBCy+8QExMDFFRUWf8mp8oPT2d2267jSeeeIJXX31Vu8/37dvH1VdfzdSpU7HZbOzevZvXXnuNtWvXVqmerc6WLVt47LHHeOqpp4iOjubjjz/m7rvvpmnTpvTr16/G/U7nfquuGjA7O5vbbruNBg0aaOu+/PJLbr/9dkaPHs2sWbMwGo188MEHDB06lEWLFjFo0KCTXlNtfzDq9frTapu1dOlSDAaD3/vB5XJpn5XHq1y3bds2YmNjSUlJITk5mWuuuYZnnnmGTz75hNzcXFq0aMETTzxR7XfbmSorK6N///6kpqbyzDPP0L59e3bs2MELL7zAtm3bWLJkCYqisGrVKm688UZuvPFGpk2bhsVi4fDhw9p91LlzZz777DPtPThixAgAGjZsWOO5H330Ub744gtefvllOnXqRGlpKdu3byc3N7fGfUaMGFHlPlm1ahWPPvoobdq00dZNnjyZmTNnMmXKFF577TXy8vJ46aWX6N27N1u2bCE6OrrGcwghqm3nWJ2z8Vl/vCVLlvD555+zbt069Hp9tWlWrFiBEIK4uDhuvvlm5s6di8fjoWfPnsyYMeOkMU0VZ1Sed4Y+//xzAYj3339fCCFEcXGxCAwMFH379vVLV1m1GhcXJ8rLy7X1RUVFIiwsTAwePFhbd6qqVVVVhdvtFocPHxaA+N///qdtO1nVav/+/UX//v215ffff18A4ptvvvFL99prrwlA/PLLL9o6QERHR4uioiJtXUZGhtDpdGLGjBk1v0DiWFXcNddc47d+6tSpAhBTpkzxW3/ttdeKsLAwbXnhwoUCEK+//rpfujlz5ghAfPjhh0IIIXbt2iUA8cgjj/il++qrrwTgV4w8efJkERgYKA4fPuyX9m9/+5sAxI4dO/yuvTZVqwkJCQI45aO2x7r66quF2+3W/tcTJ04URqNR/Pzzz35pK1/f6h779u075bkqVd53q1evFm63WxQXF4uff/5ZREZGiqCgIJGRkeF3vuOrVk+8typNmDBBJCQkaMsPPvigCAkJqXWealLb1+frr78WgPj+++/99q+sennvvfeEEELs2LFDAOLJJ5/0S1e5//H3TuXrdPvtt/ulPXLkiDAYDOKhhx7yW19cXCxiYmLEuHHjhBBC5OTkCEC89dZbNV7fd999JwCxefPmGtPU9f1rt9vPuPqjUnVVq/379xeA+PXXX0+6b+Xn17JlywQgtmzZom178cUXxYkf6QkJCcJisfi9V8vLy0VYWJiYPHnySc9Vm/vtVE0FSktLRffu3UVsbKxITk7W1oWFhVX5TPN6vaJDhw6ie/fuJz2nEKJWnxWcZvXgokWLhE6nq/JZ2LFjR9G8eXO/Kja32y2aNGkiAPGf//xHCCHEqlWrBCCCg4NF69atxTfffCMWLVokxo4d6/eZeyZOrFqdMWOG0Ol0VZp2VL4X5s+fL4Q49hldUFBQ47HrWrXatm1bce211540TXX35vF2794twsPDxcCBA4XT6RRCHHsd//73v/ulTUlJEVarVTzxxBMnPefJPttPfNS1OdXJqlaLi4tFYmKiePrpp7V11VWtzpgxQ7tPRo8eLRYuXCi+//570b59e2GxWPze26dSr1Wrn3zyCVarlZtuugmAwMBAbrjhBlasWMG+ffuqpB8zZgwWi0VbDgoK4pprrmH58uUnjbyzsrK49957iY+Px2AwYDQaSUhIAGDXrl2nlfelS5dis9mq9GysrEY6sYpg4MCBBAUFacvR0dFERUWdtMrteCf2eGnVqhWA9ovp+PV5eXla9WrlL60Te9jccMMN2Gw2LZ+//fYbALfeeqtfunHjxlX5tfLzzz8zcOBA4uLi8Hg82mP48OEALFu2rFbXdLy5c+eybt26Uz4mTZpUq+PNnz8fo9Go/a8/+ugj3nnnnSqvV6XXXnutyrni4+PrfB09e/bEaDQSFBTEyJEjiYmJYcGCBSf95Vhb3bt3p6CggJtvvpn//e9/fk0D6qo2r8/PP/9MSEgI11xzjd//uWPHjsTExGjVaZX/73HjxvmdY+zYsTX+0r3++uv9lhctWoTH4+H222/3O5fFYqF///7aucLCwkhKSuKNN97gH//4B5s2bUJVVb9jdezYEZPJxKRJk5g1a1a11TB1ff9eeeWVZ1z9cSqhoaFceeWVVdYfPHiQW265hZiYGPR6PUajkf79+wO1+/zq2LEjjRo10pYtFgvNmzc/5WfPmd5vXq+XG2+8kV27djF//nztM3flypXk5eUxYcIEv/+1qqoMGzaMdevWnbJDQG0+K9atW8c111xTpzxv3LiRcePGaaUix3vooYfYu3cvDz74IEePHiUlJYV7771Xex0rS1Ar70eHw8H8+fO54YYbGDJkCN988w2dO3fmpZdeqlOeauPnn3+mbdu2dOzY0e81HTp0qF/Vd2W16bhx4/jmm2/8etSfru7du7NgwQKeeuopfv/9d8rLy+u0f0ZGBsOGDSM2NpYffvgBk8mkXZOiKNx2221+1xQTE0OHDh1O2VO6S5cutb5P4uLiTvfyq3jqqacwGo288MILJ01XeZ80bNiQ77//nqFDhzJmzBgWLlyITqfj9ddfr/U5661qdf/+/Sxfvpzrr78eIYRWLTJ27Fg+++wzPv300ypvpJiYmCrHiYmJweVyUVJSgt1ur7JdVVWGDBlCWloazz//PO3atcNms6GqKj179qzzTVcpNzeXmJiYKsX2UVFRGAyGKsXK1fWANJvNtT5/WFiY33LlzV7TeofDQWBgILm5uRgMhipVe4qiEBMTo+Wz8u+Jr7HBYKiS98zMTObOnVtt2xLgtAKM1q1b17pqtTauuOIK3nzzTbxeL/v27eP555/nwQcfpE2bNlxxxRVV0jdp0oSuXbvWOd8n+vzzz2nVqhUGg4Ho6Oiz0ous0vjx4/F4PHz00Udcf/31qKpKt27dePnll7nqqqvqdKzavD6ZmZkUFBRo99SJKv/PlffOicFqdfdOpRNfl8q2eZVfNCeq/L8risKvv/7KSy+9xOuvv85jjz1GWFgYt956K6+88gpBQUEkJSWxZMkSXn/9dR544AFKS0tp0qQJU6ZM4eGHH9byXJf379n8P9akunOUlJTQt29fLBYLL7/8Ms2bNycgIICUlBTGjBlTq8+P0/3sOdP77d5772XhwoXMmzfPr/dj5f/6ZMP75OXlnbSXd217U9ZUrVWdTZs2cdVVV9GsWTPmz59fpRr1rrvuIjs7m5dffpl///vfAPTq1YvHH3+c1157Tas6rny9W7ZsqQWv4Lt3hw4dyowZM8jKyjqr1fOZmZns37//lJ/J/fr148cff+Ttt9/m9ttvx+l00qZNG5599lluvvnm0zr322+/TcOGDZkzZw6vvfYaFouFoUOH8sYbb9CsWbOT7ltcXMzVV1+N2+1mwYIFft/hmZmZCCFq/BF8qiZJgYGBtb5PzlbV6tq1a3nvvff473//i8PhwOFwAMea7hQUFGC1WjGbzdp9MnjwYL/7NDY2lg4dOrBx48Zan7feArlPP/0UIQTfffcd3333XZXts2bN4uWXX/a7wIyMjCrpMjIyMJlMBAYGVnue7du3s2XLFmbOnOnXNqGy7dLpCg8PZ82aNQgh/L4MsrKy8Hg8REREnNHxz5bw8HA8Hg/Z2dl+wZwQgoyMDO2Ls/KmysjI8GvL4vF4qnypRURE0L59e1555ZVqz3k6v26SkpJqVTr54osv1mpcOrvdrgVmPXr0oEePHnTo0IH777+fzZs3n1Y7u9po1apVnQNCi8VCYWFhlfXVBcR33nknd955J6WlpSxfvpwXX3yRkSNHsnfvXr8vjVOpzesTERFBeHg4CxcurPYYlSXMlfdOZmbmKe+dSicGUJXvl+++++6U15GQkKB1ktq7dy/ffPMN06ZNw+Vy8f777wPQt29f+vbti9frZf369bzzzjtMnTqV6Ohobrrppjq/f8/HGFjVnWPp0qWkpaXx+++/a6VwQLVjXZ4Lp3u/TZs2jY8//pjPPvuMIUOG+G2rfG3feeedGjsDnKoEu6aA5USfffZZrcb72rRpE4MHDyYhIYFffvml2kIBgCeffJKpU6eyb98+goKCSEhIYPLkydhsNrp06QL4PsuO7xBxvMofq2f78yciIgKr1VpjJ5bj7+fRo0czevRonE4nq1evZsaMGdxyyy0kJibWrV1WBZvNxvTp05k+fTqZmZla6dw111zD7t27a9zP7XZz/fXXc+DAAVasWFGlHV5ERASKorBixYqTtk2sybJly6oMKVWTQ4cOVelYdjp27tyJEILrrruuyraUlBRCQ0N58803mTp1Ku3bt6/xOEKIOt0j9RLIeb1eZs2aRVJSEh9//HGV7T///DN///vfWbBggV+V4n//+1/eeOMNrXq1uLiYuXPn0rdv3xp/eVV+OJ74T//ggw+qpK1MU5tfuYMGDeKbb77hxx9/9Punff7559r2C8GgQYN4/fXX+fLLL3nkkUe09d9//z2lpaVaPit7Cn311VfaBxLAN998U6Vh8ciRI5k/fz5JSUlnrbpp7ty5VXoLVud0i8CbNWvGE088wfTp05kzZ85p//o8FxITE/n2229xOp3aPZibm8vKlStrHH/IZrMxfPhwXC4X1157LTt27KhTIHei6l6fkSNHMnv2bLxe70nHdqxsMD9nzhw6d+6srf/uu+9q3Sh96NChGAwGDhw4UKXa9WSaN2/Oc889x/fff1/tL1i9Xk+PHj1o2bIlX331FRs3buSmm266aN6/dfn8Opfqcr998sknTJ8+nZdeeqnaIKpPnz6EhISwc+dOHnzwwdPKz7p162qVrnHjxqdMs3nzZgYPHkzDhg1ZvHjxKT/TzGazNnj9kSNHmDNnDhMnTtQ6/hgMBkaPHs13331HcnKyFiAIIVi4cCFJSUln/Yf+yJEjefXVVwkPD6/VNVdeR//+/QkJCWHRokVs2rSJXr161el78ETR0dHccccdbNmyhbfeeouysrIag9q7776b33//nQULFlQb1IwcOZK//vWvHD16tEqzjdqorFqtjbNVtTps2DCtmdLxbrrpJho3bsyMGTNo2rQp4PsB3bBhQ3755Re8Xq8Ww6SlpbFlyxZuueWWWp+3XgK5BQsWkJaWxmuvvVbtsAtt27bl3Xff5ZNPPvEL5PR6PVdddRWPPvooqqry2muvUVRUxPTp02s8V8uWLUlKSuKpp55CCEFYWBhz585l8eLFVdK2a9cO8HUdnzBhAkajkRYtWvi1bat0++23869//YsJEyaQnJxMu3bt+OOPP3j11Ve5+uqrGTx48Gm8MmffVVddxdChQ3nyyScpKiqiT58+Wq/VTp06MX78eMBXknTbbbfx1ltvYTQaGTx4MNu3b+dvf/tblWDipZdeYvHixfTu3ZspU6bQokULHA4HycnJzJ8/n/fff/+kvZyqU/nan0uPP/4477//PtOnT2fcuHF1qnY5l8aPH88HH3zAbbfdxsSJE8nNzeX111+v8rpXfln06dOH2NhYMjIymDFjBna7vcYqybo48fW56aab+Oqrr7j66qt5+OGH6d69O0ajkdTUVH777TdGjx7NddddR5s2bbj55pv5+9//jl6v58orr2THjh38/e9/x2631+qXZWJiIi+99BLPPvssBw8eZNiwYYSGhpKZmcnatWu1X/1bt27lwQcf5IYbbqBZs2aYTCaWLl3K1q1beeqppwB4//33Wbp0KSNGjKBRo0Y4HA6tpKLyfXm23r933HEHs2bNOmu/6E/Uu3dvQkNDuffee3nxxRcxGo189dVXbNmy5ayf60Snc7+tWrWKe++9lz59+nDVVVexevVqv+09e/YkMDCQd955hwkTJpCXl8fYsWOJiooiOzubLVu2kJ2drVVd1uRsNIMA2LNnj/a/fuWVV9i3b59f++ykpCStJmP79u18//33dO3aFbPZzJYtW/jrX/9Ks2bN+Mtf/uJ33L/85S8sWLCAYcOGMW3aNIKDg/n444/ZsmUL33zzjV/aAQMGsGzZsjOaVWXq1Kl8//339OvXj0ceeYT27dujqipHjhzhl19+4bHHHqNHjx688MILpKamMmjQIBo2bEhBQQH//Oc//dpdJiUlYbVa+eqrr2jVqhWBgYHExcXVGOz06NGDkSNH0r59e0JDQ9m1axdffPEFvXr1qjGIe+ONN/jiiy946KGHsNlsfvdJcHAwrVu3pk+fPkyaNIk777yT9evX069fP2w2G+np6fzxxx+0a9eO++67r8bXJCgo6KzdJ+Ar4ascdsnr9XL48GGtNrF///5ERkYSExNTbRMwi8VCeHi4X7yj0+l48803GTduHKNHj+a+++6jtLSUv/zlL5hMJp5++unaZ67W3SLOomuvvVaYTCaRlZVVY5qbbrpJGAwGkZGRofVafe2118T06dNFw4YNhclkEp06dRKLFi3y26+6Xqs7d+4UV111lQgKChKhoaHihhtuEEeOHKm2F+TTTz8t4uLihE6n8+uNVV3PwtzcXHHvvfeK2NhYYTAYREJCgnj66aeFw+HwSweIBx54oMo11mag3ZoGrK1pANrK3kHZ2dnauvLycvHkk0+KhIQEYTQaRWxsrLjvvvtEfn6+375Op1M89thjIioqSlgsFtGzZ0+xatWqavOZnZ0tpkyZIho3biyMRqMICwsTXbp0Ec8++6woKSnxu/YLYUDgSv/6178EIGbNmiWEOPcDAp+opl5+s2bNEq1atRIWi0W0bt1azJkzp0qv1VmzZomBAweK6OhoYTKZRFxcnBg3bpzYunVrnfJal9fH7XaLv/3tb6JDhw7CYrGIwMBA0bJlSzF58mS/Xr0Oh0M8+uijVe4du93u1/vvVK/Tjz/+KAYOHCiCg4OF2WwWCQkJYuzYsWLJkiVCCCEyMzPFHXfcIVq2bClsNpsIDAwU7du3F2+++abweDxCCF9vt+uuu04kJCQIs9kswsPDRf/+/cVPP/3kd64zff8KIcT1118vrFZrlffSydTUa7WmAV5XrlwpevXqJQICAkRkZKS45557xMaNG6v0LKyp12p1/+uaekofrzb324n3c+X/t6bH8ZYtWyZGjBghwsLChNFoFA0aNBAjRow44/diXZwqv8e/vnv27BH9+vUTYWFhwmQyiaZNm4rnnnvO7/PueNu2bRMjRowQQUFB2nti7ty5VdJ16dJFxMTE1Cnf1d0vJSUl4rnnnhMtWrQQJpNJ2O120a5dO/HII49oveZ//vlnMXz4cNGgQQNhMplEVFSUuPrqq8WKFSv8jvX111+Lli1bCqPReMrP8Keeekp07dpVhIaGCrPZLJo0aSIeeeQRkZOTo6U58d6cMGFCja/5ifflp59+Knr06CFsNpuwWq0iKSlJ3H777WL9+vV1es3OVGXP8uoepxrg/WSfuT/++KPo1q2bsFgswm63i1GjRvmN/FAbihByckVJks6+lStX0qdPH7766qs6VRNcTGJiYhg/fjxvvPFGfWdFuggVFxcTFhbGW2+9xQMPPFDf2ZEuUjKQkyTpjC1evJhVq1bRpUsXrFarVu1kt9vZunWr37BBl4odO3bQq1cvDh48eMF0bpIuLvPmzeOBBx5g7969NfYOl6RTkYGcJJ2EqqpVxik70dkeFfx0napjwenOilEba9as4bHHHmPnzp0UFxcTERGhDbVwPobukCRJulzJQE6STmLatGkn7UwDZ6/r+pk61RAZEyZMYObMmecnM5IkSdJ5IQM5STqJtLQ00tLSTpqmffv2F0S1yPr160+6PSIi4oIIOCVJkqSzRwZykiRJkiRJF6l6nWtVkiRJkiRJOn0XRivti4CqqqSlpREUFHRepuuRJEmSJOnMCSEoLi4mLi7unHX4qk8ykKultLQ04uPj6zsbkiRJkiSdhpSUlDrPOnQxkIFcLVVO05WSklLj/JeSJEmSJF1YioqKiI+Pr3a6zUuBDORqqbI6NTg4WAZykiRJknSRuVSbRV16lcWSJEmSJEmXCRnISZIkSZIkXaRkICdJkiRJknSRkoGcJEmSJEnSRUoGcpIkSZIkSRcpGchJkiRJkiRdpGQgJ0mSJEmSdJGSgZwkSZIkSdJFSgZykiRJkiRJFykZyEmSJEmSJF2kZCAnSZIkSZJ0kZKBnCRJkiRJ0kVKBnKSJEkXGaEKyopcOErdx9YJgVBFPeZKkqT6YKjvDEiSJEnVc5S42bsuk5J8ByX5TkoLnL7nBU5Uj6D9wIb0vbE5AGWFLmY+9Sc6vYLeoENn8P2tfDTtGkWPa5oA4HZ6WfjhNnT6iu1GBb3+WNqoxCCad48BfEHj1t9TK7YdO6auYtlmNxPeIFDLc0FW2bE0egW9UYder6DTy3IDSToXZCAnSZJ0HnndKrlpJZTkO7UArfJ5aYGTlr1i6TaiMQDOcjcr5uyt/kAKGEz6Y8f1qACoXoHq9YLTP7mj+Fjpncfl5ciOvBrz2KJnjBbIeT0qf3yzr8a0TTpFMnxyO8BXKvjVi6uhmoJBRYGEdhGMuL+9tu6Xj7eDomCxGTEHGCoeRiw2A4GhFiIbBdV4XkmSfGQgJ0mSdBYIVVBe4j4uODsWpDVsGUrrPnEAlBQ4+XbG+hqPU5Rdrj0PDLHQpFMkgaFmAkMsBIaZCQwxYws1Ywsxoz+ulCswzMJdb1yB16NWPIT2XPWoWINMWlqjWc+gCa380qleFa9bxesVRDQ8VsImgKZdorS0qrfi+BVpgyOsfq+ByazXjun3+pwQ3Akh2L8xu8bq4AYtQrj2kc7a8qxn/kT1Ci3QMwccC/7CYm206dtAS5t9pBiDSael0RtkaaB06ZKBnCRJ0ikIVVBW7PJVbeY5KSlwEBIVQKM24QAU5zn48oVVqJ7qgxK9XtECucAQMza7CVuohaBQX1B2fJAWHHksMNIbdVpp16nodIpfsHYyBpOelr1ia5XWaNIzdGLb2uVBr2PiW/0BX6CmeiuCxIrATtEpWlohYOBtLXCWeXCUunGWeXyPUjeOMg9hsccFk0JQWuDy/R8KXVXO26B5iF8g99Pbm3GUHCuBNJj1WCpK+6ITgxg4vpW2bfuyVITguFJBI2abAUuAEVOAAd1xeZakC5EM5CRJuuw5St0U5ZRjMOoJi7MBUF7iYsH727S2aarXP0hr2TNGC+QCgky+IE4BW/AJQVqohajjqgj1Rh13vHbF+bu4eqIoitamrjo6nUKr3nG1Pt5tL/WsCPbcOEp9fyuXg8KPKxUUAnOAAdUrcJV7APA4vZQ4vZTkO7HY/L/21sw95Bf0HS8iPpAbn+1+LO1PBwF8JaShvuA7KNSCySq/SqX6I+8+SZIuW/kZpWxcdJi9azJRVUGLnjEMvqM1ACazgfT9hccSnxCkRSUGa5v0Rh23v9qbALvJr7pTOjsURfGrwj1V2tte6gWAqvqCuWMlfm6/doUASZ0iKS92+wLEihJBZ5kHt9OLOcD/K3LbslScpZ4q5zRZ9DRoEcrV9x1r/3doSzZGi6Ei6DNjMOqr7CdJZ4MM5CRJuuxkpxSzYcFhDmzK0hrm2+wmjOZjX7aV1ZrWYBOBoeZTBmlBYZZzne2LhupyoRYW4i0qwltUhFrx11tUBKpAFxCAzhaAzmbzPT/hoVitKLozD4h1Ol9HCovNWGOaAbe2rHa916vidR1r5yeEoNNVjSjOq2j/WPHXWebB5fDicfu3Cfz1811+QZ81yOgrxQs1E904mC7DErVtpYVOrIFG2bNXOi0ykJMk6bLy2xe72Plnurac2D6CLsMTiGlsr5K2SafI85m1C4YQArW0DLXohGCssAhv8QnPCyuCtOOeC6fz1Cc5BaWaAK/Kw3Zc8Oe3zea/3WZDZ7WiGGr/lafX69BbjwVWiqL4BV+VXA4PJflOv566qlclMj5I6/TicamUF7spL3aTfaQYr1uly7Bj6b+evgZXuQdbiPm4altf0BceZ6Nhy7DTeQmly4QM5CRJuqSJiu6SiuJrtB4SY0NRfD0xOw9L9OuheSkRXu9xpWHFeIsKa3zurQzGKgOxkmLwes/s/IqC0xyA0xJAuTmAMrONMqMVoVOwepyY3S7MHidmtwOjy4nR5cDgcqBU/L9EWRnesjLOLBf+FLO52mCw2iDw+GDRFog+JMT3CA1BHxyMoveV3posBsJi/b9KdXodo6d28l2HEDhLPRRX9mLOcxBgP9YpxePy4nZ6EQKtlzMUadsbtQ7zC+S+eXUdJoteC/QCQy0EVTwPCpPt9S5H8j8uSdIlSaiC5G05rF9wmI6D42nWNRqANn3jaNw+gpDogHrOYd2pqiAzI4/UtRsp2rINNTsLXWkJutIS9KUlGMpKMJaXYiovxeQsP/UBT8Gt6CkxWSkxWikxBlBitFBiCqhYtlJqtFJstFJiCqDUaKHEGEBxxfoyoxmh1LGqUAjMXjcWrxOrx4XF4/tr9TqxeFxYPU7fOm/l84q/FcsBXhcBXpe23exxYnE70au+cFA4nXidTrz5+Wf2wigKuuBg9CF2LcAzVAZ6NTzCI0KIjK86Lp7BpOfedwZQVuyiOO9YlW1l0BeZcGwft9NL9pHiGrPVqHUY10zpqC2vn59MUJiZsLhAQmMCqrQPlC4NMpCTJOmSoqqC/Rsy2bjwMLlHSwHY8muKFsiZLAZMlgv3o8+rCtILyzmcW8bh9HwKt+9E3bWTwOS9xKYfokFxFoEIaluOWGYwa0FWZQBWYrQeF6D5grTSiiCt2GjFZQnAZQ1EMZsxG/WYDDrMBj1mow6zQXds2aDDatARUrHsW3/Cc6MOk17nO45eBwgcbhWH2+t7eCqf+/46PV7/7W4Vp8dLgVslw+PFecK+3lpMS2ZQPVrQd3zgZ/UcHzAev97lFzDa3OUEucoIdpVh8zhACNTCQtTCQtyHj9T6f6uYzScN9iwhIdhC7MSFh6BPCkEf0hC9/ViVv86gcN1jnaq00yuuqMINDDVraV3lHq2XLfgGZLZHBRAWayMszkaD5iGyyvYSceF+mkmSJNWB16OyZ00GGxceprBiUF2jRU+7/g3oMKhRPefOn8ercrSgnOTcMg7nlpKcU8aR7CKc+/cTlLyPJnlHaJ6fQtuiDIyiauViTpCBg7EKWaE6yqwGHBYTTqsJp9WCO8CCxxaAxxYAtkCM5gAsegtWgxWrwUKA0UqA0UqU0Upjk5VAYwCBZitBpgCCdRYCdVasmDBjwuDVg0cg3F5E5V+3ivCovr/VPS9XER4vwu2u2Obbh8p04BtPTqeg6BXQ6/yXdToUvR5FZwKzgmI9Lo1eqfJXVcAjwAN4EHiEwA24hcClgkuouITApQqcqsCpqrhUgUNVcXhVHF6Bw6tSrgrKPV6yvCoOj0qZ10uZR6XMo1Lg9JDrcONRBXrVWxHUlWrBXZCrlGB3NetcZVpag1ARTieezEw8mZm1v1kqSv+OL/ELCgkhpLKaVwv6QlCCwZ2RgT4kBI9bR9v+DchLKyU3rQRnqYeCzDIKMss4uDmbsqI4LZDzuL38OmsX4XE2wuICCYu1ERxplWPoXSRkICdJ0iVh8Sc7OLApGwCzzUCHK+NpN6DhSXssnksuj0pK/rFA7XBuqRa4peaVEVWcTfP8IzQvPEjrgiNcU5CFxVM1aCuywv5YhQOxcCBW4WCsDrMpnEauGIK8NkyqEZMwEqIaMQojZmHEVGTCVGjAJEyYK7ZXptOWhYJJ9WISDszCi1H4OiioQGnF42KjAMaKx9mhq3gYQGdFsegQBh1eg4JXr8OtA6cOHEA5gjIhKFFVir0qRz0qOzxe8t0eCtwehNeN4i7D4C7D4CrD5CzB4izG7CzyBXx+gaAvCAzwOLXSP1dhIRw+XPvXIiCAhjExNI6JRh8Vg7dZA0qtsRTrQyl0W4lrZEIIgaIo5GeUsX99FvuP219v1PlK72JtNO0aRWK7iLP2qkpnlwzkJEm6KLnKPaCgVZO27B1L+sFCOl3ViNZXxJ2X6lOH20tKXtmxkrWKoC05t5S0gnJUASilRHpTaFG4n+b5RxmWm03TnCICnWqV45WZ4GCML2g7GKujKDKCUEsj2tCCbu54RjkiCE2zofee22Eq3Hhw6dy4FDcunRun4satuHHq3LgUFy7Fg0vnwlmx/fh0Lm2dL51T5zpunRsVgQE9BqFHJ3QYhO+5Hj36imW90GPEgEkxYcSICQOGir9GjBVLvodBGHzHw+B3LN9xdOj9/irohK7ioaBTK/4KBZ2qoFQ+BOjUE0qjVIFweAEvekAPmADbSV/JipSK2fdtawiBaobD8+jApVNwIihXoFwIMoVKideL2+tB9bpRvU7wOFE8DnTucvTuMowVAaHZVYzVWYTFUYStvBC9x4FwOHAdPIjr4EG/cwVVPFRgl8mEEhmNN7YxbcI6UmKOpEgEUVRmwOtWyT5STPaRYsLibFogV5BZxpKZO4+V3sX5qmoDgk1ahyLp/FKEOHEGPKk6RUVF2O12CgsLCQ4OPvUOkiSdE+UlLrYuTWXb76l0GBSvTTAvhG8aqLM98GqZy+Nrr3ZciVplCVt6kQOBG50xH8WYh86Uj92bSbO8ozTLzaVZVilJGV5CqynecukhORoOxepxJyYRGNuGaFtTGjgiCS0JwlqgR6mpy6ZewRhpRRdkQjHoUIw6FKMexaD4/hp1x60/7nnFX2rapyKNBw9OjxOH10G5pxyHx+F7HL/s9a0r95Tj9Dq155XrHR4H5d7j9q3Y7lJdeFSP/0NUHWS33gnQoUMvdJiFEYtqxqyasKhmrMKMpeK572HCRgCBBGATAQQICwHC6tsmfOnM3opSUa8Bo1ePwaNH4dwGPi6h4vC6cXudeN3l4CpF7yzC6CzCXF6AcJf5Hq5S0J6XobrLKDeHUGqLpTiwISHeNIKCVAzR0RSEtmFTXrMq57LYjITF2eg0pJEW9FWW+NW3S/37WwZytXSp3wiSdKErLXCyackRdqxIw+P0RTixSXaue7zzGX9ZlDo9HMrxlagdzi0jOafib24pWcVlKMZCv2BNZ8xDZ8zDSh5JOcU0TRckVTyiC6oe36uD7FgbzqbNMcW3ISiiGXZjLNZCI0qex9fIqzoGHcZIK4boAIxRARijAzBEBWAIs/rak10ihBB4hAe3141HeKoGeqoHt3psm8vjwqO6cXvceLwu3B43XkXg1am+tG4nrpJS3B4XHq8Hr9dd8deDx+vBY1HwWHW+4zmdiMxiVK8Xr+rB6/Wier2oFc/LggTFQSoOrwO300lAlhuXcONUXbgVD0IBVRGoCjhNXhzmipJWAWaXDqHzbRcVaYSCrw5Y4BcgWlUzlhMCROtxgWBlwKhtE2aswkKAajluPxMmrxGjOPPSaNXrBlepFuzhLkW4yvB4PZTrrZTrzJQZbBQbgyk1BuNGwSWgoWMlEREurHExlFkasW2fjbAYKxGNQgiLD/aV4MXazmuHo0v9+1sGcrV0qd8IknShKsopZ+MvR9i1Mk2blD4iPpAuwxJJ6hTpNxF7XaiqYOWBXL5ed4Rfdh3Eq89GZ/IFaIopD50xvyJ4K0BRVAweQUIWfkFbgxxfCyo/ih5342bom7XHGtsKa2BDFJcFT64DvNV/3CpGHYYoX7CmBW1RAejDLKd9ffWlJC+X9P17KC8uxlFSTHlxUcXfYhwlRXS/9gaadOoGwJHtW1jyyb8RXi+qqiJUFaEee97vtrtoO2BwRdqtfP/qC740omq1dP/b7qLrNWMASNu7i6+f/78a89h73K30uv5mALIPH+LzJx6qMW230WPpd8sdABRmZfDxQ/fUmLbxgCtoNW40Tq+T4oI81j7/j+oT6hRoG4NzcGNfaWZ5GWFf7kXo0AI+VRF4FYGqqGREutjcsgiHx4EQgsHroyqCw4og8rj98oJd7E0oJUA1E+gNoOuBaAKwYlGsWLBgwYoFK1bFilFvQTGZCPQGEOQNINhtw4oFXdW7uk6E14VwleFCodQYhEt14xa+TiZu4euI4lGdmCxpmCMVLA2iscbFEtsigcgG0ejqOmzNKVzq39+yjZwkSRe0dfOT2b3SNxNDbJKdLsMTadQm7LRL4bKKHHy7IZU561JILduLKWwF5qRtKMqx4ECn+oK0yqCtaTo0yhYYjq/q1BnQBUWhb9QKc0Jb9KHxoAtGLcXXAAmgALwFAvD1olVMxwK2ytI1Y1QA+tALI2ATQuB2OnAUF2MJCsJk8TXoyj6SzL41K6sNzMqLixl2/1Sade8NQOqu7cx7+40az1FWeGz+Wo/LRX5aao1p3U6H37LqrbkK9vgyCZ1Oj06vR9HpUHQ6dBV/FZ0enU6HwXRsmA6DyURobByKcnxavfY8KPxYI39FpyOiUaKvxM7rQfWqqKrXF4h6vUTYY2gV3gqAEkMua2vKrCpoF9GOIT2mAOAoLeFfH95UQ2IdPVoP5cNb/883uLDbwb8W3FDj6xDcugl39R+Ow+PA6XVydOlX+G5KcFU8KocbLoszc2iYXasq7/6NE6NbwagzY9JZMFY8DAYLjkADRxp6CfD6SgHbZ0YSgBWTzkK20YlTLxA6BRWBx+DFY/biQUUBrvC00vL3h2E3GboCPHjxKiqeci+e/ZmIA1sYtaQrm0JTGPbEfTVen1RVvZfIHT16lCeffJIFCxZQXl5O8+bN+eSTT+jSpQvge3NOnz6dDz/8kPz8fHr06MG//vUv2rRpox3D6XTy+OOP8/XXX1NeXs6gQYN47733aNiwoZYmPz+fKVOm8NNPPwEwatQo3nnnHUJCQmqVz0s9opekC0X2kWJMVj32SN+AvfkZpaz4Zh9dhiUQ1yzktAI4rypYtjeLr9emsHR3BkrAToxhf2CwHQIgolDQPTuYNllmEtLchB8pRO+sCBp0BnSB0eiC4jBENcEQ2xRdQDTCa66oJ6tKMemrVIcaowPQ283nLWBTVS+OkhJf4FVcTHlJMTFJzQgM9Q05kbJjK5sW/kx5ybHtjuIivB7fdY969Bma9fAFZ7tXLmfeP1+v8VxXTXqQ9oN8c04d3bOLZV98jDUoGEtgENagICyBwdrf2GYtCI7wTX1WXlJM7pHD1QRcvue2sHCsgb4BcT0uF2VFhSekORZw6Y1GdPoLa8BbofoCPV/gV/Hc40FVvRiMJqxBvu8S1eslJ+XwcQHicem9Hmz2UKKbNPWlVb3sWvF7RRovDqcDl8uD2+PG7XZjtYcQ3awlLpcLo9FI1oZVvmOqKikFxTg8Xryqb/w9g8VCYHikbz+rlZC8dFzl5QihsrfcS5mvt06V6zJbzUSVpeMsKkZVVQoCY/AYq+nFgW/3VvkqAQ4jJsXMnhA3eWZ3tUmvdnWmMKmIq+6+7Wy8/JpL/fu7XgO5/Px8OnXqxMCBA7nvvvuIioriwIEDJCYmkpSUBMBrr73GK6+8wsyZM2nevDkvv/wyy5cvZ8+ePQQF+d7g9913H3PnzmXmzJmEh4fz2GOPkZeXx4YNG9BXvLGHDx9OamoqH374IQCTJk0iMTGRuXPn1iqvl/qNIEn1LW1/ARsWJHNkRx7Nu0dz1V1tTr3TKRwtKGfOuhS+XZ9CelERxpANmML+QGfKBSFofVTP3VvDiN+SATojuqAYdEGx6ILi0IfGow9rhGIIprovMwDFrPcL1IzRNgxRAejt56YHnxCC8uIi8tJSyU87Sml+Hi169yU0tgEAe9f8yYqvZlJeUoSztGoPi9oGZ3qDgSH3PkzrvgMBX/Xj5kXzsAQFYQ0MwhIU7BegBYVFYLRYzvr1XkrKyspwuVzaw+12a8/NZjPNmzfX0i5ZsoSSkpJq04aFhXHrrbdqad966y0KCgqqPWdYWBhTpkzRlv/973+TWcMYdoGBgTz++OPa8ieffEJKSoq2rCgKJpMJo9FIQEAA999/v7Zt6dKlZGdnYzQaq3306tVLS5uWlobT6cRoNGIwGLQ0AkFhZi6h0ZEEBVedAeNMXOrf3/Vatfraa68RHx/PZ599pq1LTEzUngsheOutt3j22WcZM8bX9mHWrFlER0fzn//8h8mTJ1NYWMgnn3zCF198weDBvrYUX375JfHx8SxZsoShQ4eya9cuFi5cyOrVq+nRowcAH330Eb169WLPnj20aNHi/F20JEkaIQQpu/LYsOAwafsKAN8I9IpOQajitEqv3F6VX3dl8vXaFJbvywZ9EcbQVQQ1WwP6MhRV0O+AhVs32ghN82KM74Lhym7ogmJrDL4Ui6EiUDsuaIsKQHcehlxI27ubrb8uJD/tKHlpqThK/KdoCmsYrwVyQlUpyEz3224OsPkCsKBgDKZjc3zGJDXnyrvuPRaYBfrSWIKCMJotftcVmdCYqyY9eA6v8sLh9XpxOp04HA6/v263m4CAAK2QAWDhwoU4HI5qA7TY2FjGjh2rpX377bdxOBzVnZK4uDi/QG7btm0UHlcFfbwT7zeTyYRer8dkMmkPo9GIyWTCftysEACdOnWitLS02mDLbDb7pR03bhyAtl1/ktLOK6+8ssZt1V1rTezB9hq3STWr10Dup59+YujQodxwww0sW7aMBg0acP/99zNx4kQADh06REZGBkOGDNH2MZvN9O/fn5UrVzJ58mQ2bNiA2+32SxMXF0fbtm1ZuXIlQ4cOZdWqVdjtdi2IA+jZsyd2u52VK1dWG8g5nU6cTqe2XFRUVCWNJEmn7/COXNb+dJCsw77ARKdXaNkrlk5DGhESVfd5UJNzSpm9LoXvNqSSU+JEZ07DHPMHJvsWhOLF6BZcuyeEUeuN2PRNMDbqhaGt/3tfF2DwC9R81aM2dEHGcxKwOUpKyEtLIa8iSMs7mkp+Wir9bruLpC7dASgtyGPH70uO7aQoBEdEEhrbgOCISL82XPFt2nPj9NewalWZQTVWN4ZEx9Bp6Mizfk31SVVVnE4nQggCAnz3kNfrZfv27VpQdmKAFhsby6BBg7T9X375ZWqqqGrSpIlfILdp0ya/74njWU4ooTSZTLjdbr+Aq/IREeE/2G6vXr2qTWs0GrFa/asw7733XnS62nUO6NmzZ63SAVqNl3Thq9dA7uDBg/z73//m0Ucf5ZlnnmHt2rVMmTIFs9nM7bffTkZGBgDR0dF++0VHR3O4YoTrjIwMTCYToaGhVdJU7p+RkUFUVFSV80dFRWlpTjRjxgymT59+xtcoSVL1clKKyTpcjMGoo3XfODpd1YjA0LpVzzncXhbtyGD22hRWHcwFVPS2vQQ3/hNh2QdAQLngzj2x9N8VhTm8I4ZOnVEMx0qmzE1DCOgUhaV5KLrAsx+wqaqXoqwsTFYrAfYQwNdbc97bb1BWWFDtPrmpR7RALrpJM3rfcCuhcQ0Ii2tIaGwcRnP1r1NAsJ2Ai7RUQwhRpSTs+OehoaE0a+Ybv8ztdjNnzpwq6V0uFwCtW7fWSpQUReGHH36o8byqelwnF50Ok8mkVf2ZzWYsFosWSMXExPjt27dvX4QQ1QZclYFkpalTp56TgKu2x5QuXfUayKmqSteuXXn11VcBX7Hvjh07+Pe//83tt9+upTvxg7U2gwyemKa69Cc7ztNPP82jjz6qLRcVFREfH3/qi5IkqQqvW2X36nSCw63Et/Y1tm/XvyEel0q7AQ0JCDad4gj+9mUW8/XaFP67KZWCMjcobowhmwiJWYVDSUcA0YU6pu5tR6usJhhju6LreOzHniHcTEDXWAI6RWIIOTttuzwuFzlHkn0la2lHfSVtR1MpyEjD6/HQf/zddB15HQCWwCAtiAsMjyAstgFhDRr6ArW4hkQlNtGOGxwRSa+xN5+VPJ5vXq+X7OxsCgoKKCgoID8/n9LSUi3wSkpKYsCAAQA4HA5ee+21Go/VunVrLZDT6/Xs37+/xrRu97HG9DqdjhYtWqDX67XArPKvxWKp0uHt4Ycfxmw2n7QqsdIVV1xxyjTH50OSzoV6DeRiY2Np3bq137pWrVrx/fffA2i/fjIyMoiNjdXSZGVlaaV0MTExuFwu8vPz/UrlsrKy6N27t5amugae2dnZVUr7KpnN5iptBiRJqhu308vOP9LYtPgIpQVOohKCaNgq1Ndw2mqgx6gmpz5IhXKXl5+3pjF7XQobDucDoOiLCWu4Hp19FU61CAfQNSuMBw71I9LbHH1oIgRWHMCgYuscS0DXGEzxQadV8iZUlaKc7IrOBqlENGpMo7btAV8p2lfPPlrtfnqjEVd5mbYc3jCe22a8RWhcA22Ij4uRy+XSgrTKR1RUFB07dgR8wdn7779f4/7HNzyv/LzV6/V+wVbl3+NHIdDpdFx33XUYjcYqgZnZbMZg8P9qu/nm2gfCJ5akSdKFrl4DuT59+rBnzx6/dXv37iUhIQGAxo0bExMTw+LFi+nUqRPg++BYtmyZ9sutS5cuGI1GFi9erBWlp6ens337dl5/3dcjq1evXhQWFrJ27Vq6d/dVV6xZs4bCwkIt2JMk6exxlnvY9nsqW35NwVHiKx2x2U007x7j68RQh1kJth8tZPa6I/xvUxrFFUOCGCyZNGq8nnxlNW7hxuDRMTGlN8Ozu2GxJqEE+z7ahFAxxeoIGtQSa6twFEPdSkXKS4rZOP8nX+B2NIX89DQ8bpe2vcOQEVogFxrXAFtIaEWpWgPC4uIrStkaEBQRiU53rIRHbzBqw0lcyDwej9YjsrIdl9Pp5PPPP6egoIDSanrGtmzZUgvkAgICsNvtBAQEEBoaSkhICIGBgVrQdfyPb51Ox7PPPovRWLsp7zt06HBmFydJl4h6DeQeeeQRevfuzauvvsq4ceNYu3YtH374oTZEiKIoTJ06lVdffZVmzZrRrFkzXn31VQICArjlllsAsNvt3H333Tz22GOEh4cTFhbG448/Trt27bRerK1atWLYsGFMnDiRDz74APANPzJy5EjZY1WSzrIdK46y8vv9uBy+0XODIyx0HppAy56x6I21C6SKHW5+2pLG7LUpbDta2XtPEBuTQmjsKlIcm8gW0KI0nnvTBtPc0QadIeDYDOaiAFv3BgQPbYs+8OTVtkXZWRzavIGclGTy0o7SsFUbbdR/BYXV33/tl15vMBASE0dYXEOimxxr+G6yWLn3gy9qdX0XGq/Xy5YtW/yqQAsKCigu9nVEadmyJTfd5Buw1mQykZWVpVVfms1mQkJCtECtQYMG2nEVReGRRx6pdT5qG8RJknRMvQZy3bp144cffuDpp5/mpZdeonHjxrz11lt+Y+Q88cQTlJeXc//992sDAv/yyy9+PWrefPNNDAYD48aN0wYEnjlzpl8bh6+++oopU6ZovVtHjRrFu+++e/4uVpIuE9ZAEy6Hl9BYG12GJdCsaxQ6/akDOCEEm1IKmL32CD9vTafM5QsEjQYvHVoeosS8lKNlBzEX27klbwjX5V1BIBW9/QygOgsxBBUTOrYn1vZ9az6PqpK2dzcHN63j4MZ15BxJ9tt+fFsmS2Agna8eTVBYOGEN4gmNa4A9MvqCG3i2JqqqUlxcrAVmxwdqkZGRjBzp67Wq0+mYP38+Hk/VmROMRqPfa6IoCjfeeCM2m42QkJAqvSglSTq/6n1mh4vFpT6goCSdieM7DglVcGRnHo1ah9VqHLiCMhc/bDrK7LUp7Mk8NkZa4yhBs6bb2VO2kNLyInoXd+Tq/F60KWuOUjEXo/C68Obuwto2hPA7RmAIC632HF6PG73BV9qjer28N/EWbcBcRdER16Ilsc1aEt4gnsiExhdFtSf4ArXS0lItUNPr9dqsN0II/vrXv9Y4PEZMTAz33nuvtvzTTz+h0+kICQnRHqGhoQQEBJzzsfIk6Vy61L+/5VyrkiSdkfQDhSyfvYcR93cgMNQ3BVVC2/CT7iOEYM2hPGavPcL87Rm4PL4hIMwGHQPaginsD9ZkLqYktSETCofTv6gLZlHR+UgBT85eRNk+7Nd0IWTMRHQndEwSQpB3NIUDG9ZyaNN6SvJyueufH6IoCjq9npa9++MsK6VJ524kduisTZV0MVi2bBmZmZlkZ2eTn5/vV4oWGxurBXKKohAUFITb7cZut/tVf4aEhBAe7v8/GjVq1Hm9DkmSzg4ZyEmSdNr2b8hiyWc78XpU1vx0gEETWp80fU6Jk+8rJqw/mHOsoXzL2CCuaFtIincehw7vZnBqDyYUPk2M+9hAqWppNu6U1eiDigifMJbAK+9EOa7Kz+N2k7pzGwc3ruPgxrUUZvn3VM9PP0pYnK/n4+B77udC5PV6ycvLIzs7m6ysLLKzs9Hr9drMNgBbt24lNzdXW1YUheDgYEJDQ6v0wr/zzjuxWq1y6AtJuoTJQE6SpDoTQrB5SQor/7sfBCS2j6DfTdV3HFJVwR/7c5i97giLd2bi9vpac9hMekZ2iKJRo32sTv0PRduCGFPYgzblx4aKEO5y3EfX40lZhbVjArEv3EVA587VnmfFV5+xccFP2rLeYCC+bQeadOpKk87dsEfFVLtffThxDMuFCxdy8OBBcnNz8Xq9fmnNZrNf+h49euDxeIiKiiIsLAy73V7jmGc2m63a9ZIkXTpkICdJUp2oXpUV3+xj+7KjALQb0JArxjVDd0J7uIxCB9+uT2HO+hRS88u19R3iQ7i2cwhO80r2bPyRkD0tmF58Nybha8MmhIo3ayfuI6vw5uzAPupqwl79J+YmTRCqSsaBfRzcuJaDG9fRf/zdxLduB0Djjl3Yu/oPGnfuRpNO3WjUrkO9j9GmqioFBQVa6Vrl37KyMr8Bx3Nzc8nKygJ8nQsiIyOJjIwkKiqKyMhIv0CucgglSZIkkIGcJEl14HZ6+eXj7SRvywUF+lzflA6D4o91dBCC3/Zk8Z81R1i6Owu1oitVsMXAdZ0aMKCtjt0HFlP2ZxF98zsx0nush7pamoHr0B94UtegmAShN91E6G1/QwQFcnjbZg7+MpdDm9ZTWpCv7XNw4zotkEto34lJ/55VLw3zK3uHHj9J+c8//8zmzZur7QkKUFpaqpWY9e7dm65duxIVFYXdbpdVoZIk1ZoM5CRJqjVVFRTnOdAbdVx1Z2uSOh+bw7iwzM1T/93Kgu3H5i/unhjGjd0aEh+cwZ4/fkf3eRjXOI9VjXqFA++RNbgPrkAtPIIhNpbIqfcSMvYG9IE28tKO8vk9t+A9LhgyWqwkduhEk87dadyxi7ZeOQ/BjxCCwsJCv9K1yr9ut5unnnpKmyxdr9fj8XjQ6/VERERopWuVf48ftqNx48bnPO+SJF2aZCAnSVKtma0GRjzQgdICJzFNjpU+bTicz5SvN3G0oByjXuH2XomM6xhD7u4NlPz6O9F58cThG4nfixePOwXvpgV407eC8GJs0RwxcSpHjTqyrEb6BPpKqkJjYrEEBmE0W2jSpTtNOnWjYes22lAi54oQguLiYrKyskhISNAGqp0/fz7r1q2rdh+dTkd+fr42nWDPnj3p1q0boaGhtZq3U5Ik6XTIQE6SpJNK3ZNPfnop7Qb4enwGhVkICvOVOqmq4IPlB/nbL3vwqoKE8AD+0a8R7h274d+pNPJagUQA8s05WDN34v7zB3CX4tLrKOrWgdxGDUhNO4Jz8VwAAuwh9B57M4pOh6LTcfsb72INCj5nVaZCCI4cOUJ6erpfKVvl+GuTJk0iLi4O8E1TpdPpCA8P9ytdq+x4cHzAdvz0U5IkSeeKDOQkSarRntXpLP1iN6pXEBIVQHzrMG1bdrGTR7/ZzIp9OQBc1zaGmx3ZRP+QBvjGZcs1FuCwZBC++U8M29bgBtDr2dmrE4fLixHOIthXBIA1KJjGHbvQpEt3X+P+ivMEBB8r+TsXli5dyooVK6qsVxSF8PBwXK5jc6t26tSJLl26VJmUXZIkqb7ITyNJkqoQQrB+fjJr5x4CoGmXKGKbHQuo/tiXw9Q5m8kpcWIx6pjeK4KW6zMILwtGRWVT6G6i1QJCFv9CQXEBm4MDaBVgJfz6sYRNmED28sUk/+87Ihsl+qpMO3cjpmlzv4nlz5Xc3Fx0Op1WYtamTRvWrFlDkyZN/ErZIiIiqgRsJtPJ522VJEk63+QUXbV0qU/xIUmVvF6V37/aw+6V6QB0GtKIXtcmoegU3F6VNxfv5d/LDiAEtIgK5P/iSmi6JQCDMJBrKKDAvRLnhpVkGnTkBFlRKzohjHrgMZr1GwhAcV4OQlUJjoiqMR9nk6qqHDx4kDVr1rBv3z46dOjAddddp213uVwySJOkS9Sl/v0tS+QkSdI4yz0s/GAbqbvzURTod3ML2vZrAEBqfhkPz97MhsO+4T/GdwxmSEomjTf7ZhPYGXwAx7aF7PMWQ3iQdsygsAiadOlOSEKi37rzcj1OJ5s3b2bt2rV+syG4XC6/sdlkECdJ0sVKBnKSJGmSt2STujsfg1nP0HvakNjOF3At3J7BE99tocjhIchs4Il2DjpvLsHuicapuDjQJo2Q739ghckLikJUZAzNr7yKJl17EBGfUC9juy1fvpw//vhDa+NmMpno1KkT3bt3rzLPqCRJ0sVKBnKSJGla9IylKNdBYrsIIhsF4XB7eXX+Lj5fdRiAjg2N3KGk03V9EwCOBmQTcmU4Tf7yJe7DR2jeuAEt7nuA5qOuO9lpzglVVQH8BtN1uVyEh4fTo0cPOnTogNlsPu/5kiRJOpdkG7lautTr2KXLV8ruPCLjg7DY/MdmO5BdwoP/2cSudF+v0jvalTJkv0Kjct+cpftCDrJ3/xJ67D+COSMLY4MGNPrkY0yJiec1/w6HQ6s+HTRoEG3atAF8Myekp6fTpEkTOVOCJF3GLvXvb1kiJ0mXse3Lj7J89l7imtq55qGO6I2+gOe7Dam88L/tlLm8hNlUJselMHh7C8zCRLG+lL3qBvZvWgXAAZ2XTs2aEf/xxxijz0/nBYCcnBzWrl3L5s2bterTTZs2aYGczWajadOm5y0/kiRJ9UEGcpJ0GRKqYPX/DrBx0REAgsItoECJ08MLP27nv5uOAtCrcR435Tvoss83n2m6KZ11h36k3FWEXlVpnp5Hy4aNSfjgffT2czveG/iGRdm3bx9r1qzhwIED2vqIiAi6d+9Ohw4dznkeJEmSLiQykJOky4zH7WXprF3sW58FQPdrGtP16kR2pBXx0NebOJRTik7n4pZm+xl7oCURnhA8eNntWs+OQ78DEFlcRtuUbCJ69aLhP/+J7rh5Q88lRVFYvnw5qampADRv3pwePXrQpEmTeulQIUmSVN9kICdJlxFHiZv5728lfX8hOp3CwNtb0qJHDLNWJvPq/N24vCqx4RncbshhxJ6e6NBREFhKUWwuO375HavZQss9ycQUlmK/5hriXn0FxXju5j3Nzs5m3bp1DBgwgICAAAD69OnDkSNH6NatG2FhYac4giRJ0qVNBnKSdBn55dMdpO8vxGQ1MHxyWwIbBTLpiw0s3pkJiocrkrZw59HGtHD0BqC4NbS+6Sq8wkPJztXELFyK0asSOn480U8/hXIOOhGoqsq+fftYu3atVn1qt9vp06cPAK1ataJVq1Zn/bySJEkXIxnISdJlpM/Ypiz+dCdX3dWagy4XD/9zBWmFDszWDG6I2MvthwYToFpwCgd7xAaG3fp/KEDOX2YQP28JAJEPTyH83nvPelWmw+Fg06ZNrF27lvz8fG19ixYtiI+PP6vnkiRJulTIQE6SLnGlBU5sIb7x08LjAhn7VFfeX36AN5fsw6t6SGywlnuKwxiQMhKAbGcqqzJ/wkk5HXbtQHzyGcULFoKiEPPC84TefPNZz6PL5eKtt97C4XAAYLFY6Ny5M926ddPmRJUkSZKqkoGcJF3CtvyawqofDjDyoQ40bBFKVpGDR77ZzJ/7c9GZshgQt4YHjg4l1h2BKlR2FPzBroLVxLVsxaDb7qZ8xuuUrlwJRiMNXn+N4OHDz0q+VFUlNTWVRo0aAb5ZF5o1a0ZGRgY9evSgffv2ctosSZKkWpCBnCRdglRV8Oe3+9j6m69355EduezHzWPfbCG31EFgxEpuVQS3JN+EHj0lngJWZ82lRF/I4IkP0KpTN1Lvux/H1q0oAQE0fOdtAivaqJ2J8vJyrfq0oKCA+++/n6go39hzI0eOxGQyyd6nkiRJdSADOUm6xLidXhZ/uoNDW3IA6HFtExarZXzw2ToUYy4tEhYzNXsg7cqaAZChHGFl6vc07tGdsXdMwuxwcuT2CbgOHEBvtxP/4QdYz3B8tqysLNasWcPWrVtxu92Ar/o0NzdXC+Tk9FmSJEl1JwM5SbqElBW5mPevLWQdLkZv0NHphiRe3n6EzSn5GEPWcJXtKA+l3EqQasNrUIm4rgXmyHhCs5uS1KUHzoMHSb77Hjzp6RhiYmj0yceYk5JOOz8FBQX873//49ChQ9q6qKgoevToQbt27WT1qSRJ0hmSgZwkXSLKilx899p6inMdWGxGQofGcc9vOynx5BAR/xOTizoy/OidAJSaS0l6qD+GCCs2ILJRIuXbtpMyaRLe/HxMjRvT6JOPMcbF1Tkfqqpqc5vabDYyMzNRFIUWLVrQo0cPEhMTZfWpJEnSWSIDOUm6RFiDjMQm2VF0CvtaWPjL0l0Y7BvpGLOJp1JvpYEnGiEEuwpXkx2STtOQwdq+patWkfrAg6hlZVjatiX+ww8w1HGwXSGE1v5t0qRJ6HQ6jEYjY8aMISIigpCQkLN8xZIkSZIM5CTpIidUgaJTUBSFRkMb8s+vN7Nj12ECGvzADa4Y7kyeggEDZZ5i1ucvoumovgwa8Sh6g+/tX7RwEWn/938It5uAXj1p+M676ANtdcqD0+lk3rx5bN26FYDk5GSaNGkCICeulyRJOodkICdJFykhBBsWHCYntZghd7fhu41HeeGn7XgsW4hP+JUnj95AB6dvBoTU0r1kRB3l6sefIiQmVjtG/pxvyJg2DYQgaMgQ4v72Bro6tlvLzMzk22+/JScnB0VRuPLKK0lMTDyLVypJkiTVRAZyknQR8npVlv1nD7v+TAfgWdc6vk47giXmf/TVu3n08FRCvcF4hYftpX/SeFwfevS9S2ubJoQg94MPyX7rLQBCxo0j5sUXUPT6WudBCMHmzZuZN28eHo+HoKAgxo4dS0JCwlm/XkmSJKl6MpCTpIuMq9zDwo+2k7IzDxTYEA7LCv4gtPH/eCB9CMPK+gNgiA7A2xUGdniIgGC7tr9QVbJee528WbMACJ88mcipD9e5A8Jvv/3G8uXLAUhKSmLMmDHYbHWrkpUkSZLOzNmf8boOpk2bhqIofo+YmBht+x133FFle8+ePf2O4XQ6eeihh4iIiMBmszFq1ChSU1P90uTn5zN+/Hjsdjt2u53x48dTUFBwPi5Rks6qknwH//3bBl8Qp1f4X1AJf0Z+QQf7L3y870EtiAvsHUf0g51I6NvFP4hzu0l/+mktiIt66kmiHpl6Wr1IW7dujclkYtCgQdx6660yiJMkSaoH9V4i16ZNG5YsWaIt60+o2hk2bBifffaZtnziuFNTp05l7ty5zJ49m/DwcB577DFGjhzJhg0btGPdcsstpKamsnDhQgAmTZrE+PHjmTt37rm6LEk663JSi/n5nS2UFrpwGxXm2PdS1OhLJqd0YYxzPAadEae3jLL2XhqOqjr2m1peztGpj1CybBno9cS+8jIh115b6/MLIcjOztYG8I2JieHhhx+WAZwkSVI9qvdAzmAw+JXCnchsNte4vbCwkE8++YQvvviCwYN9Qyl8+eWXxMfHs2TJEoYOHcquXbtYuHAhq1evpkePHgB89NFH9OrViz179tCiRYuzf1GSdA64nSplJW4KjCo/xP9MpHk9f919O0mmVqCDfLKIvqsjSa2qBnHeoiJS7ruf8g0bUMxmGrz1JkEDB9b63C6Xi3nz5rFt2zbuvPNO4uPjAWQQJ0mSVM/qtWoVYN++fcTFxdG4cWNuuukmDh486Lf9999/JyoqiubNmzNx4kSysrK0bRs2bMDtdjNkyBBtXVxcHG3btmXlypUArFq1CrvdrgVxAD179sRut2tpquN0OikqKvJ7SFJ98aqCOYcy+TbkMN+1foMhxTn8M+VpkkytUIWXkqRyWr88mqhqgjh3VhaHx99O+YYN6IKCaPTpJ3UK4jIzM/nwww/ZsmULQggyMjLO5qVJkiRJZ6BeS+R69OjB559/TvPmzcnMzOTll1+md+/e7Nixg/DwcIYPH84NN9xAQkIChw4d4vnnn+fKK69kw4YNmM1mMjIyMJlMhIaG+h03Ojpa+7LJyMjQqoKOFxUVddIvpBkzZjB9+vSze8GSVAdCCNbNSya4SRDPr9jJlpJvsDb9g/E5IxjnHorOoODQlRFxW2satY6v9hiuI0c4cvc9uFNS0EdG0Ojjj7HUshRa9kqVJEm68NVrIDd8+HDtebt27ejVqxdJSUnMmjWLRx99lBtvvFHb3rZtW7p27UpCQgLz5s1jzJgxNR5XCOHXeLu6htwnpjnR008/zaOPPqotFxUVadVJknQ+rPnfQTYsPEyp3kNy87forHq55/CjtHQ09iVoZqbJbb3RmasfMsSxezdH7pmINycHY3w8jT79BFMt7+HKqtQtW7YAvl6p1113HYGBgWfl2iRJkqSzo97byB3PZrPRrl079u3bV+322NhYEhIStO0xMTG4XC7y8/P9SuWysrLo3bu3liYzM7PKsbKzs4mOjq4xL2azGbPZfCaXI0mnbe+6DDYsPIwQgoOBX/LIjtb0DBmGSWdGsRgIHdOUgPaRNe5ftn49Kffdj1pcjLllSxp99CGGyJrTn2j79u1s2bIFRVEYOHAgV1xxhTZ/qiRJknThuKA+mZ1OJ7t27SI2Nrba7bm5uaSkpGjbu3TpgtFoZPHixVqa9PR0tm/frgVyvXr1orCwkLVr12pp1qxZQ2FhoZZGki4kmclF/DprF0Ito8g7i9tKe9MvbLQviIs1Ez2100mDuOKlv3Hk7ntQi4uxdulCwuez6hTEAXTq1IkuXbowYcIE+vXrJ4M4SZKkC5QihBD1dfLHH3+ca665hkaNGpGVlcXLL7/MsmXL2LZtG+Hh4UybNo3rr7+e2NhYkpOTeeaZZzhy5Ai7du0iKCgIgPvuu4+ff/6ZmTNnEhYWxuOPP05ubq7f8CPDhw8nLS2NDz74APANP5KQkFCn4UeKioqw2+0UFhYSHBx89l8MSQJKC5x8M2MdpQVl4Pofg8OGEWgMQSAIGhSP/cpEFH3NTQIKfvyR9GefA6+XwAEDaPDmP9BZrac8r8vlYtmyZfTr10+WREuSdEm51L+/67VqNTU1lZtvvpmcnBwiIyPp2bMnq1evJiEhgfLycrZt28bnn39OQUEBsbGxDBw4kDlz5mhBHMCbb76JwWBg3LhxlJeXM2jQIGbOnOk3Ht1XX33FlClTtN6to0aN4t133z3v1ytJJ+Nxe5n//jZKC5w4XAsZHjqYQGMIBOmJuq0t5oSTfwDlfjaTrNdeA8A+ejSxL/8FxWg85XmPnyu1uLj4pO1PJUmSpAtLvZbIXUwu9Yheqn+OUjdfvLGewtS19DSbSAxqi2qBBo/1QB9U80T2Qgiy33yL3A8/BCDsjjuIeuL/UGpRHbpp0yatV2pgYCBjx46VE95LknRJudS/vy+ozg6SdDlLL3fxtm0R1zctJ7FgJAJB9O3tTx7Eeb1kTJtOwbffAhD56KOET7znlFNuyV6pkiRJlwYZyElSPSvJd2IINDDp63kkBW7g9iOPAGAfmoi5SUiN+6lOJ2mP/x/FixeDTkfMtBcJHTfulOfLzc3l66+/JicnR/ZKlSRJusjJQE6S6lFuWgnfv76B/EgvMaX/YYr+TkzCiLllKEH9ax7zzVtSSuqDD1K2ejWK0Ujc3/5G8NAhNaY/ntlsxuFwyKpUSZKkS4AM5CSpnjhK3Mx/byuucg/evd/xQPA1xNoiwW4kfFwLFF311aOevDxSJk7CsWMHuoAAGr73L2w9e570XB6PB4PB93YPDAzk5ptvxm63y6pUSZKki5ysS5GkeuD1qiz8aBtFOQ7KXH/QzhRDQ1tzVEUQdVsbdAHV9zZ1p6Vx+JZbcezYgT40lEazZp0yiMvKyuKDDz5g27Zt2roGDRrIIE6SJOkSIAM5SaoHf36zj6N7CnC59xLlTaNDWH8AwkY1xRQfVO0+zv37Sb75FlzJyRhiY0n46ius7dqe9DybN2/mo48+Ijs7m99//x2v13vWr0WSJEmqP7JqVZLOs+3Lj7Jt2VG8nmx0jqX0jr0DnaLH1C4MW8/qZzUp37KFlEmT8RYWYkpKotEnH2OMianxHC6Xi/nz57N582YAmjRpwpgxY/zGV5QkSZIufjKQk6TzqDjPwYo5exFqGaXl3zM4fCQBhiDUMD0RY1tUO2xIyR9/kjplCqKsDEuH9sS//z6G4+YWPlFWVhbffvst2dnZKIrCgAED6Nu3r+yVKkmSdAmSn+ySdB4FhVnoelMzDpuO0D6oI7EBjfHqVWJv74DOXPV3VdH8+aTcdx+irAxbnz4kfPrpSYO44uJirSo1MDCQ22+/nf79+8sgTpIk6RIlS+Qk6Txye1VmbN+Ptekm2mXcBkD4dS0wxtiqpC2cN4+0x/8PhCD46uHE/fWvKKaaBwcGCAoKomvXrmRmZjJmzBjZoUGSJOkSJwM5STrHhCpY/b8DtBvQkPdWHSCz9Ac+yL8OHTr0nUII7Fq1rVv5li2kP/0MCEHIuHHEvPgCSg3t27KysjCZTISEhAAwePBgFEWRpXCSJEmXARnISdI5tmbuQTYuOsKm39ZSlvcjLzW+mhBvEK4IaDymdZX07vR0Uh58EOFyEThw4EmDuM2bNzNv3jyio6O588470ev1skODJEnSZUQGcpJ0Du1bl8mGBYcR3iKKs//LFfaetHAn4TZ4iL+jJ4rRP+hSy8pIeeABvNk5mJs3J+6NN6oN4k7slWoymXC5XFit1vNxWZIkSdIFQgZyknSOZB0u4tfPdyGEmxLnTyRYGtIypAcA4Te0whjhH3QJVSXtyadw7tyFPiyM+H+/hz6wats52StVkiRJqiQDOUk6B0oLncz/9zY8Li9u72JCvE56xIwAwNPVRnCHqu3ist95h+LFi1GMRhq++w7GBg2qpKmsSnW73QQGBnL99dfTuHHjc349kiRJ0oVJBnKSdJZ53F4WvL+N0gInim4DFO6jd+xtmHQWiiNdtLy2T5V9Cuf+TO6/3wcg5i8vEdC5c5U0Xq+XVatW4Xa7tQF+Za9USZKky5sM5CTpLHOWefC4VHRKCmV5y+kSPoQwcwxlRidN77oCxeBfBVq+ZQvpzz4LQPjEewi59tpqj6vX67nhhhvYuXMnV1xxhaxKlSRJkuSAwJJ0ttnsZq57rBNbmzUiIKo9TYM7oaISOq45xlCLX1p3ejopD1T0UL3ySiIfecRv++bNm/nzzz+15YiICPr16yeDOEmSJAmQJXKSdNY4StxYAo0AfLL2MHtKtvNo4EAQUNxNT6N2jfzSq2VlpNz/AN6cHMwtWhD3+usoxwVoq1atYtGiRSiKQmJiIg2qaTMnSZIkXd5kICdJZ0Feein/fWMDHQY3IMu9l/fWFvKBPgarsJAZWUTn6672S+/rofokzl270IeHE//ev/x6qB48eJBffvkFgCuuuILY2Njzej2SJEnSxUEGcpJ0hhylbua/txVnmYeNC/5DSdYa/tpoJAn6NhQaS2hzzwAUneK3T/bbb1O8eImvh+o7/j1UCwoK+PbbbxFC0KFDB6688koURTnxtJIkSZIk28hJ0plQvSqLPtpOYXY5RsMeSrLW0CSoAx31bfDixTauMRa7/1hwhXPnkvv+BwDEvvwXAjp30ra53W5mz55NeXk5sbGxjBw5UgZxkiRJUo1kICdJZ+CP7/aTujsfRcmgOHchoaZoOkYMAuBo13IS27X0S1++eTPpzz4HQPjEidhHj9a2CSGYO3cuGRkZBAQEcOONN2I0Gs/fxUiSJEkXHRnISdJp2rHiKNt+S0WoxbjL52LEQLfY0RgxciAynZ7XDfVL705LI+XBh3w9VAcNIvKRqX7bhRCEhYWh0+m44YYbCAkJOX8XI0mSJF2UZBs5SToNhdllLJ+9FyHc6PULcZYX0y12DKG6ULJN+XS4exA6/bHfSWpp6bEeqi1b0uD11/x6qALodDoGDBhAhw4dCA0NPd+XJEmSJF2EZImcJJ0Ge2QA/W5qTlxSKaX5qTQJ6UETSzPcihvl+mhCQsK1tEJVOfrkkzh379Z6qOpsx9rNlZSU4Ha7tWUZxEmSJEm1JUvkJOk0tenbgPX6TuzKzOYGYwsAtndK55oOt/qly37rn5Qs+fXYHKpxcdo2t9vNf/7zH4QQ3HjjjbI6VZIkSaoTWSInSbUkVMG6eYdwlLgRQrD9aCHv/ryLBy3x6NGzKWIfQ6+/wW+fwp9+IvfDDwGIfeVlAjod66EqhGD+/PmkpaVRUFCAEOK8Xo8kSZJ08ZMlcpJUS2vnHWL9vGR2/bEDhV+ZY72CZ/UQ6Y4i1ZxFhwlXYtKbtPRlmzYd66E6aRL2UaP8jrd+/Xo2bdqEoiiMHTtWVqlKkiRJdSZL5CSpFvZvyGL9vGSE6qAs7weyDu7j1uyjdHVH4VBcFIww0SgyUUvvPnqU1AcfQrjdBA4eROTUh/2Od+TIERYsWADAoEGDSEpKOp+XI0mSJF0iZCAnSaeQfaSYX2fuRAgVi3UppQWZBNta0sfWAYBl7bYztNtILb3WQzU319dD9TX/HqpFRUV88803qKpK69at6dOnz3m/JkmSJOnSIAM5STqJsiIX8/+9FY9bJcC2nsKM3RgNIfSOHoIOHcsiNnLD2Du12ReEqnL0iSdx7tmDPiKiSg9VgJ9//pmSkhKioqIYPXq0nLlBkiRJOm31GshNmzYNRVH8HjExMdp2IQTTpk0jLi4Oq9XKgAED2LFjh98xnE4nDz30EBEREdhsNkaNGkVqaqpfmvz8fMaPH4/dbsdutzN+/HgKCgrOxyVKFzGvW2XB+1spyXdituwn/+gfKOho13AsdmHlgCWFljf3IdgUrO2T/eZblPz6K4rJRMN33vbroVpp+PDhNG7cmBtvvBGz2Xw+L0mSJEm6xNR7iVybNm1IT0/XHtu2bdO2vf766/zjH//g3XffZd26dcTExHDVVVdRXFyspZk6dSo//PADs2fP5o8//qCkpISRI0fi9Xq1NLfccgubN29m4cKFLFy4kM2bNzN+/Pjzep3Sxae0yElZkQu9IZuSbF97tqjY62imhFOqK+fAoBK6NOiqpS/83//I/egjoGoP1eOFhoYyYcIEwsPDq90uSZIkSbVV771WDQaDXylcJSEEb731Fs8++yxjxowBYNasWURHR/Of//yHyZMnU1hYyCeffMIXX3zB4MGDAfjyyy+Jj49nyZIlDB06lF27drFw4UJWr15Njx49APjoo4/o1asXe/bsoUWLFufvYqWLSnC4lRue6kb6gYbM+3wVlEYxwNIUgO9bLueJPtO0tGUbN5H+3PMAhE+ejP2aa/yOlZqaSklJCS1b+s+9KkmSJElnot5L5Pbt20dcXByNGzfmpptu4uDBgwAcOnSIjIwMhgwZoqU1m83079+flStXArBhwwbcbrdfmri4ONq2baulWbVqFXa7XQviAHr27IndbtfSVMfpdFJUVOT3kC4PLodHe24JNOKNDeNH6xCGhfruobkRyxl/3WQMOt/vIPfRo6Q+5OuhGnTVYCIfnuJ3vOLiYubMmcPs2bOrNA2QJEmSpDNRr4Fcjx49+Pzzz1m0aBEfffQRGRkZ9O7dm9zcXDIyMgCIjo722yc6OlrblpGRgclkqjL+1olpoqKiqpw7KipKS1OdGTNmaG3q7HY78fHxZ3St0sUhP6OUL59fxY4VR0ndvQOH28vUrzbyjNdAoDCx03qQhqPbEx/kux/8eqi2akXcCT1UPR4P3377LcXFxURERNC0adP6ujRJkiTpElSvVavDhw/Xnrdr145evXqRlJTErFmz6NmzJ0CVHn1CiFP28jsxTXXpT3Wcp59+mkcffVRbLioqksHcJc5R6mbee1spL3az9n//JS9lEeWt+jPM0YHmWCnUl7C21yGeazYBqOih+n9P+PdQDQjwO+Yvv/zCkSNHMJvN3HTTTbJzgyRJknRW1XvV6vFsNhvt2rVj3759Wru5E0vNsrKytFK6mJgYXC4X+fn5J02TmZlZ5VzZ2dlVSvuOZzabCQ4O9ntIly7Vq/LLx9spzCrHZDlKfupi34a8UK7FiorKp0lzeXjAY9o+2W++ScnSpSgmE/H/ehdjbKzfMTdt2sTatWsBGDNmDBEREefteiRJkqTLwwUVyDmdTnbt2kVsbCyNGzcmJiaGxYsXa9tdLhfLli2jd+/eAHTp0gWj0eiXJj09ne3bt2tpevXqRWFhofaFCrBmzRoKCwu1NJK08vsDpOzKR6crxFHwM0Ko5IV248YAX1XonIhFjB85iSBTEAAFP/5I7kcfAxD7yitYO3TwO97Ro0f5+eefARgwYIDsVCNJkiSdE/Vatfr4449zzTXX0KhRI7Kysnj55ZcpKipiwoQJKIrC1KlTefXVV2nWrBnNmjXj1VdfJSAggFtuuQUAu93O3XffzWOPPUZ4eDhhYWE8/vjjtGvXTuvF2qpVK4YNG8bEiRP54IMPAJg0aRIjR46UX64SADv/TGPL0hSEcKJnPmXlpZQGNWJ4yBVY0bMpYDeBg+LpGNUR8PVQzXj+BQDC752M/ZqRVY65b98+vF4vzZs3p1+/fufzciRJkqTLSL0Gcqmpqdx8883k5OQQGRlJz549Wb16NQkJCQA88cQTlJeXc//995Ofn0+PHj345ZdfCAoK0o7x5ptvYjAYGDduHOXl5QwaNIiZM2ei1+u1NF999RVTpkzRereOGjWKd9999/xerHRByksvZdl/9iCEis22jLyj6ajWYBLCRpOIiRxDAQs6rOftDv8CKudQfbCih+pVRE6ZUu1xBwwYoHVu0OkuqIJvSZIk6RKiCCFEfWfiYlBUVITdbqewsFC2l7uECCHYsPAwh7dsInnTJyh6A3mx47nXGIUXL9OSPuSVm/9GXGAc3pJSDt9yC869ezG3bkXil19W6dygqqoM3CRJki4gl/r3d70PCCxJ9UlRFLoOT6TL0ARWL7Xz1fyDPGr0dUr4LOp/jBs8nrjAOITXS9oTT+Dcuxd9ZATx/6raQ3XLli1s3ryZsWPHYjthflVJkiRJOhdk0YF02RGqYPOSI34D/3qE4J3dJm43JWFCx6rALbi7BTC8sW+IHL8equ9W7aGanp7O3LlzOXToEJs2bTqv1yNJkiRdvmSJnHTZWTfvEOvmJbN75QGsASu58s7JvLs6i5GpLuIwkmHMYU7zpczq+QUABT/8SO7HnwAQ++qrVXqolpaWMnv2bDweD02bNpW9oSVJkqTzRgZy0mVl/4Ys1s1LRggvZXk/c3THATKy8yhShtEPC27FzV8bfsaLA1/BZrRRtnEjGS9U9FC9717sI0f4Hc/r9fLdd99RWFhIaGgo119/vWwjJ0mSJJ038htHumxkpxTz66ydCCEIDllDfvoBjNYA1uuvYDK+GRc+iP6Oob2uoV1kO1ypR0l9sGIO1SFDiHzooSrH/PXXXzl06BBGo5GbbroJq9V6vi9LkiRJuozJQE66LJQVuZj/3lY8LpXgsH1kJ68GReFA0mjuV8MwoPBb8DoyW5RzV9u78JaUknrffXjz8jC3bkXcX2f4zaEKsH37dlauXAnAtddee9KZQiRJkiTpXJBVq9JlYfWPByjJd2INzCQneT4ASpcRDMiNIxIdR0zpfNZoLv/p9zU6AamPP45z3z5fD9X33qvSQxUgMjKSsLAwWrVqRZs2bc73JUmSJEmSDOSkS5/b6eXg5mxUbwGlOf9DqCrhHXpxJDeJbhhwKE5eafgRT13xNDG2GDLfeIOS339HMZuJ/9e/MFbM+3ui6OhoJk2ahMlkOs9XJEmSJEk+smpVuuQZzXpund6TntcmYY+MIDwxiZXO7txR0S7u7div6dq2N0MSh1Dw3x/I++RTAGJffQVr+/Z+x1JVlYyMDG3ZYrHIzg2SJElSvZHfQNJlwRpkotuIDtww/XXWx17DQ04TOhTmh6zgUHwWT3Z7krING0h/8UUAIu6/D/uIEVWO89tvv/Hhhx+yfv36830JkiRJklSFrFqVLmllRS4Cgo9VfX7yZypXZ+gJRcd+8xE+jv2Bz/rNxJCZT/KDD4HbTdDQoUQ8+GCVY+3cuZMVK1YAYDabz9s1SJIkSVJNZCAnXbI8Li+z/7IGg2EfjVrp0Xe4AsevR2iPmRJdOa82/Jj7utxPS3Mih++4GW9+PpbWravtoZqVlcUPP/wAQK9evWjXrl19XJIkSZIk+ZGBnHTJ2rUynbIiF57S38k+mIdji4cJxuYAvBn7OY0Skri95W2kPTgF5759GCIjafjev9CdMBZceXk5s2fPxu1207hxYwYPHlwflyNJkiRJVchATrokqV6VzUuOoHqS8brzCLBEMsLQFIDvw5awM/Iw3/X5jpx/vKX1UG34XtUeqqqq8t///pe8vDzsdjtjx45Fr9fXxyVJkiRJUhUykJMuSfs3ZlGU40B4fBPYJ4QPJ1DRscN6gM+ifuQfvd/EvPBP0j/19VCNm/Eq1mqqS3fu3Mm+ffswGAzceOON2Gy283odkiRJknQyMpCTLjlCCDYuOoLqzcXjSMZqCKaN0VfS9l7MHK5vMZaeWcEcnjYVgIj77yf46qurPVabNm0oLCwkMDCQuLi483UJkiRJklQrMpCTLjkpO/PITS1BdW8GIDbiSvSKwuaA3RBt4uHYm0m9+XZfD9Vhw4h48IEaj6UoCn369DlPOZckSZKkupHjyEmXnN2rMxBqOaprJwbFSGuLr23cD2FLebrtVHIeesTXQ7VNG+JmvFqlh6rD4WDRokU4nc76yL4kSZIk1ZoskZMuOYPuaEV0op7UHf0o3qNiU/SkmjIpbOAg7vXZlO7bX2MPVVVV+fHHH9m9ezdZWVmMHz++nq5CkiRJkk5NBnLSJUev19FhUEtK4sMJP7oDgB/DljJ1TQSly5cf66EaHV1l3xUrVrB79270ej0DBw4831mXJEmSpDqRVavSJcNR6sbrVbXlPxfup6Gip0hfgpq9lfAf/wAg7q8zqu2hunfvXn777TcARowYQcOGDc9PxiVJkiTpNMkSOemSsfL7/aTsyiMqfg+R3bvQKs0BGFho/4Mb57oACJ88meDhw6vsm5uby/fffw9A165d6dy58/nMuiRJkiSdFhnISZeEknwne9Zk4HFmkHPwv4SsXsXQuNtx4yEvYxkB2cXoIyKIuHdylX2dTiezZ8/G6XQSHx/PsGHD6uEKJEmSJKnuZNWqdEnY8usRVK/AZNoOQFzYAABWBG1g9OoyACIm3lOlcwNAQUEB5eXlBAYGMm7cOAwG+ftGkiRJujjIbyzpoucodbNjRRpCLaWsaAdWfSCtzPEApGUvoVteOYbISEJuvLHa/aOjo5k0aRIlJSUEBQWdz6xLkiRJ0hmRgZx00du+/ChupxeTaRdOr4cGkf0wKArbrHsZ+HsaAOGTJqGzWPz283g8WulbcHAwwcHB5z3vkiRJknQmZNWqdFHzuLxsXZqCEB6cpZvQK0Za2FoBcKhgCcEFbgzR0YSMu8Fvv7y8PN5++222b99eH9mWJEmSpLNCBnLSRe3IjjzKi92YTIdwlRXTMKQLgYqBNGMWnf7YBkD45EnozGZtH5fLxZw5cygqKmLVqlWoqlrT4SVJkiTpgiYDOemi1qRTJGOf6krLXrEYg0NJCuoGwN6SXwkp9mKIjSVk7FgtvRCCn376iczMTGw2GzfeeCM6nXwbSJIkSRcn2UZOuuhFJwYTnTiKP7LDiUxXKdGV0XTlKgAi7r0XncmkpV21ahXbt29Hp9Mxbtw42S5OkiRJuqjJogjpoiSEoLzEpS3vySimbbpveU/5cuyFDoxxcYRcd62W5uDBgyxevBiAYcOGkZCQcF7zLEmSJElnmyyRky5KKTvzmP/+Npp3t9GgqZOf9li4GQMevMSuXgpAxP33oVSUxhUUFPDtt98ihKBDhw5069atPrMvSZIkSWfFBVMiN2PGDBRFYerUqdq6O+64A0VR/B49e/b028/pdPLQQw8RERGBzWZj1KhRpKam+qXJz89n/Pjx2O127HY748ePp6Cg4DxclXSubPzlMF63Ssae5fz81l9ps3k3AAddGwjKL8AYH4999GgtvdFopHPnziQkJDBy5EgURamvrEuSJEnSWXNBBHLr1q3jww8/pH379lW2DRs2jPT0dO0xf/58v+1Tp07lhx9+YPbs2fzxxx+UlJQwcuRIvF6vluaWW25h8+bNLFy4kIULF7J582bGjx9/zq9LOjcyDxVxdE8BiuIhN3UtFn0grc2NAAjZ4Ks6jbjvPhSjUdvHZrNx1VVXcccdd2A8br0kSZIkXczqvWq1pKSEW2+9lY8++oiXX365ynaz2UxMTEy1+xYWFvLJJ5/wxRdfMHjwYAC+/PJL4uPjWbJkCUOHDmXXrl0sXLiQ1atX06NHDwA++ugjevXqxZ49e2jRosW5uzjpnNj4y2EAwmNSSN1ZSouIqzAoCmmefQRlHsbYqBH2UddUu68siZMkSZIuJfVeIvfAAw8wYsQILRA70e+//05UVBTNmzdn4sSJZGVlads2bNiA2+1myJAh2rq4uDjatm3LypUrAV8vRbvdrgVxAD179sRut2tpquN0OikqKvJ7SPUvP6OUg5uzEUJQnLMGvWKgqa0dAJatvtK4yAfuR6mYsSErK4tZs2aRnJxcX1mWJEmSpHOmXkvkZs+ezcaNG1m3bl2124cPH84NN9xAQkIChw4d4vnnn+fKK69kw4YNmM1mMjIyMJlMhIaG+u0XHR1NRkYGABkZGURFRVU5dlRUlJamOjNmzGD69OlncHXSubBp8REQEBmfT+q2NBoHdyVQZ6TIm43xyBYMiQkEjxihpV+2bBmHDh3CYrGQmJhYfxmXJEmSpHOg3gK5lJQUHn74YX755RcsJ8yBWenG4yY5b9u2LV27diUhIYF58+YxZsyYGo8thPCrQquuOu3ENCd6+umnefTRR7XloqIi4uPjT3pN0rnlcng4sMFXIut1bgSgcYivpFXs/RUFQdSDD/mVxu3YsQOA/v3710OOJUmSJOncqreq1Q0bNpCVlUWXLl0wGAwYDAaWLVvG22+/jcFg8OusUCk2NpaEhAT27dsHQExMDC6Xi/z8fL90WVlZREdHa2kyMzOrHCs7O1tLUx2z2axNpC4nVL8wmCwGbpnek77jGqMoHmKsTYjUB+JUy9Ad+BNd40YEDx+mpV++fDkArVq1qrGdpSRJkiRdzOotkBs0aBDbtm1j8+bN2qNr167ceuutbN68Gb1eX2Wf3NxcUlJSiI2NBaBLly4YjUZtkFeA9PR0tm/fTu/evQHo1asXhYWFrF27VkuzZs0aCgsLtTTSxcNmN9P+ysZ0vO857FG+Dg2e5BXgcRI7ZSpKxX2TnZ3N9u3bAVkaJ0mSJF266q1qNSgoiLZt2/qts9lshIeH07ZtW0pKSpg2bRrXX389sbGxJCcn88wzzxAREcF1110HgN1u5+677+axxx4jPDycsLAwHn/8cdq1a6d1nmjVqhXDhg1j4sSJfPDBBwBMmjSJkSNHyh6rF5HyEhfWwGNTbf3vl/3cprOgCi9i32+ojeMJGjpU275s2TIAWrZsKUvjJEmSpEtWvQ8/UhO9Xs+2bdv4/PPPKSgoIDY2loEDBzJnzhyCgoK0dG+++SYGg4Fx48ZRXl7OoEGDmDlzpl+J3ldffcWUKVO03q2jRo3i3XffPe/XJJ0ej8vL19PXEN4gkPYDTRiioojYXQAYcaVvRJTn0XDqCyg6XwFzTk6OLI2TJEmSLguKEELUdyYuBkVFRdjtdgoLC2V7ufNs+7JUln29F1uoEVfRZ7gLXYxoMAmDolD6+6uUhzrpMG+JFsh5vV62bt1KRkYGw4cPr+fcS5IkSfXpUv/+rlMbuddff53y8nJtefny5TidTm25uLiY+++//+zlTrrsqV7VN+QI0KBpPsU5WSQGdcSgKLjy9qMWJJPw6FNaEAe+0txOnTrJIE6SJEm65NUpkHv66acpLi7WlkeOHMnRo0e15bKyMq0dmiSdDQc2ZVOU48BiM5Jz+E/fAMBBnQDw7l9CceMoQgZfpaVXVbW+sipJkiRJ512dArkTa2Flrax0Lgkh2LjINx1Xk46QtmcHjQLbYtOZ8Jbl4EnbRMOpj2njAebk5PDOO++wYcMGeW9KkiRJl4V6n6JLkmqSsiuPnJQSDCYdZfm+2T8ah/QCwH3gV3IbhxA75NicqsuXLyc/P589e/bIOVUlSZKky4IM5KQL1q6V6QA07xrMvjXLfQMAG4JR3eW4D/9JxIMP+pXGbdu2DYABAwbUV5YlSZIk6byq8/AjH3/8MYGBgQB4PB5mzpxJREQEgF/7OUk6U4PvaE2j1uG4HXtRhSAxxDeAs+fwCtIaGrjy6pu1tCtWrEAIQbNmzYiLi6uvLEuSJEnSeVWnQK5Ro0Z89NFH2nJMTAxffPFFlTSSdDboDTpa9Y4FYpm3V0dCMgih4jr4G+bn7tBK43Jzc9m6dSsgS+MkSZKky0udArnk5ORzlA1JOsZZ7sFo0qHT+2r+MwodhCe7ASOetI0ciCxh6OjJWvrly5drpXENGjSop1xLkiRJ0vl3wc7sIF2+Vn63j9Q9+VwxrhkhkS6+WVfINcIACrj2L8E99XoMet+tW1RUpJXGyVkcJEmSpMtNnTo7rFmzhgULFvit+/zzz2ncuDFRUVFMmjTJb4BgSaqr0gInu9dkUJTjoDj7EJ9OnUzM4uUYFQVv3gF2Bh1m0LVTtfTBwcHcdddd9O/fn4YNG9ZfxiVJkiSpHtQpkJs2bZpW+gGwbds27r77bgYPHsxTTz3F3LlzmTFjxlnPpHT52PJrCqpHENvUzuFtv6FXDHSwJAG+0ric2wYTZA7y2yc+Pp6BAwfWR3YlSZIkqV7VKZDbvHkzgwYN0pZnz55Njx49+Oijj3j00Ud5++23+eabb856JqXLg7PMzfYVvplCWvYMZN+aP0mwtcamt6CW5bLJuJmh1z6qpXe5XPWVVUmSJEm6INQpkMvPzyc6OlpbXrZsGcOGDdOWu3XrRkpKytnLnXRZ2b78KG6Hl7A4GzmHVyJUlSYhPQFwHVzKvjGdaBTs6xWdl5fH3//+dxYtWiSn5ZIkSZIuW3UK5KKjozl06BDgKw3ZuHEjvXr10rYXFxdjNBrPbg6ly4LH5WXLr74fAR0GRrPt10XEWBsTbgxFuB1sUv9g8KgHtfQrVqzA6XSSlZWFTifHtZYkSZIuT3X6Bhw2bBhPPfUUK1as4OmnnyYgIIC+fftq27du3UpSUtJZz6R06Tu8PZfyYjeBYWZc5TtxlJaQZO8BgPvIH/wxPIruMd0BX8nwli1bADlunCRJknR5q9PwIy+//DJjxoyhf//+BAYGMnPmTEwmk7b9008/ZciQIWc9k9KlL6lzFGMe74yzzMPaH/5OsDGChtYEhFDZ7P6N/sOmagMAr1ixAlVVSUpKIj4+vp5zLknnh6qqsl2oJFXDaDSi1+vrOxv1pk6BXGRkJCtWrKCwsJDAwMAqL9y3335LUFBQDXtL0snFNg0BQB/7FOteWQiAJ30zP17h5sPGVwO+0rjNmzcDctw46fLhcrk4dOiQbA8qSTUICQkhJiZG+8F/OalTIHfXXXfVKt2nn356WpmRLj9CCJxlHiy2Y20rv1uZyhhTFADbypfQ9cqbsRgswLHSuCZNmsjp4KTLghCC9PR09Ho98fHxsk2oJB1HCEFZWRlZWVkAxMbG1nOOzr86BXIzZ84kISGBTp06IYQ4V3mSLiMpu/JY8P422l8ZT5dhcbiEHuOKA+gNoXjzDzGzyxHeb3kTAA6Hg+3btwOybZx0+fB4PJSVlREXF0dAQEB9Z0eSLjhWqxWArKwsoqKiLrtq1joFcvfeey+zZ8/m4MGD3HXXXdx2222EhYWdq7xJl4GNi47gcal4XF7++Ppztq1ax4igGwDYVbKEZr2HERXgK52zWCw8+OCD7Nq1S5bGSZcNr9cL4NceWZIkf5U/ctxu92UXyNWpjP69994jPT2dJ598krlz5xIfH8+4ceNYtGiRLKGT6iwzuYije/LR6RRa9wln++9LiPdGYjEGoJbl8V77zdzW6ja/fYKDg+nRo0c95ViS6s/l2PZHkmrrcn5/1Lmxhdls5uabb2bx4sXs3LmTNm3acP/995OQkEBJScm5yKN0idq06DAAzbpHk7x5BW5HOc2DuwFwoPg37O060C6yHQCFhYX1lk9JkiRJulCdUatZRVFQFAUhhOxNJf1/e/cdFsW1PnD8u0uvS2+CgIpKUSwkBo2Cxt5iNDGJlasxxV6viZWYqGkmlkRjx180UXPVJJZgB3tDMUSxixgFKwJKX/b3B5e9roCiogv4fp5nnseZOXPmnVlkX86cOeex3LmWwfnYGwAEtnTnWOR6nE09sTFxRJOXxfe199LTr2dB2Tt3mD17NsuXL5fhF4QQTyUsLIwuXbo8tExUVBQKhYI7d+48l5iEeBqPnchlZ2fzyy+/0KpVK2rVqkVcXBzff/89iYmJWFpaPosYRSV0bMsl0IBXXQdSk06Sev2atjUuMW0fadVtaFm1JQB79uxBrVaTl5cn/YSEqEAeljR5eXlpGwMKF3d3d539M2fOLPOYZs2aRUREhHY9NDSU4cOHl/l59C0sLEx7Xw0NDalatSofffQRKSkpOuUe9TmI8u+xXnYYOHAgK1eupGrVqvzrX/9i5cqV2NvbP6vYRCWVk5XH2ZiCV8UbtK7K7p+/wsrIHjeL6mg0+cyvvpN3avXGUGlIamoqR48eBeRNVSEqmylTpjBgwADt+vPopK5SqZ75OR6Um5url+kr27Zty9KlS8nLy+PkyZP069ePO3fu8Msvv+iU08fnIMrOY7XI/fjjj1hbW+Pt7U10dDQDBgyga9euRRYhHsbY1JAek1+h6ds+GJulc/nEX9SyDgLg2r3jxFe5x5s13wT+N26cl5cXXl5eeoxaCFHWrKyscHFx0S6Ojo6PXceoUaPo1KmTdn3mzJkoFAo2btyo3VarVi3mz58P6LYShoWFER0dzaxZs7StUQkJCdrjYmJiCAoKwtzcnMaNG3P69OlSxRQeHk69evVYsmQJ1apVw8TEBI1GQ2RkJK+++io2NjbY29vTsWNHzp8/rz2uW7duDBkyRLs+fHjBjDYnTpwACoaisbKyYvPmzaWKw8TEBBcXF9zd3WndujVvv/02W7ZsKVKuLD4HoT+Plcj16dOH5s2bY2Njg0qlKnER4lEsbU2o29wDOzd3LAPfwNvCH4Bl7jvoXL0zKhMVqampHDt2DJBZHIQopNFoyMjJ08tSHkcnCA0N1f7BBxAdHY2DgwPR0dEAJCcnc+bMmWJ/h8yaNYvg4GAGDBhAUlISSUlJOtP+jR8/nhkzZnDkyBEMDQ1LPSg+wLlz51i9ejVr1qzRzkZz7949Ro4cyeHDh9m+fTtKpZI33nhDG3toaChRUVHaOh68lsOHD5OVlUWTJk0e6x4BXLhwgcjISL20DIpn67EHBBbiaWTdy9WZxeFudh5+J2+idK/JnaxLRLmc53ffb4H/9Y3z9PTE29tbXyELUa5k5qrxm1S6FpmydnJKG8yNH+tr46HGjh3LhAkTtOvTpk1j6NChj1VHs2bNSE9P59ixYzRo0IDdu3czevRo1q5dC8DOnTtxdnamdu3aRY5VqVQYGxtjbm6Oi4tLkf1Tp07VJoAff/wxHTp0ICsrC1NT00fGlZOTw08//aTTutWtWzedMosXL8bJyYmTJ08SEBBAaGgow4YN4+bNmxgYGHDixAkmT55MVFQUAwcOJCoqioYNG5a6P/qGDRuwtLRErVaTlZUFwLffflukXFl8DkJ/yu5/pBCPkJer5pdPD+LgYUmLPr6YWxnx58rtvOJQ0Bq32mk7Tao0oZpNNfLy8jh37hwgfeOEqKzGjBlDWFiYdt3BweGx61CpVNSrV4+oqCiMjIxQKpV88MEHTJ48mfT0dKKiop64Rb9u3brafxdO/XT9+vVSDUju6elZ5BHl+fPnmThxIgcOHODmzZvalrjExEQCAgIICAjA3t6e6OhojIyMCAwMpHPnzsyePRvgsa+lefPmzJs3j4yMDBYtWsSZM2d0Ht0WKovPQeiPJHLiuTm1P5mMtBxuX72HkamCpaMG4nTTDmWVdmTmpbDe7RizfecAYGhoyKBBgzh9+rT0jRPiPmZGBpyc0kZv5y5LDg4O1KhR46nrKXwkaWxsTEhICLa2tvj7+7N3716ioqKe+K3U+x9DFg44W9qhtiwsLIps69SpEx4eHixcuBA3Nzfy8/MJCAjQDqukUCho1qyZ9lpCQ0MJCAhArVYTFxfHvn37HutaLCwstPd39uzZNG/enE8//ZTPPvtMp1xZfQ5CPySRE89Ffr6GY1sTAajXsirnj+wn5eo/NHIrGGJkg00U7ioPmlT5X98PQ0ND/P399RKvEOWVQqEo08eblUFoaCiLFy/G0NCQli0LfqeEhISwcuXKEvvHFTI2NtZOg/Ys3bp1i/j4eObPn0/Tpk2Bgu4jDwoNDWXBggUYGxszZcoUFAoFTZs25ZtvviEzM/OJ+scVmjx5Mu3ateOjjz7Czc3tiesR5ctTDQgsRGmdP3qdtBuZmFgY4veqG8c2/YGTaVVUJs7k5Wez2m0vvXx7oVQouXLlynP5xSqEePZSU1OJjY3VWRITE8v0HIX95NavX6/tihEaGsry5ctxdHTEz8+vxGO9vLw4ePAgCQkJOo87y5qtrS329vYsWLCAc+fOsWPHDkaOHFmkXGhoKCdOnCAuLk6b8IWGhrJixQoaNGiAtbX1E8cQGhqKv78/06ZNe+I6RPlTbhK56dOno1AodJqNNRoN4eHhuLm5YWZmpv0Bv192djZDhgzBwcEBCwsLOnfuzD///KNTJiUlhd69e2vfqu3du7eM2P0caTQajm0p+MVdN9SdG5fOknTuNLX+OwBwlOUBFGYGdKreibS0NJYsWcIPP/zAvXv39Bm2EKIMREVFUb9+fZ1l0qRJZXoOlUpF/fr1sbOz0yZtTZs2JT8//5F9ykaPHo2BgQF+fn44OjqWeZJZSKlUsnLlSmJiYggICGDEiBF8/fXXRcoFBATg4OBAYGCgNmkLCQlBrVaXydv7I0eOZOHChVy+fPmp6xLlg0JTDt4nP3z4MN27d8fa2prmzZtrR/P+8ssvmTp1KhEREdSsWZPPP/+cXbt2cfr0aaysrAD46KOPWL9+PREREdjb2zNq1Chu375NTEyMdlDDdu3a8c8//7BgwQIA3n//fby8vFi/fn2pY0xLS0OlKhgS42n+InoRXT55mz9mx2JorKTPtMZsXzyTq4f/pr37ADSafAZUn0LrBh0YGTSSP//8k4MHD2oHnX6RJ0IWAiArK4uLFy/i7e1dqrclhXgRPez/SWX//tZ7i9zdu3fp2bMnCxcuxNbWVrtdo9Ewc+ZMxo8fT9euXQkICGDZsmVkZGTw888/AwVN9osXL2bGjBm0bNmS+vXrs3z5cuLi4ti2bRsA8fHxREZGsmjRIoKDgwkODmbhwoVs2LCh1IM7iqdzYs9VAPyauJGXk8aZ/Xuo+d8BgI+Z/k2S6U3eqf0O6enpxMTEAAV/gUoSJ4QQQjyc3hO5QYMG0aFDB20H1UIXL14kOTmZ1q1ba7eZmJgQEhLCvn37gIJRt3Nzc3XKuLm5ERAQoC2zf/9+VCoVjRo10pZ55ZVXUKlU2jLFyc7OJi0tTWcRT6blv3wJ7VmLeq2qErt5I0YKY7wtAwBY6byd16q+hpulG3v37iUvLw8PDw+qVaum56iFEOXBihUrsLS0LHbR18tQ/v7+Jca0YsWKZ37+wrnNS1qe1eNhUT7p9dWnlStXcvToUQ4fPlxkX3JyMgDOzs46252dnbl06ZK2jLGxsU5LXmGZwuOTk5NxcnIqUr+Tk5O2THGmT5/Op59++ngXJIplaGSAf9MqALhbOWCkrIWB0ohLRv8QZ36W0b4TSE9P58iRI0BBh1xpjRNCAHTu3FnnD/H76WuWgk2bNpGbm1vsvge/s54FNzc37WwRJe0XLw69JXKXL19m2LBhbNmy5aH9Ph78QtdoNI/8kn+wTHHlH1XPJ598ovNGUVpams7ULeLRcjLzMDQxQKksuM8ajYZr85fhVq03AKsdt+Hn4Ed9p/ps3ryZvLw83N3dpTVOCKFlZWWl7RNdXnh6eur1/IaGhjLum9DS26PVmJgYrl+/TsOGDTE0NMTQ0JDo6Ghmz56NoaGh9q+aB1vNrl+/rt3n4uJCTk4OKSkpDy1z7dq1Iue/cePGQ/9yMjExwdraWmcRj2fvmnP8HH6AxBO3AEjbsxf7LAuUZjbcMUhjl3UMvXx7AQWfB0hrnBBCCPE49JbIvfbaa8TFxemMLRQUFETPnj2JjY2lWrVquLi4sHXrVu0xOTk5REdH07hxYwAaNmyIkZGRTpmkpCT+/vtvbZng4GBSU1M5dOiQtszBgwdJTU3VlhFl715qNqcOJJF6PRNDEwMu/X2cdbO+ROnTCoDf7HZiY25LW6+2KBQKevXqRf/+/alevbqeIxdCCCEqDr09WrWysiIgIEBnm4WFBfb29trtw4cPZ9q0afj4+ODj48O0adMwNzenR48eQMHYQf3792fUqFHY29tjZ2fH6NGjqVOnjvblCV9fX9q2bcuAAQOYP38+UDD8SMeOHalVq9ZzvOIXy/Htl8nP0+BaXYVbDRv+MzYcpYU7JtYe5Chy2WSzhz61wjAyKOjjolAo5NG1EEII8ZjK9Twv//73v8nMzGTgwIGkpKTQqFEjtmzZotNf4rvvvsPQ0JDu3buTmZnJa6+9RkREhHYMOSh462no0KHat1s7d+7M999//9yv50WRnZnHiV1XAKjfxpOUpKtcuniOV527ArBVtZ8s4xzeqvkWZ8+epUqVKpibm+szZCGEEKJCKhcDAlcElX1AwbIUE5nAgd8uYOdmwTsTXmbLtMkkxF+kvfsAFAoF71UL5yX/xowNHMvMmTNRKpV88MEH2Nvb6zt0IcodGRBYiEeTAYGFKCN5uWqO7yiYIq1+66rkZGVw6q+j1FQ1RKFQcMjyb66YXKeXby/27dtHXl4eDg4O2NnZ6TlyIcSLICwsjC5dujy0TFRUFAqFQqZyFBWCJHKiTCX8dYvMtBwsbU3wecmZowvnoTQwxduyDgBr7bbxkstLVDGuoh0/UN5UFaJyeljS5OXlhUKh0Fnc3d119hdO11iWZs2aRUREhHY9NDRUZ47vyiQ5OZkhQ4ZQrVo1TExM8PDwoFOnTmzfvp2cnBwcHBz4/PPPiz12+vTpODg4kJOT89BzRERE6HyGzs7OdOrUqci86GFhYUU+b4VCwblz58rsel9UksiJMlW9gSNdRtan2Ts1UWjyOb4nimpWgRgqjUkwvcpx8zPa1rjc3Fzc3Nzw8fHRd9hCCD2YMmUKSUlJ2uXYsWPP/JwqlQobG5tnfp77lTR48LOUkJBAw4YN2bFjB1999RVxcXFERkbSvHlzBg0ahLGxMb169SIiIoLielgtXbqU3r17Y2xs/MhzWVtbk5SUxNWrV9m4cSP37t2jQ4cORZLAtm3b6nzeSUlJeHt7l9k1v6gkkRNlSqFQUKWmLd6BjqRt24p30m1qWTUAYI3tVqpYVSHINkjbGidzqgrx4rKyssLFxUW7ODo6PnYdo0aNolOnTtr1mTNnolAo2Lhxo3ZbrVq1tKMW3N9KGBYWRnR0NLNmzdK2ECUkJGiPi4mJISgoCHNzcxo3blzq+bnDw8OpV68eS5Ys0baGaTQaIiMjefXVV7GxscHe3p6OHTty/vx57XHdunVjyJAh2vXhw4ejUCi0rVt5eXlYWVmxefPmR8YwcODAgu4shw7x5ptvUrNmTfz9/Rk5ciQHDhwAoH///pw/f55du3bpHLt7927Onj1L//79S3W9CoUCFxcXXF1dCQoKYsSIEVy6dKnI/TIxMdH5vF1cXHReTBRPRhI5USY0Gg3ZmXn/W8/P59YP86hm6oOpkTV3DO8SbR1DT9+eHDxwkNzcXFxdXalZs6YeoxaiAtJoIOeefpZy+G5caGgou3fvJj8/H4Do6GgcHByIjo4GCh4vnjlzhpCQkCLHzpo1i+DgYAYMGKBtIbp/GKTx48czY8YMjhw5gqGhIf369St1XOfOnWP16tWsWbNGO53WvXv3GDlyJIcPH2b79u0olUreeOMNbeyhoaFERUVp63jwWg4fPkxWVhZNmjR56Llv375NZGQkgwYNwsLCosj+whbJOnXq8NJLL7F06VKd/UuWLOHll18uMkRYady5c4eff/4Z0N8Uai+acj38iKg4/jmVwp/z4wh8zYNGnaqRvmULOWfPYho6EYDfbXdgbGLCGzXeYE/iHpRKpfSNE+JJ5GbAND3NpTnuKhgXTQye1NixY5kwYYJ2fdq0aQwdOvSx6mjWrBnp6ekcO3aMBg0asHv3bkaPHs3atWsB2LlzJ87OztSuXbvIsSqVCmNjY8zNzXFxcSmyf+rUqdoE8OOPP6ZDhw5kZWWV6u3hnJwcfvrpJ51Wxm7duumUWbx4MU5OTpw8eZKAgABCQ0MZNmwYN2/exMDAgBMnTjB58mSioqIYOHAgUVFRNGzYEEtLy4ee+9y5c2g0mmKv+UH9+vVj9OjRfP/991haWnL37l1+/fVXvv3220ceWyg1NRVLS0s0Gg0ZGRlAwTBfD55/w4YNOrG3a9eOX3/9tdTnEcWTFjlRJo5uvkRulprsjDw0ajV7fvyem96BGNl4kKPIY5PNbrrU6IKlsSVt27Zl2LBh0honxAtuzJgxOrP79OnT57HrUKlU1KtXj6ioKOLi4rTDGR0/fpz09HSioqKKbY0rjbp162r/7erqChRMAVkanp6eRR4Vnz9/nh49elCtWjWsra21/cMSExMBCAgIwN7enujoaHbv3k1gYCCdO3fWtsiV9loK+7yV5g/ld999l/z8fFatWgXAqlWr0Gg0vPPOO6W6Tih4RB4bG0tMTAw//vgj1atX58cffyxSrnnz5jqf9+zZs0t9DlEyaZETT+36pTT+OZWCQqmgXksPrv/2G6eN8gn2KJiOa5tqP+mGGfSo3UN7jEql0le4QlRsRuYFLWP6OncZcnBwKJPJ3wsfSRobGxMSEoKtrS3+/v7s3buXqKioJ34r9f5Hg4VJUeFj0Ecp7pFmp06d8PDwYOHChbi5uZGfn09AQID2pQCFQkGzZs201xIaGkpAQABqtZq4uDj27dtXqmvx8fFBoVAQHx//yKFWVCoVb775JkuXLqV///4sXbqUN99887HGW1MqldrPsXbt2iQnJ/P2228X6XtnYWFRJp+30CUtcuKpHd1c8Nekz0tOWNkYc/T/FmNubEcV84K3UX+z20mIewipl1K5du2aPkMVouJTKAoeb+pjKaddIQr7ye3YsYPQ0FCg4EWqlStXltg/rpCxsTFqtfqZx3jr1i3i4+OZMGECr732Gr6+vqSkpBQpV5iURkVFabufNG3alG+++YbMzMxH9o8DsLOzo02bNvzwww/cu3evyP4Hx8fr378/e/fuZcOGDezdu7fULzmUZMSIERw/fpx169Y9VT2idCSRE0/lzrUMzh8reNTQoLUnd9av54IyHx/rggGAYyzjuWySTPdq3Vm/fj3z5s3jn3/+0XPUQojnJTU1VedxWmxsrPZRYlkp7Ce3fv16bSIXGhrK8uXLcXR0xM/Pr8Rjvby8OHjwIAkJCdy8ebPULW6Py9bWFnt7exYsWMC5c+fYsWMHI0eOLFIuNDSUEydOEBcXR9OmTbXbVqxYQYMGDUrdUjZ37lzUajUvv/wya9as4ezZs8THxzN79myCg4N1yoaEhFCjRg369OlDjRo1aNas2VNdq7W1Ne+99x6TJ08udmgTUbYkkRNP5di2RNCAZx177JxN+WvRj6hNLfC2KuhbssZ2KzVsapB9PpucnBxcXFyoUqWKnqMWQjwvUVFR1K9fX2eZNGlSmZ5DpVJRv3597OzstElb06ZNyc/Pf2SfstGjR2NgYICfnx+Ojo5lnmQWUiqVrFy5kpiYGAICAhgxYgRff/11kXIBAQE4ODgQGBioTdpCQkJQq9WP1dfP29ubo0eP0rx5c0aNGkVAQACtWrVi+/btzJs3r0j5fv36kZKS8lhv5j7MsGHDiI+Pl5cZngOZa7WUKvtcbU8iJyuPpWP3kpet5o3RDTCPi2LN4u9xdmtGPbvmXDa9xvtenzIxaCLn/jhHTk4Ob7/9Nr6+vvoOXYgKQ+ZaFeLRXuS5VuVlB/HEjE0NeXfSy1w4dgNXTwuODJ5HqsqcptYNAfiP7RZsTW2xSbYhJyenxCEAhBBCCPFk5NGqeCrW9mbUa1mV1N9/Jz85mdoG1TA3tCbNMIOd1ofp6tWVI4eOADKnqhDi8a1YsQJLS8tiF39/f73E5O/vX2JMK1aseObnT0xMLPH8lpaWZfp4WN/XKh5NWuTEE8nJzMPYrODHR5OTw815P2KdlYPSqQUAv9vsQGMANVJrcCTnCM7OztSqVUufIQshKqDOnTvTqFGjYvfpa+aATZs2lTh/qrOz8zM/v5ubm3a2iJL2lxV9X6t4NEnkxGPLy1WzIvwATp7WNO9Vm+w/fyP3yhWy3OriampLrkLNRttdtPZqjbOZMxYWFoSEhKBUSgOwEOLxWFlZYWVlpe8wdHh6eur1/IaGhs9tPDZ9X6t4NEnkxGM7fSCZjNQcbl5Ox8gwn8T5P3LG2RZrvzdwBHaqDpFqeJdevr2o41iHwMBADA3lR00IIYQoa9JEIh7b37uuABD4mgd3f19HYuZdkty9qW5RMIXNGrtt1HOsRx3HOkDBgJvSGieEEEKUPfl2FY/lxuV0bl6+i9JQQc0Gdtz4cT4JjipqWgehVCg5bnmWRJMkWhm24uTJk89scE0hhBBCSCInHtOpfUkAeNd1JGvT71y/m0qWuZV2AODVtpFUMa3ClZgrrF69mrNnz+ozXCGEEKJSk0ROlJo6L58zhwrmSq0VZM+t+QWtcdWsAjFSGnPV9CZHLeJpTWuys7NxdHTEx8dHz1ELIYQQlZckcqLUEv66Sda9XCxUxlj9tYW01BSuW1vioyoYAHi1TSSWCkuyL2YDyJuqQohyJywsjC5dujy0TFRUFAqFosjk8kKUR/ItK0rN3deO0J61CGrjzu1Fi7hkr8LdsjYWhiruGmaxU3WYtsq2ZGdlP3KiaiFE5fewpMnLywuFQqGzuLu76+yfOXNmmcc0a9YsIiIitOuhoaEMHz68zM9THly+fJn+/fvj5uaGsbExnp6eDBs2jFu3bhUpe+LECbp3746joyMmJib4+PgwceJEMjIydMrd/7kZGBjg5uZG//79SUlJKVVMhUly4WJvb0+LFi3Yu3evTrnw8PAiPx8KhYJt27Y9+Q2ppCSRE6VmYmaIf9MquF6KQn3zJhozc3xULwEFAwDno8Hon4IBOqU1TgjxKFOmTCEpKUm7HDt27JmfU6VSYWNj88zPc7+SBtR9li5cuEBQUBBnzpzhl19+4dy5c/z4449s376d4OBgbt++rS174MABGjVqRE5ODhs3buTMmTNMmzaNZcuW0apVK3JycnTqLvzcEhMTWbFiBbt27WLo0KGPFd/p06dJSkoiKioKR0dHOnTowPXr13XK+Pv76/x8JCUl0axZsye/KZWUfNOKx6LJzyfl558BuObVEUcTN/IU+WywjaaFpgU52Tk4ODhIa5wQ4pGsrKxwcXHRLo6Ojo9dx6hRo+jUqZN2febMmSgUCjZu3KjdVqtWLebPnw/othKGhYURHR3NrFmztC0+CQkJ2uNiYmIICgrC3Nycxo0bc/r06VLFFB4eTr169ViyZAnVqlXDxMQEjUZDZGQkr776KjY2Ntjb29OxY0fOnz+vPa5bt24MGTJEuz58+HAUCgUnTpwAIC8vDysrKzZv3vzIGAYNGoSxsTFbtmwhJCSEqlWr0q5dO7Zt28aVK1cYP348ABqNhv79++Pr68vatWt5+eWX8fT05K233mL9+vXs37+f7777Tqfuws+tSpUqNG/enD59+nD06NFS3ZtCTk5OuLi4UKdOHSZMmEBqaioHDx7UKWNoaKjz8+Hi4oKxsfFjnedFIImceCSNRkPkgr+Ji/qHO7v2kXv5MvkWlqgsC5K1XTYx3DFMp6lfU9zc3KQ1TohnSKPRkJGboZdFo9Ho+/KLCA0NZffu3dqhjqKjo3FwcCA6OhqA5ORkzpw5Q0hISJFjZ82aRXBwMAMGDNC2+Hh4eGj3jx8/nhkzZnDkyBEMDQ3p169fqeM6d+4cq1evZs2aNdrptO7du8fIkSM5fPgw27dvR6lU8sYbb2hjDw0NJSoqSlvHg9dy+PBhsrKyaNKkyUPPffv2bTZv3szAgQMxMzPT2efi4kLPnj1ZtWoVGo2G2NhYTp48yciRI4v83g4MDKRly5b88ssvJZ7rypUrbNiwocRp1B4lIyODpUuXAvqbcq2ik+H2xSNdu5jG+aPXufT3TVrn/0GqmTEX/F7lVUXBX0a/2mzGy9qLzo06o2ikKJe/7IWoLDLzMmn085N9aT6tgz0OYm5kXmb1jR07lgkTJmjXp02b9tiP6Jo1a0Z6ejrHjh2jQYMG7N69m9GjR7N27VoAdu7cibOzM7Vr1y5yrEqlwtjYGHNzc1xcXIrsnzp1qjYB/Pjjj+nQoQNZWVmYmpo+Mq6cnBx++uknnVbGbt266ZRZvHgxTk5OnDx5koCAAEJDQxk2bBg3b97EwMCAEydOMHnyZKKiohg4cCBRUVE0bNgQS0vLh5777NmzaDQafH19i93v6+tLSkoKN27c4MyZM9ptJZXds2ePzrbCz02tVpOVlUWjRo349ttvH3lP7lfYHzIjo+APhIYNG/Laa6/plImLi9O5Vj8/Pw4dOvRY53kRSLOJeKT4vVcBqOZnTdbOLZxxscfZ0gMDhYITVhdJML1KT9+eKBVKFAqFtMYJIUplzJgxxMbGapc+ffo8dh0qlYp69eoRFRVFXFwcSqWSDz74gOPHj5Oenk5UVFSxrXGlUbduXe2/XV0LZq55sB9XSTw9PYs8Kj5//jw9evSgWrVqWFtb4+3tDUBiYiIAAQEB2NvbEx0dze7duwkMDKRz587aFrmnuZb7Ff6xrVAoSlX2wXKFn9tff/3F9u3bAejQoQNqtbrUMezevZujR4/yyy+/4OnpSURERJEWuVq1aun8fKxZs6bU9b9IpEVOPFRutpqzMQW/uKqk/8U9AwUpKhua/ncA4FU2m/C754dDkgNZXqX7S1UI8eTMDM042OPgows+o3OXJQcHhzKZ/L3wkaSxsTEhISHY2tri7+/P3r17iYqKeuK3Uu9PLAqTmdLOVmNhYVFkW6dOnfDw8GDhwoW4ubmRn59PQECA9mUChUJBs2bNtNcSGhpKQEAAarWauLg49u3bV6prqVGjBgqFgpMnTxb71vCpU6ewtbXFwcGBmjVrAnDy5Enq1atXbNkHxwO9/3Pz8fFh5syZBAcHs3PnTlq2bPnI+AC8vb2xsbGhZs2aZGVl8cYbb/D3339jYmKiLWNsbFwmPx+VnTSdiIe6cOw6uVlqrB1MMfzz/0i0V1HNqi5GShOumd0h1uwMfil+7Ineo22iF0I8OwqFAnMjc70spWnB0YfCfnI7duwgNDQUKHhzfuXKlSX2jytkbGz8WC1JT+rWrVvEx8czYcIEXnvtNe3jzQcVJqVRUVGEhoaiUCho2rQp33zzDZmZmY/sHwdgb29Pq1atmDt3LpmZmTr7kpOTWbFiBW+//TYKhYJ69epRu3ZtvvvuuyJJ6vHjx9m2bRvvvvvuQ89nYGAAUORcpdW7d2/y8/OZO3fuEx3/opNETjxU/H+n5Krmmk1OUjKX7VX4WDcAYLXqT6qnV0eTq8He3p6AgAB9hiqEKIdSU1N1Ho/FxsZqHyWWlcJ+cuvXr9cmcqGhoSxfvvyRY1p6eXlx8OBBEhISuHnz5jObH9rW1hZ7e3sWLFjAuXPn2LFjByNHjixSLjQ0lBMnThAXF0fTpk2121asWEGDBg2wtrYu1fm+//57srOzadOmDbt27eLy5ctERkbSqlUrqlSpwtSpU4GCPwwWLVrEyZMn6datG4cOHSIxMZFff/2VTp06ERwcXKQVMD09neTkZJKSkjh06BBjxozBwcGBxo0bP9G9USqVDB8+nC+++KLIuHXi0SSREyVKvZHJlTN3QAEOcRu4amOJo2UNLI1syTTIIcrqCL7pBR1kmzVrJn3jhBBFREVFUb9+fZ1l0qRJZXoOlUpF/fr1sbOz0yZtTZs2JT8//5F9ykaPHo2BgQF+fn44OjqWeZJZSKlUsnLlSmJiYggICGDEiBF8/fXXRcoFBATg4OBAYGCgNmkLCQlBrVY/Vv84Hx8fjhw5QvXq1Xn77bepXr0677//Ps2bN2f//v3Y2dlpyzZp0oQDBw5gYGBA+/btqVGjBp988gl9+/Zl69atOo87ASZNmoSrqytubm507NgRCwsLtm7dir29/RPeHejXrx+5ubl8//33T1zHi0qh0eMrhvPmzWPevHnacXv8/f2ZNGkS7dq1AwrG+Fm2bJnOMY0aNeLAgQPa9ezsbEaPHs0vv/xCZmYmr732GnPnztUZITwlJYWhQ4fyxx9/ANC5c2fmzJnzWINCpqWloVKpSE1NLfVfRBXd7av3OPD7efLuZVJjST/2VnelnncfXM29+c1+JzuNj1MnpQ52dnYMGjRI27wuhCg7WVlZXLx4EW9vb+mDKkQJHvb/pLJ/f+u1CcXd3Z0vvviCI0eOcOTIEVq0aMHrr7+uHfwQoG3btjqjOm/atEmnjuHDh7Nu3TpWrlzJnj17uHv3Lh07dtTp89CjRw9iY2OJjIwkMjKS2NhYevfu/dyus6Kyc7Og/Ud1aWR8mBwFGFi64WruTT4a1ltHa1vjQkJCJIkTQggh9ECviVynTp1o3749NWvWpGbNmkydOhVLS0udFjcTExOdUZ3vbw5OTU1l8eLFzJgxg5YtW1K/fn2WL19OXFycdj62+Ph4IiMjWbRoEcHBwQQHB7Nw4UI2bNhQ6lG6X2SavDzS1vwHE3U+1nbtAThmfRrLLBsM8wyxs7OTvnFCiGdmxYoVWFpaFrv4+/vrJSZ/f/8SY1qxYsUzP39iYmKJ57e0tHxmj4dLo127diXGNW3aNL3FVZmVm+FH1Go1v/76K/fu3SM4OFi7PSoqCicnJ2xsbAgJCWHq1Kk4OTkBBdOn5Obm0rp1a215Nzc3AgIC2LdvH23atGH//v2oVCqdUadfeeUVVCoV+/bto1atWsXGk52dTXZ2tnY9LS2trC+5XDsXcx3HqlYo/9pH3rVr5Fg7UtfSDYA1qi1kWWcR4B6ATw0faY0TQjwznTt3LnHWAH3NBLBp06YS5091dnZ+5ud3c3PTzhZR0n59WbRoUYlvr97fECPKjt4Tubi4OIKDg8nKysLS0pJ169ZpO6u2a9eOt956C09PTy5evMjEiRNp0aIFMTExmJiYkJycjLGxMba2tjp1Ojs7k5ycDBS8al2Y+N3PyclJW6Y406dP59NPPy3DK604sjNy2RZxEnVuPqH5f5JhYsQV/64EKRQkmd7imMUphgYO5c26b+o7VCFEJWdlZYWVlZW+w9Dh6emp1/MbGhqW2/HVqlSpou8QXjh6f82wcOTmAwcO8NFHH9G3b19OnjwJwNtvv02HDh0ICAigU6dO/Pnnn5w5c0ZnMuTiPDgSdXFjHxU3WvX9PvnkE1JTU7XL5cuXn/AKK56zR66jzs3H1tEYdm/isLcrPnbVAFir2oqpoSlv1XxLz1EKIYQQQu8tcveP3BwUFMThw4eZNWsW8+fPL1LW1dUVT09Pzp49CxRM/puTk0NKSopOq9z169e149m4uLhw7dq1InXduHHjoU3gJiYmRV65flEUjh1XVZHATUszVDY1URnZkqnMId7wHzpmdCQnLQfkBTohhBBCr/TeIvcgjUaj0zftfrdu3eLy5cvaOe8aNmyIkZERW7du1ZZJSkri77//1iZywcHBpKam6ky0e/DgQVJTU5948MLK7PbVe1xPSEOpVGCzazmXHKzxsW4IQKT1bqqlVUdzVSOzOAghhBDlgF5b5MaNG0e7du3w8PAgPT2dlStXEhUVRWRkJHfv3iU8PJxu3brh6upKQkIC48aNw8HBgTfeeAMoGASyf//+jBo1Cnt7e+zs7Bg9ejR16tTRzvfm6+tL27ZtGTBggLaV7/3336djx44lvujwIovfX9Aa5+asJnvPFTID6uJqVvBYdY9FHL636mBsbExQUJA+wxRCCCEEek7krl27Ru/evUlKSkKlUlG3bl3tFCKZmZnExcXxf//3f9y5cwdXV1eaN2/OqlWrdDq+fvfddxgaGtK9e3ftgMARERE6b1KuWLGCoUOHat9u7dy5s4weXQy1Op/TBwteAHFN3E2ivTU1VA1RKBTEWMZjf6/gUXTDhg1lYFIhhBCiHNBrIrd48eIS95mZmbF58+ZH1mFqasqcOXOYM2dOiWXs7OxYvnz5E8X4IklJyiAvR42ZuQGmkWu46leNQKu6AGyy3IvrHW+USiWvvPKKniMVQgghBJTDPnJCfxzcLfnXV6/SxP4EKRYmuNsEYqw04arxTdQ5BeM1BQQEoFKp9BypEKIiCAsLQ6FQ8OGHHxbZN3DgQBQKBWFhYTplFQoFRkZGODs706pVK5YsWVJkInsvLy9mzpxZqhi8vLy09ZqZmVG7dm2+/vpr7p+dMiEhQVvm/qVXr15PfO1CPC+SyAkdhqhRbFyBU3oGHqqCl0H+UEVTJaNgbCB5QUQI8Tg8PDxYuXKlziCxWVlZ/PLLL1StWlWnbOGUjAkJCfz55580b96cYcOG0bFjR/Ly8p44hilTppCUlER8fDyjR49m3LhxLFiwoEi5bdu26UwJ+cMPPzzxOYV4XiSREwBkpueg0WhI37YN9e3bZHsE4WRkSaYyh52qg1j5WVG3bl1cXFz0HaoQogJp0KABVatWZe3atdpta9euxcPDg/r16+uULZySsUqVKjRo0IBx48bx+++/8+effxIREfHEMVhZWeHi4oKXlxfvvfcedevWZcuWLUXK2dvb60wJKU8fREWg93HkhP5pNBp+++4YmnwNAQlbUSoU3K3ZAQdgq2ofWSY5/KvTv7A3s9d3qEK88DQaDZoSpkB61hRmZg8dSL0k//rXv1i6dCk9e/YEYMmSJfTr14+oqKhHHtuiRQsCAwNZu3Yt77333mOf+34ajYbo6Gji4+Px8fF5qrqEKC8kkRPcSEzn9tV7GBgoyDm2i2N169L2v/OqrreNplP1TpLECVFOaDIzOd2goV7OXetoDApz88c+rnfv3nzyySfavmh79+7VDjdVGrVr1+avv/567PMWGjt2LBMmTCAnJ4fc3FxMTU0ZOnRokXKNGzdGqfzfg6rdu3cXaTUUoryRRE5oZ3JwM73JNWsjvG2DUCgUHDE7icedajQzakZ+fr7OLzghhCgtBwcHOnTowLJly9BoNHTo0AEHB4dSH/+oKRUfZcyYMYSFhXHjxg3Gjx9PixYtiu3vu2rVKnx9fbXrHh4eT3xOIZ4XSeRecHm5as4eLpjCzOH4b/zt4EBLq0AAdlrE4nbXjdjdsYQ0CNFnmEKI/1KYmVHraIzezv2k+vXrx+DBgwEe+yWC+Ph4vL29n/jcDg4O1KhRgxo1arBmzRpq1KjBK6+8oh04vpCHh0e5nYxeiJJIIveCuxh7k+yMPMxN88lNPYWjV1uMDUxJMrqJYVbBI5Tg4GCdAZaFEPqjUCie6PGmvrVt25acnBwA2rRpU+rjduzYQVxcHCNGjCiTOGxtbRkyZAijR4/m2LFjT9XSJ0R5IM/KXnDaKbnS/iLR/n/zqm6w3ItVnhUmJiY0aNBAnyEKISoBAwMD4uPjiY+PL/EPw+zsbJKTk7ly5QpHjx5l2rRpvP7663Ts2JE+ffqUWSyDBg3i9OnTrFmzpszqFEJfpEXuBZZ+O4vL8bcBsPjrNzR+/tgYO5KtyOFOfg62QFBQECYmJvoNVAhRKVhbWz90f2RkJK6urhgaGmJra0tgYCCzZ8+mb9++ZdpH19HRkd69exMeHk7Xrl3LrF4h9EGhuX94a1GitLQ0VCoVqampj/xlVFHk52v459Rtzkds4M6hBbjU+RceFrVYZx3NrZw8lEolw4cPrzTXK0RFlJWVxcWLF/H29pY5joUowcP+n1TG7+/7SYvcC0ypVOBezYLMqLnY5xthY14TgHPKa9hiT926dSvlD70QQghRWUgfuRdc2p+R5KeloajeGqVCQaz5ac6pLuDk6iTTcQkhyrUVK1ZgaWlZ7OLv76/v8IR4LqRF7gW1b805NIDtfzaiUBphWrUgaVtvG0X9OvUZ+OpA/QYohBCP0LlzZxo1alTsPiMjo+ccjRD6IYncCygnK4+46H/Iy8mn5uWrqBu0JsDAhOuGtzlgFcdqv4n6DlEIIR7JysoKKysrfYchhF7Jo9UX0LmY6+Tl5GNpkMFt03SqOL4CwB8W+2me3xxPc089RyiEEEKI0pBE7gV06r9jxzle2kG2a21sTZzJIIucXCU2iTacO3dOzxEKIYQQojQkkXvB3LmWQdK5VBRoyEs/Sg1VEACbLA9inG+MjY2NzlyDQgghhCi/JJF7wRTO5GCffYlbjva4W9QiHw3JmruATMclhBBCVCSSyL1A8vM1nD6QDIDZ5Ujc7F9GqVCy2/QvTNWmmJqZUr9+fT1HKYQQQojSkkTuBZKXraZ6fUcsDTJIM0qhunUgGjScNPwHgJdfehljY2M9RymEEEKI0pJE7gVibGZI4w5VaLR/MrWMqmNqYMEZw38wyjPFwMCAl19+Wd8hCiEqAYVC8dAlLCzsmZz33r17jB07lmrVqmFqaoqjoyOhoaFs2LBBWyY0NJThw4cXOTYiIgIbG5si2zMzM7G1tcXOzo7MzMwi+728vLTXZW5uTkBAAPPnzy9VvBERETr3xdnZmU6dOnHixAmdcmFhYcXeR3kxTYCMI/fCSduwAU1GBjZVQgDYZ30MtZUpL1V9CUtLSz1HJ4SoDJKSkrT/XrVqFZMmTeL06dPabWZmZjrlc3Nzy2QA3w8//JBDhw7x/fff4+fnx61bt9i3bx+3bt164jrXrFlDQEAAGo2GtWvX0rNnzyJlpkyZwoABA7h79y4RERF8+OGH2NjY8Pbbbz+yfmtra06fPo1Go+HKlSv8+9//pkOHDpw5c0bnCUnbtm1ZunSpzrGOjo5PfF2i8pAWuRfE5fjb/HP6NrdXrUJp642Zyp0cRS6b7ffwbvd3ad++vb5DFEJUEi4uLtpFpVKhUCi061lZWdjY2LB69WpCQ0MxNTVl+fLlACxduhRfX19MTU2pXbs2c+fO1an3ypUrvP3229ja2mJvb8/rr79OQkKCdv/69esZN24c7du3x8vLi4YNGzJkyBD69u37xNeyePFievXqRa9evVi8eHGxZaysrHBxcaFGjRp8/vnn+Pj48Ntvv5Wq/sJ74+rqSlBQECNGjODSpUs6iS+AiYmJzn11cXGRF9MEIIncC2P/uvP8/l0sxzPMyfJrC0C09RFqVKmFn70fCoVCzxEKIR5Hbra6xCUvV136sjmlK1vWxo4dy9ChQ4mPj6dNmzYsXLiQ8ePHM3XqVOLj45k2bRoTJ05k2bJlAGRkZNC8eXMsLS3ZtWsXe/bswdLSkrZt25KTkwMUJJCbNm0iPT29TGI8f/48+/fvp3v37nTv3p19+/Zx4cKFRx5nampKbm7uY5/vzp07/Pzzz4BMMSZKTx6tvgBu/pPOjcR0FORz1/weNg51ySCbo8oE3qzypr7DE0I8gQXDokvc5xlgT8fBgdr1JWN2k5eTX2xZNx8b3hjVQLv+f+P3kXW3aBIy6McWTxFtUcOHD6dr167a9c8++4wZM2Zot3l7e3Py5Enmz59P3759WblyJUqlkkWLFmn/8Fy6dCk2NjZERUXRunVrFixYQM+ePbG3tycwMJBXX32VN998kyZNmuice+7cuSxatEhnW15eHqampjrblixZQrt27bC1tQUKHm8uWbKEzz//vNhrysvLY/ny5cTFxfHRRx+V6j6kpqZiaWmJRqMhIyMDKJhDtnbt2jrlNmzYoNP9pV27dvz666+lOoeo3KRF7gUQv6+gv4r17f04Ob2MgcKAXSZx2Gc6ce3QNT1HJ4R4EQUFBWn/fePGDS5fvkz//v2xtLTULp9//jnnz58HICYmhnPnzmFlZaXdb2dnR1ZWlrZMs2bNuHDhAtu3b6dbt26cOHGCpk2b8tlnn+mcu2fPnsTGxuosU6ZM0SmjVqtZtmwZvXr10m7r1asXy5YtQ63WbaEcO3YslpaWmJmZMWjQIMaMGcMHH3xQqvtgZWVFbGwsMTEx/Pjjj1SvXp0ff/yxSLnmzZvrxDt79uxS1S8qP2mRq+TUefmc+W+ypsk4SvWq75NLHonK2yg1BjRu3FjPEQohnsT7s0JK3Kd44E/0fl83LbnsA70q+kx9Pr8TLCwstP/Ozy9oLVy4cCGNGjXSKVfYDyw/P5+GDRuyYsWKInXd3+nfyMiIpk2b0rRpUz7++GM+//xzpkyZwtixY7UvD6hUKmrUqKFTh5OTk8765s2btX3y7qdWq9myZQvt2rXTbhszZgxhYWGYm5vj6ur6WF1VlEqlNpbatWuTnJzM22+/za5du3TKWVhYFIlZCJBErtJLiLtJ1t1cjPNuYe5YHTNDSw4bnkGpMcDWzpZatWrpO0QhxBMwMil9R/dnVbasODs7U6VKFS5cuFDsW6EADRo0YNWqVTg5OWFtbV3quv38/MjLyyMrK+uxxslcvHgx77zzDuPHj9fZ/sUXX7B48WKdRM7BwaHMkqwRI0bw7bffsm7dOt54440yqVNUbpLIVXKn/vtY1eTGZqp7tySffI4bXQKNkiaNm6BUytN1IYT+hYeHM3ToUKytrWnXrh3Z2dkcOXKElJQURo4cSc+ePfn66695/fXXmTJlCu7u7iQmJrJ27VrGjBmDu7s7oaGhvPvuuwQFBWFvb8/JkycZN24czZs3f6zk78aNG6xfv54//viDgIAAnX19+/alQ4cO3Lhx45kM/2Ftbc17773H5MmT6dKli7yIJh5JvsUrMXVePqk3MtFoNBiY5eNgWoVzymTQKDE1NyUwMPDRlQghxHPw3nvvsWjRIiIiIqhTpw4hISFERETg7e0NgLm5Obt27aJq1ap07doVX19f+vXrR2ZmpjZJa9OmDcuWLaN169b4+voyZMgQ2rRpw+rVqx8rlv/7v//DwsKC1157rci+5s2bY2VlxU8//fT0F12CYcOGER8fLy8ziFJRaDQajb6DqAjS0tJQqVSkpqY+1l92+paXksLhDj0x9m+Lk309fjKNIod8QkNDCQ0N1Xd4QohHyMrK4uLFi3h7exd5q1IIUeBh/08q6vd3aem1RW7evHnUrVsXa2trrK2tCQ4O5s8//9Tu12g0hIeH4+bmhpmZGaGhoUWmLsnOzmbIkCE4ODhgYWFB586d+eeff3TKpKSk0Lt3b1QqFSqVit69e3Pnzp3ncYl6l/bHH9jevYmjbR3y0fCPxT+YW5rz0ksv6Ts0IYQQQjwlvSZy7u7ufPHFFxw5coQjR47QokULXn/9dW2y9tVXX/Htt9/y/fffc/jwYVxcXGjVqpXOYI/Dhw9n3bp1rFy5kj179nD37l06duyo83p4jx49iI2NJTIyksjISGJjY+ndu/dzv97nKfNuDrk5eaSsWo2RV1OUSkPOmSaS7p/J6JGjdd4YE0IIUfb8/f11hlO5fynu7VshnkS5e7RqZ2fH119/Tb9+/XBzc2P48OGMHTsWKGh9c3Z25ssvv+SDDz4gNTUVR0dHfvrpJ+0r4levXsXDw4NNmzbRpk0b4uPj8fPz48CBA9rX2g8cOEBwcDCnTp0q9VubFa1pdueKU5w7eBXHU4up5/cOhqY2fO0WQcfX36GVZyt9hyeEKCV5tFpxXbp0qcQZHpydnbGysnrOEVVeL/Kj1XLz1qparebXX3/l3r17BAcHc/HiRZKTk2ndurW2jImJCSEhIezbt48PPviAmJgYcnNzdcq4ubkREBDAvn37aNOmDfv370elUumMTfTKK6+gUqnYt29fiYlcdnY22dnZ2vW0tLRncNXPRm6OmnOHr5GdrUbt6oKhqQ2HDM9w0zKT5u7N9R2eEEK8EDw9PfUdgngB6P2t1bi4OCwtLTExMeHDDz9k3bp1+Pn5kZycDBT81XI/Z2dn7b7k5GSMjY2106eUVObBgR6hYPDHwjLFmT59urZPnUqlwsPD46mu83m6cOwGOVlqDO4dxdu2IffI4i/DRHwSa3L92nV9hyeEEEKIMqL3RK5WrVrExsZy4MABPvroI/r27cvJkye1+x8cQ0ej0TxyXJ0HyxRX/lH1fPLJJ6SmpmqXy5cvl/aS9K5wSi4rdQJOph7EGSYCCtw93HFzc9NvcEIIIYQoM3pP5IyNjalRowZBQUFMnz6dwMBAZs2ahYuLC0CRVrPr169rW+lcXFzIyckhJSXloWWuXSs6n+iNGzeKtPbdz8TERPs2beFSEaTdzOTK6RTy825Q1S6AHPI4aViQhDZ9teRpeoQQQghR8eg9kXuQRqMhOzsbb29vXFxc2Lp1q3ZfTk4O0dHR2vlBGzZsiJGRkU6ZpKQk/v77b22Z4OBgUlNTOXTokLbMwYMHSU1NrZTzjJ7aX9AaZ3Z3H1UtfDllcIV8wMbOBh8fH/0GJ4QQQogypdeXHcaNG0e7du3w8PAgPT2dlStXEhUVRWRkJAqFguHDhzNt2jR8fHzw8fFh2rRpmJub06NHD6Bg4uP+/fszatQo7O3tsbOzY/To0dSpU4eWLVsC4OvrS9u2bRkwYADz588H4P3336djx46Vbp5RjUbDqQPJaDTZuFk5oFQacNwwAYBmrzaT6biEEEKISkav3+zXrl2jd+/e1KpVi9dee42DBw8SGRlJq1YFw2P8+9//Zvjw4QwcOJCgoCCuXLnCli1bdF7Z/u677+jSpQvdu3enSZMmmJubs379egwM/jfx84oVK6hTpw6tW7emdevW1K1b95lOr6IvCoWC9r2q4nzlT2pY1+e88hrZijxMzE2oW7euvsMTQohyISEhAYVCQWxsrL5DqbTCw8OpV6+evsN4Ieg1kVu8eDEJCQlkZ2dz/fp1tm3bpk3ioCAxCQ8PJykpiaysLKKjo4tMYGxqasqcOXO4desWGRkZrF+/vsgbpnZ2dixfvpy0tDTS0tJYvnw5NjY2z+MSn7/df1Lv3g3MjVTkK9Rkm2XT5JUmGBqWm5FmhBAviLCwMLp06aKz7T//+Q+mpqZ89dVX+gnqCaxZs4ZGjRqhUqmwsrLC39+fUaNGafdHRESU+J2iUCj47bffimx///33MTAwYOXKlUX2hYeHo1AoUCgUGBgY4OHhwXvvvceNGzdKFW/hsQqFAktLSwIDA4mIiNApExUVpVOucJkwYUKpziHKD/l2r0Q0+fncXrUK42oFgyMfs/mbZt2a0cSziZ4jE0IIWLRoEYMGDeKHH37gvffee+zjc3JyMDY2fgaRlWzbtm288847TJs2jc6dO6NQKDh58iTbt29/4jozMjJYtWoVY8aMYfHixbzzzjtFyvj7+7Nt2zbUajXHjh2jf//+XLlyRWcay4dZunQpbdu25d69e6xatYp//etfuLq60qZNG51yp0+f1nmZz9LS8omvS+iHdJqqJOL3JbHxi2iSDd0xdKyNGjWH3U7RyquVzmNmIYTQh6+++orBgwfz888/a5O4ffv20axZM8zMzPDw8GDo0KHcu3dPe4yXlxeff/45YWFhqFQqBgwYoG392rx5M76+vlhaWtK2bVuSkpJ0zrd06VJ8fX0xNTWldu3azJ0794ni3rBhA6+++ipjxoyhVq1a1KxZky5dujBnzpwnvhe//vorfn5+fPLJJ+zdu5eEhIQiZQwNDXFxcaFKlSp07NiRoUOHsmXLFjIzM0t1DhsbG1xcXKhevTrjxo3Dzs6OLVu2FCnn5OSEi4uLdilNIlf4Gfz222/UrFkTU1NTWrVq9dBhukJDQxk+fLjOti5duhAWFqZdnzt3Lj4+PpiamuLs7Mybb75Zqmt90UkiV0mc2H2FhIQ0NNUbckuRziazQ7T2a4+hUhpdhaiMcrOySlzycnJKXTY3J7tUZZ/Gxx9/zGeffcaGDRvo1q0bUDAYfJs2bejatSt//fUXq1atYs+ePQwePFjn2K+//pqAgABiYmKYOHEiUNCi9c033/DTTz+xa9cuEhMTGT16tPaYhQsXMn78eKZOnUp8fDzTpk1j4sSJLFu27LFjd3Fx4cSJE/z9999PcQd0LV68mF69eqFSqWjfvj1Lly595DFmZmbk5+eTl5f3WOdSq9WsXr2a27dvY2Rk9KQhF5GRkcHUqVNZtmwZe/fuJS0trdiWxdI6cuQIQ4cOZcqUKZw+fZrIyEiaNWtWZvFWZvItXwncTrrHtYtpKLNP4mnzMrsNz3BNk4H/RW+or+/ohBDPwuy+JbdWeNcPouvH4dr1ue/3JC87u9iy7n4BvD35C+36wsH9yEwvOiXhqFUbnijOP//8k99//53t27fTokUL7favv/6aHj16aFtpfHx8mD17NiEhIcybN087X2aLFi10krQ9e/aQm5vLjz/+SPXq1QEYPHgwU6ZM0Zb57LPPmDFjBl27dgXA29ubkydPMn/+fPr27ftY8Q8ZMoTdu3dTp04dPD09eeWVV2jdujU9e/bExMREWy41NbVUrVlnz57lwIEDrF27FoBevXoxdOhQJk+eXOLIAqdOnWLevHm8/PLLpZ6f9d1338XAwICsrCzUajV2dnbFPs52d3fXWb906RL29vaPrD83N5fvv/9eO/3lsmXL8PX15dChQ7z88sulivF+iYmJWFhY0LFjR6ysrPD09KR+ffkCKw1pkasETu1LQqNR42msJlOp5oKyYADkJq9I3zghhH7VrVsXLy8vJk2aRHp6unZ7TEwMERERWFpaapc2bdqQn5/PxYsXteWCgoKK1Glubq5N4gBcXV25fr1g+sEbN25w+fJl+vfvr1P3559/zvnz5x87fgsLCzZu3Mi5c+eYMGEClpaWjBo1ipdffpmMjAxtOSsrK2JjY4ssD1q8eDFt2rTBwcEBgPbt23Pv3j22bdumU65w+kozMzP8/Pzw8PBgxYoVpY77u+++IzY2lq1bt1KvXj2+++47atSoUaTc7t27deJ9cMrLkhgaGup8NrVr18bGxob4+PhSx3i/Vq1a4enpSbVq1ejduzcrVqzQub+iZNIiV8Hlq/M5fTCZ/NzzVLcN5G/Dy2gU4OrhKtNxCVGJDV32nxL3KR5o2Rm44CEJgFJ3qsIB3y95qrgeVKVKFdasWUPz5s1p27YtkZGRWFlZkZ+fzwcffMDQoUOLHFO1alXtvy0sLIrsf/ARoUKhQKPRAJCfnw8UPF4tbC0q9DT9hatXr0716tV57733GD9+PDVr1tS+RACgVCqLTZTup1ar+b//+z+Sk5N1RhJQq9UsXryY1q1ba7fVqlWLP/74AwMDA9zc3HRa/0rDxcWFGjVqUKNGDX799Vfq169PUFAQfn5+OuW8vb2feBSH4qa5LGnqS6VSqf2MCuXm5mr/bWVlxdGjR4mKimLLli1MmjSJ8PBwDh8+XHlHmSgjkshVcIknbpORloMz1zAyqskpgysAtGjW4hFHCiEqMqP/PnrUZ9nSqlq1KtHR0TRv3pzWrVuzefNmGjRowIkTJx6Z/DwuZ2dnqlSpwoULF+jZs2eZ1l3Iy8sLc3NznRczSmPTpk2kp6dz7NgxnaTy1KlT9OzZk1u3bmkfaxZOX1kWatSoQbdu3fjkk0/4/fffy6TOvLw8jhw5on2Mevr0ae7cuUPt2rWLLe/o6KjzQoparebvv/+mefPm2m2Ghoa0bNmSli1bMnnyZGxsbNixY4f2EbkoniRyFVz8/iTy1TepbuVNvMEV8hT5WNlZlfkvRyGEeBru7u5ERUVpk7n58+cTHBzMoEGDGDBgABYWFsTHx7N169aneiMUCsZhGzp0KNbW1rRr147s7GyOHDlCSkoKI0eOfOy6MjIyaN++PZ6enty5c4fZs2eTm5urM+5paSxevJgOHToQGBios93f35/hw4ezfPlyhg0b9lh1ltaoUaMIDAzkyJEjxT6uflxGRkYMGTKE2bNnY2RkxODBg3nllVdK7B/XokULRo4cycaNG6levTrfffcdd+7c0e7fsGEDFy5coFmzZtja2rJp0yby8/Mr3QxMz4L0kavgXFyUqLLO4GjmyQnDgle/X2v2WonN20IIoS9VqlQhOjqaO3fuMGDAAKKjozl79ixNmzalfv36TJw4EVdX16c+z3vvvceiRYuIiIigTp06hISEEBERgbe392PXFRISwoULF+jTpw+1a9emXbt2JCcns2XLlsdKMq5du8bGjRu1b+3eT6FQ0LVrVxYvXvzY8ZVW4dSVkyZNKpP6zM3NGTt2LD169CA4OBgzM7NiBzcu1K9fP/r27UufPn0ICQnB29tbpzXOxsaGtWvX0qJFC3x9ffnxxx/55Zdf8Pf3L5N4KzOF5sGH1qJYaWlpqFQqUlNTdQZP1Lfrc+aQvjsFdbXGbDQ9RKYF/HvEv2UmByEqiaysLC5evIi3t7f2TU4h9CkiIoLhw4frtKjp28P+n5TX7++yIi1yFZgmL4+bv/6OcdVgzDHhnPt5hg0eJkmcEEII8YKQRK6Cun31HsciolCqAlAYmpJofJX6LwdjYVb0DS8hhBDF+/DDD3WGKbl/+fDDD/UdXhHTpk0rMd527dqVyTnatWtX4jmmTZtWJucQZUcerZZSeWua3fXLaY5vO0hLGxsSTNPZY3+Yfw/6FJWJSt+hCSHKkDxafbauX79OWlrRAZABrK2tcXJyes4RPdzt27e5fft2sfvMzMyoUqXKU5/jypUrJU4FZmdnh52d3VOfo6y9yI9W5RlcBZSXq+bMwSQcFElkGttx0OgsRndtMM5/vpNJCyFERefk5FTukrWHeR6JVFkkg+L5kUerFdDF4zfJykijurkzcYaJAFSvVR0zMzM9RyaEEEKI50kSuQoofu9VzPLOYmnhRoKyYFqa1qGtH3GUEEIIISobSeQqmLspWSSevIG3qTF/GySiUYCDhwPOzs76Dk0IIYQQz5kkchXMqQPJKPMScLWswWmDqwC0b95ez1EJIYQQQh8kkatg7ly6ibvhPc4Z3UCtyMfM1uyJRisXQgghRMUniVwFUytlB3WMq2KAEtDQOrS1TMclhBClFBYWRpcuXR5aJioqCoVCUa5mLqiIEhISUCgUxMbG6juUSk0SuQpEk5NDelQcRhZO1FQ74dbWlboBdfUdlhBCFOthSZOXlxcKhUJncXd319k/c+bMMo9p1qxZREREaNdDQ0MZPnx4mZ9H38LCwrT31dDQkKpVq/LRRx+RkpKiU+5Rn4Mo/2QcuQoiN0fNzfXbMHdpBMBW20O8XW8gBgYGeo5MCCGezJQpUxgwYIB2/Xn8PlOpnv+g6bm5uRgZGT3387Zt25alS5eSl5fHyZMn6devH3fu3OGXX37RKaePz0GUHWmRqyDOHbnOxk0J3HSryj/KW6TXMcTOtPyNri2EEKVlZWWFi4uLdnF0dHzsOkaNGkWnTp206zNnzkShULBx40bttlq1ajF//nxAt5UwLCyM6OhoZs2apW2NSkhI0B4XExNDUFAQ5ubmNG7cmNOnT5cqpvDwcOrVq8eSJUuoVq0aJiYmaDQaIiMjefXVV7GxscHe3p6OHTty/vx57XHdunVjyJAh2vXhw4ejUCg4ceIEAHl5eVhZWbF58+ZSxWFiYoKLiwvu7u60bt2at99+my1bthQp96Sfg0KhYN68ebRr1w4zs4L+2r/++muJ5SMiIrCxsdHZ9ttvv+l0Dzp+/DjNmzfHysoKa2trGjZsyJEjR0oVz4tKErkK4sT283ibwCGj80Qax+Jr6q/vkIQQeqDRaMjPUetlKY8zOoaGhrJ7927y8/MBiI6OxsHBgejoaACSk5M5c+YMISEhRY6dNWsWwcHBDBgwgKSkJJKSkvDw8NDuHz9+PDNmzODIkSMYGhrSr1+/Usd17tw5Vq9ezZo1a7R9xO7du8fIkSM5fPgw27dvR6lU8sYbb2hjDw0NJSoqSlvHg9dy+PBhsrKyaNKkyWPdI4ALFy4QGRlZ5i2DEydOpFu3bhw/fpxevXrx7rvvEh8f/8T19ezZE3d3dw4fPkxMTAwff/yxXlozKxJ5tFoB3LmewfVLCbjbO3NdGQdoCH0pVN9hCSH0QJObz9VJ+/RybrcpjVEYl91jt7FjxzJhwgTt+rRp0xg6dOhj1dGsWTPS09M5duwYDRo0YPfu3YwePZq1a9cCsHPnTpydnaldu3aRY1UqFcbGxpibm+Pi4lJk/9SpU7UJ4Mcff0yHDh3Iysoq1Zy3OTk5/PTTTzqtW926ddMps3jxYpycnDh58iQBAQGEhoYybNgwbt68iYGBASdOnGDy5MlERUUxcOBAoqKiaNiwIZaWlqW6Nxs2bMDS0hK1Wk1WVhYA3377bZFyT/M5vPXWW7z33nsAfPbZZ2zdupU5c+Ywd+7cUh3/oMTERMaMGaP9vHx8fJ6onheJJHIVQPyef6hikEK8cSoAVWpWwcrKSs9RCSHE0xkzZgxhYWHadQcHh8euQ6VSUa9ePaKiojAyMkKpVPLBBx8wefJk0tPTiYqKKrY1rjTq1v3fy2Surq4AXL9+napVqz7yWE9PzyKPKM+fP8/EiRM5cOAAN2/e1LbEJSYmEhAQQEBAAPb29kRHR2NkZERgYCCdO3dm9uzZAI99Lc2bN2fevHlkZGSwaNEizpw5o/PottDTfA7BwcFF1p/mLdWRI0fy3nvv8dNPP9GyZUveeustqlev/sT1vQgkkSvn8vM1nNgZT4CVA8eUBf0zXm/ZRb9BCSH0RmGkxG1KY72duyw5ODhQo0aNp66n8JGksbExISEh2Nra4u/vz969e4mKinrit1Lvf6RX2I+rMPl6FAsLiyLbOnXqhIeHBwsXLsTNzY38/HwCAgLIycnRnqNZs2baawkNDSUgIAC1Wk1cXBz79u17rGuxsLDQ3t/Zs2fTvHlzPv30Uz777DOdcmX1ORQqaUgspVJZ5PF8bm6uznp4eDg9evRg48aN/Pnnn0yePJmVK1fyxhtvlFl8lY30kSvn/om/jXnWFRJM74ICrFyscHJy0ndYQgg9USgUKI0N9LKU1zErC/vJ7dixg9DQUABCQkJYuXJlif3jChkbG6NWq595jLdu3SI+Pp4JEybw2muv4evrW2QoEPhfUhoVFUVoaCgKhYKmTZvyzTffkJmZ+UT94wpNnjyZb775hqtXrz7Npeg4cOBAkfXiHmMDODo6kp6ezr1797Tbimu9q1mzJiNGjGDLli107dqVpUuXllm8lZEkcuXciS2nqGJmylmDJAA6ter0iCOEEKL8SE1NJTY2VmdJTEws03MU9pNbv369NpELDQ1l+fLlODo64ufnV+KxXl5eHDx4kISEBJ3HnWXN1tYWe3t7FixYwLlz59ixYwcjR44sUi40NJQTJ04QFxdH06ZNtdtWrFhBgwYNsLa2fuIYQkND8ff3Z9q0aU9cx4N+/fVXlixZwpkzZ5g8eTKHDh1i8ODBxZZt1KgR5ubmjBs3jnPnzvHzzz/rjOmXmZnJ4MGDiYqK4tKlS+zdu5fDhw/j6+tbZvFWRpLIlXMuV3djbe6ElcYMI0tDfKpJx08hRMURFRVF/fr1dZZJkyaV6TlUKhX169fHzs5Om7Q1bdqU/Pz8R/YpGz16NAYGBvj5+eHo6FjmSWYhpVLJypUriYmJISAggBEjRvD1118XKRcQEICDgwOBgYHapC0kJAS1Wv3Eff3uN3LkSBYuXMjly5efui6ATz/9lJUrV1K3bl2WLVvGihUrSkyc7ezsWL58OZs2baJOnTr88ssvhIeHa/cbGBhw69Yt+vTpQ82aNenevTvt2rXj008/LZNYKyuFpjy+T14OpaWloVKpSE1Nfaq/iB5HflYW5/pMw7xaK84q4qk+qi1VHR7dyVYIUXlkZWVx8eJFvL29S/W2pBDPi0KhYN26dY+c8ux5eNj/E318fz9P0iJXjl1dux4z94I3gv7yT5ckTgghhBA69JrITZ8+nZdeegkrq4IO/F26dCkycvb988UVLq+88opOmezsbIYMGYKDgwMWFhZ07tyZf/75R6dMSkoKvXv3RqVSoVKp6N27d7meEPnWlbsci7rJGbM0bquv065dR32HJIQQz92KFSuwtLQsdvH318/A6P7+/iXGtGLFimd+/sTExBLPb2lpWSaPh8vjfRfF0+vwI9HR0QwaNIiXXnqJvLw8xo8fT+vWrTl58qTOq9uF88UVMjY21qln+PDhrF+/npUrV2Jvb8+oUaPo2LEjMTEx2jnjevTowT///ENkZCQA77//Pr1792b9+vXP4Uof37F1xzC0MWG3UTxGRvCJrbx6LYR48XTu3JlGjRoVu09fI/5v2rSpyLAZhZydnZ/5+d3c3B46Vpubm9tTn6M09116ZpUPek3kCpOqQkuXLsXJyYmYmBiaNWum3V44X1xxUlNTWbx4sXbwQIDly5fj4eHBtm3baNOmDfHx8URGRnLgwAHtD+bChQsJDg7m9OnT1KpV6xld4ZNR5+Vz/a8TpLhkAODq54lSKU/BhRAvHisrq3I3ALqnp6dez29oaFim474Vpzzed1G8cpUdpKYWzFxgZ6c7GXxUVBROTk7UrFmTAQMGcP36de2+mJgYcnNzad26tXabm5sbAQEB7NtXMI3N/v37UalUOn9dvPLKK6hUKm2ZB2VnZ5OWlqazPC8XDv+DykLBDWUaCg281f7N53ZuIYQQQlQc5SaR02g0jBw5kldffZWAgADt9nbt2rFixQp27NjBjBkzOHz4MC1atCA7OxsomBDZ2NgYW1tbnfqcnZ1JTk7WliluEF0nJydtmQdNnz5d259OpVLpTKT8rB1duZNky4KRvq2drLCylL+KhBBCCFFUuZmia/Dgwfz111/s2bNHZ/vbb7+t/XdAQABBQUF4enqyceNGunbtWmJ9Go1GZxTy4kYkf7DM/T755BOdwRrT0tKeSzJ3LzUbk/wM4g1ugQa6v/XOMz+nEEIIISqmctEiN2TIEP744w927tyJu7v7Q8u6urri6enJ2bNnAXBxcSEnJ6fIVCfXr1/Xdjp1cXHh2rVrReq6ceNGiR1TTUxMsLa21lmeh8Mr9pBuXTCyuLmxIVWcqjyX8wohhBCi4tFrIqfRaBg8eDBr165lx44deHt7P/KYW7ducfnyZVxdXQFo2LAhRkZGbN26VVsmKSmJv//+m8aNCyaWDg4OJjU1lUOHDmnLHDx4kNTUVG2Z8kL991/kKwtaCVu/KUOOCCGEEKJken20OmjQIH7++Wd+//13rKystP3VVCoVZmZm3L17l/DwcLp164arqysJCQmMGzcOBwcH3njjDW3Z/v37M2rUKOzt7bGzs2P06NHUqVNH+xarr68vbdu2ZcCAAcyfPx8oGH6kY8eO5eqN1dy0NKrlO1Ir15Mog/3Uq1VP3yEJIYR4RsLCwrhz5w6//fabvkMRFZheW+TmzZtHamoqoaGhuLq6apdVq1YBBfOuxcXF8frrr1OzZk369u1LzZo12b9/v85r0d999x1dunShe/fuNGnSBHNzc9avX68dQw4KBjesU6cOrVu3pnXr1tStW5effvrpuV/zw8TMXYWRjSf5+bn49Wmj73CEEOKphIWFlTh9k5eXFzNnztRZVygUrFy5skhZf39/FAqFzgTrheUfXL744otHxpWQkKBzjEql4pVXXikyrmhERESx51i0aFGprl+I50GvLXKPGkzQzMyMzZs3P7IeU1NT5syZw5w5c0osUzhZb3mVk53HneR8VKaZJKnjaVFtmL5DEkKI58rDw4OlS5fyzjv/e8nrwIEDJCcn6wwSX2jKlCkMGDBAZ9vjjH22bds2/P39uXPnDnPnzqVbt24cPXpUZ+QEa2vrIjMOqVSqUp9DiGetXLzsICB6/nrirG+z2mQ/V+vKcCNCiBdPz549iY6O5vLly9ptS5YsoWfPnhgaFm13sLKywsXFRWcpLuErib29PS4uLtSuXZupU6eSm5vLzp07dcooFIoi5zAzM3tk3eHh4dSrV4/58+fj4eGBubk5b7311kOnhnywlRKgXr16hIeH69RbtWpVTExMcHNzY+jQoaW+XlE5SSJXTty4eIl7ymyMNUq69+il73CEEOVcTk5OicuD00eVRdnnwdnZmTZt2rBs2TIAMjIyWLVqFf369Xum583NzWXhwoVA2U77de7cOVavXs369euJjIwkNjaWQYMGPXF9//nPf/juu++YP38+Z8+e5bfffqNOnTplFq+omMrNOHIvssvHL3DjvwMAqxSGGBsZP+IIIcSLbtq0aSXu8/HxoWfPntr1r7/+usS5QT09PfnXv/6lXZ85cyYZGRlFyt3fKvQs9evXj1GjRjF+/Hj+85//UL16derVq1ds2bFjxzJhwgSdbRs2bCA0NLRU52rcuDFKpZLMzEzy8/Px8vKie/fuOmVSU1OxtLTUrltaWpY4kPyDsrKyWLZsmXZYrTlz5tChQwdmzJhR4rSTD5OYmIiLiwstW7bEyMiIqlWr8vLLLz92PaJykRa5ciB62TpSDDIw0Ch5fWCYvsMRQgi96dChA3fv3mXXrl0sWbLkoa1xY8aMITY2VmcpaaL34qxatYpjx47xxx9/UKNGDRYtWlRkikgrKyud+kua1rE4VatW1RkbNTg4mPz8/CJ97krrrbfeIjMzk2rVqjFgwADWrVtHXl7eE9UlKg9pkdMzdZ6aNLOClz4cs4yp4uyq54iEEBXBuHHjStz34Iw1Y8aMKXXZ4cOHP1VcT8vQ0JDevXszefJkDh48yLp160os6+Dg8FSTx3t4eODj44OPjw+WlpZ069aNkydP6kzpqFQqy2yC+sJ7XdKMQkqlsshLgPe3pHp4eHD69Gm2bt3Ktm3bGDhwIF9//TXR0dFl+khYVCzSIqdnv365iOtGd1FoIKCVNJELIUrH2Ni4xOXBL/WyKPs89evXj+joaF5//fUi82g/KyEhIQQEBDB16tQyqzMxMZGrV69q1/fv349SqaRmzZrFlnd0dCQpKUm7npaWxsWLF3XKmJmZ0blzZ2bPnk1UVBT79+8nLi6uzGIWFY+0yOmZ8e1cjCwNsMsx4dWWLfQdjhBClKnU1FRiY2N1tj34+PJBvr6+3Lx5E3Nz84eWS09PL9Jfzdzc/ImnVBw1ahRvvfUW//73v6lS5emnRzQ1NaVv37588803pKWlMXToULp3715i/7gWLVoQERFBp06dsLW1ZeLEiTrjoUZERKBWq2nUqBHm5ub89NNPmJmZ4enp+dSxiopLEjk9ysvLwztTSaBhY056XH70AUIIUcFERUVRv359nW19+/Z95HH29vaPLDNp0iQmTZqks+2DDz7gxx9/fLwg/6tjx454eXkxdepU5s6d+0R13K9GjRp07dqV9u3bc/v2bdq3b//Qej/55BMuXLhAx44dUalUfPbZZzotcjY2NnzxxReMHDkStVpNnTp1WL9+fanulai8FJpHjcorgIImbpVKRWpq6hP/tVeS43sPULdxoxL7TQghXlxZWVlcvHgRb29vTE1N9R2OKKXw8HB+++23Iq2R4tl42P+TZ/n9XR5Ii1w5ENjkFX2HIIQQQogKSF52EEIIUal8+OGHWFpaFrt8+OGHZXIOf3//Es+xYsWKMjmHEKUhj1ZLqbI3zQohyid5tPr4rl+/TlpaWrH7rK2tdYYXeVKXLl0qcZBlZ2fnx5rzVTw9ebQqhBBCVBJOTk5lkqw9jLwpKsoLebQqhBBCCFFBSSInhBAVgPSCEaJkL/L/D0nkhBCiHCscEDYnJ0fPkQhRfmVkZAC8kFOVSR85IYQoxwwNDTE3N+fGjRsYGRmhVMrf30IU0mg0ZGRkcP36dWxsbHRmwnhRSCInhBDlmEKhwNXVlYsXL3Lp0iV9hyNEuWRjY1Pi1GeVnSRyQghRzhkbG+Pj4yOPV4UohpGR0QvZEldIEjkhhKgAlEqljCMnhChCOlsIIYQQQlRQksgJIYQQQlRQksgJIYQQQlRQ0keulAoHGyxp/j4hhBBClD+F39uVddBgSeRKKT09HQAPDw89RyKEEEKIx5Weno5KpdJ3GGVOoamsKWoZy8/P5+rVq1hZWaFQKMqs3rS0NDw8PLh8+TLW1tZlVq8oSu718yH3+fmQ+/x8yH1+Pp7lfdZoNKSnp+Pm5lYpB9SWFrlSUiqVuLu7P7P6ra2t5ZfEcyL3+vmQ+/x8yH1+PuQ+Px/P6j5Xxpa4QpUvNRVCCCGEeEFIIieEEEIIUUFJIqdnJiYmTJ48GRMTE32HUunJvX4+5D4/H3Kfnw+5z8+H3OcnJy87CCGEEEJUUNIiJ4QQQghRQUkiJ4QQQghRQUkiJ4QQQghRQUkiJ4QQQghRQUkip2dz587F29sbU1NTGjZsyO7du/UdUqUyffp0XnrpJaysrHBycqJLly6cPn1a32FVetOnT0ehUDB8+HB9h1LpXLlyhV69emFvb4+5uTn16tUjJiZG32FVOnl5eUyYMAFvb2/MzMyoVq0aU6ZMIT8/X9+hVWi7du2iU6dOuLm5oVAo+O2333T2azQawsPDcXNzw8zMjNDQUE6cOKGfYCsISeT0aNWqVQwfPpzx48dz7NgxmjZtSrt27UhMTNR3aJVGdHQ0gwYN4sCBA2zdupW8vDxat27NvXv39B1apXX48GEWLFhA3bp19R1KpZOSkkKTJk0wMjLizz//5OTJk8yYMQMbGxt9h1bpfPnll/z44498//33xMfH89VXX/H1118zZ84cfYdWod27d4/AwEC+//77Yvd/9dVXfPvtt3z//fccPnwYFxcXWrVqpZ3vXBQlw4/oUaNGjWjQoAHz5s3TbvP19aVLly5Mnz5dj5FVXjdu3MDJyYno6GiaNWum73Aqnbt379KgQQPmzp3L559/Tr169Zg5c6a+w6o0Pv74Y/bu3Sst989Bx44dcXZ2ZvHixdpt3bp1w9zcnJ9++kmPkVUeCoWCdevW0aVLF6CgNc7NzY3hw4czduxYALKzs3F2dubLL7/kgw8+0GO05Ze0yOlJTk4OMTExtG7dWmd769at2bdvn56iqvxSU1MBsLOz03MkldOgQYPo0KEDLVu21HcoldIff/xBUFAQb731Fk5OTtSvX5+FCxfqO6xK6dVXX2X79u2cOXMGgOPHj7Nnzx7at2+v58gqr4sXL5KcnKzzvWhiYkJISIh8Lz6Eob4DeFHdvHkTtVqNs7OzznZnZ2eSk5P1FFXlptFoGDlyJK+++ioBAQH6DqfSWblyJUePHuXw4cP6DqXSunDhAvPmzWPkyJGMGzeOQ4cOMXToUExMTOjTp4++w6tUxo4dS2pqKrVr18bAwAC1Ws3UqVN599139R1apVX43Vfc9+KlS5f0EVKFIImcnikUCp11jUZTZJsoG4MHD+avv/5iz549+g6l0rl8+TLDhg1jy5YtmJqa6jucSis/P5+goCCmTZsGQP369Tlx4gTz5s2TRK6MrVq1iuXLl/Pzzz/j7+9PbGwsw4cPx83Njb59++o7vEpNvhcfjyRyeuLg4ICBgUGR1rfr168X+WtEPL0hQ4bwxx9/sGvXLtzd3fUdTqUTExPD9evXadiwoXabWq1m165dfP/992RnZ2NgYKDHCCsHV1dX/Pz8dLb5+vqyZs0aPUVUeY0ZM4aPP/6Yd955B4A6depw6dIlpk+fLoncM+Li4gIUtMy5urpqt8v34sNJHzk9MTY2pmHDhmzdulVn+9atW2ncuLGeoqp8NBoNgwcPZu3atezYsQNvb299h1Qpvfbaa8TFxREbG6tdgoKC6NmzJ7GxsZLElZEmTZoUGT7nzJkzeHp66imiyisjIwOlUvcr0sDAQIYfeYa8vb1xcXHR+V7MyckhOjpavhcfQlrk9GjkyJH07t2boKAggoODWbBgAYmJiXz44Yf6Dq3SGDRoED///DO///47VlZW2hZQlUqFmZmZnqOrPKysrIr0O7SwsMDe3l76I5ahESNG0LhxY6ZNm0b37t05dOgQCxYsYMGCBfoOrdLp1KkTU6dOpWrVqvj7+3Ps2DG+/fZb+vXrp+/QKrS7d+9y7tw57frFixeJjY3Fzs6OqlWrMnz4cKZNm4aPjw8+Pj5MmzYNc3NzevTooceoyzmN0KsffvhB4+npqTE2NtY0aNBAEx0dre+QKhWg2GXp0qX6Dq3SCwkJ0QwbNkzfYVQ669ev1wQEBGhMTEw0tWvX1ixYsEDfIVVKaWlpmmHDhmmqVq2qMTU11VSrVk0zfvx4TXZ2tr5Dq9B27txZ7O/kvn37ajQajSY/P18zefJkjYuLi8bExETTrFkzTVxcnH6DLudkHDkhhBBCiApK+sgJIYQQQlRQksgJIYQQQlRQksgJIYQQQlRQksgJIYQQQlRQksgJIYQQQlRQksgJIYQQQlRQksgJIYQQQlRQksgJIQBISEhAoVAQGxur71C0Tp06xSuvvIKpqSn16tUrtoxGo+H999/Hzs6u3MWvT1FRUSgUCu7cuVNimYiICGxsbJ5bTA/y8vJi5syZeju/EJWBJHJClBNhYWEoFAq++OILne2//fYbCoVCT1Hp1+TJk7GwsOD06dNs37692DKRkZFERESwYcMGkpKSymxKsLCwMLp06VImdVUmknwJUb5IIidEOWJqasqXX35JSkqKvkMpMzk5OU987Pnz53n11Vfx9PTE3t6+xDKurq40btwYFxcXDA3L1xTSarVaJloXQjwzksgJUY60bNkSFxcXpk+fXmKZ8PDwIo8ZZ86ciZeXl3a9sDVp2rRpODs7Y2Njw6effkpeXh5jxozBzs4Od3d3lixZUqT+U6dO0bhxY0xNTfH39ycqKkpn/8mTJ2nfvj2WlpY4OzvTu3dvbt68qd0fGhrK4MGDGTlyJA4ODrRq1arY68jPz2fKlCm4u7tjYmJCvXr1iIyM1O5XKBTExMQwZcoUFAoF4eHhReoICwtjyJAhJCYmolAotPdAo9Hw1VdfUa1aNczMzAgMDOQ///mP9ji1Wk3//v3x9vbGzMyMWrVqMWvWLJ17vGzZMn7//XcUCgUKhYKoqKhiH1fGxsaiUChISEgA/ve4csOGDfj5+WFiYsKlS5fIycnh3//+N1WqVMHCwoJGjRrp3NtLly7RqVMnbG1tsbCwwN/fn02bNhV77wCWL19OUFAQVlZWuLi40KNHD65fv16k3N69ewkMDMTU1JRGjRoRFxdXYp3nz5/n9ddfx9nZGUtLS1566SW2bdum3R8aGsqlS5cYMWKE9r4U2rdvH82aNcPMzAwPDw+GDh3KvXv3tPuvX79Op06dMDMzw9vbmxUrVpQYhxCi9CSRE6IcMTAwYNq0acyZM4d//vnnqerasWMHV69eZdeuXXz77beEh4fTsWNHbG1tOXjwIB9++CEffvghly9f1jluzJgxjBo1imPHjtG4cWM6d+7MrVu3AEhKSiIkJIR69epx5MgRIiMjuXbtGt27d9epY9myZRgaGrJ3717mz59fbHyzZs1ixowZfPPNN/z111+0adOGzp07c/bsWe25/P39GTVqFElJSYwePbrYOgqTwaSkJA4fPgzAhAkTWLp0KfPmzePEiROMGDGCXr16ER0dDRQkke7u7qxevZqTJ08yadIkxo0bx+rVqwEYPXo03bt3p23btiQlJZGUlETjxo1Lfe8zMjKYPn06ixYt4sSJEzg5OfGvf/2LvXv3snLlSv766y/eeust2rZtq73eQYMGkZ2dza5du4iLi+PLL7/E0tKyxHPk5OTw2Wefcfz4cX777TcuXrxIWFhYkXJjxozhm2++4fDhwzg5OdG5c2dyc3OLrfPu3bu0b9+ebdu2cezYMdq0aUOnTp1ITEwEYO3atbi7uzNlyhTtfQGIi4ujTZs2dO3alb/++otVq1axZ88eBg8erK07LCyMhIQEduzYwX/+8x/mzp1bbOIphHhMGiFEudC3b1/N66+/rtFoNJpXXnlF069fP41Go9GsW7dOc/9/1cmTJ2sCAwN1jv3uu+80np6eOnV5enpq1Gq1dlutWrU0TZs21a7n5eVpLCwsNL/88otGo9FoLl68qAE0X3zxhbZMbm6uxt3dXfPll19qNBqNZuLEiZrWrVvrnPvy5csaQHP69GmNRqPRhISEaOrVq/fI63Vzc9NMnTpVZ9tLL72kGThwoHY9MDBQM3ny5IfW8+C13717V2NqaqrZt2+fTrn+/ftr3n333RLrGThwoKZbt27a9fs/j0I7d+7UAJqUlBTttmPHjmkAzcWLFzUajUazdOlSDaCJjY3Vljl37pxGoVBorly5olPfa6+9pvnkk080Go1GU6dOHU14ePhDr/VhDh06pAE06enpOrGuXLlSW+bWrVsaMzMzzapVq7SxqlSqh9br5+enmTNnjnbd09NT89133+mU6d27t+b999/X2bZ7926NUqnUZGZmak6fPq0BNAcOHNDuj4+P1wBF6hJCPJ7y1ZlECAHAl19+SYsWLRg1atQT1+Hv749S+b9Gd2dnZ50XAQwMDLC3ty/SKhIcHKz9t6GhIUFBQcTHxwMQExPDzp07i20pOn/+PDVr1gQgKCjoobGlpaVx9epVmjRporO9SZMmHD9+vJRXWLyTJ0+SlZVV5JFuTk4O9evX167/+OOPLFq0iEuXLpGZmUlOTk6Jb8Y+LmNjY+rWratdP3r0KBqNRnt/CmVnZ2v7/g0dOpSPPvqILVu20LJlS7p166ZTx4OOHTtGeHg4sbGx3L59W9sPLzExET8/P225+z9POzs7atWqpf08H3Tv3j0+/fRTNmzYwNWrV8nLyyMzM1PbIleSmJgYzp07p/O4VKPRkJ+fz8WLFzlz5oz2Z6lQ7dq19frGrBCVhSRyQpRDzZo1o02bNowbN67I4zKlUolGo9HZVtyjMiMjI511hUJR7LbSdMQv7AuVn59Pp06d+PLLL4uUcXV11f7bwsLikXXeX28hjUbz1G/oFl7Pxo0bqVKlis4+ExMTAFavXs2IESOYMWMGwcHBWFlZ8fXXX3Pw4MGH1l2YGN9//4u792ZmZjrXkZ+fj4GBATExMRgYGOiULUyK33vvPdq0acPGjRvZsmUL06dPZ8aMGQwZMqRI/ffu3aN169a0bt2a5cuX4+joSGJiIm3atCnVyyUl3eMxY8awefNmvvnmG2rUqIGZmRlvvvnmI+vMz8/ngw8+YOjQoUX2Va1aldOnTz/0vEKIJyeJnBDl1BdffEG9evWKtOI4OjqSnJysk/SU5dhpBw4coFmzZgDk5eURExOj7evUoEED1qxZg5eX11O9HWptbY2bmxt79uzRngsKOsy//PLLTxV/4QsGiYmJhISEFFtm9+7dNG7cmIEDB2q3nT9/XqeMsbExarVaZ5ujoyNQ0H/P1tYWKN29r1+/Pmq1muvXr9O0adMSy3l4eGj7Ln7yyScsXLiw2ETu1KlT3Lx5ky+++AIPDw8Ajhw5UmydBw4coGrVqgCkpKRw5swZateuXWzZ3bt3ExYWxhtvvAEU9JkrfImjUHH3pUGDBpw4cYIaNWoUW6+vry95eXkcOXJE+/mePn36oWPcCSFKR152EKKcqlOnDj179mTOnDk620NDQ7lx4wZfffUV58+f54cffuDPP/8ss/P+8MMPrFu3jlOnTjFo0CBSUlLo168fUNAh//bt27z77rscOnSICxcusGXLFvr161fky/1RxowZw5dffsmqVas4ffo0H3/8MbGxsQwbNuyp4reysmL06NGMGDGCZcuWcf78eY4dO8YPP/zAsmXLAKhRowZHjhxh8+bNnDlzhokTJ2pflCjk5eXFX3/9xenTp7l58ya5ubnUqFEDDw8PwsPDOXPmDBs3bmTGjBmPjKlmzZr07NmTPn36sHbtWi5evMjhw4f58ssvtW+mDh8+nM2bN3Px4kWOHj3Kjh078PX1Lba+qlWrYmxszJw5c7hw4QJ//PEHn332WbFlp0yZwvbt2/n7778JCwvDwcGhxPHxatSowdq1a4mNjeX48eP06NGjSIutl5cXu3bt4sqVK9q3lceOHcv+/fsZNGgQsbGxnD17lj/++EObhNaqVYu2bdsyYMAADh48SExMDO+99x5mZmaPvHdCiIeTRE6Icuyzzz4r8hjV19eXuXPn8sMPPxAYGMihQ4eKfaPzSX3xxRd8+eWXBAYGsnv3bn7//XccHBwAcHNzY+/evajVatq0aUNAQADDhg1DpVLp9McrjaFDhzJq1ChGjRpFnTp1iIyM5I8//sDHx+epr+Gzzz5j0qRJTJ8+HV9fX9q0acP69evx9vYG4MMPP6Rr1668/fbbNGrUiFu3bum0zgEMGDCAWrVqERQUhKOjI3v37sXIyIhffvmFU6dOERgYyJdffsnnn39eqpiWLl1Knz59GDVqFLVq1aJz584cPHhQ26KmVqsZNGgQvr6+tG3bllq1ajF37txi63J0dCQiIoJff/0VPz8/vvjiC7755ptiy37xxRcMGzaMhg0bkpSUxB9//IGxsXGxZb/77jtsbW1p3LgxnTp1ok2bNjRo0ECnzJQpU0hISKB69eraFsq6desSHR3N2bNnadq0KfXr12fixIk6j9uXLl2Kh4cHISEhdO3alffffx8nJ6dS3TshRMkUmge/JYQQQgghRIUgLXJCCCGEEBWUJHJCCCGEEBWUJHJCCCGEEBWUJHJCCCGEEBWUJHJCCCGEEBWUJHJCCCGEEBWUJHJCCCGEEBWUJHJCCCGEEBWUJHJCCCGEEBWUJHJCCCGEEBWUJHJCCCGEEBWUJHJCCCGEEBXU/wMnbaNsmAm/hwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2692,7 +6330,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAClcUlEQVR4nOzdeVwU9R/H8dfscl/LfYqA4o2KYp4hmPeVlZVlXqmVHeaRpaWl2WH9Ko8O0zS1zLzSDsu8UhRvRSRTvEU8QMADkJvd+f1BbhGgoOhyfJ6Pxz5qZ78z85llcd985zvfUVRVVRFCCCGEqKY0pi5ACCGEEMKUJAwJIYQQolqTMCSEEEKIak3CkBBCCCGqNQlDQgghhKjWJAwJIYQQolqTMCSEEEKIak3CkBBCCCGqNQlDQgghhKjWJAyJKk9RlFI9IiIi7mg/U6ZMQVGU8im6lCIiIsqldlNJSEhg0qRJtGnTBldXVxwcHAgJCeGrr75Cr9cXab937166du2Kvb09dnZ2dOjQgR07dhS77by8PKZPn07jxo2xtrbG0dGRtm3bsnPnzjLVGBcXV+rPUFxc3O28DYVcvHiRKVOmcPDgwTve1g2m+GyWt0mTJtGrVy98fHxQFIUhQ4aUar0BAwagKAq9evUq9vWUlBRGjRqFv78/lpaWeHh40L17d65cuVKO1YuKzszUBQhxt+3atavQ83feeYctW7awefPmQssbNmx4R/sZPnw43bp1u6NtlFXz5s3ZtWvXHdduKlFRUXz77bcMGjSIN998E3Nzc37//Xeef/55du/ezYIFC4xt9+3bR/v27WnZsiWLFy9GVVX+97//0bFjR7Zs2UKbNm2MbfV6PQ8//DDbt2/ntddeo23btmRkZBAVFUVGRkaZavTy8iryGXrhhRdITU1lyZIlRdreqYsXL/L222/j7+9PcHDwHW8PTPPZLG8zZsygSZMmPPjgg4U+Fzfz22+/8dNPP+Hg4FDs6xcvXiQ0NBQzMzPefPNN6tSpQ0pKClu2bCE3N7c8yxcVnSpENTN48GDV1tb2lu0yMjLuQTXV25UrV9Tc3Nwiy1988UUVUOPj443Lunbtqnp4eBT6uaSlpamurq5q27ZtC60/Y8YMVaPRqLt27bordYeFhamNGjW6K9vet2+fCqgLFy68K9uvrPR6vfH/bW1t1cGDB9+0/bVr11QfHx91+vTpqp+fn9qzZ88ibfr06aP6+PioV65cKe9yRSUjp8mEAMLDwwkKCmLbtm20bdsWGxsbhg4dCsDy5cvp0qULXl5eWFtb06BBAyZMmFCkh6G4UxH+/v706tWLdevW0bx5c6ytralfv36p/7L98ssvadq0KXZ2dtjb21O/fn3eeOMN4+v/PU12q1M6/7Zp0yY6duyIg4MDNjY2tGvXjj/++KOsb90dcXJywtzcvMjyli1bAnD+/Hnjsh07dhAeHo6NjY1xmb29Pe3bt2fnzp0kJCQYl8+aNYv27dvTunXru1h9YWlpaYwbN46AgAAsLCzw8fFh9OjRRT4nK1eupFWrVuh0OmxsbKhVq5bxsxYREcF9990HwNNPP238uU2ZMqXE/WZmZhr3a2VlhbOzMy1atGDp0qXGNv/9bC5atKjEz0h4eLixnaqqzJ49m+DgYKytrXFycuLRRx/l9OnT5fCOlY1GU7avq1deeQUvLy9efvnlYl+Pi4vjl19+4ZlnnsHJyak8ShSVmJwmE+JvCQkJDBgwgNdee43333/f+I/viRMn6NGjB6NHj8bW1pajR4/y4Ycfsnfv3iKn2ooTExPDK6+8woQJE/Dw8GD+/PkMGzaMwMBA2rdvX+J6y5Yt44UXXmDkyJF8/PHHaDQaTp48yZEjR0pcp7hTOsnJyQwYMAAfHx/jsu+++45BgwbRp08fvvnmG8zNzZk7dy5du3Zl/fr1dOzY8abHlJ+ff8vjBtBqtbc1VmXz5s2YmZlRt25d47Lc3FwsLS2LtL2x7NChQ3h5eXHu3Dni4uLo3bs3b7zxBl9//TWXL1+mXr16vPbaawwePLjM9dxKZmYmYWFhnD9/njfeeIMmTZpw+PBh3nrrLQ4dOsSmTZtQFIVdu3bRr18/+vXrx5QpU7CysuLs2bPGz1Hz5s1ZuHAhTz/9NJMmTaJnz54A1KhRo8R9jx07lsWLF/Puu+/SrFkzMjIy+Ouvv7h8+XKJ6/Ts2bPI52TXrl2MHTuWRo0aGZc999xzLFq0iJdffpkPP/yQK1euMHXqVNq2bUtMTAweHh4l7kNV1WLHfRXHzKx8v4o2bdrEt99+y759+9BqtcW2iYyMRFVVvL29efLJJ1mzZg35+fm0bt2aadOmFTrtKqoBE/dMCXHPFXeaLCwsTAXUP/7446brGgwGNS8vT926dasKqDExMcbXJk+erP73V8rPz0+1srJSz549a1yWlZWlOjs7q88999xN9/XSSy+pjo6ON22zZcsWFVC3bNlS7OsZGRlqy5YtVS8vLzUuLs64zNnZWe3du3ehtnq9Xm3atKnasmXLm+5TVVUVKNXjdk71rF+/XtVoNOqYMWMKLQ8ODlbr1q1b6HRJXl6eWqtWLRVQv//+e1VVVXXXrl0qoDo4OKgNGzZUV6xYoa5fv1599NFHVUD96quvylzTf/33NNm0adNUjUaj7tu3r1C7H374QQXUtWvXqqqqqh9//LEKqNeuXStx22U9TRYUFKQ+9NBDN21T3Gfz344ePaq6uLioHTp0UHNyclRV/ed9/OSTTwq1PXfunGptba2+9tprN93njc9maR5nzpwp1bHecLPTZOnp6aq/v7/6+uuvG5cVd5ps2rRpxs9Jnz591HXr1qmrVq1SmzRpolpZWRX63RZVn/QMCfE3JycnHnjggSLLT58+zaRJk9i8eTNJSUmoqmp8LTY2liZNmtx0u8HBwdSsWdP43MrKirp163L27NmbrteyZUs+//xznnzySZ544gnatWuHq6trqY9Hr9fTr18/YmNj2bZtG35+fgDs3LmTK1euMHjw4CI9PN26deN///sfGRkZ2Nralrjtffv2laqGgICAUtcLcODAAR5//HHjX+f/NnLkSIYNG8ZLL73ExIkTMRgMvP3228b38UZPnsFgACA7O5u1a9caj7tz5860aNGCqVOn8swzz5Sprlv59ddfCQoKIjg4uNB72rVrV+NpzO7duxtPgT3++OMMGzaMdu3aFeqxux0tW7ZkyZIlTJgwgW7dutGqVSusra1LvX5iYiLdunXDy8uLH3/8EQsLC+MxKYrCgAEDCh2Tp6cnTZs2veUVjCEhIaX+nHh7e5e63luZMGEC5ubmvPXWWzdtd+NzUqNGDVatWmXsQWrTpg2BgYH873//47vvviu3ukTFJmFIiL8VdyXQ9evXCQ0NxcrKinfffZe6detiY2PDuXPneOSRR8jKyrrldl1cXIoss7S0vOW6AwcOJD8/n3nz5tG3b18MBgP33Xcf7777Lp07d77lfkeMGMG6dev47bffCl2VdOnSJQAeffTREte9cuXKTcNQaa9yKukURXGio6Pp3LkzderUYe3atUVOiQ0dOpTk5GTeffddvvzyS6Dgi2vcuHF8+OGHxlBx4/2uX7++MQhBwRQLXbt2Zdq0aSQlJeHu7l7q2m7l0qVLnDx5stjxT1Bw+TZA+/bt+emnn/j0008ZNGgQOTk5NGrUiIkTJ/Lkk0/e1r4//fRTatSowfLly/nwww+xsrKia9eufPTRR9SpU+em66anp9OjRw/y8vL4/fff0el0hY5JVdUST4XVqlXrptu2s7Mr9eekvE6T7d27l9mzZ7N69Wqys7PJzs4GCoJPfn4+165dw9raGktLS+PnpFOnToU+p15eXjRt2pQDBw6US02icpAwJMTfihvbsnnzZi5evEhERARhYWHG5deuXbsnNT399NM8/fTTZGRksG3bNiZPnkyvXr04fvx4oS/6/5oyZQrz589n4cKFdOnSpdBrN3qXPvvssxIHGN9sLAhQ4pf+fy1cuLBU88FER0fTqVMn/Pz82LBhQ6Ev5X8bP348o0eP5sSJE9jb2+Pn58dzzz2Hra0tISEhANSuXbvQIOt/u9GrV9bBuLfi6uqKtbV1iQPj/92j16dPH/r06UNOTg67d+9m2rRp9O/fH39//9sap2Jra8vbb7/N22+/zaVLl/j999+ZMGECvXv35ujRoyWul5eXR9++fTl16hSRkZFFxiW5urqiKAqRkZE3HatVkq1bt9KhQ4dSHcOZM2fw9/cvVdubOXLkCKqq8vDDDxd57dy5czg5OTFjxgxGjx590x5dVVXL/TMiKjYJQ0LcxI2A9N9/+OfOnXtP67C1taV79+7k5uby0EMPcfjw4RLD0Ndff83bb7/N1KlTiw0i7dq1w9HRkSNHjvDSSy/dVj3leZrs4MGDdOrUiRo1arBx48ZbXtljaWlJUFAQAPHx8SxfvpxnnnnGeGrIzMyMPn368MMPPxAXF2f8klVVlXXr1lG7du0ynW4sjV69evH+++/j4uJS6lODlpaWhIWF4ejoyPr164mOjqZNmzbGz1ppeh3/y8PDgyFDhhATE8PMmTPJzMwsMRgOGzaMiIgIfv/992KDQa9evfjggw+4cOECjz/+eJlrMcVpsm7durFly5Yiy5944gkCAgKYNm0agYGBALRq1YoaNWqwYcMG9Hq9sXfo4sWLxMTE0L9//3KpSVQOEoaEuIm2bdvi5OTEiBEjmDx5Mubm5ixZsoSYmJi7vu8bX/Dt2rXDy8uLxMREpk2bhk6nM449+a9du3YxYsQI2rVrR+fOndm9e3eh11u3bo2dnR2fffYZgwcP5sqVKzz66KO4u7uTnJxMTEwMycnJxtNQJWnRokW5HOOxY8fo1KkTAO+99x4nTpzgxIkTxtdr166Nm5sbAH/99RerVq2iRYsWWFpaEhMTwwcffECdOnV45513Cm33nXfe4ffff6dbt25MmTIFBwcH5s+fT0xMDCtWrCjUNjw8nK1btxYaC1ZWo0ePZtWqVbRv354xY8bQpEkTDAYD8fHxbNiwgVdeeYVWrVrx1ltvcf78eTp27EiNGjW4du0as2bNwtzc3NjzWLt2baytrVmyZAkNGjTAzs4Ob2/vEgNDq1at6NWrF02aNMHJyYnY2FgWL15MmzZtSgxCH330EYsXL2bkyJHY2toW+pw4ODjQsGFD2rVrx7PPPsvTTz/N/v37ad++Pba2tiQkJLB9+3YaN27M888/X+J7Ym9vX26fEyjoaUpOTgYKxsOdPXuWH374AYCwsDDc3Nzw9PTE09OzyLpWVla4uLgUmjZAo9EwY8YMHn/8cfr06cPzzz9PRkYG77zzDhYWFrz++uvlVruoBEw4eFsIkyjparKSJtHbuXOn2qZNG9XGxkZ1c3NThw8frh44cKDIFT8lXU1W3GRvYWFhalhY2E3r/Oabb9QOHTqoHh4eqoWFhert7a0+/vjj6p9//mls89+ryRYuXHjTq3b+bevWrWrPnj1VZ2dn1dzcXPXx8VF79uyprly58qZ1ladb1fvv9/fYsWNq+/btVWdnZ9XCwkINDAxUJ02apF6/fr3YbR86dEjt2bOnam9vr1pZWamtW7dW16xZU6RdSEiI6unpWaa6i/u8XL9+XZ00aZJar1491cLCQtXpdGrjxo3VMWPGqImJiaqqquqvv/6qdu/eXfXx8VEtLCxUd3d3tUePHmpkZGShbS1dulStX7++am5urgLq5MmTS6xlwoQJaosWLVQnJyfV0tJSrVWrljpmzBg1JSXF2Oa/n83BgweX+J7/93O5YMECtVWrVqqtra1qbW2t1q5dWx00aJC6f//+Mr1nd+rGFZ/FPUq6mvKGkn4PVVVVf/rpJ/W+++5TraysVJ1Opz744IPq4cOH78IRiIpMUdU7+HNICCEqsfT0dJydnZk5cyYvvviiqcsRQpiIjBATQlRb27Ztw8fHp9wvtRdCVC7SMySEEEKIak16hoQQQghRrUkYEkIIIUS1JmFICCGEENWahCEhhBBCVGsy6eItGAwGLl68iL29fbG3axBCCCFExaOqKunp6Xh7e9/y9ioShm7h4sWL+Pr6mroMIYQQQtyGc+fOFbn33n9JGLoFe3t7oODNdHBwMHE1QgghhCiNtLQ0fH19jd/jNyNh6BZunBpzcHCQMCSEEEJUMqUZ4iIDqIUQQghRrUkYEkIIIUS1JmFICCGEENWajBkSQogKTq/Xk5eXZ+oyhKhQzM3N0Wq15bItCUNCCFFBqapKYmIi165dM3UpQlRIjo6OeHp63vE8gBKGhBCigroRhNzd3bGxsZGJX4X4m6qqZGZmkpSUBICXl9cdbU/CkBBCVEB6vd4YhFxcXExdjhAVjrW1NQBJSUm4u7vf0SkzGUAthBAV0I0xQjY2NiauRIiK68bvx52OqZMwJIQQFZicGhOiZOX1+yFhSAghhBDVmoQhIYQQVd6QIUN46KGHbtomIiICRVHk6r1qSMKQEEKIcnWz4OHv74+iKIUe/76juL+/PzNnziz3mmbNmsWiRYuMz8PDwxk9enS578fUhgwZYnxfzczMqFmzJs8//zxXr14t1O5WP4fqRq4mM6GIlZ/iFdiEes3CTV2KEELcM1OnTuWZZ54xPi+vifNuRqfT3fV9/FdeXh7m5ub3fL/dunVj4cKF5Ofnc+TIEYYOHcq1a9dYunRpoXam+DlUVNIzZCLLn2qJ09TF7P10rqlLEUKIe8re3h5PT0/jw83NrczbeOWVV+jdu7fx+cyZM1EUhd9++824rF69esydW/Bv7L97q4YMGcLWrVuZNWuWsVckLi7OuF5UVBQtWrTAxsaGtm3bcuzYsVLVNGXKFIKDg1mwYAG1atXC0tISVVVZt24d999/P46Ojri4uNCrVy9OnTplXK9v376MHDnS+Hz06NEoisLhw4cByM/Px97envXr15eqDktLSzw9PalRowZdunShX79+bNiwoUi78vg5VBUShkylThg72rxLpuYJks+fM3U1QohKQFVVMnPz7/lDVVVTH3oR4eHhREZGYjAYANi6dSuurq5s3boVKJiw8vjx44SFhRVZd9asWbRp04ZnnnmGhIQEEhIS8PX1Nb4+ceJEPvnkE/bv34+ZmRlDhw4tdV0nT55kxYoVrFq1ioMHDwKQkZHB2LFj2bdvH3/88QcajYaHH37YWHt4eDgRERHGbfz3WPbt20d2djbt2rUr03sEcPr0adatW2eSHqrKRE6TmciD46aw+OXfybNw5rePv2DIzA9MXZIQooLLytPT8K3S9Q6UpyNTu2JjUX5fF+PHj2fSpEnG5++//z4vv/xymbbRvn170tPTiY6Opnnz5kRGRjJu3DhWr14NwJYtW/Dw8KB+/fpF1tXpdFhYWGBjY4Onp2eR19977z1jiJowYQI9e/YkOzsbKyurW9aVm5vL4sWLC/Wy9O3bt1Cbr7/+Gnd3d44cOUJQUBDh4eGMGjWKlJQUtFothw8fZvLkyURERPDCCy8QERFBSEgIdnZ2pXpvfv31V+zs7NDr9WRnZwMwffr0Iu3K4+dQVUgYMhFrO1vMLf8kTw1Hf6UO+vx8tGby4xBCVH2vvvoqQ4YMMT53dXUt8zZ0Oh3BwcFERERgbm6ORqPhueeeY/LkyaSnpxMREVFsr1BpNGnSxPj/N27zkJSURM2aNW+5rp+fX5HTTadOneLNN99k9+7dpKSkGHuE4uPjCQoKIigoCBcXF7Zu3Yq5uTlNmzblwQcf5NNPPwUo87F06NCBL7/8kszMTObPn8/x48cLnYa7oTx+DlWFfPuaUOiIh9nwRTLZNgGsmvU/Hn/lDVOXJISowKzNtRyZ2tUk+y1Prq6uBAYG3vF2bpxesrCwICwsDCcnJxo1asSOHTuIiIi47avF/n1K6cakfjcCzK3Y2toWWda7d298fX2ZN28e3t7eGAwGgoKCyM3NNe6jffv2xmMJDw8nKCgIvV7PoUOH2LlzZ5mOxdbW1vj+fvrpp3To0IG3336bd955p1C78vo5VAUShkwosGkztuZ9RLZlCNcPyiyzQoibUxSlXE9XVXbh4eF8/fXXmJmZ0alTJwDCwsJYtmxZieOFbrCwsECv19/1Gi9fvkxsbCxz584lNDQUgO3btxdpFx4ezldffYWFhQVTp05FURRCQ0P5+OOPycrKuq3xQjdMnjyZ7t278/zzz+Pt7X3b26nKZAC1iQWEewCQY9WMyA0/mrgaIYQoH6mpqRw8eLDQIz4+vlz3cWPc0Jo1awgPDwcKQsV3332Hm5sbDRs2LHFdf39/9uzZQ1xcXKFTV+XNyckJFxcXvvrqK06ePMnmzZsZO3ZskXbh4eEcPnyYQ4cOGUNTeHg4S5YsoXnz5jg4ONx2DeHh4TRq1Ij333//trdR1UkYMrEOgwZikXMOVVE4uVTCkBCiaoiIiKBZs2aFHm+99Va57kOn09GsWTOcnZ2NwSc0NBSDwXDLMTbjxo1Dq9XSsGFD3Nzcyj2o3aDRaFi2bBlRUVEEBQUxZswYPvrooyLtgoKCcHV1pWnTpsbgExYWhl6vv+2xT/82duxY5s2bx7lzcvVycRS1Il4zWYGkpaWh0+lITU29o2R+Mz9NHU/Ays3kmF3H69ff8PWpdVf2I4SoPLKzszlz5gwBAQGluopJiOroZr8nZfn+lp6hCqD3a1O4bn0d+yz4Y2b1vKxRCCGEMBUJQxWA1sqapPsKJvxyO3CVnL+vMBBCiOpqyZIl2NnZFfto1KiRSWpq1KhRiTUtWbLkru8/Pj6+xP3b2dndtVN91YFcllBB3D92BusuR5KmC2TFp1MZOO5dU5ckhBAm8+CDD9KqVatiXzPVbMpr164lLy+v2Nc8PDzu+v69vb2Ns1qX9Lq4PRKGKgi32o3ItYkARUOeXGYvhKjm7O3tsbe3N3UZhfj5+Zl0/2ZmZjIv0F0ip8kqkLrtC2YtzbNsxfrfvzdxNUIIIUT1IGGoArl/0GOY5yWTb25D/Iqik3IJIYQQovxJGKpAFI2Ci2ciAGb5rYg9c8TEFQkhhBBVn4ShCqbHuGEohlwybX3ZOusTU5cjhBBCVHkShioYayc7bLXHALBN8CMtK8PEFQkhhBBVm4ShCuiBZzpT7+gCmv+5ghVzXzN1OUIIUekNGTKEhx566KZtIiIiUBSFa9eu3ZOaRMUhYagC8m3ekFy3o2hUPbabt961GwgKIcTdcLPg4e/vj6IohR41atQo9PrMmTPLvaZZs2axaNEi4/Pw8HBGjx5d7vupCBITExk5ciS1atXC0tISX19fevfuzR9//EFubi6urq68+27xc9lNmzYNV1dXcm8x+e+iRYsK/Qw9PDzo3bs3hw8fLtRuyJAhRX7eiqJw8uTJcjve8iBhqIJq8MwrAASdMPDj7wtNXI0QQpSfqVOnkpCQYHxER0ff9X3qdDocHR3v+n7+raQJGu+muLg4QkJC2Lx5M//73/84dOgQ69ato0OHDrz44otYWFgwYMAAFi1aRHG3Jl24cCEDBw7EwsLilvtycHAgISGBixcv8ttvv5GRkUHPnj2LBKlu3boV+nknJCQQEBBQbsdcHipdGJo9e7bxhmwhISFERkaWar0dO3ZgZmZGcHDw3S2wnAR0eZIjDe9nb8sppPxQumMUQojKwN7eHk9PT+PDzc2tzNt45ZVX6N27t/H5zJkzURSF3377zbisXr16zJ07FyjcWzVkyBC2bt3KrFmzjD0VcXFxxvWioqJo0aIFNjY2tG3blmPHjpWqpilTphAcHMyCBQuMvTKqqrJu3Truv/9+HB0dcXFxoVevXpw6dcq4Xt++fRk5cqTx+ejRo1EUxdjLkp+fj729PevXr79lDS+88AKKorB3714effRR6tatS6NGjRg7diy7d+8GYNiwYZw6dYpt27YVWjcyMpITJ04wbNiwUh2voih4enri5eVFixYtGDNmDGfPni3yfllaWhb6eXt6eqLVaku1j3ulUoWh5cuXM3r0aCZOnEh0dDShoaF07979lvdjSU1NZdCgQXTs2PEeVVo+lPotyLZ2xTq7FVEn7v5fTkKICk5VITfj3j+K6UEwtfDwcCIjI43DCLZu3Yqrqytbt24FCk4VHT9+nLCwsCLrzpo1izZt2vDMM88Yeyp8fX2Nr0+cOJFPPvmE/fv3Y2ZmxtChQ0td18mTJ1mxYgWrVq0y3jojIyODsWPHsm/fPv744w80Gg0PP/ywsfbw8HAiIiKM2/jvsezbt4/s7GzatWt3031fuXKFdevW8eKLL2Jra1vk9Rs9Y40bN+a+++5j4cLCZx0WLFhAy5YtCQoKKvXx3nDt2jW+/75gsmBT3S7lTlSq23FMnz6dYcOGMXz4cKDgL4H169fz5ZdfMm3atBLXe+655+jfvz9arZaffvrpHlV75zq9/CSLJ+8lXVePHV98SMjMZaYuSQhhSnmZ8L4J7j/1xkWwKPrlervGjx/PpEmTjM/ff/99Xn755TJto3379qSnpxMdHU3z5s2JjIxk3LhxrF69GoAtW7bg4eFB/fr1i6yr0+mwsLDAxsYGT0/PIq+/9957xhA1YcIEevbsSXZ2NlZWVresKzc3l8WLFxfq7erbt2+hNl9//TXu7u4cOXKEoKAgwsPDGTVqFCkpKWi1Wg4fPszkyZOJiIjghRdeICIigpCQEOzs7G6675MnT6KqarHH/F9Dhw5l3LhxfP7559jZ2XH9+nVWrlzJ9OnTb7nuDampqdjZ2aGqKpmZmUDBPeX+u/9ff/21UO3du3dn5cqVpd7PvVBpeoZyc3OJioqiS5cuhZZ36dKFnTt3lrjewoULOXXqFJMnTy7VfnJyckhLSyv0MBUHTwfsNAVdqU4X65GcnmqyWoQQory8+uqrHDx40PgYNGhQmbeh0+kIDg4mIiKCQ4cOodFoeO6554iJiSE9PZ2IiIhie4VKo0mTJsb/9/LyAiApKalU6/r5+RU57Xfq1Cn69+9PrVq1cHBwMI6XuXFWIygoCBcXF7Zu3UpkZCRNmzblwQcfNPYMlfZYbowBUpRb39/yySefxGAwsHz5cqDgzIuqqjzxxBOlOk4oON158OBBoqKimDNnDrVr12bOnDlF2nXo0KHQz/vTTz8t9T7ulUrTM5SSkoJery9yZ2APDw8SExOLXefEiRNMmDCByMhIzMxKd6jTpk3j7bffvuN6y0to/3b8viSJDIdWLP1yAi+/9qWpSxJCmIq5TUEvjSn2W45cXV3L5YajN04vWVhYEBYWhpOTE40aNWLHjh1ERETc9tVi/z7NcyNYlPaq3uJOT/Xu3RtfX1/mzZuHt7c3BoOBoKAg40BjRVFo37698VjCw8MJCgpCr9dz6NAhdu7cWapjqVOnDoqiEBsbe8tpBHQ6HY8++igLFy5k2LBhLFy4kEcffRQHB4dSHSeARqMx/hzr169PYmIi/fr1KzIWydbWtsLfYLbS9Azd8N/Eq6pqsSlYr9fTv39/3n77berWrVvq7b/++uukpqYaH+fOnbvjmu9EwP2NMNcnoTezwi5aJV+vN2k9QggTUpSC01X3+lGKngZTuDFuaPPmzYSHhwMQFhbGsmXLShwvdIOFhQX6e/Dv6eXLl4mNjWXSpEl07NiRBg0acPXq1SLtbgS7iIgIwsPDURSF0NBQPv74Y7Kysm45XgjA2dmZrl278sUXX5CRUXTC3v/OnzRs2DB27NjBr7/+yo4dO0o9cLokY8aMISYmhh9//PGOtmMKlSYMubq6otVqi/QCJSUlFektAkhPT2f//v289NJLmJmZYWZmxtSpU4mJicHMzIzNmzcXux9LS0scHBwKPUxJURQatij4S0Mxa8/in6VnSAhR8aWmphY6NXLw4MFbXuxSVjfGDa1Zs8YYhsLDw/nuu+9wc3OjYcOGJa7r7+/Pnj17iIuLIyUl5a7N5+bk5ISLiwtfffUVJ0+eZPPmzYwdO7ZIu/DwcA4fPsyhQ4cIDQ01LluyZAnNmzcv9XfR7Nmz0ev1tGzZklWrVnHixAliY2P59NNPadOmTaG2YWFhBAYGMmjQIAIDA2nfvv0dHauDgwPDhw9n8uTJxV62X5FVmjBkYWFBSEgIGzduLLR848aNtG3btkh7BwcHDh06VOgXccSIEdSrV4+DBw/SqlWre1X6HWs5qDuOaXtocOw7sn5eYOpyhBDiliIiImjWrFmhx1tvvVWu+9DpdDRr1gxnZ2dj8AkNDcVgMNxyjM24cePQarU0bNgQNze3cg9qN2g0GpYtW0ZUVBRBQUGMGTOGjz76qEi7oKAgXF1dadq0qTH4hIWFodfryzT2KSAggAMHDtChQwdeeeUVgoKC6Ny5M3/88Qdffln0j+mhQ4dy9erVMl0xdzOjRo0iNja2wg2QvhVFrUTxbfny5QwcOJA5c+bQpk0bvvrqK+bNm8fhw4fx8/Pj9ddf58KFC3z77bfFrj9lyhR++ukn4+WOpZGWloZOpyM1NdWkvUSHPn0Ns9lrSLOGzMXz6RB06y5TIUTllZ2dzZkzZ4zzqgkhirrZ70lZvr8rTc8QQL9+/Zg5cyZTp04lODiYbdu2sXbtWvz8/ABISEi4a+ne1IJGvEOaPThkQdSCN01djhBCCFFlVKqeIVOoKD1DAH+MHER6XABZ5ldpM28i/i5Fx0oJIaqG6t4ztGTJEp577rliX/Pz8ytyD6x7oVGjRpw9e7bY1+bOnctTTz11V/cfHx9/03FQR44coWbNmuWyL1Mfa2mVV89Qpbm0XkCNB19l06pkLHLTWP71BMa/JvcsE0JUTQ8++GCJYztNNcPx2rVrS7zfWHEX8pQ3b2/vmw7z8PYuvwk5TX2s95qEoUok8IFGRKz8mVwLHa5RerLycrE2v/XN9IQQorKxt7fH3t7e1GUUcmNIhqmYmZnds/l6TH2s91qlGjNU3Wm1Guo3sQTAQhPK16tnmbgiIYQQovKTMFTJtBjYEVQ9abraGH6PMHU5QgghRKUnYaiSsdVZ4uGYDIBHWmt+2r/JxBUJIYQQlZuEoUqozeBOAFxxuY/Y74pO3iWEEEKI0pMwVAl5N3DDQROP7/ktBP15mcMJVXNuJSGEEOJekDBUCSmKwpOTwqgZ/zOBFzP44ZsJpi5JCCEqtCFDhtzyTu4REREoilLkhqai6pMwVEmZeQeQGuQIgP+uGFKzM01bkBBC/O1mwcPf3x9FUQo9atSoUej1mTNnlntNs2bNYtGiRcbn4eHhjB49utz3UxGcO3eOYcOG4e3tjYWFBX5+fowaNYrLly8XaXv48GEef/xx3NzcsLS0pE6dOrz55ptkZhb+Tvn3z02r1eLt7c2wYcO4evVqqWq6ETRvPFxcXHjggQfYsWNHoXZTpkwp8vlQFIVNm+7u+FgJQ5VYkxfe4LJzQ1yzu/Dlqo9NXY4QQpTK1KlTSUhIMD6io6Pv+j51Oh2Ojo53fT//VtKkhXfT6dOnadGiBcePH2fp0qWcPHmSOXPm8Mcff9CmTRuuXLlibLt7925atWpFbm4uv/32G8ePH+f999/nm2++oXPnzuTm5hba9o2fW3x8PEuWLGHbtm28/PLLZarv2LFjJCQkEBERgZubGz179iQpKalQm0aNGhX6fCQkJNC+ffvbf1NKQcJQJabW70RMkxeJ8++J5aYtGAwGU5ckhBC3ZG9vj6enp/Hh5uZW5m288sor9O7d2/h85syZKIrCb7/9ZlxWr1495s6dCxTurRoyZAhbt25l1qxZxp6HuLg443pRUVG0aNECGxsb2rZty7Fjx0pV05QpUwgODmbBggXUqlULS0tLVFVl3bp13H///Tg6OuLi4kKvXr04deqUcb2+ffsycuRI4/PRo0ejKIrxliP5+fnY29uzfv36W9bw4osvYmFhwYYNGwgLC6NmzZp0796dTZs2ceHCBSZOnAiAqqoMGzaMBg0asHr1alq2bImfnx+PPfYYa9asYdeuXcyYMaPQtm/83Hx8fOjQoQODBg3iwIEDpXpvbnB3d8fT05PGjRszadIkUlNT2bNnT6E2ZmZmhT4fnp6eWFjc3QmGJQxVYo4eNrjaXQFFg+/lVny3c42pSxJC3EWqqpKZl3nPHxXxFpbh4eFERkYa/wjcunUrrq6ubN26FYDExESOHz9OWFhYkXVnzZpFmzZteOaZZ4w9D76+vsbXJ06cyCeffML+/fsxMzNj6NChpa7r5MmTrFixglWrVhlvnZGRkcHYsWPZt28ff/zxBxqNhocffthYe3h4OBEREcZt/PdY9u3bR3Z2Nu3atbvpvq9cucL69et54YUXsLa2LvSap6cnTz31FMuXL0dVVQ4ePMiRI0cYO3YsGk3hKNC0aVM6derE0qVLS9zXhQsX+PXXX0u8ZcqtZGZmsnBhwS2lTHV7lX+T23FUcvc90Zbf5x/lsltbLq2cDvf3MXVJQoi7JCs/i1bf396Xz53Y038PNuY25ba98ePHM2nSJOPz999/v8ynW9q3b096ejrR0dE0b96cyMhIxo0bx+rVqwHYsmULHh4e1K9fv8i6Op0OCwsLbGxs8PT0LPL6e++9ZwxREyZMoGfPnmRnZ5fqhrm5ubksXry4UG9X3759C7X5+uuvcXd358iRIwQFBREeHs6oUaNISUlBq9Vy+PBhJk+eTEREBC+88AIRERGEhIRgZ2d3032fOHECVVVp0KBBsa83aNCAq1evkpyczPHjx43LSmq7ffv2Qstu/Nz0ej3Z2dm0atWK6dOn3/I9+bcb48MyMwtCdkhICB07dizU5tChQ4WOtWHDhuzdu7dM+ykr6Rmq5Pybe2GppJFvbkfdMwHsjjtq6pKEEOKmXn31VQ4ePGh8DBo0qMzb0Ol0BAcHExERwaFDh9BoNDz33HPExMSQnp5OREREsb1CpdGkSRPj/3t5eQEUGddSEj8/vyKn/U6dOkX//v2pVasWDg4OBAQEAAV3oQcICgrCxcWFrVu3EhkZSdOmTXnwwQeNPUN3ciz/dqOHT1GUUrX9b7sbP7c///yTP/74A4CePXui1+tLXUNkZCQHDhxg6dKl+Pn5sWjRoiI9Q/Xq1Sv0+Vi1alWpt3+7pGeoktNoFJp2qMnezdfItW/PL9+/Ses3Vpq6LCHEXWBtZs2e/ntu3fAu7Lc8ubq6lssNR2+cXrKwsCAsLAwnJycaNWrEjh07iIiIuO2rxf795XwjEJR2TKatrW2RZb1798bX15d58+bh7e2NwWAgKCjIOEBZURTat29vPJbw8HCCgoLQ6/UcOnSInTt3lupYAgMDURSFI0eOFHs139GjR3FycsLV1ZW6desCcOTIEYKDg4ttW6dOnULL/v1zq1OnDjNnzqRNmzZs2bKFTp063bI+gICAABwdHalbty7Z2dk8/PDD/PXXX1haWhrbWFhY3LMb0t4gPUNVQFD3IBQ1j3R7P2pFXycx/ZqpSxJC3AWKomBjbnPPH6XpSTCFG+OGNm/eTHh4OABhYWEsW7asxPFCN1hYWJSpR+N2Xb58mdjYWCZNmkTHjh2Np6r+60awi4iIIDw8HEVRCA0N5eOPPyYrK+uW44UAXFxc6Ny5M7NnzyYrK6vQa4mJiSxZsoR+/fqhKArBwcHUr1+fGTNmFAl6MTExbNq0iSeffPKm+9NqtQBF9lVaAwcOxGAwMHv27NtavzxJGKoCrO0tqFUL7K6fp955c75YLbfoEEKYVmpqaqFTHQcPHjSeFiovN8YNrVmzxhiGwsPD+e6773Bzc6Nhw4Ylruvv78+ePXuIi4sjJSXlrl2N6+TkhIuLC1999RUnT55k8+bNjB07tki78PBwDh8+zKFDhwgNDTUuW7JkCc2bN8fBwaFU+/v888/Jycmha9eubNu2jXPnzrFu3To6d+6Mj48P7733HlAQrOfPn8+RI0fo27cve/fuJT4+npUrV9K7d2/atGlTpDcqPT2dxMREEhIS2Lt3L6+++iqurq60bdv2tt4bjUbD6NGj+eCDD4rMa3SvSRiqIjqO7kTdhI9wvXoChy1ryLsHf/EIIURJIiIiaNasWaHHW2+9Va770Ol0NGvWDGdnZ2PwCQ0NxWAw3HKMzbhx49BqtTRs2BA3N7dyD2o3aDQali1bRlRUFEFBQYwZM4aPPir6B2tQUBCurq40bdrUGHzCwsLQ6/VlGi9Up04d9u/fT+3atenXrx+1a9fm2WefpUOHDuzatQtnZ2dj23bt2rF79260Wi09evQgMDCQ119/ncGDB7Nx48ZCp64A3nrrLby8vPD29qZXr17Y2tqyceNGXFxcbvPdgaFDh5KXl8fnn39+29soD4paEa+ZrEDS0tLQ6XSkpqaWOpmbSsLcKVybsZxUG9j38SRGPvCUqUsSQtym7Oxszpw5Q0BAQKmuYhKiOrrZ70lZvr+lZ6gK8RwygXQHSzIc2pD08xemLkcIIYSoFCQMVSXmlvwVMpmj9QfQ+JQv646WbWZQIYSoKJYsWYKdnV2xj0aNGpmkpkaNGpVY05IlS+76/uPj40vcv52d3V071Vca3bt3L7Gu999/32R1lZZcWl+FKBqFuq19idmVRr5Nezb+8DbdJv1s6rKEEKLMHnzwwRJnNzbVjMVr164t8X5jHh4ed33/3t7exlmtS3rdVObPn1/iVWX/HqdUUUkYqmKa9GxEzM4dXHVuQIPolZy6fInaLnf/l1QIIcqTvb099vb2pi6jED8/P5Pu38zM7J7Pv1NaPj4+pi7hjshpsirGwdUa3xoFl4i65IYy++cPTVyREEIIUbFJGKqCgh8JAeCSR2s8IreSkZtj4oqEEEKIikvCUBXk28AZO8ss9GbWNLjYnJmbvzV1SUIIIUSFJWGoClI0Ck27NwDVgGrmTvr6ech0UkIIIUTxJAxVUQ3DatLefjl1Tq3m/uh0VsRsM3VJQgghRIUkYaiKsrA2o8GY19FrVWonwvY1/zN1SUIIIUSFJGGoCjPzqYW+sRtZVs40iU7iYEKcqUsSQlQDQ4YMQVEURowYUeS1F154AUVRGDJkSKG2iqJgbm6Oh4cHnTt3ZsGCBUVunurv78/MmTNLVYO/v79xu9bW1tSvX5+PPvqo0JCBuLg4Y5t/PwYMGHDbxy4qJwlDVVz6/ZPY1eptPLPaM1d6h4QQ94ivry/Lli0rNBFfdnY2S5cupWbNmoXaduvWjYSEBOLi4vj999/p0KEDo0aNolevXuTn5992DVOnTiUhIYHY2FjGjRvHG2+8wVdffVWk3aZNm0hISDA+vvhCbmdU3UgYquI8WgWDoiHRsx1+u7ZzJTPd1CUJIaqB5s2bU7NmTVavXm1ctnr1anx9fWnWrFmhtpaWlnh6euLj40Pz5s154403+Pnnn/n9999ZtGjRbddgb2+Pp6cn/v7+DB8+nCZNmrBhw4Yi7VxcXPD09DQ+dDrdbe9TVE4Shqq4Ws3csDLLJdfSkSbnGvO/TQtMXZIQ4japqoohM/OeP273atSnn36ahQsXGp8vWLCAoUOHlmrdBx54gKZNmxYKU7dLVVUiIiKIjY012a08RMUmt+Oo4rRmGoI61mL/+vNcdW2PfstX6HuORKuVHCxEZaNmZXGsecg932+9A1EoNjZlXm/gwIG8/vrrxrE5O3bsYNmyZURERJRq/fr16/Pnn3+Web83jB8/nkmTJpGbm0teXh5WVla8/PLLRdq1bdsWjeaffxMjIyOL9F6Jqk3CUDXQKNyPqPXxXHOsQ5sjjszft47nWvcwdVlCiCrO1dWVnj178s0336CqKj179sTV1bXU66uqiqIot73/V199lSFDhpCcnMzEiRN54IEHaNu2bZF2y5cvp0GDBsbnvr6+t71PUTlJGKoG7JwsCWhgx+nYTBTL9hzYMAMkDAlR6SjW1tQ7EGWS/d6uoUOH8tJLLwGUeWBybGwsAQEBt71vV1dXAgMDCQwMZNWqVQQGBtK6dWs6depUqJ2vr2+FvQGquDckDFUTTbrV43RsNCkujWkRvZJtZ2JpH9Dg1isKISoMRVFu63SVKXXr1o3c3FwAunbtWur1Nm/ezKFDhxgzZky51OHk5MTIkSMZN24c0dHRd9TjJKoeGThSTXjXdSSsbTat906l9TE9i9Z9bOqShBDVgFarJTY2ltjYWLRabbFtcnJySExM5MKFCxw4cID333+fPn360KtXLwYNGlRutbz44oscO3aMVatWlds2RdUgYaiaUBSFoEE90HsaMDNA7X27uZB6xdRlCSGqAQcHBxwcHEp8fd26dXh5eeHv70+3bt3YsmULn376KT///HOJAep2uLm5MXDgQKZMmVJkQkdRvSmq3MHzptLS0tDpdKSmpt70l7mySJ33Dhc++Z4rdlYse/1xPu/7uqlLEkIUIzs7mzNnzhAQEICVlZWpyxGiQrrZ70lZvr+lZ6iayWj3LHtavsEF/0GY71hBTl6eqUsSQgghTKrShaHZs2cbE2BISAiRkZEltt2+fTvt2rXDxcXFeG+aGTNm3MNqKx4rJzsybXxIcWlM2J/WfLrzJ1OXJIQQZbJkyRLs7OyKfTRq1MjU5YlKqFJdTbZ8+XJGjx7N7NmzadeuHXPnzqV79+4cOXKkyL1uAGxtbXnppZdo0qQJtra2bN++neeeew5bW1ueffZZExyB6Tl72eLtb8XFuGzMzEOJ3Tobwh4zdVlCCFFqDz74IK1atSr2NZlhWtyOSjVmqFWrVjRv3pwvv/zSuKxBgwY89NBDTJs2rVTbeOSRR7C1tWXx4sWlal/VxgwBnIpOYt3cvzDPTYdrb+L53tc82OA+U5clhPgXGTMkxK1VuzFDubm5REVF0aVLl0LLu3Tpws6dO0u1jejoaHbu3ElYWFiJbXJyckhLSyv0qGoCmrhia2Mgz8KeWleasXzzLFOXJIQQQphMpQlDKSkp6PV6PDw8Ci338PAgMTHxpuvWqFEDS0tLWrRowYsvvsjw4cNLbDtt2jR0Op3xURWnZddoNQR1KphtNcG7PQ2iojmWfNHEVQkhhBCmUWnC0A3/nTW0NPeuiYyMZP/+/cyZM4eZM2eydOnSEtu+/vrrpKamGh/nzp0rl7ormob3e6NRDKQ5BNDmuDf/++PLW68khBBCVEGVZgC1q6srWq22SC9QUlJSkd6i/7pxb5vGjRtz6dIlpkyZwpNPPllsW0tLSywtLcun6ArMxsGC1g8GkPq/13BPuYDd3l9If2gi9jI2QQghRDVTaXqGLCwsCAkJYePGjYWWb9y4sdi7EJdEVVVycnLKu7xKqVn32tRvZY2CSqcDuXy4reQeMyGEEKKqqjRhCGDs2LHMnz+fBQsWEBsby5gxY4iPj2fEiBFAwSmuf9/H5osvvmDNmjWcOHGCEydOsHDhQj7++GMGDBhgqkOocFxHvo1Bq1I7Ec7u/lqmqBdCCFHtVKow1K9fP2bOnMnUqVMJDg5m27ZtrF27Fj8/PwASEhKIj483tjcYDLz++usEBwfTokULPvvsMz744AOmTp1qqkOocPTOfsS37E9U83GEHrzKkphtpi5JCFFJKYpy08eQIUPuyn4zMjIYP348tWrVwsrKCjc3N8LDw/n111+NbcLDwxk9enSRdRctWoSjo2OR5VlZWTg5OeHs7ExWVlaR1/39/Y3HZWNjQ1BQEHPnzi1VvYsWLSr0vnh4eNC7d28OHz5cqN2QIUOKfR9PnjxZqv2I0qs0Y4ZueOGFF3jhhReKfW3RokWFno8cOZKRI0feg6oqL41W4bx9O3ItFRrFN+SzyC8Y2Czc1GUJISqhhIQE4/8vX76ct956i2PHjhmXWVtbF2qfl5dXLpMkjhgxgr179/L555/TsGFDLl++zM6dO7l8+fJtb3PVqlUEBQWhqiqrV6/mqaeeKtJm6tSpPPPMM1y/fp1FixYxYsQIHB0d6dev3y237+DgwLFjx1BVlQsXLvDaa6/Rs2dPjh8/joWFhbFdt27dWLhwYaF13dzcbvu4RPEqVc+QKH/mFloati+YvTvBqz3BMYfZf/60iasSQlRGnp6exodOp0NRFOPz7OxsHB0dWbFiBeHh4VhZWfHdd98BsHDhQho0aICVlRX169dn9uzZhbZ74cIF+vXrh5OTEy4uLvTp04e4uDjj62vWrOGNN96gR48e+Pv7ExISwsiRIxk8ePBtH8vXX3/NgAEDGDBgAF9//XWxbezt7fH09CQwMJB3332XOnXq8NNPP5Vq+zfeGy8vL1q0aMGYMWM4e/ZsofAIBRf1/Pt99fT0RKvV3vZxieJJGBIEhfkAKldcGnH/EVc+iZh9y3WEEKaTl6Mv8ZGfpy9929xbty1v48eP5+WXXyY2NpauXbsyb948Jk6cyHvvvUdsbCzvv/8+b775Jt988w0AmZmZdOjQATs7O7Zt28b27duxs7OjW7du5ObmAgUhbO3ataSnp5dLjadOnWLXrl08/vjjPP744+zcuZPTp2/9R6KVlRV5t3Hz62vXrvH9998DcjsRU6l0p8lE+dO52VCzoRPxR66R7hyKW/Qakh5Kw92uatx+RIiq5qtRW0t8zS/IhV4vNTU+X/BqJPm5xV8Y4V3HkYdfaW58/u3EnWRfL/xl/uKcB+6w2sJGjx7NI488Ynz+zjvv8MknnxiXBQQEcOTIEebOncvgwYNZtmwZGo2G+fPnG+eUW7hwIY6OjkRERNClSxe++uornnrqKVxcXGjatCn3338/jz76KO3atSu079mzZzN//vxCy/Lz84vcxmHBggV0794dJycnoOBU1YIFC3j33XeLPab8/Hy+++47Dh06xPPPP1+q9yE1NRU7OztUVSUzMxMouOda/fr1C7X79ddfsbOzMz7v3r07K1euLNU+ROlJz5AAoHGHv0+Vebah4wF4P+JbE1ckhKiKWrRoYfz/5ORkzp07x7Bhwwrdef7dd9/l1KlTAERFRXHy5Ens7e2Nrzs7O5OdnW1s0759e06fPs0ff/xB3759OXz4MKGhobzzzjuF9v3UU09x8ODBQo//XlCj1+v55ptvCl11PGDAAL755hv0+sI9ZePHj8fOzg5ra2tefPFFXn31VZ577rlSvQ/29vYcPHiQqKgo5syZQ+3atZkzZ06Rdh06dChU76efflqq7YuykZ4hAYBfIxccnMxIu2qDHfeRFP0d+d2fx0zOTQtR4Tw7q+T7Kyr/+RN36EehJbf9z+T9g94r/Zxtt8vW1tb4/zem8pg3b16Ru9DfGBdjMBgICQlhyZIlRbb174HE5ubmhIaGEhoayoQJE3j33XeZOnUq48ePNw5I1ul0BAYGFtqGu7t7oefr1683jlH6N71ez4YNG+jevbtx2auvvsqQIUOwsbHBy8vrlndD+DeNRmOspX79+iQmJtKvXz+2bSt8Ra+trW2RmkX5k54hAYCiUWjWrRZ+ufvQXTtJh+g05uz93dRlCSGKYW6pLfFhZq4tfVuLW7e9mzw8PPDx8eH06dMEBgYWety4c0Dz5s05ceIE7u7uRdrodLoSt92wYUPy8/PJzs4uU01ff/01TzzxRJEepKeeeqrIQGpXV1cCAwPx9vYuUxAqzpgxY4iJieHHH3+8o+2I2yNhSBgFhdWg49MNsc1KovVRlQ17vzJ1SUKIKm7KlClMmzaNWbNmcfz4cQ4dOsTChQuZPn06UHBqy9XVlT59+hAZGcmZM2fYunUro0aN4vz580DBHEJz584lKiqKuLg41q5dyxtvvEGHDh1wcCj92Mfk5GTWrFnD4MGDCQoKKvQYPHgwv/zyC8nJyXflfXBwcGD48OFMnjwZVVXvyj5EySQMiUKsQ3uj+FhgZoAWf57kj5OHTF2SEKIKGz58OPPnz2fRokU0btyYsLAwFi1aZOwZsrGxYdu2bdSsWZNHHnmEBg0aMHToULKysoxBp2vXrnzzzTd06dKFBg0aMHLkSLp27cqKFSvKVMu3336Lra0tHTt2LPJahw4dsLe3Z/HixXd+0CUYNWoUsbGxMkDaBBRVIuhNpaWlodPpSE1NLdNfGJXZyRmzOLgtC/cLq5n+Ykt+Gvy5qUsSotrJzs7mzJkzBAQEFLnaSQhR4Ga/J2X5/pYB1KKIg9ltuORxHZvMS9Q4tImzV1Pwc3I1dVlCCCHEXSGnyUQRjR8ouMz+ovf9dNlv4N2IBSauSAghKo9GjRoVmirg34/irooTpic9Q6KIwObubF9+lGyc0OU3IfWvlWT1Go21ucWtVxZCiGpu7dq1Jc5E7eHhcY+rEaUhYUgUoTXX0Ki9L1HrznLepz2domOYvmM1E8OfMHVpQghR4fn5+Zm6BFFGcppMFKtRex8UReWaUz2axHuwPWaRXO4phBCiSpIwJIpl72yFf5OC2V0TvdrT5s94Vh/eY+KqhKh+5I8QIUpWXr8fEoZEiRqH18DWIhvbjEQ6H1SZv3eeqUsSotq4cffyGzfxFEIUdeP348bvy+2SMUOiRDXqOzHwg3COhb6CkgEBR/bwV+I5gjx9TV2aEFWeVqvF0dGRpKQkoGDywTu95YMQVYWqqmRmZpKUlISjo6PxXna3S8KQKJGiKGhtbHDvfB/JP+2jW5Se9yMX8P1jk01dmhDVgqenJ4AxEAkhCnN0dDT+ntwJCUPiluxfeIs/d0/B43oyucd+5lrWqzha25i6LCGqPEVR8PLywt3dvcRLtYWorszNze+4R+gGCUPilvbvVYmtPxS35Gi6HPiaaduW8mHXYaYuS4hqQ6vVlts/+kKIomQAtbil+m29AEhxbULz0zr2xy4mT683cVVCCCFE+ZAwJG7JxdsO7zqOqIqWS57tCDuUxPQdP5q6LCGEEKJcSBgSpdI4vAZQcL+yblEafo+Zh15vMHFVQgghxJ2TMCRKJSDYFVudBbkWDmQ4BNM16hxz9q4zdVlCCCHEHZMwJEpFq9XQqL0PAOdqPED3/Spr9s6W2XGFEEJUehKGRKkFtffBzFyDuTYHDdZ0332axdHbTF2WEEIIcUckDIlSs7a3oP/brenTKwPz/CweiFFZvWWmqcsSQggh7oiEIVEm9s5W2Dw2BqWmBjMD9NhxjNV/7TV1WUIIIcRtkzAkyk6jxWPYCBI8W9PuiMqq3z4ydUVCCCHEbZMwJMosOyOPlTubEFt/IBl2Nei+7TAbjx8ydVlCCCHEbZEwJMrMytYc/8YuAMTV7EzIKZWVK98zcVVCCCHE7ZEwJG5L827+ACS7NSfT2p2uEX+y88xx0xYlhBBC3AYJQ+K2uNaww7+JKygazvh1puE5lVXfvG3qsoQQQogykzAkbltINz8AkjxakW3pRMct0cScP2viqoQQQoiykTAkbptnLR0+9ZxQFS1n/DsScEll9ZcTTV2WEEIIUSYShsQdCenuh9ZMweCqByBs8wGOJ1w0cVVCCCFE6UkYEnekRj0nBr3fjocGenPdWsXrqsrP0yeYuiwhhBCi1CQMiTuiKAo2DhaYtRtOZrOCZW237CM+MdG0hQkhhBClJGFIlA9zK2r3HssZ36Y4X4dfP3jN1BUJIYQQpSJhSJSLc7FX+Hl9IGdr90evsaDF1n1cSrhk6rKEEEKIW5IwJMqFT11HHNysMWDH0cB22GfBunfHmbosIYQQ4pYqXRiaPXs2AQEBWFlZERISQmRkZIltV69eTefOnXFzc8PBwYE2bdqwfv36e1ht9aHRamjepSYAyd4dMShmNN62nysX5MoyIYQQFVulCkPLly9n9OjRTJw4kejoaEJDQ+nevTvx8fHFtt+2bRudO3dm7dq1REVF0aFDB3r37k10dPQ9rrx6qN/aC1tHSww48VfdlljnwR9vv2rqsoQQQoibUlRVVU1dRGm1atWK5s2b8+WXXxqXNWjQgIceeohp06aVahuNGjWiX79+vPXWW6Vqn5aWhk6nIzU1FQcHh9uquzqJ+eMc21eeQKMk0T7iHfQaA/6/rcPB38/UpQkhhKhGyvL9XWl6hnJzc4mKiqJLly6Flnfp0oWdO3eWahsGg4H09HScnZ1LbJOTk0NaWlqhhyi9hvd7Y2VrjkF152D9ZpjrIXLyeFOXJYQQQpSo0oShlJQU9Ho9Hh4ehZZ7eHiQWMo5bT755BMyMjJ4/PHHS2wzbdo0dDqd8eHr63tHdVc35pZamnasga3OnIzaBbNS+++N4foxuaO9EEKIiqnShKEbFEUp9FxV1SLLirN06VKmTJnC8uXLcXd3L7Hd66+/TmpqqvFx7ty5O665umnaqSYD321Hn271iaoDGhX2TJF7lgkhhKiYKk0YcnV1RavVFukFSkpKKtJb9F/Lly9n2LBhrFixgk6dOt20raWlJQ4ODoUeomzMLbRozTV43D+aKy3yMQDe0X+R8echU5cmhBBCFFFpwpCFhQUhISFs3Lix0PKNGzfStm3bEtdbunQpQ4YM4fvvv6dnz553u0zxLwZze1p4jySyaS0Aoqe8aeKKhBBCiKIqTRgCGDt2LPPnz2fBggXExsYyZswY4uPjGTFiBFBwimvQoEHG9kuXLmXQoEF88skntG7dmsTERBITE0lNTTXVIVQr+9bGER0VRI5nT/I14HLkGNd37TZ1WUIIIUQhlSoM9evXj5kzZzJ16lSCg4PZtm0ba9euxc+v4LLthISEQnMOzZ07l/z8fF588UW8vLyMj1GjRpnqEKqVhu280WgUzHLqszkkAIDYd9+hEs3mIIQQohqoVPMMmYLMM3RnNn8bS+zOBLJtYnhg41dY5YHP55/hcIuxW0IIIcSdqJLzDInKqXlXP1DAKrMp61r6AHDqgw9R9XoTVyaEEEIUkDAk7ipHDxsCmxdMZaA4d+a6FVidP0/qmjUmrkwIIYQoIGFI3HUh3QvGdNmnt+DX1gXTIJybPgM1N9eUZQkhhBCAhCFxD7jWsMevsQteAbZcraXlih2YJSVxdcVKU5cmhBBCSBgS90bX4UE8Mr41fWr5s6pdwccu4fMvMGRmmrgyIYQQ1Z2EIXFPmFtqAXigy3sk1s8n0RE0165y5dvFpi1MCCFEtSdhSNxTORoXuqc+w6p2BZc5Js2bh/7aNdMWJYQQolqTMCTuqXVfHSItrjnWdmGcdQMlI4PLX39t6rKEEEJUYxKGxD3V5AFfAAJSOrAy1BaAy98uJi8pyZRlCSGEqMYkDIl7KqCJK87etqh6S2ys7ueoD5CTQ8qXX5q6NCGEENWUhCFxTykapWBWaqB+UmeWt7cG4NqKleT+675yQgghxL0iYUjcc3VauOPgagX51jiYtSa6lgJ6Pcmffmbq0oQQQlRDEobEPafRaoy9Q00vdWVZewsA0n77jexjx0xZmhBCiGpIwpAwifqtvbB3saJOkDsZzmbsbKCAqpI8Y6apSxNCCFHNSBgSJqE11/DUlNZ0ebYN3S3dWB6qQa/A9YgIMg8cMHV5QgghqhEJQ8JktOYFH7/hXT4k3UklookCQPL0GaiqasrShBBCVCMShoTJ5etr0Tf+KVa205Knhcz9+8nYvt3UZQkhhKgmJAwJk8rL1fPjx1FYJ7TGJb8h60IKeoeSZsxANRhMXJ0QQojqQMKQMClzCy1BYTUACL3Qi59aa8i2gJwjsaSvX2/i6oQQQlQHEoaEyTXt6IvWXINFhg+OeXX4uVXBxzJ51qeo+fkmrk4IIURVJ2FImJyNgwUN7/cGoMP5nvx2n0KGNeTGxXHtxx9NXJ0QQoiqTsKQqBCada6JRqNgk14Lxxx/VrYt+GimfP4FhuxsE1cnhBCiKpMwJCoEe2cr6rb2BOCB893Z2Fwh1U4h/9Ilrn6/1MTVCSGEqMokDIkKI6SrH7Y6C5o0rkWeVuH70ILll7/6Cv3166YtTgghRJV1W2HIUMIlzwaDgXi587i4TY4eNgx6vy09B3TnvnwbtjbRcNlJg/7aNa4sWGjq8oQQQlRRZQpDaWlpPP7449ja2uLh4cHkyZPR6/XG15OTkwkICCj3IkX1odEWfCSfuW8sBo3C4rCC5VcWLSL/yhUTViaEEKKqKlMYevPNN4mJiWHx4sW89957fPPNN/Tp04fc3FxjG7mNgrhTBoOKW34HusV3Y2d9hSR3LYbMTC7PnWvq0oQQQlRBZQpDP/30E3PnzuXRRx9l+PDhREVFkZKSQu/evcnJyQFAUZS7UqioPpLPprN+3l/4J3TDNteRheEFAfvq90vJu3jRxNUJIYSoasoUhlJSUvDz8zM+d3FxYePGjaSnp9OjRw8yMzPLvUBR/XgEOOBdxxEMCmHnOxFVS+GijzlqXh7JX3xh6vKEEEJUMWUKQ76+vsTGxhZaZm9vz4YNG8jKyuLhhx8u1+JE9dWiuz8Afpfvxyrfjq87FMxEnfrjT+ScPm3CyoQQQlQ1ZQpDXbp0YeHColf12NnZsX79eqysrMqtMFG91WjghLufPapew/0XHuCQr5b4ACswGEieOcvU5QkhhKhCyhSG3n77baZMmVLsa/b29mzatInNmzeXR12imlMUhZBu/gAEpnTAIt+KBeHZqIpC+oYNZB36y7QFCiGEqDLKFIacnJxo1KhRia/b2dkRFhZmfN64cWPOnTt3+9WJai2gqStOXraQp6XVxfYc8TQjrp41AMkzZpi4OiGEEFXFXZ2BOi4ujry8vLu5C1GFKRqFkG5+uPs70DTAH4CFoZlgpiVj504ydu8xbYFCCCGqBLkdh6jQ6t7nwaPjQ3j6yedw1iscdTXjVENbAJJmTJd5rYQQQtwxCUOiQlM0CoqiYKG14BHv3gB80y4NLC3JjvmT6zJGTQghxB2SMCQqhZzMPFrmDaZxUnOOOppxqnFB71DyzJmo/7oljBBCCFFWEoZEpRC7M4EDv52ndcKjKKrCd60ug50dOSdOkvbrr6YuTwghRCVW7mHowoUL5b1JIWh4vzeWtmZoM21pkBLMYQdzTjW1ASD5s89R/3V/PCGEEKIsyi0MJSYmMnLkSAIDA43L5s6di4eHR3ntQlRjFlZmNH3AF4A2lx4CFZY1S0Tj4kze+fNcXbnStAUKIYSotMoUhq5du8ZTTz2Fm5sb3t7efPrppxgMBt566y1q1arF7t27WbBggbF9//79sbW1LfeiRfXUOLwG5pZazNMdqX2lETH2FpwMLugdSvlyDga5N54QQojbUKYw9MYbb7Bt2zYGDx6Ms7MzY8aMoVevXmzfvp3ff/+dffv28eSTT96tWgGYPXs2AQEBWFlZERISQmRkZIltExIS6N+/P/Xq1UOj0TB69Oi7Wpu4u6xszQkK8wEg9NLDoMIPDePRenuhT0nhyreLTVyhEEKIyqhMYei3335j4cKFfPzxx/zyyy+oqkrdunXZvHlzoZmn75bly5czevRoJk6cSHR0NKGhoXTv3p34+Phi2+fk5ODm5sbEiRNp2rTpXa9P3H3BnWqiNddgleqGb2og++0sONWsoHfo8tdfo792zbQFCiGEqHTKFIYuXrxIw4YNAahVqxZWVlYMHz78rhRWnOnTpzNs2DCGDx9OgwYNmDlzJr6+vnz55ZfFtvf392fWrFkMGjQInU53z+oUd4+NgwWNQr2p18qTug4F49F+rn0c89q1MKSnc/nrr01coRBCiMqmTGHIYDBgbm5ufK7Vau/ZmKDc3FyioqLo0qVLoeVdunRh586d5bafnJwc0tLSCj1ExXL/Y3Xo9HRDRj08AY0KO2wtOR1sCcCVxd+Rl5Rk4gqFEEJUJmZlaayqKkOGDMHSsuCLJzs7mxEjRhQJRKtXry6/Cv+WkpKCXq8vcnWah4cHiYmJ5bafadOm8fbbb5fb9kT5UxQFgABHf0Is67Ev9xhrvf7i5cZNyTn0FylffonX5MkmrlIIIURlUaaeocGDB+Pu7o5Op0On0zFgwAC8vb2Nz2887qYbX4Q3qKpaZNmdeP3110lNTTU+zp07V27bFuXrSkIGPVNfwTnDi812FsQ1sQDg2sofyC1hHJkQQgjxX2XqGVq4cOHdquOWXF1d0Wq1RXqBkpKSynUuI0tLS2PPl6jY9q45Q+LBLDq4PcSqwC/Z4LSXEW3akbVrD8mffY7PR/8zdYlCCCEqgUpzOw4LCwtCQkLYuHFjoeUbN26kbdu2JqpKmFJINz8A3FLq45Dlyno7S8410gKQ9uuvZB87bsryhBBCVBKVJgwBjB07lvnz57NgwQJiY2MZM2YM8fHxjBgxAig4xTVo0KBC6xw8eJCDBw9y/fp1kpOTOXjwIEeOHDFF+aKcudW0p2YjF1AhLOFB8hWFPyy2Yde5I6gqyTNnmrpEIYQQlUCZTpOZWr9+/bh8+TJTp04lISGBoKAg1q5di59fQQ9BQkJCkTmHmjVrZvz/qKgovv/+e/z8/IiLi7uXpYu7pEV3P+IPX6ZGclNsfXT8am+gW33QbdZyfcsWMg8cwKZ5c1OXKYQQogJTVFVVTV1ERZaWloZOpyM1NRUHBwdTlyOK8eMnB7h44hpnvPaw3v97nkrNZlBCX1J//BmbFi2oufjbch1kL4QQouIry/d3pTpNJkRxQroX9AzWSm6JVZ4tP9lbkFgnH8XCgsz9+8nYvt3EFQohhKjIJAyJSs+3gTM1G7lwX49auCr2ZGg0bEv7GccnHgMgacYMVIPBxFUKIYSoqCQMiUpPURR6j2zKfT0CeLr1CwD84GBOil8WGltbco7Ekr5+vYmrFEIIUVFJGBJVSt8GD+Ki2pOq1bIjaQXOgwcAcGnaB3KbDiGEEMWSMCSqDNWgEn/oCv0uTsJMb84KBzOu1cjAIrA2+UlJXHh5FIbcXFOXKYQQooKRMCSqDFVViVxxAkO8FcFJ7UkyM2NH3Df4zpqOxsGBrIMHufTOu8gFlEIIIf5NwpCoMjRaDc27FlxZFpLcA41By3IHDYknf8Pnk49Bo+HaypVcW77cxJUKIYSoSCQMiSqlfhtPbHQWKBlmBCW35ry5Obv+moNdm5a4jx0DQOK775G5f7+JKxVCCFFRSBgSVYqZuZbgTjUBaJ3cB0VVWOoAFyPm4zxsGA49ekB+PudHjSYvIcHE1QohhKgIJAyJKqdRqDeWtmZo0i2plxLCKQsLDkZ/DFfO4PXeu1g2aID+8mXOvzQSQ3a2qcsVQghhYhKGRJVjYWVG0wd8AWiX0hdUmOtoyaWFj6LR6Knx2WdonZzIPnyYhLfekgHVQghRzUkYElVS4/AaeNdx5IGHGmGrceS0hTnzLa+QunQ4Fj7e+MyYAVotab+s4co335i6XCGEECYkYUhUSVa25jz8SnOatA5gescPAVjuYM/+pAiyN3+EbetWeIwfD0DS/z4iY+dOU5YrhBDChCQMiSqvrU9b+tcbBMBkV2eu7vwQw9F1OA0cgO7hh8Fg4MKYseSeO2fiSoUQQpiChCFRpeVm53Ngw1kaH+hCbbuGpGq1vOHmTPbKYSiXT+I5ZTJWTZqgT03l/IsvYcjMNHXJQggh7jEJQ6JKy8nMJ2ptHGf/vMxzOa9hrlix39qK7+w0ZC3uh0bNocZnn6J1dSXn+HEuvjFRBlQLIUQ1I2FIVGn2zlZ0HNwQgNPbUnnVdTIAXzjpOJZ9jpwVwzB3c6PGp5+CuTnp69Zx+at5pixZCCHEPSZhSFR5tZq5Edy5YCLG6xvs6eH8CAZFYbybK7lnNmLYMg2b5s3wfHMSAMkzZ5IeEWHCioUQQtxLEoZEtdD6oVp4BerIzdbTNLob3hY1uWhuxjuuziiR/4PYNTg9/jiOT/QDVeXiuFfJOX3G1GULIYS4ByQMiWpBq9XQdXgQ1vbmXL2YxfD0N9Cg4Xc7W362syV/1XOQFIvnG29gHRKC4fp1zr/0Evrr101duhBCiLtMwpCoNmwdLekyPAitmYa6tWvyYvBLALzr4sJ5cshb8iSKPoMas2Zi5uFB7unTXHz1NVSDwcSVCyGEuJskDIlqpUY9Jwa+14amHX0Z1ngoIR4tyNHAWHcPSD2D4YdhmDk7UePzz1EsLLi+ZQspn39u6rKFEELcRRKGRLVjq7MEQKvR8u597+GsuHHCUst0Jxc0p/6Aze9g3TgIz6lvA5Ay+0vSNmwwZclCCCHuIglDotq6fOE6Wz+NZ2jKJFDhO0dbdlpbwfYZ8NdqHB96COfBBTNXX5zwOtnHj5u4YiGEEHeDhCFRbenzDaRdzuL6cRiUPwaA0a7eXNZoMPz0AiQewv3VV7Fp3Ro1M5PzL76E/to10xYthBCi3EkYEtWWu58DoY/XBcD2gD8tDO3JMsvnBVd/yM/CsLQ/Sm4aPjOmY+7jQ965c1x4ZRyqXm/awoUQQpQrCUOiWmsU6k3dVh6oBmh75DF0+S4csc3nM3tvNKnxqCuHYOZgT40vPkextiZjxw6Spk83ddlCCCHKkYQhUa0pikJ4//o4e9uSm25gYMIEFFXDfGcLDpjbopzZCpsmY1W/Pt7vvwfAla8XkPrrbyauXAghRHmRMCSqPXNLLd2eDcLcUkv+eQseuf4MaAyMcPMjU1Fg1+cQswyH7t1xefZZABImTSL7yBETVy6EEKI8SBgSAnDytKXDwPr41HPi2X6P42btTpbldQY5BQOg/vIyXDiA26iXsW0fipqdzbmXXiL/yhXTFi6EEOKOSRgS4m91WnjQZ3Qw3m7ufBA6DQWFY7rLfGzVEEWfg7p8AErWZXw+/hgLPz/yLyZwYdRo1Lw8U5cuhBDiDkgYEuJfFEUBoKVXS4bbj0FrMOMb93x2abxQ0i7AisFoba2pMfsLNLa2ZO7bx6UP/2fiqoUQQtwJCUNCFGP3T6fQbvCjd8IzoM3mBbeaXFWtIX4nrHsdy9q18f6oIARd/e47rq1abeKKhRBC3C4JQ0IUw7uuIyjgGV+fxlfuJ98mgSccwjCgwL55cOBb7B94ANeRBTd7TZwyhayYGNMWLYQQ4rZIGBKiGDUbunBfzwAA7j/1KM4ZXlx0iWW8WRcA1N9egXP7cH3+eew7d0LNy+P8yJfJS0oyZdlCCCFug4QhIUrQooc/vg2dUfMVHjnzMuZ6C373vMgqNQRFnwvLB6BkJOE17QMsAmuTn5TEhZdHYcjNNXXpQgghykDCkBAl0GgUOg9tiJ2TJWbpNvSIH4ZilspkVzeOGmrA9URYPhCtlRm+X3yBxsGBrIMHufTOO6iqauryhRBClJKEISFuwtrOgq7PBKHRKHhdqofP9UAUhyMMtulCGrZwfi+sHYdFzZr4fPIJaDRcW/kD15YtM3XpQgghSknCkBC34FlLR/sn69Lj+cb0C38QgCzPrQxnIHo0cOBb2L8Au9D7cR87BoDE994nc98+U5YthBCilCQMCVEKjUJ9CGjqxuBGg2nj1QZVySPW5yDT8h8raPD7a3B2J87DhuHQowfk53N+1GjyEhJMW7gQQohbqnRhaPbs2QQEBGBlZUVISAiRkZE3bb9161ZCQkKwsrKiVq1azJkz5x5VKqoijaLhjUaT6XCuH4p5AotdFNboW4MhH1YMQkm7iNd772LZoAH6K1c4/+JLGLKzTV22EEKIm6hUYWj58uWMHj2aiRMnEh0dTWhoKN27dyc+Pr7Y9mfOnKFHjx6EhoYSHR3NG2+8wcsvv8yqVavuceWiqtDnG9j6RRz1zrcl5Hw3LJx3Mt4inKOqH2Qkw/Kn0JiB7+efoXVyIvvIERLeeksGVAshRAWmqJXoX+lWrVrRvHlzvvzyS+OyBg0a8NBDDzFt2rQi7cePH88vv/xCbGyscdmIESOIiYlh165dpdpnWloaOp2O1NRUHBwc7vwgRKV3bE8imxYeQUVlbf05XHS8gM3J/vxu/gE6NR2aPgkPfUnG3n3EDx0Kej3u48fj8vQQU5cuhBDVRlm+vytNz1Bubi5RUVF06dKl0PIuXbqwc+fOYtfZtWtXkfZdu3Zl//795MnNNcVtqtfKk6D2PigodDn1NNa5ZmT4buG5nJHo0ULMUtgzB9tWLfGYMAGApI8+IqOEz6kQQgjTqjRhKCUlBb1ej4eHR6HlHh4eJCYmFrtOYmJise3z8/NJSUkpdp2cnBzS0tIKPYT4r/sfq4O7nz3meVZ0PT4ULE4R7XSZd/P6FzRYPxFOb8VpwFPoHn4YDAYujBlL7rlzpi1cCCFEEZUmDN1w467iN6iqWmTZrdoXt/yGadOmodPpjA9fX987rFhURVpzDV2fCcLSxgy36zVpc/YhrNw38I15ED8a2oOqh5VDUK7F4zllMlZNmqBPTS0YUJ2RYeryhRBC/EulCUOurq5otdoivUBJSUlFen9u8PT0LLa9mZkZLi4uxa7z+uuvk5qaanyck7/kRQkcXK3p9HRDAOpmN0Wj1+Lsv5IJ+U8RqwmErCuw7Ck0ip4an32K1s2VnOPHufjGRBlQLYQQFUilCUMWFhaEhISwcePGQss3btxI27Zti12nTZs2Rdpv2LCBFi1aYG5uXuw6lpaWODg4FHoIURL/xq50H9GYwRPDcXVwJkdJwtZ3I0MzR5GmdYRLh+CXlzB3d6fGrE/B3Jz09eu5PPcrU5cuhBDib5UmDAGMHTuW+fPns2DBAmJjYxkzZgzx8fGMGDECKOjVGTRokLH9iBEjOHv2LGPHjiU2NpYFCxbw9ddfM27cOFMdgqiCagW74WLvxAehH6BRNORZ7+Wq43mGZb6MQTGDv1bBzk+xad4MzzcnAZA8axbpERGmLVwIIQRQycJQv379mDlzJlOnTiU4OJht27axdu1a/Pz8AEhISCg051BAQABr164lIiKC4OBg3nnnHT799FP69u1rqkMQVVhzt+Y8m/sGD5wcgK33z+w3c2dy3t/hfNMUOLkJp8cfx/HJJ0BVuTjuVXJOnzFpzUIIISrZPEOmIPMMidJKOZ/Oivf3oRogMmAl57wSuHDkaWbafMtDhk1gpYNntqDa+3L26aFkRUVhERCA/4rlaO3tTV2+EEJUKVVyniEhKjrXGva0eTgQgLZxD2OVloen3zZeyxzICYsGkJ0Ky55CUXOpMWsmZp6e5J45w8VXX0M1GExcvRBCVF8ShoQoR8GdfKnVzA2takbn40+jN9+BmcN5nkp7ievmrpAcCz+NwMzFhRqffYZiYcH1iAiSP/vM1KULIUS1JWFIiHKkKAoPDGqAzs0a+1xnHjg5ACe/VSRpLRiYMRKDxhxi18C2j7FuHITXO1MBuPzlHNLWbzBx9UIIUT1JGBKinFlam9HtuSC05go1rzUkMK45dRquJdoQyDvqsIJGW96DY7+j69MH58GDAbj4+utkHztuwsqFEKJ6kjAkxF3gWsOesCfrozGDHMsMEvOj8POPYWFWe36z6gWosPpZSD6O+6vjsGnTGjUzk/MvvYT+2jVTly+EENWKhCEh7pIGbb0YMLUtPboXTAp63fZH7O2TGXXtceLsgiEnDZb1R8nPwGf6dMx9fMg7d44LY19Bzc83bfFCCFGNSBgS4i6yd7ZiQMMBtPNph5Kjxav2j+QrKn1TniPL2hMun4DVz2Km01Fj9hco1tZk7NxJ0vQZpi5dCCGqDQlDQtxlGkXDGN83ePzQePyPNaF5s+1cRsfgzNEYtFZwfB1ETMOqXj28p70PwJUFC7j200+mLVwIIaoJCUNC3APmWdbY5jjSNKED+ecTaVA7nr05NfnE8vmCBtv+B0d+waFbN1yefRaAhAmvkzRrFqpeb8LKhRCi6pMwJMQ9UCvYjWadawLQ4VR/DMo6XHRZfHHlPrY6P17Q6McRcOkIbqNexql/f6Dgkvv44cPJv3zZVKULIUSVJ2FIiHuk9UO18Ap0wEJvRbsjj1G77m9oFANDL/bmkksryMsoGFCdm4bnW2/i/dFHKNbWZO7azZlH+pJ5INrUhyCEEFWShCEh7hGNVkPXZxpjaafFJdMbz4N16dDyCHq09Lk0jFx7X7h6Bn4YBgY9ut69CFi5Aotatci/dImzgwZxedEi5HaCQghRviQMCXEP2eos6f5ME1BU6iW3IvXUce6rl0Zivh0j8saimlnDqT/gj4KZqS0DA/FfsQKHHt0hP5+kDz7kwqjR6K9fN/GRCCFE1SFhSIh7zKeeE6371CbTO4k4x79Itf8GbyfYfM2D+S6vFDTaMRMOLgVAa2eL9yef4DFpEpibk75hA3F9H5XZqoUQopxIGBLCBJp38eO513rg6uREQsYFGjf9A3MtvHe2ITF+Qwoa/TQCVg2H60koioLzgKfwX/wtZl5e5J49S1y/fnL5vRBClAMJQ0KYgKJRcLBy4IPQD9Ci5fzRCzwcegmAx050JrHRMFA0cGglfH4fRH0DBgPWwcEErF6F7f33o2ZnkzDhdRLefAtDTo6Jj0gIISovCUNCmFCwezDPXptMj6PPkXIwlo5NtOQaFB460ZNrT60DzyaQfQ3WvAyLekLyMcycnPCdOwfXl14CReHaypWcfbI/uefPm/pwhBCiUpIwJISJhTZrAUCzuK5octdRy82SxLRsBq/LI+6RX6HLe2BuA/E74ct2sOV9FEMebi+9iO+8eWgdHck+coQzj/QlffMWEx+NEEJUPhKGhDCxoNAa1AzRoUFD3ahwQoNisLc0I+Z8Kt0/28U39MLw/G6o0xUMebD1Q5jTDs5sw+7+dgT8uBrrpk0xpKVx/oUXSPpkutzoVQghykDCkBAmpigK3QYFY+mmYpPnQP4me955wpw2tVzIytMz+ZfDPPVDAue6LYTHvgE7T7h8Er7pDT+9gLnOEr/F3+I0cCAAl+fNI37oMPKTk018ZEIIUTlIGBKiAjC31NL3xdao5vl4pwfyx487+GxAHd5+sBHW5lp2nb5Mt1mRfH+9OeqLe6DFMECBg0vg8xYosavxfON1fGZMR2NjQ+bevQWzVu/bZ+pDE0KICk9RZTrbm0pLS0On05GamoqDg4OpyxFV3JG959my4DgG9BzutIYPe7/D1XQzXv0hhn1xVwEIrePKh32b4J1+CNaMgqQjBSsHhEGvGeSkKlwYNYqcEydBq8V97Bichw5FURQTHpkQQtxbZfn+lp4hISqQhi1rUKujA5uCFrIjYwtP/PoEOZrzLHu2DZN6NsDSTEPkiRS6ztjGikteqM9uhY6TwcwKzmyF2W2wPL8K/yWLcejdG/R6kj76mPMjR6JPSzP14QkhRIUkPUO3ID1DwhSOXTnGqC2juHD9Ar4ZdRnRfigPBvXkVPJ1xq2MITr+GgAP1Hdn2iON8ci/CL+OhdN/X03m1gC11wyu7TrLpffeR83Lw7xmTWrMmolVgwamOzAhhLhHyvL9LWHoFiQMCVNJzUll4rop+G/sgF6Th6ZTIqN7PYsGM+ZFnmb6huPk6g04WJnxdp9GPNTUG+WvH2Dd65CZUrCRkCFkeT3BhdcmkXfxIoqlJZ5vvYlj376mPTghhLjLJAyVIwlDwpRSLqSx7NMdKKmWGNBzseGfvDJsMK62rpy4lM4rK2P483wqAF0aevDew41x02bAxrcgenHBRmzd0d//FhcWbidj2zYAdI88gudbb6KxsjLVoQkhxF0lYagcSRgSppabnc/yeVtJO1wwAPqS82n6PHMfIQFNydcbmLP1FLP+OEGeXsXJxpx3HgqiVxNviNtRMMD68gkA1NqduJxyH8nzFoPBgGX9+tSYNRMLPz9THp4QQtwVEobKkYQhURGoqsq2TX8S82MiWoM5Geap+D6s5ckHHgQgNiGNV1bEcCShYJB0z8ZevPNQEM6WKmyfAZGfgD4XzKzJ8BjIhYU70V+5gsbODq9p7+PQubMpD08IIcqdhKFyJGFIVCTn4pJYOXsXlmn2HHHfiUd3AxNaTsBCa0FuvoEvtpzkiy0nyTeouNpZ8O5DjekW5AkpJ+DXMRAXCUCebUMu7HYn6/BxAJyHDsV9zGgUc3NTHp4QQpQbCUPlSMKQqGhysvNYsPhn5mmnkafNpYlbE6aHTcfD1gOAvy6k8sqKGI5dSgfgoWBvpjzYCEdr84JJGjdMgqyrqAaFpEvtuLL1NADWLULw+WQ65h7uJjs2IYQoLxKGypGEIVFRRZ6PZHzkeNJzrtP9zFC6dW3DA21bAZCTr2fWphPM2XoKgwpu9pZ88EhjOjbwgIwUWD8R/lwGQFqKNwk7LDFk5aB1dcXn44+xbd3KlIcmhBB3TMJQOZIwJCqyc2nn+N83X1H/cAdUDFi1zODpQb3QmmkBOHjuGq+sOMip5AwAHg2pwZu9GqKzNodTWwpOnV09Q266lvP7/MhJygaNBrdRo3B5ZjiKRuZlFUJUThKGypGEIVHRpWVcZ/bsVdif8gUgx/0qg1/uhIurDoDsPD3TNx5nXuRpVBW8dFZ80LcJYXXdIC8Ltn0EO2ZhyNWTGO1C6ikLAOzCw/H+8AO0Op3Jjk0IIW6XhKFyJGFIVAaqqrLgpx9I22iLhcGKXIsswgbVoXmLusY2++OuMG5lDHGXMwF4sqUvE3s2xM7SDJJiYc0o1Pg9XDttw6UDjqh6MPfxwWfWLKyDGpnq0IQQ4rZIGCpHEoZEZbLtr91sW3QKp+teANToYk6fR0KNr2fl6vlw3VEW7YwDwMfRmo8ebULbQFcwGODAItg4hayETC7scCIvwwzF3ByPSZNwfPwxudmrEKLSkDBUjiQMicrmwrWLzP5yFe7xdfm58SwGtH+Upxs9XSjI7D59mVd/iOHclSwABrXxY3y3+thamkF6IqybgD76Jy7uceT6BWsAdH0exHPKFDTW1iY5LiGEKAsJQ+VIwpCojHL0OUzb9AmrEpcC0NmvM+MbTMLDw9nYJiMnn2m/x/Ld7ngAajrb8NGjTWhVy6WgwfENqL+O5cqeqyT9aQ+qgmXtAHw+/wLLgIB7fkxCCFEWEobKkYQhUVmpqsrK4yuZtncaTmlePPzXGGrf70zXfs3Qmv1zldj2EymMX/UnF65loSgwpK0/r3Wtj7WFFnIzIGIaGT/P48IOHfpsLRorC7ymfYBD9+4mPDohhLg5CUPlSMKQqOwOJh1k7jc/EHTqAQCsveHRF9rg4PrP6a707Dze+y2WZfvOARDgasvHjzUhxO/vnqSEP8lb+iIXf7xAZrIlAM6P9cL9rfdl1mohRIUkYagcSRgSVUFKVgrvLJ2JX1RrLPU2YKGn65AmBDb3KNRuy7EkXl91iMS0bDQKPBNaizGd62JlrgWDHnXXXJKnf8zlwwWByLqWKz5zF2Pu62+CoxJCiJJJGCpHEoZEVZGnz+PjiFlk/u6E5/WCMT/12rvT4bGGaM3/OW2WmpXH1DVHWHXgPACB7nZ88lhTmvo6/t3gAukznuXiqpMY8jRorcBn0svYPvr8vT4kIYQoUVm+vyvN9LJXr15l4MCB6HQ6dDodAwcO5Nq1azddZ/Xq1XTt2hVXV1cUReHgwYP3pFYhKiJzrTmvdxxHi2fdOOSzBYBj25KIjIgp1E5nbc4njzdl3qAWuNlbcjLpOo98uZOP1h8lJ18POh/sp/xGwKzXsXQBfTbET5pF8kvdUNMumeLQhBDijlSaMNS/f38OHjzIunXrWLduHQcPHmTgwIE3XScjI4N27drxwQcf3KMqhaj4+tR9kJdfeJLdwSs55rqX1y6NYF3cuiLtOjf0YMPo9vQJ9kZvUPliyyn6fL6Dvy6kAmDxwBD8f9uKY+uagELKprPEP9iO7NkD4OwukE5nIUQlUSlOk8XGxtKwYUN2795Nq1YFN5DcvXs3bdq04ejRo9SrV++m68fFxREQEEB0dDTBwcFl2recJhNV1dXsq7y27TV2J+wG4Om6w2ib3IsW3QIws9AWavv7oQQm/fQXlzNyMdMovPRAIC92CMRcW/D31LWvZ5A4/StUPaCo6PwzcQtzxzzsaWj6JNg4/3f3QghxV1W502S7du1Cp9MZgxBA69at0el07Ny504SVCVF5OVk58WWnL3k66GkAzqzNJGptPMs/2MPVxIxCbbs39mLDmPb0aOxJvkFl5qYTPPTFDo4mpgHgOGwMtdauw759S1AVUs/YcmpxOskfT0P/QX34YRic2Sa9RUKICqlShKHExETc3d2LLHd3dycxMbFc95WTk0NaWlqhhxBVlZnGjLEhY/k47GPOeRwmyyydaxezWf7+Xo7tKfy75WJnyRf9m/PZk81wtDHn8MU0en+2nS+2nCRfb8DCz48aX32D39LvsW7aBFWvIeWwPad+ceTqT2tRF/aGz0Jgxyy4nmyiIxZCiKJMGoamTJmCoig3fezfvx+g2Hsiqapa7vdKmjZtmnGQtk6nw9fXt1y3L0RF1NW/Kx89NYWd7ZZwweE4+lyVTQuPsPnbWPJy9cZ2iqLQu6k3G8a0p1MDD/L0Kh+tP0bfL3dyMikdAJtmzfBbtgyfT2dh7lcTfbaWxP2OnF7vQfqh86gb3oLpDWDFYDi1ueCeaEIIYUImHTOUkpJCSkrKTdv4+/vz/fffM3bs2CJXjzk6OjJjxgyefvrpm26jLGOGcnJyyMnJMT5PS0vD19dXxgyJaiEtN403tr1Bxm5rQs53RUGDk6cNPZ5vgqOHTaG2qqryY/QFpvxymLTsfCzMNLzUIZDBbf3RWRdMxKjm5nJ1+QpSvvgC/d+/vza+Frg3uIC1c17Bhhz9IGQwBD8F9p738nCFEFVYlZtn6MYA6j179tCyZUsA9uzZQ+vWrWUAtRDlzKAamBMzh5+3baLjiYFYKBY88nozanp5F9s+MTWbCav/JOJYwakvO0sz+reqydB2AXjqrADQp6Vxed48rnzzLWpuLgAOzb1xDziBuXnB1WkoWqjXHUKGQO0HQKMtbndCCFEqVS4MAXTv3p2LFy8yd+5cAJ599ln8/PxYs2aNsU39+vWZNm0aDz/8MABXrlwhPj6eixcv0rNnT5YtW0a9evXw9PTE07N0f4FKGBLV1dZzW3n7j3dRrluiumcyPXw6we7B6PMNhe5tBgW9RL/EXOSLLSc5fuk6AOZahYeCfXgurBaB7vYA5F24QNKsWaT9UvB7q1hY4Nw1BBf/eLTJ+/7ZoM4Xmg2EZgNA53NvDlgIUaVUyTB05coVXn75ZX755RcAHnzwQT7//HMcHR2NbRRFYeHChQwZMgSARYsWFXsKbfLkyUyZMqVU+5UwJKqzs2lnGb1lNCevncRMY8YYx7fQRnnRdXgQrjXsirRXVZUtx5KYs/U0e89cMS7v1MCD58NrGe91lvXXYZI++ojMPXsA0Do64jrwEZxqJqMcXg7Z1wpWVDRQp0tBb1FgZ9Ca3e1DFkJUEVUyDJmKhCFR3WXmZfLmjjfZELeRx2PG45zlhdZcQ+jjdWh4v3eJFzEciL/K3K2n2HDkkvGK+hZ+TowIq80D9d1RFLi+dStJH31M7qlTAJj71cR91EjsfTJQDnwDZ3f8s0F774KeouYDwbHm3T5sIUQlJ2GoHEkYEqKgx2fR4UV8uWceHU70p+a1hgDUaeFO+FP1sbAuucfmVPJ15m07zeoDF8jVF1w5Fuhux7Pta/FQsA/mGLi2ajXJn32G/u8LKqybNcP9tVexqWELB76Bg99D1o2eJgUCOxb0FtXtBlrzu3noQohKSsJQOZIwJMQ/dl3cxWtbx+N3phmt4nujQYPOzZquzwThVtP+puteSstm4Y44luw+S3pOPgCeDlYMvd+fJ1vWxCY/lysLFnB54ULUrCwA7Lt2xX3sGCx8POHorxC1qGDyxhvsPAquQms+CJwD7tZhCyEqIQlD5UjCkBCFXbh+gTFbxnDlbBadjg/GPtcZrZmG/m+3wsHF+pbrp2XnsXRPPF9vP0NSesE0FvZWZgxo7cfT7fxxykwj+bNPSV39Y8EcRObmOD35BK7PP4+ZkxNcPgUHvoWDSyDjX5M31gov6C2q1xPMLO7OwQshKg0JQ+VIwpAQRWXnZ/PO7ndYf3QT4af64+Jmz6iRT2BjbnPrlf+Wk6/n5+iLzN12ilPJBbf/sNBq6BviwzOhtfC+cpGkjz8mIzISAI29Pa4jnsNpwAA0lpaQnwvHfy/oLTq1Bfj7nzIbVwjuD80Hg2tgOR+5EKKykDBUjiQMCVE8VVVZenQpH+39CIPBQG2X2swMn4ntdWdityfQoqc/Vra3Hs9jMKhsir3EnK2nOBB/DQBFga4NPRkRXpvA+MMkffQxOUePAmDu7Y3bmDE49OyBovn7Ev+rcXBgMUR/B9f/dRsR/9CCUNSgN5hblfM7IISoyCQMlSMJQ0LcXNSlKF6JeIXL2Zex0FgwMO4NzC84YWljRose/jQOq4HWvHR3/tkXd4W5W0+xKTbJuKxVgDMjQv1pdmw3yTNnkX/pEgBWjRrh/tpr2LZq+c8G9PlwYn1Bb9GJjRh7i6ydoGn/gpmu3W4+SasQomqQMFSOJAwJcWtJmUm8EfkGexL3UONaPdqefQjnzIIZqx1crWjzcCC1m7uV+l6Cxy+l89W20/wUfYF8Q8E/UfU97RnR2ps20Zu4Nn8+hoyCU2t2HTrgPu4VLGvXLryRa+cKeoqiF0PahX+W12xT0FvU6CEwv/UYJyFE5SRhqBxJGBKidFRVZV/iPub8OYf9Cfupl9SKlud6YpNX8HvjWUtHu8cC8QzQlXqbCalZLNh+hu/3xJPx9w1jfRytea6JEx32/Mz1H34AvR60WhwfexS3l17CzNW18EYMeji5CaK+gePrQP37xrNWOmjSr+Dh1VQu0ReiipEwVI4kDAlRdvsT9zPnzzlEnY8m+GJHgi8+gJnBgka9XAnv1aTM20vNzOO7PWdZuOMMKdcL7m2mszbnhVpaOm3/gdytEQBobGxweWY4zkOGoLEuptcn7SJELym4Gi01/p/lZlbg3QxqtIAaLcG3pdw0VohKTsJQOZIwJMTti06KZk7MHGLOHKZxQhhRfuvoEdidZ5o8g126C3ZOlljalL5HJjtPz+oDF/hq2yniLmcCYGmm4UXnNLpGrsAQewQAM3d33EaNQvdQHxRtMTd8NRjg9OaCUHQ6ArJTi7bR+UKN+wqCUY37wLOJXLIvRCUiYagcSRgS4s4dTDrI3D/nsv3CdgC0qhlDjkzFJt+e1r1r06i9D1pt6QZZA+gNKhsOJzJn6ylizhcEGS0GRmri6bJzFUpiAgCWdevi/tpr2N3fruSNGQxw+SSc3wfn98K5fZB0BOPg6xu0lgWn026Eoxr3yU1khajAJAyVIwlDQpSfQ8mHmPvnXA6cPET3o8/inOUFgI2rGWGPNiCgqWupB1lDwTil3aevMGfrKbYeL5iA0Vyfz8i0aDru/w1NxnUAbNu1w/21V7GqV8oryXLS4UJUQUA6t6/gv8bbgfyLg0/hU2ueTeQSfiEqCAlD5UjCkBDl7/Dlw8yN/orEA9ncd64HNnkFt/JwCrCk0xONcfcr++9abEIac7eeYs2fCegNKva5Gbx4IZL2f0Wg6PNBUdA9/DBuo17G3MOjbBtXVbhyGs7t/acH6dJhUA2F22ktCgKRb8t/QpKuRsHESUKIe0rCUDmSMCTE3XP0ylG+2v81qXu0NLkYjplaMCan5Ytu3Ne48W1t8/zVTOZHnmH5vnNk5enxykjh+RMbuC/uAACKlRXOTw/BZdhwtHa2t198znW4GF0QjM7vLwhKmSlF29l5gu99BcGoxn3gHSyX9AtxD0gYKkcShoS4+45dOcbXu74lZ5cDNnkO/NpgNg/UfIARTUdQ36k+iqbsPStXM3L5dtdZvtkVx5WMXOpfOcuI2F+pl3wGAK2LC24vvYjjY4+hmJnd+UGoKlw9808wOr8PEg/9cyn/DRqzgt4j4+DsFuDoJ71HQpQzCUPlSMKQEPfOyasn+Sp6HuvO/Y6KimWeDf2PvUFQuDeduoWgKcMg6xuycvX8EHWOryJPc+5yJm0T/mLYkbV4Xy8YY2Tm6YldWBh2ofdj07o1Wju78jug3ExIOPhPODq3FzKSirazdS98as27GViU/j5vQoiiJAyVIwlDQtx7p1NP89WfX5G4LZ/7zvUAINs+jZA+NQhrF1KmQdY35OsN/P5XwRVoR89fpUfcLp46uhFdbsY/jczMsGnWDNvQUOxC78eyfv3b2leJVBWuxf897ujvcJT4JxjyC7dTtOAZ9M+pNd/7wClAeo+EKAMJQ+VIwpAQpnP6yhmW/rgOq2gfrPILemyuu12i3aN1uL9pi9vapqqq7Dh5mTlbT7Hv6EWapJwiJOkYIZeOUiOj8Jgfjasr9n8HI9u2bdE6Ot7pIRWVlwUJMf+Eo/P7ID2haDsb13+CUY37CnqPLO3Lvx4hqggJQ+VIwpAQpnfq0hl+WL4V61hvtKoZKgau+J+mx5DmtPC8vVAEcORiGluPJxN19gr7z17FOjmB5peO0SLpGMHJJ7DS5xnbqooGbcNGOHdoj11oKFZBQcVP6HinVLXgXmrn/h6YfX5vQVjS5/6noQJu9cEnBGqEFPzXvRFoy2H8kxBVgIShciRhSIiK49jZ0/y6dC9Wce4c9thBZK0VtPRsyYimI7jP87472rbBoHI65Tr7466y/+xVDp66hN2JI4RcOkpI0jEC0hILtc+ztUfbsjVencJxaB+KmZvbHe3/pvJzIOHPvyeF3FswB1LquaLtzKwLJoas0QJ8moNPC3CsKafXRLUkYagcSRgSouL56/Apfry0gtUXVpBvyMcp04OWSgce7d2RVt6tym2cT3J6DlFnrxJ19grH/jqFXcx+ghOP0izpOHb52YXapvkEoG3dFv/uHXFp1QLF/C7f+DX9UkEouhAFF/bDhWjIKea2IrZuBb1GxkdzsHa6u7UJUQFIGCpHEoaEqLgSMxKZf2g+1392wvdqAy5bXyQ5+C+e7PwgbbzalO/gZwrujRZz7hpRp1O4uGsfVtH7aHzxCHWvnS/cztyK5LpNsGjTlto9O+HboHa51lEsgwGunCo4tXYjICX+BYa8om2da//dexRS0HvkGQRmlne/RiHuIQlD5UjCkBAVm6qqbF93hJjfL6DkFoyXidfFcqVZLINDn6Cdd7tyD0U3GAwqJ5Kuc/DQaVIiIrE5uI/65w7j+O8r1ICLOk+S6jfDqm076nQJpX5NV8xuY5qAMsvLLpjryNh7FFUwk/Z/aS3As/E/4cgnBFxqy+k1UalJGCpHEoaEqByyM/LY9ssRjkcmoxg0GDBwzH036U3PMKzVYEJ9Qu9aKPq3S9cyORSxl6tbtmH75z5qJpxC+6+bvmZrzTniFkhyw+bYtGtHw/uCCPZzws7yHg18zrwCFw78E47O7y/+vmtWjv+MO7pxis3uLo6LEqKcSRgqRxKGhKhcUpMzifghlvMxBeNndvr9yJ/eETRwbsCIpiPo4NvhnoSiG9JTLnP0t82kbo3E/s/9OFy/Wuj1BBtnDnjU41KD5ujatKZpXW9a+DvhpbtHt+xQVbga96/xR1EFV6/9Z0wUUDAY+9+9R15NZXJIUWFJGCpHEoaEqJwSTl5j38ZTnAzZxrITS8nKz8I2R0cND09GBI/ggZoPoFHuwamqf1FVlazjJzj7+ybStkVie/QQWsM/t+vIU7Qcdglgv0c9zgU2xSu4ES38nQnxc6aepz3a27gtyW3R5xXciPbC/oJepPP7IeU48J+vC0ULHg3/CUc1WoBrXdDchSkHhCgjCUPlSMKQEJXf1eyrfPvXt1xf4k6+ksdO/5+w9YfnmjxHZ7/O9zwU3WDIyCBj716SNm0hI3I75kmFJ1tMsXIgyr0++z3qcbJGA+rW8aGFnxNNfR2p5WqLt6P1vQtI2akFN6a9EAXn/x6DdP1S0XYW9gU3o71xaq1GC3Dwvjc1CvEvEobKkYQhIaqGlPPprP74AHnZBT0xcU5/sbvmL1i6QhO3JjRyaUSQaxANXRpib3HvZ3ZWVZW8s2e5Hrmd1G3byNqzFyU3x/i6HoWjzn5EudfjT9fanLd3J8vaHl8XGwJcbfF3scXf1ZYAV1v8XGzw1lmjuZtB6cbkkDfGHV04UBCW8jKKtrX3Kpgx27UuuNYp+K9LINg43736RLUnYagcSRgSourIup7Lvl/j+GvbeVQDGNBz3G0/J10PcNHhOAaNAQB/B38auTYiyCWIINcg6jnXw9rsHo3h+ZshJ4fM/fvJiNzO9chIck+dKtLmupkVF+zcuGjnynk7Ny7aunLBzo0Ldq7kW9vi52xjDEgFYakgOHnYW92doGTQQ/LRwgEp6TCohuLb27j+HZAC/w5IdQrCkqOfzKQt7piEoXIkYUiIqudqYga7fjzFmZh/7kUW32MLMXn7uHD9QpH2WkVLoGMgjVwbGXuQ6jjWwVx7lydW/Je8ixe5vn07GZGRZB0+TH5CYkHvTAmuWtoVCkcXbAv+m2DrimJtVRCOjL1JNvi5FIQmd3vL8h1gnptRMCA78RCknCgYe3T5ZEGvUkk05gWX9rsEFu1NsnYsv9pElSZhqBxJGBL/b+++w6Oo9riBf2dn+6Y3QkylmAYkQAQJ9b1iggX0YrkKooji5QpS5dolwpUkCJaHohd9L/JeC3gVNTYERakGQkgogSSQSklMIaTsZtvMef/YZJIlmxA0ZCH5fZ5nn509c/bs2RN1v545M0N6rrKCWuQdLEdthQH3LBwKALhovIjt//coavR1OO97ChmqX1BuudDmvUqZEuFe4VI4ivaORph7GPhuWjwsGo0wl5bCXFICc3Gx3bNQWdXheys17jjfFJRaApMvynVeUKpVTcFIa3foLdRbBx8XZdcFJVODLRRVnQaqm0JS1RnbtqMz2Zrp/JrC0cDLZpOCaeE2sUNhqAtRGCKkd7GYBfxnyV5YLbZDOzI5B7+bdUBYPc575+JEw1HkVOegzlzX5r1auRaR3pEY5D1IOswW6BrYrafyA4DQ0OAwJJmLSyDWOrhlR/P7wKFC64VzLj64cNmMUqXWE1q1EqFNIcm2NqklNHnpuigoiSJQd64lHFXlN4Wl00B9Wfvv41UOZpMG2sKSmv7b3RtRGOpCFIYI6V0YY6gsrUdBViUKsypx6XeDtI+TcRg84SaMeWAgztWfw4nqEzhRdQI51Tk4WX0SjdbGNu25q9wR7W07vNYckPro+nTnV7JjramBpaQEJgdBiRkM7b7PIuNRpvPGeZ1tjdJ5F19pdqla7QZXjeKyhdwtoclDq+yazhvrbLNJ1U0hqaopJFWfAQRT++9z8bcPR83rlNyDAZlzziQk1x6FoS5EYYiQ3osxhotlehRmVaIgqxLV5xowamp/DEsIAWC76nXub2XoF+sLnZcSRbVFOFF9AjlVOcipzkHuxVxYHNwbzFfj2xKOmg6xeaqde/NUxhislZUOZpOKYSk9C2Y2t/teI69wGJIuuPigVqmDh06JIE8tvHRKeOmU8NQq4e1ie/bSKZqelfBs2nfVlwsQBaD2bNuZpKrTQEN5+++Tq20zSW1mkwYAqu4/o5B0LQpDXYjCECGkWW2lAUq1HBpX20xHbnoZfv7wFADAN9gV/Yb6ov9QX3j66wAAFsGC/Ev5Ujg6UXUCBZcKIDChTds3udxkt/4oyjsKLkqX7vtyHWCCAEtZOcwlxW3CkuXceUBo+32aNZ/xVqH1RKNcBSOvhFGulLZNciUam8qMvBJGhQoKnRZqFx00bi7QurvCzV0HL1dNm+DkpbU9u6nl7R+iM9a2rE1qvYC7+gwgtB/w4BoAePUDXPwAnW/Tw6fttsqV7uF2naIw1IUoDBFC2lN8vArZP5XiQv4luxO7PP216D/MD4MnBELrZn+IqNHaiLyLeThRdUKaRSquK27TNgcOoe6h0vqjaO9oRHhFQC1XX+NvdXWYxQLzuXNtZ5RKSmC90MEan6tk5BV2YcrIq6QAZVIowVQacBoNZFoN5DotFDodVK4uULvpoHNzgc7DDa4ernDzdIWXjzs0Oi04cxW42iJw1aftZ5P0FZ3vGK9qPyi1ee0DyFVdNiakYxSGuhCFIULIlTTWm1F0rAoFRypxLvciRIEBHDAzZTR07iqpjlqnAOfgEFC9uR4nq09K649yqnJwQd/2DDY5J8cAzwEIcw+DTqGDVq6FVqGFVq6FRq6RtpvLNXKNbZ9CI9XpzsXc0hlvxcWwlv8OsbERYqMBosEA1tgI0dAI0WBoKdcbYDUYIBoawRobwZk6OKusiwgyGSwKFQSlGqJKDabRgFcpoVACSpUIpUYGhRpQqqxQKkxQ8HrwqAPPLoHn6sEr2dVNDKnc7cORw9DU9NB40pqmP4HCUBeiMEQIuRqmRiuKj1XhYpkeo+7tL5V//XYWLpbp0S/WdigtYKAHZHz7P3TVjdW2YNQUjk5UnUC1sfpP9Y0DJ4Wm5qAkBaimso5CVeu6rQOYQqa4JiGLiaItNDW2Ck2GVmGqsRGmugbo6xpgqGuAqa4BpgY9LA22UMWa6nEmI3hTI+RmE5QWE9RWMxQODlX+oT6Cg1mthqBRARoFZGoZ5GoOSrUApdIClcIIlVwPFVcHudICXimCV4mduwoAJ7NdmFIKSlcIUUoXOmTXCoWhLkRhiBDyZ1nNAj58YT9MeqtUptYpEBrjg/5DfREU4QVe0fEMAGMMvxt+x4mqEzjfcB6N1kYYrAYYLAbbtsUAg9V+u3XZtSTn5HazT5eHJq1CCzWvhkqugoq/wuOyOkpeCTWvhpJXQsWr/vR1nBhj0JsFVF/So+ZiHWqra1FXU4+G2nroa+vRWNsAY70eZr0eQoMeSn0dlPoGaIwNcDXr4Wo2wM2sh5vZAK21gzPYrsDC8zCrFGAqHpyKg1zNoFJZoVKaoVEaoVUYpOAkBSjFFWah5GpbeFK7ASq3pmfXy7bdbc/NdaTtpnJ5F535dx2gMNSFKAwRQrqCYBFxNvciCrMrUZRdBaO+5Syz0CE+uOvpIdfss0Umwmg12oKRpSlEXbbdOkC1DlrN9S4vM1gMMIsdLEC+RuQyuV046kyIkp7l6g73Xd6mkldCzskhk8kgYzyMVgajGTCYBehNIhoaGtFYdRHG6osw11yCtaYG4qVasLpayOpqwTfUQaGvh9JQD01jA7RGPVzMBvDt3Z7kCkSOg1XJQ1TKwKkY5EoBKpUVWpURKpXVFpqUIjgZAyeD7Zm3BSi7MunZto3mMg4QeBUEhSuY0hViU5Di1LaHTO0GXuMOmcb9spB1WbC6TmaoKAx1IQpDhJCuJgoiLpypReGRChRmVyLurjAMGncTAKChxoQ9W/LQf5gfQgd7Q6Xtvlt+XC2raLWfibosTElhq6nMJJjsH1YTTKIJZsFs2758f9PDKlqv3JluxoEDL+PBc60eMvttGSeDXCYHz7XaZhw0RkBjEKHVi1A3iNAYrNDoBWj0VtvDIEBjsEBrsEJrsEDbaIHK8scC1NVgHAPjASYDmOyybRkAGcB41lQGoKkOZEyqh6Z9Vl4BK6+ClVfCKtdA4FWwKtTgeAGc0gqmUMGicIEZweA1ZgQNH4JRd83q0u/TI8NQTU0N5s+fj7S0NADAlClTsHbtWnh4eDisb7FY8PLLL+P7779HYWEh3N3dMXHiRKSkpCAgIKDTn0thiBByLTGRQRQZeLntMNnxX89hz5Z8AICM5xAY4Yl+sb7oF+srndLf21hFqy0wXRaSzIIZRqvR9izYP7cJXe0EreZ97bVxvVBYGFyMgJsBcGlkcG0EXBsBl0bAtem1rlEOjVUHGZODF+WQsaYH5OCYHDp9ObTGS5ALgCj3QLXXIIgyufRgXMu2b9VReF46DQDQa/ugoN+9LXWb6rGm7aBzuxB4YS8AoN4lEBnDn7Otd3IgpOQH9C/61tauxg8HRy5Dv8I01PVNx982p3fpmF3N7/cNc1vgadOm4dy5c9i+fTsA4KmnnsKMGTPwzTffOKxvMBhw5MgRvPLKK4iJiUFNTQ0WLlyIKVOm4PDhw93ZdUIIaRcn4+wuMhgY4Ym4O0NRkFWJmjI9SnMuojTnInZ/koe+AzwwYXp4y3WMTAJkPCcFqZ5KLpNDLpNDq9B2+2eLTIQgChBYq4d42bODbZGJsDKrXbko2sosRivM9QwWsxWCmcFiEiGaGaxmEYKZQR5sAtzNEEQB5jIeluMuYBaAWTgwCwdYZGCMA3gZjLcVwxRSBQMTIC/2hMfuQe1+l+pbctAw4CwYGFRlnuj7663t1s0d4wajvydkAoOy1hsu+e0fxs0ZHITjQ4PBWUXwFi/w4mX/PDIRgAAwKyq9OBh5BeQCgwgLlMazqNc2gHn7XO2fpkvdEDNDp06dQlRUFNLT0zFy5EgAQHp6OkaNGoXc3FyEh4d3qp2MjAyMGDECJSUlCA4O7tR7aGaIEOIsNeV66bYglaX1kPEcZr0xRjp0tv3fx1GQVQmZjINCzUOh4iFX2p4VKh5T5sdKC7PzD5Wj+oJe2mf3UPLwH+AOvunsNqtZAMdz0uuejjFmm6ETGGRyGWRN4dSot0B/yQSLSYDFLMBiFGA1C7bXJgH9h/nB1ct23aezpy7i5L4LbeuZBVhNIm6fFYXgaG8AwKkDZdj1/06125+EJ6Ix8BbbLVsKjlRg+8YT7dadMD0c0WNth1hLT1bju3XHIFPIwMttIbn1Y/ikEKnd6gsNOPh1IXhF0/6mUC1reh0S7YWAgbarojfWm1F0tAq8nIPMrk3be1y91XDxtI2DIIgwNljA8zLI5Bx4hW08u/v+fEAPnBn67bff4O7uLgUhALj11lvh7u6OAwcOdDoM1dbWguO4dg+tAYDJZILJ1DI1WlfX9maMhBDSHTz9dYi7Q4e4O0JRV92IypJ6uzVEFpPt9HBRZDAZrDAZ7NfWyPiWH6DC7CoUHGn/YoKz3x4nhZ89W/Jx6kAZZDzXJjjJlTzu+PtgqF1s/SjMqkRFSR3kjkKWikefMDfIFbYzwPS1JhgbLBAFBkEQIVqbngUG0SoiMNILCqWtbnlhLSpL6211rSJEQYRgZdJ7hyWESBe0PJNZgYIjFU31mF1dURBx28woePW1zaYd//UcDn9fLH1+c3tomhb465KhUgjISy/Hvv+dbv/v01cnhaH6i0acyWx/fE2NLX8bpZqXwqtCydvGTtlUpuShdW85HOod6IJRU/vb9l8WdhUqHq7eLRfhDIr0wj82/J92+9Cad4AL7vxH5xbta1yViBrTueUlPC+Trq11I7khwlB5eTn8/PzalPv5+aG8vIP7zrRiNBrx/PPPY9q0aR0mxOTkZLz22mt/uK+EEHItuHlr4OatsSu7c+4QWE0tMxWtH1azaHeBx9DB3tC5K20zF831Ws1gyJUtp6xLIUtwHLK4ViGr5EQVTu5v/0rTjyXHw8XT1vbh74txYvf5duvO+NcoKHxs37EwuxJZO0rbrRs5qq8UhmrK9R0GEXOrIGK1iDDUtX8WnGBtOVii0smhcVXYBZDW2xqXlmDqH+aOsX8baB9WWgUdF6+WgNB/mB/6D2v7m+aIh59WuhfelThj9qWncGoYSkpKumLwyMjIAOD4j8wY69Qf32Kx4KGHHoIoitiwYUOHdV944QUsXrxYel1XV4egoKArfgYhhHQ3npeB18o6dcZZxKi+iBjVt1PtTpwVhQnTwx2GLItJgELVEpwCI70gV/Ith5KaQpYtkNnXVWls4ULG2w6xyHiZtOZJxnN24c37Jhf0H+ZrV5fnbYdpZDwHta7lOwdHeUOllbdpr/lQjUeflrVG4SP9ERTp1VSvbR9ah8KIW/si4tbOjZlXgA5eAbpO1SXXH6euGaqqqkJVVVWHdUJDQ/HJJ59g8eLFuHTpkt0+Dw8PvPXWW3j88cfbfb/FYsGDDz6IwsJC7Nq1C97e3lfVR1ozRAghhNx4bpg1Qz4+PvDxufIK8lGjRqG2thaHDh3CiBEjAAAHDx5EbW0t4uPj231fcxA6ffo0fvnll6sOQoQQQgjp+W6IUwUiIyMxadIkzJ49G+np6UhPT8fs2bNx99132y2ejoiIwJdffgkAsFqtuP/++3H48GF8/PHHEAQB5eXlKC8vh9nc/VdNJYQQQsj16YYIQwDw8ccfY/DgwUhISEBCQgKGDBmC//73v3Z18vLyUFtbCwA4d+4c0tLScO7cOcTGxqJv377S48CBA874CoQQQgi5Dt0Q1xlyJlozRAghhNx4rub3+4aZGSKEEEIIuRYoDBFCCCGkV6MwRAghhJBejcIQIYQQQno1CkOEEEII6dUoDBFCCCGkV6MwRAghhJBejcIQIYQQQno1CkOEEEII6dUoDBFCCCGkV3PqXetvBM13K6mrq3NyTwghhBDSWc2/25256xiFoSuor68HAAQFBTm5J4QQQgi5WvX19XB3d++wDt2o9QpEUcSFCxfg6uoKjuO6tO26ujoEBQXh7NmzdBPYa4jGuXvQOHcPGufuQePcPa7lODPGUF9fj4CAAMhkHa8KopmhK5DJZAgMDLymn+Hm5kb/snUDGufuQePcPWicuweNc/e4VuN8pRmhZrSAmhBCCCG9GoUhQgghhPRqFIacSKVSYdmyZVCpVM7uSo9G49w9aJy7B41z96Bx7h7XyzjTAmpCCCGE9Go0M0QIIYSQXo3CECGEEEJ6NQpDhBBCCOnVKAwRQgghpFejMOQkGzZsQFhYGNRqNYYPH469e/c6u0s9SnJyMm655Ra4urrCz88P9957L/Ly8pzdrR4vOTkZHMdh4cKFzu5Kj3T+/Hk88sgj8Pb2hlarRWxsLDIzM53drR7FarXi5ZdfRlhYGDQaDfr164fly5dDFEVnd+2GtmfPHkyePBkBAQHgOA5fffWV3X7GGJKSkhAQEACNRoMJEyYgJyen2/pHYcgJtm7dioULF+Kll15CVlYWxo4dizvuuAOlpaXO7lqPsXv3bsydOxfp6enYuXMnrFYrEhISoNfrnd21HisjIwMbN27EkCFDnN2VHqmmpgajR4+GQqHADz/8gJMnT2LNmjXw8PBwdtd6lNTUVLz33ntYt24dTp06hVWrVuGNN97A2rVrnd21G5per0dMTAzWrVvncP+qVavw5ptvYt26dcjIyIC/vz9uv/126f6g1xwj3W7EiBFszpw5dmURERHs+eefd1KPer6KigoGgO3evdvZXemR6uvr2cCBA9nOnTvZ+PHj2YIFC5zdpR7nueeeY2PGjHF2N3q8u+66i82aNcuubOrUqeyRRx5xUo96HgDsyy+/lF6Losj8/f1ZSkqKVGY0Gpm7uzt77733uqVPNDPUzcxmMzIzM5GQkGBXnpCQgAMHDjipVz1fbW0tAMDLy8vJPemZ5s6di7vuugsTJ050dld6rLS0NMTFxeGBBx6An58fhg4divfff9/Z3epxxowZg59//hn5+fkAgKNHj2Lfvn248847ndyznquoqAjl5eV2v4sqlQrjx4/vtt9FulFrN6uqqoIgCOjTp49deZ8+fVBeXu6kXvVsjDEsXrwYY8aMwaBBg5zdnR5ny5YtOHLkCDIyMpzdlR6tsLAQ7777LhYvXowXX3wRhw4dwvz586FSqfDoo486u3s9xnPPPYfa2lpERESA53kIgoDXX38dDz/8sLO71mM1//Y5+l0sKSnplj5QGHISjuPsXjPG2pSRrjFv3jwcO3YM+/btc3ZXepyzZ89iwYIF2LFjB9RqtbO706OJooi4uDisXLkSADB06FDk5OTg3XffpTDUhbZu3YqPPvoIn3zyCaKjo5GdnY2FCxciICAAjz32mLO716M583eRwlA38/HxAc/zbWaBKioq2qRi8uc988wzSEtLw549exAYGOjs7vQ4mZmZqKiowPDhw6UyQRCwZ88erFu3DiaTCTzPO7GHPUffvn0RFRVlVxYZGYkvvvjCST3qmZYuXYrnn38eDz30EABg8ODBKCkpQXJyMoWha8Tf3x+AbYaob9++Unl3/i7SmqFuplQqMXz4cOzcudOufOfOnYiPj3dSr3oexhjmzZuHbdu2YdeuXQgLC3N2l3qk2267DcePH0d2drb0iIuLw/Tp05GdnU1BqAuNHj26zeUh8vPzERIS4qQe9UwGgwEymf1PI8/zdGr9NRQWFgZ/f3+730Wz2Yzdu3d32+8izQw5weLFizFjxgzExcVh1KhR2LhxI0pLSzFnzhxnd63HmDt3Lj755BN8/fXXcHV1lWbi3N3dodFonNy7nsPV1bXNOiydTgdvb29an9XFFi1ahPj4eKxcuRIPPvggDh06hI0bN2Ljxo3O7lqPMnnyZLz++usIDg5GdHQ0srKy8Oabb2LWrFnO7toNraGhAWfOnJFeFxUVITs7G15eXggODsbChQuxcuVKDBw4EAMHDsTKlSuh1Woxbdq07ulgt5yzRtpYv349CwkJYUqlkg0bNoxO+e5iABw+Nm3a5Oyu9Xh0av21880337BBgwYxlUrFIiIi2MaNG53dpR6nrq6OLViwgAUHBzO1Ws369evHXnrpJWYymZzdtRvaL7/84vC/yY899hhjzHZ6/bJly5i/vz9TqVRs3Lhx7Pjx493WP44xxrondhFCCCGEXH9ozRAhhBBCejUKQ4QQQgjp1SgMEUIIIaRXozBECCGEkF6NwhAhhBBCejUKQ4QQQgjp1SgMEUIIIaRXozBECEFxcTE4jkN2drazuyLJzc3FrbfeCrVajdjYWId1GGN46qmn4OXldd3135l+/fVXcByHS5cutVvnww8/hIeHR7f16XKhoaF4++23nfb5hLRGYYiQ68DMmTPBcRxSUlLsyr/66qtuu2vz9WbZsmXQ6XTIy8vDzz//7LDO9u3b8eGHH+Lbb79FWVlZl90CZObMmbj33nu7pK2ehAIM6akoDBFynVCr1UhNTUVNTY2zu9JlzGbzH35vQUEBxowZg5CQEHh7e7dbp2/fvoiPj4e/vz/k8uvrdouCINANPgm5AVAYIuQ6MXHiRPj7+yM5ObndOklJSW0OGb399tsIDQ2VXjfPaqxcuRJ9+vSBh4cHXnvtNVitVixduhReXl4IDAzEf/7znzbt5+bmIj4+Hmq1GtHR0fj111/t9p88eRJ33nknXFxc0KdPH8yYMQNVVVXS/gkTJmDevHlYvHgxfHx8cPvttzv8HqIoYvny5QgMDIRKpUJsbCy2b98u7ec4DpmZmVi+fDk4jkNSUlKbNmbOnIlnnnkGpaWl4DhOGgPGGFatWoV+/fpBo9EgJiYGn3/+ufQ+QRDwxBNPICwsDBqNBuHh4XjnnXfsxnjz5s34+uuvwXEcOI7Dr7/+6vDQU3Z2NjiOQ3FxMYCWQ0/ffvstoqKioFKpUFJSArPZjH/+85+46aaboNPpMHLkSLuxLSkpweTJk+Hp6QmdTofo6Gh8//33DscOAD766CPExcXB1dUV/v7+mDZtGioqKtrU279/P2JiYqBWqzFy5EgcP3683TYLCgpwzz33oE+fPnBxccEtt9yCn376Sdo/YcIElJSUYNGiRdK4NDtw4ADGjRsHjUaDoKAgzJ8/H3q9XtpfUVGByZMnQ6PRICwsDB9//HG7/SDEGSgMEXKd4HkeK1euxNq1a3Hu3Lk/1dauXbtw4cIF7NmzB2+++SaSkpJw9913w9PTEwcPHsScOXMwZ84cnD171u59S5cuxZIlS5CVlYX4+HhMmTIF1dXVAICysjKMHz8esbGxOHz4MLZv347ff/8dDz74oF0bmzdvhlwux/79+/Hvf//bYf/eeecdrFmzBqtXr8axY8eQmJiIKVOm4PTp09JnRUdHY8mSJSgrK8Ozzz7rsI3mQFVWVoaMjAwAwMsvv4xNmzbh3XffRU5ODhYtWoRHHnkEu3fvBmALYoGBgfjss89w8uRJvPrqq3jxxRfx2WefAQCeffZZPPjgg5g0aRLKyspQVlaG+Pj4To+9wWBAcnIyPvjgA+Tk5MDPzw+PP/449u/fjy1btuDYsWN44IEHMGnSJOn7zp07FyaTCXv27MHx48eRmpoKFxeXdj/DbDZjxYoVOHr0KL766isUFRVh5syZbeotXboUq1evRkZGBvz8/DBlyhRYLBaHbTY0NODOO+/ETz/9hKysLCQmJmLy5MkoLS0FAGzbtg2BgYFYvny5NC4AcPz4cSQmJmLq1Kk4duwYtm7din379mHevHlS2zNnzkRxcTF27dqFzz//HBs2bHAY3ghxmm67JSwhpF2PPfYYu+eeexhjjN16661s1qxZjDHGvvzyS9b6X9Nly5axmJgYu/e+9dZbLCQkxK6tkJAQJgiCVBYeHs7Gjh0rvbZarUyn07FPP/2UMcZYUVERA8BSUlKkOhaLhQUGBrLU1FTGGGOvvPIKS0hIsPvss2fPMgAsLy+PMWa7Y31sbOwVv29AQAB7/fXX7cpuueUW9vTTT0uvY2Ji2LJlyzps5/Lv3tDQwNRqNTtw4IBdvSeeeII9/PDD7bbz9NNPs/vuu0963frv0az5rts1NTVSWVZWFgPAioqKGGOMbdq0iQFg2dnZUp0zZ84wjuPY+fPn7dq77bbb2AsvvMAYY2zw4MEsKSmpw+/akUOHDjEArL6+3q6vW7ZskepUV1czjUbDtm7dKvXV3d29w3ajoqLY2rVrpdchISHsrbfesqszY8YM9tRTT9mV7d27l8lkMtbY2Mjy8vIYAJaeni7tP3XqFAPQpi1CnOX6OsBOCEFqair+8pe/YMmSJX+4jejoaMhkLRO/ffr0sVtczPM8vL292/zf+ahRo6RtuVyOuLg4nDp1CgCQmZmJX375xeGMRUFBAW6++WYAQFxcXId9q6urw4ULFzB69Gi78tGjR+Po0aOd/IaOnTx5Ekajsc3hObPZjKFDh0qv33vvPXzwwQcoKSlBY2MjzGZzu2esXS2lUokhQ4ZIr48cOQLGmDQ+zUwmk7QWav78+fjHP/6BHTt2YOLEibjvvvvs2rhcVlYWkpKSkJ2djYsXL0rrkkpLSxEVFSXVa/339PLyQnh4uPT3vJxer8drr72Gb7/9FhcuXIDVakVjY6M0M9SezMxMnDlzxu7QF2MMoiiiqKgI+fn50j9LzSIiIpx6Jhshl6MwRMh1Zty4cUhMTMSLL77Y5tCHTCYDY8yuzNFhD4VCYfea4ziHZZ1Z3Nu8NkQURUyePBmpqalt6vTt21fa1ul0V2yzdbvNGGN/+sy55u/z3Xff4aabbrLbp1KpAACfffYZFi1ahDVr1mDUqFFwdXXFG2+8gYMHD3bYdnO4bD3+jsZeo9HYfQ9RFMHzPDIzM8HzvF3d5mD55JNPIjExEd999x127NiB5ORkrFmzBs8880yb9vV6PRISEpCQkICPPvoIvr6+KC0tRWJiYqcWrLc3xkuXLsWPP/6I1atXY8CAAdBoNLj//vuv2KYoivj73/+O+fPnt9kXHByMvLy8Dj+XkOsBhSFCrkMpKSmIjY1tM5vg6+uL8vJyu+DQldfWSU9Px7hx4wAAVqsVmZmZ0tqPYcOG4YsvvkBoaOifOmvLzc0NAQEB2Ldvn/RZgG0R7ogRI/5U/5sXLZeWlmL8+PEO6+zduxfx8fF4+umnpbKCggK7OkqlEoIg2JX5+voCsK1n8vT0BNC5sR86dCgEQUBFRQXGjh3bbr2goCBpLdcLL7yA999/32EYys3NRVVVFVJSUhAUFAQAOHz4sMM209PTERwcDACoqalBfn4+IiIiHNbdu3cvZs6cib/+9a8AbGuImheGN3M0LsOGDUNOTg4GDBjgsN3IyEhYrVYcPnxY+vvm5eV1eA0kQrobLaAm5Do0ePBgTJ8+HWvXrrUrnzBhAiorK7Fq1SoUFBRg/fr1+OGHH7rsc9evX48vv/wSubm5mDt3LmpqajBr1iwAtkW+Fy9exMMPP4xDhw6hsLAQO3bswKxZs9r8QF7J0qVLkZqaiq1btyIvLw/PP/88srOzsWDBgj/Vf1dXVzz77LNYtGgRNm/ejIKCAmRlZWH9+vXYvHkzAGDAgAE4fPgwfvzxR+Tn5+OVV16RFl83Cw0NxbFjx5CXl4eqqipYLBYMGDAAQUFBSEpKQn5+Pr777jusWbPmin26+eabMX36dDz66KPYtm0bioqKkJGRgdTUVOmMsYULF+LHH39EUVERjhw5gl27diEyMtJhe8HBwVAqlVi7di0KCwuRlpaGFStWOKy7fPly/Pzzzzhx4gRmzpwJHx+fdq+fNGDAAGzbtg3Z2dk4evQopk2b1mbmMDQ0FHv27MH58+elswife+45/Pbbb5g7dy6ys7Nx+vRppKWlSUEuPDwckyZNwuzZs3Hw4EFkZmbiySefhEajueLYEdJdKAwRcp1asWJFm0NikZGR2LBhA9avX4+YmBgcOnTI4ZlWf1RKSgpSU1MRExODvXv34uuvv4aPjw8AICAgAPv374cgCEhMTMSgQYOwYMECuLu7261P6oz58+djyZIlWLJkCQYPHozt27cjLS0NAwcO/NPfYcWKFXj11VeRnJyMyMhIJCYm4ptvvkFYWBgAYM6cOZg6dSr+9re/YeTIkaiurrabJQKA2bNnIzw8HHFxcfD19cX+/fuhUCjw6aefIjc3FzExMUhNTcW//vWvTvVp06ZNePTRR7FkyRKEh4djypQpOHjwoDSzIwgC5s6di8jISEyaNAnh4eHYsGGDw7Z8fX3x4Ycf4n//+x+ioqKQkpKC1atXO6ybkpKCBQsWYPjw4SgrK0NaWhqUSqXDum+99RY8PT0RHx+PyZMnIzExEcOGDbOrs3z5chQXF6N///7STNmQIUOwe/dunD59GmPHjsXQoUPxyiuv2B063bRpE4KCgjB+/HhMnToVTz31FPz8/Do1doR0B45d/l9bQgghhJBehGaGCCGEENKrURgihBBCSK9GYYgQQgghvRqFIUIIIYT0ahSGCCGEENKrURgihBBCSK9GYYgQQgghvRqFIUIIIYT0ahSGCCGEENKrURgihBBCSK9GYYgQQgghvRqFIUIIIYT0av8f6Qg+aZNH9+MAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAHFCAYAAACze45UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADmNUlEQVR4nOzdeXxM1//48ddM9n1fiSQSZCOxFEE2+76XthRVSu1bi1Jbi7a0lvajtJYoaivVWmqXCLHGUktqj1gSRGSRPTP390d+ma+RhEmECc7z8bgP5t5z73nfO3cm7znn3nNlkiRJCIIgCIIgCFol13YAgiAIgiAIgkjKBEEQBEEQKgSRlAmCIAiCIFQAIikTBEEQBEGoAERSJgiCIAiCUAGIpEwQBEEQBKECEEmZIAiCIAhCBSCSMkEQBEEQhApAJGWCIAiCIAgVQLkmZQsXLkQmk+Hn51fs8ri4OGQyGXPnzn3utsLDw5HJZMTFxZU6jujoaKZNm0ZKSkqRZaGhoYSGhpZ6m28CNzc3+vXrV6Z1ZTIZ06ZNK9d4nsfNzQ2ZTKaaTExMqFOnDj/99BNPP4giIiJCreyTU/fu3TWus/C8K5x0dXWpXLkyH330EXfu3ClSX0RERHntbqmV5vgIL66k8+vp6UXPiWnTpiGTyconaA1VhPP5RSQkJDB58mQCAwOxtbXF3NycunXr8ssvv6BQKIqUP378OK1atcLMzAxTU1PCwsI4fPhwsdvOy8vjhx9+oGbNmhgZGWFpaUmjRo2Ijo4uVYyFf/80mcryd+9pd+/eZdq0aZw5c+aFt1VIG+dmeZs8eTLt27enUqVKyGQyjf8m9u7dG5lMRvv27YtdnpSUxMiRI3Fzc8PAwAAHBwfatGlDcnJyqeLTLVXp51i+fDkAFy5c4NixYzRo0KA8N6+x6Ohopk+fTr9+/bC0tFRbtmjRIq3EJJRN48aNVUn83bt3+eGHHxg+fDhpaWl88cUXRcrPmjWLsLAwtXk2NjalrnfFihV4eXmRlZXFwYMHmT17NpGRkZw7dw4TE5Oy7cxLUNrjI5TdkSNH1F5/9dVXHDhwgP3796vN9/HxeaF6BgwYQOvWrV9oG6VVp04djhw58sKxa0tMTAy//fYbffr04csvv0RPT49//vmHTz/9lKNHj6r+NgGcOHGC4OBg6tevz6pVq5Akie+++45mzZpx4MABAgMDVWUVCgVdunTh0KFDfP755zRq1IiMjAxiYmLIyMgoVYxOTk5FzqEhQ4aQmprKmjVripR9UXfv3mX69Om4ubkREBDwwtsD7Zyb5W3evHnUqlWLjh07qp0Xz7J9+3a2bNmCubl5scvv3r1LUFAQurq6fPnll1SrVo2kpCQOHDhAbm5u6QKUysmJEyckQGrXrp0ESAMHDixS5saNGxIgzZkz57nbW7FihQRIN27cKHUsc+bMKfO6bzJXV1epb9++ZVoXkKZOnVqu8TyPq6ur1K5dO7V5qampkoWFhVSlShW1+QcOHJAAaePGjS9UZ+F5d+LECbX5X375pQRIq1evVqvvwIEDL1TfiyjN8XkVMjMzJaVS+crrLSulUillZmaWef2+fftKJiYmzy2XkZFR5joEzSQnJ0u5ublF5g8dOlQCpPj4eNW8Vq1aSQ4ODmrvS1pammRrays1atRIbf158+ZJcrlcOnLkyEuJOyQkRPL19X0p2y78m7xixYqXsv3XlUKhUP3fxMTkuX8TU1JSpEqVKkk//PBDsd+5kiRJnTp1kipVqiQlJye/cHzl1n25bNkyAL755hsaNWrEunXryMzMLLasUqlk5syZVKlSBUNDQ+rVq8e+ffueW8eePXvo1KkTlStXxtDQEE9PTwYNGkRSUpKqzLRp0/jss88AcHd3L9KlUFz3ZXJyMkOGDKFSpUro6+tTtWpVJk2aRE5Ojlo5mUzGsGHDWLVqFd7e3hgbG+Pv78+2bdueG3th98Dvv//O+PHjcXJywtTUlA4dOnDv3j3S09P55JNPsLW1xdbWlo8++ojHjx+rbSM7O5uJEyfi7u6Ovr4+lSpVYujQoUW6afPy8vj8889xdHTE2NiYJk2acPz48WLjSkxMZNCgQVSuXBl9fX3c3d2ZPn06+fn5z90nbTA3N6d69ercu3fvldbbsGFDAG7evFlimZK6xvv164ebm5vavJ9//hl/f39MTU0xMzPDy8urXFq2Sjo+ubm5fP3113h5eWFgYICdnR0fffQRDx48UCuXk5PD2LFjVedOcHAwMTExRbq+C7t5d+/eTf/+/bGzs8PY2Fj1mVm/fj2BgYGYmJhgampKq1atOH36tFpd169f57333sPZ2VnV3N+sWTO17pb9+/cTGhqKjY0NRkZGVKlShW7duql9t5T287t48WK8vb0xMDBg5cqVL3K4iwgNDcXPz4+DBw/SqFEjjI2N6d+/v+qYtGzZEicnJ4yMjPD29mbChAlFWlyK6yJyc3Ojffv27Ny5kzp16mBkZISXl5fGv/Sfd7493X35vK62J+3du5dmzZphbm6OsbExjRs31uj7vDxZWVmhp6dXZH79+vUBuH37tmre4cOHCQ0NxdjYWDXPzMyM4OBgoqOjSUhIUM1fsGABwcHBqs//q5CWlsa4cePUvudHjRpV5DzZuHEjDRo0wMLCAmNjY6pWrao61yIiInjnnXcA+Oijj1Tv27MuQcnMzFTVa2hoiLW1NfXq1WPt2rWqMk+fm09f7vHk9OR3oSRJLFq0iICAAIyMjLCysqJ79+5cv369HI5Y6cjlpUt7xo4di5OTEyNGjCh2eVxcHH///TcDBw7EysrqheMrl+7LrKws1q5dyzvvvIOfnx/9+/dnwIABbNy4kb59+xYp/9NPP+Hq6sr8+fNRKpV89913tGnThsjISLWm46ddu3aNwMBABgwYgIWFBXFxcfzwww80adKEc+fOoaenx4ABA0hOTubHH39k8+bNqmbgkprls7OzCQsL49q1a0yfPp1atWoRFRXF7NmzOXPmDNu3b1crv337dk6cOMGMGTMwNTXlu+++o0uXLly6dImqVas+91h98cUXhIWFER4eTlxcHOPGjeP9999HV1cXf39/1q5dy+nTp/niiy8wMzNj4cKFQMFJ3blzZ/bt28fEiRMJCgri33//ZerUqRw5coQjR45gYGAAwMCBA/ntt98YN24cLVq04Pz583Tt2pX09HS1WBITE6lfvz5yuZwpU6bg4eHBkSNH+Prrr4mLi2PFihXP3Z+nKRQKja5nksvlpf5wAOTn53Pr1i2qV69e7HKlUlkkodTVffHT/OrVqwDY2dm98LbWrVvHkCFDGD58OHPnzkUul3P16lUuXrz4wtsu7vgolUo6depEVFSUqgvm5s2bTJ06ldDQUE6ePImRkRFQ8AW+fv16Pv/8c5o2bcrFixfp0qULaWlpxdbXv39/2rVrx6pVq8jIyEBPT49Zs2YxefJkPvroIyZPnkxubi5z5swhKCiI48ePqz6Lbdu2RaFQ8N1331GlShWSkpKIjo5W/ciIi4ujXbt2BAUFsXz5ciwtLblz5w47d+4kNzcXY2PjUn9+t2zZQlRUFFOmTMHR0RF7e/sXPuZPS0hIoHfv3nz++efMmjVLdZ5fuXKFtm3bMmrUKExMTPjvv//49ttvOX78eJEu0OKcPXuWsWPHMmHCBBwcHFi6dCkff/wxnp6eBAcHl7heWc634rraHjx4QO/evalUqZJq3urVq+nTpw+dOnVi5cqV6OnpsWTJElq1asWuXbto1qzZM/dJ0x9/Ojo6ZbqWaf/+/ejq6qp9HnJzc1XflU8qnHfu3DmcnJy4desWcXFxdOjQgS+++IJly5bx8OFDatSoweeff17s37YXlZmZSUhICLdv3+aLL76gVq1aXLhwgSlTpnDu3Dn27t2LTCbjyJEj9OzZk549ezJt2jQMDQ25efOm6jyqU6cOK1asUH0G27VrB0DlypVLrHvMmDGsWrWKr7/+mtq1a5ORkcH58+d5+PBhieu0a9euyHly5MgRxowZg6+vr2reoEGDCA8PZ8SIEXz77bckJyczY8YMGjVqxNmzZ3FwcCixDkmSir0usDjl8V3/pL179/Lbb79x4sQJdHR0ii0TFRWFJEk4Ozvz/vvvs3XrVvLz82nYsCGzZ89+Zk5TrBdua5Mk6bfffpMAafHixZIkSVJ6erpkamoqBQUFqZUr7L50dnaWsrKyVPPT0tIka2trqXnz5qp5z+u+VCqVUl5ennTz5k0JkP766y/Vsmd1X4aEhEghISGq14sXL5YAacOGDWrlvv32WwmQdu/erZoHSA4ODlJaWppqXmJioiSXy6XZs2eXfICk/+vu6tChg9r8UaNGSYA0YsQItfmdO3eWrK2tVa937twpAdJ3332nVm79+vUSIP3yyy+SJElSbGysBEijR49WK7dmzRoJUGuqHTRokGRqairdvHlTrezcuXMlQLpw4YLavmvSfenq6ioBz5003Vbbtm2lvLw81Xs9cOBASU9PT9q2bZta2cLjW9x05cqV59ZVqPC8O3r0qJSXlyelp6dL27Ztk+zs7CQzMzMpMTFRrb4nuy+fPrcK9e3bV3J1dVW9HjZsmGRpaalxTCXR9PisXbtWAqRNmzaprV/YvbFo0SJJkiTpwoULEiCNHz9erVzh+k+eO4XHqU+fPmpl4+PjJV1dXWn48OFq89PT0yVHR0epR48ekiRJUlJSkgRI8+fPL3H//vjjDwmQzpw5U2KZ0n5+LSwsyqWLQZKK774MCQmRAGnfvn3PXLfw+ysyMlICpLNnz6qWTZ06VXr6q9nV1VUyNDRU+6xmZWVJ1tbW0qBBg55Zlybn2/O64zMyMqT69etLTk5OUlxcnGqetbV1ke80hUIh+fv7S/Xr139mnZIkafRdQRm74Hbt2iXJ5fIi34UBAQFS9erV1bqx8vLypKpVq0qA9Pvvv0uSJElHjhyRAMnc3Fzy8fGRNmzYIO3atUvq3r272nfui3i6+3L27NmSXC4vcvlE4Wdhx44dkiT933d0SkpKidsubfeln5+f1Llz52eWKe7cfNJ///0n2djYSGFhYVJOTo4kSf93HL///nu1srdu3ZKMjIykzz///Jl1Puu7/emptJcsPav7Mj09XXJzc5MmTpyomldc9+Xs2bNV50mnTp2knTt3Sps2bZJq1aolGRoaqn22NVEu3ZfLli3DyMiI9957DwBTU1PeffddoqKiuHLlSpHyXbt2xdDQUPXazMyMDh06cPDgwWdmxPfv32fw4MG4uLigq6uLnp4erq6uAMTGxpYp9v3792NiYlLkDr3Crpqnm+HDwsIwMzNTvXZwcMDe3v6Z3VpPevrODW9vbwDVL5kn5ycnJ6u6MAt/AT19p8i7776LiYmJKs4DBw4A0KtXL7VyPXr0KPIrYtu2bYSFheHs7Ex+fr5qatOmDQCRkZEa7dOTtm7dyokTJ547ffLJJxptb8eOHejp6ane619//ZUff/yxyPEq9O233xapy8XFpdT70bBhQ/T09DAzM6N9+/Y4Ojryzz//PPMXnabq169PSkoK77//Pn/99Zda93tpaXJ8tm3bhqWlJR06dFB7nwMCAnB0dFR1WRW+3z169FCro3v37iX+Au3WrZva6127dpGfn0+fPn3U6jI0NCQkJERVl7W1NR4eHsyZM4cffviB06dPo1Qq1bYVEBCAvr4+n3zyCStXriy2q6O0n9+mTZuWSxfDs1hZWdG0adMi869fv84HH3yAo6MjOjo66OnpERISAmj2/RUQEECVKlVUrw0NDalevfpzv3te9HxTKBT07NmT2NhYduzYofrOjY6OJjk5mb59+6q910qlktatW3PixInnXgyvyXfFiRMn6NChQ6liPnXqFD169FC1Vjxp+PDhXL58mWHDhnHnzh1u3brF4MGDVcexsGWz8HzMzs5mx44dvPvuu7Rs2ZINGzZQp04dZsyYUaqYNLFt2zb8/PwICAhQO6atWrVS614u7Jrs0aMHGzZsULszvKzq16/PP//8w4QJE4iIiCArK6tU6ycmJtK6dWucnJz4888/0dfXV+2TTCajd+/eavvk6OiIv7//c+/4rVu3rsbnibOzc1l3v4gJEyagp6fHlClTnlmu8DypXLkymzZtolWrVnTt2pWdO3cil8v57rvvSlXvC7f1Xb16lYMHD9KtWzckSVJ1PXTv3p0VK1awfPnyIh8KR0fHIttxdHQkNzeXx48fY2FhUWS5UqmkZcuW3L17ly+//JKaNWtiYmKCUqmkYcOGpT6BCj18+BBHR8ciTeP29vbo6uoWabot7k4+AwMDjeu3trZWe1144pY0Pzs7G1NTUx4+fIiurm6R7jOZTIajo6MqzsJ/nz7Gurq6RWK/d+8eW7duLfZaDKBMyYKPj4/G3ZeaaNKkCfPmzUOhUHDlyhW+/PJLhg0bhq+vL02aNClSvmrVqtSrV6/UcT/tt99+w9vbG11dXRwcHMrlbqhCH374Ifn5+fz6669069YNpVLJO++8w9dff02LFi1KtS1Njs+9e/dISUlRnVNPK3yfC8+dpxPP4s6dQk8fl8Jr2Qr/aDyt8H2XyWTs27ePGTNm8N133zF27Fisra3p1asXM2fOxMzMDA8PD/bu3ct3333H0KFDycjIoGrVqowYMYKRI0eqYi7N57c838eSFFfH48ePCQoKwtDQkK+//prq1atjbGzMrVu36Nq1q0bfH2X97nnR823w4MHs3LmT7du3q93FV/heP2vImeTk5GferazpXYEldR0V5/Tp07Ro0YJq1aqxY8eOIl2V/fv358GDB3z99df8/PPPAAQGBjJu3Di+/fZbVfds4fH28vJSJaJQcO62atWK2bNnc//+/XLtAr937x5Xr1597ndycHAwW7ZsYeHChfTp04ecnBx8fX2ZNGkS77//fpnqXrhwIZUrV2b9+vV8++23GBoa0qpVK+bMmUO1atWeuW56ejpt27YlLy+Pf/75R+1v+L1795AkqcQftM+77MfU1FTj86S8ui+PHz/OokWL2Lx5M9nZ2WRnZwP/d3lMSkoKRkZGGBgYqM6T5s2bq52nTk5O+Pv7c+rUqVLV/cJ7sHz5ciRJ4o8//uCPP/4osnzlypV8/fXXasEmJiYWKZeYmIi+vj6mpqbF1nP+/HnOnj1LeHi4Wl9+4bU+ZWVjY8OxY8eQJEnti/3+/fvk5+dja2v7QtsvLzY2NuTn5/PgwQO1xEySJBITE1V/BAtPkMTERLVrP/Lz84v8gbK1taVWrVrMnDmz2DrL8qvDw8NDo1bDqVOnajTumYWFhSrJatCgAQ0aNMDf358hQ4Zw5syZMl2Xpglvb+9SJ3eGhoakpqYWmV9ccvvRRx/x0UcfkZGRwcGDB5k6dSrt27fn8uXLan8AnkeT42Nra4uNjQ07d+4sdhuFLb+F5869e/eee+4UejoZKvy8/PHHH8/dD1dXV9UNQpcvX2bDhg1MmzaN3NxcFi9eDEBQUBBBQUEoFApOnjzJjz/+yKhRo3BwcOC9994r9ef3VYyxVFwd+/fv5+7du0RERKhax4Bix1J8Gcp6vk2bNo2lS5eyYsUKWrZsqbas8Nj++OOPJV4I/7yW5ZKSj6etWLFCo/GkTp8+TfPmzXF1dWX37t3F/sAHGD9+PKNGjeLKlSuYmZnh6urKoEGDMDExoW7dukDBd9mTNwM8qfCHZ3l//9ja2mJkZFTiDRxPns+dOnWiU6dO5OTkcPToUWbPns0HH3yAm5tb6a9jAkxMTJg+fTrTp0/n3r17qlazDh068N9//5W4Xl5eHt26dePatWtERUUVuW7N1tYWmUxGVFTUM6/lK0lkZGSRYY5KcuPGjSI3VZXFxYsXkSSJLl26FFl269YtrKysmDdvHqNGjaJWrVolbkeSpFKfIy+UlCkUClauXImHhwdLly4tsnzbtm18//33/PPPP2rddps3b2bOnDmqLsz09HS2bt1KUFBQib+ICr/onn4DlyxZUqRsYRlNfn02a9aMDRs2sGXLFrU34LffflMtrwiaNWvGd999x+rVqxk9erRq/qZNm8jIyFDFWXjHy5o1a1RfLgAbNmwoclFt+/bt2bFjBx4eHuXWpbN169Yid70Vp6zNzNWqVePzzz9n+vTprF+/vsy/Cl8GNzc3Nm7cSE5OjuocfPjwIdHR0SWOb2NiYkKbNm3Izc2lc+fOXLhwoVRJ2dOKOz7t27dn3bp1KBSKZ44dWHix+Pr166lTp45q/h9//KHxBdmtWrVCV1eXa9euFenafJbq1aszefJkNm3aVOwvSx0dHRo0aICXlxdr1qzh1KlTvPfee6/N57c0318vU2nOt2XLljF9+nRmzJhRbELUuHFjLC0tuXjxIsOGDStTPCdOnNConLu7+3PLnDlzhubNm1O5cmX27Nnz3O80AwMD1UDn8fHxrF+/noEDB6puetHV1aVTp0788ccfxMXFqf7YS5LEzp078fDwKPcf7e3bt2fWrFnY2NhotM+F+xESEoKlpSW7du3i9OnTBAYGlurv4NMcHBzo168fZ8+eZf78+WRmZpaYoH788cdERETwzz//FJugtG/fnm+++YY7d+4UuTRCE4Xdl5oor+7L1q1bqy4FetJ7772Hu7s7s2fPxtPTEyj4MVy5cmV2796NQqFQ5TB3797l7NmzfPDBB6Wq+4WSsn/++Ye7d+/y7bffFjsUgJ+fHz/99BPLli1TS8p0dHRo0aIFY8aMQalU8u2335KWlsb06dNLrMvLywsPDw8mTJiAJElYW1uzdetW9uzZU6RszZo1gYLbmfv27Yuenh41atRQuxasUJ8+ffjf//5H3759iYuLo2bNmhw6dIhZs2bRtm1bmjdvXoYjU/5atGhBq1atGD9+PGlpaTRu3Fh192Xt2rX58MMPgYIWnt69ezN//nz09PRo3rw558+fZ+7cuUUSgxkzZrBnzx4aNWrEiBEjqFGjBtnZ2cTFxbFjxw4WL178zLt1ilN47F+mcePGsXjxYqZPn06PHj1K1bXxMn344YcsWbKE3r17M3DgQB4+fMh3331X5LgXfvE3btwYJycnEhMTmT17NhYWFiV2+5XG08fnvffeY82aNbRt25aRI0dSv3599PT0uH37NgcOHKBTp0506dIFX19f3n//fb7//nt0dHRo2rQpFy5c4Pvvv8fCwkKjX3xubm7MmDGDSZMmcf36dVq3bo2VlRX37t3j+PHjql/j//77L8OGDePdd9+lWrVq6Ovrs3//fv79918mTJgAwOLFi9m/fz/t2rWjSpUqZGdnq1oQCj+X5fX57devHytXriy3X9pPa9SoEVZWVgwePJipU6eip6fHmjVrOHv2bLnX9bSynG9Hjhxh8ODBNG7cmBYtWnD06FG15Q0bNsTU1JQff/yRvn37kpycTPfu3bG3t+fBgwecPXuWBw8eqLoHS1IelxoAXLp0SfVez5w5kytXrqhdz+zh4aHqYTh//jybNm2iXr16GBgYcPbsWb755huqVavGV199pbbdr776in/++YfWrVszbdo0zM3NWbp0KWfPnmXDhg1qZUNDQ4mMjHyhp2mMGjWKTZs2ERwczOjRo6lVqxZKpZL4+Hh2797N2LFjadCgAVOmTOH27ds0a9aMypUrk5KSwoIFC9SuU/Tw8MDIyIg1a9bg7e2Nqakpzs7OJSYuDRo0oH379tSqVQsrKytiY2NZtWoVgYGBJSZkc+bMYdWqVQwfPhwTExO188Tc3BwfHx8aN27MJ598wkcffcTJkycJDg7GxMSEhIQEDh06RM2aNfn0009LPCZmZmbldp5AQctb4VBACoWCmzdvqnr5QkJCsLOzw9HRsdjLrAwNDbGxsVHLd+RyOfPmzaNHjx506tSJTz/9lIyMDL766iv09fWZOHFi6QIs1W0BT+ncubOkr68v3b9/v8Qy7733nqSrqyslJiaq7r789ttvpenTp0uVK1eW9PX1pdq1a0u7du1SW6+4uy8vXrwotWjRQjIzM5OsrKykd999V4qPjy/2br6JEydKzs7OklwuV7urqLg75B4+fCgNHjxYcnJyknR1dSVXV1dp4sSJUnZ2tlo5QBo6dGiRfdRkUNaSBjctabDSwrtcHjx4oJqXlZUljR8/XnJ1dZX09PQkJycn6dNPP5UePXqktm5OTo40duxYyd7eXjI0NJQaNmwoHTlypNg4Hzx4II0YMUJyd3eX9PT0JGtra6lu3brSpEmTpMePH6vte0UYPLbQ//73PwmQVq5cKUnSyx889mkl3a22cuVKydvbWzI0NJR8fHyk9evXF7n7cuXKlVJYWJjk4OAg6evrS87OzlKPHj2kf//9t1Sxlub45OXlSXPnzpX8/f0lQ0NDydTUVPLy8pIGDRqkdndqdna2NGbMmCLnjoWFhdpdbM87Tlu2bJHCwsIkc3NzycDAQHJ1dZW6d+8u7d27V5IkSbp3757Ur18/ycvLSzIxMZFMTU2lWrVqSfPmzZPy8/MlSSq4a6tLly6Sq6urZGBgINnY2EghISHS33//rVbXi35+JUmSunXrJhkZGRX5LD1LSXdfljQYaHR0tBQYGCgZGxtLdnZ20oABA6RTp04VuUOupLsvi3uvS7rj90manG9Pn8+F729J05MiIyOldu3aSdbW1pKenp5UqVIlqV27di/8WSyN58X75PG9dOmSFBwcLFlbW0v6+vqSp6enNHnyZLXvuyedO3dOateunWRmZqb6TGzdurVIubp160qOjo6liru48+Xx48fS5MmTpRo1akj6+vqShYWFVLNmTWn06NGqu7+3bdsmtWnTRqpUqZKkr68v2dvbS23btpWioqLUtrV27VrJy8tL0tPTe+53+IQJE6R69epJVlZWkoGBgVS1alVp9OjRUlJSkqrM0+dm3759SzzmT5+Xy5cvlxo0aCCZmJhIRkZGkoeHh9SnTx/p5MmTpTpmL6rwDunipucNBv6s79wtW7ZI77zzjmRoaChZWFhIHTt2VBvBQFMySRIPyRMEoWTR0dE0btyYNWvWlLop/nXh6OjIhx9+yJw5c7QdivAaSk9Px9ramvnz5zN06FBthyO8xkRSJgiCyp49ezhy5Ah169bFyMhI1bVjYWHBv//+qzaUzZviwoULBAYGcv369QpzY4/wetm+fTtDhw7l8uXLJd7lLAiaEEmZ8FZQKpVFxsF6WnmPBl1Wz7uovqxPQ9DEsWPHGDt2LBcvXiQ9PR1bW1vV7f+vYjgJQRCEt5lIyoS3wrRp0555IwmU3+3UL+p5wzb07duX8PDwVxOMIAiC8MqIpEx4K9y9e5e7d+8+s0ytWrUqRNfDyZMnn7nc1ta2QiSPgiAIQvkSSZkgCIIgCEIF8HIuTBEEQRAEQRBKpWJc2fwKKZVK7t69i5mZ2St55IogCIIgCC9OkiTS09NxdnZ+aTc7adtbl5TdvXsXFxcXbYchCIIgCEIZ3Lp1q9RPm3ldvHVJWeGjlm7dulXi8wgFQRAEQahY0tLScHFxKfaRiW+Kty4pK+yyNDc3F0mZIAiCILxm3uRLj97MTllBEARBEITXjEjKBEEQBEEQKgCRlAmCIAiCIFQAb901ZYIgCNqmUCjIy8vTdhiCUOHo6+u/scNdaEIkZYIgCK+IJEkkJiaSkpKi7VAEoUKSy+W4u7tXiEfeaYNIygRBEF6RwoTM3t4eY2PjN/ouMkEorcLB3RMSEqhSpcpb+fkQSZkgCMIroFAoVAmZjY2NtsMRhArJzs6Ou3fvkp+fj56enrbDeeXe3o5bQRCEV6jwGjJjY2MtRyIIFVdht6VCodByJNohkjJBEIRX6G3skhEETb3tnw+RlAmCIAiCIFQAIikTBEEQXjv9+vWjc+fOzywTERGBTCYTd7sKrw2RlAmCIAjP9KwEyM3NDZlMpjZVrlxZbfn8+fPLPaYFCxYQHh6ueh0aGsqoUaPKvR5t69evn+q46urqUqVKFT799FMePXqkVu5574PwehBJWTmKv3Kd/avWazsMQRCEV2rGjBkkJCSoptOnT7/0Oi0sLLC0tHzp9TxJWwP+tm7dmoSEBOLi4li6dClbt25lyJAhRcpp430QypdIysrJvt/WIy25huxcLskPH2o7HEEQhFfGzMwMR0dH1WRnZ1fqbYwdO5YOHTqoXs+fPx+ZTMb27dtV82rUqMGSJUsA9da7fv36ERkZyYIFC1StRHFxcar1YmJiqFevHsbGxjRq1IhLly5pFNO0adMICAhg+fLlVK1aFQMDAyRJYufOnTRp0gRLS0tsbGxo3749165dU63XrVs3hg8frno9atQoZDIZFy5cACA/Px8zMzN27dqlURwGBgY4OjpSuXJlWrZsSc+ePdm9e3eRcuXxPgjaJZKychLQthnbjP4l0vgaW75fpu1wBEF4DUiSRGZuvlYmSZK0vftqQkNDiYqKQqlUAhAZGYmtrS2RkZFAwcC7ly9fJiQkpMi6CxYsIDAwkIEDB6paiVxcXFTLJ02axPfff8/JkyfR1dWlf//+Gsd19epVNmzYwKZNmzhz5gwAGRkZjBkzhhMnTrBv3z7kcjldunRRxR4aGkpERIRqG0/vy4kTJ8jOzqZx48alOkYA169fZ+fOnW/lGF5vA60PHrto0SLmzJlDQkICvr6+zJ8/n6CgoBLL5+TkMGPGDFavXk1iYiKVK1dm0qRJpfqQvQw2trYYZ0tgAik6CpRK5Vv9/C5BEJ4vK0+BzxTNWkvK28UZrTDWL58/AePHj2fy5Mmq17NmzWLEiBGl2kZwcDDp6emcPn2aOnXqEBUVxbhx49i8eTMABw4cwMHBAS8vryLrWlhYoK+vj7GxMY6OjkWWz5w5U5XMTZgwgXbt2pGdnY2hoeFz48rNzWXVqlVqrU7dunVTK7Ns2TLs7e25ePEifn5+hIaGMnLkSJKSktDR0eHChQtMnTqViIgIhgwZQkREBHXr1sXU1FSjY7Nt2zZMTU1RKBRkZ2cD8MMPPxQpVx7vg6BdWk3K1q9fz6hRo1i0aBGNGzdmyZIltGnThosXL1KlSpVi1+nRowf37t1j2bJleHp6cv/+ffLz819x5MVz9ffizpVTpOnksP6X5bw/eIC2QxIEQXjpPvvsM/r166d6bWtrW+ptWFhYEBAQQEREBHp6esjlcgYNGsTUqVNJT08nIiKi2FYyTdSqVUv1fycnJwDu379f4t+ZJ7m6uhbpBrx27RpffvklR48eJSkpSdVCFh8fj5+fH35+ftjY2BAZGYmenh7+/v507NiRhQsXApR6X8LCwvj555/JzMxk6dKlXL58Wa17tFB5vA+Cdmk1Kfvhhx/4+OOPGTCgIHmZP38+u3bt4ueff2b27NlFyu/cuZPIyEiuX7+OtbU1UHDHSUXRtHd74sZfId4olfvxD7QdjiAIFZyRng4XZ7TSWt3lxdbWFk9PzxfeTmG3n76+PiEhIVhZWeHr68vhw4eJiIgo892VT3b1FQ5OWphIPY+JiUmReR06dMDFxYVff/0VZ2dnlEolfn5+5ObmquoIDg5W7UtoaCh+fn4oFArOnTtHdHR0qfbFxMREdXwXLlxIWFgY06dP56uvvlIrV17vg6A9Wutfy83NJSYmhpYtW6rNb9myJdHR0cWu8/fff1OvXj2+++47KlWqRPXq1Rk3bhxZWVkl1pOTk0NaWpra9DKZoIdMgkf6ORw6GvVS6xIE4fUmk8kw1tfVylQRR04vvK5s//79hIaGAhASEsK6detKvJ6skL6+/it5NM/Dhw+JjY1l8uTJNGvWDG9v7yLDU8D/JZgRERGEhoYik8kICgpi7ty5ZGVllel6skJTp05l7ty53L1790V2RaiAtJaUJSUloVAocHBwUJvv4OBAYmJisetcv36dQ4cOcf78ef7880/mz5/PH3/8wdChQ0usZ/bs2VhYWKimJy/+fBnajv2QSvmWAJz6++BLrUsQBOFVSU1N5cyZM2pTfHx8udZReF3Z1q1bVUlZaGgoq1evxs7ODh8fnxLXdXNz49ixY8TFxal1KZY3KysrbGxs+OWXX7h69Sr79+9nzJgxRcqFhoZy4cIFzp07p7pOOjQ0lDVr1lCnTh3Mzc3LHENoaCi+vr7MmjWrzNsQKiatX4n+9K81SZJK/AWnVCqRyWSsWbOG+vXr07ZtW3744QfCw8NLbC2bOHEiqampqunWrVvlvg9PMrO3wDStIH4duQHJj4v+ghIEQXjdREREULt2bbVpypQp5VqHhYUFtWvXxtraWpWABQUFoVQqn3sN1rhx49DR0cHHxwc7O7tyTxgLyeVy1q1bR0xMDH5+fowePZo5c+YUKefn54etrS3+/v6qBCwkJASFQlHma+OeNGbMGH799deX/jdNeLVkkpbui87NzcXY2JiNGzfSpUsX1fyRI0dy5swZ1a3DT+rbty+HDx/m6tWrqnmxsbH4+Phw+fJlqlWr9tx609LSsLCwIDU19YV+qTzLf3tPk7nrBvY6dhz0uMgHAwe9lHoEQXh9ZGdnc+PGDdzd3TW6608Q3kbP+py8ir/f2qa1ljJ9fX3q1q3Lnj171Obv2bOHRo0aFbtO48aNuXv3Lo8fP1bNu3z5MnK5vEI9TsKreW2k5MsAVL+oS76yYtwdKgiCIAhCxaXV7ssxY8awdOlSli9fTmxsLKNHjyY+Pp7BgwcDBV2Pffr0UZX/4IMPsLGx4aOPPuLixYscPHiQzz77jP79+2NkZKSt3SiWUVMvJEmJpYE76zb/ru1wBEEQtGrNmjWYmpoWO/n6+molJl9f3xJjWrNmzUuvPz4+vsT6TU1NX1oXrFBxaXVIjJ49e/Lw4UPV87r8/PzYsWMHrq6uACQkJKidlKampuzZs4fhw4dTr149bGxs6NGjB19//bW2dqFE1bu3JeLEao5a3EH2r5L8zvno6mp9rF5BEASt6NixIw0aNCh2mbZGp9+xY0eJz7N8+ia0l8HZ2Vn1lICSlgtvF61dU6Ytr7JPev3gn7npkEKmLIdagbXo2qrrS61PEISKS1xTJgjPJ64pE16aaq0a4pFTMMjtf9HnKtyz5gRBEARBqDhEUvYS+bWuiSxViZ6kQ65M4ujZo9oOSRAEQRCECkokZS+RvpEuMlt7quUXXJtwYMdeLUckCIIgCEJFJZKyl+ydD0IwSVMgk2Tk5iq4dvOatkMSBEEQBKECEknZS1aphg1JefpUVdgjk2T8E/WPtkMSBEEQBKECEknZSyaTy/BvF0jVFEPey2mEzbUsFMqX/9BcQRCEN1m/fv3o3LnzM8tEREQgk8lISUl5JTEJwosSSdkrENDBB6Osq5hgSMOMAPZf3qftkARBEDT2rATIzc0NmUymNj35hBU3Nzfmz59f7jEtWLCA8PBw1evQ0FBGjRpV7vVUBImJiQwfPpyqVatiYGCAi4sLHTp0YN++feTm5mJra1vieJ2zZ8/G1taW3NzcZ9YRHh6u9h46ODjQoUMHLly4oFauX79+Rd5vmUym9vhDoexEUvaKuPZuhSLtLnpyQ87tOE5mZqa2QxIEQSgXhQOAF06nT59+6XVaWFhgaWn50ut5UkkDzb5McXFx1K1bl/379/Pdd99x7tw5du7cSVhYGEOHDkVfX5/evXsTHh5e7LBLK1as4MMPP0RfX/+5dZmbm5OQkMDdu3fZvn07GRkZtGvXrkhC17p1a7X3OyEhAXd393Lb57eZSMpeEYsmjbiddoOjupdJS8tne+Q2bYckCIJQLszMzHB0dFRNdnZ2pd7G2LFj6dChg+r1/PnzkclkbN++XTWvRo0aLFmyBFBvvevXrx+RkZEsWLBA1XITFxenWi8mJoZ69ephbGxMo0aNuHTpkkYxTZs2jYCAAJYvX65qpZIkiZ07d9KkSRMsLS2xsbGhffv2XLv2fzdxdevWjeHDh6tejxo1CplMpmp1ys/Px8zMjF27dj03hiFDhiCTyTh+/Djdu3enevXq+Pr6MmbMGI4eLRhm6eOPP+batWscPHhQbd2oqCiuXLnCxx9/rNH+ymQyHB0dcXJyol69eowePZqbN28WOV4GBgZq77ejoyM6Ojoa1SE8m0jKXhVJxnljFyzzC0YovnjiolZ+dQmCUIFIEuRmaGeqYINZh4aGEhUVhVKpBCAyMhJbW1siIyOBgi68y5cvExISUmTdBQsWEBgYyMCBA1UtNy4uLqrlkyZN4vvvv+fkyZPo6urSv39/jeO6evUqGzZsYNOmTapHImVkZDBmzBhOnDjBvn37kMvldOnSRRV7aGgoERERqm08vS8nTpwgOzubxo0bP7Pu5ORkdu7cydChQzExMSmyvLClsGbNmrzzzjusWLFCbfny5cupX78+fn5+Gu9voZSUFH7/veC5zdp6DNbbSDyM8RXR1dehWgNfFDFHMDEwIEOZQ9SJKJo2aqrt0ARB0Ja8TJilpecbfnEX9Iv+oS+L8ePHM3nyZNXrWbNmMWLEiFJtIzg4mPT0dE6fPk2dOnWIiopi3LhxbN68GYADBw7g4OCAl5dXkXUtLCzQ19fH2NgYR0fHIstnzpypSuYmTJhAu3btyM7O1uhxV7m5uaxatUqt9a9bt25qZZYtW4a9vT0XL17Ez8+P0NBQRo4cSVJSEjo6Oly4cIGpU6cSERHBkCFDiIiIoG7dupiamj6z7qtXryJJUrH7/LT+/fszbtw4fvrpJ0xNTXn8+DEbN27khx9+eO66hVJTUzE1NUWSJNUlNh07dixS/7Zt29Rib9OmDRs3btS4HqFkoqXsFfJp6k58rhy/vIJfcIcPHlL9shIEQXhdffbZZ5w5c0Y19enTp9TbsLCwICAggIiICM6dO4dcLmfQoEGcPXuW9PR0IiIiim0l00StWrVU/3dycgLg/v37Gq3r6upapDv22rVrfPDBB1StWhVzc3PV9VTx8fEA+Pn5YWNjQ2RkJFFRUfj7+9OxY0dVS5mm+1J4jZhMJntu2ffffx+lUsn69esBWL9+PZIk8d5772m0n1DQDX3mzBliYmJYvHgxHh4eLF68uEi5sLAwtfd74cKFGtchPJtoKXuFHNzM0beqisXjO+hb6ZKbnc+5i+fw9/PXdmiCIGiDnnFBi5W26i4ntra2eHp6vvB2Crv99PX1CQkJwcrKCl9fXw4fPkxERESZ7658svutMMHR9Adxcd2GHTp0wMXFhV9//RVnZ2eUSiV+fn6qC+JlMhnBwcGqfQkNDcXPzw+FQsG5c+eIjo7WaF+qVauGTCYjNjb2ucN/WFhY0L17d1asWMHHH3/MihUr6N69e6ke3C2Xy1Xvo5eXF4mJifTs2bPItWomJibl8n4LRYmWsldIJpPh27waN7PS8FZUAmDn/p1ajkoQBK2RyQq6ELUxadD68qoVXle2f/9+QkNDAQgJCWHdunUlXk9WSF9fH4Xi5Y8B+fDhQ2JjY5k8eTLNmjXD29ubR48eFSlXmGBGREQQGhqKTCYjKCiIuXPnkpWV9dzryQCsra1p1aoV//vf/8jIyCiy/Onx1z7++GMOHz7Mtm3bOHz4sMYX+Jdk9OjRnD17lj///POFtiNoTiRlr1iNhk48pBJVskyRSzKyHmWSmpaq7bAEQRCeKTU1Va3L6syZM6ruuvJSeF3Z1q1bVUlZaGgoq1evxs7ODh8fnxLXdXNz49ixY8TFxZGUlPTSLg2xsrLCxsaGX375hatXr7J//37GjBlTpFxoaCgXLlzg3LlzBAUFqeatWbOGOnXqaNyCtWjRIhQKBfXr12fTpk1cuXKF2NhYFi5cSGBgoFrZkJAQPD096dOnD56engQHB7/QvpqbmzNgwACmTp1a7HAbQvkTSdkrZmJhgKuvK/fSEmmTW5s2OT7EPIrRdliCIAjPFBERQe3atdWmKVOmlGsdFhYW1K5dG2tra1UCFhQUhFKpfO41WOPGjUNHRwcfHx/s7OzKPWEsJJfLWbduHTExMfj5+TF69GjmzJlTpJyfnx+2trb4+/urErCQkBAUCkWpro1zd3fn1KlThIWFMXbsWPz8/GjRogX79u3j559/LlK+f//+PHr0qFR3mD7LyJEjiY2NFRfyvyIy6S1Lf9PS0rCwsCA1NbVUfe3lKT9XwdUx4zExaIlMz4hfff9h+oeztBKLIAivRnZ2Njdu3MDd3V2ju/4E4W30rM9JRfj7/bKJljIt0NXXoUrfnuTFRwPgf92Z6EvRWo5KEARBEARtEkmZlhjVq8ej7BtkkctNRQa71+3m8ePH2g5LEAThpVizZg2mpqbFTr6+vlqJydfXt8SY1qxZ89Lrj4+PL7F+U1PTcu2C1fa+CpoRQ2JoSUZKDsec36Ve5m309fVAyuLA4QN0aNXh+SsLgiC8Zjp27EiDBg2KXaatEeN37NhR4pNVHBwcXnr9zs7OqqcElLS8vGh7XwXNiKRMS0ytDLGtbMu1m/9R09SN/frnOXXyFK3CWmn04FhBEITXiZmZGWZmZtoOQ42rq6tW69fV1X1l431pe18FzYjuSy3yDqpMEk7Y5OhipjREypM4HnNc22EJgiAIgqAFIinTomrvOKCr78T1x1fxU1QBIPJQpHj0kiAIgiC8hURSpkWGJnpUrW1PfJ4h7nm2GEi65GXkcTH2orZDEwRBEAThFRNJmZZ5N3JC0qvGnceX8VFUBuDw2cNajkoQBEEQhFdNJGVaVtnbGlNLY65nZ+CT70Kb3AAuG4mWMkEQBEF424ikTMvkchktB9Yk2DYTvftXqaS0ofIVC/5L/k/boQmCIFRY/fr1o3Pnzs8sExERgUwmK/LgbkGoqERSVgE4e1pS+cPu5F7fD0CblEasPb2G9PR0LUcmCILw7ATIzc0NmUymNlWuXFlt+fz588s9pgULFhAeHq56HRoayqhRo8q9norg1q1bfPzxxzg7O6Ovr4+rqysjR47k4cOHRcpeuHCBHj16YGdnh4GBAdWqVePLL78kMzNTrdyT75uOjg7Ozs58/PHHPHr0SKOYChPewsnGxoamTZty+LD65TfTpk0rcn7IZDL27t1b9gPyBhNJWQVh6OeHZJ5HfmYSCaRBlIwdu3doOyxBEITnmjFjBgkJCarp9OnTL71OCwsLLC0tX3o9Typp8NWX6fr169SrV4/Lly+zdu1arl69yuLFi9m3bx+BgYEkJyeryh49epQGDRqQm5vL9u3buXz5MrNmzWLlypW0aNGC3NxctW0Xvm/x8fGsWbOGgwcPMmLEiFLFd+nSJRISEoiIiMDOzo527dpx//59tTK+vr5q50dCQgLBwcFlPyhvMJGUVRBpSVn86z2QC1mXMJeMkSEn9kKsaC0TBKHCMzMzw9HRUTXZ2dmVehtjx46lQ4f/e6LJ/PnzkclkbN++XTWvRo0aLFmyBFBvvevXrx+RkZEsWLBA1RITFxenWi8mJoZ69ephbGxMo0aNuHTpkkYxTZs2jYCAAJYvX07VqlUxMDBAkiR27txJkyZNsLS0xMbGhvbt23Pt2jXVet26dWP48OGq16NGjUImk3HhwgUA8vPzMTMzY9euXc+NYejQoejr67N7925CQkKoUqUKbdq0Ye/evdy5c4dJkyYBIEkSH3/8Md7e3mzevJn69evj6urKu+++y9atWzly5Ajz5s1T23bh+1apUiXCwsLo06cPp06d0ujYFLK3t8fR0ZGaNWsyefJkUlNTOXbsmFoZXV1dtfPD0dFRDJJeApGUVRBGZvokZxlxM18XG4URDkoLUEL0EfGgckF4U0mSRGZeplYmSZK0vftqQkNDiYqKUo3TGBkZia2tLZGRkQAkJiZy+fJlQkJCiqy7YMECAgMDGThwoKolxsXFRbV80qRJfP/995w8eRJdXV369++vcVxXr15lw4YNbNq0SfVIpIyMDMaMGcOJEyfYt28fcrmcLl26qGIPDQ0lIiJCtY2n9+XEiRNkZ2fTuHHjZ9adnJzMrl27GDJkCEZGRmrLHB0d6dWrF+vXr0eSJM6cOcPFixcZM2YMcrn6n3Z/f3+aN2/O2rVrS6zrzp07bNu2rcRHYT1PZmYmK1asALT32Kw3gXjMUgWhb6iLZz0HYg95c/PxRWrqunJP/1+OnThGaEgoBgYG2g5REIRylpWfRYPfy/ZH8EUd++AYxnrG5bKt8ePHM3nyZNXrWbNmlbobLDg4mPT0dE6fPk2dOnWIiopi3LhxbN68GYADBw7g4OCAl5dXkXUtLCzQ19fH2NgYR0fHIstnzpypSuYmTJhAu3btyM7OxtDQ8Llx5ebmsmrVKrXWv27duqmVWbZsGfb29ly8eBE/Pz9CQ0MZOXIkSUlJ6OjocOHCBaZOnUpERARDhgwhIiKCunXrYmpq+sy6r1y5giRJeHt7F7vc29ubR48e8eDBAy5fvqyaV1LZQ4cOqc0rfN8UCgXZ2dk0aNCAH3744bnH5EmF1w9mZhYk+nXr1qVZs2ZqZc6dO6e2rz4+Phw/Lp5eUxzRUlaBeAc6IZMbcT3zIa5KW8yVRijzlMScitF2aIIgCCX67LPPOHPmjGrq06dPqbdhYWFBQEAAERERnDt3DrlczqBBgzh79izp6elEREQU20qmiVq1aqn+7+TkBFDkuqeSuLq6FumOvXbtGh988AFVq1bF3Nwcd3d3AOLj4wHw8/PDxsaGyMhIoqKi8Pf3p2PHjqqWshfZlycVtnbKZDKNyj5drvB9+/fff9m3bx8A7dq1Q6FQaBxDVFQUp06dYu3atbi6uhIeHl6kpaxGjRpq58emTZs03v7bRrSUVSBOnhZY2BnxKKEa97PiqaXjyiH5fxw8fJAG9Rugo6Oj7RAFQShHRrpGHPvg2PMLvqS6y4utrW25PFi7sNtPX1+fkJAQrKys8PX15fDhw0RERJT57sonk4TCxETTx9mZmJgUmdehQwdcXFz49ddfcXZ2RqlU4ufnp7qQXiaTERwcrNqX0NBQ/Pz8UCgUnDt3jujoaI32xdPTE5lMxsWLF4u9+/W///7DysoKW1tbqlevDsDFixcJCAgotmy1atXU5j35vlWrVo358+cTGBjIgQMHaN68+XPjA3B3d8fS0pLq1auTnZ1Nly5dOH/+vFrvjr6+/it78PrrTrSUVSAymQyvRk7IdBy5nhaLp8IRA0mPrMdZ3L59W9vhCYJQzmQyGcZ6xlqZNGldedUKryvbv38/oaGhAISEhLBu3boSrycrpK+vX6oWnrJ6+PAhsbGxTJ48mWbNmqm6EJ9WmGBGREQQGhqKTCYjKCiIuXPnkpWV9dzryQBsbGxo0aIFixYtIisrS21ZYmIia9asoWfPnshkMgICAvDy8mLevHlFEs6zZ8+yd+9e3n///WfWV/jD/+m6NPXhhx+iVCpZtGhRmdYXRFJW4Xg1dEQul5GAAzl5jwnL8+Wx+T1yzXOfv7IgCMJLkpqaqtYFdebMGVV3XXkpvK5s69atqqQsNDSU1atXY2dnh4+PT4nrurm5cezYMeLi4khKStK4Jay0rKyssLGx4ZdffuHq1avs37+fMWPGFCkXGhrKhQsXOHfuHEFBQap5a9asoU6dOpibm2tU308//UROTg6tWrXi4MGD3Lp1i507d9KiRQsqVarEzJkzgYIEf+nSpVy8eJFu3bpx/Phx4uPj2bhxIx06dCAwMLBI61x6ejqJiYkkJCRw/PhxPvvsM2xtbWnUqFGZjo1cLmfUqFF88803RcZFEzQjkrIKxtTKkNotXXnHXgeuHKCy0oYOqUGsurBK26EJgvAWi4iIoHbt2mrTlClTyrUOCwsLateujbW1tSoBCwoKQqlUPvcarHHjxqGjo4OPjw92dnblnjAWksvlrFu3jpiYGPz8/Bg9ejRz5swpUs7Pzw9bW1v8/f1VCVhISAgKhaJU15NVq1aNkydP4uHhQc+ePfHw8OCTTz4hLCyMI0eOYG1trSrbuHFjjh49io6ODm3btsXT05OJEyfSt29f9uzZU+SGsSlTpuDk5ISzszPt27fHxMSEPXv2YGNjU8ajA/379ycvL4+ffvqpzNt4m8mkinZf9EuWlpaGhYUFqampGv9S0YbsS5e50f0DTFt/i0xHn/HuC5jZeS5uDm7aDk0QhDLIzs7mxo0buLu7a3TXnyC8jZ71OXld/n6/CNFSVkEZ1qiOoV918m4dQ4lEnYTahP8cTmJiorZDEwRBEAThJRBJWQWV/TiPxPq9OUEicmTYKCwBOHT40LNXFARBqIDWrFmDqalpsZOvr69WYvL19S0xpjVr1rz0+uPj40us39TU9KV1wWqiTZs2JcY1a9YsrcX1phNDYlRQaQ+zOHXJEKWRD/ezb+EvcyNO5wHnz5+nRfMWWFhYaDtEQRAEjXXs2LHE0eK1NQL8jh07SnyepYODw0uv39nZWfWUgJKWa8vSpUtLvAvzyevYhPKl9aRs0aJFzJkzh4SEBHx9fZk/f77qTpWnRUREEBYWVmR+bGxssaM8v87sqphhU8mEpNueXH+0i4aGHbFXmnFfns7Ro0dp1aqVtkMUBEHQmJmZGWZmZtoOQ42rq6tW69fV1a2w43dVqlRJ2yG8lbTafbl+/XpGjRrFpEmTOH36NEFBQbRp0+a5TbaFT6UvnJ4eEO9NIJPJ8Ap0QiaT8zBHh8z8NALyqwJw/ORxsrOztRyhIAiCIAjlSatJ2Q8//MDHH3/MgAED8Pb2Zv78+bi4uPDzzz8/c73Cp9IXTm/qSPc1GhSMWZZn3oRraadxUdpgIumjyFNw8uRJbYcnCIIgCEI50lpSlpubS0xMDC1btlSb37JlS6Kjo5+5bu3atXFycqJZs2YcOHDgmWVzcnJIS0tTm14XRmb6uNWyRSY35t6jmyiVCurmewAQcyaGt2w0E0EQBEF4o2ktKUtKSkKhUBS5mNLBwaHEYR+cnJz45Zdf2LRpE5s3b6ZGjRo0a9aMgwcPlljP7NmzsbCwUE0uLi7luh8vm1ejgofnZpnUJz4jFg+FI7Y6Bjyq9ahCPiZFEARBEISy0fqF/k8nFsU9yb5QjRo1qFGjhup1YGAgt27dYu7cuQQHBxe7zsSJE9UegZGWlvZaJWauvtaYWRtinm2J7tkN6LxTk/YZgQy8NoNH9R9hZWil7RAFQRAEQSgHWmsps7W1RUdHp0ir2P3790t1K3LDhg25cuVKicsNDAwwNzdXm14nch05vb5qSNsR72B55zz5D6+iiw7NHtZn/X/rycjI0HaIgiAIgiCUA60lZfr6+tStW5c9e/aozd+zZ0+pHoZ6+vRpnJycyju8CkVHR46+mxvGgQ3Ju15wDV1gSgDXdlxjw8YNWo5OEIQ3Xb9+/ZDJZAwePLjIsiFDhiCTyejXr59aWZlMhp6eHg4ODrRo0YLly5cXeUi4m5sb8+fP1ygGNzc31XaNjIzw8vJizpw5atfWxsXFqco8OfXu3bvM+y4Ir5JW774cM2YMS5cuZfny5cTGxjJ69Gji4+NVH/yJEyfSp08fVfn58+ezZcsWrly5woULF5g4cSKbNm1i2LBh2tqFV0retieXlClk5afjkG+Dca4xN+NucvfuXW2HJgjCG87FxYV169apDSianZ3N2rVrqVKlilrZ1q1bk5CQQFxcHP/88w9hYWGMHDmS9u3bk5+fX+YYZsyYQUJCArGxsYwbN44vvviCX375pUi5vXv3qg2b9L///a/MdQrCq6TVa8p69uzJw4cPVR80Pz8/duzYoRrQLyEhQW3MstzcXMaNG8edO3cwMjLC19eX7du307ZtW23twitzNeY+u/bpY+jSHp30M9S0CsJBMuO+7DHR0dF0795d2yEKgvAGq1OnDtevX2fz5s306tULgM2bN+Pi4kLVqlXVyhoYGODo6AgUDEJap04dGjZsSLNmzQgPD2fAgAFlisHMzEy13QEDBvDzzz+ze/duBg0apFbOxsZGVU4QXidaf/blkCFDiIuLIycnh5iYGLUL9sPDw4mIiFC9/vzzz7l69SpZWVkkJycTFRX1ViRkAC4+1ujoyck29iTp3ikUkoLGuT4AXLhwgUePHmk5QkEQSkuSJJSZmVqZyjKkzkcffcSKFStUr5cvX07//v01Wrdp06b4+/uzefPmUtf7NEmSiIiIIDY2VmuPaBKEl0Hrd18KmjEw0qVqgB1XTtxDTmVuZcTiZuqHkUyHLEnB0aNHadOmjbbDFAShFKSsLC7VqauVumucikFmbFyqdT788EMmTpyounbr8OHDrFu3Tu3H87N4eXnx77//liHaAuPHj2fy5Mnk5uaSl5eHoaEhI0aMKFKuUaNGyOX/1+YQFRVF7dq1y1yvILwqIil7jXg3duLKiXuk27fk5sM/cDP1o0mOD3v0zxFzKobQ0FCMjIy0HaYgCG8oW1tb2rVrx8qVK5EkiXbt2mFra6vx+s8a8kgTn332Gf369ePBgwdMmjSJpk2bFntj2Pr16/H29la9fp2GQRLebiIpe41Urm6FmbUh6ckgT0njocNdqhg6gVxBfh6cP3+ed955R9thCoKgIZmRETVOxWit7rLo37+/6uaq0l5AHxsbi7u7e5nqhYKk0NPTE09PTzZt2oSnpycNGzakefPmauVcXFwq7IO+BeFZtH5NmaA5mVxGjcCCi1eV1qFcST2JDBlNcr044XQCTz/xJSQIrxOZTIbc2FgrU1lbrFq3bk1ubi65ubm0atVK4/X279/PuXPn6NatW5nqfZqVlRXDhw9n3Lhx4pFzwhtDJGWvGe/A///YJcvqmF85Sk7uY7zyq+CWa8emq5u0HJ0gCG86HR0dYmNjiY2NRUdHp9gyOTk5JCYmcufOHU6dOsWsWbPo1KkT7du3Vxvm6EUNHTqUS5cusWmT+O4T3gwiKXvNmNsa0Wl0bXqP98ElORn+/2CyHZND+D32dzKyMooM0CgIglCenvd0lJ07d+Lk5ISbmxutW7fmwIEDLFy4kL/++qvERK4s7Ozs+PDDD5k2bZr43hPeCDLpLWv3TUtLw8LCgtTU1NfukUtPuzX4UzKOnsa41bfIZXJm2K3AJcedd7u+i5eXl7bDEwThCdnZ2dy4cQN3d3cMDQ21HY4gVEjP+py8SX+/SyJayl5jFj3eJV3K437KBQBqZFZFkasgOjpay5EJgiAIglBaIil7TcWdS+Kv/YbEe79PbMYpAFpn1EWJkvj4eG7duqXlCAVBEDSzZs0aTE1Ni518fX21HZ4gvDJiSIzXlKGJHmlJ2WRYBWBzeSvJdglYGziho6tAypcTHR1Nz549tR2mIAjCc3Xs2JEGDRoUu0yM2C+8TURS9ppycDfH0sGYlHuZGMvduZJ2igZ27QjNqskBvf+IjY3l4cOH2NjYaDtUQRCEZzIzM8PMzEzbYQiC1onuy9eUTCbDu1HB8BhpHm3JSDxFtiITD0UlsvUyADhy5Ig2QxQEQRAEoRREUvYaq9HQEZlcRjK22KcpuJ5+BoDaeQUjZp89e5acnBwtRigIgiAIgqZEUvYaM7EwoIqvNQAKp1BuPTyBUlLSKNuPO2bx2Da1xcDAQMtRCoIgCIKgCZGUveYKR/i/59CAynducT/lEjJk1M+rxobbG8hT5mk5QkEQBEEQNCGSstecWy1bfIMr0bxPdVzSMjE/vxWApqn1yUrLYE/cHvLyRGImCIIgCBWdSMpeczq6ckI/qEGVd9wwb94cxcOrPMpKxkDSp+WjxuzdupfFixeLR5AIgiAIQgUnkrI3iFXPHkjA49v7AWib0hjDVAMePnzIf//9p93gBEF4LclksmdO/fr1eyn1ZmRkMH78eKpWrYqhoSF2dnaEhoaybds2VZnQ0FBGjRpVZN3w8HAsLS2LzM/KysLKygpra2uysrKKLHdzc1Ptl7GxMX5+fixZskSjeMPDw9WOi4ODAx06dODChQtq5fr161fscbx69apG9QhvNpGUvSEe3n1MTJw1933bciH/MjmKLJzz7cgxKBge4/Dhw7xljzkVBKEcJCQkqKb58+djbm6uNm/BggVq5cvrconBgwezZcsWfvrpJ/777z927txJt27dePjwYZm3uWnTJvz8/PDx8WHz5s3FlpkxYwYJCQn8+++/dO7cmcGDB7N+/XqNtl94bO7evcv27dvJyMigXbt25ObmqpVr3bq12jFMSEjA3d29zPslvDlEUvaGuHPpEeci73DXtTkuD5K5nn4WgCbZPihkCu7cuUN8fLyWoxQE4XXj6OiomiwsLJDJZKrX2dnZWFpasmHDBkJDQzE0NGT16tUArFixAm9vbwwNDfHy8mLRokVq271z5w49e/bEysoKGxsbOnXqRFxcnGr51q1b+eKLL2jbti1ubm7UrVuX4cOH07dv3zLvy7Jly+jduze9e/dm2bJlxZYxMzPD0dERT09Pvv76a6pVq8aWLVs02n7hsXFycqJevXqMHj2amzdvcunSJbVyBgYGasfV0dERHR2dMu+X8OYQSdkbovo7jsh1ZTzKNMBCsiYu5SRKSck7Wb48NHoAFLSWCYJQ8eTlKEqc8vMUmpfN1axseRs/fjwjRowgNjaWVq1a8euvvzJp0iRmzpxJbGwss2bN4ssvv2TlypUAZGZmEhYWhqmpKQcPHuTQoUOYmprSunVrVauSo6MjO3bsID09vVxivHbtGkeOHKFHjx706NGD6Ohorl+//tz1DA0Ny9T6l5KSwu+//w6IR0UJmhOPWXpDGJrq4V7Ljmun7vOobnesLq7grt0VKpvUwDffhfvkcvnyZR48eICdnZ22wxUE4Qm/jIwscZmrnw3th/mrXi//LIr83OJv3HGuZkmXsXVUr3+bFE3246IJxdDFTV8g2qJGjRpF165dVa+/+uorvv/+e9U8d3d3Ll68yJIlS+jbty/r1q1DLpezdOlSZDIZUNCyZmlpSUREBC1btuSXX36hV69e2NjY4O/vT5MmTejevTuNGzdWq3vRokUsXbpUbV5+fj6GhoZq85YvX06bNm2wsrICCroQly9fztdff13sPuXn57N69WrOnTvHp59+qtFxSE1NxdTUFEmSyMzMBAqe6+nl5aVWbtu2bZiamqpet2nTho0bN2pUh/BmEy1lb5DCxy7d0amKS3IGl9NiAGid3pD7RvcAOHbsmNbiEwThzVSvXj3V/x88eMCtW7f4+OOPMTU1VU1ff/01165dAyAmJoarV69iZmamWm5tbU12draqTHBwMNevX2ffvn1069aNCxcuEBQUxFdffaVWd69evThz5ozaNGPGDLUyCoWClStX0rt3b9W83r17s3LlShQK9ZbD8ePHY2pqipGREUOHDuWzzz5j0KBBGh0HMzMzzpw5Q0xMDIsXL8bDw4PFixcXKRcWFqYW78KFCzXavvDmEy1lbxAXH2tMLPTJSM0l3zMU5YOzpNg8wFLfDju5MTccb/BZs8+0HaYgCE/5ZEFIictkT/107j8nqOSyMvXXfWY2epGwNGZiYqL6f+HwO7/++isNGjRQK1d43ZRSqaRu3bqsWbOmyLaebMnX09MjKCiIoKAgJkyYwNdff82MGTMYP348+vr6AFhYWODp6am2DXt7e7XXu3btUl3D9iSFQsHu3btp06aNat5nn31Gv379MDY2xsnJSdWSpwm5XK6KxcvLi8TERHr27MnBgwfVypmYmBSJWRBAtJS9UeRyGTUaFrSW3fdsjmtSGvEPTwDQMS2YM4aniboXpc0QBUEohp6BTomTrp6O5mX1NSv7Mjk4OFCpUiWuX7+Op6en2lR4h2GdOnW4cuUK9vb2RcpYWFiUuG0fHx/y8/PJzs4uVUzLli3jvffeK9Ki1qtXryIX/Nva2uLp6Ymzs3OpErLijB49mrNnz/Lnn3++0HaEt4dIyt4w3o2cMLbQx6G2G445+bif3EGGUoFjng3vPPZj1cVVSJJUpMleEAShvEybNo3Zs2ezYMECLl++zLlz51ixYgU//PADUNDlaGtrS6dOnYiKiuLGjRtERkYycuRIbt++DRSMQbZkyRJiYmKIi4tjx44dfPHFF4SFhWFubq5xLA8ePGDr1q307dsXPz8/talv3778/fffPHjw4KUcB3NzcwYMGMDUqVPFkESCRkRS9oaxdDCm7+zGNOrpi0Xr1qDI5W5SweCFnR6Fcf/mfeb/bz4nTpzQcqSCILypBgwYwNKlSwkPD6dmzZqEhIQQHh6uaikzNjbm4MGDVKlSha5du+Lt7U3//v3JyspSJVytWrVi5cqVtGzZEm9vb4YPH06rVq3YsGFDqWL57bffMDExoVmzZkWWhYWFYWZmxqpVq158p0swcuRIYmNjxYX8gkZk0luWvqelpWFhYUFqamqpfm29jjJPnebmBx+QbeWMTfBU5DIZkxyW4J5a0EUwYsQIMTaOILwi2dnZ3LhxA3d39yJ3BgqCUOBZn5O34e+3aCl7QymVEg/0Xcj1bkCsWT4JmQWP8KifU50ceQ6pqalcvHhRy1EKgiAIglBIJGVvqEMbrrDtp39J8O+O68M0rvz/4TFapTUm3iwOgOjoaHGdgyAIggZ8fX3Vhvh4ciruLlJBKAsxJMYbyqO2HecibhP/yJRGGJDx6DKpNklY6NvirrRHIVOQkJDAjRs3qFq1qrbDFQRBqNB27NhR4sj+Dg4Orzga4U0lkrI3lHM1S8xtDUlLyuZxWC9cj6zmqv0p6tq2pHNqUxZY/IFHugfR0dEiKRMEQXgOV1dXbYcgvAVE9+UbSiaX4RVYMGbZXYsAKj1KJz71X3KVOTjmWmOoJyEhcfXqVe7fv6/laAVBEARBEEnZG8wr0AlkkHAnD5nPOzglJ3Mj/V8AOqSHctHyIt7NvbG1tdVypIIgCIIgiKTsDWZmbUjlGgUP331YtztVklK5lhKDUpKok16DdONktqdvRy4Xp4EgCIIgaJv4a/yG825c0IWZZlQJCx09As+e5kJuGgAdU0I5ff805x6cEyP8C4IgCIKWiaTsDVfV347uE+rRfmRtzDt0QFcpId2NBqBlSmOM8g1Yu2Mt8+bNIzU1VcvRCoIgCMLbSyRlbzhdfR0c3MyRyWRY9ewBgOv5bSQoczBU6tEsrQGpCak8fvyYqCjxsHJBEF4fcXFxyGQyzpw5o+1Q3ljTpk0jICBA22G8NURS9hbR8aiBXs0AblsYkvDoIADdUlsRaxELwOnTp0VrmSAIRfTr14/OnTurzfvjjz8wNDTku+++005QZbBp0yYaNGiAhYUFZmZm+Pr6MnbsWNXy8PBwLC0ti11XJpOxZcuWIvM/+eQTdHR0WLduXZFl06ZNQyaTIZPJ0NHRwcXFhQEDBmj8APTCdWUyGaampvj7+xMeHq5WJiIiQq1c4TR58mSN6hAqFpGUvSVO7rjBis8P8ajJB9inZRKXdo48ZQ6O2Va4KG1JNkpGoVBw6NAhbYcqCEIFt3TpUnr16sVPP/3E559/Xur1c3NzX0JUz7Z3717ee+89unfvzvHjx4mJiWHmzJkvFEtmZibr16/ns88+Y9myZcWW8fX1JSEhgfj4eH7++We2bt1Knz59NK5jxYoVJCQkcPbsWXr27MlHH33Erl27ipS7dOkSCQkJqmnChAll3i9Be0RS9pbQ0dMhL0dBXIYDxoZG2KQ8Ii79PADvprXmvEXB/0+dOiVaywRBKNF3333HsGHD+P333xkwYABQ8Mi24OBgjIyMcHFxYcSIEWRkZKjWcXNz4+uvv6Zfv35YWFgwcOBAVavUrl278Pb2xtTUlNatW5OQkKBW34oVK/D29sbQ0BAvLy8WLVpUpri3bdtGkyZN+Oyzz6hRowbVq1enc+fO/Pjjj2U+Fhs3bsTHx4eJEydy+PBh4uLiipTR1dXF0dGRSpUq0b59e0aMGMHu3bvJysrSqA5LS0scHR3x8PDgiy++wNramt27dxcpZ29vj6Ojo2oyNTV97rYL34MtW7ZQvXp1DA0NadGiBbdu3SpxndDQUEaNGqU2r3PnzvTr10/1etGiRVSrVg1DQ0McHBzo3r27RvsqVICkbNGiRaqnwdetW1fj65oOHz6Mrq6u6OvWUI0GjsjkMu7HP0bWpieuSalcST8FQK1UT3TlkG6SLlrLBEEL8rKzS5zyn2rJeVbZvNwcjcqW1YQJE/jqq6/Ytm0b3bp1A+DcuXO0atWKrl278u+//7J+/XoOHTrEsGHD1NadM2cOfn5+xMTE8OWXXwIFLU1z585l1apVHDx4kPj4eMaNG6da59dff2XSpEnMnDmT2NhYZs2axZdffsnKlStLHbujoyMXLlzg/PnzZd7/py1btozevXtjYWFB27ZtWbFixXPXMTIyQqlUkp+fX6q6FAoFGzZsIDk5GT09vbKGXERmZiYzZ85k5cqVHD58mLS0NN57770yb+/kyZOMGDGCGTNmcOnSJXbu3ElwcHC5xfum0+pjltavX8+oUaNYtGgRjRs3ZsmSJbRp04aLFy9SpUqVEtdLTU2lT58+NGvWjHv37r3CiF9fxub6uPrZEPdvEolVgrHNWIaUnsjdzGs4G3vQPbUF68z2EJwRzJkzZ2jWrBmGhobaDlsQ3goL+5bckuBeux5dJ0xTvV70SS/yc3KKLVvZx4+eU79Rvf51WH+y0tOKlBu7flupY/znn3/466+/2LdvH02bNlXNnzNnDh988IGq9aRatWosXLiQkJAQfv75Z9X3SNOmTdUSrkOHDpGXl8fixYvx8PAAYNiwYcyYMUNV5quvvuL777+na9euALi7u3Px4kWWLFlC3759SxX/8OHDiYqKombNmri6utKwYUNatmxJr169MDAwUJVLTU3VqJXpypUrHD16lM2bNwPQu3dvRowYwdSpU0sc+/G///7j559/pn79+piZmWkU9/vvv4+Ojg7Z2dkoFAqsra1VLZRPqly5strrmzdvYmNj89zt5+Xl8dNPP9GgQQMAVq5cibe3N8ePH6d+/foaxfik+Ph4TExMaN++PWZmZri6ulK7du1Sb+dtpdWWsh9++IGPP/6YAQMG4O3tzfz583FxceHnn39+5nqDBg3igw8+IDAw8BVF+mbwblQwZtnVK7kY1q6Da1Iql1NPAtDsUUOy9B7zuMpjBg0aJBIyQRDU1KpVCzc3N6ZMmUJ6erpqfkxMDOHh4ZiamqqmVq1aoVQquXHjhqpcvXr1imzT2NhYlZABODk5qR779uDBA27dusXHH3+stu2vv/6aa9eulTp+ExMTtm/fztWrV5k8eTKmpqaMHTuW+vXrk5mZqSpnZmbGmTNnikxPW7ZsGa1atVI9EaVt27ZkZGSwd+9etXLnzp3D1NQUIyMjfHx8cHFxYc2aNRrHPW/ePM6cOcOePXsICAhg3rx5eHp6FikXFRWlFq+VlZVG29fV1VV7b7y8vLC0tCQ2NlbjGJ/UokULXF1dqVq1Kh9++CFr1qxRO77Cs2mtpSw3N5eYmJgiFyO2bNmS6OjoEtdbsWIF165dY/Xq1Xz99dfPrScnJ4ecJ35VpqUV/dX4tnCtaYORmR5Zablkhr1Ppfmf81/mDZJzH2Ktb0Ob1CZstNnFUL2h2CIevSQIr8qIlX+UuEz2VKvLkF+e8QddLlN7OfCn5S8U15MqVarEpk2bCAsLo3Xr1uzcuRMzMzOUSiWDBg1ixIgRRdZ5ssfDxMSkyPKnu+FkMhmSJAGgVCqBgi7MwlacQjo6OmXeDw8PDzw8PBgwYACTJk2ievXqrF+/no8++ggAuVxebNLzJIVCwW+//UZiYiK6urpq85ctW0bLli1V82rUqMHff/+Njo4Ozs7Oaq1ymnB0dMTT0xNPT082btxI7dq1qVevHj4+Pmrl3N3dS7xz9HlkMplG86Dg+BS+R4Xy8vJU/zczM+PUqVNERESwe/dupkyZwrRp0zhx4kSZ43ubaK2lLCkpCYVCgYODg9p8BwcHEhMTi13nypUrTJgwgTVr1qh9EJ5l9uzZWFhYqCYXF5cXjv11paMjp3oDRwDi8yujb2ZOw6u32Z9bcGF/15SW6Ehy1sQWfOmLXzeC8GroGRqWOOnq62tcVk/fQKOyZVWlShUiIyO5f/8+LVu2JC0tjTp16nDhwgVV4vDkpP9U7KXh4OBApUqVuH79epHturu7l3m7T3Jzc8PY2FjtpgRN7Nixg/T0dE6fPq3WOrVx40a2bNnCw4cPVWX19fVVMZc2IXuap6cn3bp1Y+LEiS+0nSfl5+dz8uRJ1etLly6RkpKCl5dXseXt7OzUbsZQKBRFrtPT1dWlefPmfPfdd/z777/ExcWxf//+cov5TabVa8qgaDYuSVKxGbpCoeCDDz5g+vTpVK9eXePtT5w4kTFjxqhep6WlvdWJmU9jZ/QNdfFq6EhWaieUK3/D/14kyaZuWOea0CStDtuubMPzlifXLl9jxIgRGl/7IAjCm69y5cpEREQQFhZGy5YtWbJkCYGBgQwdOpSBAwdiYmJCbGwse/bseaE7G6FgnK8RI0Zgbm5OmzZtyMnJ4eTJkzx69Ejte13TbWVmZtK2bVtcXV1JSUlh4cKF5OXl0aJFi1Jta9myZbRr1w5/f3+1+b6+vowaNYrVq1czcuTIUm1TU2PHjsXf35+TJ08W2yVcWnp6egwfPpyFCxeip6fHsGHDaNiwYYnXkzVt2pQxY8awfft2PDw8mDdvHikpKarl27Zt4/r16wQHB2NlZcWOHTtQKpXUqFHjhWN9G2itpczW1hYdHZ0irWL3798v0noGkJ6ezsmTJxk2bBi6urro6uoyY8YMzp49i66ubolZuIGBAebm5mrT28zayYT67d0xtzXCskfBCP+OF46xLzcFgPdS2pKRn8GNxBvk5eWJOzEFQSiiUqVKREZGkpKSwsCBA4mMjOTKlSsEBQVRu3ZtvvzyS5ycnF64ngEDBrB06VLCw8OpWbMmISEhhIeHl6mlLCQkhOvXr9OnTx+8vLxo06YNiYmJ7N69u1QJw71799i+fbvq7tMnyWQyunbtWuKYZeWhZs2aNG/enClTppTL9oyNjRk/frzqOm0jI6NiB8It1L9/f/r27UufPn0ICQnB3d2dsLAw1XJLS0s2b95M06ZN8fb2ZvHixaxduxZfX99yifdNJ5Oe7hx+hRo0aEDdunXVxp3x8fGhU6dOzJ49W62sUqnk4sWLavMWLVrE/v37+eOPP3B3dy/2moWnpaWlYWFhQWpq6lufoAHEf/IJSUeiOe5XkzZVPkFHpss41+9RGOrhe9MXXV1dRo4cKVrLBOEFZWdnc+PGDdUQQIKgbeHh4YwaNUqtpUvbnvU5eRv+fmv17ssxY8awdOlSli9fTmxsLKNHjyY+Pp7BgwcDBV2PhSMfy+Vy/Pz81CZ7e3sMDQ3x8/PTKCET/s+Nf5PY/r+zyHoOxjBPgSzzIXGPLwDwbkor/pP9h5mdGfn5+Rw+fFjL0QqCIAjCm0+rSVnPnj2ZP38+M2bMICAggIMHD7Jjxw5cXV0BVI+mEMrfleOJxJ17yI37JpiFhuL2IEU1PMY7qb445tlwxfoKUDAY4JO3wAuCIFQ0gwcPVhs648mp8Id+RTJr1qwS423Tpk251NGmTZsS65g1a1a51CGUL612X2rD29D8qYn4iw/ZuvAsBsa69Oxrzc33erDfx5XASu/hZFyVv6wjWGy/gYHZA0lOTCYwMJBWrVppO2xBeG2J7suX6/79+yUOeWRubo69vf0rjujZkpOTSU5OLnaZkZERlSpVeuE67ty5U+LjnKytrbG2tn7hOsrb2959qfW7LwXtqOxljamVAY8f5ZCYZ4dF06a4XDzNZbOTOBlXpVVKY36z/Zt7jvfQS9Tj/PnzNGvWTOOhSARBEF4le3v7Cpd4PcurSIrKI7ETXi2tP/tS0A65XEaNhgVjlv0XnYDdsKG4JqVyL/M6qblJGCr1aJ3SmB1pOwhtFcrQoUNFQiYIgiAIL5FIyt5iXoEFt6zHxyaTY+uKfWhTHFMzuJx6AoCuKS1QKpWcNzwvulsEQRAE4SUTSdlbzNLemCq+1iDB6T23sB02DM/EZJzO7CFVmY9NrjmN0wPYeHkjOYocJEkiKSlJ22ELgiAIwhtJJGVvuTotXbGpZEKl6pYY1qiOc1gzLDIe8yDhFAA9HrUmOTuZvy/+za+//sqSJUt4/PixlqMWBEEQhDePSMrecs7VLek5uT7V6hU8RcFu6BCQyXD8dz15khLPzMp4Zbqz/vp6oODBs0eOHNFmyIIgCILwRhJJ2VtOJpOpPWvUoFo1zNu25ZKVLrceFzxktvujFlxKuYSzvzMAx48fL/UDfAVBEMpTv3796Ny58zPLREREIJPJKtSI9a+juLg4ZDIZZ86c0XYobzyRlAkA5Gbnc3bfLS4evovt0CHIkKku+A9M88c+15rdj3fj7OxMXl4e0dHRWo5YEIRX5VkJkJubm+rHXeFUuXJlteXz588v95gWLFhAeHi46nVoaCijRo0q93q0rV+/fqrjqqurS5UqVfj000959OiRWrnnvQ/C60EkZQIA10494NDGKxz7+zq6Lm741m1Aes59ErPikCOj06MwIm5H4Fu/4KGyorVMEIRCM2bMICEhQTWdPn36pddpYWGBpaXlS6/nSXl5ea+0vkKtW7cmISGBuLg4li5dytatWxkyZEiRctp4H4TyJZIyAYDq9R0wsTQgMzWXS8cTqTxsOM4pGVz6/61lbVKCMFIYEJUThZOTk7i2TBAEFTMzMxwdHVWTnZ1dqbcxduxYOnTooHo9f/58ZDIZ27dvV82rUaMGS5YsAdRb7/r160dkZCQLFixQtRLFxcWp1ouJiaFevXoYGxvTqFEjLl26pFFM06ZNIyAggOXLl1O1alUMDAyQJImdO3fSpEkTLC0tsbGxoX379ly7dk21Xrdu3Rg+fLjq9ahRo5DJZFy4UPB84fz8fMzMzNi1a5dGcRgYGODo6EjlypVp2bIlPXv2ZPfu3UXKlfV9kMlk/Pzzz7Rp0wYjIyPc3d3ZuHFjieXDw8OLJMRbtmxRuxTm7NmzhIWFYWZmhrm5OXXr1uXkyZMaxfM2E0mZAICOrpyA5i4AnN4dj56rG35+tUnMuk5a7kOMlPq0TGnElmtbaNC4AVBwncFb9pQuQShXkiShzFVoZapon93Q0FCioqJQKpUAREZGYmtrS2RkJACJiYlcvnyZkJCQIusuWLCAwMBABg4cqGolcnFxUS2fNGkS33//PSdPnkRXV5f+/ftrHNfVq1fZsGEDmzZtUl1TlZGRwZgxYzhx4gT79u1DLpfTpUsXVeyhoaFERESotvH0vpw4cYLs7GwaN25cqmMEcP36dXbu3Imenl6p132WL7/8km7dunH27Fl69+7N+++/T2xsbJm316tXLypXrsyJEyeIiYlhwoQJ5R7zm0gM0S6o+DRx5uSOOFLuZXLj7AOqjR7D8SH9uZR2gndsW9M1pTl/W0dwXn6eXr164eHhofbLSBCE0pHylNydop3rM51nNEKmr1Mu2xo/fjyTJ09WvZ41axYjRowo1TaCg4NJT0/n9OnT1KlTh6ioKMaNG8fmzZsBOHDgAA4ODnh5eRVZ18LCAn19fYyNjXF0dCyyfObMmapkbsKECbRr147s7GyNBsXOzc1l1apVaq1O3bp1UyuzbNky7O3tuXjxIn5+foSGhjJy5EiSkpLQ0dHhwoULTJ06lYiICIYMGUJERAR169bF1NRUo2Ozbds2TE1NUSgUZGdnA/DDDz8UKfci78O7777LgAEDAPjqq6/Ys2cPP/74I4sWLdJo/afFx8fz2Wefqd6vatWqlWk7bxvRUiao6BvqUjO04MLQUztvoufigq+HFzcfXyBHkYldriWN0v35/b/fqepRFblcnD6CIMBnn33GmTNnVFOfPn1KvQ0LCwsCAgKIiIjg3LlzyOVyBg0axNmzZ0lPTyciIqLYVjJN1KpVS/V/J6eCJ5ncv39fo3VdXV2LdANeu3aNDz74gKpVq2Jubo67uztQkIgA+Pn5YWNjQ2RkJFFRUfj7+9OxY0dVS1lp9yUsLIwzZ85w7Ngxhg8fTqtWrdS6Rwu9yPsQGBhY5PWLtJSNGTOGAQMG0Lx5c7755hu17l2hZKKlTFBTM7Qyp/fEc/9mOncup1Br7Ofc//B98nMjMKjelm6PWjDa/Dui7kQR6hJKbm4uiYmJVKlSRduhC8JrR6Ynx3lGI63VXV5sbW3x9PR84e0Udvvp6+sTEhKClZUVvr6+HD58mIiIiDLfXflkt1lh635hV+PzmJiYFJnXoUMHXFxc+PXXX3F2dkapVOLn50dubq6qjuDgYNW+hIaG4ufnh0Kh4Ny5c0RHR5dqX0xMTFTHd+HChYSFhTF9+nS++uortXLl9T4UKqknRC6XF+n+fvomiGnTpvHBBx+wfft2/vnnH6ZOncq6devo0qVLucX3JhJNHYIaY3N9fBo7U7W2HUamehhWqULd4GZI1w6gVCrwynSjRpYbqy+uJjk5mQULFrB69WoyMzO1HbogvHZkMhlyfR2tTBXx0oPC68r2799PaGgoACEhIaxbt67E68kK6evro1AoXnqMDx8+JDY2lsmTJ9OsWTO8vb2LDE8B/5dgRkREEBoaikwmIygoiLlz55KVlVWm68kKTZ06lblz53L37t0X2RU1R48eLfK6uK5iADs7O9LT09XuwC9uDLPq1aszevRodu/eTdeuXVmxYkW5xfumEkmZUERQj2q0GVQTm0oF1zvYDh6EUpGB4vYxALokN+NY4jHuS/cxNTUlNzdX3IkpCG+41NRUta6xM2fOqLrrykvhdWVbt25VJWWhoaGsXr0aOzs7fHx8SlzXzc2NY8eOERcXR1JSksYtYaVlZWWFjY0Nv/zyC1evXmX//v2MGTOmSLnQ0FAuXLjAuXPnCAoKUs1bs2YNderUwdzcvMwxhIaG4uvry6xZs8q8jadt3LiR5cuXc/nyZaZOncrx48cZNmxYsWUbNGiAsbExX3zxBVevXuX3339XGzMuKyuLYcOGERERwc2bNzl8+DAnTpzA29u73OJ9U4mkTChCJlf/Ba1XqRKy9m04lX0GgCZptbHLs2LtpbWqX67Hjh0TrWWC8AaLiIigdu3aatOUKVPKtQ4LCwtq166NtbW1KgELCgpCqVQ+9xqscePGoaOjg4+PD3Z2duWeMBaSy+WsW7eOmJgY/Pz8GD16NHPmzClSzs/PD1tbW/z9/VUJWEhICAqFoszXxj1pzJgx/Prrr9y6deuFtwUwffp01q1bR61atVi5ciVr1qwpMQm2trZm9erV7Nixg5o1a7J27VqmTZumWq6jo8PDhw/p06cP1atXp0ePHrRp04bp06eXS6xvMplU0e6LfsnS0tKwsLAgNTX1hX6pvA1SH2RxZk88AS1cyLl7iVWzviTUsScORm78Yb2HVU7b2d19NxvCN3Dv3j2Cg4Np2rSptsMWhAopOzubGzdu4O7urtFdf4LwqshkMv7888/nPrbqVXjW5+Rt+PstWsqEEkWtv8z5g3c4vecW9v61cTa1VA0m2zYlGJ08GX9c/kOttSwrK0ubIQuCIAjCa0skZUKJarcouKPyv+gEMtNyeefDj0jIuk567kOMlQa0SA1k/aX1eFb3xN7enpycnCIXiwqCIACsWbMGU1PTYidfX1+txOTr61tiTGvWrHnp9cfHx5dYv6mpabl0wVbE4y6UTAyJIZTIubolDu7m3LuRxr/7b9GgU1PMly/mUtpJ6tm2omtyc7ZZRbI7fjchISFs3LiRtLQ0bYctCEIF1LFjRxo0aFDsMm2N9L5jx44Sn2fp4ODw0ut3dnYu9q7FJ5e/KE2O+1t2FVOFJpIyoUQymYw6LV35Z8k5zkXeoU4rV+p27s7BDWupZRWEA9Y0TK/F6our+b3t7wwZMgR7e3tthy0IQgVkZmaGmZmZtsNQ4+rqqtX6dXV1y3VcseJUxOMulEx0XwrP5O5vi6WDMblZ+VyIukvNtp2Qy+Fq+hkAuiY358LDC/yb9K9IyARBEAThBYikTHgmmVxG7ZYF15ad3RePXEefxt3fR355P5IyH98sD6pnubLq4irVOo8ePeLSpUvaClkQBEEQXksiKROeq0Z9R6ydTajR0AmFQkndrj2pFBxM/u2COzE7JzdlX/w+Eh4ncOfOHX788Uf+/PNP1YNzBUEQBEF4PpGUCc+loyfnvcn1Cezigb5hwWWI1UZ8SsbNgwAEp9XBKtectZfW4uTkhI2NDdnZ2Rw7dkybYQuCIAjCa0UkZYJGnh7lX25pwbUANx5mxKGDDh2Tg/nj8h9kK7IJDg4G4MiRI6K1TBAEQRA0JJIyQWOSJHErNpmD6y8DMtKM4OLjGAA6JAeTl53Ltuvb8PX1xdbWVrSWCYIgCEIpiKRM0FhORj7bF/3LuQO3uXsllbodu3I38yqPc5MxxIgWKQ1YHbsaZKhG+RetZYIgvOn69etXIR5RJLz+RFImaMzQVA/vRk4AnN51k+qBQRiZWXAp7SQA791rxs2UOI7cPaLWWnb8+HFthi0Iwgt6VtLh5ubG/Pnz1V7LZDLWrVtXpKyvry8ymYzw8PAi5Z+evvnmm+fGFRcXp7aOhYUFDRs2ZOvWrWrlwsPDi61j6dKlGu2/ILwqIikTSqV2iyrI5DLiLybzKDGbgFbtuPH4PHn5WVhjR4N0P1bFrkIulxMcHIy+vj5yuTjNBOFt4uLiwooVK9TmHT16lMTERExMTIqUnzFjBgkJCWrT8OHDNa5v7969JCQkcOzYMerXr0+3bt04f/68Whlzc/MidfTq1atsOygIL4n4aymUirmtEZ51CwaJPb3rJv4t2iDJJa4+PgtAn9vNOHznMNdTr+Pn58eoUaNo0qSJNkMWhAovNze3xOnpxwCVR9mXrVevXkRGRnLr1i3VvOXLl9OrVy90dYs+SMbMzAxHR0e1qbjkrSQ2NjY4Ojri5eXFzJkzycvL48CBA2plZDJZkTqMjIyeu+1p06YREBDAkiVLcHFxwdjYmHfffZeUlJQS13m69RAgICCAadOmqW23SpUqGBgY4OzszIgRIzTeX+HNJR6zJJRa7ZZVuHLiHldj7tOgkwdejYO5cvgENSzewU1WHc/Myvwe+zuTG07G2NhY2+EKQoU3a9asEpdVq1ZNrUVnzpw5JT6v0dXVlY8++kj1ev78+WRmZhYp92Ry8DI4ODjQqlUrVq5cyeTJk8nMzGT9+vVERkby22+/vbR68/Ly+PXXX4HyfZ7m1atX2bBhA1u3biUtLY2PP/6YoUOHlvmh5X/88Qfz5s1j3bp1+Pr6kpiYyNmzZ8stXuH1JVrKhFKzczGjiq81kgRn9sRTp01HLLyqkX6v4Evlk7im/H3tb1JzUoGCuzavX7/OuXPntBm2IAivUP/+/QkPD0eSJP744w88PDwICAgotuz48eMxNTVVmyIiIjSuq1GjRpiammJoaMjYsWNxc3OjR48eamVSU1PVtu/o6Kjx9rOzs1m5ciUBAQEEBwfz448/sm7dOhITEzXexpPi4+NxdHSkefPmVKlShfr16zNw4MAybUt4s4iWMqFM6rR0Jf1hNo4eFjhUdaTXlBms/XQOQYCf9A6mGVvYdGUT/f36c+XKFX7//XeMjIyoXr06BgYG2g5fECqUL774osRlMpn6GIGfffaZxmVHjRr1QnG9iHbt2jFo0CAOHjzI8uXL6d+/f4llP/vsM/r166c2r1KlShrXtX79ery8vLh8+TKjRo1i8eLFWFtbq5UxMzPj1KlTqteluda1SpUqVK5cWfU6MDAQpVLJpUuXSpXcFXr33XeZP38+VatWpXXr1rRt25YOHToU27UrvF3EGSCUiXN1S96f0kBtUFmXwT3J+d9+DKw9GHQ1hKXWa+nj0wcPDw+sra1JTk7mxIkT4hozQXiKvr6+1suWN11dXT788EOmTp3KsWPH+PPPP0ssa2tri6enZ5nrcnFxoVq1alSrVg1TU1O6devGxYsXsbe3V5WRy+UvVMeTCpPfp5PgJ+uSJElt3pNdzi4uLly6dIk9e/awd+9ehgwZwpw5c4iMjCzXblfh9SO6L4UykclkRUb593XQ45jiBgANFcGkpj5kX/w+dHR0VKP8R0dHk5OT88rjFQTh1evfvz+RkZF06tQJKyurV1JnSEgIfn5+zJw5s9y2GR8fz927d1Wvjxw5glwup3r16sWWt7OzIyEhQfU6LS2NGzduqJUxMjKiY8eOLFy4kIiICI4cOSIu8RBES5nwYvJzFcRGJ6Crr8PjpGgSH58iw6IuJvpWDPqvAaudVtPKrRU1a9bk4MGDorVMEF5TqampnDlzRm3e012ET/P29iYpKem5N/ykp6cXuT7L2NgYc3PzMsU6duxY3n33XT7//PNSdYOWxNDQkL59+zJ37lzS0tIYMWIEPXr0KLHrsmnTpoSHh9OhQwesrKz48ssv0dHRUS0PDw9HoVDQoEEDjI2NWbVqFUZGRri6ur5wrMLrTbSUCS/kasx9Dq67zLG/ruET3AIdA30upRcMJhuW04zzCWc4n3S+SGvZq7gtXxCE8hMREUHt2rXVpilTpjx3PRsbm+cOPTFlyhScnJzUps8//7zMsbZv3x43N7dyay3z9PSka9eutG3blpYtW+Ln58eiRYtKLD9x4kSCg4Np3749bdu2pXPnznh4eKiWW1pa8uuvv9K4cWNq1arFvn372Lp1KzY2NuUSr/D6kklPd3y/4dLS0rCwsCA1NbXMv8KE/6PIU7LqyyNkpOQQ9qEXd2O3cGHvHjq6DEFPx5BNef8jobMb3wR9g0Kh4KeffuLRo0e0aNGCxo0bazt8QXhlsrOzuXHjBu7u7hgaGmo7HEFD06ZNY8uWLUVaCYWX41mfk7fh77doKRNeiI6eHP9mLgCc3h1PQKv25Et5XE0vGB6j7eNm7L22k/uZ91WtZTY2Nq/s+hJBEARBeF1oPSlbtGiRKiOuW7cuUVFRJZY9dOgQjRs3VjWHe3l5MW/evFcYrVAc3yBnDIx1SbmXSWqSIW7+dbiSFoMkKTCy8qLrWQfWX1oPgL+/P0OGDMHHx0fLUQuCUNENHjy4yPhlhdPgwYPLpQ5fX98S6yjr4LCCUFZa7b5cv349H374IYsWLaJx48YsWbKEpUuXcvHiRapUqVKk/OnTp/nvv/+oVasWJiYmHDp0iEGDBjFv3jw++eQTjep8G5o/teHoX9eI+ecm9m7m1G0p8ee302lo1xFXU2/SE6IZ2mIb/7y/FwMdMUaZ8HYS3Zeld//+fdLS0opdZm5urjbkRVndvHmzxCckODg4YGZm9sJ1CJp727svy5SUKZXKYgfeUyqV3L59u9iEqjgNGjSgTp06/Pzzz6p53t7edO7cmdmzZ2u0ja5du2JiYsKqVas0Kv82vKnakJmWy2+TolHkKek40p+oNbN4kOtCN3ldJGU+v2Z/Qe3hn9OlWhcA8vPzOXXqFHp6etSuXVvL0QvCyyeSMkF4vrc9KStV92VaWho9evTAxMQEBwcHpk6dikKhUC1/8OAB7u7uGm0rNzeXmJgYWrZsqTa/ZcuWREdHa7SN06dPEx0dTUhISIllcnJySEtLU5uE8mdsro9PIyfcatliZKbP+1/N5Z1BvbmVnYxMrkuPeyGs/XelakDF8+fPs2PHDvbu3SvuxBTeKm/ZvVWCUCpv++ejVEnZl19+ydmzZ1m1ahUzZ85k5cqVdOrUSe2PqqYHNCkpCYVCgYODg9p8BweH5z5PrHLlyhgYGFCvXj2GDh3KgAEDSiw7e/ZsLCwsVJOLi4tG8QmlF9SzOu2G1MK2shkymYzAqjbssC/4NWPuHIJHRBzHE48DULNmTSwtLcnIyCAmJkabYQvCK1E4UntxDwgXBKFAYT7x5Lhub5NSDR67ZcsWVq5cSWhoKABdunShXbt2dOjQgb///hso+bETJXm6vCRJz91GVFQUjx8/5ujRo0yYMAFPT0/ef//9YstOnDiRMWPGqF6npaWJxOwleXqEfwCvGgrSorMwNzDjvesNWHF2JQ2cGqCjo0NQUBBbt27l8OHD1KtXTzxeRHij6ejoYGlpyf3794GCwVFL+30pCG8ypVLJgwcPMDY2fmufA1qqvU5KSlIbcdjGxoY9e/bQqlUr2rZty9KlSzXelq2tLTo6OkVaxe7fv1+k9exphV2kNWvW5N69e0ybNq3EpMzAwEA8APsVS0/O5szeeKoGGHJv40KumtWmjk1zLCs3w3DrDG41uoWLuQv+/v4cPHiQ1NRUTp48SWBgoLZDF4SXqnAE+MLETBAEdXK5nCpVqry1P1hKlZS5uLgQGxurdt2YmZkZu3fvpmXLlnTp0kXjbenr61O3bl327Nmjtt6ePXvo1KmTxtuRJEk8S7GCiVx7iZvnHqLMr4TnOw25ceIkvlbBGJg50fO0N+vP/sa4oEno6uoSHBwsWsuEt4ZMJsPJyQl7e/sS7/gThLeZvr5+sTcSvi1KlZS1bNmSFStW0LZtW7X5pqam7Nq1ixYtWpSq8jFjxvDhhx9Sr149AgMD+eWXX4iPj1eNPzNx4kTu3LnDb7/9BsD//vc/qlSpgpeXF1AwbtncuXMZPnx4qeoVXq7azatw89xDYqMTaN6vDVeOR3Mt/Sw+Fu9gVak56RsW87jBSEz1TdVay2JiYmjYsKG2wxeEl05HR+etvWZGEISSlSopmz59Onfv3i12mZmZGXv37i3VRds9e/bk4cOHzJgxg4SEBPz8/NixY4eqizQhIYH4+HhVeaVSycSJE7lx4wa6urp4eHjwzTffMGjQoNLshvCSOVe3xMHdnHs30nhwyww7t6pcu30SL/O66Nr70DHahr/Or6dXnY/R1dUlKCiIS5cuaTyUiiAIgiC8iV7q4LE1a9Zkx44dFerC+rdhnJOK4PrpB/yz5BwGxrq80zqLvct+5B37rlQ1qUbezcNstP+bsfOi0JHraHRzhyAIgvB2exv+fr/Ujtu4uDhx3cRbyt3fFksHY3Iy88nL98TYwpLrqUcB0K1cn7CjCg5e3gWU/o5dQRAEQXgTvb1X0wkvlUwuo3bLgu7I85EJ1GzamkxziSuKx8h09LB2CuHy0gVq66SlpbFjxw5OnjypjZAFQRAEQatEUia8NDXqO2LlaEy1dxyo06YrgxcsJsLOFAA991Dq7E/gv1unVeUvXbrE8ePHiYyMFC2sgiAIwltHJGXCS6OjJ+e9KQ1o3L0axhbGyHV0qNPcnQRJidzADCu7Bpz939eq8rVr18bc3Jz09HROnz79jC0LgiAIwptHJGXCSyV/apT/lt42nFTeAUDPozkeOy/y4H4cALq6ujRp0gQoeGpDfn7+K41VEARBELSp3JOyO3fulPcmhdecJEncufyIQxuv8M+Cb8m79QfZUj465s6Ym/twcuE0Vdk6depgZmZGeno6p06d0lrMgiAIgvCqlVtSlpiYyPDhw/H09FTNW7JkyXMfmSS8+XIy8tn641nO7ruFU7WG5Em5XEs/B4C+Rwscth4nO/khoN5adujQIdFaJgiCILw1SpWUpaSk0KtXL+zs7HB2dmbhwoUolUqmTJlC1apVOXr0KMuXL1eV/+CDDzAxMSn3oIXXi6GpHt6BTgA8uG2HmY0dN1KPoZQkdB18MdF3ImbhVFX5wtaytLQ0cW2ZIAiC8NYoVVL2xRdfcPDgQfr27Yu1tTWjR4+mffv2HDp0iH/++YcTJ06U+GBw4e0W0KIKMhncik2lWoPmZOSncj07DgA9j2YY/3mA/ORHBa/19AgNDSUwMFD1SC1BEARBeNOVKinbvn07K1asYO7cufz9999IkkT16tXZv38/ISEhLytG4Q1gYWeEZ72CruyszGro6hsQ9+gwALpVGmIkmXDxf9+oytetW5dWrVphZmamlXgFQRAE4VUrVVJ29+5dfHx8AKhatSqGhoYMGDDgpQQmvHkKB5ON+/cxnu8E8zDnDnfyHiKX66HnHgJ/bCc/ObnYdV/i08AEQRAEoUIoVVKmVCrR09NTvdbR0RHXjAkas3Mxo4qvNZIEOgYBIJNxIe8KAHKPUPTyZNxcvFBtndu3b7Nq1apSPeheEARBEF5HuqUpLEkS/fr1w8DAAIDs7GwGDx5cJDHbvHlz+UUovFHqtHQl9X4WrjXdaNRtORG3crm3/ioO+ubkV25A5vpN5A8ajq6NDVCQlF27do2kpCQCAgLQ1S3VKSsIgiAIr41StZT17dsXe3t7LCwssLCwoHfv3jg7O6teF06CUBLn6pZ8ML0h3o2cMLe1o20tJ3Yb/v+uSa/m6Obkc++XxarydevWxdTUlNTUVM6ePaulqAVBEATh5StVs8OKFSteVhzCW0ImkyF7YpB/XR059nVMyTr8GCPjSmTaeZOydh0OAz5B184OPT09GjduzK5du4iKiiIgIAAdHR3t7YAgCIIgvCTiMUuCVijylFw8dJeD6/aQunYGVx9fBCDPtzny3HySfv1VVbZevXqYmpqSkpIiWssEQRCEN5ZIygStuBJzjwOr/+NajBw9A0NuphxGKUlYWNZEbupI8tq15N27D6BqLQM4ePAgCoVCm6ELgiAIwkshkjJBK6rVdcDEQp/MdBnONRqRkZ/K1ZzbAGT4N0eWl8/DX35Rla9bty4mJiakpKRw/vx5bYUtCIIgCC+NSMoErdDRk+PfvGDcssdpNUAm41ZyJABWdg2R6ZvyaMN68hITAdDX16d58+Z06NABX19frcUtCIIgCC+LSMoErfENcsbAWJfHjwxw8qxNUs4dbueloIc+jwKCIS+fpCVLVOVr165N3bp1xbAYgiAIwhtJJGWC1ugb6uIXXAkAhVQTgJspBY9esqgUBnJdUjb+Qd7du0XWVSgU5Ofnv7pgBUEQBOElE0mZoFW1mrqgoycnNckaSwcX7uZc46EyD3PJgkT/dyA/n6TFS9TWuXDhAj/99BM7d+7UUtSCIAiCUP5EUiZolbG5Pt6NnHD1syGo93A+WbSMncYFp6WxewsAUjZvJvf2HdU6+vr6PHr0iJMnT3Lq1CmtxC0IgiAI5U0kZYLWBfWsTofhAVSv74OJuTkOwZXJQqKSsjJxfl7/v7XsZ1X5atWq0bRpUwC2b9/O7du3tRW6IAiCIJQbkZQJWieXy9Redw2swkEpHQBZjYLWstQ/t5AbH68q06RJE7y8vFAoFKxfv57Hjx+/uoAFQRAE4SUQSZlQYWSk5HB442X+mjGR/NtrUUoSfoqa/OftCAoFST//3zMx5XI5Xbp0wdbWlvT0dDZs2CAGlRUEQRBeayIpEyqMiDX/cWbfbfJzjXmcn8Ll3IIxyrJrNgcg9a+/yI2LU5U3MDDgvffew8DAgPj4eA4fPqyNsAVBEAShXIikTKgwAv7/YLKZGT4A3HlUMJjsO3kN+beGGSiVJP38s9o6tra2dO3aFR8fHxo0aPBqAxYEQRCEciSSMqHCcK5uib2bOeCAmY0bSVk3uZWfhqGkT1LtYABSt24j5/oNtfVq1KhBjx49MDAw0ELUgiAIglA+RFImVBgymYy6rVwByFf+/8Fk044C0CQ/hLM1jApayxYtKnEbkiRx/PhxMjIyXn7AgiAIglCORFImVCju/rZYOhijlKpiYGxJQupZHilzscm35ErdAADStm8n5+rVYtffu3cvO3bs4I8//hAX/guCIAivFZGUCRWKTC6jdssqyGQ66Oj7o0TJhZxLAAQpmnHezxQkiQf/+1+x6/v7+6Ovr8+NGzfYu3fvqwxdEARBEF6ISMqECqdGfUcs7I2o0bg5bYdPILdjC7KQ8MypQnSdygCk/7OTxwcPFlnX3t6ezp07A3DkyBHOnTv3KkMXBEEQhDITSZlQ4ejoyflgagOa9qmNd5MmdG3izj6dgoePN1I241xQwUPM74weQ86VK0XW9/HxoUmTJgD89ddfJCYmvrrgBUEQBKGMRFImVEhynf87NU0NdMn3twagweOahNdVIq9TE2VGBrc+HUL+o0dF1m/atCkeHh7k5+ezbt06MjMzX1nsgiAIglAWIikTKrTE66n89cN6ZHvmEpt7Hzly2qeGsfVjb/SqVCHv9m1uDx+OlJurtp5cLqdbt25YWVmRlpZG/BOPaBIEQRCEikgkZUKFlZ2Rx5Z5p7l5Po3stBTupEYB0DIlkB23IzCbNwu5qSlZJ2NImDYdSZLU1jc2NqZnz5706dMHLy8vbeyCIAiCIGhMJGVChWVoood3oBNyvaroGVrz8PFVbikyMJQMCE2q+//au+/4KOr8j+Ov2b6b3ntCIJTQOwoiFgT1BMsdYgOxo3gieLa70/P0p9jxTsHe7jwRG4pdRCkCUgKh95ZOerIpW2d+f2xYWJMgKiQh+Twfj33s7sx3vvOdBZ033/nOd3ik6E0SZz8LOh1VH39M+ZtvNaojPj6eTp06+b//PLgJIYQQbYWEMtGm9T8vFZ1OQVP6AnCgZi0A4yvOZmXOCr6IySfu/vsBKH7qKew//NBsXcXFxbz88sscOnTo5DdcCCGE+JUklIk2LSzGSsagWPTmXuj0ZorK11Kuuon2hHPzoT/x9LqnKfvDMMInTgRNo+Cuv+DYtavJuhYvXkxRURHvvfce9fX1LXwkQgghxLG1eiibO3cu6enpWCwWBg0axPLly5st+/HHH3PeeecRExNDaGgop59+Ot98800Ltla0hgFj01AUM4qhJyoqy2tXoaJxUeWZnFbeh/t+vI+I+/+C7bTTUOvqyLv1NjxlZY3qGT9+PGFhYVRUVPDRRx+hqmorHI0QQgjRtFYNZfPnz+fOO+/kb3/7Gxs2bGDkyJFccMEFzd4pt2zZMs477zy+/PJLsrKyOPvssxk3bhwbNmxo4ZaLlhSTEkJqz0j05gGAgqPsJ97XagCYXnQ1dUVV/GvTHJKfm40xLRV3fj55f74D9Wd3ZAYFBXHFFVdgMBjYs2cPS5YsafmDEUIIIZqhaK048nnYsGEMHDiQF1980b8sMzOTSy65hFmzZh1XHb169WLixIk8+OCDx1W+urqasLAwqqqqCA0N/U3tFi0vf2cFi/+zneiEvQwZdwafHlSJ+TKHQRg4YC7gzk5P8tyYfzHEmcSBiRNR7XbCLr6YhMdnoShKQF0bN25kwYIFAEycOJHMzMzWOCQhhBC/Qkc4f7daT5nL5SIrK4sxY8YELB8zZgwrV648rjpUVcVutxMZGXkymijakMRu4Vzz8GlcePskYtLSuWFkZ77PCKIUlU7ORG4vuoK/L/87NQmhJD03G/R6qj79lPLXX29UV79+/Rg2bBgACxYsoKSkpKUPRwghhGik1UJZaWkpXq+XuLi4gOVxcXHH/VicZ555htraWi6//PJmyzidTqqrqwNe4tSjKErALP+KonBTX3jB6sKLxuiq0xhc1J0HVjxA0PDhxP3trwAUP/Ms9sWLG9U3ZswY0tLSSExMxGaztdhxCCGEEM1p9YH+P7+0pGlao2VNmTdvHg899BDz588nNja22XKzZs0iLCzM/0pJSfndbRatx+tR2bGqkC/nvM03zzzMWZZ1vIYTgNsOTSR/737m7ZhH5FVXEXHVVaBp5N99D44dOwLq0ev1XHHFFUyaNImgoKDWOBQhhBAiQKuFsujoaPR6faNeseLi4ka9Zz83f/58brjhBt5//31Gjx59zLL3338/VVVV/ldubu7vbrtoPXvWHWLx29vJ36lH0ek4tH4F0XEHWIEbk2bkr3k38uLqOeyu2E3cX+8naPjpaHV1vmdk/uwypdVqRa/X+7/Lg8uFEEK0plYLZSaTiUGDBrFo0aKA5YsWLWL48OHNbjdv3jymTJnCu+++yx/+8Idf3I/ZbCY0NDTgJU5dGYPiCI4w43IlEpfh+/P3rv6MNWHFFKGS5I5lWv7l3LP0HlyKl6TZszGlp+MpLCTv9j+jOp2N6lRVlS+//JKXXnqJnTt3tvQhCSGEEEArX76cOXMmr732Gm+88Qbbt29nxowZ5OTkMHXqVMDXyzV58mR/+Xnz5jF58mSeeeYZTjvtNIqKiigqKqKqqqq1DkG0ML1Rx3k39EKnV6goziAu4zQ0TaXTrgW8aKjAjcYZ9oH02p/C7KzZ6MPCSHlxLrqwMOo3bqTwgQcaPWpJp9P5l3388ceUNTHHmRBCCHGytWoomzhxIs899xwPP/ww/fv3Z9myZXz55ZekpaUBUFhYGDBn2csvv4zH42HatGkkJCT4X9OnT2+tQxCtIDEjnFFXdUdRFCpLhxKZ1AVXXS2DKr/gpYb5y248dBlZ61ewLG8Zpk6dSP7Xc2AwUL3wM8peebVRnWPHjiUlJQWn08l7772Hs4keNSGEEOJkatV5ylpDR5jnpKNY/v4uNn2fh05fD+751FWVo5wxkej8JM7BSLGhnAcyX+Tty94h2hpNxXvzKXroIQCS/v0vQn82HYvdbueVV17BbreTmZnJ5Zdfflw3nQghhDj5OsL5u9XvvhTitxrxxwxSMiMAG4PHTWPsrXcyfdo1LO5kIRcvsZ5Ibtx3MQ/86LtkGXHFRCImTQKg4N77cGzbFlBfSEgIl19+OTqdju3bt/Pjjz+2wlEJIYToqCSUiVOWTq9jzI29ufSugQwZN4zeZ41Gr1N48qqBPGX14ERlSG1vkjcF8+6OdwGIu/cegs44A62+ntzbpuEuLg6oMyUlhQsvvBCA77//nvLy8hY/LiGEEB2ThDJxSrMEGYnvHOb/7nJ4CNYcXOD6jlfdpQBcU3IRi5YuZFfFLhSDgaTZz2Lq0gVPUZHvjkyHI6DOwYMHc/rppzNx4kR5WoQQQogWI2PKRLtRll/Dly9uwqBfSsGOFWi2MCJiJjNWZ6NcX8Uz/d/j5Utfw2Kw4MrJ4cCEy/FWVRF64YUkPvO0jB8TQog2rCOcv6WnTLQbeTsqqC51UF7Un5CoBJS6KvIrFrIXF5HeMCZuP5vZa58FwJSaStLz//bdkfnll5S++GKz9VZWVvLDDz80mkpDCCGEOJEklIl2o+85yfQ4PR4UM5r+QkxWG0HVB/mmagV1eOlb1w3jj7Usy1sGQNDQocT/40EASv/9PNVff92oTpfLxeuvv87SpUtZtWpVix6PEEKIjkVCmWg3FEXhrKt6EN85FI87jKCo8aAoRJWv4X91ewC4oux8Pvziv5TW+8abRUyYQOS11wJQcN/91G/ZGlCnyWTijDPOAHxPm9i3b18LHpEQQoiOREKZaFf0Rh3n39KH4Agz9bWJRKf65iILKV7I1x5fELv14B95atEsVE0FIPaeuwkadSaaw0HebbfhPhR4R+bQoUPp168fmqbxwQcfUFlZ2aLHJIQQomOQUCbanaAwMxfe2heDUYe9qiexnYcQERfPDzEK2xUHIWoQ563vx7tb/geAoteT9MwzmDK64CkuJm/aNNT6en99iqJw0UUXkZCQQH19PfPnz8ftdrfW4QkhhGinJJSJdikmNYRzp/QkJTOSS++5i6sffZbHbjyPx40a1YqbHo50qr86yM5y3wPI9cHBpLz4IvqICBxbtlBw/1/RVNVfn9FoZOLEidhsNgoLC/n8889l4L8QQogTSkKZaLcyBsUyfnp/giOCsQQHkxYVxMw/9eHfLt9lzPHlo3hvwes4PL55ykwpKSQ//28wGrF//TWlc+YG1BceHs6ECRNQFIVDhw7J8zGFEEKcUBLKRLt29Nxj21YUEL1vDRn577DY4Ruwf+Xe0byyZI6/jG3wYBL++U8ASufMoeqLLwLqS09P56qrruL666/HYrG0wBEIIYToKCSUiQ5hw7c5/PDfHWxZVoSiqZQVfsgOrQybaqX/8kSW7l/iLxt+2aVE3nA9AIV//Rv1mzYF1NW1a1dMJpP/u9frbZFjEEII0b5JKBMdQsbgWKwhRhx1XYlMHo6Gxta8D6lU6unsTCbngw2U1JX4y8fOnEnw2WejOZ3kTpuGu6ioUZ2qqrJkyRLeeOMNGfgvhBDid5NQJjqEkEgLF9zSB51eobZmKOHx3fB4Kvnx0LeoaJxdPpj3P3jdP02GoteT+NRTmLt1w1tSSu5tt6HW1QXUWVNTw+rVq8nPz+eLL76Qgf9CCCF+FwllosNIyAhn1FXdURQd9fXnYguPobZ2B6tq1gMwdscQPl7xnr+8PjiI5Llz0UdG4ty2nYJ77wu4IzM0NJQ//elPKIpCdnY269ata/FjEkII0X5IKBMdSs8RifQ7JwVFZ0XTXYjBZCGv5Du2aIVYNBPJ35rYUbjNX96UnETyC8+jGI3YFy2i5N//DqivS5cunHvuuQB89dVX5OTktOjxCCGEaD8klIkOZ/gfu5DaMxKNKPqcex2ZF1/Ng4ZgivV2kl1x7HjnR+rcRy5V2gYOJP6RhwEoe+llqj77PKC+ESNG0LNnT1RV5f3336e6urpFj0cIIUT7oGgdbCBMdXU1YWFhVFVVERoa2trNEa3EWefm0P5qUntFATB/bQ7/XZDFC2oEBvSs6rOLCVffELBN8TPPUvbqqygmE2n/eRtr//5H6nM6ef311ykuLiY5OZnrrrsOvV7fkockhBDtWkc4f0tPmeiQzDajP5ABXNY3kYwe8XxXtwGAwZs7s2LtDwHbxMy4k+DR56K5XOTe/mfcBQVH6jObmThxIsHBwQwcOFACmRBCiF9NQpno8KpL6/noySwGbPuaqkOL2evYjREDtoV2DpUV+sspOh1JTzyBuUcPvKWl5N42DbW21r8+KiqKO+64g4EDB7bGYQghhDjFSSgTHV7O1jLK8muxl/fHYAli46EvqFAriHFHsOWNHwImh9UFBZEydw766GicO3aQf8+9AXdkHj2pbG1tLUVNzG8mhBBCNEVCmejwep2ZROaIBBRdGKagcbg1N2sKP8GNm+5lKSz78LOA8sbERFJeeB7FZKJm8WJKZj/XqM7S0lJeeeUV/ve//1FTU9NCRyKEEOJUJqFMdHiKojDqyu4kZIShqomExJxHpauY7NLFAHTeEM7O7I0B21j79yfh0f8DoOzVV6n85JOA9SEhIRiNRux2O++//748ikkIIcQvklAmBKA36Dj/5j4ER5pxuXoSEjuYffaN7Kvdgh497o8KqKmoCtgmbNw4oqbeAkDRAw9St369f53ZbOaKK67AbDaTk5PDN99806LHI4QQ4tQjoUyIBrZQE3+4rS9GiwGXawSWyE4sL19Gnv4Q4e5gtr2+BE0NnEEm5o47CDnvPDS3m7zb/4wrL9+/Ljo6mksvvRSANWvWkJ2d3ZKHI4QQ4hQjoUyIo0Qnh3DelJ7EdQrn8vseJGbSPfzVWIZDcZJYGsnGj5YGlFd0OhKfeBxzz0y85eXk3Xor3pojd2T26NGDUaNGAfDZZ5+xadOmFj0eIYQQpw4JZUL8TOcBMfzx3sHEpMVy09j+pHcayLMhvkuTkVkKhZv2BZTX2WykzJ2LPiYa5+7dFPzlL2hHjSEbNWoUPXr0wOv1smHDBtSj7tYUQgghDpNQJkQTdDoF8N0EML17EtVlVnbbN6BDh/2Dvbgr6gPKG+PjSZkzB8VspmbJEoqfffaounRcfvnlnHvuuVx22WXodPKfnRBCiMbk7CDEMWxdns/yt3dwep2d7LLFlDmLsLkt7Hx9OZo3sMfL2rcvibMeA6D89Teo/Ohj/zqdTsfIkSMJCQnxL/vmm2/kcqYQQgg/CWVCHENqryisIUY0dRgEd2ZV8Sc4VQfhpVb2LchqVD70wguJnjYNgMKHHqJu3bom6927dy+rVq3i448/ZuHChbjd7pN6HEIIIdo+CWVCHENIpIULpvZFb9Rh1I+hSm9gbcmXAJjXOajcmN9om+hptxFy/vlw+I7M3NxGZdLT0/03AKxfv57XXnuN0tLSk3swQggh2jQJZUL8goQuYZx1VQ8UxYzNPJ6DjoPsrFoDQPkHu/CUBY4vU3Q6Emc9hqVXL7yVleTeeiven83qr9PpOPvss5k8eTJBQUEcOnSIV155hc2bN7fYcQkhhGhbJJQJcRwyhyfQb3QKOn0EtpBxZJcvpdSRh8lj4MCba9DcgePLdFYryXPnYIiNxbVnL/kzZwbckXlY586dmTp1Kp06dcLlcvHRRx/x7bffttRhCSGEaEMklAlxnIZflkFqr0h0ujR0nc/jFb6nSm/HUqqjYEHjHi5jXBzJc+agWCzULltO8ZNPNVlvSEgIkydPZtSoUSiKQlpa2sk+FCGEEG2Qomma9svF2o/q6mrCwsKoqqoiNDS0tZsjTjHOeg+528pJHxDDla/+iLluHo8emogOHWETuhIyKL7RNtVff03+nTMAiJp6CzHTp6MoSpP1l5WVERUV5f9ut9sD7tgUQoiOqiOcv6WnTIhfwWw1kDEoFr1O4d9XDGFr/RnMi/Bdbiz7eCfuQ7WNtgk9/3xi777bV+allyl66J9NXsoEAgJZVVUVc+fO5bPPPpO7M4UQogOQUCbEbxSq6Ljd0xn7jlKK6g9g8OooeDsb1dk4cEXdcD3xDz0EikLl/Pnk3/UXVJfrmPXv3buX+vp6srKy5O5MIYToACSUCfEbHdhUSn1BHbH6M1lZ8jn1Hjv6cpXSj3bQ1KiAiCsmkjT7WTAasX/9NXlTb0WtbdyzdtjAgQO55pprsNls/rszt2zZcjIPSQghRCuSUCbEb5Q5IoGeZySiNyTgsZ7ByuKFqJqKa1M5tWuKmtwm9PzzSXnpRRSbjdqVKzl43fV4Kiqa3UdGRgZTp04lLS0Nl8vFhx9+yOeffy6XM4UQoh2SUCbEb6QoCmde0Y3EruGYjb0o0kWzuWIpAOWf7saVX9PkdsEjRpD21pvow8JwbNrEwWsm4S5qOsQBhIaGMnnyZEaOHAnAunXrWLly5Yk/ICGEEK2q1UPZ3LlzSU9Px2KxMGjQIJYvX95s2cLCQq666iq6d++OTqfjzjvvbLmGCtEEvUHH+Tf3JiTKQpD5LDY6csmv3Y1OVTj09ibUek+T21n79iXtf+9giIvDtXcvB666Cue+/c3vR6/n3HPP5ZprrqFz584MHz78ZB2SEEKIVtKqoWz+/Pnceeed/O1vf2PDhg2MHDmSCy64gJycnCbLO51OYmJi+Nvf/ka/fv1auLVCNM0aYuLCW/titBgJtVzK8srF2D2VKNVeyj7Y2eT4MgBzRgad3v0fpk6d8BQUcvDqq6nfsvWY+8rIyGDy5MkYjUYAVFVl9erVcjlTCCHagVadp2zYsGEMHDiQF1980b8sMzOTSy65hFmzZh1z27POOov+/fvz3HPP/ap9doR5TkTr2JddwsoFe/nauAPNtpD/K7kdo2Yk7MJ0Qs5MbnY7T3k5uTfdjGPrVnQ2G8lz5xJ02rDj2ufSpUv54YcfiI+PZ8KECQFTagghRHvSEc7frdZT5nK5yMrKYsyYMQHLx4wZc0LHyzidTqqrqwNeQpwMnfvHcOWDQ3n01gls9A7kldiPAKj8aj/OA1XNbmeIjCT17bewDRuGWldH7k03UX2cj1pKSkrCZrNRVFTEyy+/zNatx+5pE0II0Xa1WigrLS3F6/USFxcXsDwuLo6iYwx6/rVmzZpFWFiY/5WSknLC6hbi5/R6HWlRQcwacx1r662sM2xG0aD47U14a5qfl0wfHEzKKy8Tct5oNLeb/DtnUPnhh7+4v4yMDG655RZSU1NxuVx88MEHfPHFF3I5UwghTkGtPtD/54+b0TSt2UfQ/Bb3338/VVVV/ldubu4Jq1uI5vRwG7gk90L25u+i2lWGUg/F/92M5lGb3UZnNpM0ezZhf/ojqCqFf3+Astde+8V9hYWFce2113LGGWcAsHbtWt544w3Ky8tP2PEIIYQ4+VotlEVHR6PX6xv1ihUXFzfqPfs9zGYzoaGhAS8hTraELuHYQkyYTRewtGIRHtWN92AdRS9k4S6tb3Y7xWAg4ZFHiLrpRgCKn36GQ08+1ezNAofp9XpGjx7N1VdfjdVqpbi4GKfTeUKPSQghxMnVaqHMZDIxaNAgFi1aFLB80aJFcru/OOUFR5i58NY+6I0mvMbzWF66EKe3Hm+Rg6LZa6lZV9hs0FIUhdi77vI/L7P8jTco/Nvf0TxNT69xtK5duzJ16lQmTJhAQkKCf3kr3s8jhBDiOLXq5cuZM2fy2muv8cYbb7B9+3ZmzJhBTk4OU6dOBXyXHidPnhywTXZ2NtnZ2dTU1FBSUkJ2djbbtm1rjeYLcUzx6WGcMykTRRdKpX4EH1X8h+L6HBSvQuWHeyift6PZeczA97zMhEcfBZ2Oqo8/Jm/6najH0fsVFhZGjx49/N/z8/N5/fXX5XKmEEK0ca06JQb4Jo998sknKSwspHfv3syePZszzzwTgClTpnDgwAGWLFniL9/UeLO0tDQOHDhwXPvrCLfUirZl5cd72PBtDm5cbA9/lYsq+9Mv/Ex06NCHm4m8sgfmtOb/Ltq/+478mXehuVzYhgwhee4c9CEhx7VvTdN49dVXKSgowGw2M378eHr16nWiDk0IIVpMRzh/t3ooa2kd4Q9VtC2qqvH1y5vZv7GUNaHFbEudQxciuOvQdSS4o0EBtY+ZlIlDUPRN3+RSu3oNebfdhlpbi7lnJqmvvorhOOckq6qq4sMPP/Tf5DJ06FDGjBmDwWA4YccohBAnW0c4f0soE6IFeL0qu1YXoe8czLT3VpGrzCMsZCvTiq7gnOqhANSa7STdNJTg5Ogm66jfupXcm27GW16OKS2NlNdfx5ScdJz79/L999+zYsUKABISEpgwYQKRkZEn5gCFEOIk6wjnbwllQrQwh9vLI59u5eDqTWzp8jLX7xvAOMZj1JlxqU68gw1kTBjV5KV65/795N5wI+6CAgxxcaS+9irmrl2Pe9+7du1iwYIF1NfXYzabuemmm4iObjoECiFEW9IRzt+tPk+ZEB2NxajnzAodp9sTuWjrA7wRX8P9sU9xyJ2PSWfGul7PhgfnU5lf0Ghbc3o6afPexZTRBc+hQxy4ZhL12dnHve9u3boxdepUkpOTSUtLk54yIYRoQ6SnTIhWkLejnK9e3oKr3kOtSWF+1HrUhA+ZceB8zvaejaIo2N3lhE/IIOG0xgPzvZWV5N4ylfqNG1GsVpL//W+CR55x3Pv3er243W4sFgvge+xZbW0tERERJ+wYhRDiROoI52/pKROiFST3iOSyuwcSHGkmyKUxpWwQ1j13MStxCw/HPo9drSbEGIlnYTn2ZXloauC/nfTh4aS++QZBZ5yBVl9P7m23Uf3ll8e9f71e7w9kmqbx+eef89JLL8n0MkII0YoklAnRSqISg/nTvYOJSQ1B51K5pjaKHgU384OrN9dnPMkqWzaKClVf7qf49U2see8DXI4jTwPQ2WykzJ1D6IUXgNtN/l1/oWLevF/dDrfbTXl5OU6nk/fff5+vvvoKz3FMVCuEEOLEksuXQrQyl8PDote3cmBzGeZgIz90MbAyfx+WhA8Z547j5kMTsGgmHN46Njt/pN+U8XQeOMS/veb1cujRR6l41xfIou/4M9G33vqrniHr9XpZvHgxK1euBCAxMZEJEybI5UwhRJvREc7fEsqEaANUr8rKj/aSMTiWmE6hzP1hD7O/24E+fDXdwtfz95xrSfEmArCrah113dycfd1NBIX7QpOmaZQ+/wKlc+cCEDFpEnH334ei+3Wd4Tt37uSTTz7x3515ySWXkJmZeWIPVgghfoOOcP6WUCZEG/X9ilweXLKLfEceYQkLuKl6ABdXngNApauYLPt3DLjiYvqcPcYfvsr/+w6HHn0UgNBx40h87FEUo/FX7beyspIPP/yQvLw8oqOjmTZt2q/qdRNCiJOhI5y/ZUyZEG1QSY6d3e/vYxohjE3NpDLnBp7T1fFgyktU6eyEm2IZFTGBffN+ZPm8//i3i5x0DYlPPQkGA9WffUbu7bej1tcfY0+NhYeHc9111zFixAiGDx/uD2Qul4tly5Zht9tP6LEKIYTwkZ4yIdqgon1VfDFnE45aNyFRFtwjonhixT48+kJSE77izpJzGVznmypDSzeReM1A9EFHesRqli4lb/qdaA4H1oEDSXlxLvqwsN/VpqysLD777DN0Oh29evVi2LBhJCcn/646hRDieHWE87eEMiHaqMpDdXz2wkaqS+ox2wz0+FNn/r5iNwfK7FiilzBRpzGleDxGDHiCNOKv7Ev2pm9I7tmb5B69qFu/ntypt6JWV2Pu1o2U117FGBv7m9uzZ88elixZQl5enn9ZYmIiw4YNo1evXvIsTSHESdURzt8SyoRow+rtLr58cRNF+6rRGRRGXNmdN3IP8Ul2ATpLPoPif2RmwThSXPFoaGyv/IktFT/SZ/QYRl41BfIKyL3xRjwlJRiTk0l943VMqam/q00FBQWsXr2aLVu24PV6AQgODub222/3z30mhBAnWkc4f0soE6KN87i8fPfmNvZuKAHgD9P6ssZZzz8+3Uq9x0lc/BJurI/lgkrfjP5lzgJ+Kv4MLVjhnOtuIS0xldwbb8Kdk4M+OprU117F0qPH725XTU0N69evZ+3atcTHx3P11Vf715WWlhIVFSU3CAghTpiOcP6WUCbEKUBTNVZ+vIeKojouvLUPOr2OPcV2bn93AzuK7OisB7k4ejs35/+BEDUIt+Zifem3HKjZSudBQznrksupuOd+nDt2oAsJIeXFudgGDz4hbfN6vdTV1RESEgJAVVUVzz33HPHx8QwbNozevXvLpU0hxO/WEc7fEsqEOIV4vSp6ve+madWrUlPn5snFu3jnpxxQXPRL/YmpJd3pU9cVgIO128gq+QZbTATXPvw0+bf/mfqsLBSzmaTnZhNy9tknvI3btm3jo48+8l/atNlsDB48mMGDB8t/c0KI36wjnL8llAlxCtI0jSX/28mhA9VcNK0fy/PKueejTdgdHsLC9jPZWsqfis5Cj54arRrvaWZ6XToatb6e/BkzqVmyBPR6Eh79P8IvueSEt6+2ttZ/abO6uhoAnU5HZmYmY8aMIex33gkqhOh4OsL5W+YpE+IUVFflYv+mUsryavjoyXUMiQjhyztGMiA1nKqqdJ4v7sPTXZZQZCwlWAkleLWR3Z+tRTFbqJt0BftHDsWrqhTedz/lb799wtsXFBTEyJEjmT59OhMmTCAtLQ1VVdm1axdms/mE708IIdoD6SkT4hRVXVrP5y9spKKoDqNFz/k39yahewTPfLuLl5buBSAzMZcp9R5GVPQDoDTKTvbehZRV5BFsspC5fR8xNfVETb2FmOnTT+rA/KKiIoqLi+nbty/g6+373//+R3x8PEOGDJHeMyHEMXWE87eEMiFOYY5aN1+9tJmC3ZXodAqjru5OzxGJLN1Vwsz52ZTVurCaHVyfvI+L9/fHplqoVxxsrlnG/uINACSV2+lRUErcnyYQ/+ADKHp9i7Q9NzeX119/HQBFUcjMzGTo0KGkpaXJXZtCiEY6wvlbQpkQpzivW+X7/25n15pDAAwb35nBF3aiuNrBjPezWbGnDICLuh3iT3kWMupSADhg3se6XZ/iVV0YPV4yC0rpMXQESU89ic5kOvnt9nrZtWsXq1ev5sCBA/7lcXFxDBs2jD59+mD8lc/tFEK0Xx3h/C2hTIh2QNM01ny2n6yvD/KH2/qS1jsKAK+q8dLSvTy7aBdeVSM9ysONtkJG5maiQ0epqYKdtSvIy9sKwPBdeSQNGETy8/9GFxTUYu0/dOgQq1evZtOmTXg8HgCuuOIKepyA+dSEEO1DRzh/SygToh2pPFRHeJyt0fJ1B8q5Y94GCqocmPQKt/Wq4OztoUS5w3HjYXfkHjyOHDp/8iVaXR2Wvn1JefklDBERLdr+uro6NmzYwO7du5k8eTI6ne9epK1bt2Kz2ejUqZNc2hSig+oI528JZUK0U5XFdfzw3x2ce20modFWKutc3PPhJr7d5rvMObargT+Wl9KzzPfYpd2ReXQeGoPz3r9TU1fLxu5pnPuX+0k9bURrHgYej4fZs2dTW1tLbGys/9KmqQUusQoh2o6OcP6WUCZEO/XJ7A3k76zAGmrioml9iU0LRdM0/rPqII9+sR2XVyU+1Mw9aVX02xKBWTNSabBT2ruMQ+/+jzyrbxb+iPBIMkaeRefBw0js2gNdC90IcFhdXR3ff/89GzduxO12A2CxWBg4cCBDhgwhooV784QQraMjnL8llAnRTtVUOPj8hU2U5ddgMOkYe2NvOvWNBmBLfhV/nreB/aW16BSYOSSUYVvLSKj1jUXbELmZ+p++JNegwVGXCy1BwXTqP4jzbpqGydr4MunJVF9fz4YNG1i7di0VFRWA767NCy64gKFDh7ZoW4QQLa8jnL8llAnRjrnqPXz96hZyt5WjKDByYjf6nJUMQI3Tw4OfbOHjDfkAjEwP50Z9GV32+HqeDpoLgE24VqygSKdREmLDbdBjM1m4cfZLGKN9AW9v1mrC4xKITEppkfFeqqqye/duVq9ezb59+7j11luJi4sDwG63Yzab5dKmEO1QRzh/SygTop3zelWWvruT7SsKAeh/XirDL+2CovMFqI+y8njg0y3UubxEBZl4bFAIaauqCHbbcCluNofvJlaxE/ndIkrLinHpdSQ4PIRdeikRkyfx+mN/x1FjJyw2jvQBQ+gycAjJPftgaIFgVFFREXD5csGCBWzfvp34+HhiYmKIjY31vwcHB5/09gghTp6OcP6WUCZEB6BpGllfHWT1wn3EpYdyyYwBGExHxobtLanh9nc3sL3Q95zKPw9L5uyDBcQWHQkyFYZq6oIOEbXlJ9xZywFwGg1s69+DYq8br9fjL2s0W0jt05/eZ40mY8hpLXKMXq+Xl156iZKSkibXR0REcMcdd/h784qLiwkKCiKoBaf+EEL8dh3h/C2hTIgOZO/6YhIywrGFNu7Fcri9PPbldv6z6iAA/ZPDeHJkKmXrNxG+10iI58gYskpzOdaynbiXfYjmsuPRKdj796GiW2dyi/KprSgH4LTLJjJi4iQA3A4HpXkHie/cFUV3ch67q6oqhw4doqSkhOLiYv97RUUFSUlJ3HTTTf6yL7zwAqWlpdhsNn+P2tG9axLWhGhbOsL5W0KZEB3Yph9ySe0VRXjskcD19ZYi7vlwI9UOD8FmAxMGJ3P5gHjKd6+nel0BPcpSMeK7M1NFxePNx5v9NZ78DaB6MHbpApdeTHGola6nnUFMaicAdq9dxcKnH8UWFk76gMF0GTiUtL79W+SGAZfLRV1dHeHh4b52qypz5syhrKysyfLx8fFMnTrV/33Lli2EhIQQExODzdayNzgIIXw6wvlbQpkQHdSutUUsen0bliAjF97Wl4QuRx4InldRx/T3ssk6WOFfNjA1nIlDUkiPOMT2lT+RvC+c7o5O/vVenKh5Wbj2LUMt34chJobIaycTPnEi+pAQNi76kmX/exNXfb1/G53eQHLP3nQZOIQeZ5yFLbRlH0rucrkoLS0N6FUrKSkhNTWVyy67DPAFuEcffRSv1wtAUFBQwFi1xMREEhMTW7TdQnREHeH8LaFMiA6qtsrJl3M3UXzQjt6gY/R1PckYFOtf71U1lu0u4b01OSzeXoxH9f2vIsRsYHz/RM7urWd3zne4sss5s2IgMZ4jA+7V+lLcB1bgzv0JRXEQPnEikZMnoYuOIm/7VvZvWMu+9WupKCzwb3PDv14lPD7B17bKCizBIegNhhb6NQKpqup/mkBdXR0LFiyguLiYqqqqRmUzMzOZOHEi4Bu79+233xIVFeUPblartUXbLkR71RHO3xLKhOjA3E4v376+lQObSkGB4Zdl0H9046ktiu0OPszKY/7aXA6W1fmX90oM5ZJBkXhtP7Ftw08MPNSNEdX9sWoWfxlP6U7cOT/hKdlE2Nhzibz+OizdugFQXpDP/g1rKTm4n/Nvm+Hf5tOn/4/crZtJ6zeQLgOH0Kn/oBbvRWuK0+mkpKQkoFctIyOD007z3cxQWVnJc889F7DN4cuesbGxZGRkkJGR0QotF+LU1xHO3xLKhOjgVFXjx/d3s3lJHgB9RiVxxuVd0ekbD8ZXVY2f9pfx3ppcvt5ShMurAmA16rmgTwwZ6ftZXfAp4QdNjK48jX513dDhq0fzuPAUbsCduwpLZgxRN1yPbciQRgFQU1Ven34TVcWHjixUFBK6dqfLwKF0HjTUP06tramqquKnn37yB7bq6uqA9SNGjOC8884DoKamhgULFvhvMIiMjCQ8PJzQ0FD0LfzUBCFOBR3h/C2hTAiBpmlsXJzLio/2gAbjp/cnJTPymNtU1Lr4eEM+763JYXdxjX9517ggzuxdS5HyLdsPbOCsqiGMrjqNVFe8v4xaX4knbzWKpZSoSZcSct5olKOCiKp6Kdqzm/0b1rJ3/VpKDuzzr0vs3pMrH37S/93rcaM3GE/Ez3DCORyOgJ61bt260blzZwD27dvHf/7zn0bbKIpCWFgYI0eOZNCgQYCvh66oqIjw8HBCQkL8l1aF6Eg6wvlbQpkQwm/v+mIqi+sYdH6n495G0zTW51Qwb00un28qwOH29Z6ZDDpG9VSwRa9iVfFXpNTEcm7VMM6pGkKwemS6CW/lQVT7DsLG9iH88ovRWSyN9mEvK2Xf+rXs27CW1F79GPSHiwGot1fz6u03kNKzN+kDhtB54GBCo2Mbbd8WVVdXs3v3boqLiyktLaWyspLKykr/DQXjxo3zh7IDBw7w1ltvAaDT6QgPDw94devWjfj4+OZ2JUS70BHO3xLKhBDNKtpXhb3cQZeBseh0v/wIpWqHm0+zC3hvTQ5bC45cukuNhh5dt7PH+TUVdaUMqenNheWnMbC2NzrF10OmqV68FTuxdAsiasoFGGOifnF/O1f9yOfPPR6wLCo5lZi0dCITk+k6bDjRKWm/8qhbj6qq1NTUUFlZSUREBCEhIQDs2bOHL774gqqqKlRVbbTdRRddxODBgwHIyclh4cKF/sAWEREREOBsNluLPA5LiBOtI5y/JZQJIZq14Jn1FOyuJDzOxsCxqXQbFo++ibFmTdmcV8W8tTkszC6gxumb7d+gU+nXIweH7QdyancS6gninIpBXF56JhEcmVZCc9ehs1YSfvEgbIO7NBsiNE2jNPcg+7LWsG/DOgp37UDTjoSWP0y/hx7DzwQgd+smVn/yAREJSUQmJROZkExEYhIhUdGnTEjxer3Y7XZ/r1pFRQWVlZUMHTqUpKQkALKzs/nkk0+arePoHriysjJ27doVEOAsTfRUCtEWdITzt4QyIUSTVFVj3Rf72fRDHs46X6gKjjQzcEwamcMTAh7TdCy1Tg9fbCpk3tocNuRUNizViIspJCZ5NTmONWhopNXHcUveOfSt64vedNSdlloN1v4xhI3tjSHy2IGhrrqK/J3bqCjIp7wgj6EXTyAy0RdW1n2+gKX/fb3RNgazmYiEJM657haSe/QCwOWoR0HBeAoGlNraWg4dOuQPbEcHuJqaGq655hr/HaBNBTiLxeIPaSNGjCAlJQXwzemmaRpms7mlD0kIoGOcvyWUCSGOyeXwsGVpPtmLc6mvdgFgDTUx/LIu9Dgt4VfVtbPIzrw1OSzYkE9VvRsAvamMTp3XU6lfgUt1oFPhirz+XFp0GkHWbiiGI8HIEAnBZ3fF1icaneXXzWFWUZhP3o6tlOfnUVGYT3lBPlWHClEbxnBd/dhs4rt0BWD9Vwv54a1XCImKISIxicjEJCITk4lITCYyMYmQyOiT9qiok8ntdqMoCoaG+d/27t3L+vXr/QGurq4uoPzRAW7jxo0sWLAAm83mD21WqxWLxYLZbKZ3795ERvpuDqmtrcVut2M2m/3r5eYE8Xt1hPN3q4eyuXPn8tRTT1FYWEivXr147rnnGDlyZLPlly5dysyZM9m6dSuJiYncc889AY9D+SUd4Q9ViJPB4/KyfWUh6789SE25k9FTMun+K0PZYQ63l6+3FDFvTQ6r9/uek4mujoi49ZgiV1Kn+pb1KrFx554ziXd3RR/dHUVpOLHrNKy9YwgaHI85IxzlOMa7NcXr8VBVfIjygjzS+vTDaPYFwCX/fZ2szxc0u92VjzxFYrdMAIr27KKiqKAhtCVhspy6k8U6nU6qqqr8Ia1nz57+cW3Lly9n8eLFzW47adIkunTpAsC6dev4/PPPA9abTCbMZjNms5kLL7zQfxdqfn4+W7Zs8Ye3n79HRkbKJVUBdIzzd6uGsvnz5zNp0iTmzp3LiBEjePnll3nttdfYtm0bqampjcrv37+f3r17c9NNN3HLLbewYsUKbrvtNubNm8cf//jH49pnR/hDFeJk8npU9mQV03VwrH8us20rCqg8VEf/0alNPuz8WPaV1DB/bS4fZuVRVusCvBhCNxOZsIp6ne/h6NFVGrfv6E6/os4YE4aiDzlyp6EuxIhtYBxBA2Mxxp24h4jX26spL8inoiCP8sJ8Xw9bQR6Vh4q49ZV3sAQHA/D9Wy+z4avP/NsFR0YRmZhERIKvV63nmef6y57qHA6H/1JoVVUVDocDh8OB0+nkjDPOICrKd3NGVlYW33//PU6nE4/H06ieowNcVlYWn332WaMyh02YMIFevXyXlbdt28aXX37ZZHizWCz07duXhATfPxRqamooLi5uVMbQSk+JEL9fRzh/t2ooGzZsGAMHDuTFF1/0L8vMzOSSSy5h1qxZjcrfe++9LFy4kO3bt/uXTZ06lY0bN7Jq1arj2mdH+EMVoiV5PSrvPLCKmgoneqOOniMSGTAmlZBfGP/1cy6PynfbDzFvTQ4/7ilF0zT01gMExa5As20FNILqNa7aEcnorTFYIvphTB6CYjoSeIxJwdj6x2JKCcYYa0NnO/Hzl6leL7qj5lRb/9VCdv20gorCfOqqKhuVv/WVd7CFhQOQ9cUnFOzcTmRSw6XQhCQiEpMxt+OHnHs8HpxOJ06n0x/g4uLi/A92z83NZdu2bQHrj36/7LLL/L1qTfXAHe3oALdlyxY+/PDDRmV0Oh0mk4mLLrqI3r17A5CXl8fSpUsxmUyYTCaMRqP/s8lkonPnzsTG+qZacTgclJWVNSonYe/k6wjn71b7W+RyucjKyuK+++4LWD5mzBhWrlzZ5DarVq1izJgxAcvGjh3L66+/jtvtxmhs/D/gw/8zOOznM2wLIX4fnV7hzCu7k/XVAQ7tr2bzkjy2Lsun+2nxDBybRnjc8QUOk0HHhX0SuLBPArnldXywLpf311kpOpiOYizFFLkCJSKLVwdU8Fafci7cmcel6xYRqiVjSDkdQ3wf3Pk1VOUfmchWF2zEGGvDEGfzvcfaMMbZ0AUZf/Mdl7qfzbY/8ILxDLxgPACOmhrKCw6PWcvDXlqC9ajHQ+Vs2ci+9Wsb1WkLCycoLJyrZ832T4S7a/UK7KUlWIJDsIaENryHYAkJxWILOmXGtBkMBgwGA0FBTfdipqSk+G8m+CW9evUiKSmp2QAXExMTsN+YmBj/OpfLNx5SVVUcDkdAvVVVVezevbvZ/Y4fP94fyvLy8njnnXcalTkc9kaPHu2fnqS4uJhFixY1G/ZSU1P9D7N3uVyUlJQ0Kithr2NptT/t0tJSvF4vcXFxAcvj4uIoKipqcpuioqImy3s8HkpLS/3d1kebNWsW//znP09cw4UQARRFIb1vNJ36RJG3s4Ksrw6Qv7OS7SsL2bGqkOF/zKD/6MbDEY4lJdLGzDHduePcrizdVcK8Nbn8sDMGZ8l5mCLWQORKPu1VzcKetZy+t4ZJ6/OIzv4vhqTBGOL7ogtPRmcOR61x46ypwrkv8EHiOpvBH9AMMb53Y6wNXajpd02PYQkOJrFbDxK79Why/eBxl5HSq6//7tDygjzqqiqpq6rEVV8f8GSCrUu+azLAASiKjjv+8yEGk+9S8fovP6X4wH4sIb4AZw0JwRoc6vseHEJkcgo63an/6Car1XrcD3jv0aMHPXoc+XNQVRWn04nL5cLtdhN81CXlxMRExo8fj9vtxuVy+V+Hvx++gQGOPHHhcJnDk/02Ffbsdvsxw96YMWP8oay4uJjXXnutURmdTofRaGTUqFEMHz4cgPLycj799FOMRmPAy2AwYDQaSU9P918edjqd7N69u1HZw6/D4/xE29DqEbzRc+807Zj/U2yqfFPLD7v//vuZOXOm/3t1dfVx/6tMCHH8FEUhpUckKT0iKdpXxbqvDnBwcxkJXcL9ZVSv2uQzNZtj0Os4NzOOczPjOFTt4IN1uby3Noq83WdgCN2MKfJHVmbkszKjku55GtdlbyH9p6UomgZ6M7qQeHQhCehCEjDEZaAPTQTFhlrnwXWgGteBwJ5zxaz3BbVYW0APmz7M/JtvJjhaSs8+pPTsE7DMWVdLZVEhrvrAOx9Te/fDZLVRb6+m3l6No8ZOvd2O21GP3mj0BzKAg5uzmw1wANP/+zG6hilMlr7zBjlbNgb0vvk++8Jc12EjMDRcdfB63Oj0hlNmHrdj0el0zYa6iIgIIiIijqueLl26MGPGDP93r9cbEOSO7hGMiYnh4osvDlh/dOA7umdP0zRCQ0P9QfDosOd0Ojl6pFF9fT0HDx485rEeDmXV1dVNXsY9bNiwYZw3ejSa6qW6qorX3nwLY0PvpsFg8PXcmc0YjUa6dO5MRkoSWkOb1m3ciKaogIamqmg6PWqdF09JHZEmPefdNuW4flNxRKuFsujoaPR6faNeseLi4ka9YYfFx8c3Wd5gMPgHmP6c/CtAiJYX3zmMi6b1o/JQXcDlyx8/2ENFUS2DLuhEUrfwX3Wyjwu1cPs5XbntrAxW7C3lvTUpfLttAE7TPoxRP7IjaTv3JVdiPU9HepFGz2KFnsUVpOYfIjT3J1zbGirSGdGFxKELS8aU2hN9TDqKKQrNZUBzenHl2HHl2AP2rZh0vh61o4KaMdaGPtLyu8Oa2RZEXOeMRssH/eGSJst73G6ctTUBy/qcM5bEbpnU19hx2O3U26v8nz0uV0CAK8/PpXj/3mbbM33ocP/nb1/6NztWLvddNv35ZdTgEEZMnIT+8PQaWWsoy8tBp9Oh6PQoOl3DZ9+r58iz/e0o2rubquJD6PS+skeX0+l0JHbL9JetLi2hvrrqqPoC6w6OjPK3we104HV7jqzXH1X3z/6uqV4vXrcbVfWien/+8hAcFY3R5Dt31JSXUVV8qHFZ1Yvm9ZKc2ZuwhnGDpbkH2bV8i6+sx4OqqmheL3qvB7NXpf/Is4hK8nUMFOzazrevPI/q9dXTTe9FQ8WrU1C90O/88USnd8HtdlORs595D9yNpqq4VY04RYeqaXg1X6BL7juAsLgEXG4XOncdc2+5BlX14lH0GCIT0FDQdAqaokNnMaPpdKgelS05WWy7Zo7vRzEFUd8lk/pm/m4U79iHqywKk86CqjewPmxPk+VCVAtDqzOb/TsmmtdqocxkMjFo0CAWLVrEpZde6l++aNEiLr744ia3Of300xvdpfPtt98yePDgJseTCSFa19GBzOXwsOOnQtwOL3k7KojvHMqgCzqR1jvqV4UznU5hZNcYRnaNobTGycfr83hvTR/2HzqIKfJH1NCtbEuzsy3NA/ju/Aup09OlUKNLIWQUeuhSmEd4Th6enJ+OqtiAEp6IoVt/rCm90IcmoqlBeKu9aC4Vd34N7vzAMIRBwRhzpGftcC+bIcqC8it6BH8Ng9GIITywVydjyGlkDDntuLYfeeW19DvvwoDeN0dNNfXV1bidjoAAV19jR/V6qK2soLayolFdIyZe4/+8Y8VSdqxY2ux+uw0b4a970+Kv2bz4m2bL3jz3LUKiogHfzRHrv/y02bLXzX6JyMRkAFYveJ/VC95vuqCicM2s54hL9/Ugrf7kfVa+/79m673ykaf9l6F3rFjK0nfeaLbsn/7+f6T16Q9A/o6tLH7jxWbL6hLCiLLW4fA6yNmxll3H+B0OJNXjckXg8DhQdx0ibFdus2U/Ct/Adm8lBq+eLsURjK5NxqQPwaSzYCoxYNRZfJ/1ZqrDdahWI8HYCM2xEZU6GKPOAopCtbMODyoevHgU37sXFY/iJVwNIj44HAAHbjI99b6yihcPKl48eDQPZs1EnbvsF698icZa9fLlzJkzmTRpEoMHD+b000/nlVdeIScnxz/v2P33309+fj7/+c9/AN+dli+88AIzZ87kpptuYtWqVbz++uvMmzevNQ9DCHEcTBYDV/x9KBsW5bB9RSFF+6r5Ys4molOCGXR+JzoPiDmu52seLTrYzM1nduGmkZ1Zs7+c99b2Y/H2Q1Q769AZK1BMFeiM5biM5ZTHVJCVVO5brqsnyk5DUPOFtS6FHoLKc3D/lIP7p4X+fbhsJpzdMjF27kNQXHeCbMno60x4SurBo+IurMVdWBvYu6BXMERZAy6FGuNsGKKtKIbWHaAfndqJ6NROx1V23Iz7Gi6fNvTA1VQfea+pCbjZIDmzFzq9Hk1Vfb1DDS/fZy9645HTTUR8Ikk9ev2sjK+cqqroj/pHtslqIzgyqpl61YCxcloTzwU9stIXEBweB06vkzpv4PgvFBp64RTQ6ViauwTUDTg9Tmoq90C4FU0HmgKqDlRF878ey36SigMenF4nQfkuEpM0X6jBF1Y0nYaq+Lb5dNNDVBzwTZwcXm0ktZsNTdFQ0dApBoyKEaNiwqgYqSndgdeuJ1i1EekIRtczE5tmxabZsGHFpjZ81qycb7di22bFePi0nnyMP1gVqD3q+1HDDcO9VrxeNx7Vg7G2GM1dh+aq5VB4d6qMIZRqXtyahltTULQ0zEY3YWEGep0dSXTXFILjY0+Zm1DaojYxeeyTTz5JYWEhvXv3Zvbs2Zx5pu9ZdVOmTOHAgQMsWbLEX37p0qXMmDHDP3nsvffeK5PHCnGKqa1ykv1dLluW5eNx+sbOnHZJZwad3+l3161pGpV1bg6U1ZJTXseB0joOltX6v5fWuEBXh64hsClG37veWE5CbQndSirpUuShS6FG+iEwN55miyobFKQE4eqcgTWlF+FR3YjyxhJcbcZQroGrmXCggCHK6r/J4PAdoYYYq3/MV1umaRpu1Y3D68DhceBWfSfvo1/+ZZoHt/fI5ybLHF3uF8p41KbL+ctqHjxeN16PF4/qxuv1NLx8lyO9Xi+1Rhfa4fmHvaDTFNSGwMRx/ntApymYVRMWzYxFNWNRTVjVI58PL7eqZl+5hs8WzYRVsxCkWrFqZqyapWG9CbPXhEk1oNNOTJhRVS9eTz24atG5atBcdb5w5a5Dc9f6v5fbkqiyxmE3h1NtjsapGPE21KGgMnZgHuFpSdiSE9m8Q6GmFqKSQohMDCIyMQjb77wx5tfqCOfvVg9lLa0j/KEKcapw1LjZ+EMu234s4PK/DiEorGEMT4UDS7ARg/HEBxW7w83BsjpfYCur5WBpnT+wFVY5ABXFUINirMCgL6VTbQ7dygvoWlZORnEtqaUeDE1krpJQ2JugsDdBR01SPBHxfeis70KKK56Y2nCCq0zoXcc4gelAMehRjLojL8PP3o06FKPev4yj1nn1Kh6dF7fO4385FRdOnQsHLhyKE4fipA4H9Vo9tdThUJ3+gFXvqff3ItV76v3L/d89DhxeB6p2jN6olqKBAT16TY9e02HQ9Ogbfdcd+d6wzqDp/YHKqpoJJohgbARhI0izYlUtWI8KW2bVhMlrxOQ1YPQaMHh1GLwnPzy7NA0HKi5Nxa16cHtdeN314K5F77RjdFRhqavA4qiAowOXqxbNXQdeFxrgNoZQE5RITWgyNZHp1AfFMyxkA8HJiZgT41l1IJ4DOUf2qzfqiIi3EZUYTGRiEH3OSsZobjv/WOgI528JZUKIVvfzuzIX/msDZQW19B+dSq+RiZh+5XMufyuH20tOeR0Hy470rvk+15FXUYeqgdHroEvtLrpX7aNbZS5dy0pJqqylqT6O/EjYl6CwJ0Fhb7xCZXQoiWoiPdQudPOmk+qMJ7omDLOrdUaSePDi0rlwKm5cOrfvXXHh0nlwKS6cOjcuxd3w7jrqsxuPzoNBMWLEgBEjJgwYMGBseDdoBozoG74dDkUGDP6w5AtMh8OTTlPQazp0qg6dpkOnKb6XqqAc9a6ooGitP05JA7x6BbdewaWAQ4F6NOo0jRpVxe5VsXu9eFQPmteF5nGic9ejeOoxuOowuuowuu2YnTVYHNXYHNUEOaoIrq/A4nH+4v797TCZ0cfFYU6Ix5SQQI6lJ7mOWKocJpxNVHP1w6cRHusb67kvu4Sy/Bp/CAuNsf7qIQQtqSOcvyWUCSHaFEetm/n/t4aaCt8ZxRxkoN85KfQ5KxlLUOvd0OPyqORX1nOwIagdKKslp+G99FAFqWU5dKvMpVvlQbpV5hJfW9WoDq8CuTG+HrU9CQp7ExRyY8CCDYtqwqSZMKtGTJrR10uj+T6bVCNm/7sJU0MZX7nDZUyYNd96q2bGrJl92zRsZ9Qaenu0ttPzccLplYYxYQqKPvDdd+chqHodHr2CWwdOHTiAek2jRlOpUTWqvSrVHi8Vbg/lbi+lTg921ddjpXPXYXDVYXLasbpqCXXVEuKqI9RVS6irzv/Z/+6uR/9bexb1evTh4ejDwzHExGCMj4fYBGqDE6kxRFHtsVFp11FR4uKP9wzyP0Fj9cJ9rPvygK8OBcKirf7LjVGJwaT2jsJsbfXZsH6TjnD+llAmhGhzvB6VnauLWP/1QapKfEPojRY9fUYl0+/clF/9fM2TzatqFFU7OFhay4GGXrbinCK0XdsJPbibzqUH6VqZR6TT3mhbp15HbrSFqiAT9RYj9RYzDosFh9WCy2LDZQvGYwvCGxSMGhQGweGYrMFYDVasBis2o4Ugk5UgoxWbyYrNaMJs0GE26DEZdJgNOizGI99NOgUzCkZA8WpobrXh5fW9e1RoeD+yrmH94WUN7ygNoedwGDo6FOkU0OsCl+t9wcgLuNFwq+DWNFya5ntXVZwaOL0qTlXFpWo4VRWHV8PhValXVeo9Gg7VS71Ho87jpd6jUuf1Uu/24vRqONxeHG614d2L06Pi9BwVjDQNq8fpC07uwBAV6mwIVz9f7qrD9it6r35OsdnQh4f5AlZD0Gr0iohAFxaGxxxKvWYhPC0Ks9X3j5DtKwtY9+UBqksdTdZ/0Z/7kdbLNy1UaZ6d0rwaIhOCiEgIwngKjFU8Xh3h/C2hTAjRZqmqxt6sYrK+PkBZvu92sbMn9aDniMRWbtnx0zSNkhonB0tryd91gJpNm1F2bCfk4G4SD+0nyN30ifZYXDoDNUar72VqeDfaml7m/+x71RvM0DA426BTfAHOqMds0PlDnNnQxHejDpNeh7kh4Bn1Otxe1R+CnJ6j348EI6fnSEByeFRcnl/Xc6RTvVi8LqweFxaPE6vXhdXj9H1utKzh3dv8uhBXHUbN+8s7boqioA8N9YeoJsOVP2Qd+axrmCvz6CkiSnLs7NtYQk2Fk5pyh//d4/b9PuPv6E9KT9+TBHasKmTx275nPltDTUQ19HxFJgQRlRRMVFJwmxr7dbJ0hPO3hDIhRJunqRoHNpeyfWUhY2/qjb5hWon8XRUEhZmP+/mabY2mqpTt3ENR9lY8lVV4q6pQ7Xa06mq0GjtKjR1djR1dbQ36WjuG+lp0x5r24Th4FB21Rit2o5Vaf4DzBTq7qWGZP9zZjpQzWqk1WtCU5u8QNKgeLB4XNo/DH4KsXldggPI4G0KWE5vXRbDqxuZ1YfO6GsKUE7PHhdntwOR2YvS4f9fxNkcxmY4RqA4HrrDA5aGhKPrmw4+jxk1ZQY0vYFU4qCl3Ym94r6lwMObGXqT29PVobV9ZwPf/2dFkPdYQI2dd3YPO/X0z/tdVu6goqiUyMQhrcNvqJW5JHeH8fWpeWBZCdCiKTiG9Xwzp/Y48lkb1qnz/n+3YyxxkDIpl0AWdiEoKPkYtbY+i0xGd2Y3ozG7HVV7TNNTaWtTqarzV1XirqvFWV/m++z/bfeuqq1CrGso1vHC7MWgqYa5awly1v7zDn+9fUfA0XFJ1mW0YvG4MLgcGpwO904HO28T8ISeKXo/OZmv6FWRDFxSEzmZDCVgXFFjGakUf5gtaitV63NM5aKpGnd2FPafGH7AOv/cfk0p8uu+h8/s3lfL9f7Y3W8/hcZIA0ckh9ByZSEiEmeBIC8ERFoIjzARHmBvddWwLNbW5S/bi5JBQJoQ4JTlqPUQkBFFd6mD3umJ2ryumU99oBo5NIyY1+KRMp9HaFEVBHxyMPjgYY+Kvu4SraRqaw9EQ5qoCgp1aXYW3Icyp1VUNAe+oYGe3ozkcKJqGsb4WY30tQcfYl2IyBYQhpamQ9PNQ9bNlyuHyDesU08mZE0vTNJx1noCgldwj0t/7uiermEVvbEX1Nn1RKbV3lD+UhUZbCIuxEhxpJjjCQkjk4aDlew+NPvLczZjUEM6+uukH14uOSy5fCiFOaSU5drK+PsjeDcW+eQoanHdDT7oNiQegvKCW/ZtKjuqNsBAcbkZvlJnHj5fqdAYGudoaFJO5caiyWlFa+bF3mqbhcak4at046zw4a92ExdoIjvCN7SrcU8naL/ZTU+HEXuH0T2B82NHjFnN3lLPwuWwUBYLCG/7uRB4JWimZkUQmHCuiihOlI5y/padMCHFKi0kN4fybe1NRVMv6rw+yZ0MJHqcXW8iRyz1F+6r46ZN9jba1hhgJjrAw/LIuJPfwDaqurXRSWVwnwe1ndGYzupgYDDExv1z4BFG9qi9U1Xn8Acv37vvcqW80MSkhAOTtrGDZvJ04GkLYz3u2zrq6O71GJgHg8ajkbg98lufhvwvBEeaAS4UJncOY/NhwgsJMAXPpCXEySCgTQrQLEfFBnDulJ+dc67scdfRUACHRFrqfFu+7RFXhpKbCidetUm93U28PHEh+cEsZP7xzZAD20Sfr4AgLvc5MJCrRN3bN4/aioEhwOwZN09A0/JOS1lQ4KdpX5Q9WR/dmOeo8DBqb5r/rcF92Kd+8uqXZum2hJn8o0zSNiqK6gPU6vYLZZsASZAz4M4pODuacyZmEHNXjZWhm6giDSU9IZPu7FC7aJgllQoh2RVGURpPMpvSIJKWhJwwaxhHVerBXOKitcBLdcGIH300FYbHWRsGtJMc3x1jnAUd6inb+VMSS/+1sFNyCI8wEhZtJ7hHhf3TUqeDoKRvcLi/1dheqR8PrUVG9vnevW8XrVYlKCvYfW/HBanasKjoSsOrcR332MOaGXmQMigV8vZbHCloZg2JJafhsDvKdokwWPeYgI5YgI2abAbPNiDnI4J+ZHiAmJYRLZgzAHNSw3mbAaNY3OQ7NGmwic3jCifjJhDihJJQJITocRVGwBBuxBBv9PS2HZQ5PIHN4QkBwq6lwUlvhwF7hJCL+SBCorfTdTffz4HbYxTMG+IPLrrVFZC/KDQhuhz/bQk2ERFr8vTn2cgdVJfX+EOQPRB4V1aOS3j/GX2/B7kr2byr1r/OV0/yfh47v7D/GPVnFrPl8f0BZ1av5gpZH5YJb+5LeNxqAveuLWfxW83cSjrmhF12HxPnaW+Zg85K8Zss6ao/0RgZHmknICMNsM2KxGTA3BK3DgSsu/chYoaRuEdw656zjumxoCTKS1D3iF8sJ0ZZJKBNCiCYcK7gdNuSidPqcney/JHo4uNVWOKmpdBAaZfGXrSiqoyTH3ii4HXb5X4cQk+rbz87VRaz+tPEYuMMij+qlKsmxk70op9myvc9K9n92OTxUFDY/FYbXfWQONL1Bh96gQ2dQ/J/1DZ91Bh1Gy5FLepGJQQy6IK0hWAWGLEuQ7zc8LD49jMv+MqjZNhzNd8mz7T6LUYgTTUKZEEL8RoqiYA02YQ02NRvcDss8PYHYtFDf7O2VvqkXahvu/qurdqGqRwam20JNRMTb0Bt1R8KRXvF/P/rZhTFpIfQfneIrZ2wodzhEGXUBdwam9Yri4jv7+4PV0UFLb9D5LxcCdB0cR9fBccf1O0TEB3HaxV2O92cTQjRDpsQQQgghRJvXEc7fcsuQEEIIIUQbIKFMCCGEEKINkFAmhBBCCNEGSCgTQgghhGgDJJQJIYQQQrQBEsqEEEIIIdoACWVCCCGEEG2AhDIhhBBCiDZAQpkQQgghRBsgoUwIIYQQog2QUCaEEEII0QZIKBNCCCGEaAMklAkhhBBCtAESyoQQQggh2gBDazegpWmaBkB1dXUrt0QIIYQQx+vwefvwebw96nChzG63A5CSktLKLRFCCCHEr2W32wkLC2vtZpwUitaeI2cTVFWloKCAkJAQFEU5oXVXV1eTkpJCbm4uoaGhJ7RucYT8zi1DfueWIb9zy5HfumWcrN9Z0zTsdjuJiYnodO1z9FWH6ynT6XQkJyef1H2EhobKf/AtQH7nliG/c8uQ37nlyG/dMk7G79xee8gOa59RUwghhBDiFCOhTAghhBCiDZBQdgKZzWb+8Y9/YDabW7sp7Zr8zi1DfueWIb9zy5HfumXI7/zbdbiB/kIIIYQQbZH0lAkhhBBCtAESyoQQQggh2gAJZUIIIYQQbYCEMiGEEEKINkBC2Qkyd+5c0tPTsVgsDBo0iOXLl7d2k9qdWbNmMWTIEEJCQoiNjeWSSy5h586drd2sdm/WrFkoisKdd97Z2k1pd/Lz87nmmmuIiorCZrPRv39/srKyWrtZ7YrH4+Hvf/876enpWK1WOnfuzMMPP4yqqq3dtFPesmXLGDduHImJiSiKwieffBKwXtM0HnroIRITE7FarZx11lls3bq1dRp7ipBQdgLMnz+fO++8k7/97W9s2LCBkSNHcsEFF5CTk9PaTWtXli5dyrRp0/jpp59YtGgRHo+HMWPGUFtb29pNa7fWrl3LK6+8Qt++fVu7Ke1ORUUFI0aMwGg08tVXX7Ft2zaeeeYZwsPDW7tp7coTTzzBSy+9xAsvvMD27dt58skneeqpp3j++edbu2mnvNraWvr168cLL7zQ5Ponn3ySZ599lhdeeIG1a9cSHx/Peeed538GtWiCJn63oUOHalOnTg1Y1qNHD+2+++5rpRZ1DMXFxRqgLV26tLWb0i7Z7Xata9eu2qJFi7RRo0Zp06dPb+0mtSv33nuvdsYZZ7R2M9q9P/zhD9r1118fsOyyyy7TrrnmmlZqUfsEaAsWLPB/V1VVi4+P1x5//HH/MofDoYWFhWkvvfRSK7Tw1CA9Zb+Ty+UiKyuLMWPGBCwfM2YMK1eubKVWdQxVVVUAREZGtnJL2qdp06bxhz/8gdGjR7d2U9qlhQsXMnjwYCZMmEBsbCwDBgzg1Vdfbe1mtTtnnHEGixcvZteuXQBs3LiRH3/8kQsvvLCVW9a+7d+/n6KiooBzo9lsZtSoUXJuPIYO90DyE620tBSv10tcXFzA8ri4OIqKilqpVe2fpmnMnDmTM844g969e7d2c9qd9957j/Xr17N27drWbkq7tW/fPl588UVmzpzJX//6V9asWcMdd9yB2Wxm8uTJrd28duPee++lqqqKHj16oNfr8Xq9PProo1x55ZWt3bR27fD5r6lz48GDB1ujSacECWUniKIoAd81TWu0TJw4t99+O5s2beLHH39s7aa0O7m5uUyfPp1vv/0Wi8XS2s1pt1RVZfDgwTz22GMADBgwgK1bt/Liiy9KKDuB5s+fzzvvvMO7775Lr169yM7O5s477yQxMZFrr722tZvX7sm58deRUPY7RUdHo9frG/WKFRcXN/oXgjgx/vznP7Nw4UKWLVtGcnJyazen3cnKyqK4uJhBgwb5l3m9XpYtW8YLL7yA0+lEr9e3Ygvbh4SEBHr27BmwLDMzk48++qiVWtQ+3X333dx3331cccUVAPTp04eDBw8ya9YsCWUnUXx8PODrMUtISPAvl3PjscmYst/JZDIxaNAgFi1aFLB80aJFDB8+vJVa1T5pmsbtt9/Oxx9/zPfff096enprN6ldOvfcc9m8eTPZ2dn+1+DBg7n66qvJzs6WQHaCjBgxotGULrt27SItLa2VWtQ+1dXVodMFnur0er1MiXGSpaenEx8fH3BudLlcLF26VM6NxyA9ZSfAzJkzmTRpEoMHD+b000/nlVdeIScnh6lTp7Z209qVadOm8e677/Lpp58SEhLi750MCwvDarW2cuvaj5CQkEbj9IKCgoiKipLxeyfQjBkzGD58OI899hiXX345a9as4ZVXXuGVV15p7aa1K+PGjePRRx8lNTWVXr16sWHDBp599lmuv/761m7aKa+mpoY9e/b4v+/fv5/s7GwiIyNJTU3lzjvv5LHHHqNr16507dqVxx57DJvNxlVXXdWKrW7jWvfmz/Zjzpw5WlpammYymbSBAwfKNA0nAdDk680332ztprV7MiXGyfHZZ59pvXv31sxms9ajRw/tlVdeae0mtTvV1dXa9OnTtdTUVM1isWidO3fW/va3v2lOp7O1m3bK++GHH5r8f/K1116raZpvWox//OMfWnx8vGY2m7UzzzxT27x5c+s2uo1TNE3TWikPCiGEEEKIBjKmTAghhBCiDZBQJoQQQgjRBkgoE0IIIYRoAySUCSGEEEK0ARLKhBBCCCHaAAllQgghhBBtgIQyIYQQQog2QEKZEO3QgQMHUBSF7Ozs1m6K344dOzjttNOwWCz079+/yTKapnHzzTcTGRnZ5trfmpYsWYKiKFRWVjZb5q233iI8PLzF2vRznTp14rnnnmu1/QvRHkgoE+IkmDJlCoqi8Pjjjwcs/+STT1AUpZVa1br+8Y9/EBQUxM6dO1m8eHGTZb7++mveeustPv/8cwoLC0/YY52mTJnCJZdcckLqak8kSAnRtkgoE+IksVgsPPHEE1RUVLR2U04Yl8v1m7fdu3cvZ5xxBmlpaURFRTVbJiEhgeHDhxMfH4/B0LYez+v1euVB1kKIk0ZCmRAnyejRo4mPj2fWrFnNlnnooYcaXcp77rnn6NSpk//74V6exx57jLi4OMLDw/nnP/+Jx+Ph7rvvJjIykuTkZN54441G9e/YsYPhw4djsVjo1asXS5YsCVi/bds2LrzwQoKDg4mLi2PSpEmUlpb615911lncfvvtzJw5k+joaM4777wmj0NVVR5++GGSk5Mxm83079+fr7/+2r9eURSysrJ4+OGHURSFhx56qFEdU6ZM4c9//jM5OTkoiuL/DTRN48knn6Rz585YrVb69evHhx9+6N/O6/Vyww03kJ6ejtVqpXv37vzrX/8K+I3ffvttPv30UxRFQVEUlixZ0uQlwezsbBRF4cCBA8CRS4Kff/45PXv2xGw2c/DgQVwuF/fccw9JSUkEBQUxbNiwgN/24MGDjBs3joiICIKCgujVqxdffvllk78dwDvvvMPgwYMJCQkhPj6eq666iuLi4kblVqxYQb9+/bBYLAwbNozNmzc3W+fevXu5+OKLiYuLIzg4mCFDhvDdd9/515911lkcPHiQGTNm+H+Xw1auXMmZZ56J1WolJSWFO+64g9raWv/64uJixo0bh9VqJT09nf/973/NtkMIcfwklAlxkuj1eh577DGef/558vLyfldd33//PQUFBSxbtoxnn32Whx56iIsuuoiIiAhWr17N1KlTmTp1Krm5uQHb3X333dx1111s2LCB4cOHM378eMrKygAoLCxk1KhR9O/fn3Xr1vH1119z6NAhLr/88oA63n77bQwGAytWrODll19usn3/+te/eOaZZ3j66afZtGkTY8eOZfz48ezevdu/r169enHXXXdRWFjIX/7ylybrOBzsCgsLWbt2LQB///vfefPNN3nxxRfZunUrM2bM4JprrmHp0qWALxAmJyfz/vvvs23bNh588EH++te/8v777wPwl7/8hcsvv5zzzz+fwsJCCgsLGT58+HH/9nV1dcyaNYvXXnuNrVu3Ehsby3XXXceKFSt477332LRpExMmTOD888/3H++0adNwOp0sW7aMzZs388QTTxAcHNzsPlwuF4888ggbN27kk08+Yf/+/UyZMqVRubvvvpunn36atWvXEhsby/jx43G73U3WWVNTw4UXXsh3333Hhg0bGDt2LOPGjSMnJweAjz/+mOTkZB5++GH/7wKwefNmxo4dy2WXXcamTZuYP38+P/74I7fffru/7ilTpnDgwAG+//57PvzwQ+bOndtkiBRC/Eqt+zx0Idqna6+9Vrv44os1TdO00047Tbv++us1TdO0BQsWaEf/Z/ePf/xD69evX8C2s2fP1tLS0gLqSktL07xer39Z9+7dtZEjR/q/ezweLSgoSJs3b56maZq2f/9+DdAef/xxfxm3260lJydrTzzxhKZpmvbAAw9oY8aMCdh3bm6uBmg7d+7UNE3TRo0apfXv3/8XjzcxMVF79NFHA5YNGTJEu+222/zf+/Xrp/3jH/84Zj0/P/aamhrNYrFoK1euDCh3ww03aFdeeWWz9dx2223aH//4R//3o/88Dvvhhx80QKuoqPAv27BhgwZo+/fv1zRN0958800N0LKzs/1l9uzZoymKouXn5wfUd+6552r333+/pmma1qdPH+2hhx465rEey5o1azRAs9vtAW197733/GXKyso0q9WqzZ8/39/WsLCwY9bbs2dP7fnnn/d/T0tL02bPnh1QZtKkSdrNN98csGz58uWaTqfT6uvrtZ07d2qA9tNPP/nXb9++XQMa1SWE+HXa1oANIdqhJ554gnPOOYe77rrrN9fRq1cvdLojHdtxcXEBg+D1ej1RUVGNeitOP/10/2eDwcDgwYPZvn07AFlZWfzwww9N9uDs3buXbt26ATB48OBjtq26upqCggJGjBgRsHzEiBFs3LjxOI+wadu2bcPhcDS6bOpyuRgwYID/+0svvcRrr73GwYMHqa+vx+VyNXuH569lMpno27ev//v69evRNM3/+xzmdDr9Y+XuuOMObr31Vr799ltGjx7NH//4x4A6fm7Dhg089NBDZGdnU15e7h+3lpOTQ8+ePf3ljv7zjIyMpHv37v4/z5+rra3ln//8J59//jkFBQV4PB7q6+v9PWXNycrKYs+ePQGXJDVNQ1VV9u/fz65du/x/lw7r0aNHq975KUR7IaFMiJPszDPPZOzYsfz1r39tdElKp9OhaVrAsqYuRxmNxoDviqI0uex4BqEfHjukqirjxo3jiSeeaFQmISHB/zkoKOgX6zy63sM0Tfvdd5oePp4vvviCpKSkgHVmsxmA999/nxkzZvDMM89w+umnExISwlNPPcXq1auPWffhkHv079/Ub2+1WgOOQ1VV9Ho9WVlZ6PX6gLKHA+6NN97I2LFj+eKLL/j222+ZNWsWzzzzDH/+858b1V9bW8uYMWMYM2YM77zzDjExMeTk5DB27NjjurGiud/47rvv5ptvvuHpp58mIyMDq9XKn/70p1+sU1VVbrnlFu64445G61JTU9m5c+cx9yuE+O0klAnRAh5//HH69+/fqHclJiaGoqKigABzIufm+umnnzjzzDMB8Hg8ZGVl+ccGDRw4kI8++ohOnTr9rrscQ0NDSUxM5Mcff/TvC3yDxYcOHfq72n94cH1OTg6jRo1qsszy5csZPnw4t912m3/Z3r17A8qYTCa8Xm/AspiYGMA33i0iIgI4vt9+wIABeL1eiouLGTlyZLPlUlJS/GP97r//fl599dUmQ9mOHTsoLS3l8ccfJyUlBYB169Y1WedPP/1EamoqABUVFezatYsePXo0WXb58uVMmTKFSy+9FPCNMTt8A8NhTf0uAwcOZOvWrWRkZDRZb2ZmJh6Ph3Xr1vn/fHfu3HnMOdSEEMdHBvoL0QL69OnD1VdfzfPPPx+w/KyzzqKkpIQnn3ySvXv3MmfOHL766qsTtt85c+awYMECduzYwbRp06ioqOD6668HfIPRy8vLufLKK1mzZg379u3j22+/5frrr290ov4ld999N0888QTz589n586d3HfffWRnZzN9+vTf1f6QkBD+8pe/MGPGDN5++2327t3Lhg0bmDNnDm+//TYAGRkZrFu3jm+++YZdu3bxwAMP+G8SOKxTp05s2rSJnTt3UlpaitvtJiMjg5SUFB566CF27drFF198wTPPPPOLberWrRtXX301kydP5uOPP2b//v2sXbuWJ554wn+H5Z133sk333zD/v37Wb9+Pd9//z2ZmZlN1peamorJZOL5559n3759LFy4kEceeaTJsg8//DCLFy9my5YtTJkyhejo6GbnX8vIyODjjz8mOzubjRs3ctVVVzXqSe3UqRPLli0jPz/ff9ftvffey6pVq5g2bRrZ2dns3r2bhQsX+gNl9+7dOf/887nppptYvXo1WVlZ3HjjjVit1l/87YQQxyahTIgW8sgjjzS6VJmZmcncuXOZM2cO/fr1Y82aNU3emfhbPf744zzxxBP069eP5cuX8+mnnxIdHQ1AYmIiK1aswOv1MnbsWHr37s306dMJCwsLGL92PO644w7uuusu7rrrLvr06cPXX3/NwoUL6dq16+8+hkceeYQHH3yQWbNmkZmZydixY/nss89IT08HYOrUqVx22WVMnDiRYcOGUVZWFtBrBnDTTTfRvXt3Bg8eTExMDCtWrMBoNDJv3jx27NhBv379eOKJJ/i///u/42rTm2++yeTJk7nrrrvo3r0748ePZ/Xq1f6eLq/Xy7Rp08jMzOT888+ne/fuzJ07t8m6YmJieOutt/jggw/o2bMnjz/+OE8//XSTZR9//HGmT5/OoEGDKCwsZOHChZhMpibLzp49m4iICIYPH864ceMYO3YsAwcODCjz8MMPc+DAAbp06eLvOezbty9Lly5l9+7djBw5kgEDBvDAAw8EXNJ+8803SUlJYdSoUVx22WXcfPPNxMbGHtdvJ4RonqL9/CwhhBBCCCFanPSUCSGEEEK0ARLKhBBCCCHaAAllQgghhBBtgIQyIYQQQog2QEKZEEIIIUQbIKFMCCGEEKINkFAmhBBCCNEGSCgTQgghhGgDJJQJIYQQQrQBEsqEEEIIIdoACWVCCCGEEG2AhDIhhBBCiDbg/wEeOxaiPVDlNQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2702,35 +6340,103 @@ } ], "source": [ - "for metric in metrics[task]:\n", - " results = {}\n", - " for m in methods_rf:\n", - " results[m] = []\n", - " for m in methods_rf:\n", - " results[m].append(combined_df[combined_df['fi'] == m][metric+f\"_before_ablation\"].mean())\n", - " for i in range(num_features):\n", - " results[m].append(combined_df[combined_df['fi'] == m][metric+f\"_after_ablation_{i+1}\"].mean())\n", - " fig, ax = plt.subplots()\n", - " for m in methods_rf:\n", - " if m in [\"TreeSHAP_RF\"]:#, \"LIME_RF_plus\"]:\n", - " ax.plot(range(num_features+1), results[m], label=m, linestyle='dashed')\n", - " else:\n", - " ax.plot(range(num_features+1), results[m], label=m)\n", - " ax.set(xlabel='Number of features ablated', ylabel=metric,\n", - " title=f'Train size = {n_testsize[\"train_size\"].values[0]}, Test size = {n_testsize[\"test_size\"].values[0]}')\n", - " ax.legend()\n", - " # plt.savefig(f\"ablation_fico.png\")\n", - " plt.show()" + "for a_model in ablation_models[task]:\n", + " for metric in metrics[task]:\n", + " results = {}\n", + " for m in methods_all:\n", + " results[m] = []\n", + " for m in methods_all:\n", + " results[m].append(combined_df[combined_df['fi'] == m][a_model+\"_train_\"+metric+f\"_before_ablation\"].mean())\n", + " for i in range(num_features):\n", + " results[m].append(combined_df[combined_df['fi'] == m][a_model+\"_train_\"+metric+f\"_after_ablation_{i+1}\"].mean())\n", + " fig, ax = plt.subplots()\n", + " for m in methods_all:\n", + " if m in [\"TreeSHAP_RF\",\"Kernel_SHAP_RF_plus\", \"LIME_RF_plus\"]:\n", + " ax.plot(range(num_features+1), results[m], label=m, linestyle='dashed')\n", + " else:\n", + " ax.plot(range(num_features+1), results[m], label=m)\n", + " ax.set(xlabel='Number of features ablated', ylabel=metric,\n", + " title=f'Ablation model = {a_model}, Train size = {n_testsize[\"train_size\"].values[0]}, Test size = {n_testsize[\"test_size\"].values[0]}')\n", + " ax.legend()\n", + " # plt.savefig(f\"ablation_fico.png\")\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Test data" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJ7UlEQVR4nOzdd3gU1dfA8e+2bPqmkWxCQugtoQkSihCUXi0or4IIgiiiIAIqKlIsgNiVn0oTUFBUFBSUUERCl4CEDtJrQijpPbvz/hFYWJJAAgmTcj7PMw87M3dmzmw27MktczWKoigIIYQQQlRgWrUDEEIIIYRQmyREQgghhKjwJCESQgghRIUnCZEQQgghKjxJiIQQQghR4UlCJIQQQogKTxIiIYQQQlR4khAJIYQQosKThEgIIYQQFZ4kRKLC0Gg0hVrWrVt3R9eZOHEiGo2meIIupHXr1hVL7GqJiYlh3LhxtGzZEh8fH9zd3WnatCkzZ87EYrHkKb9t2zY6d+6Mm5sbrq6u3H///WzatCnfc2dnZ/Pxxx/ToEEDnJyc8PDwoFWrVmzevLlIMZ44caLQn6ETJ07czttg59y5c0ycOJHo6Og7PtdVanw2i9u4cePo0aMHlStXRqPRMHDgwEId9+STT6LRaOjRo0e++y9evMhLL71E1apVMRqN+Pn50bVrVy5fvlyM0YvSTK92AELcLVu2bLFbf+edd/j7779Zu3at3fb69evf0XWeeeYZunTpckfnKKp77rmHLVu23HHsatmxYwfffvstTz31FG+99RYGg4EVK1bw/PPPs3XrVr755htb2aioKNq2bUvz5s357rvvUBSFadOm0b59e/7++29atmxpK2uxWHj44YfZuHEjr776Kq1atSI1NZUdO3aQmppapBj9/f3zfIaGDRtGYmIiCxcuzFP2Tp07d45JkyZRtWpVGjdufMfnA3U+m8Xtk08+oWHDhvTq1cvuc3Ezf/zxB0uXLsXd3T3f/efOnaNNmzbo9XreeustatWqxcWLF/n777/JysoqzvBFaaYIUUENGDBAcXFxuWW51NTUuxBNxXb58mUlKysrz/YXXnhBAZRTp07ZtnXu3Fnx8/Oz+7kkJSUpPj4+SqtWreyO/+STTxStVqts2bKlROIODw9XQkJCSuTcUVFRCqDMnTu3RM5fVlksFttrFxcXZcCAATctn5CQoFSuXFn5+OOPleDgYKV79+55yjz44INK5cqVlcuXLxd3uKIMkSYzIa7Trl07QkNDWb9+Pa1atcLZ2ZlBgwYB8OOPP9KpUyf8/f1xcnKiXr16jB07Nk9NQ37NElWrVqVHjx5ERERwzz334OTkRN26dQv9F+5XX31Fo0aNcHV1xc3Njbp16/LGG2/Y9t/YZHar5p3rrVmzhvbt2+Pu7o6zszOtW7fmr7/+Kupbd0c8PT0xGAx5tjdv3hyAM2fO2LZt2rSJdu3a4ezsbNvm5uZG27Zt2bx5MzExMbbtn332GW3btqVFixYlGL29pKQkxowZQ7Vq1XBwcKBy5cqMHDkyz+fk559/JiwsDJPJhLOzM9WrV7d91tatW8e9994LwNNPP237uU2cOLHA66alpdmu6+joiJeXF82aNeOHH36wlbnxszlv3rwCPyPt2rWzlVMUhS+//JLGjRvj5OSEp6cnjz76KMeOHSuGd6xotNqifW2NHj0af39/RowYke/+EydO8PvvvzNkyBA8PT2LI0RRRkmTmRA3iImJ4cknn+TVV19l8uTJtv+ADx8+TLdu3Rg5ciQuLi4cPHiQ999/n23btuVpdsvPrl27GD16NGPHjsXPz4/Zs2czePBgatasSdu2bQs8btGiRQwbNozhw4fz4YcfotVqOXLkCPv37y/wmPyady5cuMCTTz5J5cqVbdsWLFjAU089xYMPPsj8+fMxGAzMmDGDzp07s3LlStq3b3/Te8rJybnlfQPodLrb6ruydu1a9Ho9tWvXtm3LysrCaDTmKXt12549e/D39+f06dOcOHGCnj178sYbbzBnzhwuXbpEnTp1ePXVVxkwYECR47mVtLQ0wsPDOXPmDG+88QYNGzZk3759jB8/nj179rBmzRo0Gg1btmzh//7v//i///s/Jk6ciKOjIydPnrR9ju655x7mzp3L008/zbhx4+jevTsAgYGBBV571KhRfPfdd7z77rs0adKE1NRU9u7dy6VLlwo8pnv37nk+J1u2bGHUqFGEhITYtj333HPMmzePESNG8P7773P58mXefvttWrVqxa5du/Dz8yvwGoqi5NsPLD96ffF+Ja1Zs4Zvv/2WqKgodDpdvmU2bNiAoigEBATwxBNPsGzZMnJycmjRogVTpkyxa4IV5ZzKNVRCqCa/JrPw8HAFUP7666+bHmu1WpXs7GwlMjJSAZRdu3bZ9k2YMEG58VcrODhYcXR0VE6ePGnblp6ernh5eSnPPffcTa/14osvKh4eHjct8/fffyuA8vfff+e7PzU1VWnevLni7++vnDhxwrbNy8tL6dmzp11Zi8WiNGrUSGnevPlNr6koigIUarmdZp+VK1cqWq1Wefnll+22N27cWKldu7Zd00l2drZSvXp1BVC+//57RVEUZcuWLQqguLu7K/Xr11d++uknZeXKlcqjjz6qAMrMmTOLHNONbmwymzJliqLVapWoqCi7cosXL1YA5c8//1QURVE+/PBDBVASEhIKPHdRm8xCQ0OVhx566KZl8vtsXu/gwYOKt7e3cv/99yuZmZmKolx7Hz/66CO7sqdPn1acnJyUV1999abXvPrZLMxy/PjxQt3rVTdrMktOTlaqVq2qvP7667Zt+TWZTZkyxfY5efDBB5WIiAjll19+URo2bKg4Ojra/W6L8k1qiIS4gaenJw888ECe7ceOHWPcuHGsXbuWuLg4FEWx7Ttw4AANGza86XkbN25MlSpVbOuOjo7Url2bkydP3vS45s2bM336dJ544gkef/xxWrdujY+PT6Hvx2Kx8H//938cOHCA9evXExwcDMDmzZu5fPkyAwYMyFPT06VLF6ZNm0ZqaiouLi4FnjsqKqpQMVSrVq3Q8QL8+++/9OnTx/ZX+vWGDx/O4MGDefHFF3nzzTexWq1MmjTJ9j5erdGzWq0AZGRk8Oeff9ruu2PHjjRr1oy3336bIUOGFCmuW1m+fDmhoaE0btzY7j3t3LmzrUmza9eutuawPn36MHjwYFq3bm1Xc3c7mjdvzsKFCxk7dixdunQhLCwMJyenQh8fGxtLly5d8Pf3Z8mSJTg4ONjuSaPR8OSTT9rdk9lsplGjRrcc2di0adNCf04CAgIKHe+tjB07FoPBwPjx429a7urnJDAwkF9++cVWk9SyZUtq1qzJtGnTWLBgQbHFJUovSYiEuEF+I4RSUlJo06YNjo6OvPvuu9SuXRtnZ2dOnz7NI488Qnp6+i3P6+3tnWeb0Wi85bH9+/cnJyeHWbNm0bt3b6xWK/feey/vvvsuHTt2vOV1hw4dSkREBH/88YfdaKXz588D8OijjxZ47OXLl2+aEBV29FNBzRX52blzJx07dqRWrVr8+eefeZrHBg0axIULF3j33Xf56quvgNwvrzFjxvD+++/bEour73fdunVtyRDkPn6hc+fOTJkyhbi4OHx9fQsd262cP3+eI0eO5NsfCnKHdgO0bduWpUuX8vnnn/PUU0+RmZlJSEgIb775Jk888cRtXfvzzz8nMDCQH3/8kffffx9HR0c6d+7MBx98QK1atW56bHJyMt26dSM7O5sVK1ZgMpns7klRlAKbxapXr37Tc7u6uhb6c1JcTWbbtm3jyy+/5NdffyUjI4OMjAwgN/nJyckhISEBJycnjEaj7XPSoUMHu8+pv78/jRo14t9//y2WmETpJwmREDfIr6/L2rVrOXfuHOvWrSM8PNy2PSEh4a7E9PTTT/P000+TmprK+vXrmTBhAj169OC///6z+7K/0cSJE5k9ezZz586lU6dOdvuu1jJ98cUXBXY6vlnfEKDAL/4bzZ07t1DPi9m5cycdOnQgODiYVatW2X0xX++1115j5MiRHD58GDc3N4KDg3nuuedwcXGhadOmANSoUcOu4/X1rtbuFbWD7q34+Pjg5ORUYGf562v2HnzwQR588EEyMzPZunUrU6ZMoW/fvlStWvW2+q24uLgwadIkJk2axPnz51mxYgVjx46lZ8+eHDx4sMDjsrOz6d27N0ePHmXDhg15+in5+Pig0WjYsGHDTftuFSQyMpL777+/UPdw/PhxqlatWqiyN7N//34UReHhhx/Os+/06dN4enryySefMHLkyJvW7CqKUuyfEVF6SUIkRCFcTZJu/M9/xowZdzUOFxcXunbtSlZWFg899BD79u0rMCGaM2cOkyZN4u233843GWndujUeHh7s37+fF1988bbiKc4ms+joaDp06EBgYCCrV6++5Ygfo9FIaGgoAKdOneLHH39kyJAhtmYivV7Pgw8+yOLFizlx4oTti1ZRFCIiIqhRo0aRmh4Lo0ePHkyePBlvb+9CNxMajUbCw8Px8PBg5cqV7Ny5k5YtW9o+a4WpfbyRn58fAwcOZNeuXXz66aekpaUVmBwOHjyYdevWsWLFinyTgx49ejB16lTOnj1Lnz59ihyLGk1mXbp04e+//86z/fHHH6datWpMmTKFmjVrAhAWFkZgYCCrVq3CYrHYaonOnTvHrl276Nu3b7HEJEo/SYiEKIRWrVrh6enJ0KFDmTBhAgaDgYULF7Jr164Sv/bVL/nWrVvj7+9PbGwsU6ZMwWQy2fqi3GjLli0MHTqU1q1b07FjR7Zu3Wq3v0WLFri6uvLFF18wYMAALl++zKOPPoqvry8XLlxg165dXLhwwdYkVZBmzZoVyz0eOnSIDh06APDee+9x+PBhDh8+bNtfo0YNKlWqBMDevXv55ZdfaNasGUajkV27djF16lRq1arFO++8Y3fed955hxUrVtClSxcmTpyIu7s7s2fPZteuXfz00092Zdu1a0dkZKRd37CiGjlyJL/88gtt27bl5ZdfpmHDhlitVk6dOsWqVasYPXo0YWFhjB8/njNnztC+fXsCAwNJSEjgs88+w2Aw2Goga9SogZOTEwsXLqRevXq4uroSEBBQYNIQFhZGjx49aNiwIZ6enhw4cIDvvvuOli1bFpgMffDBB3z33XcMHz4cFxcXu8+Ju7s79evXp3Xr1jz77LM8/fTTbN++nbZt2+Li4kJMTAwbN26kQYMGPP/88wW+J25ubsX2OYHcGqcLFy4Auf3jTp48yeLFiwEIDw+nUqVKmM1mzGZznmMdHR3x9va2e6SAVqvlk08+oU+fPjz44IM8//zzpKam8s477+Dg4MDrr79ebLGLUk7FDt1CqKqgUWYFPWhv8+bNSsuWLRVnZ2elUqVKyjPPPKP8+++/eUYCFTTKLL8HwoWHhyvh4eE3jXP+/PnK/fffr/j5+SkODg5KQECA0qdPH2X37t22MjeOMps7d+5NR/NcLzIyUunevbvi5eWlGAwGpXLlykr37t2Vn3/++aZxFadbxXv9+3vo0CGlbdu2ipeXl+Lg4KDUrFlTGTdunJKSkpLvuffs2aN0795dcXNzUxwdHZUWLVooy5Yty1OuadOmitlsLlLc+X1eUlJSlHHjxil16tRRHBwcFJPJpDRo0EB5+eWXldjYWEVRFGX58uVK165dlcqVKysODg6Kr6+v0q1bN2XDhg125/rhhx+UunXrKgaDQQGUCRMmFBjL2LFjlWbNmimenp6K0WhUqlevrrz88svKxYsXbWVu/GwOGDCgwPf8xs/lN998o4SFhSkuLi6Kk5OTUqNGDeWpp55Stm/fXqT37E5dHQma31LQKMurCvo9VBRFWbp0qXLvvfcqjo6OislkUnr16qXs27evBO5AlFYaRbmDP4eEEKIcSE5OxsvLi08//ZQXXnhB7XCEECqQ3mJCiApv/fr1VK5cudiH4Qshyg6pIRJCCCFEhSc1REIIIYSo8CQhEkIIIUSFJwmREEIIISo8SYiEEEIIUeHJgxkLyWq1cu7cOdzc3PKd2kEIIYQQpY+iKCQnJxMQEHDTqVgkISqkc+fOERQUpHYYQgghhLgNp0+fzjNX3/UkISokNzc3IPcNdXd3VzkaIYQQQhRGUlISQUFBtu/xgkhCVEhXm8nc3d0lIRJCCCHKmFt1d5FO1UIIIYSo8CQhEkIIIUSFJwmREEIIISo8SYiEEEIIUeFJQiSEEEKICk8SIiGEEEJUeJIQCSGEEKLCk4RICCGEEBWeJERCCCGEqPAkIRJCCCFEhScJkRBCCCEqPEmIhBBCCFHhyeSuQgghRDkSl5yBxapg1OtwNGgx6nXotDef2FRIQiSEEEIUC0VRuJSaRWaOlcxsC1kWK5nZ1tz1HAsmJwMNAz1s5b/dcoKMbItdmdxjrVT1ceH5djVsZZ/6ZhsJaVlXyl4pd+U6IZVN/PRcS1vZHp9vJC450y42g06DUa+jrtmNxc+3sm0fuWgnsUkZOBp0OOp1GA1a27+VXI0Mb1/LVjZibyzJGdk4GnQY9Vq7f12MOmr6utnKZuZYMGi1aMtQIqZqQlS1alVOnjyZZ/uwYcP43//+h6IoTJo0iZkzZxIfH09YWBj/+9//CAkJsZXNzMxkzJgx/PDDD6Snp9O+fXu+/PJLAgMDbWXi4+MZMWIEv//+OwC9evXiiy++wMPDo8TvUQghROlmtSpcTsvifFIGccmZeDk70CjIA4CEtCyGLthB1tUE5GriciWJaV/Pl4/7NM49jwLN3l1T4HXur1OJuU83t61P/vMAGdnW60ooQG4C0byaB4+38MKiWMix5rA39jjx6RloNFbQWFEszig57gCkZKXxz5mNWDISyElPoJZLNJW1KSiKFY1GwSnLGbdMD7TZCgEpDvwWuQJFUVAUK0mxZ1Ays0nXKKSj4JrljHO6JxYUsly0fJuVjoIVRbGy5dhFUjKyAQWNRsGU5URwiidaFFyNWlY2SMaCFUVROBibSEpmDhqNglYDPjlGmqV5Y9CCo17DvqrxZCoWrFi5nJpFlsXCcLdg6rd/A3zrFeNPt/A0iqIoqlwZuHDhAhaLxba+d+9eOnbsyN9//027du14//33ee+995g3bx61a9fm3XffZf369Rw6dAg3t9xM9Pnnn2fZsmXMmzcPb29vRo8ezeXLl9mxYwc6nQ6Arl27cubMGWbOnAnAs88+S9WqVVm2bFmhY01KSsJkMpGYmIi7u3sxvgtCCCGKk1WxkmXJQoOWpHSF80kZWMnA0TmRbEs2l9NT+WLtQeLTUknISCcpI4OstECUbG8AOjXS0aT+cbIt2aRlZzB38xHQWAErGo2F7KQmWFJza05a1cvGo/IqLIoFi9XClmNxoLGi1VrRaKwY09riltMKo15HrcAk9lk/xmK1YFEspGRmYsUCWLFiIdT5Ee51fxw3bTpO+hO8f2p8gff4uMWN0Wla9JnxnM9OpIu/Z4FlH0tKZvyleAAStFraBAcWWLZHSipTLlwCIFMDzapWKbBsh9Q0Pom7aFtvVDUIqyb/GqHWael8ff6Cbb1FcCCpWvtuzN+ei6XJY4ugZvsCr3k7Cvv9rWoNUaVKlezWp06dSo0aNQgPD0dRFD799FPefPNNHnnkEQDmz5+Pn58f33//Pc899xyJiYnMmTOH7777jg4dOgCwYMECgoKCWLNmDZ07d+bAgQNERESwdetWwsLCAJg1axYtW7bk0KFD1KlT5+7etBBCVDBWxcql9EucTTlLUlYS2ZZsMi2ZZFmzyLJk0TawLWYXMwC7L+xm1YlVtn1ZliyyrFlkWjLJtmQztNFQGvg04lJKJhvPRTJ7/2e557JkkZKZiYUsFHL/0M489wRZiY0AaNngLHtzvrAPzDl3cQCsMY9gyvGnkpsjTs5n+TL6S1sxBy/7wwY0a0Wvavdh1Os4mbqXkes32PZpna+VU4BnGzsypIovpF/m4MXTPLYvrsD3qcWFRbx04Auw5nBSr+f9oAA0ioIe0CsKOkCnKOgVMCWfwTEhEQBHrZaaWS7oFdBpdeg1erRaHVo0aIBglwBwrgMaLQYNtFYuotFobPs1aNBqNGjQEGIyg3dL0GjQKdAt5xTaK/tBgxYtWk3uq3o+rhAYCBotaLQ8kXoo92waLblVLRpQNChAgKML5/2CyVFAQctg3QlyUNCg4XJqNpk5Cu5NHgGv6oX6TJWEUtOHKCsriwULFjBq1Cg0Gg3Hjh0jNjaWTp062coYjUbCw8PZvHkzzz33HDt27CA7O9uuTEBAAKGhoWzevJnOnTuzZcsWTCaTLRkCaNGiBSaTic2bN0tCJIQQd0hRFC5lXOJcyjnOpZzjbMpZelTvgZ+LHwDf7P2Gz/79rMDjv2z/JWYXM9kWK3svHGL+/vkFlt22pyYJF85iVSAs9BSnLacLLGslG40GfFyNuBic8dJ74aBzwKgzkpYJjjojTgYjzgYjA9qF0yH4AQCOJR7De/9jOOgccNA5oNfoMVgt6HKy0FuyCHM2EHJxJaRdxjPlHG+7hqLPTkWfmYouK/dffWYyupx0qpx+F3ImARCs0fCjQY9eAT0KOgV0KLZ1Z6vClUyCKhoHdl2yonX2BCdPcPbKXZzy/uvt7MUSJ09w9ADtzQePuwBf37TENXrg/UKWBRhbhLJDilD2bik1CdHSpUtJSEhg4MCBAMTGxgLg5+dnV87Pz8/W7yg2NhYHBwc8PT3zlLl6fGxsLL6+vnmu5+vrayuTn8zMTDIzr3VKS0pKKvpNCSFEOaAoCvGZ8TjrnXHUOwKw8exGFh5YyNmUs8SkxJBhybA7ppZnLVtCFOASgFajxc/ZD5PRg+Q0sFh1WCw6snO0TFx6gsSEDC6lZhEeqmVgyMAriYiBT1YfR7HqQNGjKHpS0vxQFNBqwNVal++6fpebuGgdWLwjFg9HZ8xuLgSY3An0cMPXzRm97mqS8GT+N2jJhsQzcCwSEk5RPeEU4xPOQMKp3CU5FhRLvod6Aw/f7M3TaG3Ji5OTF/XtkhnPApIcTzQGJ8pOd+TyodQkRHPmzKFr164EBATYbdfc0B6pKEqebTe6sUx+5W91nilTpjBp0qTChC6EEOXC+dTz7Lqwy1bLcy71HGeTc/9Nz0nnf+3/R9vAtgAkZCaw8exG27EaNPg6++LrFICL1octhzNY++8+jl5IoY45kO39tmPQGcixWKk9bgXWPL1XswDISA1gdLPetq3x5w7g7KDDz90RXzej7V9vV2OeoeRjO9TM/8YsOZB8DuJPXktyEk5BwpX1pLOgWPM/9noG5ytJy5Vam3xqa25MbApTayNKh1KREJ08eZI1a9bw66+/2raZzbntybGxsfj7+9u2x8XF2WqNzGYzWVlZxMfH29USxcXF0apVK1uZ8+fP57nmhQsX8tQ+Xe/1119n1KhRtvWkpCSCgoJu8w6FEEI9iqKQlJXE2ZSzuYnO1YQn5RyDQgdxj989AESdj+L1Da/new4NGi6lX+lsm2Mh2CWESa0mEeAagNk5gJcWHOfosQyOZOYAsJps4AQAKZkeGHQGAPQ6LY/cE4ijQYufmyO+7kZ8r/vXy8XB7rpvdCvEiCOrBZJjcpMbu6TnZO6SeLbAGh4bnRE8qlxbPIOvvA4GN//cBMfgdOtYRJlVKhKiuXPn4uvrS/fu3W3bqlWrhtlsZvXq1TRp0gTI7WcUGRnJ++/ntmo2bdoUg8HA6tWr6dOnDwAxMTHs3buXadOmAdCyZUsSExPZtm0bzZvnDnf8559/SExMtCVN+TEajRiNxhK5XyGEKG5JWUm5tTkp56jjVYdAt9yRROtOr2PshrGkZqfme9x9le+zJUTV3KvRqFIjKrtWprJrZTwMvijZnqSluXMx0YXlmzL5bOnfnLqcRrNgL34a+ojtPJdSjpCSmYNWA8HeLlT3caGGrys1KrlQx2w/sufDxxoV7easVkiJvZboxJ+8VruTcCq3ucuaffNz6BzAFHRDwhN8bd3FV2pyKjjVEyKr1crcuXMZMGAAev21cDQaDSNHjmTy5MnUqlWLWrVqMXnyZJydnenbty8AJpOJwYMHM3r0aLy9vfHy8mLMmDE0aNDANuqsXr16dOnShSFDhjBjxgwgd9h9jx49pEO1EKJMOpZ4jCWHl3Aq6ZStpic5O9m2f1zYOP6v7v8B4O7gbkuGvB29bclOgGsAAa4BNKnUlBMXUzl6IYW0LE8WdFtgO0+LyX8Rm5QBXL6yXJO7/ZpP/q8xHk4Gqng7Y9TrinZDigIpcdclOSfta3oST4Ml6+bn0OrtEx6P4OtqeaqAq1kSHnFTqidEa9as4dSpUwwaNCjPvldffZX09HSGDRtmezDjqlWrbM8gAvjkk0/Q6/X06dPH9mDGefPm2Z5BBLBw4UJGjBhhG43Wq1cvpk+fXvI3J4QQt8litXAi6QT7L+1n/6X9tAlsQ6uA3Frty+mXmbdvXp5jvBy9qOxaGRcHF9u2+t71+e2h3/B38cdJ70TE3hj2nk3i0OkU/ryQwomL/5FlOQiAn7uRno2u9eOs6euKTquheiUXalRytdX41KzkSiU3+xr0e6veMDb9elmpuQlPShwknbmhpudKwpOTUfDxABodmCpfqdUJztu05eYP2iImYkJcR9UHM5Yl8mBGIURJSs5KZu2ptbYE6FD8IdJz0m37n6z3JK81fw2AlKwUPvv3M2p41LDV+Pi7+uOocyQmMYOjF1I4GpfCsYupJKRl8/kTTWzn6TNjC9uO29f2GPVaqlfKTXY+/b/GtlFZFqtS8BxY2RmQGnct0Uk5D6kXcv+9cVtWyq3fAI0W3Ctfq925sT+PWwDoVP8bXpRBZeLBjEIIUdFkW7M5lnCM/Zf24+3kbRu1lZ6TzrhN4+zKOumdqOtVl/re9bmv8n227a4OrrzZ4k3b+mdrDrP6wHaOXUglLStv5+H3ezfEySG39qRTfT9q+braEqAalVyp7OGUO+dUThakxNgSGV3K+SsJzoUbEp4LkJlYtBvXO4Grb25Nzo39dzyDc5OhKx2vhVCDJERCCFFCrIqVg5cPsv/Sfg5cOsD+S/v5L/4/sqy5/WHCA8NtCVElp0rcH3Q/gW6B1POqR4h3CMHuwei0OhRF4fTldBZtO8Xmo5fYezaRlS+3xXClJudMfBp7z+Y+K02v1RDs7XyticvLmDsCK+sSpMTxjGsccCWpib2uNic1DtLji3aDOgdw9QOXSrn/uvpeWfLZ5uAKt3hkihBqkoRICCGKQaYlk8Pxh0nJTqGFfwsgd7j7wIiBdk1fAG4GN+p516NRpWujrTQaDZ8/8LltPS45g993xbD5yCU2H73E2YTrz6Gw78hxGpvSIeU8L3ifYEjzGHy1SbjnXEabGnct4Um7TO4kEoWk1eeOuHK9bnG5kuS4Xklyru53NEmSI8oNSYiEEKKI0nPS+S/+P1t/nwOXDnA04Sg5Sg7VTdX57aHfgNx5pcLMYWRYMqjnXY/63vUJ8QqhsltltBr7EU+XU7NwMuhsTVtLth7i17WbCdJcoJMmjiqGC4Q6J1BVdxGvrBh0P1wbRl/1VgFrtFdqbG6S3FytzZEHCYoKShIiIYS4ibTsNE4nn6aO17XHdPT/sz+H4g/lKetp9KSya2UsVgu6KyOevmj/RZ5yAMmpqezZt49jh/dz+exh9EmneCg4GyflPCSc5Lm0Szx346PQMm9Yd/axT24KSnicvWQElhC3IAmREEJckZKVYuvzs/9ybs3P8cTjGHVGtvTdgl6b+19mHa86XEy/SH3v+tdqfrxD8HP2uzYl0NWHCcafhPgTkHCS9LhjXDz9H46pZ/CyXKSVRsH2eFg9cPaGgBw9wLPqtU7InsHgcWXdFAQGx7vwrghRMUhCJISokG6cz/Ddre/y46Ef8y3r7uBOXFocAa65z+gZ33I8DhoDmowEW7LDqUXXPVDwJErCaTQW+yodJ8A2AZAGMnAg0RgAHsG4+9fEybe6ffLjaCr2+xZC5E8SIiFEhaAoCqeTTxMVG0XU+SiiYqNY1H0RlZwrAbmjvADMLmbqe12p+THVoL7OFZ+0RNi3zJbsGK9OHZGZVOD1NECOoiXe4EuloNq2JGfJcT2myrWpV68B/gFBOEqnZCFKBUmIhBDlVlxaHBvObLAlQHFpcXb7t5/fTteg9nB2O30yrDzm3wuvpBg4uhd2/JH73J1bUFz9OJ7jw/4MT47l+HBa8eWMUonTii9ZTmburxvA+482tJV/uG2x36YQohhIQiSEKBeu1gA5G5zxcfIBICo2iolbJtrKGLQGGlZqyL3uNbg3I5OGm+bAycGQnYpnQSd2NIFHMIpnMEnGAP7L8uZYjg//1/E+8KiCxuDEmzO3suXYJdyMesKqe9OxhjetanpT29ct94GHQohSTxIiIUSZlF8TWFxaHC83fZlBoblzIzbza0ZTv6bc6x3KvTkaGsYdxfHAekhcYn8yF1/wb2Tff8ezKrFaPzadyWHz0UtsOXqRc4nX5tvq0Ksq3obcYWBjOtdGr9USEuBum/ZCCFG2SEIkhChTLqVf4oPtH+TbBGbQGkjISABLNpzdgd+Rv5h3+jT88xso1msFdUYIbgk1HshdfEPyPHvnvT/2M2vDDvvz6zQ0qeJJqxredtubBt9kYlMhRJkgCZEQolRSFIUzyWeIOh+FTqPjwZoPAuDm4MZfJ/8iw5KBXqunoU9D7jXfy70ugTSKj8XxyAZYXT1vh+dKdaFG+9wEKLgVODijKAr/nkrgzz8PsunIRT7q04iQgNyRXXXM7mg10DDQg1Y1vGlZw5tmwV62BycKIcoXSYiEEKXC9QlQVGzucj7tPAA1TDVsCZGDzoE3wt7A38FEo5REnI5vgPWzIf64/QmdvKDG/bkJUPX7wVTZdp1955JYtvsAy3fF2E2JseXoJVtC1K2BmU4hfrg7yoSjQlQEkhAJIUqFgRED+TfuX7ttV2uAmpmbYbVko43ZDUf/4uGja+H0NlCum9ldq4egFteSIP9GeZ7OfCQuhWe/3c6xi9emvXBx0NEpxEz7er60quFj2+7sIP89ClGRyG+8EOKuUBSFMyln2B67najYKA5cPsDinottU1xUca/C7ou7bQnQveZ7aWTwxunkZji8FlbWhIwE+5N61YCaV5rBqt4HRje73ScvpXI+KZPm1XL7+AR6OhGXnIlRr6V9PV96Ngzg/rq+OBqkGUyIik6jKEoRpkGuuJKSkjCZTCQmJuLu7q52OEKUCbGpsWw5t8U2Eiw2NdZu/6IeiwjxDgHgYvpFXBQNTme2w9G1ucvF/+xPaDRB9fArnaHvz53W4gYxien8sTuGZbvOsetMItUrufDXqHDbU6l3nLxMHbM7rkb5e1CIiqCw39/yP4IQosQsObyEL3d9aVu/vgnsXvO91HCrBjG74Mhf+BxdC6e2gjX72gk0Wqjc7FotUMA9oMv739bFlExW7Ilh2a4Ytp24bNuu1UBlDyeSM3NsfYFkRJgQIj+SEAkhikVCRgJvbX6L5xs9T33v+gCE+YexJWYLzfyuNIFVaoRzRlJu7c/m2XD0b0i7aH8ijyrXRoNVawtOHre89tQVB1m844xtvXlVL3o28qdrA398XG+cMl4IIfKShEgIcccOXT7ES3+/xNmUs5xKOsWvvX5Fp9Vxj989fNthBpzaAnuWw9HRELfP/mAHV6ja5lotkFd1KGB+r5TMHNbsP8+yXed4uWNtQivnjgjr1SiAw+eT6dkogO4N/fE3OZX0LQshyhlJiIQQdyTieATjN48nPSedQNdAprWdhu7CITj6V25N0MnNkJNx3REaCGh8rRYo8F7QOxR4/oxsC2sPxrFs1znWHowjMyf3AYvVK7nYEqK2tSvRtnalErxLIUR5JwmREOK2WKwWPtv5GXP3zgWglX9Lpnk0wzTvEUg6Y1/YLSA3+an5AFRrBy7eec53o4S0LCb+vo/V+8+TmnVteH11Hxd6NArgwcYBxXg3QoiKThIiIUSRpWWn8fK6l9l8bjMAg6p0ZcThbejO/ZhbQO8EVVtfqwWqVKfAZrCrcixWzsSnU9XHBQBXo56NRy6SmmWhsocTPRsF0KOhPyEB7rYRY0IIUVwkIRJCFJlRZ0Sr0eKkc+Rth2C6RM7I3eHgBu1eg3uHgMHxluexWhW2n4xn+e5z/LknBp1Ww5ax7dFqNeh1Wt5+MBSzyZEmQR6SBAkhSpQkREKIQlMUBY1Gg85q4X2H6sSe+4PaaVeeFdT4SWg/Htz8bnmO3WcSWbbrHMt3xxCbdK1/kaezgVOX02y1RN0a+JfYvQghxPUkIRJC3JLFauHznZ8TnxHPpEpt0Kwci/ulI7gDVG4KXadBYLNCneuTNYf5/K/DtnU3o55OIWZ6NvKndU0fDDrtTY4WQoiSIQmREOKmEjMTeW39a2w6twmAR9Z/RePMLHCpBB0mQaMnQJt/EnPsQgrLdsXQtrYPTap4AhBeuxKz1h/LnTqjUQDhtSvJ1BlCCNVJQiSEKNB/8f/x0l8jOJN6FierlbcvXqZxthVavgjhr4KjKc8xZ+LTWH5l6ox955IAiE3KsCVE91TxYMdbHWTyVCFEqSL/Iwkh8hVxPILxG98g3ZpN5ewcPou7QJ2gNtDlfahUO0/5uKQMPlr1Hz/tOM3VGRJ1Wg331fThvprXZpHXaDSSDAkhSh35X0kIkcfMTW/zxZGfAWiRns4HWc54PPIt1Oma7/B5i1Wh99ebOX05HYCwal70ahxA11B/vFwKfuiiEEKUFpIQCSGuSb0Ea98hdN8PaM2VeColnZcaPIe+1Yg8w+itVgWNJrfGR6fV8Gyb6vzy71ne6lFPJlAVQpQ5GkW5WrktbiYpKQmTyURiYiLu7u5qhyNE8bLkkLVtFg6RUyAjEYDj9btTrfMHYKqcp/i245d594/9DA2vYRsab7EqaK8kSEIIUVoU9vtbaoiEqOiOr2fVqtFM06cwJyeVYL8G0PV9qlVtnafoiYupTF1xkIh9sQBMX3uErqFmWy2REEKUVZIQCVFRJZzGsvJNpseuY7aHCdDzXcMujOvxLWjth8EnpmXz+drDfLvlBNmW3JqgJ5pX4eWOtaVGSAhRLkhCJERFk50Omz4ncdOnvOblwiaP3KHzA2s/zkthr+VJhpbtOsdbv+0lIS0byH2O0Jvd61Hbz+2uhy6EECVFEiIhKgpFgQPLYOWbHE6L4SU/H04bDDhqHZjU+h26Ve+W72Gezg4kpGVT28+VN7rVo10d37scuBBClDxJiISoCOIOwIrX4Hgk+xwceLqymXSNhsquAXx6/2fU9aprK7r3bCLHLqbSq1EAAPfV8uGbgc1oW6sSeplWQwhRTklCJER5lp4A66bCtpmgWEBnpFbYi9TOOIijwZkP236Ih6MHALGJGXy46hC//HsGZ4OOltW9qeRmBOCBujefsFUIIco6SYiEKI+sFti5AP6aBGmXSNZocKrTHX2XyTh4VuV/mYm4GFzQa/WkZeUwI/IYM9cfIz3bAkD7en7IEzmEEBWJJERClDen/oEVr0JMNACHfWvxkrcbHWo2Y5RnVQBMRhNWq8LP20/z4apDnE/KBKBpsCfjutezzTsmhBAVhSREQpQXSTGwZiLsXpS7bnRnddM+vHlhA+kZF1l1YhXPNngWVwdXAM7Ep/P6r3vIsSoEeTnxetd6tmcKCSFERSMJkRBlXU4mbP0K1n8AWSmABkvjfvzPHMSsQwsBCDOH8UH4B2RkGXC9MrVYFW9nhrWrgaujngGtqmLU6wq+hhBClHOSEAlRlv23CiLGwuWjueuB95LUYTyvHfmBjVeSoafqP8XAui/w2arjfP/PKZa80IqQgNxnD43qVEetyIUQolSRhEiIsujSUYh4HQ6vzF139YMOk7CEPsqgP5/gUPwhjDoj48ImcDE2hPYfbSApIweAlfvO2xIiIYQQuSQhEqIsyUyG9R/Clv+BNRu0BmjxPLR9BRzd0QHPNHiGT3Z8Qp8q4/hkaQ4nLx0AoK7ZjXHd63NfLR9170EIIUohSYiEKAsUBXb/BKvHQ0ruxKrU7ABdpmLxqk5sWiyVyZ3FuUu1LvyywcQ7v14GoJKbkVc61aF300CZgFUIIQogCZEQpd25nfDnq3BmW+66ZzXoMhVqdyYpO5mxa4dz8PJBFvVYhK9z7rQabWv5s+FwAs+2qc5z4TVwMcqvuhBC3Iz8LylEaZWZAivfgH+/BRQwuEDbMdDyBdAbOZpwlJf+fomTSSfR4cD3O7cwsvWDQO5M9B3q++FvclL3HoQQooyQhEiI0khR4LdhsP+33PUGfaDjJHDPnV/sr5N/8cbGN0jLSYMcT5JOP8mv590ZFmbFQa9Fr9NKMiSEEEUgCZEQpdH2b3KTIa0e+v0MNR4AwKpY+V/0/5i5eyYAOanVyTjblyoevrzetR4GnfQREkKI2yEJkRClTczu3CH1AB0m2ZIhgI/+mcm3h3KToaxLrXFI6sWbXeryVMuqOOhlJnohhLhdkhAJUZpkJsPip8GSCbW75PYXuk4jU1cs6b9hSWhN35CHGfFALTxdHFQKVgghyg9JiIQoLRQFlo+CS0fAvTI89BWZFivLDmyld2grNBoNneoFM/Tsp/RoVJnqlVzVjlgIIcoNSYiEKC2iF8Ken0Cjg95zOJik48lfXiPTdSWxWSN4sekQAEZ0kOk2hBCiuEmnAyFKg7iD8MeY3NcPvEmK+V6e+vUdMl1zp+Y4kRCrYnBCCFH+SQ2REGrLSoOfB0JOOtR4AKX1SJ7/YRFpzqvQAKPveYOBDZ5QO0ohhCjXpIZICLWteBUuHMidoPXhmczeso9/0/+HRqPQ1r+7JENCCHEXSEIkhJp2/wQ7vwM00Hs2exL1fLLrbbSGZDwNgXz4wAS1IxRCiApBEiIh1HLxCCx/Ofd1+GtQrS0frV+JzuUQGsXArM6f4qSXp00LIcTdIH2IhFBDdkZuv6GsFKjaBsJfBWBWnz68EaHlnmp66njLaDIhhLhbJCESQg2r3oTze8DZBx6ZBVodAAadlg+691E5OCGEqHikyUyIu23fUoianfv6kRnsTXai3+J3OZF4StWwhBCiIpOESIi76fJx+H147uv7XiY5MJwhv37N7tQfefS3x0nOSlY3PiGEqKAkIRLibsnJgsWDIDMJgsJQ2r3BS7+sJNn1JwCeCnkKNwc3lYMUQoiKSRIiIe6WNRPh3L/g6AG95zB/20m2pnyGRptNfY+mvNBkiNoRCiFEhSUJkRB3w8E/Yev/cl8/9BV7U92ZFvUhOsdYnLQmpnf8AN2VjtVCCCHuPkmIhChpCadh6fO5r1u8QHLVjjy7eB46j80AfHT/FCo5V1IxQCGEEJIQCVGSLNnwy2DISICAJtBhIgdikkhyWAfA47X70yawjaohCiGEkOcQCVGy/n4PTv8DRnd4dC7oHWhezZtfHp7DkqM/Mbr5YLUjFEIIgSREQpScI2tg4ye5r3t9juJZFc2VXXXMXow1D1UtNCGEEPakyUyIkpAUA78+l/u62WCSavSg+6x5jF37ATnWHHVjE0IIkYfqCdHZs2d58skn8fb2xtnZmcaNG7Njxw7bfkVRmDhxIgEBATg5OdGuXTv27dtnd47MzEyGDx+Oj48PLi4u9OrVizNnztiViY+Pp3///phMJkwmE/379ychIeFu3KKoaKwW+HUIpF0EvwYond9j9OJNnNTO4o/T3zJ3z3y1IxRCCHEDVROi+Ph4WrdujcFgYMWKFezfv5+PPvoIDw8PW5lp06bx8ccfM336dKKiojCbzXTs2JHk5GtP9B05ciRLlixh0aJFbNy4kZSUFHr06IHFYrGV6du3L9HR0URERBAREUF0dDT9+/e/m7crKor1H8CJDWBwgcfm8V1UDBsTp6M1JBPgHMyTIX3VjlAIIcSNFBW99tpryn333VfgfqvVqpjNZmXq1Km2bRkZGYrJZFK+/vprRVEUJSEhQTEYDMqiRYtsZc6ePatotVolIiJCURRF2b9/vwIoW7dutZXZsmWLAigHDx4sVKyJiYkKoCQmJhbpHkUFcyxSUSaYFGWCu6Ls+lHZfTpBqTttrBI6L1RpNL+JcujyIbUjFEKICqWw39+q1hD9/vvvNGvWjMceewxfX1+aNGnCrFmzbPuPHz9ObGwsnTp1sm0zGo2Eh4ezeXPuM1x27NhBdna2XZmAgABCQ0NtZbZs2YLJZCIsLMxWpkWLFphMJluZG2VmZpKUlGS3CHFTKRfgl2cABZo8SVLth3nup6XoKq0AYGzzV6ntWVvdGIUQQuRL1YTo2LFjfPXVV9SqVYuVK1cydOhQRowYwbfffgtAbGwsAH5+fnbH+fn52fbFxsbi4OCAp6fnTcv4+vrmub6vr6+tzI2mTJli629kMpkICgq6s5sV5ZvVCkuehZTzUKkuSpf3GbP4HxLd5qLRWAiv/AD/V+f/1I5SCCFEAVRNiKxWK/fccw+TJ0+mSZMmPPfccwwZMoSvvvrKrpxGo7FbVxQlz7Yb3Vgmv/I3O8/rr79OYmKibTl9+nRhb0tURJs+haNrQe8Ej80jS+dEuuYUGn0S3kY/3mvz9i0/s0IIIdSj6nOI/P39qV+/vt22evXq8csvvwBgNpuB3Boef39/W5m4uDhbrZHZbCYrK4v4+Hi7WqK4uDhatWplK3P+/Pk8179w4UKe2qerjEYjRqPxDu5OVBintsLad3Nfd/sAfOthBL7t+wR/HQ3F7KHFZDSpGqIQQoibU7WGqHXr1hw6dMhu23///UdwcDAA1apVw2w2s3r1atv+rKwsIiMjbclO06ZNMRgMdmViYmLYu3evrUzLli1JTExk27ZttjL//PMPiYmJtjJC3Ja0y7B4ECgWaNCHjNAnUBQFyK2V7FCzIaE+oSoHKYQQ4lZUrSF6+eWXadWqFZMnT6ZPnz5s27aNmTNnMnPmTCD3C2XkyJFMnjyZWrVqUatWLSZPnoyzszN9++YOXTaZTAwePJjRo0fj7e2Nl5cXY8aMoUGDBnTo0AHIrXXq0qULQ4YMYcaMGQA8++yz9OjRgzp16qhz86LsU5TcSVuTzoJXDZTuH/HSj1EcsH7Je/ePoE2Ve9WOUAghRGHdhRFvN7Vs2TIlNDRUMRqNSt26dZWZM2fa7bdarcqECRMUs9msGI1GpW3btsqePXvsyqSnpysvvvii4uXlpTg5OSk9evRQTp06ZVfm0qVLSr9+/RQ3NzfFzc1N6devnxIfH1/oOGXYvchj8/Tc4fVvV1KUc7uUeZuOK7U/HqKEzgtV7vs+XMnIyVA7QiGEqPAK+/2tUZQr9fvippKSkjCZTCQmJuLu7q52OEJtZ3bAN53Bmg3dP2K3/6M89u0sHCrnjpD8sv2XMou9EEKUAoX9/lZ96g4hypz0BFg8MDcZqv8giSFP8fyiNRjMPwMwoP4ASYaEEKKMkYRIiKJQFPh9OCScAo9glJ6f8eriaC67zEejS6eeVwgv3fOS2lEKIYQoIkmIhCiKqNlw4HfQGuCxucz/N4G/4xaidz6Bk86Fj9p9gEFnUDtKIYQQRaTqKDMhypSY3bDyjdzXHSdB5aaE5lzCxfUSOcCk1hMIcpMnmgshRFkkCZEQhZGZDD8PBEsW1OkGLYYB0CzYm3UDvuFA/L+0CGihboxCCCFumzSZCXErigLLX4bLR8E9EOXB/3HqcprtAYwmJwdJhoQQooyThEiIW9n5Hez5GTQ6eHQO83Ym0nnuezy+9EWSs5LVjk4IIUQxkIRIiJs5vx/+fDX39QPjiNbUZcpfq9H5/Mn+pPWsOblG3fiEEEIUC0mIhChIViosfhpy0qFGexLveYEXftiMwf97NBoL7au056GaD6kdpRBCiGIgCZEQBfnzVbhwEFzNKA9/zZjFu7nk+ANah0v4OZuZ1GoSGo1G7SiFEEIUA0mIhMjPrkUQvQA0Wug9m7nRqfx9bgUGUzRajY4PwqdhMprUjlIIIUQxkYRIiBtdPAzLR+W+Dn+NQ06NmbpmPY7mpQC80HgYTXybqBefEEKIYicJkRDXy07Pfd5QdipUbQNtX6Gmryu97/XCqHWhubk5g0MHqx2lEEKIYiYPZhTieivfhPN7wdkHes8GrQ4dMKV7T8aktUbRWNFpdWpHKYQQophJDZEQV+39FbbPyX39yEw2n9eTnJFh2+3t7IWPk49KwQkhhChJkhAJAXD5GCy7Mkv9faOINjZlwHeraPNDZ346uFTV0IQQQpQ8SYiEyMmEn5+GzCQIakFCi1cYtjAKvfkHLNrL/HpkETnWHLWjFEIIUYIkIRJizUSIiQYnT5Tesxnzy34u6v9A73wCZ70LH7T9AL1WutsJIUR5JgmRqNgO/gFbv8x9/dBXzNmTzd8nN+PgsxaACS3HE+QepGKAQggh7gZJiETFlXAKlj6f+7rli+x0asHUVTtwDPgRjUbh4ZoP0616N3VjFEIIcVdIQiQqJks2LB4MGYkQcA9K+/G8sWQPBr+f0BqSqGaqxtjmY9WOUgghxF0iCZGomNa+C2e2gdEEj81FozfyVb/GVDPVwKhz5IO2H+BscFY7SiGEEHeJ9BQVFc/hNbDp09zXD34BnlUBqOrjzp/9pxKXFoevs69q4QkhhLj7pIZIVCxJ52DJs7mv7x3Cv65tidh3kmxLtq2IJENCCFHxSA2RqDgsOfDLM5B2CcwNSGgznhf+t414l/lU25/OzC6fEOQmI8qEEKIikhoiUXGsnwYnN4GDK9becxn96yEusBmDKZqY9CNcTL+odoRCCCFUIgmRqBhObILIabmve3zK7ANa1h7bh6N5KQDDGg+jiW8T9eITQgihKkmIRMUQORVQoHE/dpja8/7KvThV/h6NNpswcxiDQwerHaEQQggVSUIkyr8Lh+D4etBoSWw+muHf70Tv8yc6xxg8jZ5MbjMZnVandpRCCCFUJAmRKP+iZuf+W7srv5/SE2fZgYPXZgDeve9dGVUmhBBCRpmJci4zGaJ/yH3d/Bn61wgmi3b8du4f2ga1pG1gW3XjE0IIUSpIQiTKt12LICsZvGtCtXYADG7RnP6WH9CgUTU0IYQQpYc0mYnyS1FszWU7/XqzJ+6UbZeDzgGDzqBWZEIIIUoZSYhE+XViI1w4iFXvxFMHHHgi4kE+3PYpiqKoHZkQQohSRprMRPkVNQuA7e4dydFvQK+xEp91AY1GmsqEEELYkxoiUT4lnYMDywF4K6k2epdj6DQ6hjcZrnJgQgghSiOpIRLl0455oFiIMTXmpO4/DECXql0wu5jVjkwIIUQpJDVEovzJycpNiICPMlqgd98NQP+Q/ioGJYQQojSThEiUPweXQcp5Mhwr8YdDMhqNlXt8mxLiHaJ2ZEIIIUopaTIT5c+23KH2e/wfRJezFYCnQweqGJAQQojSThIiUb7E7oVTm0Gj496HR7PcomPNqZXyRGohhBA3JQmRKF+uDLWnXg9wD6Aq8IznU2pGJIQQogyQPkSi/EhPgN0/AbAn6GF1YxFCCFGmSEIkyo9dP0B2Ghedq9Mneg7hCx7lcPxhtaMSQghRBkiTmSgfrFbbvGVTrfegd95GotWAh9FD3biEEEKUCVJDJMqH4+vg0hGy9S5EuKQC0K1aVyo5V1I3LiGEEGWCJESifLgy1P4Hh9bgth+AASHSmVoIIUThSEIkyr6E0/DfCgCmGxzRaBSa+YZRx6uOyoEJIYQoKyQhEmXf9m9AsbLDuRFppgMADG44UN2YhBBClCmSEImyLTsD/p0PwEfG6mh0mQS6VKN1QGuVAxNCCFGWyCgzUbbtXwppl8C9Mt8M/ZIZO5fTqLIvGo1G7ciEEEKUIZIQibJt25UnUzd9GkejMy+16KNuPEIIIcokaTITZde5nXB2O1atgfSGfdWORgghRBkmCZEou64MtZ/t2ISwXx/ngy2zVQ5ICCFEWSUJkSib0i7D3sUAfOPsgKJPIDHntMpBCSGEKKskIRJl084FkJPBZqfqpLjmJkKDGg5QOSghhBBllSREouyxWmH7HAAmO/qj0Sjc69ua6qbqKgcmhBCirJKESJQ9R9ZA/AliDe6ccI8F4LnGT6sclBBCiLJMEiJR9kTlDrWf5FwHjTabQJcaNDc3VzkoIYQQZZkkRKJsuXwMDq8mG9jklgLA840HyYMYhRBC3BFJiETZEjUHUDDUaM87rT6jrbknXat1VTsqIYQQZZw8qVqUHVlpuaPLAJoP4cE6YTxYP0zdmIQQQpQLUkMkyo69v0BGAhb3IKjVSe1ohBBClCOSEImyQVFsnal7GX3o8eMoYlJiVA5KCCFEeVGkhGjatGmkp6fb1tevX09mZqZtPTk5mWHDhhVfdEJcdWY7xOzikIMTp1wvcTLrb7Kt2WpHJYQQopwoUkL0+uuvk5ycbFvv0aMHZ8+eta2npaUxY8aM4otOiKuu1A5NcasGwD0+91HFvYqaEQkhhChHipQQKYpy03UhSkTKBdi3hMtaLf+65tZQjmg2WOWghBBClCfSh0iUfju/BUsW092DUbQWKjvV5h7fe9SOSgghRDkiCZEo3Sw5EPUNmRr4zU0HwAv3yIMYhRBCFK8iP4do9uzZuLq6ApCTk8O8efPw8fEBsOtfJESx+C8Cks6w2M2HLH0WrjofulSXIfdCCCGKV5ESoipVqjBr1izbutls5rvvvstTRohic6UzddvaDxGR7U77mrUxaA0qByWEEKK8KVKT2YkTJzh+/Pgtl8KaOHEiGo3GbjGbzbb9iqIwceJEAgICcHJyol27duzbt8/uHJmZmQwfPhwfHx9cXFzo1asXZ86csSsTHx9P//79MZlMmEwm+vfvT0JCQlFuXajh4mE4tg7QEHTfcL57ZAIDGz6hdlRCCCHKIdX7EIWEhBATE2Nb9uzZY9s3bdo0Pv74Y6ZPn05UVBRms5mOHTvaNc2NHDmSJUuWsGjRIjZu3EhKSgo9evTAYrHYyvTt25fo6GgiIiKIiIggOjqa/v3739X7FLchanbuv7W7gGdVVUMRQghRzilFsHXrVuXPP/+02zZ//nylatWqSqVKlZQhQ4YoGRkZhT7fhAkTlEaNGuW7z2q1KmazWZk6daptW0ZGhmIymZSvv/5aURRFSUhIUAwGg7Jo0SJbmbNnzyparVaJiIhQFEVR9u/frwDK1q1bbWW2bNmiAMrBgwcLHWtiYqICKImJiYU+RtyBjGRFmRyoHHzXW+kwu7PyzY4/b32MEEIIcYPCfn8XqYZo4sSJ7N6927a+Z88eBg8eTIcOHRg7dizLli1jypQpRUrIDh8+TEBAANWqVePxxx/n2LFjABw/fpzY2Fg6dbrWgdZoNBIeHs7mzZsB2LFjB9nZ2XZlAgICCA0NtZXZsmULJpOJsLBrk4C2aNECk8lkK5OfzMxMkpKS7BZxF+35CTKT+NrkS6z+LH+dWa52REIIIcqxIiVE0dHRtG/f3ra+aNEiwsLCmDVrFqNGjeLzzz/np59+KvT5wsLC+Pbbb1m5ciWzZs0iNjaWVq1acenSJWJjYwHw8/OzO8bPz8+2LzY2FgcHBzw9PW9axtfXN8+1fX19bWXyM2XKFFufI5PJRFBQUKHvS9whRYFts7mg07LWNbff/5iwZ1UOSgghRHlWpIQoPj7eLkGJjIykS5cutvV7772X06dPF/p8Xbt2pXfv3jRo0IAOHTrwxx9/ADB//nxbmRufN6Moyi2fQXNjmfzK3+o8r7/+OomJibalKPcl7tCpLRC3jwXuHlg1Cv7GujT2a6R2VEIIIcqxIiVEfn5+tlFkWVlZ/Pvvv7Rs2dK2Pzk5GYPh9odEu7i40KBBAw4fPmwbbXZjLU5cXJwtKTObzWRlZREfH3/TMufPn89zrQsXLuSpfbqe0WjE3d3dbhF3ybZZpGs0/OCW+56/KNN0CCGEKGFFSoi6dOnC2LFj2bBhA6+//jrOzs60adPGtn/37t3UqFHjtoPJzMzkwIED+Pv7U61aNcxmM6tXr7btz8rKIjIyklatWgHQtGlTDAaDXZmYmBj27t1rK9OyZUsSExPZtm2brcw///xDYmKirYwoRZJj4cDvLHN1IV1nxVnrS/fqHdWOSgghRDlXpAczvvvuuzzyyCOEh4fj6urKvHnzcHBwsO3/5ptv7Do438qYMWPo2bMnVapUIS4ujnfffZekpCQGDBiARqNh5MiRTJ48mVq1alGrVi0mT56Ms7Mzffv2BcBkMjF48GBGjx6Nt7c3Xl5ejBkzxtYEB1CvXj26dOnCkCFDmDFjBgDPPvssPXr0oE6dOkW5fXE37JiH1ZrDLHdvQKFf3X7otDq1oxJCCFHOFSkhqlSpEhs2bCAxMRFXV1d0Ovsvqp9//hk3N7dCn+/MmTM88cQTXLx4kUqVKtGiRQu2bt1KcHAwAK+++irp6ekMGzaM+Ph4wsLCWLVqld01PvnkE/R6PX369CE9PZ327dszb948u9gWLlzIiBEjbMlar169mD59elFuXdwNlmzYPhcr0N3jAX7PPsczjR9XOyohhBAVgEZRFKWwhQcNGlSoct98881tB1RaJSUlYTKZSExMlP5EJWXfEvh5ILj4wsv7QO9wy0OEEEKImyns93eRaojmzZtHcHAwTZo0oQh5lBCFs+3Kk6mbDpBkSAghxF1VpIRo6NChLFq0iGPHjjFo0CCefPJJvLy8Sio2UZGc3w8nN/KxpwdnkjS8kZqEj4vUxAkhhLg7ijTK7MsvvyQmJobXXnuNZcuWERQURJ8+fVi5cqXUGIk7EzWbWJ2O+SZ3Vicu4nTyKbUjEkIIUYEUeXJXo9HIE088werVq9m/fz8hISEMGzaM4OBgUlJSSiJGUd5lJMHuH/ne3Q2rBvwMITQxh6odlRBCiArkjma712g0aDQaFEXBarUWV0yiotm1iNTsVH68Mnpw2D2F67wvhBBCFJciJ0SZmZn88MMPdOzYkTp16rBnzx6mT5/OqVOncHV1LYkYRXmmKBA1i6VuLqTpNDhh5qE6HdSOSgghRAVTpE7Vw4YNY9GiRVSpUoWnn36aRYsW4e3tXVKxiYrgeCSWi//xbWBlAB6r1Ret5o4qLoUQQogiK9JziLRaLVWqVKFJkyY3nRj1119/LZbgShN5DlEJWdSP1af+YpRfJbSKC1v6rcXZ4Kx2VEIIIcqJEnkO0VNPPXXLmeaFKLTEM3DoT4IMOgKVetQy3yPJkBBCCFUU+cGMQhSb7XNBsVI3oDUrBv4kj24QQgihGumsIdSRkwn/zs99fe8zAFL7KIQQQjWSEAl17P+ds5mXedvHny3OtdWORgghRAUnCZFQR9QsFrq78bObgdc3vqt2NEIIISo4SYjE3Rezi+Qz2/jVLfe5Vc80HKByQEIIISo6SYjE3bdtFr+6uZKq1eJg9adfw05qRySEEKKCk4RI3F3p8WTtWcwCU+40HQ9We1w6UwshhFCdJETi7tq5kL+MGmL1ejQWV8a07qt2REIIIYQkROIuslqxRs1i/pXaoebePXE2OKoclBBCCCEJkbibjq7FEn+CpplWtBY3xrV9Ru2IhBBCCEASInE3Rc3CALxS81G2PRVJVU9ftSMSQgghAEmIxN0SfwL+W5n7+t5nMOoNqoYjhBBCXK9Ic5kJcdu2f8NPbi54utWhvVd1ycSFEEKUKvK9JEpedjrxO7/jQy8PRhkvsCA6Uu2IhBBCCDuSEImSt/dXfjHkkK7Vos8JoF+jcLUjEkIIIexIQiRKXFbUTL53z52mo1Pg/6HTycdOCCFE6SLfTKJkndnByqT/uKDXo8lx5Y22T6gdkRBCCJGHJESiRCnbZjLf3R2ABqaemJycVI5ICCGEyEsSIlFyUi+x9chyDhkd0Fj1jGvztNoRCSGEEPmSYfei5Oz8FquSQ+VssBjaUs/PX+2IhBBCiHxJQiRKhtUCUd/QOj2DP5q8wsU6D6kdkRBCCFEgSYhEyTi8ChJPgZMnuoaP4WeQvkNCCCFKL+lDJErExX++4ic3V5Ia/B9IMiSEEKKUk4RIFL9LR/n58k7e8fGi85mDKIqidkRCCCHETUlCJIpd5rYZLHJ3A6Cp+UE0Go3KEQkhhBA3JwmRKF5ZqSw79AuXdTocsp15I7yP2hEJIYQQtyQJkShWyu6fWOCS21e/qmNPAkyuKkckhBBC3JokRKL4KArrt3/FUQcH9FYdr94nD2IUQghRNkhCJIrP6X9YyGUAvHJaEVa1ssoBCSGEEIUjCZEoNln/zMBBAa0CAxsPUTscIYQQotDkwYyieKTE4XBgGdOt2ex5aBH1GjRSOyIhhBCi0CQhEsVjx3ywZkPgvTRo3FXtaIQQQogikSYzcecsOayP/oYYnQ7ulaYyIYQQZY8kROKOpe9fwptuGroEBfDRJTe1wxFCCCGKTBIiccd+jfqCBJ0O12wj3eu3UjscIYQQosgkIRJ3xHp+P4sscQCYNZ2oa/ZQNyAhhBDiNkhCJO7I2g1TOOFgwMmi4ZmWz6kdjhBCCHFbJCESty8zmQWXogDwS29A53rBKgckhBBC3B5JiMRt27f1c3Y4GtApCp1DR6LVyqz2QgghyiZJiMTtURQO7/sFZ6uVoBQzA1s0UTsiIYQQ4rbJgxnF7TmxkYfijnK/gyvbeszH1SgfJSGEEGWX1BCJ2xM1CwBTg8fo2LCZysEIIYQQd0YSIlFkqRcPs+PYKhSA5vJkaiGEEGWfJESiyH5e/zYD/Ssx1Lc6l1xqqh2OEEIIccckIRJFYs3O4Kf4fwHItDTCy8VB5YiEEEKIOycJkSiSzf98xmm9FmerQsdmr6DRyFB7IYQQZZ8kRKJIFhz8CYAayWZ6N6urcjRCCCFE8ZCESBTaueN/s0WfCUC9wGdxNOhUjkgIIYQoHpIQiUL7bvM0rBoNNdMcGNiuh9rhCCGEEMVGEiJRKEpaPNGpxwEI1HUiyMtZ5YiEEEKI4iOPFxaFotn9IwvOxbDWuzo+vUapHY4QQghRrCQhEremKBA1Gx3QMWwYBFdSOyIhhBCiWEmTmbily4eWk33pMDi4QaPH1Q5HCCGEKHaSEIlbmrxlKh2DKjPHtzkY3dQORwghhCh20mQmbir+/F7+JpEsvY7jhvZqhyOEEEKUCKkhEje1aP27ZGk1VMnQMqB9f7XDEUIIIUqEJESiQJasNJYk7QEg2BpGLT93lSMSQgghSoYkRKJAf2/5iBi9FjeLQrdWr6odjhBCCFFiJCESBfrh8BIAaqZWpktodZWjEUIIIUqOdKoW+Yo9vpYofRYaBZpUfwG9TnJnIYQQ5Zd8y4l8mXf/yuKzsfRP9+Wp8M5qhyOEEEKUqFKTEE2ZMgWNRsPIkSNt2xRFYeLEiQQEBODk5ES7du3Yt2+f3XGZmZkMHz4cHx8fXFxc6NWrF2fOnLErEx8fT//+/TGZTJhMJvr3709CQsJduKsyKj0e9iymdnY2r3R7D29Xo9oRCSGEECWqVCREUVFRzJw5k4YNG9ptnzZtGh9//DHTp08nKioKs9lMx44dSU5OtpUZOXIkS5YsYdGiRWzcuJGUlBR69OiBxWKxlenbty/R0dFEREQQERFBdHQ0/fvLEPKCWP79DnLSwS8UqrRQOxwhhBCi5CkqS05OVmrVqqWsXr1aCQ8PV1566SVFURTFarUqZrNZmTp1qq1sRkaGYjKZlK+//lpRFEVJSEhQDAaDsmjRIluZs2fPKlqtVomIiFAURVH279+vAMrWrVttZbZs2aIAysGDBwsdZ2JiogIoiYmJd3K7pZ41J0f5v5khytjp1ZToiPfVDkcIIYS4I4X9/la9huiFF16ge/fudOjQwW778ePHiY2NpVOnTrZtRqOR8PBwNm/eDMCOHTvIzs62KxMQEEBoaKitzJYtWzCZTISFhdnKtGjRApPJZCsjrvl352z2OWhY5ezMAZM8mVoIIUTFoOoos0WLFvHvv/8SFRWVZ19sbCwAfn5+dtv9/Pw4efKkrYyDgwOenp55ylw9PjY2Fl9f3zzn9/X1tZXJT2ZmJpmZmbb1pKSkQt5V2fbdrnmgh7qpXjzcrLHa4QghhBB3hWo1RKdPn+all15iwYIFODo6FlhOo9HYrSuKkmfbjW4sk1/5W51nypQptk7YJpOJoKCgm16zPLgYs5NIXW7/rBD/ARj1OpUjEkIIIe4O1RKiHTt2EBcXR9OmTdHr9ej1eiIjI/n888/R6/W2mqEba3Hi4uJs+8xmM1lZWcTHx9+0zPnz5/Nc/8KFC3lqn673+uuvk5iYaFtOnz59R/dbFiyIfJccjYaqGTqe7tBX7XCEEEKIu0a1hKh9+/bs2bOH6Oho29KsWTP69etHdHQ01atXx2w2s3r1atsxWVlZREZG0qpVKwCaNm2KwWCwKxMTE8PevXttZVq2bEliYiLbtm2zlfnnn39ITEy0lcmP0WjE3d3dbinPcjJTWJZ6EICa2jb4m5xUjkgIIYS4e1TrQ+Tm5kZoaKjdNhcXF7y9vW3bR44cyeTJk6lVqxa1atVi8uTJODs707dvbu2FyWRi8ODBjB49Gm9vb7y8vBgzZgwNGjSwddKuV68eXbp0YciQIcyYMQOAZ599lh49elCnTp27eMel28oN7xOn12KyKDwS/pra4QghhBB3VameuuPVV18lPT2dYcOGER8fT1hYGKtWrcLNzc1W5pNPPkGv19OnTx/S09Np37498+bNQ6e71v9l4cKFjBgxwjYarVevXkyfPv2u309p1vxoJC+lJXDQsTn31aqsdjhCCCHEXaVRFEVRO4iyICkpCZPJRGJiYvlrPju7A2Y9ADoHGHUAXHzUjkgIIYQoFoX9/lb9OUSiFNg2O/ffkIclGRJCCFEhSUJUwaUmnOa52L+IcHEm856n1Q5HCCGEUEWp7kMkSt5Pf09ks7OR43ojNZ3qU1PtgIQQQggVSA1RBaZYclhy6R8AalkaU9PPpHJEQgghhDokIarAtkR9zXGDBkerQvcWMtReCCFExSUJUQW2YN+3ANRL86FzwxCVoxFCCCHUIwlRBRV7ZhubdWkANKsyBJ325vPDCSGEEOWZJEQV1PzI97BoNNRI1/NU+8fUDkcIIYRQlYwyq4iy0mh2fg/7XXT4G3vi4eygdkRCCCGEqiQhqoj2/kL7pEu011Yhc+BUtaMRQgghVCdNZhWNokDUrNzXzQZjNErtkBBCCCEJUQVzcP8S5qQd47LBEZr0VzscIYQQolSQJrMK5pttn7PCy5O/ja585+yFjC0TQgghpIaoQkmOP846LgDQoFIfNBpJh4QQQgiQhKhCWfDXRNK1WgKzYGDnoWqHI4QQQpQakhBVEFZLNssStgNQn3vxc3dSOSIhhBCi9JCEqIJYt/lzThu0OFsVHmn7ptrhCCGEEKWKJEQVxA+HFgEQku5Hq9rVVY5GCCGEKF0kIaoArBf+wzfjIgZFoU2tF6QztRBCCHEDGXZfAWi3f8N7Fy/zslsTXNs9qHY4QgghRKkjCVF5l5UK0d8D4NNqGBh0KgckhBBClD6SEJVzmyI/ws+aRk2v6lDjAbXDEUIUA4vFQnZ2ttphCFEqGAwGdLo7/2NfEqLyTFH47MRiDgT608/akLFa6TImRFmmKAqxsbEkJCSoHYoQpYqHhwdms/mO+shKQlSO7dj1PQccFPSKQuPGw9UORwhxh64mQ76+vjg7O8sACVHhKYpCWloacXFxAPj7+9/2uSQhKse+2/E16CE03Z1OjZqqHY4Q4g5YLBZbMuTt7a12OEKUGk5OuQ8ajouLw9fX97abz6QNpZyKv/gfG7XxADSv3B+tVv6SFKIsu9pnyNnZWeVIhCh9rv5e3EnfOkmIyql5ayaQqdVQJVPDgI6D1Q5HCFFMpJlMiLyK4/dCEqJyyJqTRUTKbgAaGlri7uSgckRCCCFE6SYJUTl0bOe3ZGgVXC1WnuzwltrhCCFEqXTixAk0Gg3R0dFqh1JuTZw4kcaNG6sdRqFIQlQO1dy3lNWnzvKuS1tCggLVDkcIUcENHDiQhx56yG7b4sWLcXR0ZNq0aeoEdRt++eUXwsLCMJlMuLm5ERISwujRo237582bh4eHR77HajQali5dmmf7s88+i06nY9GiRXn2TZw4EY1Gg0ajQafTERQUxDPPPMOFCxcKFe/VYzUaDa6urjRq1Ih58+bZlVm3bp1duavLuHHjCnWN8kRGmZU3cQfhxAYcNFrad35D7WiEECKP2bNn88ILL/C///2PZ555psjHZ2Vl4eBwd7sCrFmzhscff5zJkyfTq1cvNBoN+/fv56+//rrtc6alpfHjjz/yyiuvMGfOHB5//PE8ZUJCQlizZg0Wi4WdO3cyePBgzp49y4oVKwp1jblz59KlSxdSU1P58ccfefrpp/H396dz58525Q4dOoS7u7tt3dXV9bbvq6ySGqJy5sD6j7EC1OkGHkFqhyOEEHamTZvGiy++yPfff29LhjZv3kzbtm1xcnIiKCiIESNGkJqaajumatWqvPvuuwwcOBCTycSQIUNstTErV66kXr16uLq60qVLF2JiYuyuN3fuXOrVq4ejoyN169blyy+/vK24ly9fzn333ccrr7xCnTp1qF27Ng899BBffPHFbb8XP//8M/Xr1+f1119n06ZNnDhxIk8ZvV6P2WymcuXK9OjRgxEjRrBq1SrS09MLdY2rDyysUaMGb7zxBl5eXqxatSpPOV9fX8xms20pTEJ09WewdOlSateujaOjIx07duT06dMFHtOuXTtGjhxpt+2hhx5i4MCBtvUvv/ySWrVq4ejoiJ+fH48++mih7vVOSUJUjqSnXuCZpE10D/Rnc+UuaocjhLhL0rJyClwysi3FXvZ2jR07lnfeeYfly5fTu3dvAPbs2UPnzp155JFH2L17Nz/++CMbN27kxRdftDv2gw8+IDQ0lB07dvDWW7l9I9PS0vjwww/57rvvWL9+PadOnWLMmDG2Y2bNmsWbb77Je++9x4EDB5g8eTJvvfUW8+fPL3LsZrOZffv2sXfv3tu+/xvNmTOHJ598EpPJRLdu3Zg7d+4tj3FycsJqtZKTU7Sfg8Vi4aeffuLy5csYDIbbDTmPtLQ03nvvPebPn8+mTZtISkrKt6arsLZv386IESN4++23OXToEBEREbRt27bY4r0ZaTIrR75fNZEknRZHq4aajR5ROxwhxF1Sf/zKAvfdX6cSc59ubltv+s4a0m9IfK4Kq+bFj8+1tK3f9/7fXE7NylPuxNTuRY5xxYoV/Pbbb/z111888MC1eRU/+OAD+vbta6s1qFWrFp9//jnh4eF89dVXODo6AvDAAw/YJTsbN24kOzubr7/+mho1agDw4osv8vbbb9vKvPPOO3z00Uc88kju/4fVqlVj//79zJgxgwEDBhQp/uHDh7NhwwYaNGhAcHAwLVq0oFOnTvTr1w+j0Wgrl5iYWKjalcOHD7N161Z+/fVXAJ588klGjBjBhAkT0BYwzdLBgwf56quvaN68OW5uboWK+4knnkCn05GRkYHFYsHLyyvfZsrAQPv+pidPnizUA0Czs7OZPn06YWFhAMyfP5969eqxbds2mjdvfouj8zp16hQuLi706NEDNzc3goODadKkSZHPczukhqicUKxW/ri4HoBGSii+7i4qRySEENc0bNiQqlWrMn78eJKTk23bd+zYwbx583B1dbUtnTt3xmq1cvz4cVu5Zs2a5Tmns7OzLRmC3Gkbrk7hcOHCBU6fPs3gwYPtzv3uu+9y9OjRIsfv4uLCH3/8wZEjRxg3bhyurq6MHj2a5s2bk5aWZivn5uZGdHR0nuVGc+bMoXPnzvj4+ADQrVs3UlNTWbNmjV25PXv24OrqipOTE/Xr1ycoKIiFCxcWOu5PPvmE6OhoVq9eTePGjfnkk0+oWbNmnnIbNmywi9fT07NQ59fr9XY/m7p16+Lh4cGBAwcKHeP1OnbsSHBwMNWrV6d///4sXLjQ7v0tSVJDVE5s3j6Pww7gYFV4tO2baocjhLiL9r/ducB92hseWLfjrQ6FLrvxtfvvLLDrVK5cmV9++YX777+fLl26EBERgZubG1arleeee44RI0bkOaZKlSq21y4uef/Iu7HpR6PRoCgKAFarFchtNrtae3HVncyMXqNGDWrUqMEzzzzDm2++Se3atW2dlQG0Wm2+Ccf1LBYL3377LbGxsej1ervtc+bMoVOnTrZtderU4ffff0en0xEQEGBXG1UYZrOZmjVrUrNmTX7++WeaNGlCs2bNqF+/vl25atWqFThC7lbyeyhiQQ9K1Gq1tp/RVdc/XdrNzY1///2XdevWsWrVKsaPH8/EiROJioq67fgKSxKicuKH3bPBAA0zPGlVp4Ha4Qgh7iJnh8L/V15SZQujSpUqREZGcv/999OpUydWrlzJPffcw759+26ZRBSVn58flStX5tixY/Tr169Yz31V1apVcXZ2tusAXhh//vknycnJ7Ny50y45O3jwIP369ePSpUu25ioHB4die29q1qxJ7969ef311/ntt9+K5Zw5OTls377d1jx26NAhEhISqFu3br7lK1WqZNfx3WKxsHfvXu6//1ryrdfr6dChAx06dGDChAl4eHiwdu1aW9NnSZGEqByIi93LZn0SoKFt9UFqhyOEEAUKDAxk3bp1tqRoxowZtGzZkhdeeIEhQ4bg4uLCgQMHWL169R2N4ILc5/iMGDECd3d3unbtSmZmJtu3byc+Pp5Ro0YV+VxpaWl069aN4OBgEhIS+Pzzz8nOzqZjx45FOtecOXPo3r07jRo1stseEhLCyJEjWbBgAS+99FKRzllYo0ePplGjRmzfvj3fZsiiMhgMDB8+nM8//xyDwcCLL75IixYtCuw/9MADDzBq1Cj++OMPatSowSeffEJCQoJt//Llyzl27Bht27bF09OTP//8E6vVSp06de441luRPkTlwC9/TyVbo6F6ppa+7Z9SOxwhhLipypUrExkZSUJCAkOGDCEyMpLDhw/Tpk0bmjRpwltvvYW/v/8dX+eZZ55h9uzZzJs3jwYNGhAeHs68efOoVq1akc8VHh7OsWPHeOqpp6hbty5du3YlNjaWVatWFenL+vz58/zxxx+2UXbX02g0PPLII8yZM6fI8RVWgwYN6NChA+PHjy+W8zk7O/Paa6/Rt29fWrZsiZOTU74Pmbxq0KBBDBgwgKeeeorw8HCqVatmVzvk4eHBr7/+ygMPPEC9evX4+uuv+eGHHwgJCSmWeG9Go9zYmCfylZSUhMlkIjEx0e7hVaqzZGP9JJRd2Zc5UG8YfR+apHZEQogSkJGRwfHjx6lWrZpt5JUQapo3bx4jR460q+FRy81+Pwr7/S1NZmXdgWVoU2Jp4uJLkx7SmVoIIYS4HdJkVsZlbJuZ+6LpQNDLrPZCCHE7hg4dajc8//pl6NChaoeXx+TJkwuMt2vXrsVyja5duxZ4jcmTJxfLNUoTaTIrpNLYZLb3wAqGbB1Dz+Q0RvaNxNmnyq0PEkKUSdJkVrLi4uJISkrKd5+7uzu+vr53OaKbu3z5MpcvX853n5OTE5UrV77ja5w9e7bAKUK8vLzw8vK642sUF2kyq+Dmb/mIFJ2WfQ4+OHnLvGVCCHG7fH19S13SczN3IyEpjqSqLJEmszIqJekcGzS5z3Jo6de7wIdgCSGEEOLWJCEqo+atnECqVot/lsKALi+rHY4QQghRpklCVAYpVisrE7cC0FTXGDenoj3KXQghhBD2JCEqg9Zs/poTBnC0KvR9YILa4QghhBBlniREZdDiA98C0DjTmwZVa6kcjRBCCFH2SUJU1iSeYfz5IwxOSKR7yAtqRyOEEGXSwIEDeeihh25aZt26dWg0mlLxJOay7MSJE2g0GqKjo9UO5aYkISprts+lck42I00NeahNH7WjEUKIW7pZ8lG1alU0Go3dEhgYaLf/008/LfaYPvvsM+bNm2dbb9euHSNHjiz266ht4MCBtvdVr9dTpUoVnn/+eeLj4+3K3ernUBHIc4jKkpxM+Hd+7ut7n1E3FiGEKCZvv/02Q4YMsa3rdLoSv6bJZCrxa9woOzsbg8Fw16/bpUsX5s6dS05ODvv372fQoEEkJCTwww8/2JVT4+dQmkgNURmyIGIiL7rCJpMZ6nZXOxwhhCgWbm5umM1m21KpUqUin2P06NH07NnTtv7pp5+i0Wj4448/bNvq1KnDjBkzAPtaq4EDBxIZGclnn31mqx05ceKE7bgdO3bQrFkznJ2dadWqFYcOHSpUTBMnTqRx48Z88803VK9eHaPRiKIoREREcN999+Hh4YG3tzc9evTg6NGjtuN69+7N8OHDbesjR45Eo9Gwb98+AHJycnBzc2PlypWFisNoNGI2mwkMDKRTp0783//9H6tWrcpT7nZ/DhqNhq+++oquXbvi5OREtWrV+PnnnwssP2/ePDw8POy2LV261O55ert27eL+++/Hzc0Nd3d3mjZtyvbt2wsVz+2ShKgMWX5uBZHOTix2rQO6u/9XhhCilFEUyEpVZyllsz61a9eODRs2YLVaAYiMjMTHx4fIyEgAYmNj+e+//wgPD89z7GeffUbLli0ZMmQIMTExxMTEEBR07en/b775Jh999BHbt29Hr9czaNCgQsd15MgRfvrpJ3755RdbH5rU1FRGjRpFVFQUf/31F1qtlocfftgWe7t27Vi3bp3tHDfeS1RUFBkZGbRu3bpI7xHAsWPHiIiIKPaaqrfeeovevXuza9cunnzySZ544gkOHDhw2+fr168fgYGBREVFsWPHDsaOHVvitWvSZFZGRO1awj6jBZ2i8GjL19UORwhRGmSnweQAda79xjlwcCmWU7322muMGzfOtj558mRGjBhRpHO0bduW5ORkdu7cyT333MOGDRsYM2YMv/76KwB///03fn5+1K1bN8+xJpMJBwcHnJ2dMZvNefa/9957tkRq7NixdO/enYyMjELNKZeVlcV3331nV9vSu3dvuzJz5szB19eX/fv3ExoaSrt27XjppZe4ePEiOp2Offv2MWHCBNatW8ewYcNYt24dTZs2xdXVtVDvzfLly3F1dcVisZCRkQHAxx9/nKfcnfwcHnvsMZ55JrcrxzvvvMPq1av54osv+PLLLwt1/I1OnTrFK6+8Yvt51apV8iOqJSEqIxZGfQ4GaJjhQuvQlmqHI4QQxeaVV15h4MCBtnUfH58in8NkMtG4cWPWrVuHwWBAq9Xy3HPPMWHCBJKTk1m3bl2+tUOF0bBhQ9trf39/IHcy2CpVbj2hdnBwcJ6mp6NHj/LWW2+xdetWLl68aKsZOnXqFKGhoYSGhuLt7U1kZCQGg4FGjRrRq1cvPv/8c4Ai38v999/PV199RVpaGrNnz+a///6za5K76k5+Di1btsyzfiejykaNGsUzzzzDd999R4cOHXjssceoUaPGbZ+vMCQhKgMuXT7FZl0coKVd0BNqhyOEKC0Mzrk1NWpdu5j4+PhQs2bNOz7P1aYmBwcHwsPD8fT0JCQkhE2bNrFu3brbHkV2fVPN1X4uV5OYW3FxyVuL1rNnT4KCgpg1axYBAQFYrVZCQ0PJysqyXaNt27a2e2nXrh2hoaFYLBb27NnD5s2bi3QvLi4utvf3888/5/7772fSpEm88847duWK6+dwVUFzbGq1WpQbmlyzs7Pt1idOnEjfvn35448/WLFiBRMmTGDRokU8/PDDxRZfnrhK7Myi2MxdOZ50rZagLOjX8UW1wxFClBYaTW6zlRpLKZxQ+mo/orVr19KuXTsAwsPDWbRoUYH9h65ycHDAYrGUeIyXLl3iwIEDjBs3jvbt21OvXr08Q+DhWnK3bt062rVrh0ajoU2bNnz44Yekp6ffVv+hqyZMmMCHH37IuXPFl0xv3bo1z3p+zZMAlSpVIjk5mdTUVNu2/GqTateuzcsvv8yqVat45JFHmDt3brHFmx9JiEo5xWLhr9TcnvXNjc0wOkilnhCi7ElMTCQ6OtpuOXXqVLFe42o/omXLltkSonbt2rFgwQIqVapE/fr1Czy2atWq/PPPP5w4ccKuGau4eXp64u3tzcyZMzly5Ahr165l1KhRecq1a9eOffv2sWfPHtq0aWPbtnDhQu655x7c3d1vO4Z27doREhLC5MmTb/scN/r555/55ptv+O+//5gwYQLbtm3jxRfz/wM+LCwMZ2dn3njjDY4cOcL3339v90yo9PR0XnzxRdatW8fJkyfZtGkTUVFR1KtXr9jizY8kRKVcztE1PJ0YT4OMbAZ2nKR2OEIIcVvWrVtHkyZN7Jbx48cX6zVMJhNNmjTBy8vLlvy0adMGq9V6yz43Y8aMQafTUb9+fSpVqlTsydpVWq2WRYsWsWPHDkJDQ3n55Zf54IMP8pQLDQ3Fx8eHRo0a2ZKf8PBwLBbLbfeFut6oUaOYNWsWp0+fvuNzAUyaNIlFixbRsGFD5s+fz8KFCwtMQL28vFiwYAF//vknDRo04IcffmDixIm2/TqdjkuXLvHUU09Ru3Zt+vTpQ9euXZk0qWS/AzXKjQ15Il9JSUmYTCYSExPvKDMvsu8fh/9WQNhQ6Pr+3buuEKJUycjI4Pjx41SrVq1Qo5uEuFs0Gg1Lliy55VQoJelmvx+F/f6WGqLSLP4k/BeR+1qeTC2EEEKUGEmISrEvlo3hJzcXkqu2AR+Z1V4IUXEtXLgQV1fXfJeQkBBVYgoJCSkwpoULF5b49U+dOlXg9V1dXYul2a80vu8lRXrollLp6Yn8lLOfBB8vYl0bUrRHlAkhRPnSq1cvwsLC8t2nxvxgAH/++Wee4eJX+fn5lfj1AwICbvqsn4CAO39oZ2He9/LS80YSolLq2xUTSdBp8cmxMqjbm2qHI4QQqnJzc8PNzU3tMOwEBweren29Xl+szw3KT2l830uKNJmVUqsvrgUgTFMHV6fieTy+EEIIIfInCVEptC7qBw4ZregVhX7hxTssVQghhBB5SUJUCi2O/gqAJpluNKjRWN1ghBBCiApAEqJS5uz5I2zVXwagS40BKkcjhBBCVAySEJUyiTsX0CIjg+qZ0LvdELXDEUIIISoEGWVWmlit1D+0hOnxF0jt8iE6vU7tiIQQQpSwgQMHkpCQwNKlS9UOpUJTtYboq6++omHDhri7u+Pu7k7Lli1ZsWKFbb+iKEycOJGAgACcnJxsk91dLzMzk+HDh+Pj44OLiwu9evXizJkzdmXi4+Pp378/JpMJk8lE//79SUhIuBu3WDRH1kD8CXA04XJPP7WjEUKIYjFw4MACp3WoWrUqn376qd26RqNh0aJFecqGhISg0WjsJgK9Wv7GZerUqbeM68SJE3bHmEwmWrRowbJly+zKzZs3L99rzJ49u1D3L8oGVROiwMBApk6dyvbt29m+fTsPPPAADz74oC3pmTZtGh9//DHTp08nKioKs9lMx44dSU5Otp1j5MiRLFmyhEWLFrFx40ZSUlLo0aMHFovFVqZv375ER0cTERFBREQE0dHR9O/f/67f763MXzeZc3odNH4SHJzVDkcIIVQRFBTE3Llz7bZt3bqV2NhYXFzyPobk7bffJiYmxm4ZPnx4oa+3Zs0aYmJi+Oeff2jevDm9e/dm7969dmXc3d3zXKNfP/nDtTxRNSHq2bMn3bp1o3bt2tSuXZv33nsPV1dXtm7diqIofPrpp7z55ps88sgjhIaGMn/+fNLS0vj+++8BSExMZM6cOXz00Ud06NCBJk2asGDBAvbs2cOaNWsAOHDgABEREcyePZuWLVvSsmVLZs2axfLlyzl06JCat29n58FIPnK4SLfAAPZX7aZ2OEIIoZp+/foRGRlpNxP7N998Q79+/dDr8/b0cHNzw2w22y35JU4F8fb2xmw2U7duXd577z2ys7P5+++/7cpoNJo813BycrrluSdOnEjjxo2ZMWMGQUFBODs789hjj920leLGWjOAxo0b280IP3HiRKpUqYLRaCQgIIARI2Q+gztVajpVWywWFi1aRGpqKi1btuT48ePExsbSqVMnWxmj0Uh4eDibN28GYMeOHWRnZ9uVCQgIIDQ01FZmy5YtmEwmu0ePt2jRApPJZCuTn8zMTJKSkuyWkvT9pqkoGg31Mx2oX/e+Er2WEKJ8SctOK3DJtGQWumxGTkahypY0Pz8/OnfuzPz583PjSEvjxx9/ZNCgQSV63ezsbGbNmgUU73QgR44c4aeffmLZsmW2VooXXnjhts+3ePFiPvnkE2bMmMHhw4dZunQpDRo0KLZ4KyrVO1Xv2bOHli1bkpGRgaurK0uWLKF+/fq2ZOXG+WD8/Pw4efIkALGxsTg4OODp6ZmnTGxsrK2Mr69vnuv6+vrayuRnypQpTJo06Y7urbASki+yWXMK0PKAf6+7ck0hRPkR9n3+c00BtKnchi87fGlbb/dTO9Jz0vMt28yvGXO7XGuq6vJLF+Iz4/OU2zNgzx1EWziDBg1i9OjRvPnmmyxevJgaNWrQuHHjfMu+9tprjBs3zm7b8uXLadeuXaGu1apVK7RaLenp6VitVqpWrUqfPn3syiQmJuLq6mpbd3V1vel3yPUyMjKYP38+gYGBAHzxxRd0796djz76CLPZXKhzXO/UqVOYzWY6dOiAwWCgSpUqNG/evMjnEfZUryGqU6cO0dHRbN26leeff54BAwawf/9+236NRmNXXlGUPNtudGOZ/Mrf6jyvv/46iYmJtuX6qtviNm/FRJJ0WvyyrfTvPLbEriOEEGVF9+7dSUlJYf369XzzzTc3rR165ZVXiI6OtlsKmpA0Pz/++CM7d+7k999/p2bNmsyePRsvLy+7Mm5ubnbnv1kLw42qVKliS4YAWrZsidVqve1uG4899hjp6elUr16dIUOGsGTJEnJycm7rXOIa1WuIHBwcbJPTNWvWjKioKD777DNee+01ILeGx9/f31Y+Li7OVmtkNpvJysoiPj7erpYoLi6OVq1a2cqcP38+z3UvXLhw09mIjUYjRqPxzm/wFhSrlXWJ68EBWhlCMBodS/yaQojy5Z++/xS4T6e1f3zHuj7rCiyr1dj/jRzRO+KO4roTer2e/v37M2HCBP755x+WLFlSYFkfH587muQ0KCiIWrVqUatWLVxdXenduzf79++3a13QarXFNpHq1T/GC/qjXKvV5plBPjs72y7eQ4cOsXr1atasWcOwYcP44IMPiIyMLNamvopG9RqiGymKQmZmJtWqVcNsNrN69WrbvqysLCIjI23JTtOmTTEYDHZlYmJi2Lt3r61My5YtSUxMZNu2bbYy//zzD4mJibYyavpj03yOOig4WBUGPjBR7XCEEGWQs8G5wMWoMxa6rKPesVBl75ZBgwYRGRnJgw8+mKdrREkJDw8nNDSU9957r9jOeerUKc6dO2db37JlC1qtltq1a+dbvlKlSsTExNjWk5KSOH78uF0ZJycnevXqxeeff866devYsmULe/aUfFNmeaZqDdEbb7xB165dCQoKIjk5mUWLFrFu3ToiIiLQaDSMHDmSyZMn2zL3yZMn4+zsTN++fQEwmUwMHjyY0aNH4+3tjZeXF2PGjKFBgwZ06NABgHr16tGlSxeGDBnCjBkzAHj22Wfp0aMHderUUe3er7r432KctVYaZ3tSPai+2uEIIUSJSExMJDo62m7bjc1SN6pXrx4XL17E2fnmSVhycnKe/jzOzs64u7vfVqyjR4/mscce49VXX6Vy5cq3dY7rOTo6MmDAAD788EOSkpIYMWIEffr0KbD/0AMPPMC8efPo2bMnnp6evPXWW+h012r65s2bh8ViISwsDGdnZ7777jucnJwIDg6+41grMlUTovPnz9O/f39iYmIwmUw0bNiQiIgIOnbsCMCrr75Keno6w4YNIz4+nrCwMFatWoWbm5vtHJ988gl6vZ4+ffqQnp5O+/btmTdvnt2HZ+HChYwYMcI2Gq1Xr15Mnz797t5sfhSFga6ePHpwM+ce+VDtaIQQosSsW7eOJk2a2G0bMODW8zV6e3vfssz48eMZP3683bbnnnuOr7/+umhBXtGjRw+qVq3Ke++9x5dffnnrA26hZs2aPPLII3Tr1o3Lly/TrVu3m5739ddf59ixY/To0QOTycQ777xjV0Pk4eHB1KlTGTVqFBaLhQYNGrBs2bJCvVeiYBrlxoZKka+kpCRMJhOJiYm3/VdHgRJOg0dQ8Z5TCFGuZGRkcPz4capVq4ajo/Q1LCsmTpzI0qVL89SOieJ1s9+Pwn5/l7o+RBWSJENCCCGEqiQhEkIIUS4NHToUV1fXfJehQ4cWyzVCQkIKvMbChQuL5Rri7pAms0Iq0SYzIYS4BWkyK7q4uLgCZxlwd3fP96G9RXXy5Em7IfHX8/Pzs+vzKkpOcTSZqf4cIiGEEKIk+Pr6FkvSczMysqv8kCYzIYQQQlR4khAJIUQZIr0chMirOH4vJCESQogy4OqUDGlpJT/bvBBlzdXfizuZukT6EAkhRBmg0+nw8PAgLi4OyH0S860muhaivFMUhbS0NOLi4vDw8LB7KHNRSUIkhBBlxNWpHq4mRUKIXB4eHgVOhVJYkhAJIUQZodFo8Pf3x9fXt8Ch3kJUNAaD4Y5qhq6ShEgIIcoYnU5XLF8AQohrpFO1EEIIISo8SYiEEEIIUeFJQiSEEEKICk/6EBXS1Yc+FTQvjhBCCCFKn6vf27d6eKMkRIWUnJwMQFBQkMqRCCGEEKKokpOTMZlMBe6X2e4LyWq1cu7cOdzc3Ir1YWhJSUkEBQVx+vTpm87CK+6cvNd3h7zPd4e8z3eHvM93R0m+z4qikJycTEBAAFptwT2FpIaokLRaLYGBgSV2fnd3d/llu0vkvb475H2+O+R9vjvkfb47Sup9vlnN0FXSqVoIIYQQFZ4kREIIIYSo8CQhUpnRaGTChAkYjUa1Qyn35L2+O+R9vjvkfb475H2+O0rD+yydqoUQQghR4UkNkRBCCCEqPEmIhBBCCFHhSUIkhBBCiApPEiIhhBBCVHiSEKnsyy+/pFq1ajg6OtK0aVM2bNigdkjlypQpU7j33ntxc3PD19eXhx56iEOHDqkdVrk3ZcoUNBoNI0eOVDuUcufs2bM8+eSTeHt74+zsTOPGjdmxY4faYZU7OTk5jBs3jmrVquHk5ET16tV5++23sVqtaodWpq1fv56ePXsSEBCARqNh6dKldvsVRWHixIkEBATg5OREu3bt2Ldv312JTRIiFf3444+MHDmSN998k507d9KmTRu6du3KqVOn1A6t3IiMjOSFF15g69atrF69mpycHDp16kRqaqraoZVbUVFRzJw5k4YNG6odSrkTHx9P69atMRgMrFixgv379/PRRx/h4eGhdmjlzvvvv8/XX3/N9OnTOXDgANOmTeODDz7giy++UDu0Mi01NZVGjRoxffr0fPdPmzaNjz/+mOnTpxMVFYXZbKZjx462+URLlCJU07x5c2Xo0KF22+rWrauMHTtWpYjKv7i4OAVQIiMj1Q6lXEpOTlZq1aqlrF69WgkPD1deeukltUMqV1577TXlvvvuUzuMCqF79+7KoEGD7LY98sgjypNPPqlSROUPoCxZssS2brVaFbPZrEydOtW2LSMjQzGZTMrXX39d4vFIDZFKsrKy2LFjB506dbLb3qlTJzZv3qxSVOVfYmIiAF5eXipHUj698MILdO/enQ4dOqgdSrn0+++/06xZMx577DF8fX1p0qQJs2bNUjuscum+++7jr7/+4r///gNg165dbNy4kW7duqkcWfl1/PhxYmNj7b4XjUYj4eHhd+V7USZ3VcnFixexWCz4+fnZbffz8yM2NlalqMo3RVEYNWoU9913H6GhoWqHU+4sWrSIf//9l6ioKLVDKbeOHTvGV199xahRo3jjjTfYtm0bI0aMwGg08tRTT6kdXrny2muvkZiYSN26ddHpdFgsFt577z2eeOIJtUMrt65+9+X3vXjy5MkSv74kRCrTaDR264qi5NkmiseLL77I7t272bhxo9qhlDunT5/mpZdeYtWqVTg6OqodTrlltVpp1qwZkydPBqBJkybs27ePr776ShKiYvbjjz+yYMECvv/+e0JCQoiOjmbkyJEEBAQwYMAAtcMr19T6XpSESCU+Pj7odLo8tUFxcXF5smNx54YPH87vv//O+vXrCQwMVDuccmfHjh3ExcXRtGlT2zaLxcL69euZPn06mZmZ6HQ6FSMsH/z9/alfv77dtnr16vHLL7+oFFH59corrzB27Fgef/xxABo0aMDJkyeZMmWKJEQlxGw2A7k1Rf7+/rbtd+t7UfoQqcTBwYGmTZuyevVqu+2rV6+mVatWKkVV/iiKwosvvsivv/7K2rVrqVatmtohlUvt27dnz549REdH25ZmzZrRr18/oqOjJRkqJq1bt87z2Ij//vuP4OBglSIqv9LS0tBq7b8idTqdDLsvQdWqVcNsNtt9L2ZlZREZGXlXvhelhkhFo0aNon///jRr1oyWLVsyc+ZMTp06xdChQ9UOrdx44YUX+P777/ntt99wc3Oz1ciZTCacnJxUjq78cHNzy9Mvy8XFBW9vb+mvVYxefvllWrVqxeTJk+nTpw/btm1j5syZzJw5U+3Qyp2ePXvy3nvvUaVKFUJCQti5cycff/wxgwYNUju0Mi0lJYUjR47Y1o8fP050dDReXl5UqVKFkSNHMnnyZGrVqkWtWrWYPHkyzs7O9O3bt+SDK/FxbOKm/ve//ynBwcGKg4ODcs8998hw8GIG5LvMnTtX7dDKPRl2XzKWLVumhIaGKkajUalbt64yc+ZMtUMql5KSkpSXXnpJqVKliuLo6KhUr15defPNN5XMzEy1QyvT/v7773z/Tx4wYICiKLlD7ydMmKCYzWbFaDQqbdu2Vfbs2XNXYtMoiqKUfNolhBBCCFF6SR8iIYQQQlR4khAJIYQQosKThEgIIYQQFZ4kREIIIYSo8CQhEkIIIUSFJwmREEIIISo8SYiEEEIIUeFJQiSEAODEiRNoNBqio6PVDsXm4MGDtGjRAkdHRxo3bpxvGUVRePbZZ/Hy8ip18atp3bp1aDQaEhISCiwzb948PDw87lpMN6patSqffvqpatcX4nqSEAlRSgwcOBCNRsPUqVPtti9duvSuzPRcGk2YMAEXFxcOHTrEX3/9lW+ZiIgI5s2bx/Lly4mJiSm2qUIGDhzIQw89VCznKk8kiRHllSREQpQijo6OvP/++8THx6sdSrHJysq67WOPHj3KfffdR3BwMN7e3gWW8ff3p1WrVpjNZvT60jVFo8VikQlBhSgDJCESohTp0KEDZrOZKVOmFFhm4sSJeZqPPv30U6pWrWpbv1q7MXnyZPz8/PDw8GDSpEnk5OTwyiuv4OXlRWBgIN98802e8x88eJBWrVrh6OhISEgI69ats9u/f/9+unXrhqurK35+fvTv35+LFy/a9rdr144XX3yRUaNG4ePjQ8eOHfO9D6vVyttvv01gYCBGo5HGjRsTERFh26/RaNixYwdvv/02Go2GiRMn5jnHwIEDGT58OKdOnUKj0djeA0VRmDZtGtWrV8fJyYlGjRqxePFi23EWi4XBgwdTrVo1nJycqFOnDp999pndezx//nx+++03NBoNGo2GdevW5dsMFR0djUaj4cSJE8C1Zqjly5dTv359jEYjJ0+eJCsri1dffZXKlSvj4uJCWFiY3Xt78uRJevbsiaenJy4uLoSEhPDnn3/m+94BLFiwgGbNmuHm5obZbKZv377ExcXlKbdp0yYaNWqEo6MjYWFh7Nmzp8BzHj16lAcffBA/Pz9cXV259957WbNmjW1/u3btOHnyJC+//LLtfblq8+bNtG3bFicnJ4KCghgxYgSpqam2/XFxcfTs2RMnJyeqVavGwoULC4xDCDVIQiREKaLT6Zg8eTJffPEFZ86cuaNzrV27lnPnzrF+/Xo+/vhjJk6cSI8ePfD09OSff/5h6NChDB06lNOnT9sd98orrzB69Gh27txJq1at6NWrF5cuXQIgJiaG8PBwGjduzPbt24mIiOD8+fP06dPH7hzz589Hr9ezadMmZsyYkW98n332GR999BEffvghu3fvpnPnzvTq1YvDhw/brhUSEsLo0aOJiYlhzJgx+Z7jalIVExNDVFQUAOPGjWPu3Ll89dVX7Nu3j5dffpknn3ySyMhIIDcZCwwM5KeffmL//v2MHz+eN954g59++gmAMWPG0KdPH7p06UJMTAwxMTG0atWq0O99WloaU6ZMYfbs2ezbtw9fX1+efvppNm3axKJFi9i9ezePPfYYXbp0sd3vCy+8QGZmJuvXr2fPnj28//77uLq6FniNrKws3nnnHXbt2sXSpUs5fvw4AwcOzFPulVde4cMPPyQqKgpfX1/+v717D2nqf+MA/lZzJWJRuSJzarScs2xpdjOsqHASaKRBWGRidtPSZEkXME2Ltkr8QyZBgQmB2UVpJaV0odZFzem0m5uX1SKLsoRSrNz8fP+InV8n5+X37UsFe15/7Xz2+JxzPvPy+DnP2aKjo9HX12c3Z3d3N1atWoUbN26goaEBcrkcUVFRMJvNAICysjJ4e3sjJyeHmxcAePz4MeRyOWJiYtDU1ITS0lLcu3cPO3fu5HInJCTgxYsXuHXrFi5evIjCwkK7BRwhf8xv+QhZQsiwNm3axFavXs0YY2zhwoUsMTGRMcZYeXk5+/FHNSsri8lkMt7X5ufnM19fX14uX19fZrVauTGJRMLCw8O5bYvFwtzd3VlJSQljjDGTycQAMKVSycX09fUxb29vplKpGGOMZWZmsoiICN6+X716xQAwg8HAGPv+Kfdz5swZ9ny9vLzYkSNHeGPz5s1jycnJ3LZMJmNZWVlD5vn53Lu7u9mYMWPYgwcPeHGbN29mcXFxg+ZJTk5msbGx3PaPr4eN7ZO6u7q6uLGGhgYGgJlMJsYYY0VFRQwA0+v1XExraytzcnJir1+/5uVbsWIF279/P2OMsaCgIJadnT3kuQ6ltraWAWCfP3/mHeu5c+e4mA8fPjA3NzdWWlrKHeu4ceOGzBsYGMgKCgq4bV9fX5afn8+L2bhxI9u6dStvTKvVMmdnZ9bb28sMBgMDwKqrq7nnnz9/zgAMyEXIn/J3XWwnhAAAVCoVli9fDoVC8a9zzJw5E87O/1sEnjx5Mq/h2MXFBRMnThzwX/qiRYu4x6NGjUJoaCieP38OANDpdLh9+7bdlYu2tjb4+/sDAEJDQ4c8tk+fPqGjowOLFy/mjS9evBiNjY0jPEP7nj17hi9fvgy4VPft2zcEBwdz2ydPnsTp06fx8uVL9Pb24tu3b4Peyfb/EggEmD17NrddX18Pxhg3PzZfv37leqNSU1OxY8cOVFVVYeXKlYiNjeXl+FlDQwOys7Oh1+vx8eNHrk/JbDYjMDCQi/vx9ZwwYQIkEgn3ev6sp6cHhw4dwtWrV9HR0QGLxYLe3l5uhWgwOp0Ora2tvMtgjDH09/fDZDLBaDRy30s2AQEBf/QON0J+RgURIX+hJUuWQC6X48CBAwMugzg7O4MxxhuzdwnE1dWVt+3k5GR3bCQNv7Zekf7+fkRFRUGlUg2ImTJlCvfY3d192Jw/5rVhjP3yHXW286moqMDUqVN5z40ePRoAcP78eaSnpyMvLw+LFi2Ch4cHjh8/jpqamiFz2wrMH+ff3ty7ubnxzqO/vx8uLi7Q6XRwcXHhxdqKy6SkJMjlclRUVKCqqgpHjx5FXl4edu3aNSB/T08PIiIiEBERgbNnz0IoFMJsNkMul4+oiX2wOc7IyEBlZSVOnDgBsVgMNzc3rF27dtic/f392LZtG1JTUwc85+PjA4PBMOR+CfkbUEFEyF9KqVRizpw5A1YVhEIh3r59yyse/sv33qmursaSJUsAABaLBTqdjusFCQkJwaVLl+Dn5/dLd3ONHTsWXl5euHfvHrcv4Htj7vz583/p+G2NzGazGUuXLrUbo9VqERYWhuTkZG6sra2NFyMQCGC1WnljQqEQwPf+pvHjxwMY2dwHBwfDarXi3bt3CA8PHzROJBJxvV379+/HqVOn7BZEzc3N6OzshFKphEgkAgDU1dXZzVldXQ0fHx8AQFdXF4xGIwICAuzGarVaJCQkYM2aNQC+9xTZmsVt7M1LSEgInj59CrFYbDevVCqFxWJBXV0d9/oaDIYh3yOJkN+NmqoJ+UsFBQVhw4YNKCgo4I0vW7YM79+/x7Fjx9DW1ga1Wo1r1679Z/tVq9UoLy9Hc3MzUlJS0NXVhcTERADfG38/fvyIuLg41NbWor29HVVVVUhMTBzwR3I4GRkZUKlUKC0thcFgwL59+6DX65GWlvZLx+/h4YE9e/YgPT0dxcXFaGtrQ0NDA9RqNYqLiwEAYrEYdXV1qKyshNFoRGZmJteQbePn54empiYYDAZ0dnair68PYrEYIpEI2dnZMBqNqKioQF5e3rDH5O/vjw0bNiA+Ph5lZWUwmUx49OgRVCoVdyfZ7t27UVlZCZPJhPr6ety6dQtSqdRuPh8fHwgEAhQUFKC9vR0ajQa5ubl2Y3NycnDz5k08efIECQkJ8PT0HPT9lcRiMcrKyqDX69HY2Ij169cPWEH08/PD3bt38fr1a+7uwr179+Lhw4dISUmBXq9HS0sLNBoNV8xJJBJERkZiy5YtqKmpgU6nQ1JSEtzc3IadO0J+FyqICPmL5ebmDrg8JpVKUVhYCLVaDZlMhtraWrt3YP1bSqUSKpUKMpkMWq0Wly9fhqenJwDAy8sL9+/fh9VqhVwux6xZs5CWloZx48bx+pVGIjU1FQqFAgqFAkFBQbh+/To0Gg1mzJjxy+eQm5uLgwcP4ujRo5BKpZDL5bhy5QqmTZsGANi+fTtiYmKwbt06LFiwAB8+fOCtFgHAli1bIJFIEBoaCqFQiPv378PV1RUlJSVobm6GTCaDSqXC4cOHR3RMRUVFiI+Ph0KhgEQiQXR0NGpqargVHqvVipSUFEilUkRGRkIikaCwsNBuLqFQiDNnzuDChQsIDAyEUqnEiRMn7MYqlUqkpaVh7ty5ePPmDTQaDQQCgd3Y/Px8jB8/HmFhYYiKioJcLkdISAgvJicnBy9evMD06dO5FbPZs2fjzp07aGlpQXh4OIKDg5GZmcm7jFpUVASRSISlS5ciJiYGW7duxaRJk0Y0d4T8Dk7s59+2hBBCCCEOhlaICCGEEOLwqCAihBBCiMOjgogQQgghDo8KIkIIIYQ4PCqICCGEEOLwqCAihBBCiMOjgogQQgghDo8KIkIIIYQ4PCqICCGEEOLwqCAihBBCiMOjgogQQgghDo8KIkIIIYQ4vH8A3cOQc/68fmUAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAHFCAYAAADIX0yYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADkYUlEQVR4nOzdd3gUVd/G8e/2TTa9NxJC6B3pTUC6FCmKiCJYAEXlQcWCvcIjPrZXLFixY0eRooBUKVKkhxYSSO+9bD3vH4GVkFBFQvl9risX7MzZmXNmN7t3zpw5o1FKKYQQQgghxL9KW9sVEEIIIYS4EkjoEkIIIYS4ACR0CSGEEEJcABK6hBBCCCEuAAldQgghhBAXgIQuIYQQQogLQEKXEEIIIcQFIKFLCCGEEOICkNAlhBBCCHEBXLah6//+7//QaDQ0b968xvVJSUloNBr+97//nXZbc+fORaPRkJSUdNb1WLduHc888wwFBQXV1vXs2ZOePXue9TYvB3Xr1mX8+PHn9FyNRsMzzzxzXutzOnXr1kWj0bh/LBYLV111FbNnz+bEmzqsXLmyStnjf66//voz3uex992xH71eT3h4OKNHj+bAgQPnu4lXvGeeeeakr9vxP+fjd7Y23sOX+ufNDz/8wE033UT9+vXx8PCgbt263HzzzTX+LthsNp566iliY2MxGo3ExMQwffp0ysvLa9z2rl27uOGGGwgODsZkMlG3bl0mT5581nUcP378Gb2HzvWz70Rffvklr7/++nnZ1jG18d48n9auXcudd95J27ZtMZlMZ/zdvWfPHnf5zZs311jmp59+okePHvj4+GCxWGjWrBnvvffeWdVPf1alLyEfffQRALt372bjxo107NixVuqxbt06nn32WcaPH4+fn1+VdW+//Xat1Emcm65du7pDelpaGq+++ir33XcfRUVFPPbYY9XKz5gxg169elVZFhgYeNb7/fjjj2ncuDEVFRX88ccfvPjii6xYsYK9e/fi7+9/bo0R1dx5550MGDDA/Tg9PZ0RI0Zw3333MWbMGPdyHx+ff7yv9evXExUV9Y+3czYu9c+bl156ibCwMB5//HHq1atHcnIyM2bM4KqrrmLDhg00a9bMXfamm25i0aJFPPXUU7Rv357169fzwgsvsHv3bn7++ecq212xYgWDBg2ie/fuvPvuuwQFBXHkyBH++uuvs67jk08+yV133eV+vHXrVu65555qnwXBwcHncASq+/LLL9m1axdTp049L9uD2nlvnk/Lly9n2bJltGnTBh8fH1auXHna5zidTm6//XaCgoJIS0urscx///tfHn/8ce666y6mT5+OwWBg79692Gy2s6ugugxt2rRJAWrQoEEKUBMmTKhWJjExUQHq5ZdfPu32Pv74YwWoxMTEs67Lyy+/fM7PvZzFxMSocePGndNzAfX000+f1/qcTkxMjBo0aFCVZYWFhcrX11dFR0dXWb5ixQoFqG+//fYf7fPY+27Tpk1Vlj/77LMKUB999NE/2v65KCsru+D7/CdKS0vP+bln+hlhs9mU3W4/5/2IM5OZmVltWWpqqjIYDOqOO+5wL1u/fr0C1CuvvFKl7IwZMxSgfvvtN/ey0tJSFR4ergYNGqRcLtd5r/P5+iw4mUGDBqmYmJh/ZduXKqfT6f7/mX7/vvzyyyoyMlK98cYbNX7mbt68WWm1WvXSSy/94/pdlqcXP/zwQ6AymXbp0oV58+ZRVlZWY1mXy8WLL75IdHQ0ZrOZdu3asXz58tPuY+nSpVx33XVERUVhNpupX78+kyZNIicnx13mmWee4aGHHgIgNjbW3bV8LHnX1N2fl5fH5MmTiYyMxGg0Uq9ePR5//HGsVmuVchqNhnvvvZfPPvuMJk2a4OnpSatWrfjll19OW/djp7++/PJLHnnkEcLDw/Hy8mLIkCFkZmZSXFzMxIkTCQoKIigoiNtuu42SkpIq26ioqGD69Onu7vvIyEjuueeeaqdR7XY7Dz/8MGFhYXh6etKtWzf+/PPPGuuVkZHBpEmTiIqKwmg0Ehsby7PPPovD4Thtm2qDj48PDRs2JDMz84Lut127dgDV9rt582aGDh1KQEAAZrOZNm3a8M0331R7/tq1a+ncuTNms5nIyEiefPJJPvjgg2rd8HXr1mXw4MH88MMPtGnTBrPZzLPPPguc+Wv1zjvv0KpVK7y8vPD29qZx48ZVegXLysqYNm0asbGxmM1mAgICaNeuHV999VWV7fz888907twZT09PvL296du3L+vXr69S5tjpwa1bt3L99dfj7+9PXFzc2R/gUzj2u/PZZ5/x4IMPEhkZiclk4uDBg2RnZzN58mSaNm2Kl5cXISEhXHPNNaxZs6badk48hXPsVPKKFSu4++67CQoKIjAwkBEjRpz0L+/jHTp0iNGjRxMREYHJZCI0NJTevXuzbds2d5kTP29OdSrs+LoVFRW5X6Njv+tTp06ltLT0XA7hOQsJCam2LCIigqioKJKTk93L/vjjDwCuvfbaKmUHDx4MwPfff+9e9u2335Kens5DDz2ERqP5N6pdo2XLltG7d298fHzw9PSka9eu1b53srOzmThxInXq1MFkMhEcHEzXrl1ZtmwZUPl6Lly4kMOHD1d57U7l999/p2fPngQGBuLh4UF0dDQjR46s8v144ut/4tCK43+O70U6cOAAY8aMISQkBJPJRJMmTXjrrbf++cE6S1rt2cWaAwcO8NRTT/H222+ftBd79uzZmEwm7rvvvn9cv8vu9GJ5eTlfffUV7du3p3nz5tx+++3ceeedfPvtt4wbN65a+dmzZxMTE8Prr7+Oy+Vi1qxZDBw4kFWrVtG5c+eT7ichIYHOnTtz55134uvrS1JSEq+++irdunVj586dGAwG7rzzTvLy8njzzTf54YcfCA8PB6Bp06Y1brOiooJevXqRkJDAs88+S8uWLVmzZg0zZ85k27ZtLFy4sEr5hQsXsmnTJp577jm8vLyYNWsWw4cPZ9++fdSrV++0x+qxxx6jV69ezJ07l6SkJKZNm8ZNN92EXq+nVatWfPXVV/z111889thjeHt783//938AKKUYNmwYy5cvZ/r06XTv3p0dO3bw9NNPs379etavX4/JZAJgwoQJfPrpp0ybNo2+ffuya9cuRowYQXFxcZW6ZGRk0KFDB7RaLU899RRxcXHuUwJJSUl8/PHHp23PiZxOZ7XxVjXRarVn/YsK4HA4SE5OpmHDhjWud7lc1UKIXv/Pf+USExMBqux3xYoVDBgwgI4dO/Luu+/i6+vLvHnzuPHGGykrK3OPIdmxYwd9+/alYcOGfPLJJ3h6evLuu+/y+eef17ivrVu3Eh8fzxNPPEFsbCwWi+WMX6t58+YxefJk7rvvPv73v/+h1Wo5ePAge/bscW//gQce4LPPPuOFF16gTZs2lJaWsmvXLnJzc91lvvzyS26++Wb69evHV199hdVqZdasWfTs2ZPly5fTrVu3KnUeMWIEo0eP5q677vrXgsH06dPp3Lkz7777LlqtlpCQELKzswF4+umnCQsLo6SkhB9//NFdzzMZT3XnnXcyaNAgvvzyS5KTk3nooYe45ZZb+P3330/5vGuvvRan08msWbOIjo4mJyeHdevW1TiW9JgTT4UBvPXWW3z++efuz6iysjJ69OhBSkoKjz32GC1btmT37t089dRT7Ny5k2XLlp3yi97lcuFyuU7bbo1Gg06nO225Ex06dIjDhw8zbNgw97Jjp3uOfQYdc+zxjh073MtWr14NVH5WHPuD0GKxMGDAAF555RUiIiLOuk6n8/nnn3Prrbdy3XXX8cknn2AwGJgzZw79+/fn119/pXfv3gCMHTuWrVu38uKLL9KwYUMKCgrYunWr+3fj7bffZuLEiSQkJPDjjz+edr9JSUnu06gfffQRfn5+pKamsmTJEmw2G56enjU+78cff6zyR7/L5eKuu+7i0KFDREdHA5Xjobp06UJ0dDSvvPIKYWFh/Prrr0yZMoWcnByefvrpU9bt3/6sPhmlFHfeeSeDBw9m6NChzJ07t8Zyq1evpkmTJnz//fc8//zzHDx4kPDwcG655Raee+45jEbjWe30svLpp58qQL377rtKKaWKi4uVl5eX6t69e5Vyx04dREREqPLycvfyoqIiFRAQoPr06eNedrrTiy6XS9ntdnX48GEFqJ9++sm97lTdmz169FA9evRwP3733XcVoL755psq5V566aVq3eKACg0NVUVFRe5lGRkZSqvVqpkzZ578AKm/u7yHDBlSZfnUqVMVoKZMmVJl+bBhw1RAQID78ZIlSxSgZs2aVaXc119/rQD13nvvKaWUio+PV4C6//77q5T74osvFFDl9OKkSZOUl5eXOnz4cJWy//vf/xSgdu/eXaXtZ3J6MSYmRgGn/TnTbV177bXKbre7X+sJEyYog8Ggfvnllypljx3fmn4OHDhw2n0dc+x9t2HDBmW321VxcbFasmSJCgsLU1dffXWVU1qNGzdWbdq0qXaaa/DgwSo8PNzd5X7DDTcoi8WisrOz3WWcTqdq2rRptfdpTEyM0ul0at++fVW2eaav1b333qv8/PxO2cbmzZurYcOGnXS90+lUERERqkWLFlVOGxQXF6uQkBDVpUsX97Knn35aAeqpp5465T7PVE2nF4+9tldfffVpn+9wOJTdble9e/dWw4cPr7LuxPfdsdd68uTJVcrNmjVLASo9Pf2k+8nJyVGAev31109ZnxM/b070zTffKI1Gox577DH3spkzZyqtVlvtdMt3332nALVo0aJT7vPYa3K6n3M5RWa321XPnj2Vj4+POnLkiHv5/PnzFaA+++yzKuU//PBDBaiGDRu6l/Xv318Bys/PTz388MPq999/V++++64KDAxU9evX/0enp5WqfnqxtLRUBQQEVPvsdTqdqlWrVqpDhw7uZV5eXmrq1Kmn3P7ZnF489ppt27btlOVO95l47733Kr1eX+W179+/v4qKilKFhYXVyprNZpWXl3fKffbo0eOM3idnOyTldKcX33zzTeXv768yMjKUUicf0mEymZS3t7fy9/dXs2fPVr///rt6/PHHlU6nU2PGjDmrOl12oatHjx7Kw8NDFRQUuJfddtttClD79+93Lzv2gXrvvfdW28a4ceOU0WhUDodDKVVz6MrMzFSTJk1SUVFRSqvVVnlj/Pe//3WXO5vQNWrUKGWxWKqNLcjMzFSAeuSRR9zLADV69Ohq2wwLC1N33XXXyQ+Q+vuDYM6cOVWWz5kzRwHq119/rbJ8+vTpClDFxcVKKaUefvhhBaisrKwq5Vwul7JYLOrGG29USin19ttvK0Bt3ry5Sjm73a70en2VX6DIyEg1ZMgQd6g59rN7924FqLfffrtK288kKO3YsUNt2rTptD+pqamn3dbJAtyxcH+8Y8f3pZdeqravioqK0+7rmGPvuxN/mjRpovLz893lDhw4oAD1v//9r9rxO/Ya7NmzRymlVEhISLUPfKWUeuaZZ2oMXW3atKlW9kxfq2N/AI0ePVrNnz+/StA75vbbb1cmk0k98sgjasWKFdXGjO3Zs6fGgK+UUnfffbfSarXuL8ZjX/Dbt28//cE9A6cKXW+88UaNz3nnnXdUmzZtlMlkqvKaNW7cuEq5k4WuJUuWVCl37A+cDRs2nLSeLpdLxcXFqcjISPXKK6+orVu3Vgmox5wqdK1cuVKZTCY1duzYKsu7du2qWrZsWe21Li4uVhqNRj388MMnrZdSlWOuzuR3cMeOHafcTk1tvvXWW5VOp1Pz58+vss5qtar69euriIgI9dtvv6n8/Hy1ePFiFRoaqnQ6XZXXom/fvgpQkyZNqrKNY8Ht/fffP6t6nejE0LV06VIFqO+++67aMX3kkUeURqNRJSUlSimlrrnmGuXn56eef/55tX79emWz2apt/2xC18GDB5XRaFQdOnRQc+fOVQkJCTWWO9Xn68yZMxWgPvjgA/ey8vJypdfr1X333VetTYsWLTqjcL53794zep+c7djoU33/JiUlKS8vryptOVnoMhgMClBfffVVleXHOirO5o/py+r04sGDB1m9ejUjR45EKeXuWr/++uv5+OOP+eijj5g5c2aV54SFhVXbTlhYGDabjZKSEnx9fautd7lc9OvXj7S0NJ588klatGiBxWLB5XLRqVOnk16WfDq5ubmEhYVV664PCQlBr9dXOeUCNV8JZzKZznj/AQEBVR4f6yI92fKKigq8vLzIzc1Fr9dXuwJHo9EQFhbmruexf088xnq9vlrdMzMzWbBgAQaDoca6Hj9W7kw1bdr0jLusz0S3bt147bXXcDqdHDhwgCeffJJ7772XZs2aVTvFBVCvXj33+Kt/4tNPP6VJkyYUFxfz9ddfM2fOHG666SYWL14M/D22a9q0aUybNq3GbRw7frm5uYSGhlZbX9MywH1K/Hhn+lqNHTsWh8PB+++/z8iRI3G5XLRv354XXniBvn37ApVTu0RFRfH111/z0ksvYTab6d+/Py+//DINGjRwv4dqqkdERAQul4v8/Pwqp0ZqKnu+1bSPV199lQcffJC77rqL559/nqCgIHQ6HU8++STx8fFntN0Tfy+OnRI71e+0RqNh+fLlPPfcc8yaNYsHH3yQgIAAbr75Zl588UW8vb1Puc/du3czbNgwunfv7h4Pe0xmZiYHDx4859/LsLCwGsdi1dSGM6WOnhL6/PPP+eSTT7juuuuqrDcajSxevJixY8fSr18/ACwWCzNmzOD5558nMjLSXfbY8e7fv3+VbfTv3989PvB8Ova7eqqpY/Ly8rBYLHz99de88MILfPDBBzz55JN4eXkxfPhwZs2aVeP31unExcWxbNkyZs2axT333ENpaSn16tVjypQp/Oc//znt8z///HMee+wxnnrqKe644w738tzcXBwOB2+++SZvvvlmjc893fukfv365/Wz+kzcc889NG/enJEjR7qzwrGxbSUlJRQWFrq//wMDA8nIyKj2Phk4cCCvv/46W7dupX79+me038sqdH300Ucopfjuu+/47rvvqq3/5JNPeOGFF6qMHcjIyKhWLiMjA6PRiJeXV4372bVrF9u3b2fu3LlVxokdPHjwH9U/MDCQjRs3opSq8iGUlZWFw+EgKCjoH23/fAkMDMThcJCdnV0leCmlyMjIoH379u5yUHk8j/+gczgc1QJkUFAQLVu25MUXX6xxn+cytiIuLo7Dhw+fttzTTz99RvPS+Pr6ukNUx44d6dixI61atWLy5Mls27btvH4gHK9Jkybu/fbq1Qun08kHH3zAd999x/XXX+9+X0yfPp0RI0bUuI1GjRoBla9JTQP/a/o9gJq/DM/mtbrtttu47bbbKC0tZfXq1Tz99NMMHjyY/fv3ExMTg8Vi4dlnn+XZZ58lMzOTxYsX8+ijjzJkyBD27t3rfg+lp6dX209aWhparbbatBkXYkB0Tfv4/PPP6dmzJ++8806V5SeOX/w3xMTEuAPT/v37+eabb3jmmWew2Wy8++67J31eSkoKAwYMIDo6mu+//75auAoKCsLDw8M9Bc+JTveZ9Nxzz7kvvjhd/c9kLqVjgevjjz/mww8/5JZbbqmxXP369Vm/fj2pqank5eURFxdHYWEh//nPf7j66qvd5Vq2bMm8efNOur/z/Tt97Hi9+eabdOrUqcYyx/4ACgoK4vXXX+f111/nyJEj/Pzzzzz66KNkZWWxZMmSc9p/9+7d6d69O06nk82bN/Pmm28ydepUQkNDGT169Emft3TpUm6//XbGjx9f7fX09/dHp9MxduxY7rnnnhqfHxsbe8p69e7dm1WrVp22/uPGjTvpuKuztWvXLg4fPlzjtDu9evXC19fXHcZatmxZ42fksaB4Nu+TyyZ0OZ1OPvnkE+Li4vjggw+qrf/ll1945ZVXWLx4sfsqFqiccO/ll1/GbDYDlR+QCxYsoHv37icd2HnsA/fEgZpz5sypVvZM/lI9pnfv3nzzzTfMnz+f4cOHu5d/+umn7vUXg969ezNr1iw+//xz7r//fvfy77//ntLSUnc9jw0c/uKLL2jbtq273DfffFNtgPngwYNZtGgRcXFx523uqQULFlS76rMm5zpYtkGDBjz88MM8++yzfP3119x0003ntJ2zNWvWLL7//nueeuopRowYQaNGjWjQoAHbt29nxowZp3xujx49WLRoETk5Oe4vAJfLxbfffnvG+z+X18pisTBw4EBsNhvDhg1j9+7dxMTEVCkTGhrK+PHj2b59O6+//jplZWU0atSIyMhIvvzyS6ZNm+b+3SstLeX77793X9F4MdBoNNU+E3bs2MH69eupU6fOBatHw4YNeeKJJ/j+++9P2VNTWFjIwIED0Wg0LFq0qMYrtwYPHsyMGTMIDAw87RdnTSZOnFjl8/ZkTjxuNVFKMWHCBD7++GPmzJnDbbfddtrnREZGuv/ge+KJJ7BYLFV6aYYPH87jjz/O4sWLq3zmLl68GKXUSYPRueratSt+fn7s2bOHe++994yfFx0dzb333svy5cvdV2fC2Z3ZOJ5Op6Njx440btyYL774gq1bt540dG3bto2RI0dyzTXX1DgRqKenJ7169eKvv/6iZcuWZzeo/Kg5c+ac0R8n57PjYd68eVRUVFRZtmTJEl566SXefffdKvO+jRw5kt9++43FixdXmbNv0aJFaLVad0fDmbhsQtfixYtJS0vjpZdeqvEqoebNmzN79mw+/PDDKh8COp2Ovn378sADD+ByuXjppZcoKio65V9njRs3Ji4ujkcffRSlFAEBASxYsIClS5dWK9uiRQsA3njjDcaNG4fBYKBRo0Y1dvnfeuutvPXWW4wbN46kpCRatGjB2rVrmTFjBtdeey19+vQ5hyNz/vXt25f+/fvzyCOPUFRURNeuXd1XL7Zp04axY8cClT00t9xyC6+//joGg4E+ffqwa9cu/ve//1X7gH/uuedYunQpXbp0YcqUKTRq1IiKigqSkpJYtGgR77777llP2Hfs2P+bpk2bxrvvvsuzzz7LqFGjzukKrLPl7+/P9OnTefjhh/nyyy+55ZZbmDNnDgMHDqR///6MHz+eyMhI8vLyiI+PZ+vWre5Q9fjjj7NgwQJ69+7N448/joeHB++++677Kr8z+YvtTF+rCRMm4OHhQdeuXQkPDycjI4OZM2fi6+vr/pDq2LEjgwcPpmXLlvj7+xMfH89nn31WJUzNmjWLm2++mcGDBzNp0iSsVisvv/wyBQUF/Pe//z2jY5aUlERsbOx5/Uv5RIMHD+b555/n6aefpkePHuzbt4/nnnuO2NjYf3Xakx07dnDvvfdyww030KBBA4xGI7///js7duzg0UcfPenzxowZw549e3jvvfdITk6uMu1CVFQUUVFRTJ06le+//56rr76a+++/n5YtW+JyuThy5Ai//fYbDz744Cknno6IiDhvVwBOmTKFDz/8kNtvv50WLVqwYcMG9zqTyUSbNm3cj4+dgouOjiYzM9P9x+xnn31Wpde9cePG3HPPPbz99tt4e3szcOBA9u/fzxNPPEGbNm0YNWqUu+zKlSvp1avXGfeM18TLy4s333yTcePGkZeXx/XXX+++8nX79u1kZ2fzzjvvUFhYSK9evRgzZgyNGzfG29ubTZs2sWTJkiq92S1atOCHH37gnXfeoW3btmi12pMOaXj33Xf5/fffGTRoENHR0VRUVLh7ME/23VJUVMS1116Lh4cH06ZNqzZTe9OmTfHx8eGNN96gW7dudO/enbvvvpu6detSXFzMwYMHWbBgwWmvvj3WE38+ZGdnu3vNdu7cCVTmg+DgYIKDg+nRowdAjYH6WG9r27ZtqxzH2267jTlz5jB58mRycnJo2rQpy5Yt46233mLy5MnV/oA8pTMe/XWRGzZsmDIajdUGdx9v9OjRSq/Xq4yMDPcg2Zdeekk9++yzKioqShmNRtWmTZtqA8lrGki/Z88e1bdvX/cVDTfccIM6cuRIjYMQp0+friIiItwD7lesWKGUqnlga25urrrrrrtUeHi40uv1KiYmRk2fPr3aAGxA3XPPPdXaeCaTjp5swr6TDSI8NkD5+IHQ5eXl6pFHHlExMTHKYDCo8PBwdffdd1cZ4K1U5aDWBx98UIWEhCiz2aw6deqk1q9fX2M9s7Oz1ZQpU1RsbKwyGAwqICBAtW3bVj3++OPuwaXH2n4xTI56zFtvvaUA9cknnyil/v3JUZWqPP7R0dGqQYMG7gs+tm/frkaNGqVCQkKUwWBQYWFh6pprrqk22H/NmjWqY8eOymQyqbCwMPXQQw+5r5A9/gKUU7X5TF6rTz75RPXq1UuFhoYqo9GoIiIi1KhRo6oMmn700UdVu3btlL+/vzKZTKpevXrq/vvvVzk5OVX2N3/+fNWxY0dlNpuVxWJRvXv3Vn/88UeVMjW9T4/ZuXOnAtSjjz56qkNexakG0tf02lqtVjVt2jQVGRmpzGazuuqqq9T8+fPVuHHjqg12PvE9fLLX+tj+jn1m1CQzM1ONHz9eNW7cWFksFuXl5aVatmypXnvtNfd7Q6nqnzenurr3+LqVlJSoJ554QjVq1EgZjUbl6+urWrRooe6//373VV8Xwqnqe+LxffbZZ1VcXJwymUzKz89PDRgwQK1evbrG7TocDvXf//5X1a9f/5SfZQsWLDjpxTMnc7L3y6pVq9SgQYNUQECAMhgMKjIyUg0aNMhdrqKiQt11112qZcuWysfHR3l4eKhGjRqpp59+usoVlXl5eer6669Xfn5+SqPRqFN9pa9fv14NHz5cxcTEKJPJpAIDA1WPHj3Uzz//XKXc8a//sd+Bk/0c/75MTExUt99+u4qMjFQGg0EFBwerLl26qBdeeOGMj9f5cKqrx0919a5Sp/7Mzc3NVZMmTVKhoaHKYDCohg0bqpdffrnGi1ZORaPUGYxeE0Jc1vr160dSUhL79++v7ar8K95++20efvhhEhISTnrRgBCn8vDDD/PVV19x4MAB93AUIc7WZXN6UQhxZh544AHatGlDnTp1yMvL44svvmDp0qXVrly7nKxYsYIpU6ZI4BLnbMWKFTz55JMSuMQ/Ij1dQlxgZzJL9/mYuf5k/vOf//Dzzz+TkZGBRqOhadOmTJ069aRXggkhhDg/JHQJcYE988wzp72MPjExkbp1616YCgkhhLggJHQJcYGlpaWd9ibG53rptRBCiIuXhC4hhBBCiAvg35lCWwghhBBCVCFXL54hl8tFWloa3t7eF+Q2I0IIIYT455RSFBcXExER8a/dru1MSeg6Q2lpaRf0Vh5CCCGEOH+Sk5PP+s4m55uErjN07LY9ycnJNd6jTAghhBAXn6KiIurUqVPj7fcuNAldZ+jYKUUfHx8JXUIIIcQl5mIYGlTrA+lTU1O55ZZbCAwMxNPTk9atW7Nlyxb3eqUUzzzzDBEREXh4eNCzZ092795dZRtWq5X77ruPoKAgLBYLQ4cOJSUlpUqZ/Px8xo4di6+vL76+vowdO5aCgoIL0UQhhBBCiNoNXfn5+XTt2hWDwcDixYvZs2cPr7zyCn5+fu4ys2bN4tVXX2X27Nls2rSJsLAw+vbtS3FxsbvM1KlT+fHHH5k3bx5r166lpKSEwYMH43Q63WXGjBnDtm3bWLJkCUuWLGHbtm2MHTv2QjZXCCGEEFewWp2n69FHH+WPP/5gzZo1Na5XShEREcHUqVN55JFHgMperdDQUF566SUmTZpEYWEhwcHBfPbZZ9x4443A34PeFy1aRP/+/YmPj6dp06Zs2LCBjh07ArBhwwY6d+7M3r17adSo0WnrWlRUhK+vL4WFhXJ6UQghhLhEXEzf37Xa0/Xzzz/Trl07brjhBkJCQmjTpg3vv/++e31iYiIZGRn069fPvcxkMtGjRw/WrVsHwJYtW7Db7VXKRERE0Lx5c3eZ9evX4+vr6w5cAJ06dcLX19ddRgghhBDi31SroevQoUO88847NGjQgF9//ZW77rqLKVOm8OmnnwKQkZEBQGhoaJXnhYaGutdlZGRgNBrx9/c/ZZmQkJBq+w8JCXGXOZHVaqWoqKjKjxBCCCHEuarVqxddLhft2rVjxowZALRp04bdu3fzzjvvcOutt7rLnXjFgVLqtFchnFimpvKn2s7MmTNPe1NiIYQQQogzVas9XeHh4TRt2rTKsiZNmnDkyBEAwsLCAKr1RmVlZbl7v8LCwrDZbOTn55+yTGZmZrX9Z2dnV+tFO2b69OkUFha6f5KTk8+hhUIIIYQQlWo1dHXt2pV9+/ZVWbZ//35iYmIAiI2NJSwsjKVLl7rX22w2Vq1aRZcuXQBo27YtBoOhSpn09HR27drlLtO5c2cKCwv5888/3WU2btxIYWGhu8yJTCaTe04umZtLCCGEEP9UrZ5evP/+++nSpQszZsxg1KhR/Pnnn7z33nu89957QOUpwalTpzJjxgwaNGhAgwYNmDFjBp6enowZMwYAX19f7rjjDh588EECAwMJCAhg2rRptGjRgj59+gCVvWcDBgxgwoQJzJkzB4CJEycyePDgM7pyUQghhBDin6rV0NW+fXt+/PFHpk+fznPPPUdsbCyvv/46N998s7vMww8/THl5OZMnTyY/P5+OHTvy22+/VZnO/7XXXkOv1zNq1CjKy8vp3bs3c+fORafTuct88cUXTJkyxX2V49ChQ5k9e/aFa6wQQgghrmi1Ok/XpeRimudDCCGEEGfmYvr+rvXbAAkhhBBCXAnkhtdCCCGEqDUul4vCrFxMTgPmYG+0Rt3pn3SJktAlhBBCiPPCbrdTVlZGeXk5ZWVllJWVEeoXhLbQSllqDoUVdrYk7qK8opwyazkVTis2nKCBYdb2NJnUDVNd39puxr9GQpcQQgghqnC5XFRUVLjD04n/Nm/enJCQEBzFVvbtiOfXP5ZTbi3H4XJW21YPW1MauMLRAEXaHBKNKX+vPG5+8gq9A1dF9edfTiR0CSGEEFeA0tJSsrKyagxR5eXldOvWjejoaAB27tjJj/N/POm2HMvTaOyMQqfRU6zNodhY4l6nURpM6DErAyYMGNFjdZZj1ZTjF+xFb9+OeHpbMHkYsDvK8I8KIaheHbyC/P7tQ1DrJHQJIYQQl6jCwkJSUlIoLi6mpKSEkpISiouLKS0tpaysjCFDhtCgQQMADh48yI8/njxI+Sc6KLcGobfrKdWWggEMSocJAyZlcIcoszIQpPzQaSojRKDOm5G+V+Pp44XBpCMv6zDGQAvmYB88IwLwrhOCZ4DfaW/fdyWQ0CWEEEJcREpLS8nIyKgSoo7/99prryUuLg6ApKSkUwapI8t3olmagqvIhlXjwA8LJpe+WogyYSDc6o9FeQIQ5TRxm6sXRm8zLjNkZSWiPEDrbUDv74E5xBtteCDedUKICPRHq/178Hs0bf/dA3QJk9AlhBBC/MusViu5ubknDVK9e/cmNjYWOH2PVMYfCQRsd+EstUN+LmE6fzycRjwcBjyVCU+MeCgjJmXAN8kTE3pAjydwPZ0qN6KFEmsBVspx6O24PJxUeBXi8LdiDvYmqGkcAbF10Ogqe6ci6fgvH6Erg4QuIYQQ4hw4HI5q4en4f7t37+6+l/DePfH8+NP8k24recluvPTFuEodOEoy8VMWPF1GPDHhoYyVYUoZ8cCE/x4dpWQAEIiBwVxVZVs2lxWrs4wKVzF5hjyUGTTeekKaxBHeuik6XxOYtbhcDgwm8792fER1ErqEEEKIEzidTvLy8sjOzqagoMAdpDp06EBUeCSuMgc7t23np98XnnQbkekWjM5MXKV2rM5cPAzHhSdVGagq/28i+LAJK4UAhOLl7pHSGLRoLXqcehdWZxklZfmkFRyhzFqE1VlGSOP6XDV8GDqLAcxa/lzyPZGNm1C3fkfMFq9TjqPSSQS44OSICyGEuGLZbDYAjEYjAAkJCSxetJi8vDxcylWtvO8OJxprOAB2bR46gxYPjO7w5HmsVwoTIXmeOJUVgAj8udlxNVqLAZ2nAa1Fj9ZiQOtpOLrs6GOLAY2nHp3FiNZTj8NlY85dt2IrL69SD4PJTESjJlhahWKO83Mv7zr6ln/jMInzREKXEEKIy155eTk5OTlkZ2eTnZ3t/n9BQQEDu/ShmXc9bKklFB8+TE5xDgB6pcNPeeKjPI72UJkIdnlVblADkR4h3Ol5LTqvY0HKcFyQ0h8XsCofa4y6GnuebOVlpO2LJ2XvblLid2E0ezBi+rMAGPHAOzCY0vw8Ips0I6pxMyKbNCOkbhw6vXyFX2rkFRNCCHFZUEpRUlJCTk4OXl5eBAcHA5VX+M2dO/ekz0tbfYBIhwLAFz0DtK0JMPngFxmEMdIbQ7DH34HqaK+UxqxHoz33KRASt23h8I6tpMTvJivxEOq4XjW90YTTYUenNwBw/RMvYPH1Q6OV2yVf6iR0CSGEuOTYbDaSkpKq9V5VVFQA0KV9Z7rXb489tQTtkVwALMqEn8uCn/LET1mO/t+CxdsLY6QXhggLxggv6kR6ofMznbd5pYrzcshIOECD9p3dy/5asoDEvza7H/uGhBLVpHllb1aT5mh1f389e/kHnHL7eWmlVJTasZU7sJY7sJU7cNhdKKUweehp1j3SXXbX6lTKCq0oVRlSUbj/bzDpaD8o1l1227IjFGaXn1BWoRTo9Vp6jGnkLrt5cRK5KSXVtqkqsyzdb2tMam4ORw7vJ3l1LrYsUHY7OOxoHE50ThehKd9gmTaRvv1HnPOxvthJ6BJCCHFROn4we05ODkFBQTRt2hSAsrIyvvzyy2rP0QDeeGJdl0numt1HlylupQdG9OgCzBgjLBgivDBEemGM8ELnbTxvdVZKUZiZQUr8LlLid5OydxeFmZVXGk58ey7egUE4nS7qtu6IyeJPUHQj/MPr4xUQRER9P/d2/vwlkdICK7ajIcpW4cBa7sRW7sAnyMyIaX/PhbXw7e0U5VTUWB+fYI8qoWv3mlRykktqLOvhY6wSug5tyyb9YGGNZQ0mHTH9okgvKuZIfgY5f2RCjuEkB8WFf7cb8S2FaKCw2QSyg1v/vVoPDj2EFulJTNhX8zYuExK6hBBCXBRsNhtr1qxx917l5eXhcv192q1pk6Y0CK6LPa0ElVJCiMEfL7sRX4enuwfLV3miRwca0Ad7uIOVIdILY7gFredJgsEZUErhcil0ur9P86XszaOitDIUJW1bTcKmBdjKqwYVjUZLSGw9fnh5LeWlfjjtLsAEtCBpN8ARgqPzGfVYe/dz9m1IP2mQ0hmqnmb0CfJAo9Vg8tBjMOsxeejRG7VotBo8TgiU9duGEFbPt7IXTwOaoz92l8KugS2H88kuLiOlKIdcr1wcUUU4ywqhvASdtRSjtRyTzYopv4JdIyfjX+qieSnkBrTEavav7OJCoVEKcB39V+FfWrl/pwZ8cleCbScVHgZsnh44LZ5ofXxJuLUXnfoNOpeX5pIhoUsIIcQFYbVaycrKqnI6MCgoiP79+wOg0+lYt24dTuffNz026PQEmHzxc3kStFtD5l9b3OuGHpufSqvBEOpZJWAZwixoTTrOlnIp0g8VkpdWSm5qCXlppZTkV2A72ssUVt+bzkN9Knuy9u4m40hDnPbKsWNOWx728kJAh0YXildgPfre0ZeIhk0weXry2RPrcNr/DlJ6kw6TWYfRQ49PUNX5slr0jMJudWI06zF6VAYpo0dlWbOlanC8bmqbqm1QimKrg7wSG7mlVn7bnUFuiZX0kgLSKrLIdmVhzUtBm5+OqSgbr5J8/MtLCCgrI+BTG/4lDpqUKHxLQafO7LgF5u2gyKKj2NtMma8Fm78v2sAgTKHh+ERFo6t7M+F1G+IVEklz3dm/LpcLCV1CCCH+NS6Xi4SEBLZv387evXtxOBxV1hcXF6PsTuwZZdjSSmgX2BRdqcKnyICf3RMLJjSlf4+t0hi0GMIrTw+6A1aoJxr92Q0yt9uc5KeXkpdWChpo3Cn86A7gl9nbsVdUBj+lHChHBi5HKi5HComb0jm00ebeTlCMD94x9TF66NHp2uOw1cU/vC4e3p54B5iJbR3mLjvkvtZodRqMHnqMZh1a3cnr3LpPdOWFAVYHBWV2CsrspJbbKCiooCDdTt62crLLCsgpyyffWkBhWT7Okmy0ZfkYygvwthUTUFFEYHkJ/mUVBJTZaFDion0J+JWCvvpsGDVyASVeBkp9PbD5eaMC/TGGhuAdWQf/yBj8ourhFxGLPigQzRUcps6UhC4hhBD/qoULF1JQUACAl5cXQd4B+Ou98bN74FtiIvXpdZXf7kALQtzP05h0leEq8tj4Kwv6IE/3rWnOxqG/sslOLnb3XhXmlMPRXhy/UE8adwpHKUV+ehqhMS50hkACIy1otdms/fL/qmzLZLEQ2agpUU2aU++q9gRGRZ9y38d6nooNUFBmoyC/hPwyO4VlNvJLrWSXFZFdlkdRaS62wkxUaS6a0nyMFYVYbKV42cvwspdjsVnxstnwstqJsLpoWKGwVIDFCp7WszseLg2UeRmp8LPgCvBBHxKEOSwcz7BIvCNi8Iushyk0HH1gABqZmuK8kSMphBDivCgpKWHnzp3s37+fMaNuQuVasWeV0cqnPnmuAhrYQvHPMaHJqR6atBbD36cHIywYI73Q+ZvPeFoG5VIU51WQm1ZKXloJtnIHnYfXd6/ftCix2gByo4cDT+88dJosvpuxiMyD+6koLaFF7/70m3gfAE5HDDuWhhJWvyGRjZriH9cYXUA4BRWVPVB/5NopTE4ir9RGbmkx+YWZlBdm4CjKwlWSi76sAENFEV62Miz2crztFZXhyWrHy+ogxObiqqPhyWz/Bwf/KJtRh91iwuntgSY4AG1wEObQcCzhUfhE1MUzPAp9SAj6gAA0hnMf3ybOjUYpdYZnbK9sRUVF+Pr6UlhYiI+PT21XRwghLgq20grit+xmx+4dJGYdwXX0K6WPrSV1XcE1Pkfna3L3XB3rydL6GM96ioZ9GzNI3Z9PXlrlaUK79e+xYFq9hklv9HCfwvvzl0OU5lsJiPDCN8TAsveepDArvYbK6XHVa0l6m97kFmZhTDmIKT8DXVkhxopid3jyslnxstqw2Ox4WZ14WV1YKsDgrL7Js1Vu1mHzNOCwmMHbE423F1pfHww+fhj9A/DwDcQzIARLYCgmvwC0Pj7ofH3ReXmhMZ6/KzEvFxfT97f0dAkhhDgtV7kDe1YZjqwy7Jll5KRlsTVjDwnONKyav8dpBbt8qO8MI8zlh9bLgCHEE32IJ4bQv//VeZ1ZMLCWO6oMaC/MLmPwPa3cvV+J27NJ2JrtLq/Va/AP9cQz2IzLWMIP3/xE1uF4ylISsep17OvYibwj+RQdLKRXUQ4+QIGHliwfRYGXDaOrhNDiYurt30+fNd9SJ/vMxz4dz6mBcg8tFR4G7BYjLosHGm8LWl8f9D6+GPz8MfkF4OkfjCUwFJ/AcMz+Qei8vdF6e8vYqMuYhC4hhBBurjI79qPBypFV5v6/q8iGC4WWysBTrilhj+kIaMCCiUbedWkW1ZDQmIjKoBXqWXkT5rO0d306BzZnkZdWQkl+9YFKH6xYTaYmn+zSPJRNoa2jIduYTaYxnaDMw4Sl2QjeB2b7cYPvAa3exTbrHygtWJQiOUJPeJ6TutlOeuxXhOdBTcPaS81acoPN2C1mlLcnWh8v9L6+GHx9MfoFYPYPwhIQindAGD6B4XgGhFT2OJ2niVXF5UVClxBCXIGcpXYcmaXVAparuOrAIjsOErXZHDSk42kw0z+yC4YQT/xCPemSoohtHEdc4wZoz+AWNU6ni5yMQo4kZZNyOJ+81FLKs51k90gh05VDfkU+EfvqUD/l75nOSwwF5FrSyPdMJ88znSOHdmEpcxJcYMKnTM+fTfPdZVvuDyEyz6NyX1pFro+VYk8bRpeTkFInj843UzfDhn+BDah+HlAF+aNv3BDPZs3wbtYKz2bN0EdESIAS542ELiGEuEwppXCVVPZcOTLLqgQsV+nJR21rfY1k+JZwwJnKwYIj2J2Vpw/1Wj2+YxthPDpuqF+HcPdzHDYnyRl57E1KJiU9hzTfdFJtaWRXZOJ/OIDGR1rhYbegPaE/SYOOjQm/kOq7H4Bs/2hSjdvI90gnzzMDvd1GaL6J4AIT9VPNdCwKRuf6OwTZW1+Fj18QQR5+hJdl4pdZRIRVEZiWi3ZnIiovn5oYoqMxN2mCuWlTzE2bYG7SBH1Q0LkdaCHOkIQuIYS4xCmlcBXbsB8NVscCliOrDFeZ46TP0wWY3acCDSGVP38l7+aPDX9QlFXkLufr509QWCyaiABeX/cbKcXp2I/YCErxx2jV42HzwMNhOW7LetY1nU+a70EAmqjOWOzdALBrreR5ZJDnkU2eRx5FHiWUeXgTqumGP16EaTSYm9alvW9vwr0Dca34g+xtf1apt9nLm9CIKAJNHlx/QA8H9lOxdy+u4uKqxwVAq8UUVw9z06aYjoWsJk3QeXv/o2MuxLmQ0CWEEJcYR245FfvzsaeVYj96ilBVnOSyOQ3oA8x/D2YPtWAI8cTuayC7wk5CTiG55TaSChPJjM9Ek5iKwVmEUlq0Nl88ysIwZARRtFfDz01f+TtIlXamef7oqvXS2CgxFlFmLMWoognTRBJgCiE8LpzS+qXUCQ+jXngDYvx74GfWU5h6hPQD+0g/uI/0PfvJT4sHYPRztxHZqAkAe/IVW46kEeThhW+5Fe+0DPSb48G6DYCy45tqMGBq1KiyB6tZZbgyNWyI1sPjvB5/Ic6VhC4hhLjIKacL2+EiyvfmUbE3D0dWefVCWtAHeOAKNFPuY6DAU0+GAQ6XV5CZnk1JVjqOxHK0FQ7Mdg0eWNEZirGac9gctIVk7yM0yexM9/QR2A2BGK2BaI47FWjTVmByeGFSoXjpgtAHB5LsmYC3n4XQ0ABiI8NoFhVNmE9AZZ2Vwl5RTllREeVFhXgHBePlX7ku/o9VfP3OGzjstmrN8PHzJ2fBz2jmfkbFnj1oEhJo56jeW6f19KzSc2Vu1hRTvXoy95S4qEnoEkKIi5Cz1E7F/nwq4nOp2F+Aqvg7eCgN5PoYSNIq0pxlpFlLyLOWoctw4Z2qZ13YBrJ89qMxFNI0ryk9D40mGAsOvcLqkUWFZxYunR0XoEVLkDWQFO80SrzKOBKagMYCHr5F+Ad6ExUWSIPoCGICI5jk6EZFcRHlRUWUFRcSHB2LX2jlbW7SD+5j7ZuvUVZUSHlxZdBy2v8eN9bnzsm06nstAD6BwTjsNowmM0EWb/ztTrzTs7EcTsbkSIBVmzn+ltE6P7+/x14dPU1ojIlBcwaD94W4mEjoEkKIi4BSCntGGRVHe7NsR4rct6kBsBoUu7xyWabdR0GZjU6Hux1doyEcb8L5e4xSoK6QXM8jABSZs8m2HMbllYr2uPm0tHodwRFBxMVFcr13HwxWRXlxMXWGNnff1iZlzy6Wf/QO64oKWV5chHJVnbSq9+1307r/IAAcNhuHd/xVrV16oxGzhwXr7j1kxydQsXcvpfHxXJ2Xg8Vq58TrAvVhYVUHuDdtij4sTK4gFJcFCV1CCFFLlN1JRUIhFfG5lO7JhROmayh0KjLtLjLsih/qfs6+kMoB5ZGFDVHpXSg1FlFqLMBqLgMPOyYPB74WDf19mzHY0ZxgkydGHTS/tgu/rllHSkoKdcJCydv+J66cTMp2KnYCO4/bZ+/b765yL8Gc5MNV6mT08MDDxxdPb19MXl7u5QEhYfQefiP6wmK02Tno0tIg8QiuI/vB6YTVm8k5bjtegCEm+ujpwabukKUPCDhPR1eIi4+ELiGE+JcppSgtsFGQWUrqwTSsB/LwynMS4NCiV3+fInMoRY5DkWGvDFsVCsr1xRR4ZmHHSJiuNS3MUTTBQsO7nDSs35lgz2CStm5h/svP4/TwosIvkGJvf9BqyTmwGq3TQXBwFEOGDMFisZCblMDXy3529zCZLV54+PhWBikfH7yPmzYhKKYuIx977ug6Xzy8fdA6ndgSE7EmJGDduJXkL7/FdvAgtuRkTMf1hB3fJ6b18sJUvz7G+nGYGzRwnyLUHRfahLgSSOgSQojzxFruQLkULqOdw0WH2XfgMKkLXPgVGwnX6gk1aInUaaicI73y4zdTn8smr91sNx/CK7MF2ZZS8vUOCrQ6/IOD6BIRRS/C6JbciCPrt1Ocs5MiwCuoBeGtw8nLy2N34mFK41qgjCZ3XQy4iGrdnuAAfwIjowk6GqZCY+tz68uz8fTxxezljU5f89eAq6wMlXgYv8Qj2BISKDiYQGZCAvbkZDjJLXu1Pj6Y6tc/+hOHMS4OU/366ENC5PSgEEjoEkKIs+J0uijMKic/s5Tk5EwyUvMoyCrDnqdBW2Ekvt5qNgctom1pU7oWtGWAvRUmz78DhwtFqraYXYZslhnS2Kqz4rIG4yruR4h3INc0DuGmRiE0s1j57fUZ5P/+C9uO279Wpye8QSMsfn7s3r2bb7/9tnKF0YTRaKRZs2a0atWK6OjoGmeJN5jNBEfX/bs+paWVvVYHE7AmHMR2MAHrwYPYU1NPegx0fn7unitTXGXAMtWvjy4oSMKVEKcgoUsIIU6gXIqSAisFWWVkpRZQZimgMCSNpMIkUpOziVrU44RnmPDRQqhJS+v8q3goryc6jt60WAsVOifxllKW2qysrNBT5NKBNRitLZj2EZ509S4isjyVutFm2g5qCYDdWkFRdiYajZaQ2DjqNG+JPjic4Oi6NGzcGICysjL0ej0xMTG0atWKxo0bu2eLP5GzuBhbQsLfAevgQawJB3GkpZ/0OOgCAzHFxR3Xa9UAU/04dAEBEq6EOAcSuoQQV7zyUitrF8WTmZZPcbYVZ74OjVPnXr83eCMr638JgNalY5yuPcXmHHxNduKM3tRzBuJrN1cWVv4AFFp0/Klx8lNJKTudTpxFACaCzBpGB5bT0JWBPjOBnHUHsbtcJAGldevRdtB1ABhMZq5/4gXw8CL+wAE279hB8YHDRB1JcYcuT09PHnzwQTyOm/zTWVR0XK/VwaP/T8CRkXHS9uuCg472WB3ttYqLw1i/Pnp///N2jIUQErqEEFco5VIkFSfxzb5v+GX/Qm5c+9TRyUCNaACnxkmRKYdCjyzK/HJpG9qWJsaGtClqTHRLHywpfmjsCioqt+fSwhEvHb9VVLDUVkF66dFxT0rRPMqXXo1C6NU4hK3/e5jC+HSOvyOgX2g4dZq3JKZFa6CyB2vXrl1s27aNtLQ0dzkPDw8iIiJwOp2ooiJshw5hPXCQwoQEbAkHsR44iCM7+6Rt1oeEVD8tGBeHzs/vfB5aIcRJSOgSQlxRMo8UsPSXLSRnpPNl3Evu5dujVuDpZcQ7xERIuB8xkRHE+jWlTmkvtAetVOzNw55actyWFBUmLdsMip9Ly9jkslNeBChFNAXc5JlHVHka+tJsJt7zvnsiz4yGjXHarEQ3b0Wd5q2IbtYSn+CQKnWcP38++/dX3gBaq9EQGxhIQ42GyIxMHF9+ScILL+LMyztpG/Xh4ZWnBePiMDWoX3lqMC4OnY/PeTuOQoizJ6FLCHHZUy7Fji2HWLtkD6RaAA0+RBAQEU7Lho0Y3Wg0ncI7odPqcFkdWA8UUL49j4p9eZSWHPh7O0CWRcdKp41fK8rZb3WBFXzsRXTWZdBYZWLKTsRRXgq4O8HIST5McEwsAH3vvAe9yeQeE5Wens4fCxZwVVgY5swsbIcOEZmcTLYG6h44SPShQ5itVgCq3s4Z9BHhR08JNqgy9kqmYhDi4iShSwhx2bKV2/lt6Z8cWJOLsdgLsODCSUpIPJGdPfiq+1wivCJw5JZTti6Dir15WBMLwfn3lAgOvYa9Zg0Ly8pY67KTX6rwthfjNFno1SCUXo1DCIxfxt5fl1eWBwxmD+o0bU6dZi2Jbt6KoDoxKKVwZGdjO5RI5oH97E5MYm9FOflHB76X7dhB0z2VN3wOBvod3b/GaMTYsCHGevUw1at39N9YjHXrovX0vHAHUwjxj0noEkJcdoptxSxIWMCqFX/RcsdAjHhh1ZWRF3uIDn3qM6nFXRh1Rhw55eT+spfy7dlVbrlTaNayXuNgcXk52x1OjAVlRFak0tWVQbQ1DV1JHtc++CRNOnQAINmnA2Wph6jTrBV1mjTDX2/Cefgw1kOJ2Na+T1LiIcoTk0jx9SGxbiwZ4WEorRaMRrROJxGpaYRYbXi0a4sp9rhgVa8ehogINDrdSVoqhLiUSOgSQlw2Nm7bwe8HVvGj7TPKHeVoPbQE+zbEpzEMGtCNZuGDAXAWWsn//QClmzLBVZm2Ei1afq0oZ5XTTnKFCx97EW2KdzDekY5HaU6V/Wh1OkpTkig3mbEeSsR0KIFOGUXY1n1CUXIyRQ5Htbo59Ho29uuL8+hkpCFaLc1CQ2neqhW+jRrJlYJCXAEkdAkhLmkVtgp+XrqSxLWFeOUHozGFUdHGSj2/eoxuPJohNw/By1g5xslZaqd4VTIl69LBUXmjms06J3PsxZRmp2DVGnEGxXBDo2C6BjlJePcL934CfPwI0ZsILCrDJzkFzWPPkHSSOpUHBJDSsgX5QUEMiozEGFsPU1w9OiYkoNXradWqFcHBwf/ykRFCXGwkdAkhLkmHs1L4+ZfVVGz3wNPqixfBODUOiChjTo/36VS3vXuwusvqoGRNKsVrUlFWJwC7NE4+tudhzN1Ez+J49MpBaHhd+vlVYN+whIrEBFRxMX5FpQSUlGN0uqrVQR8S4j4VqKkbyxGLJ3vy80lMSXGXcQwfTlBYGAD9GjS4AEdGCHGxktAlhLhkuJSL9WnrWbxkHUFbmmNwheEJVBhK8GhVwbAh3YgO7ecur+wuSjakU7zyCK7SylN+B3DyhT0HCtbTvmQ/mqODuTxsdjy3byN3yXL38xsDGAwY68ZWHcRerx7G2Fh0Xl5kZmayYcMGdu/ejc1mcz83Ojqa1q1b4y+nDYUQR0noEkJc9AoqCpi/92e+OTSP5OJkQspjGOFqS5lvPvW6+TKoX3/Mpr9v9qycirItmRQtP4yzsDIIJePkfaw4c1bQsniXu2xgcRlxWQUEaw2Y69XD2LlHlWBljIpCYzBUqY/L5XLf17CgoIC//voLAD8/P1q1akWrVq0ICAj4tw+LEOISI6FLCHHR2p6+k1+WrEHt9CPNO4nkesl4G7zp16E7nXuG06ZZryr3AFQuRfmuHAp/S8KZUzlLVqZy8TEVrKSCe5wHqZu5gz2eWkILSojLLiSqc1cCnr4Vzw7tT3k/QavVyu7du9m+fTvR0dH07t0bgPr169OhQweaNm160ptMCyEESOgSQlxkKhwVLNz1K38uP0BwYkP8HJX3GbQ4fLimQzOurT8QT0PV+amUUlTsy6dgSSLOjDIACpSLRbY0SrN/o53RzD27/4LCQpwaDcE+3kQNvY6AW27GGBNz0rq4XC4SExPZvn078fHx2O32ym0XFHDNNdeg0WjQ6XRce+21/9LREEJcTiR0CSEuCkeKjvDtugWkr7cSndWcaHUVAA5LOfW7BdC7XzfMFmO151kTC8lZdAiVXHmLnlKlWGZLoSRrEXpHAT6AvdAKhYUYIiIIGTsWv+tHovP2PmV91q5dy59//klRUZF7WWBgIK1bt6Zly5an7BUTQoiaSOgSQtQap8vJ6pTVfL3va/5I+4P2R66lbWZ/ADThFXQd0JgW7eqi1VU/ZWdLLSHjlwS0iZWhyKoUa60p5Gf/gtNRhB4wOJzE5BTSOLIu4W88hHfva9Doa/7YKy8vx2w2u8NUQUEBRUVFmM1mmjdvTuvWrYmMjJSwJYQ4Z7Uaup555hmeffbZKstCQ0PJyMgAYPz48XzyySdV1nfs2JENGza4H1utVqZNm8ZXX31FeXk5vXv35u233yYqKspdJj8/nylTpvDzzz8DMHToUN588038/Pz+pZYJIU4lpzyHH3bPZ+vqQxzS7yHdNwENGrxa2/Hz13DNta0Jr1fzVX/27DIOzz+AOaEILeBAscRZjjPzeyqsaQCY7A5ic4to1q4Loc+Mx6NF85PWJS8vj99//534+HjGjRtHdHQ0AB06dCA2NpaGDRtiOGEgvRBCnIta7+lq1qwZy5Ytcz/WnXC7iwEDBvDxxx+7HxuNVU8vTJ06lQULFjBv3jwCAwN58MEHGTx4MFu2bHFva8yYMaSkpLBkyRIAJk6cyNixY1mwYMG/1SwhxAmUUvyV9RffbfmJ/E0aGmZ1oIWzHkH+dQnoWsINDW+gjnedkz7fnlfB/h/34XWgCDPgUor1jiL0Oeu4escScnWwKyqIBiU2ml07lKCbb8EQGnLy7dntrFu3jjVr1uA4OoN8QkKCO3SFhIQQEnLy5wshxNmq9dCl1+sJOzpxYE1MJtNJ1xcWFvLhhx/y2Wef0adPHwA+//xz6tSpw7Jly+jfvz/x8fEsWbKEDRs20LFjRwDef/99OnfuzL59+2jUqNH5b5QQwq3MXsaChF/4df1qAvbXp25+dyKpPF2oD3RxQ7/+tLwq+qSn7SoKrez4di/BBwvxpbJMYnkK+3J/IzD1AI3TcwEIrx9H05tuwX/odWg9PE5Zp4MHD7Jo0SLy8vIAiI2NpW/fvkRERJyvZgshRDW1HroOHDhAREQEJpOJjh07MmPGDOrVq+dev3LlSkJCQvDz86NHjx68+OKL7r8+t2zZgt1up1+/vydDjIiIoHnz5qxbt47+/fuzfv16fH193YELoFOnTvj6+rJu3ToJXUL8SxIKEvh639f8nPAznfaMoG3OCPe6gAZGug5oQp2mAScNW0UF5Wz5bi9RB4uJQANoSK9IY3fucnJtlacRzSY9nt27EThuPJauXc5ovNWCBQvYsmULAF5eXgwYMIBmzZrJWC0hxL+uVkNXx44d+fTTT2nYsCGZmZm88MILdOnShd27dxMYGMjAgQO54YYbiImJITExkSeffJJrrrmGLVu2YDKZyMjIwGg0Vpvx+fhxYRkZGTWeIggJCXGXqYnVasVqtbofH38FkxCiZkoplh1Zxrfbf2BTzkYcusopFipCc6HARYMOIbTrE0dAhOWk28jILWPj9/E0OFRKg6NhK9eayc78lWSWJwEQWlxOqxZtaDjxbkxxcWdVx4iICLZu3UrHjh3p2bMnZrP5XJsrhBBnpVZD18CBA93/b9GiBZ07dyYuLo5PPvmEBx54gBtvvNG9vnnz5rRr146YmBgWLlzIiBEjatokUPnBf/xfrTX9BXtimRPNnDmz2iB/IcTJOVwOXlg9g+zfNTTLHkZxXQ2hHYzc2OhG2gW1x2lTmL1OPiD9QFoR6+bvo+WRMtqiBTSUWAtITVnENm0yGqWoU+Hgql79qTv+NvRneHudw4cP43A4iDsaztq0aUN0dLTccFoIccHV+unF41ksFlq0aMGBAwdqXB8eHk5MTIx7fVhYGDabjfz8/Cq9XVlZWXTp0sVdJjMzs9q2srOzCQ0NPWldpk+fzgMPPOB+XFRURJ06Jx/kK8SVzOq08uiyx/Ba2pSmJbEAjPa9net6tXOXMVSfYgulFJuT8li34AAd06z0RgtosdqKcO36HpW8ET+9lrgmcbQfOZqIESOr3ZLnZEpKSli6dCnbt2/Hx8eHe+65B5PJhFarlcAlhKgVF1XoslqtxMfH07179xrX5+bmkpycTHh4OABt27bFYDCwdOlSRo0aBUB6ejq7du1i1qxZAHTu3JnCwkL+/PNPOnToAMDGjRspLCx0B7OamEwmTMfdy00IUbNiWzFTf32AiNUdCSuJRWtWDLmrDZGNTt4T5XQplu7O4I9fE+id42AkOkBLhaOUPYXrKE7+g6tSMvDu34+YcbdyVevWZzzmyuVysWXLFpYvX05FReWtgBo0aIBS6nw0VwghzplG1eIn0bRp0xgyZAjR0dFkZWXxwgsvsGrVKnbu3ElgYCDPPPMMI0eOJDw8nKSkJB577DGOHDlCfHw83kdnk7777rv55ZdfmDt3LgEBAUybNo3c3NwqU0YMHDiQtLQ05syZA1ROGRETE3NWU0YUFRXh6+tLYWEhPj4+5/9gCHEJyinP4d4l91F/3TWEF8ehM8PIB9oTHF3zbO8Vdic/bE1l7fJDDClStDj6d5/NWcHewo0cKNqCzl5B87oN6XL/QxiPm2/vTKSmprJw4ULS0ioH2oeFhTFo0CDppRbiCnYxfX/Xak9XSkoKN910Ezk5OQQHB9OpUyc2bNhATEwM5eXl7Ny5k08//ZSCggLCw8Pp1asXX3/9tTtwAbz22mvo9XpGjRrlnhx17ty5Veb7+uKLL5gyZYr7KsehQ4cye/bsC95eIS4nycXJTPptEq03DiW8OA69WcPw+9vWGLgKy+x8vvEwq1cfZlSZhsc0lacIHS47+4s2s6/wTwz2cjpe1ZGrJk/BeA4TF2dnZ/P+++8DlT3V11xzDe3atas2958QQtSWWu3pupRcTElZiNq2L28fdy27i5zyHDoXDKRt4rVc9582hMX6VimXWlDOh2sS+ePPZMba9PTUVA7sUi4HeRkbWev4C7PLSrs+A2g+/g50+n828/s333yDTqejX79+Vf44E0JcuS6m728JXWfoYnrRhKhNmzM2c9/v91FiL6GRfyPe6fMO3i6/Klcm7kkr4r3VCfy5PYM7HVr6aM1oNVqUcuFI3oAt4Vc8rulARbeuNLh28DnNkZWZmcmyZcsYMmSI+3fS6XRKz5YQooqL6fv7ohpIL4S4uP1+5HceXTGdqxIH4GiTwasDXsbH+PeHWGZRBY98v4Pt+3KYbHVyv8HbHYJSSvdxKHsVfbp1pM6b36IPDDynOlitVlatWsX69etRSrF8+XKGDx8OVL+NmBBCXEwkdAkhzsiPB37kuT+ep+/e24gpaEZwvBfeQ/8+hZdeWM649zYy6nAmz3gEozdV9nxllCexK281ARFe9J35DMGxZzeZ6TFKKfbs2cOSJUsoLi4GoHHjxvTq1eufN04IIS4ACV1CiFNSSvHx7o95Y9P/0W//7cQUNENv0NJ1eAP3acHUgnLuf3s9s7JKCfKqvH9hbkUau/JXE9QklOGPv4BvyMnnxTud3NxcFi1aREJCAgD+/v4MHDiQhg0b/vMGCiHEBSKhSwhxUi7l4tXNr/LZrs/pu388dfObozNoGXRPS/c8XMl5Zbz61kZmFoHJ7IfTWsTmohUEd4xl+OgZePr4nmYvp7dlyxYSEhLQ6XR069aNbt26YTjDSVKFEOJiIaFLCFEju8vOM+ue4ZcDv9DnwHhi81ui02sZdHdLohoHAHAkq4QVr63kQeULOnDkHMCrg55ht8/8x1ci2mw2jMbKqx179OhBSUkJPXr0IPAcx4IJIURtk9AlhKim3FHOtFXTWJ2ymm5HRlIvrxVavYaBd7egTtPKwJWwL5OsD/6kt84PgJKEpQQNiCXojlv/0b4LCgpYsmQJpaWl3HbbbWi1Wkwm0ynvtyqEEJcCCV1CiCoKrYXcu/xetmVvw6wzM3JkLzK/NdH1+vrENKvsZdqxYDOeq/Opo/PD5qzgYOK3NO9zFUF33HbO+3U4HGzYsIFVq1Zht9vRaDSkp6cTGRl5vpomhBC1SkKXEMItszSTu5bdxcGCg3gbvXmr91u0CWmDs4kLnU6L3Wpj2xsLCcsNRKMzU1CRTsGWD2g7fjSBd9x+zvtNTExk4cKF5OTkABAdHc2gQYNOeVN6IYS41EjoEkIAkFSYxKSlk0gvSWfA4dsY1rs3bUJaAaDTabEVlLNnxi+Ea8NAA+nZGzH++RlNpk4558BVUVHBwoUL2blzJwCenp7069ePVq1andOEqUIIcTGT0CWEYHfObu5edjf5FQUMPnInUenN2fV1Pq1bWLH4mrAmFZL52R6CtGE4XDZy9n6N1/41hEx7kMA77jjn/RoMBrKzswFo164dvXv3xsPD43w1SwghLioSuoS4wm1I38B/fv8PZfZyrkudRHhaEzRaDb3HN6WsII3i1aXY1+WjVZBnLUKz7jUshamVgevOO896f6mpqYSEhGAwGNDpdAwdOhSllIzdEkJc9iR0CXEF+zXpV6avmY7d6eD6jHsISm6ARgO9xzciL3E1uZ8UEenZAA2wv/AI4atfBqeV4AcfOOvAVVZWxvLly9myZQs9e/akZ8+eAERERJz/hgkhxEVIQpcQV6iv937NixtfRCnFTTn345tUF40GOl0XwL75H9DQ2hovzwY4lJO1mdtou2EOAMEPPkDQhAlnvB+Xy8X27dtZunQpZWVlAO7b+AghxJVEQpcQVxilFO/ueJe3t70NwC2GyXgdrIvCRb1mqaT8uIpWvj3RGfTkuKwsP7KWa7d9DUDwA2cXuDIyMli4cCHJyckAhISEMGjQIGJiYs5/w4QQ4iInoUuIK4hLuZi5cSbz9s0D4O5Wd3NXi0n8bvuL1B1f4r23PnX9+wCwCSvbEn5j9O4FwNHANfHMA9fWrVtZsGABSikMBgO9evWiY8eO6HS6898wIYS4BEjoEuIKYXfaeWztYyxJWoJGaXik/aPc3GwMAN0HNiRp/zVYTD4oFB9obVTEL2J8/GIAgu+//6wCF0DdunXR6XQ0bNiQ/v374+v7z+/BKIQQlzIJXUJcAcrsZUxdMZX16evRa/Q86HoJn989sMaW49xfTP4PB7AoHxxmLQ/bS4nds+TvwDV1KkGTJp52Hw6Hg6SkJOrXrw9AQEAA99xzD/7+/v9q24QQ4lIhoUuIy1x+RT6Tl01mV+4uPHQePOSaRdrqbWSXrSUqbwzB5cEAlEd4MjYrm6vjf6sauO6adNp9lJSU8M0333DkyBHGjBlDw4YNASRwCSHEcSR0CXEZSy9JZ+LSiSQVJeFn8uP+8ic5vOw7zOTRNWIUAUcDV16rQG7cdZgh8Uu5bc+xwPWfMwpcGRkZfPXVVxQWFmIymWQmeSGEOAkJXUJcphIKEpi4dCJZZVmEeYZxx5GbSNw0h3BzFJ2Cx2PUeaDx0JPSNZSxK/dxXfyyEwLXXafdR3x8PD/88AN2u52AgABuuukmgoOD/+2mCSHEJUlClxCXoW1Z27hn+T0U2YpoZIxlwIbGpKX8SAv/7jT16wyAsY43e9oHMfGnnVwXv4zb9ywCIPg/U04buJRSrF69mhUrVgBQr149rr/+ejw9Pf/dhgkhxCVMW9sVEEKcX2tS1jBx6USKbEW0DG7JjJYvYc1Ip2fYaHfg8uoSwbbuoUz4aUeVwBU05T6C7r77tPtISEhwB64OHTpw8803S+ASQojTkJ4uIS4jvxz6hSfXPgl2J11juvJqj1fRHrExuN4EdHYNGpMO/5ENWKVxcN9XfzFs3+9VAlfw5MlntJ/69evTsWNHgoODadeu3b/ZJCGEuGxI6BLiMvH5ns95adNLRGd40DM+mkGNb8GxNoei3w6jUxoMYZ4E3NyEJWkFTJ23jeH7fueO3QsBCLrv3tMGrtTUVAICAvDw8ABg4MCB/3qbhBDiciKhS4hLnFKKN/96k0+2fEj3PYHEpXlh1Boo/TaVIrMCwLNtKH7XxbFgTwb3f72N4ftXVA1c99xzyn3s2LGDn376iZiYGG6++WaZVV4IIc6BhC4hLmFOl5PnNzzPhj8WMmxnOJ5WPQGmcLqEjMKiN6O0GgKG18fSPozvt6Tw0HfbGb5/BXceC1z3njpwuVwuli9fzh9//AGAwWDA6XRK6BJCiHMgoUuIS5TVaWX60ocoXbqDvimhADQL7UFTj45oNRrsJh2Rk1pgjPDmm83JPPL9DkbsX1k1cN178sBVUVHBDz/8wP79+wHo1q0b11xzDVqtXH8jhBDnQkKXEJegElsJU1ZMIWPHLnqnhKDXGulZfxyB9gAASv3N1J/SGp2Hga/+PML0H3Yy8sBK7tz9CwBB99xzysCVl5fHV199RXZ2Njqdjuuuu46WLVtekLYJIcTlSkKXEJeY7LJs7ll+D/F58ViiLDTy7Euz7DYYrBpcSpFfx4cWk1ui1Wr5bMNhnpy/ixEnBq777j3p9pVSfPfdd2RnZ+Pl5cXo0aOJioq6UM0TQojLloQuIS4hWzYv56cPXyWpTQoBvgF8EPY6nvFlKLuLcpciv3EA7W9rhkajYe4fiTyzYA/DD65iwrHANXnyKQMXgEaj4brrrmPx4sWMGDECHx+fC9E0IYS47GmUUqq2K3EpKCoqwtfXl8LCQvkSEhec3VrBgo/fIHHFGgAyYrVMafUsmu0lABjifMmI9KblwLpoNBo+WHOIFxbGM/zgKibuWgBUBq6g++6t8d6ITqeT1NRUoqOjL1yjhBDiAriYvr+lp0uIi1za/njm/99/Kc/OBaA8LoD/BE6G7SWgAZ8+MXj3qkOotjJMvbc6gRmL9jLs4OrjAtfdJw1cZWVlfPvttxw+fJjx48dL8BJCiH+JhC4hLlJOh4M/vv6MTQt+AKUoNTnwa9OWGwuuhWw7Vpei/KpQonr/HZLeXnmQWUv2Mezgaibt+hk4FrjuqzFwZWdn8+WXX5Kfn4/BYKCiouKCtU8IIa40ErqEuEit/+5LNv38PQCHIsvoG3sT7VIbAy5yHYrNpQ7qWp00UwqNRsP/LT/Aq0v3VwlcgXffddLAtX//fr7//nusVit+fn7cdNNNhIaGXsgmCiHEFUVClxAXqYJm3iStK6UoxMh9hqmEpfoDcNDqYk+5k4Ydw+g1tgkAry7dz/8tP1A1cN01ieApU6oFLqUU69atY+nSpQBER0dz4403YrFYLmDrhBDiyiOhS4iLUF5FHi/tfpV6jcJ5MvMuzCUGlEHLpkI76TYXDdqHcs24Jmg08Mpv+5m94mD1wPWf/9TYw7V371534Lrqqqu49tpr0evlo0AIIf5t8kkrxEUmde8eZmd/RtPsGB5PnYgWDcrfxO/JpZQ4FA3ahdBnfGXgemnJPt5dlcB1CWv+DlyTTh64ABo3bkzz5s2JioqiY8eOJy0nhBDi/JLQJcRFZN/6tfzy+n+xRji41/M+tGjwvCqEw95mShITiLsqhD63NUWj1TBjUTzvr0lkaMIa7tr5E3A0cE2tHrgyMzPx9/fHaDSi0WgYOXKkhC0hhLjAJHQJcZEoyc9j6QezAehm7ou/0wd9sAf+IxoQoNfiG+5JTItANFoNz/2yh4//SGJowhruPha4Jk6sMXDt3r2bH3/8kUaNGnH99dej0WgkcAkhRC2Q0CXERUApxa/vvoG1pARDQCgdVAcAfIfFodFX3mC6XutgXC7F0z/v5tP1hxmasPbvwDVhAsH3T60SplwuF6tWrWLVqlVA5Q2s7XY7RqPxArdOCCEEgLa2KyCEgO1LF5O0bQsurYaOgQMASNdpWfD1QQoyywBwuRRP/LSrMnAdWsvdO+cDRwPXA/dXCVw2m41vv/3WHbg6d+7MmDFjJHAJIUQtkp4uIWpZfnoqqz7/EAD/uDZEOsJwGrX8lW1FZ3VhthhwuRTTf9jJ15uTGXJoLXfvmA9A4IQ7qwWugoIC5s2bR0ZGBlqtliFDhtCmTZvaaJoQQojjSOgSohYppVj89ms4rFbKgy2McPYCYHuRA7uCq6+vj8FTz8Pf7+C7LSmVPVxVAtcD1U4pfvnll2RlZWGxWLjxxhvltj5CCHGRkNOLQtQijUZD7MBeFHjbaR/YH4PSU2jWk1zhJLKhH/XbhzLt2+2VgSvxj78D1513VAtcAFqtlkGDBhEREcGECRMkcAkhxEVEQpcQtcilXLxdMI+y5nVpZm2A0mnYmFmOVqeh640NeOCb7fz4V2pl4Nr+I3A0cD34oDtwuVwuMjMz3duMiYlhwoQJ+Pn51UaThBBCnISELiFqgd1mpTArk6/3fU1SegITskYAcMAJ5Qqu6h/Dp7vT+Hl7GkOT1rkDV8Adt1cJXBUVFXz55Zd8+OGHVYKXTAkhhBAXHxnTJUQtWPvlJ+z4/VfWNM9mkuN6vFyeaEM9ybe58DHo8GoTwDvvrGPQoT+4e8fRwHX77YRMm+YOVLm5uXz11Vfk5OSg1+vJz8+XG1YLIcRFTEKXEBfY4Z3b2Lq48pY9de0x9CxuDxoIGtWIEeEWivIquPXrrbRP2cm9xweuh/4OXIcOHeKbb76hoqICHx8fRo8eTURERK21SQghxOlJ6BLiAqooLWHJO68DkBBdwR0VIwHw6hqJMdILgO/2ZrA3MYsPds0HwH/MGHfgUkqxadMmFi9ejFKKqKgobrzxRry9vWujOUIIIc5CrY7peuaZZ9y3JDn2ExYW5l6vlOKZZ54hIiICDw8Pevbsye7du6tsw2q1ct999xEUFITFYmHo0KGkpKRUKZOfn8/YsWPx9fXF19eXsWPHUlBQcCGaKEQVv3/0LiW5OZRYXDQJ7EqoPRCXh549ZQ5sFQ6S88r436/7GHlwJUFlBejDw6v0cO3evZtFixahlKJVq1aMGzdOApcQQlwian0gfbNmzUhPT3f/7Ny5071u1qxZvPrqq8yePZtNmzYRFhZG3759KS4udpeZOnUqP/74I/PmzWPt2rWUlJQwePBgnE6nu8yYMWPYtm0bS5YsYcmSJWzbto2xY8de0HYKsW/9WuLXrkRpIKmJgesKrgFga6GNv35P4cCmTB6fvwuvwhxuPLgSgNCHH0Lr4eHeRpMmTYiLi6Nv374MGzYMg8FQG00RQghxDmr99KJer6/Su3WMUorXX3+dxx9/nBEjKq/s+uSTTwgNDeXLL79k0qRJFBYW8uGHH/LZZ5/Rp08fAD7//HPq1KnDsmXL6N+/P/Hx8SxZsoQNGzbQsWNHAN5//306d+7Mvn37aNSo0YVrrLhileTnseyDtwDYVa+IcaUT0aKl0MtAakoZITHe7PN0sXp/No/vWYjRYcOzXTu8BwwgNzcXPz8/dDodOp2Om2++Ga221v9eEkIIcZZq/ZP7wIEDREREEBsby+jRozl06BAAiYmJZGRk0K9fP3dZk8lEjx49WLduHQBbtmzBbrdXKRMREUHz5s3dZdavX4+vr687cAF06tQJX19fd5maWK1WioqKqvwIca7MXt407tGLwgBFdGAbGlTEoIxa1qeWodFAmxH1eH5hPM1zEuiWsg20WkIff4x9+/YxZ84cFi9e7N6WBC4hhLg01eqnd8eOHfn000/59ddfef/998nIyKBLly7k5uaSkZEBUO0S+NDQUPe6jIwMjEYj/v7+pywTEhJSbd8hISHuMjWZOXOmewyYr68vderU+UdtFVc2vcHAliYFrGtTwq25QwHY5wSrgpa96vDmX0coLLUyNX4BAH433MABh4N58+Zhs9nIycnBbrfXZhOEEEL8Q7UaugYOHMjIkSNp0aIFffr0YeHChUDlacRjTpzkUSl12okfTyxTU/nTbWf69OkUFha6f5KTk8+oTUIcr6ywAJfTyc7snXyx5wvuzroRs8uI1cfIvlwrFj8TFY29+GlbGgMObyQyNwWtjw+aW8fy88+V00pcddVVjB07VsZvCSHEJa7Wx3Qdz2Kx0KJFCw4cOMCwYcOAyp6q8PBwd5msrCx371dYWBg2m438/PwqvV1ZWVl06dLFXeb4mbqPyc7OPuVEkiaTCZPJdD6aJa5QLqeT+bOex6VcLGyWRNei1nQsaQE6DZtybQC0HxHHhIW78bKVMXH/bwD4TZ7M97/+it1up27dugwePFhOKQohxGXgovokt1qtxMfHEx4eTmxsLGFhYSxdutS93mazsWrVKnegatu2LQaDoUqZ9PR0du3a5S7TuXNnCgsL+fPPP91lNm7cSGFhobuMEP+GjfO/If3gPjJTEskqyGBy5o0A+PSqw+AnOtB5eBzfpueQVljBpKQVmMqKMdaPY72vD1lZWVgsFkaOHCmBSwghLhO12tM1bdo0hgwZQnR0NFlZWbzwwgsUFRUxbtw4NBoNU6dOZcaMGTRo0IAGDRowY8YMPD09GTNmDAC+vr7ccccdPPjggwQGBhIQEMC0adPcpyuh8hL7AQMGMGHCBObMmQPAxIkTGTx4sFy5KP41mYcOsuH7eQD80SSbG4uH4OfwRh/sgXfPOmj0Wmjiwyfv7CK6KIPee1cDoJ8yhR0bNqDRaBg5cqTMwSWEEJeRWg1dKSkp3HTTTeTk5BAcHEynTp3YsGEDMTExADz88MOUl5czefJk8vPz6dixI7/99luVL6LXXnsNvV7PqFGjKC8vp3fv3sydOxedTucu88UXXzBlyhT3VY5Dhw5l9uzZF7ax4opht1lZ9Ob/cDmdFMQYMfoGc+2R7pXrrgpFo9dic7h49PsdKJfiycO/onE58erdmzr9+nFbkyakpaVRr169Wm6JEEKI80mjlFK1XYlLQVFREb6+vhQWFuLj41Pb1REXsRVz32Pr4p/RennwdcdDvJb6KHWsYRT6mViZVELbgTFstLh4bdl++ubv44FV76MxGKi38BeM0dG1XX0hhLisXEzf3zJYRIjz6PibWa9qnsF1Rb2pYw0DDz1/HC4BQBvhwewVBzA4Hdy7dyEKOHDTaPLlwg0hhLisSegS4jzyCggktF59ipt4U2ExclPutQDEOxV2BU26hvPS5iTsTsWDRVswZqZxuGVLtthsfPjhh5SWltZyC4QQQvxbJHQJcR4FRtYh8M6+/FRnD1MzbkGvdFgDzOzPqsDsZSA5ysiWw/lEOUvo8ecvFPj6srlZUwC6d++OxWKp5RYIIYT4t0joEuI8sJaVAVBoLeS/m2dxTUknmpfVB72WP1Iqe6+aDozm5ZUHAZiZuwa73c76a3rhVIr69evTtWvXWqu/EEKIf99FNTmqEJeikvw8Pn34Plr27s+S8L24SuxMzBoJQKqXgeIcKxEN/PjgSCYlVgdDjXkErlvOhs6dKDKZ8Pb2Zvjw4TIflxBCXObkU16If0ApxW/vvkF5USG7Nq1mwaEFTMq8HovTA0OEhaC+MfgEmVFt/Vm+LxujVnH3zp9IiIvjSEwMGo2GG264QU4rCiHEFUB6uoT4B3YsW0ziti3oDAaWNkuhTVlTeha1Bw34j2hAaJQ3fg396Pd65eSnL3imoOJ3k96rJwC9e/cmWqaJEEKIK4KELiHOUX56Kis/+xAAR7doDmvW8n7mZAA8O4djjKqcxHfmkr3kltpo7qen9S9f4ASGX3UVaR060KJFi9qqvhBCiAtMQpcQ58DldLJ49qs4rFYCGsbxusdKbsu8jmCbP3gZWLAmnQ5BnuQEGfhuSwoaDcwo24wzJwdDTDSB48YRbDTWdjOEEEJcQBK6hDgHf87/lvSD+zB6ePJb02RiiyIYkd8bgHgXlBTbSdyVy8yCbADuaWDi8E+bKGjblsG33YZWApcQQlxxZCC9EOfA4h+AwWRG17cxe6wHeSDjVrRKiy3Mwv60MoxmHdsCITmvnAhfMz23/MRfLVuQ0KA+SYEBtV19IYQQtUB6uoQ4By2u6Yc+LpRbVt3O0Pye1CuPQmPWsSapGIA6PSOYuXE/AC/WKWJFrgmXTkfDOnVo3bp1LdZcCCFEbZGeLiHOgtNhB8ClXLwU/xq+Ngu35QwDINXbREmFk+AYb95ISselYFizYA79uZJSLy+8geFjxqDRaGqvAUIIIWqNhC4hztCRXdv5aOokjuzawfcHvmdLxhamZN6M0WlAhXiw6UAhGg1kN7IQn1GMn6eB/tnrSA7wR+tyMWrMGDw8PGq7GUIIIWqJhC4hzkBFaQlL3n6douwstq/9jVc3v0q34ja0K24KOg05dXxAAzGdQnlj62EAHm5tYlNBHgBXR0RQp2HD2myCEEKIWiahS4gz8PvHcyjOzcYvLJzlsYdRFU7uyxoDgHfPOrS5oSHDp13FF6WF2BwuujcIov7m5egcDmIKCrj6zjtruQVCCCFqmwykF+I09m9YS/yaFWg0WgJHdmd54stMyR6Dj92CPtgDn151AFiVW8S6I/l4GHQ839RA+f++o7+nB3GzZ6PVy6+aEEJc6eSbQIhTKMnPY+n7bwHQasgQXsj4mGZlcQzM7wZAWpAH5rwKrGYtMxbFA/DANbEw+3lQivAePfHv3LnW6i+EEOLiIaFLiJM4djPripJiQurGsTr6CIUHC5iVNQUAe4wP69dnsnVHLltaeFJc4aBLqCJ/3XccSkslwmwm5KFptdwKIYQQFwsZ0yXESThsVvQmEzqDgajRffnh0Hyuz+1LeHkQGouB1QlFAFha+rN4byYWrYNW9njK7HaS6tYlcMKdGMLDa7kVQgghLhbS0yXESRhMZobcP5305ATu3DyFSGsIN+cNAiDN30xJahm+YZ68lpwJKEaHZFBeUIp3URGdU1IJfOed2m2AEEKIi4r0dAlxAuVyoZQCQKPRMC/7Z5KLknkwazw6lxaivPhzV+VUEAfqGMgqsdLDJxdnQTo6p5Muf6wj8sEH0ZrNtdkMIYQQFxkJXUKcYOP8b/nljVmUlxSzJ3cPn+7+lH6FnWlSUheNQcufOVYAAlsE8MmBDEI1xcTakwBos2UrEQ0b4t2/Xy22QAghxMVITi8KcZzMQwdZ/92XuJxOYtu259mCd/Cye3B3zo0AlMX5kb4hE7OXgY9L8jFjZ4AlCRyKmMQk6iUlEfraq3KrHyGEENVIT5cQR9ltVhbNfgWX00nDjl3Z6JfI3ry93Jt9E2a7EUOEhdjRjek4NJaCRhb25Zfh7+1BiyYN8S2voN3mzfjfOApzo0a13RQhhBAXIQldQhy19qtPyUtNxuLnT6PRQ3ln+zu0LWlKt4I2oAH/EQ3Qm3V4tA7g7cQMAJ4d1oredhvXLFqE0WIheMqUWm6FEEKIi5WELiGovJn11kU/AdBv0hT+u/MVsCsezB4HgL51CLpwCw6ni0e/34mHKufa5qH0jvIg+/U3MNrtBN93H3p//9pshhBCiIuYjOkSV7xjN7MGaNlnAH95HWHTzk1MzL0B/wpvtL5Glm7NwrC/gKK2fhxMzeE6814a2EtI/r8lOAsKMDWoj/9No2u3IUIIIS5qErrEFa8oOwuFwi80nGYjr+P6JTdSryKK63J7ApAe5EnR4VI8dVreWJfA1YYEzNipKMij+Ntv0QOh06ejkfsrCiGEOAX5lhBXvJC69Rj38mxK8/N4ccdrlNpKeCX7AbRKgzbOj41bswHYHAgN8lMI1xVjMBjoHh+P3mbDq09vLF261HIrhBBCXOxkTJcQgNnixTbnAZYeXsp1+ddQpyQUjVnHn1nlKAWmel5szT1MK10aAH1jYzGsXoPGYCD0kUdqufZCCCEuBRK6xBVJKcWC119i5++/oZSiyFbEixtfJNjuz+25wwAoifMjNbkEg1nHZyVZXG04hEYDV7VuTcDHcwEIuO02jHXq1F5DhBBCXDLk9KK4Iu1Ytpj969eQsHkD0c1b8drBd8guy+alnAfQO3Too7xYvaXytGJylJGGhfvx0DoIDQ2lQ0Ym+cnJ6ENCCJo0sZZbIoQQ4lIhoUtccfLTU1n52YcAdL9pHPtdR/j+wPd0K25Dy4L6oNNg6htDkDWJvCIrn2fnEaivQ7OQbIZfcw0FN40BIGTag2gtltpsihBCiEuIhC5xRXE5nSx+61UcVit1mrWkad9+3LBwFBanB/fn3AqAd886+DYKoHe0F0NfWYOywshuzfnPgMakPfIIqqwMj1at8Bk8uJZbI4QQ4lIiY7rEFeXPn74j/cA+jB6eDJg8lTk73+Nw0WEm543G02pCH+yBT8/KMVovL9hGcWkuMYGeTO3dkPJt2yj6eQEAoU88jkYrvz5CCCHOnPR0iSvGsZtZA/S+/S7StHnM3T2XZmVxXJPTHoCMMC8O/HAQXUsfcnat5lpjKW2uqoNZryFpxkwAfEeMwKNFi1prhxBCiEuThC5xxUjdF4/L5aJhx6406NqdmxfdjMYFj+ZOAEDfLJD169JxORX74w8Rqi1BafX0bNOIwh/nU7FzJ1qLhZD7p9ZuQ4QQQlySzur8yKxZsygvL3c/Xr16NVar1f24uLiYyZMnn7/aCXEeXTVwCDc+81963zmZL+K/ID4vnpsLBhNU4oPWy8CmzHJcTkV5WDH+pAAwZMh1+BqNZL32GgBBk+9GHxxcm80QQghxiTqr0DV9+nSKi4vdjwcPHkxqaqr7cVlZGXPmzDl/tRPiPItq3Ixcinhr21tEWkMYldUPgLLGARw5WIgy2shTOwAIjWtOuzYtyHnnHZw5ORhjYggYO7Y2qy+EEOISdlahSyl1ysdCXIxS9uwiL62y50opxbPrn6XCUcHjeZPQujQY4nxZtSEThYuMgD0YNU5sJl8m3DQMa2IieZ9+BkDI9EfRGI212RQhhBCXMBnTJS5ryuXit/f+j/yMdK6b9gQ7fdPYmLGRgcXdiS0IR2PQsl+rpaLEjjUgBz1F2JSO8TffhF6vJ/2lWWC3Y+neHa8ePWq7OUIIIS5hcs27uKwlbPmT/PQ0TJ6eWOIieXnzy/g6vLg7exQAHldHsW93HgALXX5sskcR07YnDaPDKFmzhpKVK0GvJ3T6o2g0mlpsiRBCiEvdWfd0ffDBB3h5eQHgcDiYO3cuQUFBAFXGewlxMdj8yw8AtOozkP9tf41iWzEvFEzBYNNhCLfgf000N7UP5ek5WziUX06HOs2YMLgTymYj8+gUEQG33IKpXr3abIYQQojLwFmFrujoaN5//33347CwMD777LNqZYS4GKQf3Efq3j1odXoqWgbz25bfaF/ajLbZjUED/iMb4FROPlvyG/PzwagzMHNkC7RaDblffIktMRFdQABBk++u7aYIIYS4DJxV6EpKSvqXqiHE+bf5l/kANO56Ne8lzsXkMvBw7h0AGK8KIS3PytYtK8nYu5U+Ri+a9RhKXLAXjtxcct56C4Dg+6ei8/GprSYIIYS4jMhAenFZKszK4MCGPwDQto9hb/zHTMy9Hq9SMzo/E5szytm7djlF/vEAFHjXY1KP+gBkv/46rpISzE2b4jdiRK21QQghxOXlrAbSb9y4kcWLF1dZ9umnnxIbG0tISAgTJ06sMlmqELUlNzUZk8VCTMs2fJn7M7EVkVyX2wuAihZBHNybSrHvfgB2OsJ4dPQ1GPVaynftpuC77wEIffwxNDpdrbVBCCHE5eWsQtczzzzDjh073I937tzJHXfcQZ8+fXj00UdZsGABM2fOPO+VFOJs1WvTnolvfUzEiF5szdrKHdnD0SoNpqYBrFiTQpHfHpTWSabLi5YdutG6jh9KKTJnzACl8Bk0CM+2bWu7GUIIIS4jZxW6tm3bRu/evd2P582bR8eOHXn//fd54IEH+L//+z+++eab815JIc6FwWzm89TvaFgeQ9uSpqCFBI2WLFc8DkMpFUrPfs9mPDSgMQBFCxdRvnUrGg8PQh6aVsu1F0IIcbk5q9CVn59PaGio+/GqVasYMGCA+3H79u1JTk4+p4rMnDkTjUbD1KlT3cvGjx+PRqOp8tOpU6cqz7Nardx3330EBQVhsVgYOnQoKSkp1eo9duxYfH198fX1ZezYsRQUFJxTPcXFzemwk7RtC0op9ubtZU3qGm7JGQSAtmEAm9cfxmrKQSlYba/HUyPa4WnU4yorI+vllwEImjgBQ1hYbTZDCCHEZeisQldoaCiJiYkA2Gw2tm7dSufOnd3ri4uLMRgMZ12JTZs28d5779GyZctq6wYMGEB6err7Z9GiRVXWT506lR9//JF58+axdu1aSkpKGDx4ME6n011mzJgxbNu2jSVLlrBkyRK2bdvGWLmH3mVp7x+r+X7m03w/4yk+3PkhDctjaF/SHLSwOaUEjcuI1dqWPxyxdGrVlB4NK29enfvBBzgyMzFERhJw22213AohhBCXo7MKXQMGDODRRx9lzZo1TJ8+HU9PT7p37+5ev2PHDuLi4s6qAiUlJdx88828//77+Pv7V1tvMpkICwtz/wQEBLjXFRYW8uGHH/LKK6/Qp08f2rRpw+eff87OnTtZtmwZAPHx8SxZsoQPPviAzp0707lzZ95//31++eUX9u3bd1Z1FRc3pRSbf/kRAJ/60fx2+DfG5FwLgGfrEFoMjUP5GvgJJ3nmCJ4Y3BQAW0oquR9+BEDIww+jNZtrpwFCCCEua2c1ZcQLL7zAiBEj6NGjB15eXsydOxfjcTcA/uijj+jXr99ZVeCee+5h0KBB9OnThxdeeKHa+pUrVxISEoKfnx89evTgxRdfJCQkBIAtW7Zgt9ur7DMiIoLmzZuzbt06+vfvz/r16/H19aVjx47uMp06dcLX15d169bRqFGjGutltVqrXIlZVFR0Vu0SF97hHX+RcyQJg8nMuuDDxO2PomNJC9DCDp8UnKUl/J+uBJsLZgxpSoCl8r2bNWsWymrFs2NHvPv1reVWCFEzl8uFzWar7WoIcdExGAzoLpErzc8qdAUHB7NmzRoKCwvx8vKq1shvv/0Wb2/vM97evHnz2Lp1K5s2bapx/cCBA7nhhhuIiYkhMTGRJ598kmuuuYYtW7ZgMpnIyMjAaDRW6yELDQ0lIyMDgIyMDHdIO15ISIi7TE1mzpzJs88+e8ZtEbXvWC9Xve5d+Tj1U57ImQCAq6k3azf/gsPhwEs1pVWjugxtFQFA6YaNFP/2G2i1hD42Xe6vKC5KNpuNxMREXC5XbVdFiIuSn58fYWFhF/1n+FmFrttvv/2Myn300UenLZOcnMx//vMffvvtN8wnOZ1z4403uv/fvHlz2rVrR0xMDAsXLmTEKSatVEpVOfA1vQgnljnR9OnTeeCBB9yPi4qKqFOnzinbJGpP9uFEDu/4C41GS3zdYuomhFf2cmlg/v4tOLQOspwWKgzevDC8BRqNBuVwVE4RAfiPvhHzSXo9hahNSinS09PR6XTUqVMHrfasRoUIcVlTSlFWVkZWVhYA4eHhtVyjUzur0DV37lxiYmJo06YNSql/tOMtW7aQlZVF2+PmQnI6naxevZrZs2djtVqr9aSFh4cTExPDgQMHgMp7P9psNvLz86v0dmVlZdGlSxd3mczMzGr7z87OrnIl5olMJhMmk+kftVFcOFsWzgegbvv2/DdrAQ/l3ApApp8ir6zyatatjigeuLYRkX4eAOR/8w3W/fvR+voSdN99tVJvIU7H4XBQVlZGREQEnp6etV0dIS46Hh6Vn+lZWVmEhIRc1Kcazyp03XXXXcybN49Dhw5x++23c8stt1QZ2H42evfuzc6dO6ssu+2222jcuDGPPPJIjQctNzeX5ORkd5Jt27YtBoOBpUuXMmrUKADS09PZtWsXs2bNAqBz584UFhby559/0qFDB6ByZv3CwkJ3MBOXNpfTSU7yYQDSmuiISA6kc0kr0MDKgj1gUuQ7fND6hDC2cwwAzoICct74PwCC77sPfQ0XcQhxMTh2Jfbx42eFEFUd+4PEbrdf1KHrrPqp3377bdLT03nkkUdYsGABderUYdSoUfz6669n3fPl7e1N8+bNq/xYLBYCAwNp3rw5JSUlTJs2jfXr15OUlMTKlSsZMmQIQUFBDB8+HABfX1/uuOMOHnzwQZYvX85ff/3FLbfcQosWLejTpw8ATZo0YcCAAUyYMIENGzawYcMGJkyYwODBg086iF5cWrQ6HTfPeI1hTz/PV4ULGZNdOS9XqredYmPluL0/HJHce00DTPrKX8bsN2fjLCzE1KAB/qNvPOm2hbhYXOxjVYSoTZfK78dZDw4wmUzcdNNNLF26lD179tCsWTMmT55MTEwMJSUl561iOp2OnTt3ct1119GwYUPGjRtHw4YNWb9+fZXB+q+99hrDhg1j1KhRdO3aFU9PTxYsWFAl6X7xxRe0aNGCfv360a9fP1q2bMlnn3123uoqap9Go2Gt2kFQkQ9dSloBsLo4HjSQ5fDHMyCEG9pFAVCxfz/58+YBVA6e18t934UQQvz7/tG3zbFZ4pVS5+WqmpUrV7r/7+Hhwa+//nra55jNZt58803efPPNk5YJCAjg888//8f1ExefrKRD+IWFg0HHJ7s/YVJOZS9ogZcBXXYILl0Z65wRPNG7AQad9uj9FWeC04l33z5YjpvcVwhx+Rs/fjwFBQXMnz//pGVWrlxJr169yM/Px8/P74LVTVz+zrqny2q18tVXX9G3b18aNWrEzp07mT17NkeOHMHLy+vfqKMQNXI5nfz0vxd5b/J4vln1AV75RroWtwZga3oZRmsgi61NCQgMZljryikiipcto2zDBjRGIyGPPFKLtRfi8jd+/HiGDRtW47q6detWu81bVFRUlfWvv/76ea/TG2+8wdy5c92Pe/bsWeX2c5eL42+jp9friY6O5u677yY/P79KudO9DuL8OquersmTJzNv3jyio6O57bbbmDdvHoGBgf9W3f6/vTuPq6L6Hz/+uveyb5d9UwTcEdwtcwVLRXOptKzcIpcyzV2zXMlyabG0zMwVP2lppS1qmSu4bwhGgLgiLpA7ouz3zu8Pv9yfV0BRkYv4fj4e83gwM2fOvGeueN+cOXOOEHd1bP8erl/8D2t7B1ZeWkfv/xt93rq+G62beDBhwUEuamBSu5qYadToc3K48MmtFyyc+72JhfzHIoRJTZ06lYEDBxrWy6IDtFarfeTnuFNeXt4DTZH3sDp06MDSpUvJz88nISGBfv36ce3aNX788Uejcqb4HJ5U99XSNX/+fBwcHPD39ycqKoqBAwfSrVu3QosQj9qtKX/WAGD7VE1UV/W0zGiIolLYmBvNDzu2sU+TRS0PezrXvfW265WlS8k7exYzDw9c33rLlOELIbj1QtXt07y5ubnddx2jR4+mS5cuhvXZs2ejUqlYv369YVutWrX47rvvAOPWt7CwMKKiopgzZ46hlSc5OdlwXHR0NE2aNMHGxobmzZuXeOq48PBwGjRowJIlS6hatSqWlpYoisKGDRto2bIljo6OuLi40LlzZ06cOGE4rnv37gy9bfiaESNGoFKpiI+PB24NH2Jvb1+irjfw/6fRq1y5Mu3bt+fVV19l48aNhcqVxucgSua+kq6+ffvSpk0bHB0d0Wq1xS5CPGrnkhJIO34Ujbk5fzn9Q89LHQH4r0o+SaeOkXU6DgvyGdmuBmq1irz//uPSdwsAcB8zGrWMdyQeU4qikJmbb5LlYcdnfBRCQkLYsWOHoV9xVFQUrq6uREVFAbdmJTl69CjBwcGFjp0zZw7NmjVj4MCBpKamkpqaajQI9oQJE5g1axYHDx7EzMysxAOEAxw/fpyffvqJ1atXExsbC8DNmzcZNWoUBw4cYMuWLajVal566SVD7CEhIUZ9m++8lgMHDpCdnU2LFi3u6x4BnDx5kg0bNpikxU38f/c9OKoQ5UH0/03549w4gBtXD9IqoxF6FDadjQFzSNK54+/tRmigJwAXPvkUJSsL64YNcejc2ZShC/FQsvJ01JlcspaO0pYwNRQbi9J723fcuHFMnDjRsD59+nSGDRt2X3W0bt2ajIwMYmJiaNSoETt27GDMmDGsWXOrJXzbtm14eHhQu3btQsdqtVosLCywsbHB09Oz0P5p06YZkrX333+fTp06kZ2dXewsKrfLzc3l+++/N2o16t69u1GZxYsX4+7uTkJCAkFBQYSEhDB8+HAuXbqERqMhPj6eKVOmEBkZyeDBg4mMjKRx48Yl7j+9bt067Ozs0Ol0ZGdnA/DFF18UKlcan4MoGXlXXjx2rqae4/jBfQBs90ym58lbfbn+NbtMjlkGekXNP/lezGtfE5VKxc09e7j+55+35lecOOGxGc9FiIpu7NixhIWFGdZdXV3vuw6tVkuDBg2IjIzE3NwctVrN22+/zZQpU8jIyCAyMrLIVq6SqFevnuHngkG5L1y4QJUqVe55rK+vb6HHdCdOnGDSpEns3buXS5cuGVq4UlJSDONVuri4EBUVhbm5OfXr16dr16589dWtgZzv91ratGnDt99+S2ZmJosWLeLo0aNGjy8LlMbnIEpGki7x2DkTf2smA+fAmqRm/EvLjIboUYjh1vRQifkeBFRxo00td/S5uaRN/QgAp9dfxzow0GRxC1EarM01JEwNNdm5S5OrqyvVq1d/6HoKHstZWFgQHByMk5MTgYGB7Nq1i8jIyAd+O/H2R3EFf6yVdHgkW1vbQtu6dOmCj48PCxcuxNvbG71eT1BQELm5uYZztG7d2nAtISEhBAUFodPpiIuLY/fu3fd1Lba2tob7+9VXX9GmTRs+/PBDPvroI6NypfU5iHuTpEs8duq17YBPUD0mb59Ez+MdUaPmkDqNPLNMdIqGwzpPlrSrhUql4vKSpeSeOoXG1RW34dJcLh5/KpWqVB/xVQQhISEsXrwYMzMzw2wkwcHBrFy5stj+XAUsLCwMUy09SpcvXyYxMZHvvvuOVq1aAbBz585C5UJCQliwYAEWFhZMnToVlUpFq1at+Pzzz8nKynqg/lwFpkyZQseOHXnnnXfw9vZ+4HrEg5Pp6sVjKdX8GievpdDqeiMUFOLUJwH4J9+TBv7utKjuQu7Zc1yaPx8Aj/fGonFwMGXIQjyR0tPTiY2NNVpSUlJK9RwF/brWrl1LSEgIcCt5Wb58OW5ubtSpU6fYY/38/Ni3bx/JyclGj/xKm5OTEy4uLixYsIDjx4+zdetWRo0aVahcSEgI8fHxxMXFGZKzkJAQVqxYQaNGjXB4iP/HQkJCCAwMZPr06Q9ch3g4knSJx0Z+bi7X/rs1l+LiuMW8fulWK9cFRYXd1UAu57oTr/NgdLtbfbn+mz4dJTsbm6eewuG2V8qFEGUnMjKShg0bGi2TJ08u1XNotVoaNmyIs7OzIcFq1aoVer3+nn2gxowZg0ajoU6dOri5uZV6QlhArVazcuVKoqOjCQoKYuTIkXz22WeFygUFBeHq6kr9+vUNCVZwcDA6ne6B+6bdbtSoUSxcuJAzZ848dF3i/qmU8vgOcDl0/fp1tFot6enpD/WXhnhw/2z5m80Lv6Hqs61ZyN98e3IiatTsyNHzHwpfWdykRU1Xvu/flIytWzk7eAiYmVH1t1+xlP4K4jGVnZ3NqVOn8Pf3L9Fbc0I8ie72e1Kevr+lpUs8FhS9nuh1v6Ioev7NOcZrlzqgRo06wIGGw+ux0iwTvQpGtauJPiuL/z6eBoBL2BuScAkhhCgXJOkSj4VTsdFcOX8Wc2tros1O0/p6E3LJZ0XaRpatWcMVTR7P1XanYRUnLn33HXnnz2Pm5YXrO++YOnQhxENYsWIFdnZ2RS6BJnobOTAwsNiYVqxY8cjPXzDXcXHLo3pEKh6evAIjHgsH194a6DAn0IWXrj6DBjWHndO4mXmT7Jv55OHOyHY1yTl5isuLlwDgMf4D1EW8ti2EeHx07dqVpk2bFrnPVKOr//nnn+Tl5RW5z8PD45Gf39vb2zDKfXH7RfkkSZco9/47eZwzCXGoNBoO2p7l05TXySaP2BtHQQ2x+ZUIDfQm0NuBlH4jIC8P29atsP+/V8eFEI8ve3t77O3tTR2GEV9fX5Oe38zMTMbVekxJ0iXKvYP/N+WPqrY7HdNroUHNdtUJ9GodGTprkhVn5rerScZff5G5Zy8qCws8J06UkeeFEEKUK9KnS5RrudlZJP8TA8Bhx4u0SX+KTHI4aXEWgP26SnSpV4nqdir+mzETAJe338KiBNN0CCGEEGVJki5RrllYWTPw60XYdnuakJst0KBmt/oUikrPVZ0t5xRHRrStwaWvvyb/4kXMfavgMmCAqcMWQgghCpGkS5R7ioWGbTmHaZP+FPnoOKO5CMB+XWW6NfLB+/JZriy/9caQ58RJqC0tTRmuEEIIUSRJukS5lXHlEoqi8Pvx3wk91xQNGi7lqXC6+hSHcvy4iJZhbaqR9uFU0OmwDw3FrlVLU4cthBBCFEmSLlEu6fLz+WHiGL4fN4xN29fwXPrTAJyzNueckwX/KG70eMoHh6i/yYqJQWVjg8cH75s4aiFEeRcWFsaLL7541zKRkZGoVCquXbtWJjGJJ4ckXaJcOrpnBzcuX+LK5TSaXWyIBg3X/HQ4967OL7k3sNCoGdzIlQuffQ6A25AhmHt6mjhqIcTt7pbg+Pn5oVKpjJbKlSsb7Z89e3apxzRnzhwiIiIM6yEhIYwYMaLUz1MepKWlMXToUKpWrYqlpSU+Pj506dKFLVu2kJubi6urKx9//HGRx86YMQNXV1dyc3Pveo6IiAijz9DDw4MuXboQHx9vVC4sLKzQ561SqTh+/HipXe/jQJIuUe4oisKB/xsm4pKfFc9db8plVQa/pEXyxy8r0Kn09GxaBc3i+eiuXcOyRnWc+/YxcdRCiPs1depUUlNTDUtMTMwjP6dWq8XR0fGRn+d2xQ2k+iglJyfTuHFjtm7dyqeffkpcXBwbNmygTZs2DBkyBAsLC3r37k1ERARFTcG8dOlS+vTpg4WFxT3P5eDgQGpqKufPn2f9+vXcvHmTTp06FUrYOnToYPR5p6am4u/vX2rX/DiQpEuUO2fi/+Fi8knU5mZUUwehQcN+m2QALuRosDA3Y6BrJtd+/hkAzylTUJloZGohxIOzt7fH09PTsLi5ud13HaNHj6ZLly6G9dmzZ6NSqVi/fr1hW61atfjuu+8A49a3sLAwoqKimDNnjqHlJTk52XBcdHQ0TZo0wcbGhubNm5OUlFSimMLDw2nQoAFLliwxtDIpisKGDRto2bIljo6OuLi40LlzZ06cOGE4rnv37gwdOtSwPmLECFQqlaHVKD8/H3t7e/7+++97xjB48GBUKhX79+/n5ZdfpmbNmgQGBjJq1Cj27t0LQP/+/Tlx4gTbt283OnbHjh0cO3aM/v37l+h6VSoVnp6eeHl50aRJE0aOHMnp06cL3S9LS0ujz9vT0xONRlOic1QUknSJcqdgyp9Mf0faZDTlgiqdc7oLKEBMvjd9m/qQ8/kMUBS0L7yATZMmpg1YiLKkKJB70zRLES0iphYSEsKOHTvQ6/UAREVF4erqSlRUFHDrEdvRo0cJDg4udOycOXNo1qwZAwcONLS8+Pj4GPZPmDCBWbNmcfDgQczMzOjXr1+J4zp+/Dg//fQTq1evNkzZc/PmTUaNGsWBAwfYsmULarWal156yRB7SEgIkZGRhjruvJYDBw6QnZ1NixYt7nruK1eusGHDBoYMGYJtEVOhFbT01a1bl6eeeoqlS5ca7V+yZAlPP/00QUFBJb7eAteuXeOHH34ATDdNU3kmI9KLcuXy2RROxUaDCipbBGCWp2G35tZfgifyXck3t6PPf9HcSEhE7eCA+9gxJo5YiDKWlwnTTTS33vjzYFF685mOGzeOiRMnGtanT5/OsGHD7quO1q1bk5GRQUxMDI0aNWLHjh2MGTOGNWtu/fG2bds2PDw8qF27dqFjtVotFhYW2NjY4FlEn9Bp06YZkrX333+fTp06kZ2djZWV1T3jys3N5fvvvzdqvevevbtRmcWLF+Pu7k5CQgJBQUGEhIQwfPhwLl26hEajIT4+nilTphAZGcngwYOJjIykcePG2NnZ3fXcx48fR1GUIq/5Tv369WPMmDHMnTsXOzs7bty4wc8//8wXX3xxz2MLpKenY2dnh6IoZGZmArfmzLzz/OvWrTOKvWPHjvz8f08snhTS0iXKlYQd2wBQfN0IvtmU8+orXDK7ioKKmHxv3qnrSOa3cwFwHzkCM1dXU4YrhHgIY8eOJTY21rD07dv3vuvQarU0aNCAyMhI4uLiUKvVvP322xw+fJiMjAwiIyOLbOUqiXr16hl+9vLyAuDChQslOtbX17fQ49ITJ07Qs2dPqlatioODg6E/U0pKCgBBQUG4uLgQFRXFjh07qF+/Pl27djW0dJX0Wgr6aJVkKrTXX38dvV7PqlWrAFi1ahWKovDaa6+V6Drh1mPi2NhYoqOjmT9/PtWqVWP+/PmFyrVp08bo8/7qq69KfI6KQlq6RLnS8tU+5HvakrLjOJpMNXv+r5XrSL4baitbuuxZTdaNG1gFBeHYo4eJoxXCBMxtbrU4mercpcjV1bVUJm4ueCxnYWFBcHAwTk5OBAYGsmvXLiIjIx/47cTbH48VJDAFjwLvpajHel26dMHHx4eFCxfi7e2NXq8nKCjI0OFcpVLRunVrw7WEhIQQFBSETqcjLi6O3bt3l+haatSogUqlIjEx8Z7DY2i1Wl5++WWWLl1K//79Wbp0KS+//DIODg4luk4AtVpt+Bxr165NWloar776aqG+Yra2tk/8RN3S0iXKFZVazbasQwRnPkM2edxUdOhR80++N+953CTrz3WgUuE5ZTKqJ6wDphAAqFS3HvGZYimnk8gX9OvaunUrISEhAAQHB7Ny5cpi+3MVsLCwQKfTPfIYL1++TGJiIhMnTuS5554jICCAq1evFipXkEBGRkYSEhKCSqWiVatWfP7552RlZd2zPxeAs7MzoaGhfPPNN9y8ebPQ/jvHH+vfvz+7du1i3bp17Nq1q8Qd6IszcuRIDh8+zK+//vpQ9VREknSJciE/N5e83BxOXjtJpX/sMEPDjTwzXFTNWJsdgI2lBc+sXQyA42uvYl23rokjFkKURHp6utEjpdjYWMPjtNJS0K9r7dq1hqQrJCSE5cuX4+bmRp06dYo91s/Pj3379pGcnMylS5dK3JJ1v5ycnHBxcWHBggUcP36crVu3MmrUqELlQkJCiI+PJy4ujlatWhm2rVixgkaNGpW4BWrevHnodDqefvppVq9ezbFjx0hMTOSrr76iWbNmRmWDg4OpXr06ffv2pXr16rRu3fqhrtXBwYEBAwYwZcqUIoejeJJJ0iXKhX+3bWLh4Df59fuvaX/t1n8IVzxt2azJ5So2fJgbR/7Jk2icnXGvoAMZClERRUZG0rBhQ6Nl8uTJpXoOrVZLw4YNcXZ2NiRYrVq1Qq/X37MP1JgxY9BoNNSpUwc3N7dSTwgLqNVqVq5cSXR0NEFBQYwcOZLPPvusULmgoCBcXV2pX7++IcEKDg5Gp9PdV980f39/Dh06RJs2bRg9ejRBQUG0a9eOLVu28O233xYq369fP65evXpfb2jezfDhw0lMTHziOsrfi0qRNLRErl+/jlarJT09/b6edYt70+t1LB0xiGv/pVK5RjDN8p8mwe0/LjdvwoTfE6mlusGcvz5Byc7Ca8YMHF960dQhC1FmsrOzOXXqFP7+/iV6a06IJ9Hdfk/K0/e3dKQXJnfi4D6u/ZeKtbUTT+c34Zgmjb0ZiVzfeBoIYFLyRpTsLKybNEb74gumDlcIIYR4IPJ4UZjcwbW3Olt6eNVHjZqD5icBOJLrTLvrJ3CJ2Q0aDZ6TJ5foFWghRMWxYsUK7OzsilwCAwNNElNgYGCxMa1YseKRnz8lJaXY89vZ2ZXqI1JTX2tFIy1dwqTOH03k/NFErC3saaQ0JlFzjixyyMGCU7lOTIu79Uvt3LcvVjVrmjhaIURZ69q1K02bNi1yn6lGPP/zzz+LnU/Rw8PjkZ/f29vbMMp9cftLi6mvtaKRpEuY1MH/m9i6klcTQEWM5hQA0XlehKXsxOpiKmYeHrgOGWLCKIUQpmJvb4+9vb2pwzDi6+tr0vObmZmV2XhXpr7WikYeLwqTuXntKscP7MVaY0d9dSMSNGfIUeeRqVhxMx06x28GwOODD9DYld7UI0IIIYQpSNIlTMbW0YnXZszCrVoTdCjEmp0G4GCeFyMT16HOz8O2RQvsQ9ubOFIhhBDi4UnSJUxqz5VDNMlrTD46rPOdyFCs8T5zlsBzCajMzfGcNFE6zwshhKgQJOkSJpGfm0uePo/rkWcwx4zsfAs07k+z8YY/gxPWAeAycCAWfn6mDVQIIYQoJdKRXpS5/Lw8lox4G8tKHrS+0Q6Am7W0RKT8R4+krTjdvIZ55cq4vDXQxJEKIYQQpUdaukSZO7IzkozLF/FKcydf0bPZ7l+2u+XjcPkML53YAYDnpImoZfRtIUQpCwsL48UXX7xrmcjISFQqVaGJoYV4WJJ0iTKlKAoH1/2KlcaWGrYNiDE7RXL+fyQf2s6Qw2vQKHrs27XF7j7mGBNClE93S3D8/PxQqVRGS+XKlY32z549u9RjmjNnDhEREYb1kJAQRlTQ+VzPnDlD//798fb2xsLCAl9fX4YPH87ly5cLlY2Pj6dHjx64ublhaWlJjRo1mDRpEpmZmUblbv/cNBoN3t7e9O/fn6tXr5YopoKEtmBxcXHh2WefZdeuXUblwsPDC/37UKlUbN68+cFvSDkgSZcoU8mHD3H5bAq1nJqSqcojSZMKgOrsdepePoXK2hqPDz4wcZRCiLIwdepUUlNTDUtMTMwjP6dWq8XR0fGRn+d2xQ0u+iidPHmSJk2acPToUX788UeOHz/O/Pnz2bJlC82aNePKlSuGsnv37qVp06bk5uayfv16jh49yvTp01m2bBnt2rUjNzfXqO6Czy0lJYUVK1awfft2hg0bdl/xJSUlkZqaSmRkJG5ubnTq1IkLFy4YlQkMDDT695Gamkrr1q0f/KaUA5J0iTJ1cO0aLNU2VLNryCGzUygqhQv5dvQ9eKvzvOvgdzAvxdGUhRDll729PZ6enobFzc3tvusYPXo0Xbp0MazPnj0blUrF+vXrDdtq1arFd999Bxi3voWFhREVFcWcOXMMLSnJycmG46Kjo2nSpAk2NjY0b96cpKSkEsUUHh5OgwYNWLJkCVWrVsXS0hJFUdiwYQMtW7bE0dERFxcXOnfuzIkTJwzHde/enaFDhxrWR4wYgUqlIj4+HoD8/Hzs7e35+++/7xnDkCFDsLCwYOPGjQQHB1OlShU6duzI5s2bOXfuHBMmTABuPX3o378/AQEBrFmzhqeffhpfX19eeeUV1q5dy549e/jyyy+N6i743CpVqkSbNm3o27cvhw4dKtG9KeDu7o6npyd169Zl4sSJpKens2/fPqMyZmZmRv8+PD09sbCwuK/zlDeSdIkycyH5JCn/Hqa2Y1My1NmcUKcBUCXxGI65N7GoVhWXN94wcZRClG+KopCZl2mSRVEUU19+ISEhIezYsQO9Xg9AVFQUrq6uREVFAZCWlsbRo0cJLqLLwpw5c2jWrBkDBw40tKT4+PgY9k+YMIFZs2Zx8OBBzMzM6NevX4njOn78OD/99BOrV682TNlz8+ZNRo0axYEDB9iyZQtqtZqXXnrJEHtISAiRkZGGOu68lgMHDpCdnU2LFi3ueu4rV67w999/M3jwYKytrY32eXp60qtXL1atWoWiKMTGxpKQkMCoUaNQq41Tgvr169O2bVt+/PHHYs917tw51q1bV+xUTfeSmZnJ0qVLAdNN61SW5O1FUWZiNqzFUm1DdYdGbDNLABVcybbi7fj/6zw/eQqqx/yvGCEetaz8LJr+8GBfcA9rX8992JjblFp948aNY+LEiYb16dOn3/djqtatW5ORkUFMTAyNGjVix44djBkzhjVr1gCwbds2PDw8qF27dqFjtVotFhYW2NjY4OnpWWj/tGnTDMna+++/T6dOncjOzsaqBC/55Obm8v333xu13nXv3t2ozOLFi3F3dychIYGgoCBCQkIYPnw4ly5dQqPREB8fz5QpU4iMjGTw4MFERkbSuHFj7Ozs7nruY8eOoSgKAQEBRe4PCAjg6tWrXLx4kaNHjxq2FVd2586dRtsKPjedTkd2djZNmzbliy++uOc9uV1B/73MzFvJfOPGjXnuueeMysTFxRlda506ddi/f/99nae8kaRLlJngPv3JP2/B1bxMTmsuAtD8wG7UKDh06YJt06dNHKEQoiyNHTuWsLAww7qrq+t916HVamnQoAGRkZGYm5ujVqt5++23mTJlChkZGURGRhbZylUS9erVM/zs5eUFwIULF6hSpco9j/X19S30uPTEiRNMmjSJvXv3cunSJUMLV0pKCkFBQQQFBeHi4kJUVBTm5ubUr1+frl278tVXXwE81LXcrqDFsiQDTyuKUqhcweemKApnzpxh/PjxdOrUie3bt6PRaEoUw44dO7C1tSUmJoZx48YRERFRqKWrVq1a/PHHH4Z1S0vLEtVdnknSJcrM2avnqJMbgB49Xio/Tl45Sf1zx1BsbPF4b6ypwxPisWBtZs2+nvvuXfARnbs0ubq6lsrEzQWP5SwsLAgODsbJyYnAwEB27dpFZGTkA7+deHsSUJB4FCRK92JrW3i+2C5duuDj48PChQvx9vZGr9cTFBRk6KiuUqlo3bq14VpCQkIICgpCp9MRFxfH7t27S3Qt1atXR6VSkZCQUOTbo0eOHMHJyQlXV1dq1qwJQEJCAg0aNCiybI0aNYy23f651ahRg9mzZ9OsWTO2bdtG27Zt7xkfgL+/P46OjtSsWZPs7Gxeeukl/v33X6PEysLCoswm9i4r0qdLPHJ6vQ5FUUhYtxdzNGTmazjv5Ef3rbc6z3uOGonZA3SgFeJJpFKpsDG3MclSXqfkKujXtXXrVkJCQgAIDg5m5cqVxfbnKmBhYYFOp3vkMV6+fJnExEQmTpzIc889Z3jEd6eCBDIyMpKQkBBUKhWtWrXi888/Jysr6579uQBcXFxo164d8+bNIysry2hfWloaK1as4NVXX0WlUtGgQQNq167Nl19+WSihPHz4MJs3b+b111+/6/kKWrfuPFdJ9enTB71ez7x58x7o+MdJuUm6ZsyYgUqlMsriFUUhPDwcb29vrK2tCQkJMbzFUSAnJ4ehQ4fi6uqKra0tXbt25ezZs0Zlrl69Sp8+fdBqtWi1Wvr06SOD3pWhmL/WseKDMQQke6OgcLGxOa7rFmOfl4VSvSZOr79m6hCFEI9Ieno6sbGxRktKSkqpnqOgX9fatWsNSVdISAjLly/Hzc2NOnXqFHusn58f+/btIzk52eiRX2lzcnLCxcWFBQsWcPz4cbZu3cqoUaMKlSv4nouLi6NVq1aGbStWrKBRo0Y4ODiU6Hxz584lJyeH0NBQtm/fzpkzZ9iwYQPt2rWjUqVKTJs2DbiVxC9atIiEhAS6d+/O/v37SUlJ4eeff6ZLly40a9asUOtaRkYGaWlppKamsn//fsaOHYurqyvNmzd/oHujVqsZMWIEM2fOLDQuWEVTLpKuAwcOsGDBAqPn5wCffvopX3zxBXPnzuXAgQN4enrSrl07MjIyDGVGjBjBr7/+ysqVK9m5cyc3btygc+fORn+59OzZk9jYWDZs2MCGDRuIjY2lT58+ZXZ9TzK9Tkf0n7/hcc2TS+obrLHey64TCbRNOYiCCv9pU1GVsA+AEOLxExkZScOGDY2WyZMnl+o5tFotDRs2xNnZ2ZBgtWrVCr1ef88+UGPGjEGj0VCnTh3c3NxKPSEsoFarWblyJdHR0QQFBTFy5Eg+++yzQuWCgoJwdXWlfv36hgQrODgYnU53X/25atSowcGDB6lWrRqvvvoq1apV46233qJNmzbs2bMHZ2dnQ9kWLVqwd+9eNBoNzz//PNWrV+eDDz7gjTfeYNOmTYX6Uk2ePBkvLy+8vb3p3Lkztra2bNq0CRcXlwe8O9CvXz/y8vKYO3fuA9fxOFApJn4H+MaNGzRq1Ih58+bx8ccf06BBA2bPno2iKHh7ezNixAjGjRsH3GrV8vDw4JNPPuHtt98mPT0dNzc3vv/+e1599VUAzp8/j4+PD3/++SehoaEkJiZSp04dw+BvcGsguGbNmnHkyBFq1apVojivX7+OVqslPT29xH9pCDiyK4pNc+fSyedt1lsd5rI6A8+TZwjevxs6v0jA5zNMHaIQ5Vp2djanTp3C39+/RG/NCfEkutvvSXn6/jZ5S9eQIUPo1KlToc53p06dIi0tjfbt2xu2WVpaEhwczO7du4FbA9fl5eUZlfH29iYoKMhQZs+ePWi1WqMxRJ555hm0Wq2hTFFycnK4fv260SLuT8GUP7W0T3HO7BqX1Rmo9PBM7EGyrO2oMeE9U4cohBBClBmTJl0rV67k0KFDzJhRuLUjLe3WwJkeHh5G2z08PAz70tLSsLCwwMnJ6a5l3N3dC9Xv7u5uKFOUGTNmGPqAabVaowHzRMmcTfyXq8lnqebQiINmJwGokZiIZW4udsNGYHbH5yaEEHdasWIFdnZ2RS6BgYEmiSkwMLDYmFasWPHIz5+SklLs+e3s7B7ZI9KS6NixY7FxTZ8+3WRxlRcmGzLizJkzDB8+nI0bN961yfzOt2WKGjPkTneWKar8ver54IMPjDo5Xr9+XRKv+1TQynXa7Arp6kw0+TqCEhNI86lJyBt3fxtGCCEAunbtWuxo56YawfzPP/8sdj7FOxsKHgVvb2/DKPfF7TeVRYsWFfsW4+39yJ5UJku6oqOjuXDhAo0bNzZs0+l0bN++nblz5xrmuEpLSzMMSge3BqYr+Eft6elJbm4uV69eNWrtunDhguEtCk9PT/77779C57948eJdfzksLS0rxEBspnLl/FnOxvxDR5+3+M3s1pxcQf/Goc7X4Ts1HJXa5E+2hRCPAXt7e+zt7U0dhhFfX1+Tnt/MzKzcjl9VqVIlU4dQrpnsm++5554jLi7O6DXiJk2a0KtXL2JjY6latSqenp5s2rTJcExubi5RUVGGhKpx48aYm5sblUlNTeXff/81lGnWrBnp6elGUwfs27eP9PT0B369Vdybo6cXgQGvcMbsGjfU2Vhk51D92HGONO9I1WYNTR2eEEIIUeZM1tJlb29PUFCQ0TZbW1tcXFwM20eMGMH06dOpUaMGNWrUYPr06djY2NCzZ0/g1mvC/fv3Z/To0bi4uODs7MyYMWOoW7euoWN+QEAAHTp0YODAgYZZ5t966y06d+5c4jcXxf3LvJKF300vzFRwJus87jF/kW5uS9Op40wdmhBCCGES5XoaoPfee4+srCwGDx7M1atXadq0KRs3bjRqav7yyy8xMzOjR48eZGVl8dxzzxEREWE0/9OKFSsYNmyY4S3Hrl27VvixQExJURT+/XMXlVU2XNXnUe/PCCzzc9j1+ghaVi78UoMQQgjxJDD5OF2Pi/I0zkd5lpeTzU8T3qexWUessOR82jqc9q7nsHsNgv9YhZdj6c7dJkRFJ+N0CXFvj8s4XeW6pUs8fhK2b8Ulw4MktzQSNWdodPYwdioNqWFDJeESQgjxRJNXyESpUfR6Yv5YRxWH+vyrSSFblQ8q+L1WG/r0aG3q8IQQQgiTkqRLlJoThw7gmetDomUaeSodjleuYn7pJlZvDsDVTobfEOJJExYWhkqlYtCgQYX2DR48GJVKRVhYmFFZlUqFubk5Hh4etGvXjiVLlhSahNrPz4/Zs2eXKAY/Pz9DvdbW1tSuXZvPPvuM23vWJCcnG8rcvvTu3fuBr12IokjSJUrNgdW/UllblwTNWQDqxsUR0bg7A9oGmDgyIYSp+Pj4sHLlSqMBM7Ozs/nxxx+pUqWKUdkOHTqQmppKcnIyf/31F23atGH48OF07tyZ/Pz8B45h6tSppKamkpiYyJgxYxg/fjwLFiwoVG7z5s2kpqYalm+++eaBzylEUSTpEqUi9XgSjlcciLdIRafS43rxIsmKM/Vf7YKTrYWpwxNCmEijRo2oUqUKa9asMWxbs2YNPj4+NGxoPGafpaUlnp6eVKpUiUaNGjF+/Hh+//13/vrrLyIiIh44Bnt7ezw9PfHz82PAgAHUq1ePjRs3Firn4uKCp6enYdFqtQ98TiGKIkmXKBV7V67BW1uXI5rzANT6N5EfmnSjf0t/E0cmRMWiKAr6zEyTLA/6svubb77J0qVLDetLliyhX79+JTr22WefpX79+kZJ24NSFIXIyEgSExNNNoWQeLLJ24uiVLjkNCTV/DKKSsEjLY3Nzg3o1ulptNbyH5sQpUnJyiKpUeN7F3wEah2KRmVjc9/H9enThw8++MDQd2rXrl2sXLmSyMjIEh1fu3Zt/vnnn/s+b4Fx48YxceJEcnNzycvLw8rKimHDhhUq17x5c9S3TVG2Y8eOQq1xQjwMSbrEQzv7z0Uq59hgobbFJmk/ly+fZmnwULY19zN1aEKIcsDV1ZVOnTqxbNkyFEWhU6dOuLq6lvh4RVFQqVQPfP6xY8cSFhbGxYsXmTBhAs8++2yR08CtWrWKgID/3wfVx8fngc8pRFEk6RIPLe/keSzUKrKyb+D27ya+aPEWA56tha2l/PMSorSprK2pdSjaZOd+UP369ePdd98FuO8O6omJifj7P3hXBVdXV6pXr0716tVZvXo11atX55lnnjFMF1fAx8en3E4kLSoG+VYUD+XQ77+j3qfCGmvU/64kslJ9zlUNos8zfqYOTYgKSaVSPdAjPlPr0KEDubm5AISGhpb4uK1btxIXF8fIkSNLJQ4nJyeGDh3KmDFjiImJeagWNCHul3SkFw8sPy+XS1uPcdDsNKssd5NocZmFQV0YElINawvNvSsQQjwxNBoNiYmJJCYmGs2Ne7ucnBzS0tI4d+4chw4dYvr06bzwwgt07tyZvn37llosQ4YMISkpidWrV5danUKUhLR0iQcWGbEOeytfzmriUSkKkY5BWHl68HrTKvc+WAjxxLnXvHcbNmzAy8sLMzMznJycqF+/Pl999RVvvPGGUQf3h+Xm5kafPn0IDw+nW7dupVavEPciE16XUHmaMLM8yMvNZ9PwOaS4aUhTX8P97Dk+d+7Cx90b0FOSLiFKjUx4LcS9PS4TXsvjRfFAdizfgr22Mmnqa6j1Cn+bBVHJ1Y5XmlQ2dWhCCCFEuSRJl7hvuVn5ZB88ymGLW9P9WF28yGHH6gx/ribmGvknJYQoGytWrMDOzq7IJTAw0NThCVGI9OkS923Xqj1YObhwSX0UjU7Pz9bNqepqy4sNvE0dmhDiCdK1a1eaNm1a5D4ZcV6UR5J0ifuScSWbvNgcFFvQKCpu3rzORQsnJratgZm0cgkhypC9vT329vamDkOIEpOkS9yX+L9PU8PSAnOdD+anIhlUpT21POzpUk9auYQQQoi7kaRLlJhep8Pn0n8oKhU56WeZXUVDLtaMbFcDtVoGGBRCCCHuRpIuUWJxP/5Jatp1XFR2HM9cyT+O/Qj0ciA00NPUoQkhhBDlniRdokTOxp/hRux19tkeR1Ep7PBrAjlmjG5fU6bREEIIIUpAki5xT3k5Og7PW8dpl2wUlYI69yon9O1p4ONIm1rupg5PCCGEeCzI62binnZGbMXcwYEL6nQ0eoXV6joAvNehlrRyCSGEECUkSZe4q/SLNyH+NNEWyQBc0V8hPb8yLzWsRPNqrqYNTghRLqlUqrsuYWFhj+S8N2/eZNy4cVStWhUrKyvc3NwICQlh3bp1hjIhISGMGDGi0LERERE4OjoW2p6VlYWTkxPOzs5kZWUV2u/n52e4LhsbG4KCgvjuu+9KFG9ERITRffHw8KBLly7Ex8cblQsLCyvyPh4/frxE5xHlhzxeFHe186s1ZDjoyVHlYZmdxW/qEByszBj/fICpQxNClFOpqamGn1etWsXkyZNJSkoybLO2tjYqn5eXVyqDmQ4aNIj9+/czd+5c6tSpw+XLl9m9ezeXL19+4DpXr15NUFAQiqKwZs0aevXqVajM1KlTGThwIDdu3CAiIoJBgwbh6OjIq6++es/6HRwcSEpKQlEUzp07x3vvvUenTp04evQoFhYWhnIdOnRg6dKlRse6ubk98HUJ05CWLlGs1OPXcMyy5IjmPAD7LMxQ9FaM61gbN3tLE0cnhCivPD09DYtWq0WlUhnWs7OzcXR05KeffiIkJAQrKyuWL18OwNKlSwkICMDKyoratWszb948o3rPnTvHq6++ipOTEy4uLrzwwgskJycb9q9du5bx48fz/PPP4+fnR+PGjRk6dChvvPHGA1/L4sWL6d27N71792bx4sVFlrG3t8fT05Pq1avz8ccfU6NGDX777bcS1V9wb7y8vGjSpAkjR47k9OnTRkkqgKWlpdF99fT0RKPRPPB1CdOQpEsUSdErHF+eQBUzT1rm1MLy+jlic5vRsIojrz9VxdThCfHEy8vRFbvk5+lKXja3ZGVL27hx4xg2bBiJiYmEhoaycOFCJkyYwLRp00hMTGT69OlMmjSJZcuWAZCZmUmbNm2ws7Nj+/bt7Ny5Ezs7Ozp06EBubi5wK9n7888/ycjIKJUYT5w4wZ49e+jRowc9evRg9+7dnDx58p7HWVlZkZeXd9/nu3btGj/88AMg0xhVVPJ4URQp+1ImPll5qFRqnI7u4X8BDdAoaqa9WFcGQhWiHFgwPKrYfb5BLnR+t75hfcnYHeTn6oss613DkZdGNzKs/2/CbrJvFE4Yhsx/9iGiLWzEiBF069bNsP7RRx8xa9YswzZ/f38SEhL47rvveOONN1i5ciVqtZpFixYZXuBZunQpjo6OREZG0r59exYsWECvXr1wcXGhfv36tGzZkpdffpkWLVoYnXvevHksWrTIaFt+fj5WVlZG25YsWULHjh1xcnICbj3iW7JkCR9//HGR15Sfn8/y5cuJi4vjnXfeKdF9SE9Px87ODkVRyMzMBG7NKVm7dm2jcuvWrcPOzs6w3rFjR37++ecSnUOUH9LSJQrR63UcW7QZvUpP3rUzLPE9R5bOjzeb+1HH28HU4QkhKoAmTZoYfr548SJnzpyhf//+2NnZGZaPP/6YEydOABAdHc3x48ext7c37Hd2diY7O9tQpnXr1pw8eZItW7bQvXt34uPjadWqFR999JHRuXv16kVsbKzRMnXqVKMyOp2OZcuW0bt3b8O23r17s2zZMnQ645a/cePGYWdnh7W1NUOGDGHs2LG8/fbbJboP9vb2xMbGEh0dzfz586lWrRrz588vVK5NmzZG8X711Vclql+UL9LSJQpJXL2Zf7JSOWcZj++NONY798DL3ooR7WqaOjQhxP95a05wsftUd/w53e+zVsWXvaPhuu+05g8TVonZ2toaftbrb7XCLVy4kKZNmxqVK+i3pNfrady4MStWrChU1+0dys3NzWnVqhWtWrXi/fff5+OPP2bq1KmMGzfO0DFdq9VSvXp1ozrc3Y3HHPz7778Nfchup9Pp2LhxIx07djRsGzt2LGFhYdjY2ODl5XVfQ+mo1WpDLLVr1yYtLY1XX32V7du3G5WztbUtFLN4/EjSJYxcSL7Af/v/47htGijwc2UP0NsxpUsgdpbyz0WI8sLcsuSdqB9V2dLi4eFBpUqVOHnyZJFvBwI0atSIVatW4e7ujoNDyVvc69SpQ35+PtnZ2UZvA97L4sWLee2115gwYYLR9pkzZ7J48WKjpMvV1bXUEqKRI0fyxRdf8Ouvv/LSSy+VSp2i/JBvUWEk9ps/SLC+CoB1+jmirbrwXG13QgM9TByZEKIiCw8PZ9iwYTg4ONCxY0dycnI4ePAgV69eZdSoUfTq1YvPPvuMF154galTp1K5cmVSUlJYs2YNY8eOpXLlyoSEhPD666/TpEkTXFxcSEhIYPz48bRp0+a+ErWLFy+ydu1a/vjjD4KCgoz2vfHGG3Tq1ImLFy8+kiEbHBwcGDBgAFOmTOHFF1+UAagrGOnTJQwSNkWTbW7GNfVNzPMVfrGpgZW5OeFdA+UXXwjxSA0YMIBFixYRERFB3bp1CQ4OJiIiAn9/fwBsbGzYvn07VapUoVu3bgQEBNCvXz+ysrIMCVVoaCjLli2jffv2BAQEMHToUEJDQ/npp5/uK5b//e9/2Nra8txzzxXa16ZNG+zt7fn+++8f/qKLMXz4cBITE6WjfAWkUhRFMXUQj4Pr16+j1WpJT0+/r7+YHhf6fB1bxyxlr/Y8+So9OdeO86PV64zrUJt3QqqZOjwhnljZ2dmcOnUKf3//Qm/XCSFuudvvSXn6/paWLgHA7vnrOGOfQ75Kj0PGTX6yCaWmhx0DWvmbOjQhhBCiQpCkS5CbmY82xR5zNKgUOMg1dHpnPn6xLuYa+ScihBAPIjAw0GgIjNuXot7CFBWfdKQXHFuRiJPanBY5AeSc/o2lVd+hR+PKPO3vbOrQhBDisfXnn38WOzK9h4e8nPQkkqTrCZd9KQOHU1cANVeSd7CwalOcrK15v6NMaC2EEA/D19fX1CGIckaeHT3BFEVh7xc/s1UTz9XrJ1hnvZk0nuKD5wNwti35eDZCCCGEuDdp6XqCxf+ymeOaG5zVXOGG5io/VurF01VceLlRZVOHJoQQQlQ40tL1hMrKyODMgTOc1VxBrUAMl8inEh+/FCQTWgshhBCPgCRdT6h9s34jzvo/AFzOn2GzXTcGtq5KTQ97E0cmhBBCVEySdD2Bzscd5UJeFpmqHKzyVPzm6EhlRyeGPVvD1KEJIYQQFZYkXU8YRVGI/992Es1SAVClHuKYpg1TXwjE2qLsJ7oVQoiylpycjEqlIjY21tShVFjh4eE0aNDA1GGUO5J0PWHS9p4kzSoPRaXgci2XFR7P0SHQi2dry5gxQojSFRYWxosvvmi07ZdffsHKyopPP/3UNEE9gNWrV9O0aVO0Wi329vYEBgYyevRow/6IiAgcHR2LPFalUvHbb78V2v7WW2+h0WhYuXJloX3h4eGoVCpUKhUajQYfHx8GDBjAxYsXSxRvwbEqlQo7Ozvq169PRESEUZnIyEijcgXLxIkTS3QO8WDk7cUniKJXuPFXGq3yAiBbT3T2ZnQOrZnStY6pQxNCPAEWLVrEkCFD+OabbxgwYMB9H5+bm4uFRdkOZ7N582Zee+01pk+fTteuXVGpVCQkJLBly5YHrjMzM5NVq1YxduxYFi9ezGuvvVaoTGBgIJs3b0an0xETE0P//v05d+4cf/31V4nOsXTpUjp06MDNmzdZtWoVb775Jl5eXoSGhhqVS0pKMpqP0M7O7oGvS9ybtHQ9QdJ3ncM6V49er8YpfgtrnV9lZLuaeGmtTR2aEKKC+/TTT3n33Xf54YcfDAnX7t27ad26NdbW1vj4+DBs2DBu3rxpOMbPz4+PP/6YsLAwtFotAwcONLQq/f333wQEBGBnZ0eHDh1ITU01Ot/SpUsJCAjAysqK2rVrM2/evAeKe926dbRs2ZKxY8dSq1YtatasyYsvvsjXX3/9wPfi559/pk6dOnzwwQfs2rWL5OTkQmXMzMzw9PSkUqVKdO7cmWHDhrFx40aysrJKdA5HR0c8PT2pVq0a48ePx9nZmY0bNxYq5+7ujqenp2EpSdJV8Bn89ttv1KxZEysrK9q1a8eZM2eKPSYkJIQRI0YYbXvxxRcJCwszrM+bN48aNWpgZWWFh4cHL7/8comu9XEiSdcT4tKxZJI2HESPQsaJbSyq5UYtj0qENfczdWhCiAeQl51d7JKfm1visnm5OSUq+zDef/99PvroI9atW0f37t0BiIuLIzQ0lG7duvHPP/+watUqdu7cybvvvmt07GeffUZQUBDR0dFMmjQJuNVS9Pnnn/P999+zfft2UlJSGDNmjOGYhQsXMmHCBKZNm0ZiYiLTp09n0qRJLFu27L5j9/T0JD4+nn///fch7oCxxYsX07t3b7RaLc8//zxLly695zHW1tbo9Xry8/Pv61w6nY6ffvqJK1euYG5u/qAhF5KZmcm0adNYtmwZu3bt4vr160W22JXUwYMHGTZsGFOnTiUpKYkNGzbQunXrUou3vJDHi08ARVGIXbaVnWYpOKussNat57DVRNa8FISZTGgtxGPpqzeKbwXwb9iEbu+HG9bnvdWL/JycIstWrhPEq1NmGtYXvtuPrIzrhcqNXrXugeL866+/+P3339myZQvPPvusYftnn31Gz549Da0fNWrU4KuvviI4OJhvv/0WKysrAJ599lmjhGrnzp3k5eUxf/58qlWrBsC7777L1KlTDWU++ugjZs2aRbdu3QDw9/cnISGB7777jjfeeOO+4h86dCg7duygbt26+Pr68swzz9C+fXt69eqFpaWloVx6enqJWomOHTvG3r17WbNmDQC9e/dm2LBhTJkyBbW66P+Pjxw5wrfffsvTTz+NvX3JhvV5/fXX0Wg0ZGdno9PpcHZ2LvKRbuXKxoNhnz59GhcXl3vWn5eXx9y5c2natCkAy5YtIyAggP379/P000+XKMbbpaSkYGtrS+fOnbG3t8fX15eGDRvedz3lnUm/cb/99lvq1auHg4MDDg4ONGvWzOh5dVhYWKFOfs8884xRHTk5OQwdOhRXV1dsbW3p2rUrZ8+eNSpz9epV+vTpg1arRavV0qdPH65du1YWl1guHPljO4nqq6AC60vnWVTrRXo19adhFSdThyaEqODq1auHn58fkydPJiMjw7A9OjqaiIgI7OzsDEtoaCh6vZ5Tp04ZyjVp0qRQnTY2NoaEC8DLy4sLFy4AcPHiRc6cOUP//v2N6v744485ceLEfcdva2vL+vXrOX78OBMnTsTOzo7Ro0fz9NNPk5mZaShnb29PbGxsoeVOixcvJjQ0FFdXVwCef/55bt68yebNm43KxcXFYWdnh7W1NXXq1MHHx4cVK1aUOO4vv/yS2NhYNm3aRIMGDfjyyy+pXr16oXI7duwwitfJqWTfC2ZmZkafTe3atXF0dCQxMbHEMd6uXbt2+Pr6UrVqVfr06cOKFSuM7m9FYdKWrsqVKzNz5kzDP4Rly5bxwgsvEBMTQ2BgIAAdOnQwanq9sxPliBEjWLt2LStXrsTFxYXRo0fTuXNnoqOj0WhuDYHQs2dPzp49y4YNG4Bbb4306dOHtWvXlsVlmlRuZhZJe5K4bJWBmV7N6Zyj6Oy7MDa0tqlDE0I8hGHLfil2n+qOFpPBC+7yZX3HDBQD5y55qLjuVKlSJVavXk2bNm3o0KEDGzZswN7eHr1ez9tvv82wYcMKHVOlShXDz7a2toX23/mYTKVSoSgKAHq9Hrj1iLGgFaZAwXfCg6hWrRrVqlVjwIABTJgwgZo1axo6qAOo1eoik5rb6XQ6/ve//5GWloaZmZnR9sWLF9O+fXvDtlq1avHHH3+g0Wjw9vY2alUrCU9PT6pXr0716tX5+eefadiwIU2aNKFOHeMXp/z9/Yt98/JeVKrCs5cUtQ1u3Z+Cz6hAXl6e4Wd7e3sOHTpEZGQkGzduZPLkyYSHh3PgwIEHjq88MmnS1aVLF6P1adOm8e2337J3715D0mVpaYmnp2eRx6enp7N48WK+//572rZtC8Dy5cvx8fFh8+bNhIaGkpiYyIYNG9i7d6/hF3DhwoU0a9aMpKQkatWq9Qiv0PQOfPs7CZa3/gL0PnOZTzxf59POddBal96zfSFE2TP/v8dvpixbUlWqVCEqKoo2bdrQvn17/v77bxo1akR8fPw9E5X75eHhQaVKlTh58iS9evUq1boL+Pn5YWNjY9TpvyT+/PNPMjIyiImJMUoAjxw5Qq9evbh8+bLh0Z6FhUWp3Zvq1avTvXt3PvjgA37//fdSqTM/P5+DBw8aHiUmJSVx7do1atcu+g96Nzc3o5cddDod//77L23atDFsMzMzo23btrRt25YpU6bg6OjI1q1bDY+JK4Jy06FHp9OxcuVKbt68SbNmzQzbIyMjcXd3p2bNmgwcONDQhAy3mqfz8vKM/jrw9vYmKCiI3bt3A7Bnzx60Wq3RXzzPPPMMWq3WUKaiunIyhRNXLpOrysc215xI68s0qVaLrvW9TR2aEOIJU7lyZSIjI7l8+TLt27fnvffeY8+ePQwZMoTY2FiOHTvGH3/8wdChQx/6XOHh4cyYMYM5c+Zw9OhR4uLiWLp0KV988cUD1fXee+8RGRnJqVOniImJoV+/fuTl5dGuXbv7qmvx4sV06tSJ+vXrExQUZFi6d++Om5sby5cvv+/4Smr06NGsXbuWgwcPlkp95ubmDB06lH379nHo0CHefPNNnnnmmWL7cz377LOsX7+e9evXc+TIEQYPHmzUzWfdunV89dVXxMbGcvr0af73v/+h1+srXMOIyZOugufWlpaWDBo0iF9//dXQ/NmxY0dWrFjB1q1bmTVrFgcOHODZZ58l5/86hKalpWFhYVHoGbSHhwdpaWmGMu7u7oXO6+7ubihTlJycHK5fv260PG72L97ESfOLoIDTicPsdXqFj14IKrb5VwghHqVKlSoRFRXFtWvXGDhwIFFRURw7doxWrVrRsGFDJk2ahJeX10OfZ8CAASxatIiIiAjq1q1LcHAwERER+Pv733ddwcHBnDx5kr59+1K7dm06duxIWloaGzduvK+E4L///mP9+vWGtzdvp1Kp6NatG4sXL77v+Eqqbt26tG3blsmTJ5dKfTY2NowbN46ePXvSrFkzrK2tixzotUC/fv1444036Nu3L8HBwfj7+xu1cjk6OrJmzRqeffZZAgICmD9/Pj/++KPhqVdFoVLufMhaxnJzc0lJSeHatWusXr2aRYsWERUVVei5M0Bqaiq+vr6sXLmSbt268cMPP/Dmm28akrAC7dq1o1q1asyfP5/p06ezbNkykpKSjMrUqFGD/v378/777xcZV3h4OB9++GGh7enp6UYDyZVXOaevc+Tbney0OILqeiY/mWXyQmgYI9vVNHVoQoj7kJ2dzalTp/D39ze80SeEKUVERDBixIhy9ULa3X5Prl+/jlarLRff3yZv6Sp4bt2kSRNmzJhB/fr1mTNnTpFlvby88PX15dixY8CtjoK5ublcvXrVqNyFCxfw8PAwlPnvv/8K1XXx4kVDmaJ88MEHpKenG5a7DfpW3ih6hbQfj+CCPQ2v1+fGf7tQPNryTki1ex8shBBCiEfC5EnXnRRFKdRyVeDy5cucOXPG0PzcuHFjzM3N2bRpk6FMamoq//77L82bNwegWbNmpKens3//fkOZffv2kZ6ebihTFEtLS8NQFgXL4+LaztNoruWQr9dx5dRG/uf7Ah+/WBcrc5nQWgghbjdo0CCjoSVuXwYNGmTq8AqZPn16sfF27NixVM7RsWPHYs8xffr0UjnHk8qkjxfHjx9Px44d8fHxISMjg5UrVzJz5kw2bNhAs2bNCA8Pp3v37nh5eZGcnMz48eNJSUkhMTHRMEDcO++8w7p164iIiMDZ2ZkxY8Zw+fJloyEjOnbsyPnz5/nuu++AW0NG+Pr63teQEeWpefJuriaf4/dFv6LFllqxB/nGKxXNs5P46vWKN8icEE8Cebz4aF24cKHYPrsODg5F9gk2pStXrnDlypUi91lbW1OpUqWHPse5c+eKnW7I2dkZZ2fnhz5HaXtcHi+adMiI//77jz59+pCamopWq6VevXps2LCBdu3akZWVRVxcHP/73/+4du0aXl5etGnThlWrVhmNyPvll19iZmZGjx49yMrK4rnnniMiIsLoddwVK1YwbNgww1uOXbt2Ze7cuWV+vWVh39INJJtdQqVcIk9/mB3eo9ncOcDUYQkhRLnk7u5e7hKruymLpKc0EjdRNJN3pH9clKdMuTjHN+7m9507yFBnUfXsFX62gx6vjqJPMz9ThyaEeEDS0iXEvT0uLV3lrk+XeDB5ObkcijxMhjoLS70ZGelnUVV/hZ5NfU0dmhBCCCGQCa8rjIMLfyPJ/CIAHmdVzPdvyZKX6qFRy5hcQgghRHkgLV0VwNWU88SlnUen0qPNseFkfjSdWoUSVElr6tCEEEII8X+kpasCSPn9Xy5oMlArKlyPp/FL/dfZIIOgCiGEEOWKtHQ95nLPZuB8zpqXc57B+4onf7ulM+GFlthbyYTWQghxp7CwMF588cW7lomMjESlUpWrEdcfR8nJyahUKmJjY00dSrkhSddjTNErXP3tOCrgaq4FZmd3o2nSn45BnqYOTQgh7prg+Pn5oVKpjJbKlSsb7Z89e3apxzRnzhwiIiIM6yEhIYwYMaLUz2NqYWFhhvtqZmZGlSpVeOeddwrN4HKvz0GULnm8+Bg7GLEe5bwOzzwbbiT+zfdB1Vn6QgOZ0FoI8ViYOnUqAwcONKzfPr7io6LVln1f17y8PMzNy/7pQ4cOHVi6dCn5+fkkJCTQr18/rl27xo8//mhUzhSfw5NKWroeU9fOpnHg1FH+tIjh4PXNRDscoNvzr1PFxcbUoQkhRInY29vj6elpWNzc3O67jtGjR9OlSxfD+uzZs1GpVKxfv96wrVatWoYZSW5vfQsLCyMqKoo5c+YYWnmSk5MNx0VHR9OkSRNsbGxo3rw5SUlJJYopPDycBg0asGTJEqpWrYqlpSWKorBhwwZatmyJo6MjLi4udO7cmRMnThiO6969O0OHDjWsjxgxApVKRXx8PAD5+fnY29vz999/lygOS0tLPD09qVy5Mu3bt+fVV19l48aNhco96OegUqn49ttv6dixI9bW1vj7+/Pzzz8XWz4iIgJHR0ejbb/99ptRQ8Hhw4dp06YN9vb2ODg40LhxYw4ePFiieB4HknQ9prYvXssFzXU0igpt4jaiGr3DwFZVTR2WEOIRUxQFfa7OJEt5HEs7JCSEHTt2oNfrAYiKisLV1ZWoqCgA0tLSOHr0KMHBwYWOnTNnDs2aNWPgwIGkpqaSmpqKj4+PYf+ECROYNWsWBw8exMzMjH79+pU4ruPHj/PTTz+xevVqQ5+mmzdvMmrUKA4cOMCWLVtQq9W89NJLhthDQkKIjIw01HHntRw4cIDs7GxatGhxX/cI4OTJk2zYsKHUW9wmTZpE9+7dOXz4ML179+b1118nMTHxgevr1asXlStX5sCBA0RHR/P++++bpJXwUZHHi4+hY5v3kaC/ACrwvGzJLwF+THmlHRZmkkMLUdEpeXrOT95tknN7T22OyqL0Hj2NGzeOiRMnGtanT5/OsGHD7quO1q1bk5GRQUxMDI0aNWLHjh2MGTOGNWvWALBt2zY8PDyoXbt2oWO1Wi0WFhbY2Njg6Vm4L+y0adMMydr7779Pp06dyM7OLtHMALm5uXz//fdGrUbdu3c3KrN48WLc3d1JSEggKCiIkJAQhg8fzqVLl9BoNMTHxzNlyhQiIyMZPHgwkZGRNG7cGDs7uxLdm3Xr1mFnZ4dOpyM7OxuAL774olC5h/kcXnnlFQYMGADARx99xKZNm/j666+ZN29eiY6/U0pKCmPHjjV8XjVq1HigesorSboeM/m5eezdtp9s8zxsdRZYpV7A8uXRPFPVxdShCSHEfRk7dixhYWGGdVdX1/uuQ6vV0qBBAyIjIzE3N0etVvP2228zZcoUMjIyiIyMLLKVqyTq1atn+NnLywu4NUF2lSpV7nmsr69vocd0J06cYNKkSezdu5dLly4ZWrhSUlIICgoiKCgIFxcXoqKiMDc3p379+nTt2pWvvvoK4L6vpU2bNnz77bdkZmayaNEijh49avT4ssDDfA7NmjUrtP4wbyuOGjWKAQMG8P3339O2bVteeeUVqlWr9sD1lTeSdD1m9iz+jRNmlwFwuOjBH34ZzO/SwLRBCSHKjMpcjffU5iY7d2lydXWlevXqD11PwWM5CwsLgoODcXJyIjAwkF27dhEZGfnAbyfe/liroN9RQaJ0L7a2toW2denSBR8fHxYuXIi3tzd6vZ6goCByc3MN52jdurXhWkJCQggKCkKn0xEXF8fu3bvv61psbW0N9/err76iTZs2fPjhh3z00UdG5UrrcyhQ3MtcarW60CPqvLw8o/Xw8HB69uzJ+vXr+euvv5gyZQorV67kpZdeKrX4TEmeRz1GrqdeJPZ8MqjAJdue/Kt76NZjEC52lqYOTQhRRlQqFWoLjUmW8vpmdEG/rq1btxISEgJAcHAwK1euLLY/VwELCwt0Ot0jj/Hy5cskJiYyceJEnnvuOQICAgoN3wD/P4GMjIwkJCQElUpFq1at+Pzzz8nKynqg/lwFpkyZwueff8758+cf5lKM7N27t9B6UY9yAdzc3MjIyODmzZuGbUW1itWsWZORI0eyceNGunXrxtKlS0stXlOTpOsxkr/3GvV0/tjrrLA9a82up1ry6lP3buYWQghTSU9PJzY21mhJSUkp1XMU9Otau3atIekKCQlh+fLluLm5UadOnWKP9fPzY9++fSQnJxs98ittTk5OuLi4sGDBAo4fP87WrVsZNWpUoXIhISHEx8cTFxdHq1atDNtWrFhBo0aNcHBweOAYQkJCCAwMZPr06Q9cx51+/vlnlixZwtGjR5kyZQr79+/n3XffLbJs06ZNsbGxYfz48Rw/fpwffvjBaMy0rKws3n33XSIjIzl9+jS7du3iwIEDBAQElFq8piZJ12Mi99wNbu5Po5reg0pXmnDKLJrJvbuhlgmthRDlWGRkJA0bNjRaJk+eXKrn0Gq1NGzYEGdnZ0OC1apVK/R6/T37QI0ZMwaNRkOdOnVwc3Mr9YSwgFqtZuXKlURHRxMUFMTIkSP57LPPCpULCgrC1dWV+vXrGxKs4OBgdDrdA/dNu92oUaNYuHAhZ86ceei6AD788ENWrlxJvXr1WLZsGStWrCg2yXV2dmb58uX8+eef1K1blx9//JHw8HDDfo1Gw+XLl+nbty81a9akR48edOzYkQ8//LBUYi0PVEp5fAe4HLp+/TparZb09PSH+kvjQejy8kn9NgbOZ5OamUlSWjTJvZ5j4gtNyzQOIUTZy87O5tSpU/j7+5forTkhyopKpeLXX3+957RKZeFuvyem/P6+k7R0PQZ2LvqV5Zc3kkQKtjumsqPSRUZ1bGzqsIQQQghxHyTpKufSz10gJvUk2ao8TmclcMgji5cHjMPGQl48FUJUfCtWrMDOzq7IJTAw0CQxBQYGFhvTihUrHvn5U1JSij2/nZ1dqTwiLY/3vSKQb+5ybtPiNVxTZ2Gp1xC0Yy3/6/0WcwNlQmshxJOha9euNG1adFcKU41U/ueffxYa6qCAh4fHIz+/t7f3XcfC8vb2fuhzlOS+S++k+ydJVzmWtG0/R3QXQQVOGZ5E1XmaD/q9YeqwhBCizNjb22Nvb2/qMIz4+vqa9PxmZmalOq5WUcrjfa8IJOkqp3T5+ezYuot8jQ7HPGssL+jJ79mLSo7Wpg5NCCGEEA9A+nSVU9sXruGsJh2VAhbXfDnulMTbHUwzCrUQQgghHp4kXeWQPiufa+dvjdjrkeWI9eVTvDByHOYa+biEEEKIx5U8XiyHrm86zVN51XHNcSTuqobkRsm8We3Rd84UQgghxKMjTSflTO75G9zYc2terPOZjihZexn57iATRyWEEEKIhyVJVzmiy89n3cJVXCeLrLR4OL8Xh57tcLSxMHVoQgghSllYWFi5GM1dlB1JusqRbYtW849yhl8t9nEz/geOu8fQu2OIqcMSQogHcrekws/Pj9mzZxutq1QqVq5cWahsYGAgKpXKaHLkgvJ3LjNnzrxnXMnJyUbHaLVannnmGdauXWtULiIioshzLFq0qETXL8SdpE9XOXEt9SKHzp8ANVS5nMMlsyu8NP4nVCqZ0FoI8WTw8fFh6dKlvPbaa4Zte/fuJS0tDVtb20Llp06dysCBA4223c/YUps3byYwMJBr164xb948unfvzqFDhwgKCjKUcXBwICkpyeg4rVZb4nMIcTtp6Son/lz0M5nqXGz1FtilQOxLr1Cniow8L4R4cvTq1YuoqCjOnDlj2LZkyRJ69eqFmVnhNgJ7e3s8PT2NlqKSs+K4uLjg6elJ7dq1mTZtGnl5eWzbts2ojEqlKnQOa+t7j5cYHh5OgwYN+O677/Dx8cHGxoZXXnmFa9euFXvMna1/AA0aNCA8PNyo3ipVqmBpaYm3tzfDhg0r8fUK05OkqxxIiNzPsfyLADilu3PRwYEhIyaYOCohRHmWm5tb7HLnFDWlUbYseHh4EBoayrJlywDIzMxk1apV9OvX75GeNy8vj4ULFwKlO7XQ8ePH+emnn1i7di0bNmwgNjaWIUOGPHB9v/zyC19++SXfffcdx44d47fffqNu3bqlFq949OTxoonpdDq2bY1CUSu45dqRl1kJt5e9sJYJrYUQdzF9+vRi99WoUYNevXoZ1j/77LNi5wr09fXlzTffNKzPnj2bzMzMQuVub215lPr168fo0aOZMGECv/zyC9WqVaNBgwZFlh03bhwTJ0402rZu3TpCQkJKdK7mzZujVqvJyspCr9fj5+dHjx49jMqkp6djZ2dnWLezsyMtLa1E9WdnZ7Ns2TIqV64MwNdff02nTp2YNWsWnp73/yQjJSUFT09P2rZti7m5OVWqVOHpp5++73qE6UhLl4lFLf2Vi+qbaBQ1Zul+6JQDvPxiJ1OHJYQQJtGpUydu3LjB9u3bWbJkyV1bucaOHUtsbKzRUtwkzUVZtWoVMTEx/PHHH1SvXp1Fixbh7OxsVMbe3t6o/t27d5e4/ipVqhgSLoBmzZqh1+sL9RErqVdeeYWsrCyqVq3KwIED+fXXX8nPz3+guoRpSHOKCSk6heoXvbmRd5NLORnkZyq0n9zX1GEJIR4D48ePL3bfnS/gjB07tsRlR4wY8VBxPSwzMzP69OnDlClT2LdvH7/++muxZV1dXR9q4mcfHx9q1KhBjRo1sLOzo3v37iQkJODu7m4oo1arS21y6YJ7XdwLUmq1GkVRjLbd3kLp4+NDUlISmzZtYvPmzQwePJjPPvuMqKioUn0sKh4daekyIZVGxdWnLXC+6UPOjTrovJKp6e9n6rCEEI8BCwuLYpc7v4BLo2xZ6tevH1FRUbzwwgs4OTmVyTmDg4MJCgpi2rRppVZnSkoK58+fN6zv2bMHtVpNzZo1iyzv5uZGamqqYf369eucOnXKqIy1tTVdu3blq6++IjIykj179hAXF1dqMYtHS1q6TCx60bfk2nbDLDeVvl+PMHU4QghRqtLT04mNjTXaducjvDsFBARw6dIlbGxs7louIyOjUP8qGxsbHBwcHijW0aNH88orr/Dee+9RqVKlB6rjdlZWVrzxxht8/vnnXL9+nWHDhtGjR49i+3M9++yzRERE0KVLF5ycnJg0aRIajcawPyIiAp1OR9OmTbGxseH777/H2toaX1/fh45VlA1p6TKhrKxMzHOP0XR/OJ7Pa7GU5mEhRAUTGRlJw4YNjZbJkyff8zgXF5d7Ds0wefJkvLy8jJb33nvvgWPt3Lkzfn5+pdbaVb16dbp168bzzz9P+/btCQoKYt68ecWW/+CDD2jdujWdO3fm+eef58UXX6RatWqG/Y6OjixcuJAWLVpQr149tmzZwtq1a3FxcSmVeMWjp1LufIAsinT9+nW0Wi3p6ekP/FdUcfbs3kaz5m1KtU4hRMWQnZ3NqVOn8Pf3x8rKytThiBIKDw/nt99+K9TKJx6Nu/2ePMrv7/slLV3lgCRcQgghRMUnSZcQQogKZdCgQdjZ2RW5DBo0qFTOERgYWOw5VqxYUSrnEBWPPF4sofLUPCmEeHLI48X7d+HCBa5fv17kPgcHB6MhIR7U6dOnix1w1sPD477mgBQP73F5vChvLwohhKhQ3N3dSyWxuht5Y1A8CHm8KIQQQghRBiTpEkKIx4D0BBGieI/L74ckXUIIUY4VDI6Zm5tr4kiEKL8KJmkv79MhSZ8uIYQox8zMzLCxseHixYuYm5ujVsvfykIUUBSFzMxMLly4gKOjo9EI/uWRJF1CCFGOqVQqvLy8OHXqFKdPnzZ1OEKUS46OjsVOr1SeSNIlhBDlnIWFBTVq1JBHjEIUwdzcvNy3cBWQpEsIIR4DarVaxukS4jEnnQOEEEIIIcqAJF1CCCGEEGVAki4hhBBCiDIgfbpKqGDgteLm8xJCCCFE+VPwvV0eBlCVpKuEMjIyAPDx8TFxJEIIIYS4XxkZGWi1WpPGoFLKQ+r3GNDr9Zw/fx57e3tUKlWp1Xv9+nV8fHw4c+aMyWc/r+jkXpcNuc9lQ+5z2ZD7XDYe5X1WFIWMjAy8vb1NPriwtHSVkFqtpnLlyo+sfgcHB/mFLiNyr8uG3OeyIfe5bMh9LhuP6j6buoWrgHSkF0IIIYQoA5J0CSGEEEKUAUm6TMzS0pIpU6ZgaWlp6lAqPLnXZUPuc9mQ+1w25D6XjSflPktHeiGEEEKIMiAtXUIIIYQQZUCSLiGEEEKIMiBJlxBCCCFEGZCkSwghhBCiDEjSZWLz5s3D398fKysrGjduzI4dO0wdUoUyY8YMnnrqKezt7XF3d+fFF18kKSnJ1GFVeDNmzEClUjFixAhTh1LhnDt3jt69e+Pi4oKNjQ0NGjQgOjra1GFVOPn5+UycOBF/f3+sra2pWrUqU6dORa/Xmzq0x9r27dvp0qUL3t7eqFQqfvvtN6P9iqIQHh6Ot7c31tbWhISEEB8fb5pgHwFJukxo1apVjBgxggkTJhATE0OrVq3o2LEjKSkppg6twoiKimLIkCHs3buXTZs2kZ+fT/v27bl586apQ6uwDhw4wIIFC6hXr56pQ6lwrl69SosWLTA3N+evv/4iISGBWbNm4ejoaOrQKpxPPvmE+fPnM3fuXBITE/n000/57LPP+Prrr00d2mPt5s2b1K9fn7lz5xa5/9NPP+WLL75g7ty5HDhwAE9PT9q1a2eY//ixpwiTefrpp5VBgwYZbatdu7by/vvvmyiiiu/ChQsKoERFRZk6lAopIyNDqVGjhrJp0yYlODhYGT58uKlDqlDGjRuntGzZ0tRhPBE6deqk9OvXz2hbt27dlN69e5sooooHUH799VfDul6vVzw9PZWZM2catmVnZytarVaZP3++CSIsfdLSZSK5ublER0fTvn17o+3t27dn9+7dJoqq4ktPTwfA2dnZxJFUTEOGDKFTp060bdvW1KFUSH/88QdNmjThlVdewd3dnYYNG7Jw4UJTh1UhtWzZki1btnD06FEADh8+zM6dO3n++edNHFnFderUKdLS0oy+Fy0tLQkODq4w34sy4bWJXLp0CZ1Oh4eHh9F2Dw8P0tLSTBRVxaYoCqNGjaJly5YEBQWZOpwKZ+XKlRw6dIgDBw6YOpQK6+TJk3z77beMGjWK8ePHs3//foYNG4alpSV9+/Y1dXgVyrhx40hPT6d27dpoNBp0Oh3Tpk3j9ddfN3VoFVbBd19R34unT582RUilTpIuE1OpVEbriqIU2iZKx7vvvss///zDzp07TR1KhXPmzBmGDx/Oxo0bsbKyMnU4FZZer6dJkyZMnz4dgIYNGxIfH8+3334rSVcpW7VqFcuXL+eHH34gMDCQ2NhYRowYgbe3N2+88Yapw6vQKvL3oiRdJuLq6opGoynUqnXhwoVCWb54eEOHDuWPP/5g+/btVK5c2dThVDjR0dFcuHCBxo0bG7bpdDq2b9/O3LlzycnJQaPRmDDCisHLy4s6deoYbQsICGD16tUmiqjiGjt2LO+//z6vvfYaAHXr1uX06dPMmDFDkq5HxNPTE7jV4uXl5WXYXpG+F6VPl4lYWFjQuHFjNm3aZLR906ZNNG/e3ERRVTyKovDuu++yZs0atm7dir+/v6lDqpCee+454uLiiI2NNSxNmjShV69exMbGSsJVSlq0aFFoyJOjR4/i6+troogqrszMTNRq469IjUYjQ0Y8Qv7+/nh6ehp9L+bm5hIVFVVhvhelpcuERo0aRZ8+fWjSpAnNmjVjwYIFpKSkMGjQIFOHVmEMGTKEH374gd9//x17e3tDy6JWq8Xa2trE0VUc9vb2hfrJ2dra4uLiIv3nStHIkSNp3rw506dPp0ePHuzfv58FCxawYMECU4dW4XTp0oVp06ZRpUoVAgMDiYmJ4YsvvqBfv36mDu2xduPGDY4fP25YP3XqFLGxsTg7O1OlShVGjBjB9OnTqVGjBjVq1GD69OnY2NjQs2dPE0Zdikz78qT45ptvFF9fX8XCwkJp1KiRDGVQyoAil6VLl5o6tApPhox4NNauXasEBQUplpaWSu3atZUFCxaYOqQK6fr168rw4cOVKlWqKFZWVkrVqlWVCRMmKDk5OaYO7bG2bdu2Iv9PfuONNxRFuTVsxJQpUxRPT0/F0tJSad26tRIXF2faoEuRSlEUxUT5nhBCCCHEE0P6dAkhhBBClAFJuoQQQgghyoAkXUIIIYQQZUCSLiGEEEKIMiBJlxBCCCFEGZCkSwghhBCiDEjSJYQQQghRBiTpEkIAkJycjEqlIjY21tShGBw5coRnnnkGKysrGjRoUGQZRVF46623cHZ2Lnfxm1JkZCQqlYpr164VWyYiIgJHR8cyi+lOfn5+zJ4922TnF6KsSdIlRDkRFhaGSqVi5syZRtt/++03VCqViaIyrSlTpmBra0tSUhJbtmwpssyGDRuIiIhg3bp1pKamltq0Q2FhYbz44oulUldFIomSEA9Oki4hyhErKys++eQTrl69aupQSk1ubu4DH3vixAlatmyJr68vLi4uxZbx8vKiefPmeHp6YmZWvqaU1el0MkmyEAKQpEuIcqVt27Z4enoyY8aMYsuEh4cXetQ2e/Zs/Pz8DOsFrTTTp0/Hw8MDR0dHPvzwQ/Lz8xk7dizOzs5UrlyZJUuWFKr/yJEjNG/eHCsrKwIDA4mMjDTan5CQwPPPP4+dnR0eHh706dOHS5cuGfaHhITw7rvvMmrUKFxdXWnXrl2R16HX65k6dSqVK1fG0tKSBg0asGHDBsN+lUpFdHQ0U6dORaVSER4eXqiOsLAwhg4dSkpKCiqVynAPFEXh008/pWrVqlhbW1O/fn1++eUXw3E6nY7+/fvj7++PtbU1tWrVYs6cOUb3eNmyZfz++++oVCpUKhWRkZFFPrKLjY1FpVKRnJwM/P9HduvWraNOnTpYWlpy+vRpcnNzee+996hUqRK2trY0bdrU6N6ePn2aLl264OTkhK2tLYGBgfz5559F3juA5cuX06RJE+zt7fH09KRnz55cuHChULldu3ZRv359rKysaNq0KXFxccXWeeLECV544QU8PDyws7PjqaeeYvPmzYb9ISEhnD59mpEjRxruS4Hdu3fTunVrrK2t8fHxYdiwYdy8edOw/8KFC3Tp0gVra2v8/f1ZsWJFsXEIUVFJ0iVEOaLRaJg+fTpff/01Z8+efai6tm7dyvnz59m+fTtffPEF4eHhdO7cGScnJ/bt28egQYMYNGgQZ86cMTpu7NixjB49mpiYGJo3b07Xrl25fPkyAKmpqQQHB9OgQQMOHjzIhg0b+O+//+jRo4dRHcuWLcPMzIxdu3bx3XffFRnfnDlzmDVrFp9//jn//PMPoaGhdO3alWPHjhnOFRgYyOjRo0lNTWXMmDFF1lGQuKWmpnLgwAEAJk6cyNKlS/n222+Jj49n5MiR9O7dm6ioKOBWwle5cmV++uknEhISmDx5MuPHj+enn34CYMyYMfTo0YMOHTqQmppKamoqzZs3L/G9z8zMZMaMGSxatIj4+Hjc3d1588032bVrFytXruSff/7hlVdeoUOHDobrHTJkCDk5OWzfvp24uDg++eQT7Ozsij1Hbm4uH330EYcPH+a3337j1KlThIWFFSo3duxYPv/8cw4cOIC7uztdu3YlLy+vyDpv3LjB888/z+bNm4mJiSE0NJQuXbqQkpICwJo1a6hcuTJTp0413BeAuLg4QkND6datG//88w+rVq1i586dvPvuu4a6w8LCSE5OZuvWrfzyyy/MmzevyCRRiArNtPNtCyEKvPHGG8oLL7ygKIqiPPPMM0q/fv0URVGUX3/9Vbn9V3XKlClK/fr1jY798ssvFV9fX6O6fH19FZ1OZ9hWq1YtpVWrVob1/Px8xdbWVvnxxx8VRVGUU6dOKYAyc+ZMQ5m8vDylcuXKyieffKIoiqJMmjRJad++vdG5z5w5owBKUlKSoiiKEhwcrDRo0OCe1+vt7a1MmzbNaNtTTz2lDB482LBev359ZcqUKXet585rv3HjhmJlZaXs3r3bqFz//v2V119/vdh6Bg8erHTv3t2wfvvnUWDbtm0KoFy9etWwLSYmRgGUU6dOKYqiKEuXLlUAJTY21lDm+PHjikqlUs6dO2dU33PPPad88MEHiqIoSt26dZXw8PC7Xuvd7N+/XwGUjIwMo1hXrlxpKHP58mXF2tpaWbVqlSFWrVZ713rr1KmjfP3114Z1X19f5csvvzQq06dPH+Wtt94y2rZjxw5FrVYrWVlZSlJSkgIoe/fuNexPTExUgEJ1CVGRla/OD0IIAD755BOeffZZRo8e/cB1BAYGolb//8ZsDw8Po07mGo0GFxeXQq0NzZo1M/xsZmZGkyZNSExMBCA6Oppt27YV2QJz4sQJatasCUCTJk3uGtv169c5f/48LVq0MNreokULDh8+XMIrLFpCQgLZ2dmFHmvm5ubSsGFDw/r8+fNZtGgRp0+fJisri9zc3GLfkLxfFhYW1KtXz7B+6NAhFEUx3J8COTk5hr5qw4YN45133mHjxo20bduW7t27G9Vxp5iYGMLDw4mNjeXKlSuGfmMpKSnUqVPHUO72z9PZ2ZlatWoZPs873bx5kw8//JB169Zx/vx58vPzycrKMrR0FSc6Oprjx48bPTJUFAW9Xs+pU6c4evSo4d9Sgdq1a5v0zUkhTEGSLiHKodatWxMaGsr48eMLPTJSq9UoimK0rajHRebm5kbrKpWqyG0l6eRd0HdHr9fTpUsXPvnkk0JlvLy8DD/b2tres87b6y2gKMpDv6lZcD3r16+nUqVKRvssLS0B+Omnnxg5ciSzZs2iWbNm2Nvb89lnn7Fv37671l2QxN5+/4u699bW1kbXodfr0Wg0REdHo9FojMoWJLADBgwgNDSU9evXs3HjRmbMmMGsWbMYOnRoofpv3rxJ+/btad++PcuXL8fNzY2UlBRCQ0NL9OJCcfd47Nix/P3333z++edUr14da2trXn755XvWqdfrefvttxk2bFihfVWqVCEpKemu5xXiSSFJlxDl1MyZM2nQoEGh1hE3NzfS0tKMEpTSHJtq7969tG7dGoD8/Hyio6MNfXMaNWrE6tWr8fPze6i3BB0cHPD29mbnzp2Gc8GtzthPP/30Q8Vf0Hk9JSWF4ODgIsvs2LGD5s2bM3jwYMO2EydOGJWxsLBAp9MZbXNzcwNu9TdzcnICSnbvGzZsiE6n48KFC7Rq1arYcj4+Poa+dh988AELFy4sMuk6cuQIly5dYubMmfj4+ABw8ODBIuvcu3cvVapUAeDq1ascPXqU2rVrF1l2x44dhIWF8dJLLwG3+ngVvCBQoKj70qhRI+Lj46levXqR9QYEBJCfn8/BgwcNn29SUtJdxxAToiKSjvRClFN169alV69efP3110bbQ0JCuHjxIp9++iknTpzgm2++4a+//iq1837zzTf8+uuvHDlyhCFDhnD16lX69esH3OrsfeXKFV5//XX279/PyZMn2bhxI/369Sv0RXwvY8eO5ZNPPmHVqlUkJSXx/vvvExsby/Dhwx8qfnt7e8aMGcPIkSNZtmwZJ06cICYmhm+++YZly5YBUL16dQ4ePMjff//N0aNHmTRpkqETfgE/Pz/++ecfkpKSuHTpEnl5eVSvXh0fHx/Cw8M5evQo69evZ9asWfeMqWbNmvTq1Yu+ffuyZs0aTp06xYEDB/jkk08MbyiOGDGCv//+m1OnTnHo0CG2bt1KQEBAkfVVqVIFCwsLvv76a06ePMkff/zBRx99VGTZqVOnsmXLFv7991/CwsJwdXUtdvyx6tWrs2bNGmJjYzl8+DA9e/Ys1BLq5+fH9u3bOXfunOGt1XHjxrFnzx6GDBlCbGwsx44d448//jAkjLVq1aJDhw4MHDiQffv2ER0dzYABA7C2tr7nvROiIpGkS4hy7KOPPir0KDEgIIB58+bxzTffUL9+ffbv31/km30PaubMmXzyySfUr1+fHTt28Pvvv+Pq6gqAt7c3u3btQqfTERoaSlBQEMOHD0er1Rr1HyuJYcOGMXr0aEaPHk3dunXZsGEDf/zxBzVq1Hjoa/joo4+YPHkyM2bMICAggNDQUNauXYu/vz8AgwYNolu3brz66qs0bdqUy5cvG7V6AQwcOJBatWrRpEkT3Nzc2LVrF+bm5vz4448cOXKE+vXr88knn/Dxxx+XKKalS5fSt29fRo8eTa1atejatSv79u0ztFTpdDqGDBlCQEAAHTp0oFatWsybN6/Iutzc3IiIiODnn3+mTp06zJw5k88//7zIsjNnzmT48OE0btyY1NRU/vjjDywsLIos++WXX+Lk5ETz5s3p0qULoaGhNGrUyKjM1KlTSU5Oplq1aoaWv3r16hEVFcWxY8do1aoVDRs2ZNKkSUaPnJcuXYqPjw/BwcF069aNt956C3d39xLdOyEqCpVy5//oQgghhBCi1ElLlxBCCCFEGZCkSwghhBCiDEjSJYQQQghRBiTpEkIIIYQoA5J0CSGEEEKUAUm6hBBCCCHKgCRdQgghhBBlQJIuIYQQQogyIEmXEEIIIUQZkKRLCCGEEKIMSNIlhBBCCFEGJOkSQgghhCgD/w8GVONu0Q2nDQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHFCAYAAAA9occoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADfOklEQVR4nOzdd1QU19vA8e8usPTeOygqCBassSBg77EkGkuUWKKxxRp7TTSJmkRTjMaeaGzRmNg7aGyxoYhYUBGjoKBSpLM77x/+2NeVIiC6qPdzzhzdmTtzn9lld5+9984dmSRJEoIgCIIgCEKxybUdgCAIgiAIwutGJFCCIAiCIAglJBIoQRAEQRCEEhIJlCAIgiAIQgmJBEoQBEEQBKGERAIlCIIgCIJQQiKBEgRBEARBKCGRQAmCIAiCIJSQSKAEQRAEQRBK6LVIoL7//ntkMhl+fn4Fbo+JiUEmkzF//vznHmvVqlXIZDJiYmJKHMexY8eYMWMGSUlJ+bYFBQURFBRU4mO+CTw8PAgJCSnVvjKZjBkzZpRpPM/j4eGBTCZTL8bGxtSqVYsff/yRZyfmDw0N1Sj79PLee+8Vu868v7u8RVdXF0dHRz744AOuXbtW1qf41psxY0ahr9vTS1m8Z7XxN/y6f95s2bKFHj164OXlhaGhIR4eHvTq1avA90J2djbTpk3D09MThUKBu7s7EydOJCMjo8BjX7x4kffffx9bW1v09fXx8PBgyJAhJY4xJCSkWH9Dpf3se9bvv//OggULyuRYebTxt1mW/vnnHwYMGEDt2rXR19cv9nf3pUuX1OVPnz5dYJm//vqLwMBAzMzMMDY2xtfXl19++aVE8emWqLSWrFixAoDIyEhOnjxJ/fr1tRLHsWPHmDlzJiEhIVhYWGhsW7RokVZiEkqnUaNG6oT77t27fPvttwwfPpyUlBQmTZqUr/ycOXMIDg7WWGdtbV3ieleuXIm3tzeZmZkcPXqU2bNnc+jQIS5fvoylpWXpTkbIZ8CAAbRu3Vr9OC4uji5dujB8+HB69uypXm9mZvbCdR0/fhwXF5cXPk5JvO6fN19//TUODg5MnjyZChUqcPv2bebMmUOtWrU4ceIEvr6+6rI9evRg586dTJs2jbp163L8+HG++OILIiMj+fvvvzWOe+jQIdq1a0dAQACLFy/GxsaG2NhYzp07V+IYp06dyuDBg9WPz549y9ChQ/N9Ftja2pbiGcjv999/5+LFi4wcObJMjgfa+dssSwcOHGD//v34+/tjZmZGaGjoc/dRKpX069cPGxsb7t69W2CZr776ismTJzN48GAmTpyInp4ely9fJjs7u2QBSuXcqVOnJEBq166dBEgDBw7MV+bmzZsSIM2bN++5x1u5cqUESDdv3ixxLPPmzSv1vm8yd3d3qW/fvqXaF5CmT59epvE8j7u7u9SuXTuNdcnJyZK5ubnk5uamsf7QoUMSIG3atOmF6sz7uzt16pTG+pkzZ0qAtGLFihc6fmmkp6e/8jpfRFpaWqn3Le5nRHZ2tpSTk1PqeoTiuXfvXr51d+7ckfT09KT+/fur1x0/flwCpG+++Uaj7Jw5cyRA2rt3r3pdWlqa5OjoKLVr105SqVRlHnNZfRYUpl27dpK7u/tLOfbrSqlUqv9f3O/fefPmSc7OztLChQsL/Mw9ffq0JJfLpa+//vqF4yv3XXjLly8HnmSMDRs2ZP369aSnpxdYVqVSMXv2bNzc3DAwMKBOnTocOHDguXXs27ePd999FxcXFwwMDPDy8mLQoEEkJiaqy8yYMYNx48YB4OnpqW6+zcuIC2pSf/jwIUOGDMHZ2RmFQkGFChWYPHkyWVlZGuVkMhnDhg3jt99+w8fHByMjI2rUqMH27dufG3teF9Pvv//O+PHjcXR0xMTEhA4dOnDv3j1SU1P5+OOPsbGxwcbGho8++ojHjx9rHCMzM5OJEyeqm8idnZ0ZOnRovq7KnJwcPvvsMxwcHDAyMqJx48b8+++/BcYVHx/PoEGDcHFxQaFQ4OnpycyZM8nNzX3uOWmDmZkZlStX5t69e6+03jp16gDkq/f06dN07NgRKysrDAwM8Pf3Z+PGjfn2/+eff2jQoAEGBgY4OzszdepUli1blq+p28PDg/bt27Nlyxb8/f0xMDBg5syZQPFfq59//pkaNWpgYmKCqakp3t7eGq116enpjB07Fk9PTwwMDLCysqJOnTqsW7dO4zh///03DRo0wMjICFNTU1q0aMHx48c1yuR1wZ09e5b33nsPS0tLKlasWPInuAh5753ffvuNMWPG4OzsjL6+PtHR0SQkJDBkyBCqVq2KiYkJdnZ2NG3alCNHjuQ7zrPdJHndtYcOHeKTTz7BxsYGa2trunTpUugv4qfduHGDDz74ACcnJ/T19bG3t6dZs2aEh4eryzz7eVNUd9PTsaWkpKhfo7z3+siRI0lLSyvNU1hqdnZ2+dY5OTnh4uLC7du31euOHj0KQNu2bTXKtm/fHoDNmzer123atIm4uDjGjRuHTCZ7GWEXaP/+/TRr1gwzMzOMjIxo1KhRvu+dhIQEPv74Y1xdXdHX18fW1pZGjRqxf/9+4MnruWPHDm7duqXx2hXl4MGDBAUFYW1tjaGhIW5ubnTt2lXj+/HZ1//Z4QtPL0+37ly7do2ePXtiZ2eHvr4+Pj4+/PTTTy/+ZJWQXF6yFOXatWtMmzaNRYsWFdq6/OOPP6Kvr8/w4cNfOL5y3YWXkZHBunXrqFu3Ln5+fvTr148BAwawadMm+vbtm6/8jz/+iLu7OwsWLEClUjF37lzatGlDWFgYDRo0KLSe69ev06BBAwYMGIC5uTkxMTF8++23NG7cmIiICPT09BgwYAAPHz7khx9+YMuWLTg6OgJQtWrVAo+ZmZlJcHAw169fZ+bMmVSvXp0jR47w5ZdfEh4ezo4dOzTK79ixg1OnTjFr1ixMTEyYO3cunTt35sqVK1SoUOG5z9WkSZMIDg5m1apVxMTEMHbsWHr06IGuri41atRg3bp1nDt3jkmTJmFqasr3338PgCRJdOrUiQMHDjBx4kQCAgK4cOEC06dP5/jx4xw/fhx9fX0ABg4cyK+//srYsWNp0aIFFy9epEuXLqSmpmrEEh8fT7169ZDL5UybNo2KFSuqm91jYmJYuXLlc8/nWUqlMt/4pILI5fISv+kAcnNzuX37NpUrVy5wu0qlypdQ6Oq++Nvn5s2bABr1Hjp0iNatW1O/fn0WL16Mubk569evp3v37qSnp6vHXFy4cIEWLVpQuXJlVq9ejZGREYsXL2bNmjUF1nX27FmioqKYMmUKnp6eGBsbF/u1Wr9+PUOGDGH48OHMnz8fuVxOdHQ0ly5dUh9/9OjR/Pbbb3zxxRf4+/uTlpbGxYsXefDggbrM77//Tq9evWjZsiXr1q0jKyuLuXPnEhQUxIEDB2jcuLFGzF26dOGDDz5g8ODBL+1LfuLEiTRo0IDFixcjl8uxs7MjISEBgOnTp+Pg4MDjx4/5888/1XEWZ/zRgAEDaNeuHb///ju3b99m3Lhx9O7dm4MHDxa5X9u2bVEqlcydOxc3NzcSExM5duxYgWMv8zzb3QTw008/sWbNGvVnVHp6OoGBgfz3339MmjSJ6tWrExkZybRp04iIiGD//v1FfmmrVCpUKtVzz1smk6Gjo/Pccs+6ceMGt27dolOnTup1eV0qeZ9BefIeX7hwQb3u8OHDwJPPirwfd8bGxrRu3ZpvvvkGJyenEsf0PGvWrKFPnz68++67rF69Gj09PZYsWUKrVq3Ys2cPzZo1A+DDDz/k7NmzzJ49m8qVK5OUlMTZs2fV741Fixbx8ccfc/36df7888/n1hsTE6PuqlyxYgUWFhbcuXOH3bt3k52djZGRUYH7/fnnnxo/4FUqFYMHD+bGjRu4ubkBT8YPNWzYEDc3N7755hscHBzYs2cPI0aMIDExkenTpxcZ28v+rC6MJEkMGDCA9u3b07FjR1atWlVgucOHD+Pj48PmzZv5/PPPiY6OxtHRkd69ezNr1iwUCkWJKi23fv31VwmQFi9eLEmSJKWmpkomJiZSQECARrm85nknJycpIyNDvT4lJUWysrKSmjdvrl73vC48lUol5eTkSLdu3ZIA6a+//lJvK6oJMTAwUAoMDFQ/Xrx4sQRIGzdu1Cj39ddf52t6BiR7e3spJSVFvS4+Pl6Sy+XSl19+WfgTJP1/s3KHDh001o8cOVICpBEjRmis79Spk2RlZaV+vHv3bgmQ5s6dq1Fuw4YNEiD98ssvkiRJUlRUlARIo0aN0ii3du1aCdDowhs0aJBkYmIi3bp1S6Ps/PnzJUCKjIzUOPfidOG5u7tLwHOX4h6rbdu2Uk5Ojvq1HjhwoKSnpydt375do2ze81vQcu3atefWlSfv7+7EiRNSTk6OlJqaKu3evVtycHCQmjRpotFt5O3tLfn7++frSmrfvr3k6OiobtZ+//33JWNjYykhIUFdRqlUSlWrVs33d+ru7i7p6OhIV65c0ThmcV+rYcOGSRYWFkWeo5+fn9SpU6dCtyuVSsnJyUmqVq2aRtN8amqqZGdnJzVs2FC9bvr06RIgTZs2rcg6i6ugLry817ZJkybP3T83N1fKycmRmjVrJnXu3Flj27N/d3mv9ZAhQzTKzZ07VwKkuLi4QutJTEyUAGnBggVFxvPs582zNm7cKMlkMmnSpEnqdV9++aUkl8vzdWn88ccfEiDt3LmzyDrzXpPnLaXphsrJyZGCgoIkMzMzKTY2Vr1+69atEiD99ttvGuWXL18uAVLlypXV61q1aiUBkoWFhfTZZ59JBw8elBYvXixZW1tLXl5eL9QFLEn5u/DS0tIkKyurfJ+9SqVSqlGjhlSvXj31OhMTE2nkyJFFHr8kXXh5r1l4eHiR5Z73mThs2DBJV1dX47Vv1aqV5OLiIiUnJ+cra2BgID18+LDIOgMDA4v1d1LSYR/P68L74YcfJEtLSyk+Pl6SpMKHTejr60umpqaSpaWl9OOPP0oHDx6UJk+eLOno6Eg9e/YsUUzlOoEKDAyUDA0NpaSkJPW6jz76SAKkq1evqtflfTgOGzYs3zH69u0rKRQKKTc3V5KkghOoe/fuSYMGDZJcXFwkuVyu8SJ/9dVX6nIlSaC6desmGRsb5+uLv3fvngRI48ePV68DpA8++CDfMR0cHKTBgwcX/gRJ//+mXrJkicb6JUuWSIC0Z88ejfUTJ06UACk1NVWSJEn67LPPJEC6f/++RjmVSiUZGxtL3bt3lyRJkhYtWiQB0unTpzXK5eTkSLq6uhpvBmdnZ6lDhw7qBCVviYyMlABp0aJFGudenKTnwoUL0qlTp5673Llz57nHKiwZy0vUn5b3/H799df56srMzHxuXXny/u6eXXx8fKRHjx6py127dk0CpPnz5+d7/vJeg0uXLkmSJEl2dnb5PrwlSZJmzJhRYALl7++fr2xxX6u8HzMffPCBtHXrVo2kLU+/fv0kfX19afz48dKhQ4fyjbG6dOlSgcm6JEnSJ598IsnlcvWXXN6X9fnz55//5BZDUQnUwoULC9zn559/lvz9/SV9fX2N18zb21ujXGEJ1O7duzXK5f1YOXHiRKFxqlQqqWLFipKzs7P0zTffSGfPntVINvMUlUCFhoZK+vr60ocffqixvlGjRlL16tXzvdapqamSTCaTPvvss0LjkqQnY5SK8x68cOFCkccp6Jz79Okj6ejoSFu3btXYlpWVJXl5eUlOTk7S3r17pUePHkm7du2S7O3tJR0dHY3XokWLFhIgDRo0SOMYeUnY0qVLSxTXs55NoPbt2ycB0h9//JHvOR0/frwkk8mkx48fS5IkSU2bNpUsLCykzz//XDp+/LiUnZ2d7/glSaCio6MlhUIh1atXT1q1apV0/fr1AssV9fn65ZdfSoC0bNky9bqMjAxJV1dXGj58eL5z2rlzZ7ES7cuXLxfr76SkY4mL+v6NiYmRTExMNM6lsARKT09PAqR169ZprM9rdCjJD+Ny24UXHR3N4cOH6dq1K5IkqZuv33vvPVauXMmKFSv48ssvNfZxcHDIdxwHBweys7N5/Pgx5ubm+barVCpatmzJ3bt3mTp1KtWqVcPY2BiVSsU777xT6KWyz/PgwQMcHBzyNYnb2dmhq6ur0a0BBV/Rpa+vX+z6raysNB7nNUMWtj4zMxMTExMePHiArq5uvitJZDIZDg4O6jjz/n32OdbV1c0X+71799i2bRt6enoFxvr02LLiqlq1arGbhYujcePGfPfddyiVSq5du8bUqVMZNmwYvr6++bqRACpUqKAer/Qifv31V3x8fEhNTWXDhg0sWbKEHj16sGvXLuD/x0KNHTuWsWPHFniMvOfvwYMH2Nvb59te0DpA3e38tOK+Vh9++CG5ubksXbqUrl27olKpqFu3Ll988QUtWrQAnkw34uLiwoYNG/j6668xMDCgVatWzJs3j0qVKqn/hgqKw8nJCZVKxaNHjzS6HwoqW9YKquPbb79lzJgxDB48mM8//xwbGxt0dHSYOnUqUVFRxTrus++LvG6not7TMpmMAwcOMGvWLObOncuYMWOwsrKiV69ezJ49G1NT0yLrjIyMpFOnTgQEBKjHj+a5d+8e0dHRpX5fOjg4FDh2qaBzKC7pf90ua9asYfXq1bz77rsa2xUKBbt27eLDDz+kZcuWABgbGzNnzhw+//xznJ2d1WXznu9WrVppHKNVq1bq8XRlKe+9WtR0Jg8fPsTY2JgNGzbwxRdfsGzZMqZOnYqJiQmdO3dm7ty5BX5vPU/FihXZv38/c+fOZejQoaSlpVGhQgVGjBjBp59++tz916xZw6RJk5g2bRr9+/dXr3/w4AG5ubn88MMP/PDDDwXu+7y/Ey8vrzL9rC6OoUOH4ufnR9euXdW5Qt5YsMePH5OcnKz+/re2tiY+Pj7f30mbNm1YsGABZ8+excvLq1j1ltsEasWKFUiSxB9//MEff/yRb/vq1av54osvNPra4+Pj85WLj49HoVBgYmJSYD0XL17k/PnzrFq1SmNcVXR09AvFb21tzcmTJ5EkSeMD5f79++Tm5mJjY/NCxy8r1tbW5ObmkpCQoJFESZJEfHw8devWVZeDJ8/n0x9aubm5+ZJBGxsbqlevzuzZswusszRjESpWrMitW7eeW2769OnFmvfE3NxcnRDVr1+f+vXrU6NGDYYMGUJ4eHiZvrmf5uPjo643ODgYpVLJsmXL+OOPP3jvvffUfxcTJ06kS5cuBR6jSpUqwJPXpKBB7wW9D6DgL7aSvFYfffQRH330EWlpaRw+fJjp06fTvn17rl69iru7O8bGxsycOZOZM2dy7949du3axYQJE+jQoQOXL19W/w3FxcXlq+fu3bvI5fJ8Uzm8isHABdWxZs0agoKC+PnnnzXWPzve72Vwd3dXJz9Xr15l48aNzJgxg+zsbBYvXlzofv/99x+tW7fGzc2NzZs350uUbGxsMDQ0VE8L86znfSbNmjVLfeHB8+Ivzlw9ecnTypUrWb58Ob179y6wnJeXF8ePH+fOnTs8fPiQihUrkpyczKeffkqTJk3U5apXr8769esLra+s39N5z9cPP/zAO++8U2CZvB8zNjY2LFiwgAULFhAbG8vff//NhAkTuH//Prt37y5V/QEBAQQEBKBUKjl9+jQ//PADI0eOxN7eng8++KDQ/fbt20e/fv0ICQnJ93paWlqio6PDhx9+yNChQwvc39PTs8i4mjVrRlhY2HPj79u3b6HjlErq4sWL3Lp1q8CpYIKDgzE3N1cnVtWrVy/wMzIv6SvJ30m5TKCUSiWrV6+mYsWKLFu2LN/27du3880337Br1y711RjwZHK2efPmYWBgADz5sNu2bRsBAQGFDmrM+/B8dpDikiVL8pUtzi/IPM2aNWPjxo1s3bqVzp07q9f/+uuv6u3lQbNmzZg7dy5r1qxh1KhR6vWbN28mLS1NHWfeoNm1a9dSu3ZtdbmNGzfmG1zdvn17du7cScWKFctsbqNt27blu3qxIKUdKFqpUiU+++wzZs6cyYYNG+jRo0epjlNSc+fOZfPmzUybNo0uXbpQpUoVKlWqxPnz55kzZ06R+wYGBrJz504SExPVH+YqlYpNmzYVu/7SvFbGxsa0adOG7OxsOnXqRGRkJO7u7hpl7O3tCQkJ4fz58yxYsID09HSqVKmCs7Mzv//+O2PHjlW/99LS0ti8ebP6yrzyQCaT5ftMuHDhAsePH8fV1fWVxVG5cmWmTJnC5s2bi2xBSU5Opk2bNshkMnbu3FngFUjt27dnzpw5WFtbP/dLsCAff/yxxudtYZ593goiSRIDBw5k5cqVLFmyhI8++ui5+zg7O6t/vE2ZMgVjY2ON1pPOnTszefJkdu3apfGZu2vXLiRJKjTJKa1GjRphYWHBpUuXGDZsWLH3c3NzY9iwYRw4cEB9lSGUrMfhaTo6OtSvXx9vb2/Wrl3L2bNnC02gwsPD6dq1K02bNi1w0kgjIyOCg4M5d+4c1atXL9mA6v9ZsmRJsX5olGUjwvr168nMzNRYt3v3br7++msWL16sMa9Y165d2bt3L7t27dKYE27nzp3I5XJ1o0FxlMsEateuXdy9e5evv/66wKtd/Pz8+PHHH1m+fLnGG1pHR4cWLVowevRoVCoVX3/9NSkpKUX+avL29qZixYpMmDABSZKwsrJi27Zt7Nu3L1/ZatWqAbBw4UL69u2Lnp4eVapUKbBZvU+fPvz000/07duXmJgYqlWrxj///MOcOXNo27YtzZs3L8UzU/ZatGhBq1atGD9+PCkpKTRq1Eh9FZ6/vz8ffvgh8KTlpHfv3ixYsAA9PT2aN2/OxYsXmT9/fr4P61mzZrFv3z4aNmzIiBEjqFKlCpmZmcTExLBz504WL15c4snd8p77l2ns2LEsXryYmTNn0q1bt1JdSVRSlpaWTJw4kc8++4zff/+d3r17s2TJEtq0aUOrVq0ICQnB2dmZhw8fEhUVxdmzZ9UJ0uTJk9m2bRvNmjVj8uTJGBoasnjxYvXVasX5JVXc12rgwIEYGhrSqFEjHB0diY+P58svv8Tc3Fz9gVO/fn3at29P9erVsbS0JCoqit9++00jMZo7dy69evWiffv2DBo0iKysLObNm0dSUhJfffVVsZ6zmJgYPD09y/QX7LPat2/P559/zvTp0wkMDOTKlSvMmjULT0/PlzoVx4ULFxg2bBjvv/8+lSpVQqFQcPDgQS5cuMCECRMK3a9nz55cunSJX375hdu3b2tMBeDi4oKLiwsjR45k8+bNNGnShFGjRlG9enVUKhWxsbHs3buXMWPGFDlJsZOTU5ldyTZixAiWL19Ov379qFatGidOnFBv09fXx9/fX/04r5vLzc2Ne/fuqX+Y/vbbbxqt4d7e3gwdOpRFixZhampKmzZtuHr1KlOmTMHf359u3bqpy4aGhhIcHFzsFuuCmJiY8MMPP9C3b18ePnzIe++9p76C8/z58yQkJPDzzz+TnJxMcHAwPXv2xNvbG1NTU06dOsXu3bs1WpmrVavGli1b+Pnnn6lduzZyubzQYQOLFy/m4MGDtGvXDjc3NzIzM9Uti4V9t6SkpNC2bVsMDQ0ZO3Zsvhm6q1atipmZGQsXLqRx48YEBATwySef4OHhQWpqKtHR0Wzbtu25V5HmtZCXhYSEBHVrVkREBPAkP7C1tcXW1pbAwECAApPjvFbQ2rVrazyPH330EUuWLGHIkCEkJiZStWpV9u/fz08//cSQIUPy/RgsUrFHS71CnTp1khQKRb6BzU/74IMPJF1dXSk+Pl49QPTrr7+WZs6cKbm4uEgKhULy9/fPN4i6oEHkly5dklq0aKEemf/+++9LsbGxBQ7AmzhxouTk5KQebH7o0CFJkgoe1PngwQNp8ODBkqOjo6Srqyu5u7tLEydOzDf4GJCGDh2a7xyLM0FlYZO7FTaALm9w7tODgDMyMqTx48dL7u7ukp6enuTo6Ch98sknGoObJenJgM4xY8ZIdnZ2koGBgfTOO+9Ix48fLzDOhIQEacSIEZKnp6ekp6cnWVlZSbVr15YmT56sHliZd+7lYSLNPD/99JMESKtXr5Yk6eVPpClJT55/Nzc3qVKlSuqLHc6fPy9169ZNsrOzk/T09CQHBwepadOm+Qa6HzlyRKpfv76kr68vOTg4SOPGjVNf6fn0xRdFnXNxXqvVq1dLwcHBkr29vaRQKCQnJyepW7duGgOGJ0yYINWpU0eytLSU9PX1pQoVKkijRo2SEhMTNerbunWrVL9+fcnAwEAyNjaWmjVrJh09elSjTEF/p3kiIiIkQJowYUJRT7mGogaRF/TaZmVlSWPHjpWcnZ0lAwMDqVatWtLWrVulvn375hvo++zfcGGvdV59eZ8ZBbl3754UEhIieXt7S8bGxpKJiYlUvXp16bvvvlP/bUhS/s+boq5SfTq2x48fS1OmTJGqVKkiKRQKydzcXKpWrZo0atQo9dVLr0JR8T77/M6cOVOqWLGipK+vL1lYWEitW7eWDh8+XOBxc3Nzpa+++kry8vIq8rNs27ZthV44UpjC/l7CwsKkdu3aSVZWVpKenp7k7OwstWvXTl0uMzNTGjx4sFS9enXJzMxMMjQ0lKpUqSJNnz5d48rAhw8fSu+9955kYWEhyWQyqaiv5+PHj0udO3eW3N3dJX19fcna2loKDAyU/v77b41yT7/+ee+Bwpan/y5v3rwp9evXT3J2dpb09PQkW1tbqWHDhtIXX3xR7OerLBR1FXRRV6FKUtGfuQ8ePJAGDRok2dvbS3p6elLlypWlefPmFXjBRlFkklSM0V6CILw2WrZsSUxMDFevXtV2KC/FokWL+Oyzz7h+/XqhA+YFoSifffYZ69at49q1a+ohH4JQUuWyC08QhOIZPXo0/v7+uLq68vDhQ9auXcu+ffvyXYH1Jjl06BAjRowQyZNQaocOHWLq1KkieRJeiGiBEoQXUJzZmctixvLCfPrpp/z999/Ex8cjk8moWrUqI0eOLPSKJkEQBKFsiARKEF7AjBkznntp982bN/Hw8Hg1AQmCIAivhEigBOEF3L1797k3iC3t5cCCIAhC+SUSKEEQBEEQhBJ6OdMtC4IgCIIgvMHeuqvwVCoVd+/exdTU9JXcJkIQBEEQhBcnSRKpqak4OTm9tNttlcRbl0DdvXv3ld6KQRAEQRCEsnP79u0S383iZXjrEqi8267cvn27wPtFCYIgCIJQ/qSkpODq6lrg7dO04a1LoPK67czMzEQCJQiCIAivmfIy/Eb7nYiCIAiCIAivGZFACYIgCIIglJBIoARBEARBEErorRsDJQiCoG1KpZKcnBxthyEI5Y5CoSgXUxQUh0igBEEQXhFJkoiPjycpKUnboQhCuSSXy/H09Hwtbn8lEihBEIRXJC95srOzw8jIqNxcTSQI5UHeRNdxcXG4ubmV+/eHSKAEQRBeAaVSqU6erK2ttR2OIJRLtra23L17l9zcXPT09LQdTpFej45GQRCE11zemCcjIyMtRyII5Vde151SqdRyJM8nEihBEIRXqLx3SwiCNr1O7w+RQAmCIAiCIJSQSKAEQRCE105ISAidOnUqskxoaCgymUxc9Si8FCKBEgRBEIpUVLLi4eGBTCbTWFxcXDS2L1iwoMxjWrhwIatWrVI/DgoKYuTIkWVej7aFhISon1ddXV3c3Nz45JNPePTokUa5570OQtkTV+GVIWVqNsqkLBSu5eNO0YIgCK/CrFmzGDhwoPqxjo7OS6/T3Nz8pdfxrJycHK1cGda6dWtWrlxJbm4uly5dol+/fiQlJbFu3TqNctp4Hd5mogWqjGTdSuHu/FOELd9O2sMkbYcjCILwypiamuLg4KBebG1tS3yMMWPG0KFDB/XjBQsWIJPJ2LFjh3pdlSpVWLJkCaDZKhYSEkJYWBgLFy5Ut77ExMSo9ztz5gx16tTByMiIhg0bcuXKlWLFNGPGDGrWrMmKFSuoUKEC+vr6SJLE7t27ady4MRYWFlhbW9O+fXuuX7+u3q9r164MHz5c/XjkyJHIZDIiIyMByM3NxdTUlD179hQrDn19fRwcHHBxcaFly5Z0796dvXv35itXFq+DUHwigSojeo7G7FOd4ShX+HvJem2HIwjCa0CSJNKzc7WySJKk7dPXEBQUxJEjR1CpVACEhYVhY2NDWFgY8GQS0qtXrxIYGJhv34ULF9KgQQMGDhxIXFwccXFxuLq6qrdPnjyZb775htOnT6Orq0u/fv2KHVd0dDQbN25k8+bNhIeHA5CWlsbo0aM5deoUBw4cQC6X07lzZ3XsQUFBhIaGqo/x7LmcOnWKzMxMGjVqVKLnCODGjRvs3r273M+R9DYQXXhlZPfOdZjfugwV7LiaeY9rJ8Kp9E5NbYclCEI5lpGjpOq04rVClLVLs1phpCibr4Dx48czZcoU9eM5c+YwYsSIEh2jSZMmpKamcu7cOWrVqsWRI0cYO3YsW7ZsAeDQoUPY29vj7e2db19zc3MUCgVGRkY4ODjk2z579mx14jVhwgTatWtHZmYmBgYGz40rOzub3377TaM1p2vXrhplli9fjp2dHZcuXcLPz4+goCA+/fRTEhMT0dHRITIykunTpxMaGsqQIUMIDQ2ldu3amJiYFOu52b59OyYmJiiVSjIzMwH49ttv85Uri9dBKD6RQJWR6nUDCf09DrtsGfcVj9mzax8V6lYTfdCCILzxxo0bR0hIiPqxjY1NiY9hbm5OzZo1CQ0NRU9PD7lczqBBg5g+fTqpqamEhoYW2PpUHNWrV1f/39HREYD79+/j5ub23H3d3d3zdYVdv36dqVOncuLECRITE9UtT7Gxsfj5+eHn54e1tTVhYWHo6elRo0YNOnbsyPfffw9Q4nMJDg7m559/Jj09nWXLlnH16lWNLsI8ZfE6CMUnEqgy4uLsSkYFXXSTnNCxvUKiLI0Dq7fQst/72g5NEIRyylBPh0uzWmmt7rJiY2ODl5fXCx8nr+tLoVAQGBiIpaUlvr6+HD16lNDQ0FJfZfd0d1feRI15Sc/zGBsb51vXoUMHXF1dWbp0KU5OTqhUKvz8/MjOzlbX0aRJE/W5BAUF4efnh1KpJCIigmPHjpXoXIyNjdXP7/fff09wcDAzZ87k888/1yhXVq+DUDxiDFQZ6jtrKKTn4JJmAcCZW1dIvp+o3aAEQSi3ZDIZRgpdrSzlccbnvHFQBw8eJCgoCIDAwEDWr19f6PinPAqF4pXc/uPBgwdERUUxZcoUmjVrho+PT74pBeD/k8HQ0FCCgoKQyWQEBAQwf/58MjIySjX+Kc/06dOZP38+d+/efZFTEV6QSKDKkEKhwL6JgozUSpgpDciS5fLXUjGgXBCE119ycjLh4eEaS2xsbJnWkTcOatu2beoEKigoiDVr1mBra0vVqlUL3dfDw4OTJ08SExOj0a1W1iwtLbG2tuaXX34hOjqagwcPMnr06HzlgoKCiIyMJCIigoCAAPW6tWvXUqtWLczMzEodQ1BQEL6+vsyZM6fUxxBenEigyti7/bqhmxODVZINdipzqqdXICchXdthCYIgvJDQ0FD8/f01lmnTppVpHebm5vj7+2NlZaVOlgICAlCpVM8dMzR27Fh0dHSoWrUqtra2ZZ7c5ZHL5axfv54zZ87g5+fHqFGjmDdvXr5yfn5+2NjYUKNGDXWyFBgYiFKpLPVYrqeNHj2apUuXcvv27Rc+llA6Mqm8Xcv6kqWkpGBubk5ycvIL/QIoysWT5whblkA9MwWOejroV7LApp9fuWwyFwTh1cjMzOTmzZt4enoW6+ovQXgbFfU+eRXf3yUhWqBeAr/6/ugbXOVGYhwqVS5Z15J4eEr8ShAEQRCEN4VIoF6SDz7vjf2VL8m4tpt/daNZsmM1Cf/FazssQRAErVi7di0mJiYFLr6+vlqJydfXt9CY1q5d+9Lrj42NLbR+ExOTl9YNKZQNMY3BS2JiYUH24A/JnreGu742ZMuUbF21noFTRmo7NEEQhFeuY8eO1K9fv8Bt2ppVe+fOneTk5BS4zd7e/qXX7+TkpJ7dvLDtQvklEqiXqHmfMfy9cSsut9N44CHjTm4SZ/YdoXaLAG2HJgiC8EqZmppialq+brTu7u6u1fp1dXXFvE2vMdGF9xLJ5XLsBs7iP4MAPLIsADj4zxGysrK0G5ggCIIgCC9EJFAvWYNOTdEnluwkF4xUCtJk2WxfJuaGEgRBEITXmUigXjKZTEbL4U3IlsxxSbUEIPJ+DHdviqvyBEEQBOF1JRKoV8DdryJm5rd5lO6JY64ZOsi5vvuctsMSBEEQBKGURAL1inSe0A25SonJI0fey3oHz9tW5NxL03ZYgiAIgiCUgkigXhETK2PcqueQpLTncSagkkj66zpv2UTwgiAIZSIkJIROnToVWSY0NBSZTEZSUtIriUl4u4gE6hVqPbgjJllnkJ/8EaUymxsxN9n+yzpthyUIglCkopIVDw8PZDKZxuLi4qKxfcGCBWUe08KFC1m1apX6cVBQECNHjizzesqD+Ph4hg8fToUKFdDX18fV1ZUOHTpw4MABsrOzsbGx4Ysvvihw3y+//BIbGxuys7OLrGPVqlUar6G9vT0dOnQgMjJSo1xISEi+11smkxEdHV1m5/u6EAnUK6SjJ6fl5JbIU69yK24/uxTnOHP3KjcvX9N2aIIgCKU2a9Ys4uLi1Mu5cy9/jKe5uTkWFhYvvZ6nFTbp5ssUExND7dq1OXjwIHPnziUiIoLdu3cTHBzM0KFDUSgU9O7dm1WrVhXYo7Fy5Uo+/PBDFArFc+syMzMjLi6Ou3fvsmPHDtLS0mjXrl2+5Kt169Yar3dcXByenp5lds6vC5FAvWKOXjW407E+Vud24J5tCTL4a+OfqFQqbYcmCIJQKqampjg4OKgXW1vbEh9jzJgxdOjQQf14wYIFyGQyduzYoV5XpUoVlixZAmi2ioWEhBAWFsbChQvVLSIxMTHq/c6cOUOdOnUwMjKiYcOGXLlypVgxzZgxg5o1a7JixQp1648kSezevZvGjRtjYWGBtbU17du35/r16+r9unbtyvDhw9WPR44ciUwmU7fm5ObmYmpqyp49e54bw5AhQ5DJZPz777+89957VK5cGV9fX0aPHs2JEycA6N+/P9evX+fw4cMa+x45coRr167Rv3//Yp2vTCbDwcEBR0dH6tSpw6hRo7h161a+50tfX1/j9XZwcEBHR6dYdbxJRAKlBcHjvyPCpxuKJAsUki5JqnQO/blL22EJgvCqSRJkp2lnKWfjL4OCgjhy5Ij6x2RYWBg2NjaEhYUBT7qxrl69SmBgYL59Fy5cSIMGDRg4cKC6RcTV1VW9ffLkyXzzzTecPn0aXV1d+vXrV+y4oqOj2bhxI5s3b1bfdiUtLY3Ro0dz6tQpDhw4gFwup3PnzurYg4KCCA0NVR/j2XM5deoUmZmZNGrUqMi6Hz58yO7duxk6dCjGxsb5tue1wFWrVo26deuycuVKje0rVqygXr16+Pn5Fft88yQlJfH7778D2rvVTnknbuWiBYbmluBTmaQEGyqlPSbSJIETF85Qp3ljzM3NtR2eIAivSk46zNHS/c4m3QVF/i/l0hg/fjxTpkxRP54zZw4jRowo0TGaNGlCamoq586do1atWhw5coSxY8eyZcsWAA4dOoS9vT3e3t759jU3N0ehUGBkZISDg0O+7bNnz1YnXhMmTKBdu3ZkZmZiYGDw3Liys7P57bffNFrVunbtqlFm+fLl2NnZcenSJfz8/AgKCuLTTz8lMTERHR0dIiMjmT59OqGhoQwZMoTQ0FBq166NiYlJkXVHR0cjSVKB5/ysfv36MXbsWH788UdMTEx4/PgxmzZt4ttvv33uvnmSk5MxMTFBkiTS09OBJ/cwfLb+7du3a8Tepk0bNm3aVOx63hSiBUpL2o/ugEyVRVKqMzZKU3JkKrYs/13bYQmCIJTYuHHjCA8PVy99+vQp8THMzc2pWbMmoaGhREREIJfLGTRoEOfPnyc1NZXQ0NACW5+Ko3r16ur/Ozo6AnD//v1i7evu7p6vS/L69ev07NmTChUqYGZmph7/ExsbC4Cfnx/W1taEhYVx5MgRatSoQceOHdUtUMU9l7wxTTKZ7Llle/TogUqlYsOGDQBs2LABSZL44IMPinWe8KQrNjw8nDNnzrB48WIqVqzI4sWL85ULDg7WeL2///77YtfxJhEtUFpiamlIxdq6RJ/Tx+mREQ+sU7mVco+bl6/h6V1J2+EJgvAq6Bk9aQnSVt1lxMbGpkxuipvX9aVQKAgMDMTS0hJfX1+OHj1KaGhoqa+ye7oLKi8ZKe6404K6zjp06ICrqytLly7FyckJlUqFn5+ferC1TCajSZMm6nMJCgrCz88PpVJJREQEx44dK9a5VKpUCZlMRlRU1HOnbDA3N+e9995j5cqV9O/fn5UrV/Lee+9hZmZWrPOEJ/dvzXsdvb29iY+Pp3v37vnGVhkbG4ubICNaoLSq2UdN0ZFSiM+piF+WI02z/TC/8vxfGoIgvCFksifdaNpYitGq8arljYM6ePAgQUFBAAQGBrJ+/fpCxz/lUSgUKJXKlx7jgwcPiIqKYsqUKTRr1gwfHx8ePXqUr1xeMhgaGkpQUBAymYyAgADmz59PRkbGc8c/AVhZWdGqVSt++ukn0tLyT7z87PxW/fv35+jRo2zfvp2jR48We/B4YUaNGsX58+f5888/X+g4byqRQGmRrkKH+l29kGS6SCmeVFDZk3Yijuy7j7UdmiAIgobk5GSNbpvw8HB1l1VZyRsHtW3bNnUCFRQUxJo1a7C1taVq1aqF7uvh4cHJkyeJiYkhMTHxpV3ZbGlpibW1Nb/88gvR0dEcPHiQ0aNH5ysXFBREZGQkERERBAQEqNetXbuWWrVqFbtlaNGiRSiVSurVq8fmzZu5du0aUVFRfP/99zRo0ECjbGBgIF5eXvTp0wcvLy+aNGnyQudqZmbGgAEDmD59upj0uQAigdKymi18MdR/xMOsTJIfXEEmwd0/LoqZcwVBKFdCQ0Px9/fXWKZNm1amdZibm+Pv74+VlZU6WQoICEClUj13zNDYsWPR0dGhatWq2Nralnlyl0cul7N+/XrOnDmDn58fo0aNYt68efnK+fn5YWNjQ40aNdTJUmBgIEqlskRjuTw9PTl79izBwcGMGTMGPz8/WrRowYEDB/j555/zle/Xrx+PHj0q0ZWGRfn000+Jiop6KweJP49MesvSypSUFMzNzUlOTi5R3/DL9PC/R5zv1QbHZBkPWo/hiP4VLI1N+HjciGINHhQEofzLzMzk5s2beHp6FuvqL0F4GxX1Pilv39+iBaocsHKxxGrsYKTMJDLvniEHJXHpjwj/97S2QxMEQRAEoQAigSonanQIIbaaPfKbt/DOsgNgz+69ZGZmajkyQRCEF7d27VpMTEwKXHx9fbUSk6+vb6ExrV279qXXHxsbW2j9JiYmZdoNqe1zfROJaQzKEZNuXxJ+IAObhGjMnA1JkWewY8OfdO3bQ9uhCYIgvJCOHTtSv379Ardpa6brnTt3Fnp/O3t7+5dev5OTk3p288K2lxVtn+ubSOsJ1KJFi5g3bx5xcXH4+vqyYMEC9RULRTl69CiBgYH4+fkV+Qf4OqnboS4RB3eTqOdFlZQoTllkcPHGFd757w7OLs7aDk8QBKHUTE1NMTU11XYYGtzd3bVav66u7iubT0nb5/om0moX3oYNGxg5ciSTJ0/m3LlzBAQE0KZNm+c2WyYnJ9OnTx+aNWv2iiJ9NRQGujR8rwoA9x7b4JFrgySDLWvWi5sNC4IgCEI5otUE6ttvv6V///4MGDAAHx8fFixYgKura4GXZj5t0KBB9OzZM98cGG+CasFeGBo9JkPXFrt72SgkXazSjclOydB2aIIgCIIg/I/WEqjs7GzOnDlDy5YtNda3bNmSY8eOFbrfypUruX79OtOnTy9WPVlZWaSkpGgs5ZlMLqPlx09mqL0pq0qb1CoEZvuSERqn5cgEQRAEQcijtQQqMTERpVKZb/Cavb098fHxBe5z7do1JkyYwNq1a9HVLd7wrS+//BJzc3P14urq+sKxv2wu3tbYuSpBruBu4pPp+x+fiCP7v1QtRyYIgiAIApSDaQyenShSkqQCJ49UKpX07NmTmTNnUrly5WIff+LEiSQnJ6uX27dvv3DMr0LLjxuhr7qH+bW/eZB4ilRZOquWreB69HVthyYIgiAIbz2tJVA2Njbo6Ojka226f/9+gZdUpqamcvr0aYYNG4auri66urrMmjWL8+fPo6ury8GDBwusR19fHzMzM43ldWBua0SXqXUxfhyFzplNRMhjuMsj/trwB7m5udoOTxAEQatCQkLo1KlTkWVCQ0ORyWTi1ljCS6G1BEqhUFC7dm327dunsX7fvn00bNgwX3kzMzMiIiI0bmQ5ePBgqlSpQnh4eKHzi7zOrFy9SP6gBToZSdjG3sBQUpCSk0HY/oKTRUEQhJehqGTFw8MDmUymsbi4uGhsX7BgQZnHtHDhQlatWqV+HBQUxMiRI8u8nvLg9u3b9O/fHycnJxQKBe7u7nz66ac8ePAgX9nIyEi6deuGra0t+vr6VKpUialTp5Kenq5R7unXTUdHBycnJ/r378+jR4+KFVNecpq3WFtb07RpU44ePapRbsaMGfn+PmQyGfv37y/9E1JOaLULb/To0SxbtowVK1YQFRXFqFGjiI2NZfDgwcCT7rc+ffo8CVQux8/PT2Oxs7PDwMAAPz8/jI2NtXkqL02DT+cQVaU1N2U1qZbxpGXu6InjPHz4UMuRCYIgPDFr1izi4uLUy7lz5156nebm5lhYWLz0ep5W2ESUL9ONGzeoU6cOV69eZd26dURHR7N48WIOHDhAgwYNNL4LTpw4Qf369cnOzmbHjh1cvXqVOXPmsHr1alq0aEF2drbGsfNet9jYWNauXcvhw4cZMWJEieK7cuUKcXFxhIaGYmtrS7t27bh//75GGV9fX42/j7i4OJo0aVL6J6Wc0GoC1b17dxYsWMCsWbOoWbMmhw8fZufOneoJv/Je2LeZnqERyZVakmlkjzL2P5yUlqiQ2LpuE2/ZfaAFQSinTE1NcXBwUC+2trYlPsaYMWPo0KGD+vGCBQuQyWTs2LFDva5KlSosWbIE0GwVCwkJISwsjIULF6pbOGJiYtT7nTlzhjp16mBkZETDhg25cuVKsWKaMWMGNWvWZMWKFVSoUAF9fX0kSWL37t00btwYCwsLrK2tad++Pdev///41K5duzJ8+HD145EjRyKTyYiMjAQgNzcXU1NT9uzZ89wYhg4dikKhYO/evQQGBuLm5kabNm3Yv38/d+7cYfLkycCT8cP9+/fHx8eHLVu2UK9ePdzd3Xn//ffZtm0bx48f57vvvtM4dt7r5uzsTHBwMH369OHs2bPFem7y2NnZ4eDgQLVq1ZgyZQrJycmcPHlSo4yurq7G34eDgwMKhaJE9ZRHWh9EPmTIEGJiYsjKyuLMmTMaWemqVasIDQ0tdN8ZM2a8MbOQF0auI6dZv3oA3DZriEeSHLkkIzYhjkuRl7QcnSAIL0KSJNJz0rWylLcfYEFBQRw5ckQ9aXBYWBg2NjaEhYUBEB8fz9WrVwkMDMy378KFC2nQoAEDBw5Ut3A8fcX15MmT+eabbzh9+jS6urr069ev2HFFR0ezceNGNm/erP6+SUtLY/To0Zw6dYoDBw4gl8vp3LmzOvagoCCN765nz+XUqVNkZmbSqFGjIut++PAhe/bsYciQIRgaGmpsc3BwoFevXmzYsAFJkggPD+fSpUuMHj0auVzzq71GjRo0b96cdevWFVrXnTt32L59e6mHw6Snp7Ny5UpAe7fmedW0fisX4fncqlpj7y7n3i1Iup+Nn5kLF/Ruc3jnfnz9tHMTTkEQXlxGbgb1f9fO+M2TPU9ipGdUJscaP348U6ZMUT+eM2dOibuCmjRpQmpqKufOnaNWrVocOXKEsWPHsmXLFgAOHTqEvb093t7e+fY1NzdHoVBgZGSEg4NDvu2zZ89WJ14TJkygXbt2ZGZmYmBg8Ny4srOz+e233zRa1bp27apRZvny5djZ2XHp0iX8/PwICgri008/JTExER0dHSIjI5k+fTqhoaEMGTKE0NBQateujYmJSZF1X7t2DUmS8PHxKXC7j48Pjx49IiEhgatXr6rXFVb2n3/+0ViX97oplUoyMzOpX78+33777XOfk6fljXdLT3+SlNeuXTvfXUIiIiI0zrVq1ar8+++/JaqnPNJ6C5RQPM0+qguoSLD0x/jubernVKJVmj/KtFffJy8IgvC0cePGaVzgkzd2tSTMzc2pWbMmoaGhREREIJfLGTRoEOfPnyc1NZXQ0NACW5+Ko3r16ur/Ozo6AuQbp1MYd3f3fF2S169fp2fPnlSoUAEzMzM8PT0B1ENO/Pz8sLa2JiwsjCNHjlCjRg06duyoboF6kXN5Wl4rYkFT/xRU9tlyea/bhQsXOHDgAADt2rVDqVQWO4YjR45w9uxZ1q1bh7u7O6tWrcrXApV3sVfesnnz5mIfvzwTLVCvCUsHY3wa2BJ1/AHxORWplmmIQk9G8u6bWHUt/rxYgiCUH4a6hpzsefL5BV9S3WXFxsamTG6Km9f1pVAoCAwMxNLSEl9fX44ePUpoaGipr7J7+gs9L4ko7v1FC7pAqUOHDri6urJ06VKcnJxQqVT4+fmpB2nLZDKaNGmiPpegoCD8/PxQKpVERERw7NixYp2Ll5cXMpmMS5cuFXgV5OXLl7G0tMTGxkY9P+KlS5eoWbNmgWUrVaqkse7p161SpUosWLCABg0acOjQIZo3b/7c+AA8PT2xsLCgcuXKZGZm0rlzZy5evIi+vr66jEKheGU3TX6VRAvUa6The1XR0ckhzciBzKjdAKSeiuP4zlBxs2FBeA3JZDKM9Iy0shSn1eJVyxsHdfDgQYKCggAIDAxk/fr1hY5/yqNQKErUclJaDx48ICoqiilTptCsWTN1N9qz8pLB0NBQgoKCkMlkBAQEMH/+fDIyMp47/gnA2tqaFi1asGjRIjIyNO+HGh8fz9q1a+nevTsymYyaNWvi7e3Nd999l+/74Pz58+zfv58ePXoUWZ+Ojg5AvrqK68MPP0SlUrFo0aJS7f+6EQnUa8TAWI+WA2pS6da3WN44wo2UM+xSnGPPv6GcOXNG2+EJgvAGS05O1uiGCQ8PL/OrpPPGQW3btk2dQAUFBbFmzRpsbW2pWrVqoft6eHhw8uRJYmJiSExMfGk/Ki0tLbG2tuaXX34hOjqagwcPMnr06HzlgoKCiIyMJCIigoCAAPW6tWvXUqtWrWJP6vzjjz+SlZVFq1atOHz4MLdv32b37t20aNECZ2dnZs+eDTxJxpctW8alS5fo2rUr//77L7GxsWzatIkOHTrQoEGDfK1eqampxMfHExcXx7///su4ceOwsbEpcC7G4pDL5YwcOZKvvvoq37xTbyKRQL1mKvjb4/HZxwCY/LsBl1xLAPbt2sPjx4+1GZogCG+w0NBQ/P39NZZp06aVaR3m5ub4+/tjZWWlTpYCAgJQqVTPHTM0duxYdHR0qFq1Kra2ti9tChy5XM769es5c+YMfn5+jBo1innz5uUr5+fnh42NDTVq1FAnS4GBgSiVyhKNf6pUqRKnT5+mYsWKdO/enYoVK/Lxxx8THBzM8ePHsbKyUpdt1KgRJ06cQEdHh7Zt2+Ll5cXEiRPp27cv+/bt0+hWA5g2bRqOjo44OTnRvn17jI2N2bdvH9bW1qV8dqBfv37k5OTw448/lvoYrwuZVN6uZX3JUlJSMDc3Jzk5+bW5rUtBDnzYGtNLuTysVo9rblY8kD/Gr4oP7/Xoru3QBEEoQGZmJjdv3sTT07NYV38JwtuoqPdJefv+Fi1Qrynjd2dzqs4EklMs8Eu3AwkuXonSmDxOEARBEISXQyRQr6lKDaqATEaiXR0yr/+Dt9IZgL82bRE3GxYEodxZu3YtJiYmBS6+vtqZz87X17fQmNauXfvS64+NjS20fhMTE63eiaNNmzaFxjVnzhytxVWeiGkMXlPWziZ4v2PH5RMJJBg1wDE5BQMrPR6lpXDs6DGaBL7+9xkSBOHN0bFjx0JnudbWzNU7d+4s9P529vb2L71+JyenIu+m4eTk9NJjKMyyZcsKvRrv6XFXbzORQL3GGnSpwrVT8aSaumN77Xdq+QdzXe8+jqlv5o2VBUF4fZmammJqaqrtMDTk3XdVW3R1dcvt/EjOzs7aDqHcE114rzEjMwX1Oj6ZGO0/x7bkxJ2lfXZtFCczUT7Ofs7egiAIgiCUlkigXnM1mrphZArZ+hYQL+O2KgmdHBUPt98otGlaEARBEIQXIxKo15yOnpwmPfzQIRP9rCSyIn8hByVhF4/y/bcLyMrK0naIgiAIgvDGEQnUG6CCvy0fTK6O1aNjOFy/ztXHEcTIE0jNSCP0UKi2wxMEQRCEN45IoN4AMpkMC1cXsvt2BsDo7BrqZnsAcOLECe7du6fF6ARBEAThzSMSqDdI3SHTuFGxDvfsOpOYeBZ3pS0SEtv+/EvcbFgQBEEQypBIoN4g2dkybnuEcM+hHubX7lA5zRJdSYf/4u8WOdeIIAhCUUJCQpDJZAwePDjftiFDhiCTyQgJCdEoK5PJ0NPTw97enhYtWrBixYp8P+Q8PDxYsGBBsWLw8PBQH9fQ0BBvb2/mzZvH03cji4mJUZd5eundu3epz10QCiMSqDeIoamC2m0rABDj2Zm421uplesJwN5du9+Ku2MLgvByuLq6sn79eo3JFTMzM1m3bh1ubm4aZVu3bk1cXBwxMTHs2rWL4OBgPv30U9q3b/9Cd0qYNWsWcXFxREVFMXbsWCZNmsQvv/ySr9z+/fuJi4tTLz/99FOp6xSEwogE6g1Ts4UbhiZysgysME52QpaShKXKBGW2kri7d7UdniAIr6latWrh5ubGli1b1Ou2bNmCq6sr/v7+GmX19fVxcHDA2dmZWrVqMWnSJP766y927drFqlWrSh2DqakpDg4OeHh4MGDAAKpXr87evXvzlbO2tsbBwUG9mJubl7pOQSiMSKDeMHoKHRq97w3ALbeWyC5tpUFWJd7PaoDNXXEHeEEoTyRJQpWerpXl6a6v4vroo49YuXKl+vGKFSvo169fsfZt2rQpNWrU0EjASkuSJEJDQ4mKitLabWAEQdzK5Q1Uua495/fHkHAb0k0CSUg9TrBZOx7tjcGkpi06ZvraDlEQBEDKyOBKrdpaqbvK2TPIjIxKtM+HH37IxIkT1WONjh49yvr16wkNDS3W/t7e3ly4cKEU0T4xfvx4pkyZQnZ2Njk5ORgYGDBixIh85Ro2bIhc/v/tA0eOHMnXSiYIL0okUG8gmVxGwAc+bJl3hjiHBtQ8/TlXggOpkmvC8VUHMA5wFB8mgiCUmI2NDe3atWP16tVIkkS7du2wsbEp9v6SJCGTyUpd/7hx4wgJCSEhIYHJkyfTtGlTGjZsmK/chg0b8PHxUT92dXUtdZ2CUBiRQL2hHCuaU6uVGw9/nYVVyn3O/bcUE7c+7H8Yju42HTw9PbGwsNB2mILwVpMZGlLl7Bmt1V0a/fr1Y9iwYQAlHpwdFRWFp6dnqeqFJwmcl5cXXl5ebN68GS8vL9555x2aN2+uUc7V1bXc3qRXeHOIBOoN1qCzF/85hpAacgr/M1Fct7qDvZ4590hm185d9OjZQ9shCsJbTSaTlbgbTdtat25NdvaTm5W3atWq2PsdPHiQiIgIRo0aVSZxWFpaMnz4cMaOHcu5c+deqGVLEEpDDCJ/w7m805R7AT5k65mQe/V36mZ6IJNkXLl6hStXrmg7PEEQXjM6OjpERUURFRWFjo5OgWWysrKIj4/nzp07nD17ljlz5vDuu+/Svn17+vTpU2axDB06lCtXrrB58+YyO6YgFJdIoN4CZu/O5Hj9GRgqa3Lp8Rn8lE/GA+zYtl39S1IQBKG4zMzMMDMzK3T77t27cXR0xMPDg9atW3Po0CG+//57/vrrr0KTrtKwtbXlww8/ZMaMGeJuC8IrJ5NKcy3raywlJQVzc3OSk5OL/AB4k1w6epdDv11GNzedyhdnYthgLP+Y3eSxLJPGjRvnGz8gCELZy8zM5ObNm3h6emJgIKYUEYSCFPU+KW/f36IF6i3g3cARa2djcnWNSLZty8XkbdTPfjLA8ujRoyQlJWk3QEEQBEF4zYgE6i0gl8to3K0yAHedGuMbcYdHaYn45DoTIPlhZmyq5QgFQXibrV27FhMTkwIXX19fbYcnCAUSV+G9JVyqWOJZw4ab5xOJ8egCt9fgW3k2VrlyHh3+D+tm7toOURCEt1THjh2pX79+gdvETONCeSUSqLdIw65e3IpI5KG1LzUu2HOg0knelzUg5UAshv5WGFgYa8zeKwiC8CqYmppiaipawoXXi/i2fItY2BlRrakroOKxsRN+x1dzWcoiWvYfC35YyMWLF7UdoiAIgiC8FkQC9Zap29aD90ZVxebBIVwSVPyXso1McsiWcjl08BBKpVLbIQqCIAhCuScSqLeMvpEe9lWc0Bv8ZDI77xP7cExXYCDp8SjpEeHh4doNUBAEQRBeAyKBektV7z+G/ypUJs2iAdcfhVIz1wOA0NBQcnJytBucIAiCIJRzIoF6Sz26l8lV9xFcqdQdl8go7NP1MJb0SU1N5fTp09oOTxAEQRDKNZFAvaWsnIxxq2qDJNflP/dOxN4PxT/3yV3Sjxw5QlZWlpYjFARBEITySyRQb7FG73khk0GiTQ1MYm5hm66DmcqQ9PR0bty4oe3wBEEoB2QyWZFLSEjIS6k3LS2N8ePHU6FCBQwMDLC1tSUoKIjt27erywQFBTFy5Mh8+65atQoLC4t86zMyMrC0tMTKyoqMjIx82z08PNTnZWRkhJ+fH0uWLClWvKtWrdJ4Xuzt7enQoQORkZEa5UJCQgp8HqOjo4tVj1B+iATqLWblaIxPQ0cA4l06EHsvjIAcHzrk1KOKu5eWoxMEoTyIi4tTLwsWLMDMzExj3cKFCzXKl9UYysGDB7N161Z+/PFHLl++zO7du+natSsPHjwo9TE3b96Mn58fVatWZcuWLQWWmTVrFnFxcVy4cIFOnToxePBgNmzYUKzj5z03d+/eZceOHaSlpdGuXbt8N21v3bq1xnMYFxeHp6dnqc9L0A6RQL3l6rTzRKYDSZaVsbhxG/0MCXulKf/tj9F2aIIglAMODg7qxdzcHJlMpn6cmZmJhYUFGzduJCgoCAMDA9asWQPAypUr8fHxwcDAAG9vbxYtWqRx3Dt37tC9e3csLS2xtrbm3XffJSYmRr1927ZtTJo0ibZt2+Lh4UHt2rUZPnw4ffv2LfW5LF++nN69e9O7d2+WL19eYBlTU1McHBzw8vLiiy++oFKlSmzdurVYx897bhwdHalTpw6jRo3i1q1bXLlyRaOcvr6+xvPq4OCAjo5Oqc9L0A6RQL3lTK0M8GviAkCMZwf0IjYBkHMynoQ793n8+LE2wxOEt0JOlrLQJTdHWfyy2cUrW9bGjx/PiBEjiIqKolWrVixdupTJkycze/ZsoqKimDNnDlOnTmX16tUApKenExwcjImJCYcPH+aff/7BxMSE1q1bq1trHBwc2LlzJ6mpqWUS4/Xr1zl+/DjdunWjW7duHDt2rFhDFQwMDErVqpaUlMTvv/8OiNvRvKnErVwEard258rZO2Q/Ckd1N5zH6QncME3n1NKD1K1Xl7Zt22o7REF4o/3yaVih29z9rGk/rIb68YpxR8jNVhVY1qmSBZ3H1FI//nXyMTIf5//yH7q46QtEm9/IkSPp0qWL+vHnn3/ON998o17n6enJpUuXWLJkCX379mX9+vXI5XKWLVuGTCYDnrRYWVhYEBoaSsuWLfnll1/o1asX1tbW1KhRg8aNG/Pee+/RqFEjjboXLVrEsmXLNNbl5uZiYGCgsW7FihW0adMGS0tL4Ek32ooVK/jiiy8KPKfc3FzWrFlDREQEn3zySbGeh+TkZExMTJAkifT0dODJff68vb01ym3fvh0TExP14zZt2rBp06Zi1SGUH6IFSsDYXJ9+cwI53fo/cuVKLj86grVkioTE6dOnSUpK0naIgiCUY3Xq1FH/PyEhgdu3b9O/f39MTEzUyxdffMH169cBOHPmDNHR0Ziamqq3W1lZkZmZqS7TpEkTbty4wYEDB+jatSuRkZEEBATw+eefa9Tdq1cvwsPDNZZZs2ZplFEqlaxevZrevXur1/Xu3ZvVq1fnu/vC+PHjMTExwdDQkKFDhzJu3DgGDRpUrOfB1NSU8PBwzpw5w+LFi6lYsSKLFy/OVy44OFgj3u+//75YxxfKF9ECJQCgoyOnU/An7Dg8iurRJzGxbYKTjiV3eURYWBjvvvuutkMUhDfWxwsDC90me+Znbr95AYWXlWk+7jO74YuEVWzGxsbq/6tUT1rHli5dSv369TXK5Y3zUalU1K5dm7Vr1+Y7lq2trfr/enp6BAQEEBAQwIQJE/jiiy+YNWsW48ePR6FQAGBubo6Xl+ZFL3Z2dhqP9+zZox5z9TSlUsnevXtp06aNet24ceMICQnByMgIR0dHdQtZccjlcnUs3t7exMfH0717dw4fPqxRztjYOF/MwutHJFCCWjOXZmz2b45LuhNZD49SRz+Iv3VOEx4eTqNGjbCxsdF2iILwRtLTL/4A4pdVtqzY29vj7OzMjRs36NWrV4FlatWqxYYNG7Czs8PMzKzYx65atSq5ublkZmaqE6jiWL58OR988AGTJ0/WWP/VV1+xfPlyjQTKxsamzJKbUaNG8e233/Lnn3/SuXPnMjmmUH6ILjxBTZkDNa93JNWyHmmJMRhk5eKmtEGSJA4dOqTt8ARBeE3MmDGDL7/8koULF3L16lUiIiJYuXIl3377LfCk283GxoZ3332XI0eOcPPmTcLCwvj000/577//gCdzPC1ZsoQzZ84QExPDzp07mTRpEsHBwSVKuhISEti2bRt9+/bFz89PY+nbty9///03CQkJL+V5MDMzY8CAAUyfPh1Jkl5KHYL2iARKUNM31KV2Sw8AHtu25lLSMWrnVgAgMjKSuLg4LUYnCMLrYsCAASxbtoxVq1ZRrVo1AgMDWbVqlXquIyMjIw4fPoybmxtdunTBx8eHfv36kZGRoU6OWrVqxerVq2nZsiU+Pj4MHz6cVq1asXHjxhLF8uuvv2JsbEyzZs3ybQsODsbU1JTffvvtxU+6EJ9++ilRUVFikPgbSCa9ZWlxSkoK5ubmJCcnl+hXzNsiOzOXpRMPQoYuBvGLaFjxQ04Z3eW24iGdunTC19dX2yEKwmspMzOTmzdv4unpme8KMUEQnijqfVLevr9FC5SgQWGgS+3WHgCkWTUl6uFR3smpRMfMBvh4eRe9syAIgiC8JUQCJeRTp2lFVEbZ6Ci80YlPxeBxEpZKPWIPxGg7NEEQBK3w9fXVmJbh6aWgqwmFN5+4Ck/IR1dPh9pt3Di3OZ4Y91b4XNuJkf+HZB39jyueuRgaG+Lm5qbtMAVBEF6ZnTt3Fjojub29/SuORigPRAIlFKh+sDfH/r3AIaPNVLv+HxXSE7lpms6JDYdwcnJi4MCBJZofRRAE4XXm7u6u7RCEckZ04QkF0tGV8+6Q2sRaXWZ9TRVn005RQWmPriTn7t27XL58WdshCoIgCILWiARKKFQly0o0cWnCKe8MYh9HoMrJwE/5pOvu4MGD6hmHBUEQBOFtIxIooUh9q4RQPb45OUZ+RCWfoFquGwpJl4SEBCIiIrQdniAIgiBohUighCLVcayNb3IDDPXeISb1Irm56VTPfTIWIDQ0NN+NOAVBEAThbSASKKFIch05lVtaIZObIim8iEo6ga/SFQNJj0ePHnHu3DlthygIgiAIr5xIoITnah8cSJJZPHr69biZGkFObhr+uZ6Y6xmXi9lgBUF4O8XExCCTyQgPD9d2KG+sGTNmULNmTW2HUS6JBEp4Ll0dXTybGyPXtUXSc+Jy0r/4KJ3p+KAqXp4VtR2eIAgvWUhICJ06ddJY98cff2BgYMDcuXO1E1QpbN68mfr162Nubo6pqSm+vr6MGTNGvX3VqlVYWFgUuK9MJmPr1q351n/88cfo6Oiwfv36fNtmzJiBTCZDJpOho6ODq6srAwYMKPbNi/P2lclkmJiYUKNGDVatWqVRJjQ0VKNc3jJlypRi1SGUntYTqEWLFqnveVO7dm2OHDlSaNl//vmHRo0aYW1tjaGhId7e3nz33XevMNq3V5emrUgwv4XCqC1xFaohZSSjrzDjxs+7tR2aIAiv2LJly+jVqxc//vgjn332WYn3z87OfglRFW3//v188MEHvPfee/z777+cOXOG2bNnv1As6enpbNiwgXHjxrF8+fICy/j6+hIXF0dsbCw///wz27Zto0+fPsWuY+XKlcTFxXH+/Hm6d+/ORx99xJ49e/KVu3LlCnFxceplwoQJpT4voXi0mkBt2LCBkSNHMnnyZM6dO0dAQABt2rQhNja2wPLGxsYMGzaMw4cPExUVxZQpU5gyZQq//PLLK4787WOga4BzUwUyuTFZ/5lxRXX/yYbrORwLDeXEiRPaDVAQhFdi7ty5DBs2jN9//50BAwYAcOzYMZo0aYKhoSGurq6MGDGCtLQ09T4eHh588cUXhISEYG5uzsCBA9WtPXv27MHHxwcTExNat25NXFycRn0rV67Ex8cHAwMDvL29WbRoUani3r59O40bN2bcuHFUqVKFypUr06lTJ3744YdSPxebNm2iatWqTJw4kaNHjxITE5OvjK6uLg4ODjg7O9O+fXtGjBjB3r17ycjIKFYdFhYWODg4ULFiRSZNmoSVlRV79+7NV87Ozg4HBwf1YmJi8txj570GW7dupXLlyhgYGNCiRQtu375d6D5BQUGMHDlSY12nTp0ICQlRP160aBGVKlXCwMAAe3t73nvvvWKd6+tGqwnUt99+S//+/RkwYAA+Pj4sWLAAV1dXfv755wLL+/v706NHD3x9ffHw8KB37960atWqyFYroex0D+7AWY/dbKz+NYk9rMnOTiHOWMne0FAOHTpEenq6tkMUhNdSTmZmoUvuMy0kRZXNyc4qVtnSmjBhAp9//jnbt2+na9euAERERNCqVSu6dOnChQsX2LBhA//88w/Dhg3T2HfevHn4+flx5swZpk6dCjxpwZk/fz6//fYbhw8fJjY2lrFjx6r3Wbp0KZMnT2b27NlERUUxZ84cpk6dyurVq0scu4ODA5GRkVy8eLHU5/+s5cuX07t3b8zNzWnbti0rV6587j6GhoaoVCpyc3NLVJdSqWTjxo08fPgQPT290oacT3p6OrNnz2b16tUcPXqUlJQUPvjgg1If7/Tp04wYMYJZs2Zx5coVdu/eTZMmTcos3vJEa7dyyc7O5syZM/maGVu2bMmxY8eKdYxz585x7Ngxvvjii5cRovAMM4UZvs0d+Pfifa6vWYVJTk38Fc2wyjXgIZkcPXqUFi1aaDtMQXjtfN+38F/onv516DJhhvrxoo97kZuVVWBZl6p+dJ/+lfrx0mH9yEhNyVduzIbtJY5x165d/PXXXxw4cICmTZuq18+bN4+ePXuqWyUqVarE999/T2BgID///DMGBgYANG3aVCM5+ueff8jJyWHx4sVUrPhkLOWwYcOYNWuWusznn3/ON998Q5cuXQDw9PTk0qVLLFmyhL59+5Yo/uHDh3PkyBGqVauGu7s777zzDi1btqRXr17o6+uryyUnJxer9ebatWucOHGCLVu2ANC7d29GjBjB9OnTkcsLbpu4fPkyP//8M/Xq1cPU1LRYcffo0QMdHR0yMzNRKpVYWVmpW/6e5uLiovH41q1bWFtbP/f4OTk5/Pjjj9SvXx+A1atX4+Pjw7///ku9evWKFePTYmNjMTY2pn379piamuLu7o6/v3+Jj/M60FoLVGJiIkqlMt9NGO3t7YmPjy9yXxcXF/T19alTpw5Dhw4t8I8pT1ZWFikpKRqLUHq9fHqhq6PLFasH3Eg9T2ZuGnVUVQA4efIkqampWo5QEISXoXr16nh4eDBt2jSN9/mZM2dYtWoVJiYm6qVVq1aoVCpu3rypLlenTp18xzQyMlInTwCOjo7cv/9keEBCQgK3b9+mf//+Gsf+4osvuH79eonjNzY2ZseOHURHRzNlyhRMTEwYM2YM9erV02g9NzU1JTw8PN/yrOXLl9OqVStsbGwAaNu2LWlpaezfv1+jXEREBCYmJhgaGlK1alVcXV1Zu3ZtseP+7rvvCA8PZ9++fdSsWZPvvvsOLy+vfOWOHDmiEa+lpWWxjq+rq6vx2nh7e2NhYUFUVFSxY3xaixYtcHd3p0KFCnz44YesXbv2je2d0PrNhJ+9Ia0kSc+9Se2RI0d4/PgxJ06cYMKECXh5edGjR48Cy3755ZfMnDmzzOJ929kb29PBowMpl3RRSme4nHySmtZNscsx4j7pHD58mHbt2mk7TEF4rYxY/Ueh22TPtGYM+aWIL1+55mfnwB9XvFBcT3N2dmbz5s0EBwfTunVrdu/ejampKSqVikGDBjFixIh8+7i5uan/b2xsnG/7s11RMpkMSZIA1LeKWrp0qbp1JI+Ojk6pz6NixYpUrFiRAQMGMHnyZCpXrsyGDRv46KOPAJDL5QUmKE9TKpX8+uuvxMfHo6urq7F++fLltGzZUr2uSpUq/P333+jo6ODk5KTR2lUcDg4OeHl54eXlxaZNm/D396dOnTpUrVpVo5ynp2ehVxA+T0HfuYV9D8vlcvVrlCcnJ0f9f1NTU86ePUtoaCh79+5l2rRpzJgxg1OnTpU6vvJKay1QNjY26Ojo5Gttun//fr5WqWd5enpSrVo1Bg4cyKhRo5gxY0ahZSdOnEhycrJ6KWpwnFA8IdVCkMmN0FH4cj01nMzcDOpI3sCTX6OPHj3ScoSC8HrRMzAodNFVKIpdVk+hX6yypeXm5kZYWBj379+nZcuWpKSkUKtWLSIjI9Vf8k8vimdiLwl7e3ucnZ25ceNGvuN6enqW+rhP8/DwwMjISGPAe3Hs3LmT1NRUzp07p9Hqs2nTJrZu3cqDBw/UZRUKhTrmkiZPz/Ly8qJr165MnDjxhY7ztNzcXE6fPq1+fOXKFZKSkvD29i6wvK2trcZAf6VSmW9cma6uLs2bN2fu3LlcuHCBmJgYDh48WGYxlxdaS6AUCgW1a9dm3759Guv37dtHw4YNi30cSZLIKmQ8AIC+vj5mZmYai/BiKlhUQKfuQ+QGNVFKuVxOPomTyhKnbBNUKhWhoaHaDlEQhJfExcWF0NBQHjx4QMuWLfnss884fvw4Q4cOJTw8nGvXrvH3338zfPjwF65rxowZfPnllyxcuJCrV68SERHBypUr+fbbb0t1rM8++4zQ0FBu3rzJuXPn6NevHzk5OSUeu7l8+XLatWtHjRo18PPzUy9du3bF1taWNWvWlDi+4hozZgzbtm3TSHpehJ6eHsOHD+fkyZOcPXuWjz76iHfeeafQ8U9NmzZlx44d7Nixg8uXLzNkyBCSkpLU27dv3873339PeHg4t27d4tdff0WlUlGlSpUyibc80epVeKNHj2bZsmWsWLGCqKgoRo0aRWxsLIMHDwaetB49PV/GTz/9xLZt27h27RrXrl1j5cqVzJ8/n969e2vrFN5avRt245rDdeR6Fbieeo50ZQZ1JR+cH2VS9znN34IgvN6cnZ0JCwsjKSmJgQMHEhYWxrVr1wgICMDf35+pU6fi6Oj4wvUMGDCAZcuWsWrVKqpVq0ZgYCCrVq0qVQtUYGAgN27coE+fPnh7e9OmTRvi4+PZu3dvib7c7927x44dO9RXIT5NJpPRpUuXQueEKgvVqlWjefPmTJs2rUyOZ2RkxPjx4+nZsycNGjTA0NCwwElB8/Tr14++ffvSp08fAgMD8fT0JDg4WL3dwsKCLVu20LRpU3x8fFi8eDHr1q3D19e3TOItT2TSs52Zr9iiRYuYO3cucXFx+Pn58d1336kveQwJCSEmJkbdovHDDz+wZMkSbt68ia6uLhUrVmTgwIEMGjSo0KsenpWSkoK5uTnJycmiNeoFDfxjCL6766JM3UxFh7bUMayG6vE95LrHcFlQ8l+IgvAmy8zM5ObNm+qJgwVB21atWsXIkSM1WpC0raj3SXn7/tb6IPIhQ4YwZMiQArc9O2X98OHDy6RZWCgbvep3Y+OFMHzi+pBu60JqShamJvZknH5I2vHjGNavX+zEVhAEQRBeJ+LbTSi1Ji5NeFD1Gipdcx4lpHHO7smvBaV3K/76bQ0b1q3TcoSCILwtBg8erDHdwdNL3rCQ8mTOnDmFxtumTZsyqaNNmzaF1jFnzpwyqeNtpvUuvFetvDUBvu62Rm9lyY61KG1TmVvjJ/R/jUUlz+YPvWNIchkfffQR7u7u2g5TELROdOG9XPfv3y90nj8zMzPs7OxecURFe/jwIQ8fPixwm6GhIc7Ozi9cx507dwq9ZYyVlRVWVlYvXEdZE114wlujnWc7fnD6Ad1bKRzcMZpKVsH4G9emUpYlVw2T2L9nD/0GDnzu3F6CIAgvws7OrtwlSUV5FQlMWSRhQuFEF57wQvR09OhTtQ+JFlnkoORGwmEeS7nUlvkiV6m4ffduqWYNFgRBEITyTCRQwgvrWqkr+oYmZBt5kCtlcz3jMsYY4JP55D5M+7ZtyzdzrSAIgiC8zkQCJbwwE4UJ3X26E+soB2RcT9hPmqSkptwP3VwV95KTuXTpkrbDFARBEIQyIxIooUz08ulFhOdpJH1PclRZROfcwBAFvllPxiQc2V7yu78LgiAIQnklEiihTNgY2tDGuxVXXZ/cVud63C7SJBU1dHzxjX1Iox07USYnazlKQRAEQSgbIoESykzfqn05XfE0kp49OapsrsmTUKBLLeMAdO8nkPD9D9oOURCEN0RISAidOnUqskxoaCgymaxczbT9OoqJiUEmkxEeHq7tUMoVkUAJZcbD3IOgCoFEVpSjbz6QB7lWpCGhb+yArmMNHq5bR6J4AwrCa6eoZMXDwwOZTKaxuLi4aGxfsGBBmce0cOFCjbtVBAUFMXLkyDKvR9tCQkLUz6uuri5ubm588sknPHr0SKPc814HoeyJBEooUyG+IZz1OEWaQRZyEzmXrPQAeFyzM6GBTVj+xx9kZ2drOUpBEMrSrFmziIuLUy/nzp176XWam5tjYWHx0ut5Wk5OziutL0/r1q2Ji4sjJiaGZcuWsW3btgJvgaaN1+FtJhIooUxVt61OLUd//vL9nvg2x/BoYkw6Elb69qSZW5Ghq8uRX3/VdpiCIJQhU1NTHBwc1IutrW2JjzFmzBg6dOigfrxgwQJkMhk7duxQr6tSpQpLliwBNFvFQkJCCAsLY+HCherWl5iYGPV+Z86coU6dOhgZGdGwYUOuXLlSrJhmzJhBzZo1WbFiBRUqVEBfXx9Jkti9ezeNGzfGwsICa2tr2rdvrzHfXdeuXTXu2zpy5EhkMhmRkZEA5ObmYmpqyp49e4oVh76+Pg4ODri4uNCyZUu6d+/O3r1785Ur7esgk8n4+eefadOmDYaGhnh6erJp06ZCy69atSpf8rp161aNCZPPnz9PcHAwpqammJmZUbt2bU6fPl2seF4XIoESylw/v36kGjzkzu97OfjdJC4bpaKDnKpUAuDkzZtkFHILA0F4m0iShCpbqZWlvM3NFhQUxJEjR1CpVACEhYVhY2NDWFgYAPHx8Vy9epXAwMB8+y5cuJAGDRowcOBAdeuLq6urevvkyZP55ptvOH36NLq6uvTr16/YcUVHR7Nx40Y2b96sHgOUlpbG6NGjOXXqFAcOHEAul9O5c2d17EFBQYSGhqqP8ey5nDp1iszMTBo1alSi5wjgxo0b7N69Gz09vRLvW5SpU6fStWtXzp8/T+/evenRowdRUVGlPl6vXr1wcXHh1KlTnDlzhgkTJpR5zNombuUilLnGzo2pZFmJR0YJuKJPwv2DZJi8SzU8uZIZTYqBHgcWL6b9pEnaDlUQtErKUXF32jGt1O00qyEyhU6ZHGv8+PFMmTJF/XjOnDmMGDGiRMdo0qQJqampnDt3jlq1anHkyBHGjh3Lli1bADh06BD29vZ4e3vn29fc3ByFQoGRkREODg75ts+ePVudeE2YMIF27dqRmZlZrHsSZmdn89tvv2m05nTt2lWjzPLly7Gzs+PSpUv4+fkRFBTEp59+SmJiIjo6OkRGRjJ9+nRCQ0MZMmQIoaGh1K5dGxMTk2I9N9u3b8fExASlUklmZiYA3377bb5yL/I6vP/++wwYMACAzz//nH379vHDDz+waNGiYu3/rNjYWMaNG6d+vSpVqlSq45RnogVKKHMymYyPfD8iyj0VCRlJCVeIlqchR04VeVUAwtPSSLp8WcuRCoJQFsaNG0d4eLh66dOnT4mPYW5uTs2aNQkNDSUiIgK5XM6gQYM4f/48qamphIaGFtj6VBzVq1dX/9/R0RF4cvPh4nB3d8/XFXb9+nV69uxJhQoVMDMzw9PTE3iSNAD4+flhbW1NWFgYR44coUaNGnTs2FHdAlXScwkODiY8PJyTJ08yfPhwWrVqpdFFmOdFXocGDRrke/wiLVCjR49mwIABNG/enK+++uqNvKWXaIESXorWnq35wfoH7tno4pCYw624MCrZtaW6yoXo7Cs8Uuixf9ky3ps/X9uhCoLWyPTkOM1qqLW6y4qNjQ1eXl4vfJy8ri+FQkFgYCCWlpb4+vpy9OhRQkNDS32V3dNdR3njdPK6257H2Ng437oOHTrg6urK0qVLcXJyQqVS4efnp75ARiaT0aRJE/W5BAUF4efnh1KpJCIigmPHjpXoXIyNjdXP7/fff09wcDAzZ87k888/1yhXVq9DnsJuAi+Xy/N1AT87wH7GjBn07NmTHTt2sGvXLqZPn8769evp3LlzmcWnbaIFSngp9ORPbjJ8ssqTX2Rp6ZFc181BhgwvnWoA/JeTQ/LBg9oMUxC0SiaTIVfoaGUp7MtRm/LGQR08eJCgoCAAAgMDWb9+faHjn/IoFAqUSuVLj/HBgwdERUUxZcoUmjVrho+PT74pBeD/k8HQ0FCCgoKQyWQEBAQwf/58MjIySjX+Kc/06dOZP38+d+/efZFT0XDixIl8jwvqLgWwtbUlNTWVtLQ09bqC5oiqXLkyo0aNYu/evXTp0oWVK1eWWbzlgUighJemS6UuKG0NeGguByRuxh0nE4nqOXY0UprTYu8+Er78ClVWlrZDFQThOZKTkzW6h8LDw9VdVmUlbxzUtm3b1AlUUFAQa9aswdbWlqpVqxa6r4eHBydPniQmJobExMRitzCVlKWlJdbW1vzyyy9ER0dz8OBBRo8ena9cUFAQkZGRREREEBAQoF63du1aatWqhZmZWaljCAoKwtfXlzlz5pT6GM/atGkTK1as4OrVq0yfPp1///2XYcOGFVi2fv36GBkZMWnSJKKjo/n999815uTKyMhg2LBhhIaGcuvWLY4ePcqpU6fw8fEps3jLA5FACS+NkZ4RPbx7cLpSHADpGVe5oStDhgwTeW0Utrbk3L7NwzfsV4kgvIlCQ0Px9/fXWKZNm1amdZibm+Pv74+VlZU6WQoICEClUj13zNDYsWPR0dGhatWq2Nralnlyl0cul7N+/XrOnDmDn58fo0aNYt68efnK+fn5YWNjQ40aNdTJUmBgIEqlstRjuZ42evRoli5dyu3bt1/4WAAzZ85k/fr1VK9endWrV7N27dpCE1YrKyvWrFnDzp07qVatGuvWrWPGjBnq7To6Ojx48IA+ffpQuXJlunXrRps2bZg5c2aZxFpeyKTydi3rS5aSkoK5uTnJyckv9AtAKJ4HGQ9o9UcrfKJdqB8/FCM9XQKNddCXyUhxTUT10xQSXFxovHoVev8b3CkIb6LMzExu3ryJp6dnsa7+EoRXRSaT8eeffz731jivQlHvk/L2/S1aoISXytrQmk6VOhFe4Tppdok4VbfhsvWTAZ33EyzZ3bkTYQ3e4bIYTC4IgiC8RkQCJbx0fX37IpfJ+b3C17h31qFiSzuykPDK1MHc2gVkMk4mJZH2zCBGQRDeHGvXrsXExKTAxdfXVysx+fr6FhrT2rVrX3r9sbGxhdZvYmJSJt2Q5fF5f1OIaQyEl87V1JWW7i05HX6QbRMn42jthqVdD2om5OCS4skd7vGfqyuR331H3TVrkL1hs9UKggAdO3akfv36BW7T1gzVO3fuLPT+dvb29i+9ficnpwKvXnt6+4sqzvP+lo3kKTMigRJeiRC/EA5d3YuUlsX91OsYW9wnR7KgWqYxcW4exN6P4ayFBV7r1mFVikn4BEEo30xNTTE1NdV2GBrc3d21Wr+urm6ZzttUkPL4vL8pRBee8Er4WvtS070u0S5P5g25FbmfmzpP5qFxuu+MHIh3dCRyzVpyExO1GKkgCIIgPJ9IoIRXpp9fPy55pCABqpwb3HiQQK4k4ZdpgLvLkwnbzlfy4t6332k3UEEQBEF4DpFACa9MA8cGOLtV4rZdOgCP008RI3/SCuXwny26cjl6OTk8+PtvMs6f12aogiAIglAkkUAJr4xMJuMjv4+IrJACgDL7EtcfpZArSfhmKmge0I0OVtbo5eYS/8VspJc0k7AgCIIgvCiRQAmvVAv3Fui62pBongUoeZx1jVv/uydX+pFE7MaMRm5sTGZEBMlbtmg3WEEQBEEohEighFdKV65LX7++/OvziPON9VEY1eB6Sg65kkTldInIG1kYfjKYi36+xH/7HcrkZG2HLAiCIAj5iARKeOU6eXUix9GIc2ZXMa2Tg29rD65ZKwBI2H2DP1JSiPTz44a5GQk//KjlaAVBEIoWEhJSLm6DIrxaIoESXjlDXUN6+PQA4G+bZVQLtqFKl0ookfDOkOHq+OSKvIt+fiRu2EDmlavaDFcQ3npFJQgeHh4sWLBA47FMJmP9+vX5yvr6+iKTyVi1alW+8s8uX3311XPjiomJ0djH3Nycd955h23btmmUW7VqVYF1LFu2rFjnLwgFEQmUoBU9qvTAUNcQw2NxLPmkD7mpN7hq86QVyvSqMSYmJqQbG3PDw517X3whZsoVhNeIq6srK1eu1Fh34sQJ4uPjMTY2zld+1qxZxMXFaSzDhw8vdn379+8nLi6OkydPUq9ePbp27crFixc1ypiZmeWro1evXqU7QUFAJFCCllgYWNClUhfkkgxVTi5HN27icaYMpSThlyGngnsNAC75+pJy9iypu3ZpOWJBeHmys7MLXZ691UhZlH3ZevXqRVhYGLdv31avW7FiBb169UJXN/8NMExNTXFwcNBYCkq0CmNtbY2DgwPe3t7Mnj2bnJwcDh06pFFGJpPlq8PQ0PC5x54xYwY1a9ZkyZIluLq6YmRkxPvvv09SUlKh+zzbKgdQs2ZNZsyYoXFcNzc39PX1cXJyYsSIEcU+X6F8ELdyEbTmw6of8v65TVSNMeX+jUskmdbC1soJDxkYXdLHwsKCpKQkrlWqhMHXczEJDERegg9VQXhdzJkzp9BtlSpV0mgpmTdvXqH3b3N3d+ejjz5SP16wYAHp6en5yj39Rf4y2Nvb06pVK1avXs2UKVNIT09nw4YNhIWF8euvv760enNycli6dClQtvfXi46OZuPGjWzbto2UlBT69+/P0KFDS33D4T/++IPvvvuO9evX4+vrS3x8POfF3HevHdECJWiNs4kzTaq2IMbhyQe8lHuW6Me5qCQJvwwZnm5PWqEu+1Yl/eFDEpf8os1wBUEogX79+rFq1SokSeKPP/6gYsWK1KxZs8Cy48ePx8TERGMJDQ0tdl0NGzbExMQEAwMDxowZg4eHB926ddMok5ycrHF8BweHYh8/MzOT1atXU7NmTZo0acIPP/zA+vXriY+PL/YxnhYbG4uDgwPNmzfHzc2NevXqMXDgwFIdS9Ae0QIlaNVHvh8x6Ow+KsQZk5N5mceKRvynssRNBxQRujg6OuIkf5LnP1y5EouuXVBo+QagglDWJk2aVOg22f/mScszbty4YpcdOXLkC8X1Itq1a8egQYM4fPgwK1asoF+/foWWHTduHCEhIRrrnJ2di13Xhg0b8Pb25urVq4wcOZLFixdjZWWlUcbU1JSzZ8+qH8vlxW8/cHNzw8XFRf24QYMGqFQqrly5UqJELM/777/PggULqFChAq1bt6Zt27Z06NChwO5NofwSr5agVVWsquDtW5f4y9E4PDQA1QWupTXCxVSXahkybGu2pXY9F26f/Je0f/7h3pwvcV2yWNthC0KZUigUWi9b1nR1dfnwww+ZPn06J0+e5M8//yy0rI2NDV5eXqWuy9XVlUqVKlGpUiVMTEzo2rUrly5dws7OTl1GLpe/UB1Py0tUn01Yn67r2Qtfnu52dXV15cqVK+zbt4/9+/czZMgQ5s2bR1hYWJl2PQovl+jCE7Sun28/Ij3/d3uXnIukKpX8p3ry4XN/zy1kMhn2kyaBnh6Pw8JIfWZwqCAI5VO/fv0ICwvj3XffxdLS8pXUGRgYiJ+fH7Nnzy6zY8bGxnL37l314+PHjyOXy6lcuXKB5W1tbYmLi1M/TklJ4ebNmxplDA0N6dixI99//z2hoaEcP36ciIiIMotZePlEC5SgdXUd6mLm48npx//RMDgYk92GRKdm42Iqo3o6nP73Dg5Oehzv9j41tvzJvS+/wrhhQ+T6+toOXRDeGsnJyYSHh2use7ab7Fk+Pj4kJiZiZGRUZLnU1NR844mMjIwwMzMrVaxjxozh/fff57PPPitRV2BhDAwM6Nu3L/PnzyclJYURI0bQrVu3QrvvmjZtyqpVq+jQoQOWlpZMnToVHR0d9fZVq1ahVCqpX78+RkZG/PbbbxgaGuIuhie8VkQLlKB1MpmMftX6c7FiCuvjt1Cnsxv1+1blxv9mJ7+3+yb79u0jVqkkqk5tcmJjebhylXaDFoS3TGhoKP7+/hrLtGnTnruftbX1c6cLmDZtGo6OjhrLZ599VupY27dvj4eHR5m1Qnl5edGlSxfatm1Ly5Yt8fPzY9GiRYWWnzhxIk2aNKF9+/a0bduWTp06UbFiRfV2CwsLli5dSqNGjahevToHDhxg27ZtWFtbl0m8wqshk96yGQpTUlIwNzcnOTm51L9uhLKnVCnpuLUjsamxjK87nu5e73P/VhrS8kgALgUbcez4NmRAm+07MFMqqbhrJ3qlGMApCNqQmZnJzZs38fT0xMDAQNvhCMU0Y8YMtm7dmq/1TXg5inqflLfvb9ECJZQLOnId+vr2xeyxLpGLf2fT55NxrmTFdcsnAyqz/s3Ay8sLCbjcJAApI4OE7xZoNWZBEATh7SUSKKHc6FixI8Ym5lgmyIi7epl//z5G/IMnV67USFNh71gNgBtmZiSZm5P8119kRFws6pCCILzGBg8enG9+qLxl8ODBZVKHr69voXWUdqJM4e0guvCEcmXphaWcWb2WSv+Z4FipNo8SA6ljooOzrpyzxjIyq9zl0qVLuOfm8s4fmzGsUxv3334r9HJiQSgvRBdeyd2/f5+UlJQCt5mZmWlMU1Bat27dKnRmd3t7e0xNTV+4DqH4XqcuvFJdhadSqQqchEylUvHff//h5ub2woEJb6duVbqx0Wsllf6DuOiz2Hk14OojBc6mcmqmqYi280UWFcUtXV0qOzhgdfoMqXv3YdaqpbZDFwShjNnZ2ZVJklQUceWbUFol6sJLSUmhW7duGBsbY29vz/Tp01EqlertCQkJeHp6lnmQwtvDXN+clnU6c8cmAyQJU/PLpCjhbo4KOTJSjjyiYcOGtGvXjkqdOwFwf/58VK/gBqmCUBbeskZ/QSiR1+n9UaIEaurUqZw/f57ffvuN2bNns3r1at59912Nu3u/TicvlE8fVv2QqAppAMRcOIy1ky5XM58k6v5pKsysqlK3bl1sBgxA19aWnNu3efTbGm2GLAjPlTfDdEE39xUE4Ym8fOLpebPKqxJ14W3dupXVq1cTFBQEQOfOnWnXrh0dOnTg77//Bgqf2l4QisvB2IFa9ZryMOo0Vqlg7XSbq3cdictR4agn587Om0i1nJAbG2M2fDhnly9H/vPPmHfuhO5zJvYTBG3R0dHBwsKC+/fvA08mihSfl4Lw/1QqFQkJCRgZGb0W9wUsUYSJiYka/cXW1tbs27ePVq1a0bZtW5YtW1bmAQpvp4/8+jG88n4Ms3V49926pCalcvVmCo56cmqlqTh5Ng5/P2vWx93lUYN30Dt8BPMff8ShGBP7CYK25M1cnZdECYKgSS6X4+bm9lr8uChRAuXq6kpUVJTGOCdTU1P27t1Ly5Yt6dy5c5kHKLydvCy9qFi7HmH/hbE2eh1Duo1GpZK4vv4Sbkk53Nl5g/q1HKlSpQonTpzg5Dv1sdi2HcuePdEvoxuGCkJZk8lkODo6YmdnV+iVX4LwNlMoFAVepFYelWgagxEjRhAXF8emTZvybUtNTaVFixacOnVKY2B5eVPeLoMUCnfm3hlCdoegkCvY3WUXNka23LvygNxVUeQicb29O4HvOLNy5Uru3LmDVeIDOmRn4fnLL9oOXRAEQShj5e37u0Rp3syZM5kxY0aB20xNTdm/fz8HDx4si7gEgVp2tahuWx23W3r8OmYosRfP4+Btwx1LPXSRkbsrhrRsFe+99x4GCgUPbaw5npLK4yP/aDt0QRAE4Q1XogTK0tISX1/fQrebmJgQGBioflytWjVu375d+uiEt5pMJqOfXz+sUxTwKIN/t23m0tG7RP2XQbYk4auUs31tBJaWlnTq0gWAq95VOL1kMVJurpajFwRBEN5kL7WjMSYmRvTzCy8k2DWYFD8zJCRiz59DTz+FtByJq5kqAPyvpxF+OQFvb2/eqVULgHM2NjwqoJtZEARBEMrK6zFSS3hryWVyPmjQj1j7DACun95N5Xr23MhS8UiSMEPG1fVR5ChVNG/blloWFgQfPETiDz+iTE3VcvSCIAjCm0okUEK5175Ce+54P/lTvXTkEDWb26BroMOFx0pUkkTDTBl/bb2Mrq4uHYYOxdTZGeXDhzxYskTLkQuCIAhvKpFACeWeQkdB24AeJFhkIeUquXJiH/Xae5KklIhRPrmI1OVUArfvP0amp4fdZ+MAOHMolItHj2ozdEEQBOENJRIo4bXQrUo3or2eTPF/ZvdfVG1kh7WzMVGPlaQh4YKc0NUXkCQJk6Ag4ps15WTdOvy9dy+PHj3ScvSCIAjCm6bME6g7d+6U9SEFAVOFKQ2COnDVNZUrAXroGejT5IMqoCfnYUULABo/yGX/P7eQyWTUGzYM68REsmUyNqxeTa64Kk8QBEEoQ2WWQMXHxzN8+HC8npoFesmSJdjb25dVFcJb7kPfPpyqkcoReQTnE87jVMmCvl824p0B1bhro0APGardt0hKz8bYx4dWlpYosrKIT0pi79692g5fEARBeIOUKIFKSkqiV69e2Nra4uTkxPfff49KpWLatGlUqFCBEydOsGLFCnX5nj17YmxsXOQxFy1ahKenJwYGBtSuXZsjR44UWnbLli20aNECW1tbzMzMaNCgAXv27CnJKQivMTsjOzpU7ADAiosrSE9JxsBED5lMhl9fP7J4MjfUtjUXAKgwYgTvhIcD8O+//3Lp0iVthS4IgiC8YUqUQE2aNInDhw/Tt29frKysGDVqFO3bt+eff/5h165dnDp1ih49ehT7eBs2bGDkyJFMnjyZc+fOERAQQJs2bYiNjS2w/OHDh2nRogU7d+7kzJkzBAcH06FDB86dO1eS0xBeY319+yJXyUjaf45fhn3EgztPJmpNSs4hVv/JrR1r3Ujj7OUEdG1tqd6pM95RUQD8tXUrDx8+1FrsgiAIwpujRPfCc3d3Z/ny5TRv3pwbN27g5eXFiBEjWLBgQakqr1+/PrVq1eLnn39Wr/Px8aFTp058+eWXxTqGr68v3bt3Z9q0acUqX97upSOU3Piwz8jZeAbnREPsKnjRY9Y8Ns89x4Pbj2lsqYeVBEcNJLpMbYxOTjbX2rVjr7cPD2xtaN++PXXq1NH2KQiCIAglVN6+v0vUAnX37l2qVq0KQIUKFTAwMGDAgAGlqjg7O5szZ87QsmVLjfUtW7bk2LFjxTqGSqUiNTUVKyurQstkZWWRkpKisQivt3H1PiO8diZZukru34jm1F9/0KR7ZSQgIiUXFRKNMmX8ufUycgMDHEaPpuHxYwQeP0ENVzdthy8IgiC8AUqUQKlUKvT09NSPdXR0njvGqTCJiYkolcp8g8zt7e2Jj48v1jG++eYb0tLS6NatW6FlvvzyS8zNzdWLq6trqeIVyg8bQxuGNB7FCb8n3XHHt6xHJkvAu4EDSUqJWJkMALdTCcTee4xZ27ZYV6qMw61bJCxcqM3QBUEQhDdEiRIoSZIICQmhS5cudOnShczMTAYPHqx+nLeUhOx/X3ZP1/HsuoKsW7eOGTNmsGHDBuzs7AotN3HiRJKTk9WLuLnxm6FLpS5Y1qjCTcc0JKWSXT99S912rugb6RL5KIfHMnBBzqHVTwaU20+cAEDyn38S/++/rF69WoyHEgRBEEqtRAlU3759sbOzU7fm9O7dGycnJ40WHnNz82Idy8bGBh0dnXytTffv33/u1AcbNmygf//+bNy4kebNmxdZVl9fHzMzM41FeP3JZXKmNZzOqWoppOvn8vDObc7uXE/9jhXIBa5kPbnZcJOHuez95xaGNWti1rYtSBLbN/3BzZs32bRpk7jZtSAIglAquiUpvHLlyjKrWKFQULt2bfbt20fnzp3V6/ft28e7775b6H7r1q2jX79+rFu3jnbt2pVZPMLrp6JFRXrXCmHHw18JPmeHkZ0tvk2cuXT0Lv/dfoyzmS4OmSqkXbdIquWE3ZjRpO7fj//+/SR27UJcXBx79+4Vf0eCIAhCiWn1Vi6jR49m2bJlrFixgqioKEaNGkVsbCyDBw8GnnS/9enTR11+3bp19OnTh2+++YZ33nmH+Ph44uPjSU5O1tYpCFr2cfWP0alox6bg/9hrcRG5XEZQT2+ah/jgM6QGWUj4qeT8teYCes7OWIWEYJSRQYOICABOnTpFZGSkls9CEARBeN1oNYHq3r07CxYsYNasWdSsWZPDhw+zc+dO3N3dAYiLi9OYE2rJkiXk5uYydOhQHB0d1cunn36qrVMQtExfR5+pDaaSpVCx8cpGziecx9rZgCrvOGJsZ0Jm/SfdwXVupnEm6j7WH3+MjrU1ducvUPt/3c1//fUXDx480OZpCIIgCK+ZEs0D9SYob/NICGVj8j+T+fv639TJqkiD85Y0DRmEV913yHqcTdTcf7HJljhqINF5SmPStvxB/LTpYG7Osf79uH33Lg4ODvTv31/jKlNBEASh/Chv399abYEShLIyps4YLPQtkG4+IDUxgb2//EDc9Th+//xfrqQqn5obKgqLrl3Rr1wZkpMJvJ+AkZERMpmMzMxMbZ+GIAiC8JoQCZTwRrAysGJMnTGEV0oiyTSHjJRk/v1zBcbmChIzlPxn8OR6CbfTidxKSMd+wngActavp0ez5vTv3x9TU1NtnoIgCILwGhEJlPDGeLfiu9RyrsvhGglIcog+dRxX7wSQQUR8JqlycEVO6K8XMGrQAJOgIMjNhWXL0NX9/wtSc3NztXcSgiAIwmtBJFDCG0MmkzH1namkWsBZr0cAnP57NV61jcgFYuRP/tybPFSy53AMdp+NA11dHh86RNrx4yiVSg4cOMCyZcvE/FCCIAhCkUQCJbxRPM09GVh9IBcrpPDQSkl2RjpJ//2NvpEuNxKziDfUQYEMaU8s6fbOWH7wAQD3vvqa9MePOXPmDPHx8ezZs0fLZyIIgiCUZyKBEt44/f3642HpyaFq8Ui6cgxNTajX4ck9EKOScshGoppKzl9rIrAZOgS5mRlZV66Qu3ev+lZEp0+fJuJ/c0UJgiAIwrNEAiW8cRQ6Cqa9M41U41y2NLqNc69WVAv0wN7TDIfqNqTVsgWezA0VHpeDzZBPAEhY+D2eDo4EBAQAsG3bNhITE7V2HoIgCEL5JRIo4Y1Ux6EOXSp1IdU4l89PfE6ulEunUf407+uDX9cqJBrKsUBO9MbLGHf/AD13N5SJiTxYupSgoCDc3d3Jzs4W98sTBEEQCiQSKOGNNbr2aKwMrLiefJ0Vp5awe9F8Tvy5AZmOHLcePqiQaJwp48/t0diPGwfAw5UrUcXH07VrV4yMjLh37x67d+/W8pkIgiAI5Y1IoIQ3lrm+OePqPkmMdoet48rxI5zYvJ4b5yI5eegOcZb6AHiceUCCbz2M6tZFys7m/rffYWZmRteuXVEoFLi4uGjzNARBEIRySNzKRXijSZLEoH2DOH73OF2iKmMWk4WJlSM5qvcxMtCngYkcUyXss5TzQTsLYt5/HyQJj/XrMKxZk/T0dIyMjLR9GoIgCG+98vb9LVqghDda3txQ+rr67PCKRsfEkMcP49DXP0VGlpJ7FgYABD5ScijREPNOnQC49+VXSJKkkTylpaWJ8VCCIAgCIBIo4S3gaubK4BqDyVKoOOr3AICU+ydQ5d4m8noq8Wa6KJDB3lj0Pv4EmZERGefPk7Jzp/oYsbGxLF68mF27dmnrNARBEIRyRCRQwluhr29fvCy8uGyVQJavNUgSKA8gSVnEZEIWEtVVOmzbE4/1gP4A3P/mG1T/u8FwTk4OqampnD17lgsXLmjzVARBEIRyQCRQwltBT67H9AbTAdjkfA59Kwv09GUoDNK5dz+DREdjAOrFpHPznfboOjiQezeOh6t/BaBixYoEBgYCT+aHSkhI0M6JCIIgCOWCSKCEt0ZNu5p0q9yNXF2Jf+ol0ePrb2nSoyEANx7l8CBvbqi/bmL56acAPFiyhNz/TaYZGBiIh4cHOTk5bNq0iezsbK2diyAIgqBdIoES3iqf1v4UG0MbIuW3WHtzA1XqOxDYswrvTaqL6//mhmqSJWdPdkUM/PxQpaeTsPB7AORyOV27dsXY2Jj79++L+aEEQRDeYiKBEt4qZgozxtcbD8CyiGXcSL6BpIzkwPIfsKxkyQMvcwAqnHtI7qARACRt3kzmlSsAmJqa0rVrVwDOnj1LZGSkFs5CEARB0DaRQAlvnVburQhwDiBHlcPXe2awf+lPRIbu59KRUAwrW5OqA67IOXxWjmmrlqBScf/rr8mbMq1ChQoEBQXh4+NDhQoVtHsygiAIglaIiTSFt9Kdx3fo/FdnMnIzGJXVmUcHziLXMUDP5EPq1fXE6Xoy2UhcrauPx4yBSDk5uCz+GdOgIABUKhUymQyZTKbdExEEQXhLlLfvb9ECJbyVnE2cGVJjCAArjA9gU6ECKmUmOWl7OHv+AfcsFSiQoTqTgeEHvQC4//VcpP9NpCmXy9XJkyRJ3LhxQzsnIgiCIGiFSKCEt1bvqr2pYlmF5NwUrjXQRVehQJUbS9bjczw01FfPDXXItDE6lpZk37zJow0bNY4hSRKbN2/m119/JTw8XDsnIgiCILxyIoES3lq6cl2mN5iODBl/PdqHS/sgAHIzDnM54joplS0AqHM3l9RuAwBI/OEHlMnJ6mPIZDJsbW0B2LFjB/fv33+l5yAIgiBoh0ighLdaNdtq9PDuAcBy3d24+FUHlKhyY4m88Vg9N9SVRxXQq1gRZXIyiT8v1jhGQEAAFSpU+L/27js8qir/4/h7+kwmvSekkkAICR2kC0oTFURQXF0L4qKsva5tV139rYCrq7t2ZXVdXRULKioIKB2kEwgQSkIaIb1nMpl6f38MDEaCEogkhO/refLI3Dn33HMvwvlw7rnnyvpQQghxHpEAJc57d/W7i3CfcAobCikZGci0x/9GQPggaiuasCcFe9aGsmvYO2omAFX/+x/2vDzv/mq1mqlTp+Lr60t5eTmLf/IOPSGEEJ2TBChx3vPV+/LYBY8B8J+Cj3DEmhh+dTfCE/yJH9mF6m6etaFCq4JRDR4ODgelzz/fvA5fX6ZNm4ZKpSIjI4MdO3ac9fMQQghx9kiAEgIYEz+Gi2Ivwqk4efrHp+naP5QxN0Sy/dt/02NaMvUaiEPD9vhpoNHQ8P0PWDZtblZHYmIio48uc7BkyRKsVms7nIkQQoizQQKUEEc9NvgxfLQ+ZJRn8Nm+T1k490n2rP6Bjd8swHxJAgBD7GZqL7oKgNJ5c1FcrmZ1jBw5kj59+nDddddhMpnO9ikIIYQ4SyRACXFUpDmSu/rdBcA/M/5F/2t/B8DWr79gxdc/UhZiQI+KGt+RqMy+2PZmUfvVomZ1qNVqrrzyShISEs5284UQQpxFEqCE+Ilre1xLz5Ce1Dvq+cixjJ4XjgEUqgq/wt7FiA1IR0/+hbMAKH/xRdwWy0nrKy8vJysr6+w0XgghxFkjAUqIn9CoNTw59EnUKjXf5X2HaUIvTP4hKO5aNi39CGvfUABi9Cm4uyThLC+n8t/vtFhXaWkpb731Fp9//jmlpaVn8zSEEEL8xiRACfEzPUN6cn3q9QDMyfg74+68E1DhbMpk975dVJnUBKjUFPbxLGtQ+c47OEpKTqgnLCyMuLg4nE4nn376KTab7WyehhBCiN+QBCghWnBH3zuIMkdxxHKErx1rSRt9KQDF2evQD44GIF0fhqXXWJSmJspffPGEOo7Nh/Lz86OiooJvv/2W8+zd3UII0WlJgBKiBT46Hx4f/DgA/937X2KnjiCx/1R05slsXlNMZZIfAErCFaDWUvvVIqyZmSfU89P1oXbt2sXXX3+N0+k8q+cihBCi7UmAEuIkRsWOYlz8OFyKi79tncOld1+PX7AP1gY7IUNiaNBAlMZA5dBbACidO6/FEaaEhAQuvdQzgrV9+3Y++OADuZ0nhBDnOAlQQvyCRy54BF+dL5kVmSzM+4zxf0jnmj8PoGDfUvSjPS8Rjg7tD0ExWLdto37pshbrGTRoENdddx16vR4fHx90Ot3ZPA0hhBBtTAKUEL8g3Cece/rfA8C/dvwLdWQTGz//Nz9+9hHbN/2P8lADepWK+kGzASh7/nncJ3mZcPfu3Zk1axZTpkxBrfb80ZM5UUIIcW6SACXEr5ieMp3eob2xOCzM3TyXQZOnodXpyc/cQb1/AXYg2iccV/LFOA4fpvr9909aV1hYGHq9HvCEp4ULF7Jly5azdCZCCCHaigQoIX6FWqXmiaFPoFVp+b7ge3a5sulx4TQAtqz4gMY0HwB0qVNBZ6bi9TdwVlX9ar1ZWVlkZmby7bffsnjxYlw/ey2MEEKIjksClBCnICU4hRvTbgTgb5v+xuBrL0NnigfFyY8b/0OVSY1Zo8c54EbcDQ2Uv/zyr9aZmprKmDFjANi8eTMffvghTU1Nv+l5CCGEaBsSoIQ4RbP7zKaLbxdKG0t5M+tNxsy8C9BTV5FLXVgRAEGR/dCEdKdmwSfYDh78xfpUKhUjR45k+vTp6HQ6cnJymD9/PlWnMHolhBCifUmAEuIUmbQm/jLkLwB8uO9DlJ5OIlMmA7Bl3adUdPXcynMPnAmoKX3u76dUb8+ePbn55pu9C26+/fbb5Ofn/ybnIIQQom1IgBKiFYZ3Gc7ExIm4FTdP//g0E26fis5nKFrztfj2iqZBA76mYLTdL8Gydi0Na9eeUr3R0dHMmjWL6OhoWSNKCCHOASrlPHuOuq6ujoCAAGpra/H392/v5ohzUIW1gslfTqbeXs9DAx+ix6ERbPk2D3OggYsvjUW9OB+X24X1hyfRRfnR9csvUWm1p1S33W6nqKiIxMTE3/gshBDi3NLR+m8ZgRKilUJNodw/4H4AXsl4hegRBqKSAxg2LQklqIpyfzcatQZdvxuwZ+dQ8+mnp1y3Xq9vFp5KS0v57LPPZFRKCCE6GAlQQpyGqd2m0j+8P1anlXnb5zLl/n64HQf47P/+zN6SL7CjYAhNQRszmPJ/vYyrvr7Vx3C73Xz66afs3r2bd955h5qamrY/ESGEEKdFApQQp8G7NpRay6rDq/ih8AcS+w7EPyycktJsjvgeBkDX+3e4GuxUvPFG64+hVjNlyhTMZjOlpaW8/fbbFBYWtvWpCCGEOA0SoIQ4TUmBScxMnwnAnE1zsGtdpF3kWStqS+bHVOucaPVmDGlTqfrv+9hPI/zExMQwa9YsIiIisFgs/Oc//2HXrl1teh5CCCFaTwKUEGfg1t63EucXR7m1nH9t/xc6YzwaQ3/cuNlT+S0A+oSRaPwTKHv+hdM6RmBgIDNnziQlJQWXy8XChQtZsWIFbre7LU9FCCFEK0iAEuIMGDQG/jLUszbUgv0L0ParJTh2LCp1MEWV+yjUehbYNPS9nvrlP1Dz5ZendxyDgWuuuYbhw4cDUFhYKC8iFkKIdiQBSogzNCRqCJOTJqOg8H9bn2HE71LQmS8BVGzJ+RSL2o3GLwp98niKH3uc2m++Pa3jqNVqxo0bx1VXXcX06dPRaDRteyJCCCFOmQQoIdrAgwMfJNAQyIHqA6xSfUvywF5oTSMJTLgM38uSAND2uBxNWE+OPPwwdUuXnfax0tPTMZlM3s8rV67kyJEjZ3wOQgghTp0EKCHaQJAxiAcGPgDA6xmvk3SpL0a/C6ivTqBBo6Guiw8atRafoXej73YpRQ88SP2KFWd83J07d7J69Wreeecd9uzZc8b1CSGEODUSoIRoI1ckXcGgyEE0uZr4x4F5DJgYD0BlkYWE65M4Eu4EwNBjEqZBf+TwA4/RsHr1GR0zJSWF5ORknE4nn376KWvWrJG5UUIIcRbIq1yEaEO5tblMWzQNh9vBvGHP0V8zDJOvlY/+8hA2ayM9h8wiMd8Ho0qFu7GCph3vED33EXyPTg4/HS6Xi2XLlrFp0yYAevXqxeTJk9HpdG11WkII0e46Wv8tI1BCtKHEgERm9Z4FwHPb52HqAv6h4YTGJeC02di1+hU2++ygSHGi9gnFNOQ+Sp79AMvGTad9TI1Gw8SJE7n88stRqVRkZmby3nvv0dDQ0FanJYQQ4mckQAnRxm5Jv4XEgEQqmyp5aftLqNRqxsx8iOjUMaBSUbx3OVtrPmKrqx6VRoex13WUvbIGy6YtZ3TcgQMHcsMNN2A0Gjl8+DDFxcVtdEZCCCF+Tm7hCfEb2FqylZuX3gzAu2PfY+eLFpoaHCT2tnF4zyfUV5SDSoV/2BQu8UlGpVLjqisk+NoU/EYOOKNjV1RUUFhYSL9+/driVIQQokPoaP23jEAJ8RsYGDmQqd2mAvB/W55myNREAHJ3GUi76EF6jrwIFAWb3yEedNfjcDSi8Y+l5ssKar/bcUbHDg0NbRaeqqur2bRpk0wuF0KINiQBSojfyP0D7ifYGExObQ7rfRdz4e+6A5DxfSnhydOYdP+jzHzkT1w+rRc3qKzU1RWh0vlQv6qByg+3orjPPPA4HA4++ugjlixZwqJFi3A6nWdcpxBCiA4QoF577TUSExMxGo0MGDCAtWvXnrRscXEx1113HSkpKajVau69996z11AhWinAEMBDgx4C4M2dbxLQ383QqZ5FNTd+eQhrQxw+/gHcMCSeW6f15bXGjeRWbQPAustK2aubcVkcZ9QGrVZL//79UalU7Nixg/fff5/GxsYzOzEhhBDtG6AWLFjAvffey+OPP86OHTsYOXIkEydOpKCgoMXyNpuNsLAwHn/8cfr06XOWWytE612WeBlDo4Zid9t5euPT9BsXx6DLEgBY9+lBsreVATApQUeiPY/Ntd+zqfRr3C47jiI7pS9uwX64/rSPr1KpGDJkCNdddx16vZ78/HzefvttysvL2+L0hBDivNWuk8gHDx5M//79ef31173bUlNTmTJlCnPmzPnFfUePHk3fvn156aWXWnXMjjYJTXR+hXWFXLnoSmwuG9ekXMOjFzzKpi9yKTpQzaS7+2I0e9ZrqijM5/25z+KuKCJAF8ao0CswGUNADUFTumG+IPKM2lFWVsaHH35ITU0NBoOBq6++muTk5LY4RSGE+M11tP673Uag7HY727ZtY/z48c22jx8/ng0bNrRTq4Roe7H+sfx5yJ9RoWLB/gU8vv5xBk6JY8oD/b3hCSA0Np67XnoFff8x1DjKWVL6PiX1+8EN1QsPUvXZARSH67TbER4ezqxZs4iLi8Nms7Fq1SrcbndbnKIQQpx32i1AVVRU4HK5iIiIaLY9IiKCkpKSNjuOzWajrq6u2Y8QZ9uU5CnMHTkXrUrLt4e+5YHVD+DWHJ/QnbnqMPm7K9HqdNz18H0Yr7iLapWW1RVfsrd8BYripnFrKWWv78RZ1XTa7TCbzdx4440MHTqU6dOno1a3+zRIIYQ4J7X7354qlarZZ0VRTth2JubMmUNAQID3JzY2ts3qFqI1Lu16KS9d9BJ6tZ5Vhau44/s7sDgs5O4sZ83HB1jyZiaH91cDcOd1Ewi58c8cMiXScGAV1g3/RHFYcByxUPryDqz7qk67HVqtlgkTJjQbAt+1axdWq/VMT1EIIc4b7RagQkND0Wg0J4w2lZWVnTAqdSYeffRRamtrvT+FhYVtVrcQrTUqdhRvjHsDH60Pm0o2ceuyWwnspiOhdyguh5tvX9tFcU4tAHde0ouUG+7mb/1nUdhYhmXF0zQ1FqFYnVS+t4fa5fltstTB7t27WbhwIfPnz6eysvKM6xNCiPNBuwUovV7PgAEDWL58ebPty5cvZ9iwYW12HIPBgL+/f7MfIdrToMhBzB8/nwBDALsqdnHL9zMZeH0ksalBOG0uvnk5g/ICz5N3d4/pxvWXD+SR4bPJ16pYcuR/ZNdtBwXqfyig4j97znipg5CQEPz9/amsrGT+/Pnk5ua2xWkKIUSn1q638O6//37mz5/PO++8Q1ZWFvfddx8FBQXMnj0b8Iwe3Xjjjc32ycjIICMjg4aGBsrLy8nIyGDv3r3t0XwhTluvsF68O+FdwkxhHKw+yM3fz6DPDaFEJQdgb3Kx6J8ZVBZ5XgZ879hu/O7yQTwx+FYiKhvYUb6UjeXf4FQc2A5UU/byjjNa6iAqKopZs2bRpUsXrFYr77//Ptu2bWurUxVCiE6p3d+F99prr/Hcc89RXFxMeno6L774IhdeeCEAM2bMIC8vj1WrVnnLtzQ/Kj4+nry8vFM6Xkd7DFKc3wrrCpm1fBZFDUVE+ETw6oVvsOvdGsry6jD567nuicEYfXUoisLfl+7ni2828dTmN8mPNKMJiGFY+JX46YJAoyLoiuQzWurA4XDw1VdfsXv3bgCGDh3KuHHjZKK5EKJD6Gj9d7sHqLOto/0GCFFqKeXW5bdyqPYQQYYgXh7+GlnvNdJtYDgDLknwllMUhbnf7eObbzYyd/3rVATpKIyIZHDYZXQxdwPAZ2AEQVckodJpTqstiqKwevVq7z9arr/+elkrSgjRIXS0/lsClBAdQHVTNbO/n83eyr346nx5+cJXGBgz4IRyiqLw7OIsln77I/PWvY5L52JXcgzDB95ESFUEKKDr4kvI71PRBhtPuz27d++mvLyciy666ExOSwgh2kxH679lbF6IDiDIGMT88fPpH96fBkcDf1w1m/VF6wGwW52s+G8WjXV2VCoVj12aypiJQ3h0+G3o7GpGZB7Cd/tCQq5LRm3W4ihqoOSf27DuP/2lDtLT05uFp+rqaj788EN5Sk8IIY6SACVEB+Gn9+ONcW8wossImlxN3LniTpblLWPFf7PI2lDMon9m0GRxoFKpeOLynoyeOIzHht9Kk8aAfccOyp57mJCZKdRRBTY3Fe/upnZZXpssdbB06VIOHDjAa6+9xpo1a3A6nb++kxBCdGJyC0+IDsbhcvDoukdZmrcUtUrNn1Oepv7zEKx1dsLj/bji3n7oTVoUReGJr/awacla5qx/Ex+nDd3QwWQkxBBaGkayf38AtF19Cft9OpqfvDamtaqqqvjmm284dOgQAGFhYUyaNIm4uLg2OWchhPg1Ha3/lgAlRAfkcrt4ZuMzfH7wcwAe7Po4zi+70GRxEJUcwKS7+qIzaHC7Ff781W52LF7D3za8hcllx2fECMqvmEjB11vpHzgWrVqH2wciZ/ZFH+N32m1SFIXMzEy+++47GhsbARgwYABjx47FZDK1yXkLIcTJdLT+W27hCdEBadQanhz6JDf29KyD9vyhv2G75CB6k5bi7FqWvLELp8OFWq3i/65Ip88lI3li6C00aXQ0rltHxOLvGfnITLarVlLvqEbdCCWvbKd2w+mvxK9Sqejduzd33nkn/fr1A2Dbtm1s2bKlTc5ZCCHOJTICJUQHpigKb+56k1czXgXgppDZ+C1Px2lz0WNIJGNm9ATA7VZ4ZOEuDixZyVM//huD24nfuLFEzJvHps8/Q7fFRRcfz3IEZ7rUwTF5eXls2LCBq6++Gp1O521vW77LUgghjulo/bcEKCHOAf/L+h9zN88FYLrvzcRvH8Jlt/cmpIuvt4zbrfDQZ7vIXfIDT216B53bhf+lE4l+7jkO79+L7qAK56YaUEAbbSbod90xhPue5Iit53K5eO+99+jRoweDBw9GozmzgCaEED/V0fpvuYUnxDng96m/55nhz6BWqfmk4V12XrwQ/0hDszJqtYrnrupNwiUX838X3IRDpaFu8RKOPPYYMT3SiJzSi9CZ6ajNWpxHLBz5xybKNxxoszbu2bOHgoICli1bxttvv01RUVGb1S2EEB2NBCghzhFTkqfwwqgX0Kq1LDu8lLtW3oXVaaXoQDXrP89GURQ0ahV/v7oPUZeMZc6gG3Cq1NQt+priJ55Acbsxdgsi8A89qHaUokNP01clHHjje9wu9xm3r1evXkyePBmj0UhJSQnz589nyZIl2Gy2Njh7IYToWOQWnhDnmA1FG7hn5T00uZq4IGAYF6y4FqfdTd9xcQybmoRKpcLpcnPfJzupXryER7Z8gAaFwGuuIfKpJ1GpVNSVlXHgX8uJdHqWIajRVhB/xwj8osLOuH0NDQ0sXbqUzMxMAPz9/bn00kvp0aPHGdcthDh/dbT+W0aghDjHDOsyjLfGv4Wfzo/NtRvYk7ICgIzlBWz5JhcArUbNi9P7EHDJJTw/4FrcqKhZsIDSvz2Loij4h4cz4OlrqUtpwKU4CXSGcuQfm8letuGM2+fr68u0adO4/vrrCQoKoq6ujvXr1+N2n/kolxBCdBQyAiXEOSqrMovZ38+mqqmKUTVTSM3yvHpl6JVJ9J8QD4DD5ebuj3bgWPw1923/BDUKwTNmEP7wn7xPy5XtOEjtx9mYVL64FCf+l8UTdGHXNmmj3W5nzZo19OrVi4iICACcTidqtRq1Wv79JoQ4dR2t/5YAJcQ5LLc2l1nLZlHaWMqF5VfSM3s0ACOv6U7vi2IAT4i643/bUS/+insyPgMgZNYswu6/zxui7HVWcl9ejbneDBxb6iAZla7tQ87SpUspKChg0qRJREZGtnn9QojOqaP13/JPQCHOYYkBifx34n+J84tjTdgXZCWsBWDtggMU7PG8+FenUfPKdf1xTryCV3pfCUDl229T8cqr3nr0/ia6PzoB//HxoILGraUcfnEjm/77EQ5bU5u1t6mpiYyMDIqKinjzzTdZvnw5dru9zeoXQoizRUaghOgEKqwV3Lb8Ng5UHWB04XRGBF7EVX8chkZ7/N9INqeLP36wHf9vPuO23YsACLv3HkJnz25WV9PBaio/2ofS6MTmsnKgaRshF3ej7yWXojf5nHFb6+rqWLJkCVlZWQAEBgZy+eWXk5ycfMZ1CyE6r47Wf0uAEqKTqLXVcvsPt7OrbBdmrS//GvNPLoi6oFkZm9PFbe9vI+SbT/jDnm8BCH/oQUJuuaVZOWdNE0VvbEFT4/nc4Khhf+MWwi9Opd/ESRh9z3wBzv379/Ptt99SV1cHQHp6OhMnTsRsNp9x3UKIzqej9d8SoIToRBodjdy98m42FW9Cr9bz/Kjn0W2MIS4tmLi0EACaHC5ufX8b0V9/xE1Z3wEQ8dijBN94Y7O6FJebhk3FVC/NQW3zzJWqsZWxt3ETPa8ZR/rF4864vTabjZUrV7Jp0yZ0Oh133nmn/LkUQrSoo/XfEqCE6GRsLhsPrX6IlYUrSSsdwchDV6PRqZl0Vx+6dA8CPCFq1n+3krDoA67b/z0AEU/8heDrrjuhPrfdRf26w9StyEfl9AQpJUxN+FW9MMS3zZ+hoqIiampqSEtL826rq6uTP6NCCK+O1n9LgBKiE3K4HTyx/gkWZy9hwv5biK9JQ2fQMPmevkR2DQDAandxy382k/L1+0w/uBKAyGeeJujqq1us093ooG5lIfUbilC5PNuMqcHkafZRay9j0OSr8A8984U4AQ4ePMjHH3/MiBEjGDFihPdlxUKI81dH678lQAnRSbkVN89uepbPsj5n4r5bialNweCj5Yr7+hEW6wd4QtTN726i16L3mJqzBkWlIvrZZwm8cspJ63XW2qj/vgDL1hJQQFEU8hp2s7fuRxJHDOKCKdMJjDiz5Qm++eYbtm7dCkBISAiXX345iYmJZ1SnEOLc1tH6bwlQQnRiiqLw8o6XeTfjPS7L+iNR9V0x+uq48v7+BEd7Jms32p3MeGczA776N5NzN6CoVHR57jkCJl3+i3U7yhqpXZZH027PcgkuxUl23Q721W2i67DBXDDlakK6xJ52u/fu3cuSJUtoaGgAoG/fvowfPx4fnzN/ElAIce7paP23BCghzgPv7H6HVze9zuV77yDcEoc5yMD1fx2CVq8BwGJzMuPfGxmy6N9cmrcRRa0h5h8v4H/JhF+t215YT+2SXGyHagFwuG3sq93MgbptXHTLLHqPveS02221Wvnhhx+8o1E+Pj5MmjSJ1NTU065TCHFu6mj9t7a9GyCE+O3NTJ+Jr86Xvyv/4NKs2ajTq1C0FwCeAGU2aHn3liHcpChov3IyvmArhx94gFidFr8xY36xbn2sH6GzemE7WEPtd7lwBHoFjaSb/wD8nfEoTjcqrRqX04FG27q5TCaTicsvv5zevXvz9ddfU15efrqXQAgh2pSMQAlxHll8aDGPr30cJ05Gx47m+VHPY9AYvN/XNzm48e2NjP3qDS4+vB20WgKnTSP4ppswdP31OUiKW8GaWUHdsjyclZ4VzDVBBvzHJ7Bi5Ts47E0MmXoN0d1bP4LkdDrZt28f6enp3m0lJSWEhYWh0WhaXZ8Q4tzS0fpvCVBCnGdWFa7igVUPYHfbGeF/EROP3My4G9Mw+ekBqGtycNNbGxi76C1PiDrK9+KLCbl5BqaBA73v0DsZxeXGsqWUuh/ycdc7AKixl7GrajXF1kPEpfdmyNTfEdOz16/WdTIWi4VXXnkFPz8/Jk2aRGzs6c23EkKcGzpa/y0BSojz0Obizdz1w12M3zmLyPquBHUxMfX+gRjNnltstVYHN8zfiGtnBtOyVzO0ZI93X2OvXoTMvBm/ceNQaX95FoDb7qJh/RHqVxeiNHnWPihvOszOqlVU2oro0qMnQ668hvg+/VsdpPLz81mwYAGNjY0ADBw4kDFjxmAymVpVjxDi3NDR+m8JUEKcpzLLM/nT13/m4h0z8XH4ERzvw7T7BqI3ekKR1e7if5vyeXvtIbRFhVyZs4ZxhdvQuzwjSrroaIJn3ETA1GlofH/59SvuRgd1qw7TsOEION0AHLFms7NyNXWOCib88V7SR49t9Tk0NjaybNkyMjIyAPD19WXixIn07NnztEe2hBAdU0frvyVACXEeO1h9kIe++DMjt1+P0WkmtKuJqfdegE5/fE6Rzeli4fYi3lidQ82RMi7L3cDk3PUE2CwAqP38CPrdNQRdfz26iIhfPN4Ja0ihUOTIps9DUzFFBgJQX1WBOTAItfrU5zXl5uby9ddfU1VVBUB0dDSzZs2SECVEJ9LR+m8JUEKc5wrrCnnws78weNvVGFwmQrsbuequIWh06mblnC4332YW8/qqHA4VVTGmYCvTctbQpeHok3E6HQGXXkrwzJsxpqT84jEdZY3ULcvDenQNKTQqfIdE4Ts6hg+ffgCX08ngqdfQY9iFqE9xgrjD4WDdunVs2LCB3r17M2nSJMCzplR2djZdu3aVyeZCnMM6Wv8tAUoIQamllD998iT9tlyBzm0gdpiZyTcObrGsoiis2FfGKyuzyciv4oKSLKblrKZXxSFvGfPw4QTffDPm4cN+cRTo52tIoVeRVbWRvRXrcSoOAiOiuGDK1fS88KJTXgLBZrPhcDjw9fUF4PDhw8yfPx+z2UyfPn3o168fYWFt88oZIcTZ09H6bwlQQggAqpqqeOSjZ4jc04u16R/ywsTn6B/R/6TlFUVh46EqXluVzdqDFXSvLmBq9mpGHtmF+uhfK4bu3Qm++WYCLrsUlV5/0nqOrSHlOOK5LejSuthTs4H95Rtx48YvNIwLJl9F+kXj0J6knpPZu3cvixcv9q5oDhATE0O/fv1IT0/HYDD8wt5CiI6io/XfEqCEEF719nru/P5Otpdvx6gx8sLwFxkeOwyNVv2L++0srOG1Vdks3VNKhKWSKTnruLRwM3qHDQBteDhBN1xP0PTpaAICWqyjpTWknAYXmVWrOVC2BYArH3mSrv0Gtfq8XC4XBw8eZMeOHRw4cIBjf+3pdDpmzZpFeHh4q+sUQpxdHa3/lgAlhGjG6rRy/6r7WVe0jgsKL6NP5YV0GxnKxZf0w+Dzy7fRDpbW8/rqHL7KOIKpycLEvI1clb8ef4vnFp3Kx4fAq6YRfONN6GO6tFhHS2tIOc0uDql2M/qx21GrPWGuaN9eQuMSMLTy3Xj19fXs2rWL7du343A4uPfee7115ubmEhoaip+fX6vqFEL89jpa/y0BSghxAofLwePrHsf8VS9CGz1Bx6WxE9hPxWWThxIS/st/dgqrGnlrzSEWbC3Ebbcz+vAOrs1bR3RVkaeAWo3fhPGE3Hwzpt69W6yjpTWk9An+BExMRBWu5e07bwFFod/EyfSfOBnj0TlPp0pRFOrr671/D7hcLv7xj3/Q2NhIt27d6NevH927d5eJ50J0EB2t/5YAJYQ4qZ3Fu1i0bBXsDCG4MQoAt8qNKqmesZP60SMl4Rf3L6tv4t/rcvnfxgIamhz0Lz/AdfnrSCvK8pYxDRxAyMyZ+I4ejUp94q3CltaQUieYWHvgUw4XeRb41JtM9J1wOQMum4KPf8u3CH9NbW0tn332GYWFhd5tMvFciI6jo/XfEqCEEL+qvLGcz374jpINdsKrPe/Ey4r4EePF1Vzb41r6h//ySuK1jQ7++2Me76zPpbrRQULtEX5fsI5hedtRu5wA6BMSCJ4xg4ApV6A2Gk+o4+drSKECRwxszvuawwV7AdAaDPQecwmDr5x+2kGqvLycjIwMMjIysFgs3u3jxo1j+PDhp1WnEOLMdbT+WwKUEOKUOdwOlmxeScb3BSwL/YhaUxkA/TVDGWuexJWXXIyv6eSrkjfanXy0uZC31xyipK6JEGstVxdu4NLcjeisnrCiCQoi6LrrCLruWrQhISe2oYU1pJyJKjZlL+JwrmdE6o9vfYBPQCAApYey0RoMBEfHtGphzZ9PPL/tttuIjIwEoKysDKvVSlxcnCzWKcRZ0tH6bwlQQojTsr9qPx/t+4hvD33L8KzpdKscQKO+Dl2fBiZdPoKkiIST7mtzuvji6OrmeZWNmBxNXF60lWsKNmCu8oQylcFAwBVXEDxjBoauiSfU8fM1pFQGDc5uavKcexk1Y6a33KfPPEbB7l34hoQSn96X+F59iOvVF3Ng0Cmfq8ViwWw+HgwXLlzIrl27CAkJoV+/fvTp00cmngvxG+to/bcEKCHEGam11fLJp99Tu0WLyeYJEQ61jfqkQkZc0pNRPYehVrW8DILLrbA4s5hXV2azr6QetdvFqNI9zCxaT+jhHG8534suImTmzZgGDmw24tPSGlJqsw5Tr1CMqcEYEgP46sX/Iz8zA5fD0ezYoXEJJA8czPBrbmj1OS9evJgdO3bgOFqnSqWSiedC/MY6Wv8tAUoI0SbsdgdLvl/PwVVVmOoCAXDjpiA+g75Torgi6Qp89S0/KacoCiv3l/Hqyhy25VeDotC7Oo8/lm4kYf82bzljejohM2/Gb/x4VFrt8f1bWEMKQKVTY+gWhL6bP1XqUvIP7qQgcydleZ5wlthvIFMfecpbfsd3XxOZ1J2Irsm/+goZm83Gnj172LFjR7OJ57Gxsdxyyy2nfN2EEKemo/XfEqCEEG1KURS2bs1iw5L9aI8E8GP8l+yMXomP1odJXSdxbcq1JAUnnXTfzblVvLoqhzUHPO/Y61Jfxl1VW+m9Zx0qux0AXXQ0wTfdSMC0q9D4Hr+1prjcNB2soSmrkqasKlx19mb162L9MPUIhjg9R8oOYPTzI6F3PwDqKsp5+46bATD4mIlN6018r77E9+5LYGT0L851Ki8vZ8eOHezcuZMhQ4YwcuRIwPN+vszMTNLS0mTFcyHOUEfrvyVACSF+MwW5ZayvW8WC3A/Jqc0hqaIfAw5PoD41n3FjB3Nxwmg06pZHejIP1/Laqmy+21OCokCArYE/1u5g5O5VqOs8857Ufn4EXTOdoBtuQBcR0Wx/RVFwHLHQlFWJdV8VjsMNzb7XBBgwpgZ7froGUlVWxPqP36dgz05sP3n6DsAvNIzh068nbdSYXzxfl8uFy+VCf/R1M7t37+azzz5Dp9ORlpZGv379ZOK5EKepo/XfEqCEEL85RVHYXLKZNa/n4VPmWU/JoqulIC6DvqMTuKrXlQQaA1vcN7usntdXHeLLjCJcbgW9y8GMhr1cvn8VuiNHb51ptQRcdhnBM2/GmJLSYj2uOhvWfVU0ZVVhy65Bcbi93x271WdKDUbfPYCK8gIKMneSv2sHRfuzcLucXH7vw6QM9YwslefnsnftSuJ79aVLj57oDCcuuwCwZ88eVqxYQWVlpXebTDwX4vR0tP5bApQQ4qyxWZ1s/CGLzJVFqCyeURqH2sbBiC2EDdZwzaCppIaktrhvYVUjb689xIIthdicblSKmyubcvl9/np89u3ylvMZPBifAQMwJCehT0pGn5iA+mcvIFYcLppyak9+qy/GF1NqCMbUYAjSULR/L1HdUjCaPXO4Nn7+Mes/+QAAjU5Hl5RU4tL7Et+7H+GJXVH/ZFRNURQKCwvZvn07e/bsaTbx/L777pO/h4Q4RR2t/5YAJYQ461xON1lbitiweB+Ock/YOOKXzaL0l+kb1pdre1zLuPhx6DQnvnuvvN7GO+tzef/HfBpsnkU4R7pK+WPpJoK2rgO3u/kOGg362FgM3ZLRJyVhSEr2hKvERNRG46nf6usRjDEpEJVOTX5mBlnrVpGfmUFDZUWz8kZfP6595u8ER8ec0PafTjwHmk0237lzJ9HR0bLiuRAn0dH6bwlQQoh2oygKhVlVrF28l4NRm/nK/QFOtxODw4fu9j4MH9qX6SlXE+ZzYqiotTp4/8c83lmfR5XFM4KUSj13aA+Taq9EU5CHLScHd319ywdXqdDFxmJISsKQnIQhORl9UjLasC7Y85uwZlX+4q0+Y49g1L46qouLyM/MoCAzg4LduwCF2+d/hOboU4I/fvYR9VUVxPfqR1x6b0x+nr937Ha7d66UxWLhhRdewO12ExsbS79+/WTiuRA/09H6bwlQQogOo8JawacHPiXzu2LSckdTbSphd/Qa4gYEcm36NfQN63vCBOxGu5MFWwp5a80himuPL2HQq0sAY3qEMTZcQ0JDKfacQ9iys7Hl5GDLzsZdW3vSdui6dEGfnIS+aze0oT1QlFAcpeCub76W1E9v9emizChuNzWlxc1Gn/59zyxqSoo9H1QqIhKTiOvV1zN/KqUnWr2eyspKli5dysGDBzn2V7JeryctLY3+/fsTE9O6VdSF6Iw6Wv8tAUoI0eFsWXKIrUtycds9oaFRV8/uyDU4epRxde+pTEyciFHbfOK23enmix2H+XhLIRmFNfz0b7aoACNjUsMZkxrB0K4hGLRqXJWV2LJzsOVkY8/J8fw6OxtXVdVJ26VL6oe+6xA0/skoruYTwDUBes9tvtQQ760+RVHI3bGV/MwM8nftoPJwQbN9QmPjuen5V72f923ZRF5JKfuyc6j5ScCbNGkSAwYMaPV1FKIz6Wj9twQoIUSHZLc62bv+CFuXH8JW67mN5lDb2Ruxnr3dVzK1+1SuSbmGLr5dTti3vN7Gyn1lfJ9VytqDFVgdLu93PnoNF3YLY0xqOBf3CCfEt/ltMmdVlSdQHQtVOdnYs3Nwlpc3K6cyBKCN7IUmsjfa8J6oND+ZqK4BQ1c/fHpHYuwRjMbP811DdRUFuz1P9xVkZpA0cDBj/3CH57h2O/+8YSrgeVeyy+SLOzQKu9mPrkoT3foOYMjUa8jNzcXhcOAsL8bHzx8f/wBM/p7/arQnzhkTorPoaP23BCghRIfmcrnJ2VbG1qW5VBdZKYjOZHH8fADUKjWjYkZxbY9rGRI1pMXbXE0OFxtyKvg+q4wfskoprbN5v1OpYEBcEGNSIxjXM5ykMN+T3ipz1dZiyzmELfvg8RGrnBycJSWg1qEJS0Eb2RttRG/UPsHNd1bXoQtTMPYMxWdAsvclyU67zbsEQmNdLZ/89VEa62ppqq9HUTyhUVGpUCkKaaPGcsnt9/LOO+9QUFCAymFHV1uBrqYCtcMzB8zgY8bk70/yoKGMuv74+wC3L/kak68vJv8ATP4B+AQESOAS55yO1n9LgBJCnBMUReHw/mp8AnTscmzlo30fsT87jxG5V7EzeiXqBAvXpl7L5KTJmHXmk9axu6iO5Vml/JBVyp4jdc2+jw/xYWxqBGNSwxmUEIxO0/I7/H7K1dDQLFDZsg963suniUIb2RtNUPMXIbsbq3BV70dtqEYXbcKYnOh9QlAbFoZKpcLtdtHU0IC1rg5rXS2NdTX4BocQmZzCsmXL2JmRgbXp+HwvjaUeXU052vrqZmELwGFr4l83XtVi2/UmH1KGjmD8bXd7t61f8D4Gs+/Rka2AZv/V/mw5CCHOpo7Wf0uAEkKcs758ezNF2zzLDlQbS9kVvZKCqN0kBSeSFJjk/UkOTCbCJ+KE0aUjNVZ+2FfG93tL+TGnErvr+BN3/kYto1PCGdszglHdwwgwtW60xm2xYDuUizUrB9uBGpzVelCHN7vVpzhtOMuzcJXswlWTB1gwdE04uobV8SUXtJGRzdrudDrZv38/27dvJyfn+EuXE+PiGDPkAgy+voTFJQDQZGng+/mvHQ1itVjrarHW1+F2eW5rpo0eyyV/vBcAR1MT/7qp5bAF0H3wcCbd/6j389ZvviAwMpqo5O6YA4NadX2EaK2O1n9LgBJCnLMaqm1kriokc00RDqsnEDRpLVSYD1PhU8TGhK+8Zc06M0kBSXQN7EpyYDJdAzz/jTR7wkmDzcm6g+Us31vGyv1l3qURALRqFRckBjM2NYKxqRHEhficVnsVhwtrVjmNWwuw5VlR7M1HuBS3C7elDHdd0dGfI7jqilApFvTJSd4lF/RJnmUXdNHR1NbVkZGRQUZGBhdffDG9e/cGoL6+nr1799KrVy98fJq3V1EUbBYLjXU1aLQ6AsI9r8GxNTay/pP3sdbV0Vhb4wld9Z5RMLfLRfpF45gw+x7PdbY08OrM33nr9AsJIzK5G5FJ3YlK9ryQWW86veskREs6Wv8tAUoIcc6zNznJWl9Mxg8FNFQdneMU3ETO+O85VHOI/Lp8Lsu8HZ3LQLWplFpTGTWmMmqMZdj9GogPifUGqq6BXUn0T6K40sCKfRV8n1VKdlnzxTW7R/gy5miY6hsbiEbd+iUGFEXBUWyhKauKpuwaHCUNKFZXy2Wddtz1R3DXewLVsXAFTei7JmJISkbftSv65CSMycnoY2NZv3Ej33//PRqNhtTUVPr160diYiJq9a/flmyprbZGC4rb7V3HqqGqkvWffEBJ9gEqDhfAz7qSn45suZxOKgryCI1L8K6PJURrdbT+WwKUEKLTcLvclOXXU11iQa1RkzI4EgC7w84796/H5Wj5r7si/wN8nXZ8OYHw+njcJjuR4SF0DepKsC6WqppgsvJN7MxT4XIfD0whZj0X9/Dc6hvZLRQf/ekFBEVRcNfbcZQ04iix4Cj1/NdZ1thsMc9m+9gtzQKVu64IV/0RVDgo6t+PPXFxVGmOv1YmMCCAvv360bdvXwIDA0+rnS2xWxspzc2hJPsAJdkHKM45wOAp0+kzbiIApbk5fPDIPWh0OsITuhKZ3J2opO5EJncnMDJa1rgSp6Sj9d8SoIQQnZ6iKNSWWakubaS6xEJNaSM1R3/d1ODE3M2NdexBcmpyyKnO4cLlf0DvMuFQ26k1Hh+tqjGV0eBXgTpIj8sWTmlFAI2WMNy2cBRHEHqtluFJIYztGcGYHhFEBrT8kuFWtd2t4KxqwvmTUOUoteCssELLuQq3tdoTpuqKKHeVkxOkIi8qGMfRSeBaRWFmcDDm5GTPCuwJCajbeNVzxe1GdXS0K2fbZpa8+gI2i+WEckazLxfPnE3qiNGe/RRFApVoUUfrvyVACSHOa00WBw6bC79gT9ixWZ18NncLtRVWlBbuqOUH7mFJ6lvez0PzptBgqKbaWEGVyk2tYsTtiMBlC6dbYDITUlIZ1zOKtGj/Ng0GisONo7wRR2mjJ1wdDViuGluL5R2KgzxHDvt1pZisTQzbnYurrgjFUs6+Ht2JBSKiuzSfZ9W1K2qTqW3aqyjUlBzxjlCVZB+gLO8QLoeDqx7/P+J79wXgwMZ1rHr/394Rqshj86mMbdMOce7qaP23BCghhGiB2+WmrqLp6EhVIzWlFqpKLfglqlEPrCKnJofc0gJiF45ptp9TZafGVE6tqYy8oN0cCNmJ2x6GwR1Nt6AkRsSnMzGlD10D49CoNSc5+hm0u8l5fKSqxILz6K/djc7jZXCjxjM6VOmu4QufbQCEWJx0LSwjLicLbX2F532BXTyhyjOJ/eiLmLsmofFteamI1nA5HVQU5BMcHYPO6Amwqz94h61fL2xWTqVSExITS2RydwZPmU5gZNQZH1ucezpa/y0BSgghTpO13k7G94VUlTRQUVxHQ4UdfjI/anfkWtYlfgaA3mnimoxHqTGVUmMqo9ZUCf4K0TFBJMd1Ica/C9G+0USZowgzhbVpuFIUBXeD42io+sltwNJGKp11bNceIl9dgaLydAcaRU2iM4TkGjVhFRUodUeOPhF4GByNAGijojCmpmJM64kpPR1jWhra0NAzbqvd2kjpoWyKsw9QknOAkuyD1FceXwX+Dy/PJyDcM7cta+1KSnIOekeqAiOi5PZfJ9bR+m8JUEII0UbcLjd1lU3eOVbBMWaU6Ab2VR5kw5Ycwld0a3E/p8rB9phlbI9ZBoDBaaZP9WgM/hqCQs1EhAcSFRZOtG8UUb5RRJmjMGnP/JaW4lZwVTfhKLFQW1BJZs5e9lblUO0+/tTheHsf4tzHg5HbXoe7uhB3fRGumkLcNfm4G0oBBW1kJMa0NEzpaRjTPD/HVl0/E5aaakpyPLf8hkz9nTckLXrhWQ5u3uAtZzT7EpHUjaijgSqhT39Zbb0T6Wj9d7sHqNdee42///3vFBcXk5aWxksvvcTIkSNPWn716tXcf//97Nmzh+joaP70pz8xe/bsUz5eR/sNEEKcH5x2F5VFFqpKLBw4WEVObilNVU2YbTq0aFgXtZpd0StR6WoJt3RhWuaDzfZ3qVw06mto0NeSFbGBgoj9BOrDidR3Id6RTFRkEEldoogN6EKUbxRBhqDTGo1RFIXC/AK2bdxKfkE+N6ZPxl1mw1Fi4UBdARrUxLlDvLcAARSXHVdNPu6afFzV+c1DVXQUprQ0jGmeUSpjehraoLZZdDN7y0YK9uxsNp/qGI1Wy13vfeoNUHkZ29Do9UQmdfO+PkecWzpa/92uAWrBggXccMMNvPbaawwfPpw333yT+fPns3fvXuLi4k4on5ubS3p6OrNmzeK2225j/fr13H777Xz00UdMmzbtlI7Z0X4DhBDnt6KqRjbsLqXc6qDC7qS0rpG68nK6FDnR2xV8nFrMLn2zwLIh/gt2Ra8CIKwhjmmZDwCeuU1WXT0WfQ0WfR1NBhtV4WUokQpRvlHEmqNJCoyhR2Q8iUHR6NS/PDrjdru960a53W7++dI/qa2rxUdvIjUwkUh7AH6VGswOPSqahzXFZfeEqdp8XDUFnlBVXwIo6KKjMaYfD1SmtDQ0Z7iswrH5VMVHl1JwOR1cdvdD3u//+6e7KM/PRa3REpnUjZie6cSkptMlJVUW/DxHdLT+u10D1ODBg+nfvz+vv/66d1tqaipTpkxhzpw5J5R/+OGHWbRoEVlZWd5ts2fPZufOnfz444+ndMyO9hsghBC/pNHupKzGRlFJPWWljVSWN1Khs5LnLqa0sQR1pZVB+V3xcRrRKCfOm2opbFm19TToa7DoLTTp7TiNCmofLboIA2GRISQExtA9JJb4oGBCzAY0ahV2u51Vq1axc+dOLD9bjkCn1ZEek8Ko4H7YixpwHGmg3tGIGUOzYPWLoSomplmgMqaloQkIaJNrqCgK3/7zOYr27aGhuqrZdyq1mqQBF3DFg39uk2OJ305H67/bbUlYu93Otm3beOSRR5ptHz9+PBs2bGhxnx9//JHx48c32zZhwgT+/e9/43A40OlO/NeUzWbDZjv+WG9dXd0JZYQQoqPy0WtJCNeSEP7LT705nW6KyywUHamnuKSO4rIK6qrrCAzoS7w6kBp7OQEWXwBMTj9MTj/CGpvXsb5pIT/YV0MBhFi6cPHBG2jQNtKos2M3KChGHQbfCAIDVJgdVlQ2K7aGWhxOB4SYCLi8KyqVCmujlbefm4dOoyXYEECg20xAo4FApw9BYTH4hiajPxqsPLf/PGHKujcfy4aPjoeq2FhPoDo2WtWzJ5rT6DhVKhWX3/vw0fXASjm8N5PDWXs4nJVJbVkpup8skaC43Xzy9GOEJSQSm9qLLqlp+Pi3TZATnUu7BaiKigpcLhcRERHNtkdERFBSUtLiPiUlJS2WdzqdVFRUEBV14qOtc+bM4a9//WvbNVwIITogrVZNbLQfsdF+QHSLZTzvwHNSWlpPdkEphcXlVFXW0ljXhNKgoJj9MCmx2JQq/JtCCLFGcbIp4OsTFpIZtRoCjARbYtm308pL+7+lwWQnGF8GE4DD5aS0sZJSKkENHH2PclpIN0Zp03EcacCJhiNhgQSFdsFXuRgVquahanc+lnX/Ox6q4uMweedTpWNM64nG1/eUrpFKpSIwIpLAiEjSLxoHQF1FOS7n8blTFYX5HM7azeGs3exY8jUAITFxxKSmE5OaRmxab3lxsgDaMUAd8/NJjr+2Cm1L5Vvafsyjjz7K/fff7/1cV1dHbGzs6TZXCCHOWSqVCqOvjnjfYOKTgoHUn5WY7v1VZXUN+w8Ukl9URll5HZaaJlz1ChqrFoPNB4u+1lNQ20SA04eRhyd4960zVFDlc4Q6Uxk2fTV2XT0mtwF/uz++Dl/+p3zOX/WvoovzJbUxie7Vnn8Yq1ET5PYhWPElMNxMUFgfQt0jMGNAcdlx1xTgqsmnMbOAhrUfeEOVPiGhWaAy9jz1UOUfGtb8c1g4l9/7MIV7d1OUtZuKwnwqDxdQebiAncsXM/jKaxjxuxsAcNiasNbX4R8a3qrfB9E5tFuACg0NRaPRnDDaVFZWdsIo0zGRkZEtltdqtYSc5FFZg8GAoY1fUSCEEJ1dSFAgwwYHMuwk39/juoQGRwM1thpyd5eRZ2+gscwNjWr8baH420Kh2lN2VfevyArbjpMGQhsiia/pSaLLSJWpmGLDPiJ0RnwdnsBTqW6gkgY4Op0rjkBG2tIwaYxYQ2LICdcSpPQhUDFjdqqg5rAnVO0qoGHN+7gbPKFKHReDKT0dc3pvTL3SMaamojb/+uKfBh8zKUNHkjLU8zR4Y10tRfv2eG757d1NbFovb9mC3Tv58rln8A8L94xQHZ2YLutRnR/aLUDp9XoGDBjA8uXLufLKK73bly9fzhVXXNHiPkOHDuXrr79utm3ZsmUMHDiwxflPQgghfhtajZZATSCBxkAShifAcM92a4OdqiILlUcsVB1poOqIhbd/P4fACB8URWHTkmy2LSr01qNoFOx+TdSZ6qg1lFFmLkRxWvGxq/F1GlgbuIl/mt+hiz2CnrUp+FqOr0ml1asJNJkJjIwkyJ1EgjscP6cWpaYQV20+tl35WI+GKrfipjzMSGOgCZefGXWAH7rAQIxBQRiCQjEFh+EbEol/aDT+YdFoAwJRG434+AfQ7YJhdLvgxChZW1qCSq2mrryMveUr2LtmBQC+QcF0SU1n6LRrCYmROx6dVYdYxuCNN95g6NChvPXWW7z99tvs2bOH+Ph4Hn30UYqKivjvf/8LHF/G4LbbbmPWrFn8+OOPzJ49W5YxEEKIc0ReZgXZ28qoOmKhqtiCy9H8jcjTHx9EWKwfADk7ysjbU4UuWIfFx0ZhQz6lBdnY6+tRN9lR/az3GulIJcXlmf9VrKpmv/YIQW4zAS4DATW1+FQVoTRWo9gtKPYGsDfgtjeA3YJitwDNK7RrVVhNGmw+ehy+RhQ/M5qjwUsXGIwhKBi9fzBNDoXamnpKig9TVpiPy+l5bc7Ml94kKKoLALk7tlJdcoSY1HTC4hK8L1oWp66j9d/tOgfqmmuuobKykqeffpri4mLS09NZvHgx8fHxABQXF1NQUOAtn5iYyOLFi7nvvvt49dVXiY6O5l//+tcphychhBDtK6FXKAm9PKNIbrdCXbmVyqMjVZVFDQRFHl+TqWBPFfvWHfnJ3gZiA/oR3MWXwK4mkgb7U2epoby8nLKyMtIuHIWrXkN9Xi15u0vIri7x3ArUAZGgiVBjVqLxwcBQR3dCFE9Qq1M1UkcjBqcbo82O0WpFZW/EaG/Az96AYm/whK7SBpSCBhT7IRT7LhRHIyhufAAfIApwqVRUmQ1U+pvIunoybrMRxd9Mtt5IldMTFrVaDWGhYUTHJhLfPY2IbinogkPQBAaglikn54x2X4n8bOtoCVYIIUTLCvZWUrS/2nM7sMhCfVVTs+9nvXQheqNnHGDr4jzK8usIjjYTEu2LQ19PWXURlRUVlBaXUlldicvt8u47PXA0gTYfXBYHO12H2KrL8X6nVlT4YMCk6PFRDAx0JhGkeOZPNdCEVWXHR9FjQo/bacXl8IQsVVMDapsFxXYsdDV4R7uKfKDEqFBmUHD+bLkundPFmL15qBVwaNXYzHrcfibwM6MO8EcbEoopqgvmqFj8oxMwREaijYhAExh4Xo1kdbT+u92fwhNCCCFaEtczhLiexx8QsludVBV7Rqoaqm3e8ARweF8VRQdqyN1Z4d2m1qgIjIghOTqFWbf1oK6+lvr6eipKq4nqmoxfgA8anZojm7SEbamloaEBq60Jt0qhgSYaVJ7ANrzbQIxuX1wWBzk1h9ni2O85gAJGgw4fxXD0R09fV1/8Fc8omhU7DpULH0VPNzQcexOiw2XF7rJgdzXR5G7C5bBgTCsDuwWdvYHCIB1OZyOm+mr8SirQ1x/A7XTSABx/SyE4NSoa/Y04gvwgLAh9RATGyGh8o+MIjEnEHBWLNjwcta+vTGr/DUiAEkIIcU7Qm7REdg0gsuuJC1sOntyVsoJ6z9yqIw1UHrHgaHJRdcSCtcGBTu95WjskJITtn1ay6d0tAKi1KgwmLQHGAYT7aDGGahh5fVcaGhqor6/n0J4j1PmH4vbzQW/Sosotx3ywiEarBQWFJhw0qRxUHY02Q4YMwVfth9viZPeRXWys3g2ADi0+bj0+ih4fnQGTYiDNGUMUnkU87YFOFBQMaOnzs9fiuBU3Ta4GrM46nLZqfGpK0dVXo7VW00gjxqpKdAU56Jz7UQE2oPQn+9t0ahr8DTQF+eIKDkQbEY5fdDT+XeIJ6JJIUGwS+vAI1EZ5R2BrSIASQghxzotKDiQqOdD7WVEU6quaqDpiwd7kbFbW7VZABSjgdipY6x1Y6z2LafoE6AkMDCTw6Lv5sr5tZFN2/k/21uBDf0woqPQupj7ayxu2MjfksXVPIyYfMJg0FKsU1CoNbsWFAye1aie1HF/+vc/owfj5BKGyu/gxexs/Hs5Ao1LjozJgdOswuXSYFSMmRU8PVRdCtDFgjKEpIAUnbozo6HJ0vQdFUWhyWWh01mFz1OKw16CtryS4ogSNtRqjtRp7bS3a7HJUHPTsA9Qc/QGwGNXU+huwBpixBwWgCgnFEBlFYEwskYnJhMelYI7sgkor0QEkQAkhhOiEVCoV/iEm/ENMJ3x31cMDUdwKdpsLu9WJrdGJ3er5+fm04NjUYMyBhhPK2axO9EZDszdg5K1QKM6tBaxHt4QQzDAUlQu13sGl9/akvr6ehoYGdq49xHefF6FWSlGpoDGwEgzgUtzUK1bqsXrXwgIwREXha7dhRMchRxl7rJ7biBpFhUHRY0SHUdFhQMcgZxL+SiqEQG1iI3UqK0ZFhxEditOO3WnB5qjH5mzAabOAtQGtpR5DQx0+TfX4lNpRlbrwq9+KWvHMG6vT+1OlNaEoChYT1Js1NJoNNPmbcQcGoA0LwhzdhZC4rnSJTyE+ManTLy8kAUoIIcR5R6X23LozmLT4BZ+83KDLEk/6ndvVfAmG4dO6YamxYftJyDoWuMDzJPkx1TvMFKircLsUFAVM1YkYicOtsYPeydhZ3bxha9+WQg7sUVArasCFxbcRzCpQKbhUCo0qG40cf+erT40PQYoek8aPAp9K9uvzjjfS4JkkbzgauC5y9CdY8SxiWqqqpVJdi9atRXE1UeewotgbUFtrcbj9qDXG0qToacIHt+onTwvaYcjCp/CxlgOQHzWM6uoNDMrI+pXfhXObBCghhBDiNKg1zZ+Ai0g89SfDLrujD4qi4HK4TwhcTrubrj2Pv2ImyniEqmQLiltBcYPi7oLL7cbpcuBwNNF3YhcaGxuxWq0czCjCGBGBHS02BRotDkxN/jjddpyKHQU3bpWCFTtWlZ1SRzkudyMmrT+F+koytLkttFaDSrEyye5HuOKZf5arKueQuhy1WwtOK/tGjkPfWIOxoQbs/mgc5l99Ndu5TgKUEEII0Q5UKhVavQatXoM54OTrP/Uc3vLLoVvSu3fvn29p9slut2O1WmlsbKSxsZG4uDjvrTbn7t049/jQUFdPfU0tTbYmbE4HTtwoKgWnYsXhNqJTG6jS1JOrLfZUagDMQLAf4IdZMfA714un3OZzlQQoIYQQ4jyh1+vR6/UEBJz4JGN6ejrp6eknbHc6nTQ2NmI2m9FoNLga7aQfCMf3UCT11TVUlZZhc9ixu13YFSe+GNAFmTr16BNIgBJCCCHEL9Bqtc0WrtT46Enqm0JS35ST7qM43Sf9rrM4f5YwFUIIIcRZodJ2/njR+c9QCCGEEKKNSYASQgghhGglCVBCCCGEEK0kAUoIIYQQopUkQAkhhBBCtJIEKCGEEEKIVpIAJYQQQgjRShKghBBCCCFaSQKUEEIIIUQrSYASQgghhGglCVBCCCGEEK0kAUoIIYQQopUkQAkhhBBCtJK2vRtwtimKAkBdXV07t0QIIYQQp+pYv32sH29v512Aqq+vByA2NradWyKEEEKI1qqvrycgIKC9m4FK6ShR7ixxu90cOXIEPz8/VCpVm9ZdV1dHbGwshYWF+Pv7t2nd4ji5zmeHXOezQ67z2SPX+uz4ra6zoijU19cTHR2NWt3+M5DOuxEotVpNTEzMb3oMf39/+cN5Fsh1PjvkOp8dcp3PHrnWZ8dvcZ07wsjTMe0f4YQQQgghzjESoIQQQgghWkkCVBsyGAw8+eSTGAyG9m5KpybX+eyQ63x2yHU+e+Ranx3ny3U+7yaRCyGEEEKcKRmBEkIIIYRoJQlQQgghhBCtJAFKCCGEEKKVJEAJIYQQQrSSBKg28tprr5GYmIjRaGTAgAGsXbu2vZvU6cyZM4dBgwbh5+dHeHg4U6ZMYf/+/e3drE5vzpw5qFQq7r333vZuSqdTVFTE9ddfT0hICD4+PvTt25dt27a1d7M6FafTyZ///GcSExMxmUx07dqVp59+Grfb3d5NO+etWbOGSZMmER0djUql4ssvv2z2vaIoPPXUU0RHR2MymRg9ejR79uxpn8b+BiRAtYEFCxZw77338vjjj7Njxw5GjhzJxIkTKSgoaO+mdSqrV6/mjjvuYOPGjSxfvhyn08n48eOxWCzt3bROa8uWLbz11lv07t27vZvS6VRXVzN8+HB0Oh1Llixh7969vPDCCwQGBrZ30zqVefPm8cYbb/DKK6+QlZXFc889x9///ndefvnl9m7aOc9isdCnTx9eeeWVFr9/7rnn+Mc//sErr7zCli1biIyMZNy4cd530p7zFHHGLrjgAmX27NnNtvXo0UN55JFH2qlF54eysjIFUFavXt3eTemU6uvrlW7duinLly9XRo0apdxzzz3t3aRO5eGHH1ZGjBjR3s3o9C677DJl5syZzbZNnTpVuf7669upRZ0ToHzxxRfez263W4mMjFTmzp3r3dbU1KQEBAQob7zxRju0sO3JCNQZstvtbNu2jfHjxzfbPn78eDZs2NBOrTo/1NbWAhAcHNzOLemc7rjjDi677DLGjh3b3k3plBYtWsTAgQO5+uqrCQ8Pp1+/frz99tvt3axOZ8SIEfzwww8cOHAAgJ07d7Ju3TouvfTSdm5Z55abm0tJSUmzvtFgMDBq1KhO0zeedy8TbmsVFRW4XC4iIiKabY+IiKCkpKSdWtX5KYrC/fffz4gRI0hPT2/v5nQ6H3/8Mdu3b2fLli3t3ZRO69ChQ7z++uvcf//9PPbYY2zevJm7774bg8HAjTfe2N7N6zQefvhhamtr6dGjBxqNBpfLxd/+9jeuvfba9m5ap3as/2upb8zPz2+PJrU5CVBtRKVSNfusKMoJ20TbufPOO9m1axfr1q1r76Z0OoWFhdxzzz0sW7YMo9HY3s3ptNxuNwMHDuTZZ58FoF+/fuzZs4fXX39dAlQbWrBgAR988AEffvghaWlpZGRkcO+99xIdHc1NN93U3s3r9Dpz3ygB6gyFhoai0WhOGG0qKys7IXmLtnHXXXexaNEi1qxZQ0xMTHs3p9PZtm0bZWVlDBgwwLvN5XKxZs0aXnnlFWw2GxqNph1b2DlERUXRs2fPZttSU1P5/PPP26lFndNDDz3EI488wu9+9zsAevXqRX5+PnPmzJEA9RuKjIwEPCNRUVFR3u2dqW+UOVBnSK/XM2DAAJYvX95s+/Llyxk2bFg7tapzUhSFO++8k4ULF7JixQoSExPbu0md0pgxY8jMzCQjI8P7M3DgQH7/+9+TkZEh4amNDB8+/IRlOA4cOEB8fHw7tahzamxsRK1u3tVpNBpZxuA3lpiYSGRkZLO+0W63s3r16k7TN8oIVBu4//77ueGGGxg4cCBDhw7lrbfeoqCggNmzZ7d30zqVO+64gw8//JCvvvoKPz8/76hfQEAAJpOpnVvXefj5+Z0wr8xsNhMSEiLzzdrQfffdx7Bhw3j22WeZPn06mzdv5q233uKtt95q76Z1KpMmTeJvf/sbcXFxpKWlsWPHDv7xj38wc+bM9m7aOa+hoYHs7Gzv59zcXDIyMggODiYuLo57772XZ599lm7dutGtWzeeffZZfHx8uO6669qx1W2ofR8C7DxeffVVJT4+XtHr9Ur//v3l0frfANDiz7vvvtveTev0ZBmD38bXX3+tpKenKwaDQenRo4fy1ltvtXeTOp26ujrlnnvuUeLi4hSj0ah07dpVefzxxxWbzdbeTTvnrVy5ssW/k2+66SZFUTxLGTz55JNKZGSkYjAYlAsvvFDJzMxs30a3IZWiKEo7ZTchhBBCiHOSzIESQgghhGglCVBCCCGEEK0kAUoIIYQQopUkQAkhhBBCtJIEKCGEEEKIVpIAJYQQQgjRShKghBBCCCFaSQKUEJ1QXl4eKpWKjIyM9m6K1759+xgyZAhGo5G+ffu2WEZRFG699VaCg4M7XPvb06pVq1CpVNTU1Jy0zH/+8x8CAwPPWpt+LiEhgZdeeqndji/E2SYBSojfwIwZM1CpVMydO7fZ9i+//LLTvIm8tZ588knMZjP79+/nhx9+aLHMd999x3/+8x+++eYbiouL2+zVMTNmzGDKlCltUldnIqFHiNMnAUqI34jRaGTevHlUV1e3d1PajN1uP+19c3JyGDFiBPHx8YSEhJy0TFRUFMOGDSMyMhKttmO9rtPlcslLaIUQgAQoIX4zY8eOJTIykjlz5py0zFNPPXXC7ayXXnqJhIQE7+djoyfPPvssERERBAYG8te//hWn08lDDz1EcHAwMTExvPPOOyfUv2/fPoYNG4bRaCQtLY1Vq1Y1+37v3r1ceuml+Pr6EhERwQ033EBFRYX3+9GjR3PnnXdy//33Exoayrhx41o8D7fbzdNPP01MTAwGg4G+ffvy3Xffeb9XqVRs27aNp59+GpVKxVNPPXVCHTNmzOCuu+6ioKAAlUrlvQaKovDcc8/RtWtXTCYTffr04bPPPvPu53K5uOWWW0hMTMRkMpGSksI///nPZtf4vffe46uvvkKlUqFSqVi1alWLt8UyMjJQqVTk5eUBx2+LffPNN/Ts2RODwUB+fj52u50//elPdOnSBbPZzODBg5td2/z8fCZNmkRQUBBms5m0tDQWL17c4rUD+OCDDxg4cCB+fn5ERkZy3XXXUVZWdkK59evX06dPH4xGI4MHDyYzM/Okdebk5HDFFVcQERGBr68vgwYN4vvvv/d+P3r0aPLz87nvvvu81+WYDRs2cOGFF2IymYiNjeXuu+/GYrF4vy8rK2PSpEmYTCYSExP53//+d9J2CNFZSYAS4jei0Wh49tlnefnllzl8+PAZ1bVixQqOHDnCmjVr+Mc//sFTTz3F5ZdfTlBQEJs2bWL27NnMnj2bwsLCZvs99NBDPPDAA+zYsYNhw4YxefJkKisrASguLmbUqFH07duXrVu38t1331FaWsr06dOb1fHee++h1WpZv349b775Zovt++c//8kLL7zA888/z65du5gwYQKTJ0/m4MGD3mOlpaXxwAMPUFxczIMPPthiHcdCWHFxMVu2bAHgz3/+M++++y6vv/46e/bs4b777uP6669n9erVgCe8xcTE8Mknn7B3716eeOIJHnvsMT755BMAHnzwQaZPn84ll1xCcXExxcXFDBs27JSvfWNjI3PmzGH+/Pns2bOH8PBwbr75ZtavX8/HH3/Mrl27uPrqq7nkkku853vHHXdgs9lYs2YNmZmZzJs3D19f35Mew26388wzz7Bz506+/PJLcnNzmTFjxgnlHnroIZ5//nm2bNlCeHg4kydPxuFwtFhnQ0MDl156Kd9//z07duxgwoQJTJo0iYKCAgAWLlxITEwMTz/9tPe6AGRmZjJhwgSmTp3Krl27WLBgAevWrePOO+/01j1jxgzy8vJYsWIFn332Ga+99lqLgU+ITq1932UsROd00003KVdccYWiKIoyZMgQZebMmYqiKMoXX3yh/PSP3ZNPPqn06dOn2b4vvviiEh8f36yu+Ph4xeVyebelpKQoI0eO9H52Op2K2WxWPvroI0VRFCU3N1cBlLlz53rLOBwOJSYmRpk3b56iKIryl7/8RRk/fnyzYxcWFiqAsn//fkVRFGXUqFFK3759f/V8o6Ojlb/97W/Ntg0aNEi5/fbbvZ/79OmjPPnkk79Yz8/PvaGhQTEajcqGDRualbvllluUa6+99qT13H777cq0adO8n3/6+3HMsTfJV1dXe7ft2LFDAZTc3FxFURTl3XffVQAlIyPDWyY7O1tRqVRKUVFRs/rGjBmjPProo4qiKEqvXr2Up5566hfP9Zds3rxZAZT6+vpmbf3444+9ZSorKxWTyaQsWLDA29aAgIBfrLdnz57Kyy+/7P0cHx+vvPjii83K3HDDDcqtt97abNvatWsVtVqtWK1WZf/+/QqgbNy40ft9VlaWApxQlxCdWceaYCBEJzRv3jwuvvhiHnjggdOuIy0tDbX6+IBxREREswnWGo2GkJCQE0YBhg4d6v21Vqtl4MCBZGVlAbBt2zZWrlzZ4shITk4O3bt3B2DgwIG/2La6ujqOHDnC8OHDm20fPnw4O3fuPMUzbNnevXtpamo64dah3W6nX79+3s9vvPEG8+fPJz8/H6vVit1uP+mTfq2l1+vp3bu39/P27dtRFMV7fY6x2WzeuV133303f/zjH1m2bBljx45l2rRpzer4uR07dvDUU0+RkZFBVVWVd55VQUEBPXv29Jb76e9ncHAwKSkp3t/Pn7NYLPz1r3/lm2++4ciRIzidTqxWq3cE6mS2bdtGdnZ2s9tyiqLgdrvJzc3lwIED3v+XjunRo0e7PgEoRHuQACXEb+zCCy9kwoQJPPbYYyfcllGr1SiK0mxbS7dkdDpds88qlarFbacywfnYXBe3282kSZOYN2/eCWWioqK8vzabzb9a50/rPUZRlDN+4vDY+Xz77bd06dKl2XcGgwGATz75hPvuu48XXniBoUOH4ufnx9///nc2bdr0i3UfC6Q/vf4tXXuTydTsPNxuNxqNhm3btqHRaJqVPRZG//CHPzBhwgS+/fZbli1bxpw5c3jhhRe46667TqjfYrEwfvx4xo8fzwcffEBYWBgFBQVMmDDhlCbtn+waP/TQQyxdupTnn3+e5ORkTCYTV1111a/W6Xa7ue2227j77rtP+C4uLo79+/f/4nGFOF9IgBLiLJg7dy59+/Y9YdQiLCyMkpKSZmGjLdc+2rhxIxdeeCEATqeTbdu2eeey9O/fn88//5yEhIQzetrN39+f6Oho1q1b5z0WeCYiX3DBBWfU/mMTtwsKChg1alSLZdauXcuwYcO4/fbbvdtycnKaldHr9bhcrmbbwsLCAM/8rKCgIODUrn2/fv1wuVyUlZUxcuTIk5aLjY31zk179NFHefvtt1sMUPv27aOiooK5c+cSGxsLwNatW1usc+PGjcTFxQFQXV3NgQMH6NGjR4tl165dy4wZM7jyyisBz5yoY5Pjj2npuvTv3589e/aQnJzcYr2pqak4nU62bt3q/f3dv3//L65RJURnJJPIhTgLevXqxe9//3tefvnlZttHjx5NeXk5zz33HDk5Obz66qssWbKkzY776quv8sUXX7Bv3z7uuOMOqqurmTlzJuCZ6FxVVcW1117L5s2bOXToEMuWLWPmzJkndKq/5qGHHmLevHksWLCA/fv388gjj5CRkcE999xzRu338/PjwQcf5L777uO9994jJyeHHTt28Oqrr/Lee+8BkJyczNatW1m6dCkHDhzgL3/5i3cC+jEJCQns2rWL/fv3U1FRgcPhIDk5mdjYWJ566ikOHDjAt99+ywsvvPCrberevTu///3vufHGG1m4cCG5ubls2bKFefPmeZ+0u/fee1m6dCm5ubls376dFStWkJqa2mJ9cXFx6PV6Xn75ZQ4dOsSiRYt45plnWiz79NNP88MPP7B7925mzJhBaGjoSde3Sk5OZuHChWRkZLBz506uu+66E0YoExISWLNmDUVFRd6nLx9++GF+/PFH7rjjDjIyMjh48CCLFi3yhr+UlBQuueQSZs2axaZNm9i2bRt/+MMfMJlMv3rthOhMJEAJcZY888wzJ9yuS01N5bXXXuPVV1+lT58+bN68ucUn1E7X3LlzmTdvHn369GHt2rV89dVXhIaGAhAdHc369etxuVxMmDCB9PR07rnnHgICAprNtzoVd999Nw888AAPPPAAvXr14rvvvmPRokV069btjM/hmWee4YknnmDOnDmkpqYyYcIEvv76axITEwGYPXs2U6dO5ZprrmHw4MFUVlY2G40CmDVrFikpKQwcOJCwsDDWr1+PTqfjo48+Yt++ffTp04d58+bxf//3f6fUpnfffZcbb7yRBx54gJSUFCZPnsymTZu8I0gul4s77riD1NRULrnkElJSUnjttddarCssLIz//Oc/fPrpp/Ts2ZO5c+fy/PPPt1h27ty53HPPPQwYMIDi4mIWLVqEXq9vseyLL75IUFAQw4YNY9KkSUyYMIH+/fs3K/P000+Tl5dHUlKSd0Sud+/erF69moMHDzJy5Ej69evHX/7yl2a3dd99911iY2MZNWoUU6dO5dZbbyU8PPyUrp0QnYVK+fnf6EIIIYQQ4hfJCJQQQgghRCtJgBJCCCGEaCUJUEIIIYQQrSQBSgghhBCilSRACSGEEEK0kgQoIYQQQohWkgAlhBBCCNFKEqCEEEIIIVpJApQQQgghRCtJgBJCCCGEaCUJUEIIIYQQrSQBSgghhBCilf4fy8QDlyyVLmEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXzV1ePH8dfN3d3FXXeP2ugcG10CUoKAigoWYiAq+lXxZ4CF8bXra6AiYDdKd8NoGAMGY7277u325/fHhQuXDdhgCsh5Ph57sN17PnW58b4nZZIkSQiCIAiCIFzD5Jf7BARBEARBEC43EYgEQRAEQbjmiUAkCIIgCMI1TwQiQRAEQRCueSIQCYIgCIJwzROBSBAEQRCEa54IRIIgCIIgXPNEIBIEQRAE4ZonApEgCIIgCNc8EYia2XvvvYdMJqNdu3YN3p+RkYFMJuO///3vBff11VdfIZPJyMjIaPJ5bNmyhdmzZ1NeXl7vvv79+9O/f/8m7/PfICoqijvuuOOitpXJZMyePbtZz+dCoqKiGDly5HnL3HHHHURFRf0zJ/QPkMlkjfpZt27dJR1n9uzZyGSy5jnpRlq3bl2znPvlkp+fzzPPPENiYiJ+fn54enrStWtXPv30U6xWa73yO3bsYOjQoXh4eODu7s6AAQPYvHlzg/s2m8289dZbtG/fHldXV7y8vEhKSmLLli1NOsdT77GN+bmY99az5eXlMXv2bPbu3XvJ+zrlcjw3m9szzzzDyJEjCQ0NRSaTNfp997bbbkMmk53zfa+4uJiHH36YqKgoXFxcCAwMZPjw4ZSWll7yOSsveQ+Cky+++AKAlJQUtm/fTkJCwmU5jy1btjBnzhzuuOMOvLy8nO776KOPLss5CX+PZ599locffvhyn0az2bp1q9PfL774ImvXrmXNmjVOt8fHx1/Sce655x6GDRt2Sftoqi5durB169ZLPvfLZdeuXXz99ddMnjyZZ599FpVKxdKlS7n//vvZtm2b4/0PIDk5mb59+9KjRw8WLFiAJEm8/vrrDBo0iLVr15KYmOgoa7VaGTt2LJs2beKJJ54gKSmJmpoadu3aRU1NTZPOMTg4uN5z6IEHHqCiooJFixbVK3up8vLymDNnDlFRUXTq1OmS9weX57nZ3N5++206dOjA6NGjnZ4X5/PXX3/x22+/4enp2eD9eXl59OnTB6VSybPPPkvLli0pLi5m7dq1mEymSz5nEYia0c6dO9m3bx8jRozgr7/+Yt68eZctEJ3P1fpmLDQsNjb2cp/CeUmShMFgwNXVtVHle/bs6fS3v78/crm83u1nq62tRavVNvq8wsLCCAsLa3T55uDp6XnB67iS9erVi+PHj6NSqRy3DRkyBJPJxIcffsicOXMIDw8H7EHdy8uLZcuWOf5fBg8eTExMDI8//rhTTdH777/P0qVL2bx5s9PjM2LEiCafo4uLS73H2NPTE5PJdNU89pfjudncqqqqkMvtjVALFiy4YPmKigqmTZvGiy++yLvvvttgmQceeACj0cjOnTvx9vZ23D5u3LhmOWfRZNaM5s2bB8Crr75KUlIS3333HbW1tQ2WtdlsvPzyy0RERKDRaOjWrRurV6++4DFWrlzJmDFjCAsLQ6PR0KJFC6ZNm0ZxcbGjzOzZs/nPf/4DQHR0dL0mhoaazEpLS3nggQcIDQ1FrVYTExPD//3f/2E0Gp3KyWQypk+fzoIFC4iLi0Or1dKxY0f+/PPPC577qeaCb775hieffJLg4GDc3d0ZNWoUBQUFVFVVce+99+Ln54efnx933nkn1dXVTvswGAzMmjWL6Oho1Go1oaGhPPjgg/WaBs1mM0888QRBQUFotVp69+7Njh07GjwvvV7PtGnTCAsLQ61WEx0dzZw5c7BYLBe8pitBQ01mTfl/SktLY9KkSQQEBODi4kJcXBwffvihUxmDwcBjjz1Gp06d0Ol0+Pj4kJiYyO+//15vf6eO/b///Y+4uDhcXFyYP39+s15z//79adeuHRs2bCApKQmtVstdd90FwPfff891111HcHAwrq6uxMXF8dRTT9WraWioWeJUE+WyZcvo0qULrq6utGnTptHfcD/++GM6duyIu7s7Hh4etGnThqefftpx/9lNZhdq3jnTqlWrGDRoEJ6enmi1Wnr16tWo94zm5O3t7RSGTunRowcAOTk5jts2b95M//79nUKqh4cHffv2ZcuWLeTn5ztuf/fdd+nbt+8/GlgqKyt5/PHHnd5LHnnkkXrPkx9//JGEhAR0Oh1arZaYmBjHc23dunV0794dgDvvvNPx/3a+pvXa2lrHcTUaDT4+PnTr1o1vv/3WUebs5+ap7hMN/Zz5Xi5JEh999BGdOnXC1dUVb29vxo8fT3p6ejM8Yk1zKgw11mOPPUZwcDAzZsxo8P6MjAz++OMPpk6d6hSGmpOoIWomdXV1fPvtt3Tv3p127dpx1113cc899/Djjz8yZcqUeuU/+OADIiMjeeedd7DZbLz++usMHz6c9evXO1Uln+348eMkJiZyzz33oNPpyMjI4K233qJ3794cOHAAlUrFPffcQ2lpKe+//z6//PKLo1r4XDVDBoOBAQMGcPz4cebMmUOHDh3YuHEjc+fOZe/evfz1119O5f/66y+Sk5N54YUXcHd35/XXX2fs2LEcOXKEmJiYCz5WTz/9NAMGDOCrr74iIyODxx9/nFtuuQWlUknHjh359ttv2bNnD08//TQeHh689957gP3FfsMNN7B69WpmzZpFnz592L9/P88//zxbt25l69atuLi4ADB16lS+/vprHn/8cYYMGcLBgwcZN24cVVVVTuei1+vp0aMHcrmc5557jtjYWLZu3cpLL71ERkYGX3755QWv52xWqxVJki5YTi6XN/lNoyka8/906NAhkpKSiIiI4M033yQoKIjly5czY8YMiouLef755wEwGo2Ulpby+OOPExoaislkYtWqVYwbN44vv/ySyZMnOx37t99+Y+PGjTz33HMEBQUREBDQ7NeXn5/PbbfdxhNPPMErr7zieCzT0tK4/vrreeSRR3Bzc+Pw4cO89tpr7Nixo16zW0P27dvHY489xlNPPUVgYCCff/45d999Ny1atKBv377n3O67777jgQce4KGHHuK///0vcrmcY8eOcejQoXNu01DzTlFREbfddhuhoaGO2xYuXMjkyZMZM2YM8+fPR6VS8cknnzB06FCWL1/OoEGDzntNjQ33CoXiovqurFmzBqVSSatWrRy3mUwmx+vxTKduO3DgAMHBwWRnZ5ORkcGoUaN4+umnmTdvHiUlJbRu3ZonnniiwffPS1VbW0u/fv3Iycnh6aefpkOHDqSkpPDcc89x4MABVq1ahUwmY+vWrdx0003cdNNNzJ49G41GQ2ZmpuN51KVLF7788kvuvPNOnnnmGUeN1vlqd2bOnMmCBQt46aWX6Ny5MzU1NRw8eJCSkpJzbjNixIh6z5OtW7cyc+ZM2rZt67ht2rRpfPXVV8yYMYPXXnuN0tJSXnjhBZKSkti3bx+BgYHnPIYkSQ32A2uIUtm80WHVqlV8/fXXJCcno1AoGiyzceNGJEkiJCSEW265hcWLF2OxWOjZsydz58497+dmo0lCs/j6668lQPrf//4nSZIkVVVVSe7u7lKfPn2cyp04cUICpJCQEKmurs5xe2VlpeTj4yMNHjzYcduXX34pAdKJEycaPKbNZpPMZrOUmZkpAdLvv//uuO+NN94457b9+vWT+vXr5/j7f//7nwRIP/zwg1O51157TQKkFStWOG4DpMDAQKmystJxm16vl+RyuTR37txzP0CSJK1du1YCpFGjRjnd/sgjj0iANGPGDKfbb7jhBsnHx8fx97JlyyRAev31153Kff/99xIgffrpp5IkSVJqaqoESI8++qhTuUWLFkmANGXKFMdt06ZNk9zd3aXMzEynsv/9738lQEpJSXG69ueff/681yhJkhQZGSkBF/xp7L5GjBhx3jJTpkyRIiMjnW5r7P/T0KFDpbCwMKmiosJp++nTp0sajUYqLS1t8JgWi0Uym83S3XffLXXu3LnesXU63Tm3baopU6ZIbm5uTrf169dPAqTVq1efd9tTr5H169dLgLRv3z7Hfc8//7x09ltgZGSkpNFonJ4PdXV1ko+PjzRt2rTzHmv69OmSl5fXecuceg2sXbu2wftramqkHj16SMHBwVJGRobjNh8fn3qvG6vVKnXs2FHq0aPHeY8pSVKjno+A9OWXX15wX2dbvny5JJfL673eOnXqJLVq1UqyWq2O28xmsxQTEyMB0jfffCNJkiRt3bpVAiRPT08pPj5e+uGHH6Tly5dL48ePd3pdX4p+/fpJbdu2dfw9d+5cSS6XS8nJyU7lfvrpJwmQlixZIknS6feB8vLyc+47OTm5SY9du3btpBtuuOG8ZRp6bp7p8OHDkq+vrzRgwADJaDRKknT6cXzzzTedymZnZ0uurq7SE088cd5jnnpuNubnXJ9J5+Lm5ub0vnumqqoqKSoqSpo1a5bjtobe9+bOnet4nowZM0ZatmyZ9PPPP0sdOnSQNBqN02v7Yokms2Yyb948XF1dufnmmwFwd3dnwoQJbNy4kbS0tHrlx40bh0ajcfzt4eHBqFGj2LBhw3lTemFhIffddx/h4eEolUpUKhWRkZEApKamXtS5r1mzBjc3N8aPH+90+6lRAWdXyw8YMAAPDw/H34GBgQQEBJCZmdmo4509eiAuLg6o318gLi6O0tJSR7PZqW9lZ49WmDBhAm5ubo7zXLt2LQC33nqrU7mJEyfW+2bz559/MmDAAEJCQrBYLI6f4cOHA7B+/fpGXdOZFi9eTHJy8gV/7r333ibvuyku9P9kMBhYvXo1Y8eORavVOl3/9ddfj8FgYNu2bY7tf/zxR3r16oW7u7vjuTdv3rwGn3cDBw7826q1T/H29mbgwIH1bk9PT2fSpEkEBQWhUChQqVT069cPaNxrpFOnTkRERDj+1mg0tGrV6oLP7x49elBeXs4tt9zC77//7tSM3RhWq5WbbrqJ1NRUlixZ4nhdb9myhdLSUqZMmeL0f2Sz2Rg2bBjJyckX7HjcmOdjcnIyo0aNatI57969m4kTJzq+pZ/poYce4ujRo0yfPp3c3Fyys7O57777HI/jqRo9m80G2J+PS5YsYcKECVx33XX88MMPdOnShRdeeKFJ59QYf/75J+3ataNTp05Oj+nQoUOdmjRPNYdNnDiRH374gdzc3Es+do8ePVi6dClPPfUU69ato66urknb6/V6hg0bRnBwML/++itqtdpxTTKZjNtuu83pmoKCgujYseMFRzZ27dq10c+TkJCQi738ep566ilUKhXPPffcecudep6EhYXx888/M3ToUMaNG8eyZcuQy+W8/vrrl3wuosmsGRw7dowNGzZw4403IkmSoz/L+PHj+fLLL/niiy/qvVkEBQXV209QUBAmk4nq6mp0Ol29+202G9dddx15eXk8++yztG/fHjc3N2w2Gz179mzyC+uUkpISgoKC6lWVBwQEoFQq61Xl+vr61tuHi4tLo4/v4+Pj9PepF/S5bjcYDLi7u1NSUoJSqcTf39+pnEwmIygoyHGep/49+zFWKpX1zr2goIDFixc32C8CaPKHGtibJqVGNpn9nS70/1RSUoLFYuH999/n/fffb3Afp67/l19+YeLEiUyYMIH//Oc/BAUFoVQq+fjjjxvsX9Mco3cupKFjVFdX06dPHzQaDS+99BKtWrVCq9WSnZ3NuHHjGvUcvdjn9+23347FYuGzzz7jxhtvxGaz0b17d1566SWGDBlywePed999LFu2jL/++stptFJBQQFAvS8sZyotLcXNze2c9zd29NO5misasmfPHoYMGULLli1ZsmRJveaxu+66i6KiIl566SU+/vhjABITE3n88cd57bXXHE2Cpx7vNm3aOEIg2F/XQ4cOZe7cuRQWFjZrs2tBQQHHjh274Ou+b9++/Pbbb7z33ntMnjwZo9FI27Zt+b//+z9uueWWizr2e++9R1hYGN9//z2vvfYaGo2GoUOH8sYbb9CyZcvzbltVVcX111+P2Wxm6dKlTp8TBQUFSJJ0zmaxC3VncHd3b/TzpLmazHbs2MFHH33EL7/8gsFgwGAwAPbPOovFQnl5Oa6urri4uDieJ4MHD3Z6ngYHB9OxY0d27959yecjAlEz+OKLL5AkiZ9++omffvqp3v3z58/npZdecvpP1Ov19crp9XrUajXu7u4NHufgwYPs27ePr776yqld/dixY5d0/r6+vmzfvh1JkpxCUWFhIRaLBT8/v0vaf3Px9fXFYrFQVFTkFIokSUKv1zu+zZ164ej1eqd+GBaLpV648/Pzo0OHDrz88ssNHvNivgnFxsY2qrbs+eef/8fnNTqTt7c3CoWC22+/nQcffLDBMtHR0YC9D0t0dDTff/+903Pk7E73p/wTc6g0dIw1a9aQl5fHunXrHLVCQIPzcf0d7rzzTu68805qamrYsGEDzz//PCNHjuTo0aNOH/Znmz17Np9//jlffvkl1113ndN9p15/77///jk7HZ+vbwhwzg/+s3355ZeNmi9mz549DB48mMjISFasWNHgFziAJ598kkceeYS0tDQ8PDyIjIxk2rRpuLm50bVrV8D+ejnX6MBTXyya+8uDn58frq6u5+wsf+Z73pgxYxgzZgxGo5Ft27Yxd+5cJk2aRFRU1EX1W3Fzc2POnDnMmTOHgoICR23RqFGjOHz48Dm3M5vN3HjjjRw/fpyNGzfW66fk5+eHTCZj48aN5+27dS7r169nwIABjbqGEydONMvcZ4cOHUKSJMaOHVvvvuzsbLy9vXn77bd55JFH6NChwzn3I0lSszxHRCC6RFarlfnz5xMbG8vnn39e7/4///yTN998k6VLlzo1Ff3yyy+88cYbjmazqqoqFi9eTJ8+fc75Le3UB8DZT+xPPvmkXtlTZRrzjXjQoEH88MMP/Pbbb05PzK+//tpx/5Vg0KBBvP766yxcuJBHH33UcfvPP/9MTU2N4zxPjbpYtGiR400X4IcffqjXuXTkyJEsWbKE2NjYZmviWbx48TmDwpmas9r5Ymi1WgYMGMCePXvo0KGDo0auITKZDLVa7RRC9Hp9g6PMLqemvEb+Tm5ubgwfPhyTycQNN9xASkrKOQPRvHnzmDNnDi+88EKDYaRXr154eXlx6NAhpk+fflHnk5yc3KhypwLw+ezdu5fBgwcTFhbGypUrL/i6cXFxcUxUm5WVxffff8/UqVMd0zAolUrGjBnDTz/9REZGhuODVpIkli1bRmxsbLN/KRs5ciSvvPIKvr6+jbrmU9fRr18/vLy8WL58OXv27CExMbFJ77VnCwwM5I477mDfvn28884755064u6772bdunUsXbq0wXAwcuRIXn31VXJzc5k4cWKTz+VUk1ljNNd717BhwxxdHM508803Ex0dzdy5c2nRogUACQkJhIWFsWLFCqxWq+NzMi8vj3379jFp0qRLPh8RiC7R0qVLycvL47XXXmtw9ud27drxwQcfMG/ePKdApFAoGDJkCDNnzsRms/Haa69RWVnJnDlzznmsNm3aEBsby1NPPYUkSfj4+LB48WJWrlxZr2z79u0B+3DWKVOmoFKpaN26tVOfklMmT57Mhx9+yJQpU8jIyKB9+/Zs2rSJV155heuvv57BgwdfxCPT/IYMGcLQoUN58sknqayspFevXo5RZp07d+b2228H7H2PbrvtNt555x1UKhWDBw/m4MGD/Pe//6034dcLL7zAypUrSUpKYsaMGbRu3RqDwUBGRgZLlizhf//7X5PnAzn12DcXvV7fYM1jVFQU3bp1u6R9v/vuu/Tu3Zs+ffpw//33ExUVRVVVFceOHWPx4sWOflsjR47kl19+4YEHHmD8+PFkZ2fz4osvEhwc3GAfuXO54447mD9/frN9wzxbUlIS3t7e3HfffTz//POoVCoWLVrEvn37mv1YZzv1Id+rVy+Cg4PR6/XMnTsXnU7nqL0829atW7nvvvvo1asXQ4YMceqzBfY5mdzd3Xn//feZMmUKpaWljB8/noCAAIqKiti3bx9FRUWOJqlzudTnySlHjhxxvB+8/PLLpKWlOf3/x8bGOmpvDx48yM8//0y3bt1wcXFh3759vPrqq7Rs2ZIXX3zRab8vvvgiS5cuZdiwYcyePRtPT08+//xz9u3bxw8//OBUtn///qxfv75RzdLn8sgjj/Dzzz/Tt29fHn30UTp06IDNZiMrK4sVK1bw2GOPkZCQwHPPPUdOTg6DBg0iLCyM8vJy3n33Xad+abGxsbi6urJo0SLi4uJwd3cnJCTknKEhISGBkSNH0qFDB7y9vUlNTWXBggUkJiaeMwy98cYbLFiwgIceegg3Nzen54mnpyfx8fH06tWLe++9lzvvvJOdO3fSt29f3NzcyM/PZ9OmTbRv357777//nI+Jh4dHsz1PwF7jVFRUBNgrDjIzMx3vY/369cPf35+goKAGu49oNBp8fX2dPlPlcjlvv/02EydOZMyYMdx///3U1NTw4osvolarmTVr1qWf9CV3y77G3XDDDZJarZYKCwvPWebmm2+WlEqlpNfrHaPMXnvtNWnOnDlSWFiYpFarpc6dO0vLly932q6hUWaHDh2ShgwZInl4eEje3t7ShAkTpKysrAZHLc2aNUsKCQmR5HK508iWs0eZSZIklZSUSPfdd58UHBwsKZVKKTIyUpo1a5ZkMBicygHSgw8+WO8aIyMjzzmK4JRToxh+/PHHBq/z7BEfp0ZaFBUVOW6rq6uTnnzySSkyMlJSqVRScHCwdP/990tlZWVO2xqNRumxxx6TAgICJI1GI/Xs2VPaunVrg+dZVFQkzZgxQ4qOjpZUKpXk4+Mjde3aVfq///s/qbq62unaGzMyrDmdb8Taqes41yizxv4/nThxQrrrrruk0NBQSaVSSf7+/lJSUpL00ksvOZV79dVXpaioKMnFxUWKi4uTPvvsswZHw5zr2JIkSTfeeKPk6upa7//rfM41yuzMUUNn2rJli5SYmChptVrJ399fuueee6Tdu3fXGwl0rlFmDY3qa+g1c7b58+dLAwYMkAIDAyW1Wi2FhIRIEydOlPbv3+8oc/Yos1PP/XP9nGn9+vXSiBEjJB8fH0mlUkmhoaHSiBEj6r2e/k4XOt8zH98jR45Iffv2lXx8fCS1Wi21aNFCeuaZZ5xeU2c6cOCANGLECMnDw8Pxml28eHG9cl27dpWCgoKadN4NPV+qq6ulZ555RmrdurWkVqslnU4ntW/fXnr00UclvV4vSZIk/fnnn9Lw4cOl0NBQSa1WSwEBAdL1118vbdy40Wlf3377rdSmTRtJpVJd8H3iqaeekrp16yZ5e3tLLi4uUkxMjPToo49KxcXFjjJnPzenTJlyzsf87OflF198ISUkJEhubm6Sq6urFBsbK02ePFnauXNnkx6zS3VqJGhDP+caZXnK+UbX/vbbb1L37t0ljUYj6XQ6afTo0U6jgS+FTJIuIWYLgiA0QVBQELfffjtvvPHG5T4V4SpUVVWFj48P77zzzjn7vQnCxRLD7gVB+EekpKRQW1vLk08+eblPRbhKbdiwgdDQUKZOnXq5T0X4FxI1RIIgCIIgXPNEDZEgCIIgCNc8EYgEQRAEQbjmiUAkCIIgCMI1TwQiQRAEQRCueWJixkay2Wzk5eXh4eHxjyxLIAiCIAjCpZMkiaqqKkJCQs67xIcIRI2Ul5dHeHj45T4NQRAEQRAuQnZ29nlXHhCBqJFOLXmRnZ1db/kHQRAEQRCuTJWVlYSHhze4dNWZLnsgys3N5cknn2Tp0qXU1dXRqlUr5s2b51iU89TaR2dKSEhwWsvFaDTy+OOP8+2331JXV8egQYP46KOPnJJgWVkZM2bM4I8//gBg9OjRvP/++3h5eTXqPE81k3l6eopAJAiCIAhXmQt1d7msnarLysro1asXKpWKpUuXcujQId588816IWXYsGHk5+c7fpYsWeJ0/yOPPMKvv/7Kd999x6ZNm6iurmbkyJFYrVZHmUmTJrF3716WLVvGsmXL2Lt3r2MxUEEQBEEQrm2XtYbotddeIzw8nC+//NJxW0MrYLu4uDS4Ii5ARUUF8+bNY8GCBY5VmBcuXEh4eDirVq1i6NChpKamsmzZMrZt20ZCQgIAn332GYmJiRw5coTWrVs3/8UJgiAIgnDVuKw1RH/88QfdunVjwoQJBAQE0LlzZz777LN65datW0dAQACtWrVi6tSpFBYWOu7btWsXZrOZ6667znFbSEgI7dq1Y8uWLQBs3boVnU7nCEMAPXv2RKfTOcqczWg0UllZ6fQjCIIgCMK/02UNROnp6Xz88ce0bNmS5cuXc9999zFjxgy+/vprR5nhw4ezaNEi1qxZw5tvvklycjIDBw7EaDQCoNfrUavVeHt7O+07MDAQvV7vKBMQEFDv+AEBAY4yZ5s7dy46nc7xI0aYCYIgCMK/12VtMrPZbHTr1o1XXnkFgM6dO5OSksLHH3/M5MmTAbjpppsc5du1a0e3bt2IjIzkr7/+Yty4cefctyRJTh2oGupMdXaZM82aNYuZM2c6/j7VS10QBEEQhH+fy1pDFBwcTHx8vNNtcXFxZGVlnXebyMhI0tLSAAgKCsJkMlFWVuZUrrCwkMDAQEeZgoKCevsqKipylDmbi4uLY0SZGFkmCIIgCP9ulzUQ9erViyNHjjjddvToUSIjI8+5TUlJCdnZ2QQHBwPQtWtXVCoVK1eudJTJz8/n4MGDJCUlAZCYmEhFRQU7duxwlNm+fTsVFRWOMoIgCIIgXLsua5PZo48+SlJSEq+88goTJ05kx44dfPrpp3z66acAVFdXM3v2bG688UaCg4PJyMjg6aefxs/Pj7FjxwKg0+m4++67eeyxx/D19cXHx4fHH3+c9u3bO0adxcXFMWzYMKZOnconn3wCwL333svIkSPFCDNBEARBEC5vIOrevTu//vors2bN4oUXXiA6Opp33nmHW2+9FQCFQsGBAwf4+uuvKS8vJzg4mAEDBvD99987zTj59ttvo1QqmThxomNixq+++gqFQuEos2jRImbMmOEYjTZ69Gg++OCDf/aCBUEQBEG4IskkSZIu90lcDSorK9HpdFRUVIj+RIIgCIJwlWjs5/dl7UMkCIIgCIJwJRCBSBAEQRCEa95lX9xVEARBaBpJkrDVWsBqA4UcmUqOTCFHpjj/4pWCIJybCESCIAhXIMkmYS03Yimtw1JiwFJqwFpy+nfJaK2/kRx7MFLJzwhKMmRKOTKlHJRyZMrTf5++vTG3yc7Yh/NtzrfLQC674MrignClEYFIEAThMpHMViylBnvIKTE4wo+11IClzADWC4x5kcvAdkYZG0g2G5LZ9vee+IXIOGcAUwVqce8Vijrc48L7EYR/kAhEgiAIf5NTTVvWUgOWM2p3LCV1WEoN2CpN59+BQobSR2P/8XVF4aNB6Wv/XemtQaaSI9kkJIsNLDYki/33M38aup0GykkW6WRZ59tO7+Nct538+8xgJmEPZWYbZ0c6c34NtXuLUEd54tE7FE28LzK5qE0SLj8RiARBEC6BZJOwVhrtNTtn1PKcCj6SoYGmrTPINAp7wDkVdnxcUfjaf1d4ulwwLMjkMmRqBagV5y3XXCRJwmywUldtpq7ahKHaTF2VmZAWOjy8XMBiIze1lL0rsjDXWjDXmrEarMgBpQxC1HLCXeSYMiopyahE4aNB0yMIXVII8n/oGgShISIQCYIgXIBksdkDzsmQYy05XctjKb1w05bcQ326ZueMWh6Fjwa5VnlZ+9tYLTZ7qDkj4NhDjonYrgH4hrgDkL63iA3fHqGuxozNUv96B98Zjy4hCNQKLCoFWZlV9cq4aJUUGqyETWqNZ3Ed1dv0WEsN1CzLoHxZBuVeGuRtffFr7Y1/hAdqjfiIEv454tkmCIIA2Oosp0POycBjPfm7tdJIvbafM8llKL1dUJxV06P01dhDzz9Y82E2WakpM1JXbcZQbTr5rz3gGKrNtB8Qhn+EB1arlWM7i1j9VSoANrkJm8wCMhuSzIaEjVp5OMFVnlitVjT4UVNhb+IzqUuxaWpRqmUo1DIUatibVs7RQhUWi4V+vQYy7N52uHqoOHziAOmZR7FJNsxWK34+vsgDW6LrFo3HgAiOLExFdrgUd4UM/3IDtk05ZK7NZo3RiiLAjUGT4wiMFpPhCn8/EYgEQbhmWSqM1GzPp3ZXAdaK8/fnkakVJ4OOxh58fM/o26Nz+ceGvJcXV3Ng5xGOH0unpqYas9mCd4grKo0cSZLoGjOQ1fPtIafKIw2TS5k95CCBzMbmLLDZ7M14k8c+YL82uYw6nxPUKgucjrUueT8k239/dMZjTHy6Oxp3Fas3LGfv3nT7HTbAAAXHTm83cOBAYrsEALDvWA05uTmO+woKCjiUeoiWLVvSt29f4u5uh6HaRNHmPMy7ClBXmohQy4hQyymsNKAsqkWK8kAmk7F3VRZHdxQQEOVJQKQHgVGeeAe7IRd9kIRmIAKRIAjXFEmSMB4vp2ZrPnWpJfYP9JPk7iqnZq0za3zkbipkMpm9o7RkwypZsUpWDDYLVosRq9mK1WZ13O74vaHbzvrdJtmw2CxO9526zWKzYCqQU7tLgzlfRanyIBZ1pdM1lWed/j2p/XWoNQo07iqMajDYDM7Xf8b1BrXw4O43++DiquTPv6o5dKgShUKBUqms96/aVYnOxxWAyMgIJMnWYDmFQoGLi4vjGJ06dSIiIgKl0t40ePDgQQ4cOEBaWhrZ2dnMnDkTjbua8KFRMDQKY1Yl1ZtyqTtQTIBKTt0vaRRsysWjTygFaeUUZVVRlFVFysn9K9Vy/CM8CIj0pPuIKFy0quZ4mgjXILGWWSOJtcwE4epmM1io3VVA9bZ8LEV1jttLAmpY5rOF7W4HqJXXYbFZnAJPQ8Hm76KyuBBYFUVYVQxGl1JckOFn8GOv7igjUx8EoMo9HYM2nzqZlWpVNSaFkQpNMXWqamzYKNYV4+fmh5+rHwG2ALwUXni5euGt9cZX64uvmy8B7gH4an3RumovS/+lkpISNm3ahJeXF/369QPsQTUrK4uIiAhkMhmWUgPVW/Ko2aFHMtkfc5lWiSlah16lQJ9bQ1FWFeaT8zHJlTLufacfCqV9AYZ9q7OpqzKdrE3yxN3bpeGTEf71Gvv5LQJRI4lAJAhXJ7O+huqtedTuKUQy2atHLEorW30PsEi7mExNfrMdSy6TI5fJUcqUyGVyFHJFg78r5UrkyHEzeuFTHoauxA+3Shdkkgmzuhqb0uK035q4Wnx225BkFUgKAzKLFYXJhlkD5V5W9O41HNUVU2etO8eZNXyu3i7e+Gv98XX1xU9jD1Fn/u2v9cfP1Q+t8u8PTmlpaSxatIiQkBD69u1L69atkclk2AwWanboqd6ce7pZUynHrUsA2qQQamxQmFlJbaWJLkMjHfv77qUdlORUO/7W6tQEngxHgVGehMf7/K3XI1w5RCBqZiIQCcLVQ7LYqEsppnprPqaM081L+a4l/OK5kjW6HdQqDChlSnqG9GRI5BCiddEoZAoUcoX931M/cuffTwUehVyBHDkySUKlckEhU4Ak48SBvdRUVmGoqaGupgZjXS3G2hoMNTUoNJ60Gn0TtXV11FaY2P3mbCRrKSZvb4xBpz/MsdlQmkx4tEtC5R2EzM2buu9eRSoraOBqwc3Hj/s+/opacy1FdUUcXL+aWoWJOl8FpcoaSgwlFNcVO35KDaXYpMZP3uiqdMXP1e+CPz4aH5Tyi+uJkZyczPLly7FY7GEwMDDQ3scoLg65XI5ktVF3oJiqjbmYc08HHU0bH9z7hOISo3MKbYc25aFPr6Aws5LSvBrO/KTz9Hfl9hcTHX+n7SzATeeCf4QHKhcx9P/fRgSiZiYCkSBc+U51kq5J1mOrMgNgxcZWj70s9t7Afu1RVAoVvUJ6MSRqCP1C+5FeaOOPTSlUlRQhmeqQjAZMCjVlvi0wWyXMVhsxh5egMlUjtxhRWoworSaUViMqq4ki10B+DxuHxSZhtUncmfU17tYap/OSZDKsrm6Y3APJ9w7DT1bDNkskQ06sRW4txaZ2oS4kBnltNda6OsxGC+UKHX8GXe/YR8eKfWhsRkxyNUa5GrNMjbu1Gn9jEQaFhuOx19E2xJO2IZ6w6DkstfbQoNV5ERgdS0B0CwKjYwmMaYGbry9lxjKnkHTmT1FtkSNE1Zidr+V8ZMjw1nifNzRF66Lxc/VrcPvq6mq2bdvGjh07MJnstUF+fn706dOH9u3b24ORJGE6UUnVxhwMh0sdo/9Uoe549A7FtYMfMoXzuuVmo5Wi7CoKMyopzKzCTaem1/iW9v8bm8RnMzdgNliRycA72I2AKE8CIz0IiPLEN9Td0QwnXJ1EIGpmIhAJwpXJ3km6guqtedQdKkF28h2tVFHBUu9NLPXaRLXGQO/Q3gyJHEK/sH6YzWp+3ZPLknU7CTi+gdjaE077zHMJ4ueQsY6/78yaj7u1tsHjF6t8+DbsJsffU/KW4WY1opRrMOm0WLRqLBo5nPWZmqsKoUjyQ65SIVNrkKk1KJRK1Eo5SrkMpUKOSiFDpZCjlJ/x+8l/FXIZ2aW1pORVcqL4dGhR2CwMKNmAv7EIH3MZ8rPmCwhv24GJz73i+PtY8jZ8QsPxDgpGJq//wV9rrqWkroRigz0onQpNJYYSx98ldSWUGEoa3b+qrW9b+ob1pW9YX+J945HLnI9bW1vL9u3b2b59OwaDAX9/f+6//37kZ52fuaiW6s151O4qcCxXovBU494rBLcewchdL1xbZaw1s3p+KoWZVdSUG+vdH9nOl5HTOzbquoQrkwhEzUwEIkG4stgMFmp2FVCy+QTK0tNvYwe0afzpvYE9XkfoGZ7IdVHX0Te0LxqFK1uOl/BdchYrDurpp19Fm5qjAEjIUOj8kGtcUbi4ovYPJfC6mxxBpHL/ZmRIuLhqcdFqUaldsdTIMZZKWI1KutzYhrqqSiwmAwd/KaYwvRKbzEJJwBY42YqjddUSGxtLTGwM0dHReHl5NdtjUWkwcyivkoO5FaSc/Pd4UTVyqxlfUyn+piICjEX4m4op8ozC0vV62oV4Euer4uh/HwZA7epKQFQsAdGxjpok75BQ5PLGNSFZbVbKjeXnrHUqriumqK6IzMpMp+18Nb70Du1N37C+JIYk4qE+vcaZwWAgOTkZPz8/4uLiADCZTOzfv5+OHTuiUtlHlFlrzNRsz6d6Sx62anvNoEytwK17IO69QlH6aBp1DTUVRkctUmFGJQWZlbTvF0bC6BgALCYrh7fpaZ0QJJrWriIiEDUzEYgE4cpgyKskc+1B1IdMqKz2D6U6mYHVuh2s9t9BdIvWDIkaQq+QXmhVWvIr6vhpZw7f78wmp+x0p+Mxpl1E5CYTk9CLvhMn4RsWcc5j1laayD9ejv54BfnHKyjKqsJiM2JyKcesLkcTbKC8opywsDCGJI7FZpUIivFkw+a1eHp6EhMTQ0BAwD86oqvWZCE1v5KDufaAdCC3grTCaqxnrDmmM5dzXdFq/E0lKBqo3ek4ZDiD77GPbrNazJTkZOMbFoFCefEzthTVFrEpdxMbcjawNX+rU5OcUqakS2AX+ob1pU9YH6I9o+s9Ztu2bWPZsmW4u7vTq1cvunbtilqtBux9x2r3FlK1MRdLwckaPRm4tvOz9zOKaNp7tyRJWC02lCr78yxlYy7rFh3BRaukbZ9Q2vcPE6PXrgIiEDUzEYgE4fIxm0ykbt2JaUcJQSVejtuz1Pms9NuOtZ2W/i0GkBSShEapwWy1seZwId8nZ7PuSCE+hmJ6lO/kiH8XkpK6c1P3cGI8oK6yol4QkmwSpfk1ThP+rfrqEEe26QGoccvEqCnGqnLuWyOXy4mIiGDy5Mn1mnauFAazlSP6Kg7mVXAwt4KDuZUc0VdhsZjxNpfjf7IWyV6bVEJOy0H49xhA+1AdYbZSNr7xNAqlEr+I6JP9kuy1SX4RUShPhpLzkcxmkMuRKewBw2w1s7twNxtyNrAhZwMZlRlO5cPcwxxNa92CuuGicGHfvn2sXr2aykp7Z3mtVktiYiLdu3dHo7HXBEmShDGtnKqNORjTyh37U0d44N4nDNe2F7egbNrOArb/nk7FyWkb5HIZLboH0GlQBP4RHhfYWrhcRCBqZiIQCcI/y2wzszttBwWbjxGd7o+3xf6BY8VKsu4QhXEG2nXtRs+QnqgV9g/jE8U1fJ+czU+7ciiuNuJnLKJH+S5HH6Gwdp246dmXnI4jSRL5xyvIPVKGPr0CfXolpjoL45/ugpFKcnJy0FkjObAuh6BYL45VbCOnwL6/wMBAYmJiiImJISIiwmlCwquFyWIjrbCKlNxKDuRWcDCvgtT8SowmCzIkbDJ7eImqzeC6otW42OrP6C2TyenVOYFYnwBslZUYS8uwVlYgq6zCWlmJtaIcW3kFttpaUChQBgSgCgpCGRSIKigYVVAgyqBgSjwgWUpnTfVudhTuxGwzO47hqnQlITiBvmF9SQpKQp+mZ9OmTZSVlQGg0Wjo2bMn/fr1c6pVMutrqNqYS+3eQseacwofjb2fUbcg5E1s+rLZJDL2F7NvdTZ5Z4St0NZejJreCYXqygzD1zIRiJqZCESC8PczWU1sy9tGyu6d+B/S0L0iHgX2D6xyZRXpMcUE9Iqha4sEVAp7/5E6k5WlB/P5LjmbHSdKAfAzFtG7eg/hlcftO5bJaJPUl57jbsY3LByw1wSl7y1i17JMirKqkJCwKmsxqcuxaMqxaSsxW+wfyA899BC+vr4AnDhxgurqaqKjo3F3d/8nH55mJVmtWCsrsVVUYHX8VGKtqMBcVkZZQQllBSXUFpdiKa9AXl2J1lSLAjO1GiWVri5UuLpQqXXBpFTQ43geftX2mpN8nRt7IgNxN5rxrDPiWWtEV2fEs86EytaI4f5KJQp/P+q8tejdzRxVlZLtWkeJJ5R4yCjxhKDQ1vQO60t0XTSZezMpKSmhTZs23HzzzQ3u0lplonprHjXb8rHV2of2yzRK3BOCcEsKQalrepgtzKxk76psju8qJDzex6nztc1qQ64Q4ehKIAJRMxOBSBD+HkarkS25W1h3bC3ygzUMKU4gwhTsuF/vW46qhy/xid1QndEsczC3gu+Ts/ltby5VBvsHnFwGN1t34Zu5w16ogSB0SvreIpb+7wAABs9cDO65mM9a5sLV1ZXo6Gj69+9PQEDA33H5l8xmMDgCTUPhxlpRfsZ9lafLVtVfjb4prHIFlWo3KlUayjVaahWuVKvcqFa7YtUY0CpLG9zOLzScvoOvx1euxqzPx6IvwKzXY9Hr7f8WFkIjQpNFDqUe9p8KLzWWyA6EBofTOT4BXXgMNVotO9PS6NWrFx4ep5uzbCYrtbsLqN6Uh6X4ZJ8yuQxtR3/ce4eiDm16yK0qNWAxWfEOcnP8/eOrO4nvFUz7/mG4XUTYEpqPCETNTAQiQWg+dZY6NuduZkXmCtLTjjCkqAcDK3rgKtn7gJgVVkzxaiIHtEMTcvr1VlFn5o99eXyfnMXB3NMTLoZ5abipewTju4VRvGsjKz59v14QMpuslOtr8Y/wsHeWtdr49b97iGjrg1ukkZ9++R6lUklERISjGSwoKOiK6A8kWSyYMjIwHj2K4ehRjEfTMKalYSksRDLWHyreFHI3NxQ6HXIvHQqdDoXnyX91OhReOuSenif/9kLhpUNx8m+Zq31ds+zSOkefpAMnR7mV1pjQWmrwNxXjbywmwFREgKkID4t9bqShL7xPu9bRAFQWFaLx8ECtcXVcq6W42BGQzPlnhKVT/xYVXTA07ezaleMtWyC32WhVWUlnpQqvwABUQcEogwJRBgZhq3Gjdl+V0+SdLjE63PuGoWnlfVH9jAB2LjnB9j/szapyhYxW3QPpODgcvzDRz+hyEIGomYlAJAiXptZcy4bcDazMWMmWnM10LmvNqLJ+tK9t6Shj8ZHh0ysK965ByDX2kUySJJGcUcZ3yVksOZCP4eR8M2qFnJGhNtoVbqNbnz50GHQdAFaLhfKCfHxD7UHIUGPm4Poc9q3JQaaAxMl+bNm2hZiYGPr37+9YsDUrK4uQkBDHUO7LQZIkLIVFGI8ewXj06MkAlIbp+HEkU/2+Ow4Kxckw49m0cOPhgayZr1eSJPIrDPZO2yenADiYW0FhlRFXay3BBj0n3GMYHBfIPb2jyf3hfbIPHaBljyTie/cnokOnCw71lywWLEVFmPP1GPNzyTy2m/wTB6jOyURdWoVfJRjdAjnUri3F/v4AyGw2ok5kEJ96CPfq0x3iZSoVquhOqKL6I3eNhZNzIsm1Nlzbu+PeMxxlkH+TRgjabBIn9hWxb1U2+ccrHLeHtfGm46BwIi+yU7dwcUQgamYiEAlC01Wbqlmfs56VmSvZlLsJd4OG4eW9GV7WGx+rDgBJBq7xvrgnhuASe3r5haIqIz/vzuGH5GzSz5h4sFWgO+OjZHgfWUfWHnvTmFdgMHe984nTxII1FUb2rc7m4IZcTAYLRk0hRl0uJpm9lsLd3Z1HH30UheLyzCdjq6nBmJZmr/E5ctQRgKwVFQ2Wl2u1uLRsiUurVo4fVWioPei4uV2WRVqborDSwN7scr5Pzmb14UIA5JKVOwp+xq2uxFHOzcubNr36Ed93IP6R9YfdX0hedR4bczayKWsdR49uJ6hMR4ipDS6KQHsBSSKyKJ/E/YeQSko5c00Pmas36piBqKL6IlPZa6xsxiqsxXvw6B2N921jULi5Nel89Ccq2Lc6m+O7i5BsEkoXBXfMTcJFe/mC97VGBKJmJgKRIDROpamSddnrWJmxks15mzFbzXSobcXIsr4kVXVCcXLKZrm7CrceQbglBDs6tFptEhuOFvFdcharUwuxnJwzR6tWMLpjCNeHWCnd9CfHd24H7KOb2vTqS8K4mxw1QtVlBnYtzSR1Sz4WixmDawFGXS5m7P1F1Go13bt3p2fPnk59S/4uksWCKTPTubnryBHMOTkNb6BQoI6KwqVVSzSnwk/r1qhCQhqcSfpqdKywmi82n+DnXTkYzVYCjQV0MafTovoYGE6H3/g+Axg+/bGLPo7BYmCHfgcbcjaw5+ge/PP9CaoL4rDuMCk+KbR0j2GwWxcS5LFEmzyRCoow6wuw6Iuw1vkhc2+PXOPt2J+tthBVsAzvib1xiWlarVFlSR0H1uagUMnpOSYWsNempWzIJaZzAFrPC09bIFwcEYiamQhEgnBhvx/7nZe2vYTBakBr1TCwogdjKwcTUnd67Sp1lCfuiSH2uWBOrhGVXVrLjzuz+XFXDvkVpzs2d47w4ubu4YzoEMKBxT+y5cdFQMNB6JSirCp+eCUZAFtYNiUWe18OrVZLz5496d69O64n+780p9PNXadrewxpRzEdO3dzlzIg4IwaH3sAUsfGIr8Kh+9fjNIaE4u2ZTJ/aybF1UbkkpVW5lz6K7JwyTvMgClT6XSdfT23uuoqjidvo2VCL1y02iYfS5IkjpcfZ9XBVWwv286e8j1YJSv+df60qGxBll8W7WLb0TesL71De+Oj8UGyStTuzadyRQqWMiWyMxeuVRhwSwjHvUc4ykDtRdXQ5R8r55f/7kahlNMqIZCOg8LxDbl6Ry5eqUQgamYiEAnCuVltVt7d8y5fHvySCGMwt9aMIqmkPUqLvTlKppaj7RyAW88Q1MH2JgejxcqKlAK+T85m07Fix768tSrGdQnjpu7htPR3c9SK5BxO4YfZs+oFIX16BcU51bTrG0pVVRVWq5UjG0sJa+2Ni4+VRYsWkZiYSKdOnRwzGl8qW00NxmPHMBw5Yq/xOdXcVV7eYHmZVotLyxZoWrV2CkBKb+8Gy19rjBYrf+zNY96mExzW20e/aWxGBsQFcfeANnSN9GbfyqWsnvcRSrULsd0SiO87gMj2nS961uwKYwVb8raw9Y+tyMvszzG9q57DXocp1ZTS3q89fcL60DesL3E+cdhqjJR9t5aa3fnI3aKQKU43eSl81Gg7BaLt4N+kcJR/rJzNPx+j4MTpTt0R8T50HBxOeJzPFd8MerUQgaiZiUAkCA2rMdfw1ManWJe1jptLhjG5aBSykwt4Kf1dce8ZjLZroKOT9BF9Fd8nZ/PrnhzKak9PvNenpR83dQ9nSHwg5Vkn2PLTN/iEhNHvtrscZSqLC/H0C0CSJHJSy9i1PIPcI+XY1AbC+5s5kLKfNm3aMGHCBMc2NpvtokeKSRYLpqwse23PGeHHnJ3d8AZy+cnmrlZoWjv39fm3NHf9nSRJYvOxEj7flM66I0WO2zuFezHBqwDjzhWU5Z1uanT11NGmV1/i+wwkMKbFRQWI4uJiNmzYwIEDBzj1cVioKeSw12GKNEUgg1D3UG5pcwtjW47FQ+lO5dJVlP2wDolglAFtncKR0t8V1/Z+TQpH+vQK9q7KIn1PkaNLk0+IGyOnd8SjkeuwCecmAlEzE4FIEOrLq87joTUPcaIknZn6yfSv6AaAJs4H914huMR6IZPJqDFa+HN/Ht8lZ7Mnq9yxfZCnhondwpjQLZxwHy0F6cfY8tM3pO+yd5ZWu7oy7X9fnx6SbZNI31fErqX2yRQtyhrq3LMxaIrg5Kru4eHh3HHHHU3qLC1JEpaiIqfaHsPRI+dv7vL3P13b07rVNdfc9Xc7WlDFF5tO8MueXEwW+8jCUJ2G21sqiCpPJX37Juoq7R3QZXI5932yAK2n7qKPV1payqZNm9i7dy+2k0P6jQFGVutWU2ex9z9zVboyJnYMt8bdSqRnJDUbN1L8yZeYCySUoV0bDkcd/NG292tUOKosrmPfmmxSN+fj6qHi1hcSHcvHWK02FGKix4siAlEzE4FIEJztLdzLw2sfxlZt5oXcB2lZGwFyGV5jYnFPCEaSJPZkl/NDcjaL9+VRY7IvHqqUyxgUF8DN3SPo28ofhVyG/ngaW3/6hvTd9r4/MpmcuN79SBh3Mz4hoYC9b9DKL1Io09diVlVS55GFUX168r/Y2Fj69OlDZGRko2sKJLOZ8p9+ovjTz7Dk5zdY5nRzVytcWp4OQKK5659RXG1k4bZMFmzNpKTGHk7dXZTc1DWE63QVFO3ZjGSzMWrmLMc2a+d/hm9YBK169kLj1rQ+ORUVFWzevJldu3YxcuRI4trHseTEEr7f8z01hTWUuJRQraqmb3hfbo27lZ5BPanbuZOS//2Pmh17UQZ1QBnaFVVQe5CdDuXKAFdc2zcuHBlrzVQWGxzro1nNNr6Zs42wNj50HBSOT3DTRrpd60QgamYiEAnCaYuPL+b5Lc8TWhvAK7kz8DZ5IHNV4ntrHLXBWn7dk8v3yVkcLah2bBPj58ZN3cMZ1yUMf4/TtSj7Vi5h1ecfAQ0HoVPqqk18/fQW5Ao57vHlHMndDUDbtm3p3bs3wcHBNJZks1G1bBmF776LOTPLfuMZzV1njvBShYWJ5q4rgMFs5fe9uXy+8QRphfbnlVwGw9sFc1fvKLpG+gD2iR4/m25vZlWoVMR2TSCuzwCiO3VBoWz8UPeqqiq0Wq2jpnHLli2sWLECAKPcSKlLKSWaEjS+GkZ3Gc3oVqORDh2l+H+fUL1mDShdUQZ1QNNhKDJNGJwxj6QjHHXwQxV44XBz5qzqABFtfek0JJyw1t6in1EjiEDUzEQgEgSwSTbe3/M+nx/4nISq9jydPxW1VYnSzxXfKfGsLqjkke/3OCZP1KjkXN8+mJu7R9A96vSbt8VsRnlyQsCqkmK+eHQarXokOYKQsdbMgXW5FOdUMeTueA4dOoRWq0Vt9iYw0hNJbmXVqlX07NnTscZYY1Vv3kzRm29hOHQIAIWvL34P3I/XjTci14j+Glc6SZLYkFbM5xvT2Zh2ujN+lwgv7ukTQ98ILYfWreTQhjWU5GQ57td4eNImqQ8dBw/HLyKqycfdv38/O3fuJC8vD4vF4nSfDRvJUckM6zCMm1vfjFtmKeWff07VsmX2GbWVrrj1HotLmwGYi3AsMguNC0enFiDetyqb9H1Fp1qH8Q11p9PgcFp2CxSLyp6HCETNTAQi4VpXa65l1sZZrMlaw42lg7m7cCwyZLi08MJ3Uhv+Sivike/3YrVJxAV7MikhgtEdQ9C5nv5WfqppDJmMsU8857i9rqoSVw9PaiqM7F+TzYH1uZgMZgyueuShRVRWVxAUFMS0adMu+htx3YGDFL71JrVbtwH2JSt87r4L3ylTkDdxsj3hynBYX8m8jSf4fW8eJqs9hIf7uHJnUjQTuoVRm59F6sY1pG5aT21FOQDDpz9GfJ8BgD1oNPX5ZLFY0Ov15OTkkJ6ZzvGM45gNZn6P+B2b3IZSpuR64/V4lHsQ5ReIV3o6bus34F1cjMJmQ9OpG56j7kay+GM4WtbkcFRRVMu+NTn2ebaM9mbom57pLpYFOQ8RiJqZCETCtUxfo+ehNQ9xvPgYMwpuZXB5AgBuCUF4jY7l1315PP7jPmwSjOsSyhvjO6I4Y2kC/bGjbP3529N9hORy7nnvczz97QumVhbXsWdFFqlb8jFbTRi0+Rg88rBiX6fL1dWVnj170qtXL5RNHGZtPHGConffs39bx75Ug/ekW/CdNg2lj88lPzbC5VdYZWDh1kwWbMt0jFz0cFFyS0IEU5KiCPZQk3VgL4e3bGDgXfc5OuknL/6FY8nbiO/Tn1aJfXB1v7hQUVlVSXJZMgsPLWRnwU4G5A7Ax+T83FIA3iUl+BYW0WH/flxbt8b37ntRBneiLqW0yeHIUGPm0KY8SvNqGHxnvOP2I9vyCYjydCw0K4hA1OxEIBKuVfuK9vHwmoexVBuZnfcAbWqiQAZeo2JxSwzmx505PPnLfiQJbu4ezitj2ztGxtQLQjI5cX3603PcTXgH2/sI5R8r59e39iDZJOpc86nVncCGvUnC09OTpKQkunTp0uQ5hMyFhRR/+BHlP/0EVivIZOhGj8bvoYdQh4VeeAfCVcdgtvLL7lw+35ROepF9xmuFXMb17YO5p3c0HcO9nMp//eQMijLS7eWUSqI7dye+7wCiO3d3NOk2VWpJKgsPLmT7ke3o6nT4Gn3xN/qjstr35yGTMfL3P7DV1gKQlpSIrmciLQYNwbPMBWOD4Uh7cij/+fsc1VQY+fr/tmCzSER39KPfLa1x8xKjHkUgamYiEAnXor/S/+K5zc8RVOfLy7kz8DPqkLko8L01Dk0rbxZuy+SZ3w4CcFvPCF4Y3c4Rho4lb+P3/74E1A9ChmozGnf7B4TNamPhc9vwCtTi19bKio2L8fPzo3fv3rRr167JNULWykpKPp9H6ddfIxnss1679++P/6OPomndqrkeGuEKZrNJrDtayOcbT7Dl+Ol10rpHeXN37xiGxAeikMuoKi3m8OYNpG5YQ1FWhqOcxs2dtv0H0X/y1Is+h+K6Yn488iPfHfmO0rpS3CxuBJmC6OzfmVt7jEH3xyZKFi7k50EDMZ8M+yqZjNCICMJDwwmweuKdp4L0mkaHo/LCWjb/dIyMA8UggcZdxaApcUS19+NaJgJRMxOBSLiW2CQbH+79kE/3f0q36nieyZuGi1WFwkeD3x1tUQVo+XLzCeYstndMvqtXNM+OjHPqj2Exmfji0WmEx7en57ib8AoKIedwGbuWZVJRWMt1M2LZtm0rfn5+9OjaExetCpvNxvHjx4mNjW3yZIo2o5GyhYso+fRTxwKprp06EfD4Y2i7dWu+B0e4qqTkVTBv0wkW78vDfDJYRPhouatXFBO6hePmYg/cRZknOLRxLYc3raO6rJTWiX0Y+ciTgL2vUUlOFr5hEU3uc2Symlh6YikLUxdyuPSw4/ZeIb24JfQGqpemkH0igxJPD0cwOiUqKorJN91G3aES6g4UU5CWi6dVc3ri0wAt2g5+uLZ3DkcledWs+vIQxdn20XgdB4WTeEPsNdvxWgSiZiYCkXCtqDXX8szmZ1iZsZIxZQO4t2A8cmSooz3xvS0ehZuKTzcc55Ul9jf3af1ieGpYG/KOpLJn+Z8Mf3CmYzkFs9GAUuXCiX3F7FqWQWFmlX0OIfdsjC72b+5arZaZM2c2uSboFMlqpeK33yn64APHXELqFrEEPPoo7gMHimHJAgAFlQa+3prBwm1ZVNTZ+xl5apRMSohkSlIkwbqTq9vbrGQfPIDGw4PAaPsirMVZGcz/z3S8AoNpmZBEy4QkgmJbNem5JUkSuwp2sTB1IWuy1iCdHCoW5RnF7TE30Xu3kdyffqUAiWI/P0r8A2gd4M/w++5D4elJbW0tr7/+OhqVC4FKb/yq3Qi0euJv80SFsl44spitbP3lOPvX2mf2Doz2ZNx/ujpqcK8lIhA1MxGIhGuBvkbPjDUzOFpyhOkFtzCsrBcA2m6BeN/QAplSzgdr0vjviqMAzBjYgkeHtOLAmuWsnvc/bFYLfSbdQY8x47FabaTtKGD38kxK9TWY1WXUeeRgUpU7jhcXF0fv3r0JDW16nx5Jkqhes4bCt9/GdOw4AMrgYPynT0d3wxhkTZipWrh21Jos/Lw7ly82neBEsb2fkVIuY2SHYO7pE0O70PqzXR/evJ7lH7+LxXx61nIPX39a9kikZUISIa3jkMsb/3zLqcrh28Pf8kvaL1Sb7bU4HmoPJkSPZewxHywLfsCcmYUEKNzc8J40iZqh17Hot9/qDfmXAT6SB+3NEbSwBdmvJ1CLtoM/bt0DycqoYs38VLoMi6TzkIgmPlr/DldNIMrNzeXJJ59k6dKl1NXV0apVK+bNm0fXrl0B+5venDlz+PTTTykrKyMhIYEPP/yQtm3bOvZhNBp5/PHH+fbbb6mrq2PQoEF89NFHhIWFOcqUlZUxY8YM/vjjDwBGjx7N+++/j5eXV6POUwQi4d/uQNEBHl77MHXVNczOu5+21bEgA9310bj3tgeWt1el8d7qNABmDmnFg/2iWPvVZ+xbuQSAVj17M+z+R1BpNBRmVvLj3J0AGLyyqNJkACCXy+nQoQO9evXC39//os61dudOCt98i7o9ewBQ6HT4TpuG962TxNIZQqPYbBJrDhfy+aZ0tqWfnvE8IdqHe/rEMKhNgFNtislQx4k9u0jbvpn0PTsxG+oc942bNYfoTl2bfA415hp+O/Ybi1IXkV1lXx9PIVMwOHQAtxe0wOPb5RjT7K83mUaDx/jxWEaPIr+2lpycHLKzs6k42Tw8rGN/WlT4Y0gro8RWyT5lBi1tIbRo0wJ1h0A82vkiP7n0R3lhLVpPNWrNxdXKXm2uikBUVlZG586dGTBgAPfffz8BAQEcP36cqKgoYmPtVZWvvfYaL7/8Ml999RWtWrXipZdeYsOGDRw5cgQPD/sQyfvvv5/Fixfz1Vdf4evry2OPPUZpaSm7du1yzDI6fPhwcnJy+PTTTwG49957iYqKYvHixY06VxGIhH+zZSeW8czmZ/Cr1fFK3sMEGLyRqRX43NIa1zhfJEni9eVH+HidvSbmqeFtmNzJlz/emkvu4RSQyeh90+10Gz0ehUKOxWLBaDSy+bsM/MLcCYxXM3/Bl3Tp0oXExER0uotbc8pw5ChFb71F9fr1gP1DwmfKFHzvvguFeF0KF+lATgXzNqXz5/58LDb7R2K0nxt39Y7mxi6haNXOwcFsMpK5fy9p2zeTk5rCnW//zzEqbftvP1Kuz6NlQhIR7To1arSaTbKxMWcjC1IXsD1/u+P2tt7x3FvVmahfd2E8aB+8gEqF1w034Dv1HtQREVRWVpKdnU14eDienp7Y6ixs/msdqw9uAsBd0tDKEky8LobAxBjU7f346W37qM7r7mlLQOS//3VzVQSip556is2bN7Nx48YG75ckiZCQEB555BGefNLeuc1oNBIYGMhrr73GtGnTqKiowN/fnwULFnDTTTcBkJeXR3h4OEuWLGHo0KGkpqYSHx/Ptm3bSEiwz5+ybds2EhMTOXz4MK1bt77guYpAJPwbSZLEx/s+5uN9H9O5ug3P5d+HxqJG4eVi7zwd5IYkSbz0VyrzNp0A4NmR8YwKk/jt9RepKilC7erK9Q/9B1ddK9YsPERIkpk9B3YSHR3NuHHjHMcyGo24XGTtjSknl+L336Pij8UgSaBQ4DV+PH4PPIAqMKBZHgtByK+oY/6WTL7Znkmlwd405aVVMa5zGH1a+tE92gd3F+dwdObkjpIk8cXD91JecLIvm6uW2K49aJmQRFSnrqjUF37+Hy07yqLURfx5/E9MNnsTnb/Gj2mmRLouy8C8y14rilyO54gR+N07FZeWLZ32UVhYyM6dO9m/dx8Gk30uL5kEYTZfWhOK0uzL8SoblUDi2Fg6DgxH9i/uW3RVBKL4+HiGDh1KTk4O69evJzQ0lAceeICpU+1DHdPT04mNjWX37t107tzZsd2YMWPw8vJi/vz5rFmzhkGDBlFaWor3GYstduzYkRtuuIE5c+bwxRdfMHPmTMrLy52O7+Xlxdtvv82dd955wXMVgUj4t6mz1PHs5mdZnrGcEaV9eaDwJuSSDHWkJ763x6FwV2OzScxenMLXWzMBeHFMW25PjKI4O5Nvnnkcd28fxvznGYy1Hvz88XrKtUewKu3zq+h0OqZPn47qIudzAbCUlVHyv/9R9s23SOaTE+4NG4b/wzNwiY6+9AdBEBpQY7Tw064c5m06QVZpreN2hVxGhzAdiTG+JMb60i3SB1f16b5DkiSRnXKAtB2bSduxlZqy001xShcX2vYdxOB7HmjUOZQaSvnp6E98d/g7iuqKAFDL1dxhTWDwugrYtttR1mPIYHyn3Ydru7ZO+zCbzaSmprJr504ys+zLmCglOZOMfVCjpNxi44TJhizWm4F3xqP1bNpcX1eLxn5+X9YGxPT0dD7++GNmzpzJ008/zY4dO5gxYwYuLi5MnjwZvV4PQGBgoNN2gYGBZGba36D1ej1qtdopDJ0qc2p7vV5PQED9b5EBAQGOMmczGo0YjUbH35WVlRd/oYJwhSmsLWTGmhmkFqfyQOFNjCrtB4C2cwDe41oiU8mx2ST+77cDfLsjG5kM5o5tz8097J0y/cIjGTdrNn7hkegzqvlh4Q/UeuYB4ObmxsCBA+nYseNFjxyz1dRQMn8+pfO+wFZj7/iqTexJwMzHcG3frhkeAUE4NzcXJVOSoritZySrUwtYnVrI1vQSskpr2ZNVzp6scj5adxyVQkbncG96xvqSGONL5wgvItp1IKJdBwbeMY28tCOkbd9M2o4tVBYVYrNZHceQbDYOb9lAdKduaNzd652Dj8aHezvcy51t72RF5goWHFpASkkKn8o28ukAGNW7IxO2ydBs2kvVylVUrVyFW+/e+N03zTHNhEqlokOHDnTo0IHi4mJ2796NtdKIlzWE2v1FeCGnRnMUf72OnS+XEz22NeE9G79I8r/NZQ1ENpuNbt268corrwDQuXNnUlJS+Pjjj5k8ebKj3NlDGxuz/szZZRoqf779zJ07lzlz5jT6WgThapFSksKM1TOoqa7ilfwZdKyyT1boOSwKj35hyGQyrDaJJ37az8+7c5DL4NWRLVCt/ZIc9xsJi7cHkrA2bdm77TB/LPkFm4u9ar9Tx04MHTYUV1fXizo3yWSi7IcfKf74Y6wl9mH5mvh4/B+biXuvXs1w9YLQeAq5jOvaBnFdW/vorZyyWrYeL2FregnbjpeQV2FgR0YpOzJKeW91Gi5KOV0jvR01SB1iWxPaOo5+t99NQfoxVGcsHpx/7AhL3v8vcoWC8LYdaJXQixbde6LVeTmdg0qhYkTMCK6Pvp59RftYcGgBq7NWs1iVwuI+0L1rGHft9cJ3Uyo1mzZRs2kTrt264nff/bj1SnJ8xvn5+XHdddc59qsbEc2JdSkc3pnLYWUuLtJRCv48Ts3uVkT0aYNrvC8yxbU1b9FlDUTBwcHEx8c73RYXF8fPP/8MQFCQ/Umo1+sJDj6dWgsLCx21RkFBQZhMJsrKypxqiQoLC0lKSnKUKSgoqHf8oqKierVPp8yaNYuZM2c6/q6srCQ8PPxiLlMQrhgrMlbwf5v+D+86Dz7IfZoggy8ylRyfm1rj2s4+m63FauOxH/fx+948FHIZcwf4U/XDfynX51OcncVd73yCQqkk90gZW7/NBk9wkbsx4ZZxtGgZe1HnJdlsVC5ZStG772LOto+2UUVGEPDww3gMG4asiZM0CsLfIcxby4RuWiZ0C0eSJDJLatmaXuIISUVVRrYcL7HPjr0SXFUKukV5kxTrR2KsP+2CTjfXmOrq8IuIojgrg8z9e8jcv4dVn39EWFxbWiYk0TqpL1rP04MPZDIZnQI60SmgE/nV+Xx75Ft+OvoTyehJTtIT3UHLAweDidyYTt3OXWTfcw+uHTviN306br171fvyr3BXE9ivBf20/didvIuqumpSlNmkFGYT8GMybVQRtO/WEe+kCJS6a2Pk5mXtQzRp0iSys7OdOlU/+uijbN++nS1btjg6VT/66KM88cQTAJhMJgICAup1ql64cCETJ04EID8/n7CwsHqdqrdv306PHj0A2L59Oz179hSdqoVrgiRJfLL/Ez7c+yHta1oyO/8BtGYXFDo1vpPbog61V9mbrTYe+W4vfx3IRymX8UoXGfrFX2A21OHpH8Dox/6PMqOZVq1a8dtbe8g/VoFfawWjpyXgqtVc4CwaPq+aTZspfPstjIdSAVD4+eH/4AN4jR+P7BL6HwnCP0mSJI4X1bD1eLG9Bim9lNIak1MZDxcl3aN9HDVI8cGelOvzHM1qBenHHGVvmvMaYW3sfYJsVivyBubVqjXXsvj4YhamLiSjMgMAvyoZ96UE035zPjKTvd/d+YIR4Jghfue2ZNLS07CdjAVDTB2IxB9NG1/cewbj0sLrqux8fVV0qk5OTiYpKYk5c+YwceJEduzYwdSpU/n000+59dZbAfuw+7lz5/Lll1/SsmVLXnnlFdatW1dv2P2ff/7JV199hY+PD48//jglJSX1ht3n5eXxySefAPZh95GRkWLYvfCvZ7AYeG7zcyzNWMrQsiRmFExCLslRhXvgd3s8ipMdKY0WK9O/2cPKQwWo5PB8WC4F6+3zdoW37UDi7fewcu06srKyGDt2LK1bxLNzSQY9b4hBqWr6JIh1+/dT+OZb1G63DzOWu7vje8/d+EyejFyrbb4HQBAuA5tN4mhhFVtP1hhtTy9xjFw7ReeqIiHah8RYX5Ji/QiU1XAseSvZhw5ww+PPOGpGV33+EfnHjtAqoRctE5LwCQlzPpZkY0veFhYeWsjmvM32fVdL3LXPm4RtFchPBiNNxw74T5+OW+/e5+wuUlVVxYblWzm0J4VBxk4EnOwHeFiRC24KOiZ0wadnBAq3q+fLylURiAD+/PNPZs2aRVpaGtHR0cycOdMxygxOT8z4ySefOE3M2K7d6Y6VBoOB//znP3zzzTdOEzOe2cRVWlpab2LGDz74QEzMKPyrFdUW8fDah0kpOsjUwvHcUDoAANcOfvhMaIXsZJAxmK3cv3AXa48UoZFLPK7eQUWqfRRLx6EjUUS1YtPmzVitVlQqFcOHD6dLly4XdU7G9BMUvfMOVStWACBTqfC+9VZ8p92L8qzBEYLwb2G1SaTmVzqa13acKKXa6ByQfN3U9IzxpWesL0mxvsT42dcn+/SBO6guPb1IrW9YBC0TetEqIQm/iCincJNens7C1IX8cfwPjFYjumqJSbu19EuuQ26yH0/ToQP+0x/ErU+fBoOR1WojefEJdi3PxEMGLb1VbFRuolZmRCHJiZYC6BjdlpYDO+AS4XnFL49z1QSiq4UIRMLVJrUklYfWPERVVQX/p7+XLpVtAPAcHIHHoNOLVNaZrNy7YCcb04rRqOR8dns3KpZ+ybEdW+g04XZScvUUFdmH/bqYfBjQdwg9h8U1+XzMBQUUf/Ah5b/8AlYryGToxozB/6HpqC5i6Q5BuJpZrDYO5FY4+iDtzCijzmx1KhPg4UJirC89gtSEVBynJGUn2Qf3YbOeLhfZoTPj/+/FevsvNZTy/eHv+fbwt5QZy9DVSIxPVjJ4lxVFI4NRzuFSVn55iJoKA2Z3PfgUUWGqcNyvs2mJd4uic1I3/BIikauvzOVyRCBqZiIQCVeTVZmreHrT03jWanklbwYhdf6glOMzsRXaDqeXy6gxWrh7fjLb0kvRquR8cWcPesb4YjYaWLVsGdv37AVA4+KKS1EUqlo/ojv4c/197Rvdl8BaWUnJZ59TumABksEAgPuAAfg/+giaVq2a/doF4WpkstjYl1Nur0E6XsKurDJMFptTmVAvVxLDtLSz5qDJPYj+0D46DxtFv9vuAsBqMbP5+4XEdk0gpFUbZHI5BouBP47/wdeHviazMhNdjcQN22UM3SOhNNmDlaZ9e3sw6tu3XjCqqzKx+utUMg+UICER1kWN5F7AobTDmCV7sGpjCaGPoh1uXQNx6xmMKuDKavIWgaiZiUAkXA0kSeLzA5/z3p73aFsby5y8B3Eza5B7qPGbHI863MNRtspg5q6vkkk+UUpC7UFGBJm4fdbpfgsZGRl89dVXtIyKo2KXD5JZQVQHP4ZNbYdCdeFRXzaDgbJFiyj+9DNsJ9dbcu3ShYDHZqLt2vR1nwThWmIwW9mdVca2k01se7PLMVudP65jvJQkRHjSMz6CxBhfatNT+Hnu8wC4aN3wCgpG5x+ILjAIz4BA8n0NfFvwG3sK96CrkRi13cbw3TJUZnvw0rRvj9+DD+Der59TMJIkif1rctjy6zGGTW1HdEd/jEYjB3bvY+fWZBJNrfAttw+qKJZVkedbRdfePQjoFolMeflHiIpA1MxEIBKudEarkee3PM9f6X8xuDyBRwpuR2GTowpxw3dKW6ehsxV1Zu74cgf7M4oZWraB2Moj2JQqut9yJ/1HjnaU27/1GFsW5WC12Iju6MfQqe1QXOANTrJYqPjtN4o++BDLyYlPXVq2wP/RmbgP6H/F9zcQhCtRrcnCzowyRxPbgdwKrDbnj+9O2mp61BzANf8INmNdvX0Mn/4Y8X0GsLdwL9+t+h+WTccwqsyEF5vpmGHGs86Mq9GMZ1wc/tOn1wtG1WUG3L1PjyYtza/BK1CLDDAeK6d6Wz4r0jZxVJGHTIJwuT+dWrWn3dBuqH0uX62RCETNTAQi4UpWXFfMw2sf5kDhAe4suoEJJUMAcG3ri/dNrZ3a9strTdw+bwcnMnMZVbQcX0MhFm9/LKExIJPxwAMP4OPjQ8aBYpZ+cgCbRSKmkz/X3dP2gmHIlJ1N9v33YzpmXwRWGRKM/0Mz0I0ehayBYcOCIFycKoOZ5IxSRyftlLxKTn2ayyUrPpZyunhLdPKyEaasxVpRTNLE2wiMts8VtnfFElbP+6jBfSusNjplFRAZEYPfgw9gaxdPSU4WuoAgdP6BKNVqqkoNfP/SDnxD3RlyV7wjKB1I3sf2jVvJqTy9CoRWUhPnFUO3Pj0I6hL9jw/dF4GomYlAJFypjpQeYfqa6ZRXlfF0/j10r7TPXeIxIBzPIZFObz4l1UZum7eD8hNHGFG4HBeFDVNYLGYX+7e3kJAQxo4di7+/PzuXZrD993RiOp8MQxeYtdZWW0vGzbdgPHoUhU6H7/334X3LLcgvckFXQRAar6LWzPYT9iH+29JLOKyvcrq/bYgnQ9sGMbRtEK0C3aksKiD3SCoVhXqK8rI4nplCTXExmjoZMmR0PZFLYKW9z19eu9bsVZweEefu7YPGw4/yQhUSHrh6tWfInUnEdDrdP7G4sIgdq7Zw4Ngh6mz2ZbDcJQ2TtAPx6BmCtlvgPzZ0XwSiZiYCkXAlWpO1hqc2PoV7nYaX82YQXhsIShk+N7ZC29l5/b6iKiO3fr4N2fHdDCxeh9UnALN/CJJMhkqlYuDAgSQkJCA/Y1boY7sKie7kd8EwJEkSeY89TuWSJSj8/Ij++SdU55gFXhCEv19OWS0rUgpYnqInOaOUM1vXony1DG1nD0edwryQn/zSZLAYWHzkN37cuZD8qkxG7LQydJdEsbs7Gf5e1GpcsDRQuaN2n4hcFUb7/mF4+Wew669f0QUEogsIwtM/gKpaGScy8wmo8aSzMRIAm1Jif6CeTn26Edox+m9tSheBqJmJQCRcSSRJ4ouDX/Du7ndpXRfJi3kP4W5yRe6uwvf2eFwinZ+jBZUGJn22jeNFNcQriulpTcGmsdcKtWjRghEjRuDt7U3u0TL8IzxQa5q2qk/JF19S+PrroFQSOf8r0WlaEK4gJdVGVqcWsjxFz8ZjxU6j1wI8XLiubSBD2wbRM8YXlUKOTbKxPns9X6V8RVrGLkZttzFsl4SLGcwKOZY2rVAMvQ6jvy/lej1qj94c2lQOgFK5jeqiLQ2eh1ymYsKkZ1FlykjLT2eV+oD9HOQ62sW2odvIPmh19Re6vVQiEDUzEYiEK4XJamLO1jn8cfwP+lV04z/6O+ydp4O09s7T3s5LaOSV1zHp0y1klBoI0Wn4ZmpPDm5czqG0YwwfPpx27dohk8lI31vE8s8OEhSjY+T0jqhcGtfnp2bbNrLuuhtsNgKffQafk7PMC4Jw5ak2Wlh/pIhlKXrWHi50mhzSU6NkUJw9HPVr5Y+rWsH+ov3MT5nP9sMruX67heE7JTT2ia9xiWuD/0MP4T5gAFkppayef4jaijKi2suJiFdSUaCnvLCAigI9FYV6DNVVTP3wSzz9/MnYfZSVfy4lz1qOJLPHkARrS/pNuM5papDmIAJRMxOBSLgSlNSV8Oi6R9lbsJfbi0dyS/FwADRxPvjc3Bq5i3PNTnZpLfe/+zud8tdyOLgXbz88gXAfLRaLBZPJhPbkEhnpe+xhyGaTaNEtgCF3xiNvxErX5txcTtw4Hmt5ObobbiB47itiFJkgXCWMFitbjpewIkXPykMFFFefXntNo5LTt6U/Q9sGMSgugCpLAQtSF7Bq/y8M3lLLsF0SrieLq9q0JvChh5B17cXOJZn0Ht8CZQOTNBpra1BrXB1TexxYs4LDW7ZSU+NCqRJGm7sT+WhPVIFuzXqdIhA1MxGIhMvtaNlRHlr9ECVVRTypv5vEig4AuPcNQzcsqt7IjYziGp5+/QviLMewenrjgsQTzz7nWN/vlON7ClnxWQo2m0TLbgEMbmQYshkMZE66FcOhQ2jatiVy0ULkmqYv8CoIwuVntUnszipj+UE9y1L05JSdHravkMvoGeNjb1ZroWFt3u/8vmshvTeWOAUjReuWBD80A/dBg5DJZNhsEmsXHqZtnxCConXnP77VgiW3BpeI85e7GCIQNTMRiITLaX32ep7Y8ASudSpezptBZG0wKGR4j22BW7egeuXT9BV88MZbeGutoFACEgk9ejB4yHWozlhB/vjuQlZ8fjIMdQ9k8B1xjQpDkiSR/9QsKn7/HYW3t70TdUhIc16yIAiXiSRJHMqvZHlKAStS9PVGrHUK92JQvA8q3R7WpS6i/eoTDN95OhjRMpqwh2eSLmvNph/TkMtlJIyJofOQiH98yD2IQNTsRCASLgdJkpifMp+3dr1FbF0YL+fNwNPkhlyrtHeebuBb19Z9h/nr269Rauyr2LupVUyaMoXQUOcVstP3FLHss4NINolWPQIZdEe8Y7TJhZQuWEjByy+DQkHEvHm49Uy49IsVBOGKlFFcw4pDepanFLA7q4wzU0OLAC1tY/Moq/mT1qv2OQUjQ4sW5CY8TGau/UtWeJw3g+6Ix033z07FIQJRMxOBSPinma1mXtj2Ar8d+43elZ15Un8XSqsCZYAWvynxKH1d622zZvMu1i//3d5Gb7MS36IlN956a71mMoDinCp+e3sPUe38GDglrtFhqDY5mcw77wKLhYCnnsT3jjsu9VIFQbhKFFYaWHHIPpx/6/ESLGeM5w/yLyTUaz1dNiczbKcNrQkkILv9cE4EjMBqleHqoWLwHfFEtPX9x85ZBKJmJgKR8E97b/d7fLb/M24pGc7kolEAuLTyxndSG+QNDIs/kFPB7Z9vYYRhI2qbmTETb6ZTt/MPf68oqsPDV9PoMGTW6+2dqEtK8Bw5kpA3XhedqAXhGlVRZ2btYftw/nVHiqgz2xeLlalKCdZtYMSh7QzbaUZrghptIAc63kuti72Jv/eElnQcFP6PnKcIRM1MBCLhn5RRkcGE3yYwI/dmBlT2AMC9Vwi662OQKU4HEKPRyObNm3ELa8M93xygymChR6CC9yZ1IyjQr95+03YW4OblQkgLryafk81kIvO22zHs349LmzZEffsNctf6tVSCIFx7DGYrG44WsTylgNWHCyivNYO8Fh/tRsYe38D1u4y4WJQcjxlLbkgv+vStot2kcY4RZ38nEYiamQhEwj9FkiTuX3U/rfcEMKF0CMhleI2JxT0h2Knc0aNH+XPxYiqrqqiuNvOTIpHu0T58cUd3PDT1p8Q/ukPPqi8PoVQrmDCrG95BTRvamv/ss5T/+BNynY7on35EHf7PfLsTBOHqYrHa2HGilOUp9n5H+qpqvFy2Me7EKkbsrUaGD67GUkpCPPB98H4CkybgE9z8EzKe0tjP76ZNRysIwt9uTdYaMk8c46nSmwHwuaU12vanJyqrrq5m6dKlpKSkACAzGfEtzWJA+0Q+uLMHbi71X9ZHtutZ/dUhJAladgvAK6BpK0+Xff8D5T/+BHI5oW++KcKQIAjnpFTISWrhR1ILP2aPbsv+nAqWpbRmmccQfgrfxrisvxi1D3zzqqh89TvWdAnF07+CibPG4OKmvmznLWqIGknUEAn/hDpLHWN+HcP0w+PpUhOHpo0PfnfYF2uVJIk9e/awYsUKDAYDSBKq0gLMpWXkd5nIOw/dgGsDk6GdGYbie4fQf1LrJg19rd2zh8zJU8Bsxn/mTPzundps1ysIwrXlWGEVy1MKWLlnHZ12f0P3whZkRE8EmRzP0q24jNQxcfL0Zj2mqCEShKvQ5wc+J1ofSJeaOFDI8BoV47hv/fr1rFu3DgC5oRZNfgZFkjvlve/l/Xv6o1HVD0OHt+Wzen4qSBDfJ4T+tzQtDJkLC8md8TCYzXgMHYrv1Hsu+RoFQbh2tQjwoEWABw8OaEFe+a38unkLhl9+wMeYSPvDi8kcc+dlOzcRiAThCpFVmcWi/Qv5sGAWAB79wpyG1nfp0oXNGzYgz89EVVpAqnsbFL1v5IPbe+CirB+GslNLHWGobd9Q+t3cqklhSDKZyH3kUSxFRahbxBL88stiRJkgCM0mxMuVB0cMghGDOJGZztr5e5l88+Wrgf77u3cLgtAoryW/xriigQRafFF4uWDr7MnatWsd93t6ehLbLgFFaREbfHujGXALH05OaDAMAYS09CKqnS/t+obS75amhSGAgldfo273buQeHoR/8AEK9+ZdX0gQBOGU6MgY7nruHZSNmCn/7yJqiAThCrAuex1p6Yd4rORZADyvj+aHP38nMzOToIAA4tq25fe9ufzfTiua8FsZ3K0Vb07oeN43D4VSzrBp7ZErZE2u2Sn/5VfKvvkGgJDXX0MdFXWxlyYIgnBVEDVEgnCZGSwGXt3xKvcWjEctqXBp4cWB2uNkZmaikMtZ/eGbfLtqD49+vxerTWJ4QhvemtipwTB0aFMeG384yqmxEgqlvMlhqO7AQfSzZwPg99B0PAYMuORrFARBuNKJQCQIl9mXB78kJN+bntUdQA5SPx9Wr14NgDLvBMaSQv748RdsEtzSI5zXb+yAooHmr5SNuaxdeJj9a3I4sbf4os7FUlJCzowZSCYT7gMH4nf//Zd0bYIgCFcLEYgE4TLKqcrh6/3zua9gPABuvUL4a9MKzGYzitoqVGVF7PDqylavBCYnRvLyDe0bXGbj4IZc1i06AkCHgWFEd6o/S/WFSBYLuY/OxJKfjzoqipDXXv1HZpEVBEG4Eoh3O0G4jF5Lfo0RRb0JMQcg91BzRFdIZmYmMsmGJu8E6dpotnt15+4+McwZ3facYWj9N/Yw1HFQOL0ntLyo0WCFb/yX2h07kGu1hH34AQoPj0u+PkEQhKuFCESCcJlsyNlASvo+bikeDoB6UBCr16+x/16QTR0urPYbwF29Y3hmRFyDIefAuhxHGOo0OJxe41tcVBiqWPwnpfPnAxD82qu4xMZe7GUJgiBclUQgEoTLwGg18uqOV5lacCMukhp1lCe+CRH0jGuNsqIEZXkJS/wGEx3qx1PD2zQYcsoLa9n4QxoAnYZEkHTjxYUhQ2oq+c/aR7f53jcNzyFDLu3iBEEQrkJi2L0gXAZfHfwKX72WPlVdQAZeo2ORyWT0um4YJ/bvZ0ldIIWuQXxyYwfUyoa/t3gFaBl8RxwluTX0vCHmosKQpayMnOkPIRkMuPXpg/9DD13qpQmCIFyVRCAShH9YXnUeX+37kjf1jwFg7eKBwd2GGrCoNHyh7kuezsA9vaLpGO5Vb3uzyYrq5JplrXoEXfR5SFYreY89jjk3F1V4OKH/fQOZouFJHgVBEP7tRJOZIPzDXk9+neuKexJhCkKmVbCmcjcfvP8+R48e5Y1lh8mrNBLuq2Xmda3qbbtvdTbfv7SD6jLjJZ9H0TvvULNlCzJXV8I++ACFTnfJ+xQEQbhaiUAkCP+gzbmb2X08mVuLRwCQHldLZnYWJqOBTT99z9dbMwCYO7YDWrVzBe7eVVls+jGNisI6ju8uvKTzqFy2jJLPPgcg5OWX0LSuH74EQRCuJSIQCcI/xGQ1MXfHXO4uHIvWpqEuRM76I9sAcCnMIblYjoSM8V3D6N3SeR6hPSuz2PzTMQC6XR9Fh4FhF30ehqNHyXv6/wDwuesuPK+//qL3JQiC8G8h+hAJwj/k60Nf465XMqgyAUkmsVGdisViQVFThcrFg2WqDvi5u/DMiDin7XavyGTrL8cB6DYiih4joy961XlrZSU5Dz2EVFuLNrEnATMfveTrEgRB+DcQNUSC8A/Ir87n832f84D+JgCOR1eRpc8BmxX38kIWanojyeTMGd0WL63asd3u5afDUPcRUSSMurjRZACSzUbuf/6DOTMLVUgIoW+9hUwpvhMJgiCACESC8I94Y+cbDCjqSowxjCqNiU0FuwF7U9mB8EGUy9wYEh/I9e1PjxqrKjWwd3U2AN1HRtNjVMwlnUPxBx9Ss34DMhcXwj54H6W39yXtTxAE4d9EfD0UhL/Z1ryt7Di+lc+LZgPg3y8a1V9/IMkUuEe0ZU2lPx4uSl4c086p9sfDR8OtsxPITi2jRdeASzqHqtWrKf7oIwCCX5iDJj7+kvYnCILwbyNqiAThb2S2mnll+ytMKRqNu02LKtgN337RTLrzbmK9PPlfrb2/0Kzr4wjSaept76JVXXIYMqank/fEkwB43347ujFjLml/giAI/0YiEAnC32hB6gLUBRJDy5MwYsZzVDQyuYyw+PYsDRpOjQUSon24uXu4Yxt9egVHtuuRJOmSj2+triZn+kPYamrQdutG4BP/ueR9CoIg/BuJJjNB+Jvoa/R8svcTXtFPR4aMVZ4HYfkRJtx0E2tO1LIxrRgXpZxXb+zgWMXearGxduFhSvNqqK000XlIxEUfX7LZyHvqKUzp6SgDAwl9521kKlVzXZ4gCMK/ighEgvA3eXPnm/Qu6URrQxSH1Lnkm0oh30baocO8uLoagEcGtyLaz82xzb7V2ZTm1aBxVxGXGHxJxy/59FOqV61GplIR9v57KP38LryRIAjCNeqyNpnNnj0bmUzm9BMUdHqUzR133FHv/p49ezrtw2g08tBDD+Hn54ebmxujR48mJyfHqUxZWRm33347Op0OnU7H7bffTnl5+T9xicI1akf+DjYdX89dhWOoktWxXXYEAB9zLQtPKKioMxMf7Mk9faId21QW15H85wkAet3YAo37xdfmVG/YQNG77wEQ9PxzuHbocAlXIwiC8O932fsQtW3blvz8fMfPgQMHnO4fNmyY0/1Llixxuv+RRx7h119/5bvvvmPTpk1UV1czcuRIrFaro8ykSZPYu3cvy5YtY9myZezdu5fbb7/9H7k+4dpjttk7Ut9eNApPqzvrXQ5hlUko62qIHjqJxSnFKOQyXh/fAZXC/hKUJIkN3x/FYrYR0tKL1j0vftFWU2YmuY//ByQJr5tvwmv8+Oa6NEEQhH+ty95kplQqnWqFzubi4nLO+ysqKpg3bx4LFixg8ODBACxcuJDw8HBWrVrF0KFDSU1NZdmyZWzbto2EhAQAPvvsMxITEzly5AitW7du/osSrmnfpH6DrcDAyLK+HFbkoqccbFZ6JyXx1JYyAO7pE0270NOLqabvLSLzQAlyhYx+k1pf9OSLtpoaeyfqykpcO3Ui6Omnm+OSBEEQ/vUuew1RWloaISEhREdHc/PNN5Oenu50/7p16wgICKBVq1ZMnTqVwsLTi1ru2rULs9nMdddd57gtJCSEdu3asWXLFgC2bt2KTqdzhCGAnj17otPpHGUaYjQaqaysdPoRhAspqi3i470f84D+JmpkRrYpjwIQ4e7KSmss+koDUb5aHh18ejFVq8XGph/SAOh8XQQ+wW4N7vtCJEki75lnMKalofD3I/Tdd5Gp1RfeUBAEQbi8gSghIYGvv/6a5cuX89lnn6HX60lKSqKkpASA4cOHs2jRItasWcObb75JcnIyAwcOxGg0AqDX61Gr1XifNeNuYGAger3eUSYgoP48LgEBAY4yDZk7d66jz5FOpyM8PPycZQXhlDd3vUmPknja1bXALLMgM9bhYjbSauTtLNphn3V67rgOaFQKxzYKpZwhd8UT1d6XbsOjLvrYpV98QdXSZaBSEfbuu6gCL23+IkEQhGvJZW0yGz58uOP39u3bk5iYSGxsLPPnz2fmzJncdNNNjvvbtWtHt27diIyM5K+//mLcuHHn3K8kSU5NDg01P5xd5myzZs1i5syZjr8rKytFKBLOa6d+J2vTVvNZwfMARA6Mp09hIcHtunDfEvt6ZLf0CCcx1rfetiEtvQlpefFLadRs2ULhm28BEPT0LLRdulz0vgRBEK5Fl73J7Exubm60b9+etLS0Bu8PDg4mMjLScX9QUBAmk4mysjKncoWFhQQGBjrKFBQU1NtXUVGRo0xDXFxc8PT0dPoRhHOx2Cy8suMVbikejrfVE6WvBs/+EfSbdAe/5alJL64hwMOFp4afXslesklUlRou+dimnFxyH50JNhu6G8fhdfPNl7xPQRCEa80VFYiMRiOpqakEBzc8/0pJSQnZ2dmO+7t27YpKpWLlypWOMvn5+Rw8eJCkpCQAEhMTqaioYMeOHY4y27dvp6KiwlFGEC7Vd4e/w6CvYkzpAJar9rEvsgArNlLyKvhkg71f3Is3tEPnenoofcqmPL55fhv712Zf9HFtdXXkPPQQ1ooKNO3bE/TccxfdIVsQBOFadlkD0eOPP8769es5ceIE27dvZ/z48VRWVjJlyhSqq6t5/PHH2bp1KxkZGaxbt45Ro0bh5+fH2LFjAdDpdNx999089thjrF69mj179nDbbbfRvn17x6izuLg4hg0bxtSpU9m2bRvbtm1j6tSpjBw5UowwE5pFcV0xH+75kPv0Ezim0JOjKGHboZ2UlpXz1M8HsNokrm8fxNC2p0dL1lQY2frrcSxmG3BxAUaSJPKfex5jaioKHx/C3nsXuYtLM12VIAjCteWy9iHKycnhlltuobi4GH9/f3r27Mm2bduIjIykrq6OAwcO8PXXX1NeXk5wcDADBgzg+++/x8PDw7GPt99+G6VSycSJE6mrq2PQoEF89dVXKBSnO60uWrSIGTNmOEajjR49mg8++OAfv17h3+ntXW/TsbQFLeui+Fm9HYCEzp34LbWCA7kVeGqUzB7d1mmbzT8dw1RnwT/Cg3b9Qi/quGULFlC5eDEoFIS+8zaqc9SsCoIgCBcmk5pjBclrQGVlJTqdjoqKCtGfSHDYU7iHqX/dzWfHnidZnkGeogxvN1fG3Pkgw97diMFs4/UbOzDxjMVbs1NL+ePdvchkMP6pbgRENv35VLNjB1l33gVWK4FPz8Jn8uTmvCxBEIR/jcZ+fl/2iRkF4WplsVl4edvL3Fw0jGJqyVOUIUNi0pQ7efjXgxjMNnq18GVCt7DT25itrP/WvoxHu/5hFxWGzPn55D7yKFiteI4ahbeYdV0QBOGSXVGdqgXhavLDkR+oLChlWGkfdiiPAdC/bz/WZBrYcrwEjUrO3LEdnDo5716WSUVhHVqdmoTRMU0+ps1oJGfGw1hLS3GJiyP4hTmiE7UgCEIzEIFIEC5CSV0JH+z5gAfyJlAur8OKjUBfH9p0TeSlv1IBeGxIayJ8tU7byRUy5AoZfSa2wsW1aRW0kiShf+EFDAcOoNDpCHv/feSurs12TYIgCNcy0WQmCBfhnd3vEFcaSbe6diCHIfEdaT2kL0//cYgqg4UOYTru7BVVb7tu10fTKiEIDx9Nk49Z/v33VPz8C8jlhL79Fuqwi+uMLQiCINQnaogEoYn2Fu7lr6N/cl/BBADc+4SReNMN7MgzsixFj1Iu47UbO6BUNPzy8vR1bXIzV+3uPehffgWAgMdm4ibm0BIEQWhWIhAJQhNYbVZe2f4KD6SN5JhUTIF7NZ4Dw6moNfPs7ykA3Ncvlrjg052ljbVmFr+/j8LMi1sg2FxQSM7DM8BsxmP4MHzuuqtZrkUQBEE4TQQiQWiCn47+hOpgBeFSG44o81hq24nBamLu0lSKqozE+LsxfWALp222/pZOVkoJq+enItmaNsuFZDKR+8gjWIuKcWnZkpCXXhKdqAVBEP4GIhAJQiOVGcr4bPP73FFwAzvV9uU4Bg4exN78Wr5Lti+/8epZK9nr0ytI2ZgLQN+bWyGTNy3M6OfOpW7PHuSenoR98D5yN7dmuhpBEAThTKJTtSA00rs732H0nngyvM2YZVZCA0Po2KU717+/CYDbekbQI9rHUd5mtbHumyMgQZueQYS2atpq9hWL/6T82+9AJiP0jddRR0Y26/UIgiAIp4kaIkFohANFB8hcsp5otwRyFaUoZHLGThjHe2uOkVlSS7BOw5PD2jhts39tDiU51bholSTd2OIce26YubAQ/UsvAeD34IO49+vXbNciCIIg1CcCkSBcgNVm5b3f5jCytD/7NXkADOw/kHyDis822pvOXrqhHR6a0yvZV5Ua2L74BABJ41rg6qFu9PEkSUL//GxsFRVo2rbF775pzXg1giAIQkNEIBKEC/jl2C9oj9Wh8InALLMS4h1It6SePPHzfmwSjOoYwqC4QKdtDm7IxWK0EhyrIy6paYuuVv75J9Vr14JKRfDcV5ApRcu2IAjC30280wrCeZQbynl397vcqxtL18oW+Lj7EndLEp9vyiA1vxIvrYrnR8XX267n6Bg8fTUExeia1JHa3lT2MgD+Dz6AplWrZrsWQRAE4dxEIBKE83h/z/uEl/kzsLIHyKDnzQPJlsl4d/VOAJ4bGY+fu0u97WRyGW37NG0maUmS0M+e42gq873nnma5BkEQBOHCRJOZIJzDpuQlFH23nhH5gzFixq17EMoQd2b9cgCTxUbfVv6M7ewcejIPlmA2Wi/qeJV//kX1mjX2prJXRFOZIAjCP0kEIkFoQG1VBRs+/phOUhLH5EX8pknGbXA43yZnseNEKVq1glfGtnOaJLEkt5olH+3nmznbqKsyNel4lqIiCk6OKvN/4H40rUVTmSAIwj9JBCJBOIskScx/82nczB7ke9tHjnVp3ZFSCV5dchiAx69rTZj36ZXsJZvE+m+OYLNJBER4NnlUWf7sOVgrKtDEx4umMkEQhMtABCJBOMvWv36iJjUTwttillkJVHjTZ/xgnvntIFVGC53CvZiSFOW0TerWfPKPV6B0UdB7YssmHa/yryVUr159elSZSnXhjQRBEIRmJQKRIJyh4MRxtnzzNWrfWMrUZhSSnDGjR7MstZBVqQWoFDJeH98BxRkjx+qqTGz55RgACaOi8fDRNPp4lqIiCl58EQC/++9D07p1816QIAiC0CgiEAnCSaa6Wn5960UkmZJKf18AEgM74NoilNl/2Feyf6B/C1oFejhtt+XnYxhrLPiGudNhQFijjydJEvlz7E1lLvFx+E2d2nwXIwiCIDSJCESCcFJFSRFlNaUowtphkdkIkHT0u3UYL/2VSnG1iZYB7jwwINZpm9wjZRzepgcZ9J/UGrmi8S+pyiVLqF61GpRKQubOFU1lgiAIl5EY1ysIJ20x7GVZQhHvZiaQYsmlV+/ebC2o4ufdOchk8OqNHXBRKpy20QVoie3sj8ZdRVCMrtHHshQXU/DiybXKRFOZIAjCZScCkXDNk2w2qizVvLXrLW4qvx4/m45BfsG4923JbSdXsp+SGEXXyPqr1bt7uzBsWntsVlvjjydJ6OfMwVpejktcHH733tts1yIIgiBcHBGIhGua2WTkhzmzyI6yEV4bxIiyPgB4jY7ljTXHyCmrI9TLlf8Mda7BsZptKFSnm8ea0lRWtXQpVStXnWwqE6PKBEEQrgSiD5FwTVs3/zP0x45i2lNKi7I41qkOoWnvy2EX+HKzfbX6V8a1x83l9HcHSZJY8r8DrJiXQm1lEydgLC5G/8LJUWX33YemTZvmuxhBEAThoolAJFyzjmzdyP5Vy7AqVVgDogDwl+lwGxrNkz/ZV7If1zmUfq38nbY7vruIrJQSju8pxFRnafTx7E1lL5xuKpsmmsoEQRCuFCIQCdek8gI9Kz55HwkojQ1HhpwAmydJA3rz2b4cjhRU4eOm5pmRzivZm+osbPzhKABdh0biFahtYO8Nq1q2jKqVK+1NZa+8LJrKBEEQriAiEAnXHKvFzJ/vvIaprpbyUB80ch8UkpwB7p0pbu3FB2vskyw+PyoeHzfnJTi2/5FObYUJnb8rXYZFNvqYlpKS001l06ahiYtrvgsSBEEQLpnoVC1cczZ+M5+C9DSsbq7IdBEgQRdLDJGjO3L77ymYrDYGtglgdMcQp+0KMys5sC4HgH63tEapUjS0+wbpX3gRa1kZLm3aiKYyQRCEK5CoIRKuKZIk4aJ1A5mMvCh/FJISf5sn3Vt14sfSSnZlluHuouSlG5xXsredXLxVkqBl90DC430afczKZcuoWr789KgydeMXfhUEQRD+GSIQCdcUmUxGzxtv5ug4b2zuFrxsWvra2mLqF8bry+wr2T85rDUhXq5O21UW11FTbkTtqqTX+BaNPp6lpAT9nBcA8Lv3XtFUJgiCcIUSTWbCNcFmtWKzWlGq1Sw9sZRdNSl8Xvo8vhYvPAdF8Mjao9SYrHSP8ubWhPp9g7wCtEya3ZPi3GrcdC6NPq7+xZfsTWWtW+N337TmvCRBEAShGYkaIuGasGfZn3zzzGPkZB7l/a3vc3PxMPws3ii9Naz3VrD2SBFqhZy54zogP2Ml+zOpXZWEtPBq9DErly2jatkyUChEU5kgCML/s3ffcVWVfwDHP+ey52UvZbkV3KRiKbg1R6VlpZmkWaa5NWdqlqPpyCw3/tLESq0c4QzciihKSE4UVBBU9ube8/uDuHkFFBS5iM/79Tqvl+ec5zznew7gfe4zqzhRQyRUe7JaTcSu7aTcimf9b6vxSfHBO69wQkS9zm7M3hkJwOhOdajjYK51bdw/d8m4m0MDX2etPkUPU3D37j2jyt7DuFGjh1whCIIg6JIoEAnVXmzUWVJuxaMwMyc9RR8DWQ8VaozqWTP3wk3uZubRwMmC9/20V7IvyFMRsuE8aUnZ5OWoaNrRtcz3TPj0U1R372JUrx52w4dX9CMJgiAIFUw0mQnV3tl9u5CBZLcaGMgG2KstaYw7572t+O1MPAoJPu/XBIP71iMLD75GWlI2ZlZGNGzrXOb7pQXvIv3PwqYyZ9FUJgiC8FQQBSKhWstKTeHSiaMUWNqgwAKFLNE+vyEmvjX4aN95AIY870lTVyut65ITMjm16xoA7V6vi6Fx2SpTC5vKCkeV2b43DBMvr4p7GEEQBOGJEQUioVr7O2QvKlUBOY6FNTzNCjywtbDhh7wsbqbm4Gpjwviu9bSukeXCOYfUKhn3xrbUamZfUtYluvXZZ5qmMvsPPqjQZxEEQRCeHFEgEqotWa0mcv8uVCbmoG+CnqygkcqVu60cWBMWC8D8V5pgaqhd+3P+eAI3LqSgb6Cg/ev1ytyZOm3XbtJ2/lnYVDZPNJUJgiA8TUSBSKi2ZFnG99UBqFxsAaijcsLCw5axZ2KRZXitZU1eqGundU1BnoojmwvXMvPp6YGlnUmxfEtSkJz8X1PZsHcx8RZNZYIgCE8TUSASqi2Fnh6evm040OACr+W2oUWBJ8G2elxKysDO3IgZPYsPhdc31OPFD5pQp6UDzTq7lfletz79DNWdOxjVrYvdiBEV+RiCIAhCJdBpgWj27NlIkqS1OTk5ac7Lsszs2bNxcXHBxMQEf39/oqKitPLIzc1l1KhR2NnZYWZmRp8+fbh+/bpWmuTkZAYNGoRSqUSpVDJo0CBSUlIq4xEFHQuOCcYvsTlK2QxjR2s+O13YVDbnJS+UpgYlXuNUS0m3Yd7o6ZftzyNt927Sdu7UNJUpRFOZIAjCU0fnNUReXl7Ex8drtsjISM25L774gm+++YalS5cSFhaGk5MTXbp0IT09XZNm7NixbN26laCgIA4dOkRGRga9evVCpVJp0gwYMICIiAiCg4MJDg4mIiKCQYMGVepzCpUrKnQfx3//leBjf9AzuT0A/8vPIV8t07WRIz28nbTSq1RqUpOyy32fguRkzVpltu++i0lj78cPXhAEQah0Op+YUV9fX6tWqIgsyyxatIjp06fTt29fANatW4ejoyM//fQT77//PqmpqaxevZoff/yRzp07A7B+/XpcXV3Zu3cv3bp1Izo6muDgYI4dO0br1q0BWLlyJb6+vpw/f5769etX3sMKlUKWZY5v3URiVi7OLp6cVVyntYEVgXdTsTDS59P7VrIHOLMvjhN/xODbt3a5JmC89dncf5vK6mA3UjSVCYIgPK10XkN08eJFXFxc8PT05I033uDKlSsAxMTEkJCQQNeuXTVpjYyM8PPz48iRIwCEh4eTn5+vlcbFxQVvb29NmqNHj6JUKjWFIYA2bdqgVCo1aUqSm5tLWlqa1iY8Ha6fi+Ru/E3ybBwAsFKbsU2hQgWM61IPR0tjrfRpd7IJ2x6DqkBd5vmGANL27CFtx45/m8rmi6YyQRCEp5hOC0StW7fmf//7H7t27WLlypUkJCTQtm1b7ty5Q0JCAgCOjo5a1zg6OmrOJSQkYGhoiLW19QPTODg4FLu3g4ODJk1J5s+fr+lzpFQqcXUte62BoFtn9gajNjFDbWyGnqygDs6szcrA3Eif/s8V/zke3HSRgjw1LnWtaOBbvLayJFpNZUOHiqYyQRCEp5xOC0Q9evSgX79+NG7cmM6dO7Njxw6gsGmsyP1NG7IsP3RemPvTlJT+YflMnTqV1NRUzRYXF1emZxJ0KystlUsnjpBnXVgIrqVyJNrShHSgX4samBtp1wBdiUji6tnbKBQSfm/WL/OcQ7fmzkN1+zaGdWpj9+HIin4MQRAEoZLpvMnsXmZmZjRu3JiLFy9q+hXdX4uTmJioqTVycnIiLy+P5OTkB6a5detWsXslJSUVq326l5GREZaWllqbUPWdC91HPhIFljYAeKlqsii5sLnzrTbuWmnzcgo4uOkCAM26umHjYlame6Tv3Uva9u2gUOAyXzSVCYIgVAdVqkCUm5tLdHQ0zs7OeHp64uTkxJ49ezTn8/LyCA0NpW3btgC0bNkSAwMDrTTx8fH8/fffmjS+vr6kpqZy4sQJTZrjx4+TmpqqSSNUD7Isc3bfLvKt7EGScFArybG24hpq2tSyoa6jhVb6sO0xZCTnYmlnjM+LHmW6R0FyMvGzPwGKmsoaV/RjCIIgCDqg01FmEydOpHfv3ri5uZGYmMhnn31GWloagwcPRpIkxo4dy7x586hbty5169Zl3rx5mJqaMmDAAACUSiVDhw5lwoQJ2NraYmNjw8SJEzVNcAANGzake/fuDBs2jOXLlwPw3nvv0atXLzHCrJrJy87G3qMWNxILawy9CmqyIisHgLd9PYqlNzY3QE9fQbvX62FgqFeme9yaN180lQmCIFRDOi0QXb9+nTfffJPbt29jb29PmzZtOHbsGO7uhU0bH330EdnZ2YwYMYLk5GRat27N7t27sbD475v+woUL0dfXp3///mRnZ9OpUycCAwPR0/vvA27Dhg2MHj1aMxqtT58+LF26tHIfVnjijExN6TjyQyKXfEL7O17YmNqyPyMbR0sjujQq3jzasrsHDXydMVMalSn/9H37SNu2rbCpbN48FEZlu04QBEGo+iRZlmVdB/E0SEtLQ6lUkpqaKvoTVWE/R/9M7Q2GOBbYEmQrsfROKmM712Vs53oPv/gBVCkpXO7dG1XSbWyHvYvDhAkVFLEgCILwJJX187tK9SEShEcVdy6SG1cuceFoBI4FtuQYFrDiTir6Cok3W/23JllWWh5bvz5FwpXUcuWfMG8eqqTbGNaujd2HH1Z0+IIgCIKO6XymakF4XLIss3fld9yQ9dFXOhGnuM1NO3vybkJPLyetiRgPb77IzYspHAi6wGtTfco0zD59/37S/ihqKpsrmsoEQRCqIVFDJDz1bkRHcftWAgVKW3KkAvRQ8E1SJqA91P76P3e5cPwWSOA3oGxzDqlSUoifNQsA2yHvYNK06ZN5CEEQBEGnRIFIeOqd3RdMvpUdSBJ2agsyHcy4kV9AXQdz2tQqnI9Ila8mdGPhnEON29fA0aNs/cBuzZ9f2FRWqxZ2o0Y9sWcQBEEQdEsUiISnWnZ6GuePH6bAunAUmVeBK//LLWwJHuTrrqkFOrM/jpRbWZhaGtL65dplyjt9/1+k/v6HaCoTBEF4BogCkfBUO3fgL3KNzVAbGGAsG2CiNOev5EzMDPV4pXkNAPLzVETsjQXA95XaGJk8vOucKjWVhH+bymzeCcCkWbMn9gyCIAiC7pWrQPTFF1+QnZ2t2T9w4AC5ubma/fT0dEaMGFFx0QnCAxTOTB1Mvk3hMi8NVDU4aGEOwCstamBhbADAxRO3yE7Px8LWmHqtSl+u5V635s2nICkJQ09P7EVTmSAIQrVXrgLR1KlTSU9P1+z36tWLGzduaPazsrI0s0ELwpOWfjuJtKwsVKbmSLKEi741K+IyABjUxkOTrkFbZ7q+68Xzr9ZBoffwX/n0v/4i9fff/12rbB4KY+OHXiMIgiA83co17P7+ORzFnI6CLlnaO/DWl18R/nkwalnBJXdj8q8U0MrThvpO/81mrlBI1PUpW82QKjWVhJn/NpUFiKYyQRCEZ4WYh0h4qp04doDGBR5k6eUwN7Hw2KB/h9qr1TJqlRp9g7KtUwZwa/6C/5rKRoumMkEQhGeF6FQtPJXS795GVVCA4cnCPm0XamYQl5GHnbkR3bwK+xRdDk/kxxlHiTp440FZ/ZdnSAipv/0GkoTzvLmiqUwQBOEZUu4aolWrVmFuXthxtaCggMDAQOzs7AC0+hcJwpMiyzK/zp1JvIktdXAnk1z+UFsCOQxo5YqhvgJZlgkPvkpWah5ZaXkPzfP+pjLT5s2f8FMIgiAIVUm5CkRubm6sXLlSs+/k5MSPP/5YLI0gPEk3z0dzKyWNPAsHLssJKK3N2B1niZ5C4s3Whb9/1yLvcOdGJgZGejT2r/nQPG8t+JyCxEQMPTywHzP6ST+CIAiCUMWUq0B09erVJxSGIJTd2X3BqP4dal9fVYNTthaQBF0aOuKsNEGWZU7+eRUAb78aGJsZPDC/9JAQUrdu/bepTIwqEwRBeBaJPkTCUyUnI4Pok2Hkm5kjyWBhZMiGK//NTA1w40IKt2LS0NNX0LST6wPzU6Wl/ddUNngwpi1EU5kgCMKzqFwFouPHj/Pnn39qHfvf//6Hp6cnDg4OvPfee1oTNQpCRTt38C9yLArXJ3NT23PFTSIjT0UtezPa1rYFIPzf2qFGzztjpnzwchuapjJ3d9FUJgiC8AwrV4Fo9uzZnD17VrMfGRnJ0KFD6dy5M1OmTGHbtm3Mnz+/woMUBCjsTB2xN5gCq8JO/DWxYuudwkLQoDaF65YlJ2Ry/Z9kFAqJZl0f3J8tIzSU1C1bCpvK5s9DYWLyxJ9BEARBqJrKVSCKiIigU6dOmv2goCBat27NypUrGT9+PEuWLOHnn3+u8CAFASDh8gVuZWajVkhYq824WTODfxILMDHQo2+Lwo7T1k5m9J/2HO1er4ulbekFHFVaGvFFTWVvv41pixaV8gyCIAhC1VSuTtXJyck4Ov43429oaCjdu3fX7D/33HPExcVVXHSCcA+n2vXo3nMgV4/HYiYbscWosPPzy81roDT5r+O0vZsF9m4WpWUDwK3PP6fg1q3CprKxY55o3IIgCELVV64aIkdHR2JiYgDIy8vj1KlT+Pr6as6np6djYPDgET2C8KgkSYJr+TxXUIc7dsnsvVBYICqamTo3u6BM+WQcOEDq5i3/TcAomsoEQRCeeeUqEHXv3p0pU6Zw8OBBpk6diqmpKe3atdOcP3v2LLVr167wIAVBlmXyk7KwvW4KwN/ORhSoZXzcrWnkYklqUhaBkw8RsuEf1Cp1qfmo0tOJ/3gmADZvD8K0ZctKiV8QBEGo2srVZPbZZ5/Rt29f/Pz8MDc3JzAwEENDQ835NWvW0LVr1woPUni2ybLMj7Onki7Z0lJRlwSzW+yNKewzVDTU/tSuWAry1KTfzX3givZFTWUG7m7Yjx1bGeELQoVQq9Xk5T181nVBeNYYGBigp1f2NStLU64Ckb29PQcPHiQ1NRVzc/NiAfzyyy9YWDy474YglFf8xfPcSM4g18aYKL04brnncOtvsDUzpLu3ExnJufxzNB4Anx7upeaTcfAgqb9uBknCZa5oKhOeHnl5ecTExKBWl177KQjPMisrK5ycnAq7VjyichWIhgwZUqZ0a9aseaRgBKEkp/f8qRlqb6swYUd2Ycf+N1q5YqSvR9jeK6hVMi51rXCuY1ViHvc2lVkPegtTH59KiV0QHpcsy8THx6Onp4erqysKhZhPVxCKyLJMVlYWiYmJADg7Oz9yXuUqEAUGBuLu7k7z5s2RZfmRbyoIZZWblUnUuWhU9i4o1ab8UyOOU5dboZBgQGt3sjPyNKvZt+xeeu1Q0uIlFCQkYODmhoNoKhOeIgUFBWRlZeHi4oKpqamuwxGEKsfk39r+xMREHBwcHrn5rFwFouHDhxMUFMSVK1cYMmQIb731FjY2No90Y0Eoi6gD+ymwKly3zFO2Y5tV4QdCp4aO1LAy4fgfVyjIU2PvZoFro5J/F3MvXyZ540YAnD+ZjUJ8qAhPEZVKBaDVX1MQBG1FXxby8/MfuUBUrrrXZcuWER8fz+TJk9m2bRuurq7079+fXbt2iRojocLJssyJv/aTZ6DAQNbjstVVTkQXzj49qI07apWa6MM3AWjZw73UtuNbX3wBKhXmHTtids80EYLwNHmcvhGCUN1VxN9HuRujjYyMePPNN9mzZw/nzp3Dy8uLESNG4O7uTkZGxmMHJAhFEi5dIFVd+K24tsqRK24S6Tl6eNqZ8UIdOxR6Cl6f0Yq2/epQq6l9iXlkHDpMZugB0NfHYdLEygxfEARBeIo8Vu88SZKQJAlZlsXoB6HCmdvY4mXZABu1OWkmd/knoQEAA1u7oVAUfhswsTCkeRc3JEXxbwdyQQGJny8AwGbgAIw8PSsveEEQqqSAgABefvnlB6YJCQlBkiRSUlIqJSahaih3gSg3N5eNGzfSpUsX6tevT2RkJEuXLiU2NhZzc/MnEaPwjDLRM6dJVm1eyWvFGfdYLt+wxNhAwWstXcnOePh8LCm//kruxUvoKZXYjRhRCRELgnCvBxU+PDw8NF+qi7aaNWtqnV+0aFGFx7R48WICAwM1+/7+/oythgMtAgICNO9VX18fNzc3PvjgA5KTk7XSPezn8CwpV6fqESNGEBQUhJubG++88w5BQUHY2to+qdiEZ1zGkZsoZIkI0/MkSYW1Qy81rYG5oR7rPz6KpZ0Jnd9phIWNcbFrVenpJC35FgC7Dz9ET6ms1NgFQXi4OXPmMGzYMM1+RUyu9zBKHfxfkJ+fr5Nlrbp3787atWspKCjg3LlzDBkyhJSUFDb+O8ikiC5+DlVRuWqIfvjhBywtLfH09CQ0NJRhw4bRt2/fYpsgPA5Zlvn1u285dvQo+agItj/K6aLO1L7uXDiRQEZyLim3sjCxKPk/mds//IDq7l0Ma9XC+o3XKzN8QRDKyMLCAicnJ81mb19yX8AHmTBhAr1799bsL1q0CEmS2LFjh+ZY/fr1Wb58OaBdaxUQEEBoaCiLFy/W1I5cvXpVc114eDg+Pj6YmprStm1bzp8/X6aYZs+eTbNmzVizZg21atXCyMgIWZYJDg7mhRdewMrKCltbW3r16sXly5c11/Xr149Ro0Zp9seOHYskSURFRQGFUzBYWFiwa9euMsVhZGSEk5MTNWvWpGvXrrz++uvs3r27WLqK+DlUB+UqEL399tt06NABKysrlEplqZsgPI6ESxe4dOM2x/QucsLwPHft7ckvMKC5mxWNnC0JD74GQLPObugbFP8mkxcXR/L/fgTA4aNJSGLBYaEakWWZrLwCnWxVcTSxv78/Bw8e1PRjDQ0Nxc7OjtDQUAASEhK4cOECfn5+xa5dvHgxvr6+DBs2jPj4eOLj43F1ddWcnz59Ol9//TUnT55EX1+/zJMTA1y6dImff/6ZzZs3ExERAUBmZibjx48nLCyMffv2oVAoeOWVVzSx+/v7ExISosnj/mcJCwsjJyeH559/vlzvCODKlSsEBweLBdgfoNwTMwrCk3boz+3kGEroywrOWP3N5ZjWQOFQ+8unEklNzMbIVB+v9i4lXp/45VfI+fmYtW2LeQn/CQrC0yw7X0WjmWWrIaho5+Z0w9SwXB8bDzR58mRmzJih2Z83bx6jR48uVx7t27cnPT2d06dP06JFCw4ePMjEiRPZsmULAH/99ReOjo40aNCg2LVKpRJDQ0NMTU1xcnIqdn7u3LmagtSUKVPo2bMnOTk5GBsXb6a/X15eHj/++KNWbUu/fv200qxevRoHBwfOnTuHt7c3/v7+jBkzhtu3b6Onp0dUVBSzZs0iJCSEESNGEBISQsuWLcvcX3f79u2Ym5ujUqnIyckB4JtvvimWriJ+DtVBxf1mC0IFyM3KIvZGMpjo46625/eaF7l1yhobM0N6eDvx+xenAGjS0RVD4+K/vllhYaTv3g0KBQ5TJou5WwShCps0aRIBAQGafTs7u3LnoVQqadasGSEhIRgYGKBQKHj//feZNWsW6enphISElFg7VBZNmjTR/LtoSYjExETc3Nweeq27u3uxpqfLly/z8ccfc+zYMW7fvq2pGYqNjcXb2xtvb29sbW0JDQ3FwMCApk2b0qdPH5YsWQJQ7mfp0KED33//PVlZWaxatYoLFy5oNckVqYifQ3UgCkRClXJq/y4y/i3oJJrFk53REoD+Pq7cOp/CnesZGBjp0aRD8VEQslrNrQWfA2D12msY16tXeYELQiUxMdDj3JxuOrt3RbKzs6NOnTqPnU9RU5OhoSF+fn5YW1vj5eXF4cOHCQkJeeRRZPc2LxV9uSrrFDNmZmbFjvXu3RtXV1dWrlyJi4sLarUab29v8vLyNPdo37695ln8/f3x9vZGpVIRGRnJkSNHyvUsZmZmmve7ZMkSOnTowCeffMKnn36qla6ifg5PO1EgEqoMWZY5dfQ0soECJ5UVO5x2E3X+PSSpcO6hc5uvAODdvgbGZsXbwVN//4OcqCgU5ubYjy7+LUgQqgNJkiq02ao68Pf3Z/Xq1ejr69O5c2cA/Pz8CAoKKrX/UBFDQ0PN8ihP0p07d4iOjmb58uW0a9cOgEOHDhVL5+/vz4oVKzA0NGTOnDlIkkS7du346quvyM7OfqT+Q0VmzZpFjx49+OCDD3BxKbnLwbNM/FUJVcaNi+dJ0dMDZPQM8jEwaQyyAR0bOOBqY0qNIY3waGJHzQbWxa5VZ2WRtHAhAHbD30dfTAchCFVCamqqplNxkYpeA7OoH9G2bdv47LPPgMKCRb9+/bC3t6dRo0alXuvh4cHx48e5evUq5ubmT2x9Tmtra2xtbVmxYgXOzs7ExsYyZcqUYumK+hHp6+trCk7+/v5MmDCBFi1aYGlp+cgx+Pv74+Xlxbx581i6dOkj51NdPdZM1YJQkTJu3cVJtsFcNma33UEuXvIC4C3fwlXsFXoK6rd2wkxpVOzaO6tWU5CYiEHNmli//Xalxi0IQulCQkJo3ry51jZz5swKvYdSqaR58+bY2NhoCj/t2rVDrVY/tM/NxIkT0dPTo1GjRtjb2xMbG1uhsRVRKBQEBQURHh6Ot7c348aN48svvyyWztvbGzs7O5o2baop/Pj5+aFSqR65L9S9xo8fz8qVK4mLi3vsvKobSa6K4yiroLS0NJRKJampqY9VQhdKl7b3Gml7Y4kyvswSr91EhQ/EzcaUne+3xcTMAD39ksvv+QkJXO7eAzknhxqLFmHZXTf9KwThScjJySEmJgZPT88yjW4ShGfRg/5Oyvr5XWVqiObPn48kSVodxu6derxoa9OmjdZ1ubm5jBo1Cjs7O8zMzOjTpw/Xr1/XSpOcnMygQYM08yQNGjRIrFFTxcj5ajKOxgOwzSaEzNs+ALzVxo0DP51n/cdHiYu+W+K1id98g5yTg4lPSyy6da20mAVBEITqo0oUiMLCwlixYoXWEMci3bt310yYFR8fz86dO7XOjx07lq1btxIUFMShQ4fIyMigV69eWp3kBgwYQEREBMHBwQQHBxMREcGgQYOe+HMJZbdv7WZSM9NI0k/mjO0VrsbWxkhfQZcaNsScuU1GSi5mVsWbyrLPniXtj20AOE6eIobZC0I1s2HDBszNzUvcvLy8dBKTl5dXqTFt2LDhid+/aO3Q0rYn1exX3em8U3VGRgYDBw5k5cqVms5w9yqaerwkqamprF69mh9//FEzsmD9+vW4urqyd+9eunXrRnR0NMHBwRw7dozWrQsn+Fu5ciW+vr6cP3+e+vXrP7mHE8rkcuRZDt+IAiOQzNJRyr7Eyfr0burCpQM3AajdzB4bZ+1hrLIsa4bZK196CZPG3pUeuyAIT1afPn00/3ffT1ezLu/cuZP8/PwSzzk6Oj7x+7u4uBTrqH7/eaH8dF4gGjlyJD179qRz584lFohCQkJwcHDAysoKPz8/5s6di4ODA1C4zkx+fj5du/7XTOLi4oK3tzdHjhyhW7duHD16FKVSqfUH1aZNG5RKJUeOHBEFoirg8I59yBLYqyxZb7eTu5c+BOC1+k6E/3AOgBbd3Ytdlx4cTPapU0gmJtiPH1epMQuCUDksLCywsLDQdRha3N2L/39UmfT19cW8QU+ATgtEQUFBnDp1irCwsBLP9+jRg9deew13d3diYmL4+OOP6dixI+Hh4RgZGZGQkIChoSHW1trDsB0dHUlISAAK17EpKkDdy8HBQZOmJLm5ueTm5mr209LSHuURhYfIzkjnRlZGYeOtXhZKszrE59jStKaS7MhkZLWMm5cNDu7aHeHUubkkfvU1ALZDh2JQCd/KBEEQhOpLZwWiuLg4xowZw+7du0sdOfH66/+tUu7t7Y2Pjw/u7u7s2LGDvn37lpq3LMtafUlK6ldyf5r7zZ8/n08++aQsjyI8hr9+/Z1chQpT2ZDtLvu5G98DgDcb1yD6l6sAtOzuUey6u+v+R/6NG+g7OmI75J1KjFgQBEGojnTWqTo8PJzExERatmyJvr4++vr6hIaGsmTJEvT19UucOdTZ2Rl3d3cuXrwIgJOTE3l5eSQnJ2ulS0xM1LTjOjk5cevWrWJ5JSUlPbCtd+rUqaSmpmo2MWfDk3HhSuF7tVUZkWKeS2JCHaxMDaiv0kddIONcR4lLXSutawpu3+bO8uUAOIwfh8LUtLLDFgRBEKoZndUQderUicjISK1j77zzDg0aNGDy5Mno6RVfM+fOnTvExcVpFtlr2bIlBgYG7Nmzh/79+wMQHx/P33//zRdffAGAr68vqampnDhxglatWgFw/PhxUlNTadu2banxGRkZYWRUfFSTUHHOHj5KiiIXhSxx1PYkZnm+gD79fVxp3tEVZ0/LEmvxkhYvQZ2ZibG3N5a9e1d+4IIgCEK1o7MCkYWFBd7e2qOCzMzMsLW1xdvbm4yMDGbPnk2/fv1wdnbm6tWrTJs2DTs7O1555RWgcHbSoUOHMmHCBGxtbbGxsWHixIk0btxYM+qsYcOGdO/enWHDhrH831qF9957j169eokO1Tp2M+wyBrIeDipzfrH+m4zLPTTrlgE4eSqLXZNz/jwpmzcD4Dh1CpKiSswcIQiCIDzlquyniZ6eHpGRkbz00kvUq1ePwYMHU69ePY4ePao14mDhwoW8/PLL9O/fn+effx5TU1O2bdumVcO0YcMGGjduTNeuXenatStNmjThxx9/1MVjCf+SVTJNs+vxZu4LXDW/hKNhE+R8WzrUtsO+lKG0hcPsF4BajUX37pi2bFnJUQuC8LQLCAjg5ZdffmCakJAQJEkSE/g+Y6pUgSgkJIRFixYBYGJiwq5du0hMTCQvL49r164RGBiIq6ur1jXGxsZ8++233Llzh6ysLLZt21YsjY2NDevXryctLY20tDTWr1+PlZVVJT2VUJLsv2+jSs0lWz+HPx2PkHijOQDdjcz53/QjnNp1rdg1GX+FkHX0GJKBAQ4TJ1R2yIIglNODCh8eHh7FViKoWbOm1vmiz4OKtHjxYgIDAzX7/v7+WiskVCcJCQmMGjWKWrVqYWRkhKurK71792bfvn3k5eVhZ2dX4nQ3UDiwyM7Ojry8vAfeIzAwUOtn6OjoSO/evYmKitJKV9LKE5IkcenSpQp73sdVpQpEwrNBpVLxz97TyMhsswrFyNCCtDv1cFeakBGZjCpfjanSUOsaOS+PxH/7hdkEDMbwnv84BUF4Os2ZM0drJYLTp08/8XsqlcpK/0Jc2iSOT9LVq1dp2bIl+/fv54svviAyMpLg4GA6dOjAyJEjMTQ05K233iIwMJCSljRdu3YtgwYNwtDQsITctVlaWhIfH8/NmzfZsWMHmZmZ9OzZs1hh6v6VJ+Lj4/H09KywZ35cokAkVLpj2/bxR/oR/jQ4zQ6rA+hltgb0eN3Ohuy0PCxsjKn7nPYIwOSgIPKuXkXP1hbb99/XTeCCIFQoCwsLnJycNJu9vX2585gwYQK97xlcsWjRIiRJYseOHZpj9evX1/QhvbfWKiAggNDQUBYvXqypsbh69armuvDwcHx8fDA1NaVt27acP3++TDHNnj2bZs2asWbNGk3tjCzLBAcH88ILL2BlZYWtrS29evXi8uXLmuv69evHqFGjNPtjx45FkiRNbUtBQQEWFhbs2rXroTGMGDECSZI4ceIEr776KvXq1cPLy4vx48dz7NgxAIYOHcrly5c5cOCA1rUHDx7k4sWLDB06tEzPK0kSTk5OODs74+Pjw7hx47h27Vqx91W08sS9W0kDqHRFFIiEShcRcbbwH6psUg0yuBHXBGM9BSZXMgFo3tUNPb3/fjVVKSkkfbcMAPvRo9EzN6/0mAWhypBlyMvUzVZCTYKu+fv7c/DgQdRqNQChoaHY2dkRGhoKFDYbXbhwAT8/v2LXLl68GF9fX4YNG6apsbi3y8X06dP5+uuvOXnyJPr6+gwZMqTMcV26dImff/6ZzZs3a5bZyMzMZPz48YSFhbFv3z4UCgWvvPKKJnZ/f39CQkI0edz/LGFhYeTk5PD8888/8N53794lODiYkSNHYmZmVux8UQ1Z48aNee6551i7dq3W+TVr1tCqVatiA5/KIiUlhZ9++gnQ3dIqj0rnS3cIz5bYqEskkYEkS4RZnsRG0Zi0fBted7Ih659MTCwNafi8s9Y1Sd8tQ52ailG9eli92k9HkQtCFZGfBfN0tFbVtJtgWPwD9lFNnjyZGTNmaPbnzZvH6NGjy5VH+/btSU9P5/Tp07Ro0YKDBw8yceJEtmzZAsBff/2Fo6MjDRo0KHatUqnE0NAQU1PTEtfMnDt3rqYgNWXKFHr27ElOTk6pkwnfKy8vjx9//FGr1qtfP+3/v1avXo2DgwPnzp3D29sbf39/xowZw+3bt9HT0yMqKopZs2YREhLCiBEjCAkJoWXLlpg/5EvhpUuXkGW5xGe+35AhQ5g4cSJLly7F3NycjIwMfvnlF7755puHXlskNTUVc3NzZFkmKysLKFyD7v77b9++XSv2Hj168Msvv5T5Pk+aqCESKtWB7XsBcCow5ZjTeRKuN0OSwT2xAIBmnV3RN/ivCjX3SgzJGzcC4DhlMlIVql4VBOHxTJo0iYiICM329ttvlzsPpVJJs2bNCAkJITIyEoVCwfvvv8+ZM2dIT08nJCSkxNqhsmjSpInm30Xz3yUmJpbpWnd392JNgJcvX2bAgAHUqlULS0tLTf+ZotXpvb29sbW1JTQ0lIMHD9K0aVP69OmjqSEq67MU9Ql60GoMRd58803UajWbNm0CYNOmTciyzBtvvFGm54TCps+IiAjCw8P54YcfqF27Nj/88EOxdB06dND6eS9ZsqTM96gMooZIqDSZKRnEZCWCBAlSDGb6NiSk1qetrQV5sfkYmerj3b6G1jWJX3wBBQWY+/tj9oCJNAXhmWFgWlhTo6t7VyA7O7sKWaS0qKnJ0NAQPz8/rK2t8fLy4vDhw4SEhDzyKLJ7m3yKChdFzVsPU1JTVe/evXF1dWXlypW4uLigVqvx9vbWdD6WJIn27dtrnsXf3x9vb29UKhWRkZEcOXKkTM9St25dJEkiOjr6oVMMKJVKXn31VdauXcvQoUNZu3Ytr776KpaWlg+87l4KhULzc2zQoAEJCQm8/vrrxfommZmZVelFaUUNkVBpDvwajEpSY6UyYUfNIxSkPgfo8VIHDwbN9aXbu94YGv9XRs88coSMkBDQ18fho490FrcgVCmSVNhspYutDDUOulDUj2j//v34+/sD4OfnR1BQUKn9h4oYGhqWuFRURbtz5w7R0dHMmDGDTp060bBhw2LLTsF/hbuQkBD8/f2RJIl27drx1VdfkZ2d/dD+Q1A41Uy3bt347rvvyMzMLHb+/vmVhg4dyuHDh9m+fTuHDx8uc2fq0owbN44zZ86wdevWx8qnsokCkVApZLXMtX/Xg1PkpZJjInMnvjmWxvr0aVoDM6URro1s/kuvUnFrwecAWL/5Jka1qs7QTEEQyi41NVWrmSQiIkLTRFRRivoRbdu2TVMg8vf3Z/369djb29OoUaNSr/Xw8OD48eNcvXqV27dvl7kGqLysra2xtbVlxYoVXLp0if379zN+/Phi6fz9/YmKiiIyMpJ27dppjm3YsIEWLVqUueZm2bJlqFQqWrVqxebNm7l48SLR0dEsWbIEX19frbR+fn7UqVOHt99+mzp16tC+ffvHelZLS0veffddZs2aVeKQ/qpKFIiESpFz/i49c1vSMd+LYIdQLGVv5AIr3qjvhIlh8X5BKb9uJvfCBRRKJfYjR+ggYkEQKkJISAjNmzfX2mbOnFmh91AqlTRv3hwbGxtN4addu3ao1eqH9rmZOHEienp6NGrUCHt7+wovrBVRKBQEBQURHh6Ot7c348aN48svvyyWztvbGzs7O5o2baop/Pj5+aFSqcrVF8rT05NTp07RoUMHJkyYgLe3N126dGHfvn18//33xdIPGTKE5OTkco2ke5AxY8YQHR1dpTpNP4wkP03FNx1KS0tDqVSSmpparrZVoVDSyrPkXk5lm8MBltkGkX39bZySvXkzwwiPxra8OKKJpo1elZHB5W7dUd25g+O0qdg8QkdLQagucnJyiImJwdPTs0yjmwThWfSgv5Oyfn6LGiLhiUu9kkTW5WRkSeYXy12YKmwpSK9PD0VhB00za2Ot0RB3li9HdecOhh4eWL/5pq7CFgRBEJ4hokAkPHG7tu5go9EhDhmdIckgmZy7LXEs0McqTYWkkGjR1U2TNu/6de4GrgPA4aOPkJ6yib0EQahYGzZswNzcvMTNy8tLJzF5eXmVGtOGDRue+P1jY2NLvb+5uXmFNvvp+lkrkxh2LzxRmbfTuJAWR4Gk4krGWSQUpCW1pLu6sEqz3nOOWNqZaNInfvU1cn4+pr5tMO/gr5ugBUGoMvr06UPr1q1LPKermZB37txZ6vpkjo6OJR6vSC4uLprZr0s7X1F0/ayVSRSIhCfq+LYDFEgqLFVGBDtGYFLgjUGuFW6Fk5nSopu7Jm1WeDjpwcGgUOA4ZUqZJhUTBKF6s7CwwMLCQtdhaHF3d394oidIX1+/0ubz0fWzVibRZCY8Meo8FRFXCxclNMxIId4+h9s3W9Amt/BbXa1m9ti4FE5eJqvV3Jq/AACrfv0wrl9fN0ELgiAIzyRRIBKemKg9J0mTsjGQ9ThudhxjhS1k1KOOorBA1LLHf9880rZtI+fvv1GYmWE/pnxrGQmCIAjC4xJNZsITIcsyx8PDALDJVHG+XjIZSV1QSQpeGO2NfSY4uBcOf1RnZZH4zUIAbN9/H307O53FLQiCIDybRIFIeCKSzl7nuuo2AFcKIsgxgpzYljR0tsTH01Z7mP2atRTcuoVBjRrYDBZzDgmCIAiVTzSZCU+E4nQa/fJaU6fAgrM1b2CQ4419jpJBrd20CkP5t25xZ/VqABwmTkBhZKSrkAVBEIRnmCgQCRUuPymLnH/uYi2bs7VOKDftc8iJb82ATCPyt90gIzlXkzbpm4XI2dmYtGiBRffuOoxaEIRnQUBAwENXgA8JCUGSpGKLoArVmygQCRUu7fB1AFJc87igiMEIe5om18NAljA21cfMyhCA7Mi/Sf39dwAcp4ph9oJQ3Tyo8OHh4YEkSVpbzZo1tc4vWrSowmNavHgxgYGBmn1/f3/Gjh1b4fepCuLi4hg6dCguLi4YGhri7u7OmDFjuHPnTrG0UVFR9O/fH3t7e4yMjKhbty4ff/wxWVlZWunu/bnp6enh4uLC0KFDSU5OLlNMRYXNos3W1paOHTty+PBhrXSzZ88u9vshSRJ79+599BfyEKJAJFQoVWYeG07/wV8Gf7NZPxiAnITnaJH378iy7oV/TLIsc2tB4TB7yz69MWncWGcxC4KgG3PmzCE+Pl6znT59+onfU6lUYmVl9cTvc6/SJjZ8kq5cuYKPjw8XLlxg48aNXLp0iR9++IF9+/bh6+vL3bt3NWmPHTtG69atycvLY8eOHVy4cIF58+axbt06unTpQl5enlbeRT+32NhYNmzYwIEDBxg9unyjg8+fP098fDwhISHY29vTs2dPEhMTtdJ4eXlp/X7Ex8fTvn37R38pDyEKREKFOrf7FHelDK4pkrgTdRoJPRrdeh4TWcLK0ZRaze0BSN+1m+zwcCRjYxzGj9dx1IIg6IKFhQVOTk6azd7evtx5TJgwgd69e2v2Fy1ahCRJ7NixQ3Osfv36LF++HNCutQoICCA0NJTFixdraiCuXr2quS48PBwfHx9MTU1p27Yt58+fL1NMs2fPplmzZqxZs4ZatWphZGSELMsEBwfzwgsvYGVlha2tLb169eLy5cua6/r168eoUaM0+2PHjkWSJKKiCudzKygowMLCgl27dj00hpEjR2JoaMju3bvx8/PDzc2NHj16sHfvXm7cuMH06dOBwhHBQ4cOpWHDhmzZsoVWrVrh7u7Oa6+9xrZt2zh69CgLFy7Uyrvo51ajRg06dOjA22+/zalTp8r0boo4ODjg5ORE48aNmTFjBqmpqRw/flwrjb6+vtbvh5OTE4aGhuW6T3mIApFQYWSVmpNnC/8olBn5nHdLRS+jKT7ZhZMvtujmjkIhoc7LI/GrrwCwHTIEAycnncUsCE8bWZbJys/SySbLsq4fvxh/f38OHjyIWq0GIDQ0FDs7O0JDQwFISEjgwoUL+Pn5Fbt28eLF+Pr6MmzYME0NhKurq+b89OnT+frrrzl58iT6+voMGTKkzHFdunSJn3/+mc2bN2uW2cjMzGT8+PGEhYWxb98+FAoFr7zyiiZ2f39/QkJCNHnc/yxhYWHk5OTw/PPPP/Ded+/eZdeuXYwYMQITExOtc05OTgwcOJBNmzYhyzIRERGcO3eO8ePHo1BoFwmaNm1K586d2bhxY6n3unHjBtu3by91eZWHycrKYu3atYDulmIpIobdCxUm/ngM19SJIEFqWjQ3G+dQN7ozZrKEubUR9VoXrnuT/OOP5F+/jr6DA7bvDtVx1ILwdMkuyKb1T4/24fO4jg84jqmBaYXlN3nyZGbMmKHZnzdvXrmbXtq3b096ejqnT5+mRYsWHDx4kIkTJ7JlyxYA/vrrLxwdHWnQoEGxa5VKJYaGhpiamuJUwhezuXPnagpSU6ZMoWfPnuTk5GBsbPzQuPLy8vjxxx+1ar369eunlWb16tU4ODhw7tw5vL298ff3Z8yYMdy+fRs9PT2ioqKYNWsWISEhjBgxgpCQEFq2bIm5ufkD733x4kVkWaZhw4Ylnm/YsCHJyckkJSVx4cIFzbHS0h46dEjrWNHPTaVSkZOTQ+vWrfnmm28e+k7uVdRfLCursKDdsmVLOnXqpJUmMjJS61kbNWrEiRMnynWf8hA1REKFOXHwKEigzJWIdorHQLbHOauwENSimzt6egoK7tzh9vc/AGA/bhwK04r7z1UQhKfLpEmTiIiI0Gxvv13+eciUSiXNmjUjJCSEyMhIFAoF77//PmfOnCE9PZ2QkJASa4fKokmTJpp/Ozs7AxTr51Iad3f3Yk2Aly9fZsCAAdSqVQtLS0s8PT0BNKvTe3t7Y2trS2hoKAcPHqRp06b06dNHU0P0OM9yr6KavrIMZJFluVi6op/b2bNn2bdvHwA9e/ZEpVKVOYaDBw9y6tQpNm7ciLu7O4GBgcVqiOrXr6/1+7F58+Yy5/8oRA2RUCEyrtwhOusqSKC+fY2LPplkJD3PLosCRr7RjHoNbAFI+vZb1BkZGHt5oXypj26DFoSnkIm+CccHHH94wid074pkZ2dXIYuUFjU1GRoa4ufnh7W1NV5eXhw+fJiQkJBHHkV27wd0UaGgqHnrYczMzIod6927N66urqxcuRIXFxfUajXe3t6aTsuSJNG+fXvNs/j7++Pt7Y1KpSIyMpIjR46U6Vnq1KmDJEmcO3euxFF+//zzD9bW1tjZ2VGvXj0Azp07R7NmzUpMW7duXa1j9/7c6taty6JFi/D19eWvv/6ic+fOD40PwNPTEysrK+rVq0dOTg6vvPIKf//9N0b3zEVnaGhYaYvYgqghEipIePBRcqUCjFUKrplcJccY8lNb0t3biUZNHNA31CPnwgVSfv4F+HeYvUL8+glCeUmShKmBqU62qjo1RlE/ov379+Pv7w+An58fQUFBpfYfKmJoaFiumo1HdefOHaKjo5kxYwadOnXSNFvdr6hwFxISgr+/P5Ik0a5dO7766iuys7Mf2n8IwNbWli5durBs2TKys7O1ziUkJLBhwwZef/11JEmiWbNmNGjQgIULFxYr7J05c4a9e/fy5ptvPvB+enp6AMXuVVaDBg1CrVazbNmyR7q+oohPJOGxFaTkUOO6Kc/l18EkOYkLrukok17AON+ct309gMJq18TPvwC1GouuXTH18dFt0IIgVIrU1FStZo+IiAhNE1FFKepHtG3bNk2ByN/fn/Xr12Nvb0+jRo1KvdbDw4Pjx49z9epVbt++XeYaoPKytrbG1taWFStWcOnSJfbv38/4EkbY+vv7ExUVRWRkJO3atdMc27BhAy1atMDS0rJM91u6dCm5ubl069aNAwcOEBcXR3BwMF26dKFGjRrMnTsXKCxgr1q1inPnztGvXz9OnDhBbGwsv/zyC71798bX17dYrVR6ejoJCQnEx8dz4sQJJk2ahJ2dHW3btn2kd6NQKBg7diwLFiwoNu9RZRIFIuGxZRyJx1htQEt3b35+7gQ37XLocK0Hw9NNcMws/M8l88ABMg8fRjIwwGHSRB1HLAhCZQkJCaF58+Za28yZMyv0HkqlkubNm2NjY6Mp/LRr1w61Wv3QPjcTJ05ET0+PRo0aYW9vX+GFtSIKhYKgoCDCw8Px9vZm3LhxfPnll8XSeXt7Y2dnR9OmTTWFHz8/P1QqVbn6D9WtW5eTJ09Su3ZtXn/9dWrXrs17771Hhw4dOHr0KDY2Npq0zz//PMeOHUNPT48XX3yROnXqMHXqVAYPHsyePXu0mrEAZs6cibOzMy4uLvTq1QszMzP27NmDra3tI74dGDJkCPn5+SxduvSR83hcklwVx1FWQWlpaSiVSlJTU8tcQn8WqHNVxM8/jpyjIrpzMuNvTMf9ti89Lr4B+hJDF7yAkRFceell8q5cwWboEBwnTdJ12ILw1MjJySEmJgZPT88yjW4ShGfRg/5Oyvr5LWqIhMeScPgy29QnuGyWyKqMHwFoEtcNgEYvuGBsbkDypp/Ju3IFPRsb7IYP12W4giAIglAiUSASHpmslgk7epwERQphmWcxP3oL57S61MixRpagVXcPVKmp3P72WwDsR49Cz8JCx1ELgvA02bBhA+bm5iVuXl5eOonJy8ur1Jg2bNjwxO8fGxtb6v3Nzc2fWLNfWfTo0aPUuObNm6ezuMpCDLsXHllGVCLRebEggXz7GjfqZ9Ps6ssAuLa0x8zKiFvzF6JKTcWobh2sXn1VtwELgvDU6dOnT6mzIOtqZuOdO3eWuj6Zo6PjE7+/i4uLZvbr0s7ryqpVq0odbXZvv6WqSBSIhEd2et8JcqR8DFUSWQW3yDWxwz2zJjLg/1Id8q5e5e5PPwHgMHkKkr74dRMEoXwsLCywqGI1y+7u7jq9v76+fqXOz1MeNWrU0HUIj0w0mQmPJPdGOmfuFk75bnA3kYs103FI90aFjHk9S5T2Jtz68ivIz8fMrz3mLzx87gxBEARB0BXxlV14JJf2nuWOIh2FDKTc4GLjDO6m6pPoIrNlUCMyjx0nY98+0NPD8aOPdB2uIAiCIDyQqCESyk2Vnkf45bMAmGZkcd0mjWxjifzUFrzU1g0rGyNuLVgAgPUbb2BUu7YuwxUEQRCEhxIFIqHcMo7exLPAATu1GeqkGGKd1Vje8kMfM95s5Ubq1q3k/vMPCktL7D4cqetwBUEQBOGhRJOZUC7qrHwyDt/EU+1Aw5d8eCf0N1xTutI5sR1JbkbYKVRcXrQYALsRH6Bvba3jiAVBEATh4UQNkVAu6QduIOeqMHAyY7fJYRItoH6SLwBt29bkzsqVqG7fxtDdHZsBA3QcrSAIgiCUTZUpEM2fPx9JkrQWkZNlmdmzZ+Pi4oKJiYlm0bt75ebmMmrUKOzs7DAzM6NPnz5cv35dK01ycjKDBg1CqVSiVCoZNGgQKSkplfBU1YsqI4+DRw5yWi8Gg3b2/HLxF5rc9Edf1ueOMfjVVnB37VoAHD6ahGRoqOOIBUHQpYCAACRJYngJM9SPGDECSZIICAjQSitJEgYGBjg6OtKlSxfWrFlTbMFVDw8PFi1aVKYYPDw8NPmamJjQoEEDvvzyS+5dterq1auaNPdub7311iM/u/D0qRIForCwMFasWEGTJk20jn/xxRd88803LF26lLCwMJycnOjSpQvp6emaNGPHjmXr1q0EBQVx6NAhMjIy6NWrFyqVSpNmwIABREREEBwcTHBwMBEREQwaNKjSnq+6SNh9gdNSDOEGV1i7djZ6Z+7gdesFAGo+78TthYuQ8/Iwbd0a844ddRytIAhVgaurK0FBQVqT9eXk5LBx40bc3Ny00nbv3p34+HiuXr3Kn3/+SYcOHRgzZgy9evWioKDgkWOYM2cO8fHxREdHM3HiRKZNm8aKFSuKpdu7dy/x8fGa7bvvvnvkewpPH50XiDIyMhg4cCArV67E+p7+JrIss2jRIqZPn07fvn3x9vZm3bp1ZGVl8dO/k/2lpqayevVqvv76azp37kzz5s1Zv349kZGR7N27F4Do6GiCg4NZtWoVvr6++Pr6snLlSrZv38758+d18sxPI1VaLocjjqOS1BjnFiAn3cIp0wsDtRFJ+mp6u2aStnMnSBKOUyYjSZKuQxYEoQpo0aIFbm5ubNmyRXNsy5YtuLq60rx5c620RkZGODk5UaNGDVq0aMG0adP4/fff+fPPPwkMDHzkGCwsLHBycsLDw4N3332XJk2asHv37mLpbG1tcXJy0mxKpfKR7yk8fXReIBo5ciQ9e/akc+fOWsdjYmJISEiga9eummNGRkb4+flx5MgRAMLDw8nPz9dK4+Ligre3tybN0aNHUSqVWlO/t2nTBqVSqUlTktzcXNLS0rS2Z9n1XdH8IxU2RUoJl0myycczvQcA+o0syVj4FQDKfn0xbthQZ3EKQnUnyzLqrCydbPc2M5XHO++8w9p/m9MB1qxZw5AhQ8p0bceOHWnatKlWgepRybJMSEgI0dHROlv2Q6i6dDrKLCgoiFOnThEWFlbsXEJCAlB8XRhHR0euXbumSWNoaKhVs1SUpuj6hIQEHBwciuXv4OCgSVOS+fPn88knn5TvgaqpguQcDkeeQK2QMcnOQz8rnQv19LG9AXdR86rFNXLOnEVhaorDmDG6DlcQqjU5O5vzLVrq5N71T4UjmZqW+7pBgwYxdepUTV+dw4cPExQUREhISJmub9CgAWfPni33fYtMnjyZGTNmkJeXR35+PsbGxowePbpYurZt26JQ/FdPcPDgwWK1WEL1pbMCUVxcHGPGjGH37t0YGxuXmu7+phdZlh/aHHN/mpLSPyyfqVOnMn78eM1+Wloarq6uD7xvdRX7ZxQXpXigsHYovoaKSy7XiZbDecHIH/0131MA2L73Hvr29roNVhCEKsfOzo6ePXuybt06ZFmmZ8+e2NnZlfn6svy//yCTJk0iICCApKQkpk+fTseOHWnbtm2xdJs2baLhPTXcz+r/+c8qnRWIwsPDSUxMpGXL/77pqFQqDhw4wNKlSzX9exISEnB2dtakSUxM1NQaOTk5kZeXR3JyslYtUWJiouaX3cnJiVu3bhW7f1JS0gNXJTYyMsLIyOjxHrIaKLidzeHoE8h6MiaZOejlZnG0dgJSgRU56c0JyAmjID4efRdnbAIG6zpcQaj2JBMT6p8K19m9H9WQIUP48MMPAcrdWTk6OhpPT89HvrednR116tShTp06bN68mTp16tCmTZtiXTVcXV2r7KKpwpOnsz5EnTp1IjIykoiICM3m4+PDwIEDiYiIoFatWjg5ObFnzx7NNXl5eYSGhmoKOy1btsTAwEArTXx8PH///bcmja+vL6mpqZw4cUKT5vjx46Smppb4DUHQlrYvlhYFtfBQ2CHdusw193wccpqQk9iBOpIKu21BADhMmIDiATV9giBUDEmSUJia6mR7nFqa7t27k5eXR15eHt26dSvzdfv37ycyMpJ+/fo98r3vZW1tzahRo5g4ceIj94kSqied1RBZWFjg7e2tdczMzAxbW1vN8bFjxzJv3jzq1q1L3bp1mTdvHqampgz4d8I/pVLJ0KFDmTBhAra2ttjY2DBx4kQaN26sKfk3bNiQ7t27M2zYMJYvXw7Ae++9R69evahfv34lPvHTJz8xi6yIRJSyKQOGDCbwnzyijlyi88VXqaVfQPf0P5CzszFp1gzLF1/UdbiCIFRhenp6REdHa/5dktzcXBISElCpVNy6dYvg4GDmz59Pr169ePvttysslpEjR/L555+zefNmXn311QrLV3i6VemlOz766COys7MZMWIEycnJtG7dmt27d2NhYaFJs3DhQvT19enfvz/Z2dl06tSJwMBArT+4DRs2MHr0aM1otD59+rB06dJKf56nTfKeGJDBuJEteQ4SG0N20jOxsCNilpxMzRP7AXCcOkUMsxcE4aEsLS0feD44OBhnZ2f09fWxtramadOmLFmyhMGDB2t1dn5c9vb2DBo0iNmzZ9O3b98Ky1d4ukmyqDMsk7S0NJRKJampqQ/9o64O8m5msO77NRhjQLte7Qk2PsjxbVfwud6dOwoVneJWYnMxEstevajx1Ze6DlcQqq2cnBxiYmLw9PR84AAUQXiWPejvpKyf31W6hkjQnXPbTnJD7y6SDLe+m82xpqk8f3MsABkFsdhcjEQyMsJh/DjdBioIgiAIFUDnEzMKVU9ubBpHbpwGwCQ1FclIxjbtOQzVxtxSqHjjn8KZwm2GvIOBi4suQxUE4Rm2YcMGzM3NS9y8vLx0HZ7wlBE1REIxZ7cdJ1GRikIGKekqpxtk89zN9gAYZ/+NSeJN9OztsHv3XR1HKgjCs6xPnz5aqxDcS8xELZSXKBAJWnJiUjh26wwowDglGYWVIbG2GXimJKLKduDNsxsBsB89GoWZmY6jFQThWWZhYaE1yEYQHodoMhO0nP7jCHcUGeipJaSka4TWuk6yWQI/KRNxvbML/cx0jOrVw0qMzBAEQRCqEVEgEjRyLqVw5s4FAIyTk8DJlBjbNNTZ7jgk2uIXVTgBpsPkj5BKmUdEEARBEJ5GokAkAIVrBaXtuUbXvKY0MXLFID2R4w5pPBf3InJCNyZe3YtUUIBZ+3aYP/+8rsMVBEEQhAol+hAJAORcSCbvWhqG+oa8NHIQn526Ru1gB9xSGuGgTqbRpXBQKHCcNEnXoQqCIAhChRM1RAKyLHPjz2hkZMx9nbnJLY7+/TduKY1QIdPh6hYArPq/hlHdujqOVhAEQRAqnqghEkiPvMWW5AOYGBrQwUzBxjN/4nOtBwB382/hFnsKhZkZ9qNG6ThSQRAEQXgyRA3RM05WyxzdeYAsKZd0OZPdq77h3PFLOKfXpgA1Xc7/CIDte++hb2ur42gFQXgaSJL0wC0gIOCJ3DczM5PJkydTq1YtjI2Nsbe3x9/fn+3bt2vS+Pv7M3bs2GLXBgYGYmVlVex4dnY21tbW2NjYkJ2dXey8h4eH5rlMTU3x9vbWLCT+MIGBgVrvxdHRkd69exMVFaWVLiAgoMT3eOnSpTLdRygbUUP0jEs5dZPT2RdBAoPEONK9LWh2sxMA2Vkx2Ny+ir6LMzaDK26laUEQqrf4+HjNvzdt2sTMmTM5f/685piJiYlW+vz8/AqZSHH48OGcOHGCpUuX0qhRI+7cucORI0e4c+fOI+e5efNmvL29kWWZLVu2MHDgwGJp5syZw7Bhw8jIyCAwMJDhw4djZWXF66+//tD8LS0tOX/+fGHXhRs3+Oijj+jZsycXLlzA0NBQk6579+6sXbtW61p7e/tHfi6hOFFD9AyTVTJHdh8gR8rHuAAM81I5K6mwy6pJHiq6RK0DwGHcOBRiUUlBEMrIyclJsymVSiRJ0uzn5ORgZWXFzz//jL+/P8bGxqxfvx6AtWvX0rBhQ4yNjWnQoAHLli3TyvfGjRu8/vrrWFtbY2try0svvcTVq1c157dt28a0adN48cUX8fDwoGXLlowaNYrBgwc/8rOsXr2at956i7feeovVq1eXmMbCwgInJyfq1KnDZ599Rt26dfntt9/KlH/Ru3F2dsbHx4dx48Zx7do1rQIkgJGRkdZ7dXJyQk9Mf1KhRIHoGXb3RBxnci8DoHfrGklNTLlpHcs5qwvop0RimnkH48aNsezZU8eRCoJwv/xcValbQb6q7Gnzypa2ok2ePJnRo0cTHR1Nt27dWLlyJdOnT2fu3LlER0czb948Pv74Y9atK/xilpWVRYcOHTA3N+fAgQMcOnQIc3NzunfvTl5eHlBYENu5cyfp6ekVEuPly5c5evQo/fv3p3///hw5coQrV6489DpjY2Py8/PLfb+UlBR++qlwrUix9EjlE01mzyhZpebgvlDypAJM8sFEkccG5VlUComo7HRGngkEwHHKZCSFKDcLQlWzYkxoqefcvW3p9WFTzf6aSQcpyFOXmNalrhWvTGih2f/f9CPkZBT/MB/5Q8fHiLa4sWPH0veeGe8//fRTvv76a80xT09Pzp07x/Llyxk8eDBBQUEoFApWrVqFJElAYY2SlZUVISEhdO3alRUrVjBw4EBsbW1p2rQpL7zwAq+++irP3zd32rJly1i1apXWsYKCAozvqwlfs2YNPXr0wNraGihstlqzZg2fffZZic9UUFDA+vXriYyM5IMPPijTe0hNTcXc3BxZlsnKygIK12hr0KCBVrrt27djbm6u2e/Rowe//PJLme4hlI34pHtGZZxMID7vNgCKWzHENlGg0oP81GYMjzyGJKux6NIF05YtdRypIAjVkY+Pj+bfSUlJxMXFMXToUK0V6z/77DMuXy6sxQ4PD+fSpUtYWFhoztvY2JCTk6NJ0759e65cucK+ffvo168fUVFRtGvXjk8//VTr3gMHDiQiIkJrmzNnjlYalUrFunXreOuttzTH3nrrLdatW4dKpV1jNnnyZMzNzTExMWHkyJFMmjSJ999/v0zvwcLCgoiICMLDw/nhhx+oXbs2P/zwQ7F0HTp00Ip3yZIlZcpfKDtRQ/QMkgvUZOy/Tq+8lsR43uWKXgYRqTl0uTGExNt5NL0ZCAYGOEycoOtQBUEoxXuL/Uo9J933VXfIl+1KTytp7789t+3jhFVmZvcsDq1WF9ZerVy5stjq9UX9ZNRqNS1btmTDhg3F8rq3c7GBgQHt2rWjXbt2TJkyhc8++4w5c+YwefJkTSdlpVJJnTp1tPJwcHDQ2t+1a5emz9K9VCoVu3fvpkePHppjkyZNIiAgAFNTU5ydnTU1WGWhUCg0sTRo0ICEhARef/11Dhw4oJXOzMysWMxCxRIFomdQ5okEVKm56Fsa0W5IH9bvCqZ58IuYFJjT9kbh8FSbAQMwdHfXcaSCIJTGwKjsHWqfVNqK4ujoSI0aNbhy5UqJo7gAWrRowaZNm3BwcMDS0rLMeTdq1IiCggJycnK0Rm09zOrVq3njjTeYPn261vEFCxawevVqrQKRnZ1dhRVWxo0bxzfffMPWrVt55ZVXKiRPoWxEgegZo85T8fe+cByxwKqjK2G3T5IXYYFJgTm56gwaXtmFQqnE7oPhug5VEIRnyOzZsxk9ejSWlpb06NGD3NxcTp48SXJyMuPHj2fgwIF8+eWXvPTSS8yZM4eaNWsSGxvLli1bmDRpEjVr1sTf358333wTHx8fbG1tOXfuHNOmTaNDhw7lKkQlJSWxbds2/vjjD7y9vbXODR48mJ49e5KUlPREhr1bWlry7rvvMmvWLF5++eVy1TYJj0f0IXrGXN//D7sKTrHJ6DB/3zrOD8dW0DS+AwANr/yBQlZjP+ID9EqYoEwQBOFJeffdd1m1ahWBgYE0btwYPz8/AgMD8fT0BMDU1JQDBw7g5uZG3759adiwIUOGDCE7O1tT2OnWrRvr1q2ja9euNGzYkFGjRtGtWzd+/vnncsXyv//9DzMzMzp16lTsXIcOHbCwsODHH398/IcuxZgxY4iOjhadpiuZJMuyrOsgngZpaWkolUpSU1PL9U2jKlHnqvhpwSouyfFYZKuwMkvnmGxOs/iO5OffpevhmRi6u1J72zakclQtC4Lw5OTk5BATE4Onp2exUVCCIBR60N9JWT+/RQ3RM+Tqnr+5pC6cQVZOuMgxl2S8Ewo7WzY7/wsSMg4TJojCkCAIgvDMEQWiZ4Q6u4ADJw+DBJZZBdg2dke64Ya+bICcfROH22cx8WmJRZcuug5VEAShWvDy8tKaRuDeraTRcoJuiU7Vz4iLf57hKokgg5x0mV3NcziffQ2DFEsGnfoLCXCcPEV04BMEQaggO3fuLHXGakdHx0qORngYUSB6Bqgy8zl45ghIoMzMx9qnDlF5vyHLhrQ/uR9l2lUse/fGpLH3wzMTBEEQysRdTF3yVBEFomdASsg1DNR6KBQSUuo1/lTmQIFEs4gGNEk6hWRkhMO4sboOUxAEQRB0RhSIqjlVeh45x27RKb8xOf4mnMg5hPsxPbxyX6HF2T8AsAkIwMDFRceRCoIgCILuiE7V1Vx6SBxyvhoDVwvcujRh+52/cU/xwibLEee0ePRsbbEdNkzXYQqCIAiCTokCUTVWkJJD6IlDpEvZKLu488elbXj+0woA+1snMM1Own7UKPTMzR6SkyAIgiBUb6LJrBo7/dsRTuvF8Ld0Df/Iu2xN/Iu26a8jywXUi9mGYZ3aWL3aT9dhCoIgCILOiRqiairvdhaHr4QDYJaWxj9co+6lwlWsa14PxTg3BcePPkLSF2ViQRCeLVevXkWSJCIiInQdSrU1e/ZsmjVrpuswykUUiKqpk78dJEWRiYFagbWZir9uXMM+0xXUuXjG7sLs+ecxa9dO12EKglCNBQQE8PLLL2sd+/XXXzE2NuaLL77QTVCPYPPmzbRu3RqlUomFhQVeXl5MmDBBcz4wMBCrUtZ/lCSJ3377rdjx9957Dz09PYKCgoqdmz17NpIkIUkSenp6uLq68u6775KUlFSmeIuulSQJc3NzmjZtSmBgoFaakJAQrXRF24wZM8p0j+pIVA9UQzm3MjgaFwESmKWkkN+9BnZH1AB4XtuLoSobh48+EpMwCoJQqVatWsXIkSP57rvvePfdd8t9fV5eHoaVvLTQ3r17eeONN5g3bx59+vRBkiTOnTvHvn37HjnPrKwsNm3axKRJk1i9ejVvvPFGsTReXl7s3bsXlUrF6dOnGTp0KDdu3ODPP/8s0z3Wrl1L9+7dyczMZNOmTbzzzjs4OzvTrVs3rXTnz5/XWt/L3Nz8kZ/raSdqiKqhE1tDSJeyMVQrcHYyJzD1d/bV/h/WsT/hen0/Vv36Yly/nq7DFAThGfLFF1/w4Ycf8tNPP2kKQ0eOHKF9+/aYmJjg6urK6NGjyczM1Fzj4eHBZ599RkBAAEqlkmHDhmlqY3bt2kXDhg0xNzene/fuxMfHa91v7dq1NGzYEGNjYxo0aMCyZcseKe7t27fzwgsvMGnSJOrXr0+9evV4+eWX+fbbbx/5Xfzyyy80atSIqVOncvjwYa5evVosjb6+Pk5OTtSoUYNevXoxevRodu/eTXZ2dpnuYWVlhZOTE7Vr12batGnY2Niwe/fuYukcHBxwcnLSbGUpEBX9DH777Tfq1auHsbExXbp0IS4urtRr/P39GTt2rNaxl19+mYCAAM3+smXLqFu3LsbGxjg6OvLqq6+W6VkriigQVTPZN1I5Hh8JgOnduyS3UpKal0Kbv81pfuUwBoYS9qNH6zhKQRAeV35OTqlbQV5emdPm5+WWKe3jmDJlCp9++inbt2+nX7/CgRyRkZF069aNvn37cvbsWTZt2sShQ4f48MMPta798ssv8fb2Jjw8nI8//hgorGH56quv+PHHHzlw4ACxsbFMnDhRc83KlSuZPn06c+fOJTo6mnnz5vHxxx+zbt26csfu5OREVFQUf//992O8AW2rV6/mrbfeQqlU8uKLL7J27dqHXmNiYoJaraagoKBc91KpVPz888/cvXsXAwODRw25mKysLObOncu6des4fPgwaWlpJdZ0ldXJkycZPXo0c+bM4fz58wQHB9O+ffsKi7csRJNZNZO6P5Z6KhcuStfxqOfM6ksnMFUYMTC08I/Idti76Nvb6zhKQRAe15LBpX979mzuQ98pszX7y94bSEFubolpazby5vVZCzT7Kz8cQnZ6WrF0EzZtf6Q4//zzT37//Xf27dtHx44dNce//PJLBgwYoKk1qFu3LkuWLMHPz4/vv/8eY2NjADp27KhV2Dl06BD5+fn88MMP1K5dG4APP/yQOXPmaNJ8+umnfP311/Tt2xcAT09Pzp07x/Llyxk8eHC54h81ahQHDx6kcePGuLu706ZNG7p27crAgQMxMjLSpEtNTS1T7crFixc5duwYW7ZsAeCtt95i9OjRzJo1C4Wi5DqKf/75h++//55WrVphYWFRprjffPNN9PT0yMnJQaVSYWNjU2IzZc2aNbX2r127hq2t7UPzz8/PZ+nSpbRu3RqAdevW0bBhQ06cOEGrVq3KFOO9YmNjMTMzo1evXlhYWODu7k7z5s3Lnc/jEDVE1UjezQwKolJoqarFu4Pe4XpjQ/z+HsjA8FmYyUr0HR2xfecdXYcpCMIzpEmTJnh4eDBz5kzS09M1x8PDwwkMDNRaAb5bt26o1WpiYmI06Xx8fIrlaWpqqikMATg7O5OYmAhAUlIScXFxDB06VCvvzz77jMuXL5c7fjMzM3bs2MGlS5eYMWMG5ubmTJgwgVatWpGVlaVJZ2FhQURERLHtfqtXr6Zbt27Y2dkB8OKLL5KZmcnevXu10kVGRmJubo6JiQmNGjXC1dWVDRs2lDnuhQsXEhERwZ49e2jWrBkLFy6kTp06xdIdPHhQK15ra+sy5a+vr6/1s2nQoAFWVlZER0eXOcZ7denSBXd3d2rVqsWgQYPYsGGD1vutDKKGqBpJ23MNAJMm9uBmSsSviTQvaIpxTiKmWQnYfzwXhYmJjqMUBKEijF73a6nnpPtqGkaseMAHqUJ7cMWwpWseK6771ahRg82bN9OhQwe6d+9OcHAwFhYWqNVq3n//fUaX0ITv5uam+beZWfGJY+9v+pEkCVmWAVCrCweQrFy5UlN7UURPT++Rn6N27drUrl2bd999l+nTp1OvXj1NZ2UAhUJRYoHjXiqViv/9738kJCSgf8+UJyqVitWrV9O1a1fNsfr16/PHH3+gp6eHi4uLVm1UWTg5OVGnTh3q1KnDL7/8QvPmzfHx8aFRo0Za6Tw9PUsdIfcwJQ3MKW2wjkKh0PyMiuTn52v+bWFhwalTpwgJCWH37t3MnDmT2bNnExYW9sjxlZcoEFUTaZeS+O3SPhor3GnRuSVLw1fhdaNwWH3tK9swbdgAZZ8+Oo5SEISKYvBvk5Iu05aVm5sboaGhdOjQga5du7Jr1y5atGhBVFTUQwsR5eXo6EiNGjW4cuUKAwcOrNC8i3h4eGBqaqrVAbwsdu7cSXp6OqdPn9YqnP3zzz8MHDiQO3fuaJqrDA0NK+zd1KlTh379+jF16lR+//33CsmzoKCAkydPaprHzp8/T0pKCg0aNCgxvb29vVbHd5VKxd9//02HDh00x/T19encuTOdO3dm1qxZWFlZsX//fk3T55MmCkTVROjve7mud5dkORXOwPkjd2is8sY8PQ6HpNM4fBVY7FujIAhCZalZsyYhISGaQtHy5cvx9fVl5MiRDBs2DDMzM6Kjo9mzZ89jjeCCwnl8Ro8ejaWlJT169CA3N5eTJ0+SnJzM+PHjy51XVlYWL774Iu7u7qSkpLBkyRLy8/Pp0qVLufJavXo1PXv2pGnTplrHvby8GDt2LOvXr2fMmDHlyrOsJkyYQNOmTTl58mSJzZDlZWBgwKhRo1iyZAkGBgZ8+OGHtGnTptT+Qx07dmT8+PHs2LGD2rVrs3DhQlJSUjTnt2/fzpUrV2jfvj3W1tbs3LkTtVpN/fr1HzvWshKfkNXA3XPxnEm7BIBZxl1C1RdoGO8LQO2YP7Do1BGz1uXv5CYIglCRatSoQWhoKCkpKQwbNozQ0FAuXrxIu3btaN68OR9//DHOzs6PfZ93332XVatWERgYSOPGjfHz8yMwMBBPT89y5+Xn58eVK1d4++23adCgAT169CAhIYHdu3eX68P61q1b7NixQzPK7l6SJNG3b19Wr15d7vjKqnHjxnTu3JmZM2dWSH6mpqZMnjyZAQMG4Ovri4mJSYmTTBYZMmQIgwcP5u2338bPzw9PT0+t2iErKyu2bNlCx44dadiwIT/88AMbN27Ey8urQuItC0m+v1GvEn3//fd8//33mjkYvLy8mDlzJj169AAKZzm9f5hk69atOXbsmGY/NzeXiRMnsnHjRrKzs+nUqRPLli3T6jmfnJzM6NGj+eOPPwDo06cP3377bbnaJdPS0lAqlaSmpmpNYqVrsiyz9cv1nM26jEW+Hs/51uXnsMs0vOWLMuUSLSK/pfb2PzB6hP8IBEHQvZycHGJiYvD09NSMvBIEXQoMDGTs2LFaNTy69qC/k7J+fuu0hqhmzZosWLCAkydPcvLkSTp27MhLL71EVFSUJk3RhFtF286dO7XyGDt2LFu3biUoKIhDhw6RkZFBr169UKlUmjQDBgwgIiKC4OBggoODiYiIYNCgQZX2nE9S0tk4ojILR2RY5KYRovwHSQ3IamrH/IHNm2+IwpAgCIIgPIROC0S9e/fmxRdfpF69etSrV4+5c+dibm6uVQNkZGSkNYumjY2N5lxqaiqrV6/m66+/pnPnzjRv3pz169cTGRmpGcIYHR1NcHAwq1atwtfXF19fX1auXMn27ds5f/58pT9zRZJlmb927kUlqVHm6eH94vNsifkdOesnfI/PwlqViN3IEboOUxAEocoaPny41vD8e7fhw4frOrxi5s2bV2q8Ra0rj6tHjx6l3mPevHkVco+qqMp0qlapVPzyyy9kZmbi6+urOR4SEoKDgwNWVlb4+fkxd+5cHBwcgMJ5LPLz87WGKrq4uODt7c2RI0fo1q0bR48eRalUag2/bNOmDUqlkiNHjpTaBpybm0vuPROZpaUVn6hM126FX+OfnDiQwFrKZod+GPq5+bwRosAk5y72kyahX8Y5JQRBEJ5Fc+bM0Zr48V5VqXtEkeHDh9O/f/8Sz5lU0LQqq1atKnWJEBsbG2xsbLSW3KgudF4gioyMxNfXl5ycHMzNzdm6datmnoQePXrw2muv4e7uTkxMDB9//DEdO3YkPDwcIyMjEhISMDQ0LDaRlKOjIwkJCQAkJCRoClD3cnBw0KQpyfz58/nkk08q8EkrlizLcOQu/vmNuMAVGr3Uln37dvLSFTtsM2+hX6Mm1oPe0nWYgiAIVZqDg0OJnxFVVVGB5EmqUaPGE82/qtL5KLP69esTERHBsWPH+OCDDxg8eDDnzp0D4PXXX6dnz554e3vTu3dv/vzzTy5cuMCOHTsemKcsy1qTQ5U0UdT9ae43depUUlNTNduDFq3ThZyoOxTczKSOfg0Cpozht9iTtIntg61iKnkGZjhOmoCikleFFgRBEISnlc5riO6dfMrHx4ewsDAWL17M8uXLi6V1dnbG3d2dixcvAoUzcebl5ZGcnKxVS5SYmEjbtm01aW7dulUsr6SkJBwdHUuNy8jIqNwzg1YWWS1zd3dhR2rzF1y4WhCHdKJwGninhBNYetXFols3XYYoCIIgCE8VndcQ3U+WZa2+O/e6c+cOcXFxmnkqWrZsiYGBAXv27NGkiY+P5++//9YUiHx9fUlNTeXEiROaNMePHyc1NVWT5mkTc/AcG1L3EmUQh6mvEyt3bsIlvQ6SOh/PaztxmjL5gbVfgiAIgiBo02kN0bRp0+jRoweurq6kp6cTFBRESEgIwcHBZGRkMHv2bPr164ezszNXr15l2rRp2NnZ8corrwCgVCoZOnQoEyZMwNbWFhsbGyZOnKiZgAqgYcOGdO/enWHDhmlqnd577z169epVqTNgVhRZJbM/ZD9ZUi4X8y5he/0kpqddAah54wD2ndpi0qyZboMUBEEQhKeMTgtEt27dYtCgQcTHx6NUKmnSpAnBwcF06dKF7OxsIiMj+d///kdKSgrOzs506NCBTZs2YWFhoclj4cKF6Ovr079/f83EjIGBgVrrxGzYsIHRo0drRqP16dOHpUuXVvrzVoQL+yK4Lt9BkqGWpz0bj4RSK9MXvYIc3G7+hcPyX3QdoiAIgiA8dXQ6U/XTpCrMVK0uULHis29JIAWHbAU+wzqxZ2ksVjmOeFzdwXOdnXEoZfioIAhPJzFTdcUKCAggJSWF3377rdQ0RWuuJScnV9pK69XR1atX8fT05PTp0zR7wi0XT/1M1UL5RP0ZRgIpKGSJhk08WRK1FlX+CUyyEnFNDcf2/fd1HaIgCIJGQEAAL7/8connPDw8kCRJa7t3ySUPDw8WLVpU4TEtXryYwMBAzb6/vz9jx46t8PvoWkBAgOa96uvr4+bmxgcffEBycrJWuof9HJ4lOh9lJpSNOk9F6MnDIIFDjgKTF2pxIfhzRh1RYZG9C6ePp6N3T1OiIAhCVTdnzhyGDRum2b+3q8OTolQqn/g97pefn4+BgUGl37d79+6sXbuWgoICzp07x5AhQ0hJSWHjxo1a6XTxc6iKRA3RU+Li7ghuS+noywqatfXmy9PLeOWoGstskNzdsS5l5lJBEISqysLCQmtpJnt7+3LnMWHCBHr37q3ZX7RoEZIkac1XV79+fc2gmntrrQICAggNDWXx4sWa2pGixcahcDUEHx8fTE1Nadu2bZmXe5o9ezbNmjVjzZo11KpVCyMjI2RZJjg4mBdeeAErKytsbW3p1asXly9f1lzXr18/Ro0apdkfO3YskiRp1vcsKCjAwsKCXbt2lSmOoqWvatasSdeuXXn99dfZvXt3sXSP+nOQJInvv/+eHj16YGJigqenJ7/8Uno/1sDAwGJNkL/99pvWqOgzZ87QoUMHLCwssLS0pGXLlpw8ebJM8TwuUSB6CqjzVFhE5PNy7nM0MrQjt5EtXgfb0uZSQ2Sg5pSPkHTw7UMQhMonyzLqPJVOtqrY5dTf35+DBw+iVqsBCA0Nxc7OjtDQUKBwtYILFy7g5+dX7NrFixfj6+vLsGHDNAuIu7q6as5Pnz6dr7/+mpMnT6Kvr8+QIUPKHNelS5f4+eef2bx5MxEREQBkZmYyfvx4wsLC2LdvHwqFgldeeUUTu7+/PyEhIZo87n+WsLAwcnJyeP7558v1jgCuXLlCcHBwhddUffzxx/Tr148zZ87w1ltv8eabbxIdHf3I+Q0cOJCaNWsSFhZGeHg4U6ZMqbTaNdFk9hTIPBaPOiMfR2t7mozvzriFX1AvszUxtWxx8QjG3N9f1yEKglBJ5Hw1N2ce0cm9Xea0RTKsuOaUyZMnM2PGDM3+vHnzGD16dLnyaN++Penp6Zw+fZoWLVpw8OBBJk6cyJYtWwD466+/cHR0pEGDBsWuVSqVGBoaYmpqipOTU7Hzc+fO1RSkpkyZQs+ePcnJySlT5/a8vDx+/PFHrdqWfv36aaVZvXo1Dg4OnDt3Dm9vb/z9/RkzZgy3b99GT0+PqKgoZs2aRUhICCNGjCAkJISWLVtibm5epnezfft2zM3NUalU5OTkAPDNN98US/c4P4fXXnuNd999F4BPP/2UPXv28O2337Js2bIyXX+/2NhYJk2apPl51a1b95HyeRSiQFTF5WflcnP/BcwwwLKTO/suH6BWTBMAPK/uwH35NDEJoyAIT6VJkyZpLRJqZ2dX7jyUSiXNmjUjJCQEAwMDFAoF77//PrNmzSI9PZ2QkJASa4fKokmTJpp/F00InJiYiJub20OvdXd3L9b0dPnyZT7++GOOHTvG7du3NTVDsbGxeHt74+3tja2tLaGhoRgYGNC0aVP69OnDkiVLAMr9LB06dOD7778nKyuLVatWceHCBa0muSKP83O4dzH2ov2iGrFHMX78eN59911+/PFHOnfuzGuvvUbt2rUfOb/yEAWiKu7wpj0ckMPxNqpJL+9WbP86jHqyD+YZ1/FoXRPjhg11HaIgCJVIMlDgMkc3s+xLBhXby8LOzk6zdNPjKGpqMjQ0xM/PD2tra7y8vDh8+DAhISGPPIrs3qaaoi+eRYWYhzEzMyt2rHfv3ri6urJy5UpcXFxQq9V4e3uTl5enuUf79u01z+Lv74+3tzcqlYrIyEiOHDlSrmcxMzPTvN8lS5bQoUMHPvnkEz799FOtdBX1cyhS2pd0hUJRrNk1Pz9fa3/27NkMGDCAHTt28OeffzJr1iyCgoI0EzI/SaIPURWWl55D2NVI1JJMhnSX4PMh1Ikr/MbiHvcnNSeO03GEgiBUNkmSUBjq6WSrqrXRRf2I9u/fj/+/XQj8/PwICgoqtf9QEUNDQ1Qq1ROP8c6dO0RHRzNjxgw6depEw4YNiw2Bh/8KdyEhIfj7+yNJEu3ateOrr74iOzv7kfoPFZk1axZfffUVN2/efJxH0XLs2LFi+yU1TwLY29uTnp5OZmam5lhJtUn16tVj3Lhx7N69m759+7J27doKi/dBRIGoCgvZsINMKRdjtT7+b7xI6Na/UWCIMvUydV/2xcDRQdchCoIgPFBqaioRERFaW2xsbIXeo6gf0bZt2zQFIn9/f9avX4+9vT2NGjUq9VoPDw+OHz/O1atXtZqxKpq1tTW2trasWLGCS5cusX//fsaPH18snb+/P1FRUURGRtKuXTvNsQ0bNtCiRYvHmhjY398fLy8v5s2b98h53O+XX35hzZo1XLhwgVmzZnHixAk+/PDDEtO2bt0aU1NTpk2bxqVLl/jpp5+05oTKzs7mww8/JCQkhGvXrnH48GHCwsJoWEktIaJAVEVlJ2dyKv4fANwNzTmWfgXPhMLaIbdbf+H8/ru6DE8QBKFMQkJCaN68udY2c+bMCr2HUqmkefPm2NjYaAo/7dq1Q61WP7TPzcSJE9HT06NRo0bY29tXeGGtiEKhICgoiPDwcLy9vRk3bhxffvllsXTe3t7Y2dnRtGlTTeHHz88PlUr1yH2h7jV+/HhWrlxJXFzcY+cF8MknnxAUFESTJk1Yt24dGzZsKLUAamNjw/r169m5cyeNGzdm48aNzJ49W3NeT0+PO3fu8Pbbb1OvXj369+9Pjx49+OSTTyok1ocRS3eUUWUv3bF9yU+cvHsBU7UBbw8bwNs7hzJhkyPZZvVo93ZjbF979YnHIAiC7omlO4SqSpIktm7dWups5JWpIpbuEJ2qq6CMxFTO3rkCEtS2sGZ3ahjdDibgdjOeHPdUbPpW7LcrQRAEQXjWiSazKij6j+OoUWOhMqRDQF+27P6erqcKK/LqzpqB9IxOqy4IwrNnw4YNmJubl7h5eXnpJCYvL69SY9qwYcMTv39sbGyp9zc3N6+QZr+q+N6fNFFDVMUUpObiHGNKf1Vb0nzUbDoZStfosSQ4/4mdcw7mbXUz3FYQBEEX+vTpQ+vWrUs8p4v1wQB27txZbLh4EUdHxyd+fxcXlwfO9ePi4vLY9yjLe69uPW5EgaiKSd8fCyoZK097avapy+6JP6HUsyfNvCbtP3lT1+EJgiBUKgsLCyyq2MLV7u7uOr2/vr5+hc4bVJKq+N6fNNFkVoXcvnSDi2GFa8Aou3iw/I/NKPNqIanzca2jwqiSZusUBEEQhGeNKBBVIcFBf7DT8BSHjKMoqKmPan/hfBhOCYdpMb34dOuCIAiCIFQMUSCqIq6fvcTl/EQAatRzYulPmzBRu6KnyqVOOyf0bWx0HKEgCIIgVF+iQFRF7P3tT2RJxl5lRuOX/DE+agKAfdIhvEcP1XF0giAIglC9iQJRFXD5eCTXVHcAaOXTjG83BqKPPfr5GTTp3wKFkZGOIxQEQRCE6k2MMqsC/vpzH7IEzmoLanXxweqd8bS65MDNmnWp8+b3ug5PEARBeAICAgJISUnht99+03UoAqKGSOf+3neU66SADM/7+bJw41w6ni3APPMmbSa/U2VXlxYEQXiYgICAUpd18PDwYNGiRVr7kiQRFBRULK2XlxeSJGktBFqU/v5twYIFD43r6tWrWtcolUratGnDtm3btNIFBgaWeI9Vq1aV6fmFp4uoIdKxzDN3sFAbo1QYo2xWiwaLwlDIENO0IQ3bljwpliAIQnXk6urK2rVreeONNzTHjh07RkJCAmZmZsXSz5kzh2HDhmkdK8/cOXv37sXLy4uUlBSWLVtGv379OHXqFN7e3po0lpaWnD9/Xus6pVJZ5nsITw9RQ6RDslqmfgMvXpNeoM/rfdn41UbSnGdw2aM7z8/9WtfhCYIgVKqBAwcSGhqqtRL7mjVrGDhwIPr6xb+/W1hY4OTkpLWVVHAqja2tLU5OTjRo0IC5c+eSn5/PX3/9pZVGkqRi9zAxMXlo3rNnz6ZZs2YsX74cV1dXTE1Nee2110hJSSn1mvtrzQCaNWumtSL87NmzcXNzw8jICBcXF0aPHl3m5xUeTBSIdEhSSFi96EnNaW24a6bG4nZdZIUe6Z62KOt46jo8QRCqsLy8vFK3+5eVqIi0lcHR0ZFu3bqxbt06ALKysti0aRNDhgx5ovfNz89n5cqVQMUuB3Lp0iV+/vlntm3bRnBwMBEREYwcOfKR8/v1119ZuHAhy5cv5+LFi/z22280bty4wuJ91okmsypAYaTPn19txlCvOSaZN3j5mw90HZIgCFXcvHnzSj1Xt25dBg4cqNn/8ssvS117y93dnXfeeUezv2jRIrKysoqlu7eW4kkaMmQIEyZMYPr06fz666/Url2bZs2alZh28uTJzJgxQ+vY9u3b8ff3L9O92rZti0KhIDs7G7VajYeHB/3799dKk5qairm5uWbf3NychISEMuWfk5PDunXrqFmzJgDffvstPXv25Ouvv8bJyalMedwrNjYWJycnOnfujIGBAW5ubrRq1arc+QglEzVEVUB4ZCRG2YWrB5vUTMLE3lbHEQmCIOhGz549ycjI4MCBA6xZs+aBtUOTJk0iIiJCayttQdKSbNq0idOnT/PHH39Qp04dVq1ahc19k+BaWFho5X/kyJEy5+/m5qYpDAH4+vqiVquL9Ukqq9dee43s7Gxq1arFsGHD2Lp1KwUFBY+Ul1CcqCGqAo5+uxtJrzkmmTH0XzRC1+EIgvAUmDZtWqnn7h+dOmnSpDKnHTt27GPF9bj09fUZNGgQs2bN4vjx42zdurXUtHZ2do+1yKmrqyt169albt26mJub069fP86dO4eDg4MmjUKhqLCFVIvedWmjhxUKRbEV5O+t2XN1deX8+fPs2bOHvXv3MmLECL788ktCQ0MrtKnvWSVqiHTswF8HUdAEAPOmavSMjXUckSAITwNDQ8NSt/s/HCsibWUaMmQIoaGhvPTSS1hbW1fKPf38/PD29mbu3LkVlmdsbCw3b97U7B89ehSFQkG9evVKTG9vb098fLxmPy0tjZiYGK00JiYm9OnThyVLlhASEsLRo0eJjIyssJifZaKGSMcurvwRhelL6OfE8tqE4boORxAEoUKlpqYSERGhdez+Zqn7NWzYkNu3b2NqavrAdOnp6cX685iammJpaflIsU6YMIHXXnuNjz76iBo1ajxSHvcyNjZm8ODBfPXVV6SlpTF69Gj69+9fav+hjh07EhgYSO/evbG2tubjjz9GT09Pcz4wMBCVSkXr1q0xNTXlxx9/xMTEBHd398eOVRAFIp3Ky8vDICealmdPEffxZDEJoyAI1U5ISAjNmzfXOjZ48OCHXmdr+/C+lDNnzmTmzJlax95//31++OGH8gX5r169euHh4cHcuXNZtmzZI+Vxrzp16tC3b19efPFF7t69y4svvvjAfKdOncqVK1fo1asXSqWSTz/9VKuGyMrKigULFjB+/HhUKhWNGzdm27ZtZXpXwsNJ8v0NlkKJ0tLSUCqVpKamPvK3j9KcOBZKqzZ+FZqnIAjVQ05ODjExMXh6emIsmtSfGrNnz+a3334rVjsmPBkP+jsp6+e36ENUBYjCkCAIgiDoligQCYIgCNXK8OHDMTc3L3EbPrxi+mp6eXmVeo8NGzZUyD2EyiWazMroSTaZCYIglEY0mZVfYmIiaWlpJZ6ztLTUGlb/qK5du1bqZJeOjo7lWlNNeHwV0WQmOlULgiAI1YqDg0OFFHoeRIzsqn5Ek5kgCIIgCM88USASBEF4CojeDYJQuor4+xAFIkEQhCqsaGK+ylpxXhCeRkULEj/OEiaiD5EgCEIVpq+vj6mpKUlJSRgYGKBQiO+xglBElmWysrJITEzEyspKa2bv8tJpgej777/n+++/5+rVq0DhMMaZM2fSo0cPoPBBP/nkE1asWEFycjKtW7fmu+++w8vLS5NHbm4uEydOZOPGjWRnZ9OpUyeWLVumtcJwcnIyo0eP5o8//gCgT58+fPvtt1hZWVXaswqCIDwKSZJwdnYmJiaGa9eu6TocQaiSrKysSl0Spax0Oux+27Zt6OnpaVYSXrduHV9++SWnT5/Gy8uLzz//nLlz5xIYGEi9evX47LPPOHDgAOfPn9cMafzggw/Ytm0bgYGB2NraMmHCBO7evUt4eLimpNijRw+uX7/OihUrAHjvvffw8PBg27ZtZY5VDLsXBEGX1Gq1aDYThBIYGBg8sGaozJ/fchVjbW0tr1q1Slar1bKTk5O8YMECzbmcnBxZqVTKP/zwgyzLspySkiIbGBjIQUFBmjQ3btyQFQqFHBwcLMuyLJ87d04G5GPHjmnSHD16VAbkf/75p8xxpaamyoCcmpr6uI8oCIIgCEIlKevnd5VpjFapVAQFBZGZmYmvry8xMTEkJCTQtWtXTRojIyP8/Pw4cuQIAOHh4eTn52ulcXFxwdvbW5Pm6NGjKJVKWrdurUnTpk0blEqlJk1JcnNzSUtL09oEQRAEQaiedF4gioyMxNzcHCMjI4YPH87WrVtp1KgRCQkJQOGMn/dydHTUnEtISMDQ0BBra+sHpilpgi4HBwdNmpLMnz8fpVKp2VxdXR/rOQVBEARBqLp0XiCqX78+ERERHDt2jA8++IDBgwdz7tw5zXlJkrTSy7Jc7Nj97k9TUvqH5TN16lRSU1M1W1xcXFkfSRAEQRCEp4zOh90bGhpqOlX7+PgQFhbG4sWLmTx5MlBYw+Ps7KxJn5iYqKk1cnJyIi8vj+TkZK1aosTERNq2batJc+vWrWL3TUpKKlb7dC8jIyOMjIw0+/K/fc9F05kgCIIgPD2KPrflh40he/LdmcqnY8eO8uDBgzWdqj///HPNudzc3BI7VW/atEmT5ubNmyV2qj5+/LgmzbFjx8rdqTouLk4GxCY2sYlNbGIT21O4xcXFPfBzXqc1RNOmTaNHjx64urqSnp5OUFAQISEhBAcHI0kSY8eOZd68edStW5e6desyb948TE1NGTBgAABKpZKhQ4cyYcIEbG1tsbGxYeLEiTRu3JjOnTsD0LBhQ7p3786wYcNYvnw5UDjsvlevXtSvX7/Msbq4uBAXF4eFhcVDm+zKIy0tDVdXV+Li4sRw/idMvOvKId5z5RDvuXKI91w5nuR7lmWZ9PR0XFxcHphOpwWiW7duMWjQIOLj41EqlTRp0oTg4GC6dOkCwEcffUR2djYjRozQTMy4e/duzRxEAAsXLkRfX5/+/ftrJmYMDAzUmpNgw4YNjB49WjMarU+fPixdurRcsSoUCq3JHiuapaWl+GOrJOJdVw7xniuHeM+VQ7znyvGk3rNSqXxoGp1OzCiICR8rk3jXlUO858oh3nPlEO+5clSF96zzUWaCIAiCIAi6JgpEOmZkZMSsWbO0RrQJT4Z415VDvOfKId5z5RDvuXJUhfcsmswEQRAEQXjmiRoiQRAEQRCeeaJAJAiCIAjCM08UiARBEARBeOaJApEgCIIgCM88USDSsWXLluHp6YmxsTEtW7bk4MGDug6pWpk/fz7PPfccFhYWODg48PLLL3P+/Hldh1XtzZ8/XzPbvFCxbty4wVtvvYWtrS2mpqY0a9aM8PBwXYdV7RQUFDBjxgw8PT0xMTGhVq1azJkzB7VarevQnmoHDhygd+/euLi4IEkSv/32m9Z5WZaZPXs2Li4umJiY4O/vT1RUVKXEJgpEOrRp0ybGjh3L9OnTOX36NO3ataNHjx7ExsbqOrRqIzQ0lJEjR3Ls2DH27NlDQUEBXbt2JTMzU9ehVVthYWGsWLGCJk2a6DqUaic5OZnnn38eAwMD/vzzT86dO8fXX3+NlZWVrkOrdj7//HN++OEHli5dSnR0NF988QVffvkl3377ra5De6plZmbStGnTUleL+OKLL/jmm29YunQpYWFhODk50aVLF9LT0598cGVe3VSocK1atZKHDx+udaxBgwbylClTdBRR9ZeYmCgDcmhoqK5DqZbS09PlunXrynv27JH9/PzkMWPG6DqkamXy5MnyCy+8oOswngk9e/aUhwwZonWsb9++8ltvvaWjiKofQN66datmv2hR9wULFmiO5eTkaC3q/iSJGiIdycvLIzw8XLO+WpGuXbty5MgRHUVV/aWmpgJgY2Oj40iqp5EjR9KzZ0/N4spCxfrjjz/w8fHhtddew8HBgebNm7Ny5Updh1UtvfDCC+zbt48LFy4AcObMGQ4dOsSLL76o48iqr5iYGBISErQ+F42MjPDz86uUz0WdLu76LLt9+zYqlQpHR0et446OjiQkJOgoqupNlmXGjx/PCy+8gLe3t67DqXaCgoI4deoUYWFhug6l2rpy5Qrff/8948ePZ9q0aZw4cYLRo0djZGTE22+/revwqpXJkyeTmppKgwYN0NPTQ6VSMXfuXN58801dh1ZtFX32lfS5eO3atSd+f1Eg0jFJkrT2ZVkudkyoGB9++CFnz57l0KFDug6l2omLi2PMmDHs3r0bY2NjXYdTbanVanx8fJg3bx4AzZs3Jyoqiu+//14UiCrYpk2bWL9+PT/99BNeXl5EREQwduxYXFxcGDx4sK7Dq9Z09bkoCkQ6Ymdnh56eXrHaoMTExGKlY+HxjRo1ij/++IMDBw5Qs2ZNXYdT7YSHh5OYmEjLli01x1QqFQcOHGDp0qXk5uaip6enwwirB2dnZxo1aqR1rGHDhmzevFlHEVVfkyZNYsqUKbzxxhsANG7cmGvXrjF//nxRIHpCnJycgMKaImdnZ83xyvpcFH2IdMTQ0JCWLVuyZ88ereN79uyhbdu2Ooqq+pFlmQ8//JAtW7awf/9+PD09dR1StdSpUyciIyOJiIjQbD4+PgwcOJCIiAhRGKogzz//fLFpIy5cuIC7u7uOIqq+srKyUCi0PyL19PTEsPsnyNPTEycnJ63Pxby8PEJDQyvlc1HUEOnQ+PHjGTRoED4+Pvj6+rJixQpiY2MZPny4rkOrNkaOHMlPP/3E77//joWFhaZGTqlUYmJiouPoqg8LC4ti/bLMzMywtbUV/bUq0Lhx42jbti3z5s2jf//+nDhxghUrVrBixQpdh1bt9O7dm7lz5+Lm5oaXlxenT5/mm2++YciQIboO7amWkZHBpUuXNPsxMTFERERgY2ODm5sbY8eOZd68edStW5e6desyb948TE1NGTBgwJMP7omPYxMe6LvvvpPd3d1lQ0NDuUWLFmI4eAUDStzWrl2r69CqPTHs/snYtm2b7O3tLRsZGckNGjSQV6xYoeuQqqW0tDR5zJgxspubm2xsbCzXqlVLnj59upybm6vr0J5qf/31V4n/Jw8ePFiW5cKh97NmzZKdnJxkIyMjuX379nJkZGSlxCbJsiw/+WKXIAiCIAhC1SX6EAmCIAiC8MwTBSJBEARBEJ55okAkCIIgCMIzTxSIBEEQBEF45okCkSAIgiAIzzxRIBIEQRAE4ZknCkSCIAiCIDzzRIFIEAQArl69iiRJRERE6DoUjX/++Yc2bdpgbGxMs2bNSkwjyzLvvfceNjY2VS5+XQoJCUGSJFJSUkpNExgYiJWVVaXFdD8PDw8WLVqks/sLwr1EgUgQqoiAgAAkSWLBggVax3/77bdKWem5Kpo1axZmZmacP3+effv2lZgmODiYwMBAtm/fTnx8fIUtFRIQEMDLL79cIXlVJ6IQI1RXokAkCFWIsbExn3/+OcnJyboOpcLk5eU98rWXL1/mhRdewN3dHVtb21LTODs707ZtW5ycnNDXr1pLNKpUKrEgqCA8BUSBSBCqkM6dO+Pk5MT8+fNLTTN79uxizUeLFi3Cw8NDs19UuzFv3jwcHR2xsrLik08+oaCggEmTJmFjY0PNmjVZs2ZNsfz/+ecf2rZti7GxMV5eXoSEhGidP3fuHC+++CLm5uY4OjoyaNAgbt++rTnv7+/Phx9+yPjx47Gzs6NLly4lPodarWbOnDnUrFkTIyMjmjVrRnBwsOa8JEmEh4czZ84cJEli9uzZxfIICAhg1KhRxMbGIkmS5h3IsswXX3xBrVq1MDExoWnTpvz666+a61QqFUOHDsXT0xMTExPq16/P4sWLtd7xunXr+P3335EkCUmSCAkJKbEZKiIiAkmSuHr1KvBfM9T27dtp1KgRRkZGXLt2jby8PD766CNq1KiBmZkZrVu31nq3165do3fv3lhbW2NmZoaXlxc7d+4s8d0BrF+/Hh8fHywsLHBycmLAgAEkJiYWS3f48GGaNm2KsbExrVu3JjIystQ8L1++zEsvvYSjoyPm5uY899xz7N27V3Pe39+fa9euMW7cOM17KXLkyBHat2+PiYkJrq6ujB49mszMTM35xMREevfujYmJCZ6enmzYsKHUOARBF0SBSBCqED09PebNm8e3337L9evXHyuv/fv3c/PmTQ4cOMA333zD7Nmz6dWrF9bW1hw/fpzhw4czfPhw4uLitK6bNGkSEyZM4PTp07Rt25Y+ffpw584dAOLj4/Hz86NZs2acPHmS4OBgbt26Rf/+/bXyWLduHfr6+hw+fJjly5eXGN/ixYv5+uuv+eqrrzh79izdunWjT58+XLx4UXMvLy8vJkyYQHx8PBMnTiwxj6JCVXx8PGFhYQDMmDGDtWvX8v333xMVFcW4ceN46623CA0NBQoLYzVr1uTnn3/m3LlzzJw5k2nTpvHzzz8DMHHiRPr370/37t2Jj48nPj6etm3blvndZ2VlMX/+fFatWkVUVBQODg688847HD58mKCgIM6ePctrr71G9+7dNc87cuRIcnNzOXDgAJGRkXz++eeYm5uXeo+8vDw+/fRTzpw5w2+//UZMTAwBAQHF0k2aNImvvvqKsLAwHBwc6NOnD/n5+SXmmZGRwYsvvsjevXs5ffo03bp1o3fv3sTGxgKwZcsWatasyZw5czTvBSAyMpJu3brRt29fzp49y6ZNmzh06BAffvihJu+AgACuXr3K/v37+fXXX1m2bFmJBThB0JlKWUJWEISHGjx4sPzSSy/JsizLbdq0kYcMGSLLsixv3bpVvvdPddasWXLTpk21rl24cKHs7u6ulZe7u7usUqk0x+rXry+3a9dOs19QUCCbmZnJGzdulGVZlmNiYmRAXrBggSZNfn6+XLNmTfnzzz+XZVmWP/74Y7lr165a946Li5MB+fz587IsF65y36xZs4c+r4uLizx37lytY88995w8YsQIzX7Tpk3lWbNmPTCf+589IyNDNjY2lo8cOaKVbujQofKbb75Zaj4jRoyQ+/Xrp9m/9+dRpGil7uTkZM2x06dPy4AcExMjy7Isr127VgbkiIgITZpLly7JkiTJN27c0MqvU6dO8tSpU2VZluXGjRvLs2fPfuCzPsiJEydkQE5PT9eKNSgoSJPmzp07somJibxp0yZNrEql8oH5NmrUSP722281++7u7vLChQu10gwaNEh+7733tI4dPHhQVigUcnZ2tnz+/HkZkI8dO6Y5Hx0dLQPF8hIEXalaje2CIADw+eef07FjRyZMmPDIeXh5eaFQ/FcJ7OjoqNXhWE9PD1tb22Lf0n19fTX/1tfXx8fHh+joaADCw8P566+/Sqy5uHz5MvXq1QPAx8fngbGlpaVx8+ZNnn/+ea3jzz//PGfOnCnjE5bs3Llz5OTkFGuqy8vLo3nz5pr9H374gVWrymF5owAABjZJREFUVnHt2jWys7PJy8srdSRbeRkaGtKkSRPN/qlTp5BlWfN+iuTm5mr6Ro0ePZoPPviA3bt307lzZ/r166eVx/1Onz7N7NmziYiI4O7du5p+SrGxsTRq1EiT7t6fp42NDfXr19f8PO+XmZnJJ598wvbt27l58yYFBQVkZ2draohKEx4ezqVLl7SawWRZRq1WExMTw4ULFzS/S0UaNGig0xFugnA/USAShCqoffv2dOvWjWnTphVrBlEoFMiyrHWspCYQAwMDrX1Jkko8VpYOv0V9RdRqNb179+bzzz8vlsbZ2VnzbzMzs4fmeW++RWRZfuwRdUXPs2PHDmrUqKF1zsjICICff/6ZcePG8fXXX+Pr64uFhQVffvklx48ff2DeRQXMe99/Se/exMRE6znUajV6enqEh4ejp6enlbaocPnuu+/SrVs3duzYwe7du5k/fz5ff/01o0aNKpZ/ZmYmXbt2pWvXrqxfvx57e3tiY2Pp1q1bmTqxl/aOJ02axK5du/jqq6+oU6cOJiYmvPrqqw/NU61W8/777zN69Ohi59zc3Dh//vwD7ysIVYEoEAlCFbVgwQKaNWtWrFbB3t6ehIQErcJDRc69c+zYMdq3bw9AQUEB4eHhmr4gLVq0YPPmzXh4eDzWaC5LS0tcXFw4dOiQ5l5Q2DG3VatWjxV/UUfm2NhY/Pz8Skxz8OBB2rZty4gRIzTHLl++rJXG0NAQlUqldcze3h4o7N9kbW0NlO3dN2/eHJVKRWJiIu3atSs1naurq6Zv19SpU1m5cmWJBaJ//vmH27dvs2DBAlxdXQE4efJkiXkeO3YMNzc3AJKTk7lw4QINGjQoMe3BgwcJCAjglVdeAQr7FBV1Fi9S0ntp0aIFUVFR1KlTp8R8GzZsSEFBASdPntT8fM+fP//AOZIEobKJTtWCUEU1btyYgQMH8u2332od9/f3JykpiS+++ILLly/z3Xff8eeff1bYfb/77ju2bt3KP//8w8iRI0lOTmbIkCFAYcffu3fv8uabb3LixAn+387duzSThVEAP1sYsBAREgshEnF0GFEHP0AQxHLSaJFGUAgiRoSAo0TRJiIZwRlQLCRpYyoRIeCIYAQFlSDxM4qFSTCxERv9CyTsVhtwzaLsCy8Lc371w+XOLWYOz7138vk8Dg8PMTY29uUj+Z25uTkYhoHt7W1kMhksLCwgnU5DVdVfmn9VVRVmZ2cxMzODWCyGp6cn3N7eIhwOIxaLAQAEQcDV1RUSiQSy2SyCwWDpQPbfXC4X7u/vkclk8Pb2ho+PDwiCAKfTiaWlJWSzWezv72Ntbe3bOTU3N2NkZARerxfxeByFQgGXl5cwDKN0k2x6ehqJRAKFQgE3Nzc4Pj6GJEllx6uvr4fNZsPGxgby+TxM04SmaWVrQ6EQjo6O8PDwgNHRUdjt9n/9v5IgCIjH40in07i7u8Pw8PCXDqLL5cLp6SleXl5Ktwvn5+dxfn4Ov9+PdDqNXC4H0zRLYU4URbjdbvh8PqRSKVxfX2N8fByVlZXfrh3R78JARPQ/pmnal+0xSZIQiUQQDochyzIuLi7K3sD6r3Rdh2EYkGUZZ2dn2N3dhd1uBwDU1dUhmUyiWCxCURS0trZCVVVUV1d/Oq/0E1NTUwgEAggEAmhra8PBwQFM00RTU9MvP4OmaVhcXMTKygokSYKiKNjb20NDQwMAYHJyEh6PB0NDQ+jp6cH7+/unbhEA+Hw+iKKI7u5uOBwOJJNJVFRUYGtrC4+Pj5BlGYZhYHl5+Udzikaj8Hq9CAQCEEURg4ODSKVSpQ5PsViE3++HJElwu90QRRGRSKTsWA6HA5ubm9jZ2UFLSwt0Xcfq6mrZWl3Xoaoqurq68Pr6CtM0YbPZytaur6+jpqYGvb29GBgYgKIo6Ozs/FQTCoXw/PyMxsbGUsesvb0dJycnyOVy6OvrQ0dHB4LB4Kdt1Gg0CqfTif7+fng8HkxMTKC2tvZHa0f0O/zx5z/ftkREREQWww4RERERWR4DEREREVkeAxERERFZHgMRERERWR4DEREREVkeAxERERFZHgMRERERWR4DEREREVkeAxERERFZHgMRERERWR4DEREREVkeAxERERFZ3l/eiLnsQobGUAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD2h0lEQVR4nOzdd1QU19vA8e/swlKX3ouAXcFuNFYwsfcWTYxRoyYao8YaNRpbLInGRE1iYmKNMbZoTOwdxN6NXVGxgggoIJ3def/wx76ugCwILOj9nDNHd+bOzDNbH+69c68ky7KMIAiCIAjCa0ph7AAEQRAEQRCMSSRDgiAIgiC81kQyJAiCIAjCa00kQ4IgCIIgvNZEMiQIgiAIwmtNJEOCIAiCILzWRDIkCIIgCMJrTSRDgiAIgiC81kQyJAiCIAjCa00kQwVo/vz5SJJEQEBAttvDw8ORJIlvv/0212MtW7YMSZIIDw/PcxyHDh1i8uTJPH78OMu2oKAggoKC8nzMV4Gvry99+vTJ176SJDF58uQCjSc3vr6+tG3b9oVl+vTpg6+vb9EEVAQkSTJoCQ4OfqnzTJ48GUmSCiZoAwUHBxdI7MYSERHBhAkTqFevHk5OTtjY2FCrVi1+/fVXNBpNlvLHjh2jRYsWqNVqrK2tadKkCQcPHsz22Onp6Xz33XdUqVIFCwsL7OzsqF+/PocOHcpTjJnfsYYs+flufd79+/eZPHkyZ86ceeljZTLGe7OgTZgwgbZt2+Lp6YkkSQZ/7/bs2RNJknL83ouOjuazzz7D19cXMzMzXF1dadWqFbGxsS8ds8lLH0HQWbJkCQAXLlzg6NGj1K1b1yhxHDp0iClTptCnTx/s7Oz0ti1YsMAoMQmF48svv+Szzz4zdhgF5vDhw3qPv/rqK/bt28fevXv11leuXPmlztO/f39atmz5UsfIq5o1a3L48OGXjt1YTp48ye+//06vXr348ssvMTU1Zdu2bXzyySccOXJE9/0HcPz4cRo3bkydOnVYsWIFsiwza9Ys3n77bfbt20e9evV0ZTUaDZ06deLAgQN8/vnn1K9fn8TERE6ePEliYmKeYnR3d8/yHho0aBBxcXGsXLkyS9mXdf/+faZMmYKvry/Vq1d/6eOBcd6bBe3777+natWqtG/fXu998SJbtmxh48aN2NjYZLv9/v37NGrUCBMTE7788kvKlStHdHQ0+/btIy0t7aVjFslQATlx4gRnz56lTZs2bNmyhcWLFxstGXqRkvpFLGSvTJkyxg7hhWRZJiUlBQsLC4PKv/nmm3qPnZ2dUSgUWdY/LykpCUtLS4Pj8vLywsvLy+DyBcHGxibX6yjOGjRowPXr1zE1NdWta9asGWlpafz0009MmTIFb29v4GmSbmdnx/bt23WvS9OmTSldujSjRo3SqyH64Ycf2LZtGwcPHtR7ftq0aZPnGM3MzLI8xzY2NqSlpZWY594Y782ClpCQgELxtOFpxYoVuZaPi4tjwIABfPXVV8ybNy/bMoMGDSI1NZUTJ05gb2+vW9+5c+cCiVk0kxWQxYsXA/D1119Tv359Vq9eTVJSUrZltVot06dPp1SpUpibm1O7dm327NmT6zl27dpFhw4d8PLywtzcnLJlyzJgwACio6N1ZSZPnszo0aMB8PPzy9KskF0zWWxsLIMGDcLT0xOVSkXp0qUZP348qampeuUkSWLw4MGsWLGCSpUqYWlpSbVq1di8eXOusWc2Efz555+MGTMGd3d3rK2tadeuHQ8ePCAhIYGPP/4YJycnnJyc+PDDD3ny5IneMVJSUhg3bhx+fn6oVCo8PT359NNPszQHpqen8/nnn+Pm5oalpSUNGzbk2LFj2cYVGRnJgAED8PLyQqVS4efnx5QpU8jIyMj1moqD7JrJ8vI6Xbt2jR49euDi4oKZmRmVKlXip59+0iuTkpLCyJEjqV69Ora2tjg4OFCvXj3++eefLMfLPPcvv/xCpUqVMDMzY/ny5QV6zUFBQQQEBLB//37q16+PpaUlffv2BWDNmjU0b94cd3d3LCwsqFSpEmPHjs1Sw5BdU0Rms+T27dupWbMmFhYWVKxY0eC/bH/++WeqVauGtbU1arWaihUr8sUXX+i2P99MlluTzrN2797N22+/jY2NDZaWljRo0MCg74yCZG9vr5cIZapTpw4Ad+/e1a07ePAgQUFBegmqWq2mcePGHDp0iIiICN36efPm0bhx4yJNVuLj4xk1apTed8mwYcOyvE/WrVtH3bp1sbW1xdLSktKlS+vea8HBwbzxxhsAfPjhh7rX7UXN6UlJSbrzmpub4+DgQO3atVm1apWuzPPvzcwuE9ktz36Xy7LMggULqF69OhYWFtjb29O1a1du3LhRAM9Y3mQmQoYaOXIk7u7uDB06NNvt4eHh/Pvvv3z00Ud6iVBBEjVDBSA5OZlVq1bxxhtvEBAQQN++fenfvz/r1q2jd+/eWcr/+OOP+Pj4MHfuXLRaLbNmzaJVq1aEhIToVR8/7/r169SrV4/+/ftja2tLeHg43333HQ0bNuTcuXOYmprSv39/YmNj+eGHH9iwYYOuKjinGqGUlBSaNGnC9evXmTJlClWrViU0NJSZM2dy5swZtmzZold+y5YtHD9+nKlTp2Jtbc2sWbPo1KkTV65coXTp0rk+V1988QVNmjRh2bJlhIeHM2rUKN577z1MTEyoVq0aq1at4vTp03zxxReo1Wrmz58PPP2gd+zYkT179jBu3DgaNWrEf//9x6RJkzh8+DCHDx/GzMwMgI8++ojff/+dUaNG0axZM86fP0/nzp1JSEjQiyUyMpI6deqgUCiYOHEiZcqU4fDhw0ybNo3w8HCWLl2a6/U8T6PRIMtyruUUCkWevzDywpDX6eLFi9SvX59SpUoxZ84c3Nzc2LFjB0OHDiU6OppJkyYBkJqaSmxsLKNGjcLT05O0tDR2795N586dWbp0Kb169dI798aNGwkNDWXixIm4ubnh4uJS4NcXERFBz549+fzzz5kxY4buubx27RqtW7dm2LBhWFlZcfnyZb755huOHTuWpaktO2fPnmXkyJGMHTsWV1dXFi1aRL9+/ShbtiyNGzfOcb/Vq1czaNAghgwZwrfffotCoSAsLIyLFy/muE92TToPHz6kZ8+eeHp66tb98ccf9OrViw4dOrB8+XJMTU1ZuHAhLVq0YMeOHbz99tsvvCZDE3ulUpmvvip79+7FxMSE8uXL69alpaXpPo/Pylx37tw53N3duXPnDuHh4bRr144vvviCxYsXExMTQ4UKFfj888+z/f58WUlJSQQGBnL37l2++OILqlatyoULF5g4cSLnzp1j9+7dSJLE4cOH6d69O927d2fy5MmYm5tz69Yt3fuoZs2aLF26lA8//JAJEyboarJeVKszYsQIVqxYwbRp06hRowaJiYmcP3+emJiYHPdp06ZNlvfJ4cOHGTFiBP7+/rp1AwYMYNmyZQwdOpRvvvmG2NhYpk6dSv369Tl79iyurq45nkOW5Wz7fWXHxKRg04bdu3fz+++/c/z4cZRKZbZlQkNDkWUZDw8P3nvvPTZt2kRGRgZvvvkmM2fOfOHvpsFk4aX9/vvvMiD/8ssvsizLckJCgmxtbS03atRIr9zNmzdlQPbw8JCTk5N16+Pj42UHBwe5adOmunVLly6VAfnmzZvZnlOr1crp6enyrVu3ZED+559/dNtmz56d476BgYFyYGCg7vEvv/wiA/LatWv1yn3zzTcyIO/cuVO3DpBdXV3l+Ph43brIyEhZoVDIM2fOzPkJkmV53759MiC3a9dOb/2wYcNkQB46dKje+o4dO8oODg66x9u3b5cBedasWXrl1qxZIwPyr7/+KsuyLF+6dEkG5OHDh+uVW7lypQzIvXv31q0bMGCAbG1tLd+6dUuv7LfffisD8oULF/SufdKkSS+8RlmWZR8fHxnIdTH0WG3atHlhmd69e8s+Pj566wx9nVq0aCF7eXnJcXFxevsPHjxYNjc3l2NjY7M9Z0ZGhpyeni7369dPrlGjRpZz29ra5rhvXvXu3Vu2srLSWxcYGCgD8p49e164b+ZnJCQkRAbks2fP6rZNmjRJfv7rz8fHRzY3N9d7PyQnJ8sODg7ygAEDXniuwYMHy3Z2di8sk/kZ2LdvX7bbExMT5Tp16sju7u5yeHi4bp2Dg0OWz41Go5GrVasm16lT54XnlGXZoPcjIC9dujTXYz1vx44dskKhyPJ5q169uly+fHlZo9Ho1qWnp8ulS5eWAfnPP/+UZVmWDx8+LAOyjY2NXLlyZXnt2rXyjh075K5du+p9rl9GYGCg7O/vr3s8c+ZMWaFQyMePH9cr99dff8mAvHXrVlmW//974PHjxzke+/jx43l67gICAuSOHTu+sEx2781nXb58WXZ0dJSbNGkip6amyrL8/8/jnDlz9MreuXNHtrCwkD///PMXnjPzvWnIktNvUk6srKz0vneflZCQIPv6+srjxo3Trcvue2/mzJm690mHDh3k7du3y+vXr5erVq0qm5ub632280s0kxWAxYsXY2FhwbvvvguAtbU177zzDqGhoVy7di1L+c6dO2Nubq57rFaradeuHfv3739hdh4VFcXAgQPx9vbGxMQEU1NTfHx8ALh06VK+Yt+7dy9WVlZ07dpVb31m7//nq+KbNGmCWq3WPXZ1dcXFxYVbt24ZdL7n7xKoVKkSkLV/QKVKlYiNjdU1lWX+Nfb8XQnvvPMOVlZWujj37dsHwPvvv69Xrlu3bln+otm8eTNNmjTBw8ODjIwM3dKqVSsAQkJCDLqmZ23atInjx4/nunz88cd5PnZe5PY6paSksGfPHjp16oSlpaXe9bdu3ZqUlBSOHDmi23/dunU0aNAAa2tr3Xtv8eLF2b7v3nrrrUKrys5kb2/PW2+9lWX9jRs36NGjB25ubiiVSkxNTQkMDAQM+4xUr16dUqVK6R6bm5tTvnz5XN/fderU4fHjx7z33nv8888/ek3XhtBoNHTv3p1Lly6xdetW3ef60KFDxMbG0rt3b73XSKvV0rJlS44fP55rJ2ND3o/Hjx+nXbt2eYr51KlTdOvWTffX+bOGDBnC1atXGTx4MPfu3ePOnTsMHDhQ9zxm1uRptVrg6ftx69atvPPOOzRv3py1a9dSs2ZNpk6dmqeYDLF582YCAgKoXr263nPaokULvWbMzCawbt26sXbtWu7du/fS565Tpw7btm1j7NixBAcHk5ycnKf9IyMjadmyJe7u7vz999+oVCrdNUmSRM+ePfWuyc3NjWrVquV6B2OtWrUMfp94eHjk9/KzGDt2LKampkycOPGF5TLfJ15eXqxfv54WLVrQuXNntm/fjkKhYNasWS8di2gme0lhYWHs37+fLl26IMuyrv9K165dWbp0KUuWLMnyReHm5pblOG5ubqSlpfHkyRNsbW2zbNdqtTRv3pz79+/z5ZdfUqVKFaysrNBqtbz55pt5/lBliomJwc3NLUv1uIuLCyYmJlmqbx0dHbMcw8zMzODzOzg46D3O/DDntD4lJQVra2tiYmIwMTHB2dlZr5wkSbi5uenizPz3+efYxMQkS+wPHjxg06ZN2faDAPL8gwZPmyNlA5vJClNur1NMTAwZGRn88MMP/PDDD9keI/P6N2zYQLdu3XjnnXcYPXo0bm5umJiY8PPPP2fbn6Yg7tLJTXbnePLkCY0aNcLc3Jxp06ZRvnx5LC0tuXPnDp07dzboPZrf9/cHH3xARkYGv/32G126dEGr1fLGG28wbdo0mjVrlut5Bw4cyPbt29myZYveXUkPHjwAyPLHyrNiY2OxsrLKcbuhdznl1ESRndOnT9OsWTPKlSvH1q1bszSJ9e3bl4cPHzJt2jR+/vlnAOrVq8eoUaP45ptvdM2Amc93xYoVdQkgPP1ct2jRgpkzZxIVFVWgTa0PHjwgLCws189948aN2bhxI/Pnz6dXr16kpqbi7+/P+PHjee+99/J17vnz5+Pl5cWaNWv45ptvMDc3p0WLFsyePZty5cq9cN+EhARat25Neno627Zt0/udePDgAbIs59gUllsXBmtra4PfJwXVTHbs2DEWLFjAhg0bSElJISUlBXj6W5eRkcHjx4+xsLDAzMxM9z5p2rSp3vvU3d2datWqcerUqZeORyRDL2nJkiXIssxff/3FX3/9lWX78uXLmTZtmt4LGBkZmaVcZGQkKpUKa2vrbM9z/vx5zp49y7Jly/Ta0cPCwl4qfkdHR44ePYosy3oJUVRUFBkZGTg5Ob3U8QuKo6MjGRkZPHz4UC8hkmWZyMhI3V9xmR+ayMhIvX4XGRkZWRI7JycnqlatyvTp07M9Z37+AipTpoxBtWSTJk0q8nGLnmVvb49SqeSDDz7g008/zbaMn58f8LTPip+fH2vWrNF7jzzfwT5TUYyRkt059u7dy/379wkODtbVBgHZjrdVGD788EM+/PBDEhMT2b9/P5MmTaJt27ZcvXpV74f+eZMnT2bRokUsXbqU5s2b623L/Pz98MMPOXYwflFfECDHH/3nLV261KDxYE6fPk3Tpk3x8fFh586d2f7xBjBmzBiGDRvGtWvXUKvV+Pj4MGDAAKysrKhVqxbw9POS012AmX9UFPQfDk5OTlhYWOTYMf7Z77wOHTrQoUMHUlNTOXLkCDNnzqRHjx74+vrmq5+KlZUVU6ZMYcqUKTx48EBXS9SuXTsuX76c437p6el06dKF69evExoamqVfkpOTE5IkERoa+sK+WjkJCQmhSZMmBl3DzZs3C2Rss4sXLyLLMp06dcqy7c6dO9jb2/P9998zbNgwqlatmuNxZFkukPeISIZegkajYfny5ZQpU4ZFixZl2b5582bmzJnDtm3b9JqHNmzYwOzZs3VNZQkJCWzatIlGjRrl+NdZ5pf/82/qhQsXZimbWcaQv4Tffvtt1q5dy8aNG/XelL///rtue3Hw9ttvM2vWLP744w+GDx+uW79+/XoSExN1cWbeXbFy5UrdFy7A2rVrs3Qkbdu2LVu3bqVMmTIF1qyzadOmHJOEZxVkVXN+WFpa0qRJE06fPk3VqlV1NXHZkSQJlUqll4BERkZmezeZMeXlM1KYrKysaNWqFWlpaXTs2JELFy7kmAwtXryYKVOmMHXq1GwTkQYNGmBnZ8fFixcZPHhwvuI5fvy4QeUyk98XOXPmDE2bNsXLy4tdu3bl+rkxMzPTDUJ7+/Zt1qxZw0cffaQbasHExIQOHTrw119/ER4ervuRlWWZ7du3U6ZMmQL/g6xt27bMmDEDR0dHg6458zoCAwOxs7Njx44dnD59mnr16uXpu/Z5rq6u9OnTh7NnzzJ37twXDg/Rr18/goOD2bZtW7aJQdu2bfn666+5d+8e3bp1y3Msmc1khiio766WLVvqujU8691338XPz4+ZM2dStmxZAOrWrYuXlxc7d+5Eo9Hofifv37/P2bNn6dGjx0vHI5Khl7Bt2zbu37/PN998k+2ozgEBAfz4448sXrxYLxlSKpU0a9aMESNGoNVq+eabb4iPj2fKlCk5nqtixYqUKVOGsWPHIssyDg4ObNq0iV27dmUpW6VKFeDpLau9e/fG1NSUChUq6PUhydSrVy9++uknevfuTXh4OFWqVOHAgQPMmDGD1q1b07Rp03w8MwWvWbNmtGjRgjFjxhAfH0+DBg10d5PVqFGDDz74AHja16hnz57MnTsXU1NTmjZtyvnz5/n222+zDOY1depUdu3aRf369Rk6dCgVKlQgJSWF8PBwtm7dyi+//JLn8T4yn/uCEhkZmW2No6+vL7Vr136pY8+bN4+GDRvSqFEjPvnkE3x9fUlISCAsLIxNmzbp+mm1bduWDRs2MGjQILp27cqdO3f46quvcHd3z7ZPXE769OnD8uXLC+wvy+fVr18fe3t7Bg4cyKRJkzA1NWXlypWcPXu2wM/1vMwf+AYNGuDu7k5kZCQzZ87E1tZWV2v5vMOHDzNw4EAaNGhAs2bN9PpowdMxl6ytrfnhhx/o3bs3sbGxdO3aFRcXFx4+fMjZs2d5+PChrhkqJy/7Psl05coV3ffB9OnTuXbtmt7rX6ZMGV2t7fnz51m/fj21a9fGzMyMs2fP8vXXX1OuXDm++uorveN+9dVXbNu2jZYtWzJ58mRsbGxYtGgRZ8+eZe3atXplg4KCCAkJMagpOifDhg1j/fr1NG7cmOHDh1O1alW0Wi23b99m586djBw5krp16zJx4kTu3r3L22+/jZeXF48fP2bevHl6/dDKlCmDhYUFK1eupFKlSlhbW+Ph4ZFjwlC3bl3atm1L1apVsbe359KlS6xYsYJ69erlmAjNnj2bFStWMGTIEKysrPTeJzY2NlSuXJkGDRrw8ccf8+GHH3LixAkaN26MlZUVERERHDhwgCpVqvDJJ5/k+Jyo1eoCe5/A05qmhw8fAk8rDW7duqX7HgsMDMTZ2Rk3N7dsu4yYm5vj6Oio95uqUCj4/vvv6datGx06dOCTTz4hMTGRr776CpVKxbhx414+6Jfugv0a69ixo6xSqeSoqKgcy7z77ruyiYmJHBkZqbub7JtvvpGnTJkie3l5ySqVSq5Ro4a8Y8cOvf2yu5vs4sWLcrNmzWS1Wi3b29vL77zzjnz79u1s704aN26c7OHhISsUCr07WJ6/m0yWZTkmJkYeOHCg7O7uLpuYmMg+Pj7yuHHj5JSUFL1ygPzpp59muUYfH58c7xbIlHm3wrp167K9zufv7Mi8o+Lhw4e6dcnJyfKYMWNkHx8f2dTUVHZ3d5c/+eQT+dGjR3r7pqamyiNHjpRdXFxkc3Nz+c0335QPHz6cbZwPHz6Uhw4dKvv5+cmmpqayg4ODXKtWLXn8+PHykydP9K7dkDvACtKL7kzLvI6c7iYz9HW6efOm3LdvX9nT01M2NTWVnZ2d5fr168vTpk3TK/f111/Lvr6+spmZmVypUiX5t99+y/aul5zOLcuy3KVLF9nCwiLL6/UiOd1N9uzdQc86dOiQXK9ePdnS0lJ2dnaW+/fvL586dSrLHT853U2W3d172X1mnrd8+XK5SZMmsqurq6xSqWQPDw+5W7du8n///acr8/zdZJnv/ZyWZ4WEhMht2rSRHRwcZFNTU9nT01Nu06ZNls9TYcot3mef3ytXrsiNGzeWHRwcZJVKJZctW1aeMGGC3mfqWefOnZPbtGkjq9Vq3Wd206ZNWcrVqlVLdnNzy1Pc2b1fnjx5Ik+YMEGuUKGCrFKpZFtbW7lKlSry8OHD5cjISFmWZXnz5s1yq1atZE9PT1mlUskuLi5y69at5dDQUL1jrVq1Sq5YsaJsamqa6/fE2LFj5dq1a8v29vaymZmZXLp0aXn48OFydHS0rszz783evXvn+Jw//75csmSJXLduXdnKykq2sLCQy5QpI/fq1Us+ceJEnp6zl5V5x2d2S053U2Z60V20GzdulN944w3Z3NxctrW1ldu3b6931+/LkGT5JVJsQRAEA7m5ufHBBx8we/ZsY4cilEAJCQk4ODgwd+7cHPu5CUJ+iVvrBUEodBcuXCApKYkxY8YYOxShhNq/fz+enp589NFHxg5FeAWJmiFBEARBEF5romZIEARBEITXmkiGBEEQBEF4rYlkSBAEQRCE15pIhgRBEARBeK2JQRdzodVquX//Pmq1ukimGRAEQRAE4eXJskxCQgIeHh65TtkhkqFc3L9/H29vb2OHIQiCIAhCPty5cyfX2QREMpSLzCks7ty5k2U6B0EQBEEQiqf4+Hi8vb2znYrqeSIZykVm05iNjY1IhgRBEAShhDGki4voQC0IgiAIwmtNJEOCIAiCILzWRDIkCIIgCMJrTfQZEgRBKOY0Gg3p6enGDkMQihVTU1OUSmWBHEskQ4IgCMWULMtERkby+PFjY4ciCMWSnZ0dbm5uLz0OoEiGBEEQiqnMRMjFxQVLS0sx8Ksg/I8syyQlJREVFQWAu7v7Sx1PJEOCIAjFkEaj0SVCjo6Oxg5HEIodCwsLAKKionBxcXmpJjPRgVoQBKEYyuwjZGlpaeRIBKH4yvx8vGyfOpEMCYIgFGOiaUwQclZQnw+RDAmCIAiC8FoTyZAgCILwyuvTpw8dO3Z8YZng4GAkSRJ3772GRDIkCIIgFKgXJR6+vr5IkqS3PDujuK+vL3Pnzi3wmObNm8eyZct0j4OCghg2bFiBn8fY+vTpo3teTUxMKFWqFJ988gmPHj3SK5fb6/C6EcmQEW1eu5Tbd8ONHYYgCEKRmjp1KhEREbrl9OnThX5OW1tb7OzsCv08zzLWQJktW7YkIiKC8PBwFi1axKZNmxg0aFCWcsZ4HYorkQwZyW/92uH91c9smzLP2KEIgiAUKbVajZubm25xdnbO8zFGjhxJu3btdI/nzp2LJEls2bJFt65ChQosXLgQ0K+t6tOnDyEhIcybN09XKxIeHq7b7+TJk9SuXRtLS0vq16/PlStXDIpp8uTJVK9enSVLllC6dGnMzMyQZZnt27fTsGFD7OzscHR0pG3btly/fl23X5cuXRgyZIju8bBhw5AkiQsXLgCQkZGBWq1mx44dBsVhZmaGm5sbXl5eNG/enO7du7Nz584s5QridXhViGTISMwC3uLwm1PQ0oIzB48ZOxxBEEoAWZZJSsso8kWWZWNfehZBQUGEhoai1WoBCAkJwcnJiZCQEODpgJVXr14lMDAwy77z5s2jXr16fPTRR7paEW9vb9328ePHM2fOHE6cOIGJiQl9+/Y1OK6wsDDWrl3L+vXrOXPmDACJiYmMGDGC48ePs2fPHhQKBZ06ddLFHhQURHBwsO4Yz1/L8ePHSUlJoUGDBnl6jgBu3LjB9u3bMTU1zfO+rxMx6KKR9BgyhGX9V5Bq7sOJX4Op3qCOsUMSBKGYS07XUHmiYbUDBeni1BZYqgru52LMmDFMmDBB93jGjBkMHTo0T8do3LgxCQkJnD59mpo1axIaGsqoUaPYsGEDAPv27cPV1ZWKFStm2dfW1haVSoWlpSVubm5Ztk+fPl2XRI0dO5Y2bdqQkpKCubl5rnGlpaWxYsUKvVqWLl266JVZvHgxLi4uXLx4kYCAAIKCgvjss8+Ijo5GqVRy4cIFJk2aRHBwMIMGDSI4OJhatWphbW1t0HOzefNmrK2t0Wg0pKSkAPDdd99lKVcQr8OrQiRDRpJ24RGBXr6cjUskSluDAxu20rBza2OHJQiCUOhGjx5Nnz59dI+dnJzyfAxbW1uqV69OcHAwpqamKBQKBgwYwKRJk0hISCA4ODjbWiFDVK1aVff/zGkeoqKiKFWqVK77+vj4ZGluun79Ol9++SVHjhwhOjpaVyN0+/ZtAgICCAgIwNHRkZCQEExNTalWrRrt27dn/vz5AHm+liZNmvDzzz+TlJTEokWLuHr1ql4zXKaCeB1eFSIZMpKom3cJls7x2P4JFg9qEvbXJRp0aiUGWBMEIUcWpkouTm1hlPMWJCcnJ8qWLfvSx8lsXlKpVAQGBmJvb4+/vz8HDx4kODg433eLPduklPmdnJnA5MbKyirLunbt2uHt7c1vv/2Gh4cHWq2WgIAA0tLSdOdo3Lix7lqCgoIICAhAo9Fw7tw5Dh06lKdrsbKy0j2/8+fPp0mTJkyZMoWvvvpKr1xBvQ6vApEMGYlTY19iTm8lRUrHweoaiVRjz4+/03RIb2OHJghCMSVJUoE2V5V0QUFBLF68GBMTE5o2bQpAYGAgq1evzrG/UCaVSoVGoyn0GGNiYrh06RILFy6kUaNGABw4cCBLuaCgIH799VdUKhVTp05FkiQaNWrEt99+S3Jycr76C2WaNGkSrVq14pNPPsHDwyPfx3mViQ7URmLtYE8VRx8AHlrHI5NExME4NP9r3xUEQSjJ4uLiOHPmjN5y+/btAj1HZr+hTZs2ERQUBDxNKv744w+cnZ2pXLlyjvv6+vpy9OhRwsPD9ZquCpq9vT2Ojo78+uuvhIWFsXfvXkaMGJGlXFBQEBcuXODcuXO6pCkoKIiVK1dSs2ZNbGxs8h1DUFAQ/v7+zJgxI9/HeNWJZMiImn3UFWutGSmKdMzVYdg8iSLkm2+MHZYgCMJLCw4OpkaNGnrLxIkTC/Qctra21KhRAwcHB13i06hRI7Raba59bEaNGoVSqaRy5co4OzsXeKKWSaFQsHr1ak6ePElAQADDhw9n9uzZWcoFBATg5OREtWrVdIlPYGAgGo0m332fnjVixAh+++037ty589LHehVJcnG8Z7IYiY+Px9bWlri4uJfKzHOyd/Hf7L9zFlNZydvbt6FKjidgTzAq59e3I5sgCJCSksLNmzfx8/Mz6C4mQXgdvehzkpffb1EzZGSBvdpjp7UkXdJwvkFzLNI0HJj0pbHDEgRBEITXhkiGjExpqqRelRoAPLG25JFjeeJvO5NwybARTwVBEF5FK1euxNraOtvF39/fKDH5+/vnGNPKlSsL/fy3b9/O8fzW1taF1tT3OhC3JRQDb3R5m9RrCfjEO3Kzdk3upSrYN3Ux7VfNMnZogiAIRtG+fXvq1q2b7TZjjaa8devWHOcbc3V1LfTze3h46Ea1zmm7kD8iGSoGFAoFdbo2IXrJeXwtTLmepiHGtDoP9wTj/HaQscMTBEEocmq1GrVabeww9Pj4+Bj1/CYmJmJcoEIimsmKCbNydqj8bFAADpa3SLRw4cj8jcgZGcYOTRAEQRBeaSIZKiYkScLiLU/Wq45yVn0LheIiD+wbcWflWmOHJgiCIAivNJEMFSPqck44mj6diC/DPpEUM2v+W3sczZNEI0cmCIIgCK8ukQwVM807t0EhS8SqUlEo/+O+axBh834xdliCIAiC8MoSyVAx4+bvQwVzTwBSHNLxvPUvKat+J/3ePSNHJgiCIAivJpEMFUPN32uPiawk3iSN+6WVqDLSCJuZdfh2QRAEwTB9+vShY8eOLywTHByMJEk8fvy4SGISig+RDBVD9r4uVLHxA+Cxmw+PzVXIu3eQ/N9/Ro5MEAQhdy9KPHx9fZEkSW/x8vLS2z537twCj2nevHksW7ZM9zgoKIhhw4YV+HmKg8jISIYMGULp0qUxMzPD29ubdu3asWfPHtLS0nBycmLatGnZ7jtz5kycnJxIS0t74TmWLVum9xq6urrSrl07Lly4oFeuT58+WV5vSZIICwsrsOstCCIZKqaavt8OM9kUW9Rcr9WcY2+M5/zU7xFTyQmCUNJNnTqViIgI3XL69OlCP6etrS12dnaFfp5n5TRAY2EKDw+nVq1a7N27l1mzZnHu3Dm2b99OkyZN+PTTT1GpVPTs2ZNly5Zl+3uydOlSPvjgA1QqVa7nsrGxISIigvv377NlyxYSExNp06ZNlkSqZcuWeq93REQEfn5+BXbNBUEkQ8WUlZstPfxb0zq9BpUdm5Fo5cGdtNLE79hh7NAEQRBeilqtxs3NTbc4Ozvn+RgjR46kXbt2usdz585FkiS2bNmiW1ehQgUWLlwI6NdW9enTh5CQEObNm6erqQgPD9ftd/LkSWrXro2lpSX169fnyhXDpkeaPHky1atXZ8mSJbpaGVmW2b59Ow0bNsTOzg5HR0fatm3L9evXdft16dKFIUOG6B4PGzYMSZJ0tSwZGRmo1Wp2GPD9P2jQICRJ4tixY3Tt2pXy5cvj7+/PiBEjOHLkCAD9+vXj+vXr7N+/X2/f0NBQrl27Rr9+/Qy6XkmScHNzw93dndq1azN8+HBu3bqV5fkyMzPTe73d3NxQKpUGnaOoiGSoGPNq5Y9kqsBFYYGbiUSk+5tcnrMIbS7Vl4IgvKJkGdISi34phjXSQUFBhIaGotVqAQgJCcHJyYmQkBDgaVPR1atXCQwMzLLvvHnzqFevHh999JGupsLb21u3ffz48cyZM4cTJ05gYmJC3759DY4rLCyMtWvXsn79et3UGYmJiYwYMYLjx4+zZ88eFAoFnTp10sUeFBREcHCw7hjPX8vx48dJSUmhQYMGLzx3bGws27dv59NPP8XKyirL9syasSpVqvDGG2+wdOlSve1LliyhTp06BAQEGHy9mR4/fsyff/4JGG+6lJchpuMoxpRqFdYNPYnad51Um6ukPZC5ra5L6d9X4NzfsMxdEIRXSHoSzDDC/FNf3AdV1h/X/BozZgwTJkzQPZ4xYwZDhw7N0zEaN25MQkICp0+fpmbNmoSGhjJq1Cg2bNgAwL59+3B1daVixYpZ9rW1tUWlUmFpaYmbm1uW7dOnT9clUWPHjqVNmzakpKRgbm6ea1xpaWmsWLFCr7arS5cuemUWL16Mi4sLFy9eJCAggKCgID777DOio6NRKpVcuHCBSZMmERwczKBBgwgODqZWrVpYW1u/8NxhYWHIspztNT+vb9++jBo1ih9//BFra2uePHnCunXr+O6773LdN1NcXBzW1tbIskxSUhLwdE6558+/efNmvdhbtWrFunXrDD5PURA1Q8WcupEnO1RnuKp6gKltFA+cqxG29B8yYmONHZogCEK+jB49mjNnzuiWXr165fkYtra2VK9eneDgYM6dO4dCoWDAgAGcPXuWhIQEgoODs60VMkTVqlV1/3d3dwcgKirKoH19fHyyNPtdv36dHj16ULp0aWxsbHT9ZTJnmQ8ICMDR0ZGQkBBCQ0OpVq0a7du319UMGXotmX2AJEnKtex7772HVqtlzZo1AKxZswZZlnn33XcNuk542tx55swZTp48yS+//EKZMmX45Zes4+I1adJE7/WeP3++wecoKqJmqJhTWJpSt3IttlwOJlatQP34LOEezSj1w494Tppo7PAEQShKppZPa2mMcd4C5OTkVCATjmY2L6lUKgIDA7G3t8ff35+DBw8SHByc77vFnm3myUwsMpu0cpNd81S7du3w9vbmt99+w8PDA61WS0BAgK6jsSRJNG7cWHctQUFBBAQEoNFoOHfuHIcOHTLoWsqVK4ckSVy6dCnXYQRsbW3p2rUrS5cupV+/fixdupSuXbtiY2Nj0HXC00nGM1/HihUrEhkZSffu3bP0RbKysir2E8yKmqESoGanhjjJNmgkLSYOicTYl+Hu5gOk3rhh7NAEQShKkvS0uaqoFwNqGowhs9/Q3r17CQoKAiAwMJDVq1fn2F8ok0qlQqPRFHqMMTExXLp0iQkTJvD2229TqVIlHj16lKVcZmIXHBxMUFAQkiTRqFEjvv32W5KTk3PtLwTg4OBAixYt+Omnn0hMzDqN0/PjJ/Xr14+DBw+yefNmDh48aHDH6ZwMHz6cs2fP8vfff7/UcYyhxCVDCxYswM/PD3Nzc2rVqkVoaKhB+x08eBATExOqV69euAEWAqWZCUG1GgIQayUhJy7HJuEO97/+xsiRCYIgZC8uLk6vaeTMmTO6ZqGCktlvaNOmTbpkKCgoiD/++ANnZ2cqV66c476+vr4cPXqU8PBwoqOjDa75ySt7e3scHR359ddfCQsLY+/evYwYMSJLuaCgIC5cuMC5c+do1KiRbt3KlSupWbOmwTU2CxYsQKPRUKdOHdavX8+1a9e4dOkS8+fPp169enplAwMDKVu2LL169aJs2bI0btz4pa7VxsaG/v37M2nSpBI3DEyJSobWrFnDsGHDGD9+PKdPn6ZRo0a0atUq1w9YXFwcvXr14u233y6iSAuef+vaeOKAVpKRPSuRYGZCyv79JB46ZOzQBEEQsggODqZGjRp6y8SJBdu0b2trS40aNXBwcNAlPo0aNUKr1ebax2bUqFEolUoqV66Ms7NzgSdqmRQKBatXr+bkyZMEBAQwfPhwZs/OOqNAQEAATk5OVKtWTZf4BAYGotFo8tT3yc/Pj1OnTtGkSRNGjhxJQEAAzZo1Y8+ePfz8889Zyvft25dHjx7l6Y65F/nss8+4dOlSsesgnRtJLkHpW926dalZs6beC1qpUiU6duzIzJkzc9zv3XffpVy5ciiVSjZu3Ki73dEQ8fHx2NraEhcXl6e21MIQtvscfxxYDzKob52m6cl7mPt6Un7jBqRiNmaDIAgvJyUlhZs3b+pqwgVByOpFn5O8/H6XmJqhtLQ0Tp48SfPmzfXWN2/enEMvqB1ZunQp169fZ9KkSQadJzU1lfj4eL2luCjTJICyCncqa7xw9GjGoTencj/OhrgS2D4rCIIgCMVFiUmGoqOj0Wg0uLq66q13dXUlMjIy232uXbvG2LFjWblyJSYmht04N3PmTGxtbXXLswNxGZuklOjUoRP1MyrQSOuPiYk5N/zacn/uD2iz6SwnCIJQUq1cuRJra+tsF39/f6PE5O/vn2NMK1euLPTz3759O8fzW1tbF2hTn7GvtaiVuFvrnx8/QZblbMdU0Gg09OjRgylTplC+fHmDjz9u3Di9zm3x8fHFKiGyrOLMk5C7cD8RX4tkrmjU3FNVwHnxYpzzOGiZIAhCcdW+fXvq1q2b7TZjjXC8devWHOcbe/4P9cLg4eHxwm4eHh4FNyCnsa+1qJWYZMjJyQmlUpmlFigqKirbFyYhIYETJ05w+vRpBg8eDDwdJ0KWZUxMTNi5cydvvfVWlv3MzMwwMzMrnIsoAJJCwraFL1eWHSHcKoyMxBvcLNUct6XfYPfOO5j+b4AwQRCEkkytVqNWq40dhh4fHx+jnt/ExKTIxusx9rUWtRLTTKZSqahVqxa7du3SW79r1y7q16+fpbyNjQ3nzp3Tu61z4MCBVKhQgTNnzuT4F0dJYFbenpt2sdxTxpLu7EiSdI97TvV4OHeusUMTBEEQhBKnxNQMAYwYMYIPPviA2rVrU69ePX799Vdu377NwIEDgadNXPfu3eP3339HoVBkmWzOxcUFc3PzfE1CV5xIkkRQh2ZcXBVOokkGtmY3CPcOwmPLNOx7foBFlZJ9fYIgCIJQlEpUMtS9e3diYmKYOnUqERERBAQEsHXrVl11XkRERKGNFVHc2FV0pYZdBY7GXSDN2Qnp9kXibMvw4Ouv8fljhUFz0wiCIAiCUMLGGTKG4jTO0POehMfy09JfSJbSUEdH02h/COq0DDznz8PmuSEIBEEoWcQ4Q4KQu9dunCEhK2tfB+q6PG0SS3VwYU9VJwCiZn+L/L8JAAVBEARBeDGRDJVwb3Zuglq2IE2hRelUhdtOviREPSH2zz+NHZogCEKx0adPn1xncg8ODkaSpCwTmgqvPpEMlXDm7moal3qD+unlqW3VkLCA0dzwa0v0Tz+Tkc3MyIIgCIXtRYmHr68vkiTpLV5eXnrb5xbCnbHz5s1j2bJlusdBQUEMGzaswM9THNy5c4d+/frh4eGBSqXCx8eHzz77jJiYmCxlL1y4QLdu3XB2dsbMzIxy5crx5ZdfkpSUpFfu2ddNqVTi4eFBv379eGTg70xmopm5ODo68tZbb3Hw4EG9cpMnT87y/pAkid27d+f/CTGASIZeATU616cypSivccfJRCLStQ7xGiuiF2SdlE8QBMHYMm+CyVxOnz5d6Oe0tbXFzs6u0M/zrJwGLSxMN27coHbt2ly9epVVq1YRFhbGL7/8wp49e6hXrx6xsbG6skeOHKFu3bqkpaWxZcsWrl69yowZM1i+fDnNmjUj7bnuFpmv2+3bt1m5ciX79+9naB4H+71y5QoREREEBwfj7OxMmzZtiIqK0ivj7++v9/6IiIigcePG+X9SDCCSoVeAib051nWfDrboa51MesYVrvu14dGqVaTeuGnk6ARBEPSp1Wrc3Nx0i7Ozc56PMXLkSNq1a6d7PHfuXCRJYsuWLbp1FSpUYOHChYB+bVWfPn0ICQlh3rx5upqH8PBw3X4nT56kdu3aWFpaUr9+fa5cuWJQTJMnT6Z69eosWbKE0qVLY2ZmhizLbN++nYYNG2JnZ4ejoyNt27bl+vXruv26dOnCkCFDdI+HDRuGJElcuHABgIyMDNRqNTt27Mg1hk8//RSVSsXOnTsJDAykVKlStGrVit27d3Pv3j3Gjx8PPJ29oV+/flSqVIkNGzZQp04dfHx8eOedd9i0aROHDx/m+++/1zt25uvm6elJkyZN6NWrF6dOnTLoucnk4uKCm5sbVapUYcKECcTFxXH06FG9MiYmJnrvDzc3N1QqVZ7Ok1ciGXpFqJt4E2H6mEOq88h2d4mytSbOwouob781dmiCIBQQWZZJSk8q8qU43nQcFBREaGgoWq0WgJCQEJycnAgJCQEgMjKSq1evEhgYmGXfefPmUa9ePT766CNdzcOz0y6NHz+eOXPmcOLECUxMTOjbt6/BcYWFhbF27VrWr1+vmzojMTGRESNGcPz4cfbs2YNCoaBTp0662IOCgggODtYd4/lrOX78OCkpKTRo0OCF546NjWXHjh0MGjQICwsLvW1ubm68//77rFmzBlmWOXPmDBcvXmTEiBEoFPqpQLVq1WjatCmrVq3K8Vz37t1j8+bN+R7AOCkpiaVLlwLGm17lWSVqnCEhZ0q1CuuqrsRdOAnWZlhFHyGsdFts9v5I4pGjWL1ZckfcFgThqeSMZOr+WfSf5aM9jmJpallgxxszZgwTJkzQPZ4xY0aem1saN25MQkICp0+fpmbNmoSGhjJq1Cg2bNgAwL59+3B1daVixYpZ9rW1tUWlUmFpaYmbm1uW7dOnT9clUWPHjqVNmzakpKQYNMRBWloaK1as0Kvt6tKli16ZxYsX4+LiwsWLFwkICCAoKIjPPvuM6OholEolFy5cYNKkSQQHBzNo0CCCg4OpVasW1tbWLzz3tWvXkGWZSpUqZbu9UqVKPHr0iIcPH3L16lXdupzKHjhwQG9d5uum0WhISUmhbt26fPfdd7k+J8/K7B+WlPQ0ya5VqxZvv/22Xplz587pXWvlypU5duxYns6TV6Jm6BVSoU0NfGRnkEDp6kmMRSqP7Cvy4JtvkDUaY4cnCIIAwOjRo/WmSurVq1eej2Fra0v16tUJDg7m3LlzKBQKBgwYwNmzZ0lISCA4ODjbWiFDVK1aVfd/9//N9/h8v5ac+Pj4ZGn2u379Oj169KB06dLY2Njg5+cHoBskOCAgAEdHR0JCQggNDaVatWq0b99eVzP0MtfyrMwaPkMG5c1uEvTM1+2///5jz549ALRp0wZNHn5fQkNDOXXqFKtWrcLHx4dly5ZlqRnKnDYrc1m/fr3Bx88vUTP0ClFYmhL4RkN+P/438ZYmWHKGOHNrHC6dIO6ff7Hr3MnYIQqC8BIsTCw42uNo7gUL4bwFycnJqUAmHM1sXlKpVAQGBmJvb4+/vz8HDx4kODg433eLPfvjnJkQZDZp5cbKyirLunbt2uHt7c1vv/2Gh4cHWq2WgIAAXQdlSZJo3Lix7lqCgoIICAhAo9Fw7tw5Dh06ZNC1lC1bFkmSuHjxYrZ3812+fBl7e3ucnJwoX748ABcvXqR69erZli1Xrpzeumdft3LlyjF37lzq1avHvn37aNq0aa7xAfj5+WFnZ0f58uVJSUmhU6dOnD9/Xm+CdJVKVWQT0mYSNUOvGN9mAZRTeACgcPPlhOcDAB5+/z3a526VFAShZJEkCUtTyyJfiuv0Ppn9hvbu3UtQUBAAgYGBrF69Osf+QplUKlWeajTyKyYmhkuXLjFhwgTefvttXVPV8zITu+DgYIKCgpAkiUaNGvHtt9+SnJyca38hAEdHR5o1a8aCBQtITk7W2xYZGcnKlSvp3r07kiRRvXp1KlasyPfff58l0Tt79iy7d+/mvffee+H5lEolQJZzGeqDDz5Aq9WyYMGCfO1fkEQy9IpRmCkJbNAYhSzxxFyBytyZ2zZ2ZDx8SMziJcYOTxCE10RcXJxeU8eZM2cKfO7IzH5DmzZt0iVDQUFB/PHHHzg7O1O5cuUc9/X19eXo0aOEh4cTHR1tcM1PXtnb2+Po6Mivv/5KWFgYe/fuZcSIEVnKBQUFceHCBc6dO0ejRo1061auXEnNmjUNng7qxx9/JDU1lRYtWrB//37u3LnD9u3badasGZ6enkyfPh14mlgvWrSIixcv0qVLF44dO8bt27dZt24d7dq1o169ellqoxISEoiMjCQiIoJjx44xevRonJycqF+/fr6eG4VCwbBhw/j666+zjGtU1EQy9AryDCpPZZOnk9eaO5dhT62qPHSqSszixaQ/eGDk6ARBeB0EBwdTo0YNvWXixIkFeg5bW1tq1KiBg4ODLvFp1KgRWq021z42o0aNQqlUUrlyZZydnQttkm+FQsHq1as5efIkAQEBDB8+nNmzZ2cpFxAQgJOTE9WqVdMlPoGBgWg0mjz1FypXrhwnTpygTJkydO/enTJlyvDxxx/TpEkTDh8+jIODg65sgwYNOHLkCEqlktatW1O2bFnGjRtH79692bVrl17TFcDEiRNxd3fHw8ODtm3bYmVlxa5du3B0dMznswN9+/YlPT2dH3/8Md/HKAhiotZcFOeJWl8k6sBNbmw9i51sScgjE7Rpj2l8eBL2HdvhMXOGscMTBCEXYqJWQcidmKhVeCHner74OnhhLVvgbZmGVmXHPY+GxG3cSPL/BvISBEEQBEEkQ68sSSlh0/xpU1kplUSGNpTLpaqToVAR9c2sYjmImiAIQqaVK1dibW2d7eLv72+UmPz9/XOMaeXKlYV+/tu3b+d4fmtr60Jr6jNEq1atcoxrxozi3xohbq1/hVkEOBHrnMam+GNIrmB24xjh3m9R9tg2nuzdi/q5ga4EQRCKi/bt2+c4urGxRizeunVrjvONubq6Fvr5PTw8dKNa57TdWBYtWpTjXWXP9lMqrkQy9AqTFBJ+LatgtvY4T5QpmNqZcd20FD53rYiaNRvrRo2QCnm+F0EQhPxQq9Wo1Wpjh6HHx8fHqOc3MTEp8vF3DOXp6WnsEF6KaCZ7xVlXdqaO7dO7LFIdXclIP86V0q1Iu3WLR6tXGzk6QRAEQTA+kQy94iRJ4o0OjbDTWpGhkJEdHLhgcx+Ahz8tQPP4sXEDFARBEAQjE8nQa8CijD31XJ7OtZPs4IhKEc0Neze0cXFE//yLkaMTBEEQBOMSydBronqHejhrbdBKYOpQhr0Vnnb2i/3zT9LCw40bnCAIgiAYkUiGXhNm3jY09K6FJEvYWrnz2NuPA9UGQno6UXPmGDs8QRAEQTAacTfZa6Ryhzcw/z4NK9kcq8cZPLaXibP2gl27STx2DKs6dYwdoiAIgiAUOVEz9BoxdbHEuebTW0N91E8AOFrpXQCivv4GuZAmKhQE4fXSp08fJEli4MCBWbYNGjQISZLo06ePXllJkjA1NcXV1ZVmzZqxZMmSLJOn+vr6MnfuXINi8PX11R3XwsKCihUrMnv2bL0BZ8PDw3Vlnl169uyZ72sXSiaRDL1mbN4uBUoJtaREY74fjfYYUY4VSbl4kfhNm4wdniAIrwhvb29Wr16tNxBfSkoKq1atolSpUnplW7ZsSUREBOHh4Wzbto0mTZrw2Wef0bZtWzIyMvIdw9SpU4mIiODSpUuMGjWKL774gl9//TVLud27dxMREaFbfvrpp3yfUyiZRDL0mjFxMEeqYcc/quPE2kG6aRwnyjZEBqK++x5tDiOICoIg5EXNmjUpVaoUGzZs0K3bsGED3t7e1KhRQ6+smZkZbm5ueHp6UrNmTb744gv++ecftm3bxrJly/Idg1qtxs3NDV9fX/r370/VqlXZuXNnlnKOjo64ubnpFltb23yfUyiZRDL0GnJrUZ7y8v+GbXcrC2lnCfesS8aDB8QsXWrc4ARByJEsy2iTkop8ye9chh9++CFLn/lOWbJkCX379jVo37feeotq1arpJVP5JcsywcHBXLp0yWhTeQjFm+hA/RpSqlU0ql2Payc3kGxugoWlhvNelfC9d5SY3xZh16Urpq4uxg5TEITnyMnJXKlZq8jPW+HUSSRLyzzv98EHHzBu3Dhd35yDBw+yevVqgoODDdq/YsWK/Pfff3k+b6YxY8YwYcIE0tLSSE9Px9zcnKFDh2YpV79+fRSK/68bCA0NzVJ7JbzaRDL0mnJvWgH/U6X4j3C0rmXIuHWUm65+lH5wk4fz5+ExfbqxQxQEoYRzcnKiTZs2LF++HFmWadOmDU5OTgbvL8sykiTl+/yjR4+mT58+PHz4kPHjx/PWW29Rv379LOXWrFlDpUqVdI+9vb3zfU6hZBLJ0GtKYWlKg3oNuHzoLqmqDCwsbdnio2bIg5vEbfgbh549MX/my0EQBOOTLCyocOqkUc6bX3379mXw4MEAee6YfOnSJfz8/PJ9bicnJ8qWLUvZsmVZv349ZcuW5c0336Rp06Z65by9vYvtBKhC0RB9hl5jzkGlqaZ4+kWjcfXFThHBEb86IMs8+GZWvvsJCIJQOCRJQmFpWeTLy9TOtGzZkrS0NNLS0mjRooXB++3du5dz587RpUuXfJ/7Wfb29gwZMoRRo0aJ7zYhC5EMvcYUZkrqBTXEQWtNJUqR6v4mD316kK6yJOnIEZ4Y2K4vCIKQE6VSyaVLl7h06RJKpTLbMqmpqURGRnLv3j1OnTrFjBkz6NChA23btqVXr14FFsunn37KlStXWL9+fYEdU3g1iGToNWdf35uu5o14I6M8jVIrY4Upe6o+/fKJmjUbOT3dyBEKglDS2djYYGNjk+P27du34+7ujq+vLy1btmTfvn3Mnz+ff/75J8cEKj+cnZ354IMPmDx5cpYBHYXXmySL+sIXio+Px9bWlri4uBd+mEuyxOORPFp/jSdSCsGxkJhxg6DzK7GMe4jrhAk49Hzf2CEKwmsnJSWFmzdv4ufnh7m5ubHDEYRi6UWfk7z8fouaIQHLmq4oHMx4KMWT4HQYOXkr2yu0ASD6xx/RxMUZOUJBEARBKDwiGRKQlBK2zX05bXKTRFMtGU5emGdc5aF7OTSPHxP9y0JjhygIgqCzcuVKrK2ts138/f2NHZ5QAolb6wUALKs68+Zuf7Y+OUqqvTPKmLPs9alP94hrPPrjD+zfexfVc/MJCYIgGEP79u2pW7duttvECNNCfohkSABAUkgEtKnDqVVXiFQ8RuPig3Xkf9wsUw2/62eJmvMdXvPmGjtMQRAE1Go1arXa2GEIrxDRTCboWFR0oJ5jVQBSbOzQmqTxl4svskJBwo4dJJ0s+sHeBEEQBKGwiWRI0JEkiYrtalFK4wQSaFx8KJNyhdMBDQB48PU3yOJ2VEEQBOEVI5IhQY9ZaVvqe9YAGVLVah7bq1jnXA/ZwoKUc+eI37LF2CEKgiAIQoESyZCQRem2VamVUZrmaVVxt2hDM40PO6t3AyDqu+/RpqQYOUJBEARBKDgiGRKyUHmpqV+pNqW0zlRXPR2oKsKyJhlOLmRERBC7bJlxAxQEQRCEAiSSISFbNs18kCUoLztiqYzHLeEA6yu2AiDm19/IePjQyBEKgiAIQsEQyZCQLVNXK6xquHBOeZt7Tv+RqrqBeUo4T/zKoU1K4uGPPxk7REEQihlJkl649OnTp1DOm5iYyJgxYyhdujTm5uY4OzsTFBTE5s2bdWWCgoIYNmxYln2XLVuGnZ1dlvXJycnY29vj4OBAcnJylu2+vr6667K0tCQgIICFCw0boHbZsmV6z4urqyvt2rXjwoULeuX69OmT7fMYFhZm0HkEw4lkSMiRTVMf0hQZZEhaNC6+mKTfZZ1XQwAer1tH6rVrRo5QEITiJCIiQrfMnTsXGxsbvXXz5s3TK59eQBNBDxw4kI0bN/Ljjz9y+fJltm/fTpcuXYiJicn3MdevX09AQACVK1dmw4YN2ZaZOnUqERER/Pfff3Ts2JGBAweyZs0ag46f+dzcv3+fLVu2kJiYSJs2bUhLS9Mr17JlS73nMCIiAj8/v3xfl5A9kQwJOTJxMKdujTcwk01JV5mQbuuEU+IFoqrVA62WB7NnGztEQRCKETc3N91ia2uLJEm6xykpKdjZ2bF27VqCgoIwNzfnjz/+AGDp0qVUqlQJc3NzKlasyIIFC/SOe+/ePbp37469vT2Ojo506NCB8PBw3fZNmzbxxRdf0Lp1a3x9falVqxZDhgyhd+/e+b6WxYsX07NnT3r27MnixYuzLaNWq3Fzc6Ns2bJMmzaNcuXKsXHjRoOOn/ncuLu7U7t2bYYPH86tW7e4cuWKXjkzMzO959XNzQ2lUpnv6xKyJ5Ih4YWcm5alutYXAI1LKRTaWNY6lAYTExL3h/Lk4EHjBigIr6H0VE2OS0a6xvCyabmXLWhjxoxh6NChXLp0iRYtWvDbb78xfvx4pk+fzqVLl5gxYwZffvkly5cvByApKYkmTZpgbW3N/v37OXDgANbW1rRs2VJXi+Lm5sbWrVtJSEgokBivX7/O4cOH6datG926dePQoUPcuHEj1/3Mzc3zVdv1+PFj/vzzT0BMJ2IsYjoO4YWUNirqvFmX88duk2iSSrq9C/YJl4lr1g7bbX8TNWs2VhveRBJ/qQhCkfn1s5Act/kEONJ2cDXd4yWjQ8lIy36wVI9ydnQaWVP3+Pfxh0h5ov9j/ukvb71ktPqGDRtG586ddY+/+uor5syZo1vn5+fHxYsXWbhwIb1792b16tUoFAoWLVqEJEnA05okOzs7goODad68Ob/++ivvv/8+jo6OVKtWjYYNG9K1a1caNGigd+4FCxawaNEivXUZGRmYm5vrrVuyZAmtWrXC3t4eeNpUtWTJEqZNm5btNWVkZPDHH39w7tw5PvnkE4Oeh7i4OKytrZFlmaSkJODpnGsVK1bUK7d582asra11j1u1asW6desMOodguBJXM7RgwQL8/PwwNzenVq1ahIaG5lj2wIEDNGjQAEdHRywsLKhYsSLff/99EUb7arBv4kMtygCQ7uSFnSaBVQ7lUdjYkHrlCnEGVgsLgiDUrl1b9/+HDx9y584d+vXrpzfz/LRp07h+/ToAJ0+eJCwsDLVardvu4OBASkqKrkzjxo25ceMGe/bsoUuXLly4cIFGjRrx1Vdf6Z37/fff58yZM3rL1KlT9cpoNBqWL19Oz549det69uzJ8uXL0Wj0a8rGjBmDtbU1FhYWfPrpp4wePZoBAwYY9Dyo1WrOnDnDyZMn+eWXXyhTpgy//PJLlnJNmjTRi3f+/PkGHV/ImxJVM7RmzRqGDRvGggULaNCgAQsXLqRVq1ZcvHiRUtnMqG5lZcXgwYOpWrUqVlZWHDhwgAEDBmBlZcXHH39shCsomRSWptRsVIf/9ocTp0jilpctEVGWSD37woK5PJw7D5uWLVFYWRk7VEF4LXw8LzDHbdJzf+L2nd0o57KS/uNe0+u/TFgGsXrme0L7v+l9fvvttyyz0Gf2i9FqtdSqVYuVK1dmOZazs7Pu/6ampjRq1IhGjRoxduxYpk2bxtSpUxkzZgwqlQoAW1tbypYtq3cMFxcXvcc7duzQ9VF6lkajYefOnbRq1Uq3bvTo0fTp0wdLS0vc3d11NVeGUCgUulgqVqxIZGQk3bt3Z//+/XrlrKysssQsFLwSlQx999139OvXj/79+wMwd+5cduzYwc8//8zMmTOzlK9RowY1atTQPfb19WXDhg2EhoaKZCiPbBp50fhgAGYpSi5lvMGDdAs2WvjR2cuL9Lt3iVm6DOfBnxo7TEF4LZiaGd4sXVhlC4Krqyuenp7cuHGD999/P9syNWvWZM2aNbi4uGBjY2PwsStXrkxGRgYpKSm6ZMgQixcv5t1332X8+PF667/++msWL16slww5OTkVWKIyfPhwvvvuO/7++286depUIMcUDFdimsnS0tI4efIkzZs311vfvHlzDh06ZNAxTp8+zaFDhwgMzPmvqtTUVOLj4/UWARRmJpR7qxq2siXlzZ/m0HHn4rH7bBgAMYsXk/4gyogRCoJQEk2ePJmZM2cyb948rl69yrlz51i6dCnfffcd8LRpy8nJiQ4dOhAaGsrNmzcJCQnhs88+4+7du8DTMYQWLlzIyZMnCQ8PZ+vWrXzxxRc0adIkTwnUw4cP2bRpE7179yYgIEBv6d27N//++y8PC2nAWRsbG/r378+kSZOQZblQziHkrMQkQ9HR0Wg0GlxdXfXWu7q6EhkZ+cJ9vby8MDMzo3bt2nz66ae6mqXszJw5E1tbW93i7e1dIPG/CqzquqExAwfZEjuT+zg93scOSmNRvTpycjIP58/L/SCCIAjP6N+/P4sWLWLZsmVUqVKFwMBAli1bphtLx9LSkv3791OqVCk6d+5MpUqV6Nu3L8nJybpEp0WLFixfvpzmzZtTqVIlhgwZQosWLVi7dm2eYvn999+xsrLi7bffzrKtSZMmqNVqVqxY8fIXnYPPPvuMS5cuiQ7SRiDJJSQFvX//Pp6enhw6dIh69erp1k+fPp0VK1Zw+fLlHPe9efMmT5484ciRI4wdO5Yff/yR9957L9uyqamppKam6h7Hx8fj7e1NXFxcnv7CeFXFbr3OlsM7ua54gMXtK6RZt2Rk36rceq8HSBJ+f2/A/Lm7IQRByLuUlBRu3rypu2FEEISsXvQ5iY+Px9bW1qDf7xJTM+Tk5IRSqcxSCxQVFZWltuh5fn5+VKlShY8++ojhw4czefLkHMuamZlhY2Ojtwj/z7ahF6YoQQIcS2H96Az/ye6oW7YEWSZq1ixRxSsIgiCUKCUmGVKpVNSqVYtdu3bprd+1axf16xt+B4Qsy3o1P0LeKG3MCPB7WvOTbGVBBnfYv+EsLiNHIJmaknjoMIkvGO5AEAThVefv7683VMCzS3Z3xQnGV6LuJhsxYgQffPABtWvXpl69evz666/cvn2bgQMHAjBu3Dju3bvH77//DsBPP/1EqVKldINYHThwgG+//ZYhQ4YY7RpeBeVb1MTzlzPcU8YiO3gQH3GSJIcm2PfsSezSpTyYNQur+vWRTErU20sQBKFAbN26NceRqHNryRCMo0T9WnXv3p2YmBjd5HgBAQFs3boVHx8f4Okkgbdv39aV12q1jBs3jps3b2JiYkKZMmX4+uuvDR4US8ieytOasnZe3EuIJdXOAUXsedafukOfgQOI27CBtLDrPP5rPfbvds/9YIIgCK+YzN8koeQoMR2ojSUvHbBeJ0/OR/Hr2qXEK5KxjLzDSeeGrJ7ah0crVvBgxkyUjo6U2bEDpbUYiFEQ8kN0oBaE3L12HaiF4sWqsjNlTNwAkB29SIxNYtv2G9i/+y6mPqXQxMQQs+g3I0cpCIIgCLkTyZCQL5JColqDGtRPr0AQ1WmhqUjY5lukZUi4jBoFQOzSZaRHRBg5UkEQBEF4MZEMCflWqpE/fgpnPDVO2FikoNTAkZ23UDdtikXtWsipqTycO9fYYQqCIAjCC4lkSMg3hUpJchVTAHytkslIu8x/e2+Tka7FdcwYAOL++ZfkCxeMGaYgCIIgvJBIhoSXUqH5G9xSPOSMIpwMm+vIiTe4EHoPiypVsGnbFoCob8RAjIIgGF94eDiSJHHmzBljh/LKmjx5MtWrVzd2GHkmkiHhpZjZWRLt+oRHiick29iQkfYfR7ffQqPR4jJ8GJJKRdKxYzzZt8/YoQqCUET69OlDx44d9db99ddfmJubM2vWLOMElQ/r16+nbt262Nraolar8ff3Z+TIkbrty5Ytw87OLtt9JUli48aNWdZ//PHHKJVKVq9enWXb5MmTkSQJSZJQKpV4e3vTv39/gyeHzdxXkiSsra2pVq0ay5Yt0ysTHBysVy5zmTBhgkHneFWJZEh4abVaN8RGa0GGQkZrnU56XCzXjj/A1NMTh969AYia/S1yDoOQCYLwalu0aBHvv/8+P/74I59//nme909LSyuEqF5s9+7dvPvuu3Tt2pVjx45x8uRJpk+f/lKxJCUlsWbNGkaPHs3ixYuzLePv768bM+/nn39m06ZN9OrVy+BzLF26lIiICM6ePUv37t358MMP2bFjR5ZyV65cISIiQreMHTs239f1KhDJkPDSvMqVxs3MFgCNoxspqWd5EJsMgOPHH6G0tyft5k0e5XEGaUEQSr5Zs2YxePBg/vzzT/r37w/AoUOHaNy4MRYWFnh7ezN06FASExN1+/j6+jJt2jT69OmDra0tH330ka4WZseOHVSqVAlra2tatmxJxHN3rC5dupRKlSphbm5OxYoVWbBgQb7i3rx5Mw0bNmT06NFUqFCB8uXL07FjR3744Yd8Pxfr1q2jcuXKjBs3joMHDxIeHp6ljImJCW5ubnh6etK2bVuGDh3Kzp07SU5ONugcdnZ2uLm5UaZMGb744gscHBzYuXNnlnIuLi64ubnpFmtr61yPnfkabNy4kfLly2Nubk6zZs24c+dOjvsEBQUxbNgwvXUdO3akT58+uscLFiygXLlymJub4+rqSteuXQ261oIkkiGhQJR6szSmspJkE5kU1R0OaJ5+sSnVapyGDAYg+sef0CQkGDNMQXglpKek5LhkPFdz8aKy6WmpuZZ9GWPHjuWrr75i8+bNdOnSBYBz587RokULOnfuzH///ceaNWs4cOAAgwcP1tt39uzZBAQEcPLkSb788kvgac3Kt99+y4oVK9i/fz+3b99m1P+G8gD47bffGD9+PNOnT+fSpUvMmDGDL7/8kuXLl+c5djc3Ny5cuMD58+df4hnQt3jxYnr27ImtrS2tW7dm6dKlue5jYWGBVqslIyMjT+fSaDSsXbuW2NhYTE1N8xtyFklJSUyfPp3ly5dz8OBB4uPjeffdd/N9vBMnTjB06FCmTp3KlStX2L59O40bNy6weA1VoqbjEIqvOoFBhO2/SjjRWDp6sC/kACktK2NuqsS+Wzce/bGStBs3iFm4UDcOkSAI+TO/d85/OfvVqE3nsZN1jxd8/D4ZOUxO7VU5gO6TvtY9/m1wX5IT4vXKjFyzOV8xbtu2jX/++Yc9e/bw1ltv6dbPnj2bHj166GoLypUrx/z58wkMDOTnn3/WjSL81ltv6SU6Bw4cID09nV9++YUyZcoAMHjwYKZOnaor89VXXzFnzhw6d+4MgJ+fHxcvXmThwoX0/l+TvaGGDBlCaGgoVapUwcfHhzfffJPmzZvz/vvvY2ZmpisXFxdnUK3KtWvXOHLkCBs2bACgZ8+eDB06lEmTJqFQZF8vcfnyZX7++Wfq1KmDWq02KO733nsPpVJJSkoKGo0GBwcHXY3cs7y8vPQe37p1C0dHx1yPn56ezo8//kjdunUBWL58OZUqVeLYsWPUqVPHoBifdfv2baysrGjbti1qtRofHx9q1KiR5+O8LFEzJBQIlYkKq7JPp96IN5dwSLzPhi1hRN2KRzIxwWX0/wZi/H0FaXfvGTNUQRCKQNWqVfH19WXixIkkPFMjfPLkSZYtW6Y3k3uLFi3QarXcvHlTV6527dpZjmlpaalLhADc3d2JiooC4OHDh9y5c4d+/frpHXvatGlcv349z/FbWVmxZcsWwsLCmDBhAtbW1owcOZI6deqQlJSkK6dWqzlz5kyW5XmLFy+mRYsWODk5AdC6dWsSExPZvXu3Xrlz585hbW2NhYUFlStXxtvbO08z3X///fecOXOGXbt2Ub16db7//nvKli2bpVxoaKhevPb29gYd38TERO+1qVixInZ2dly6dMngGJ/VrFkzfHx8KF26NB988AErV67Ue36LiqgZEgpMvTZvw3c78dI6sdvShEfb73HkVhLtP6uBdVAQlnXrknT0KA+//x7POd8aO1xBKLGGLv8rx23Sc7UMg359wQ+pQtJ7+NGPS14qrmd5enqyfv16mjRpQsuWLdm+fTtqtRqtVsuAAQMYOnRoln1KlSql+7+VVdZ5DZ9v7pEkSTdsh1arBZ42lWXWWmRSKpX5vo4yZcpQpkwZ+vfvz/jx4ylfvjxr1qzhww8/BEChUGSbbDxLo9Hw+++/ExkZiYmJid76xYsX07x5c926ChUq8O+//6JUKvHw8NCrhTKEm5sbZcuWpWzZsqxbt44aNWpQu3ZtKleurFfOz88vxzvhciNJkkHr4Onz8/zQKunP3EyjVqs5deoUwcHB7Ny5k4kTJzJ58mSOHz+e7/jyQ9QMCQXGy6EUGZ5peGsdedNcgxaZO5cePa0dkiRcx3wOkkT8li0k//efscMVhBLL1Nw8x8VEpTK4rKnKLNeyL6NUqVKEhIQQFRVF8+bNiY+Pp2bNmly4cEH3g/3sonou9rxwdXXF09OTGzduZDmun5/fS11HJl9fXywtLfU6exti69atJCQkcPr0ab3amHXr1rFx40ZiYmJ0ZVUqlS7mvCZCzytbtixdunRh3LhxL3WcZ2VkZHDixAnd4ytXrvD48WMqVqyYbXlnZ2e9Tu4ajSZLPywTExOaNm3KrFmz+O+//wgPD2fv3r0FFrMhRDIkFCjXxmVJJ4NKGgfiTRORZQ2ntt8CwLxyZWw7dADgwdffiIEYBeE14OXlRXBwMDExMTRv3pzPP/+cw4cP8+mnn3LmzBmuXbvGv//+y5AhQ176XJMnT2bmzJnMmzePq1evcu7cOZYuXcp3332Xr2N9/vnnBAcHc/PmTU6fPk3fvn1JT0+nWbNmeTrW4sWLadOmDdWqVSMgIEC3dOnSBWdnZ/744488x2eokSNHsmnTJr0E5mWYmpoyZMgQjh49yqlTp/jwww958803c+wv9NZbb7Flyxa2bNnC5cuXGTRoEI8fP9Zt37x5M/Pnz+fMmTPcunWL33//Ha1WS4UKFQokXkOJZEgoUI0qNuGA/RmOm1zH0uYcmvQwrp95yKPIp39JOQ/7DMncnORTp0jYtcvI0QqCUBQ8PT0JCQnh8ePHfPTRR4SEhHDt2jUaNWpEjRo1+PLLL3F3d3/p8/Tv359FixaxbNkyqlSpQmBgIMuWLctXzVBgYCA3btygV69eVKxYkVatWhEZGcnOnTvz9EP94MEDtmzZorub7lmSJNG5c+ccxxwqCFWqVKFp06ZMnDixQI5naWnJmDFj6NGjB/Xq1cPCwiLbASQz9e3bl969e9OrVy8CAwPx8/OjSZMmuu12dnZs2LCBt956i0qVKvHLL7+watUq/P39CyReQ0my+PP8heLj47G1tSUuLg4bGxtjh1MiLNq5gAcHY0iXNFhFJmFJSyrWd+ftXpUAiJo3j5iff8HUpxRlNm1CeomqcUF4VaWkpHDz5k38/Px0d1gJgjEtW7aMYcOG6dXsGNuLPid5+f0WNUNCgWv+ZlscJQsAVPZqtJpHXD0SSULs0zFLHPv1R+nkRPqt2zxatcqYoQqCIAiCSIaEglfKphSPfBNAhkdmGuI5j8peRVLc08HglNZWOA992j/g4YKf0RSjvzIEQXg9DBw4UO8W/GeXgQMHGju8LGbMmJFjvK1atSqQc7Rq1SrHc8yYMaNAzlFciWayXIhmsvzZfmM7N5dd4IEiAccnEpertuSnXv9/u6us0XCzYydSr13DoU8fXMeOMWK0glD8iGaywhUVFUV8fHy222xsbHBxcSniiF4sNjaW2NjYbLdZWFjg6en50ue4d+9ejtN+ODg44ODg8NLnKGgF1UwmxhkSCsVbPm8xw24vxFsSZyVx68RhojpVw0X99M0qKZW4fD6aOx99TOzKldj3eA/VM2OMCIIgFCYXF5dil/C8SFEkIwWRUJVUoplMKBQqpQrbem5PZ7OXtAQq41lz6Bbngu+SlvJ0jh3rRo2watAA0tOJmpP3W18FQRAEoSCIZEgoNJ0qdyZdlUDlDC/KmVcjeutd9q++yoXQ+7oyLp9/DgoFCTt2kHTqlBGjFQRBEF5XIhkSCo2vrS/3qj7iDU1passOxCo1AJzdfRtN+tOh880rlMeuy9NJFR98IwZiFARBEIqeSIaEQtUyoA37bJ6OfFrbVEmqCSTGpXH5yP8Pz+40ZAiSpSUpZ/8jYds2Y4UqCIIgvKZEMiQUqrd93ma32zEeSHFgeoUHXADg9M7baLVPa4FMXVxw7NcXgKg536FNTTVavIIgCMLrRyRDQqEyU5pRPaAOh0wucNMkCi+rJLSmEnEPk7l+KkpXzvHDDzFxcSH93j0e/fGCWbYFQRDyoU+fPnTs2PGFZYKDg5EkqViNsFwShYeHI0kSZ86cMXYoBhPJkFDoupbryjWbqwDEmadyXfm0iezUjlu6PkIKS0uchw0DIPqXX8h49MgosQqC8PJelHj4+voiSZLe4uXlpbd97ty5BR7TvHnzWLZsme5xUFAQw/73nfMq6dOnj+55NTExoVSpUnzyySc8eu47NbfX4XUjkiGh0JW2K0185QxstOZkSFpKmUQgmSpQO5iTnqLRlbPt0B6zSpXQJiQQ/dMCI0YsCEJhmjp1KhEREbrl9OnThX5OW1tb7OzsCv08z0pPTy/S82Vq2bIlERERhIeHs2jRIjZt2sSgQYOylDPG61BciWRIKBJdKnYl0SQaAI1lKqG+Wlp/UhWVxf+P+ykplbh+PhqAR6tXk3rzplFiFQShcKnVatzc3HSLs7Nzno8xcuRI2rVrp3s8d+5cJEliy5YtunUVKlRg4cKFgH5tVZ8+fQgJCWHevHm6WpHw8HDdfidPnqR27dpYWlpSv359rly5YlBMkydPpnr16ixZsoTSpUtjZmaGLMts376dhg0bYmdnh6OjI23btuX69eu6/bp06cKQIUN0j4cNG4YkSVy48LSPZUZGBmq1mh07dhgUh5mZGW5ubnh5edG8eXO6d+/Ozp07s5TL7+sgSRI///wzrVq1wsLCAj8/P9atW5dj+WXLlmVJRDdu3IgkSbrHZ8+epUmTJqjVamxsbKhVqxYnTpwwKJ6CIJIhoUg082nGPt+TqGQTEhVplIm4yIX7cVnKWdWrh3VgIGRkEDVnjhEiFYTiS5ZltGmaIl+K45AXQUFBhIaGotU+HaYjJCQEJycnQkJCAIiMjOTq1asEBgZm2XfevHnUq1ePjz76SFcr4u3trds+fvx45syZw4kTJzAxMaFv374GxxUWFsbatWtZv369rs9MYmIiI0aM4Pjx4+zZsweFQkGnTp10sQcFBREcHKw7xvPXcvz4cVJSUmjQoEGeniOAGzdusH37dkxNTfO874t8+eWXdOnShbNnz9KzZ0/ee+89Ll26lO/jvf/++3h5eXH8+HFOnjzJ2LFjCzzmFxHTcQhFwtzEnOYVW6C6lkKaElzNk/njyG3GNS7L7YuxBDT+/2HgXT4fzZMDB3iyew+Jx45hVaeOESMXhOJDTtdyf+KhIj+vx9T6SCplgR1vzJgxTJgwQfd4xowZDB06NE/HaNy4MQkJCZw+fZqaNWsSGhrKqFGj2LBhAwD79u3D1dWVihUrZtnX1tYWlUqFpaUlbm5uWbZPnz5dl0SNHTuWNm3akJKSYtAccWlpaaxYsUKvlqVLly56ZRYvXoyLiwsXL14kICCAoKAgPvvsM6Kjo1EqlVy4cIFJkyYRHBzMoEGDCA4OplatWlhbWxv03GzevBlra2s0Gg0pKSkAfPdd1lH+X+Z1eOedd+jfvz8AX331Fbt27eKHH35gwYL8dXG4ffs2o0eP1r1e5cqVy9dx8kvUDAlFpku5LuxxCUWttaCM7E74iXusnHSEkD+vEHPvia6cWZky2HV7B4Cob2Yh/++vJ0EQXg2jR4/mzJkzuqVXr155PoatrS3Vq1cnODiYc+fOoVAoGDBgAGfPniUhIYHg4OBsa4UMUbVqVd3/3d3dgacTuxrCx8cnS3PT9evX6dGjB6VLl8bGxgY/Pz/gaQIAEBAQgKOjIyEhIYSGhlKtWjXat2+vqxnK67U0adKEM2fOcPToUYYMGUKLFi30muEyvczrUK9evSyPX6ZmaMSIEfTv35+mTZvy9ddf6zUjFgVRMyQUmXL25XAo44FdgkzVeB9akk6KlyXaW4mc2nGLZn39dWWdBw8m/t9NpFy4QPzmzdi2b2/EyAWheJBMFXhMrW+U8xYkJycnypYt+9LHyWxeUqlUBAYGYm9vj7+/PwcPHiQ4ODjfd4s92zyT2a9Fa+AfZVZWVlnWtWvXDm9vb3777Tc8PDzQarUEBASQlpamO0fjxo111xIUFERAQAAajYZz585x6NChPF2LlZWV7vmdP38+TZo0YcqUKXz11Vd65Qrqdcj0bB+gZykUiixNrc93Lp88eTI9evRgy5YtbNu2jUmTJrF69Wo6depUYPG9iKgZEopU1/Jd2ei4D4AgTDipSQbg2oko4qOTdeVMHB1x/PhjAKK+n4v2f1W9gvA6kyQJhUpZ5EtOP3LGltlvaO/evQQFBQEQGBjI6tWrc+wvlEmlUqHRaHLcXlBiYmK4dOkSEyZM4O2336ZSpUpZbnOH/0/sgoODCQoKQpIkGjVqxLfffktycnK++gtlmjRpEt9++y3379/PvbCBjhw5kuVxdk2SAM7OziQkJJCYmKhbl90YROXLl2f48OHs3LmTzp07s3Tp0gKLNzciGRKKVHPf5sSoEzhtfombigf4J1zHxk+NrJU5vfO2XlmH3r0w8XAnIyKC2OW/GyliQRDyIy4uTq8J5syZM7pmoYKS2W9o06ZNumQoKCiIP/74A2dnZypXrpzjvr6+vhw9epTw8HCio6MNrvnJK3t7exwdHfn1118JCwtj7969jBgxIku5oKAgLly4wLlz52jUqJFu3cqVK6lZsyY2Njb5jiEoKAh/f39mzJiR72M8b926dSxZsoSrV68yadIkjh07xuDBg7MtW7duXSwtLfniiy8ICwvjzz//1BvzKTk5mcGDBxMcHMytW7c4ePAgx48fp1KlSgUWb25EMiQUKQsTC9qUbsNJzX8Eqy6QZhbFFasMAC4diiAx7v+n4lCYm+MyfDgAMb/+SkZMjFFiFgQh74KDg6lRo4beMnHixAI9h62tLTVq1MDBwUGX+DRq1AitVptrH5tRo0ahVCqpXLkyzs7OBZ6oZVIoFKxevZqTJ08SEBDA8OHDmT17dpZyAQEBODk5Ua1aNV3iExgYiEajyXffp2eNGDGC3377jTt37rz0sQCmTJnC6tWrqVq1KsuXL2flypU5Jp8ODg788ccfbN26lSpVqrBq1SomT56s265UKomJiaFXr16UL1+ebt260apVK6ZMmVIgsRpCkovjPZPFSHx8PLa2tsTFxb1UZi78vyuxV+i19j063O9EmkKDIsWX8rb+xNxKoGaLUtTr9P9t2LJWS3i37qScP4/du91xf+YDJAivspSUFG7evImfn59BdzEJQlGRJIm///471+lNisKLPid5+f0WNUNCkavgUIGy3pVQpT/tI+RgGkuslwpTcyWmZvq370oKBa5jPgfg8bq/SA0LK/J4BUEQhFebSIYEo+haviuhDoeQZIhWxnPr+k16TqtH7dZ+WcpavvEG1k3fBo2GqNnfGiFaQRCK2sqVK7G2ts528ff3z/0AhcDf3z/HmFauLPwJpm/fvp3j+a2trQukqa84Pu9FQdxaLxhFC98WfOPxDbbnJR6byZROv8eh249oWtk12/IuI0fyJDiEJyEhJB4+jNVzY1wIgvBqad++PXXr1s12W1GOTPysrVu35jjfmKtr9t9dBcnDw+OFM8F7eHi89DkMed5fxd41IhkSjMLS1JK2Zdpy5cppXKlClEkMd/dc5u1KLty78oj0NC1+VZ105c38/LB/910e/fEHD76Zhd/6v5CUBTciriAIxYtarUatVhs7DD0+Pj5GPb+JiUmBjguUneL4vBcF0UwmGE2Xcl047hWGdYYJLlobfO/FcST4Dv/MPUPo6qtoNPq3ujp9OgiFWk3q5cvE/fOvkaIWBEEQXjUiGRKMppJjJcp6VOKg+0HapNeiKXYcj4nDQm1KQmwKYccf6JU3sbfHaeBAAB7OnYs2KckYYQuCIAivGJEMCUbVtXxXwqzvck59AyUSijPRBDTxAuDkjtvIWv22afsPemLq6UlGVBQxRTg6qSAIgvDqEsmQYFSt/FphaWLJGrutJJNGGW0kEWoJlbmSRxGJ3PwvWq+8QqXCZeTT0VtjFi8h3cDJEwVBEAQhJyIZEozKytSK1qVbE/foLmvMDnJUdYUboRcJCHpaO3Rqx60sdy6oW7XColo15KQkon/4wRhhC4IgCK8QkQwJRte1fFduuz3BKvnpLas2SbewrGSL0lTBg5vx3Lv6WK+8JEm4jBkDwOP1G0i5crWoQxYEQRBeISIZEozO39GfMq4VuC2fA+CeMoqjwVepVN8dO1dLtBlZJ1C0rFkDdcuWoNUSNWtWUYcsCIKQb3369CkWU1kI/08kQ0Kx0LV8V8563sEqTUIryZjevkqV1j68N6kupfwds93HZcRwMDUl8eBBnoQeKOKIBUHIyYt+7H19fZk7d67eY0mSWL16dZay/v7+SJKkN8N5Zvnnl6+//jrXuMLDw/X2sbW15c0332TTpk165ZYtW5btORYtWmTQ9QslT4lLhhYsWKCbkK1WrVqEhobmWHbDhg00a9YMZ2dnbGxsqFevHjt27CjCaAVDtfZrzRMnJclPwgF4aBLB/v03USikHPdRlSqFw/vvAxA1axayRlMUoQqCUMC8vb1Z+tzdoUeOHCEyMhIrK6ss5adOnUpERITeMmTIEIPPt3v3biIiIjh69Ch16tShS5cunD9/Xq+MjY1NlnO8/7/vG+HVU6KSoTVr1jBs2DDGjx/P6dOnadSoEa1atcpxPpb9+/fTrFkztm7dysmTJ2nSpAnt2rXj9OnTRRy5kBtrlTWtSrfinOMVVBqJJCmVRyfOI8syGekazu+/x+MHWccVcvpkIEpbW1KvXePx+vVGiFwQil5aWlqOy/PTRbxs2aLw/vvvExISwp07d3TrlixZwvvvv4+JSdaJEtRqNW5ubnpLdklTThwdHXFzc6NixYpMnz6d9PR09u3bp1dGkqQs57CwsMj12JMnT6Z69eosXLgQb29vLC0teeedd3j8+HGO+zxfWwZQvXp1Jk+erHfcUqVKYWZmhoeHB0OHDjX4eoXclajpOL777jv69etH//79AZg7dy47duzg559/ZubMmVnKP//mmjFjBv/88w+bNm2iRo0aRRGykAddy3Wl98W/qXsuBo2dE84ZKZz67wGPTsdy5Ugkleq781avSnr7KG1tcfp0EA9mzOTh/B+wad0GpbXhX4qCUBLNmDEjx23lypXTq8GYPXt2jvNp+fj48OGHH+oez507l6TnBjN99ge5sLi6utKiRQuWL1/OhAkTSEpKYs2aNYSEhPD7778X2nnT09P57bffgIKd7ywsLIy1a9eyadMm4uPj6devH59++mm+J3P966+/+P7771m9ejX+/v5ERkZy9uzZAotXKEE1Q2lpaZw8eZLmzZvrrW/evDmHDh0y6BharZaEhAQcHBxyLJOamkp8fLzeIhSNAKcASruUZ5vfMWqb+FNd48udXeEENPYE4MrRSJ48Ssmyn/2772LqUwpNdDSxSxYXddiCIBSAvn37smzZMmRZ5q+//qJMmTJUr14927JjxozJMqN6cHCwweeqX78+1tbWmJubM3LkSHx9fenWrZtembi4OL3ju7m5GXz8lJQUli9fTvXq1WncuDE//PADq1evJjIy0uBjPOv27du4ubnRtGlTSpUqRZ06dfjoo4/ydSwheyWmZig6OhqNRpNlZmBXV1eD32Bz5swhMTExy5v+WTNnzmTKlCkvFauQP5Ik0aV8F2Y8msEe9X6qXOtK5eg0lDYmeJa3497Vx5zZdYeG3crp76dS4TJyJPeGfkbMkqXYdeuGaR6+uAShpPniiy9y3CZJ+v3sRo8ebXDZYcOGvVRcL6NNmzYMGDCA/fv3s2TJEvr27Ztj2dGjR9OnTx+9dZ6engafa82aNVSsWJGrV68ybNgwfvnllyx/JKvVak6dOqV7rFAYXndQqlQpvLy8dI/r1auHVqvlypUreUqqMr3zzjvMnTuX0qVL07JlS1q3bk27du2ybUIU8qfE1Axlev7DK8tylnXZWbVqFZMnT2bNmjW4uLjkWG7cuHHExcXplmfbsIXC16Z0G8yV5uxQ7uWeaRrJ0hOObDxPzRZPZ4u+cOAeyU+y9mNQN2uGRe1ayCkpPJw7r6jDFoQipVKpclyeb+552bJFxcTEhA8++IBJkyZx9OjRF3ZWdnJyomzZsnqLIf15Mnl7e1OuXDnatGnDokWL6N69O1HPjWavUCj0jl+6dOl8X1vmb1ROv1UKhSLL4LLPNm16e3tz5coVfvrpJywsLBg0aBCNGzfOsflTyLsSkww5OTmhVCqz1AJFRUVlqS163po1a+jXrx9r166ladOmLyxrZmaGjY2N3iIUHRuVDS18W+AQr+Joagh/mx3jSfhl3MvZ4eRtTUaalv/23c2ynyRJuH7+OQBx//xDysWLRR26IAgvqW/fvoSEhNChQwfs7e2L5JyBgYEEBAQwffr0Ajvm7du3uX//vu7x4cOHUSgUlC9fPtvyzs7ORERE6B7Hx8dz8+ZNvTIWFha0b9+e+fPnExwczOHDhzl37lyBxfy6KzHJkEqlolatWuzatUtv/a5du6hfv36O+61atYo+ffrw559/0qZNm8IOUygAXct3Jd4qnSdx4QDcVt7j5K4warX0BeDcvrukpWRk2c+ialVs2rQBWebBrNlZ/tISBKHoxMXFcebMGb0lpzt/M1WqVIno6Ogst9k/LyEhgcjISL3lZfp3jhw5koULF3Lv3r18H+NZ5ubm9O7dm7NnzxIaGsrQoUPp1q1bjk1kb731FitWrCA0NJTz58/Tu3dvlEqlbvuyZctYvHgx58+f58aNG6xYsQILCwt8fHwKJF6hBCVDACNGjGDRokUsWbKES5cuMXz4cG7fvs3AgQOBp01cvXr10pVftWoVvXr1Ys6cObz55pu6D01cXJyxLkEwQDXnavg6lSFcfRtTDSRLadw7/h9+1Z2wc7XErYwtqUlZkyF4OhCjpFKRdOQIT/LQoVIQhIIVHBxMjRo19JaJEyfmup+jo2OuTV4TJ07E3d1db/n8fzXD+dG2bVt8fX0LrHaobNmydO7cmdatW9O8eXMCAgJYsGBBjuXHjRtH48aNadu2La1bt6Zjx46UKVNGt93Ozo7ffvuNBg0aULVqVfbs2cOmTZtwdMx+QFoh7yS5hP35vGDBAmbNmkVERAQBAQF8//33NG7cGHg66ml4eLjuroKgoCBCQkKyHKN37956I5q+SHx8PLa2tsTFxYkmsyK08tJKft01hzZX3iTJ2QVnrQ3t3+mJazkHVOYv7jQYNWcOMb8tQlW6NKX/2YhUgLfMCkJRSUlJ4ebNm7pBZoWSYfLkyWzcuJEzZ84YO5TXwos+J3n5/S5RNUMAgwYNIjw8nNTUVE6ePKlLhOBpVeKzt1cGBwcjy3KWxdBESDCetqXbkuigIFZzE4UMDxXxnNt6OtdECMDx449R2tuTduMGj//6qwiiFQRBEEqyEpcMCa8HWzNbmvs054rXI8wTEgCIfnKDpKhEAJ48SuH4lptotVkrNpVqNU6DPwXg4Q8/onnypOgCFwTBaAYOHJhl/KHMJbM7xcvy9/fP8Rz5HVRRML4S10xW1EQzmfGcenCKfpv70PVgedJLBWAtm9O4VHNq96nO8i8OkRSXRvP+/pSrnfVuQjk9nRvtO5B28yaOH32Ey8gRRrgCQcg/0UyWd1FRUTl2pLaxsXnhsCqGunXrVo63tLu6uqJWq1/6HILhCqqZLF8jNmm12mwHoNJqtdy9e5dSpUrl57CCoKeGSw1KOfpxtOwdGpo14J2HNUkPS4R0Lf4NPTi+JZyT229RtpZLlvE7JFNTXEaP5u6gQcQuX479u90xzcOgbIIglDwuLi4FkvC8iLiD69WUp2ay+Ph4unXrhpWVFa6urkyaNAnNMzOFP3z4ED8/vwIPUng9SZJE1/JduemZxJEyh7iFjLkMN/eEU7WJNyZmSmLuPuH2hdhs97duEoRl3brIaWlEzZlTtMELQgERlfeCkLOC+nzkKRn68ssvOXv2LCtWrGD69OksX76cDh066M1sLD64QkFqV7odpgpTrsVd5pRHIlpkHh8Nx8zCBP+GHgCc2nEr230lScJ1zOegUBC/dRsJe/dlW04QiqPM0aGfnzhVEIT/l/n5eNmJdvPUTLZx40aWL19OUFAQAJ06daJNmza0a9eOf//9F8h5uHFByA87czua+TRjz+XtxEX9wxqVHxao8D3tT/Wm3pwLvsv9a4+JuB6HexnbLPubV66MY98PiVm0mMjJk7GsXQul6PsllABKpRI7OzvdNBGWlpbi+1UQ/keWZZKSkoiKisLOzk5vkMr8yFMyFB0drdde6ujoyK5du2jRogWtW7dm0aJFLxWMIGSna/mu7AjbhsntSJL8PEiUUrmw8yyNxrWgwptuXDoYwant4bT5tFq2+zsNHkzC7j2khYfz4Jtv8CjAYfcFoTBljlj8/LxZgiA8ZWdnl6/Jb5+Xp2TI29ubS5cu6fULUqvV7Ny5k+bNm9OpU6eXDkgQnlfbtTbe9j7ccH9M2bhHpNrZE558gzrh8dRs7kPYyShsXS2RtTKSIutfzgpzc9xnTOfW+z2JW78Bm1atsW7YwAhXIgh5I0kS7u7uuLi4iEk5BeE5pqamL10jlClPt9YPHTqUiIgI1q1bl2VbQkICzZo14/jx43qdqks6cWt98bD8wnJ+C55L+6NlSSrtjyRLdHRtTrVB9UhP1WBqlvsHInLGDB79vgITD3dK/7sJpbVVEUQuCIIgGEOhjUA9ZcoUJk+enO02tVrN7t272bt3b14OKQgGaV+mPUk2Eg8tH6FKTkGWZG7cv0JGTLJBiRCAy7BhmHp5kXE/gqg53xZyxIIgCEJJkadkyN7eHn9//xy3W1tbExgYqHtcpUoV7ty5k//oBOF/7M3tebvU21wt9QRFzF0ALivvEbH3pq7M/bDHnN+f86zTCktL3Kd9BcDjVatJPHqscIMWBEEQSoRCnY4jPDxctHMLBaZr+a7ccktEkxqLSYaGVCmdG2cvo03OIOpWPH9/e4oDa6+RGJea4zGs3nwTu+7dAYiYMAGtuG1ZEAThtSfmJhNKjDfc3sDTrhTn/eLQmqdRO6U6ZTKcSTgWgXMpNa5+NmgytJzd8+LaSJfRozBxdyf9zh0ezptXRNELgiAIxZVIhoQSQyEp6FK+C+fLxHOp+l32mVgDELv/LmhlarV8OuzD+f33SE3KuUZSaW2N+9QpT/f9fQVJp04XfvCCIAhCsSWSIaFE6VCmAyYKE87H/IeyZjoxaJESU0k+H41vFSccPKxIT9FwLiTnvkMA1o0aYdupE8gyEePHo03NuWlNEARBeLWJZEgoURwtHHnL+y0kGcwf72CPfJSVZqHc2nMFJKjZ4mnt0H9775Ce9uIhHlzHjsHE2Zm0mzeJ/vHHoghfEARBKIYKPBm6d+/Ff5ELwsvqUr4Lkgxm+66SrI0iXdJwKTaMtFvxlKvtgtrRnOSEdC4djHjhcZS2trhNmQxAzOIlJJ87VwTRC4IgCMVNgSVDkZGRDBkyhLJly+rWLVy4EFdX14I6hSAA8Kb7m7jbeHLNKwFlbCQAV5T3iAkOR6FUUKNZKWyczLFQ5z5xn/qtt7Bp0wa0WiK+GI/8zKTDgiAIwushT8nQ48ePef/993F2dsbDw4P58+ej1WqZOHEipUuX5siRIyxZskRXvkePHlhZiVF+hYKlkBR0Ld+Vq95PMHnyGGV6OqlSBhevXSIjJpnKDT14f8qblKttWCLuOmE8SgcHUq9dI3rhr4UcvSAIglDc5CkZ+uKLL9i/fz+9e/fGwcGB4cOH07ZtWw4cOMC2bds4fvw47733XmHFKgg6Hct2JNka7jslY/K/2qELyrskHLiH0kSBQmn4W9vE3h63iV8CEL1wISmXLxdKzIIgCELxlKdkaMuWLSxdupRvv/2Wf//9F1mWKV++PHv37tUbeVoQCpuThRNB3kFc9X6C6eNoJK3MI8UTrp24hDY5AwBNhpaLB+9z53JsrsdTt2iBulkzyMjg/hdfIIvBQgVBEF4beUqG7t+/T+XKlQEoXbo05ubm9O/fv1ACE4TcdCnfhduuSaSapmMS9xCAi9wm8djTmqLTO2+xb8Vljmy8QW7zEUuShNvEL1HY2pJ68RIxS5YWevyCIAhC8ZCnZEir1WJq+v+dUpVKpegTJBhNPfd6uKs9uOKVgKmUijbFgXrp5Yk/eA9Zo6VyQ0+UpgqiwuO5d/VxrsczcXbG7YtxAET/+COpYWGFfAWCIAhCcWCSl8KyLNOnTx/MzMwASElJYeDAgVkSog0bNhRchIKQA6VCSedynfkp4UcUbhrun69KlxgJq/g0ks9FY1ndhUr13Tkfco/jm2/iWd4OSZJeeEyb9u2J37qNJyEh3B8/Ht8//0RSKovoigRBEARjyFPNUO/evXFxccHW1hZbW1t69uyJh4eH7nHmIghFpWPZjiiUSk5GnaRpTQUbeHprfPz+u8iyTM0WPpiYKrh/7THXjj/I9XiSJOE2ZTIKa2tSzv5H7O8rCvsSBEEQBCPLU83Q0qWiH4VQvLhaudLYqzH77uwjTbGfeylmbFWbUfqBC/bhZVD72VKrlS9H/73Bgb/C8KnihJnFi9/2pm5uuIz5nMgvJ/Jw7lzUTYJQ+foWyfUIgiAIRU9MxyGUeF3LdwUZMv44SJmUS9xXxnJeeYf4/XcBqNGsFHauliTHp3H03xsGHdOua1es6tdDTk0lYsKXyFptYV6CIAiCYEQiGRJKvAYeDXCzduO6WwKmcTGglXmsSOTGlTAyopNRmipo/G553Mva4t/Qw6BjSpKE29SvkCwtSTpxgkerVhXyVQiCIAjGIpIhocRTKpR0LtuZq95PQNZg+vjpbfYXlHd4cug+AN6VHOg0siaOntYGH1fl5YnLyBEARM35jrS7Yt49QRCEV5FIhoRXQqdynUixlLnjnITq0dOO0rcV0UScuIE26ekAis/eSZaWkmHQce3few/L2rWRk5KInPhlruMVCYIgCCWPSIaEV4KblRuNPBtxtdQTFGmpSIkJIMEF7W0Sj0fqymWkaTiw7hp/fHmY5ITcJ2WVFArcp09DMjcn8dBhHv/1V2FehiAIgmAEIhkSXhldy3flnnMySRZazGMiALiivM+jA7eRNU87QCuUEncvPyI5IZ3Df1836LgqHx+cP/sMgKhvZpEeGZnLHoIgCEJJIpIh4ZXR0LMhzlYuXPaOR5mUQEIKBGSUQ07IIPlcNAAKpYLAHhUAuHQogoiwxwYd26HXB5hXq4r2yRMiJk0SzWWCIAivEJEMCa8ME4UJncp24nKpBMK6OxFRpiWnNI4oURC/746udsi9jC2VGrgDELLqClpN7rfNS0olHtOnI5makhiyn/h//y3UaxEEQRCKjkiGhFdK53KdSVfJHIw/QasapmwgjXhkMh4k8eRwhK5cvU5lMLMyIeZeIv/tu2vQsc3KlsVp8GAAImfMJOPhw0K5BkEQBKFoiWRIeKV4WHvQwLMBAA/Zj4sqkWWKG+w3uUTcrnA08U87TVtYq6jfqSwAxzbd5MmjVIOO79j3Q8wrV0YbF0fk1KmiuUwQBOEVIJIh4ZXTtXxXAMLXbaPljdWYm4Zz1eQ+lzPuELftpq5cpfruuPrZIEkQc/+JQceWTE1xnzEdTExI2LWbhO3bC+UaBEEQhKIjkiHhldPYqzHOFs5EmyWiSE9DE/sYgKMm13hw+hapN+IAkBQSTftUpseUN/HxdzT4+OYVK+I0YAAAkV9NIyM2tsCvQRAEQSg6IhkSXjmmClM6lu3INa8nyBLYR4URm2FGuqQh1PQSj/65hqx52rxl52qJla1Zns/hNOBjzMqVQxMby4PpMwr6EgRBEIQiJJIh4ZXUuVxnUsy03HJNRALMkxLJkBXcVz7iv+hrPDl8P8s+ty7EcH6/YVNuSCoV7jNmgEJB/JYtJOzZU8BXIAiCIBQVkQwJryQvtRf1PepzyScBANf7Z7mZ8nResmMmYdzddQnNMyNQ37/2iM0/nOXAumvEPUw26BwWVQJw7NcXgIjJk9HExRXwVQiCIAhFQSRDwiura/muPHBM5ZZfOsgyNSKPEaWxJAMNERkxxG39/87U7mXt8KxgjyZdS+iaqwbfJeY0eDAqPz80D6N58PU3hXUpgiAIQiESyZDwygryDsLR3JH95SMwd3fC1saah6aenEvzp5zGg6TTUaTe/F9nakki8L3yKJQSt87HcPNstEHnUJiZ4T59OkgScX//zZPQ0MK8JEEQBKEQiGRIeGVldqTWKGXONYQPvp7L571acVK25F+eNpE9/idM15na3s2KGs1KARC65irpqRqDzmNZswYOvT4AIOLLiWieGHabviAIglA8iGRIeKV1q9ANlULFwcSTHIw5yhu+DvSoW4rf5CTuKp4QHH2K+EP/PwJ1rda+qB3NefIolRPPNKPlxvmzzzD19iYjMpKo2d8WxqUIgiAIhUQkQ8IrzcPag97+vQGYfXw2yenJtDO9Qaf7q9hqepJLJvc4tDtU15naVKWkcffyAJzZdYf4GMM6UyssLXGfNg2Ax2vWkHjkSCFcjSAIglAYRDIkvPL6V+mPm5Ub957cY+l/i7kavBPrtHhSomMAOEEYN/8+qyvvW9WJgEBPWnwcgNrB3ODzWNWtg9177wIQMeFLtImJBXshgiAIQqEQyZDwyrM0tWRk7ZEALLm0jDc+/hATMzNcoq+RkapEI2nZERZK8vVHun0C36tA6erOSJKUp3O5jByFiYc76XfvEjV3XoFehyAIglA4RDIkvBZa+LSgjlsdUjWp/HZvJU37DUIC1LdPI8lKHiriCVm3U9eZ+lnJCWmkJmcYdB6ltRXuU78C4NEff5B08mRBXoYgCIJQCEpcMrRgwQL8/PwwNzenVq1ahL7gVuaIiAh69OhBhQoVUCgUDBs2rOgCFYoVSZIYW2csSknJ7tu7iS9niX9QU0wy0jCJigDgWPJlwnef19vv+qkoVk46wtGN1w0+l3XDBth26QyyTMT4CWhTUgr0WgRBEISCVaKSoTVr1jBs2DDGjx/P6dOnadSoEa1ateL27dvZlk9NTcXZ2Znx48dTrVq1Io5WKG7K2ZfjvYrvAfD1sa9p3LsfDp7emMXexjxFiVaSOXroiN7I1GaWJqQmZXB+/z2ibsUbfC7XMWMwcXYmLTychz/8UODXIgiCIBScEpUMfffdd/Tr14/+/ftTqVIl5s6di7e3Nz///HO25X19fZk3bx69evXC1ta2iKMViqNPqn+Cg7kDN+JusO7mBtoNH4upuQXnEsA3vTT1U8sTt+3/b6n3quhAuTdckWUI+fMKWq1hI1MrbWxwmzIFgNily0j+779CuR5BEATh5ZWYZCgtLY2TJ0/SvHlzvfXNmzfn0KFDBXae1NRU4uPj9Rbh1WGjsmFYzWEA/Hz2Z3Cy4uMfF/NGp+6s1jgDEkmnokgN//95xhp0LYvKXEnUrQQuHsg6wWtO1G81waZdO9BqiRg/Hm1aWu47CYIgCEWuxCRD0dHRaDQaXF1d9da7uroSGRlZYOeZOXMmtra2usXb27vAji0UDx3KdqCKUxUS0xP5/uT3WKht+CSoDBkulmyRU8lAQ8jqnWSkPe00bWVrRt0OpQE4svE6SfGGJzWuX4xD6ehI6rUwonOowRQEQRCMq8QkQ5mev9VZluU83/78IuPGjSMuLk633Llzp8COLRQPCknBuDrjAPj3+r+ciTqDmYmSiQ0deRCxlv9r777Do6gWPo5/Z/sm2fTeEwKhhN5DVRSwgL037ChW1Ndy9erVe0XsimLvFQsqojRBekkIhJqEQHrvffvM+8eGhZiglEAo5/M8ecLOzM6cWSDzy6m/a7ew3rKLP7793f2epLERBEZ5YW1xsOGnvYd9LY2fH6FPPQVA9fsfYNm9u3NvRhAEQThmp0wYCgwMRK1Wt6sFqqioaFdbdCz0ej3e3t5tvoTTT9+gvlyScAkAz296HqfspHeoF16OKox1NQBs2reVor2uzvkqtYpx1yYiqSS0OjXKYfYdAvCePAnTpEngdFLyrydR7PbOvyFBEAThqJ0yYUin0zF48GCWLVvWZvuyZctITk7uolIJp7L7B92PSWsioyaD+XvnExgdy9ib7qC2YhsRNm8USeGn73/E4XA1l4XG+XDDf0cy9hpXKDoSoU89idrHB2tGBtUffng8bkcQBEE4SqdMGAKYOXMmH374IR9//DEZGRk8+OCDFBQUMH36dMDVxHXjjTe2eU96ejrp6ek0NTVRWVlJeno6u0VThQAEGAOYMXAGAG9ueZN6az1DJ07Gp+9wpOIsDIqWams9y39Z4n7PkSzPcTBNYCAhT/4LgMq572DNzj72GxAEQRA6xSkVhq666ipef/11nn32WQYMGMDq1av5/fffiYmJAVyTLP51zqGBAwcycOBA0tLS+Prrrxk4cCDnn39+VxRfOAldlXgVCb4J1FnreGvrW0iSxA0PP0Sl2kpCvR6AjTtSKSooavO+2rJmfn9nO021hz+hoveFF+I1fjzY7ZQ88S8Ux+HNai0IgiAcX5KiKIff+eEM1NDQgI+PD/X19aL/0GkqtSyVW5bcgkpS8d2F35Hon0jW7kwW/fcZfONHk6epItQ7iDsfvNvdWf/n17ZQnFVHt0HBTL4j6bCvZS8vJ+fCKciNjQQ/8ggBt95yvG5LEAThjHYkz+9TqmZIEI6HoaFDmRQ7CVmReX7T8yiKQmLvnnidNRVndTPxzhDG1iUiNx3o+Dz6ih5IKol9Wyoo2FV92NfShoQQ8tijAFS++SbW3Nx/eIcgCIJwvIkwJAjAw0MexqgxsqViC7/nuobU33zL1SztO4pwey+8bfo2M1MHRnrR76xIAFZ/uweH3XnY1/K59FI8k5NRrFZK//Ukiix37s0IgiAIR0SEIUEAQj1Dub3v7QC8uvlVWuwtqNUq/nf5AN5UWZFRaNlSQdb6ndhaZ5IedmEcnj466ivNbF3a8fp4HZEkibDnnkXl4YF5yxZqv/r6uNyTIAiCcHhEGBKEVjf1uYkoUxQV5gre2/4eAAnBXpwzIZ5USzFpmn18s/QHli9fDoDOqGHUFd0BSFuUT31ly2FfSxsRQfAjDwNQ8eqr2MTknoIgCF1GhCFBaKVT63h0qKs/z+e7Pye33tUsNn1cN/40VOPnMAKwadMm8vLyAEgYHExULz+cDpmty44s0PhedRUeQ4eimM2UPvkUYiyDIAhC1xBhSBAOMi5qHGMixuCQHcxOnY2iKOg0KqZNv5bMhjJ6OMIB+Gn+fGw2G5IkMfbqREZe0o0xV3Y/omtJKhVh/30OyWCgZdMm6r77/njckiAIgvAPRBgShL94dNijaFVa1hWvY2XhSgCGxPpTclYyCS1+eCp66hsa3LOh+4Z4MGhSDGrNkf930sXEEPzgAwBUvPgi9tLSTroLQRAE4XCJMCQIfxHjHcONvV0zmb+Y+iJWpxWAh6cO5FOjirH23gCkpqaS+5eh8U6nTHFW7RFdz+/66zEOGIDc3Ezpv58WzWWCIAgnmAhDgtCBO/rdQbBHMEVNRXy681MAvPQaLr1uNHkWOz0dEYCruczeuvCqtcXOvP+msuCNdKqLmw77WpJaTdjz/0PS6Whes4b6n3/p9PsRBEEQDk2EIUHogIfWg4eHuEZ7fbjjQ0qbXM1X5/QOIbVfLH1t0QTKJkbHDkWr1QKg99DiG2xElhVWfZN1RDU8+vh4Au+5B4DyWbOwV1R08h0JgiAIhyLCkCAcwuTYyQwJGYLFaeGlzS+5t//fZUl8odNwkW0oQVtVOJts7n2jr+yORqeidG89WZvKjuh6AbfcjKFPH+SGBsr+86xoLhMEQThBRBgShEOQJInHhj2GSlKxLH8ZG0s3AhBsMjBgSgJ7kNE6FAq/28WONSuxWCx4BxgZekEcAOt/3Iul2X7oC/z1ehoNYc8/D1otTcuX0/D778fhrgRBEIS/EmFIEP5Gon8iVyVeBcALm17ALrvCzVXDolkcpgOgdG8+Py1dwc8/uIbG958QhV+oB+ZGO5t+yTmi6xkSexB4550AlP3nWWwFhz+ztSAIgnB0RBgShH8wY8AM/PR+7Kvfx7eZ3wKuWqO7ru3Hb5INraJGVqnI3LuPXTu2o9aoGHdNIgA71xRTkd9wRNcLvON2DP37ITc0UHTvfchmc6ffkyAIgnCACEOC8A989D7cP+h+AOamz6XKXAVAfJAX0rhIPGVvkpzRAPw8fz4tLS1EJPrRY3gIET180Rk0R3Q9Sacj8o03UAcEYM3KEsPtBUEQjjMRhgThMFzS/RL6BPShyd7E62mvu7dPO6c7P3tLDHHE4y0bsCvwzScfATD+up5c9MBAfEM8jvh62tBQIl57FdRqGn79ldovv+qsWxEEQRD+QoQhQTgMKknFE8OfAOCXfb+wrXIbADqNisnXJbEPGG9PAgUKK6vZuOpPtDo1kiS5z3GktTuew4a5F3Mtnz2bls2bO+dmBEEQhDZEGBKEw9QvqB8XdbsIgFmbZiErMgADY/3J7OtHsOJDP2cMAH/8uYqWFtcq9tYWO6u/3cOKLzKP+Jr+N92E9/nng8NB0QMPYi8X8w8JgiB0NhGGBOEIPDD4Aby0Xuyq3sVP2T+5t990eR9WaJ0McsRhko306dsXlcr136uuwsyOVUVkri+leM+RLdUhSRJh/30OfffuOKuqKL7/fhSb7Z/fKAiCIBw2EYYE4QgEGgO5q/9dALyx5Q3qrfWAa6mOmMu6Y0bFpbZh9PEYgMFgACAk1ps+Y1zLd6z6Zg9Op3xE11R5eBD51hxUJhPm9HTKX5jdiXckCIIgiDAkCEfoml7X0M2nG7XWWt5Of9u9fdyACNaH69GiQVldgrXWTMqCHynKzmLERfEYTVpqS5vZtrzwiK+pi4kh/EVXCKr9+mvqfvq5s25HEAThjCfCkCAcIa1Ky+PDHwdgXtY8smqy3Pum3NSfvZKMpwJr3/iNJavX8tUnHwM2Rl6SAEDqwlwaayxHfF3TWWcROGMGAGXPPIN5165jvxlBEARBhCFBOBrDw4Zzbsy5yIrMrJRZ7pFiwT4GWsaFAxBgNeL09MasM/Ld3DdIHB5CWIIPDpvMuu+zj+q6gTPuxnPcWBSrleJ778NRe2R9kARBEIT2RBgShKP0yJBHMKgNpJWnsThvsXv7eZMSSDFJBCredFdco8ty6lvYvGQh465JRFJJFGXV0lxnPeJrSioVES++iDY6GntJCSUPPYzidHbaPQmCIJyJRBgShKMU5hXGrX1vBeDlzS/TYncNpZckiYE3JNGIwhhbNzwlA2g0LF3xJw5bOefe0ptrnxmBp6/+qK6r9vEhcs6bSEYjzevXU/nmnE67J0EQhDORCEOCcAxuTrqZCK8IKloqeH/7++7tcdG+5PTyQYWKMZZ+SIDDy4fv5s4hpo8JD2/dMV3XkJhI2HPPAVD93ns0LFt2TOcTBEE4k4kwJAjHQK/W8+jQRwH4bPdn5Dfku/ede20S+RqFSMVEpDoegGqDF3vTt7qPyd1eRV1Fy1Fd2+fCC/C/6UYASh97HGtOztHehiAIwhlNhCFBOEbjo8YzKmIUDtnB7JQDcwDptGp8LuoGwLnNMXgZvfHx9SMg3jWqbPPvufw+dztrvt1z1AuxBj/8MB5DhiA3N1N0z704m5qP/YYEQRDOMCIMCcIxkiSJx4Y+hkalYU3xGlYVrnLvSxoawZ5gPSpU9G9I4uY77iIkJASAhMEhqDQSBbtr2Lel8uiurdUS8fpraIKDseXkUPrEE2KFe0EQhCMkwpAgdIJYn1hu6H0DALNTZ2N1HhgpNvSmvjRJCr2cRpZ961qfrCIvhxWfvkT/s0MBWPt9NjaL46iurQkMJPLNN0CrpXHpUmo++ugY70YQBOHMIsKQIHSSO/vdSZAxiMLGQj7f9bl7uynASMtwV21Q0r4m0neX8tXcOeyuqKGmcCGmAD3NdVZSF+Ye9bWNAwYQ+q8nAKh49TWa168/tpsRBEE4g4gwJAidxFPrycwhMwH4YMcHlDWXufcNnNqDcqMKExLbv9tOk5cfDpMfO3bvIqaXayX6bSuKqC5uOurr+151FT6XXgqyTPHMh7AXFx/bDQmCIJwhRBgShE50QdwFDAoehNlh5uXNL7u3SyqJqKsSATjb4kFAaD8ArMFRpC2fR3h3GUVWWPV11lH3+ZEkidB/P4WhTx+cdXUU3Xc/svXIJ3YUBEE404gwJAidSJIknhj+BCpJxZK8JaSUprj3BfcMpCLWC4DEHB+CQ8NBraY5MJyawh/wC9MyaHIMkiQd9fVVBgORb76B2tcXy65dlP3nWdGhWhAE4R+IMCQInSzRP5ErelwBwKyUWTjkAx2j+13XmxYVJKLB1hiHRqPB6elNhcWKf3AasX0Dj/n62ogIIl59BVQq6ufPp27ed8d8TkEQhNOZCEOCcBzcO/BefPW+7K3by7ysee7tGpMe/fhIACZV6wlJGAyANTiSmupqHDYbwFGPLNvPMzmZoAcfAKDsf//DnJ5+TOcTBEE4nYkwJAjHgY/eh3sH3gvA21vfptpc7d4XPSGWepMGExLSDj0RUdGoNBqSplyORqdjx8oiPn9iPWW59cdUhoDbbsM0cSLY7RTddz+OqqpjOp8gCMLpSoQhQThOLut+Gb38e9Fob+SNLW+4t0tqidhregEw2aml0p7AnXdOp1///gCU5zVgabax4rMMzI22o76+JEmEPf88uvh4HBUVFD84E8VuP7abEgRBOA2JMCQIx4lapeaJ4a65f37a+xM7Kne493nG+2Lt6QfA8DyZ3TWu7XabFVvTMnD8SW1ZC7+8vhVz09EHIrWXJ5FvzUHl6UlLaioVL79y9DckCIJwmhJhSBCOowHBA5jabSoAz296HlmR3ftiL++BTS2RiJpV32XQbHWwa3MqW/dmY2nahlqVRXVxM7+8lo6l6ehrdPTx8YS9MAuAms8+o37hb8d2U4IgCKcZEYYE4Th7cPCDeGo92Vm9k1/2/uLervbS4Ts5BoArzSreWrCTJWvWYfcNxO4fQkvN70hso6qokZ9f33pMgcj73HMJuOMOAEqfegpL1p5juylBEITTiAhDgnCcBRoDuav/XQC8vuV1GmwN7n1+yZFY/fV4I+GTVk3PwaMAsIVE4dDqMdcuR7H/QVVhHRkbSo+pHEH334dncjKK2UzRvffibGj45zcJgiCcAUQYEoQT4Nqe1xLnE0eNpYa56XPd2yW1ROSVrpmpL0THkjQn8d26oQD0HoTTwxtb8w50mgV0H+J1TGWQ1GrCX3kZbXg49oICSh75PxRZ/uc3CoIgnOZEGBKEE0Cr1vLYsMcA+DbzW7Jrs9379LE+qPu5Jlu8rFahPqgfJpOJFquNlpge2KK60dJcgbnRVZPjtMtYW46uyUzj50fEnDeR9HqaVq2iau47x3hngiAIpz4RhgThBEkOT+ac6HNwKk5mpcxqs0xG8JRuOLQqElGTt7qCC6+axuDBrRMyevnR97LrCIqOxWmXWfz+Dn55PR1L89EFImOfPoQ+8wwAVW+9ReOffx7zvQmCIJzKRBgShBPo4aEPo1frSS1LZUn+Evd2tUlHwORYAG6V9by0cA8XXnghN998M4MHD+bsC10j0hprLRRm7qIkazEL3th61DVEvpdcjN+11wBQ8n+PYsvPP7YbEwRBOIWJMCQIJ1CEVwS3Jt0KwMupL9Nib3Hv8xoRjhJkxBuJQXktfL+5iJiYGKZMmeJevFXSWKj03onZmEvR7i/5+dVNRx2IQh57DOOAAciNjRTdex9yS8s/v0kQBOE0JMKQIJxgNyfdTIRXBOUt5Xy440P3dkktEXxZdwAuRMtXP+9m3d62S2jszMjAqdVhDY2mKUJPwd7P+PGlP7Gaj3wtM0mnI+KNN1AHBmLds4fSp/4tVrgXBOGMJMKQIJxgBo2BR4Y8AsCnuz6loKHAvU8f64NhYDAqJB516vnXJ5tZm30gEI0cOZIpU6ag02qRjZ40x4STW/UL3/7vh6MKRNqQYCJffw00Ghp++43azz8/9hsUBEE4xZxyYWju3LnExcVhMBgYPHgwa9as+dvjV61axeDBgzEYDMTHx/Puu++eoJIKwqGdHX02I8NGYpftvJj6Ypt9fufHofLWEY2at5xGXv80jdV7KgFQqVQMHjyYe++7j8TuCSBJ2AOCyJO38fuXXxxVzY7HkCGE/N//AVD+4ks0p6Qc+w0KgiCcQk6pMDRv3jweeOAB/vWvf7F161bGjBnDeeedR0FBQYfH5+bmcv755zNmzBi2bt3KE088wX333cePP/54gksuCG1JksRjwx9DI2lYVbSK1UWr3fvUJh0hMwagifDEFxUvOY38+Gk6q1oDEYDJZOKa667nqiuuQCtJKDo9hRWFR10evxuux3vKFHA6KX5wJvby8mO6P0EQhFOJpJxCnQSGDx/OoEGDeOedA3Oj9OrVi4svvphZs2a1O/7RRx9lwYIFZGRkuLdNnz6dbdu2sWHDhsO6ZkNDAz4+PtTX1+Pt7X3sNyEIB3ll8yt8uutTok3R/HTRT+jUOvc+2eak+rssrDurAfhOsjHoxiTG9wppcw6r1cr8Lz/nvEsuw9ffn5qSZnReEp4mo7vj9eGQzWbyrrkWa2Ymxv79if7ic1Q63T+/URAE4SR0JM/vU6ZmyGazkZaWxsSJE9tsnzhxIuvXr+/wPRs2bGh3/KRJk9i8eTN2e8cjcKxWKw0NDW2+BOF4ubPfnQQaAyloLODz3W3766h0agKv64Xn2VEAXKnoqPp8N6t2tF2WQ6/Xc82tt+Pr709lYSM/vryZt154ifffeYeqqrYdsP+Oymgkcs6bqLy9MW/bRvnzzx/7DQqCIJwCTpkwVFVVhdPpJCSk7W/FISEhlJWVdfiesrKyDo93OByHfEjMmjULHx8f91dUVFTn3IAgdMBL58XMwTMBeH/7+5Q1t/23LEkSfhNj8bk6EbsEIxQNqq+yWJNa1OH5FFnBbE7FonFQWlHB3LlzWbVqFQ7H4XWu1kVFEfHySyBJ1H07jzrRpCwIwhnglAlD+/212l9RlL9tCujo+I627/f4449TX1/v/iosPPp+GIJwOC6Mv5ABQQMwO8y8uvnVDo8xDQgmZHo/GjUScajx+zGH9Stz2x0XHOPNJfddi3dRA+qmemRZ5s8//+S99947ZN+6v/IaO5bAe+8BoOw/z2LesfPob04QBOEQrA4n3375Ld9OHcVvS37p0rKcMmEoMDAQtVrdrhaooqKiXe3PfqGhoR0er9FoCAgI6PA9er0eb2/vNl+CcDxJksTjwx9HQmJR3iJSy1I7PM4jxoe4mYMpNUj4IhG2uJDUBXvaHRfVK5xr/vUMPjU+GIpzkBx2Kisr+fjjj1m4cCFWq/UfyxQ4fTpeZ52FYrNRdP99OGprj/k+BUEQWmwOft9ewsxXX+Pzq++kbqUJb+sw6t9/pUvLdcqEIZ1Ox+DBg1m2bFmb7cuWLSM5ObnD94wcObLd8UuXLmXIkCFotdrjVlZBOFK9A3pzRY8rAJiVMguH3HGzlsHfSP9Hh5PhrUaLRNj6crZ9vhNFbjsOIqybH1c9NROTNBzPfRlo61wj0fbsyTqsTtWSSkX4i7PRxcTgKCmleOZMlMNsahMEQThYvdnOT1uLuP2zFKY+9W+Kn7yMMSsbsQVei1OtwRo/iMBp/9elZTxlwhDAzJkz+fDDD/n444/JyMjgwQcfpKCggOnTpwOuJq4bb7zRffz06dPJz89n5syZZGRk8PHHH/PRRx/x8MMPd9UtCMIh3TvwXnz0PmTXZjMva94hj9MZtYx/ZDhrg12BPmB3LZlvb0W2tA0rIXHeXPb49Xj6XY5nVTWehXsZO2QwutYRYrIs09jYeMjrqE0m1wr3Hh60bNhI5RtvdMJdCoJwJqhqsvL1hlxuf2sJFz3xIfM/fIa+Cx7hxu1bsHuNpzFyNEkGFYMCzfj46Rlh7Nul5T2lhtaDa9LFF198kdLSUpKSknjttdcYO3YsANOmTSMvL4+VK1e6j1+1ahUPPvggu3btIjw8nEcffdQdng6HGFovnEjzMufx303/xaQzsfCShfgb/A95rMMp8/57m5lUYEGPhMVXR+wd/dH4G9ocV1XUiErdQnVRDt2HjnRvT0lJ4Y8//mDChAkMHToUlarj340aFi2i+EFXJ++IN97Ae9LEDo8TBOHMIstOmmpqaKgoR1KrkUJiWbKrjMXbS+i59i28HE2oOBAxVCo9pqCeBBhjGSr1BEBBYZNhL5MnTcZrZHinlu9Int+nXBg60UQYEk4kp+zk6t+uJrMmk/PizmPW6FmoVepDHu9wyrz46RbOz24mEBUOvZqwm/ugj/U55HuyNpZiCmjm+/nfU2t29R+KiIhgypQphIaGdvie8tkvUvPJJ6g8PIj9/jv03bod240KgnBKURSFlJ+/p76ijPqKchoqK2ioqkR2umqk63yi+cL/AtfBKgu35X+O0eFEkmX8PMJxBsVR7iljl5wYFC3X2Mfg2SsQz2GhGLr7IakOf060wyXCUCcSYUg40bZWbOWmRTehoHBW1Fm8MOYFPLQehzze4ZR5+qutnL27kUTUyCoIuKwHnoPbDyxIW5zHhp/24DR/gd1ai1ev/tToPLHZbKhUKpKTkxk3bly7PnWKw0HBLbfSkpKCLi6O2O+/Q+3l1en3LgjCidXSUE9DZQX1FeXUV5S5/lxZTkNFOT4hoVz62DPuY9+dfiPNtTVt3u9ERaPGizJ9KMvDh9Hffy0TUlfTL99EXeIIcsMDqdUeGLThI3nSL643yReOw+h/fH+GiDDUiUQYErrCotxFPLn2SWyyjV7+vXhrwlsEewQf8ninrPDYt+n0217LWbiCjNfYSHwmx7b5jat0bx2/ztmGpXEPDstiFKcVz5BwPAaOICffNfTez8+PSy65hOjo6DbXcFRXk3vZ5TjKyvA6ZwKRb76JdIimNUEQTg6W5qbWmpxy6ivKUak1DDpvinv/u3feQHNdx6NFvYNCuP2tj1AUhW1F9Sz56gv2lTdQYDPQoPGmQeuNVevJwASJIO1SeixZwbn50RijxpAW589OXQkAakVFpCaU5LNH0n1EH1TqE/NzQ4ShTiTCkNBV0ivSuf/P+6mx1BDsEczbE96mp3/PQx7vlBUe+S4d//RqpqEHwNDLH/+rE1HpNe7jSloDka2lAsX2K3ZLDVq9gaQrrmfrnn00NTVxxx13EBYW1u4a5u3byb/uehS7naAHHyTwzjs6/8YFQTgmS997k7KcvTRUlGNtaW6zzyc4hNvmfOR+/c1Tj1BfWY5PUAg+wSF4t373Cgwm32ZgZYmTJbvKKK23uN+j06gY2z2IwQlWSqq+J+jnNKLVI4jw6E2YRwIAtVITf2h34msJIyiiB+fcOhCD14kdxS3CUCcSYUjoSoWNhdyz/B5y6nMwaoy8NPYlxkWNO+TxTlnhkR+20bilnMcwokdCG+pBwI192nSsLsmu49e3tmE3N6FiKeb6fQAMu/RqAvsNplevXu5j98/kvn9Ifu1331H276dBkoj64AO8Ro86TncvCMLfsVss5KZvprqokJGXX+Pe/vWTD1GaneV+bfT2wScoGO/gUPxCwxh99YFR17LsRNXaL9HmkFm/r4olu8pYuquc6mab+zhPnZqzegZzXlIYgYFlzN/0HrF/NKM3JlLk6USWFOKdIZzlTKJMkchusFOHwqhLu9Pv7MgjWiexs4gw1IlEGBK6WoOtgZkrZ7KpdBMqScUjQx7hul7XHfKHi1NWePTH7exOK2UWRgJQofLUEnBDrzYdq0uya/l1zjbsVgdGj03UlWwguu8ALnv8P6jUrh+O5eXlvPfee8TGxnLhhRfi7+8a3Vb61FPUff8Dah8fYn/8EV1kxPH/IARBwNLcRM6WVLI3rSMvfQsOuw0kienvfo6nrx8AeelpOJ3O1gAUgs5gPOT5zDYnq/ZUsmRXGX9klNN40BQdPkYt5/YO4bykUJK7BbC1KoVfln9B/HYfGg0mmtQH1vgMlrzpHtqLvG0GbLKCd6CBSbcnERzTdc9NEYY6kQhDwsnALtv538b/8WO2a62wqxKv4rFhj6FRaTo8Xm4NRKvSinkBD3qgBrWE36Xd23SsLt5Ty8K3t5N8STc02n3E9h+E0cvk3r99+3YWLFiAw+FAo9Ewfvx4Ro4cieRwkH/9DVh27EDfuxexX3+NymDoqCiCIHSCvG1bSPv9Fwp2bHOP4ALwCQml+7BkBl9wMV5+h56K42CNFjsrMitYvLOMlVmVmO1O974gk55JfUKY3CeM4fH+qFWwIm8FKX8sZtzuaFJNFupULQDoFDWJHmEMm3w2Uf3jaa6z8u1/U4hM9GP89T3RGzv++XSiiDDUiUQYEk4WiqLw2a7PeDXtVRQURkWM4uWxL+Ol63hEhiwrPD5/B79sLuQpjIxr7VhtGheJ96QDHaub6614+ujbvX/tt58T238QHiHhLFy4kJycHMC12PGUKVMIUavJvexynDU1+Fx0EWEvzOqSqnBBOB011lSh0endv5zs/HMZS951TXwaEBlN9+HJdB+WTFBM3GH9v6tptrFsdxmLd5axbm81Nqfs3hfha+S8pFAmJ4UyKNoPlUrCLtv5dcPP5K3OZGJNEr7qQAC2q/MpoJi+ETEMvvEiLC0KvsEHRrs21ljw8tOfFD8LRBjqRCIMCSeb5fnLeWzNY1icFhJ8E3h7wtuEe3U8WZksKzzx0w7mpRZyO3pu3N+xuncA/lclotK3ncPI0mQnbXEefsHFLHr7ZVRqDRNunU7fsyexfft2Fi9ejNlsBmD06NGM9PKi4JZbQZYJ+fdT+F977fG9eUE4jdWVl5G9aR3ZKespzc5i/I23MfiCiwEwNzaw/Y/FJAwbSUBE1GGdr6zewtLdZSzaUcam3GoOXrWnW5An5yWFMTkplD7h3u7w0tBcz4KffqRiXzkNimtI/DhbbxIsJpyNGXif1xe/S85BUSBtUR6pC3OZdEcS3QYeerRrVxFhqBOJMCScjHZV7eLeFfdSaa4kwBDAnLPn0Deo4+nsZVnhXz/v4JuUQiai4UmVJypZQRvqScBNvdH4uZq3FEVh/ktbKMupJ7q3CcWxnOxNawEYMOlCxt94GxarlaVLl7Jt2zYmTpxIcnIy1R99TMVLL4FWS8xnn+ExaOAJ+xwE4VRXXVTAnk3ryE7ZQGVezoEdksSAiecz4Za7juh8BdUtLN5VyqKdZWwtqGuzr0+4t7sGKCHY1Gbf3l2ZrFzyBxX1tdik1mYzBSIsevpU1dLn0rPxPm8ikkpFc72VZR/vojjLdf5+Z0Uy5qoeR3rrx50IQ51IhCHhZFXWXMaM5TPYU7sHvVrP86OfZ2Jsx0tlyLLCk7/s5OtNBfRBzRy9NzqrE5WXloAbeqNv7eRYmFnDb29vx2mXiekbQEBIBuu//xKAqD79mPLgYxhN3uTn5xMZGYlarUZRFLY/9DDOFSvwUKkIuOUWAm6ehsrT84R9FoJwKrJbLLx92zU47a6OyJJKRVTvvnQfPoqEoSMOqw9QvdnOxpxq1u2tYu3eKnIq2w6lHxzjx+Q+rgAU5d928lbFLlO+NZe9q7bxR/N293ZPWUu3SgvdKvOInXY13udNRmodVFGwq5o/Pt2NudGORq9m/DU9SBzRfhqOk4EIQ51IhCHhZNZsb+aRVY+wpngNAA8MeoBbkm7psL1elhWe+mUnX20qIASJz3388ay3uzpWX94Dz9Zq7sKMGn6b6wpEsf0C6T6oicXvvIbdYsYnOISLH3mKwOhY93ntdjvvzp1LQ1UVSdu2Eb8vB72fH0Ez7sb38suRtCd2bhFBONkoskzJnkyyU9ZTV17GxY886d7362sv4LBZ6T4smW5DhmM0/f1zxupwkpZf2xp+qtlRVNem+UutkhgR78/kPqFM7BNKiHf7gQ0FO/eRtWEHcQXeGOyu/5+/a7egsTQTn5NDeEMRIffchfcFFyBpXJ2gnU6ZlAW5bFmSD0BAhBeTbu+DX+jJ+0uPCEOdSIQh4WTnkB28vPllvsr4CoBLu1/Kk8OfRKtuH0IUxRWIvtxYgAfwTXgoASWukSGm8VF4T4xBUkkU7q7ht3dcgSiufyCDJ5v49dX/Ul9ZwSX/92/iBw11n7O+vp7vvvuO4uJiAPR2OwmZWXTPzsYUFkbQgw9imjTxpOhQKQgnitPhoChjJ9mb1rM3dUObWZ5vffNDfENc6wAqivK3/zdkWWF3aYO75ic1rwaLXW5zTHyQJ6MTAhmVEMiI+AB8jO3/77c0NLNl6Qa2ZGynxtmApEhcYx2FztKMM28d1vx16PyNBN59Nz4XTXWHoP0KM2tY8Ho6AEljIxh1eQIa3aHXTTwZiDDUiUQYEk4VX2d8zezU2ciKzLDQYbw6/lV89O0XbFUUhacX7OLzDfmogK8To4jMqgfadqwu2F3N73N34HTI9BkbwfApYeTvSKdn8th255RlmS1btrB27Vrq6uoAUDudxO3LoWdmJgEJCQQ//BCew4Ydz49AEE4K25cvZs3Xn2FpanRv03t4Ej94GN2HjSR2wGC0uvYjOPcrqG5h7d4q1u2tYv2+Kmpb7G32B5n07vAzKiGAMJ+O5xFSFIWcLVlsXpvCnpo8nJIrRKkVicgWLf2378SYn44mLITA6Xfhe8nFSDrdIcu14ed9BEWZSBh88nWW7ogIQ51IhCHhVLK6aDWPrHqEFkcLsd6xzJ0wlyjv9iNPFEXhP7/u5tP1eQB8NCSOxK014FTQhrV2rPY1ULCrmtXf7uHCe/u3GT4LUF9RRsrPPzD+ptvQ6l1V8U6nk4yMDNatW0dpaSkAE9auJbDIVWvkNW4cQQ/NxNDj5OtsKQhHw2Yxk5eeRkh8Aj7BrtqePZvW8eurszCavEkYOoLuw0cRndQPtabjJuOaZhvr91W5a38Ka8xt9nvq1IyID2BUQiCjuwfSPdjr72uTLA5a0itJW7OJP5vT3du9ZT0x5XUkbFmPrrEKTXAwAdPvxPfyy1H9JQQ57TIpv+XSd1wkXn6HDm4nMxGGOpEIQ8KpJqsmi3tW3ENZcxm+el/eOOsNBoUManfcXwPRnLE9GLylGrnJ3qZjtdMpo/7LwoqKLPPlEw9SkbuP4LhuXPTwk3gHBrU5d25uLtnZ2UwYNIjKuXOp++579sbG4tnSQuKIEQTfdy/aDtY/E4STnaW5iZy0FLJT1rtngR55+bUkX+GaWsJusVC2bw8RPfu4Z3M/mNnmJCWvhvWt4WdXSUOb/RqVxKBov9bwE0C/SF+0f7O4qSzLVFdWk5e+B12pTOA+FYpdxoKd7/Xr8XFKxGftJnrHViQU1EGBBN5+B75XXYlK3z7o1FW0sPTDXVQWNBLe3ZeLZw48JZu5RRjqRCIMCaeiypZK7l1xL7uqd6FVaXl21LNcGH9hu+MUReHZhbv5ZF0eAC9P6smYbfXYy5pBI+F/WQ88Dpo/JG9HFdmp5Zx9Uy9Ks3az4NXnMTc24OHjy9SH/kVEYq9219ivLjOTt775Bock4VNbR6+9e+k3biwhd96J2qd9c54gnEwcNhu716wge9N6CnZuQ3YemLXZJySUQedNZdB5Uzt+r1NmR3G9u+ZnS35dm0kPAXqGmlzhJyGQYXH+eOoPPXtzS0sLRUVFFBUWUZidR0lFGVbZtY5YsOzNVNtQCnSlZFrWErtpI2HlruY6tb8/Abffjt/VV6Eydty0lp1azp9fZWK3ONF7ajjnpt7E9gs8os/qZCHCUCcSYUg4VZkdZp5Y8wR/FPwBwF397+Ku/ne1+w1PURT++1sGH63NBWDWhb05N8eMZXc1AKazovA+Nwar2cHn/1qP3eKk26Bgzr21N03Vlfzy0nNUFuShUmsYd8Ot9D/3PNSa9j/Im5ubWbNmDWmpqdhbHyQezc0kFhQw7JxzCbnxhg5/SxWErmK3Wg40ATvszL3tOmxm14CDv5sFWlEU9lU2s35fFWuzq9iQU91mzS+AcB+Du9lrZLcAgk0dL2fjcDhoaGhwrwso2528/PLLtFjbNqWpFRV+iicWbQvNzamMWpdDRKXr/5na15eA227F79prUXl4tLsGgMPmZM332exeUwJAWIIPE2/tg5ffqbvMjghDnUiEIeFUJisyr295nU92fgLA+XHn8+yoZ9Gr24YORVH4328ZfNgaiJ6b2pupDdC4sggAQx9Xx+qCrFoWvbsD2amQMDiYc2/pjcNuZfHc18jetB4A76Bgrv3vK+5FI//KbDaTmprKxjVraGmdX0VntTIqaw/9b7gBn6lT3HOaCMKJZm5sIGvDWjLWrqSlvpZbXn/fHXTWf/81ao2mw1mgKxosrNtXxdps15w/ZQ2WNvu9DRqSuwUyqrur9ic2wKPDX0zq6+tdtT5FRRQXF1NSUoKHhwd3T74J844qzBk1LJG3UC+1EKx446vyJM9YyEavNIxFe7hyA0SUu4KXyseHgJtvxu/661F7HXoIfGONhYVvbaOmpBkkGHJeLEMviEX1N01zpwIRhjqRCEPC6eDHPT/y343/xaE4GBg8kNfPeh1/Q9sJ3RRFYdaiTN5f7ZoF99mL+nCZzkjt/OyDOlb3obCgkcXvtQaiIcGce3NvJAm2LlnIpp++wyc4hGuee9n9g/5QQ4ftdjvb0tNZu2wZDRYLF/y6EA+zGX2PHgQ++ACm8eNPyX4KwqnHbrWwLy2FjLUryUtPa9MEdsvr7+EXFtHuPU1WB5tyqt2jvvaUN7XZr9OoGBLj5276SorwQa069L/nP/74g/T0dJqamtrt0ysarrAmY2hdX9DmIbMtIJvvVL+Rod/LiEyZazZpCS53LZ+h8vLCf9o0/G+6EbXJ1O587e7f5uT7WZuxNNs59+beRPU6vAVfT3YiDHUiEYaE08XG0o3M/HMmjfZGIr0iefuct4n3iW9zjKIovLAok/daA9F/pvbh6gh/qj/fjdzc2rH6xt6U1FpZ/P5OZKdC9yHBnHNzb1RqFXablZa6WveoGktzE988+TD9zplMv3Mmu5scDibLMiUFBRj/+IOq995HbmxkzZjRaH19GXPBBSSMH3/cPxvhzLVjxVJWfv4BNvOBZqeg2Hh6jR5Pz1FjMfm7+svYHDLphXXu8JNeWIfzoNkOJQmSwn3c4WdIrB8G7YEaTlmWqaqqctf6lJSUcPPNN6NvbRpetGgRmzZtQiWpCNT5EGj2IshhIljxwVsxovbVUxJZzzf8wjLHGiRFZvQuuC5Vj1+5q+lOZTLhf8P1+N900z/2w7NbnWi0KveCzXXlLeiMGjy8Dz20/lQjwlAnEmFIOJ3k1OUwY/kMipqKMOlMvDb+NYaHDW9zjKIozF6cxbur9gHw9JTe3NA7jOrPdmEva3F1rL68B2VILHl/J7KsMO7aRJLGtv/tOXXBj6z+ytVE5+Hjy5ALL6H/xPPRGTruvOmsqyP33ff40tzieroAoQ4HYyZNoteoUahUp3a1vdC1FEWhIncfBi8TPsEhAORvT+eH/z2Jd1AwvUaPp9fo8QRERqMoClnljazNdoWfTbk1tNicbc4XE+DhDj8j4wPw82wbJEpKSsjIyHA3edlstjb7p02bRnRwBOaMGkq25FCfX02gwwsNrhCl9jcg9fRkhWcK71V+Qo21BrVTYUKGlqs3afGqcHWMVvn4EDDtJvyuuw71YTynKgsbWfrhLnolhzFoUsxRf54nOxGGOpEIQ8LppsZSw/0r7ie9Mh2NpOGpkU9xafdL2xyjKAovLcli7kpXIHrqwt7cPDSKmm+zsGTUAGA6O4rqIA/ydlYz/rqeqDpoAnA67OxatZyUn7+nvqIcAIPJmyEXXMyASReiP0RnzpKdO1n17bdkSxJya/8hP2DUhAkMGDkSTQcdtAXhUOrKy8hcu5KMtSupKSli8AUXMf7G2wGQZSele7II79ETSaXC6nDyS3oJH63JJau8sc15Ajx1JCcEMjohgORuge61vhwOB2VlZRQVFdGzZ098fX0B2LRpE4sWLXK/X6vVEh4eTkRIOEFOb4LK9ZDbAs4Dj2FNkBFjUiCVMS18UT2PhTkLsck2NA6FqVkmLt6oYKhwTZKq9vPD/5ab8bvm2r/tE7SfoijsXFXMuh/24nTIeAcauObfw0/6maSPlghDnUiEIeF0ZHVaeWrdUyzKdf2gviXpFu4fdD8q6UDNi6IovLw0i7f/dAWiJy/oxa2j4qhfkkfTKlfHamNSAH5XJqJq/WFaV9ECCviGtA05ToeDjLUr2fTTPOrKXJMxGr19uH3OR2gNhx6tUrllC6u/+opMvR5766RwZ3l5Meauu8RCsMLfammoZ09rR+iSPRnu7Rqtjr4TJnH2zXe2Ob6uxcZXmwr4dH0elY2uvjcGrYrhcQHu2Z57hpqQJKirq3M3dxUVFVFWVoaztZ/R1KlTGTTINa9XeXk5GzZsIDIykjC/EEwVKqy7arDm1MFBI+s1IR549A3EkBRAimMrX2R8yfoS14AErUPh+r1hnLumCU1VHQDqwEACbr0Vv6uuPOTosL+yttj584tM9m2tBCC2XyATbuyFwev0XTtQhKFOJMKQcLpSFIV3tr3DO9veAeDcmHP53+j/YdQY2xzz6rI9zFmxF3AFotvGxNOcVn6gY3W4q2O1xkfP4vd3sG9rJQmDgxlyXiwBEV5trik7nWStX83G+fMI69GTyXc94N5nt1gOGYxq1qxl3Vdfsk+n55w//kDn50fgjLtpTk7Gx99f/N8U2lAUhQ9m3EJjtevBL0kqopL60XvMWSQMHdmmRjK/upmP1+by3eYizHZXoAn1NnDzqFiuHhaNXnIiyzIere/Jzs7mq6++andNo9FIZGQkQ4cOpUfrDOvOBivmndW07KjCllcPBz1tteGeGJMCMSYF4vRXsTBnIV/s/oKceld/PYND4q7cboz4swypug7ANWP0bbfhe+UVqP7ml4i/KsutZ+mHu2istqBSSyRfmkC/syNP+wEKIgx1IhGGhNPdwpyF/Hvdv7HLdpICkpgzYQ6BxgOTrCmKwmvL9vBmayB64vye3DG2G9a8eqq/2I3c7EBl0uJ/XS9WLMond1uV+71x/QMZfF4sIbFt/+/IshO7xep+KFUV5PHNv/+P/hPPZ8gFF+Ph49uunIqi0LBoEZWvv4G9oAAFWHzRVJo8POjXvz/JyckEB58aayYJnUd2OinYkc6+LSmcNe0OVCpXLeWfn75PUeYueo85i8TksXj5tR0hlZZfy4drcliyq8y96nuvMG/uGBvH+Hgf0rdsZvfu3VRWVjJmzBgmTJgAuObLevXVVwkJCSEyMtL95efnhyRJOOosmHdUY95ZhS2/7czS2kgvPPq6ApAmwEiVuYpvMr/h+6zvqbW6FnL1Vzy4L68HfZbuRampA0ATHkbg7bfjc+mlRzwXl6XZzudPrMdudeIdaGDS7UkEx5wZzzIRhjqRCEPCmSCtPI0H/nyAOmsdYZ5hvDXhLXr4tV0/7LVle3hjeTYAj5/XkzvHdcNRY6Hqs104yltAo8J3SjzmUA+2LC1k75YK92/CUb39GXZhHKHxHY9wWf31p6T+8gMAGp2e/ueex5Apl7Z7gAEoNhu1339P4QcfsrZ3LyoPCkA9evRg1KhRREdHn/a/9Z7JFEWhfF82GWtXkrl+NS31dQBc8dT/iE7qD7iaZv86+adTVli2u4wP1uSSln9gFflxPYK4Y2w8Pf0kNmzYQHp6Og7HgUkSk5KSuPzyy92vHQ5Hm35rjmqzqwZoZxX2wrb9jHQx3hiTAlwBqHUCw6yaLD7f/TmLchdhl11zbcWpQ7k3pxvRv6cj17n6BGkjIwm48w58L7robxdQ/Sfb/yyiJLuOs27oid545vS3E2GoE4kwJJwpChoKmLF8BnkNeXhqPXlp7EuMiRzT5pjX/9jD63+4AtGjk3ty1/huyFYHNd9kYcl0daxWeWrxHBqCI86HrRvK2JNSjiIrjLo8gQHnRHd4bdfq2ils/PFbyva5zr+/b8fQqZdhCmi/HICzqZmajz8m65efyYyNpSgy0j0CLTIykokTJxId3fH1hFNTU001O1YsJWPtSmpLi93bDSZvEkeMZuB5U9pNhgjQYnPwQ1oRH63NJb/aNQxdp1Zx0YBwbhsTT48QL3766Se2b9/ufk9YWBgjR44kPj4eLy+vdue0V7Zg3lmFeUcV9pLmAzsk0MV649HaBKb2cdXkyIrMmqI1fLH7CzaVbXIfPtyzD7dlhuG3YB1ygytI6WJiCJg+HZ8LL0DSHnmfnpLsWrR6DUHRrjmG9j/mz7RfEEQY6kQiDAlnknprPTNXziSlLAWVpOKxYY9xTc9r2hzzxh/ZvPbHHgD+b3Iid49PQJEVmtYU0biuBLmhdfiwBIZEf6Re/uzOa2DExQlo9a4mjMKMGhw2J7H9AtstY5C3bQsbfvyG0j2ZAHgFBHL7nI86XPASwFFZSeXcuRT+vojM7t3Ji4tFVqu5fsoUEgYP7uyPSDjBDp60s2RPJt889TDgqkHsNmQ4vUaPJ7b/wA5XhK9otPD5+ny+3JRPXYurBsbHqOWGETHcMDKaEO8D/eN+/fVX0tLSSEhIYNSoUcTGxrb7t+moaHHNAr2zyjXNxH4S6Lv5uvoA9QlAbTpQi2N2mFmwdwFfZnxJXkMeAGpJzQUBY7lmmxfa+cuQWyda1HXrRuD06XifNxnpKEZMyrJC2qI8UhfmYgo0ctUTQ9GdQTVBfyXCUCcSYUg409iddp7d+Cw/7/0ZgOt7Xc/DQx5GrToQRt5cns2ry1yB6JFJicw4KwEAxalgyaimaWMp1r117uPVvno8h4fhOTQElaeWef9Npbq4iYAILwafF0O3QcFthuYrikLBzm1snP8tcQOGMOwiVxOFIss0VFW654g5mDU3l8rXXqdy1SoKoqPpkZ+P/w3XE3jHHazfvh1FURg6dCjGQyxQKZw87BYLezdvJGPtSrwDgznntrsB17+LJe+8TlSffnQfNhKdseORVHvKG/lwTQ4/by1xL4ga7e/BbWPiuLh/KHszd7N+/XouvfRSwsPDAdcIMavVSkjIgX9biqJgL2121wA5Kg9aD0wloU/wxSMpEENvf9RebZuxKloqXP2B9nxPvdXV7OWl9eLakAu4YJMT+w8LkFtcgUrfoweBd03HNHHiUS1F47A7ydpYRvofhdS1TsDYc0QoY67ugc4gwpAIQ51AhCHhTKQoCh/t/Ig3trwBwNjIsbw49kU8tQeGs7+1IpuXl7oC0UPn9uDeCd3bnMNe2ULzpjKa08pRzK39L9QSht4B5DsU0rZUYre6Ru/4hngweHIM3YeFoP7Lekiy7HR3is1O3cCvr86i1+jxDL/kKvzD20/0aE5Pp+LlV2jZvBkAR0AACyaei11R0Gq1DB48mBEjRrjnghFODrLTSf6OdDLWrmRvygbsVtfaXnpPT+56/8sOa34OpigK6/dV88GaHFZmVbq3D4r25Y6x8YyJ92VL2mY2bdrkXvKif//+XHLJJe3O5Wy207yplJa0chzVB60xppYwdPfD2DcQYy9/VB7ty7S7ejdf7P6CxXmLcciuf/eRXpFMC72IUauqaPruRxRL67317kXgXXdhmjAB6SgmFLU029m5qojtfxZhbmxd58+oYcyV3ek5MuyIz3e6EWGoE4kwJJzJluYt5Ym1T2B1Wkn0S+StCW8R6hnq3v/2n3t5aUkWADPP7cF9fwlEAIrdScu2Kpo2lbbpXKoOMlJt0pOaWUtLi+uhYQowMPqK7sQPCOqwPCs//4C0334BXMOlE5PHMOLSqwiIbNs3SFEUmlaupPLVVzHv3UdBdDRZfZOoa+37IUkSffv2JTk5mdDQ0HbXEU6sTT9/z5bff3F3hAbwCQml1+iz6DV6HP7hkYd8r90ps3B7CR+szmV3qWv0liTB5D6h3DYmnm4+Ehs3bmTLli3uGaBNJhMjR45k0KBBGA4aom4vb6ZpXQnNWyrA0ToRkEaFIdHPVQPUyx9VBzUtTtnJqqJVfLH7CzaXb3ZvHxQ8iGlBU+i5KIP6739Aab2+oV8/Au+ajtcxrr9XllvPj7PTAPDy09N/QhS9R4ef0bVBBxNhqBOJMCSc6XZU7uDeFfdSbakmyBjEnAlz6BPQx71/7sq9vLjYFYimJcdy1/huhHh3PAeKrbiJ5o2ltKRXoNhdDxtJq6IlyIOthU1UNtq5YEY/Yvu27zC9X+neLDbOn0dOWoprgyTRY/goRlx6FUExcW2OVZxO6n/+hco5c7CXlVEWGsqeQYMo8z6weOUVV1xBnz59EE6c2tJivIOC3bU96+Z9wcb58zB6+5A4cgy9Ro8nrHvi3waFBoudb1onSSytd9W0GLVqrhwSyS2j44gJ8ESWZd58803q6uoACA4OJjk5maSkJPdoMEVRsGbX0bi2GOueAyPMtBFeeI0Kx9gnEJW+46arFnsLP+/9ma8yvqKgsQAAjaRhYuxEbvQ/D/8fVlL/43wUu6vWxjhwIIF3343n6FFHFYLK8xqoKWmiV3K4e9vKrzIJ7+5Lt8HB7WpVz3QiDHUiEYYEAUqaSpixfAZ76/Zi1BiZNWYWE6InuPe/u2ofLyxydXhWqyTOSgzmmmFRjE8M7nClbtnsoHlLOc0bS9v0w3D6Gwg8JxqPvkFIWhXbVhTisDnpOy6yXUfQ8tx9bJo/j+wU10y9IfEJXPf8ax0+ZGSLhdovv3QvBFvj58feUcnkeXkx4557CAx0ha/t27eTmZlJt27diI+Px8/P79g/PAGA5rpasjasIWPNn5Tty+aih58kYegIABoqK6gqyiem78B2w+H/qqi2hU/W5TEvtZAmq6tGMdBLz82jYrl2WBR1FSVER0ejbu17s27dOvbu3UtycjIJCQnufx+K3Unz1gqa1pbgqGjtDC2BoXcAptER6GK9DxlYyprL+Drza37Y8wONNldtp0ln4ooeV3Cl51ikL3+i/udfoHV4vsewYQTefRcew4cfcQhSZIW8ndWkLyugJLsOjVbFjbOSMXqdPguqHi8iDHUiEYYEwaXJ1sTDqx9mXfE6JCQeGvIQN/a+0f3DffHOUj5am0tq3oHfrsN8DFwxJIqrhkYR4du+47KiKFhz6mneVIp5ZzX7Z79TeWgwDAhm0api6pod6D009D0rkv5nRbVbPqCyII9N8+fRc9Q498PVZm6huriQsITENsc66+qoeu99ar/8EsVup8XDSED//ngk9UXfM5Hfy8vJKihwH+/v7+8ORnFxcW2aVIS/Z2luYvfqFVTm51KZn0dF3j4UubU2UKVi1JXXM/ySKw/7fNuL6vhgTS6/7yh1rxbfI8SL28bEc2HfEPZmZbJ+/XrKysq4/PLLSUpKAlyrxR+8wK+zwUbTxhKaN5UiN7vCiqRT4zk0BK/kcDQBh+5gv7NqJ5/v/pyleUtxKq7+btGmaK7vfT3nqwfQ/OFn1C9cCK1Lc3gmjyTwrrvwGDr0CD45F4fdyZ5N5aT/UUBt68g1lVqix9AQhl/UDS+/I5t88UwkwlAnEmFIEA5wyA5eSHmBeVnzALiixxU8PvxxtKoDAWVvRSPfpBQyf0sRta3DmSXJNbHd1UOjmdArGG0H1fnORhvNKWU0p5ThrLe6t9eoJLIb7JQ5FDR6NX3HRtD/nCg8fQ79MEj55QfWfP0pMf0GMvKya4jo2bvNfntxMZVvzqF+wQI46Edgtb8/pVGRVERHU+XhgXLQb/FqtZpHH30U3TFMfne6kZ1OakuLXYGnIA+/sAiSxp8DuNYGe+f269ocH5rQg16jx5M4cgyevv9c6ybLCisyK/hgTQ6bcmvc20cnBHLbmDhGxHizdetWNm7cSH1960SFWi1nn302I0eObHMuW3ETTWuLadle6V4YVe2nxys5wjXK8RD9bJyykz8L/+Tz3Z+ztWKre/vQ0KHc2PtGhlvCqXn3fRoWLYLWsOc5dowrBA0c+I/32JHirFqWfLQLc+s0FTqDmj5jI+h3VpQIQUdAhKFOJMKQILSlKApfZXzFi6kvoqAwMmwkL49/GW9d2/8fVoeTJbvK+TalgPX7qt3bg0x6rhgcydVDo4kOaD80WnEqWLJqXMPzD+rDYZUgp8VJvk3GoVFx1vU9SRzecefnlV98xJbff3HXRET16cfIy64msnffNs0U1pwcWjZtwpKVhTVrD9asLPdwZ5tWS2VwEGUhoZSHhqCXFaY2NaFP7IEhMZGfS0rRmbyIT0igW7duBAQEnPaT2jkdDtKXLKQyP4/KglyqiwpwtvaHAYgdMJjLHv+P+/Xiua9hCgwiKCaOkLiEDqdE6IjF7mT+lmI+XJtDTqVrQkONSmJq/3BuHRNHzxAv/vzzTzZv3oyldWSWp6cnw4YNY+jQoe51xBRZwZJRQ+PaYmy59e7z62K88RodgbF3AJK647+zems9v+77lS8zvqS4qbi1DBrOiz2PG3rfQFyViqp33qVxyRJ3oPY6+2wC77oLY9+kw/1I3WRZcU8v0Vxv5fN/rcfDpKPf2VH0GR1+Rs8XdLREGOpEIgwJQsdWFq7k/1b/H2aHmW4+3XhrwltEmjoe9ZNX1cy3qYX8kFZIVZPNvX1UQgDXDIvm3N4h6DXtO6k6qs00bSqjZXMZcuuIMxkotcl0uyaRgCEhSJKEIitIf+mbVFdeRsov37Nr5XJkp+u9ET17M/Kya4npN6DDciqyjL24GGtWlisgZWZh2ZOFvaAQh0qFprX5w6bV8vMlF6Mc1PzipVYTGxJC96QkuvXr1+GsxacCp8NBbUmRu7ZHZzAy4rKrAVcQfvuWq7G2HJhxWas3EBgTS1B0LBE9+9B7zFlHfe3qJitfbMzniw35VDe3jvwyaLh2eDTTkmMJ8znQhPXRRx9RWFhIQEAAycnJ9OvXD23rbM2y1UnL5jIa15fg3D80XiVh7Bvo6g8UZWp3bUVRyKzJZE3xGtYUrWF71XZkxRWmffQ+XNnjSq7ueTWm3Eqq3nmHpj+Wu99rmjiRwLumY+jV64jvuSK/ga3LCrCZnUy5t797e1lOPUExJtEp+hiIMNSJRBgShEPLqM7gnhX3UNFSgb/BnxfGvMCIsBGHrCGxOWSWZ5TzTWoha7Ir3S1U/p46LhsUwdXDoukW1D5EKHaZlp1VNG8owVZwYHi+JtiI1/AwUjJrcUoSgyfH4h/u2ea9DVUVpPzyIztXLMHpcJCYPJYL7/+/I7pPubkZ6969WDKzsGZlYd6TRVlpGaXeJspCQ6kKDEQ+aLK8qPJyzrVa0fdIRNejB9ruCXgkJqI6SZvYti5ZSNnePVQW5FFTVIDzoHW5fEPCuPXND9yv1377BSq1mqCYWIKi4/AJDjmqOXIOtq+yiY/W5vJjWhHW1iHtEb5Gbhkdx5VDIqkpL2Hjxo1MmTLFXeuTn59PS0sLiYmJ7j5BjjoLTetLaE4pQ7G4gqtk1OA1LBTP5HA0f2labbI1sbF0ozsAVZor2+zv4deDqxKvYkq3KbBrD1Vz36Fp1SrXTknC+7zzCJh+J4Yebdfx+yeKrJC/q5qtS12dove7/rkR+AR1PJGkcOREGOpEIgwJwt8rby7n3hX3klGTAUC4ZzjnxpzLpNhJJAUmHTIYFda08N3mQr7bXEh5w4E+QsPi/LlmWBTnJYVh0LavLbKVNLkmxNtagWJzPTgdikKRTSHP5iSwXxCDz4t1r8u0X2NNFZsXzKfv2RMJjI4FoK6slNz0zXj4+KL38ETv4YnOw6P1zx5odPpDll9RFBwlJViy9tCUlUl+Tg75DQ2UGI10z86m274c13VNXiyZNInAqmoiHHZi/fwJS0jA2Ksn+sRENMHBx715zemwU1NcRGVBHpX5udjMLZx7+z3u/V8+/gDlOXvdr3VGI4HRcQRFxxIcG0/fCZM6vYyKopCSW8MHa3JZnlnuDsb9I324bUw8k3oHszd7D+vWraO42NVMddZZZzFu3Lh257IWNNC0thjzzipX1SGgCTTiNTocj0EhqHRq9zVz6nNYU7SGNcVr2FK+BYdyIPgZNUaGhw1nbORYxkSMIdQzlJa0NKrmvkPzunWug1QqvC+8gMDp09HHxx/RPTvtMlkpZaQvO6hTtEqi+9AQBpwbTWDkqVmbeLISYagTiTAkCP+sxd7Ci6kv8nvu75gdB4bK7w9GE2Mn0jewb4cPVIdTZmVWJd+kFPBnVsX+AWX4GLVcMjCCa4ZFkxjavllDtjho2VpB08ZSHOUH1omqccjkWWXUPfwYfEEcofE+hyz34rmvs2vVH4fcf/tbH+MdFAzAlkUL2Ld5Izqjpzss6Tw8MXi6AlSP4aPQe3gim83Ubd+OdW82ck4eu8rKWB/Udt4kvcVCSHk5IWXlRDU14hMXj75nIobERPQ9EtF3T0B1jCPXdq1aTv6OdKryc6kuLnI3FQKo1Bru+/x79zw/6Ut/x9xQT1BMHEExsXgHhRy3gOZwyizaWcaHa3LYVuTqxyNJMKFnCLePiWNgpIlt27axYcMGampcnabVajUDBgxg5MiR7mkQFKeCeWcVTWuLsR00mac+wRev0REYevghqSTMDjOpZamsLlrN2uK17v4/+8V6xzI6YjRjQkfSX4pBqqzBUV6Gvbycpj9X0rKpdVFVjQafqVMJvPMOdDExR3XvmRtLWf6p65cGrUFNnzER9DsrEpO/GKV4PIgw1IlEGBKEw2dxWFhXvI4l+UtYWbiyTTAK8wxjYszEvw1GpfVmvt9cxLzUQorrDrx3YLQv1wyL5sJ+YXjo2nYkVRQFW14DTRtLMe+ocg/Pt8kKBTaZ8Avj6HFOxw+vDT9+Q9m+bGwtLVibm7CaW7C2NGNtaQFFYcbH32LwdP22vvT9OexYvuSQ935wcFr15cds/nU+ACqtFo23H05PE1atAYtG36av0YCUjega6tA6ZRSVGp3dgcHhwCMsHM9u3TD16oUxsSeGxB5owsPdn5vDbqemuLB16HouNSVFXPJ//3Y3WS1840Wy1q92X0fv4UlgdKyreSsmjl5jzkKrO3Ejk5qsDualFvLx2lz3361eo+KywZHcOjqObkFe2O123nzzTRobXeHGYDAwbNgwhg0b5u6DJZsdNKeU0bS+5MCoQ7WEx4BgvEZHoAvzpLChkNXFq1lTvIbU0lQUmxX/RvBvhJAmNf2IoIc9gLBmHdqaRhxlZTiqqtqMLHTTavG95BIC7rgdXeShZ8LuSEOVmaY6K+EJvoCrZmj+y2kkDA6h95hw9KJT9HElwlAnEmFIEI7OwcFoVeEqWhwHam/CPMPcTWkdBSOnrLAm21VbtDyjAkdrwDHpNVw0MJyrh0aTFNG+xsfZaKN5czmNG0pQGg501NZ398VreBhKlAmjt+4faz0UWcZmsaAzGt3Hlufuo6akCGtzM9aWZmytockVnpq54L7/Q9/an2X5x++SvmRhx+dG4rzHnqWspobcnByim2vZscEVWqxBEdgCQlCbm1E3N6BpamDM9ix8za6HfmF4EMXBfji1WhpsVhTa/vi+7u6H8I+NR+XtTW7WbqqLCwmMiSM4Jg5TYNAJHe3WYnOwu6SBHcX17CiqZ1lGOY0WV+1UgKeOG0bGcMOIGHSKDZPpQM3fzz//TF5eHiNHjmTgwIHuqQwcVWYa1xXTklbubh5VeWrxGBSAKtJOVv56srM3UZ63G3VVLf4NENCo4N8I3ub25euQVos2OBhNaCjakBB0sTH4XnEF2rAjW+ersqCRrUvz2bulElOAgev+M6LNQsTCiSHCUCcSYUgQjp3FYWFdyTqW5B06GE2MnUi/wH7tHtgVjRZ+SHPVFuVXH3hf3wgfrh4WxdT+4ZgMbSdiVGQFy55aGteXYMuuZX9msEpQrlUTMimW+JFh7UagdSZZdmIzm7G1tGBpbnLVPpldAar78GR3rczuNX+yLy0FW0szuRYnTaq296JVFMLq6wnKzcXWWE1ekO+BfQ4nJosNk9mKt8VGSH0zutZV2gFUXl6ovb1R+fqg9vZB7e2N2scblbe367WPt2t/mz+7vh/J6ultgk9r+NlX2eRu8twvPsiT20bHc+mgCKoryli3bh0ZGRlMnz7dvVq82WxGp9OhUqlw1tXRsq2Ili21OCoAWmePdtRgK12POWs56qZmDodkMKANDUUTEoI2NARNSCia0JCDtoWi9vM76s7giqJQsKuGrcvyKc6qc2+P6uXHOTf3wcP75Ow8fzoTYagTiTAkCJ1rfzBamreUlYUr2wSjUM9Qd1PaX4ORLCtsyKnmm5QCluwqw946cZ6HTs2UfuFcPSyKAVG+7cKUo8ZCc0opTZvKUMytw/MVhWq1Cq+R4cSfF4O6g2H9XaWmpoacnBz27dtHbm6uex4do9HIDaOSqdq2Fbm2lmyHgux0orLZUFssqMwWJLMZVXMz+oYGooqKDpzTzw9FklDJMhqnA7XTicopo3Y6XX/u4DGgMplc4cjHu02Qkj1NVEk6ih0acixqslogq1miUWukUetBi9aALLkCRYi3nr4RPiRF+DAkxp+R8f7s27eXdWvXkn/QTN+jAwPpZ7VhLy/DUVaOvaISVFFoo8ei9j2wCK+jbDu2vX/grMpsU9ZmPdT7aJCCA/COjCM0NgnP8KjWoBOKNjQElfehl9c4VoWZNaz9LpuaElcwU6kkEoYGM+CcaII6GMYvnBgiDHUiEYYE4fj5p2C0vyntr8GousnK/C3FfJNa4J6UD6BnqIlrhkVz8cAIfIx/qS1yyDRsLqdqRQH6g5rQbAo4DGo8o0x4RZnQ+BtQ+xtc3330x7X26J/IskxJSQk5OTkoitJmJNXLL79MU1NTh+8LCQ7m9quuwlnfgNxQz/tLllBr7rityMtu59IdO3E2NOBsaGD14EE0mkzuoHTwl8FiYXDaFvd7c+LisBgM7Y5TaTToDQYiJVB7+yB5e7PXoGe7Wk2d3lUjJskyMfn5JGZm4ds6e7Sk80IbNw5t3HhUBlczqOK00Vi9mT31y8jXlVBtkqgxQa23iqDoRPr2Hk9ywgQS/RNRSV0zJ09Jdh0/vbIFrV5N7zHh9D87SnSKPgmIMNSJRBgShBPjcILRxJiJ9Avq537o7R+e/W1qIb/tKMXWOkeNXqPign5hXDMsmiExfu1qBJrz6ilekIOuuAnN32QdRQK1rx5tgPFASPIzuP+s8tB02azTGzduxGw243A4cDgc2O129599fHyYNGmS+9jPPvuM2traNsc4WyeQDAoKYsaMGZhtTnaXNrB43ifYWxo6vKZik9FtKycQK2EqO3t7RtDg2fG8ODqrlUt++hkAp0rFwikXYjEa0djtdNu7jx7Z2Xh7ebmaqMK6I3n3R3GGgOL6u23QNPKTzx8sDFhHk9r1b8FX78uoiFGMiRjDqPBR+Bp8O+nTPHyNNRa2LS9Eq1czfKpraL2iKGRuKCV+QBB6D+0/nEE4UUQY6kQiDAnCiWd1Wl2dr/OWtAtGIR4hTIyd2C4Y1bfY+WlrEd+kFJJVfmCodUKwF1cPjeKyQZH4ebbtt+FotlOxo4ra7DoiIzyRG2w4aiw05jegtjhQ/0PQkXTqNjVJGj896gCj67ufwT2/zcnGYneyq7iOHUW17CyqY2dZC9kVTThlBT+pBR1O1JKMBhlfo5oYXz0RPnqiArw4Z8xwQrxdtR6rV69uG7JsNmwWC3abDR1wRd++rhqn+gZ21Nbg8PRkUFISXlFRqAMCsOU2Ubs6H+e+AzVcWYY8fvJfwVrvLTglmd4BvRkTMYYxkWNICkhCreqaz7SyoJGtywrYm1aBIrvWyZs2K1mEn5OYCEOdSIQhQeha+4PR0nxXjVGz/UCzWIhHyIGmtNZgpCgKWwvr+DalgF+3lWK2u2pAdGoVk5JCuWZYFCPj/34dsbztVeSmV1C9rx5HlQUPFXioJTxVEh4qCPTVozTZD/n+/VQmbZuaJI3fiW+Cs9idZJQ2sLO4nu1Frg7O+4PPXwV66ekX6erj07f1K8T70BNPHg2n1UHeup3YN1bh1eBqMnMis8GUzk/+KyjwrmBkxEjGRIxhdMRogjyCOu3aR0pRFAp215C+rICizAPr5EX29GPAudFE9/Y/7dejO5WJMNSJRBgShJPHkQajRoudX9JL+CalgF0lB5p+YgM8uGpoNJcPjiTI9Pdz7Via7ZTl1FO6r56yffWYG21c+8wIFLuMo9bC+s9301LYRICvHh+jGiOgMjvA6vz7m1FLqH31rTVKB9cuHX0T3MHBZ0dr+Pm74NM3wtsVeiJ9j0vwAdffWZW5iuyCTJo2FNMtJwST09W01qIys9h3Pdtjcumd0J8xEWMYEDwArarralsURXF/BluW5LPhp30ASCqJhMHBDDw3ut3s5sLJ6bQMQ7W1tdx3330sWLAAgKlTpzJnzhx8fX0P+Z758+fz3nvvkZaWRnV1NVu3bmXAgAFHdF0RhgTh5GR1WllfvN49wePBwSjYI5iJMRPbBKMdRfV8k1rAgvQSmqyuUWUalURShA8GrQqtWoVO7fqu1ajQqiX0mtbX6v37JbQqCa1W7X7dvKAIZ62tXfk8fbQEh3sS3z8AbZMdTYMNVYMdqd4K9TbajTv/C0nf2gTXWrN0cHOcykOD1eZkb1kjWaWNZJfWs7esmeLqZlAU1EhoAHXrl79BS7cAD2L9PIjx8yDK14iPXoMku6YhwCmjyICsoMgyOBXXdrn1u7Ptd8Up43A4sNot2OxWbHYbdocNu8OO0+HA6XAiO52uc8mgVtSE2QLR4ppksExbza64AryGhjEybhThXuGd84/iCDnsTqoKmyjPa6A8t4GKvAaSxkUw4BzXCLbGGgvz/ptCz5Fh9J8gOkWfak7LMHTeeedRVFTE+++/D8Add9xBbGwsv/766yHf88UXX5Cbm0t4eDi33367CEOCcJraH4yW5i/lz8I/OwxGE2Mn0j+oP2abzMLtJXyTUkh6Yd2xX1wBb1kiwqkiwuH6CpQlVEgUqJ3MMx0IShNbtDSpFErUMjaNQrCkIgwVEaiIkFSE43rtr5yeTS8VAfVIw/3oNXIwBm3XBAtzk42UBbmU5zVQXdSE/JdQ2n1IMBNvS3K/dtidaDpYI084+Z12YSgjI4PevXuzceNGhg8fDrhGUowcOZLMzEwSExP/9v15eXnExcWJMCQIZ4CDg9HKwpU02Q90zv1rMNpb0UxOZTN2p+z+sjkV7I6/vHbK7m3u1/v3O5TW7we2yTYZr2YZhyxTrFOwORVUdpmbyg8svyCjUKlWKFbLlGhkijQyjSrXj2MdENYajMKRCOdAUApHhScSMgpOQJEkUEuo1BIajRq1RgKVhKRWgQoklQpFBQ7JiQM7NsWBDRtWxYZFsWCRrZhlMy2yGbPTjB0HTknGKTlxSk4cHPizE7nNPrVag1HngYfeA0+9F556L7wMXpj03piMJnwMPvh4+OKp80Jt0qENPjErsiuKQnOdlfI8V22Pp6+efmdFAeCwOXn/gdWumi7AaNISEutNcKy3+7vBU3SKPh0cyfP7lFgYZcOGDfj4+LiDEMCIESPw8fFh/fr1/xiGjoTVasVqPbCCdkNDx0NMBUE4OenVes6KPouzos/C5rSxvmS9e1RaRUsFX2Z8yZcZXxLsEcy5MecyIHgAHpIWlaRCrVKjklSuP0vq9t9VKtSS5tD7DzrHX7c7LQp7Uyspz2mkbF89jTUWQpwSIU4Vg2wQPTiIvpfEY3fKWGxO6kqa0QYYcKJgaw1jLU6FDIcTo1ZN3yhfAj0Vqs3VVJorqTRXUmWuorLloD+bK6k2V1NrqW23dMff8dP7EegRSJAxiECj63uYx4E/BxoDCTQG4qE9MeHmnyiKQlFmrTv8lOc10FJ/oEYuOMbkDkManZqRl3TD5G8gONaEyd8gOkELp0YYKisrIzg4uN324OBgysrKOvVas2bN4j//+U+nnlMQhK6hU+sYHzWe8VHj3cFoaZ6rKa2ipYKvMr7iq4yvTmyhNKDqqcLL5ktYUzwhDXEEN8ayoWk+L/2xHZWkwr8pnAmpt+FQ2aj3KaPOr5R6vzIa/MpRdA5Xp+QdVW1qvf7xspIGf6M/QcYgV6D5S9gJag07AYYAtOqTt2bEYXdSVdRES72N+AGukWaSJLHiiwyaag78IiupJAIiPAmO9SasW9t17AaeG40gHKxLw9Azzzzzj8EjNTUVoMPkfnCv/87y+OOPM3PmTPfrhoYGoqKiOvUagiCceB0Fo2X5yyhuKkZWZJyyE6fidP35r9/lQ2xv/f7XY/6pFkZWZBq0NTT41ZDlt/nAjtZnuVdDKBZ1MwanJwG10QTUHnh41xhLWR0/jyZvVxAKdIQTZ+uJh5ceT28Dfj4mAvz8CPI8KOx4BOGr9+2yGZqPliIr1Ja3uGt7KvIaqCpqQnYq6D01xPUPdD8D4vsHYW60uZu7AqNNaE/SeZ6Ek0+XhqF77rmHq6+++m+PiY2NZfv27ZSXl7fbV1lZ6V7cr7Po9Xr0+r8faisIwqnt4GB0PCiK0nFwkmUciuNAgGrd1tGxTqeTpkob9QV2GvLtNBY6sFQr+JvDeHTg43TrG0qQMYiC1Ab+/KLtWl02oMpDQ5OXiqirA/Hv7Q9AdUkT+TurMXppMXjpXN89tRhNWnTGrptNe7/meiuePgd+/v72znbyd1S3O87g5ernY7M40Rtdj7ExV/U4YeUUTj9dGoYCAwMJDAz8x+NGjhxJfX09KSkpDBs2DIBNmzZRX19PcnLy8S6mIAjCEZEkCY3UCT9eg4E+B16aG22U7qsnJM7bHRr0Hi2EdfPB3GTH3GTD2uyaNsDa4sDa4kDiQMApz21gw/x9HV5KpZKYeHsfug0Mdh+7e30JRi8tRi8dBi8tBi9ta5DS4umtR609+pomq9lBRX5rH5/WYe3N9TZufWWMuwNzQLgXxZm1BMWY3DU+IbHemAJEPx+hc50SfYZ69erF5MmTuf3223nvvfcA19D6Cy+8sE3n6Z49ezJr1iwuueQSwLX6c0FBASUlJQBkZWUBEBoaSmho6Am+C0EQhGNjNOnc/WT26zYw2B1gAGSnjLXFgbnJjqXJjn+4p3ufKcBA4vDQ1n02LM12zE127BYnsqyg0x94JFQXN7F7TckhyzLx1j50H+qqmS/OqmXzojx3jdPBocnopSUgwgujybUUSsb6ErYuLaC2rKXdOSUJakqbCU/wBWDweTEMnxqHSn1qNe8Jp55TIgwBfPXVV9x3331MnDgRcE26+NZbb7U5Jisri/rW1Y8BFixYwM033+x+vb9J7umnn+aZZ545/oUWBEE4wVRqFUaTzh0+DhbV05+onv7ttjvtMpZmO3qPA4+EwCgvhl4Yh6U1OLlqnlwBy9xkw+B1oJN1XUVLm+Uq/mribX3oPsQVnBQZdxDyDjS0GdIeFGVCqz/Qz0dnOGUeUcIp7pSYZ6griXmGBEEQ2lIUBRTca6vVV7ZQltPgDkoWd2hyfY2/NpHw7r4ANNdZqSxsJCTWu8PAJgid5bSbZ0gQBEE4eUiSxEFdkfAJ8sAn6PDmHPL01ePpKwapCCcX0RArCIIgCMIZTYQhQRAEQRDOaCIMCYIgCIJwRhNhSBAEQRCEM5oIQ4IgCIIgnNFEGBIEQRAE4YwmwpAgCIIgCGc0EYYEQRAEQTijiTAkCIIgCMIZTYQhQRAEQRDOaCIMCYIgCIJwRhNhSBAEQRCEM5oIQ4IgCIIgnNFEGBIEQRAE4Yym6eoCnOwURQGgoaGhi0siCIIgCMLh2v/c3v8c/zsiDP2DxsZGAKKiorq4JIIgCIIgHKnGxkZ8fHz+9hhJOZzIdAaTZZmSkhJMJhOSJHXquRsaGoiKiqKwsBBvb+9OPbdwgPicTwzxOZ8Y4nM+McTnfGIcz89ZURQaGxsJDw9Hpfr7XkGiZugfqFQqIiMjj+s1vL29xX+2E0B8zieG+JxPDPE5nxjicz4xjtfn/E81QvuJDtSCIAiCIJzRRBgSBEEQBOGMJsJQF9Lr9Tz99NPo9fquLsppTXzOJ4b4nE8M8TmfGOJzPjFOls9ZdKAWBEEQBOGMJmqGBEEQBEE4o4kwJAiCIAjCGU2EIUEQBEEQzmgiDAmCIAiCcEYTYaiLzJ07l7i4OAwGA4MHD2bNmjVdXaTTyqxZsxg6dCgmk4ng4GAuvvhisrKyurpYp71Zs2YhSRIPPPBAVxfltFRcXMz1119PQEAAHh4eDBgwgLS0tK4u1mnF4XDw5JNPEhcXh9FoJD4+nmeffRZZlru6aKe01atXM2XKFMLDw5EkiZ9//rnNfkVReOaZZwgPD8doNDJ+/Hh27dp1wsonwlAXmDdvHg888AD/+te/2Lp1K2PGjOG8886joKCgq4t22li1ahUzZsxg48aNLFu2DIfDwcSJE2lubu7qop22UlNTef/99+nXr19XF+W0VFtby6hRo9BqtSxatIjdu3fzyiuv4Ovr29VFO63Mnj2bd999l7feeouMjAxefPFFXnrpJebMmdPVRTulNTc3079/f956660O97/44ou8+uqrvPXWW6SmphIaGsq5557rXh/0uFOEE27YsGHK9OnT22zr2bOn8thjj3VRiU5/FRUVCqCsWrWqq4tyWmpsbFS6d++uLFu2TBk3bpxy//33d3WRTjuPPvqoMnr06K4uxmnvggsuUG655ZY22y699FLl+uuv76ISnX4A5aeffnK/lmVZCQ0NVV544QX3NovFovj4+CjvvvvuCSmTqBk6wWw2G2lpaUycOLHN9okTJ7J+/fouKtXpr76+HgB/f/8uLsnpacaMGVxwwQWcc845XV2U09aCBQsYMmQIV1xxBcHBwQwcOJAPPvigq4t12hk9ejTLly9nz549AGzbto21a9dy/vnnd3HJTl+5ubmUlZW1eS7q9XrGjRt3wp6LYqHWE6yqqgqn00lISEib7SEhIZSVlXVRqU5viqIwc+ZMRo8eTVJSUlcX57Tz7bffsmXLFlJTU7u6KKe1nJwc3nnnHWbOnMkTTzxBSkoK9913H3q9nhtvvLGri3faePTRR6mvr6dnz56o1WqcTif/+9//uOaaa7q6aKet/c++jp6L+fn5J6QMIgx1EUmS2rxWFKXdNqFz3HPPPWzfvp21a9d2dVFOO4WFhdx///0sXboUg8HQ1cU5rcmyzJAhQ3j++ecBGDhwILt27eKdd94RYagTzZs3jy+//JKvv/6aPn36kJ6ezgMPPEB4eDg33XRTVxfvtNaVz0URhk6wwMBA1Gp1u1qgioqKdqlYOHb33nsvCxYsYPXq1URGRnZ1cU47aWlpVFRUMHjwYPc2p9PJ6tWreeutt7BarajV6i4s4ekjLCyM3r17t9nWq1cvfvzxxy4q0enpkUce4bHHHuPqq68GoG/fvuTn5zNr1iwRho6T0NBQwFVDFBYW5t5+Ip+Los/QCabT6Rg8eDDLli1rs33ZsmUkJyd3UalOP4qicM899zB//nxWrFhBXFxcVxfptDRhwgR27NhBenq6+2vIkCFcd911pKeniyDUiUaNGtVueog9e/YQExPTRSU6PbW0tKBStX00qtVqMbT+OIqLiyM0NLTNc9Fms7Fq1aoT9lwUNUNdYObMmdxwww0MGTKEkSNH8v7771NQUMD06dO7uminjRkzZvD111/zyy+/YDKZ3DVxPj4+GI3GLi7d6cNkMrXrh+Xp6UlAQIDon9XJHnzwQZKTk3n++ee58sorSUlJ4f333+f999/v6qKdVqZMmcL//vc/oqOj6dOnD1u3buXVV1/llltu6eqindKamprYu3ev+3Vubi7p6en4+/sTHR3NAw88wPPPP0/37t3p3r07zz//PB4eHlx77bUnpoAnZMya0M7bb7+txMTEKDqdThk0aJAY8t3JgA6/Pvnkk64u2mlPDK0/fn799VclKSlJ0ev1Ss+ePZX333+/q4t02mloaFDuv/9+JTo6WjEYDEp8fLzyr3/9S7FarV1dtFPan3/+2eHP5JtuuklRFNfw+qeffloJDQ1V9Hq9MnbsWGXHjh0nrHySoijKiYldgiAIgiAIJx/RZ0gQBEEQhDOaCEOCIAiCIJzRRBgSBEEQBOGMJsKQIAiCIAhnNBGGBEEQBEE4o4kwJAiCIAjCGU2EIUEQBEEQzmgiDAmCQF5eHpIkkZ6e3tVFccvMzGTEiBEYDAYGDBjQ4TGKonDHHXfg7+9/0pW/K61cuRJJkqirqzvkMZ9++im+vr4nrEx/FRsby+uvv95l1xeEg4kwJAgngWnTpiFJEi+88EKb7T///PMJW7X5ZPP000/j6elJVlYWy5cv7/CYxYsX8+mnn7Jw4UJKS0s7bQmQadOmcfHFF3fKuU4nIsAIpysRhgThJGEwGJg9eza1tbVdXZROY7PZjvq9+/btY/To0cTExBAQEHDIY8LCwkhOTiY0NBSN5uRabtHpdIoFPgXhFCDCkCCcJM455xxCQ0OZNWvWIY955pln2jUZvf7668TGxrpf76/VeP755wkJCcHX15f//Oc/OBwOHnnkEfz9/YmMjOTjjz9ud/7MzEySk5MxGAz06dOHlStXttm/e/duzj//fLy8vAgJCeGGG26gqqrKvX/8+PHcc889zJw5k8DAQM4999wO70OWZZ599lkiIyPR6/UMGDCAxYsXu/dLkkRaWhrPPvsskiTxzDPPtDvHtGnTuPfeeykoKECSJPdnoCgKL774IvHx8RiNRvr3788PP/zgfp/T6eTWW28lLi4Oo9FIYmIib7zxRpvP+LPPPuOXX35BkiQkSWLlypUdNj2lp6cjSRJ5eXnAgaanhQsX0rt3b/R6Pfn5+dhsNv7v//6PiIgIPD09GT58eJvPNj8/nylTpuDn54enpyd9+vTh999/7/CzA/jyyy8ZMmQIJpOJ0NBQrr32WioqKtodt27dOvr374/BYGD48OHs2LHjkOfct28fF110ESEhIXh5eTF06FD++OMP9/7x48eTn5/Pgw8+6P5c9lu/fj1jx47FaDQSFRXFfffdR3Nzs3t/RUUFU6ZMwWg0EhcXx1dffXXIcghCVxBhSBBOEmq1mueff545c+ZQVFR0TOdasWIFJSUlrF69mldffZVnnnmGCy+8ED8/PzZt2sT06dOZPn06hYWFbd73yCOP8NBDD7F161aSk5OZOnUq1dXVAJSWljJu3DgGDBjA5s2bWbx4MeXl5Vx55ZVtzvHZZ5+h0WhYt24d7733Xofle+ONN3jllVd4+eWX2b59O5MmTWLq1KlkZ2e7r9WnTx8eeughSktLefjhhzs8x/5AVVpaSmpqKgBPPvkkn3zyCe+88w67du3iwQcf5Prrr2fVqlWAK4hFRkby3XffsXv3bv7973/zxBNP8N133wHw8MMPc+WVVzJ58mRKS0spLS0lOTn5sD/7lpYWZs2axYcffsiuXbsIDg7m5ptvZt26dXz77bds376dK664gsmTJ7vvd8aMGVitVlavXs2OHTuYPXs2Xl5eh7yGzWbjueeeY9u2bfz888/k5uYybdq0dsc98sgjvPzyy6SmphIcHMzUqVOx2+0dnrOpqYnzzz+fP/74g61btzJp0iSmTJlCQUEBAPPnzycyMpJnn33W/bkA7Nixg0mTJnHppZeyfft25s2bx9q1a7nnnnvc5542bRp5eXmsWLGCH374gblz53YY3gShy5ywJWEFQTikm266SbnooosURVGUESNGKLfccouiKIry008/KQf/N3366aeV/v37t3nva6+9psTExLQ5V0xMjOJ0Ot3bEhMTlTFjxrhfOxwOxdPTU/nmm28URVGU3NxcBVBeeOEF9zF2u12JjIxUZs+erSiKojz11FPKxIkT21y7sLBQAZSsrCxFUVwr1g8YMOAf7zc8PFz53//+12bb0KFDlbvvvtv9un///srTTz/9t+f56703NTUpBoNBWb9+fZvjbr31VuWaa6455Hnuvvtu5bLLLnO/PvjvY7/9q27X1ta6t23dulUBlNzcXEVRFOWTTz5RACU9Pd19zN69exVJkpTi4uI255swYYLy+OOPK4qiKH379lWeeeaZv73Xv5OSkqIASmNjY5uyfvvtt+5jqqurFaPRqMybN89dVh8fn789b+/evZU5c+a4X8fExCivvfZam2NuuOEG5Y477mizbc2aNYpKpVLMZrOSlZWlAMrGjRvd+zMyMhSg3bkEoaucXA3sgiAwe/Zszj77bB566KGjPkefPn1QqQ5U/IaEhLTpXKxWqwkICGj32/nIkSPdf9ZoNAwZMoSMjAwA0tLS+PPPPzussdi3bx89evQAYMiQIX9btoaGBkpKShg1alSb7aNGjWLbtm2HeYcd2717NxaLpV3znM1mY+DAge7X7777Lh9++CH5+fmYzWZsNtshR6wdKZ1OR79+/dyvt2zZgqIo7s9nP6vV6u4Ldd9993HXXXexdOlSzjnnHC677LI25/irrVu38swzz5Cenk5NTY27X1JBQQG9e/d2H3fw36e/vz+JiYnuv8+/am5u5j//+Q8LFy6kpKQEh8OB2Wx21wwdSlpaGnv37m3T9KUoCrIsk5uby549e9z/lvbr2bNnl45kE4S/EmFIEE4yY8eOZdKkSTzxxBPtmj5UKhWKorTZ1lGzh1arbfNakqQOtx1O5979fUNkWWbKlCnMnj273TFhYWHuP3t6ev7jOQ8+736KohzzyLn99/Pbb78RERHRZp9erwfgu+++48EHH+SVV15h5MiRmEwmXnrpJTZt2vS3594fLg/+/Dv67I1GY5v7kGUZtVpNWloaarW6zbH7g+Vtt93GpEmT+O2331i6dCmzZs3ilVde4d577213/ubmZiZOnMjEiRP58ssvCQoKoqCggEmTJh1Wh/VDfcaPPPIIS5Ys4eWXXyYhIQGj0cjll1/+j+eUZZk777yT++67r92+6OhosrKy/va6gnAyEGFIEE5CL7zwAgMGDGhXmxAUFERZWVmb4NCZc+ts3LiRsWPHAuBwOEhLS3P3/Rg0aBA//vgjsbGxxzRqy9vbm/DwcNauXeu+Frg64Q4bNuyYyr+/03JBQQHjxo3r8Jg1a9aQnJzM3Xff7d62b9++NsfodDqcTmebbUFBQYCrP5Ofnx9weJ/9wIEDcTqdVFRUMGbMmEMeFxUV5e7L9fjjj/PBBx90GIYyMzOpqqrihRdeICoqCoDNmzd3eM6NGzcSHR0NQG1tLXv27KFnz54dHrtmzRqmTZvGJZdcArj6EO3vGL5fR5/LoEGD2LVrFwkJCR2et1evXjgcDjZv3uz++83KyvrbOZAE4UQTHagF4STUt29frrvuOubMmdNm+/jx46msrOTFF19k3759vP322yxatKjTrvv222/z008/kZmZyYwZM6itreWWW24BXJ18a2pquOaaa0hJSSEnJ4elS5dyyy23tHtA/pNHHnmE2bNnM2/ePLKysnjsscdIT0/n/vvvP6bym0wmHn74YR588EE+++wz9u3bx9atW3n77bf57LPPAEhISGDz5s0sWbKEPXv28NRTT7k7X+8XGxvL9u3bycrKoqqqCrvdTkJCAlFRUTzzzDPs2bOH3377jVdeeeUfy9SjRw+uu+46brzxRubPn09ubi6pqanMnj3bPWLsgQceYMmSJeTm5rJlyxZWrFhBr169OjxfdHQ0Op2OOXPmkJOTw4IFC3juuec6PPbZZ59l+fLl7Ny5k2nTphEYGHjI+ZMSEhKYP38+6enpbNu2jWuvvbZdzWFsbCyrV6+muLjYPYrw0UcfZcOGDcyYMYP09HSys7NZsGCBO8glJiYyefJkbr/9djZt2kRaWhq33XYbRqPxHz87QThRRBgShJPUc889165JrFevXsydO5e3336b/v37k5KS0uFIq6P1wgsvMHv2bPr378+aNWv45ZdfCAwMBCA8PJx169bhdDqZNGkSSUlJ3H///fj4+LTpn3Q47rvvPh566CEeeugh+vbty+LFi1mwYAHdu3c/5nt47rnn+Pe//82sWbPo1asXkyZN4tdffyUuLg6A6dOnc+mll3LVVVcxfPhwqqur29QSAdx+++0kJiYyZMgQgoKCWLduHVqtlm+++YbMzEz69+/P7Nmz+e9//3tYZfrkk0+48cYbeeihh0hMTGTq1Kls2rTJXbPjdDqZMWMGvXr1YvLkySQmJjJ37twOzxUUFMSnn37K999/T+/evXnhhRd4+eWXOzz2hRde4P7772fw4MGUlpayYMECdDpdh8e+9tpr+Pn5kZyczJQpU5g0aRKDBg1qc8yzzz5LXl4e3bp1c9eU9evXj1WrVpGdnc2YMWMYOHAgTz31VJum008++YSoqCjGjRvHpZdeyh133EFwcPBhfXaCcCJIyl9/2gqCIAiCIJxBRM2QIAiCIAhnNBGGBEEQBEE4o4kwJAiCIAjCGU2EIUEQBEEQzmgiDAmCIAiCcEYTYUgQBEEQhDOaCEOCIAiCIJzRRBgSBEEQBOGMJsKQIAiCIAhnNBGGBEEQBEE4o4kwJAiCIAjCGU2EIUEQBEEQzmj/D5RyRqtHbiEwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAHFCAYAAABcueVqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD18ElEQVR4nOzdd3gU1d7A8e9sL+m9kkBI6L13kF4UK3awC1YUr/0qelVeu9d27YJcVLxgAxGki9Jb6D2BhPTetu95/1iysCSBoEAInM/zbDY7c2bmnG3z29NGEUIIJEmSJEmSpAajaugMSJIkSZIkXepkQCZJkiRJktTAZEAmSZIkSZLUwGRAJkmSJEmS1MBkQCZJkiRJktTAZEAmSZIkSZLUwGRAJkmSJEmS1MBkQCZJkiRJktTAZEAmSZIkSZLUwBp1QPbuu++iKApt27atdX16ejqKovDGG2+cdl/Tp09HURTS09PPOB+rV69m6tSplJSU1Fg3cOBABg4ceMb7vBgkJiZy2223/aVtFUVh6tSpZzU/p7J3715MJhM33XRTjXXFxcXExsbSo0cPXC6Xz7o//viDG2+8kSZNmqDX6zGbzbRp04YpU6awZ88en7S33XYbiqJ4b2q1mri4OMaNG8eOHTvOOM+JiYk++zObzXTu3Jn3338feQGOs+/E5/pUtxUrVvyt40ydOhVFUc5OputpxYoVZyXvDSU7O5tnn32WXr16ERYWRkBAAF26dOGTTz6p8ZkFWL9+PcOHD8ff3x8/Pz8GDRrEn3/+Weu+HQ4Hb731Fu3atcNoNBIUFETv3r1ZvXr1GeWx+nxUn9tfOQ+dLCsri6lTp7J169a/va9qDfHePNueffZZxowZQ2xsLIqi1Pscdcstt6AoCmPGjKl1fUFBAQ8//DCJiYno9XoiIyMZOXIkRUVF9c6bpt4pL0BffPEFADt37mTdunX06NGjQfKxevVqXnjhBW677TaCgoJ81n344YcNkifpzLRo0YJXXnmFRx55hGuuuYZrrrnGu+6+++6jqKiIpUuXolarvcufffZZXn75ZXr16sWzzz5LcnIyTqeTbdu2MWPGDN566y2cTqfPNkajkWXLlgHgdDo5cOAAL730Er1792b37t3ExsaeUb779Onj/cGRlZXFW2+9xYMPPkhZWRlPP/3033lKpJOsWbPG5/G//vUvli9f7n09q7Vu3fpvHeeuu+5ixIgRf2sfZ6pz586sWbPmb+e9oWzatImvvvqK8ePH889//hOtVsuvv/7KpEmTWLt2rfdcAbBhwwb69+9P9+7dmTlzJkIIXnvtNQYPHszy5cvp1auXN63L5eKqq67ijz/+4PHHH6d3795UVlayadMmKisrzyiP0dHRNd5D9913H6WlpcyaNatG2r8rKyuLF154gcTERDp27Pi39wcN8948295++23at2/PFVdc4fO+OJVffvmFH3/8kYCAgFrXZ2Vl0a9fPzQaDf/85z9JTk6moKCA5cuXY7fb65850Uht2LBBAGL06NECEHfffXeNNGlpaQIQr7/++mn39+WXXwpApKWlnXFeXn/99b+87cUsISFBTJgw4S9tC4jnn3/+rObndNxut+jfv78IDw8Xubm5QgghvvvuOwGIN9980yft119/LQAxceJE4Xa7a93X+++/L5xOp3fZhAkThNlsrpF26dKlAhAff/zxGeU3ISFBjB492mdZaWmpCAwMFE2aNDmjfZ0NVVVVtT4XFyq32y2qqqr+8vZ1vZ4nq6ys/MvHkOqnqKhI2O32Gsvvv/9+AYgjR454lw0fPlxERkb6vC5lZWUiLCxM9O7d22f7t99+W6hUKrFmzZpzku8BAwaINm3anJN9V58jv/zyy3Oy/8bK5XJ5/zebzac9R5WUlIjY2Fjx1ltv1fqdK4QQY8eOFbGxsaKoqOhv5a3RNll+/vnnAPzf//0fvXv35ttvv6WqqqrWtG63m5dffpkmTZpgMBjo2rUrS5cuPe0xFi9ezNixY4mLi8NgMNC8eXPuvfdeCgoKvGmmTp3KP/7xDwCaNm1ao9mitibLoqIi7rvvPmJjY9HpdDRr1oxnnnkGm83mk05RFB544AFmzpxJq1atMJlMdOjQgfnz558279VNEF9//TVPPPEE0dHR+Pn5cfnll5Obm0t5eTn33HMPYWFhhIWFcfvtt1NRUeGzD6vVylNPPUXTpk3R6XTExsZy//3312iadTgcPP7440RFRWEymejbty/r16+vNV85OTnce++9xMXFodPpaNq0KS+88AJOp/O0ZTrXFEXhyy+/pKqqiokTJ5KTk8OkSZPo168fkydP9kn70ksvERYWxttvv11rFb6iKNx///0+tWN1CQwMBECr1f7tMgQEBJCSkkJubq7PcrvdzksvvUTLli3R6/WEh4dz++23k5+f75POZrMxZcoU72vZv39/Nm3aVKP5ubqJ/7fffuOOO+4gPDwck8nkfQ/Pnj2bXr16YTab8fPzY/jw4WzZssXnWIcOHeKGG24gJibGW8U/ePBgnyaWZcuWMXDgQEJDQzEajTRp0oRrrrnG57N+pp+njz76iFatWqHX65kxY8bfebprGDhwIG3btuX333+nd+/emEwm7rjjDu9zMmzYMKKjozEajbRq1Yonn3yyRk1Lbc1CiYmJjBkzhoULF9K5c2eMRiMtW7as9y/8//znP3To0AE/Pz/8/f1p2bKlTw3qyU2Wp2teO9GSJUsYPHgwAQEBmEwm+vTpU6/v17MpODi41s9P9+7dAcjMzPQu+/PPPxk4cCAmk8m7zN/fn/79+7N69Wqys7O9y//973/Tv39/evbseQ5z76usrIzHHnvM53t38uTJNd4n//vf/+jRoweBgYGYTCaaNWvmfa+tWLGCbt26AXD77bd7X7dTdQOpqqryHtdgMBASEkLXrl355ptvvGlOfm9Wfw/UdjvxvCeE4MMPP6Rjx44YjUaCg4O59tprOXTo0Fl4xs6MSnVmYc+UKVOIjo7moYceqnV9eno6P//8M3fffTfBwcF/K2+NssnSYrHwzTff0K1bN9q2bcsdd9zBXXfdxf/+9z8mTJhQI/37779PQkIC77zzDm63m9dee42RI0eycuVKn+rpkx08eJBevXpx1113ERgYSHp6Om+99RZ9+/Zl+/btaLVa7rrrLoqKinjvvff4/vvvvVXNdVX9W61WBg0axMGDB3nhhRdo3749q1atYtq0aWzdupVffvnFJ/0vv/zChg0bePHFF/Hz8+O1117jqquuYu/evTRr1uy0z9XTTz/NoEGDmD59Ounp6Tz22GPceOONaDQaOnTowDfffMOWLVt4+umn8ff359133wU8H6Arr7ySpUuX8tRTT9GvXz+2bdvG888/z5o1a1izZg16vR6Au+++m6+++orHHnuMoUOHsmPHDq6++mrKy8t98pKTk0P37t1RqVQ899xzJCUlsWbNGl566SXS09P58ssvT1uek7lcrnr1l1KpVPX6IDZr1ozXX3+d++67j23btmG1Wvnyyy99ts3KymLXrl3ceOONGAyGM85zdfBZ3WT5j3/8g+DgYEaPHn3G+6pt3xkZGaSkpHiXud1uxo4dy6pVq7zNLocPH+b5559n4MCBbNy4EaPRCHi+vGfPns3jjz/OZZddxq5du7jqqqsoKyur9Xh33HEHo0ePZubMmVRWVqLVannllVd49tlnuf3223n22Wex2+28/vrr9OvXj/Xr13s/G6NGjcLlcvHaa6/RpEkTCgoKWL16tTfgT09PZ/To0fTr148vvviCoKAgjh49ysKFC7Hb7ZhMpjP+PP3444+sWrWK5557jqioKCIiIv72c36y7OxsbrnlFh5//HFeeeUV73tn//79jBo1ismTJ2M2m9mzZw+vvvoq69evr9HsWZvU1FSmTJnCk08+SWRkJJ999hl33nknzZs3p3///nVu9+2333Lffffx4IMP8sYbb6BSqThw4AC7du2qc5vamtfy8/O55ZZbfJrV//vf/zJ+/HjGjh3LjBkz0Gq1fPzxxwwfPpxFixYxePDgU5apvj/E1Gr1X+q7tGzZMjQajc/nwW63e7+7TlS9bPv27URHR5ORkUF6ejqXX345Tz/9NJ9//jmFhYW0aNGCxx9/vNZzzd9VVVXFgAEDyMzM5Omnn6Z9+/bs3LmT5557ju3bt7NkyRIURWHNmjVcf/31XH/99UydOhWDwcDhw4e976POnTvz5Zdfej+D1d8tcXFxdR770UcfZebMmbz00kt06tSJyspKduzYQWFhYZ3bjB49usb7ZM2aNTz66KO0adPGu+zee+9l+vTpPPTQQ7z66qsUFRXx4osv0rt3b1JTU4mMjKzzGEKIWvsB1kajObshzZIlS/jqq6/YsGFDnT+uV61ahRCCmJgYbrzxRubNm4fT6aRnz55MmzbtlDFGDX+rfq2BfPXVVwIQH330kRBCiPLycuHn5yf69evnk666yTImJkZYLBbv8rKyMhESEiKGDBniXXa6Jku32y0cDoc4fPiwAMRPP/3kXXeqJssBAwaIAQMGeB9/9NFHAhDfffedT7pXX31VAOK3337zLgNEZGSkKCsr8y7LyckRKpVKTJs2re4nSAixfPlyAYjLL7/cZ/nkyZMFIB566CGf5VdeeaUICQnxPl64cKEAxGuvveaTbvbs2QIQn3zyiRBCiN27dwtAPPLIIz7pZs2aJQCf6uB7771X+Pn5icOHD/ukfeONNwQgdu7c6VP2+jRZJiQkCOC0tzNp/nS73aJly5YCEG+88UaN9WvXrhWAePLJJ2usczqdwuFweG8nNuFNmDCh1rxFR0eLP/74o975O7Hso0aN8h7r8OHD4u677xZarVbMnz/fm+6bb74RgJg7d67P9tVNGh9++KEQQoidO3cKQDzxxBM+6aq3P/G1rP68jB8/3iftkSNHhEajEQ8++KDP8vLychEVFSXGjRsnhBCioKBAAOKdd96ps3xz5swRgNi6dWudac708xQYGPi3mxWq1dZkOWDAAAGIpUuXnnLb6u+TlStXCkCkpqZ61z3//PPi5K/mhIQEYTAYfD47FotFhISEiHvvvfeUx3rggQdEUFDQKdNUf18sX7681vWVlZWie/fuIjo6WqSnp3uXhYSE1PiOcblcokOHDqJ79+6nPKYQol6fXf5is9uiRYuESqWq8d3UsWNHkZKS4tN05XA4RLNmzQQgvv76ayGEEGvWrBGACAgIEK1btxbfffedWLRokbj22mt9vgP/jpObLKdNmyZUKpXYsGGDT7rqz8KCBQuEEMe/M0tKSurc95k2WbZt21ZceeWVp0xT23vzRHv27BGhoaFi0KBBwmazCSGOP48nd/vIyMgQRqNRPP7446c8ZvV7sz63M+02dKomy/LycpGYmCieeuop77LamiynTZvmfZ+MHTtWLFy4UMydO1e0b99eGAwGn8/26TTKJsvPP/8co9HIDTfcAICfnx/XXXcdq1atYv/+/TXSX3311T41Gf7+/lx++eX8/vvvp4y88/LymDhxIvHx8Wg0GrRaLQkJCQDs3r37L+V92bJlmM1mrr32Wp/l1c1BJ1f1Dxo0CH9/f+/jyMhIIiIiOHz4cL2Od/KIkFatWgHUqI1p1aoVRUVF3mbL6l9aJ49Aue666zCbzd58Ll++HICbb77ZJ924ceNq/FqZP38+gwYNIiYmBqfT6b2NHDkSgJUrV9arTCeaN28eGzZsOO3tnnvuqfc+Fy5cyJ49e1CpVCxZsuSM8hMaGopWq/Xe5s6d67PeaDR687Ru3Tq+//57UlJSGDVqVI1fmvWxYMEC77ESEhL49NNPee+993xe3/nz5xMUFMTll1/u87x37NiRqKgobzNV9fM/btw4n2Nce+21df7yPHHwA8CiRYtwOp2MHz/e51gGg4EBAwZ4jxUSEkJSUhKvv/46b731Flu2bMHtdvvsq2PHjuh0Ou655x5mzJhRa/PGmX6eLrvssr/drHA6wcHBXHbZZTWWHzp0iJtuuomoqCjUajVarZYBAwYA9fs+6dixI02aNPE+NhgMpKSknPa7oHv37pSUlHDjjTfy008/+XS5qA+Xy8X111/P7t27WbBggfc7cPXq1RQVFTFhwgSf19rtdjNixAg2bNhw2o7v9fnsbtiwgcsvv/yM8rx582bGjRvnraU40YMPPsi+fft44IEHOHr0KBkZGUycONH7PFbXaFa/H61WKwsWLOC6665j2LBhfPfdd3Tu3JkXX3zxjPJUH/Pnz6dt27Z07NjR5zkdPny4T5NydXPkuHHj+O677zh69OjfPnb37t359ddfefLJJ1mxYgUWi+WMts/JyWHEiBFER0fzww8/oNPpvGVSFIVbbrnFp0xRUVF06NDhtCN7u3TpUu/3SUxMzF8tfg1PPvkkWq2W55577pTpqt8ncXFxzJ07l+HDh3P11VezcOFCVCoVr732Wr2P2eiaLA8cOMDvv//ONddcgxDC27xx7bXX8uWXX/LFF1/U+ABGRUXV2E9UVBR2u52KigpvH54Tud1uhg0bRlZWFv/85z9p164dZrMZt9tNz549z/jNWq2wsJCoqKga1e8RERFoNJoa1cOhoaE19qHX6+t9/JCQEJ/H1R+SupZbrVb8/PwoLCxEo9EQHh7uk05RFKKiorz5rL4/+TnWaDQ18p6bm8u8efPq7Ct1picK8DQNi3o2WdZHSUkJd911F926deOee+7h7rvv5vPPP+fOO+/0pomPjweo9US4YsUKnE4nmzZtYuLEibXmo2vXrj7Lhg8fTnx8PI8++ugZB2V9+/bl7bffxuVysX//fv75z3/ywAMP0KZNG/r27Qt4nveSkhLva3yy6ue9+rU8ufmgttey2smjwar7rlWfME5W/TooisLSpUt58cUXee2115gyZQohISHcfPPNvPzyy/j7+5OUlMSSJUt47bXXuP/++6msrKRZs2Y89NBDPPzww948n8nn6WyMXjud2o5RUVFBv379MBgMvPTSS6SkpGAymcjIyODqq6+u1+f5r34X3HrrrTidTj799FOuueYa3G433bp146WXXmLo0KGnPe7EiRNZuHAhv/zyi89overX+uRg+ERFRUWYzeY619d39F99+mJW27JlC0OHDiU5OZkFCxbUaJ684447yM/P56WXXuI///kPAL169eKxxx7j1Vdf9TbJVj/fLVu29Aah4HnvDh8+nGnTppGXl3dWm71zc3M5cODAab8j+/fvz48//si7777L+PHjsdlstGnThmeeeYYbb7zxLx373XffJS4ujtmzZ/Pqq69iMBgYPnw4r7/+OsnJyafctry8nFGjRuFwOPj11199zqm5ubkIIepsljxd1xs/P796v0/OVpPl+vXr+fDDD/n++++xWq1YrVbAExc4nU5KSkowGo3o9Xrv+2TIkCE+79Po6Gg6dOjA5s2b633cRheQffHFFwghmDNnDnPmzKmxfsaMGbz00ks+T0xOTk6NdDk5Oeh0Ovz8/Go9zo4dO0hNTWX69Ok+fQUOHDjwt/IfGhrKunXrEEL4nETy8vJwOp2EhYX9rf2fLaGhoTidTvLz832CMiEEOTk53hNu9ZsxJyfHp2+J0+mscTIMCwujffv2vPzyy7Ue86/8uklKSqpXbeHzzz9fr3nNHnzwQYqKiliyZAmtWrXihx9+4NFHH2X48OHe/hcxMTG0adOGxYsXY7VafWpfq784Th4gcSomk4mkpCRSU1PrvU21wMBAb4DXo0cPevToQYcOHbjvvvvYunUrKpWKsLAwQkNDWbhwYa37qK6BrX4tc3NzT/taVjs5EKp+/86ZM8fnJFabhIQE7+Ccffv28d133zF16lTsdjsfffQRAP369aNfv364XC42btzIe++9x+TJk4mMjOSGG24448/T+ZhDqbZjLFu2jKysLFasWOGtFQNqnbvwXLj99tu5/fbbqays5Pfff+f5559nzJgx7Nu375Sv09SpU/nss8/48ssvGTZsmM+66uf2vffeq7PT+6n6BkH9B7J8+eWX9ZovasuWLQwZMoSEhAR+++23Wn9sAzzxxBNMnjyZ/fv34+/vT0JCAvfeey9ms5kuXboAnu+WEzv+n6j6R+CZdhA/nbCwMIxGY52DNU58P48dO5axY8dis9lYu3Yt06ZN46abbiIxMfHM+i0dYzabeeGFF3jhhRfIzc311pZdfvnlNeZUPJHD4eCaa67h4MGDrFq1qkY/tbCwMBRFYdWqVafsu1eXlStXMmjQoHqVIS0tjcTExHqlPZVdu3YhhOCqq66qsS4jI4Pg4GDefvttJk+eTPv27evcjxDijN4jjSogc7lczJgxg6SkJD777LMa6+fPn8+bb77Jr7/+6tNU9/333/P66697T5zl5eXMmzePfv361fnLq/pL9eQ3y8cff1wjbXWa+vzKHTx4MN999x0//vijz4v91VdfeddfCAYPHsxrr73Gf//7Xx555BHv8rlz51JZWenNZ/VImlmzZnm/yAC+++67Gh12x4wZw4IFC0hKSjprzUbz5s2rMZquNvUJ9n766Sf++9//8vrrr3ubdj/55BPatm3L3Xffza+//upN+8wzz3DTTTfx6KOP8sEHH/ytE31FRQUHDhw4K7+0k5OTefzxx3nhhReYPXs2N954I2PGjOHbb7/F5XKdcq6+6o7hs2fPpnPnzt7lc+bMqXfn6+HDh6PRaDh48GCN5sxTSUlJ4dlnn2Xu3Lm1/qJUq9X06NGDli1bMmvWLDZv3swNN9zQaD5PZ/J9ci6ZzWZGjhyJ3W7nyiuvZOfOnXUGZJ9//jkvvPACL774Yq3BUJ8+fQgKCmLXrl088MADfyk/GzZsqFe6pk2bnjbN1q1bGTJkCHFxcSxevPi03zF6vd47qfiRI0eYPXs2d999t3eAi0ajYezYscyZM4f09HTviV4IwcKFC0lKSjrrP6DHjBnDK6+8QmhoaL3KXF2OAQMGEBQUxKJFi9iyZQu9evU6o/PSySIjI7nttttITU3lnXfeoaqqqs7g9M4772TFihX8+uuvtQYnY8aM4f/+7/84evRoje4Q9VHdZFkfZ6vJcsSIEd7uOCe64YYbaNq0KdOmTaN58+aA54dwXFwcv/32Gy6XyxtTZGVlkZqaWutk43VpVAHZr7/+SlZWFq+++mqts9+3bduW999/n88//9wnIFOr1QwdOpRHH30Ut9vNq6++SllZGS+88EKdx2rZsiVJSUk8+eSTCCEICQlh3rx5LF68uEbadu3aAZ4h0hMmTECr1dKiRQufvl/Vxo8fzwcffMCECRNIT0+nXbt2/PHHH7zyyiuMGjWKIUOG/IVn5uwbOnQow4cP54knnqCsrIw+ffp4R1l26tSJW2+9FfD0Pbvlllt455130Gq1DBkyhB07dvDGG2/UmETvxRdfZPHixfTu3ZuHHnqIFi1aYLVaSU9PZ8GCBXz00UenHAVUm+rn/u8qKCjg3nvvpXfv3jz66KPe5bGxsbz99tvcfvvtPk2XN954Izt37uTll18mNTWV2267jeTkZNxuNxkZGcycOROgxnvA7Xazdu1a7/9Hjx7l3Xffpbi4+KxdmeCxxx7jo48+4oUXXmDcuHHccMMNzJo1i1GjRvHwww/TvXt3tFotmZmZLF++nLFjx3LVVVfRpk0bbrzxRt58803UajWXXXYZO3fu5M033yQwMLBev/QSExN58cUXeeaZZzh06BAjRowgODiY3Nxc1q9f7/0Vvm3bNh544AGuu+46kpOT0el0LFu2jG3btvHkk08C8NFHH7Fs2TJGjx5NkyZNsFqt3pqD6s/J2fo83XbbbcyYMeOs/cI+We/evQkODmbixIk8//zzaLVaZs2a9ZdqRc9UdZDRp08foqOjycnJYdq0aQQGBtbZtLxmzRomTpxInz59GDp0qPc9W61nz574+fnx3nvvMWHCBIqKirj22muJiIggPz+f1NRU8vPzvU2CdTm5+f6v2rt3r/e1fvnll9m/f79Pf+KkpCRvTf+OHTuYO3cuXbt2Ra/Xk5qayv/93/+RnJzMv/71L5/9/utf/+LXX39lxIgRTJ06lYCAAD777DNSU1P57rvvfNIOHDiQlStX/q2rZEyePJm5c+fSv39/HnnkEdq3b4/b7ebIkSP89ttvTJkyhR49evDcc8+RmZnJ4MGDiYuLo6SkhH//+98+/RKTkpIwGo3MmjWLVq1a4efnR0xMTJ1BS48ePRgzZgzt27cnODiY3bt3M3PmTHr16lVnMPb6668zc+ZMHnzwQcxms8/7JCAggNatW9OnTx/uuecebr/9djZu3Ej//v0xm81kZ2fzxx9/0K5dOyZNmlTnc+Lv73/W3ifgqXGrnu7H5XJx+PBhb2vbgAEDCA8PJyoqqtauTgaDgdDQUJ/4Q6VS8fbbbzNu3DjGjh3LpEmTqKys5F//+hc6nY6nnnqq/pmrd/f/C8CVV14pdDqdyMvLqzPNDTfcIDQajcjJyfGOsnz11VfFCy+8IOLi4oROpxOdOnUSixYt8tmutlGWu3btEkOHDhX+/v4iODhYXHfddeLIkSO1jtp76qmnRExMjFCpVD6jlU4eZSmEEIWFhWLixIkiOjpaaDQakZCQIJ566ilhtVp90gHi/vvvr1HG+ky4Wj0y5X//+1+t5Tx5FE/16Jn8/HzvMovFIp544gmRkJAgtFqtiI6OFpMmTRLFxcU+29psNjFlyhQREREhDAaD6Nmzp1izZk2t+czPzxcPPfSQaNq0qdBqtSIkJER06dJFPPPMM6KiosKn7OdzYtjrrrtOmEwmsW/fvlrXjxo1SgQEBPhMMCmEEL///ru4/vrrRVxcnNBqtcJkMonWrVuLSZMmiY0bN/qkrW2UZUREhBgwYID44YcfzjjPdU1SKIQQH3zwgQDEjBkzhBCeUWRvvPGG6NChgzAYDMLPz0+0bNlS3HvvvWL//v3e7axWq3j00UdrvJaBgYE+o9Xqeh9V+/HHH8WgQYNEQECA0Ov1IiEhQVx77bViyZIlQgghcnNzxW233SZatmwpzGaz8PPzE+3btxdvv/22dzLdNWvWiKuuukokJCQIvV4vQkNDxYABA8TPP//sc6y/+3kSQohrrrlGGI3GGu/tU6lrlGVdE32uXr1a9OrVS5hMJhEeHi7uuususXnz5hoj4eoaZVnba13b98vJZsyYIQYNGiQiIyOFTqcTMTExYty4cWLbtm3eNCePsqx+feu6nWjlypVi9OjRIiQkRGi1WhEbGytGjx5d47vnXDpdfk98fvfu3Sv69+8vQkJChE6nE82bNxfPPvusz/fPibZv3y5Gjx4t/P39vZ+JefPm1UjXpUsXERUVdUb5ru39UlFRIZ599lnRokULodPpRGBgoGjXrp145JFHRE5OjhBCiPnz54uRI0eK2NhYodPpREREhBg1apRYtWqVz76++eYb0bJlS6HVak/7nfrkk0+Krl27iuDgYKHX60WzZs3EI488IgoKCrxpTn5v1jVyHKjxvvziiy9Ejx49hNlsFkajUSQlJYnx48fX+J4816pHQtd2q2uUcbVTfef++OOPolu3bsJgMIjAwEBxxRVX+MwcUB+KEPKid5Ik1W316tX06dOHWbNmnVH1e2MSFRXFrbfeyuuvv97QWZEaofLyckJCQnjnnXe4//77Gzo7UiMlAzJJkrwWL17MmjVr6NKlC0aj0ducExgYyLZt2/7SRLgXup07d9KrVy8OHTp0wQyqkRqXX375hfvvv599+/bVOZpZkk5HBmSSdIE5XQf6+l514K9Yt24dU6ZMYdeuXZSXlxMWFuYd4n8+poyQJEm6VMmATJIuMKcbsTlhwgSmT59+fjIjSZIknReNapSlJF0KTjfEWzarSZIkXXxkDZkkSZIkSVIDa5TXspQkSZIkSbqYyCbLenK73WRlZeHv739eLr8iSZIkSdLfJ4SgvLycmJiYczYg6myQAVk9ZWVleS8qLUmSJElS45KRkXHGV4M5n2RAVk/Vl8DJyMiocUkgSZIkSZIuTGVlZcTHx9d6OcMLiQzI6qm6mTIgIEAGZJIkSZLUyFzo3Y0u3MZUSZIkSZKkS4QMyCRJkiRJkhqYDMgkSZIkSZIamAzIJEmSJEmSGpgMyCRJkiRJkhqYDMgkSZIkSZIamAzIJEmSJEmSGpgMyCRJkiRJkhqYDMgkSZIkSZIamAzIJEmSJEmSGpgMyCRJkiRJkhqYDMgkSZIkSZIamAzIJEmSGiGH1YrDbmvobEiSdJbIgEySJKmREEKQuWcnv7z7Ou/fcQOHt231rstLP0Tq4l/J3LWDqtIShBANl1FJks6YpqEzIEmSJJ2araqK3auWk7p4AQUZh73Lg6NivP8f2ryBP2fP9D42+PkTEhtPSEwcobFxtOw7EL/gkPOab0mS6k8GZJIkSReoypJi1sz5ml2rVuCwWgDQ6PS07DOAjsNGERIb500bGBFJ045dKDyaSVlBHtaKcrL27iJr7y4AEjt28QZkO1cu5dCWjYTGxhESE0dIbDzBMbFodfrzXkZJkjxkQCZJknSB0uh07Px9GU6bjZCYODoMG0Xr/pdhMPvVSNuq70Ba9R0IgMNmpTg7i6KjGRQezaQoK5OgE2rTMnZtZ9+aVb47UBQCwyMIiY1n2L0PeYM3l9OJWiNPFZJ0rslPmSRJ0gWgJCeb1CW/UpBxmGueegEAvcnMoAl3ExQZQ3ybdiiKUq99afUGIhKbEZHYrNb17S4bTmhcE4qOZlB0NJOioxlYKysozculND8PvcnkTbvsi4/Yv2ENoceaP0Ni4wmJjSM0Nh7/0DAUleyKLElngwzIJEmSGojb7eLQ5o2kLl5A+tZN3uU5B/cTlZQMQPvBI876cWNbtCK2RSvvYyEElrJSCo9mUF6Qj1Zv8K4rysrEUlZKZlkpmbt3+OxHo9dz36ezvOnz0g+hUqkIio5Fo9We9XxL0sVMBmSSJEnnWWVJMduX/ca2JQspL8z3Lk/s0JkOw0bXWbN1riiKgikwCFNgUI11Vz35PMVZR483fx7NoCgrk+LsLAwms0/wtnLm5xzZkYqiqAiMjDxhUIGnVi06uWW9a/kk6VIjAzJJkqTzLHv/Xu+ISIN/AG0HDqHDkJEERUU3cM5q0hmMRDZrTmSz5j7LXU4nVaUlPsu0BgM6owm7pYqSnGxKcrI5tGk9AMaAQO77dJY37fblv6FSqQlrkkhobDwane6cl0WSLmQyIJMkSTqHrJUV7Pp9GWqNlg5DRwLQrHM3mnfrRXKP3qT06NMogxG1RoN/aJjPsiv/8U+EEFSWFHv7pxUeq1EzmMxUVlbicDgwGo2smfst5fl5ACgqFcFRMYQ1SSSsSQJRzZJp2qlrQxRLkhqMIuTsgfVSVlZGYGAgpaWlBAQENHR2JEm6wOUeOsDW3xawZ/VKnDYb5uAQ7n7/i7MyYtHmspFbmYtZaybUGHoWcntuLVq0iD179lBcXOxdpgAqBDjsGA9sp7oh0xEYiikyhu6jx2I0GjEajez/cyV+gYFENUkkLjkFcy1Nqxczh8OB1WrFZrNhtVqxWq00a9YM1bEBFTt27ODw4cPedVarFYPBQLt27WjVqhXaS7w/X2M5f8saMkmSpLPEYbexd/UqUhcvIOfAPu/ysPgEOgwdVa/Z84UQlNnLyK7MJqsii+zKbLIrssmqzCKnMoesiiwKrYXH920MIyU4hRbBLUgJSSElOIWmgU3Rqs7vSbisrIzMzEwyMzPJz8/npptu8vYXKy0t9QZjKpUKt9uNAFwo6P0CmPifGRQcSSc/4zB/bNtJkcPFwoULTzrCUdi2C7/dL+IXFExYk0TKzEHY1FpCIiIxGo0YDAZvEGc0GmnZsiVqtRoAp9OJWq1u0D5sxcXFlJWV+QROJwZao0eP9uZ34cKFbN++HavVisvlqrGvxx9/HNOx0bDp6els3LixRpr9+/ej1+uZOHEiwcHB57Zw0t8mAzJJkqSz5Pf/fsnWRfMBUKk1pPTsQ4dho4ht0dobCLjcLvIt+acMuKqcVac9lkFtwOayUWApoMBSwOqs1d51GpWGpMAkWoS0ICXYE6S1CGlBiOHszdSfm5vLoUOHyMjIIDMzk7KyMp/1RUVFhIZ6au969epF586diY2NxWAw4HA4sFgsWK1W7HY7fiGh+IWEktixC0TFk5ubi8ViwWKxUFVZSWlRIXaHE7fbjYJnUERlSTFV8cm4/ALJLSyqNY8P3nMXIVExKCoVP/74Izt37qw1cDMajQwdOtRbk5Sbm4vVavWuUxTFGzTZbDaaNTs+6CI1NZWjR4/61F6dGGj94x//8AZZS5cuZceOHbXmFWDIkCHeIMvpdFJZWemz3mAwYDAY0Ov1OJ1O7/Lk5GRMJpPP+vz8fLZu3YparSYoKMib9tChQ0RGRmI2m0/zCkvnmwzIJEmS/gK3y8XBjesIjoklLD4BgHaXDePg5vU06dsDY8dmFKjK+KFyGdl/zPIEXpXZ5Fbm4hTO0+wdQgwhRJujifGLIdoc7bn5RRNj9jwO1AdicVo4UHKAvcV72Vu0l/3F+9lXvI8KR4VnWfFen32GGcM8NWnBKaSEeGrVEgMTT1mbJoSgpKSEzMxMkpOTMRg8oyq3bdvGn3/+6U2nKAoRERHExcURHx/vDSwA4uPjffap0+nQ6XQEBgbWOF63bt3qzIvb7cZpt1GYcYT8I+kc2r8PY3gUwfEJWK1WivLz2LFqBajVCEXF9EcmotHrCYtPIM8cihCCqqoqqqpqBrzDhw/3/r9q1apTBk7//Oc/vUHW/v37T5nWZrN5n4vAwEBCQ0PR6/Xe4OnEIEp1wpxuffr0oVu3bt60Op3OZ/2JWrRoQYsWLWos79+/P+Xl5d4fAw6Hg9mzZ+NwOEhJSaFTp040b97cWxapYck+ZPXUWNqgJUk6d4QQZGWnsXHxzxz+Yw2OskrcbSLJ7h/ore0qshTBaVrFNIqGSHOkN+CKMkd5Ai2/aG/wZdAYat1WCMG+3ArWHirEqFPTo2kITUJM3pOuEIKsyiz2FnkCsv3F+9lbtJeM8gwENb/utSotSUFJ3pq0JP8kAqwBlOUdb4KsqKgA4JZbbqF5c89oywMHDrBhwwbi4uKIi4sjJiYGvb5hL71UWVLM7lXLKcg4TP6RdIoyM3A67AAIRaHzFdfSZvAIT/CWl8uGX+dhDApG7x9I//79CY2LR6s3sGDBAvbv34/VasVi8VyySqfTeYOnO+64wxuYbt++nby8PG9QdXKgFRwcfMEEPIWFhcydO5esrCzvMj8/Pzp06ECnTp0ICws7xdaNV2M5f8uArJ4aywsqSdJf53Q7ya/KJ6vStykxuyILy8FsgvdUEZujRyU8wY9F52JPQjmpyaU++zFpTLXXbB0LuMKN4ahV9T9J55fb+PNAAav2F7Bqfz555Taf9ZEBero3DaV7YjDdm4aSHOGHSuUbFVY5qthf4gnO9hXv89yK9lHlqEIontNAbGUs3fO6o8K3JkZRFEIiQhhy2RBanTCh7IXO7XJRnJNFwZHDFGSk07RjF2JSPPk/tHkDP7z6gk96RVERFBVNWJMEOgwZRUL7jrjdboA6a6cao9zcXLZu3UpqaqpPbeHo0aNPWUPZWDWW87cMyOqpsbygkiSdXpm9jAPFBzhQcoD9xfs5WHqQzPJM8qrycImaHaiHrYsgptDofVwY6qK0tR/6VrHEBMR5A63qICxAF/C3Oo9bHS42phezan8+q/YXsCvbt3+WXqOie9MQLHYXqZklOFy+X+NBJi3dEkPo0TSE7k1DaB0dgEatwmq1cvToUW/NV2ZmJp16d0KdoGZf8T4OHDmA/yZ/qtRVFOmLKDIUUaQvolhXjFvlRqvS0jyoOcnByd5BBC2CWxBsaHwdxsuLCkjfutkzmOBIOgVH0rGUH3+eB9w7iZjunahyVJGzeRsbv5yJVm/w3AzV93q0egNdx1xNk7btAc+VDfauWXVSWj1agxGt3kBwdAymAE9Trdvtea+pziA4P5ucTif79+9ny5Yt7N+/nwceeMDb7y87Oxu73U6TJk0a/WS+jeX8LQOyemosL6gkScdZnVYOlh48HnyV7OdA8QFyq3Lr3EajaEixRmGOjyLaP4YYvxgM63Mp/2MHib170n3EVcQkJp/VfAoh2Jtbzqp9Baw6UMC6Q4XYnG6fNG2i/OkfFUT7ED+idTrs5XZUGhV6fy1ZNgd7yi2sLyhl0+FirI7j2xqx002fRZzOgs5RUePYHTt25MorrwQ8fbTKy8vRmrTHa9FOuFU6KmtsDxBhjCA5xBOkVfdRSwxMRKM6992UhRBYXVaqHFWem7OKSkcllY5Kqpy1LDv2uMpxbJnz2DJ7Fa5KC7oiB/6lCkeiqqgweQKm5hlm+m6vuzmv613j6TZwDCatiX1r/2De2/9XZ9qh9zxI+8Ge/mrpWzcxd9rzqLXa4wGcXu8J4gwGOo+8guTuvQEoyc1h29KFnvUnB3t6AyGxcQSERQCemkG3231Gl6+qrKz06eg/e/Zsdu/eTUhICB07dqRjx46N9tzXWM7fslO/JEmNnsPt4EjZEW/AdaDEcztSdqTWflMAUeYoT21PUDLNg5sTq4vCsuMwaSv/IC/tIJc/ehcpPfoAYEupQhmvoDMYa93XX5FXbvU0Q+7JZ9O+QuzldvzdCn5CoadbRZhaR2C0mQ5D4+mdFEaQTsMnD6/kEAUcqmV/TVqZGTkyhMNHKqkQOrLWaCi0O8i0VBKtz0dxeNJVuPUU4oc+KJykxCaEtEyiyu7EpNOgUqm8He07RnSkY0RH7/7dws3RiqPeps59xfvYW+zpm5ZnySPvaB5/Hj3eyV+n0vn0TWsR4gnWAvQBWJyWmkHTyQFSHcFV9f+VjkosDgtVzqpaazX/EgUIPXY7Vgaz1kxOvJX/hWWicarQuBS0LgWNy/O/xqkw58A0KrL+RaA+kGRLJImtAjAJPQahQ+dWo3EqqJwCl92B8YSAwGHzND27HA5cDgfWinKf7LTsPcD7f0luNht+mlNn1vvfcgfdLr8a8MyB9+3zjxMWn0hU82SimqcQnZRCSFx8nbVxJwZjQgjMZjM6nY6ioiKWLVvG8uXLSUpKolOnTrRo0QLNWZhPT/Ila8jqqbFE2JJ0MXMLN1kVWd6Aa3/xfg6UHCCtNA2H21HrNkH6IJKDk72BV3JQMklBSfjr/AHPTPpr537DxvXrcR47QarUalJ69iWpS3cA/P39SUxM9O5z9+7d3r5FgE+Tjslk8qZ12F3sTN1DVZmVinI7R3MrybHZSbVZySy24BJqbioOR3VsFIBdWwLK8f1GJATQ88okwNOpfOUnmWgNavyC9DgNFZRVFVJcnke5vQgHx/sCxcfFY93Y1Pu4ypSJ2mVE6/BH5dZxSONirp/du36IRUtAoJ6YaD+SEwPpkBxGVJQZvVlz2uaqSkeld3TnvuJ93j5q9Zm642wzaoyYtWZMGpPnXmuq83+z5tgyrcl3G43Ju7x69KkQghJbybH+hJ7pSrIqs7wDOY5WHKXcXn6a3B3vW+jtX2iKIlIdSrgmlFB1IGYMOG02HDYbDpuVyKbNvZfTKjhyhB3LfsNpteO02XDZ7Disdlx2O26bnXaDR5LUsRvCLcjZt49Fn/2bCkcxbo6/n7R6A5FJzel+xbX1uhKCzWZj165dbNmyhSNHjniXJyYmctttt53hq9NwGsv5WwZk9dRYXlBJuhgIISi0FnoDrhODL4vTUus2Jo3J27+peVBzmgc3p3lQc0INobUGFW67i4xlm0lbtI4gEcaPQXvqzE+8NoIxAb08DxT4tGA+TmqvlYnWhtK3shMupxu3W/Cr6Q9sqtqDRbPw57JKz4lRrVHxm/5PqhRrrWmDtf7c0mSkpxZHUZh1+FeK7L59y8LCwjzTTsQ1wd8dQ0WJjUrvze65L7UR0zGMqg6BrE8rYtOBQq7PqD3oEirwbxHIqDvaEu7vGUGZuiwDU4AOc6Aec5Aec5AOjda31sVbm3ZCTdq+4n1klGd406gUlW9QpDFj1poxak8RVJ247ISgyqw1Y9QYUSlnr+O9cAmchRYcOZW4KxwItwCXQLjdx+4FuAXC5bm3O+xU2SqpslVhsVdhdVix263YnHYcDjvC5UYlVGiEGjUq1EKN2vtYjVqo0Qo1WkWLFs2x9WpUQkFxK6cbuFt7GRRw6GyUOQvJKzlCcVU2pY4CBj1wL8k9PbW/Gbu2s3He995atMjmKRj9/Gvsq6CgwDsQoE+fPvTs2RPwBG2pqam0a9cOo/Hs1SCfTY3l/C0DsnpqLC+oJDU2ZfYyDpYc9AZc1fcltpJa02tVWpoFNvMGXNU1X9Hm6FOekIXLjT2zAtuBEqr2FZKWmU6863i/oF+1W46nPeEvQJgIoLvz+MW1F2q34lRcJ6Q/njbE7UcfZ0uftDalZkAmEAQJMwMdbbzLFmm3UqXYTjq6539/YWCYo4N32W/aVFy4iRCBRLgDCRcB+IUFoI02o406dosxow7U+wSkwi1wOd1odJ4gym5x8vu8gxw5Wk5RgQVbuQOdQ2A6NpI0VefkN5ODZuFmesYHE7uskJMZzFrMQTqadgynx+XHJ01N317gDdyMflosLgsWpwWz1oxerb8gOosLIXCX2XHkVOLIqTp2X4kjvwqcF/bpUSgCoQJUCopahUqtQlGpUNQKbosTYaujKVetoI0woYk0kZ1/gO2bl1BqL6DSWQJAUFQ0UUkpRDdPoUXv/piDjg/acB3rn1Y9ie7mzZv5+eefUavVtGrVik6dOtG0adMLalRqYzl/y4CsnhrLCypJFyqr08qh0kOeGq/iA+wr2XfKDvYqRUUT/yY+tV3JQck0CWhSr87iwi1w5FRiPVCCdWcu9sxKcCkUKGWs0u6hUFXOsIpktOXlVFjVVKr8sOvMODVmUFT4lx8mKW0ex6qk2NHmDtzq43ODKYBGcaJWORGKlRxRRKZdTaXWgFbtR6VGg0ujplmUmVZRgbSM8icyQI+C4gm2hDgedXm/hX2XCU5Oc8Jjt8BZbPMED9kVuCtrn2xWMWjQRps8AVq0GV20H5pIEypd3SP78sqtrNtfyOa9BWzJLCG1qAIhwOiGyyxa/N0KQYoasxtUJ4w9aN03hkG3eIJRu9XJp5N/965TqRVMgTpMAXqM/lqatA6l/aA4T9GE4PCOQox+Ooz+Woz+OrT6sz/y0G114sg9Ieg6FoQJSx3PnVaFJsqMJkh/LOhRfO9VCqhVx+4V3/va0qsVUNWe3omLInsR+bYC8mz55FnyyLbmkGPJIcuSTU5VDlZsuBQXLsWNC7d3uhJvflEIN4YT7RdNgn8CPc1daU9Lgsv9cOZW4cirwplbhXC4ay2vUzgosxdQai+g1OG5H/rYg4S3aY6iKGTs2k5pbg5RzVMIiY1DpVKza9cuVq5cSW7u8c9xYGCgdyDAhXDJpsZy/pYBWT01lhdUkhqaw+0goyyD/SX7fZocM8ozcIvaTwQnd7BPDkqmaWDTOidHrY0QAleRFcv2bKpSj+LIdYL7eODmxMUG1V52arNBAZ3DiamiNVpbVI19KbgJUxXSo2IBzsJCnAUFZBpboXI7MNhK0NtK0NlLUbvrnnFfqNRoQkPQhIWhCQ1FExqKOiwUTVg4mrBjj0PD0ISFog4ORvkbNQpCCNwVDhzZlZ7bsSDNkWcBdy1f8QpoQo2+tWnRZtTBtddalVTZ2ZhezPr0ItalFbHjaCkutyc41AvwFwoxeh3J8QG0bxdB96YhxOp1LPxoOxUlNizldk4eW3Fi8GazOPnskd991mu0Kgz+Wox+Opp1DKPrqKbesu5Zk43BT4fRzxO8Gf21aPXHr1MpnG6cBRafoMuRU4mrxHf+Ni8VqEKMKOFGXKEG7CE6rEF6Ko1qLA43eo2KuBATUQEG1KqGqdU7+ZJb1f3Ysis8fdiyK7OxuWovX4ghhC6RXTy3iM40FU1w51lx5FbhzK30BKmnqBFU9Gq0kSZyCg9x+Mg2Su0FVKnKCUqIISo5hcikZFQBIexLS/NefxM8fSsfe+yxBr9MU2M5f8uArJ4aywsqSQ3pt/TfmLpmap0dnKs72Ff39Tq5g/2ZchRWUPnHHiy783EVq0Ax+awXThuuwv3sE0dZHwtOrSdAS46N4Yrrb+D3/6ZTkltFs47hRDYNwC/4WPOav847sWpumZVV+wv4c3c2O3amIYqLCbaWE2QrJ9hWTpywkKSxE+Wuwt9SBkVFuEpKzqwgKhXq0BA0oceCt7DqYO1YwBYa6g3s1MHBKPWc+V043TjyLZ7gLKfSG7C5K2rv06bo1d7g7MRgTXVSbVWlzcnmI8WsT/MEaFszSrCfNE1HgEFD92PzoHVtEkJTPz22MgdVZXasFQ4CI4zEpnhqTypLbMz/IBVrhQNLuQPXSftq2iOSNlckYnG4KC+zsf6t7d51RgUC1AoBGoUArQp/nQp/t0BVx5mtRBEcUQsOKW4O4GKv28VBlxN77cl9aFQKMUFG4oKrbybigo3Eh3juI/wbLmATQlBkLfIOMthbtJdNuZvYUbADu9u3dH5aPzpFdKJzZGe6RnalTWgbNGhwFlk8NWm5VTiOBWrO/DqCesDmslDmOF6jNvjR+9FG+7Mv4yAb1q1Fo9Ey/oTO/2vXriUuLo7Y2Njz2lzdWM7fMiCrp8bygkpSQxBC8PmOz/n35n8DxzvYV9d2na6DfX2PYd17iMq1+7AdKMFdZUTRhfqmcTtxFR1C2LNxhJvJDopnfdlOKs2erznF4aBXp24Mu/ZKABw2V42mMYvdxbq0Qu+s+PtyfefuMunU9GoWSr/kMPomh5MUbq5RJuFw4CwqwllQgKuwEGdB4bH/Czz/FxZ6/3cVF5/ZE6FSoQ4J8QRnAQGozGZUfn6ee7MZldnk/V/tXeZ7E+hxFjlwemvTKnHkVYGr9tOBOtSANsqMLvrE2jSDp8kNz0S22zJLWZ9WyLq0IjYdLqbK7tt/yaRT0yUhmJhAIxaHC6vD5b23OtxYHC4sdhc2hwunzYVid2Nwg1EoVCgCi0aQhJqWbhX9XVoiVCpCVAq6Ot5PFQjShAs/u0K5C8pcgjK3wHGsiC4EO3UuFpmOBafC0xxr14BTo+DWqRB6FUKnohgXR8qsNSbgPZlW7QnY4o8FatVBW3yI5z7cT1/jCgrnms1lY0fBDjbnbmZT7ia25m+tMZ+cXq2nfXh7Okd0pktkFzqEd8Ck9fy4EU63Z3DDsUDNmXMsUCu01Kj1rKby01JUmU1uSToukxNdtD+6xHAW79yBEILw8HA6depE+/bt8fPzO9dPQaM5f8uArJ4aywsqSeebw+XgpXUv8f3+7wG4udXN/KPrP87o0kC1cRYWUrVlG5Yt6dgzLLidgaj841BO6LgvhBtRkY2iKUEXb8TUuSnZmjg2Ls+nMCMdR9Wv2E0urLHNMFnc9OtzHZ0Gt8Lgd3zCTJdbsDu7zBuAbUwvxu46cUoLaB8bSL/kcPomh9G5STA6zVkczedw4Cwq9gRox4I3V2EBzvxjjwsLcFUHccXFnr5nZ4NG4w3g1GYzKpM/qoBoVOYoMISjqIMRwg/culo3V7QKmjC9J0CLD0QX4+epTTNocLrc7MwqY8OxJs4N6UWUVNVeK3cyHZCAiiTUNDvhPpzan3MnUKhTKDKoKNOpKPPXUB5hRPhp0QtQtpWgsgmwuRBWFy6rC7fd8/rGd4ugyzVJGLVqFLuLr59aU2e+krtF0u7aZmQWW8goqiLzUClHnQ4yyj1TmGSVWHDWUZPkLZtaRexJtWsnBm3hfud+oIPT7WRv8V5vgLY5dzPFNt8fBWpFTevQ1nSJ7ELniM50juxMoN73QvDC4caRX3VCjVoFjlwLrmJrrYFauWJhnWovRzRFuI/1fVMpKpKTk+nUuRPJycnn7JqfjeX8LQOyemosL6gknU+ltlKmrJjCupx1qBQVT3R7gpta3XTG+3FbLFh37aIqdTvWHRk48two+hjUIUkoat/ZxoWjGLXZiq5ZIKaeyRSrggkIM+If4ulvlvrHQZbO3ojInw3CjsbgR9frxtNnzCgAHC4324+WeprbDhWyMb2YcptvX7DYICP9ksPolxxO76RQgs21ByXnm3A6cRYVeWvd3OVluCorcVffKk74/6Sbq6oSd2UVourM5gdTdH6oAmJRBcahDohDFRiHyj+mxutSzW0rBkchuEtRVJUoOhuKCcpUWrJsChU6EyI4BFVwKAZzMH5qf8wOLcZSO7piO+pSG0odZyV1sP54n7coE9pIM5pwI4r6zAJkp8OFtcKBolIwB3qm87BVOdj82xGs5XYsx5pOLRWe5lVblZMOg+Ppe53nCg3WSgefT1kFgH+ogZAYM0FRJtTBeiwGhSK1IPNYoJZZXEVmsYXsUqun390p6DXVAZuJ+JOCtvgQE6Fm3VkP2IQQpJWmsTF3I5vzPEFaTmVOjXTNg5p7+6F1juhMpDmy1v257S6ceZ4gzZJRTNXhQtyFdjR2T3cBO04OqXPZq84iX3V82pYuzlg6texI5NDWaCPPbp+zxnL+lgFZPTWWF1SSzpeM8gzuX3o/aaVpmDQmXh/wOv3j+p92O+FyYT90CMu2bVSlbse29yiuSiOasBTUoSko2pPnMrKgCXajbxmBf+9klGAzmXuLObQln7TUfCzlDrqNaUrXUQls3LiRJUuWoKCib3JTig4foP/tE9lfprDuUCHr02tvTvPXa+jRLIR+yeH0Sw6jaVjNZsiLhXC5cFssxwK4ipqBm8/jKt/13vQWhDCCNhSVOQp1YLwnaDOF1H5Mpw132VFcZZmgqFAHxHqCOo2+jlzaUTRWVH4CTagWXbQf2oRQdDHhqIOC6t2H7myxVjpwuwSmAE9gXni0gp/e2YKlvPZav7b9YxlwUwvAMznwoS35BEYasRrVZFfYvEFaxrH7o8UWskstdXXV8jJoVcf7rXmDteP92IJN2rPyvs2qyGJT7ibvLb0svUaaOL+44wMFIrsQ7x9/ymN7RrhWUn4gF0eeBU2VitzsXPZaj5CmyuNqew90aAi9vQ3GFrW/j/6qxnL+lgFZPTWWF1SSzoeteVt5ePnDFFmLiDRF8sHgD2gR0qLWtI7cXCypqVi3b8eSug3bwWxUfgmow1uhDm+BSn/S50nlQhupwdg+FmPbSDRhRtxuQXpqAQe35HN4ewF26/GASm/SkNjdxM6MZRRXemp/AsOicDbpxsYsG1syS2t0OA8yaeme6Olw3rNZKK2iAxqsM3Zj57bbvQGbs6gcR1YFzjwrziIHrjJwW9SeGWZrIVwO3OVZx4K1o7hLj+IuP4qwltZ9QJUKdXCw7+AHn4EQJ4xgDQlGOYPrOZ4pS4WdoqxKzy270vt/98ub0m6gZ0qP3PQy5vzfRsDT/B0QbiQk2kxIjJnQGD+ikgLxDzHgcLnJKbV6mkNPqFmrDtpyyqynba026dTeIC060ECon55Qs45QPx0hZh2hZj2hfjqCTbozer8XWArYkrfF28y5p2hPjUuShRnDfGrQkoOT6zVRr7PCSsH2dEr3HyXMP46gwU1RB5zdGunGcv6WAVk9NZYXVJLOtYVpC3nmj2ewu+20CmnF+4PfJ8LkuaixEALLlq1UbdyIdfs2LKnbcJVaUYe1QB3eEk14K1Tmky7SrBLo4s0YWkdgaB6MNtqMolJwudyojzVFuZxuvvjHH9iPzRdlCvBMQprYLpjUA6vZsnWL52zndrPRlcAOVyScMLd5mJ+OHk1D6dHME4SlRPif987VlyrhPjbj/bERnqgUT3NjlBlNqBHhdBwf+FBYgKuwyGfQg88AiJKSM+5Dpw4K8oxSrTWAO2H0algYKt3fDwSEEAiB9/2Vc6iU1d8foCirEltVzWlS+lzbnI5DmgBQVmBh95psb8AWFGnyfgbsTjfZpRYyio4HaycGbblldUzpUQtFgWCTJ0gLMesIOylgO/H/ULOOoJMCuHJ7OVvztnr6oOVtZnvBdpwnTQHjr/P3DhLoHNmZ1qGtvZeiOt8ay/m7wQOyo0eP8sQTT/Drr79isVhISUnh888/p0uXLoDnzf3CCy/wySefUFxcTI8ePfjggw9o0+b47NY2m43HHnuMb775BovFwuDBg/nwww+Ji4vzpikuLuahhx7i559/BuCKK67gvffeIygoqF75bCwvqCSdK0IIPt3+Ke9teQ+AgfEDebXfq97RWO6qKnJeeIHSXxajDktBE94SdXhL1AGxvjtSQNfEH33zYAxJQeia+KMc6yRfWWojLbWAQ1vyKC+ycdPUHt5mkDU/HMDtEkS2CuEQDtYfyMWy6We0Kk9tmaqijC3WSLaY2xAdZKRH0xC6HwvCml3ETZCXkpP70HkCuEKchUU+AZyzsABXUTG4zuyi4yp//+PzxYUcD9rU/v6gVnuaSlWqY/dqT9+1GsuP3Z+0XCgKVpuK4hI3JSVuSopcFBc66TogmNhm/igqFQd2VbBs7tHj+VEpBIYbCIk2ERJtpnnXSIJj/Gp9L9ucLrJKrD591ooqbRRW2CmstFNUaaewwkaJxXHG40KqA7jQYwGcJ1DTe4M5fyOUuA9y1LKTA2Xb2Fm0rcYlzowaI+3D2nsDtPbh7TFqzs+llhrL+btBA7Li4mI6derEoEGDmDRpEhERERw8eJDExESSkjwX1H311Vd5+eWXmT59OikpKbz00kv8/vvv7N27F39/z9xFkyZNYt68eUyfPp3Q0FCmTJlCUVERmzZt8o7aGDlyJJmZmXzyyScA3HPPPSQmJjJv3rx65bWxvKCSdC44XA6mrpnKzwc9P2hubX0rU7pM8Y6ktB04QObkyQh3Avo2V6OofWsatNFm9M2DPLfEQJ95rUrzLRzams+hLfnkpJX6jNC68bkeuAM0bDg239XaQ4XszS3H7ChncP4KIoLUOP2DsJVU4uoylq7tmtOjaSjxIUYZgF3ihNuNq6TEd+qREwK4E0evOgsLwVG/UaDnUklAM7Kje1FpjqbSFI3rpImR223/iPDC7aBWUxzcgqyo3pitufjZ8vGz5WFylXlq5o4Fg4pWW+MmtFqcigqHosauqLGhwooKi1BR5VaocitUuhTK3VDu9EwZ4lRpcCoqz71KjVOlxnHC/05F7bPcrQJDUBmagGxcxgwqdGlY1VU41eBSAYqCWtGQFNCCLpFd6R3bjc5RnQjQnZtza2M5fzdoQPbkk0/y559/smrVqlrXCyGIiYlh8uTJPPHEE4CnNiwyMpJXX32Ve++9l9LSUsLDw5k5cybXX389AFlZWcTHx7NgwQKGDx/O7t27ad26NWvXrqVHjx6AZ4K6Xr16sWfPHlq0qL3vy4kaywsqSWdbqa2UR1Y8woacDagVNU91f4rrW15/fP3PP5P90mvoW12PNrojAJpQw/EArFkQanPtTRUbfklj/bw0n2UhTfxwRRvYq3WxJq+MA3nH5wGLU5XgsjsYm/UzWpcddHraXT6Oodde97dmupcubZ7rWZZ5r8pwcgDnrqxEuNzgdnnuXa5jFxl3nvTYcy9cTqglffVy4XZ51nuXu3z2gduNAGz6YE9wZo6mwhRNs/RfMByboiItYQRpTS/3KYfKZcdUlYu5KpvkA3PROTyfncKQ1hQFe66KIBQFUB27VxCKQuLhRd79FoS2JS+8EwIVKAoCxVNFdixts7R5mI9d7iw/tB1ZMf0QJ6QTxy41hqKQdPBHAsvTvWnTE0aAouBGQSiePFTfIo/OwVh1gKL7JjLulvvP6uvbWM7fp78g3Dn0888/M3z4cK677jpWrlxJbGws9913H3fffTcAaWlp5OTkMGzYMO82er2eAQMGsHr1au699142bdqEw+HwSRMTE0Pbtm1ZvXo1w4cPZ82aNQQGBnqDMYCePXsSGBjI6tWr6xWQSdKl6EjZEe5fej/pZemYtWbeGPAGfWP7AuC22ch9+RXKFm/E1PMxVKZQUCsEjW6GuVd0jQta5x4uI21rPkmdI4hI8HwpRjUNRFGBNspItr+K1dZK9pTmQ5lvPtqE6+mqPoxSkkF8clOCQtphq6pgxH2PEBIThyT9HYqioA4MRB0YiL5Zs9NvcI4JITxBWXWg5g3u7vMsd7oIOlpB2IEKivNsFOfbKCl04EJHhX88Ff7x9HloKIH+AuF0UrDRSsaO2i9bBtDmskSCdZUIh4P8vBByCmPrTJscXIjJmY1wOHCpUig0t6kzrcMQgKhQUITAofWjPCCxzrQBVgMRRU4q3ed3BO2FpEEDskOHDvGf//yHRx99lKeffpr169fz0EMPodfrGT9+PDk5nrlQIiN95zuJjIzk8OHDAOTk5KDT6WpcwDQyMtK7fU5ODhERETWOHxER4U1zMpvNhs12vJNkWVlZrekk6WK1OXczDy9/mBJbCVHmKD4Y/AEpwSkA2A8fJnPyIwhnE0z9/oGiUqMONRB6Uyt0sZ6Zt90uN1kHSjm0JZ9DW/OpPHYdwaJyO+Ut/TwThh4qotDPgqXKAsemx1Ip0DomgO6JoXRvGox/5VFWLlmE3eFAURTiY6Ppc82VGP38UP3NyWcl6UKkKMebHesSHRlBdOfjj91uQXmhhcKjnhGfAZ2jMR2bYy0hoBB1TDGKoqAoeK+wUP1/bJ8+mIM8aUVaGf77S1BUx/JxrIKsetumHY6nDciuJCqtzJu2Oh3H7qObf+WZKsTlIjavgqaZ5cdqAF3gdILLhcvpoMpqo2LEeDaUdmH4kLHn6Fm98DVoQOZ2u+natSuvvPIKAJ06dWLnzp385z//Yfz48d50NS5LIsRp+4ecnKa29Kfaz7Rp03jhhRfqXRZJupj8cugX/vnnP3G4HbQJbcN7l71HuCkcgLJFv5H9/CvoW12PJrItAMYO4QRf1RyVQYPN4uSP/+0nPbUAa+XxfjkuNRzRCeakHiZt1/Ff62qNQsfYQHo0C6Fn01C6JAYTYNBSVFTETz/+yNojRwAwadTccsedxMTEnMdnQpIaB88AABOB4SaadQz3WdekdShNWofWsaWvyKYBRDatX7NeSLSZkOh6TOKq0RAQE0RATNApk/VhZL2Oe7Fq0IAsOjqa1q1b+yxr1aoVc+fOBSAqKgrw1HBFR0d70+Tl5XlrzaKiorDb7RQXF/vUkuXl5dG7d29vmtzc3BrHz8/Pr1H7Vu2pp57i0Ucf9T4uKysjPj7+rxRTkhoNIQQfbfuID7d+CMDgJoN5pe8rmLQmhN1O7htvULZgHcYeU1AZg0CtEDy2OaZukd4fN+klVezZkgcWF1aVYJ/GxX6ti8MaNy7Fc/mY7vEh3ikoOjcJxqz3/So6fPgwX82YgcvtBrcbfWE2vfoP8PkekCRJupg0aEDWp08f9u7d67Ns3759JCQkANC0aVOioqJYvHgxnTp1AsBut7Ny5UpeffVVALp06YJWq2Xx4sWMGzcOgOzsbHbs2MFrr70GQK9evSgtLWX9+vV0794dgHXr1lFaWuoN2k6m1+vR6+uaRVqSLj52l52pq6cy75Bn5PFtbW7jkS6PoFJUOI4eJfORKbht8Rj7PIqiqNCEGwm9uRXaKM8vZLdb8MZve/lwxUFaKGqqzIJMjRu9TkXnJsGMPTYFRcf4IAzauptibFWV7Jz/PW5LFWqnnSjh4IopTxDZrPl5eR4kSZIaQoMGZI888gi9e/fmlVdeYdy4caxfv55PPvnEOzWFoihMnjyZV155heTkZJKTk3nllVcwmUzcdJPnenmBgYHceeedTJkyhdDQUEJCQnjsscdo164dQ4YMATy1biNGjODuu+/m448/BjzTXowZM0Z26JckoMRawuQVk9mUuwm1ouaZns9wXcp1AJSvWEH2P19Bl3Id+maekVqmLpEEjU1CpfMEVqkrM/l2QwbfFBQBENEmmJ7NQunZLIR2sUGnvRi3w+Fg48aNJIaH8vNbr1BRWIBJo6X7yMvpM+4WNGdhwk5JkqQLWYMGZN26deOHH37gqaee4sUXX6Rp06a888473Hzzzd40jz/+OBaLhfvuu887Mexvv/3mnYMM4O2330aj0TBu3DjvxLDTp0/3uXL8rFmzeOihh7yjMa+44gref//981dYSbpAHS47zP1L7+dw2WH8tH68OeBNesf2Rjid5P/7XUp++hND14dR6QNQtApBV6dg7nR8kMymPzJZ880+4oDEABUPXt+Oa7rUf+RjWloa8+bNo6ioiIH9++N2OgmKimbEpEeIbdn69DuQJEm6CDT4TP2NRWOZx0SSzsTGnI1MXjGZUlspMeYY3h/8PsnByThy8zg65TFcVXHoUzwdbTVRJk8TZbjJu/3vK4+w9Zv9qFHYY3Jz64Od6N60fp2HLRYLv/32G1u2bAHA39+fMWPGEKTTEBIdi9ZgOM0eJEmSTq+xnL8btIZMkqSGM+/gPJ5b/RxOt5N2Ye1497J3CTOGUbl6NVnPvISu+XXo4zz9tsw9owka3QxFe7zp8afFh0ibm4YWhUx/hcce70VC+OlHXAkh2LVrFwsWLKCyshKA5nExXHvLeAwyCJMk6RIlAzJJusQIIfgw9UM+Sv0IgKEJQ3m578sYFB35H3xA8ZxVGDs9hKIzo+gUgq9rgalduM/2H/+0h8pFWRhQKA5U849nexLiX79BMMuXL+f3338HQGWzoM8+TFxSvAzGJEm6pMmATJIuITaXjef+fI4FaQsAuKPtHTzc+WHcRcVk/OMhnGUxmHp4LluijTETenMrNKHHLwBsd7p5bnYqIX8UYRYK9mANU57rhdFY+6WRTuZyOrBnpIHbha4wl2CXjeEPT6FZp25nv7CSJEmNiAzIJOkSUWwt5uHlD7MlbwsaRcOzPZ/lmpRrqNq0iawnX0Lb7Gp0zRMB8OsbS+CIRJQTRkeWVNmZ+N9NrD1YRB+9hr4mM5Oe7YHhNMFYfn4+R44coUlYCL++/yb5R9LxU6tp1bMvl90xEaOf/ym3lyRJuhTIgEySLgFppWncv/R+Msoz8Nf68+bAN+kZ1YPCzz+n6JuVGDpMQtEaUfQKIde3wnjSrN6H8iu4c8ZG0goq8TNouOuOTvRrGopGV/d8Yk6nkz///JPff/8dt9vNmIEDyD+SjtE/gCF3309Kjz7nutiSJEmNhgzIJOkityFnA5OXT6bMXkasXywfDP6ARELJvP9hHEURGLveDYAu3kzIzW3QBPn2BVt9oICHZm6mXQm4Io18ekc3WkSdulYrMzOTn3/+mby8PACaN29OUoeO6CY+RFLn7pgCg85FUSVJkhotGZBJ0kXspwM/MXXNVJxuJ+3D2/PuoHcxHcgi/Ymn0SSMRdc0HhD4DYwncGgiitr32q7frj/C8z/s4KoyLfEuNWP9Q04ZjDmdThYvXsy6desAUFxORowYQffefVAUhaBBw85lcSVJkhotGZBJ0kXILdy8v+V9Pt3+KQDDE4fzr97/wjL7ezL/uxxD27tQNAYUg0LoTW0xpAT7bO9yC/7v1918/nsaV1bqiHep0RrU9BmbVOcxhRDMnj2b/fv3A6ApKUCfl4kjIwVF6XvuCitJknQRkAGZJF1kbC4bz/7xLAvTFwJwd7u7mZR8G7n/+CeO3DCMHScAoEv0I/SmNqgDfC9LVGlz8vC3W1m6K5dRVVqSnGo0WhVjHuhAeJO6a8cURSFAo4DbhfHoIYxOOwPvnEi7y4afu8JKkiRdJGRAJkkXkSJrEQ8te4jU/FQ0iobnej3HSFcrMm65H3Xc5WgTogGB/5AEAi5rgqLybaLMKrFw54yN7M4qY7hNR2uHGpVKYcS97YhpHlTncV1OJ7//9wv2/fozZrWGJi1aMmLSZAIjos5tgSVJki4SMiCTpIvEoZJD3Lf0Po5WHMVf5887A94m+c8MMqe/i771bShqHYpRIezWduibBdXYfmtGCXd/tZH8chuDhZ72VhUoMOSO1iS0rf1ySA6Hg8WLFxNoq2Dzrz8D0OuKa+g97iZUqrpHYEqSJEm+ZEAmSReBddnreGT5I5Q7yonzi+P9Pm9iePtrSo4GY2h3IwC6ZseaKP10Nbb/ZVs2j363FZvTTcsofx4Z0or1M/bQ44pmJHeNrPWYDoeDb775hkOHDhEXF0eTdp3oNGIMzbv2OKdllSRJuhjJgEySGrkf9v/Ai2texCmcdAzvyJuJj1D54Fu4IkeijYsABAEjEvHvH1+jiVIIwQfLD/DGb/sAuKxlBO/e2Ak/vYbkF4LQm2qf9NVut/PFxx+RU1iEVqtl6NChNGnSBEVRak0vSZIknZoMyCSpkXILN+9ufpfPd3wOwMjEkTxe3IvSp2eiS7kZRaVBZYTQ2zqiTwiosb3N6eLJudv5YctRACYmRTO+XzP89J6vhbqCsarycv7z77cpd7pRKwq33HILCQkJ56iUkiRJlwYZkElSI2R1Wnnmj2f47fBvAExqeSdX/lJOeXoG+pZXA6Bv7kfoTW1R1RJYFVbYuHfmJjYeLkatUni2c1Osy3OYtyOVa5/oQmiMX63Hzcs4zBeffIxVrQO3i56tW8pgTJIk6SyQAZkkNTIFlgIeXvYw2wq2oVFpeKXpQ7T890acYUPRxoQCbgLHJOHXJ7bWJsT9ueXcMWMDGUUW/A0aXh/QksPfp+F2CZI6hRIcZa71uAc3ree7b77G5heE4nYzZshguvQfeG4LK0mSdImQAZkkNSIHSw5y/9L7OVpxlABdAO+pbibo7d1okq5DUalRmSDsjs7o4mqfL2zlvnwemLWZcpuThFATbw9rzabpe3E63CS0DWXw7a1RndTPzO12sWbON6yd+y0arQ6RFMC1148jpU3b81FkSZKkS4IMyCSpkVidtZopK6ZQ4agg0RjHmzu7ozuioEm+HAB9ih+hN7VDZaj9Yz1zTTpT5+3C5RZ0TwzhtRGtWfbBNuwWJ9HNAxl+T1vUalWN7Upyc9g47wcAOl82jP633I5Wp6+RTpIkSfrrZEAmSY3AnH1zeGntS7iEi4HaNkyeH4k2uAuqyGDATdDY5ph7xtTaROl0uXnpl91MX50OwDWd43jmsmTmvbUFS7mD8Cb+jL6/A1pdzXnDbDYb8xcvpe01NxEdGkLrfoPOcUklSZIuTTIgk6QLmFu4eWfTO3y580sA7qnoxujfY9AmDkVRVKjMgvC7u6Kto99XmdXBg19vYeW+fAAeH9GCSQOScDnchMX5o9GqufzBDuiNvl8FO1cuxS8snKXrNnLkyBFyTCYefnjMuS2sJEnSJUwGZJJ0gbK5bDy16ikWH16Myi14c09vmhd0Q9O0JQCGVn6E3NgeVS01WwAZRVXcOWMD+3IrMGhVvHN9R0a0jQZAo1Mz4t622CqdGP2PTxTrdDhYMeMTti5dhK1pKxw6I3q9nptuugm9XjZTSpIknSsyIJOkC9QHWz9g8eHFhFdqeHdtbwJCR6EKDwBcBF2djF/32Dq33XS4iHu+2kRhpZ3IAD2fje9Gywg/dvx+lDb9PE2barUK0wkXFi8vLGDeW9PIOrQfS3wKrmPB2Pjx44mNrftYkiRJ0t8nAzJJugBlVWQxa9cs2qXBi3uvwJAwBACV2UX4xO5ow011bvvjlqM8PmcbdpebNjEBfD6hG+FmHb9+tJ3DOwopyaui77XJPtsc2bGN+f9+laqKcqyJLXHpTRgMBm699VYZjEmSJJ0HMiCTpAvQu1vepes+NU/lPIomoTkAhtZmQm/sgKKtvYnS7Ra8s2Qf7y47AMCw1pG8c0NHDBo1S77YyeEdhWi0KpI6hnu3EUKwcf4PrPp6OsLtRte8NRVaTzA2fvx4YmJizn1hJUmSJBmQSdKFZmfBTn45OJ9vsm5HE94chIPg61pg7lp3TZXV4WLK/1L5ZVs2ABMHJPH48BYoCqz8ei/7N+ahUiuMmNiO6OZBPttm79uDcLtp3f8yBt85iaXLV9ChQwcZjEmSJJ1HMiCTpAuIEII3Nr7BdftSCArvjhBuwm5ribFV3cFRXrmVu7/aRGpGCVq1wstXtWNc13gA1vxwkJ2rskCBIbe3JqFNqM+2iqIw8I5JNO3cnbYDB6MoCiNHjjynZZQkSZJqqjkLpCRJDWZl5kq2Zm/mpoobAFAb808ZjO3OLuPK9/8kNaOEIJOWmXf28AZjmxcdZvOiwwAMvKkFyV0jAdi/bjW/ffwuQggsFgvf/u9/7Csqxe12n+PSSZIkSXWRNWSSdIFwuB28ufFNJh0YhMEUjdtWTsRDA+pMv3R3Lg99s4VKu4tmYWY+v60bTcOOz0dmDtKjqBR6jm1Gm36xuF0u/pg9kw0/zQEgskVr1u07RFZWFsXFxZSWlhISEnLOyylJkiTVJAMySbpAfL/veyoKihluHw1q0AbnoosJr5FOCMHnf6Tx8oLdCAG9k0L5z81dCDRpfdK16BFFeBN/QqLNVJWV8su/X+PIjlQA2o+4grV7D5KdnY3JZGL8+PEyGJMkSWpAMiCTpAtAhb2CD1M/5PG0a1CrDbiKDhL56Oga6RwuN8/9tJNv1h8B4MbuTXhxbBu0x65BmbmniOAoM+YgzySuIdFmcg7s4+e3plFemI9Wb2DAnZNYu+eANxibMGECkZGR56+wkiRJUg0yIJOkC8AXO76gSWE4HdxdEcKNLq4UbUSET5rSKgf3fb2JPw8UoijwzKhW3Nm3qff6lVn7S5j/wTbMgTqumtIFv2A9u1ctZ9FH/8bldBIcHcuwB6Ywf8kycnJyZDAmSZJ0AZEBmSQ1sJzKHL7eMYsPMh4DwJG+kqh37/VJk15QyR0zNnAovxKTTs27N3RiSOvjgVT+kXJ++SAVl8NNcLQZY4Cn+dI/NBy3203zbj0Zcd8jZOflk5+fj9lsZsKECUScFPRJkiRJDUMGZJLUwN7f8j6j8vsQKaJwW0sxtFKjPaHWau2hQib+dxMlVQ5iAg18NqEbrWMCvOuLcyqZ995W7FYXMclBDL29JepjTZhxrdty07/eIDIpGUVRSEw0c+ONNxIQECCDMUmSpAuInPZCkhrQ3qK9rN7zOzfnjwLAtvtHwu++zbv+u40Z3Pr5OkqqHHSID+LHB/r4BGPlRVZ+/vdWLOUOwpv4066/i68en0Rh5hFvGv/oWIqKiryPmzdvLoMxSZKkC4wMyCSpgVRPAnt37jXo0eMs2I+5WzTaY9eOnLMpk8fnbMPhEoxuH83se3oS4W/wbl9VZufnf2+lothGUKSRmGb7+enNFynLz2Pt97MBqKys5KuvvuLLL7+koKCgQcopSZIknZ5sspSkBvJn1p/Y95fSr7wzwu3CtmM2Mc9/BkBemZUX5+0E4K6+TXl6VCtUKsVne7dLoChgChTo9b+x7ocNALS7bBiX3T6RyspKZsyYQV5eHn5+fgghzm8BJUmSpHqTNWSS1ABcbhf/Xv8Ok3LHAeBIW47/gE7o4j2z7D//807KrE7axQby5MiWNYIxAL9gPf1vCMVZ+S2HUzeg1moZes+DDLv3Iax2u08wNmHCBMLDa85pJkmSJF0YZA2ZJDWAnw7+RPtDicTZI3FbS7HtnU/sq54Z9BfuyOHXHTmoVQr/d007NOrjv5tcTjfZB0uJaxFM7qEDzH3lSZw2G/5h4Vzx6NNEJSVTUVHBjBkzyM/Px8/Pj9tuu42wsLCGKqokSZJUDzIgk6TzrMpRxTfrZjKt4AEAbDvmEDB0EPpmTSm1OHjupx0A3Nu/GW1iAr3bud2CJV/u4sDmPAbd0pKWPZsSlZSMSq1h9EP/wBQQ6BOM+fv7M2HCBBmMSZIkNQIyIJOk82zGzhlcc3gQBqHDWbAP59H1hP3nJwCmLdhNXrmNZmFmHhqc7N1GCMHKr/eyf0M6Ko0BvyA9KrWasY89i85oRKVSA6BWq9FoNPj7+3PbbbcRGhraIGWUJEmSzowMyCTpPMqvymfr2tX8s/wehHBj2/YN/sOGoU9OZvXBAr7dkAHAtKvbYdCqvdut+eEgO1ZsxF4xj6adetKkzRAADGY/n/0bjUbGjx+PxWKR16aUJElqRGSnfkk6j/6z6UPuOHolAI6Dy3CXHSVs0kSsDhdPf78dgJt7NKFHs+M1Wxt/TWPDzz9hL/8ORCVlefuxW6q868vLy9m6dav3sdFolMGYJElSIyNryCTpPDlQfADN+kpiHRG4RRW2PT/jN3gwhpYtmfbrbtILq4gM0PPEyJbebVKXprHq6w9x23cDkNKzL8MnPYzOYAQ8wdj06dMpLCzE7XbTuXPnBimbJEmS9PfIgEySzpPP//iYOwtGAGDb/A04rYRNmsSOo6V8tioNgJeubEeAwXMdyvKiAlZ/Nw23PQsUFQNuuZ0uo6/0Xky8rKyMGTNmUFhYSGBgIImJiQ1SLkmSJOnvkwGZJJ0Ha7LW0Cm1CQahwyXycWaswzygP5pWrXj8/T9xuT2z8Q89dsFwt9vFj6/+i6qSLPTmAK549EmatG3v3V9ZWRnTp0+nqKiIwMBAbrvtNoKDgxuqeJIkSdLfJPuQSdI55hZufl08l94VHXHjxrryIwDCJ03is1Vp7MouI9CoZerlbQDPiEpFUdHrupsIiozm1v97SwZjkiRJFzlZQyZJ59gv++Yz5kAvzwMlHXdJBubevcmJS+adOb8D8M8xrQn31wOwf2Mu+9blMuiWjtz21n9Qa45/TG02mzcYCwoKYsKECTIYkyRJugjIGjJJOocsTguHFm0hxhGBTW+n8tf3AQiZOJEn527D5nTTLzmMazp7Lii+ZeFvrJi5nsM7Ctm9JtsnGAPQ6/V07NiRoKAgWTMmSZJ0EZE1ZJJ0Ds1dP5sx2X0B0It92K0VmLp352cRybq07Ri1al65qh2KonBg4zqWffkeKEZiWk2k07Amte6zf//+dO/eHYPBcD6LIkmSJJ1DsoZMks6RQkshphUW9EJHRbiVih89fcdUE+5k2gLPNBZThqUQH2IiN+0g8995DRBo9M0Zdld31MeuYVlSUsLcuXOx2WzefctgTJIk6eIia8gk6RyZt2g2Q8ra4VJcBFp2UmK3Y+zUiRczjZTbyukQH8TtfZpSXljA99Om4nLYUGkS6HvT3YTGembgLykpYfr06ZSUlKAoCldffXUDl0qSJEk6F2QNmSSdA4cKD9JmUxQAltaC0jkzAEgbdQOLd+ehUSm8ek07XHYrP7z6IlWlxSiqUOLb3USnoYkAlJaWeoOx4OBgBg8e3FDFkSRJks4xGZBJ0jmw/vvfiHaEU66vIjh7C8JqRdumDf9I98ywf9/AJFIizPzy79fIP3wIldqMMeQaht7ZCZVKwe1288MPP1BSUkJISAi33347gYGBDVwqSZIk6VyRTZaSdJZt3ruObodSADD0C6b48VkALOg0ioIKO0nhZu6/rDm2qioqS0rQaHVc/fTzqLUxBIabAFi/fj3p6elotVpuvvlmAgICGqw8kiRJ0rknAzJJOovcwk3+T3uJEE3JCismYfshrFVVOJsl81Z5BIoKXr2mPXqNGvz8uf75aeSmHySuZWvvPvLz81myZAkAw4YNIzQ0tK7DSZIkSReJBm2ynDp1Koqi+NyioqK862+77bYa63v27OmzD5vNxoMPPkhYWBhms5krrriCzMxMnzTFxcXceuutBAYGEhgYyK233kpJScn5KKJ0iflzxWLaFDXFoThJGN2Sklme2rFPEgeConBrzwRaHmt53LL4CLv+zCc2pbXPPmw2G35+fiQlJdG1a9fzXAJJkiSpITR4DVmbNm28tQEAarXaZ/2IESP48ssvvY91Op3P+smTJzNv3jy+/fZbQkNDmTJlCmPGjGHTpk3efd10001kZmaycOFCAO655x5uvfVW5s2bd66KJV2CrFYLfsttgInDLUtos3QX7ooKSqOaMN8/mZhAA3e00vHF5Htp3X8U+zYlINwQGGEksV2Ydz9xcXFMmjQJh8PhvZC4JEmSdHFr8IBMo9H41IqdTK/X17m+tLSUzz//nJkzZzJkyBAA/vvf/xIfH8+SJUsYPnw4u3fvZuHChaxdu5YePXoA8Omnn9KrVy/27t1LixYtzn6hpEvS+rm/0cweQqG2lK4je3N0zBUAfBjfH6GoeH5wHIveegmH1cKePzeDNo6kTlEktPU0SbrdblQqT6W1Xq9Hr9c3WFkkSZKk86vBR1nu37+fmJgYmjZtyg033MChQ4d81q9YsYKIiAhSUlK4++67ycvL867btGkTDoeDYcOGeZfFxMTQtm1bVq9eDcCaNWsIDAz0BmMAPXv2JDAw0JumNjabjbKyMp+bJNWlKCuXuB3+AJT0V2H94SfcZWXkBkXxR0x7rmwbSt7cD6koLsIYEAWakZgCDAy4qQWKouBwOPj0009Zv349QogGLo0kSZJ0vjVoQNajRw+++uorFi1axKeffkpOTg69e/emsLAQgJEjRzJr1iyWLVvGm2++yYYNG7jsssu8M5bn5OSg0+lqXM8vMjKSnJwcb5qIiIgax46IiPCmqc20adO8fc4CAwOJj48/W8WWLjJCCPbPXodOaNkbeJhePfpSdKyZfUbSIIJMWnofWUhe+kH05gDcymgUlScYMwV4muCXLl1KdnY2v//+O1artSGLI0mSJDWABm2yHDlypPf/du3a0atXL5KSkpgxYwaPPvoo119/vXd927Zt6dq1KwkJCfzyyy+nnLFcCOHT96a2fjgnpznZU089xaOPPup9XFZWJoMyqVYZm/YSmxuMAyf+lzel/H9zcJWUkGUOY2VsR54y7SJj40bUWh2m0KuxlAeS0iOSpE6eHwppaWmsXbsWgCuuuAKj0diQxZEkSZIaQIM3WZ7IbDbTrl079u/fX+v66OhoEhISvOujoqKw2+0UFxf7pMvLyyMyMtKbJjc3t8a+8vPzvWlqo9frCQgI8LlJ0sncdhfl89MBWJ+4l65JnSn84gsAvk25jOHRTso2LgOg29i7sVWGYg7S02+cZ54yq9XKjz/+CECXLl1ISUk572WQJEmSGl6Dd+o/kc1mY/fu3fTr16/W9YWFhWRkZBAdHQ14TmBarZbFixczbtw4ALKzs9mxYwevvfYaAL169aK0tJT169fTvXt3ANatW0dpaSm9e/c+D6WSLmYHftlIoNVMnqaITlcNouR//8NVWEiOKZi1Sd359bZBlHT0x1JeRrcrRpLSoxyHzYnBrAVg4cKFlJaWEhwc7NMXUpIkSbq0NGhA9thjj3H55ZfTpEkT8vLyeOmllygrK2PChAlUVFQwdepUrrnmGqKjo0lPT+fpp58mLCyMq666CoDAwEDuvPNOpkyZQmhoKCEhITz22GO0a9fOO+qyVatWjBgxgrvvvpuPP/4Y8Ex7MWbMGDnCUvpbHPlV6NZbADWpHTOZEDSCfZ/cBcB3KYOZMrI1ccEm4gYN9W4T3sTf+/+ePXvYunUrAFdeeaUcVSlJknQJa9CALDMzkxtvvJGCggLCw8Pp2bMna9euJSEhAYvFwvbt2/nqq68oKSkhOjqaQYMGMXv2bPz9j5/U3n77bTQaDePGjcNisTB48GCmT5/uM5/ZrFmzeOihh7w1EFdccQXvv//+eS+vdPEQQnDgu/X4CzVb/PYyauS1lMyZiygoINM/hOCQCq5pHQTAxgXpJLQLJTze32cfRUVFKIpC7969SUhIaIBSSJIkSRcKRcgx9vVSVlZGYGAgpaWlsj+ZRPn2XEpn7cOBk5WjDjCh5wS2DxqKUpzP/Hat0WGlaaeudB79AL98sA21RsUt/+qFX7BvLVhWVhYRERFoNBdU7wFJkqSLRmM5f19QnfolqTFw213k/rgLgAWRfzKu181kzZ6LpjCP9U1j0WHFGBBI3+vvYvnMPQC0HRhbIxgDz7x5MhiTJEmSZEAmSWeoYMkBDJUacjWFRA9riREtmR9+xO6YUEr89Ki1Wq78x7NsWVpCVZmd4CgTPcc2A6CkpITp06f7THAsSZIkSTIgk6Qz4MivwvKHZ0Lhn5r9wRWtrmT9Z99QrLKSHh4EwMj7H6WyLIQDG/NQVApDbm+NRqvG7Xbz008/kZ6ezoIFCxqwFJIkSdKFRgZkklRPQghyf9iF2q1ig3knQ4ZegdXiJPvb6eyM9VwcvO8N44lr3Z2V3+wFoMvIBCISPH0W1q9fT1paGlqtlssvv7zByiFJkiRdeGRAJkn1ZN1ZCIcsOBQHa9rupV9cP+a8MZ244nyMdhcpvfrT/crr2L4iE1ulk7B4P7qOTAQ8ExEvWbIEgGHDhhEaGtqAJZEkSZIuNLI3sSTVg9vuIv+nPaiAOSFLuL3/PWw9XET0/G8w25107DSIHg88gqIo9Li8GUY/HXEtg1FrVLhcLn744QecTidJSUl07dq1oYsjSZIkXWBkDZkk1UPZsiOoygW52kIquqtpok9gziv/pkl5HjaDmR5T7ket8cy+r6gUOgyOJzTWD4BVq1aRlZWFwWBg7Nixp7yGqiRJknRpkgGZJJ2GI7+K8t8zAPg8+kfu7TyJj194gZCSTWSE+BMy/lZUJjPblmfgsLt8tnW73aSlpQEwevToC3oOHEmSJKnhyCZLSToFIQTFPx9AcSusN++gRY9OrJv1I+LITlRCYBQqYu+8je0rj7Jq9n52r87muqe6oVJ5asFUKhUTJkxgz549tGrVqoFLI0mSJF2oZA2ZJJ2CZUch9v2l2BUH3yT8Ro+ceA4t90xZ0T4jnxbjrqfcqmXN9wcAaN0nxhuMVVOpVLRu3Vo2VUqSJEl1kgGZJNXBbXdRPM8TaP0v9DdGBfflz5nTAUjJLiTG5iJo/ASWTN+F0+EmrmUwbfvHApCWlsaiRYtwOBwNlX1JkiSpEZFNlpJUh/JlRxBlDnK0BWwP3kO3OQdBuPGrcJGUV0LInXewfUMZuWll6AxqLhvfCkWlYLVa+fHHHyktLUWn0zFo0KCGLookSZJ0gZM1ZJJUC0deFeW/ZwLwUeT/GOHsgtNqoVQVRN9D6agMBhh5A+vneTrs97s+Bf8QAwCLFi2itLSUoKAgevfu3WBlkCRJkhoPGZBJ0kmEEJT8fBDcsM5vO44kLaaut7EstD9tM4pQCQi+fhxrFufjdgkS24fRomcUAHv27GHLli0AXHXVVej1NS8oLkmSJEknk02WknQSy/YCbAdKsCsOPg7/jufavMmD03cTb9PTriANRacj5I47GaILZPX3B+h7XTKKolBZWcm8efMA6N27NwkJCQ1cEkmSJKmxkAGZJJ3AbXNRMv8QAH+IlQw8EMXclQ6Kqxy8kLYcgKBrr0UbGYEWGHZnG8BTqzZv3jwqKyuJiIiQ/cYkSZKkMyIDMkk6QdmyI7jL7BQohRSlpaIXTrZaN9LWCslZe3HpTVQNuqHGdiUlJaSlpaFSqbjqqqvQarUNkHtJkiSpsZIBmSQd48iromLVUQB25izDJZzsjOpNmrEp0w/PBODoZQ9zYFYGnfIVel/d3LttcHAwkyZNIiMjg+jo6AbJvyRJktR4yYBMkjjWkf+nA+AWZFj2kVN1CGtie5bRnv7OHCL3pVIc0oIDljgAYpKDauwjKCiIoKCayyVJkiTpdOQoS0kCLNsKsB0sxSkcpBYswx0byhdKT1AUpuT8iVOtZ2/HuwFo3SeaxHZhAGzdupX9+/c3ZNYlSZKki4AMyKRLntvmpOQXT0f+3SVryTOWsDRqHC7U3BvtQLdxDQeaX02V24h/qIE+1yUDUFBQwPz585k1a5b3AuKSJEmS9FfIgEy65JUt9XTkz9MUssa1ipJBo9hTBGF+eq7f8xuFIa3Jiu4LwODxrdAZNLhcLn744QecTifNmjUjMTGxYQshSZIkNWoyIJMuaY7cSir+yALg/ajZ7BwTyLxdiQBM62CgauUf7G5xMwDtL4sjtkUwAH/88QdHjx5Fr9czduxYeeFwSZIk6W+RAZl0yRJCcHTGRnAL1vinssF/B5XZo3C4YGjrSFotnYPa7aCj/z5ikoPodWUSAFlZWaxcuRKA0aNHExgY2JDFkCRJki4CcpSldMk68vMGNEUqnG4HX5t/pLm5N1t2h+Kv1zC1nZGyab8B0O7+q+ma4pmN3+Fw8MMPP+B2u2ndujXt2rVr4FJIkiRJFwNZQyZdkvIPHML+RyEAf7hXkhZcwJ5d/QB4alQrbDO/xqYNwH/oEAwtUrxNkrt37yY/Px+z2czo0aNlU6UkSZJ0VsgaMumSU1lSzJ4PF9FU15ZSdzHvtPyZYPcg0qqC6d40hKvCnPx8JJySbs9w2cg4n23bt2+PWq1Gp9NhNpsbqASSJEnSxUYGZNIlxWGz8tur79BFexkA78R+DXo9aXt6odOo+L+r25E67UsKwtqj4Ca4fXKNfbRp0+Z8Z1uSJEm6yMkmS+mSIdxufn3/LRKqUlApKraYd7M2aCf2wkHgMjN5SDJBeXlsLWsGQOcefoTF+QGwYcMGKioqGjL7kiRJ0kVMBmTSJcPldBJsCSfC2ASnysU70bPQE0ZZbg9aRwdwV9+mLP1oMy6NkWBRQPfx3QHYu3cvv/zyC//5z3+wWq0NXApJkiTpYiQDMumSoXKrSFI8oyJnhy8iT1tEydEhqBUdr13bnl2/7CHPEYLKZWfQ9U1RqVVUVlby888/A9ChQwcMBkNDFkGSJEm6SMmATLpklC0+jLvcQam5itlBC1HZ43GWteeuvk2J02pZu9AzQWwr91aiL+uGEIL58+dTWVlJeHg4gwYNauASSJIkSRcr2alfuuilb9vCkd830exoCwDeDP0Sh8pJVfZIEkL9mDwkBZGbR3TWaioNEXR9xBN4bdu2jd27d6NSqbjqqqvQarUNWQxJkiTpIiZryKSL3oaf56LfpwYBeyMy2WDeiaO8Fa6qZky7uh1GnZqymV+SsvdbempXY+7RndLSUhYsWADAgAEDiImJaeBSSJIkSRczGZBJF7W89EOU780h1tQcoQhe8/8UhAp73khu6BZPp4gAHLl5lMz+DoCISRNRFIXly5djs9mIjY2lb9++DVwKSZIk6WInmyyli9qmX36kTXAfADaG7yVLl4+9qCdh+nieGN6Cee+mQl4WyRgJ7tASc+/eAIwcORKNRkPPnj1Rq9UNWQRJkiTpEiBryKSLVkVRIbkb9npqxxB85P8NwqXHXjCEF8e2Zf/yo+QfKae4Qo0i3ITdN8l7KSS9Xs+YMWMICwtr4FJIkiRJlwIZkEkXrS2L5tMqoCcAG8P3HKsd68fwls3p7G9i46+HAWix71sCk+Mx9u3Ljh07EEI0ZLYlSZKkS5AMyKSLksNq5cjyjcdrxwK+Rbi16Kv68fyoViyZvhvhFkQWpRKZt4mw+ybx559/MmfOHObMmdPQ2ZckSZIuMTIgky5KbrebboljANgVdYQsXT6O0k5MGdyJQyuyKM6uxKB2kLx7FvoWLShv1YoVK1YAkJKS0oA5lyRJki5FMiCTLkpKkQtTmQmhwDumGQDoKvrTPziArUuOANBi79foHJUE3XsvP/zwA263m1atWtG+ffuGzLokSZJ0CZKjLKWLUtmxoCs9Pp9MfQ7OimSub9+VgAAdIdFmAi1ZhGauR9c8iQ1qFfn5+ZjNZsaMGePt2C9JkiRJ54usIZMuOms+nol1TxEo8JbhSwDsRX24pWcCYXH+XPNQaxJXvA2A9eZbWLNmDQCXX345ZrO5wfItSZIkXbpkQCZdVLIP7EW10wlATnwZB9TpuG1h9IjuRfMIPwDK58xGKc5Hk5jI0vw8ADp16kTLli0bLN+SJEnSpU0GZNJFZdcPi70jKz8I/AYAe3EfhpVoWffzISrzSin8wlNrFj7xXq6++mqSkpIYPnx4Q2ZbkiRJusTJPmTSRaMsPw+/DDOYoKSJlY3OVITLQJK1D5XZ5Ww6VEFMzp+4iorQxscTOGYMQRoNt956a0NnXZIkSbrEyRoy6aKx8/tF3tqx/8YsBMBR0p3R+hAAkjqEYJn5CTadDjH+VhSN/D0iSZIkXRhkQCZdFGxVlWh2uwGojLWzoHQxQijoivugyawCING1F2d+AZv79eXb9HS2bt3agDmWJEmSpONkQCZdFHb/vJRoQzOEcLMgZRMAzvI2XO2XiNspCI/3Q5n9IUcSmnAkPBwhBBEREQ2ca0mSJEnykAGZdFEIzgkGoCrKzqz8/wHgKuxDbIELgCRzFuVlZWzu2hWAAQMGEBMT0zCZlSRJkqSTyIBMavTsmeWocwAFNnXNwu6y4bLE0kfVFke5A6O/Fr/5H7G+R3fsWi2xsbH07du3obMtSZIkSV5nFJC99tprWCwW7+Pff/8dm83mfVxeXs5999139nInSfVQttQzK7+hQxifZX8FeCaCHdQjljb9YmgRU8kBnYrcqCg0Gg1XXnklarW6IbMsSZIkST7OKCB76qmnKC8v9z4eM2YMR48e9T6uqqri448/Pnu5k6TTyFq7A+tuz6z8qSnp5FvycDv9MNg6c+3Apgy4MYWI5f9hZ5s2AAwaNIjw8PAGzrUkSZIk+TqjgEwIccrHknS+FS3YD0CpXwlfZP8XAEdxT67pnIBZr6FixQqsBw+SlJFJeGgo3bt3b8jsSpIkSVKt5ERMUqNVkJpGkD0Mt3BTOdDEtgPbEG41msJedDS7yEkrxfLxx2hcLvp160bY/fejUsluk5IkSdKFp0HPTlOnTkVRFJ9bVFSUd70QgqlTpxITE4PRaGTgwIHs3LnTZx82m40HH3yQsLAwzGYzV1xxBZmZmT5piouLufXWWwkMDCQwMJBbb72VkpKS81FE6Rwq+HkXAEX6POY4FwHgLOvIGGM0WamFrPx8C9bUbSh6PSETxstgTJIkSbpgnXEN2WeffYafn+cizU6nk+nTpxMWFgbg07+svtq0acOSJUu8j0/sbP3aa6/x1ltvMX36dFJSUnjppZcYOnQoe/fuxd/fH4DJkyczb948vv32W0JDQ5kyZQpjxoxh06ZN3n3ddNNNZGZmsnChZ/b2e+65h1tvvZV58+adcX6lC0P5/lz8KgNwCzfqQWH8dvg3AJyFfWhWIXABsTkr+bNPb9o3SUAdGtqwGZYkSZKkUzijgKxJkyZ8+umn3sdRUVHMnDmzRpozyoBG41MrVk0IwTvvvMMzzzzD1VdfDcCMGTOIjIzk66+/5t5776W0tJTPP/+cmTNnMmTIEAD++9//Eh8fz5IlSxg+fDi7d+9m4cKFrF27lh49egDw6aef0qtXL/bu3UuLFi3OKL/S/7d339FRlN0Dx7+76XXTG6RBKCGB0KRDQgcpIigWihFEEaTDiwoKooINBUVUalBQUEFeKSI1AUFaIBJD6IFQEkIJ6XV3fn/kl31ZkkCAwIZwP+fMOczMMzN3ZhP25s4zz1QOyauPYIUlKZxnl90VtIqWwix/mmj90WYXYmWtJvX4QS480YQbVpY0KizEzMzM2GELIYQQpbqrhOzs2bMVHsDJkyfx8vLCwsKC5s2bM3PmTGrUqEFCQgLJycl06dJF39bCwoLQ0FD27NnDa6+9RnR0NAUFBQZtvLy8CA4OZs+ePXTt2pW///4bjUajT8YAWrRogUajYc+ePWUmZHl5eQZDeqSnp1f4uYt7k3PuBlY3LNEpOizaurL61LcAFFxvQ1vFEsineu6/xNSrC0Cbdu0kGRNCCFGpGbVTTfPmzfn+++/5888/WbhwIcnJybRq1Ypr166RnJwMgLu7u8E27u7u+nXJycmYm5vj6Oh42zalvSLHzc1N36Y0s2bN0vc502g0eHt739e5ioqTvuUsAEkFZ4ivkUpaXhq6fCfc04NRXc9HrYbs8zvItrHBxsqKJk2aGDdgIYQQ4g7uKiHbt28ff/zxh8Gy77//Hn9/f9zc3Hj11VcNqkp30r17d/r160f9+vXp1KkTGzZsAIpuTRZTqVQG2yiKUmLZrW5tU1r7O+3nrbfeIi0tTT+dP3++XOckHqz8i5kUnMoAFdQf14cfT6wsWp7akh6WRf0KPU0ucLKOPyDVMSGEEI+Gu0rIpk+fzpEjR/TzsbGxDB06lE6dOvHmm2+ybt06Zs2adc/B2NjYUL9+fU6ePKnvV3ZrFSslJUVfNfPw8CA/P5/U1NTbtrl8+XKJY125cqVE9e1mFhYW2NvbG0zC+NK3ngPAOsSVGJN4TqedRtFZUHDjCYKDXbG1N6Xw0jaybG2xsbSk6f+/u1IIIYSozO4qIYuJiaFjx476+ZUrV9K8eXMWLlzI+PHj+fLLL/n555/vOZi8vDzi4+Px9PTE398fDw8PtmzZol+fn59PVFQUrVq1AqBJkyaYmZkZtElKSuLff//Vt2nZsiVpaWns379f32bfvn2kpaXp24hHQ/7FTP2o/HYdfFh+9P8Hgr3RhDqurvR6tg4drXeQ4F80En+b0FCpjgkhhHgk3FWn/tTUVIOqUlRUFN26ddPPP/HEE3d1a2/ixIn06tULHx8fUlJS+OCDD0hPT+ell15CpVIxduxYZs6cSa1atahVqxYzZ87E2tqaF198EQCNRsPQoUOZMGECzs7OODk5MXHiRP0tUIDAwEC6devGsGHD9K91evXVV+nZs6c8YfmIubr+GADnMo+SmefArou7QFGRf70VA3v4or16lYw1awhxc+PCU72l75gQQohHxl0lZO7u7iQkJODt7U1+fj6HDh3ivffe06/PyMi4q4rEhQsXeOGFF7h69Squrq60aNGCvXv34uvrC8B//vMfcnJyGDFiBKmpqTRv3pzNmzfrxyAD+OKLLzA1NaV///7k5OTQsWNHIiIiDMYzW7FiBaNHj9Y/jdm7d2/mzZt3N6cujCz/Yia6hBx0io6MallEXvwdgMLMutQp8KShYsbVZd9Dfj61XVzo/MYbd+xrKIQQQlQWKuUuXkj52muvERsby8cff8zatWtZtmwZly5dwtzcHChKfObMmcOBAwceWMDGkp6ejkajIS0tTfqTGcHlRTEUnMrgbGYcbsObMPCfkeQU5pB97hVGZTXCLK2Qmuc34Ht6I9W/mY9d+/bGDlkIIUQl8Kh8f99VheyDDz6gb9++hIaGYmtrS0REhD4ZA1iyZInBmGBCVITiJyt1io4r9kmcIo6cwhx0ue64pdfCLLMQlaqQE/4FFHq2JqBNG2OHLESF0+l05OfnGzsMISodMzMzg7tij6q7SshcXV3ZtWsXaWlp2NralrgAv/zyi8HtRCEqQtqWBAASs+Kp80J7xh0repI3/3obupjZAFrMC6NJcXci19SNLuUv+grxSMjPzychIQGdTmfsUISolBwcHPDw8Hiku6rcVUI2ZMiQcrVbsmTJPQUjxK3yL2aSd+wGOkVHouo4OZ41uHTqEmhtML/RCLcMLQo6rjukAZa0Dg01qNoK8ahTFIWkpCRMTEzw9vZGrTbqeN5CVCqKopCdnU1KSgoAnp6eRo7o3t1VQhYREYGvry+NGjXiLrqeCXHP0rclAnAx9yR1uoXx5fEVAOSlNiNMsQUdmKjjybaxxMrEhCduekWWEFVBYWEh2dnZeHl5YW1tbexwhKh0rKysgKIxSN3c3B7Z25d3lZANHz6clStXcubMGYYMGcLAgQNxcnJ6ULGJx1z+xUxyj14DFYRM7Mtp00QObT4Eihrd9ZY0yDNBQUu6bRJgLtUxUSVptVoA+dkW4jaK/1gpKCh4ZBOyu6p9z58/n6SkJCZPnsy6devw9vamf//+/Pnnn1IxExWuuDpmFeKKtbcTK0//AkBBegPsCjW4eNqgMz9HjrU5lmo1zVq0MGa4QjxQj3LfGCEetKrw+3HXnREsLCx44YUX2LJlC0ePHiUoKIgRI0bg6+tLZmbmg4hRPIaKq2MKYNfem6s5V9mYsLFo3fXWtArxoHuDK+SbHQWgdZs2UkEQQgjxyLqv3qEqlQqVSoWiKPL0j6hQxdWxxMw49m79mVXHV1GoK0TJ8UWX682g5j5cW7CQ1n/9RV0LC5q1bm3kiIUQj4Lw8HD69Olz2zaRkZGoVCpu3LjxUGISAu4hIcvLy+Onn36ic+fO1KlTh9jYWObNm0diYiK2trYPIkbxmNFXxxSFuBt78GvWjJ+PF70jNfdaa0Ktbah5+l/yjh3DsaCAZ19/HQsLCyNHLYS41e2SHz8/P/0f9cVT9erVDdbPmTOnwmOaO3cuERER+vmwsDDGjh1b4ccxtvDwcP11NTU1xcfHh9dff53U1FSDdnf6HMTDc1ed+keMGMHKlSvx8fHh5ZdfZuXKlTg7Oz+o2MRjSl8dyzqKJsCLQ6qTXM+9jlrriGVaMM0ydPyyOp9W5ho8n+uLiYODcQMWQtyTGTNmMGzYMP38w+iMrdFoHvgxblVQUHBXrxWsKN26dWPp0qUUFhZy9OhRhgwZwo0bN/jpp58M2hnjcxAl3VWF7Ntvv8Xe3h5/f3+ioqIYNmwYffv2LTEJca9urY417vEUK+KLhrrIudacJwotURSFG04HiW1YB8vnnjNyxEKIe2VnZ4eHh4d+cnV1vet9TJgwgV69eunn58yZg0qlYsOGDfplderU4bvvvgMMq3bh4eFERUUxd+5cfXXo7Nmz+u2io6Np2rQp1tbWtGrViuPHj5crpunTp9OwYUOWLFlCjRo1sLCwQFEUNm3aRJs2bXBwcMDZ2ZmePXty+vRp/Xb9+vVj1KhR+vmxY8eiUqmIi4sDioZAsbOz488//yxXHBYWFnh4eFC9enW6dOnCc889x+bNm0u0q4jPQdy/u0rIBg8eTPv27XFwcECj0ZQ5CXGvbq6OmThbkFrNhGPXj6HGHO31ZjQuMCXPMoV8i0Iu+vtj6elh5IiFeLgURSE7v9AoU2V8mj4sLIxdu3bp+zFHRUXh4uJCVFQUAMnJyZw4cYLQ0NAS286dO5eWLVsybNgwkpKSSEpKwtvbW79+ypQpzJ49m4MHD2JqalruwdEBTp06xc8//8zq1auJiYkBICsri/Hjx3PgwAG2bduGWq3m6aef1sceFhZGZGSkfh+3nsuBAwfIzc2l9T30mT1z5gybNm0ySqVOlM9dDwwrxINya3Ws2aDnWHqseCDYRtTNtUNVoCPHvuhVSi2eaCp9x8RjJ6dAS713y1chqWhHZ3TF2vyuvjZua/LkyUydOlU/P3PmTEaPHn1X+2jXrh0ZGRkcPnyYxo0bs2vXLiZOnMiaNWsA2LFjB+7u7tStW7fEthqNBnNzc6ytrfHwKPnH3YcffqhP5N5880169OhBbm4ulpaWd4wrPz+fH374waDa1K9fP4M2ixcvxs3NjaNHjxIcHExYWBhjxozh6tWrmJiYEBcXx7Rp04iMjGTEiBFERkbSpEmTcvfXXr9+Pba2tmi1WnJzcwH4/PPPS7SriM9B3L+K+80S4j4VV8eSdWcpsChA06QOOza8BUD+tda0w4I8y2QKzfKxUBRadu5szHCFEPdp0qRJhIeH6+ddXFzueh8ajYaGDRsSGRmJmZkZarWa1157jWnTppGRkUFkZGSp1bHyaNCggf7fxa/kSUlJwcfH547b+vr6lrj1d/r0ad555x327t3L1atX9ZWxxMREgoODCQ4OxtnZmaioKMzMzAgJCaF37958+eWXAHd9Lu3bt+ebb74hOzubRYsWceLECYNbosUq4nMQ908SMlEpGIzKP6EvAUpHFiasQEFBlVMXzxwPbHJ0pDqfA6BFSEOpjonHkpWZCUdndDXasSuSi4sLAQEB972f4lt95ubmhIaG4ujoSFBQELt37yYyMvKen6K8+fZe8cCj5R3iycbGpsSyXr164e3tzcKFC/Hy8kKn0xEcHEx+fr7+GO3atdOfS1hYGMHBwWi1WmJjY9mzZ89dnYuNjY3++n755Ze0b9+e9957j/fff9+gXUV9DuL+SEImKgX9qPwNXDH3sKWgQMVvO34DIOtKS0JMzci3vIzWLBcLnY5WPZ40ZrhCGI1KparQ24ZVQVhYGIsXL8bU1JROnToBEBoaysqVK8vsP1bM3Nxc/3qqB+natWvEx8fz3Xff0bZtWwD++uuvEu3CwsJYsGAB5ubmzJgxA5VKRdu2bfnss8/Iycm5p/5jxaZNm0b37t15/fXX8fLyuuf9iAfjvgaGFaIi3Dwqv3W7on4ca0+tJbMgE3OdO9qsWrRqZIWJcgCAZkFBUh0T4hGRlpZGTEyMwZSYmFihxyjuR7Zu3TrCwsKAosRm+fLluLq6Uq9evTK39fPzY9++fZw9e9bgNmJFc3R0xNnZmQULFnDq1Cm2b9/O+PHjS7QLCwsjLi6O2NhYfeIWFhbGihUraNy4Mfb29vccQ1hYGEFBQcycOfOe9yEeHEnIhNH9b1T+oyydNoKs9Bv8GP9j0brLLTFVm9D16DZCd2ynYeoNWj/1lDHDFULchcjISBo1amQwvfvuuxV6DI1GQ6NGjXByctInX23btkWn092xz9XEiRMxMTGhXr16uLq6VniyWEytVrNy5Uqio6MJDg5m3LhxfPrppyXaBQcH4+LiQkhIiD75Cg0NRavV3nNfuJuNHz+ehQsXcv78+fvel6hYKqUyPsdcCaWnp6PRaEhLS7uvv1CEofyLmaR8dRgFhT8uLMYp0AfXwZ14Y/sbmGFNevybPOPpQPjS8Si5ufgsWYxNq1bGDluIhyY3N5eEhAT8/f3L9XSfEI+j2/2ePCrf31IhE0ZVXB27kHOCjIJrNO3Rhx/ifwAgL/UJAvOsqHYsn3/9nsEyOBjrli2NGa4QQgjxQEhCJozmf33HFGKv7cK5ug95PrbsS9qHCjXZV1rSstCEG87/cM4/G5PBg/RPOgkhHg8rVqzA1ta21CkoKMgoMQUFBZUZ04oVKx748YvfHV3W9KBuu4oHSx7VEUZTXB27VHCGjIJrdOk5gJ+OFb1jzTyvAdXynLAwuUaGaTa5Nmpc///pKSHE46N37940b9681HXGGnV+48aNFBQUlLrO3d39gR/fy8tLP/p/WevFo0cSMmEUN1fH/rm8A2uNAx5NQlj/+9sApCa14Ok8Ndn2RUlb0+rVsLK2NmbIQggjsLOzw87OzthhGPD19TXq8U1NTWXcsCpIblkKoyiujmVqMskouEbDrj1Ye/Z38rR52OCHTZYfniapaM2yMSvU0m7AACNHLIQQQjw4UiETD13+pf+Nyh8wNIzwgvqY29ow9c9nAbie1JxWuWqy7YqStsbublhVsr+QhRBCiIokFTLx0N08Kr+ZmzXO1bzZee1vUnJSsFI7kJ9an2D1VbRm2ZgW6ggdNMjIEQshhBAPliRk4qHKv5RJbtw1ANSNbQFQFIXlR5cDUJDaEhVqbLUHAWjkqMHawcEosQohhBAPi9yyFA9VcXUs3fYGP08fQbsBL2PazJ9/r/2LqcqMG5eb0PXGCdru3ML5OrVpu2iRkSMWQgghHjypkImH5ubq2N7Tv6PodLj712RFfNG4PTYFzbDMt2FwQhRqRaFx+/bYuLgYM2QhRBUTHh5Onz59btsmMjISlUrFjRs3HkpMQoAkZOIhKq6OZTtlk5qdhJt/TUx9XdlybgsAlxKb8lxmJkc9XyTVrT5O0ndMiEfa7ZIfPz8/VCqVwVS9enWD9XPmzKnwmObOnUtERIR+PiwsjLFjx1b4cSqD5ORkRo0aRY0aNbCwsMDb25tevXqxbds28vPzcXFx4YMPPih121mzZuHi4kJ+fv5tjxEREWHwGbq7u9OrVy/i4uIM2oWHh5f4vFUqFadOnaqw833USUImHgp9dUwF+xPWA9C0Rx9WHl+JVtHiYlIPu2xPTJwSueRzBjo8gamTk5GjFkI8SDNmzCApKUk/HT58+IEfU6PR4PCQ+6WWNYjsg3T27FmaNGnC9u3b+eSTT4iNjWXTpk20b9+ekSNHYm5uzsCBA4mIiKC0V1ovXbqUQYMGYW5ufsdj2dvbk5SUxKVLl9iwYQNZWVn06NGjRDLXrVs3g887KSkJf3//CjvnR50kZOKhKK6O5btruXw9AVsnZ7yfaMqvJ34F4PKFJ+ian4zWLBsoIDj8WSNGK4R4GOzs7PDw8NBPrq6ud72PCRMm0KtXL/38nDlzUKlUbNiwQb+sTp06fPfdd4Bh1S48PJyoqCjmzp2rr9icPXtWv110dDRNmzbF2tqaVq1acfz48XLFNH36dBo2bMiSJUv01SlFUdi0aRNt2rTBwcEBZ2dnevbsyenTp/Xb9evXj1GjRunnx44di0ql0lebCgsLsbOz488//7xjDCNGjEClUrF//36eeeYZateuTVBQEOPHj2fv3r0ADB06lNOnT7Nz506DbXft2sXJkycZOnRouc5XpVLh4eGBp6cnTZs2Zdy4cZw7d67E9bKwsDD4vD08PDAxMSnXMR4HkpCJB+7m6tihi5sBaNStFxvP/UF6fjoaMw8KUmtjb1vUvyxAa4a9n58RIxaiElMUyM8yzlRKJcXYwsLC2LVrFzqdDoCoqChcXFyIiooCim7bnThxgtDQ0BLbzp07l5YtWzJs2DB9xcbb21u/fsqUKcyePZuDBw9iamrKkCFDyh3XqVOn+Pnnn1m9erX+NUdZWVmMHz+eAwcOsG3bNtRqNU8//bQ+9rCwMCIjI/X7uPVcDhw4QG5uLq1bt77tsa9fv86mTZsYOXIkNjY2JdYXVwjr16/PE088wdKlSw3WL1myhGbNmhEcHFzu8y1248YNfvzxR8B4r7Z6VMlTluKBK66OmdSy4VLkCcwsrajfsSsfbh0IgO5Ga7rkXqbQMRuVTk33QU8bM1whKreCbJhppHcVvn0JzEt+wd+ryZMnM3XqVP38zJkzGT169F3to127dmRkZHD48GEaN27Mrl27mDhxImvWrAFgx44duLu7U7du3RLbajQazM3Nsba2xsPDo8T6Dz/8UJ/Ivfnmm/To0YPc3FwsLS3vGFd+fj4//PCDQdWvX79+Bm0WL16Mm5sbR48eJTg4mLCwMMaMGcPVq1cxMTEhLi6OadOmERkZyYgRI4iMjKRJkybY2tre9tinTp1CUZRSz/lWQ4YMYeLEicybNw9bW1syMzP55Zdf+Pzzz++4bbG0tDRsbW1RFIXs7Gyg6B2ktx5//fr1BrF3796dX375pdzHqeqkQiYeqJurYy496vDqNxE8NXEKh9NiOZN2BksTay6dD8bDpqg65pNrjmNgoJGjFkI8DJMmTSImJkY/DR48+K73odFoaNiwIZGRkcTGxqJWq3nttdf4559/yMjIIDIystTqWHk0aNBA/29PT08AUlJSyrWtr69viVuwp0+f5sUXX6RGjRrY29vr+08lJhb90RocHIyzszNRUVHs2rWLkJAQevfura+QlfdcivuEqVSqO7Z94YUX0Ol0rFq1CoBVq1ahKArPP/98uc4Tim49x8TEEB0dzbfffkvNmjX59ttvS7Rr3769wef95ZdflvsYjwOpkIkHKuPmUfndbTADfOs35KOtrwPgpGtN3dzraDW5qHRqnuzXxYjRCvEIMLMuqlQZ69gVyMXFpUJekl18q8/c3JzQ0FAcHR0JCgpi9+7dREZG3vNTlDffcitObopvL95JabcKe/Xqhbe3NwsXLsTLywudTkdwcLC+87tKpaJdu3b6cwkLCyM4OBitVktsbCx79uwp17nUqlULlUpFfHz8HYf40Gg0PPPMMyxdupShQ4eydOlSnnnmGezt7ct1ngBqtVr/OdatW5fk5GSee+65En3TbGxs5KXotyEVMvHA5F/KJOf/q2M0sNT/1ZaQlsBfF/9ChYrTpxtRN/sYAH5Z4N68sREjFuIRoFIV3TY0xlSOiosxFPcj2759O2FhYQCEhoaycuXKMvuPFTM3N0er1T7wGK9du0Z8fDxTp06lY8eOBAYGkpqaWqJdcXIZGRlJWFgYKpWKtm3b8tlnn5GTk3PH/mMATk5OdO3ala+//pqsrKwS628dX23o0KHs3r2b9evXs3v37nJ35i/LuHHj+Oeff/jtt9/uaz+PG0nIxANTXB0zq6vhh5lj+XHKeHKzMvUDwVa3bIr9DRN6/7WFTpu30POZzsYMVwjxAKSlpRncpoqJidHfoqsoxf3I1q1bp0/IwsLCWL58Oa6urtSrV6/Mbf38/Ni3bx9nz57l6tWr5a6A3S1HR0ecnZ1ZsGABp06dYvv27YwfP75Eu7CwMOLi4oiNjaVt27b6ZStWrKBx48blrlzNnz8frVZLs2bNWL16NSdPniQ+Pp4vv/ySli1bGrQNDQ0lICCAwYMHExAQQLt27e7rXO3t7XnllVeYNm1aqUNqiNJJQiYeiJurY+eIR1tYiEqtJs9Uy++nfwcg+fwT9D29C1NtIdVr+ON8y38SQohHX2RkJI0aNTKY3n333Qo9hkajoVGjRjg5OemTr7Zt26LT6e7Y52rixImYmJhQr149XF1dKzxZLKZWq1m5ciXR0dEEBwczbtw4Pv300xLtgoODcXFxISQkRJ98hYaGotVq76ovnL+/P4cOHaJ9+/ZMmDCB4OBgOnfuzLZt2/jmm29KtB8yZAipqal39STp7YwZM4b4+HjptH8XVIqkr+WSnp6ORqMhLS3tru6tP66u/XCUnLhrWAQ78XPkh+RmpNNr3JvssT3F7OjZeFj6U7D/GZ5Ps8AzOY524zvi2OHeOt4KUZXl5uaSkJCAv79/uZ7uE+JxdLvfk0fl+1sqZKLC3Vwdu2xzgdyMdDRu7vg1fYIfjxWNT6NKb0OY2TmSqx3jop8/mtC2Ro5aCCGEMB5JyESF0z9ZGezC/qiisYAad+9N1MWdJGUlYW/mgPakE1hqQVHRoK4bahP5URRClLRixQpsbW1LnYKCgowSU1BQUJkxrVix4oEfPzExsczj29raVuhtV2Of6+NEhr0QFerm6liaZxqpSRexsLYhuH1nhkUWDXXhoQojWH0RAJssd554uZMRIxZCVGa9e/emefPmpa4z1kjwGzduLPP9lO7u7g/8+F5eXvrR/8taX1GMfa6PE0nIRIXSV8fqu3AkruhdcvU7duVkdgKHUg5hqjYlM746Kssk0KkJdvLAwsbCmCELISoxOzs77OzsjB2GAV9fX6Me39TU9KGN52Xsc32cSEImKszN1TH7jj50cx1HrWat8KhVm1lxRa/hqG3dhlr5yWAJVtletHwtzLhBCyGEEJWAdNwRFebm6piZuw1qtQm1mrci11Lhj7N/AFB4OhBTSwV0amqYueBQTWPMkIUQQohKQRIyUSHyk7L01THLVm4U3tTnYNXxVRTqCqlpH4zX2SuotVo8rmpp8ULp/UKEEEKIx40kZKJCZGw7BxRVx6J3/86iN4YQ/1ckedo8fjlRNDCgeUY7uh+MpOe69fQMdse7gacxQxZCCCEqDUnIxH3LT8oi59+i6phVazeObN1E1o1UzK2s2HhmI9dzr+Nm5YHJjnT805OxUqvxHDjQ2GELIYQQlYYkZOK+3VwdOxb3F3nZWTh6VsO/YVP9eytr5XegU9pF/qn/OtqnX8WkEo+WLISousLDw+nTp89t20RGRqJSqUq8hFuIB0kSMnFfbq6O2YZVI3pj0Xsqm/R4iugrhzieehxLtSUOxwo538CJC9WdSfWTd1YK8Ti4XfLj5+eHSqUymKpXr26wfs6cORUe09y5c4mIiNDPh4WFMXbs2Ao/TmVw/vx5hg4dipeXF+bm5vj6+jJmzBiuXbtWom1cXBz9+/fH1dUVCwsLatWqxTvvvEN2drZBu5s/NxMTE7y8vBg6dCipqanliqk42S2enJ2d6dChA7t37zZoN3369BI/HyqViq1bt977BankJCET9+Xm6ti5xCOkX7mMpZ099dp14IejPwDQXN0FS1MtKGos8pwI6V7LmCELISqJGTNmkJSUpJ8OHz78wI+p0WhwcHB44Me5WVkDqz5IZ86coWnTppw4cYKffvqJU6dO8e2337Jt2zZatmzJ9evX9W337t1L8+bNyc/PZ8OGDZw4cYKZM2eybNkyOnfuTH5+vsG+iz+3xMREVqxYwc6dOxk9evRdxXf8+HGSkpKIjIzE1dWVHj16kJKSYtAmKCjI4OcjKSmJdu3a3ftFqeQkIRP37ObqmH0HHw5uWAtAw87dSc6/QuT5SFBAc7LoRa9W2V74Bzhj72JltJiFEJWHnZ0dHh4e+snV1fWu9zFhwgR69eqln58zZw4qlYoNGzbol9WpU4fvvvsOMKzahYeHExUVxdy5c/UVmLNnz+q3i46OpmnTplhbW9OqVSuOHz9erpimT59Ow4YNWbJkCTVq1MDCwgJFUdi0aRNt2rTBwcEBZ2dnevbsyenTp/Xb9evXj1GjRunnx44di0qlIi4uDoDCwkLs7Oz4888/7xjDyJEjMTc3Z/PmzYSGhuLj40P37t3ZunUrFy9eZMqUKQAoisLQoUMJDAxkzZo1NGvWDF9fX5599lnWrVvH33//zRdffGGw7+LPrVq1arRv357Bgwdz6NChcl2bYm5ubnh4eFC/fn2mTp1KWloa+/btM2hjampq8PPh4eGBubn5XR3nUSIJmbhnN1fH0gquknTiGCampjTs2pMf439EQaGVeShmaEGnxjqrOg2ffDijSwtRVSmKQnZBtlEmRVGMffolhIWFsWvXLnQ6HQBRUVG4uLgQFRUFQHJyMidOnCA0NLTEtnPnzqVly5YMGzZMX4Hx9vbWr58yZQqzZ8/m4MGDmJqaMmTIkHLHderUKX7++WdWr16tf81RVlYW48eP58CBA2zbtg21Ws3TTz+tjz0sLIzIyEj9Pm49lwMHDpCbm0vr1q1ve+zr16/z559/MmLECKysDP8A9vDwYMCAAaxatQpFUYiJieHo0aOMHz8etdowJQgJCaFTp0789NNPZR7r4sWLrF+/vszXW91JdnY2S5cuBYz3KqzKQkbqF/fk1uqYmYcNgz/5iuQzJ1Gszfjt1G+ggPsZd0CLVY4nzk42VKvjaOzQhXik5RTm0PxH44zht+/FfVibWVfY/iZPnszUqVP18zNnzrzrW1/t2rUjIyODw4cP07hxY3bt2sXEiRNZs2YNADt27MDd3Z26deuW2Faj0WBubo61tTUeHh4l1n/44Yf6RO7NN9+kR48e5ObmYmlpece48vPz+eGHHwyqfv369TNos3jxYtzc3Dh69CjBwcGEhYUxZswYrl69iomJCXFxcUybNo3IyEhGjBhBZGQkTZo0wdbW9rbHPnnyJIqiEBgYWOr6wMBAUlNTuXLlCidOnNAvK6vtX3/9ZbCs+HPTarXk5ubSvHlzPv/88ztek5sV9xfMzi5K9Js0aULHjh0N2sTGxhqca7169di/f/9dHedRUmkqZLNmzUKlUhl0rgwPDy/Roa9FixYG2+Xl5TFq1ChcXFywsbGhd+/eXLhwwaBNamoqgwYNQqPRoNFoGDRokDw9c59uro6ZedgA4OrrT/32Xfjv6f+SVZBFA1UD1IVaVDoV1lnehHStgUqlMmbYQohKZNKkScTExOinwYMH3/U+NBoNDRs2JDIyktjYWNRqNa+99hr//PMPGRkZREZGllodK48GDRro/+3pWTRu4q39nMri6+tb4hbs6dOnefHFF6lRowb29vb4+/sDkJhY9JaT4OBgnJ2diYqKYteuXYSEhNC7d299hex+zuVmxZXO8vx/rChKiXbFn9uRI0fYtm0bAD169ECr1ZY7hl27dnHo0CF++uknfH19iYiIKFEhq1OnjsHPx+rVq8u9/0dRpaiQHThwgAULFhj88Bfr1q2bvpwJlLh/PHbsWNatW8fKlStxdnZmwoQJ9OzZk+joaExMTAB48cUXuXDhAps2bQLg1VdfZdCgQaxbt+4BnlXVdWt1rCA/DzPzoheEa3Va/VAXNXODsMpKxTFVh5O3NbWblfwLVAhxd6xMrdj34r47N3xAx65ILi4uFfKS7OJbfebm5oSGhuLo6EhQUBC7d+8mMjLynp+ivDlBKE5Kim8v3omNjU2JZb169cLb25uFCxfi5eWFTqcjODhY32lepVLRrl07/bmEhYURHByMVqslNjaWPXv2lOtcAgICUKlUHD16tNSnXI8dO4ajoyMuLi7Url0bgKNHj9KwYcNS29aqZfgg1s2fW61atZgzZw4tW7Zkx44ddOrU6Y7xAfj7++Pg4EDt2rXJzc3l6aef5t9//8XCwkLfxtzc/KG9RL0yMHqFLDMzkwEDBrBw4UIcHUvezrKwsDDo0Ofk5KRfl5aWxuLFi5k9ezadOnWiUaNGLF++nNjYWP2jsfHx8WzatIlFixbRsmVLWrZsycKFC1m/fn25O2gKQxnb//fOSq2dwoLXw9k0fw75uTnsuriL8xnnsTe3x+vPs/TYsJHAG5d5Zlo7zCxMjBy5EI8+lUqFtZm1UabKWuEu7ke2fft2wsLCAAgNDWXlypVl9h8rZm5ufleVnXt17do14uPjmTp1Kh07dtTfNrxVcXIZGRlJWFgYKpWKtm3b8tlnn5GTk3PH/mMAzs7OdO7cmfnz55OTk2OwLjk5mRUrVvDcc8+hUqlo2LAhdevW5YsvviiRbP7zzz9s3bqVF1544bbHKy5+3Hqs8ho0aBA6nY758+ff0/ZVhdETspEjR9KjR48ys+rIyEjc3NyoXbs2w4YNMygXR0dHU1BQQJcuXfTLvLy8CA4OZs+ePQD8/fffaDQagw6HLVq0QKPR6NuUJi8vj/T0dINJQMGVbHL+vQqAXXsfjmzdRG5mBpcTTmFmYcnyo8sBaG/ZgRbH/sZEp6PumNeNGbIQwojS0tIMbjvFxMTob9FVlOJ+ZOvWrdMnZGFhYSxfvhxXV1fq1atX5rZ+fn7s27ePs2fPcvXq1XJXwO6Wo6Mjzs7OLFiwgFOnTrF9+3bGjx9fol1YWBhxcXHExsbStm1b/bIVK1bQuHFj7Ms5qPa8efPIy8uja9eu7Ny5k/Pnz7Np0yY6d+5MtWrV+PDDD4GiBH/RokUcPXqUfv36sX//fhITE/nll1/o1asXLVu2LFGVy8jIIDk5maSkJPbv38+kSZNwcXGhVatW93Rt1Go1Y8eO5aOPPiox7tnjxKgJ2cqVKzl06BCzZs0qdX337t1ZsWIF27dvZ/bs2Rw4cIAOHTqQl5cHFGX65ubmJSpr7u7uJCcn69u4ubmV2Lebm5u+TWlmzZql73Om0WgMnrx5nGVEXQAFLAOdMHE15/Cmotu+TXr04UTqCfYl78M1zxWP7Tlcqt6BY0H90DwhLxEX4nEVGRlJo0aNDKZ33323Qo+h0Who1KgRTk5O+uSrbdu26HS6O/a5mjhxIiYmJtSrVw9XV9cKTxaLqdVqVq5cSXR0NMHBwYwbN45PP/20RLvg4GBcXFwICQnRJ1+hoaFotdq76j9Wq1YtDh48SM2aNXnuueeoWbMmr776Ku3bt+fvv/82uNvUunVr9u7di4mJCU8++SQBAQG89dZbvPTSS2zZssXgNiLAu+++i6enJ15eXvTs2RMbGxu2bNmCs7PzPV4dGDJkCAUFBcybN++e9/GoUylGeo75/PnzNG3alM2bNxMSEgIU/RXQsGHDMkdnTkpKwtfXl5UrV9K3b19+/PFHXn75ZX2CVqxz587UrFmTb7/9Vj+43a23J2vVqsXQoUN58803Sz1WXl6ewX7T09Px9vYmLS2t3H+hVDWFN3JJ/uQg6BRcXw/hTGI0G+fNxsbBkVfmLeH9Ax+w5sQanrrSG9MsM2zSq2GdXZM+4xrJ05VC3KPc3FwSEhLw9/cv19N9QjyObvd7kp6ejkajqfTf30arkEVHR5OSkkKTJk0wNTXF1NSUqKgovvzyS0xNTUu9p+/p6Ymvry8nT54EisZTyc/PL3EfPiUlBXd3d32by5cvl9jXlStX9G1KY2Fhgb29vcH0uMvceRF0ChY1NJj72HFw/VoAGnbtSbo2g/Wn1+OW64ZplhkqrYJFbnWcq9ngVdvBqHELIYQQlZ3RErKOHTsSGxtr0K+gadOmDBgwgJiYGH0nwZtdu3aN8+fP6x8/btKkCWZmZmzZskXfJikpiX///Vd/L7tly5akpaUZjF2yb98+0tLS7vl+9+NIm5lP1oGiW7x27b25cDSWlLOnMTW3IKRzd3498Sv52nyapjcBwCbLGROdBQ06eFfajsBCiMpvxYoV2NraljoFBQUZJaagoKAyY1qxYsUDP35iYmKZx7e1tX1gt13Lo3v37mXGNXPmTKPF9Sgw2rAXdnZ2BAcHGyyzsbHB2dmZ4OBgMjMzmT59Ov369cPT05OzZ8/y9ttv4+LiwtNPPw0U9RsYOnQoEyZMwNnZGScnJyZOnEj9+vX1DwkEBgbSrVs3hg0bpn91xquvvkrPnj2pU6fOwz3pR1jm7ksoBTrMqttiEeDA4c+/ASAotCOm1lasPLYS11xXrLKtUWt1mOfWwsLalNpPlF2FFEKIO+ndu3eZo8Aba2T3jRs3lvl+ytvdeakoXl5e+tH/y1pvLIsWLSrzacub+62JkirFOGSlMTExITY2lu+//54bN27g6elJ+/btWbVqFXZ2dvp2X3zxBaampvTv35+cnBw6duxIRESEQYVtxYoVjB49Wv80Zu/evR/rjoN3S5dbSObflwCwDyuqeHUaNhI3vxrUbtmWP8/9yZXsK3RKKxpl2S7NBhOdBUFtq2FqLkNdCCHunZ2dncH/+ZWBr6+vUY9vampaacfnqlatmrFDeGQZrVP/o+ZR6RT4IKRHnid901lMXa1wH9cElfp/tyAVReGFDS+QciGFdsntUGt1OFxriSkWDPqgFXZO0glZiPshnfqFuDPp1C+qPKVAS+ZfFwGwC/OmMD/P4AXD/1z5h7hrcajUCk7XU/E5l4SpLpOajdwkGRNCCCHKqdLeshSVQ9bBy+gyCzBxsMC6oSsbv55N2pXLdHx5OO41AlgeXzQQ7LNZfoRu3kyauTWFy9+hVbCM2yaEEEKUlyRkokyKVlc0ECxgF1qdqxcTObZnJygKqFQkZSax9dxWUBQabSyqov0V3J4J9eXJSiGEEOJuyC1LUabsmCtob+ShtjXDpqk7u1ctB0WhdvPWuPvX5KfjP+GY7cgzSe0wS7nCCf+euDzzoiRjQgghxF2ShEyUStEpZESeB8C2TTWSz53i9MG9qFRqWvUfSHZBNqtPrKbejXooeW5EN2nLBd/uaP/OQqd9MO+CE0IIIaoqSchEqXKPXqPwSg4qSxNsW3gWVceAeu3a41zdm/Vn1mOeZo5rritqrRbT/LoABLXxQm0iP1ZCCAgPD0elUjF8+PAS60aMGIFKpSI8PNygrUqlwszMDHd3dzp37sySJUtKvPDbz8+vzFfs3crPz0+/XysrK+rWrcunn35q8HDS2bNn9W1ungYOHHjP5y7E3ZJvTlGCoiik7/j/6lhLLy6eiefckcOoTUxp+cwL6BQdy+OXE3gjEIDq51PItq2LSgXB7aobM3QhRCXj7e3NypUrDQYLzc3N5aeffsLHx8egbbdu3UhKSuLs2bP88ccftG/fnjFjxtCzZ08KCwvvOYYZM2aQlJREfHw8EydO5O2332bBggUl2m3dupWkpCT99PXXX9/zMYW4W5KQiRLyTt2g4GImKjM1tq29iIvcBkD9Dl3QuHnw96W/yUjOwC3XDbVWi1VmURJWs4kbto4WxgxdCFHJNG7cGB8fH9asWaNftmbNGry9vWnUqJFBWwsLCzw8PKhWrRqNGzfm7bff5r///S9//PEHERER9xyDnZ0dHh4e+Pn58corr9CgQQM2b95cop2zszMeHh76SaPR3PMxhbhb8pSlKCHj/6tjNs08MLE1p8vwUfjWD8E7qAEAS/5doq+O+Z47z3WnFwFo0F6GuhDiQVMUBaWMV9M8aCorq3t6aOfll19m6dKlDBgwAIAlS5YwZMgQIiMj77hthw4dCAkJYc2aNbzyyit3feybKYpCVFQU8fHx1KpV6772JURFk4RMGMg7l07emTQwUWHbtqjypVabENi2PQAHkg9wJuEMobmhqLVaNNcdyKxuiou3LR41Ku8IyEJUFUpODscbNzHKsescikZlbX3X2w0aNIi33npL31dr9+7drFy5slwJGUDdunU5cuTIXR+32OTJk5k6dSr5+fkUFBRgaWnJ6NGjS7Rr1aoVavX/bhzt2rWrRBVPiAdFEjJhoPjJSutGbqRnX8HO2hUz86LbkIqi8HXM16Sbp+OadQXNpRukWAShmKpo2FHGHhNClM7FxYUePXqwbNkyFEWhR48euLi4lHt7RVHu6/+XSZMmER4ezpUrV5gyZQodOnSgVatWJdqtWrWKwMBA/by3t1T9xcMjCZnQy0/KIjf+OqjAtp0XKz6aRH52Fk9NnIpHQG32J+8n+nI07jkmtP9jJxQWMiG0Nd9MbYq3i42xwxfisaCysqLOoWijHfteDRkyhDfeeAPgrjvLx8fH4+/vf8/HdnFxISAggICAAFavXk1AQAAtWrSgU6dOBu28vb0r7Uu7RdUnCZnQK66OWQW7cDJ+H9cvnsfSxhZHr2ooisL8Q/NBgbHH/FAVHucfl5p4t26Gn4edkSMX4vGhUqnu6bahsXXr1o38/HwAunbtWu7ttm/fTmxsLOPGjauQOBwdHRk1ahQTJ07k8OHDUtkXlYY8ZSkAKLyaQ86RKwDYtPXk719/BOCJp57BwtqGvUl7KTxeSIeLbXA7cJksKzc21e3NwBY+t9utEEIAYGJiQnx8PPHx8ZiYmJTaJi8vj+TkZC5evMihQ4eYOXMmTz31FD179mTw4MEVFsvIkSM5fvw4q1evrrB9CnG/pEImAMjYeQEUsKzjyPHje0hLuYy1xoFGXXuiKAqL9iyiZnpN1KjJsrTgpO8zPGEagOm/6VDbzdjhCyEeAfb2t3/wZ9OmTXh6emJqaoqjoyMhISF8+eWXvPTSSwad7e+Xq6srgwYNYvr06fTt27fC9ivE/ZCETKBNyyMr+jIAVm082Dv7EwCaP/0cZpaW7L6wG8tTlqhRU/38BZyuZZFbpy4mQI1GrkaMXAhRmd1p7LC1a9catC3vWGNnz54tdwxltb15YFg/Pz+DkfuFMAa5ZSnI2HURtArmfvbEH99FZup17FxcadCpG4qi8P2O74tekaTT0fDwYf6u8wwmKjWuvnZ4+MvAiUIIIcT9koTsMafNKiBrfxIAdu29uX7pAgAt+72AqZkZUeeicDjrAEC9uDhMCk3IdSkaA6lRJ+k/JoQwnhUrVmBra1vqFBQUZOzwhLgrcsvyMZe55xJKvg4zTxssazvSpc4oQjp1x9XXH0VRWL1pNc5aZ6zycqgbf4ztDUdihhpXHzsCmkjfMSGE8fTu3ZvmzZuXus7MzOwhRyPE/ZGE7DGmyyskc88loKg6Vvz4t3uNonF4IhMjMb1W9CPSZN9BMqw8UdnXAaDNswGo1PK4uBDCeOzs7LCzk2F3RNUgtywfY1n7klFyCjF1seJizgnSr17Rr1MUhW+PfMsOr22EnIjF69IlIn2akWupxj/EBa9ajkaMXAghhKhapEL2mFIKdEWd+QHzJ5zY+PUkFK2WgR/NxcXbl6gLUcRdiyP0pCl1Dx0l29SCn/wasnxcI2o7yaj8QgghREWShOwxlXXoMrqMfEw05sSc2UJhXh4eAbVxru5Dfn4+P275EVMFwvdYALn8GhBG++a1aODjYOzQhRBCiCpHblk+hhStQkZU0dOUpo0dOLL1DwDaPDcYlUrFij9W4JXoRc+ENtgkp3HGsxXnfTszvkMtY4YthBBCVFmSkD2GcmKvoL2ei9rGlJgzW9AWFuJdrz4+9UO4fv06CTEJADT/9zxatTkna/WjZZ4V6UdvGDdwIYQQooqShOwxo+gU0ncUvUTcpIEdsTs3A9D6+f+vjq1dgVpRQ/4Vahw7zdEaPTFTW2LjZEFga09jhi6EEEJUWZKQPWZyj12n8HI2KgsTDiVsRtHp8G/UlGp1Ajlx8gTXEq+hQ0fH3UfIN7cnuVoYAK37BmBqVvoLgYUQ4mYqleq2U3h4+AM5blZWFpMnT6ZGjRpYWlri6upKWFgY69ev17cJCwtj7NixJbaNiIjAwcGhxPKcnBwcHR1xcnIiJyenxHo/Pz/9eVlbWxMcHMx3331XrngjIiIMrou7uzu9evUiLi7OoF14eHip1/HUqVPlOo54NEhC9hhRFIWM/6+O2bTwxM7DBTMLS1o/N4jCwkLWrFsDgHnGGVwuX+VIrWcxUZng6ieDwAohyi8pKUk/zZkzB3t7e4Nlc+fONWhfUFBQIccdPnw4a9euZd68eRw7doxNmzbRr18/rl27ds/7XL16NcHBwdSrV481a9aU2mbGjBkkJSVx5MgR+vTpw/Dhw1m1alW59l98bS5dusSGDRvIysqiR48e5OfnG7Tr1q2bwTVMSkrC39//ns9LVD6SkD1G8s6kkX8+A0zV2LWpRpvnB/Pat9/j7l+Tv//+m9z0XPJUuTy5I45MGy/SXRoB0PbZ2vpBY4UQ4k48PDz0k0ajQaVS6edzc3NxcHDg559/JiwsDEtLS5YvXw7A0qVLCQwMxNLSkrp16zJ//nyD/V68eJHnnnsOR0dHnJ2deeqppwxeHr5u3TrefvttnnzySfz8/GjSpAmjRo3ipZdeuudzWbx4MQMHDmTgwIEsXry41DZ2dnZ4eHgQEBDABx98QK1atQxenH47xdfG09OTpk2bMm7cOM6dO8fx48cN2llYWBhcVw8PD0xM5K5FVSIJ2WNEXx17wh0TO3MALKytAbhie4UrlldwTo7DKjuXf+o8j0qlokYjVzxrygvEhahsCvK0ZU6FBdryt80vX9uKNnnyZEaPHk18fDxdu3Zl4cKFTJkyhQ8//JD4+HhmzpzJO++8w7JlywDIzs6mffv22NrasnPnTv766y9sbW3p1q2bvprk4eHBxo0bycjIqJAYT58+zd9//03//v3p378/e/bs4cyZM3fcztLS8p6qfjdu3ODHH38E5NVPjyMZh+wxkX8+g7xTN0AN8df/xic+l+qBwQBodVq+P/c9GRaneH2nAsA2ax3da9jRqm9NI0YthCjLgjFRZa7zDXam5xsh+vklk3ZRmK8rta1XLQeentBYP//9lD3kZpZMJkZ+2+E+oi1p7Nix9O3bVz///vvvM3v2bP0yf39/jh49ynfffcdLL73EypUrUavVLFq0SF+xX7p0KQ4ODkRGRtKlSxcWLFjAgAEDcHZ2JiQkhDZt2vDMM8/QunVrg2PPnz+fRYsWGSwrLCzE0tLSYNmSJUvo3r07jo5Fbybp1q0bS5Ys4YMPPij1nAoLC1m+fDmxsbG8/vrr5boOaWlp2NraoigK2dnZQNE7OuvWrWvQbv369dja2urnu3fvzi+//FKuY4hHg1TIHhPpkUXVMcXPjL83reKX96eSdSMVrVbL5nObOZ12mgF7TDDR6jjoVgd1ixAGTWqKxtXayJELIaqipk2b6v995coVzp8/z9ChQ7G1tdVPH3zwAadPnwYgOjqaU6dOYWdnp1/v5OREbm6uvk27du04c+YM27Zto1+/fsTFxdG2bVvef/99g2MPGDCAmJgYg2nGjBkGbbRaLcuWLWPgwIH6ZQMHDmTZsmVotYYVw8mTJ2Nra4uVlRUjR45k0qRJvPbaa+W6DnZ2dsTExBAdHc23335LzZo1+fbbb0u0a9++vUG8X375Zbn2Lx4dUiF7DBRcziI37hqoIPp80TAX9Tt2xdLOnoULF3Kk8Ah+2Sa0+DcPrdqMiHrdmds9UPqNCVGJvTo3tMx1qlv+1B7yaduy297yaz74w1b3E1a52dj87xVsOl1R9W7hwoU0b97coF1xPymdTkeTJk1YsWJFiX25urrq/21mZkbbtm1p27Ytb775Jh988AEzZsxg8uTJmJsXddXQaDQEBAQY7MPNzfDBpT///FPfZ+1mWq2WzZs30717d/2ySZMmER4ejrW1NZ6ennf1f6dardbHUrduXZKTk3nuuefYuXOnQTsbG5sSMYuqRRKyx0BGZNGo/DovNaf/2o+pmTktnu7PgQMHSE5ORqPW0PqwCVq1BTtbzKCDl7O8r1KISs7Movwduh9U24ri7u5OtWrVOHPmDAMGDCi1TePGjVm1ahVubm7Y29uXe9/16tWjsLCQ3NxcfUJWHosXL+b5559nypQpBss/+ugjFi9ebJCQubi4VFiyNG7cOD7//HN+++03nn766QrZp3g0SEJWxRVezyX7nxQADl3YAkDDbj3B3IIdO3YAcJV/aRyfzSn/XmBmS7U8FSZmcjdbCPHwTJ8+ndGjR2Nvb0/37t3Jy8vj4MGDpKamMn78eAYMGMCnn37KU089xYwZM6hevTqJiYmsWbOGSZMmUb16dcLCwnjhhRdo2rQpzs7OHD16lLfffpv27dvfVRJ35coV1q1bx++//05wcLDBupdeeokePXpw5coVg8pcRbG3t+eVV15h2rRp9OnTR+5UPEbkW7eKy9h5AXSgdYXTZw9ibmXFE737sXXrVvLy8kg1v06vXWfJtXDgnHcnANo+E4CJqfxoCCEenldeeYVFixYRERFB/fr1CQ0NJSIiQj/WlrW1NTt37sTHx4e+ffsSGBjIkCFDyMnJ0SdbXbt2ZdmyZXTp0oXAwEBGjRpF165d+fnnn+8qlu+//x4bGxs6duxYYl379u2xs7Pjhx9+uP+TLsOYMWOIj4+XTvuPGZWiKIqxg3gUpKeno9FoSEtLu6u/tIxJm5FP0sf7oVDhYMFWTl+IpkW/F/Bp2U4/ns5F7TbG/3KVf+sOJsWjOa7+9jz7nybyV5kQlURubi4JCQn4+/uXeApQCFHkdr8nj8r3t5RBqrCMvy5CoYKZty0BPdviXiOAxk/2ZuPGjQCctU3g2Z2pZNhW57J7MwBC+8sgsEIIIcTDJglZFaXLLiBrbxIA9u19CG7fiQEzvyA9K5vr169TqC7EOiWW6pe1HAt4pmgQ2CZuuPtX3r8ehBDiURIUFGQwjMfNU2lPi4rHm3Tqr6Iy/05CydNi5mGNZV0nAP3La2v2qMnCXd/yzh955Fo6kWbvh9pERWsZBFYIISrMxo0byxyx393d/SFHIyo7SciqIF2+lszdFwE4khKF+44rBId1Rm1iQoGugCUnl1D/xGVcU3VctyggsoaaT7oFY+9sZeTIhRCi6vD19TV2COIRIglZFZS1PxlddiGFllpi43eQkBaLc51gsnNyiCWWq9cv0H93Udsf63Ri1NMh1KxT8Y9vCyGEEKJ8JCGrYpRCHZk7iwaCjbuyCwWFFv2e549Nm7hw4QJnPc7S/bCCTY45Jz1DSO/QndDakowJIYQQxiSd+quY7MMpaNPz0ZppOXH1II6e1dA6uHLhwgXUpmoStHH02atwzqcL5+sM5mm1Rp6qFEIIIYxMErIqRNEpZEQVVceOXvsbHVqa9unP1m3bAEhwTqDbgSzUOHDOu2jAw0bNPY0WrxBCCCGKSEJWheT8e5XCqzloTbScuL4fVx8/LuXkk5WVhbmdOWcKo3nyoMLpGr1BbYqzvz1+DVyMHbYQQgjx2JOErIpQFIWMHecBOJ66n0KlgKAefdi3fz8Ah5wO0W9PIblWPvpBYDu+UEduVwohHjtnz55FpVIRExNj7FCqrOnTp9OwYUNjh/FIkYSsisg9nkpBUhYqczVBr/ekUbdexJ69gKIo2FazJe3GMdrHKJys2Q8AvyauuPrYGTlqIURVFh4eTp8+fQyW/frrr1haWvLJJ58YJ6h7sHr1apo3b45Go8HOzo6goCAmTJigXx8REYGDg0Op26pUKtauXVti+auvvoqJiQkrV64ssW769OmoVCpUKhUmJiZ4e3vzyiuvcOXKlXLFW7ytSqXC1taWkJAQIiIiDNpERkYatCuepk6dWq5jiIonT1lWEcXVMZvmnjjUr4FXcCDHjx8nMzOTjdYbeW6jjlTnENIcAsBERbt+tYwcsRDicbNo0SJGjhzJ119/zSuvvHLX2+fn52Nubv4AIivb1q1bef7555k5cya9e/dGpVJx9OhRtv1/39x7kZ2dzapVq5g0aRKLFy/m+eefL9EmKCiIrVu3otVqOXz4MEOHDuXixYv88ccf5TrG0qVL6datG1lZWaxatYqXX34ZT09PunbtatDu+PHjBu93tLW1vefzEvdHKmRVQF5CGvnn0sFEhV3bakDRX0h169bFsYMjJhcSaR2vYFKYS7aqgJBO3tg5yUuKhRAPzyeffMIbb7zBjz/+qE/G9uzZQ7t27bCyssLb25vRo0eTlZWl38bPz48PPviA8PBwNBoNw4YN01ej/vzzTwIDA7G1taVbt24kJSUZHG/p0qUEBgZiaWlJ3bp1mT9//j3FvX79etq0acOkSZOoU6cOtWvXpk+fPnz11Vf3fC1++eUX6tWrx1tvvcXu3bs5e/ZsiTampqZ4eHhQrVo1evbsyejRo9m8eTM5OTnlOoaDgwMeHh7UrFmTt99+GycnJzZv3lyinZubGx4eHvqpPAlZ8Wewdu1aateujaWlJZ07d+b8+fNlbhMWFsbYsWMNlvXp04fw8HD9/Pz586lVqxaWlpa4u7vzzDPPlOtcqwpJyKqA9P+vjp1JP8Ku/y6noCAfgNzCXJb8u4QXonQA/GNrjd+QerTo4W+0WIUQFaMgN7fMqTA/v9xtC/LzytX2frz55pu8//77rF+/nn79irpNxMbG0rVrV/r27cuRI0dYtWoVf/31F2+88YbBtp9++inBwcFER0fzzjvvAEUVps8++4wffviBnTt3kpiYyMSJE/XbLFy4kClTpvDhhx8SHx/PzJkzeeedd1i2bNldx+7h4UFcXBz//vvvfVwBQ4sXL2bgwIFoNBqefPJJli5desdtrKys0Ol0FBYW3tWxtFotP//8M9evX8fMzOxeQy4hOzubDz/8kGXLlrF7927S09NLrfSV18GDBxk9ejQzZszg+PHjbNq0iXbt2lVYvI8CuWX5iMu/mEneiVQUFI5e34PDhQDmzv2S0NBQjlkfw/n4ZRqdUShUqdndth/fN6mOiVo68gvxqPvypbKrB/6NmtL3zen6+fmvDqAwL6/UttXrBfPctI/08wvfGEJORnqJdhNWrb+nOP/44w/++9//sm3bNjp06KBf/umnn/Liiy/qqya1atXiyy+L/u/65ptvsLQsquJ36NDBINn666+/KCgo4Ntvv6VmzaL3777xxhvMmDFD3+b9999n9uzZ9O3bFwB/f3+OHj3Kd999x0svvXRX8Y8aNYpdu3ZRv359fH19adGiBV26dGHAgAFYWFjo26WlpZWrunTy5En27t3LmjVrABg4cCCjR49m2rRpqNWl10iOHTvGN998Q7NmzbCzK1/f3xdeeAETExNyc3PRarU4OTmVepu4evXqBvPnzp3D2dn5jvsvKChg3rx5NG/eHIBly5YRGBjI/v37adasWblivFliYiI2Njb07NkTOzs7fH19adSo0V3v51EmFbJHXEZkUXUsMfMomYU3yHapRmZmJvHH4lkSu5gXI7Uk+HZjS/2XGPpsa0nGhBAPVYMGDfDz8+Pdd98lIyNDvzw6OpqIiAhsbW31U9euXdHpdCQkJOjbNW3atMQ+ra2t9ckYgKenJykpKQBcuXKF8+fPM3ToUIN9f/DBB5w+ffqu47exsWHDhg2cOnWKqVOnYmtry4QJE2jWrBnZ2dn6dnZ2dsTExJSYbrV48WK6du2Ki0vRkENPPvkkWVlZbN261aBdbGwstra2WFlZUa9ePby9vVmxYkW54/7iiy+IiYlhy5YtNGzYkC+++IKAgIAS7Xbt2mUQr6OjY7n2b2pqavDZ1K1bFwcHB+Lj48sd4806d+6Mr68vNWrUYNCgQaxYscLg+j4OpEL2CCu4kk3Ov1cBiL+xF/cmLTl98SJqtZr8Wvn4rr+CzzVn9jbrjoXalAAqrlwthDCu0ct+LXOd6pZKy4gFt/kiv+WPtGHzltxXXLeqVq0aq1evpn379nTr1o1NmzZhZ2eHTqfjtddeY/To0SW28fHx0f/bxsamxPpbb72pVCoURQFApyvqorFw4UJ99aaYiYnJPZ9HzZo1qVmzJq+88gpTpkyhdu3a+s7yAGq1utSE52ZarZbvv/+e5ORkTE1NDZYvXryYLl266JfVqVOH33//HRMTE7y8vAyqceXh4eFBQEAAAQEB/PLLLzRq1IimTZtSr149g3b+/v5lPiF6J6UNm1TWUEpqtVr/GRUrKCjQ/9vOzo5Dhw4RGRnJ5s2beffdd5k+fToHDhy45/geNZWmQjZr1ixUKpVBpz9FUZg+fTpeXl5YWVkRFhZGXFycwXZ5eXmMGjUKFxcXbGxs6N27NxcuXDBok5qayqBBg9BoNGg0GgYNGsSNGzcewlk9WBmRF0CBi1knSdOmcsWkqMTfrEUzViT8wAuROk7X6IOiNsXB3w7vQCcjRyyEqChmlpZlTqa3PIl4u7Zm5hblans/fHx8iIqKIiUlhS5dupCenk7jxo2Ji4vTJw03T/fzJKW7uzvVqlXjzJkzJfbr718x/Wf9/PywtrY2eAChPDZu3EhGRgaHDx82qEr98ssvrF27lmvXrunbmpub62O+22TsVgEBAfTr14+33nrrvvZzs8LCQg4ePKifP378ODdu3KBu3bqltnd1dTV48EKr1Zbol2dqakqnTp345JNPOHLkCGfPnmX79u0VFnNlVykSsgMHDrBgwQIaNGhgsPyTTz7h888/Z968eRw4cAAPDw86d+5sUPYeO3Ysv/32GytXruSvv/4iMzOTnj17otVq9W1efPFFYmJi2LRpE5s2bSImJoZBgwY9tPN7EApv5JJ9uKhEH5+2F03jlqRnZGBnZ0eSexL1oq+iyfcnxa0xCtB1QKAMAiuEMJrq1asTGRnJtWvX6NKlC//5z3/4+++/GTlyJDExMZw8eZLff/+dUaNG3fexpk+fzqxZs5g7dy4nTpwgNjaWpUuX8vnnn9/Tvv7zn/8QGRlJQkIChw8fZsiQIRQUFNC5c+e72tfixYvp0aMHISEhBAcH66d+/frh6urK8uXL7zq+8powYQLr1q0zSKLuh5mZGaNGjWLfvn0cOnSIl19+mRYtWpTZf6xDhw5s2LCBDRs2cOzYMUaMGGFQGFm/fj1ffvklMTExnDt3ju+//x6dTkedOnUqJN5HgdETsszMTAYMGMDChQsN7l0risKcOXOYMmUKffv2JTg4mGXLlpGdnc2PP/4IFHWiXLx4MbNnz6ZTp040atSI5cuXExsbq78fHx8fz6ZNm1i0aBEtW7akZcuWLFy4kPXr13P8+HGjnHNFyNx5EXQKKbmJXOMGSblFpd+wTmEs/3cpz+7ScbJmUYdW3yauuFSXsWWEEMZVrVo1oqKiuHHjBsOGDSMqKoqTJ0/Stm1bGjVqxDvvvIOn5/2/X/eVV15h0aJFREREUL9+fUJDQ4mIiLinClloaChnzpxh8ODB1K1bl+7du5OcnMzmzZvvKlm4fPkyGzZs0D9lejOVSkXfvn1ZvHjxXcdXXvXr16dTp068++67FbI/a2trJk+ezIsvvkjLli2xsrIqdZDbYkOGDOGll15i8ODBhIaG4u/vT/v27fXrHRwcWLNmDR06dCAwMJBvv/2Wn376iaCgoAqJ91GgUm69qfuQvfTSSzg5OfHFF18QFhZGw4YNmTNnDmfOnKFmzZocOnTI4EmLp556CgcHB5YtW8b27dvp2LEj169fN0jmQkJC6NOnD++99x5Llixh/PjxJW5ROjg48MUXX+jv/99Jeno6Go2GtLQ0g0H0jEGbmU/yxwdQCnTY9Pdhz6m/OXD0GH5+fuia6IhfMJseMQ2JCxqKooaXZ7bGxuH+St5CCOPIzc0lISEBf39//ZOHQhhTREQEY8eOrVRdf273e1KZvr9vx6id+leuXMmhQ4c4cOBAiXXJyclAUX+Am7m7u3Pu3Dl9G3Nz8xJPhbi7u+u3T05Oxs3NrcT+3dzc9G1Kk5eXR95Nj4mnp5d8DNxYMndfQinQYVbdFodGPvRo7EujS5fQqrQM2fwiM3YrxAf3AqBBJx9JxoQQQohKzmi3LM+fP8+YMWNYvnz5bf/qu7Xfk6Iod+wLdWub0trfaT+zZs3SPwSg0Wjw9va+7TEfFl1uIZl/XwLAPsxbfw5eXl5svrqZVruv45Ct4H7mZ1Q+VrSUQWCFEKJMw4cPNxge4+Zp+PDhxg6vhJkzZ5YZb/fu3SvkGN27dy/zGDNnzqyQY4iSjFYhi46OJiUlhSZNmuiXabVadu7cybx58/T9u5KTkw36FKSkpOirZh4eHuTn55OammpQJUtJSaFVq1b6NpcvXy5x/CtXrpSovt3srbfeYvz48fr59PT0SpGUZe5NQsnVkpZ/lR1/LKSb+yu4urqSVZDFL/sX8+G+oke+/6zXgk8mNcPM7N4f8xZCiKpuxowZBgPP3qwy3t4aPnw4/fv3L3WdlZVVhRxj0aJFZb6iycnJCScnJ4NXHomKYbSErGPHjsTGxhose/nll6lbty6TJ0+mRo0aeHh4sGXLFn0fsvz8fKKiovj4448BaNKkCWZmZmzZskX/A5qUlMS///7LJ598AkDLli1JS0szGD143759pKWl6ZO20lhYWNz3o8YVTZevJXNX0ZAeRzL2ctbBmm+++YahQ4ey8dpGOkTdwExrw2mNhnbDnsdSkjEhhLgtNze3Uru1VFbFCdGDVK1atQe6f1E6oyVkdnZ2BAcHGyyzsbHB2dlZv3zs2LHMnDmTWrVqUatWLWbOnIm1tTUvvvgiABqNhqFDhzJhwgScnZ1xcnJi4sSJ+qdJAAIDA+nWrRvDhg3ju+++A+DVV1+lZ8+ej9zjtNkHL6PLKiSrII2zDgVodQrVq1fD3sWe/65bzNQ4F3a3fJvrFllMaii/UEIIIcSjolKP1P+f//yHnJwcRowYQWpqKs2bN2fz5s0G7/L64osvMDU1pX///uTk5NCxY0ciIiIMRmResWIFo0eP1o+C3Lt3b+bNm/fQz+d+KFodGVFFr0k6mLOPPLeiUvqTTz7Jj8d+pNuOdBL9XkFnYk716k6YS3VMCCGEeGQYfdiLR4WxH5vNir5M6i8nyCrM4BeLvyg0M6dJkyaEdQ3jpe86MWGFKzENx6Og8MK7zXH2knHHhKgKZNgLIe6sKgx7YfSBYcWdKTqF9B2JAOwuPEChmTlWVlZ07NiR5fHL6bEtk9M1igaB9WrsKsmYEEII8YiRhOwRkHv0GtqruWQomZy3L3olVIcOHSg0LWTnlqXUuN6YDHs/dGqFbs+X/h4xIYQQQlRekpBVcoqikL6jqO+Ya7sAWjZvhq+vL02aNGH50eX03pbL6RpPAVCvkw/W9vf+Ul4hhKjqwsPD6dOnz23bREZGolKpKtVI9I+is2fPolKpiImJMXYojwRJyCq5vJM3KLiYicpMjWOYH1169CQ8PJyMggwOrl9CjateFJpaoZhDu541jB2uEELo3S758fPzQ6VSGUzVq1c3WD9nzpwKj2nu3LlERETo58PCwhg7dmyFH8fYwsPD9dfV1NQUHx8fXn/9dVJTUw3a3elzEA9PpX7KUsCNrQkoKFg2dcXExgwoevPA93HLeHpbFvYZWWRf+YNes97DzFyerBRCPDpmzJjBsGHD9PM3Px3/oGg0mgd+jFsVFBRgZmb20I/brVs3li5dSmFhIUePHmXIkCHcuHGDn376yaCdMT4HUZJUyCqxvHPpFCZmcUx9gUUxP5GQkABAWl4ax9YsIyAJckxNsR8aTq16zkaOVggh7o6dnR0eHh76ydXV9a73MWHCBHr16qWfnzNnDiqVig0bNuiX1alTRz8O5c1Vu/DwcKKiopg7d66+OnT27Fn9dtHR0TRt2hRra2tatWqlf4PMnUyfPp2GDRuyZMkSatSogYWFBYqisGnTJtq0aYODgwPOzs707NmT06dP67fr168fo0aN0s+PHTsWlUpFXFwcAIWFhdjZ2fHnn3+WKw4LCws8PDyoXr06Xbp04bnnnmPz5s0l2t3r56BSqfjmm2/o3r07VlZW+Pv788svv5TZPiIiAgcHB4Nla9euNXiN4T///EP79u2xs7PD3t6eJk2acPDgwXLF86iThKwSu7H5DLkUsN/0JLmKon8Z+vdHlvLkbluuOdVjc72ODOzeyMiRCiEeFkVR0OVrjTJVxlGSwsLC2LVrFzpd0WvjoqKicHFxISoqCih6/d6JEycIDQ0tse3cuXNp2bIlw4YNIykpiaSkJINX5E2ZMoXZs2dz8OBBTE1NGTJkSLnjOnXqFD///DOrV6/W96HKyspi/PjxHDhwgG3btqFWq3n66af1sYeFhREZGanfx63ncuDAAXJzc2nduvVdXSOAM2fOsGnTpgqv1L3zzjv069ePf/75h4EDB/LCCy8QHx9/z/sbMGAA1atX58CBA0RHR/Pmm28apbpoDHLLspLKT8qi4HQG0aanKVAruLq60qxZM1JzUzn78zJcncM561Ifz/p28ookIR4jSoGOS+/uMcqxvWa0QlWBXSMmT57M1KlT9fMzZ85k9OjRd7WPdu3akZGRweHDh2ncuDG7du1i4sSJrFmzBoAdO3bg7u5O3boln0DXaDSYm5tjbW2Nh4dHifUffvihPpF788036dGjB7m5ueUaDy4/P58ffvjBoNrUr18/gzaLFy/Gzc2No0ePEhwcTFhYGGPGjOHq1auYmJgQFxfHtGnTiIyMZMSIEURGRtKkSRNsbcs3tNH69euxtbVFq9WSm5sLwOeff16i3f18Ds8++yyvvPIKAO+//z5btmzhq6++Yv78+eXa/laJiYlMmjRJ/3nVqlXrnvbzKJKErJK6/udJrqkyiDe5CED37t0xMTHhh/2L6RTtw5na9VEUHT371jNypEIIcW8mTZpk8JJqFxeXu96HRqOhYcOGREZGYmZmhlqt5rXXXmPatGlkZGQQGRlZanWsPBo0aKD/t6enJwApKSn4+PjccVtfX98St/5Onz7NO++8w969e7l69aq+MpaYmEhwcDDBwcE4OzsTFRWFmZkZISEh9O7dmy+//BLgrs+lffv2fPPNN2RnZ7No0SJOnDhhcEu02P18Di1btiwxfz9PVY4fP55XXnmFH374gU6dOvHss89Ss2bNe97fo0QSskqo8GoO+cfS2GN+HFQQFBREjRo1uJ57nZQVK9B4jgHAuYEjzp42Ro5WCPEwqczUeM1oZbRjVyQXFxcCAgLuez/Ft/rMzc0JDQ3F0dGRoKAgdu/eTWRk5D0/RXnzrbLifk7FSdSd2NiU/L+5V69eeHt7s3DhQry8vNDpdAQHB5Ofn68/Rrt27fTnEhYWRnBwMFqtltjYWPbs2XNX52JjY6O/vl9++SXt27fnvffe4/333zdoV1GfQ7Gb+4TdTK1Wl7jtXVBQYDA/ffp0XnzxRTZs2MAff/zBtGnTWLlyJU8//XSFxVdZSR+ySujKH8c5rb7MZXUapiYm+ndwLj+wgJbHQ8i080GhkKcGBd9hT0KIqkalUqE2NzHKVNYXrbEV9yPbvn07YWFhAISGhrJy5coy+48VMzc3R6vVPvAYr127Rnx8PFOnTqVjx44EBgaWGIIC/pdcRkZGEhYWhkqlom3btnz22Wfk5OTcU/+xYtOmTeOzzz7j0qVL93MqBvbu3VtivrTbwwCurq5kZGSQlZWlX1ZaNa127dqMGzeOzZs307dvX5YuXVph8VZmkpBVMtq0PLTxGVwwuQZAaFgYGo2GaznXyPj+F5KqFz1NVKO9N9b2FsYMVQgh7igtLY2YmBiDKTExsUKPUdyPbN26dfqELCwsjOXLl+Pq6kq9emV37fDz82Pfvn2cPXvW4DZiRXN0dMTZ2ZkFCxZw6tQptm/fzvjx40u0CwsLIy4ujtjYWNq2batftmLFCho3bnxf72IMCwsjKCiImTNn3vM+bvXLL7+wZMkSTpw4wbRp09i/fz9vvPFGqW2bN2+OtbU1b7/9NqdOneLHH380GBMuJyeHN954g8jISM6dO8fu3bs5cOAAgYGBFRZvZSYJWSWTsesi6KCLV0ue6dtXf39+xZ751L/YjjwLRxR1AV361jZypEIIcWeRkZE0atTIYHr33Xcr9BgajYZGjRrh5OSkT77atm2LTqe7Y5+riRMnYmJiQr169XB1da3wZLGYWq1m5cqVREdHExwczLhx4/j0009LtAsODsbFxYWQkBB98hUaGopWq73nvnA3Gz9+PAsXLuT8+fP3vS+A9957j5UrV9KgQQOWLVvGihUrykyAnZycWL58ORs3bqR+/fr89NNPTJ8+Xb/exMSEa9euMXjwYGrXrk3//v3p3r077733XoXEWtmplMr4HHMl9DDeFq/NKiD5o/0oBTpcXg7Cso4TAFdzrvL9a+154nRdjtZ+lgaDW9Cy/Z07lQohHn25ubkkJCTg7+9frqf7hHhYVCoVv/322x1fRfUw3O735GF8f1cEqZBVIknr/uFf3TkK3UywqO2oX/7jji/pFF2Iy7V/0QUV0iLM+zZ7EUIIIcSjRhKySkKXV8ipI6f52+wEKzO26zuZXsm+gnnEGsy0EOtZjeeG96u0HWuFEKKirVixAltb21KnoKAgo8QUFBRUZkwrVqx44MdPTEws8/i2trYVctu1Ml73qk6Gvagkzv12kANmZwAIaRyCqWnRR/PTH5/hWTCQ89XOkftiL5xspSO/EOLx0bt3b5o3b17qOmON4L5x48YSwzUUc3d3f+DH9/Lyuu1YX15eXvd9jPJcd+nxVLEkIasEdPlaDv37L1mmeVipTOnYtSsAKdkp2Kw8RYr7SFLcmvBs95Z32JMQQlQtdnZ22NnZGTsMA76+vkY9vqmpaYWOG1aaynjdqzq5ZVkJ/PvzDuL+f0T+zt06Y25uDsDKX2diYtEHAFs/M9y8yve6DCGEEEI8WiQhMzJdgZa9x/9Fp1JwM7WlUbNmACRlJuHw30yybKuBLpdn3jDOyNxCCCGEePAkITOynd//ziWTG6gVFb1e6KvvsP9LxIfk2fcAwKOpMzZ25sYMUwghhBAPkPQhMyJFp+B9zZnahV6o7HR416wBQFLGJZwirUhz0YAunadevv/BAIUQQghReUlCZkwqqPZ0fbrsdsax//9G3v/l6+mYO/QBIPDJAEzNTIwUoBBCCCEeBknIjEilUmFZyxHLWv8bBPbijUSC/vsX9vmnOdj0Gdo/1d6IEQohhHhQwsPDuXHjBmvXrjV2KKISkD5klcyazyfjlaqg1V2mx9RnZBBYIcQjKzw8vMzX6vj5+TFnzhyDeZVKxcqVK0u0DQoKQqVSGbyIurj9rdNHH310x7jOnj1rsI1Go6FFixasW7fOoF1ERESpx1i0aFG5zl+IuyEVskrk3OVTBG0rGmE5tmM3Wni7GjkiIYR4eLy9vVm6dCnPP/+8ftnevXtJTk7GxsamRPsZM2YwbNgwg2V3M3bW1q1bCQoK4saNG8yfP59+/fpx6NAhgoOD9W3s7e05fvy4wXYajabcxxCivKRCVomsn/k1x4KncyTwGfpNmW7scIQQ4qEaMGAAUVFRnD9/Xr9syZIlDBgwQP/2kpvZ2dnh4eFhMJWWuJXF2dkZDw8P6taty4cffkhBQQE7duwwaKNSqUocw8rK6o77nj59Og0bNuS7777D29sba2trnn32WW7cuFHmNrdWDQEaNmzI9OnTDfbr4+ODhYUFXl5ejB49utznKyo3ScgqiRNn47BMbYqiMuFGjQCcHGUQWCFE2fLz88ucbn2tT0W0fRjc3d3p2rUry5YtAyA7O5tVq1YxZMiQB3rcgoICFi5cCFTs65hOnTrFzz//zLp169i0aRMxMTGMHDnynvf366+/8sUXX/Ddd99x8uRJ1q5dS/369SssXmFccsuyktj20XJ01p1RF2by3JRnjR2OEKKSmzlzZpnratWqxYABA/Tzn376aZnvXvT19eXll1/Wz8+ZM4fs7OwS7W6u0jxIQ4YMYcKECUyZMoVff/2VmjVr0rBhw1LbTp48malTpxosW79+PWFhYeU6VqtWrVCr1eTk5KDT6fDz86N///4GbdLS0rC1/d8fyLa2tiQnJ5dr/7m5uSxbtozq1asD8NVXX9GjRw9mz56Nh4dHufZxs8TERDw8POjUqRNmZmb4+PjQ7P8HExePPqmQVQIx/xxAnd8CAItqqTg4WRs5IiGEMI4ePXqQmZnJzp07WbJkyW2rY5MmTSImJsZgKuuF2KVZtWoVhw8f5vfffycgIIBFixbh5ORk0MbOzs5g/3v27Cn3/n18fPTJGEDLli3R6XQl+qSV17PPPktOTg41atRg2LBh/PbbbxQWFt7TvkTlIxWySmDvl3+iNW+FaV4KA6YMuPMGQojH3ttvv13mulufzp40aVK5244dO/a+4rpfpqamDBo0iGnTprFv3z5+++23Mtu6uLjc10u2vb29qVWrFrVq1cLW1pZ+/fpx9OhR3Nzc9G3UanWFvci7+FqX9fS8Wq1GURSDZTdXNr29vTl+/Dhbtmxh69atjBgxgk8//ZSoqKgKvdUqjEMqZEa2a/sOFHVTAOxCtFiYS44shLgzc3PzMqdbv5wrou3DNGTIEKKionjqqadwdHS88wYVIDQ0lODgYD788MMK22diYiKXLl3Sz//999+o1Wpq165dantXV1eSkpL08+np6SQkJBi0sbKyonfv3nz55ZdERkby999/ExsbW2ExC+ORb38jO7lwBSqbpzHLPcPzox9sx1UhhHjY0tLSiImJMVh2623BWwUGBnL16lWsrW/ffSMjI6NEfy5ra2vs7e3vKdYJEybw7LPP8p///Idq1ard0z5uZmlpyUsvvcRnn31Geno6o0ePpn///mX2H+vQoQMRERH06tULR0dH3nnnHUxM/vemloiICLRaLc2bN8fa2poffvgBKysrfH197ztWYXxSITOi/Px8zPKO03zfdDy7aVCr5eMQQlQtkZGRNGrUyGB6991377ids7PzHYeXePfdd/H09DSY/vOf/9xzrD179sTPz6/CqmQBAQH07duXJ598ki5duhAcHMz8+fPLbP/WW2/Rrl07evbsyZNPPkmfPn2oWbOmfr2DgwMLFy6kdevWNGjQgG3btrFu3TqcnZ0rJF5hXCrl1hvWolTp6eloNBrS0tLu+a+vsuzft5NmzdtV6D6FEFVDbm4uCQkJ+Pv7Y2lpaexwRDlNnz6dtWvXlqgOigfjdr8nD/L7uyJJSaYSkGRMCCGEeLxJQiaEEKJKGT58OLa2tqVOw4cPr5BjBAUFlXmMFStWVMgxxONFblmW06NS8hRCVC1yy/LupaSkkJ6eXuo6e3t7g2Et7tW5c+fKHGzX3d39rt6pKe5fVbhlKU9ZCiGEqFLc3NwqJOm6HXmyUVQ0uWUphBBCCGFkkpAJIcQjQHqXCFG2qvD7IQmZEEJUYsUDg+bn5xs5EiEqr+zsbIBH+hVS0odMCCEqMVNTU6ytrbly5QpmZmYygLQQN1EUhezsbFJSUnBwcDB4s8GjRhIyIYSoxFQqFZ6eniQkJHDu3DljhyNEpeTg4FDmK6keFZKQCSFEJWdubk6tWrXktqUQpTAzM3ukK2PFJCETQohHgFqtlnHIhKjCpDOCEEIIIYSRSUImhBBCCGFkkpAJIYQQQhiZ9CErp+JB58p6P5oQQgghKp/i7+3KPnisJGTllJGRAYC3t7eRIxFCCCHE3crIyECj0Rg7jDKplMqeMlYSOp2OS5cuYWdnh0qlqrD9pqen4+3tzfnz5yv1W+irArnWD4dc54dDrvPDIdf54XiQ11lRFDIyMvDy8qrUAytLhayc1Go11atXf2D7t7e3l1/2h0Su9cMh1/nhkOv8cMh1fjge1HWuzJWxYpU3VRRCCCGEeExIQiaEEEIIYWSSkBmZhYUF06ZNw8LCwtihVHlyrR8Ouc4Ph1znh0Ou88Mh11k69QshhBBCGJ1UyIQQQgghjEwSMiGEEEIII5OETAghhBDCyCQhE0IIIYQwMknIjGz+/Pn4+/tjaWlJkyZN2LVrl7FDqlJmzZrFE088gZ2dHW5ubvTp04fjx48bO6wqb9asWahUKsaOHWvsUKqcixcvMnDgQJydnbG2tqZhw4ZER0cbO6wqp7CwkKlTp+Lv74+VlRU1atRgxowZ6HQ6Y4f2SNu5cye9evXCy8sLlUrF2rVrDdYrisL06dPx8vLCysqKsLAw4uLijBPsQyYJmRGtWrWKsWPHMmXKFA4fPkzbtm3p3r07iYmJxg6tyoiKimLkyJHs3buXLVu2UFhYSJcuXcjKyjJ2aFXWgQMHWLBgAQ0aNDB2KFVOamoqrVu3xszMjD/++IOjR48ye/ZsHBwcjB1alfPxxx/z7bffMm/ePOLj4/nkk0/49NNP+eqrr4wd2iMtKyuLkJAQ5s2bV+r6Tz75hM8//5x58+Zx4MABPDw86Ny5s/590lWaIoymWbNmyvDhww2W1a1bV3nzzTeNFFHVl5KSogBKVFSUsUOpkjIyMpRatWopW7ZsUUJDQ5UxY8YYO6QqZfLkyUqbNm2MHcZjoUePHsqQIUMMlvXt21cZOHCgkSKqegDlt99+08/rdDrFw8ND+eijj/TLcnNzFY1Go3z77bdGiPDhkgqZkeTn5xMdHU2XLl0Mlnfp0oU9e/YYKaqqLy0tDQAnJycjR1I1jRw5kh49etCpUydjh1Il/f777zRt2pRnn30WNzc3GjVqxMKFC40dVpXUpk0btm3bxokTJwD4559/+Ouvv3jyySeNHFnVlZCQQHJyssH3ooWFBaGhoY/F96K8XNxIrl69ilarxd3d3WC5u7s7ycnJRoqqalMUhfHjx9OmTRuCg4ONHU6Vs3LlSg4dOsSBAweMHUqVdebMGb755hvGjx/P22+/zf79+xk9ejQWFhYMHjzY2OFVKZMnTyYtLY26detiYmKCVqvlww8/5IUXXjB2aFVW8Xdfad+L586dM0ZID5UkZEamUqkM5hVFKbFMVIw33niDI0eO8Ndffxk7lCrn/PnzjBkzhs2bN2NpaWnscKosnU5H06ZNmTlzJgCNGjUiLi6Ob775RhKyCrZq1SqWL1/Ojz/+SFBQEDExMYwdOxYvLy9eeuklY4dXpT2u34uSkBmJi4sLJiYmJaphKSkpJf46EPdv1KhR/P777+zcuZPq1asbO5wqJzo6mpSUFJo0aaJfptVq2blzJ/PmzSMvLw8TExMjRlg1eHp6Uq9ePYNlgYGBrF692kgRVV2TJk3izTff5Pnnnwegfv36nDt3jlmzZklC9oB4eHgARZUyT09P/fLH5XtR+pAZibm5OU2aNGHLli0Gy7ds2UKrVq2MFFXVoygKb7zxBmvWrGH79u34+/sbO6QqqWPHjsTGxhITE6OfmjZtyoABA4iJiZFkrIK0bt26xLAtJ06cwNfX10gRVV3Z2dmo1YZfkSYmJjLsxQPk7++Ph4eHwfdifn4+UVFRj8X3olTIjGj8+PEMGjSIpk2b0rJlSxYsWEBiYiLDhw83dmhVxsiRI/nxxx/573//i52dnb4iqdFosLKyMnJ0VYednV2Jfnk2NjY4OztLf70KNG7cOFq1asXMmTPp378/+/fvZ8GCBSxYsMDYoVU5vXr14sMPP8THx4egoCAOHz7M559/zpAhQ4wd2iMtMzOTU6dO6ecTEhKIiYnByckJHx8fxo4dy8yZM6lVqxa1atVi5syZWFtb8+KLLxox6ofEuA95iq+//lrx9fVVzM3NlcaNG8twDBUMKHVaunSpsUOr8mTYiwdj3bp1SnBwsGJhYaHUrVtXWbBggbFDqpLS09OVMWPGKD4+PoqlpaVSo0YNZcqUKUpeXp6xQ3uk7dixo9T/k1966SVFUYqGvpg2bZri4eGhWFhYKO3atVNiY2ONG/RDolIURTFSLiiEEEIIIZA+ZEIIIYQQRicJmRBCCCGEkUlCJoQQQghhZJKQCSGEEEIYmSRkQgghhBBGJgmZEEIIIYSRSUImhBBCCGFkkpAJIQA4e/YsKpWKmJgYY4eid+zYMVq0aIGlpSUNGzYstY2iKLz66qs4OTlVuviNKTIyEpVKxY0bN8psExERgYODw0OL6VZ+fn7MmTPHaMcXojKRhEyISiI8PByVSsVHH31ksHzt2rWoVCojRWVc06ZNw8bGhuPHj7Nt27ZS22zatImIiAjWr19PUlJShb2qKTw8nD59+lTIvqoSSaKEeDAkIROiErG0tOTjjz8mNTXV2KFUmPz8/Hve9vTp07Rp0wZfX1+cnZ3LbOPp6UmrVq3w8PDA1LRyvaJXq9XKC6mFEHckCZkQlUinTp3w8PBg1qxZZbaZPn16idt3c+bMwc/PTz9fXN2ZOXMm7u7uODg48N5771FYWMikSZNwcnKievXqLFmypMT+jx07RqtWrbC0tCQoKIjIyEiD9UePHuXJJ5/E1tYWd3d3Bg0axNWrV/Xrw8LCeOONNxg/fjwuLi507ty51PPQ6XTMmDGD6tWrY2FhQcOGDdm0aZN+vUqlIjo6mhkzZqBSqZg+fXqJfYSHhzNq1CgSExNRqVT6a6AoCp988gk1atTAysqKkJAQfv31V/12Wq2WoUOH4u/vj5WVFXXq1GHu3LkG13jZsmX897//RaVSoVKpiIyMLPU2YExMDCqVirNnzwL/uw24fv166tWrh4WFBefOnSM/P5///Oc/VKtWDRsbG5o3b25wbc+dO0evXr1wdHTExsaGoKAgNm7cWOq1A1i+fDlNmzbFzs4ODw8PXnzxRVJSUkq02717NyEhIVhaWtK8eXNiY2PL3Ofp06d56qmncHd3x9bWlieeeIKtW7fq14eFhXHu3DnGjRunvy7F9uzZQ7t27bCyssLb25vRo0eTlZWlX5+SkkKvXr2wsrLC39+fFStWlBmHEI8jSciEqERMTEyYOXMmX331FRcuXLivfW3fvp1Lly6xc+dOPv/8c6ZPn07Pnj1xdHRk3759DB8+nOHDh3P+/HmD7SZNmsSECRM4fPgwrVq1onfv3ly7dg2ApKQkQkNDadiwIQcPHmTTpk1cvnyZ/v37G+xj2bJlmJqasnv3br777rtS45s7dy6zZ8/ms88+48iRI3Tt2pXevXtz8uRJ/bGCgoKYMGECSUlJTJw4sdR9FCd1SUlJHDhwAICpU6eydOlSvvnmG+Li4hg3bhwDBw4kKioKKEoGq1evzs8//8zRo0d59913efvtt/n5558BmDhxIv3796dbt24kJSWRlJREq1atyn3ts7OzmTVrFosWLSIuLg43Nzdefvlldu/ezcqVKzly5AjPPvss3bp105/vyJEjycvLY+fOncTGxvLxxx9ja2tb5jHy8/N5//33+eeff1i7di0JCQmEh4eXaDdp0iQ+++wzDhw4gJubG71796agoKDUfWZmZvLkk0+ydetWDh8+TNeuXenVqxeJiYkArFmzhurVqzNjxgz9dQGIjY2la9eu9O3blyNHjrBq1Sr++usv3njjDf2+w8PDOXv2LNu3b+fXX39l/vz5pSaQQjy2jPtucyFEsZdeekl56qmnFEVRlBYtWihDhgxRFEVRfvvtN+XmX9Vp06YpISEhBtt+8cUXiq+vr8G+fH19Fa1Wq19Wp04dpW3btvr5wsJCxcbGRvnpp58URVGUhIQEBVA++ugjfZuCggKlevXqyscff6woiqK88847SpcuXQyOff78eQVQjh8/riiKooSGhioNGza84/l6eXkpH374ocGyJ554QhkxYoR+PiQkRJk2bdpt93PruWdmZiqWlpbKnj17DNoNHTpUeeGFF8rcz4gRI5R+/frp52/+PIrt2LFDAZTU1FT9ssOHDyuAkpCQoCiKoixdulQBlJiYGH2bU6dOKSqVSrl48aLB/jp27Ki89dZbiqIoSv369ZXp06ff9lxvZ//+/QqgZGRkGMS6cuVKfZtr164pVlZWyqpVq/SxajSa2+63Xr16yldffaWf9/X1Vb744guDNoMGDVJeffVVg2W7du1S1Gq1kpOToxw/flwBlL179+rXx8fHK0CJfQnxuKpcnS2EEAB8/PHHdOjQgQkTJtzzPoKCglCr/1cEd3d3N+jwbmJigrOzc4kqRcuWLfX/NjU1pWnTpsTHxwMQHR3Njh07Sq3cnD59mtq1awPQtGnT28aWnp7OpUuXaN26tcHy1q1b888//5TzDEt39OhRcnNzS9wqzc/Pp1GjRvr5b7/9lkWLFnHu3DlycnLIz88v80nOu2Vubk6DBg3084cOHUJRFP31KZaXl6fvGzd69Ghef/11Nm/eTKdOnejXr5/BPm51+PBhpk+fTkxMDNevX9f3U0tMTKRevXr6djd/nk5OTtSpU0f/ed4qKyuL9957j/Xr13Pp0iUKCwvJycnRV8jKEh0dzalTpwxuQyqKgk6nIyEhgRMnTuh/lorVrVvXqE94ClHZSEImRCXUrl07unbtyttvv13iNpRarUZRFINlpd2CMjMzM5hXqVSlLitPh/PivkI6nY5evXrx8ccfl2jj6emp/7eNjc0d93nzfospinLfT5QWn8+GDRuoVq2awToLCwsAfv75Z8aNG8fs2bNp2bIldnZ2fPrpp+zbt++2+y5OcG++/qVdeysrK4Pz0Ol0mJiYEB0djYmJiUHb4uT2lVdeoWvXrmzYsIHNmzcza9YsZs+ezahRo0rsPysriy5dutClSxeWL1+Oq6sriYmJdO3atVwPUZR1jSdNmsSff/7JZ599RkBAAFZWVjzzzDN33KdOp+O1115j9OjRJdb5+Phw/Pjx2x5XCCEJmRCV1kcffUTDhg1LVFVcXV1JTk42SF4qcuytvXv30q5dOwAKCwuJjo7W9wVq3Lgxq1evxs/P776eZrS3t8fLy4u//vpLfywo6hjerFmz+4q/uCN9YmIioaGhpbbZtWsXrVq1YsSIEfplp0+fNmhjbm6OVqs1WObq6goU9W9zdHQEynftGzVqhFarJSUlhbZt25bZztvbW9+376233mLhwoWlJmTHjh3j6tWrfPTRR3h7ewNw8ODBUve5d+9efHx8AEhNTeXEiRPUrVu31La7du0iPDycp59+GijqU1b8sEKx0q5L48aNiYuLIyAgoNT9BgYGUlhYyMGDB/Wf7/Hjx287RpoQjxvp1C9EJVW/fn0GDBjAV199ZbA8LCyMK1eu8Mknn3D69Gm+/vpr/vjjjwo77tdff81vv/3GsWPHGDlyJKmpqQwZMgQo6nh+/fp1XnjhBfbv38+ZM2fYvHkzQ4YMKfElfSeTJk3i448/ZtWqVRw/fpw333yTmJgYxowZc1/x29nZMXHiRMaNG8eyZcs4ffo0hw8f5uuvv2bZsmUABAQEcPDgQf78809OnDjBO++8o38goJifnx9Hjhzh+PHjXL16lYKCAgICAvD29mb69OmcOHGCDRs2MHv27DvGVLt2bQYMGMDgwYNZs2YNCQkJHDhwgI8//lj/JOXYsWP5888/SUhI4NChQ2zfvp3AwMBS9+fj44O5uTlfffUVZ86c4ffff+f9998vte2MGTPYtm0b//77L+Hh4bi4uJQ5vlpAQABr1qwhJiaGf/75hxdffLFEBdXPz4+dO3dy8eJF/dO1kydP5u+//2bkyJHExMRw8uRJfv/9d30yWadOHbp168awYcPYt28f0dHRvPLKK1hZWd3x2gnxuJCETIhK7P333y9xezIwMJD58+fz9ddfExISwv79+0t9AvFeffTRR3z88ceEhISwa9cu/vvf/+Li4gKAl5cXu3fvRqvV0rVrV4KDgxkzZgwajcagv1p5jB49mgkTJjBhwgTq16/Ppk2b+P3336lVq9Z9n8P777/Pu+++y6xZswgMDKRr166sW7cOf39/AIYPH07fvn157rnnaN68OdeuXTOolgEMGzaMOnXq0LRpU1xdXdm9ezdmZmb89NNPHDt2jJCQED7++GM++OCDcsW0dOlSBg8ezIQJE6hTpw69e/dm3759+gqXVqtl5MiRBAYG0q1bN+rUqcP8+fNL3ZerqysRERH88ssv1KtXj48++ojPPvus1LYfffQRY8aMoUmTJiQlJfH7779jbm5eatsvvvgCR0dHWrVqRa9evejatSuNGzc2aDNjxgzOnj1LzZo19RXDBg0aEBUVxcmTJ2nbti2NGjXinXfeMbiNvXTpUry9vQkNDaVv3768+uqruLm5levaCfE4UCm3/m8vhBBCCCEeKqmQCSGEEEIYmSRkQgghhBBGJgmZEEIIIYSRSUImhBBCCGFkkpAJIYQQQhiZJGRCCCGEEEYmCZkQQgghhJFJQiaEEEIIYWSSkAkhhBBCGJkkZEIIIYQQRiYJmRBCCCGEkUlCJoQQQghhZP8HBkEIBbXSpFUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHFCAYAAAC+Zf4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADsXUlEQVR4nOzdd1gUV/vw8e/swtIWlt4EAbGAYG9RQ7P3EhON0SixRKOxazTR2KLmeaJJ1OQxGnuMiZpoTOwdxK7YldgRFbAhRZC68/7hy/5cAQVEF/R8rmsu3Zkzc+7ZenPOmTOSLMsygiAIgiAIgkEoDB2AIAiCIAjCm0wkY4IgCIIgCAYkkjFBEARBEAQDEsmYIAiCIAiCAYlkTBAEQRAEwYBEMiYIgiAIgmBAIhkTBEEQBEEwIJGMCYIgCIIgGJBIxgRBEARBEAyoTCZjc+fORZIk/P39890eHR2NJEnMmjXrucdatmwZkiQRHR1d5DgOHDjA5MmTSUxMzLMtODiY4ODgIh/zdeDp6UloaGix9pUkicmTJ5doPM9y4cIFzM3N+eCDD/Jse/DgAeXKlaNBgwbk5OTobdu3bx/du3enfPnymJiYYGFhgZ+fH6NGjeLff//VKxsaGookSbpFqVTi5uZG165dOXv2bJFj9vT01DuehYUFtWvX5scff0TcUKPkPflcP2sJCwt7oXomT56MJEklE3QhhYWFlUjshhIXF8eECRNo2LAh9vb2WFlZUadOHX7++ec8n1mAI0eO0LJlSywtLVGr1YSEhLB///58j52VlcV3331HtWrVMDMzw9ramkaNGnHgwIEixZj7e1SYpTi/Q0+LjY1l8uTJnDx58oWPlcsQ782SNmHCBNq1a0e5cuWQJKnQv1E9e/ZEkiTatWuX7/Z79+4xbNgwPD09MTExwcnJidatW5OQkFCk+IyKVLqUWLJkCQDnzp3j8OHDNGjQwCBxHDhwgClTphAaGoq1tbXetnnz5hkkJqFoqlSpwowZMxgxYgRdunShS5cuum2DBg0iISGBXbt2oVQqdesnTJjA9OnTadiwIRMmTKBSpUpkZ2dz+vRpli9fznfffUd2drbePmZmZuzevRuA7OxsLl++zLRp02jUqBFRUVGUK1euSHE3btxY98dGbGws3333HUOGDCE5OZkvvvjiRZ4S4SkHDx7Ue/zVV1+xZ88e3euZq2rVqi9UT79+/WjVqtULHaOoateuzcGDB184dkOJjIzkl19+oVevXnz55ZcYGxuzZcsWPvnkEw4dOqT7rQA4evQogYGB1K9fnxUrViDLMt988w1NmzZlz549NGzYUFc2JyeHzp07s2/fPj777DMaNWpEamoqkZGRpKamFilGFxeXPO+hQYMGkZSUxMqVK/OUfVGxsbFMmTIFT09Patas+cLHA8O8N0va999/T/Xq1enQoYPe++JZNm3axPr167Gyssp3e2xsLAEBARgZGfHll19SqVIl7t27x549e8jMzCxagHIZc/ToURmQ27ZtKwNy//7985S5du2aDMgzZ8587vGWLl0qA/K1a9eKHMvMmTOLve/rzMPDQ+7du3ex9gXkSZMmlWg8z6PVauXAwEDZwcFBvn37tizLsrxmzRoZkL/99lu9sr/99psMyAMHDpS1Wm2+x/rxxx/l7Oxs3brevXvLFhYWecru2rVLBuQFCxYUKV4PDw+5bdu2euuSkpJkjUYjly9fvkjHKglpaWn5PhellVarldPS0oq9f0Gv59NSU1OLXYdQOAkJCXJmZmae9YMHD5YBOSYmRreuZcuWspOTk97rkpycLNvb28uNGjXS2//777+XFQqFfPDgwZcSd1BQkOzn5/dSjp37G7l06dKXcvyyKicnR/d/CwuL5/5GJSYmyuXKlZO/++67fL9zZVmWO3bsKJcrV05OSEh44fjKXDfl4sWLAfjPf/5Do0aNWLVqFWlpafmW1Wq1TJ8+nfLly2NqakrdunXZtWvXc+vYsWMHHTt2xM3NDVNTUypWrMiAAQO4d++erszkyZMZM2YMAF5eXnm6KvLrpkxISGDQoEGUK1cOlUpFhQoVGD9+PBkZGXrlJEni008/ZcWKFfj6+mJubk6NGjXYuHHjc2PP7Xb47bffGDt2LC4uLqjVatq3b8/t27dJSUnh448/xt7eHnt7ez766CMePnyod4z09HQ+//xzvLy8UKlUlCtXjsGDB+fpjs3KyuKzzz7D2dkZc3Nz3n77bY4cOZJvXPHx8QwYMAA3NzdUKhVeXl5MmTKF7Ozs557TyyZJEkuXLiUtLY2BAwcSHx/PJ598QkBAAMOHD9crO23aNOzt7fn+++/zbbaXJInBgwfrtYoVRKPRAGBsbPzC52BlZUXlypW5ffu23vrMzEymTZuGj48PJiYmODg48NFHH3H37l29chkZGYwaNUr3WgYGBhIZGZmnyzm3W3/79u306dMHBwcHzM3Nde/h1atX07BhQywsLFCr1bRs2ZITJ07o1XX16lXef/99XF1ddc36TZs21etW2b17N8HBwdjZ2WFmZkb58uXp0qWL3me9qJ+n+fPn4+vri4mJCcuXL3+RpzuP4OBg/P392bt3L40aNcLc3Jw+ffronpMWLVrg4uKCmZkZvr6+jBs3Lk8LS35dQZ6enrRr146tW7dSu3ZtzMzM8PHxKfRf9j/99BM1atRArVZjaWmJj4+PXsvp092Uz+tSe9LOnTtp2rQpVlZWmJub07hx40J9v5YkGxubfD8/9evXB+DmzZu6dfv37yc4OBhzc3PdOktLSwIDAzlw4ABxcXG69XPmzCEwMJC33nrrJUavLzk5mdGjR+t97w4fPjzP++SPP/6gQYMGaDQazM3NqVChgu69FhYWRr169QD46KOPdK/bs4Z+pKWl6eo1NTXF1taWunXr8vvvv+vKPP3ezP0eyG958ndPlmXmzZtHzZo1MTMzw8bGhnfffZerV6+WwDNWNApF0dKdUaNG4eLiwtChQ/PdHh0dzT///EP//v2xsbF54fjKVDflo0eP+P3336lXrx7+/v706dOHfv368ccff9C7d+885X/88Uc8PDyYPXs2Wq2Wb775htatWxMeHq7XJP20K1eu0LBhQ/r164dGoyE6OprvvvuOt99+mzNnzmBsbEy/fv1ISEjghx9+YN26dbrm5YKa+9PT0wkJCeHKlStMmTKF6tWrExERwddff83JkyfZtGmTXvlNmzZx9OhRpk6dilqt5ptvvqFz585cuHCBChUqPPe5+uKLLwgJCWHZsmVER0czevRounfvjpGRETVq1OD333/nxIkTfPHFF1haWjJ37lzg8YenU6dO7Nq1i88//5yAgABOnz7NpEmTOHjwIAcPHsTExASA/v3788svvzB69GiaN2/O2bNneeedd0hJSdGLJT4+nvr166NQKJg4cSLe3t4cPHiQadOmER0dzdKlS597Pk/Lyckp1PgohUJRqA9hhQoVmDlzJoMGDeL06dOkp6ezdOlSvX1jY2M5f/483bt3x9TUtMgx5yaeud2UY8aMwcbGhrZt2xb5WPkd+8aNG1SuXFm3TqvV0rFjRyIiInRdLdevX2fSpEkEBwdz7NgxzMzMgMdf3KtXr+azzz6jSZMmnD9/ns6dO5OcnJxvfX369KFt27asWLGC1NRUjI2NmTFjBhMmTOCjjz5iwoQJZGZmMnPmTAICAjhy5Ijus9GmTRtycnL45ptvKF++PPfu3ePAgQO6ZD86Opq2bdsSEBDAkiVLsLa25tatW2zdupXMzEzMzc2L/Hlav349ERERTJw4EWdnZxwdHV/4OX9aXFwcPXv25LPPPmPGjBm6986lS5do06YNw4cPx8LCgn///Zf//ve/HDlyJE9XZ35OnTrFqFGjGDduHE5OTixatIi+fftSsWJFAgMDC9xv1apVDBo0iCFDhjBr1iwUCgWXL1/m/PnzBe6TX5fa3bt36dmzp15X+q+//kqvXr3o2LEjy5cvx9jYmAULFtCyZUu2bdtG06ZNn3lOhf0jTKlUFmus0u7duzEyMtL7PGRmZuq+u56Uu+7MmTO4uLhw48YNoqOjad++PV988QWLFy/m/v37VKlShc8++yzf35oXlZaWRlBQEDdv3uSLL76gevXqnDt3jokTJ3LmzBl27tyJJEkcPHiQbt260a1bNyZPnoypqSnXr1/XvY9q167N0qVLdZ/B3O8WNze3AuseOXIkK1asYNq0adSqVYvU1FTOnj3L/fv3C9ynbdu2ed4nBw8eZOTIkfj5+enWDRgwgGXLljF06FD++9//kpCQwNSpU2nUqBGnTp3CycmpwDpkWc533F9+jIxKNpXZuXMnv/zyC0ePHi3wD+uIiAhkWcbV1ZXu3buzYcMGsrOzeeutt/j666+fmWPk64Xb1l6hX375RQbk+fPny7IsyykpKbJarZYDAgL0yuV2U7q6usqPHj3SrU9OTpZtbW3lZs2a6dY9r5tSq9XKWVlZ8vXr12VA/vvvv3XbntVNGRQUJAcFBekez58/XwbkNWvW6JX773//KwPy9u3bdesA2cnJSU5OTtati4+PlxUKhfz1118X/ATJsrxnzx4ZkNu3b6+3fvjw4TIgDx06VG99p06dZFtbW93jrVu3yoD8zTff6JVbvXq1DMg///yzLMuyHBUVJQPyiBEj9MqtXLlSBvSagAcMGCCr1Wr5+vXremVnzZolA/K5c+f0zr0w3ZQeHh4y8NylKF2eWq1W9vHxkQF51qxZebYfOnRIBuRx48bl2ZadnS1nZWXplie77Xr37p1vbC4uLvK+ffsKHd+T596mTRtdXdevX5f79+8vGxsbyxs3btSV+/3332VAXrt2rd7+ud0Y8+bNk2VZls+dOycD8tixY/XK5e7/5GuZ+3np1auXXtmYmBjZyMhIHjJkiN76lJQU2dnZWe7atassy7J87949GZBnz55d4Pn9+eefMiCfPHmywDJF/TxpNJoS6UqQ5fy7KYOCgmRA3rVr1zP3zf0+CQ8PlwH51KlTum2TJk2Sn/5K9vDwkE1NTfU+O48ePZJtbW3lAQMGPLOuTz/9VLa2tn5mmdzviz179uS7PTU1Va5fv77s4uIiR0dH69bZ2trm+Y7JycmRa9SoIdevX/+ZdcqyXKjPLsXsatu2bZusUCjyfDfVrFlTrly5sl53VVZWllyhQgUZkH/77TdZlmX54MGDMiBbWVnJVatWldesWSNv27ZNfvfdd/W+A1/E092UX3/9taxQKOSjR4/qlcv9LGzevFmW5f/7zkxMTCzw2EXtpvT395c7der0zDL5vTef9O+//8p2dnZySEiInJGRIcvy/z2PTw/1uHHjhmxmZiZ/9tlnz6wz971ZmKWoQ4We1U2ZkpIie3p6yp9//rluXX7dlF9//bXufdKxY0d569at8tq1a+Xq1avLpqamep/twihT3ZSLFy/GzMyM999/HwC1Ws17771HREQEly5dylP+nXfe0WvBsLS0pH379uzdu/eZGfedO3cYOHAg7u7uGBkZYWxsjIeHBwBRUVHFin337t1YWFjw7rvv6q3P7QJ6unk/JCQES0tL3WMnJyccHR25fv16oep7+soPX19fgDytML6+viQkJOi6KnP/wnr6SpP33nsPCwsLXZx79uwBoEePHnrlunbtmuevlI0bNxISEoKrqyvZ2dm6pXXr1gCEh4cX6pyetGHDBo4ePfrc5eOPPy70Mbdu3cq///6LQqFg586dRYrHzs4OY2Nj3bJ27Vq97WZmZrqYDh8+zLp166hcuTJt2rTJ8xdmYWzevFlXl4eHBwsXLuSHH37Qe303btyItbU17du313vea9asibOzs65rKvf579q1q14d7777boF/cT55oQPAtm3byM7OplevXnp1mZqaEhQUpKvL1tYWb29vZs6cyXfffceJEyfQarV6x6pZsyYqlYqPP/6Y5cuX59ulUdTPU5MmTUqkK+FZbGxsaNKkSZ71V69e5YMPPsDZ2RmlUomxsTFBQUFA4b5PatasSfny5XWPTU1NqVy58nO/C+rXr09iYiLdu3fn77//1htmURg5OTl069aNqKgoNm/erPsOPHDgAAkJCfTu3VvvtdZqtbRq1YqjR48+d5B7YT67R48epX379kWK+fjx43Tt2lXXOvGkIUOGcPHiRT799FNu3brFjRs3GDhwoO55zG3JzH0/pqens3nzZt577z1atGjBmjVrqF27NlOnTi1STIWxceNG/P39qVmzpt5z2rJlS71u5NwuyK5du7JmzRpu3br1wnXXr1+fLVu2MG7cOMLCwnj06FGR9o+Pj6dVq1a4uLjw119/oVKpdOckSRI9e/bUOydnZ2dq1Kjx3Ct469SpU+j3iaura3FPP49x48ZhbGzMxIkTn1ku933i5ubG2rVradmyJe+88w5bt25FoVDwzTffFKneMtNNefnyZfbu3UuXLl2QZVnXpfHuu++ydOlSlixZkufD5+zsnOc4zs7OZGZm8vDhQ92YnSdptVpatGhBbGwsX375JdWqVcPCwgKtVstbb71V5Ddqrvv37+Ps7Jynyd3R0REjI6M8TcJ2dnZ5jmFiYlLo+m1tbfUe535AClqfnp6OWq3m/v37GBkZ4eDgoFdOkiScnZ11ceb++/RzbGRklCf227dvs2HDhgLHRhX1RwIedwfLheymLIzExET69etHvXr1+Pjjj+nfvz+LFy+mb9++ujLu7u4A+f4IhoWFkZ2dTWRkJAMHDsw3jrp16+qta9myJe7u7owcObLICdnbb7/N999/T05ODpcuXeLLL7/k008/xc/Pj7fffht4/LwnJibqXuOn5T7vua/l010G+b2WuZ6+6it3rFruj8XTcl8HSZLYtWsXU6dO5ZtvvmHUqFHY2trSo0cPpk+fjqWlJd7e3uzcuZNvvvmGwYMHk5qaSoUKFRg6dCjDhg3TxVyUz1NJXKX2PPnV8fDhQwICAjA1NWXatGlUrlwZc3Nzbty4wTvvvFOoz3Nxvws+/PBDsrOzWbhwIV26dEGr1VKvXj2mTZtG8+bNn1vvwIED2bp1K5s2bdK7Ki/3tX46EX5SQkICFhYWBW4v7FV+hRl7mevEiRM0b96cSpUqsXnz5jxdkn369OHu3btMmzaNn376CYCGDRsyevRo/vvf/+q6YXOfbx8fH10CCo/fuy1btuTrr7/mzp07JdrVffv2bS5fvvzc78jAwEDWr1/P3Llz6dWrFxkZGfj5+TF+/Hi6d+9erLrnzp2Lm5sbq1ev5r///S+mpqa0bNmSmTNnUqlSpWfum5KSQps2bcjKymLLli16v6m3b99GluUCuyKfN9xGrVYX+n1SUt2UR44cYd68eaxbt4709HTS09OBx3lBdnY2iYmJmJmZYWJionufNGvWTO996uLiQo0aNTh+/HiR6i4zydiSJUuQZZk///yTP//8M8/25cuXM23aNL0nJT4+Pk+5+Ph4VCoVarU633rOnj3LqVOnWLZsmd7YgMuXL79Q/HZ2dhw+fBhZlvV+QO7cuUN2djb29vYvdPySYmdnR3Z2Nnfv3tVLyGRZJj4+Xvdjm/tGjI+P1xtLkp2dneeH0N7enurVqzN9+vR86yzOXzXe3t6FaiWcNGlSoeYtGzJkCAkJCezcuRNfX1/++usvRo4cScuWLXXjLVxdXfHz82PHjh2kp6frtbrmfmk8fTHEs5ibm+Pt7c2pU6cKvU8ujUajS+4aNGhAgwYNqFGjBoMGDeLkyZMoFArs7e2xs7Nj69at+R4jt+U197W8ffv2c1/LXE8nQbnv3z///FPvByw/Hh4eugtxLl68yJo1a5g8eTKZmZnMnz8fgICAAAICAsjJyeHYsWP88MMPDB8+HCcnJ95///0if55exRxJ+dWxe/duYmNjCQsL07WGAfnOTfgyfPTRR3z00Uekpqayd+9eJk2aRLt27bh48eIzX6fJkyezaNEili5dSosWLfS25T63P/zwQ4ED3J81FggKf9HK0qVLCzUf1IkTJ2jWrBkeHh5s37493z+0AcaOHcvw4cO5dOkSlpaWeHh4MGDAACwsLKhTpw7w+LvlyUH+T8r9A7Cog8Gfx97eHjMzswIvzHjy/dyxY0c6duxIRkYGhw4d4uuvv+aDDz7A09Oz6OOUAAsLC6ZMmcKUKVO4ffu2rpWsffv2eeZMfFJWVhZdunThypUrRERE5BmXZm9vjyRJREREPHOsXkHCw8MJCQkp1Dlcu3YNT0/PQpV9lvPnzyPLMp07d86z7caNG9jY2PD9998zfPhwqlevXuBxZFku8nukTCRjOTk5LF++HG9vbxYtWpRn+8aNG/n222/ZsmWLXvfcunXrmDlzpu5HMyUlhQ0bNhAQEFDgX1y5X6hPv1EWLFiQp2xumcL8ddu0aVPWrFnD+vXr9V7oX375Rbe9NGjatCnffPMNv/76KyNGjNCtX7t2Lampqbo4c6+YWblype5LDGDNmjV5Bue2a9eOzZs34+3tXWJdRRs2bMhz1Vx+CpPo/f333/z666/MnDlT1537888/4+/vT//+/dmyZYuu7Pjx4/nggw8YOXIk//vf/17oR/7hw4dcvny5RP7CrlSpEp999hlTpkxh9erVdO/enXbt2rFq1SpycnKeORdf7iDw1atXU7t2bd36P//8s9ADrVu2bImRkRFXrlzJ04X5LJUrV2bChAmsXbs2378klUolDRo0wMfHh5UrV3L8+HHef//9MvN5Ksr3yctkYWFB69atyczMpFOnTpw7d67AZGzx4sVMmTKFqVOn5psINW7cGGtra86fP8+nn35arHiOHj1aqHJeXl7PLXPy5EmaNWuGm5sbO3bseO53jImJiW7C8JiYGFavXk3//v11F7MYGRnRsWNH/vzzT6Kjo3U/8rIss3XrVry9vUv8j+d27doxY8YM7OzsCnXOuecRFBSEtbU127Zt48SJEzRs2LBIv0tPc3JyIjQ0lFOnTjF79mzS0tIKTEz79u1LWFgYW7ZsyTcxadeuHf/5z3+4detWniEQhZHbTVkYJdVN2apVK90QnCe9//77eHl58fXXX1OxYkXg8R/Bbm5ubN++nZycHF1OERsby6lTp/KdSPxZykQytmXLFmJjY/nvf/+b76z2/v7+/PjjjyxevFgvGVMqlTRv3pyRI0ei1Wr573//S3JyMlOmTCmwLh8fH7y9vRk3bhyyLGNra8uGDRvYsWNHnrLVqlUDHl8G3bt3b4yNjalSpYreWK9cvXr14n//+x+9e/cmOjqaatWqsW/fPmbMmEGbNm1o1qxZMZ6Zkte8eXNatmzJ2LFjSU5OpnHjxrqrKWvVqsWHH34IPB5r1rNnT2bPno2xsTHNmjXj7NmzzJo1K88EeVOnTmXHjh00atSIoUOHUqVKFdLT04mOjmbz5s3Mnz//mVf75Cf3uX9R9+7dY8CAATRq1IiRI0fq1pcrV47vv/+ejz76SK+7snv37pw7d47p06dz6tQpQkNDqVSpElqtlhs3brBixQqAPO8BrVbLoUOHdP+/desWc+fO5cGDByV2x4HRo0czf/58pkyZQteuXXn//fdZuXIlbdq0YdiwYdSvXx9jY2Nu3rzJnj176NixI507d8bPz4/u3bvz7bffolQqadKkCefOnePbb79Fo9EU6i88T09Ppk6dyvjx47l69SqtWrXCxsaG27dvc+TIEd1f36dPn+bTTz/lvffeo1KlSqhUKnbv3s3p06cZN24cAPPnz2f37t20bduW8uXLk56ermsxyP2clNTnKTQ0lOXLl5fYX9ZPa9SoETY2NgwcOJBJkyZhbGzMypUri9UaWlS5CUbjxo1xcXEhPj6er7/+Go1GU2B38sGDBxk4cCCNGzemefPmuvdsrrfeegu1Ws0PP/xA7969SUhI4N1338XR0ZG7d+9y6tQp7t69q+sGLMjTXfbFdeHCBd1rPX36dC5duqQ3ftjb21vXwn/27FnWrl1L3bp1MTEx4dSpU/znP/+hUqVKfPXVV3rH/eqrr9iyZQutWrVi8uTJWFlZsWjRIk6dOsWaNWv0ygYHBxMeHv5Cd78YPnw4a9euJTAwkBEjRlC9enW0Wi0xMTFs376dUaNG0aBBAyZOnMjNmzdp2rQpbm5uJCYmMmfOHL1xiN7e3piZmbFy5Up8fX1Rq9W4uroWmLA0aNCAdu3aUb16dWxsbIiKimLFihU0bNiwwERs5syZrFixgiFDhmBhYaH3PrGysqJq1ao0btyYjz/+mI8++ohjx44RGBiIhYUFcXFx7Nu3j2rVqvHJJ58U+JxYWlqW2PsEHre05U7pk5OTw/Xr13W9bEFBQTg4OODs7Jzv8CZTU1Ps7Oz08g+FQsH3339P165d6dixI5988gmpqal89dVXqFQqPv/886IFWKTh/gbSqVMnWaVSyXfu3CmwzPvvvy8bGRnJ8fHxuqsp//vf/8pTpkyR3dzcZJVKJdeqVUvetm2b3n75XU15/vx5uXnz5rKlpaVsY2Mjv/fee3JMTEy+V+d9/vnnsqurq6xQKPSuSnr6akpZluX79+/LAwcOlF1cXGQjIyPZw8ND/vzzz+X09HS9coA8ePDgPOdYmMlUc69A+eOPP/I9z6ev1sm9Subu3bu6dY8ePZLHjh0re3h4yMbGxrKLi4v8ySefyA8ePNDbNyMjQx41apTs6Ogom5qaym+99ZZ88ODBfOO8e/euPHToUNnLy0s2NjaWbW1t5Tp16sjjx4+XHz58qHfur3LS1/fee082NzeXL168mO/2Nm3ayFZWVnqTR8qyLO/du1fu1q2b7ObmJhsbG8vm5uZy1apV5U8++UQ+duyYXtn8rqZ0dHSUg4KC5L/++qvIMRc0AaEsy/L//vc/GZCXL18uy/Ljq8VmzZol16hRQzY1NZXVarXs4+MjDxgwQL506ZJuv/T0dHnkyJF5XkuNRqN3VVpB76Nc69evl0NCQmQrKyvZxMRE9vDwkN999115586dsizL8u3bt+XQ0FDZx8dHtrCwkNVqtVy9enX5+++/102Ue/DgQblz586yh4eHbGJiItvZ2clBQUHyP//8o1fXi36eZFmWu3TpIpuZmeV5bz9LQVdTFjSJ54EDB+SGDRvK5ubmsoODg9yvXz/5+PHjea54K+hqyvxe6/y+X562fPlyOSQkRHZycpJVKpXs6uoqd+3aVT59+rSuzNNXU+a+vgUtTwoPD5fbtm0r29raysbGxnK5cuXktm3b5vnueZmeF++Tz++FCxfkwMBA2dbWVlapVHLFihXlCRMm6H3/POnMmTNy27ZtZUtLS91nYsOGDXnK1alTR3Z2di5S3Pm9Xx4+fChPmDBBrlKliqxSqWSNRiNXq1ZNHjFihBwfHy/Lsixv3LhRbt26tVyuXDlZpVLJjo6Ocps2beSIiAi9Y/3++++yj4+PbGxs/Nzv1HHjxsl169aVbWxsZBMTE7lChQryiBEj5Hv37unKPP3eLOgKcSDP+3LJkiVygwYNZAsLC9nMzEz29vaWe/Xqled78mXLveI5v6Wgq4lzPes7d/369XK9evVkU1NTWaPRyB06dNCbIaCwJFkWN7MTBCGvAwcO0LhxY1auXFnkJveywtnZmQ8//JCZM2caOhShDEpJScHW1pbZs2czePBgQ4cjlGEiGRMEgR07dnDw4EHq1KmDmZmZrgtHo9Fw+vTpYk1yW9qdO3eOhg0bcvXq1VJzAY1QtmzatInBgwdz8eLFAq9aFoTCEMmYIJQSzxssX9i7CRTH4cOHGTVqFOfPnyclJQV7e3vdZfyvYloIQRCEN5lIxgShlHjelZm9e/dm2bJlryYYQRAE4ZUpE1dTCsKb4HmXcYuuNEEQhNeTaBkTBEEQBEEwoDJ1b0pBEARBEITXjeimfA6tVktsbCyWlpav5JYqgiAIgiC8OFmWSUlJwdXV9aVd/FRSRDL2HLGxsbobRAuCIAiCULbcuHGjyHd5edVEMvYcube1uXHjRp7b/AiCIAiCUDolJyfj7u6e7y0KSxuRjD1HbteklZWVSMYEQRAEoYwpC0OMSncnqiAIgiAIwmtOJGOCIAiCIAgGJJIxQRAEQRAEAxJjxgRBEEq5nJwcsrKyDB2GIJQqxsbGKJVKQ4dRIkQyJgiCUErJskx8fDyJiYmGDkUQSiVra2ucnZ3LxCD9ZxHJmCAIQimVm4g5Ojpibm5e5n9wBKGkyLJMWload+7cAcDFxcXAEb0YkYwJgiCUQjk5ObpEzM7OztDhCEKpY2ZmBsCdO3dwdHQs012WYgC/IAhCKZQ7Rszc3NzAkQhC6ZX7+SjrYypFMiYIglCKia5JQSjY6/L5EMmYIAiCIAiCAYlkTBAEQXjthYaG0qlTp2eWCQsLQ5IkcfWq8MqJZEwQBEEoUc9KfDw9PZEkSW9xc3PT2z579uwSj2nOnDksW7ZM9zg4OJjhw4eXeD2GFhoaqntejYyMKF++PJ988gkPHjzQK/e810F4tUQyZkAb1/5CdPRlQ4chCILwSk2dOpW4uDjdcuLEiZdep0ajwdra+qXX8yRDDSpv1aoVcXFxREdHs2jRIjZs2MCgQYPylDPE6yDkTyRjBrKwT3vcpvyPbdPnGToUQRCEV8rS0hJnZ2fd4uDgUORjjBo1ivbt2+sez549G0mS2LRpk25dlSpVWLBgAaDfWhcaGkp4eDhz5szRtQpFR0fr9ouMjKRu3bqYm5vTqFEjLly4UKiYJk+eTM2aNVmyZAkVKlTAxMQEWZbZunUrb7/9NtbW1tjZ2dGuXTuuXLmi269Lly4MGTJE93j48OFIksS5c+cAyM7OxtLSkm3bthUqDhMTE5ydnXFzc6NFixZ069aN7du35ylXEq+DUDJEMmYgJv7BHGowGS0tOHX0jKHDEQShDJBlmbTM7Fe+yLJs6FPPIzg4mIiICLRaLQDh4eHY29sTHh4OPJ4w9+LFiwQFBeXZd86cOTRs2JD+/fvrWoXc3d1128ePH8+3337LsWPHMDIyok+fPoWO6/Lly6xZs4a1a9dy8uRJAFJTUxk5ciRHjx5l165dKBQKOnfurIs9ODiYsLAw3TGePpejR4+Snp5O48aNi/QcAVy9epWtW7dibGxc5H2FV0dM+mogHwwdxrI+S8gwr8iBBWHUqFfN0CEJglDKPcrKoerEwrWOlKTzU1tiriq5n4uxY8cyYcIE3eMZM2YwdOjQIh0jMDCQlJQUTpw4Qe3atYmIiGD06NGsW7cOgD179uDk5ISPj0+efTUaDSqVCnNzc5ydnfNsnz59ui6JGzduHG3btiU9PR1TU9PnxpWZmcmKFSv0Wpm6dOmiV2bx4sU4Ojpy/vx5/P39CQ4OZtiwYdy7dw+lUsm5c+eYNGkSYWFhDBo0iLCwMOrUqYNarS7Uc7Nx40bUajU5OTmkp6cD8N133+UpVxKvg1AyRDJmIEZGRpjVzSHzPGiVvhzYeZRGzeoZOixBEISXbsyYMYSGhuoe29vbF/kYGo2GmjVrEhYWhrGxMQqFggEDBjBp0iRSUlIICwvLt1WsMKpXr677f+5tdu7cuUP58uWfu6+Hh0ee7r4rV67w5ZdfcujQIe7du6drEYuJicHf3x9/f3/s7OwIDw/H2NiYGjVq0KFDB+bOnQtQ5HMJCQnhp59+Ii0tjUWLFnHx4kW9btBcJfE6CCVDJGMGkno0nuDkmhyVznCLipz+/bRIxgRBeCYzYyXnp7Y0SL0lyd7enooVK77wcXK791QqFUFBQdjY2ODn58f+/fsJCwsr9tWST3bp5U4qmptAPY+FhUWede3bt8fd3Z2FCxfi6uqKVqvF39+fzMxMXR2BgYG6cwkODsbf35+cnBzOnDnDgQMHinQuFhYWuud37ty5hISEMGXKFL766iu9ciX1OggvTiRjBnInLpatmYdIckjFIt4FjL3Y+cd+mr1X9DEBgiC8GSRJKtHuwrIuODiYxYsXY2RkRLNmzQAICgpi1apVBY4Xy6VSqcjJyXnpMd6/f5+oqCgWLFhAQEAAAPv27ctTLjg4mJ9//hmVSsXUqVORJImAgABmzZrFo0ePijVeLNekSZNo3bo1n3zyCa6ursU+jvDyiAH8BuIYUJE0MkhXZKNQP76c+NLWG2i1pW+grCAIQlElJSVx8uRJvSUmJqZE68gdN7ZhwwaCg4OBx0nNr7/+ioODA1WrVi1wX09PTw4fPkx0dLRe12FJs7Gxwc7Ojp9//pnLly+ze/duRo4cmadccHAw586d48yZM7qkLTg4mJUrV1K7dm2srKyKHUNwcDB+fn7MmDGj2McQXi6RjBmIhY0VtW0rAHDPUoacOFzjzxK+OdzAkQmCILy4sLAwatWqpbdMnDixROvQaDTUqlULW1tbXeIVEBCAVqt97hir0aNHo1QqqVq1Kg4ODiWeKOZSKBSsWrWKyMhI/P39GTFiBDNnzsxTzt/fH3t7e2rUqKFLvIKCgsjJySn22LcnjRw5koULF3Ljxo0XPpZQ8iS5NF6zXIokJyej0WhISkp6ob9M8pOVlMayWYu4pUxAnfqIthv+4aS3K+9v3Pna3PxUEITiSU9P59q1a3h5eRXqKj5BeBM963PyMn+/S5poGTMgY405dRy8kWSJhxZmxJRzoeaVWLau3Wro0ARBEARBeEVEMmZg/h8E45f9+H5gxxq8RZJleW7+fY2UxHQDRyYIgmA4K1euRK1W57v4+fkZJCY/P78CY1q5cuVLrz8mJqbA+tVq9UvrahVePnFZjoGp7C2o5ujFlYTbGClVnPHtQqZ5RdbO3kPo5NaGDk8QBMEgOnToQIMGDfLdZqjZ5Ddv3lzg/SadnJxeev2urq66Wf0L2i6UTSIZKwW83qtH2x8yscKM3cqVZFKR1Dgj4m+m4OxmaejwBEEQXjlLS0ssLUvX95+Hh4dB6zcyMhLzgr2mRDdlKaBytcS5ijsKWUG1eu2xSTgHkpJ/5u41dGiCIAiCILxkIhkrJSyDH48bs7tlxS2XKLKMkshKNuPS2bsGjkwQBEEQhJdJJGOlhImnBmU5M45JV0i1cSTd7CQyMjsXHkHMPiIIgiAIry+RjJUimqaeVM8uj5GsJN1CIlMVizbDjJOHbhk6NEEQBEEQXhKRjJUiZj52mGvMqJXtCUCa+iIVrqzm6Ma1hg1MEARBEISXRiRjpYikkLBpURH/nPJYak3IVilJsk2k0rYVXI1LNHR4giAIZVZoaCidOnV6ZpmwsDAkSSIxMfGVxCQIuUQyVsqY13RAaWFEw2wfAC5UqYIFElu+WUBWZo6BoxMEQXi+ZyU+np6eSJKkt7i5ueltnz17donHNGfOHJYtW6Z7HBwczPDhw0u8ntIgPj6eIUOGUKFCBUxMTHB3d6d9+/bs2rWLzMxM7O3tmTZtWr77fv3119jb25OZmfnMOpYtW6b3Gjo5OdG+fXvOnTunVy40NDTP6y1JEpcvXy6x830diGSslJGUCjQhnrhr7XDOtkJWKDha721UD7zY+vu55x9AEAShlJs6dSpxcXG65cSJEy+9To1Gg7W19Uuv50kFTRD7MkVHR1OnTh12797NN998w5kzZ9i6dSshISEMHjwYlUpFz549WbZsWb4Xhy1dupQPP/wQlUr13LqsrKyIi4sjNjaWTZs2kZqaStu2bfMkcq1atdJ7vePi4vDy8iqxc34diGSsFLKo74xkouTtnKpYaSUcb94l09Se6wdv8/BBhqHDEwRBeCGWlpY4OzvrFgcHhyIfY9SoUbRv3173ePbs2UiSxKZNm3TrqlSpwoIFCwD91rrQ0FDCw8OZM2eOrqUmOjpat19kZCR169bF3NycRo0aceHChULFNHnyZGrWrMmSJUt0rVKyLLN161befvttrK2tsbOzo127dly5ckW3X5cuXRgyZIju8fDhw5EkSdfKlJ2djaWlJdu2bXtuDIMGDUKSJI4cOcK7775L5cqV8fPzY+TIkRw6dAiAvn37cuXKFfbu1Z/LMiIigkuXLtG3b99Cna8kSTg7O+Pi4kLdunUZMWIE169fz/N8mZiY6L3ezs7OKJXKQtXxphDJWCmkUCmxfNsNa9mC7vbtiKxyAU3SFSSUbFh+2tDhCYJgKLIMmamvfimF0+sEBwcTERGBVqsFIDw8HHt7e8LDw4HHXXUXL14kKCgoz75z5syhYcOG9O/fX9dS4+7urts+fvx4vv32W44dO4aRkRF9+vQpdFyXL19mzZo1rF27VnfrotTUVEaOHMnRo0fZtWsXCoWCzp0762IPDg4mLCxMd4ynz+Xo0aOkp6fTuHHjZ9adkJDA1q1bGTx4MBYWFnm257YMVqtWjXr16rF06VK97UuWLKF+/fr4+/sX+nxzJSYm8ttvvwGGu11VWSZuh1RKqRu58nDvTXJi03ir2QiMZq7ggfVw7kclc+9mCvbiNkmC8ObJSoMZBrj/4BexoMr7415cY8eOZcKECbrHM2bMYOjQoUU6RmBgICkpKZw4cYLatWsTERHB6NGjWbduHQB79uzByckJHx+fPPtqNBpUKhXm5uY4Ozvn2T59+nRdEjdu3Djatm1Leno6pqamz40rMzOTFStW6LX2denSRa/M4sWLcXR05Pz58/j7+xMcHMywYcO4d+8eSqWSc+fOMWnSJMLCwhg0aBBhYWHUqVMHtVr9zLovX76MLMv5nvPT+vTpw+jRo/nxxx9Rq9U8fPiQP/74g+++++65++ZKSkpCrVYjyzJpaWnA43uKPl3/xo0b9WJv3bo1f/zxR6HreROIlrFSSmlhjEW9x18SNS97caRueR7YH0RWZrFhqWgdEwSh7BozZgwnT57ULb169SryMTQaDTVr1iQsLIwzZ86gUCgYMGAAp06dIiUlhbCwsHxbxQqjevXquv+7uLgAcOfOnULt6+Hhkafb9cqVK3zwwQdUqFABKysr3XipmJgYAPz9/bGzsyM8PJyIiAhq1KhBhw4ddC1jhT2X3DFgkiQ9t2z37t3RarWsXr0agNWrVyPLMu+//36hzhMedzefPHmSyMhI5s+fj7e3N/Pnz89TLiQkRO/1njt3bqHreFOIlrFSTB1QjocHY1HezMJUsiNTCakWV1Hc8iH63H08/ewMHaIgCK+SsfnjVipD1FuC7O3tS+SG17ndeyqViqCgIGxsbPDz82P//v2EhYUV+2rJJ7vZchOb3C7F58mve7B9+/a4u7uzcOFCXF1d0Wq1+Pv76wa6S5JEYGCg7lyCg4Px9/cnJyeHM2fOcODAgUKdS6VKlZAkiaioqOdO46HRaHj33XdZunQpffv2ZenSpbz77rtYWVkV6jwBFAqF7nX08fEhPj6ebt265RmLZmFhIW5w/hyiZawUM7IxxbymIxIStTIed02km98myyiFPVsKN6BUEITXiCQ97i581UshWloMIXfc2O7duwkODgYgKCiIVatWFTheLJdKpSIn5+VPF3T//n2ioqKYMGECTZs2xdfXlwcPHuQpl5tYhoWFERwcjCRJBAQEMGvWLB49evTc8WIAtra2tGzZkv/973+kpqbm2f70/Gl9+/Zl//79bNy4kf379xd64H5BRowYwalTp/jrr79e6DhvIpGMlXKWQY/n3/FXVccsOQUkCVm5j6R9v5CeJeYdEwShdEpKStLrmjp58qSuW66k5I4b27Bhgy4ZCw4O5tdff8XBwYGqVasWuK+npyeHDx8mOjqae/fuFbrlq6hsbGyws7Pj559/5vLly+zevZuRI0fmKRccHMy5c+c4c+YMAQEBunUrV66kdu3ahW6xmjdvHjk5OdSvX5+1a9dy6dIloqKimDt3Lg0bNtQrGxQURMWKFenVqxcVK1YkMDDwhc7VysqKfv36MWnSJHFP5SISyVgpZ+xsgamPLZIkUSuzPGhzSLKxoGL6dVZtPGLo8ARBEPIVFhZGrVq19JaJEyeWaB0ajYZatWpha2urS7wCAgLQarXPHWM1evRolEolVatWxcHBocQTxVwKhYJVq1YRGRmJv78/I0aMYObMmXnK+fv7Y29vT40aNXSJV1BQEDk5OUUa++bl5cXx48cJCQlh1KhR+Pv707x5c3bt2sVPP/2Up3yfPn148OBBka4YfZZhw4YRFRUlBugXkSSL9PWZkpOT0Wg0JCUlFakvvSRlRCdxd/5pcuRs1jz8g1QHR8zS0rD4N4VmU6fgU9PRIHEJgvDypKenc+3aNby8vAp1FZ8gvIme9TkpDb/fhSVaxsoAE08NKg8rlJIR1XM8ISudHKUx2nIh7Fp4lvSHr36WZ0EQBEEQSoZIxsqI3LFjlTV1sNZk43puM5qUdMiBvevFPb4EQXi9rFy5ErVane/i5+dnkJj8/PwKjGnlypUvvf6YmJgC61er1SXa1Wroc33TiKktyghTH1uMnMzhNnxQ62MGKfYwfO16TtX4lIv7Y2nQ0hONg5mhwxQEQSgRHTp0oEGDBvluM9QM75s3by7wfpNOTk4vvX5XV1fdrP4FbS8phj7XN41IxsoISSFhGeTGgzUXyT6cQECLD7mw72eMsk+QZu7FrjUXeGdwTUOHKQiCUCIsLS2xtCxddxrx8PAwaP1GRkavbL4uQ5/rm0Z0U5Yh5jUcUFqboH2YRZuYulzxrkOcWwoPrS4Re+Yet68lGzpEQRAEQRCKSCRjZYikVKAOKAeA9nASdrEpSNkZ5Bg94pF5LDt+/1fM7SIIgiAIZYxIxsoYi3rOKMyNsFBa4W5WEUXCLQDS1Ne5eT8GbbZIxgRBEAShLClzydi8efN084nUqVOHiIiIAsvu27ePxo0bY2dnh5mZGT4+Pnz//fevMNqSp1ApUTd6PEjTz64xZvcTUKQnIStyMEvazeHr9w0coSAIgiAIRVGmkrHVq1czfPhwxo8fz4kTJwgICKB169YFXs5rYWHBp59+yt69e3X3BpswYQI///zzK468ZFk0dEUyVqBR2uNs5oni3k0AHpRz4O+Fv4uuSkEQBEEoQ8pUMvbdd9/Rt29f+vXrh6+vL7Nnz8bd3T3fWzwA1KpVi+7du+Pn54enpyc9e/akZcuWz2xNKwuUFsZY1HcGoJpDIGYpj1Amx4IkYZd5i+WzjpKZnm3gKAVBEEqP0NBQOnXq9MwyYWFhSJKU54bagvCylZlkLDMzk8jISFq0aKG3vkWLFhw4cKBQxzhx4gQHDhx45n2+MjIySE5O1ltKI3VAOVBI2CldsFU5Y3TvNpqE+6hTK5F65SHHt183dIiCILyhnpX4eHp6IkmS3uLm5qa3ffbs2SUe05w5c1i2bJnucXBwMMOHDy/xekqDGzdu0LdvX1xdXVGpVHh4eDBs2DDu3887jOXcuXN07doVBwcHTExMqFSpEl9++SVpaWl65Z583ZRKJa6urvTt25cHDx4UKqbcRDd3sbOzo0mTJuzfv1+v3OTJk/O8PyRJYufOncV/QsqAMpOM3bt3j5ycnDyTzTk5OREfH//Mfd3c3DAxMaFu3boMHjyYfv36FVj266+/RqPR6BZ3d/cSib+kGVmbYl7TAYA6nq2RAz14+HAXflG7AYjcHkNqUoYhQxQEQcjX1KlTiYuL0y0nTpx46XVqNBqsra1fej1PKmjS1Jfp6tWr1K1bl4sXL/L7779z+fJl5s+fz65du2jYsCEJCQm6socOHaJBgwZkZmayadMmLl68yIwZM1i+fDnNmzcnMzNT79i5r1tMTAwrV65k7969DB06tEjxXbhwgbi4OMLCwnBwcKBt27bcuXNHr4yfn5/e+yMuLo7AwMDiPyllQJlJxnJJkqT3WJblPOueFhERwbFjx5g/fz6zZ8/m999/L7Ds559/TlJSkm65ceNGicT9MuTeIsk225HQ5qPY0lCFWcoJrJKvIWdnc/CfqwaOUBAEIS9LS0ucnZ11i4ODQ5GPMWrUKNq3b697PHv2bCRJYtOmTbp1VapUYcGCBYB+a11oaCjh4eHMmTNH1/ISHR2t2y8yMpK6detibm5Oo0aNuHDhQqFimjx5MjVr1mTJkiVUqFABExMTZFlm69atvP3221hbW2NnZ0e7du24cuWKbr8uXbowZMgQ3ePhw4cjSRLnzp0DIDs7G0tLS7Zt2/bcGAYPHoxKpWL79u0EBQVRvnx5Wrduzc6dO7l16xbjx48HHv929u3bF19fX9atW0f9+vXx8PDgvffeY8OGDRw8eDDPBW+5r1u5cuUICQmhV69eHD9+vFDPTS5HR0ecnZ2pVq0aEyZMICkpicOHD+uVMTIy0nt/ODs7o1KpilRPWVNmkjF7e3uUSmWeVrA7d+4899YMXl5eVKtWjf79+zNixAgmT55cYFkTExOsrKz0ltLK2MkCU19bkMHsWCYt/DrxTwMFCvkg9x0Pc/7wVRJiUw0dpiAIJUSWZdKy0l75UhovCgoODiYiIgKtVgtAeHg49vb2hIeHAxAfH8/FixfzHZYyZ84cGjZsSP/+/XUtL0/2gowfP55vv/2WY8eOYWRkRJ8+fQod1+XLl1mzZg1r167V3booNTWVkSNHcvToUXbt2oVCoaBz58662IODgwkLC9Md4+lzOXr0KOnp6TRu3PiZdSckJLBt2zYGDRqEmZn+7fGcnZ3p0aMHq1evRpZlTp48yfnz5xk5ciQKhX4qUKNGDZo1a/bMhotbt26xcePGAm9Z9TxpaWksXboUMNztrUqTMnM7JJVKRZ06ddixYwedO3fWrd+xYwcdO3Ys9HFkWSYj4/XpvrMMciM9KoHU47dpVqcqOzLduGdnjKzI5qH6KnvXlqPTkJqGDlMQhBLwKPsRDX4r3o/fizj8wWHMjc1L7Hhjx45lwoQJusczZswocndXYGAgKSkpnDhxgtq1axMREcHo0aNZt24dAHv27MHJyQkfH588+2o0GlQqFebm5jg7O+fZPn36dF0SN27cONq2bUt6ejqmpqbPjSszM5MVK1botfZ16dJFr8zixYtxdHTk/Pnz+Pv7ExwczLBhw7h37x5KpZJz584xadIkwsLCGDRoEGFhYdSpUwe1Wv3Mui9duoQsy/j6+ua73dfXlwcPHnD37l0uXryoW1dQ2X379umty33dcnJySE9Pp0GDBnz33XfPfU6elDs+MC3tcZJfp04dmjZtqlfmzJkzeudatWpVjhw5UqR6ypoyk4wBjBw5kg8//JC6devSsGFDfv75Z2JiYhg4cCDwuIvx1q1b/PLLLwD873//o3z58roP4759+5g1a5Zec3BZZ+KpQeVpRWZ0MspjqVilGZNodA1J60Cm6X2uXbpC7GVPXCtaGzpUQRAEAMaMGUNoaKjusb29fZGPodFoqFmzJmFhYRgbG6NQKBgwYACTJk0iJSWFsLCwZ16s9SzVq1fX/d/FxQV43AtTvnz55+7r4eGRp9v1ypUrfPnllxw6dIh79+7pWsRiYmLw9/fH398fOzs7wsPDMTY2pkaNGnTo0IG5c+cCvNC5PCm3hfN5Q3tyyz5dLvd1k2WZGzdu8MUXX9C2bVv27t2LUqksVAwRERFYWFhw4sQJxo4dy7Jly/K0jFWpUoV//vlH99jExKRQxy7LylQy1q1bN+7fv68bROjv78/mzZt1NzTNHViYS6vV8vnnn3Pt2jWMjIzw9vbmP//5DwMGDDDUKbwUlkFu3I8+j5uyIsYKE8xSZDTZV4nzqEiS+jyydYvnH0QQhFLPzMiMwx8cfn7Bl1BvSbK3ty+RG17ndu+pVCqCgoKwsbHBz8+P/fv3ExYWVuyrJZ9MDnITktwE6nksLCzyrGvfvj3u7u4sXLgQV1dXtFot/v7+ugHykiQRGBioO5fg4GD8/f3JycnhzJkzHDhwoFDnUrFiRSRJ4vz58/lezfrvv/9iY2ODvb09lStXBuD8+fPUrFkz37KVKlXSW/fk61apUiVmz55Nw4YN2bNnD82aNXtufPB42JC1tTWVK1cmPT2dzp07c/bsWb2ES6VSvbIbopcWZWbMWK5BgwYRHR1NRkYGkZGReldYLFu2TK/ffciQIZw9e5bU1FSSkpI4fvw4n3zySZ7+8bLOtIotRk7mSFlQp1IblLJEnCIOk/R0UOWw8I8thg5REIQSIEkS5sbmr3wpTEuKIeSOG9u9ezfBwcEABAUFsWrVqgLHi+VSqVTk5OS89Bjv37+vm3S8adOmuq7Cp+UmlmFhYQQHByNJEgEBAcyaNYtHjx49d7wYgJ2dHc2bN2fevHk8evRIb1t8fDwrV66kW7duSJJEzZo1dXeleTrRPHXqFDt37qR79+7PrC+3Nezpugrrww8/RKvVMm/evGLt/zp5vbKSN5SkkHRXVnooqqCUjLBINcX52nkA5NhznL92m5zswv1lJwiC8KKSkpI4efKk3lLQ3VKKK3fc2IYNG3TJWHBwML/++isODg5UrVq1wH09PT05fPgw0dHRel2HJc3GxgY7Ozt+/vlnLl++zO7duxk5cmSecsHBwZw7d44zZ84QEBCgW7dy5Upq165d6IvJfvzxRzIyMmjZsiV79+7lxo0bbN26lebNm1OuXDmmT58OPE7sFy1axPnz5+nSpQtHjhwhJiaGP/74g/bt29OwYcM8rXEpKSnEx8cTFxfHkSNHGDNmDPb29jRq1KhYz41CoWD48OH85z//yTOv2ZtGJGOvCfMaDiitTSBdpm7VtihkievmyVgnPEAhwcb/hXEm7KahwxQE4Q0RFhZGrVq19JaJEyeWaB0ajYZatWpha2urS7wCAgLQarXPHWM1evRolEolVatWxcHBocQTxVwKhYJVq1YRGRmJv78/I0aMYObMmXnK+fv7Y29vT40aNXSJV1BQEDk5OUUaL1apUiWOHTuGt7c33bp1w9vbm48//piQkBAOHjyIra2trmzjxo05dOgQSqWSNm3aULFiRT7//HN69+7Njh078ozVmjhxIi4uLri6utKuXTssLCzYsWMHdnZ2xXx2oE+fPmRlZfHjjz8W+xivA0kujdcslyLJycloNBqSkpJK9TQXACn7b5G04SpYKVlz6mu0aHFLTcIipyoxHu9jZKqk9/RGmFqIy4gFobRLT0/n2rVreHl5FeoqPkF4Ez3rc1KWfr9Fy9hrxKKeMwpzI0jOoVnz/tx/x5NtNR7gfW0fZqlxZKfnELlV3CZJEARBEEoTkYy9RhQqJepGrgA4pbrRp/kwjlWSuOwCla78RZZRCkcjTpF8r3iDLQVBEF6VlStXolar8138/PwMEpOfn1+BMa1cufKl1x8TE1Ng/Wq1+qV1tRZG69atC4xrxowZBourrChTU1sIz2fR0JWU8JtkxaXifs+L5p4t+KPxDnofSCDR7gQKrYr96yvSul8NQ4cqCIJQoA4dOhQ4u7uhZmzfvHlzgfebfN6dYEqCq6urblb/grYbyqJFiwq8qvLJcWpC/kQy9ppRWhhjUd+Zh/tjSQm7QaCRGxeuuBNrdgezR+k8Mocz/0ZS57oXjh6luw9dEIQ3l6WlJZaWloYOQ0/unJaGYmRkVGrn3ypXrpyhQyjTRDfla0gdUA4UEhlXk7B7qMFIq+CykzW1jh8DIM3iBqcPipuIC4IgCEJpIJKx15CRtSnmNR/fjqOSRR0URkZoUk25Yf4A+zv3QZI5lXjCwFEKgiAIggAiGXtt5U4Cm305hXqBnQCIsbOlTuRRJK2WlPjr/HvxsgEjFARBEAQBRDL22jJ2ssDU1xZkqGxZF4XKGKs0E06Xy6bi5cdJ2J/rN3DrUt7bcgiCIAiC8OqIZOw1ZhnsDkDmuUTqN3sHgDiNLb5nz2Lx8BGqOHu2LjpLVsbLvz+bIAiCIAj5E8nYa8zEwwqVpxXkyFTR1ENpaoJZuhGHqihovWkzlklq0pOyOLXLcHPTCIIgCMKbTiRjr7nc1rGM4wl0GDSW6K7O/Pl2Nihy8L28FoBj26JJS840ZJiCILxGQkNDkSSJgQMH5tk2aNAgJEkiNDRUr6wkSRgbG+Pk5ETz5s1ZsmRJnpt3e3p6Mnv27ELF4OnpqTuumZkZPj4+zJw5kyfvABgdHa0r8+TSs2fPYp+7IBSHSMZec6ZVbDByMkfOzME+zZl+jQZz11pidw0FjneOk80l7lgeZs/a44YOVRCE14i7uzurVq3Smwg0PT2d33//nfLly+uVbdWqFXFxcURHR7NlyxZCQkIYNmwY7dq1Izs7u9gxTJ06lbi4OKKiohg9ejRffPEFP//8c55yO3fuJC4uTrf873//K3adglAcIhl7zUmSpGsde7g/ltq2NanvXJ+d1VRkGUuYaM+hNUrn5KWDJMQ9NHC0giC8LmrXrk358uVZt26dbt26detwd3enVq1aemVNTExwdnamXLly1K5dmy+++IK///6bLVu2sGzZsmLHYGlpibOzM56envTr14/q1auzffv2POXs7OxwdnbWLRqNpth1CkJxiGTsDWBe3R6ltQnah1mkRt4m5JwLQSdd2VHdinrH9iFpIUuVxOZVEYYOVRCEZ5BlGW1a2itfnuzaK4qPPvqIpUuX6h4vWbKEPn36FGrfJk2aUKNGDb1krrhkWSYsLIyoqCiD3UpJEJ5F3A7pDSApFVgGlCNxw1VS9t6iqn99bh8+ySOFBoX2FpUuRnPRx5PrD0+TkdEUExOVoUMWBCEf8qNHXKhd55XXW+V4JJK5eZH3+/DDD/n88891Y7P279/PqlWrCAsLK9T+Pj4+nD59usj15ho7diwTJkwgMzOTrKwsTE1NGTp0aJ5yjRo1QqH4v7aJiIiIPK13gvAyiWTsDWFez5nk3THkJKRTyake+61XQWIy26tb0SbyGNEeLmSawYED+wkJCTF0uIIgvAbs7e1p27Yty5cvR5Zl2rZti729faH3l2UZSZKKXf+YMWMIDQ3l7t27jB8/niZNmtCoUaM85VavXo2vr6/usbu7e7HrFITiEMnYG0KhUqJu6EryzhjS9sUR9F4vdiz8kWytFRmmqdSNPMaBtxsTsW8ftWrVwtra2tAhC4LwFMnMjCrHIw1Sb3H16dOHTz/9FKDIA+OjoqLw8vIqdt329vZUrFiRihUrsnbtWipWrMhbb71Fs2bN9Mq5u7uX2htwC28GMWbsDWLR0BVJpSArLpWK5epiYmeNaZaS7dXVuN28ieZeAtqcHP5evpucbO3zDygIwislSRIKc/NXvrxI61SrVq3IzMwkMzOTli1bFnq/3bt3c+bMGbp06VLsup9kY2PDkCFDGD16dLHHwAnCyyKSsTeI0sIYi3rOAKRGxBLy/v8fSJtpyUNrcxocPYbF/So8jLLmXMQtA0YqCMLrQqlUEhUVRVRUFEqlMt8yGRkZxMfHc+vWLY4fP86MGTPo2LEj7dq1o1evXiUWy+DBg7lw4QJr164tsWMKQkkQydgbRh3gBgqJjKtJeHvUxtTJjmwjmQ21FdgkPaDShQMAHN0YTcaj4s/vIwiCkMvKygorK6sCt2/duhUXFxc8PT1p1aoVe/bsYe7cufz9998FJnDF4eDgwIcffsjkyZPzTCgrCIYkyaK99pmSk5PRaDQkJSU988ukLElYc4G043cw87NDaqbhk8PDuXg/ikVLzDBNSGN7468xUqnwektNu15vGzpcQXgjpaenc+3aNby8vDA1NTV0OIJQKj3rc1KWfr9Fy9gbyDLIDYBH5+9jaWTDgNqfkG0ksapRDgpZS/nYv0mwP0rk5TDu3Hpg4GgFQRAE4fUmkrE3kLGTBaa+tiBDSvhNQtxDqKKpzGWNMQmu1lS5dhAp2whZkc1fqzYaOlxBEAQ9K1euRK1W57v4+fkZOjxBKDIxtcUbyjLYnfSoBNJO3EHT3IPW/3qReCaDHd6pdItNpPqJM5xsUJm45Cv8e+oqPjUqGDpkQRAEADp06ECDBg3y3SZm2BfKIpGMvaFMPKxQeVqRGZ1Myv5bNG3bg7UnvsQ8xZx7HvZUuXaCs1VrkG35iIPHw6lS3euFLm8XBEEoKZaWllhaWho6DEEoMaKb8g2WewPx1EPxlPf2x8K7HEpZYqfH478sQ/auI0eWuH79OufPnzdkqIIgCILw2hLJ2BvMtIoNxs7myJk5PDwcR9teQwBQJ5txu5ILtinJqGKTANi+bTsZGZmGDFcQBEEQXksiGXuDSZKEZdDj1rGH+2Jx8/bFokp5FLLEbtfHb422h3aRkaNCfmDNxSNxhgxXEARBEF5LIhl7w5lVd0BpbYI2NYvUyNt07D0cAKtEE+L8ymOWlYnTRSUmdz04vvkm2Zk5hg1YEARBEF4zIhl7w0lKCcvAx/OOpey9hbNnJdR+Xty2yWBN9TQAmpz5jVSyefggg5O7YgwZriAIgiC8dkQyJmBe1wmFhRE5Cek8OnuXXmP+w7nmKvZ7JpJY2xtjbSYW8fvINnrI9v1/c+H8JUOHLAiCIAivDZGMCShUStSNygGQEnYTU1Nz+lfvD8D/6j+egT/o37Ukmt0k0yiRTf9sQdxFSxCEp0mS9MwlNDT0pdSbmprK2LFjqVChAqampjg4OBAcHMzGjf83aXVwcDDDhw/Ps++yZcuwtrbOs/7Ro0fY2Nhga2vLo0eP8mz39PTUnZe5uTn+/v4sWLCgUPEuW7ZM73lxcnKiffv2nDt3Tq9caGhovs/j5cuXC1WPUHaIZEwAQN3QBUmlICsulYxLibTzboeHcTmUtxXE1K+MEi2OFy+DVkFyegJR5/41dMiCIJQycXFxumX27NlYWVnprZszZ45e+aysrBKpd+DAgaxfv54ff/yRf//9l61bt9KlSxfu379f7GOuXbsWf39/qlatyrp16/ItM3XqVOLi4jh9+jSdOnVi4MCBrF69ulDHz31uYmNj2bRpE6mpqbRt25bMTP2r1lu1aqX3HMbFxeHl5VXs8xJKJ5GMCQAozI2xqO8CQErYDYwVxnSI96f6VQ0HTDNAoSDowlaUaU4A7Ny+W7SOCYKgx9nZWbdoNBokSdI9Tk9Px9ramjVr1hAcHIypqSm//vorAEuXLsXX1xdTU1N8fHyYN2+e3nFv3bpFt27dsLGxwc7Ojo4dOxIdHa3bvmHDBr744gvatGmDp6cnderUYciQIfTu3bvY57J48WJ69uxJz549Wbx4cb5lLC0tcXZ2pmLFikybNo1KlSqxfv36Qh0/97lxcXGhbt26jBgxguvXr3PhwgW9ciYmJnrPq7OzM0qlstjnJZROIhkTdNQB5UApkXE1iYyYZN7tMRKtQsYqyYhrjXyRkHG9cB4tChKS73Lpkhg7JgiGkJWRU+CSnZVT+LKZzy9b0saOHcvQoUOJioqiZcuWLFy4kPHjxzN9+nSioqKYMWMGX375JcuXLwcgLS2NkJAQ1Go1e/fuZd++fajValq1aqVrRXJ2dmbz5s2kpKSUSIxXrlzh4MGDdO3ala5du3LgwAGuXr363P1MTU2L1dqXmJjIb7/9BojbOb2pxO2QBB0jjQnmNR1Ji7xNSvhN7D+silV9Xx4e+pejUiqeSiWNLm3naKVeOFtlEBYWRqVKlcRtkgThFft5WHiB2zz87Wj3aQ3d4yVjIsjO1OZb1rWSNZ1H1dY9/mX8AdIf6icTg+c3ecFo9Q0fPpx33nlH9/irr77i22+/1a3z8vLi/PnzLFiwgN69e7Nq1SoUCgWLFi3SfdcsXboUa2trwsLCaNGiBT///DM9evTAzs6OGjVq8Pbbb/Puu+/SuHFjvbrnzZvHokWL9NZlZ2djamqqt27JkiW0bt0aGxsb4HFX4ZIlS5g2bVq+55Sdnc2vv/7KmTNn+OSTTwr1PCQlJaFWq5FlmbS0x1eud+jQAR8fH71yGzduRK1W6x63bt2aP/74o1B1CGWHaBkT9FgGPZ7mIv38fbLupNG11xhylDLqZCVXAv0BCDh+CFlSEhsbKwaSCoJQJHXr1tX9/+7du9y4cYO+ffuiVqt1y7Rp07hy5QoAkZGRXL58GUtLS912W1tb0tPTdWUCAwO5evUqu3btokuXLpw7d46AgAC++uorvbp79OjByZMn9ZapU6fqlcnJyWH58uX07NlTt65nz54sX76cnBz9lsKxY8eiVqsxMzNj8ODBjBkzhgEDBhTqebC0tOTkyZNERkYyf/58vL29mT9/fp5yISEhevHOnTu3UMcXyhbRMiboMXY0x7SqHenn75Oy9ya271bG6q2qpO6P4kRWMhWUSmrFX+JscmucjDU42rgaOmRBeON8PCeowG3SU39i95kZUHDZpxq1e01v9CJhFYqFhYXu/1rt4xa7hQsX0qBBA71yueOitFotderUYeXKlXmO5eDgoPu/sbExAQEBBAQEMG7cOKZNm8bUqVMZO3YsKpUKAI1GQ8WKFfWO4ejoqPd427ZtujFqT8rJyWH79u20bt1at27MmDGEhoZibm6Oi4tLkXoJFAqFLhYfHx/i4+Pp1q0be/fu1StnYWGRJ2bh9SNaxoQ8LIMft46lnbhDTlIG7/caS5aRjEWKgqtv+SAh435XjXGiE/8euG3gaAXhzWNsoixwMTJWFr6s6vllXyYnJyfKlSvH1atXqVixot6Se8Vg7dq1uXTpEo6OjnnKaDSaAo9dtWpVsrOzSU9PL1JMixcv5v3338/TgtajR488A/nt7e2pWLEirq6uLzxcY8SIEZw6dYq//vrrhY4jlE0iGRPyMClvhcrLCnJkUvbdwtraHuuA6lxwT2FD1cfzjvle2wLAuX2xZGVmiysrBUEolsmTJ/P1118zZ84cLl68yJkzZ1i6dCnfffcd8Lhr0d7eno4dOxIREcG1a9cIDw9n2LBh3Lx5E3g8h9iCBQuIjIwkOjqazZs388UXXxASEoKVlVWhY7l79y4bNmygd+/e+Pv76y29e/fmn3/+4e7duy/lebCysqJfv35MmjRJfJ++gUQyJuTLMvjxDcRTD8ejTcuid7+JXKwncdD+Dkm1K+N47yRydhoPMm8yZ/ZccWWlIAjF0q9fPxYtWsSyZcuoVq0aQUFBLFu2TNcyZm5uzt69eylfvjzvvPMOvr6+9OnTh0ePHukSrZYtW7J8+XJatGiBr68vQ4YMoWXLlqxZs6ZIsfzyyy9YWFjQtGnTPNtCQkKwtLRkxYoVL37SBRg2bBhRUVFigP4bSJJFCv5MycnJaDQakpKSivQXVlknyzJ35pwgKz4VqxYeWDUpz/Jzy5l1bBbN7rnw8cIbXPZsx3n/KjxS38TV1ZX+/fuLKysFoYSkp6dz7do1vLy88lztJwjCY8/6nJSl32/RMibkS5Ik3dixh/tjkbNy6FKpC24pVmTdyOJmZU/cY/dilloOtApiY2NF65ggCIIgFINIxoQCmVVzQGljgjY1i9Rjt1Gr1ASnVsUrzoLTTipMMpOxvxuFWdrjKyrDwsLEWAdBEN54fn5+elN1PLnkd1WoIIipLYQCSUoJy0A3Ev++QkrELSzqu9D23Y/ZcnwyiuQc7rk6UyFmJzdsumBkbaxrHatcubKhQxcEQTCYzZs3FzgTv5OT0yuORigLRMuY8EzmdZxQWBiRk5DOozN38feuR6qnGQBnfezRJF+jwbFFOFXwBUTrmCAIgoeHR55pOHIXS0tLQ4cnlEIiGROeSaFSom5UDoCU8JvIsky9to9vW5LyII1kSw1OjxK5f+I6xsaPW8diYmIMGbIgCIIglCkiGROeS93QBUmlICsulYyLD2j1djeSbGWUWol/61UAoOLx0zga+9Em+B08PDwMHLEgCIIglB0iGROeS2FujEV9F+Bx65hSocQtuCEAcQ+TSVepMDZzI/OqFXfPGzJSQRAEQSh7RDImFIo6oBwoJTKuJpERk0zX9oO4a5vJCa8Ebgc0oNytx/dTiz5zj+R7j0hLSxNjxwRBEAShEEQyJhSKkcYE85qPb6ibEnYTa3Nb1L0DOV8hhX3BEqbp97BJiAIZ/v5jC99//72Yd0wQBEEQCkEkY0KhWQa7gQTp5++TGfuQ7j7dAdjw6BC3atfF7f+3jt25kUhWVpa4slIQhFIlOjoaSZI4efKkoUN5bU2ePJmaNWsaOowyRyRjQqEZO5hjVt0BgJTdMXhbe9PAsT6eN8047yVhf/8MJukJqBJdUSqNxKz8gvCGCg0NpVOnTnrr/vzzT0xNTfnmm28ME1QxrF27lgYNGqDRaLC0tMTPz49Ro0bpti9btgxra+t895UkifXr1+dZ//HHH6NUKlm1alWebZMnT0aSJCRJQqlU4u7uTr9+/Qp9c/LcfSVJQq1WU6NGDZYtW6ZXJiwsTK9c7jJhwoRC1SG8HCIZE4rEqok7SPDo7H2y4lPp4tiGwFP25Fy6y0VvH8rFRqDQqrCmPCDmHRMEARYtWkSPHj348ccf+eyzz4q8f2Zm5kuI6tl27tzJ+++/z7vvvsuRI0eIjIxk+vTpLxRLWloaq1evZsyYMSxevDjfMn5+fsTFxRETE8NPP/3Ehg0b6NWrV6HrWLp0KXFxcZw6dYpu3brx0UcfsW3btjzlLly4QFxcnG4ZN25csc9LeHEiGROKxNjJAjN/ewCSd8fQolYn7rpokZC44WONa9wBLB7epFbV6rp5x0TrmCC8ub755hs+/fRTfvvtN/r16wfAgQMHCAwMxMzMDHd3d4YOHUpqaqpuH09PT6ZNm0ZoaCgajYb+/fvrWqG2bduGr68varWaVq1aERcXp1ff0qVL8fX1xdTUFB8fH+bNm1esuDdu3Mjbb7/NmDFjqFKlCpUrV6ZTp0788MMPxX4u/vjjD6pWrcrnn3/O/v37iY6OzlPGyMgIZ2dnypUrR7t27Rg6dCjbt2/n0aNHharD2toaZ2dnvL29+eKLL7C1tWX79u15yjk6OuLs7Kxb1Gr1c4+d+xqsX7+eypUrY2pqSvPmzblx40aB+wQHBzN8+HC9dZ06dSI0NFT3eN68eVSqVAlTU1OcnJx49913C3WurxORjAlFZtX0cavXozP30N5Nx7tp8OPHcXe4qbGhwbGvyTi6iXr16gGidUwQSlpWenqBS/ZTLTfPKpuVmfHcsi9i3LhxfPXVV2zcuJEuXboAcObMGVq2bMk777zD6dOnWb16Nfv27ePTTz/V23fmzJn4+/sTGRnJl19+CTxuWZo1axYrVqxg7969xMTEMHr0aN0+CxcuZPz48UyfPp2oqChmzJjBl19+yfLly4scu7OzM+fOnePs2bMv8AzoW7x4MT179kSj0dCmTRuWLl363H3MzMzQarVkZ2cXqa6cnBzWrFlDQkICxsbGxQ05j7S0NKZPn87y5cvZv38/ycnJvP/++8U+3rFjxxg6dChTp07lwoULbN26lcDAwBKLt6wQ96YUiszY2QIzPzsenbtP8p4bvNfpY2b9swubZGOu1/OmwpYbWG39iyqjPubo0aPEx8dz584dcU82QSghc3sX3HLgVasu74ybrHs87+MeZGdk5FvWrao/3Sb9R/d44ad9eJSSrFdm1OqNxYpxy5Yt/P333+zatYsmTZro1s+cOZMPPvhA11pSqVIl5s6dS1BQED/99BOmpqYANGnSRC/R2rdvH1lZWcyfPx9vb28APv30U6ZOnaor89VXX/Htt9/yzjuP7xLi5eXF+fPnWbBgAb179y5S/EOGDCEiIoJq1arh4eHBW2+9RYsWLejRowcmJia6cklJSYVqVbp06RKHDh1i3bp1APTs2ZOhQ4cyadIkFIr820X+/fdffvrpJ+rXr1/o2yh1794dpVJJeno6OTk52Nra6lokn+Tm5qb3+Pr169jZ2T33+FlZWfz44480aNAAgOXLl+Pr68uRI0eoX79+oWJ8UkxMDBYWFrRr1w5LS0s8PDyoVatWkY9T1omWMaFYLHNbx07dxSJFhVmDxzcHT0mMJd7cFrPMTA7+tJsG/k0YOnSoSMQE4Q1TvXp1PD09mThxIikpKbr1kZGRLFu2DLVarVtatmyJVqvl2rVrunJ169bNc0xzc3NdIgbg4uLCnTt3ALh79y43btygb9++eseeNm0aV65cKXL8FhYWbNq0icuXLzNhwgTUajWjRo2ifv36pKWl6cpZWlpy8uTJPMvTFi9eTMuWLbG3fzzMo02bNqSmprJz5069cmfOnEGtVmNmZkbVqlVxd3dn5cqVhY77+++/5+TJk+zYsYOaNWvy/fffU7FixTzlIiIi9OK1sbEp1PGNjIz0XhsfHx+sra2JiooqdIxPat68OR4eHlSoUIEPP/yQlStX6j2/bwrRMiYUi8pVjWlVO9LP3ydl9w3e6fAJa8NHYZYG5+rVouqFVC7HOmCZocWqvcbQ4QrCa2Xo8j8L3CY91coy6Odn/JArJL2H/X9c8kJxPalcuXKsXbuWkJAQWrVqxdatW7G0tESr1TJgwACGDh2aZ5/y5cvr/m9hYZFn+9PdbZIk6YZAaLVa4HFXZW6rTS6lUlns8/D29sbb25t+/foxfvx4KleuzOrVq/noo48AUCgU+SY7T8rJyeGXX34hPj4eIyMjvfWLFy+mRYsWunVVqlThn3/+QalU4urqqtcKVxjOzs66m5L/8ccf1KpVi7p161K1alW9cl5eXgVeCfo8kiQVah08fn6eHqaSlZWl+7+lpSXHjx8nLCyM7du3M3HiRCZPnszRo0eLHV9ZJJIxodismriTfv4+aSfvUKlpXVL8rEi6fh91A3NMDx/FKOshKffh+tn7eFW3586dOzg4OBT4oRUEoXCM/39XniHLFkb58uUJDw8nJCSEFi1asG3bNmrXrs25c+eem8AUlZOTE+XKlePq1av06NGjRI+dy9PTE3Nzc72LDQpj8+bNpKSkcOLECb3E8N9//6VHjx7cv39f10WoUqlK7LmpWLEiXbp04fPPP+fvv/8ukWNmZ2dz7NgxXZfkhQsXSExMxMfHJ9/yDg4OehdZ5OTkcPbsWUJCQnTrjIyMaNasGc2aNWPSpElYW1uze/duXXfzm0AkY0KxqdwsMfWxJf3fBJL33KBZt36M3DsSG5NDaPzfxjvuEDHlm3Em7CYnLu/l9OnTfPDBB1SuXNnQoQuC8Iq4ubkRFhamS8gWLFhAw4YNGTx4MP3798fCwoKoqCh27NjxQlcqwuN5uoYOHYqVlRWtW7cmIyODY8eO8eDBA0aOHFnkY6WlpdGmTRs8PDxITExk7ty5ZGVl0bx58yIda/HixbRt25YaNWrorffz82P48OH8+uuvDBs2rEjHLKxRo0ZRo0YNjh07lm/Xb1EZGxszZMgQ5s6di7GxMZ9++ilvvfVWgePFmjRpwsiRI9m0aRPe3t58//33JCYm6rZv3LiRq1evEhgYiI2NDZs3b0ar1VKlSpUXjrUsEWPGhBeSe2Vl2onbBFg2xMXChQcZD0js7IX97YMga7lxPgFjxeO/uMWVlYLw5ilXrhzh4eEkJibSv39/wsPDuXTpEgEBAdSqVYsvv/wSFxeXF66nX79+LFq0iGXLllGtWjWCgoJYtmwZXl5eRT5WUFAQV69epVevXvj4+NC6dWvi4+PZvn17kRKF27dvs2nTJt3VpE+SJIl33nmnwDnHSkK1atVo1qwZEydOLJHjmZubM3bsWD744AMaNmyImZlZvhPY5urTpw+9e/emV69eBAUF4eXlpdcqZm1tzbp162jSpAm+vr7Mnz+f33//HT8/vxKJt6yQZPHL+EzJycloNBqSkpKwsrIydDil0t0lZ8m4+ACLes6sq7yX+Qfn0vhuBcofssbVtBb37fzxDXLg4NV/yMrKEq1jglAI6enpXLt2DS8vL90VhoJgSMuWLWP48OF6LVuG9qzPSVn6/RYtY8ILy20dS428TWf79gScccD9dBZpPla4/P/7VV45dI86tR83kYvWMUEQBEH4P2UuGZs3b54uA65Tpw4REREFll23bh3NmzfHwcEBKysrGjZsmO9tIYQXY+JhhUlFa9DKSIeSsGnoD4Aq7hrnzI0wS7uDVdZtavrXEbPyC4JQKgwcOFBvCownl4EDBxo6vDxmzJhRYLytW7cukTpat25dYB0zZswokTqE/JWpbsrVq1fz4YcfMm/ePBo3bsyCBQtYtGgR58+f17skOtfw4cNxdXUlJCQEa2trli5dyqxZszh8+HChJ5UrS82chpQRncTd+adBKZHa15pfp43COtWYe85+9NixFYlsKu/Yzp5z5zhw4ACurq70799fXFkpCAUQ3ZQv1507d0hOTs53m5WVFY6Ojq84omdLSEggISEh321mZmaUK1fuheu4detWgbddsrW1xdbW9oXrKGmvSzdlmUrGGjRoQO3atfnpp59063x9fenUqRNff/11oY7h5+dHt27dCj2YsSy9mIZ29+fTZFxNwqKhC1OvjcftYCpZahPKX8ig1r0raD78EKthQ5kzZw4mJib069fvjZpHRhCKQiRjgvB8r0syVma6KTMzM4mMjNSbHA+gRYsWHDhwoFDH0Gq1pKSkPDO7z8jIIDk5WW8RCid3Vv7UI/G0CepFunEOxg8zOFSlGgBx63dwK/IOPXv2ZNiwYSIREwRBEATKUDJ27949cnJy8txWx8nJifj4+EId49tvvyU1NZWuXbsWWObrr79Go9HoFnd39xeK+01i6m2NyssKcmRqx1TmpvfjRldH01tcsPfhcO0v2L3qGvbWziV641pBEARBKMvKTDKW6+kxRrIsF2rc0e+//87kyZNZvXr1M8cCfP755yQlJemWGzduvHDMb5LcKysfHb1Dg8AOZBppSdYk849HTSyTr6OVJc6FxQCPWyovXbokrqwUBEEQ3mhlJhmzt7dHqVTmaQW7c+fOc29CvXr1avr27cuaNWto1qzZM8uamJhgZWWltwiFZ+JtjcrDCrK1tEoJ5q9md9hS5QppTSpiefcYAGd3RZOT/fiebCtXrhRXVgqCIAhvtDKTjKlUKurUqcOOHTv01u/YsYNGjRoVuN/vv/9OaGgov/32G23btn3ZYb7xJEnStY7lRD6gQ/n2AJg6HSXMxgbjzBQeZSq5dvIunp6egJh3TBAEQXizlZlkDGDkyJEsWrSIJUuWEBUVxYgRI4iJidHNCfP555/Tq1cvXfnff/+dXr168e233/LWW28RHx9PfHw8SUlJhjqFN4JJJWtU7pbIWVq6J7YBICb6ALc9bbC/fRiAk+vP0qhRIzHvmCAIr0RoaCidOnV6ZpmwsDAkSSpVM8yXRdHR0UiSxMmTJw0dSplRppKxbt26MXv2bKZOnUrNmjXZu3cvmzdvxsPDA4C4uDhiYmJ05RcsWEB2djaDBw/GxcVFt7ysG7IKj0mSpLuy0vRkJs0z6tA2wpGa8fs5ZZwJspbb9xSkJ8q6m8uK1jFBeH08K/Hx9PREkiS9xc3NTW/77NmzSzymOXPmsGzZMt3j4OBghg8fXuL1GFpoaKjueTUyMqJ8+fJ88sknPHjwQK/c814H4dUyMnQARTVo0CAGDRqU77YnP2jw+AdeMAzTKjYYu6nJuvmQnpY9+dt8JlZpcNFJje/9MyTa+BAXcZpG7Rtx5MgRXeuYuGelILz+pk6dSv/+/XWPlUrlS69To9G89DqelpWVZZArx1u1asXSpUvJzs7m/Pnz9OnTh8TERH7//Xe9coZ4HYT8lamWMaHskCQJqyaPW8ecosy45/14Mj6/rChuPbpE4wNfoNnzCxYWFqJ1TBDeMJaWljg7O+sWBweHIh9j1KhRtG/fXvd49uzZSJLEpk2bdOuqVKnCggULAP3WutDQUMLDw5kzZ46uVSg6Olq3X2RkJHXr1sXc3JxGjRpx4cKFQsU0efJkatasyZIlS6hQoQImJibIsszWrVt5++23sba2xs7Ojnbt2nHlyhXdfl26dGHIkCG6x8OHD0eSJM6dOwdAdnY2lpaWhb6dn4mJCc7Ozri5udGiRQu6devG9u3b85Qr7usgSRI//fQTrVu3xszMDC8vL/74448Cyy9btizPvJLr16/Xmwnh1KlThISEYGlpiZWVFXXq1OHYsWOFiud1IJIx4aUx9bXF2NUCOVNLl3IfkmmkxSw1lf2u7ihyMngYHk76xYu6sWOSJJGWlmbosAWh1JJlGW1mzitfSuMfScHBwURERKDVagEIDw/H3t6e8PBwAOLj47l48SJBQUF59p0zZw4NGzakf//+xMXFERcXpzen5Pjx4/n22285duwYRkZG9OnTp9BxXb58mTVr1rB27VrdmKnU1FRGjhzJ0aNH2bVrFwqFgs6dO+tiDw4O1uvJefpcjh49Snp6Oo0bNy7ScwRw9epVtm7dWuItdF9++SVdunTh1KlT9OzZk+7duxMVFVXs4/Xo0QM3NzeOHj1KZGQk48aNe6Pmoyxz3ZRC2ZF7ZeX9FVFUvubCWnctFa4pqCxd4oCrP41jz3Dl5z+pOvNzBg4ciK2trbhXpSA8g5ylJXZi4e44UpJcpzZCUpVcF9bYsWOZMGGC7vGMGTMYOnRokY4RGBhISkoKJ06coHbt2kRERDB69GjWrVsHwJ49e3BycsLHxyfPvhqNBpVKhbm5Oc7Oznm2T58+XZfEjRs3jrZt25Kenl6o21JlZmayYsUKvVamLl266JVZvHgxjo6OnD9/Hn9/f4KDgxk2bBj37t1DqVRy7tw5Jk2aRFhYGIMGDSIsLIw6deqgVqsL9dxs3LgRtVpNTk4O6enpAHz33Xd5yr3I6/Dee+/Rr18/AL766it27NjBDz/8wLx58wq1/9NiYmIYM2aM7vWqVKlSsY5TVolkTHipTH3tMHa2ICs+lWblu3D52nocku6w1ettzB2akPiwMhYHr+LZyNvQoQqC8IqMGTOG0NBQ3WN7e/siH0Oj0VCzZk3CwsIwNjZGoVAwYMAAJk2aREpKCmFhYfm2ihVG9erVdf93cXEBHs9pWb58+efu6+Hhkae778qVK3z55ZccOnSIe/fu6VrEYmJi8Pf3x9/fHzs7O8LDwzE2NqZGjRp06NCBuXPnAhT5XEJCQvjpp59IS0tj0aJFXLx4Ua8bNNeLvA4NGzbM8/hFrp4cOXIk/fr1Y8WKFTRr1oz33nsPb+8353dBJGPCSyUpJCybupOw8l/q3vZln/M6rB9AirUJ6cmPuyRP/nlSl4w9evSIs2fPUrduXdFKJghPkYwVuE4teF7Fl1lvSbK3t6dixYovfJzc7j2VSkVQUBA2Njb4+fmxf/9+wsLCin215JPdY7nfQ7kJ1PNYWFjkWde+fXvc3d1ZuHAhrq6uaLVa/P39yczM1NURGBioO5fg4GD8/f3JycnhzJkzHDhwoEjnYmFhoXt+586dS0hICFOmTOGrr77SK1dSr0Ougr6zFQpFnq7urKwsvceTJ0/mgw8+YNOmTWzZsoVJkyaxatUqOnfuXGLxlWZizJjw0pn52WPkZI6UIVPNuyl/htzEqm4ye9UqAGJTrUiKeXzv0Xnz5rFp0yYx75gg5EOSJBQq5StfSusfRrnjxnbv3k1wcDAAQUFBrFq1qsDxYrlUKhU5OTkvPcb79+8TFRXFhAkTaNq0Kb6+vnmmmYD/SyzDwsIIDg5GkiQCAgKYNWsWjx49KtZ4sVyTJk1i1qxZxMbGvsip6Dl06FCex/l1CQM4ODiQkpJCamqqbl1+rWiVK1dmxIgRbN++nXfeeYelS5eWWLylnUjGhJdOUvzflZXB9+thKptyRwoj3NEd05RoZEnJ8SVhKJVKXfeAuLJSEMq2pKQkTp48qbc8OQ9kScgdN7ZhwwZdMhYcHMyvv/6Kg4MDVatWLXBfT09PDh8+THR0tF7XYUmzsbHBzs6On3/+mcuXL7N7925GjhyZp1xwcDDnzp3jzJkzBAQE6NatXLmS2rVrv9Ct+YKDg/Hz82PGjBnFPsbT/vjjD5YsWcLFixeZNGkSR44c4dNPP823bIMGDTA3N+eLL77g8uXL/Pbbb3pTUT169IhPP/2UsLAwrl+/zv79+zl69Ci+vr4lFm9pJ5Ix4ZUwq2aPkYMZRhkKuqW0JvHRPRqrDxOlSAHg8k0VWanpYlZ+QXhNhIWFUatWLb1l4sSJJVqHRqOhVq1a2Nra6hKvgIAAtFrtc8dYjR49GqVSSdWqVXFwcCjxRDGXQqFg1apVREZG4u/vz4gRI5g5c2aecv7+/tjb21OjRg1d4hUUFEROTk6xx749aeTIkSxcuJAbN2688LEApkyZwqpVq6hevTrLly9n5cqVBSa/tra2/Prrr2zevJlq1arx+++/M3nyZN12pVLJ/fv36dWrF5UrV6Zr1660bt2aKVOmlEisZYEki+aHZ0pOTkaj0ZCUlCRuGv6C0k7cIWH1BTJV2Sy6OxO7BAVhtgG0z6hClsqKRv4PqfVpB3bs2MH+/ftxdXWlf//+pbaLRBBepvT0dK5du4aXl1ehruIThFdFkiT++uuv595e6lV41uekLP1+i5Yx4ZUxq+GAkb0ZqkwjPGxrAlAj7RS3M+MBuHI4FlmrFa1jgiAIwhtFJGPCKyMpJCxDHk+sGKJogtZIiU16Mocts/D5dylVj87l4Z49YlZ+QRBYuXIlarU638XPz88gMfn5+RUY08qVK196/TExMQXWr1arS6SrtTQ+728CMbWF8EqZ13QkeXcM5vfBtlxVEq+fwSv9LPusrOgaL3N/8RIsmzalUaNGHDt2DAcHB7KyslCpVIYOXRCEV6hDhw40aNAg322Gmpl98+bNeaZkyOXk5PTS63d1dX3mXF6urq4vXEdhnnfxB3LJE8mY8EpJSgmrEHce/HmJRqogtkrn8Uy7xT/u7ehyZS+pJ06RfCQSq/p1GDFihBgrIwhvKEtLSywtLQ0dhh4PDw+D1m9kZFSi84LlpzQ+728C0U0pvHLmtRxR2phgmW2BnevjZm+vjCuE+3fnwFtfcXxpBIBIxARBEIQ3gkjGhFdOUip0Y8fqmL6NUjLCQYrjiE1FMk00XE11Jv3KFV35u3fvsmvXLtE0LgiCILyWRDImGIRFbSeU1iZotJY8rOHBySZZHNBYIGkzeWTuSNSCvwHIyMhg4cKFREREiCsrBUEQhNeSSMYEg5CMFFgGP24da5falPvpF5HN47nKQwAuRhuRdfsOJiYm1K1bFxBXVgqCIAivJ5GMCQZjUdcJpUaFfbYNLZIa4l3uKMfM0gG4Z1OVm0tXA4h5xwRBEITXmkjGBIN5snWs+51WNNt9kwYPtpOUkwSSgnOH7pLz8CFqtZp69eoBonVMEARBeP2IZEwwKIu6zigsVdhpbfCyqIZjRgInVPcBiLWry/1VfwCidUwQhNdHaGhoqbiVkFB6iGRMMCjJWIFlkBsAVWwbIqHAIe0kacRS8+RcklYsR87MFK1jglCGPCvZ8PT0ZPbs2XqPJUli1apVecr6+fkhSRLLli3LU/7p5T//+c9z44qOjtbbR6PR8NZbb7Fhwwa9csuWLcu3jkWLFhXq/AWhqEQyJhicuoEzktoIG8kGT7UfFdKiWWUqozbJIPv2bZI2bQYet45pNBp8fX3RarUGjloQhJLi7u7O0qVL9dYdOnSI+Ph4LCws8pSfOnUqcXFxesuQIUMKXd/OnTuJi4vj8OHD1K9fny5dunD27Fm9MlZWVnnq6NGjR/FOUBCeQyRjgsFJxkqsgh6PHats9xYKJKqmnudonRYA3F+yGFmrRa1WM2zYMAICAlAqlYYMWRAMKjMzs8Dl6dv1vGjZV6FHjx6Eh4dz48YN3bolS5bQo0cPjIzy3ijG0tISZ2dnvSW/pK0gdnZ2ODs74+Pjw/Tp08nKymLPnj16ZSRJylOHmZnZc489efJkatasyYIFC3B3d8fc3Jz33nuPxMTEAvd5urUQoGbNmkyePFnvuOXLl8fExARXV1eGDh1a6PMVSj9xOyShVLBo4ELSnhis02zxUPuR8TCKXyy7o/b/CEVmOo5792IZHIxCIf5+EIQZM2YUuK1SpUp6LTgzZ84s8H6KHh4efPTRR7rHs2fPJi0tTa/MkwnBy+Lk5ETLli1Zvnw5EyZMIC0tjdWrVxMeHs4vv/zy0urNyspi4cKFQMne7/Ly5cusWbOGDRs2kJycTN++fRk8eHCxbyb+559/8v3337Nq1Sr8/PyIj4/n1KlTJRavYHjil00oFRQqJZqg8gBUsXkLYzkHTcZ94u3rEu/cgLhFv+rKyrLMv//+y/r168XYMUF4TfTp04dly5YhyzJ//vkn3t7e1KxZM9+yY8eORa1W6y1hYWGFrqtRo0ao1WpMTU0ZNWoUnp6edO3aVa9MUlKS3vGdnZ0Lffz09HSWL19OzZo1CQwM5IcffmDVqlXEx8cX+hhPiomJwdnZmWbNmlG+fHnq169P//79i3UsoXQSLWNCqWHxlgsP9lzDOt2Ou/XKcfyeA3UfZqPJMubKHXPcT53CrEYN0tLSWLt2LVlZWVStWpXKlSsbOnRBeKW++OKLArdJkqT3eMyYMYUuO3z48BeK60W0bduWAQMGsHfvXpYsWUKfPn0KLDtmzBhCQ0P11pUrV67Qda1evRofHx8uXrzI8OHDmT9/Pra2tnplLC0tOX78uO5xUVrly5cvj5ubm+5xw4YN0Wq1XLhwoUhJXa733nuP2bNnU6FCBVq1akWbNm1o3759vl24QtkkXkmh1FCYKLEO8iB523U6JTVli/1x9qcH0SYLYl0DuLdoCe4/zMHCwoJ69epx4MABwsLCqFSpUp4fFUF4nalUKoOXLWlGRkZ8+OGHTJo0icOHD/PXX38VWNbe3p6KFSsWuy53d3cqVapEpUqVUKvVdOnShfPnz+Po6Kgro1AoXqiOJ+V+PxX0PaVQKPK08j/Ztezu7s6FCxfYsWMHO3fuZNCgQcycOZPw8PAS7V4VDEd0UwqlirqhK9kqLe6ZzjQzSSNOuodWIZNuase1E/FkRkcDYt4xQXgd9enTh/DwcDp27IiNjc0rqTMoKAh/f3+mT59eYseMiYkhNjZW9/jgwYMoFIoCW/EdHByIi4vTPU5OTubatWt6ZczMzOjQoQNz584lLCyMgwcPcubMmRKLWTAs0TImlCoKUyMsA9x4tCuWXjGBlLu1lPN27+GPO7dcA7i/dBkuUybr5h0TrWOCUDolJSVx8uRJvXVPdwU+zdfXl3v37mFubv7McikpKXnGX5mbm2NlZVWsWEeNGsV7773HZ599VqTuzoKYmprSu3dvZs2aRXJyMkOHDqVr164FdlE2adKEZcuW0b59e2xsbPjyyy/1rhhftmwZOTk5NGjQAHNzc1asWIGZmRkeHh4vHKtQOoiWMaHUsQnwINM4G3uFI27mVTB6dByQSbCtStyWfWTfuweI1jFBKM3CwsKoVauW3jJx4sTn7mdnZ/fcKSQmTpyIi4uL3vLZZ58VO9Z27drh6elZYq1jFStW5J133qFNmza0aNECf39/5s2bV2D5zz//nMDAQNq1a0ebNm3o1KkT3t7euu3W1tYsXLiQxo0bU716dXbt2sWGDRuws7MrkXgFw5NkcTnaMyUnJ6PRaEhKSir2X11C0d3cdAYiEknMvMOWW8uIc+5D68QLOEX+iXO/njj+/4HG27dv58CBA7i6utK/f3/ROia8NtLT07l27RpeXl6YmpoaOhyhkCZPnsz69evztAoKL8ezPidl6fdbtIwJpZJriA8ZRllYqxxxN6/I7UfHUAV6Y5ydyoPffkebmgo8bh1zd3cnICDAwBELgiAIQvGIZEwolRTmxmTUNgHAz7oxfilRLM10ROXhgTY5mcQ//wRArVbTt29ffH19RauYILzhBg4cmGf+sdxl4MCBJVKHn59fgXUUd1JXQRDdlM9Rlpo5XzfZDzOJnhGBqVZFxO21rDJ1ZnQFb+5G/Iv/wz1U2rYNSVzWLbymRDdl0d25c4fk5OR8t1lZWelNXVFc169fL/COBk5OTlhaWr5wHULhvS7dlMW6mlKr1eY7AZ5Wq+XmzZuUL1/+hQMTBCO1inv+mbidVuFn3YjK97dx6lp9JNfGuJw4jNPWrWjatwce31Pv6NGjREdH88EHH4hWMkF4Azk6OpZIwvUs4gpG4WUoUjdlcnIyXbt2xcLCAicnJyZNmkROTo5u+927d/Hy8irxIIU3l3+bxqQrMrA1cSHeswEXTLUA3CwXyP1Fi3UTJWZlZREWFsalS5fElZXCa0V0XghCwV6Xz0eRkrEvv/ySU6dOsWLFCqZPn87y5cvp2LEjmZmZujKvyxMjlA5qayuuVbwPQKhkw2HF4/faXftaJF+LI3XffgAsLCyoX78+8PiSevE+FMq63JnVn75xtyAI/yf381HW70RQpG7K9evXs3z5coKDgwHo3Lkzbdu2pX379vzzzz9Awbd7EITi8mnTgPRLV6iS4YyXSSyJ2Qqs01XEujTGZvFi1AFvA4+vrDxy5Ihu3jFxz0qhLFMqlVhbW3Pnzh3g8aSm4vtVEB6TZZm0tDTu3LmDtbW13iS5ZVGRkrF79+7p9Zfb2dmxY8cOWrZsSZs2bVi0aFGJBygI7s6erHPfSf2YKox5JLMqcQfWpm255fo2Hoe+5NGZs5hV89e1ju3fv1/Myi+8FnJnbM9NyARB0GdtbV2sm6+XNkVKxtzd3YmKitIbF2Zpacn27dtp0aIFnTt3LvEABQHAtbkvmYvTcVaVo5q8n0RlKphYc8++Bpoli3H7/ntAtI4JrxdJknBxccHR0bHAK/gE4U1lbGxc5lvEchUpGWvRogVLly6lTZs2euvVajXbtm2jefPmJRqcIORqULERK5xn0yS+LtVtGrLq4XFqlWuC0ak0UrZtJ/PGDVTu7nqtY+Hh4SIZE14LSqXytfnREQQhryIN4J8yZQqTJ0/Od5ulpSU7d+5k9+7dJRGXIOiRJAmLQFeyyMLB1J1K2QlkNHXC3d8RtFoSli7TlW3UqBHVqlWjQ4cOhgtYEARBEAqpSMmYjY0Nfn5+BW5Xq9UEBQXpHlerVo0bN24UPzpBeEKrau3YZXsEgFqaeoRv3oJt3z4AJK5bR3ZCAvD4ysouXbrg5ORksFgFQRAEobBe6u2QoqOjxTgHocRYGFuQVt+EbLJxMvOg9p2bnFJ7EFuvB1lZ8GDlb/nu9+RceIIgCIJQ2oh7UwplSsfa77DD6iAAb1lW59D8nfxr0Yh45wY8WLkS7RNzMqWkpPD333+zdOlSMe+YIAiCUGqJZEwoUzysPLhc7T455OBs5kmc6nFX5C2PJmQnJpK47i9dWYVCwdmzZ7l586aYlV8QBEEotUQyJpQ57Wt3Zrv149axRiolGEmkqux5YF2ZhKVLkbOzAf1Z+Xfs2EH2/18vCIIgCKWJSMaEMqeRayP2eZwlhxzqoyLF9PGYsFivZmTdukXK9u3/V7ZRI8zNzbl79y579uwxVMiCIAiCUKAST8Zu3bpV0ocUBD0KSUGLmm3YZXUYgKDMWGRtGnc1VUk3sda7gbiFhYVuiov9+/dz/fp1g8UtCIIgCPkpsWQsPj6eIUOGULFiRd26BQsWiOkFhJeio3dH/nYKRytrcTf3wlR5DRmJ2PIhpJ8/T9qhQ7qyPj4+1KxZE4C//vqLjIwMA0UtCIIgCHkVKRlLTEykR48eODg44Orqyty5c9FqtUycOJEKFSpw6NAhlixZoiv/wQcfYGFhUeJBC4JapaaB/9scUR0HwM/YChQ5KKs8ngfv/qLFeuVbtWqFRqMhOzubhP8/H5kgCIIglAaSXIRr/gcNGsSGDRvo1q0bW7duJSoqipYtW5Kens6kSZP0Jnx9XSQnJ6PRaEhKSsLKysrQ4QhPuJZ0jUGr+rHg6kQUkoKttrfo9UEAV1q2hJwcvP5ah6mvr658fHw8lpaW4g8EQRCEN0BZ+v0uUsvYpk2bWLp0KbNmzeKff/5BlmUqV67M7t27X8tETCjdvDRelK9QkZPKUwBUjs1CdnLGqlUrAO4vXqJX3tnZWSRigiAIQqlTpGQsNjaWqlWrAlChQgVMTU3p16/fSwlMEAqjh28PFrttRJZlKph6sv2PcBSdevHI1I7kLVvIvJn3ghJZljl16hTr168Xk8EKgiAIBlekZEyr1WJsbKx7rFQqRUuDYFBvl3ubLGcjznEGAJujt1m38h636vWCnBwSli/Ps8+DBw/4+++/OXnyJKdOnXrVIQuCIAiCHqOiFJZlmdDQUExMTABIT09n4MCBeRKydevWlVyEgvAMCknB+1XeZ2nMKr6Nr46niRtXM7K4payIh5EZiX/+if2gTzCysdHtY2trS3BwMLt372bLli14enpibW1tuJMQBEEQ3mhFahnr3bs3jo6OaDQaNBoNPXv2xNXVVfc4dxGEV6lTpU5cc7hHhOXjKysrqY3IyYG7NTohP3pE4qpVefZp3Lgxbm5uZGRksH79erRa7asOWxAEQRCAIl5N+SYqS1djvMmmHZrGkVP7mHdtPFpZZndyFpKZTL3NQzGytaHi7l0oTE319rl//z7z588nKyuLli1b0rBhQwNFLwiCIJS0svT7LW6HJLwWuvt055rpLY6ZnEYhSVQ2SeJhmoKkim+Tk5BA0vr1efaxs7OjRYsWAOzcuZM7d+684qgFQRAEQSRjwmvC29qbBi4N2KXcBYCbiR3mkpb4ap2Ax9NcyPncKLxu3bpUrFiRnJwcrl279ipDFgRBEARAJGPCa+QDnw/Y63aJmEeXUEgKKqvSeJBliWzrSNaNGyRv25ZnH0mS6NChA71796ZBgwYGiFoQBEF404lkTHhtBLkF4aIpx9/qx0mXu6mG7qNq4tCzGwD3Fy7Kd14xKysrvLy8XmmsgiAIgpBLJGPCa0OpUPJ+lffZ7fEvt9Iuo5AUxG84h22PHijMzcn4919S9+595jESEhJYt24dmZmZryhqQRAE4U0nkjHhtdK5UmcwV7FNtRMA5dUMtFkqTN7tCcC9nxcWuK9Wq+W3337j9OnT7Nix45XEKwiCIAgiGRNeKxoTDe2827HDM4q4tGsoUHB81kH2pdVDqzLjUWQkaZGR+e6rUCho3bo1AEePHuXy5cuvMnRBEAThDSWSMeG1092nO4mWWWz5/61jLrIRmfcziW06BID7z2gd8/b2pn79+gD8/fffPHr06OUHLAiCILzRylwyNm/ePLy8vDA1NaVOnTpEREQUWDYuLo4PPviAKlWqoFAoGD58+KsLVDCYyjaVqedcjz+qnSDS+DYKSaKSqYJL6R4kW3nwMDyc9AsXCty/WbNm2NnZkZKSwqZNm15h5IIgCMKbqEwlY6tXr2b48OGMHz+eEydOEBAQQOvWrYmJicm3fEZGBg4ODowfP54aNWq84mgFQ/rA5wMAfnNaC4CniRJLCS7WGYhWUj6zdUylUtG5c2ckSeLs2bOcPXv2lcQsCIIgvJnKVDL23Xff0bdvX/r164evry+zZ8/G3d2dn376Kd/ynp6ezJkzh169eol7Zr5hgt2DcbFw4V+Ls0RqY5CAGhaQLFsR7dGS5C1byCwgiQdwc3MjMDAQgMjIyHynxBAEQRCEklBmkrHMzEwiIyN1t6/J1aJFCw4cOFBi9WRkZJCcnKy3CGWPkcKIblUezy92KnkD2dpMbJXGlDPK4rpHa1LMXLi/eMkzjxEYGEjr1q3p0aMHkiS9irAFQRCEN1CZScbu3btHTk4OTk5OeuudnJyIj48vsXq+/vprNBqNbnF3dy+xYwuvVpdKXTA2NuGf2lGcSDkGgL+5hKurAuPsNJLWrSPrGfejVCqVNGjQACMjo1cVsiAIgvAGKjPJWK6nWyhkWS7RVovPP/+cpKQk3XLjxo0SO7bwalmbWtPGqw0ZJlq+L///2rvv+Cjq/I/jr9m+6b13AknovTcbIAj2rujp6WHD/lPvznJ6tjt7wXb2igUQLChKFekQaiBAAgklvWezfX5/LFmICQQkJCx8no/HPpKdnf3ud3aAefNtk02NoxKTxkyKoYKQrGRUh4OKDz88qrJcLheLFi2ivLz8BNdaCCHE6cZnwlhERARarbZZK1hJSUmz1rLjYTQaCQoKavIQvuuarp7FXivjNvG24gnWYVURlA0YDkD5F1/jqq5utZyff/6ZBQsWMHPmTFwu14mrsBBCiNOOz4Qxg8FAv379mq2MPm/ePIYOHdpBtRInuy6hXZiQNgGAhZ0XsNFRjkbRohQEsaHfFazJuJnyzz5vtZwhQ4ZgNBrZs2cPS5cuPdHVFkIIcRrxmTAGcM899/C///2P9957j5ycHO6++24KCgqYMmUK4OlinDx5cpP3ZGdnk52dTV1dHaWlpWRnZ7Nly5aOqL7oILf3vh2dRofLtI2nAvfhVF3EmFMwRQynJiiV7B/zcLeyuGtISAjjx48HYOHChezfv789qi6EEOI04FNh7PLLL+ell17i8ccfp3fv3ixevJgffviB5ORkwLPI6x/XHOvTpw99+vRhzZo1fPbZZ/Tp08d7URWnh4TABK7IuAIAR+oPfILnJuB9Qs1ogZ0xZ1Hw0axWy+nZsydZWVm43W5mzJiBw+E4gbUWQghxulBUWUDpiGpqaggODqa6ulrGj/mwSmsl5844l3pHPYaia3mrchAxaNiDlRVF2YS7I7jynavRGg1HLKe+vp5p06ZRX1/PkCFDGDt2bDsdgRBCiGPhS9dvn2oZE+LPCjWFckP3GwAwJ/7MK9QDEIceo2M9ZepWVk6bd6QiAPD392fSpEkArF69mrq6uhNXaSGEEKcFCWPitHFN1jVEmCOodhRTmLqWlTjRoKVP2Fm47JtZlb2RquL6VsvJyMjgnHPO4W9/+xsBAQHtUHMhhBCnMglj4rThp/fjll63AGAL/InXtDU4UYn3TyfWnIbD+hsbP/30qMoaNmwYERERJ7K6QgghThMSxsRp5aLOF5ESlEKto4ro3uuYfmAw/8CocWgULWuXz6a0YNcxlbl79262b99+AmorhBDidCBhTJxWdBodd/a9E4Adtu/5OayOMtyYNIH0NvfBqcDMJ/6BpbrqqMrbvn0777//PjNnzpTxY0IIIf4UCWPitHNW0ln0jOiJ1WUlo+cqXscKQHrUaMJdJupravnp7SUczUTj1NRUoqOjsVgszJkz56jeI4QQQhxKwpg47SiKwt397gbg95LvoYeLbJwoipYhgWdg8L+MfTv9yVna+sKuOp2OCy+8EK1Wy7Zt21i3bt2Jrr4QQohTjIQxcVrqH9OfUQmjcKkujNE/847RiQsV/+ie9KrMA2Dp19up3F/ZalkxMTGcccYZAMydO5fKytbfI4QQQjSSMCZOW3f2vRMFhUV7f2XUmSozDgzmT4zNILgmH2vtbj68fwrbV/7eallDhw4lKSkJu93OzJkzcbvdJ7r6QgghThESxsRpq3NoZyZ18izgurHhc9YmmanEjTYojr4Nebgdubgc9Xz/yvOU7Mo7YlkajYYLLrgAg8FAQUEBW7dubY9DEEIIcQqQMCZOa7f1vg2DxsDq4tWcN7KedxQbAIFpo8iqcKLRJeFy2Jj5zOPUVx25+zEsLIzx48czadIksrKy2qP6QgghTgESxsRpLTYglquzrgZget6bJI1OYAsuFL2Z9OBwIkLOQNGEUldZxrf//TdOu/2I5fXu3Zu+ffuiKEp7VF8IIcQpQMKYOO3d2ONGAg2BbK/cTmpKLtODwa2qGBIH03Pnz5xz/VRM/gHs37GNn958+aiXr2hoaGDz5s0nuPZCCCF8nYQxcdoLNgbz1x5/BeCtjdO47pIufIcDgJCU0URvXcbEex5Co9WydekiNs7/udUyLRYLb7zxBl9//TUFBQUntP5CCCF8m4QxIYCrMq8i2i+a/fX7ybfPo6hXGA1uB9qQJGoX5hGfks7Qy28kKrUfWSNGt1qen58fKSkpqKrKzJkzsdlsJ/4ghBBC+CQJY0IAJp2J23rfBsDbG97mr+cm8ZHR0x1pSB1H8Udfs3FRCNWVIynYXH1UZZ577rkEBQVRWVnJvHnzTljdhRBC+DYJY0IcMKnTJNJD0qmx1zAj72P6XtCFInstisEf24oyug2PRVEUFn22jYYaGyu//Zq6yorDlmc2m7ngggsAWL16tdxMXAghRIskjAlxgFaj9d5E/JOcTxiSqWd2ShAAupj+dKrcRGisPw21Dr568hWWfPYB3/73CRz2w3dBpqWlMWjQIAC+/fZbLBbLiT8QIYQQPkXCmBCHGJUwir5RfbG5bLyx/g1uvLoPOXV7UBQN9WutnHF1ZxQFqis6YTD7U7RzOz9Ne+mIMyzPPvtsIiIiqKurY/78+e14NEIIIXyBhDEhDnHoTcRn7ZiFU1vEnrO74nZa0Qcm4J6/kt5nJ6HRhmAKPh+NVsu2ZUtY9vXnhy1Tr9dz4YUX0r17d84888z2OhQhhBA+QsKYEH/QO6o3ZyWdhVt18/Lal7lmYg821O0EwLkN+p2VQEi0H3ZbDKn9LgVg2defsfX3xYctMz4+nksuuQQ/P792OQYhhBC+Q8KYEC2Y2ncqWkXLgsIFbCpfT+wt43DW7ker92fXu79x5rWZ9BmTxHl3XEm/CRcA8NO0lyjakdtq2aqqsn37drmZuBBCCEDCmBAtSgtO48LOFwLwwuoX6NszmR3ufAD8SvQEGjUMvSgdnUHLyGv+Qmqf/qiqm+rS4lbLnjlzJp9++imrVq06occghBDCN0gYE+Iwbul1CyatiezSbBYULqDfg1dj37cGRdGQ9+7qQwbta+g19q9c/q9nyRgyotVy4+PjAZg3bx5lZWUn8AiEEEL4AgljQhxGlF8U13a9FoCX175MYGIMFYFlqE47YVY9+UsKcTnczPjvGua+lYvLGel9b0NdLephuiEHDBhAWloaTqeTGTNm4HK52uV4hBBCnJwkjAlxBH/p/hdCjCHkVefx7Y5v6XHfjdhyfwDA9mMeqtNFZFIgAPM/3ord6qR0dz4fPzCV37/+rMUyNRoN559/PiaTiX379rFkyZJ2Ox4hhBAnHwljQhxBoCGQm3veDMC07Gm4E2NQE5y460oIVLWs/nwLQy7sRGCYidpyK8tn5VGyK4/aslKWf/MFOb8tbLHc4OBgxo8fD8CiRYvYu3dvex2SEEKIk4yEMSFacXnG5cT5x1HSUMKnOZ+SePvfsG6cDkDMtmqqiuo445pMADYu3ENoXD8GTLoYgJ/efJn927e1WG6PHj3o1q0bqqoya9YsmV0phBCnKQljQrTCoDVwe5/bAXhv43tY0+IwpgfhLFqPTlHI/XQLCVmhdB0WC8D8j3IYdPHVdOo/CJfDwaz/PkFNWWmzchVFYcKECSQkJDB+/Hg0GvnrKIQQpyP511+IozAhbQIZoRnUOmp5Z+M7RPztZqwbvkR1OUipdbFmXj5DL+mMf4iR6tIGVn+3m/G330tkUgqW6ipm/edx7NaGZuX6+flx4403kpqa2gFHJYQQ4mQgYUyIo6BRNN7bJH2+9XOqsuIxdYnHvuMnALQL9+ByuRl9dQZRyYFkDonFYPbjgv97BL/gEEp357P0i49bLFtRFO/vFRUVNDQ0D21CCCFOXRLGhDhKQ+OGMihmEA63g2nrpxF+883Yc+fislQQ6VZY+PFGUnpEcMkD/QmPDwAgKDKK8+/7B2n9BjLk0quOWP6mTZt44403+PHHH9vjcIQQQpwkJIwJcZQUReGufncBMGfnHPb2jMGYloR905cAZOyuZ+vWUhTNwZau+mobcV2yuPD/HsHkH3DE8oOCgnA6nWzYsIEtW7acsOMQQghxcpEwJsQx6B7RnbEpY1FReTn7FcJvugnnvrXYynMxopD3xVZcbhXVrbJs1k4+/scySnbXeN+vqirr5s5h77acZmUnJSUxbNgwAObMmUNtbW27HZcQQoiOI2FMiGM0tc9UdIqO3/b+xra+kejj43Gu+wSX6qanFebO3oqiUagtt+Jyuvn1wxxcDs+yFZsWzGP++2/x7XP/pqa0pFnZo0ePJiYmhoaGBmbOnInT6WzvwxNCCNHOJIwJcYySgpK4pMslALyY/QphN9yAu64I296lAESsKGF/uYURl3fGHKinYl89q3/cBUDm0JFEpqTRUFPNzP88jr3B0qRsnU7HhRdeiE6nIy8vj2+++UZulySEEKc4CWNC/Al/6/U3zDozm8o3sbp/INrwcFzZX1HvthOvapj34QbMAQZGXpEBwNq5uyktrEVvMnHB/Q/jHxJKWcEuvn/lv7jdTcNWdHQ0V1xxBVqtlpycHNavX98RhyiEEKKdSBgT4k+IMEdwfbfrAXh585uETL4GnFY0BXMBGFJiZ8GqPaT3i6JTn0jcbpX5H+XgcrkJiojk/Pv/iU5vIG/tKpZ89mGz8tPT07nssssYPHgwvXv3bscjE0II0d4kjAnxJ13X7TrCTGEU1BawqL8ZTUAAzuzvqNQ1YEahdPYO6mxORl6ZgdFfR1lhHet+2g1AbHoGY2+5E4DVc2awaeEvzcrPyMhg3Lhx3pX5XS4Xqqq23wEKIYRoFxLGhPiT/PX+TOk1BYDXd7xPwOWecWT++bNwozLUoeXzLzfjF2RgxGVd0Bm1mAMN3vdnDhvF4IuvRFE0zcaO/ZHT6eTrr7/mp59+kkAmhBCnGF1HV0AIX3ZJ50v4eMvHFNYW8uNAHcM/MWJbswBbv0sILNGTubmSjbur6D4wmoTMUPyDjU3eP/SSK+nUdwAx6V2O+Dm7du0iJ8ezHIZOp+Oss85qsnK/EEII3yUtY0IcB71Wz9Q+UwF4Z8+XmM4fD4D/5q+waCEVLfM+3YjLrTYJYqrb07qlaDRNgpjNUo/NUt/sc9LT0xk/3lP2b7/9xuLFi0/YMQkhhGhfEsaEOE5jUsbQLbwbFqeFbwcqoNVSv3Qh/r084WtCjcpn83d69y/cWsHnj6+gsqhp6KoqLuLzh+/n+5f/02yGJcDAgQMZM2YMAAsWLGDp0qUn8KiEEEK0FwljQhynQ28i/kHlD+jGjAZA/e1TakMN+KPgnF/InkrPuLDseYVUFlmY/1EObvfB8V+2+jqqS4rJz17D4k/ea/Gzhg4dyplnngnAvHnzWLFixQk8MiGEEO1BwpgQbWBQ7CCGxQ3D6Xby1QDPqvm18+aRMCoYNzBG1fO/zzeiqiqjr85Ab9JSlFfDhvmF3jKi09I59zZPqFvz/bdk//xDi581cuRIRo4cCcAvv/wit00SQggfJ2FMiDZyV7+7UFD43LEUdVh/UFVq53yMu3s4ACMLGvhh/X4Cw0wMuzgdgBXf5lFVcnAmZZfBwxl62dUA/PruNBZ/+n6LXZZnnHEGI0eO5OqrryYwMLAdjk4IIcSJImFMiDaSGZbJhLQJAHwx0A5A9ew5xA4Nwq5T6IKWZTO3Ut3goOvwOBIyQ3E63Cz4eKt3QD/A4IuuYOD5nmUyVs3+hpnPPo61vq7JZymKwplnnklKSop3m8PhOMFHKIQQ4kSQMCZEG7q9z+3oNXpmmrbg6JUBDgdV0z8mbFwKAFfZdLwyZwuKonDGNZnojFr2ba9i0+K93jIURWHEVdczYer96AxG6srL0Gi1R/zc4uJiXnnlFbZu3XoiD08IIcQJIGFMiDYUHxDP5RmXA/D5ACsAlV9+hX+WH/YwI0EohK0tY83uCoIizAy5oBMARXnVzcrKHDaKK5/4L+ff908MJvMRP3f16tXU1tby1VdfsX379jY+KiGEECeShDEh2tjNPW8mQB/AdxF7sHWKR21ooOrTT4m/1HPT8InoeWv6RuxONz1GxTPxjl6c/ZeuLZYVlZJGSEys9/mq2d/w+1eforrdTfYbN24cXbt2xeVyMX36dPLy8k7cAQohhGhTEsaEaGOhplBu6H4DKAqfD7ABUPHpp+gidWi7h6NB4eIKN+8s3omiUUjqFn5Uq+mX7ylkyWcfsuzrz5n9wlNNbqGk1Wq5+OKL6dKlC06nk88//5zdu3efsGMUQgjRdiSMCXECXJ11NZHmSH5MrsQaG4a7upqqr74ialInXDqFbujY9ssudpUdXPjVWudg/sc51FZYWywzPCGRMX+7A61Ox45Vy/nsn/dRWbTP+7pWq+Wyyy6jU6dOOBwOPv30U/bs2XPCj1UIIcTxkTAmxAngp/fjlt63oGoUvuzvmVlZ8f77KCaF0HOSAbjJbeDf32z03vj7149yyFm6n4Wfbj3szcC7n3EOlz/2LAGhYZTvKeDTv99NfvYa7+s6nY7LL7+clJQU7HY7CxcuPLEHKoQQ4rhJGBPiBLkw/UJSglKYm9mANdQfZ0kJ1d9+S+CweNQwI6Fo6JZfx6xsz0zKoRd1QqvTULC5gq3Lig5bbmznDK5++iViu2Riq69nxjOPsXrODO/rBoOBK6+8ksGDB3PppZee8OMUQghxfCSMCXGC6DQ67up7F06dwoz+nlX5K/73LigqkRd2BuAiDHw8eyuV9XZCY/wZODEVgKVfb6e+ynbYsgNCw7jskafpcdZYUFV0BmOT141GI+PGjcNoPLi9oaGhrQ9RCCFEG5AwJsQJdGbSmfSM7MmPPZ3Y/A3Yd++m9uefMXUOxdgtHC0Kf2nQ8tT3WwDofXYiUcmB2CxO5n+cg9vlPmzZOr2ec266nUsffopeY8Z7t7fUxbl48WKmTZtGRUVF2x+kEEKI4yJhTIgTSFEU7ul3DzaDwpw+ntsalb39DqqqEnpeGqpOoQ86KtcWs2xnORqthjMnZ3m7Kxd+tu2w48cay0/q3tM7G9NaV8fnj9xPwaYN3n3sdjsbN26ktraWDz/8kKqqqhN6zEIIIY6NhDEhTrB+0f0YnTCaH/qBw6DFlpND/W+/oQs1EXxGEgC3YeKJbzZidbgIjw9gzI3dUBTYv6Mam8V51J+1fMbn7M/dytdP/pO1P85GVVUMBgOTJ08mLCyM6upqPvroI2pqak7U4QohhDhGEsaEaAdT+07F4q/l516ebsfyt98BIHBkAkqokUg0jKpwMm3hTgDS+kQy7uYeXHR/X0z++qP+nGFXTCZrxBmobjcLPnibn954GafdTmBgINdddx0hISFUVFTw0UcfUVdX13qBQgghTjgJY0K0g86hnZnUaRJzBmpwaRUsq1ZhWbcORa8hbJLnlkiXYeC7BTvZUVILeAKZOcDgLeNIA/ob6Q1Gzr3tHkZdeyOKomHzol+Y/q8Hqa0oIzg4mOuuu46goCDKysr4+OOPsVgsrZYphBDixJIwJkQ7ua33bdSHmljUzfO8sXXMnBWOMSMUPQq3uU38/ZuNuN1Nx4ltXrKXjx9eRsGW8lY/R1EU+p93IRf//XFMAYEU7cjlkwfvojh/J6GhoUyePJmAgACKi4vlPpZCCHESkDAmRDuJ8Y/hqqyr+HawBrcCdQsWYM3NBSB0YifQKgxCh3F3LV+uLvS+T1VV9uZW4XK4+fGtTRTnH914r+Sevbn6qReJSEpBZzAQGB4BQEREBJMnT2bixIn06tWr7Q9UCCHEMZEwJkQ7urH7jdTFBrEiwzP7sfyd/wGgizATODIBgKmYeO77HEprPd2SiqJw1nVZJGaF4rS5+O619VQW1bf8AX8QEh3DlU/8l0v+8QR+QcHe7RER4fTr18/73Gq1Yrfb2+QYhRBCHBsJY0K0o2BjMDf1uIlZgz1/9Wp++AH7gftHBp6RiCbYQCwaJtm0PDRjI3anZ8C/Vqdh3N96EJUciLXewexXsqmrbH0MGYDBZCY0Nt77fOOCn/nyX3+nvqoSAIvFwkcffcT06dNxOBxtebhCCCGOgoQxIdrZlZlXYukUw/oUBVwuyt99FwCNQUvIeWkAXIOBLTklXP/+SqobPAHJYNJx3u29CIn2o67CxpxXs7HWH1t4clit/Pb5R+zduplP/n43xXk7qKyspLS0lJ07d/LVV1/hdB79UhpCCCGOn4QxIdqZSWfi9j63M2uop6uy6psZOMvKADB3j8CYHoIBhYcVPzbtrOCSN35nT6Vn1qM50MDEO3rhH2ygYl89uSsPfw/LluhNJi5/7BlC4xKoKy/ji0f+j5q8XK666ip0Oh25ubl88803uFyutj1oIYQQhyVhTIgOMDFtIraencmNA+x2Kj78CPCMDwuZ1AlFr6GHquUjJQBzSQMXTvudjXuqAQiKMDNxam+GXpROj9EJx/zZYXEJXP3k86T1HYDTYeeH155n95Jfueyyy9BqteTk5DBr1izc7sPfikkIIUTb8bkwNm3aNFJTUzGZTPTr148lS5Yccf9FixbRr18/TCYTaWlpvPnmm+1UUyEOT6vRcle/u5k1xPNXsPyzz3DVetYX00f5EXlLL3QRZiJUhdfwY3ytyhVvLuPXnGIAwuMD6DMmyXsbJJfLfcTbJv2R0c+f8+//J4MuvByANd/PYsNXH3PJJRej0WjYuHEjc+bMkUAmhBDtwKfC2PTp07nrrrv4xz/+wbp16xgxYgTnnnsuBQUFLe6fn5/P+PHjGTFiBOvWrePvf/87U6dO5ZtvvmnnmgvR3MiEkbiH9qMwAqivp/Kzz72vGeICiLqjD359otCgcBMmnnQaefDDNXy8bFeTcuxWJ9+/tp5lM3ce0+drNFqGX3EtE+9+EJ3RSHxGV7KyunLxxRejKArbt2+XVfqFEKIdKOqx/He6gw0aNIi+ffvyxhtveLdlZWVxwQUX8PTTTzfb/4EHHmD27Nnk5OR4t02ZMoX169ezbNmyo/rMmpoagoODqa6uJigo6PgPQohDrC9dz1vPXsUd37khNISMBQvQmExN9qlfU0zVtztQ7W4qcfMEDfQemcyD4zLRaBTy1pXy41sbARh2STq9z0465npUFe0nOCoaReP5/9nGDRuIi48nPDz8+A9SCCE6gC9dv32mZcxut7NmzRrGjBnTZPuYMWP4/fffW3zPsmXLmu0/duxYVq9efdgp/DabjZqamiYPIU6UXpG9MI07m5JgoLKKqhZabf37RRN1Rx90MX6EouEF/NEs3svUz9ZgdbhI6xPJkAs9t1Ra+vUOti3ff8z1CImJ9QYxh81K9mfvsvWXH1APdFNWVFT8+YMUQghxRD4TxsrKynC5XERHRzfZHh0dTVFRyzPKioqKWtzf6XRSdmD22h89/fTTBAcHex+JiYltcwBCHMYdA+7i+0E6APa/8yZqC/9R0Ef6EX1bH/wHxwJwDUYmbKrltjeWUV5no8+YJHqd5fmzOv+jreze1Pptkw5nx6rllOTvZPmM6cz67xNs3riR119/nUWLFv3pMoUQQhyez4SxRo0DlhupqtpsW2v7t7S90UMPPUR1dbX3UVhY2OJ+QrSV1OBUgi66gGo/0BSVUf3DDy3up+g1hF6QTtjVWbgNGnqg4759bp56aRm7yi0MuzidLoOicbtV5r69kaK86j9Vn6zhozn3tnvQ6vXkrV3FvE/ex+VysWDBApYuXXo8hyqEEKIFPhPGIiIi0Gq1zVrBSkpKmrV+NYqJiWlxf51Od9ixMEajkaCgoCYPIU60vw2cys+DDAAUTHvZ2z3YEr8eEcTd1Q93jB+BKNxdp+Wnl1ayJq+cMydnkdQtDKfdzbz3NuNy/bnZkF1HnskV//oPAeERuHblYq4sAWDevHmsWLHiT5UphBCiZT4TxgwGA/369WPevHlNts+bN4+hQ4e2+J4hQ4Y02//nn3+mf//+6PX6E1ZXIY5VpF8kEVddg8UA+t37qZ7/6xH314WZSLyjD9ohnm7L85w66v63ifnLChh3cw9Se0Uw7m890Gr//F/xmE6dueapF4nP7IquqABDmWcs2o8//siaNWv+dLlCCCGa8pkwBnDPPffwv//9j/fee4+cnBzuvvtuCgoKmDJlCuDpYpw8ebJ3/ylTprB7927uuececnJyeO+993j33Xe57777OuoQhDisawdNYdEAMwA7X/1vq+uGKVoNseenE3htFvVaSEdL8ncFzP1mC+dO6UFkYuBx18k/JJRLH36SXueMJ9hWR7/evQCYM2cO69evP+7yhRBC+FgYu/zyy3nppZd4/PHH6d27N4sXL+aHH34gOTkZgP379zdZcyw1NZUffviBhQsX0rt3b5544gleeeUVLr744o46BCEOK9AQSOwNN2HXgt+2QiqXHXlB40bB3SJIvX8A+4J0+KHQZ0MV859fgd3imQiwf0cVc15dj8P2525xpNXpOfuvt3L9f1/jvPMvYMCAAQDkbtt2TAvNCiGEaJlPrTPWEXxpnRLh++wuOx/9ZRjDVtZRmxZN309moAsLO6r3qm6VRR9sIDW3Gi0KpQaFlOu68e07W6ivspHULZzxtx5f1yWA2+1m3qwZ7PhhBudN/T+Se/Y+rvKEEOJE8KXrt0+1jAlxqjNoDSRMuYMGAwTmFbPlvHFYVq8+qvcqGoXRN/Ri95hESnETaVepemcTwwZEotNrKNhczvyPclDdx/f/L0VRqNmSjbW2hm+eeoRVc2YcdnkZIYQQrZMwJsRJZsyQa1j4z7HsCQd9RS35kydT+vbbR5xheaiRZ6ai3NCVlVoXesC8qpjRaYEYNAq5K4pZOmPHcXUvKorChf/3CN1GnY1bdfPTr/N568032Z6b+6fLFEKI05mEMSFOMhpFw92Xvkj+81NY0k1B41Ype+FFCqZMwVlZeVRl9O4SSf+7B/CpvxsHKv7FFs6MNBCqVVj/SyHrfm75fq5HS2cwMPaWOxk9+a+g06ECn336KTkbNxxXuUIIcTqSMCbESUhRFG4efCeRT/+bt8frsOvAsngJeRdcgGXtuqMqIynCn7/dO4RX43TswY3R5mZ4oI50o4ZlM3eya2PLd6E4ljr2n3ABV117HXprPaqiMP3rr1k4fz7uo2zFE0IIIQP4W+VLAwDFqWnp3qW8MP1Obv2qnrhKQKsl6p57CLvhL0e8+0Qjm9PFP75YT/dNVZyNZ329WpOOtDt7Yww1t0kdy/bu4b03p2HRehauTUpK4oILLiDsKCcfCCFEW/Ol67eEsVb40skUp66c8hzu/mEKl8woZViO569swBlnEPf0U2hDQlp9v9ut8vzPW9m9sJC7VBMmRUEToCfsikxM6a2//2g47HbWrVvHL7/+it1uJyw0lCsvPJ/IpJQ2KV8IIY6FL12/JYy1wpdOpji17avbxy3zptBp4U6u/8WN3gW6uFgSXnwRc69eR1XGFysLeGfmFh5VTaShBaAmIZCo8zsR0QaLxAJUVlYya9Ys1N3bqd2xlVGT/0qvc849qlY8IYRoK750/ZYw1gpfOpni1Fdtq+bOBXdSvn4198xyE1Opgl5P9H33Ejp58lEFnkW5pdz98Rr+6tAzCU+3YqUKibf0JCQluE3qaa2v54dX/kN+tue2SWG9B9LzrLH0HTBQQpkQol340vVbwlgrfOlkitODzWXjH7/9g8Xb5jLlBzdDth7otjz7LOKefBJtcOuBasu+Gm74YBW9q5z8n2LGoCg4gLBLuxDcL7pN6qm63az9cQ6LvvyEmqRM0GpJiY/n0quuwt/fv00+QwghDseXrt8SxlrhSydTnD7cqpsXVr/Ah5s/YOxalevng9bpRh8fT/xLL2Lu0aPVMvZXN/CX91fh2lfHc6o/4QdW5jcPjiXsvDQUXdtMtt6ft4Mv3n6TaqM/KAoGrZYLL7mErKysNilfCCFa4kvXbwljrfClkylOP5/mfMqzK58ldb+bh+YYCC5v8HRb/t//EXrN1a12CdZaHdz66Vq2bS3nKacfmUbPODJ9nD/hV2Whi2ib2ZYOq5U5/3uDTXuLcBs9Zfbp04exY8diMpna5DOEEOJQvnT9ljDWCl86meL09MvuX3hwyYNo6608+EsAmRurAQgcO5bYfz+BNvDIA/MdLjcPz9rEwmV7uMtqYqCfDoNGQTFqCb0wHb/eUW1W1y2/L2bb3iLWb94CQGhoKLfccgsGg6HNPkMIIcC3rt8SxlrhSydTnL6yS7K5ff7tVFuruHJjMBf+VANOJ/qkJOJffAFzt25HfL+qqkxbuJOvvtvOFRYDfSIMxDs8r/n1jyZkUic0Bm2b1XfXrl3MmjWLUIOWSJeNs268FaOfX5uVL4QQvnT9ljDWCl86meL0ll+dzy2/3MLeur30LvXnoe/0KEVlKHo9UQ89SOiVV7babflt9l4emb6BOtXNg0FBnFvj2a6L8iP8qkz0MW038L6ypJgP770Vl91GcFQ0w66bQmBMLAkJCW32GUKI05cvXb8ljLXCl06mEGUNZdz2621sKd9CmN3AS793wrRsIwBB488l5vHH0QYEHLGMFXnl3PzxGqobHFzg78ddDiM6uwt0GkImpeE/IKbNlqfYl5vD9688R3VpMQ0pmbjNAQwfMYJRo0ah0+na5DOEEKcnX7p+SxhrhS+dTCEALA4L9y26jyV7l6Co8ELxGcR/vACcTgzJycS//BKmzMwjlrGjpI4p/1vJmYVuwlEYlRpIQIUNAHPPCEIv6ozG1DZhyWap56d3XmfDrkKcweEAREVGcvEllxAd3TbLbAghTj++dP2WMNYKXzqZQjRyup38e/m/+Wb7NwDcbRzPiLdW4txfhGIwEP2PfxBy2aVHbOEqqbHy4tPLSah040Slf99wknfVgVtFG2Yi/MpMDG20ar+qqmxZPJ8fpn9GfVgs6HRotVrOPPNMhgwZgkbTNstsCCFOH750/ZYw1gpfOplCHEpVVd7Z+A6vrnsVgAsizuKvsy1YFi0BIOi884j912NojrAAa32Dk5ef+J3gCidWVOKGRTJ6nxVXpQ20CsHjUggYHt9m3ZaVRfv49uXnaIhOoLjKM2AtKSmJyy67jIBWuleFEOJQvnT9ljDWCl86mUK0ZPbO2Ty69FGcqpP+kf34d8EAal59A1wuDKmpxL/0EqaMLod9v83q5I3Hl6GvcFCnqNiHhDFFMWLbXA6AKTOM0Eu7oPXXt0l9XU4nikZDdnY2c+fOJTgwgIsmjCc2Lb1NyhdCnB586fotbf9CnOImdZrE62e/jr/en9Wla7g99hcC3noBXXQ09vx8dl12GVXffMPh/l9mNOm45Z+DUUL0BKgKyvJyHrJUY56QCjoF69YKSl5eiy2vuk3qq9Xp0Gg09O3bl7/e8Be0O7cw/eH7WPvDtzidTmpqatrkc4QQ4mQhLWOt8KVkLcSRbKvYxq2/3EpJQwlR5ihe6/cU/s+8S/0ST7dl8PnnE/PoI2gOs95XfZWNT55aSXG9jS/9bSTFB/He+G4wOw9naQMoEDAkDnOPCAxJQSja4++6bKirZe60F8lbsxIAc/d+VOtMTJgwgR49eshNx4UQh+VL128JY63wpZMpRGuK6ou45Zdb2FG1A3+9Py+MfI4u32+h9OWXwe3G0KkTCS+9iLFz5xbfX11qIbfSwi1frqOszk5ssIn3r+lL1PJSLGuKvfspZh2mLqGYM8Mwdgk9ri5MVVVZ//MPLPz4XWri0nD7ecaOde3alQkTJshNx4UQLfKl67eEsVb40skU4mjU2Gu4a8FdrCpahU7R8a9h/+Lsilj23nMvztJSFLOZmEceIeTCCw5bRkG5hes/WIltfwPVfhreuLYv/V1aGtaXYt1WgdviPLizAoakIEyZYZgyw9DH+P2pFq2ygl1898p/2ddgxx4RC4oGf39/Jk2aREZGxp/4JoQQpzJfun5LGGuFL51MIY6W3WXnn0v/yY/5PwJwe+/buSH+Yvb/3wPU//47AMEXXUTMw/9EY275ZuEr5+1m5Tc7WWdwssjfyVMX9eCyAYmobhV7YS3WnAqsWytwFNU3eZ822IgpMxRTZhjGTiHHdJslh93G4k/eY82iBbjSsrCpnlDXu3dvxo0bJzcdF0J4+dL1W8JYK3zpZApxLNyqm5fXvsx7m94D4OLOF/OPAQ9R9c67lL32OrjdGDt3Jv7llzCmpTV7//bVxfz87mZQ4TeTg2UmJ1cOTOTc7rEMTA3DpPeELGeVFevWSqxbK7DtrEJ1uA8WotNg6hTsbTXThR5dmNq5ZiURyamsWLuO33//Hb1ez5QpUwgPDz/+L0YIcUrwpeu3hLFW+NLJFOLP+Hzr5zyz8hncqpsR8SN4btRzqGs2sve++3CVlaH4+RH7r8cInjix2Xs3LNjDkum5APxstrPe6ALAoNMwKDWMEZ0jGJ4eSVZsIIqioDpcWHdWY93qaTVzVdmalKeL9sOcGYYpKwxD4tFNAti9ezdLvplOsOLmnJtuxxQQgNvtloVihTjJ2arqyF+2gUBXEJG9kttsEelGvnT9ljDWCl86mUL8WfML5vPA4gewuqx0De/K62e9Tkidyt777seyYgUAIZdeSvQ//o7mD12BK2bnsfqHXaBAWaY/P9XVsa/W2mSfiAAjIzpHHAhnEUQFmVBVFWexhYYDwcy+uwYO+dfIOwkgKwxTl1A0fi1PAqjYt4cP77sNt8tFYEQkvS+bzMqNm7ngggvkpuNCnCScNVYqNxdQnbMX+956dPVaqhUHPxjWMsjZhSEjhxI8NqVNP9OXrt8SxlrhSydTiOOxvnQ9d/x6B5W2SuID4nnj7DdICUii7PVplL3xBqgqxowM4l96EWNqqvd9qqqy8LNtbFmyD4C4LiF0v7ozS7aXsWR7KcvzKmhwuJp8VmZM4IFwFunt0nRbHFhzK2nYWoEtt7LlSQBZYZgzw9BFN50EULQjl+9f/S+VRftpSM7E5ReAoiiMGDGCkSNHyk3H25Gr3oGzxIKjxIKztMHzs8SCanehi/JDH+uPPqbx4YfGKOfmVKKqKq5qO9aCKlzFVhz76rDvrcNdY6cBO7VKA1FqMAAu3HxuWEK8PpyLJ12CX6/INq2LL12/JYy1wpdOphDHa3fNbm755RYKawsJNgbz6pmv0ieqD/W//87e+/8PV3k5Gj8/Yp54nOAJE7zvc7tVVszOY9vyIrqPiqf/uSkAWOsdzHk1G228P3l6F4tKqti0v4ZD/9Ux6DQMTAnzhrPMmEAUFeyFNd7uTEeRpUk9tSFG7zgzU6dgFL0We4OF+e+/xaYlC7HGJHlvOh4TE8OFF14oNx1vQ6pbxVVlw1HqCVqHhq4mIfooaMNM3mDWGNR04WYUjawhd6wcNhe15daDCzgf+ArDYv29/3mpq7Rit3r+c9TSpOaQKD/vd2+psWNvcDYp69D3BYQYUavtNBRUU7mpENueGnS1Cnr1YCu2ikqxUk2Obg/5mhJM6DgrMANTYhghXRLAqKegdg8RkdF0Tjv8nUD+DF+6fksYa4UvnUwh2kJ5Qzl3zL+DjWUbMWgMPDPyGc5JPgdHcQn77rsPy6pVAIRccTnRDz2Exmj0vldVVdxOFa3eM14rd1UR897d4n09INRITGYo1aE61jRYWJxXzv7q5l2aw9PDGdE5khGdPV2ankkAFZ6JADuqwHlwEoCi12DsFOKdobl98wp+eed16nVG7HEpuDVatFotZ5xxBkOHDpWxZMdAdbpxljU0a+VyljU0nYhxKMUTlvVRfugi/dBFmdFH+aEYtDiLLdiL6nHsr8dZVI+rxt5yEXoNumg/9NH+h7Sk+aENMJzAo/Udqqo2aRn+/Zsd5G8oo6rE0qSrv9Gtb5zh3f+ndzaxY03JYcu+4bGe6HCiWq0snF3E9i2e/wgpQIAGgrUKIVqFYJ1CqM6FlubDB9yqm3J7MdsMDnbr99GgOzijOqSyioQCf4qjz/JuS8ubTVHnEv7y+mfH+lUckS9dvyWMtcKXTqYQbcXisPDA4gdYuGchCgoPDHyAq7OuRnU6KX3tNcrfetvTbdk1i4QXX8SQnNxyOTV2dm0oI39DGXtyKnAecgHXGTSMvak7zmjjgS7NMpbtLG+xS3N4egQjukQyMCUMI2DLOzAJIKcCV3XTSQD6GD+URCOr1s0h9dzhZO8uJDfXM8ngyiuvlDXJWuC2Or1By1Ha4AlcJRacFdYWL+4AaBV0EeYDoevAzyg/dBHmo16uxFXvwFHkCWaOIk9QcxbVHzboaQL1nmAW638wqEX5oeg6NmCrbje4XKgul/fnob83e83pAvchP10uVKcT3O4mr6kuJw6bm6oqF5XVCpVVCpW1CrUWLecPKkHjdqO6nCzLDWN3hWcxZL3GhUZxg8qBFjKVcdofUG02VKuVbO0givUpByruObnqIb8PXf4wOtWFJjCO0i4XQ1gKQVqVIJ0Rnab5eXW5nVQ5SqiylVDpdFDj0lBqhrqwGlTNgfPo1pBUWEjG1s2EVVayM3USBYln0tjclrz7e/akFPC3t2a26Xnxpeu3hLFW+NLJFKItOd1Onln5DNO3TQdgctfJ3Nv/XjSKhrolv7Hv//4PV2UlGn9/Yp/8N0Hjxh25PLuLPdsq2bWxnN0by6irtHHd00MJOLCcxc61JZTsqcUSbmBtbR1LdpSzcW91i12aww9MBsiMDsRd2uCZBJBTgb2g6SQAjZ8OQ+cQdviVsL04l7PPHEVsett2hfgKVVVx19ibtXI5Shtw17bcQgWgmLTeVi59lPlAa5cfulBTm9zyqlk93SquCiuOonrs+xuDWv3hg6EGdBGHjEWLPdCKFmxscXFh1W7HWVWFq7IKV2UlrqpKXJWVOCsrD25rfNTWorqc4HR5ApfT2TRUHdhGG1xGG0torHFB4lnsjR1GgzkSlOZhc9DKx/G3eO56UROYhFPnR0DdXgyO2mP7YK0BTVAC2pAkNCFJKCHJaANj0Wiaj+VzuG3YGsqobyin3FLOXmsx5Y5qrBix68zY0WPVGnAH6AhL0eNw2ql27aHKsBmrwYZNB3Y92HUQ4p9EZuwAhqWN4Iy0ofgbWr4N2/Hwpeu3hLFW+NLJFKKtqarKu5ve5eW1LwMwNmUsTw5/EqPWiKOoiL333kfDmjUAhF51FVEPPoDG0HpXkqqqVBZZCIs9eCujOa9kU7ClAgD/YAPJPSOI6BxMnsbF77sqWLy9tIUuTQPD0yMYfqBLM0Krxba9koacCqy5lagNzkM+002ZbR/GLiHEjevHr+uWcPbZZxMcHHzc39PJRHWpOCsamrRyNQYw1eY67Pu0QQZPyDqklUsf6YcmUH9S3APUbXfhLLbg2F/vDWqOovom57gJxQlqDaq1DHfdXpzlu3Duy8VdXd6+FdfpULRa0GpRtFoUjQaX3kydfyx15lhqTTHUmqKoM0QxvOQjzFhRtFpyAwayw9wfAKPaQJBaSRDVBGlqCNLUEqS1eIYDaLRNykenRWM0oZiMaEwmFKMJjdnzU9EZcdvMuBt0uGo1WMudKPWg0Pz82lwNVNqLqbQVs89ZQ47iZqvOn20B6TRoPcEpULGSqSuls7aMGr9QSuIdNGi3UuLYhMmipcJY4U2XUeYoBscNZkjcEAbHDibCHHHCv3pfun5LGGuFL51MIU6U7/K+4+GlD+N0O+kb1ZdXznyFYGOwp9vy5Vcof+cdALQREZi7d8fUtSum7t0wde2KLjr6qC7m21YUkbeulIKcCpyHhAatXkNy93DG3tSNvDILS7aX8tv2MpbllWOxNw0XGdEHZml2iWRAYija4nqsORVYtpThKj0Y5BbpN7NdW4RBo6dfp57otTrQeFon9Do9AzJ6e0YpaxQ27sqhxlLjabloPAxFQUVFq9UycsAw0CigwPqtGymvqjikAUdFPeQ948aMBY3n97Xr1lJUVOQdbP3Hn+PHj/fOAl2zZg0FBQXe1/38/EiKTyTeLwpdjertVnSUWnCWW8F1mH/WNaALNzdp5WrsZtSYOnZWo6qquOvqvK1SzVqqqlrYVl2NYgjytOwExaMJjkcTlIAmMAalhZYdAHd9Ka6avWAvB2pRjFZ0gVq0ISFoQ0MPPELQhYaiCQxC0TeGKR2KVnMwVGm1nqCl0Rz8qdWh6LTebSgKqgqaAwPity3fz6ofdlFd2tBiK9+EW3uS0tMTUqqKLdSWWwlPCMAv6NjHyjVUNVCyvZLa3TU499djKrcSYG25+7fS7WCLBnJxU2ErIaB6Dbn6AIqNUdQGxBEeGUZ8iJm4EDOxwUaCbGVUFW6hYt8ebxk1+hrmxc/z/h0x68wMiBnAkNghDIkbQlpwWruHel+6fksYa4UvnUwhTqQV+1dw14K7qHPUkRacxhtnv0FcQBwAdYsWse/Bh3BVVjZ7nzYszBPOunU78LMr+vj4w/7D7HS42Jtbxe4NZeRvLKOuwkZCZijn39XHu8+mRXsITQigACe/7Sjjt+1lbPhjl6ZWw4DUUEZ0jmR4egSdjXp2fbeMmuy96I1hLDXmUqqpafb5JlXPNbaR3uffGdZQpKlqsa46Vcv1ttHe53P12ezRHr7l5a/Wg4OWf9FvYJe29LD73qAfcyAkKiywZ5Pr3Nt8JxXC1UDG2nvhx8GJFIpec6Bly3ygtetA+Ao3n/DxVarLhbu+HndtLa66etz1dZ6QVV1z+FBVWYmzqgocjj/1mZrAwENCVBiakDC0QbEopkjQBKM6zLgsWtSGw1zudBr00X5Nujn1Mf4tThhQ3Sq41YM/XZ6f9gYHVfstVO6rp6qonuoiC1UlFkZcnE5kUiC4VQo2lbNu7m4UwOSnIyjcRFCYicBQE4EhBvwCDZ4s00L5Tba5VdxON/UNTuoaHNQ3OLFYHVhsTlSri1ibSoTa8t+vOkeVt8Wrwl7MbsVJXuoAzOm9vIHr0J9BZh2KouBwO5i9YDabV2/G3XAw1BWZi8gLzKPEv4Rukd284atnRE/02pbXBmwvvnT9ljDWCl86mUKcaLmVudz6y60UW4qJMEcw7axpZIVnAeC2WrFuycG6ZQvWzZuxbtmCbccOcDXvGtMEBXmDmamr52FITva0KBxCVVUq9tXjdLiJTvH8/auvtvHBA0sB8As2kNIjgpQe4QQkBbCisJLftpexOLeUfX/o0gz3NzC8cwSDw1zYfv4YfRmo4XG4gvwx+vmjqAqgYkDHsIAenmDnVllv2UGVqw7UA//p94yJRgE0qobBSgaonovmVrWQKg7MaFNVb/dP42VxgDPdW5+dmmKqNJ5ZZop3JYKDF9CermS0eL6PAk0ZlUq999VapYF9mkqqNRZMioGbe1yCPsozmH35rnW4tCppaWkkJCSg1x/dBVF1uXBbLAdCVB3uunrcdbWeIHXI84O/1x14fuD32lpc9fWoFkvrH3YEitnsCVUhoYe0VIWiCzvwe0jT1ittcDDKUXSNA7gtngkDnq7O1icMKMYDA9YPCUKHndBwknGrKnsUlb1GqDXa0W+bSZXOhi4ujsi0LqR27Upmtyz8A1oeq6WqKvnV+Szbt4zlRctZVbSKlOIUMqszsWls7ArchS3GRt/UvgyJHcKA2AEEGU6ua6QvXb8ljLXCl06mEO2hqL6IW3+9le2V2/HT+fHC6BcYFj+sxX3dNhu23FxPONu8xRPQcnNRW2gB0fj7Y8rKahrQUlNR/rBga1WxhWWzdlK4pQLHH7ozEzJC6XVWIgmZoeSV1bMkt5TfdnhmadYf0qWpUV1MsK4hpWgNMSPGc/Hf/oZJr/V2EbZVd4qqquDGczFX/9DCoR6y3aV6w1+z192qZ4C4NxB4QoIuwky9q4GK8nISIyM9Yai2ltdmzKDO6gmiWkUh1mgkXlGIczoJt1ig7kCrVf2BUFXrCVzu4wxRf6To9WgCA9EEBKAJ8EcbEIg2LOxgiAppKWiFHPbG9CfKoRMGDga1I0wYOAy3qqKieLqhNQoarQZFrzkwrkvxrN2lOdAdixsVNy63C5dWh1Orp8HlxmK14qoqxuF04HY5wO1EUZ0oqgNFdVFkCGePKRoXoHNZ6V6zyVOW6vb+dKlOqu2lhPTqzKR77vXchsztpq6qgsCwI4/TqrBWsGL/CpbtXsaurbuIKI9gY9hGivyKAIjSRNFf359+vfoxLHEY8QHxf/6Lbwe+dP2WMNYKXzqZQrSXWnstdy+4mxVFK9AqWh4d8igXdr7wqN6r2u3Ydu70tp5ZN2/Bum0bqtXabF/FZMKUmdmkFc2Yno6i1+NyuNm7vZJdG8rZtaGM2grP+8/+S1cyBsUAnla0ukobIXH+ZO+p8iyhsaOMDXuqUFWIa9hHtT4IlzmIYZ0iGGouR13+LQPPO5+s4aPRG4/uxuVtzW2z4Swp8TyKi3GUlOAsPvjcWVWJu9bT/eeuP7iGk1tR2JWSQkl0FMXR0Vj/EGzCy8o4+5dfvc9VaD50W69HGxDgCVGBAWj9D/weEIA2MACN97k/2saw5f+H5wEBRzWRo72pqorN4qSh1k5DrePATzsNdQ6iU4NI6upZKLiyqJ5v/7sWpcHhycR48nDj75mDI+k2OhirpZ6G2hqK8ksxmFy4nBZs9XUk9+xLau9+uN0quVu3M++lf+Ow1KE6ms9aXRXcl+VhgwAIdlQxec/nhz+ArKGkTJxMYpgf0UY3K999CVNgICZ/f0z+ARj9A/ALCiYqtRMRiclotEdeYsTqtLK2ZC3L9y9n+b7l7N+/n7SaNBLrE9Gpnv8EWcIsdDmjC0PihpAVloWmhZmdJytfun5LGGuFL51MIdqTw+Xgkd8f4bu87wC4tdetTOk15U+1KqlOJ7a8PE84O/CwbclpsbVG0esxZmR4W89M3bpi6NyZqnInuzaW0W14PKYAT9fc2p92s2zmTvyCDCT3CCelRwSJWWHUOV38vrOcJdtLWZR7cJbmucVzSbfke+pk9CN+0BmMveRiwqKj/uzX1PQ4XS5cFRU4GoNVSTGO4uIDIetg2HJVVx974TrdISEqEI2/P7XBwRQFBbHfaGCfopBh9mNUfBzagABcZjPvrllDXHg4KYmJpHXqRFRSElpT2wVQp8vN5n01rMgvp6DCgkmnxWzQYtJrMes9v5v1B54f+N2zXYPZoPM+N+o03kHwf+Swu2ioORiuLIcErPjOIaQeuMVO+b46vvz3Ktzuli95vc5KZNgl6dSWl1GwMYdfPliI6qpAo7Gh0TpI6DqKbqPOITw+AGv9Xr54+N7DHndJ2nBWRwymsLIBc0NFk4ClAjaNAZvGiE1jJC8ki9pOQ0gK8yMpUEt44WoiwoKJigwjLiqUoOBgTAGeoGU0+zXryj8WbtXNtoptLNu/jGX7lrGuZB02p43kumTSatIIs4d59w0IC2DooKH07dUXUxv+mWhPvnT9ljDWCl86mUK0N1VVeXXdq7yz0TObcmDMQHpF9qJTSCfSQ9JJCU7BqDW2Usphyna7se/a3SSgWbdswV3TfNA9Oh3G9PQmAc2UkcGqX4tY/0th0+5MnYb4jBBSekSQOSQWnUHDtuJaFmwtZfGmAmxbltG9eiPBTs96TW4U6mO7kjpqHGPOGExsSPNutMaZgM4DwcpxaCtW6SHPS0tbHEPXEsVgQBcdjS46Cn1UFLqoaHRRUeiio9CFh6MJCEQb4O8NX4rBcMQg7Ha7cTgcGA/cMSEvL4+PPvqoyT7+/v6kpqaSmppKenr6MS/70Ri+lueVszyvnFW7KqmzHdvtkRQV/FTwUxX83MqBnxCkaAhUNJT4KZSEekJahFNhYO7h10jTZAQSMDgSk16L3qGy98MdAGiNGgz+eoz+WvyCTPgFGQgNr2XN7FexVFe1WFbcqPOg/3gKKyzsK9xD7II3sGqMWJSDwcqmMWLVGtljiqfALwkAveIm01BLRHgIsVHhxEWGkhwRQGKYH0lhfoT6ndilQ4rqi1i2zxO+VhStoMJa0eT1KHMUwwuGo9R5ula7de3GgAEDSExMPCmWNDkevnT9ljDWCl86mUJ0lC+3fcmTK57ErTYdCK1RNCQGJtIpuJM3oHUK6fSnQ5qqqjj27PGOP2vs6mxpFicaDYa0VPRZ3aiN70OxJp49RRpqKzwr9usMGm58fgQ6vacrZ/2vhTgdLnSBenbUNZC9cQW2zYuJtnhmMdZpAtih7U5Xg4PuRhvJWAiqq8JVUoKjpAS1oeHoDkKjQRcefiBYRaOLikQffSBoRR0MX5rg4BN6MXS5XOzfv5/8/Hzy8/MpKCjA6TwYnMaOHcuQIUMAsFqt2Gy2ZuHM6XKz6UD4WnGY8BVk0jEoOYysIDMuiwuHxYnT4pn1p1pdaOxuigM05AeA1eHCWO/ivP2HP+7VBicL/DxjDv3dcGuNGScqFkXFosHzU1GxaFQKdW7y9J4/kyZnA8m2MoLtJUTaS4iylbI1oAvLwgZ7XndZuangfdwoVJsiqA6IocoUQYldh0UxUqUPplbf8jUgzN9AYpgfiaFmTwtXmJ83bMUGm9Bp269rr85ex6qiVd7Wr101u7yvKapCqjWVbvZuZI3OYljSMFKDU9myZQuVlZX06dMHf3//wxfuY3zp+i1hrBW+dDKF6Ei5lbmsKlrFzqqd7KzayY6qHdTYW2jFwhPSkgKT6BRyMKSlBaeRGpyKQXtsY41UVcVZVHRw/NmBgOYsbb5shAo40vtSkToUwmMYODYOTVAQzuISZs5xUNvQdLKAxmVHb9mB07aWTns3kVDpaS2rM4ezL1ghuawSo/OQiQFBQZ5w5W3F+kPYio5GFx7ebFLCycDpdLJnzx7y8/PZtWsX5557LjExnrF369at49tvvyUsLIygqHgqNSFsrDGwstCC3eok0K14HxEaLan+JmIyQhh2RhKZMUFU7qtj+r9XHfaze56RwIjLPXdGsNTY+eCB3zAFGjAH6DEG6NH769CZdWjMWswxfpgS/LHYnTTYnVgsDqwqWJ1urA4XDXYXDQ7Pw1ZvIXD1DIxVezE0VDX73L1+icyKOY/GnstIWykV+lBcf1ijzKjTkPCHoJV4yO8BxvY/nxaHhV01u9hZtZP86nzyqvPIq86joKYAl3rIn0lFQ++g3nS1dMW9x43N4vnPyIQJExgwYEC717s9+dL1W8JYK3zpZApxMlFVlbKGMnZU7fAEtOqDIa3W3vItW7SKlsTARG8LWuMjJSjlmEOao6QEW04ODY0TBbZswblv/2H335U0FotfFA2mCKymcGzGYO9taALrChla9AlERFJuCmKFmoLD+hugwWXoTJWpB0WmKPwi/ElPD2X0yCR6xgcfdpyTr7DU2cnOLWfp0sXUlec0G+yvcfhhtIdgrk9E627a0tljdAIjr/AELGudg48fXoZfkAFzoB5zoOHAQ49foIHIpEBi0jytbuqBkfLKUX53DquV4l07Kd65g+K87fgFBzN68k3esqbdeCXW+joAQmLjiEhJJ6FzF6LT0olK7cTuwj1U1dRSV99AvaUBS0MDDVYrDVYrOp2eiedfQGSAEY1GYcWKFdTX16PX65s8DAYDRqOR1NRUb73q6+tRFAW9Xo9Op/vTrZzVtmryqvPYWbXTG7jyq/LZV7/vsO9JDkpmUMwgstQsGnY1kLc9zztT2N/fn759+9KvXz9CQkL+VJ18hS9dvyWMtcKXTqYQvkBVVUobSg+GtEMetYe5r55W0ZIUlHQwpAUfDGnHsrCks7LyYAta4xi0Bgv6yMZWrChvN6ESEYXVFI5F8QyKT+4W7q3//+76mNrSxaiuIm/Zii4enbEPpaY0Pg5yEO5vYFSXSHoUOokKMhIe7UdQhNmz0GeEmYBQI5p27L76I3uDk7pKGzqDhqAIzzi4qvIGvn93E1VlVpz1DnSHDG9zK062+lVQHVhNsqEO/SGBOrZ2OMEhQQSEGrEbKzH568jq2ZnU7tFtVl+3243NZsNqtbJx8XyK8vMp27+XmspKcDvR11YBEBQZTczYC6iqqsJqtVJbVYnD5cLhdOF0OomOjuaWW27xlvvKK69QUVHR4meGhoZy5513ep+/+eabFBUVtbivv78/999/v/f5e++9571rQmMoa3z4+flx8803e/ddvHgxe4r30OBuoNZVS7Wrmgp7BaX2UmpdtewK2OWd9hpgD0CranFpXASaAkkISSA5JJm00DTvf16i/aOprq7mpZde8oaw5ORkBgwYQGZmpvfODqc6X7p+SxhrhS+dTCF8maqqlFhKvK1nedV53sBW56hr8T06RUdSUFKTVrT04HSSg5JP+OrfdquTvLUbWf/L9+zNWem5aTTg1gfzWeqVVDoUUOGuahP6Fu79p2gUkrqFcd5tvbzb8rJLMQXoCQo34x9sOOrWoT9yu1Vvq5y13sGG+YXUVXmW+fA8rDisnqQV0y+Cks7+LM8rZ2NeBTeWNW2BtCkqbrMW/xAj6b0iOWtiJzQahbq6Orasz6XOWs2ZZ53h3f+DDz5g165daDQa4uPjvRMCoqM9wczP7+Aio5s2baKhoQGr1eodl9b4MyQ4mP7dsijO2059ZSW/5e+h/pBlPA6lc9joHuJHdFo6MZ26MGfx0sMGrODgYO6++27v82+//Zba2lpMJhNGo7HJz8DAQLKysrz7Ll26lOrqaux2Ow6Ho8nDZDJxzTXXePd955132Lu3hbsmAHqTntjzYsmryiO/Op/wTeGENYS1uK9LcbGi2wpvN742W0vdvuZ/HxoD3wMPPID2wJIWM2bMwGQy0b9/f6Ki2mZGsC/xpeu3hLFW+NLJFOJUpKoqxZbigy1o1Tu9Ia3ecZiLs6IjOSiZtJA0b2taekg6SUFJ6DVtH9JqK8pY//OPbPjlR2I7Z3DefQ+zZnclC3KK2bk8j5paPUFuheADjxC3ghYFv7RALp7amyCTHlVVeWvqIlwHVoPX6jQEhpsICjcRGGEmJi2IzMGxgOeWUfu2V3nDVX2l1fN7lY26CisZg2IYeWUG4Alj7967pMV6WxWVzXoX8w8MiEeFARhIjA+ka6dQBnaLontSyDF1t3733Xds376d6haW5wiKCWLIpCEEGgIJNATyxZtf0GBpeeKD1taAX95mADRaLdrBZ1JRUYlOp0OreBa0Nfv5ERAYRFRMDBMmTPC+d9OmTTidzibBqvF3o9HoDSsnit1lZ3fNbrZXbie/PJ/dlbsprC5kf/V+3C43CgoVpoNhMb4+ngBnAGH6MML0YQTrggnQBuCn8cNf788Vl13h3XfGjBnk5+d7A6HbfXDSjEaj4ZFHHjmhx+ZLfOn6LWGsFb50MoU4nTSGtGbdndWth7RDZ3amBqeSGJiISXf8ayk57DasdbXelc5rykp4d+pNRGV0x9ZlKL/bIlm6s4IGuwt/FbSqgkUP/VNCGZ0WQdCaKpw1DuoqbZ7V9g+R1juSc6f0AI4csABSekYw4daeOFxuNuypYvlXOyhssJNbY6Hc7aJGo1KnUXEoEOKnZ1BqGIPTwhmcFk5GdOAxj3Vzq2721e1r0ppZUFxAfXE9IfUhRFojMbvMVBgqWBC3gKB6HeE1BsJ1XdGpOlxaF9HlOgKrQXG7UFxOFKcDraMeYgLRx4cTPKQnwSFhBJmDCNR7wlyAIYBAveen7jA3Bj+R6h31BwfPV+Wxs9ozmH5P7Z4mg+gPZdQaSQlKIS04jbSQNM/P4DSSgpKOeVwkeGbFHtpCFxbWcgvb6ciXrt8SxlrhSydTCOEJaUX1Rc26OndW7cTiPPwtf6L9okkKSiIpMImEwASSApNICkoiMTARf/2fm+6/edGvzH3jJRrvYB4aG0+PMROoT+rN4vw6Fm4rIa+saXCMDzEzunMEw+JC6RJowl7toKasgdAYf++dBVRV5etnVmMK0BMQaiIg1EhAqBFTkIG9dgfry2pZXljJmt2VWOxNQ8HxhK/G0PXHruT86nwanM1buLQuhXCLiU7OWCLr/NCXNmAud6I70BA3Y+ReagI8S2Fk7A4gdZ8/ZSF2yoNtlAXbqfVztnCLgJaZdWZvMAswBHha3/QHA1tjeAvQB3hb5hp/b9x+uNXlK6wV5FUdGDx/IHztrNpJsaX4sPUJ1AeSGpLqDVuN4SvOPw6t5sS2zAkPX7p+SxhrhS+dTCHE4amqyv76/Z4QUXUwpO2q2XXYMWmNwk3h3mDWGNKSApNIDEps9ebIVcVFZP80h43z52Fv8IRBg9mPHmeew6ALL6fYpmXhthIWbCtlWV45dufBbieDVsOgtDDOyIjijMwoUiOahkJPy1e1d5HVlsJXqJ+eQanhDE4LY3CncLpEtR6+3KqbvXV7m7U4Hi506R0K4RYznVwxBGd1IjW2C+kh6dh/20bO7B+b7a/V64lKSWP0dTfhnxRLnaOOOnsdNfYa6ux11DnqqLXXUmuv9f7euE+tvZZaR613v5bq82coKPjr/b3BLMgQhIrKrupdVNpaWMfugHBTuLeFtTFwdQruRIQ5wucXTfV1vnT9ljDWCl86mUKIY6eqKlW2KgpqCyioKaCwtpCC2gIKazw/q2xVR3x/iDHEG8waw1piYCJJQUmEGkO9F2R7g4XNi35l3dw5VO7fh8Fs5uZpH2I8ZEB7g93FsrwyFmwtZcG2EvZUNg0ayeF+nJERRUSAgRX5FazeVUmD48+HL7fqZm/tXu84vMaQml+dj9XV/F6hACFWEz3q4omxBhFUq0VT0YCj+mCYvfCBR0nr61m/Knf5b8x753XCExIJT0giOq0zMZ06E56QhLaNZvQ53A5PMLPXUes4EOAO/P7HbS2GPHsddvfhV/FvFB8QT2pwKp2CO3m7F1ODUwk2HttdCkT78aXrt4SxVvjSyRRCtL0aew2FtYXecHZoYCtrKDviewP0Ad5g1hjSEgMS0O6qRlPnoNc55wKeQPjja8+T2K0nmcNHoTcYUVWVnaV1LNhaysLcElbmV+BwNf/n+mjCV2Po2lG1w7veW+Nioc1Clwpmm5Zwi4k0Zwwx1kDC+3cno2t/OoV0om7DTn567cVm9fAPCSU8IZGB519Gcs/enqLcblCUk76FyOaytRjY3Kqb5KBkUoJTMOua3wZLnNx86fotYawVvnQyhRDty+KweIPZoSGtoKbgiOOJwDPGqbElLaE6ED5fC4AxIIBeZ59L77ETvBMBAOpsTpbuKGPhthJqrU4GpHjGfXWOCvCGL5fbdbB7sbXQdYBBY6CrmkxGnh/+NQqUW3BbbU32OeO6m+g7/nwAygp3s/iT9wiL97R2hcUnEh6fiCkg4E9/j0KcCL50/ZYw1gpfOplCiJOH1Wllb91eCmoKPN2etYXe3/fX729yH0+DQ6FzYSBZuwMJOHBLJrcCljR/zIM6k5TR3dsVGusfi4LC3rq9zSYp5FfnY3M1DVKKGwItOiIsZpIdUUQ3+ONXA/EjBjJozAXEB8RTunMnn/3z3oPvUTSExMQQFp9EeEIinfoNIq5LZvt8cUK0EV+6fp8ey/AKIUQ7M+lM3oVo/8jhcniC2iEhrTClkDU9C2BHORm7/ImpMBGwsx52ZvPuoLkUhR+4wbmiQ6vRNgtdGhdo3QpGk5HU4FS6qAlE/FyEWmFBdTWOK3MC1biB8BojyUHJAIQnJDLkkiu9rV2hMXHoDMe+zIIQ4s+RlrFW+FKyFkL4PqfbSVF9ETk5K9nx6yLqC/ez++IoCmv3UFhbSGiZgltRCbOaSbJHEGExY65WcVfV0+XsMxn/l6loNVoaamuY9terANAZjITFJxDu7VpMIDo1naDI029VdnH68KXrt7SMCSHESUSn0ZEQmEDCwATOGXgRbpcLzYEV4+12G+/cdj3Wmsb7QjqBWho7PN2VFu8aVubAIC5+6F+ExiUQFBGJoum4+2AKIY5MwpgQQpzENIfcuqehqpLQ6DhqNCWExsUTHp/oHdcVHp+If2jT1ddTevdr7+oKIf4E6aZshS81cwohhBDCw5eu39JuLYQQQgjRgSSMCSGEEEJ0IAljQgghhBAdSMKYEEIIIUQHkjAmhBBCCNGBJIwJIYQQQnQgCWNCCCGEEB1IwpgQQgghRAfymTBWWVnJtddeS3BwMMHBwVx77bVUVVUd8T0zZsxg7NixREREoCgK2dnZ7VJXIYQQQoij5TNh7KqrriI7O5u5c+cyd+5csrOzufbaa4/4nvr6eoYNG8YzzzzTTrUUQgghhDg2PnFvypycHObOncvy5csZNGgQAO+88w5Dhgxh27ZtZGRktPi+xrC2a9eu9qqqEEIIIcQx8YmWsWXLlhEcHOwNYgCDBw8mODiY33//vU0/y2azUVNT0+QhhBBCCHGi+EQYKyoqIioqqtn2qKgoioqK2vSznn76ae+4tODgYBITE9u0fCGEEEKIQ3VoGHvsscdQFOWIj9WrVwOgKEqz96uq2uL24/HQQw9RXV3tfRQWFrZp+UIIIYQQh+rQMWO33347V1xxxRH3SUlJYcOGDRQXFzd7rbS0lOjo6Datk9FoxGg0ep+rqgog3ZVCCCGED2m8bjdex09mHRrGIiIiiIiIaHW/IUOGUF1dzcqVKxk4cCAAK1asoLq6mqFDh57QOtbW1gJId6UQQgjhg2prawkODu7oahyRT8ymzMrKYty4cdx000289dZbANx8882cd955TWZSZmZm8vTTT3PhhRcCUFFRQUFBAfv27QNg27ZtAMTExBATE3NUnx0XF0dhYSGBgYFt3iVaU1NDYmIihYWFBAUFtWnZ4iD5ntuHfM/tQ77n9iHfc/s4kd+zqqrU1tYSFxfXpuWeCD4RxgA+/fRTpk6dypgxYwCYNGkSr732WpN9tm3bRnV1tff57Nmz+ctf/uJ93tgl+uijj/LYY48d1edqNBoSEhKOs/ZHFhQUJH/Z24F8z+1Dvuf2Id9z+5DvuX2cqO/5ZG8Ra+QzYSwsLIxPPvnkiPv8sV/4+uuv5/rrrz+BtRJCCCGEOD4+sbSFEEIIIcSpSsJYBzIajTz66KNNZm+Ktiffc/uQ77l9yPfcPuR7bh/yPXsoqi/M+RRCCCGEOEVJy5gQQgghRAeSMCaEEEII0YEkjAkhhBBCdCAJY0IIIYQQHUjCWAeZNm0aqampmEwm+vXrx5IlSzq6SqeUp59+mgEDBhAYGEhUVBQXXHCB9w4M4sR5+umnURSFu+66q6Orckrau3cv11xzDeHh4fj5+dG7d2/WrFnT0dU6pTidTv75z3+SmpqK2WwmLS2Nxx9/HLfb3dFV82mLFy9m4sSJxMXFoSgKs2bNavK6qqo89thjxMXFYTabGT16NJs3b+6YynYACWMdYPr06dx111384x//YN26dYwYMYJzzz2XgoKCjq7aKWPRokXcdtttLF++nHnz5uF0OhkzZgz19fUdXbVT1qpVq3j77bfp2bNnR1fllFRZWcmwYcPQ6/X8+OOPbNmyheeff56QkJCOrtop5dlnn+XNN9/ktddeIycnh//85z/897//5dVXX+3oqvm0+vp6evXq1ezOOY3+85//8MILL/Daa6+xatUqYmJiOOecc7z3hz7lqaLdDRw4UJ0yZUqTbZmZmeqDDz7YQTU69ZWUlKiAumjRoo6uyimptrZW7dy5szpv3jx11KhR6p133tnRVTrlPPDAA+rw4cM7uhqnvAkTJqg33HBDk20XXXSRes0113RQjU49gDpz5kzvc7fbrcbExKjPPPOMd5vValWDg4PVN998swNq2P6kZayd2e121qxZ473HZqMxY8bw+++/d1CtTn2N9ywNCwvr4Jqcmm677TYmTJjA2Wef3dFVOWXNnj2b/v37c+mllxIVFUWfPn145513Orpap5zhw4fz66+/kpubC8D69ev57bffGD9+fAfX7NSVn59PUVFRk+ui0Whk1KhRp8110WfuTXmqKCsrw+VyER0d3WR7dHQ0RUVFHVSrU5uqqtxzzz0MHz6c7t27d3R1TjlffPEFa9euZdWqVR1dlVNaXl4eb7zxBvfccw9///vfWblyJVOnTsVoNDJ58uSOrt4p44EHHqC6uprMzEy0Wi0ul4snn3ySK6+8sqOrdspqvPa1dF3cvXt3R1Sp3UkY6yCKojR5rqpqs22ibdx+++1s2LCB3377raOrcsopLCzkzjvv5Oeff8ZkMnV0dU5pbreb/v3789RTTwHQp08fNm/ezBtvvCFhrA1Nnz6dTz75hM8++4xu3bqRnZ3NXXfdRVxcHNddd11HV++UdjpfFyWMtbOIiAi0Wm2zVrCSkpJm/ysQx++OO+5g9uzZLF68mISEhI6uzilnzZo1lJSU0K9fP+82l8vF4sWLee2117DZbGi12g6s4akjNjaWrl27NtmWlZXFN99800E1OjXdf//9PPjgg1xxxRUA9OjRg927d/P0009LGDtBYmJiAE8LWWxsrHf76XRdlDFj7cxgMNCvXz/mzZvXZPu8efMYOnRoB9Xq1KOqKrfffjszZsxg/vz5pKamdnSVTklnnXUWGzduJDs72/vo378/V199NdnZ2RLE2tCwYcOaLc+Sm5tLcnJyB9Xo1GSxWNBoml4atVqtLG1xAqWmphITE9Pkumi321m0aNFpc12UlrEOcM8993DttdfSv39/hgwZwttvv01BQQFTpkzp6KqdMm677TY+++wzvv32WwIDA70tkcHBwZjN5g6u3akjMDCw2Tg8f39/wsPDZXxeG7v77rsZOnQoTz31FJdddhkrV67k7bff5u233+7oqp1SJk6cyJNPPklSUhLdunVj3bp1vPDCC9xwww0dXTWfVldXx44dO7zP8/Pzyc7OJiwsjKSkJO666y6eeuopOnfuTOfOnXnqqafw8/Pjqquu6sBat6OOncx5+nr99dfV5ORk1WAwqH379pUlF9oY0OLj/fff7+iqnfJkaYsTZ86cOWr37t1Vo9GoZmZmqm+//XZHV+mUU1NTo955551qUlKSajKZ1LS0NPUf//iHarPZOrpqPm3BggUt/pt83XXXqarqWd7i0UcfVWNiYlSj0aiOHDlS3bhxY8dWuh0pqqqqHZQDhRBCCCFOezJmTAghhBCiA0kYE0IIIYToQBLGhBBCCCE6kIQxIYQQQogOJGFMCCGEEKIDSRgTQgghhOhAEsaEEEIIITqQhDEhBLt27UJRFLKzszu6Kl5bt25l8ODBmEwmevfu3eI+qqpy8803ExYWdtLVvyMtXLgQRVGoqqo67D4ffPABISEh7VanP0pJSeGll17qsM8X4mQiYUyIk8D111+Poig888wzTbbPmjULRVE6qFYd69FHH8Xf359t27bx66+/trjP3Llz+eCDD/juu+/Yv39/m92C6frrr+eCCy5ok7JOJRKghDgxJIwJcZIwmUw8++yzVFZWdnRV2ozdbv/T7925cyfDhw8nOTmZ8PDww+4TGxvL0KFDiYmJQac7uW6363K55AbTQohWSRgT4iRx9tlnExMTw9NPP33YfR577LFmXXYvvfQSKSkp3ueNrTpPPfUU0dHRhISE8K9//Qun08n9999PWFgYCQkJvPfee83K37p1K0OHDsVkMtGtWzcWLlzY5PUtW7Ywfvx4AgICiI6O5tprr6WsrMz7+ujRo7n99tu55557iIiI4JxzzmnxONxuN48//jgJCQkYjUZ69+7N3Llzva8risKaNWt4/PHHURSFxx57rFkZ119/PXfccQcFBQUoiuL9DlRV5T//+Q9paWmYzWZ69erF119/7X2fy+XixhtvJDU1FbPZTEZGBi+//HKT7/jDDz/k22+/RVEUFEVh4cKFLXb9ZWdnoygKu3btAg52/X333Xd07doVo9HI7t27sdvt/N///R/x8fH4+/szaNCgJt/t7t27mThxIqGhofj7+9OtWzd++OGHFr87gE8++YT+/fsTGBhITEwMV111FSUlJc32W7p0Kb169cJkMjFo0CA2btx42DJ37tzJ+eefT3R0NAEBAQwYMIBffvnF+/ro0aPZvXs3d999t/d7afT7778zcuRIzGYziYmJTJ06lfr6eu/rJSUlTJw4EbPZTGpqKp9++ulh6yHE6UjCmBAnCa1Wy1NPPcWrr77Knj17jqus+fPns2/fPhYvXswLL7zAY489xnnnnUdoaCgrVqxgypQpTJkyhcLCwibvu//++7n33ntZt24dQ4cOZdKkSZSXlwOwf/9+Ro0aRe/evVm9ejVz586luLiYyy67rEkZH374ITqdjqVLl/LWW2+1WL+XX36Z559/nueee44NGzYwduxYJk2axPbt272f1a1bN+69917279/Pfffd12IZjYFu//79rFq1CoB//vOfvP/++7zxxhts3ryZu+++m2uuuYZFixYBniCYkJDAl19+yZYtW3jkkUf4+9//zpdffgnAfffdx2WXXca4cePYv38/+/fvZ+jQoUf93VssFp5++mn+97//sXnzZqKiovjLX/7C0qVL+eKLL9iwYQOXXnop48aN8x7vbbfdhs1mY/HixWzcuJFnn32WgICAw36G3W7niSeeYP369cyaNYv8/Hyuv/76Zvvdf//9PPfcc6xatYqoqCgmTZqEw+Foscy6ujrGjx/PL7/8wrp16xg7diwTJ06koKAAgBkzZpCQkMDjjz/u/V4ANm7cyNixY7nooovYsGED06dP57fffuP222/3ln399deza9cu5s+fz9dff820adNaDI9CnLY69j7lQghVVdXrrrtOPf/881VVVdXBgwerN9xwg6qqqjpz5kz10L+mjz76qNqrV68m733xxRfV5OTkJmUlJyerLpfLuy0jI0MdMWKE97nT6VT9/f3Vzz//XFVVVc3Pz1cB9ZlnnvHu43A41ISEBPXZZ59VVVVVH374YXXMmDFNPruwsFAF1G3btqmqqqqjRo1Se/fu3erxxsXFqU8++WSTbQMGDFBvvfVW7/NevXqpjz766BHL+eOx19XVqSaTSf3999+b7HfjjTeqV1555WHLufXWW9WLL77Y+/zQ89FowYIFKqBWVlZ6t61bt04F1Pz8fFVVVfX9999XATU7O9u7z44dO1RFUdS9e/c2Ke+ss85SH3roIVVVVbVHjx7qY489dsRjPZKVK1eqgFpbW9ukrl988YV3n/LyctVsNqvTp0/31jU4OPiI5Xbt2lV99dVXvc+Tk5PVF198sck+1157rXrzzTc32bZkyRJVo9GoDQ0N6rZt21RAXb58uff1nJwcFWhWlhCnq5NrgIUQgmeffZYzzzyTe++990+X0a1bNzSagw3f0dHRTQa3a7VawsPDm7VODBkyxPu7Tqejf//+5OTkALBmzRoWLFjQYovNzp076dKlCwD9+/c/Yt1qamrYt28fw4YNa7J92LBhrF+//iiPsGVbtmzBarU26x612+306dPH+/zNN9/kf//7H7t376ahoQG73X7YGZvHymAw0LNnT+/ztWvXoqqq9/tpZLPZvGPhpk6dyi233MLPP//M2WefzcUXX9ykjD9at24djz32GNnZ2VRUVHjHpRUUFNC1a1fvfoeez7CwMDIyMrzn84/q6+v517/+xXfffce+fftwOp00NDR4W8YOZ82aNezYsaNJ16OqqrjdbvLz88nNzfX+WWqUmZnZoTM5hTjZSBgT4iQzcuRIxo4dy9///vdmXU8ajQZVVZtsa6nbSa/XN3muKEqL245mcHnj2CC3283EiRN59tlnm+0TGxvr/d3f37/VMg8tt5Gqqsc9c7TxeL7//nvi4+ObvGY0GgH48ssvufvuu3n++ecZMmQIgYGB/Pe//2XFihVHLLsx3B76/bf03ZvN5ibH4Xa70Wq1rFmzBq1W22TfxmD717/+lbFjx/L999/z888/8/TTT/P8889zxx13NCu/vr6eMWPGMGbMGD755BMiIyMpKChg7NixRzVh4nDf8f33389PP/3Ec889R3p6OmazmUsuuaTVMt1uN3/729+YOnVqs9eSkpLYtm3bET9XCCFhTIiT0jPPPEPv3r2btaZERkZSVFTUJLi05dpay5cvZ+TIkQA4nU7WrFnjHfvTt29fvvnmG1JSUo5r1mJQUBBxcXH89ttv3s8CzyDwgQMHHlf9GwfNFxQUMGrUqBb3WbJkCUOHDuXWW2/1btu5c2eTfQwGAy6Xq8m2yMhIwDOeLTQ0FDi6775Pnz64XC5KSkoYMWLEYfdLTEz0juV76KGHeOedd1oMY1u3bqWsrIxnnnmGxMREAFavXt1imcuXLycpKQmAyspKcnNzyczMbHHfJUuWcP3113PhhRcCnjFkjRMTGrX0vfTt25fNmzeTnp7eYrlZWVk4nU5Wr17tPb/btm074hpoQpxuZAC/ECehHj16cPXVV/Pqq6822T569GhKS0v5z3/+w86dO3n99df58ccf2+xzX3/9dWbOnMnWrVu57bbbqKys5IYbbgA8g8wrKiq48sorWblyJXl5efz888/ccMMNzS7Qrbn//vt59tlnmT59Otu2bePBBx8kOzubO++887jqHxgYyH333cfdd9/Nhx9+yM6dO1m3bh2vv/46H374IQDp6emsXr2an376idzcXB5++GHv4P9GKSkpbNiwgW3btlFWVobD4SA9PZ3ExEQee+wxcnNz+f7773n++edbrVOXLl24+uqrmTx5MjNmzCA/P59Vq1bx7LPPemdM3nXXXfz000/k5+ezdu1a5s+fT1ZWVovlJSUlYTAYePXVV8nLy2P27Nk88cQTLe77+OOP8+uvv7Jp0yauv/56IiIiDrt+Wnp6OjNmzCA7O5v169dz1VVXNWs5TUlJYfHixezdu9c7i/aBBx5g2bJl3HbbbWRnZ7N9+3Zmz57tDZIZGRmMGzeOm266iRUrVrBmzRr++te/YjabW/3uhDhdSBgT4iT1xBNPNOuSzMrKYtq0abz++uv06tWLlStXtjjT8M965plnePbZZ+nVqxdLlizh22+/JSIiAoC4uDiWLl2Ky+Vi7NixdO/enTvvvJPg4OAm49OOxtSpU7n33nu599576dGjB3PnzmX27Nl07tz5uI/hiSee4JFHHuHpp58mKyuLsWPHMmfOHFJTUwGYMmUKF110EZdffjmDBg2ivLy8SSsZwE033URGRgb9+/cnMjKSpUuXotfr+fzzz9m6dSu9evXi2Wef5d///vdR1en9999n8uTJ3HvvvWRkZDBp0iRWrFjhbdlyuVzcdtttZGVlMW7cODIyMpg2bVqLZUVGRvLBBx/w1Vdf0bVrV5555hmee+65Fvd95plnuPPOO+nXrx/79+9n9uzZGAyGFvd98cUXCQ0NZejQoUycOJGxY8fSt2/fJvs8/vjj7Nq1i06dOnlbCnv27MmiRYvYvn07I0aMoE+fPjz88MNNuq7ff/99EhMTGTVqFBdddBE333wzUVFRR/XdCXE6UNQ//msvhBBCCCHajbSMCSGEEEJ0IAljQgghhBAdSMKYEEIIIUQHkjAmhBBCCNGBJIwJIYQQQnQgCWNCCCGEEB1IwpgQQgghRAeSMCaEEEII0YEkjAkhhBBCdCAJY0IIIYQQHUjCmBBCCCFEB5IwJoQQQgjRgf4fHDXiYDHqrmQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnIAAAHFCAYAAAB2CRTFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADx/UlEQVR4nOzdd3wURf/A8c9eT7lcei9A6F06KFUQELCLFbGhPhZE5adiBRuK9bF3EUQB9RGVDlKl994hEEhvl3Z95/fHkYOQQpCE5rxfr33lbnd2Z+eyd/e9mZ0ZRQghkCRJkiRJki46mvN9ApIkSZIkSdI/IwM5SZIkSZKki5QM5CRJkiRJki5SMpCTJEmSJEm6SMlATpIkSZIk6SIlAzlJkiRJkqSLlAzkJEmSJEmSLlIykJMkSZIkSbpIyUBOkiRJkiTpInVBBHIffvghiqLQsmXLSrenpKSgKArvvPPOaY81ceJEFEUhJSXljM9j5cqVjB07loKCggrbevXqRa9evc74mJeCevXqcffdd/+jfRVFYezYsbV6PqdTr149FEXxLQEBAbRr146PP/6YUycyWbJkSbm0Jy833XRTjfMsu+7KFp1OR3x8PPfccw/Hjh2rkN+SJUtqq7hn7ExeH+nsVXV9nbqc7TUxduxYFEWpnZOuoQvhej4b6enpvPDCC3Tt2pXw8HCCgoJo3749X375JR6Pp0L6tWvX0r9/f8xmM4GBgfTu3ZsVK1ZUemyXy8V7771Hq1at8PPzIzg4mG7durFy5cozOsey77+aLP/ke+9UaWlpjB07ls2bN5/1scqcj2uztr3wwgsMHjyYuLg4FEWp8XfinXfeiaIoDB48uNLtOTk5PP7449SrVw+j0UhUVBQDBw4kLy+vxuemq3HKOvTtt98CsGPHDtasWUPnzp3Py3msXLmScePGcffddxMcHFxu26effnpezkn6Zy6//HJf4J+WlsZ7773HY489RmFhIc8991yF9G+88Qa9e/cuty4sLOyM8/3uu+9o2rQpNpuNZcuWMX78eJYuXcq2bdsICAj4Z4WpA2f6+kj/3KpVq8o9f/XVV1m8eDGLFi0qt7558+Znlc/999/PgAEDzuoYZ6pdu3asWrXqrM/9fNmwYQOTJk3irrvu4sUXX0Sv1zNnzhz+85//sHr1at93E8C6devo0aMHnTp1YvLkyQghmDBhAldeeSWLFy+ma9euvrQej4frr7+ev//+m6effppu3bpRUlLChg0bKCkpOaNzjImJqXANPfzww1itVqZMmVIh7dlKS0tj3Lhx1KtXj7Zt25718eD8XJu17f3336d169Zcc8015a6L6syaNYsZM2YQFBRU6fa0tDS6d++OTqfjxRdfpFGjRuTk5LB48WKcTmfNT06cZ+vWrROAGDRokADEiBEjKqQ5dOiQAMTbb7992uN99913AhCHDh0643N5++23//G+l7KkpCQxfPjwf7QvIF5++eVaPZ/TSUpKEoMGDSq3zmq1CovFIhITE8utX7x4sQDEzz//fFZ5ll1369atK7f+xRdfFID44YcfyuW3ePHis8rvbJzJ63MulJaWClVVz3m+/5SqqqK0tPQf7z98+HAREBBw2nQlJSX/OA+pZvLy8oTT6ayw/pFHHhGAOHLkiG9d//79RVRUVLn/S2FhoQgPDxfdunUrt//7778vNBqNWLVqVZ2cd8+ePUWLFi3q5Nhl38nfffddnRz/YuXxeHyPAwICTvudWFBQIOLi4sR7771X6WeuEEJce+21Ii4uTuTl5Z3VuZ33ptVvvvkGgDfffJNu3boxdepUSktLK02rqiqvv/46iYmJmEwmOnTowF9//XXaPBYsWMC1115LfHw8JpOJhg0b8uCDD5KTk+NLM3bsWP7v//4PgPr161do7qisaTUvL4+HH36YuLg4DAYDDRo04Pnnn8fhcJRLpygKjz76KJMnT6ZZs2b4+/vTpk0bZs6cedpzL2u6+PHHH3nmmWeIiYkhMDCQIUOGkJmZSVFREQ888ADh4eGEh4dzzz33UFxcXO4YdrudMWPGUL9+fQwGA3FxcTzyyCMVmpBdLhdPP/000dHR+Pv7c8UVV7B27dpKzysjI4MHH3yQ+Ph4DAYD9evXZ9y4cbjd7tOW6XwICgqicePGZGZmntN8u3TpAsDhw4erTFNVs/3dd99NvXr1yq377LPPaNOmDYGBgZjNZpo2bVorNWhVvT5Op5PXXnuNpk2bYjQaiYiI4J577iE7O7tcOofDwVNPPeW7dnr06MGGDRsqNMuXNUHPnz+fe++9l4iICPz9/X3vmWnTptG1a1cCAgIIDAykf//+bNq0qVxeBw8e5NZbbyU2NtbXFHHllVeWawpatGgRvXr1IiwsDD8/PxITE7nxxhvLfbac6fv3888/p1mzZhiNRr7//vuzebkr6NWrFy1btmTZsmV069YNf39/7r33Xt9rctVVVxETE4Ofnx/NmjXj2WefrVCzU1nzVb169Rg8eDBz586lXbt2+Pn50bRp0xrXKJzueju1afV0zYAnW7hwIVdeeSVBQUH4+/tz+eWX1+jzvDaFhISg1+srrO/UqRMAR48e9a1bsWIFvXr1wt/f37fObDbTo0cPVq5cSXp6um/9f//7X3r06OF7/58LhYWFjB49utzn/KhRoypcJz///DOdO3fGYrHg7+9PgwYNfNfakiVL6NixIwD33HOP7/9W3e0xpaWlvnxNJhOhoaF06NCBn376yZfm1Gvz1FtRTl5O/iwUQvDpp5/Stm1b/Pz8CAkJ4aabbuLgwYO18IqdGY3mzMKlp556ipiYGEaOHFnp9pSUFP744w9GjBhBSEjIWZ3beW1atdls/PTTT3Ts2JGWLVty7733cv/99/Pzzz8zfPjwCuk//vhjkpKS+OCDD1BVlQkTJjBw4ECWLl1arlr7VAcOHKBr167cf//9WCwWUlJSeO+997jiiivYtm0ber2e+++/n7y8PD766CP+97//+aqoq2oysNvt9O7dmwMHDjBu3Dhat27N8uXLGT9+PJs3b2bWrFnl0s+aNYt169bxyiuvEBgYyIQJE7j++uvZs2cPDRo0OO1r9dxzz9G7d28mTpxISkoKo0eP5rbbbkOn09GmTRt++uknNm3axHPPPYfZbObDDz8EvG+E6667jr/++osxY8bQvXt3tm7dyssvv8yqVatYtWoVRqMRgBEjRjBp0iRGjx5Nv3792L59OzfccANFRUXlziUjI4NOnTqh0Wh46aWXSE5OZtWqVbz22mukpKTw3XffnbY8p/J4PDW6P0uj0ZzxGwrA7XaTmppK48aNK92uqmqFIFSnO/u3x/79+wGIiIg462NNnTqVhx9+mMcee4x33nkHjUbD/v372blz51kfu7LXR1VVrr32WpYvX+5rHjp8+DAvv/wyvXr1Yv369fj5+QHeD/1p06bx9NNP06dPH3bu3Mn1119PYWFhpfnde++9DBo0iMmTJ1NSUoJer+eNN97ghRde4J577uGFF17A6XTy9ttv0717d9auXet7L1599dV4PB4mTJhAYmIiOTk5rFy50vfDJCUlhUGDBtG9e3e+/fZbgoODOXbsGHPnzsXpdOLv73/G798ZM2awfPlyXnrpJaKjo4mMjDzr1/xU6enp3HnnnTz99NO88cYbvut83759XH311YwaNYqAgAB2797NW2+9xdq1ays0z1Zmy5YtPPXUUzz77LNERUXx9ddfc99999GwYUN69OhR5X7/5HqrrBkwOzubO++8k7i4ON+6H374gbvuuotrr72W77//Hr1ezxdffEH//v2ZN28eV155ZbVlqukPRq1W+4/uzVq0aBE6na7c+8HpdPo+K09Wtm7btm3ExMSQmppKSkoKQ4YM4bnnnuObb74hNzeXJk2a8PTTT1f63Xa2SktL6dmzJ0ePHuW5556jdevW7Nixg5deeolt27axcOFCFEVh1apV3HLLLdxyyy2MHTsWk8nE4cOHfddRu3bt+O6773zvwUGDBgEQHx9fZd5PPvkkkydP5rXXXuOyyy6jpKSE7du3k5ubW+U+gwYNqnCdrFq1iieffJIWLVr41j344INMnDiRkSNH8tZbb5GXl8crr7xCt27d2LJlC1FRUVXmIYSo9D7HytTGZ/3JFi5cyKRJk1i3bh1arbbSNMuXL0cIQWxsLLfddht//vknbrebLl26MH78+GpjmgrOqj7vLE2aNEkA4vPPPxdCCFFUVCQCAwNF9+7dy6Ura1qNjY0VNpvNt76wsFCEhoaKvn37+tadrmlVVVXhcrnE4cOHBSB+//1337bqmlZ79uwpevbs6Xv++eefC0BMnz69XLq33npLAGL+/Pm+dYCIiooShYWFvnUZGRlCo9GI8ePHV/0CiRNNcUOGDCm3ftSoUQIQI0eOLLf+uuuuE6Ghob7nc+fOFYCYMGFCuXTTpk0TgPjyyy+FEELs2rVLAOKJJ54ol27KlCkCKFeN/OCDD4rAwEBx+PDhcmnfeecdAYgdO3aUK3tNmlaTkpIEcNqlpse6+uqrhcvl8v2vR4wYIfR6vZg5c2a5tGWvb2XLvn37TptXmbLrbvXq1cLlcomioiIxc+ZMERERIcxms8jIyCiX38lNq6deW2WGDx8ukpKSfM8fffRRERwcXONzqkpNX5+ffvpJAOLXX38tt39Z08unn34qhBBix44dAhDPPPNMuXRl+5987ZS9TnfddVe5tEeOHBE6nU489thj5dYXFRWJ6OhoMXToUCGEEDk5OQIQH3zwQZXl++WXXwQgNm/eXGWaM33/WiyWs27+KFNZ02rPnj0FIP76669q9y37/Fq6dKkAxJYtW3zbXn75ZXHqR3pSUpIwmUzl3qs2m02EhoaKBx98sNq8anK9ne5WgZKSEtGpUycRExMjUlJSfOtCQ0MrfKZ5PB7Rpk0b0alTp2rzFELU6LOCf9g8OG/ePKHRaCp8FrZt21Y0bty4XBOby+USDRo0EID48ccfhRBCrFq1SgAiKChING/eXEyfPl3MmzdP3HTTTeU+c8/GqU2r48ePFxqNpsKtHWXvhdmzZwshTnxGFxQUVHnsM21abdmypbjuuuuqTVPZtXmy3bt3i7CwMNG7d2/hcDiEECdex3fffbdc2tTUVOHn5yeefvrpavOs7rP91OVMb6eqrmm1qKhI1KtXT4wZM8a3rrKm1fHjx/uuk2uvvVbMnTtX/Prrr6J169bCZDKVe2+fznltWv3mm2/w8/Pj1ltvBSAwMJCbb76Z5cuXs2/fvgrpb7jhBkwmk++52WxmyJAhLFu2rNrIOysri4ceeoiEhAR0Oh16vZ6kpCQAdu3a9Y/OfdGiRQQEBFTo2VjWjHRqE0Hv3r0xm82+51FRUURGRlbb5HayU3u8NGvWDMD3i+nk9Xl5eb7m1bJfWqf2sLn55psJCAjwnefixYsBuOOOO8qlGzp0aIVfKzNnzqR3797Exsbidrt9y8CBAwFYunRpjcp0sj///JN169addnnggQdqdLzZs2ej1+t9/+uvvvqKjz76qMLrVeatt96qkFdCQsIZl6NLly7o9XrMZjODBw8mOjqaOXPmVPvLsaY6depEQUEBt912G7///nu5WwPOVE1en5kzZxIcHMyQIUPK/Z/btm1LdHS0rzmt7P89dOjQcnncdNNNVf7SvfHGG8s9nzdvHm63m7vuuqtcXiaTiZ49e/ryCg0NJTk5mbfffpv33nuPTZs2oapquWO1bdsWg8HAAw88wPfff19pM8yZvn/79Olz1s0fpxMSEkKfPn0qrD948CC333470dHRaLVa9Ho9PXv2BGr2+dW2bVsSExN9z00mE40bNz7tZ8/ZXm8ej4dbbrmFXbt2MXv2bN9n7sqVK8nLy2P48OHl/teqqjJgwADWrVt32g4BNfmsWLduHUOGDDmjc964cSNDhw711Yqc7LHHHmPv3r08+uijHDt2jNTUVB566CHf61hWg1p2PdrtdmbPns3NN9/MVVddxfTp02nXrh2vvPLKGZ1TTcycOZOWLVvStm3bcq9p//79yzV9lzWbDh06lOnTp5frUf9PderUiTlz5vDss8+yZMkSbDbbGe2fkZHBgAEDiImJ4bfffsNgMPjKpCgKd955Z7kyRUdH06ZNm9P2lG7fvn2Nr5PY2Nh/WvwKnn32WfR6PS+99FK16cquk/j4eH799Vf69+/PDTfcwNy5c9FoNEyYMKHGeZ63ptX9+/ezbNkybrzxRoQQvmaRm266ie+++45vv/22whspOjq6wnGio6NxOp0UFxdjsVgqbFdVlauuuoq0tDRefPFFWrVqRUBAAKqq0qVLlzO+6Mrk5uYSHR1dodo+MjISnU5XoVq5sh6QRqOxxvmHhoaWe152sVe13m63ExgYSG5uLjqdrkLTnqIoREdH+86z7O+pr7FOp6tw7pmZmfz555+V3lsC/KMAo3nz5jVuWq2JK664gvfffx+Px8O+fft48cUXefTRR2nRogVXXHFFhfQNGjSgQ4cOZ3zep5o0aRLNmjVDp9MRFRVVK73IygwbNgy3281XX33FjTfeiKqqdOzYkddee41+/fqd0bFq8vpkZmZSUFDgu6ZOVfZ/Lrt2Tg1WK7t2ypz6upTdm1f2RXOqsv+7oij89ddfvPLKK0yYMIGnnnqK0NBQ7rjjDl5//XXMZjPJycksXLiQCRMm8Mgjj1BSUkKDBg0YOXIkjz/+uO+cz+T9W5v/x6pUlkdxcTHdu3fHZDLx2muv0bhxY/z9/UlNTeWGG26o0efHP/3sOdvr7aGHHmLu3LnMmjWrXO/Hsv91dcP75OXlVdvLu6a9Katq1qrMpk2b6NevH40aNWL27NkVmlHvvfdesrOzee211/jss88A6Nq1K6NHj+att97yNR2Xvd5Nmzb1Ba/gvXb79+/P+PHjycrKqtXm+czMTPbv33/az+QePXowY8YMPvzwQ+666y4cDgctWrTg+eef57bbbvtHeX/44YfEx8czbdo03nrrLUwmE/379+ftt9+mUaNG1e5bVFTE1VdfjcvlYs6cOeW+wzMzMxFCVPkj+HS3JAUGBtb4OqmtptW1a9fy6aef8r///Q+73Y7dbgdO3LpTUFCAn58fRqPRd5307du33HUaExNDmzZt2LhxY43zPW+B3LfffosQgl9++YVffvmlwvbvv/+e1157rVwBMzIyKqTLyMjAYDAQGBhYaT7bt29ny5YtTJw4sdy9CWX3Lv1TYWFhrFmzBiFEuS+DrKws3G434eHhZ3X82hIWFobb7SY7O7tcMCeEICMjw/fFWXZRZWRklLuXxe12V/hSCw8Pp3Xr1rz++uuV5vlPft0kJyfXqHby5ZdfrtG4dBaLxReYde7cmc6dO9OmTRsefvhhNm/e/I/us6uJZs2anXFAaDKZsFqtFdZXFhDfc8893HPPPZSUlLBs2TJefvllBg8ezN69e8t9aZxOTV6f8PBwwsLCmDt3bqXHKKthLrt2MjMzT3vtlDk1gCp7v/zyyy+nLUdSUpKvk9TevXuZPn06Y8eOxel08vnnnwPQvXt3unfvjsfjYf369Xz00UeMGjWKqKgobr311jN+/56LMbAqy2PRokWkpaWxZMkSXy0cUOlYl3Xhn15vY8eO5euvv+a7777jqquuKret7LX96KOPquwMcLoa7KoCllN99913NRrva9OmTfTt25ekpCTmz59faaUAwDPPPMOoUaPYt28fZrOZpKQkHnzwQQICAmjfvj3g/Sw7uUPEycp+rNb25094eDh+fn5VdmI5+Xq+9tprufbaa3E4HKxevZrx48dz++23U69evTO7L+u4gIAAxo0bx7hx48jMzPTVzg0ZMoTdu3dXuZ/L5eLGG2/kwIEDLF++vMJ9eOHh4SiKwvLly6u9N7EqS5curTCkVFUOHTpUoWPZP7Fz506EEFx//fUVtqWmphISEsL777/PqFGjaN26dZXHEUKc0TVyXgI5j8fD999/T3JyMl9//XWF7TNnzuTdd99lzpw55ZoU//e///H222/7mleLior4888/6d69e5W/vMo+HE/9p3/xxRcV0palqcmv3CuvvJLp06czY8aMcv+0SZMm+bZfCK688komTJjADz/8wBNPPOFb/+uvv1JSUuI7z7KeQlOmTPF9IAFMnz69wo3FgwcPZvbs2SQnJ9dac9Off/5ZobdgZf5pFXijRo14+umnGTduHNOmTfvHvz7rQr169fj5559xOBy+azA3N5eVK1dWOf5QQEAAAwcOxOl0ct1117Fjx44zCuROVdnrM3jwYKZOnYrH46l2bMeyG+anTZtGu3btfOt/+eWXGt+U3r9/f3Q6HQcOHKjQ7Fqdxo0b88ILL/Drr79W+gtWq9XSuXNnmjZtypQpU9i4cSO33nrrRfP+PZPPr7p0JtfbN998w7hx43jllVcqDaIuv/xygoOD2blzJ48++ug/Op9169bVKF39+vVPm2bz5s307duX+Ph4FixYcNrPNKPR6Bu8/siRI0ybNo0RI0b4Ov7odDquvfZafvnlF1JSUnwBghCCuXPnkpycXOs/9AcPHswbb7xBWFhYjcpcVo6ePXsSHBzMvHnz2LRpE127dj2j78FTRUVFcffdd7NlyxY++OADSktLqwxq77vvPpYsWcKcOXMqDWoGDx7Mm2++ybFjxyrctlETZU2rNVFbTasDBgzw3aZ0sltvvZX69eszfvx4GjZsCHh/QMfHxzN//nw8Ho8vhklLS2PLli3cfvvtNc73vARyc+bMIS0tjbfeeqvSYRdatmzJxx9/zDfffFMukNNqtfTr148nn3wSVVV56623KCwsZNy4cVXm1bRpU5KTk3n22WcRQhAaGsqff/7JggULKqRt1aoV4O06Pnz4cPR6PU2aNCl3b1uZu+66i08++YThw4eTkpJCq1at+Pvvv3njjTe4+uqr6du37z94ZWpfv3796N+/P8888wyFhYVcfvnlvl6rl112GcOGDQO8NUl33nknH3zwAXq9nr59+7J9+3beeeedCsHEK6+8woIFC+jWrRsjR46kSZMm2O12UlJSmD17Np9//nm1vZwqU/ba16XRo0fz+eefM27cOIYOHXpGzS51adiwYXzxxRfceeedjBgxgtzcXCZMmFDhdS/7srj88suJiYkhIyOD8ePHY7FYqmySPBOnvj633norU6ZM4eqrr+bxxx+nU6dO6PV6jh49yuLFi7n22mu5/vrradGiBbfddhvvvvsuWq2WPn36sGPHDt59910sFkuNflnWq1ePV155heeff56DBw8yYMAAQkJCyMzMZO3atb5f/Vu3buXRRx/l5ptvplGjRhgMBhYtWsTWrVt59tlnAfj8889ZtGgRgwYNIjExEbvd7qupKHtf1tb79+677+b777+vtV/0p+rWrRshISE89NBDvPzyy+j1eqZMmcKWLVtqPa9T/ZPrbdWqVTz00ENcfvnl9OvXj9WrV5fb3qVLFwIDA/noo48YPnw4eXl53HTTTURGRpKdnc2WLVvIzs72NV1WpTZugwDYs2eP73/9+uuvs2/fvnL3ZycnJ/taMrZv386vv/5Khw4dMBqNbNmyhTfffJNGjRrx6quvljvuq6++ypw5cxgwYABjx44lKCiIr7/+mi1btjB9+vRyaXv16sXSpUvPalaVUaNG8euvv9KjRw+eeOIJWrdujaqqHDlyhPnz5/PUU0/RuXNnXnrpJY4ePcqVV15JfHw8BQUF/Pe//y1332VycjJ+fn5MmTKFZs2aERgYSGxsbJXBTufOnRk8eDCtW7cmJCSEXbt2MXnyZLp27VplEPf2228zefJkHnvsMQICAspdJ0FBQTRv3pzLL7+cBx54gHvuuYf169fTo0cPAgICSE9P5++//6ZVq1b85z//qfI1MZvNtXadgLeGr2zYJY/Hw+HDh32tiT179iQiIoLo6OhKbwEzmUyEhYWVi3c0Gg3vv/8+Q4cO5dprr+U///kPJSUlvPrqqxgMBsaMGVPzk6txt4hadN111wmDwSCysrKqTHPrrbcKnU4nMjIyfL1W33rrLTFu3DgRHx8vDAaDuOyyy8S8efPK7VdZr9WdO3eKfv36CbPZLEJCQsTNN98sjhw5UmkvyDFjxojY2Fih0WjK9caqrGdhbm6ueOihh0RMTIzQ6XQiKSlJjBkzRtjt9nLpAPHII49UKGNNBtqtasDaqgagLesdlJ2d7Vtns9nEM888I5KSkoRerxcxMTHiP//5j8jPzy+3r8PhEE899ZSIjIwUJpNJdOnSRaxatarS88zOzhYjR44U9evXF3q9XoSGhor27duL559/XhQXF5cr+4UwIHCZTz75RADi+++/F0LU/YDAp6qql9/3338vmjVrJkwmk2jevLmYNm1ahV6r33//vejdu7eIiooSBoNBxMbGiqFDh4qtW7ee0bmeyevjcrnEO++8I9q0aSNMJpMIDAwUTZs2FQ8++GC5Xr12u108+eSTFa4di8VSrvff6V6nGTNmiN69e4ugoCBhNBpFUlKSuOmmm8TChQuFEEJkZmaKu+++WzRt2lQEBASIwMBA0bp1a/H+++8Lt9sthPD2drv++utFUlKSMBqNIiwsTPTs2VP88ccf5fI62/evEELceOONws/Pr8J7qTpV9VqtaoDXlStXiq5duwp/f38REREh7r//frFx48YKPQur6rVa2f+6qp7SJ6vJ9Xbq9Vz2/61qOdnSpUvFoEGDRGhoqNDr9SIuLk4MGjTorN+LZ+J053vy67tnzx7Ro0cPERoaKgwGg2jYsKF44YUXyn3enWzbtm1i0KBBwmw2+94Tf/75Z4V07du3F9HR0Wd03pVdL8XFxeKFF14QTZo0EQaDQVgsFtGqVSvxxBNP+HrNz5w5UwwcOFDExcUJg8EgIiMjxdVXXy2WL19e7lg//fSTaNq0qdDr9af9DH/22WdFhw4dREhIiDAajaJBgwbiiSeeEDk5Ob40p16bw4cPr/I1P/W6/Pbbb0Xnzp1FQECA8PPzE8nJyeKuu+4S69evP6PX7GyV9SyvbDndAO/VfebOmDFDdOzYUZhMJmGxWMQ111xTbuSHmlCEkJMrSpJU+1auXMnll1/OlClTzqiZ4GISHR3NsGHDePvtt8/3qUgXoaKiIkJDQ/nggw945JFHzvfpSBcpGchJknTWFixYwKpVq2jfvj1+fn6+ZieLxcLWrVvLDRt0qdixYwddu3bl4MGDF0znJuniMmvWLB555BH27t1bZe9wSTodGchJUjVUVa0wTtmpantU8H/qdB0L/umsGDWxZs0annrqKXbu3ElRURHh4eG+oRbOxdAdkiRJ/1YykJOkaowdO7bazjRQe13Xz9bphsgYPnw4EydOPDcnI0mSJJ0TMpCTpGqkpaWRlpZWbZrWrVtfEM0i69evr3Z7eHj4BRFwSpIkSbVHBnKSJEmSJEkXqfM616okSZIkSZL0z533u7SPHTvGM888w5w5c7DZbDRu3JhvvvnGN7uAEIJx48bx5Zdfkp+fT+fOnfnkk09o0aKF7xgOh4PRo0fz008/YbPZuPLKK/n000/LDUqbn5/PyJEj+eOPPwC45ppr+OijjwgODq7ReaqqSlpaGmaz+ZxM1yNJkiRJ0tkTQlBUVERsbGyddfg6r85o1LlalpeXJ5KSksTdd98t1qxZIw4dOiQWLlwo9u/f70vz5ptvCrPZLH799Vexbds2ccstt4iYmBhRWFjoS/PQQw+JuLg4sWDBArFx40bRu3dv0aZNG98AoUIIMWDAANGyZUuxcuVKsXLlStGyZUsxePDgGp9rampqtQNHykUucpGLXOQilwt3SU1NrZ3g5QJzXu+Re/bZZ1mxYgXLly+vdLsQgtjYWEaNGsUzzzwDeGvfoqKieOutt3jwwQexWq1EREQwefJkbrnlFsB7g3pCQgKzZ8+mf//+7Nq1i+bNm7N69WrfnJGrV6+ma9eu7N69myZNmpz2XK1WK8HBwaSmplY5/6UkSZIkSReWwsJCEhISKCgowGKxnO/TqXXntWn1jz/+oH///tx8880sXbqUuLg4Hn74YUaMGAF4h3XIyMjgqquu8u1TNtHvypUrefDBB9mwYQMul6tcmtjYWFq2bMnKlSvp378/q1atwmKxlJv4u0uXLlgsFlauXFlpIOdwOMpN4l5UVAR454GTgZwkSZIkXVwu1duizmtj8cGDB/nss89o1KgR8+bN46GHHmLkyJFMmjQJgIyMDACioqLK7RcVFeXblpGRgcFgICQkpNo0kZGRFfKPjIz0pTlV2eTQZUtCQsLZFVaSJEmSJKmWnddATlVV2rVrxxtvvMFll13Ggw8+yIgRI/jss8/KpTs1ihZCnDayPjVNZemrO86YMWOwWq2+JTU1tabFkiRJkiRJOifOayAXExND8+bNy61r1qwZR44cAbwTUgMVas2ysrJ8tXTR0dE4nU7y8/OrTZOZmVkh/+zs7Aq1fWWMRqOvGVU2p0qSJEmSdCE6r4Hc5Zdfzp49e8qt27t3L0lJSQDUr1+f6OhoFixY4NvudDpZunQp3bp1A6B9+/bo9fpyadLT09m+fbsvTdeuXbFaraxdu9aXZs2aNVitVl8aSZIkSZKki8157ezwxBNP0K1bN9544w2GDh3K2rVr+fLLL/nyyy8Bb3PoqFGjeOONN2jUqBGNGjXijTfewN/fn9tvvx0Ai8XCfffdx1NPPUVYWBihoaGMHj2aVq1a0bdvX8BbyzdgwABGjBjBF198AcADDzzA4MGDa9RjVZIkSZIk6UJ0XgO5jh078ttvvzFmzBheeeUV6tevzwcffMAdd9zhS/P0009js9l4+OGHfQMCz58/H7PZ7Evz/vvvo9PpGDp0qG9A4IkTJ6LVan1ppkyZwsiRI329W6+55ho+/vjjc1dYSZIkSZKkWibnWq2hwsJCLBYLVqtV3i8nSZIkSReJS/37+xKcq0KSJEmSJOnfQQZykiRJkiRJFykZyEmSJEmSJF2kZCAnSZIkSZJ0kZKBnCRJkiRJ0kXqvA4/IkmSJEkXCiEEqCA8KngEwqMiPAIFUPQaFIMWtMolO/m6dHGSgZwkSZJU54RHIFwehNsbHHH8r/AIOB4wCfeJAOrkQMr32C1OWe9ddyL9SY/davljn5TniXUV9+N0A3JpQNFrUQwa71+9Bo1B6wv0Tl6vGE7abtCUW1d2jHL7lq3XykBRqjkZyEmSJP2LCfV40ONSvYGW89THHu9zp4rqe3z8b5WPPajH9ynbH89FOmSpVoHjNXWAt8bO4UE4PICrzvKsEOidHOxVCBBPCQYNxx/rqthfBouXFBnISZIkXUSEKvAUOnBn21Bt7lOCrRNBlXpygFVJUOZ77FJPn2lt0yjeQEKrQdGd9FiroGg1oPP+9a4/6bHupDRapYp13mOW26/s2LoT+518jIp5npT38WbUk4Nd1XnSa13JX7Wy9WXbnJX9P44Hu2WxrkcgPG6E/UT8WOu0yokA76RAUFMh6Dt5exVpT6phLJdWJwPGc0EGcpIkSRcgtdSFK9uGO+ekJbsUV44d3HX09a7z1gRpTv0iP/VLvVyzYtVf9CfvX/alj05zUd5jpug03kDQT4f29MnPmBAC3OKkAPykYO+kwNHtdIHzeDOxU8Vhs2Oz2/G43LidbjyussWDcHsI9gRgcGsRLg/FLhsFSgkCbxOycAqEE+9zIFwNIgAjAEXYyNJYEXi3CwBF+J7HqCFYhD8AhYqNI5ocyo7kS49AVQRxhBGmCURoBFalhP1koCoCQ4Afik4LGnA4Smkb04J6/Vqhj/Svg1f40iUDOUmSpPNEuDy4c+3lA7bsUtw5NtRSd9U7ahV0oSa0ZsNpAy3FoEGjr2x7JWk1tR9gCSEoLS0lJzuHnJwc7Ha7L5DTarV07tzZl3bPnj0UFBSgKCdqwk7+265dO9/zQ4cO+dKemg6gRYsWKIDb6eDI4cPk5+ehKBr8gyy+NBkH9uF22AkL9Ed1uXA7HOQXFVFaasMYaKZpt+4oioIQgvUzf6O0uBizIlCOhyklqsCmKhgDAmjU5Qo8Hg8ej4f969dgLykmRHWiRYAQFKGjSKNDq9MT1bAxHo8HVVXJST2C0+kgwl6EXnhACKw6E1aDPygKej9/VFX1HRsgwpqJweUEBEWmQAoDQ6t8/YMyj6ArKUSoKvZAC7bopCrTxmYVE2wHnaKn0F9PSljVA1u0LYkgyRWKTtGRoS9ltfFQlWlNLj2RTu/UWHaNm22GVG/tY1H5dPW3R+Dp6JCB3BmSgZwkSVIdEqrAU+A4qUatLGCz4bE6qr25XmsxoovwQxd+fInwQx/uhzbYdME1WXk8HgoKCigsLKR+/fq+9RMnTuTw4cOV7qPT6WjeMBmXw4Hb6eDvpUtITUuvMo+inZvxuJy4HA725BWSX02z8F8TxqK6nADYYurhDg6vMm3A3s1oPN7A2R6ViCs0ErLyWH/w1PNWCNi3DY3be1x7ZDyusGgotnN44cJTkuqxp+xB67QD4AiPxRkRCypY9+4tn1ajIy8zA629BABnaBSeKDMAHru9wvkWFxSgK/VGQc5gAf7BgMAvIBCNRoNWq8VeVIjLYcdltyEc3mMItwuNvRSAyHoNfAGzNTMDW1EhBfY0Sh2lKFotHpcZvT0CUIhv2hytToeiKOSnHaOkII90ZS+FBhWNVotTo8esGlE0CvHNWqA3GFEEFKSnUZKXT4HxKHv0uWgVPQ5VJdFlRkFDaFQsWo0eVIGjqJjgyEh0oaYq/09S5RQhxEV6B+q5dalPuitJ0j8nhEAtcZ1Uq2Y7EbDl2sBd9cesYtKhPyVYK3usMdRFI97Zy8zMJCMjg5ycHN+Sm5uLqqpoNApXt2uDvbgIW5GVnZl55Ls9mPR64pPq4e/vj1BVdq1YCkLgl57iO64jLBrV5E9AcCixTZpR9vV0YP0ahFDxO3qgXFqPvxlTYCDRyY19aVN3bkP1ePBL3YdyfJ0jLBrVHILBz4+whCRf2vz0Y6iqSkN/PX4mEzqjkfRSJzk2BxqtDpPZ7MvPZbehAF2aNyXAzwSKwuH0TNJy89DpdFgiItFqtWg0GkrycxEelWb1kvDzM4KikJNvJddqRafXE5GQhFarRavVYs3MQHW7iAoPw2QwggI2u4NSux2tXkdscmPfca2Z6XicDgx6A1qtFhRQUOB4QBbVoKHvfAuzs3A5HGi0GhSNFo1Wg0ajRaPVomg0mALNvppJVfWgKBdnk3dNXOrf37JGTpIkqYZUp6dcsFb22JVjQ9hO0xR6PDjTnxqsBegviC9QIQSO0hKEqmIKNFNYWEhGRjpb/16GtaiYRD+9NzgrLuSwE0r1ldScqB6wO1j840RfDZeq1RGoqkQ3aEWLqB447W4QcDhjMkL1oNHq0BuNgA6j3Y3GbcNsNBLDZSC891q59IeIaRiM/rI26AxGclJt2IoFikaP3mjB7GqMEN4yWKJi6X5LU3QGI3qjke3LMslMKT1eSBClwptWFYQHtmfwo63R6b0B8/rZhyjankeg9niaAu9fjVbB4Kej3z3N8TMbADiyI5coWzEJ0ToMJi0Gkw6Dnxa90fs3MNSEVnuiabJRVS98q1Y1/h8FBwfXOG1QRGSN02o0F+YPBqlmZCAnSZJ0EuEReArs3hq1cveuHW8KrYpSvinUG7D5owv3QxtsPO39Zx7VQ7GrmAJHAVaH1bs4vX8LHYXe9Sc9tzqteFQPOo0OnUaHXqNHr9F7nytaDC4tBpeCwa6gMelRIgLRKTp0bgW/5cfQ2D1o7G6wucHmwqULwB0YjLAEoeoM3jHbTpK/bgsat3e4DU9oFNpAC/4BJup17YCfLggTgez9fRKBYQH4dWiHnzmIo9uc2Aq1KBo/8rMsrPx1v+94ltjHuPutXmh13q+h397dSNq+AgRQmA/bFh/1pdUZutL3vl6+5zM/3kLuvlzf8/SDmSedqYaQmDhfcJx77DCHt+VSFXFS66w1y0bGQWuVaU8OuA9uyWHHsmNVph32WleCwv0AWDfrELtWpnuDPZMW/fGgz2DUovfTcVm/RAIs3k4GeeklFOXZMRi1GPx06I8HiXqTtlxgKEllZCAnSdK/mjvfTsn6TFzpJbhzSnHn2qsd80zjrzveBOp/opYtwg9dmAlFr8WtuilyFpHjsGJ1HsFaasWaXz4wK7ccX1fkLPL19auKwaUQaNMRWKrDZvSQHeI8vl7DlesjMDq1mFwaDE4NGo4PmwEcjHews7ELs9OMxWmmiTUK1WDCP33XiZqziAjclrDjL4pARaVYX4yh1ImTYg7Vt1KqtxFV0gyzMwY/ewSURJPxW/DxsyvFrh3IJ/We853v1f4PkuhsTqm+iCJjLsXGTbgNTnRaLYpecOfcbwgwBBCgCyAypAmmlmYMWj3644tBZ0Cv1WPUa9mesx1/vT+B+kDqdwohpqEFRaMcv8/reJDlbWUsp0WPOBKbhx3fVpaW482RoNGd2KFV73jqt4nwptUovmOpHoHL7sbgd6LmKrp+EG6nB6fNjdPuwWX3/nXa3bjsHvSmE2lLrU6Kcive6+bLt2e87/Ge1elsnHek0nQ6vYYbn+lAeHygN+2aDPavzzweGOqOB3/eQNHoryOpRZivBlEIcUHU/Eq1TwZykiT96wghcB4qpHjFMWw7cyt2ONBp0IWbUEO0uEIEpWY31sBScvys5Cmn1IxlWCk4XOB7XuQqqjTPmp0YBBgCsBgshCpB1N+h4F+qwVisoil0guNE821Uxza0HHgzbtWN02Vn5YI3EXojitvp61XpjIjBGRpNpEZL5El9CDzeOAC1VzNEKHjcBjyFRjTFOjSqH1pHALoSM2H5ASAUtg76BaHGo1fdRK7uQVhhYrnTduhLKTbmU2zKw6T44cKJR3hYnPwjLq0dt7aKgXNPrijTLgJzJWk8x5dZ5VcrKPjr/QnQBxCgDyBQH+gL9AJWBPjWB+gDCAgv//zktHbVhp/GD42iITIpiMiqO3WW07RrDE27xtQobfuBSTTpEu0L8px2N06bB5fD+9cvUO9L62c2EJ4QeCKd3YPneKcOt0tFbzxRK5eXVkJKNbWNN4/p4AvkNi9MZcOcFPzMBvzMevzNBvyCDPiZDfib9dRvG+GrFVQ9qi9Ili58MpCTJOlfQ7hUSrdkU7ziGK70Et/6o+G5bA3dzxF9Oge1qRwSqRS7i70b848vZ8isNxNkDMJitGAxWI7/DSKoVI9/sQZDiTc4E9ZSXHlF2PLyqd+2PVff/RQAbpeL//58g3dWgZOYLMGYIqMxWRLI3Zbr62xQ2rwjqhAMGdCfuHoNUIwBbN++jeV/zfPuZwrEaDCjIxCt6k9EhyT0gaG4FR25s4/iPlZaZVlCch/FoYDT7aHA4qTQ5KFIC0U6QaEiKBWBONz+ONwxOA++itOj4nC7KRIqKCoobhRFBcUDigtF60DR2EHjQNE4TzzWOlA0Zdu86xWN46Rtx9crKgJBiauEEldJleddY0JBgxENJrTChAY/tJjQKn7ohBG9YkSnNaLXGDBoDRi0RoxaA8bjf006A346E356IyadEX+diQCDCX+DkQC9iQCDHwEmI0EWP4IMAfgbDJj0OrSVNLe37ZtI277lA2WPR/UFdgHBRt/65HYRWCL8fAHfyYGio8TlC8wAbIVOHKVuHKVuCjKpILJekC/95r9SWfPHQW+wZz4R7JUFfo07RvnOw+3yoGgU2ex7HslATpKkS56n0Enx6jRK1mSglnhrh1waD0uC1/NL8HyOGI9XV6mUG0pfQcFsMJcLxoKMQVgMFoJNwScCNKOFIEMQZl0guhIPakEpxTnZFGZlYrZE0LrvAOB4cDbsBqxVDBZQlJ0NeGsM7Q4HTQZcgwMNYdEJuMyRZKh+HNq3G/XIJlKPZcCxjHL7u4SGJ/7YzxE1j542HY1dHiyay9C7/VFOGsZWAM9np+NUvOXuZdNRT6PFqhFYNYJCjcCqUX3PHVtt/+BV13gXAQgDigJGnRaNAh6PQHWDqgpUIVDPaOwE4Q0GKwR4ZUGgd+H4el+6svUaB4r2pPWoWEoEEVYbEdZSIq0QbhVEWCHSKggvBJMLXFpw6sCl8/49eXHplHLb7Hoo0oJTD04tOPWKd3+99zgOnYJTp8Wl1eLU6nDpdLi1Olw6A269Ho/egKo1ouoN6LQGdIrBF0TqNQYMxx8btUZMOgMmnRGjyYi/2Yif3oTf8XV/HF6N4Zgeg0aHromO5MQQFLsGbCBsoJaCp1TFXariNropdTkwafXYilyobkFxvoPi/Ir3hcY3CfEFclsXHWXVbwcwBugqDfyado3BfHxIkbKOLnqTVtb21SI5/EgNXerdlyXpUuRMLaJ4xTFKt+X47nvL0RfwR/Bi5oSsoFhbSqRfJFfVu4oW4S3KBWYWgwWzwYz2pB59QlUpLsjD7XQSEh3rW/fL6y9QkJlJUW42Qi0/tll885bc8vKbvuffPvEQGo0GS2QUQRFRWCKjUALMpOQWkl1ko8BqxV5UAB6nb5/lzvocUMOJcSs0pIh6/vvB44fe7Y/J5Y/e7Y/W7c9HZhXX8S/IfqV62jq9v9XdCEp0UKpXsBsUHEaF9AgdOqMWg06LQavBqNNg0J34a9CWPdd6n5dt12ow6k9sL5dGe+IYxpP2MWg16KqpsRHC2zvUI44HdiqoQuARAqGevN4b9Hl8j48/VwXiePqyfVUh8KgC1aMicnMgIx2RmY4mMx0lMwNNZgbarAw02ZloXM4qz+18c54UADr1pwaTSrnA8uTHHg2IU2Klcl/2FbYpJz3WoyEIDebjf4NQlEDvcyWQEs8shFKKggZ/zUD8NFdUef6lTESQg6Io6OmEXnRH4AZsoNgAG4piR1HsaHV7uOz2O+jUufvZvmzlXOrf37JGTpKkS4rwqNi251K84hjOIyfuV9vht58ZoYtZad6CxWRhUL0hDKg3gHZR7dAoFYOMPauWsyczg8LsTKxZmRRmZ1KYnYXH7SaheSuGvjweAEWjIe/YUYrz8wDQ6nS+AC0oIpLIesm43W6yc3LZd/gY2iuuITs7myPmBA67zKTsKcGdn05v3Z7y5RCgqibSMeJS9DQID6BHoZbwLCNKcUS5tIpWwT/EwIIHWhIa5Y9Bq6E4y4bb4cEcZsLfbKiTWRtqS1knBM2p0UUNCI8Hd1YWrmPHvEtaGs6THrvT0hGu00xur9Ggi4pCHxeLIS4OXaz3rz4uDn1sLBqzGeFwIBwOVIcDYbd7/5ats5dtsyPsDoTTgWq3IxxOhMObVrXb8dhsuO3exWO3+/YTDgeKw4nicqE4XWhO+jFg8HiXKkp/xq9X1U4+lgPIPr6cbq+puPR/4NKbcRrMOI//LXve4NAuDC7vbQr7G7TiSCIo6AAzCLMvawFctmY2Ka3X13ogd6mTgZwkSZcET4mLkrXpFKw4gqbY+6Xkws1SywZ+D1lEpqWAvol9+az+Q3SK7oROo8PldLBv9Ur2rlqOwd+f/g897jve4olfUlJQ8eY4RaNBPaXWrf9Dj6M3+eEfFk4h/qTk29h3+Bjbtq/FtWY7uhVrKoQom4862OyOo7VDSxt3ELqAcAzHa9Z0bn+0bj8UtNzyWCuaNg1Dp9Wwe3U6KVtysET5ExzpjyXCj6BwE/4WI5pTAjVTXGDtvLDnmXC7cWVklgvUyj3OyAB3NWP4AWi16KOjfYGZ/qQgTR8fhz4qCkWvr/4Y55Bwu71BnvN40Hjy45OCQ2F3lH/sPBFUlgteKzS8HZ8J9XjNpdvj8f5VPahCxeNR8QjvoqoqHtVzvIbU+1wVHlRV4KHs+YlFqB5UkYdKLkKo7A+ORyC828QOQop24cGEqvihKv4n/fVnR0M99ZOqHHFPqoIM5CRJuqi5Mko4tmgXyo4StB4NGiBfW8iskOUsDl9Pu+SOjKr3DN1iu6HX6hGqytFd29m5fAl7V/+N0+a9yT8oIqrccRt27ILTbscSGYXFV8MWhckSwoGMfH5btomjaZnk5uZgK8pH4yhilyuSze4YtAJihYMr/dMoCw+EqkXr9jaD5kVaaJ+QyI1JCfjvLyHj7wwoaA4KBIWZCD4eqAVH+VM/PsjXLNm0SwxNu9Ssp+TFQjiduDIyKgZpx9Jwph3DnZEJatVTcQGg158I1OJifUFaWa2aLjISRXfxfN0pOh3aQB0QcL5P5Rwbc75P4KJ08VzZkiRJxwlVcGTjbvKXpxCeGXj8g0zDPtMRZof9jdIikH7JVzEqbiwm3YkZCDbO+YP1M3+jKOdEk5E5LIJm3XuR2KKNb53Lo1L/mrvYk5rBjjwbaUVaUlJKyMjayGWl6zEq5du6/MqOpZRi0GnoJ0w0yzVhdyejPV7LplEN3umUgNvubE291t65Pwvql5LXMoLgSH+CIky+WQYuFarD4Q3QfEFaWrmAzZ2VVUmNUXmKXn9STdopNWpxcegiIlC0l9brJkk1JQM5SZIuGkdzU9m9aB3hOwyE2y2EE4gHldVBWzjUJJ/WbTsyLvFd/PX+AJQU5OMJ1KLVeevFbEVFFOVkY/Dzp3GXK2jevRcBiY35Y90+Fm48Sv5fO3AVF6B3FROk2NEpgn3ucFa46xPpVmjiUjAEe0CAxmM63gTqj87jT8LlydzdvQmJERYObspm0aRdRIY3JTjSD0uUPyFR3ho2S6Q/Rr8TH73Bx9dfrFS7vXyQdkoTqDv79PdZKUZj5c2ex4M2XXg4ikYObyFJlZG9VmvoUu/1IkkXqsySTJZvW4RnbT6XZTTCX/XWsBVpStiWkEJg11iuaN6LIIP3femy29m/fjU7ly/m8NZNDHniWRp16gZ4JxJP37+Hepd1ZNXhQn5ef5SVO49wrX5zpXmrKNgDYwlpcQUxBSolSzNxa0vRekwoaNBoFSwRflgi/WnbN4G4xiHe/VRxYraBi5xaWnoiUDv+13lSzZonJ+e0x1D8/Cpt8ix7rg0LuyReK+nCdKl/f8saOUmSLji5tlwWpixk36atND8YR6fiFmjwTmOU5V9AURuFVr270izIOz6bqno4vHUzO5cvYt/aVbjsJ8Y9S9+/1xfI5eLPb8c0bFj4C+tKQgj1KHS1+6MLDAbF46th03q8HQ56XN+Stn29Q/3nZ5SwVeiO16r5ERzlT1CYCU0lw2qc2vHgQuYpLsGVdqzSZk/XsWN48k8/GrLG3/9EYHZKs6c+Pg5tcLAM1CSpjsgauRq61CN6STrfrA4ri44sYsH++QTt1TAktwdJzljf9tx4G9E9GxPZMqlcUGArKmTS/z3qG/4DwBIVTbMretO8ey+MYVH8sSGFxavWYyw4TKjGhkcozNN04Jp6sYSsykcgMAXovc2fkf6+XqFR9YN8g5lerDxFRSeCs6Ondig4hsda9STxZTSBgejj48vfp3b8sSEuDo3FIgM16YJ1qX9/yxo5SZLOmxJXCYuOLGJeyjz2puxkYN7lPJZ/LWbV21vPrVPRtw0hsmdD4iO895EV5eWQefAADTt0BsDPHIR/cAhup5Mm3brT7IrexDRuysYj+UyYv5mMg78RTy4xijg+0YCGyKRkZl7ThYiwUNaGHCKpVRhR9YIuumBECIFaWFguOHP6mkC969TCwtMeR2Ox+MZQq3ifWhzaS/DLT5IuFbJGroYu9Yheks4Vm9vGsqPLmJcyj2Wpy2hYHM+1eb3pVtQG7fFppESwjuDLEwnoGIXGpMNpK2Xf2lXsXL6YI9u3oNPpeejLyRj9vQFfQWYGgaFh5Nk8/LrxGD9vSEWXd4hu+sO+fLWuAPxs0QSqMdz7Zi8Mpovrd6xwOrHv3Yd9xw7s27dj37kT5+HDqMXFp91XGxxcscnTt8SiDbw0xpyTpMpc6t/fF9cnmSRJFyWnx8mKYyuYkzKHJalLcDtd9Chsz4T8UTS2J/nSGRtYCLwiDlPTUIRQObx1EzuXL2b/utW4nSfmfIxKbkhJQT5G/wCcbpVVWSozf53PpmNFpHnMRLoVOnqiUMzHMNrDMZXGYCSIRu2jaNE9Fr3xwh6qQjid2PeVBW07vH/37oUqZijQhoVV2eypj41FE/BvG49Mkv49ZCAnSVKdcKku1qSvYe6huSw6sogiVxEh7iBuyO/DkIKeWNzHa4F0GvzbRhB4eRyGmBMBx8ZZM1ky6Svf85CYOJp3702z7r2wREazJ6OIj39dx67tW4lTM4lQnLTRBhIb342rFT9sm/MRti6ERgfSon8cTbpEYwq4cEbvLyNcLhz792Pbvt0XuDn27Kl0WimNxYJfixaYWrTA1LIlxuQG6OPi0Pj5VXJkSZL+DWQgJ0lSrdqQuYFZB2ex4PACChwFADS0JfB44e10KWiFVvX28tQEGQjsGkNApxhKSvPZ9PcswhPrkdy+EwCNu17O2t9/pknX7jTr3ovo5MYU2t38sekoCyb/D0PBYeI0VpooeCcA1+jp2boxN1/bmVKri1X6A7TsEUtMwwunx6RwuXAcOIB9x47jgdtOHLt3I5wVJ23XBAVhatEcv5YtfYGbPi7ugimLJEkXBnmPXA1d6m3sknS2PKqHCesm8OPuHwHQCA1X2S/n1qKricq1+NIZEs0EXh6LUt+PfetWsmv5Yo7u2g5AUuvLuOn5V31pVdUDaFh1MJfp61OZuz2Drspe6mlPDImhd1gw2WJo1LAx1zza7twUtgaE243jwEHv/Ww7dmDbsR3H7j0Ih6NCWo3ZjKlFC/xaHq9ta9ECfUKCDNokqRZc6t/fskZOkqSzVuIq4ellT7Ps6DICPf48qRlBx2NN0BUdT6BR8GsdjvnyOFKzdrHmr284sHEtnrLmQ0UhoXkrml3Ry3fMo/ml/Lw2hb/Xb2FnkR829IR7FKL00ShKMabSaEy2aAz406BtBC16xJ3zcpcRbjeOgwdP3M+2fTv2PXsQdnuFtJrAQF+wVha46RMTZdAmSdI/IgM5SZLOSkZJBo/+9Sh78vZwdVF3Hsm8FY3bG5RoAnQEdI4hsEsM2iAjAOu/+Z+vBi4sPpHmPfrQ9PKeBIVHYHd5+H3zMX5fuZOStH000ObSSvGAKZGmbTrSaEsxxRkGIAxLuD8t+sXRtGsM/kGGc1Ze4fHgPHgQ28kdEXbtqjxoCwjA1Lw5puPNo34tjwdtcropSZJqiQzkJEn6x3bk7uCxvx6jsMTKc9kj6J53GQD66AA0rQLYl7OBPXO+Z2in8QTgDeTa9h9EVINkmnXvQ2S9BgBsO2Zl+q8b2bJtO4lqJomaEt+nk94UwOheLenapRU7I9M4sj2XFt3jiG8aglLHMygIjwdnSgr27dtPBG67diFstgppNf7+3qDt+P1sphYtMNRLkkGbJEl1St4jV0OXehu7JJ2pRUcW8ezyZ4kosTA2/WFibOGgQGkDJxsOzyVt3y5f2t7DR9Du6mvL7Z9b7OC3Tcf4ZcNR9mZYudm4BT/F7d0oFAyOMPxKo+l7Qyda9Uqs8/IIVfUGbcebRm07dmDfuQtRWlohreLvj6l5M28PUl/QVk8GbZJ0AbrUv79ljZwkSWdECMGknZN4d/279CnoxMjMOzCoOpQALZtKF7Nn4SoAFEVDYqs2NO/em4adugLg9qgs25fNz6sPsn//Pva5wwCIUvT4ayLQuAswlURjskehFQbqtQ4nLL7uPnhVh4Oi+fOx/vYbti1bUUtKKqRR/PwwNWuGqWULX+BmqFcPRXthj0UnSdK/gwzkJEmqMbfqZvya8fy++zcez7iD/lbvZPT6+mZ+X/MBRSU5GAMC6Hz9LTS7vCeBod5A7WB2MdMX72LJ+h1EONOop8knSicIC4/g6rZNKJ6egqegPorQYg4x0fzKWJp1iyUwxFgn5XAcOEDB9OlYZ/xebq5RxWTyBm0tWvgCN0ODBjJokyTpgiUDOUmSaqTYWczopaM5fGg/Hxx7mnqOOFAg6MpEzH0SaRl6Fak7tzLwkacICo+g2OFm+rpUfl2zn5L0AzTSZtNF4+D4LFwEh4Xz5pBm1KtXj9m7ilFVQYvucSS1CEWjrf0myrLat4Jp0yldv963XhcbQ/BNN2G+si/G5AYoOvmxKEnSxUPeI1dDl3obuyRVJ604jUf+eoT4w8GMzLgDP9WIMCkYB0QS2aUxAKrHAwpsSrUydW0qs7alE+CyMtCwG43i/ZhR0GIsjcBki+Gel/phifA/vq9aJ8EbgOPgQQqmTcc6Y8aJ2jeNhsDevQkZejMBV1wha9wk6RJ2qX9/y5+ekiRVa1v2Np5c+AQ3H+7D1QXdAbAF2Ji/+1vMtkhub/8uOr0eRaPhrTk7+N/y7WQJMwDJQeFoXQb0biOG4ihM9kgUtCQ2D8XtVH151HYQV2XtW0wMwTffRPCNN6KPiqrVPCVJks4HGchJklSlBYcX8OHCd3nhyL0kOxIQwGF2snb7TASCRg26IVQPLo+W56ato3T3MnoYXKjNB3J1RAh7fj6ISjs0Qo9fkIHmPWNofkUsQeF1Mzeo4+BBCqb/7K19KyjwrtRoCOzVi5BbhsraN0mSLjkykJMkqQIhBN/t+I71i5fybvqT+Kt+ePQqKzNmkFa4D1OgmaseeIxGnbtR6nQz6utFBKWtJULjRKs3MnJAA/yMARz68wiRSSG06B5H/TbhaHV1de/bAgqmTatY+3bTjd7at+joWs9XkiTpQiADOUmSynGpLsaveIOIlVqey78fgCJdAYsOTMHuKSaxZWsGPPIk5tBw8kucPP7FLBKs29ArKnpNAA/cfw8Wi3du1WGvdcUUoK+T83QcPHS852nF2rfgoTcT2L27rH2TJOmSJwM5SZJ8Cp2FvDr7Za7e3IFGdu8gvIE941i+ciZO7PS48146DLoORaPhaH4pz33+C/XtB1EUMDhDMOc35dDaQiKGhAPUehCnOp0nat/WrfOtl7VvkiT9W8lATpIkAFKLUvlq+n+5/8BAAlQ/PCZB5G0t8WsSytXtn8ReXERUg4YA7M4oZOxX/6OpJwUU8LPHElDQgISmYVzWP6nWz63K2reePQm+ZaisfZMk6V/rvM4nM3bsWBRFKbdEn/Rr+u67766wvUuXLuWO4XA4eOyxxwgPDycgIIBrrrmGo0ePlkuTn5/PsGHDsFgsWCwWhg0bRkHZl4EkSWxO38S8L3/kgX3XEqD6ka9mkZpwEL8moQBYIqN8QdzaQ3nc/PkqNpcE48SEubghAQXJJLWIYNAjrdEbaiegUp1OrDNncfiu4Ry8+mryJk7EU1CALjqa8EcfpeGiv0j47FPMvXrJIE6SpH+t814j16JFCxYuXOh7rj3lA3nAgAF89913vucGg6Hc9lGjRvHnn38ydepUwsLCeOqppxg8eDAbNmzwHev222/n6NGjzJ07F4AHHniAYcOG8eeff9ZVsSTpovHX1nkov2UzwOadpWFP0Xq25CzGlG+mwy03YQoM9KWdufEQT/5vN063Sv/gMOJTOyI8CvVahzNgREu0+rP/beg4dMjb8/S33yrWvg29mcAePWTgJkmSdNx5D+R0Ol25WrhTGY3GKrdbrVa++eYbJk+eTN++fQH44YcfSEhIYOHChfTv359du3Yxd+5cVq9eTefOnQH46quv6Nq1K3v27KFJkya1XyhJuggIIfh9zk80+TsMs5qEQ9hZkzmTdNsBklpfxoCHnygXxH05cyUp6/4iUSTSoHFzOu6w4fAoJF8WQb/7WpxVj1TfvW/Tp1O6dq1vvS46muCbbiL4xhvQx8ScVXklSZIuRec9kNu3bx+xsbEYjUY6d+7MG2+8QYMGDXzblyxZQmRkJMHBwfTs2ZPXX3+dyMhIADZs2IDL5eKqq67ypY+NjaVly5asXLmS/v37s2rVKiwWiy+IA+jSpQsWi4WVK1fKQE76V3I6HcyfOI0OB+sDkONMZ1XmDByU0uuuEbQbOARF4w3MhBBM+GE2JfvXYVCga3AxL93VjpyUInatTKfnHU3Q/sMBfR2HDlHw8y/e2rf8fO9KjYbAHj1O3Psmp8ySJEmq0nn9hOzcuTOTJk2icePGZGZm8tprr9GtWzd27NhBWFgYAwcO5OabbyYpKYlDhw7x4osv0qdPHzZs2IDRaCQjIwODwUBISEi540ZFRZGRkQFARkaGL/A7WWRkpC9NZRwOBw6Hw/e8sLCwlkotSedXfmY2u75ZRttCbxC3p3gDW7MXERIfz00jXyciqb4vrcvt4ZXPfkSbewCNArqwejz/0B3odVpiGgYT0zD4jPNXnU6KFiygYPrPlK5Z41uvi4ry1r7ddKOsfZMkSaqh8xrIDRw40Pe4VatWdO3aleTkZL7//nuefPJJbrnlFt/2li1b0qFDB5KSkpg1axY33HBDlccVQqAoiu/5yY+rSnOq8ePHM27cuDMtkiRd0I5s3E3p/46Q6I6kRGOjZIA/sZq2sNdIjzvvRW8w+tIWFJXw1qcTMdqyAbCEtsR8OBJrpp3w+DMfVsSZkkJ+2b1vp9a+DR1KYA9Z+yZJknSmLqhPzYCAAFq1asW+ffsq3R4TE0NSUpJve3R0NE6nk/z8/HK1cllZWXTr1s2XJjMzs8KxsrOziapmrsUxY8bw5JNP+p4XFhaSkJDwj8olSeeb8Kjs/W0NAevdBOJHqj6N8Htb065+MwCaXdGrXPrcwlLe/vAzTO5i3EJDUnwXnBt1OISbfesyCY831yhf1emkeOFC8qdNr7z27cYb0MfG1lo5JUmS/m0uqEDO4XCwa9cuunfvXun23NxcUlNTiTne7NK+fXv0ej0LFixg6NChAKSnp7N9+3YmTJgAQNeuXbFaraxdu5ZOnToBsGbNGqxWqy/Yq4zRaMRoNFa5XZIuFm6rg/3friQw0/t232tdz17PRoZHXF1p+sxCO8O/XY/RFkQTnZN2yb3JXWkDoHXveLpcl3zaPJ0pKeT//DPW/51S+9a9O8G33CJr3yRJkmrJef0kHT16NEOGDCExMZGsrCxee+01CgsLGT58OMXFxYwdO5Ybb7yRmJgYUlJSeO655wgPD+f6668HwGKxcN999/HUU08RFhZGaGgoo0ePplWrVr5erM2aNWPAgAGMGDGCL774AvAOPzJ48GDZ0UG65Nl255H20xYCHTqcqp112XNJdx2kxx33YgoIrJB+b3oB93y/kWMFNiIC6zOicRcOL8oBoG3fBLrd2LDaWxJcGRmkP/c8JStX+tbpoqIIvvFG771vsvZNkiSpVp3XQO7o0aPcdttt5OTkEBERQZcuXVi9ejVJSUnYbDa2bdvGpEmTKCgoICYmht69ezNt2jTM5hPNOu+//z46nY6hQ4dis9m48sormThxYrnx6KZMmcLIkSN9vVuvueYaPv7443NeXkk6V4RHkD//AKVL0zGiI9+RwYqs3/GLtXDnY+8TnlivXHpVVfnxt1ms37abDHsT6ocH8WJyHLvmpQLQbkASXa5tUG0Q5yko4Mj99+PcfwAU5UTP0x49ZO2bJElSHVGEEOJ8n8TFoLCwEIvFgtVqJSgo6HyfjiRVyVPoIHPKdtTDpQDsL9zIprxFtB0wiO63343ulEG1HQ4HX06aSu6xQwAcMrfknfsHs+LbnRzbU0DHwfXpOKhetUGcarNx5N77sG3ahC4yksTvJ2KsX7/K9JIkSefKpf79LX8mS9IlxL4vn+yfdqKUqpRq7Cx0zsTtzOC6Z1+iftv2FdJbrVY+++Z77IV5eIRCbnhrPn1gCAFGHVf/pzUHN2fTtEv1Q4EIl4tjTzyJbdMmNEFBJHz9lQziJEmSzhEZyEnSJUCogsK/jlD412EUFA4aj/JN4z8Z0+d5Ev3j8LcEV9jn6NGjfDtpCqrThk3o8NTryugObQgwej8WDCbd6YM4IUh/6WWKlyxBMRpJ+OxTTI0b10URJUmSpErIQE6SLnKeIid5U3fjOGBFQWGLaz3Tu23kvX4fEeYXVuk+e/bs5aep00B4yFf9iGzbhx5uC3M+2UqnIfXpOKhmNWrZ772H9bffQKsl7v338G9fsdZPkiRJqjsykJOki5j9QAF5P+1GLXbhUp1syJnHfr8D/LfH5wRXEcQ53SqfrcnGqCrkqBY69hpIsyyFrUuPAuAXWLPBfnMnTiT3q68BiHllHOY+fWqnUJIkSVKNyUBOki5CQhUULU7FuvAwioACZzYrs2ZQ0tbMkyN/xGCoOAaiqqqUulT+88MGlu8rIFjTnJdu7EDIrlK2/30MFOh9Z1OaX376IUKsf/5J1ptvARDxxBME33hjrZdRkiRJOj0ZyEnSRcZT7CRv6h4c+wtQgINFW/m7eC717xzIAwMernSfoqIipvw0lb+Lwvk724C/QcsHt1+BZ00OO1dloCjQZ3iz094TB1C8/G/SxjwHQMhdwwh7YERtFk+SJEk6AzKQk6SLiOOgldypu1ELnbiFiw0581lh3shNLz1Pt+Sele6TkZHB5B+mUFJcRLTIJty/PV/f3Ynsv9LYuyYTRaPQ9+5mNO4Ufdr8bVu3cvTxx8HtJmjQIKKefbbaYUkkSZKkuiUDOUm6CAhVULT0KIXzU0DAUWMmnwR+hzFc8NyIz2kQ3KDS/fbs2cP0n3/B43ZhVU1s92vF9Psvp0FEINuTS9m/Pot+97agYfvI056D4+AhUh94EFFaSkC3bsSOfwNFo6nlkkqSJElnQgZyknSB85S4yP1pF879VgAWWdbyUfRPNI9uwdu9PyDEFFJhHyEEK1euZMGCBQCkecykhV7GlPu6ERlkAqBljzgSm4cSFO532nNwZWZy5P778BQUYGrZkrgPP0Q5ZWBhSZIk6dyTgZwkXcAcKVayJ2+HEhW36mJd/nw+bDCHvg0H8kq3VzBoKwZTqqry559/smnTJgD2uCMQCW2ZfEcHdsw5QtDAepiO90ytSRDnsVpJvX8E7rR0DElJJHz5BdrAgNotqCRJkvSPyEBOki5Qtt255EzcgYJCoTOXv6z/448WO7mv00M81OahKu9N02g07M8pRRWwzp1A/WZtePuG1iz6eidHduaRlVLI9aPb1ejeNtVuJ/XhR3Ds24cuIoKEb75BFxpa20WVJEmS/iEZyEnSBUh1esj8cSs6dKSW7OEXzc+s6JbDC73HMbjB4Cr3E0Lw9rw9fLbPTLjSlIFdWvLcVU2Z+/k2ju3JR2fQ0GlI/RoFccLt5tiTT2HbsAGN2UzC119hiI+rzWJKkiRJZ0kGcpJ0AUr/dTM6p44St5VPwiZzuInKJ32+pH1U5TMnHDhwgHXr1rNB05ifN6YBCsP7tWdE13rM/nQrafsK0Bu1DH60DbGNgk+bvxCC9LFjKV60CMVgIOHTTzA1aVK7hZQkSZLOmgzkJOkC48oqRd1agoLCHHUW1jZBTLnyExKDEitNv27dOmbPno0Qgp2uIjRKDG9c34obWsXy50dbyDhoxWDSMvixtsQkW2p0Dtkf/BfrL7+CRkPce+/i37FjbRZRkiRJqiUykJOkC4gQgoI/DqAIhS36HfzcaAPT+v6PeHN8hbQej4d58+axdu1aAPZ7wjioxPDFsA70ax7F3C+3kXHQitFfx5DH2hJVP6hG55A3aTK5X3wBQPTYlzH37Vt7BZQkSZJqlQzkJOkCYtuajWN/AU7FxQeJU7mv80OVBnF2u52ff/6ZAwcOALDBFccRfSKT7+5Ih3rezghdr0+mINPGlcObEZForlH+1lmzyBw/HoCIx0cSMnRoLZVMkiRJqgsykJOkC0RpnpXMadvQY2Bq2FzMUaEMaz6sQrr8/Hx+/PFHsrOz8aBhqbM+LnMsP9/biYYRgb50lgh/bnm+I4qmZjMvFK9YQdqzY0AIQu64g7CHHqq1skmSJEl1Qw7LLkkXiL2fzkevGijw5PJr6EJe6vISeo2+Qjqn00lefgE29MxyNMUQnsiv/+lGnMnAz+PXkbI1x5e2pkGcbdt2jj02ElwuzAMHEPXcGDn1liRJ0kVA1shJ0gVg//wVhBZFggJfhv/M9c1voG1k20rTbskRzHc0JNdloFlSFN8M74DeKZjx3iYKMktZPn0vCc1D0epq9jvNmZJC6oMPopaW4t+1C7FvvYWi1dZi6SRJkqS6IgM5STrPivPzKJ13DJM+hm1sY1v9NH5v95lvu6qqLF68mOTkZFZlaXj+t22oIpC+zSL56LZ2uItd/Pb+JqzZNgJDjAwZ2bbGQZwrK4sj992PJy8PU/PmxH/0MRo59ZYkSdJFQwZyknQeCSHY9PEv1Nc3wyWcvJ38E890ep4gg7eHqdPp5H//+x+7d+/m71VrmVLcHBUdt3RI4PXrW1Ka7+D3DzZRmGPHHGbiuicuq9G0WwCewkJSRzyA69gx9EmJJHz1pZx6S5Ik6SIjAzlJOo92zl9IbGESaGGaZTZNGrSkf1J/AIqLi/nhhx/IyMhAKBqWlcbiRMejvRvy1FWNKcyxMeP9TRTnOQiK8OO6Jy7DHGqqUb6qw8HRhx/BsWcP2ohwEr/+Gl1YWF0WVZIkSaoDMpCTpPNECEHJknQs2vpkKBnMSPibXzr/iqIoCCH4/fffycjIwKM1MLc0mRwCGXdNC4Z3qwfAjuVpFOc5CI7y57onLiMg2FizfD0e0kaPpnT9ejSBgSR++SWGhIQ6LKkkSZJUV2QgJ0nniTO1iFhRH4B3E6bwwGUP+saM27RpE/v27UNFw5+ljSnVBPDxLW0Z1DrGt3+X65LR6jS06hWPf1DN7msTQpAx7hWKFixE0euJ/+QTTM2a1X7hJEmSpHNCBnKSdB4IVVAwYz8ACy2rccRrfGPG5efnM3fuXMA70K/bYGbiXe3plhyONduGOdSIRqtBo1HofE2DM8o356OPKJg+HRSF2HfeIaBzp9otmCRJknROyXHkJOkcyz16hJ1fzcGVVkKRppRvI2eUGzPOZDIRFt+ATDWQXap3eJFuyeFkHynilzfX89f3u1BVccb55k2ZQs6n3t6w0S+/RFD/q2q1XJIkSdK5JwM5STqHPG43Cz/+GL/93qDt+8jfuarFwHJjxqkaPZPTI5nvbMKwLvXo3CCMzJRCfv9gE/YSFwWZpbgdnjPKt3DOHDJfex2A8EcfJeTWW2utTJIkSdL5I5tWJekcWv2/acQV18cQaGK/4TBrY3Yzo92bgHf+VKPRyLvz93I030asxZ//G9CUjINW/vxwM067h+gGQQx+rC0Gv5q/dUtWreLY08+AEATfdivhjzxcV8WTJEmSzjEZyEnSOZK+fw8HZ6+gd/RtqKh8FDuVpzs9TZAhCFVV+eGHH3ApOn7aHwzoef2GVhQeKWbmx1twOTzENgpm0COtMZhq/ra17djB0Uce9U691b8/0S+8IKfekiRJuoTIQE6SzgGXw87cTz6gU6j3vrQ5wX8T0TCe/vW8Y8atXLmSo0eP4kaLRgRxXdtYmhtNzHhvI26nSlyTEAY93Bq9seZTZzkPHyb1geNTb3XuTOzbE+TUW5IkSZcYGchJ0jmw/KfviSiJwRIaToG2iJ9i5vFD5x9RFIXMzEwWL14MwGpXAsYAMy8NaUHWtlwQkNAshKv/0xqdoeZBmDs7myP3j8CTm4uxWTPiP5FTb0mSJF2KZCAnSXWsKC+HfYv/pn/U3QB8E/kbw9oNJ94cj8fjYcaMGXg8Ho6qwez3hPPfIc0JDTAQ2iWGmORgjH66MwriPEVFHHngQVypqegTEkj88gu0gYF1VDpJkiTpfJK9ViWpjplDwxly+ePoNAa2++3ncFIOd7W4C4Dly5eTnp6OW9GzwplEn6ZRXNMm1revJcIPU6C+xnmpDgdHH3kUx65daMPCSPzma3QREbVeJkmSJOnCIAM5Sapjtj15qAdtePDwSfRUXur2MnqNnrS0NJYtWwbACkcCWqM/r17TgsWTd5O2r+CM8xEeD2n/9zSla9eiCQgg8asvMSQm1nJpJEmSpAuJDOQkqY6kbN5A+u49FPzuncFhRuhiOrW+wjdmnBCCQHMQqSKUQ2oozwxoQsGOfHatTGfmx1twlLpqnJcQgoxXX6Vo/vzjU299jKl587ooliRJknQBkffISVIdKCnIZ9bH75Ksa03L4MvJ0RUwJ34V09v/4ksTGxvLVnMnVmZm07FeKNc1jWbqK2sB6HxNA4z+NW9SzfnkUwqmTvNOvfX2BAK6dKn1MkmSJEkXHlkjJ0m1TAjB/C8/QmvT0MziDai+jPqFUV2f9I0ZBzBj8zGW7M8HrYHxN7RmxfR9OG1uIpPMtOodX+P88qdOJefjjwGIevEFggYMqP1CSZIkSRckWSMnSbVs+5IFHNywlp7RQ9EqWjYG7EJt6kf/ev1xOp188803NG7einFLSgAYeWVDNGk2DmzKRtEo9B7WFI2mZoP2Fs6bT8a4VwAIf/g/hN5+e52VS5IkSbrwyEBOkmqRNSuDxRO/Is6/MdF+9XEpLr6JncEnXb5EURQWLlxIZmYmablWSmzNaRodzD2dkvj5VW+T6mX9EgmPN9cor5I1a0kbPdo79dbQoYQ/9lhdFk2SJEm6AMmmVUmqJUJVmfvpBwiHmw5R3hkbfg5dwDWdbiTeHM/BgwdZu9YbsP1VmohH0TLhptYcWJdJidWJJcKPjoPq1Sgv+65dHH3kEYTLhblfX6JffklOvSVJkvQvJGvkJKmW7Fn9N0d3badtxJWY8CdDn8P65P1MafEKdrud33//HYAjmmjSVAsjutendXwwIs6C0V9PYIixRgP/OlNTOTLiAdTiYvw7dCD2nXfk1FuSJEn/UjKQk6Ra0qTLFTgziglZFwgCPouaznNXPI9eo2f2vNlYrVaEwZ9lhbEkhvrzZL8mACiKQpPO0TXKw52Tw5H77seTk4OxSRPiP/0EjdFYl8WSJEmSLmCyaVWSaouiEJUdiyIUVgVuoV775rSNbMvevXvZtGkTAHOLEnGj5c0bWpG5O/+MxorzFBeT+sCDuI4cQR8XR8JXX6INCqqr0kiSJEkXARnISdJZ2r9+DU67jdLN2bgOFWFXnExLXMjj7R8HID8/H41Gw1F9PJnCzC0dEmga4MecL7fx47g1FOc7TpuH6nRy9LHHsO/ciTY0lMRvvkYfGVnXRZMkSZIucLJpVZLOQtre3fzxzuuERsZxZfgdKMBP4XO4v/tDBBm8tWWdO3dm8TGVxWtziDAbGTOgKYs+24bqFkQkmgkINlSbh/B4SHvmGUpXrUbj70/Cl19iqFev7gsnSZIkXfBkjZwk/UMuh525n76HECptI/qglApSDRmktyqlf73+vnQ70wr5en0+HjS8em0Ljm7MJv2AFb1RS8/bmlTb21QIQebrb1A0Zy7o9cR//BF+LVuci+JJkiRJFwEZyEnSP7RsykTy09OIDW9MWGkUAF/F/sZzXZ+jpKSE77//nmPH0njm1624VcGAFtFcERfKyv95517tfG0DzKGmavPI/fxz8n/8ERSFuLfeJKBbtzovlyRJknTxkIGcJP0DKVs3sXneTAC6Jl2PIhSWBK2j2+V9iAuMY+bMmRw6dIiJU39l27ECgkw6Xrm2Bcum7sFl9xBVP4hWvaqfhqtw7lyy//shAFHPPUfQ1VfXebkkSZKki4sM5CTpDNmLi5n32QcA9Ox8J7o8KNXYWNBoI8NbDGfr1q3s3r0bjUbDH/kxgMLzg5pRfKCIQ1ty0GgUet9Z/TRcnoICMl55FYDQ++4ldNid56BkkiRJ0sXmvAZyY8eORVGUckt09InxtIQQjB07ltjYWPz8/OjVqxc7duwodwyHw8Fjjz1GeHg4AQEBXHPNNRw9erRcmvz8fIYNG4bFYsFisTBs2DAKCgrORRGlS9DfUydRnJdLZEx9IqxxAEyOmMkTPUdTWlTK7NmzAcgMSCbT7Ue35DCGdkggppGFJp2jaTcgibC4wGrzyHz7bTx5eRgaJhP5+ON1XiZJkiTp4nTea+RatGhBenq6b9m2bZtv24QJE3jvvff4+OOPWbduHdHR0fTr14+ioiJfmlGjRvHbb78xdepU/v77b4qLixk8eDAej8eX5vbbb2fz5s3MnTuXuXPnsnnzZoYNG3ZOyyldOrredBsNO3ahV6s70TrgoPEohk4RtIlowx9//IHD4cBkCWd2tgWTXsP4G1qhKAp+gQb63tOcTkPqV3v8ktVrsP76PwBiXnkFxVB9r1ZJkiTp3+u8Dz+i0+nK1cKVEULwwQcf8Pzzz3PDDTcA8P333xMVFcWPP/7Igw8+iNVq5ZtvvmHy5Mn07dsXgB9++IGEhAQWLlxI//792bVrF3PnzmX16tV07twZgK+++oquXbuyZ88emjRpcu4KK10SAoJDGHDzSLI/2wLA5MTZvNPhYzZs2MCBAwfQanX8YY1HoPBUvyZEGQ0IIXy9U6vrpao6HGS8/DIAwbfegn+7dnVfIEmSJOmidd5r5Pbt20dsbCz169fn1ltv5eDBgwAcOnSIjIwMrrrqKl9ao9FIz549WblyJQAbNmzA5XKVSxMbG0vLli19aVatWoXFYvEFcQBdunTBYrH40lTG4XBQWFhYbpH+vYQQHN253fvYI8j6dScA8ywruaHP7QQZgtizZw8A+cGNSbPraR1vYVinBH59ewOzP9tGaaHztPnkfP45zsOH0UVEEPnkk3VXIEmSJOmScF4Duc6dOzNp0iTmzZvHV199RUZGBt26dSM3N5eMjAwAoqKiyu0TFRXl25aRkYHBYCAkJKTaNJGVjIAfGRnpS1OZ8ePH++6ps1gsJCQknFVZpYvbtkXzmTbuWeZ9/iHFq46hZLko1BazvXUaA+oNQFEUbrvtNpI79uF/x/zRaRTeurE1W+anUpBZSlZKIVpd1TVxAPa9e8n96msAol54QU6/JUmSJJ3WeQ3kBg4cyI033kirVq3o27cvs2bNArxNqGVObYY6uYmqKqemqSz96Y4zZswYrFarb0lNTa1RmaRLT0FmBksmeQOs8PBE8uZ5a41/iJrNkz1G+66jIruHDzc7AYWHeiYTKTRsnHcYgO63NMbor68yD6GqZLz0MrjdBPbpg/mqfnVbKEmSJOmScN6bVk8WEBBAq1at2Ldvn+++uVNrzbKysny1dNHR0TidTvLz86tNk5mZWSGv7OzsCrV9JzMajQQFBZVbpH8fVfUw99P3cdltxDVtQay9AVqXwm7TIRr0aoOfw4+5c+fidDp5ffZOsoscNIgI4JFeySz5YTeqR1CvdTjJ7SKqzadg2jRsmzej8fcn+sUXTvtjRZIkSZLgAgvkHA4Hu3btIiYmhvr16xMdHc2CBQt8251OJ0uXLqXb8dHt27dvj16vL5cmPT2d7du3+9J07doVq9XK2rVrfWnWrFmD1Wr1pZGkqmyY9TvHdu9Ab/Kj35AH8Wy34kHl90YrGNZ8GDNmzGD16tV8P30G09d7h71568bW7F+VQcbBQvQmLT1va1xtYObKzCTr3fcAiHjiCfQxMeekbJIkSdLF77z2Wh09ejRDhgwhMTGRrKwsXnvtNQoLCxk+fDiKojBq1CjeeOMNGjVqRKNGjXjjjTfw9/fn9ttvB8BisXDffffx1FNPERYWRmhoKKNHj/Y11QI0a9aMAQMGMGLECL744gsAHnjgAQYPHix7rErVyjmSwoqpkwDoPWwERX+loQNmhSzjvn7/Ye2qtRw9ehSD0cj0o2ZAZViXJJpZ/PlxhncYna7XJRMYUv00XJmvvYZaXIypTWtCbr+tjkslSZIkXUrOayB39OhRbrvtNnJycoiIiKBLly6sXr2apKQkAJ5++mlsNhsPP/ww+fn5dO7cmfnz52M2m33HeP/999HpdAwdOhSbzcaVV17JxIkT0Wq1vjRTpkxh5MiRvt6t11xzDR9//PG5Lax0UVFVD3M+eR+P202Ddh2JVxpRkn+UPK2Vwq5aYkQMfyz+AwB3TBv27VaJsZh4ekATSjNt+AXqCYsNoGWPuGrzKVywgKIFC0Gn844Zd9J1K0mSJEmnowghxPk+iYtBYWEhFosFq9Uq75f7lzi0aT3LfpzI9Y++SP6Xu9F6NHyW9AtPDX+Z6ZOmk5GRQXRiAybsC0UVCt/e3YE+Tb33XbqcHuzFLsyhVdfGeYqLOXj1INxZWYQ98ACRTz5xroomSZL0r3Gpf3+f9wGBJelCVf+yDtRr257Ubzeg9WjY6r+XK/oPYPPqzWRkZODn58esghhU4eTatrG+IA5Ab9CiD62+di37vfdxZ2WhT0wk/OH/1HVxJEmSpEvQBdXZQZLON5fdTmFOtu+5bVcemn023HhY2WovvWN7s379egC0Se3ZluUkxF/PS4Ob8/fP+9i6+CiqevpK7tJNm8j/6ScAYsaNRWOq/j46SZIkSaqMDOQk6SRLp3zHpP97lL1rVqA6PaT/z9tp4c/wpTzY91FMJhMPPfQQ7br24MttLgBeHtICe1opW/5KZfm0veSkFlWXBcLp9I4ZJwSW664joGvXOi+XJEmSdGmSgZwkHZeyeQNb5s/CUVqCwc+f7IX7MBZrydblE9gnngSzd3aPwEAzkw6acHpUejWJYFCLKJZM8U7P1aJ7LJFJ1d+Dkfvtdzj27UMbEkLkM0/XebkkSZKkS5cM5CQJsBcXM+/z/wLQtv9g4mKaYP/bO5D07w2W0yusj28u1R/WHGb94XwCDFpev74VG+YcpiCzFH+Lga43NKw2H2dKCjmffgpA1Jhn0Z0yvZwkSZIknQnZ2UGSgL++/Yzi/DxCYuLofvtwjny7EaOqYV3ADgZfNZQ/fv2D/Px8eva7mrfm5QHw9ICmmEo8bJp3BIAetzbG6Ff1W0oIQfrLYxFOJwHduhE0ZMg5KZskSZJ06ZI1ctK/3p5Vy9m9YimKRsPAR57EvrsA4xEVp+LiUJdCMrdkkZ+fT1BQEJN3uyhxemifFMIdnRJZ/MNuVFVQv004yZdFVpuP9bcZlK5Zg2IyET1urJyGS5IkSTprMpCT/tWK8/NY+LW3qbPz9UOJSkwm6/ddAPwZtZy+CQNYt24dABEtr2DRvgIMWg1v3diK7MNFZB0uwmDS0uPW6mcJcefmkvXWW97jPPoIhoSEOiyVJEmS9G8hm1alfzVjQADNe/Th2O4ddLnhFo7+uR2TTU+aPosGfS9j4eyFALRq247X11gBeLRPQxpGmiESbh7TgcIcG4EhxmrzyRz/Jh6rFWOzZoTefXddF0uSJEn6l5CBnPSvpjcY6T18BG6XC0+2A9ZaAQ1Lmm+n8f42FBYWEhISwrLSGPJKsmgabeahnsm+/SMSzEQkmKvOAChevpzCmTNBoyHmlXEoOvm2kyRJkmqHbFqV/pVsRYWoqsf3XKvTcXDqOjRCw6qgLfTreA2bN28GILFdT37fmoVGgbdubE3m3gJyjxXXKB+1tJSMseMACB12J36tWtV6WSRJkqR/L1k1IP3rqKqH3995DSHg6kefwhIZRc6aFAIzddgVB44+gVzW8DL8bvXjaHoGL/2dC8C9l9enSWgAP364GkeJmyEj2xDfNLTavLI//gTXsWPoYmOIGDnyXBRPkiRJ+heRNXLSv86GmTM4tnsn2YcPAaCWuiiYfRCAuQlruKXjHQA0bdqUZYXhpFntJIT68eRVjVnx635sRS4skX7EJAdXm49txw7yJk4EIPqll9AEBNRZmSRJkqR/JxnISf8q2UdSWDFtMgC97x6BJTKK/TPW4ec0cNiQRpPOnbCX2gFYn5LH5NWHARh/fWvyDhaye2W6d987m6LVV/32EW63dxouVcU8cADmXr3qtmCSJEnSv5IM5KR/DY/bxZyP38XjdtOgfSda9upHyeE8TFvdAGxpm8bGhRv59NNPOXz0GM/8uhUh4Ob28XRJCmHx8Wm4WvaII6ZhcLV55f3wA/YdO9CYzUQ/91xdF02SJEn6l5KBnPSvseqXn8g+fAg/cxBXPfAYCDg0bT0aFJYHbyLQFobNZsNisfDzdisHsksIDzTywqDmrJuVQmG2jQCLgS7XJ1ebj/PoMbL/+yEAkf83Gl1ExLkoniRJkvQvJAM56V8hfd8e1s74BYC+Ix4hIDiE1KU7CM7zo0Rjw9MymIP7DqLRaGhzRT8+X5YCwCvXtsBT4GTTguPTcN3W5LTTcGW8Mg5hs+HXoT3BN91U52WTJEmS/r1kr1XpX8HlsBPdqDHBkdE07nw57iIHjr8y8MPIonpbKNjmbV7t1as3by5Jx60KrmoexcCW0QhV0O2GZHKOFtOgbfW1a0Vz5lCybDmKXk/MuHEoGvlbSZIkSao7MpCT/hUSW7bh9pZtUD3eseN2TP+bMLeR/aZUtDoLDkca8fHx7BExbDm6B7NJx6vXtURRFBStQtu+iafNw2O1kvH6GwCEPfggxuTqm2AlSZIk6WzJ6gLpX0Wj1ZK75xhh+wyoqOxrUkDakTR0Oh2devXn3YX7AHj+6maY0eB2ek5zxBOy3nkHT24uhuRkwh4YUVdFkCRJkiQfGchJlzTV42HzvFnYiosAEB6VY79sBWBV5HZuv244HTt2pG/fvry5+Bh2l0rXBmEM7RDPX9/vZOpra8lMKTxtPiVr11Lws/cevJhXxqExGOquUJIkSZJ0nAzkpEvawY3r+Ovbz5j89EiEqrJr7hpCiwKxaotpcmNXAvwCGDRoEEe0caw8kItRp2H8Da3Yvz6LIzvyKMqzYzBpq81DdTi8Y8YBwbfcgn/79ueiaJIkSZIkAznp0rZ14RwAmnTrjr2gBMOKUgDWNDpI64S2AGQV2nlt1k4AnuzXmGiTgb9/9jaxdhhYj5Do6mdkyP3iC5wpKWgjwol86sk6KokkSZIkVSQDOemSZc3K5NCWjQC07juAbT8txaQa2Oy/n2OpeUyaNAm73c7Lf+yg0O6mVZyF+66oz4pf9mErchEaG0C7/knV5uHYt4+cr74GIPr5F9AGBdV5uSRJkiSpjAzkpEvW9sXzQQgSW7ahMLOI2FQLLtzsMefg8XjQ6XQs3pfPnO0ZaDUKb97YivS9BexenQHK8Wm4dNVMw6WqpL/0MrhcBPbujbn/VeewdJIkSZIkAznpEuVxu9m2eAEArfsOJGPebgDmhm6iyFqCyWSi91UDefmPHQA82KMBjcMDWTLFm65VjziiG1iqzaNg+nRsmzah8fcn+qUXURSlDkskSZIkSRXJceSkS9LBjWspyc/D3xKMJSyBgDxBlmIly+7tvTpw4EA+Wn6MrCIHDcIDGHllI1w2DyHRAXjcgi7XVT8GnCszi6x33gUgYtQo9DExdV4mSZIkSTqVDOSkS1Je2jE0Wi0te/Xl8OJtRGNmgd8WhCpo2rQpxQGxTF23FoDxN7TCpNeCXsugR1pTanViqGYaLoDM119HLS7G1KoVIXfcfi6KJEmSJEkVyEBOuiR1vu5mWvbqi6vYQcEnu9muPYJNdeHv70/f/ldz49cbALizSyKd6of69lMUhYBgY7XHLvrrL4rmzwetlphXX0HRVj88iSRJkiTVFXmPnHTJCggOIWXVbnRCS6mxlPiEeK666iq+WnWMw7mlxFhMPDOgKVv+SmXRpF3YS1ynPaanuJiMV14FIOzeezE1bVrXxZAkSZKkKslATrqkeNwu8tKOAiBcHvy2eoMz0cbA/ffdjxKWxFfLDwLw2nUtEcVu1vxxkF0r0zm0Jfu0x8/+4L+4MzPRJyYS/sjDdVcQSZIkSaoB2bQqXVL2r1vDzA/epEm3HrRsM5AAl4lMfS7devfD5VF55tdtqAKGtImlT9NI/vxoC26nSmyjYJp2rb7Dgm3LFvKnTAEgZuzLaEymc1EkSZIkSaqSrJGTLillMzkER8ZQvOIYxzR5/B26h1BdKF8uO8jujCKC/fW8PKQ5e9dmkrozD61OQ+87m1Y7fIhwuUh/8SUQAsu11xLQrdu5KpIkSZIkVUkGctIlIz8jjSPbt4Ci0KB+R4KLAtioO0i+1cbMBYv571/eabdeGtycAJQT03ANqkdwlH+1x8799jsce/eiDQ4m8tln6rwskiRJklQTMpCTLhnb/poHQP027chZl0qOUkimxopGo+HvgmCcbpUejSO4/rI4Vvy8H3uxi7C4AC67KrHa4zpTUsj55BMAosY8iy4kpM7LIkmSJEk1IQM56ZLgcbvYvmQhAK07XkXoMRNbdYcBqN+oKbP2WAF4dkBT7CUujuzMBQV63dkUrbaaabiEIH3sOITTSUC3rgRdc03dF0aSJEmSakh2dpAuCfvWrsJWaCUwJBRPOhRh46A2C4DD2jg8agGXNwyjeax3Uvvbx3bhyM5coutXPw2XdcbvlK5ejWI0Ej12rJyGS5IkSbqgyBo56ZKwe8UyAFr3GIBhl5MdulQAEpPqMW1HMQD3X9HAl94UoKdxx+hqj+nOyyPrzTcBCH/0EQyJ1TfBSpIkSdK5JmvkpEvC4MefZt+aFfjlBuFRrezSe8eSKw1pSNEeK8kRATQ3mdi7LoNGHaJqVLOW+eabeKxWjE2aEHb33XVcAkmSJEk6c7JGTrok6AwGmnbtiWtLAR5UtGaIjo5h6m4HAPd2q8+SKbtZ8M1ONi04ctrjFf+9gsI//gRF8U7DpdfXdREkSZIk6YzJQE66qKmqB6GqABRtycDPZsCutdPh+i4kdB3M0QI7If56mhRDTmoxRn8dTbtUP/CvarORMXYsACHD7sSvdeu6LoYkSZIk/SMykJMuantW/c23TzzItr/mk7FkLwCLIzfQu34fvlmRAsCwjolsXeC9Z67Ldcn4BxmqPWbOJ5/gOnoUXUwMESMfr9PzlyRJkqSzIQM56aK2deEcCjLScR4pxC9bw2rdXgzNw9maWszGIwUYtBo6Y8RW6MQcaqJZt+pr4+y7dpH73UQAol98EW1gwDkohSRJkiT9M7Kzg3TRyj2WytGd21EUDRZHNGmaXLbrUtGt1fFthnfWhutaxbBvyTEA2g1IQqurZsw4j8c7DZfHg3nAAMx9ep+TckiSJEnSPyVr5KSL1ra/5gLQtG13DCkq27TeAYAbN2/NnJ3ZAFwVEEiJ1UlgiJFmXauvjcv/4Qfs27ejMZuJem5M3Z68JEmSJNWCMwrkJkyYgM1m8z1ftmwZDofD97yoqIiHH3649s5OkqrgdjrZsXQRAI3DO5OvFHNUmwcK7FajUQV0bxROk+RQIhLNtOufhFZf9eXuOnaMrP9+CEDk6NHoIyPPSTkkSZIk6WycUSA3ZswYioqKfM8HDx7MsWPHfM9LS0v54osvau/sJKkKe9eswF5cREh4LLoUwfbjAwA3atyU6VvzAbjvivokNA/l5jEdaNE9tspjCSHIeOVVRGkpfu3bE3zzTeekDJIkSZJ0ts4okBNCVPtcks6VrQvnANCx+RAcbif7NRkAFJjrU+xw0ygykJ6NIwBQFAVNNfOpFs2dS/HSpaDXE/PKOBSNvONAkiRJujhcMN9Y48ePR1EURo0a5Vt39913oyhKuaVLly7l9nM4HDz22GOEh4cTEBDANddcw9GjR8ulyc/PZ9iwYVgsFiwWC8OGDaOgoOAclEqqK5cPvZOm3XoSkB/EDt1RhCKIS4jnx+0lANwZG87GeYdx2t3VHsdjtZLx+hsAhD/wAMbk5Do/d0mSJEmqLRdEILdu3Tq+/PJLWlcy8OqAAQNIT0/3LbNnzy63fdSoUfz2229MnTqVv//+m+LiYgYPHozH4/Gluf3229m8eTNz585l7ty5bN68mWHDhtV5uaS6k9CiNX2uvAdDsQaNAopBwS+uOccKbIT7G1C2W1k94yA7/06r9jhZ77yLJycHQ4MGhD34wDk6e0mSJEmqHWc8/MjXX39NYGAgAG63m4kTJxIeHg5Q7v65miouLuaOO+7gq6++4rXXXquw3Wg0Eh1d+eTmVquVb775hsmTJ9O3b18AfvjhBxISEli4cCH9+/dn165dzJ07l9WrV9O5c2cAvvrqK7p27cqePXto0qTJGZ+zdGHIWXoQBdgftJ9h997HEz95g7ZhseEUrc/HFKin+RVV3xtXum4dBT//DEDMK+PQGKofKFiSJEmSLjRnFMglJiby1Vdf+Z5HR0czefLkCmnOxCOPPMKgQYPo27dvpYHckiVLiIyMJDg4mJ49e/L6668TebxH4YYNG3C5XFx11VW+9LGxsbRs2ZKVK1fSv39/Vq1ahcVi8QVxAF26dMFisbBy5coqAzmHw1GuR25hYeEZlUuqG3tW/U3anp20bNMHJdWBGw+ZzUrJLw5my9FdGLUaQg7bKALa9k3AYKr8EledTtJfehmA4KFD8e/Q4RyWQpIkSZJqxxkFcikpKbWa+dSpU9m4cSPr1q2rdPvAgQO5+eabSUpK4tChQ7z44ov06dOHDRs2YDQaycjIwGAwEBISUm6/qKgoMjK8N79nZGT4Ar+TRUZG+tJUZvz48YwbN+4sSifVhQ2zZ5C+dzcx2YlYNQ42+u9icOvr+HrZIQBujwmnaHsRxgAdrXrFV3mc3C++xHnoENqIcCJHP3WuTl+SJEmSatV5m9khNTWVxx9/nPnz52MymSpNc8stt/get2zZkg4dOpCUlMSsWbO44YYbqjy2EAJFUXzPT35cVZpTjRkzhieffNL3vLCwkISEhGrLJNWt7CMppO/djb8hCL88P/7S7yTbbSdhj8q8HRkgICnTRQnQ9sqqa+McBw6Q8+WXAEQ//zzaoKBzWApJkiRJqj1n1NlhzZo1zJkzp9y6SZMmUb9+fSIjI3nggQfKNUdWZ8OGDWRlZdG+fXt0Oh06nY6lS5fy4YcfotPpynVWKBMTE0NSUhL79nmnX4qOjsbpdJKfn18uXVZWFlFRUb40mZmZFY6VnZ3tS1MZo9FIUFBQuUU6v8qGHOnQaBBZWMnWFKJoFNYXWVAFXBcRQkm2HYOfjla9Kw+6hap6m1RdLgJ79cLcv/+5LIIkSZIk1aozCuTGjh3L1q1bfc+3bdvGfffdR9++fXn22Wf5888/GT9+fI2OdeWVV7Jt2zY2b97sWzp06MAdd9zB5s2b0Wq1FfbJzc0lNTWVmBjvVEvt27dHr9ezYMECX5r09HS2b99Ot27dAOjatStWq5W1a9f60qxZswar1epLI134XHY7O5ctRqvoiHDFs013BIAmLVrw8+YsAK6+IoFGHaNo2zcBo1/ltXEFP/+CbcMGFH9/ol96sdpaWUmSJEm60J1R0+rmzZt59dVXfc+nTp1K586dfR0gEhISePnllxk7duxpj2U2m2nZsmW5dQEB/9/encdVUfUPHP/MvezbZQdRBNwR3E1TU7Bcc8m0bDGTR7NMc9c0tfQxl6wsLbNyxSctrSdb1MId3DcUJSXcxRTEBQFlv3d+f/hwf14BBUUv4Pf9es3r5cycOfOducL9cubMOfa4ubkRHBzMjRs3mDJlCr169aJSpUqcPXuWCRMm4O7uzvPPPw+ATqdjwIABjB49Gjc3N1xdXRkzZgz16tUzvsUaGBhIp06dGDhwoHHWiTfffJOuXbvKG6vlyN+7t5GTmUGQT2tu5GWSYH0FFZVr9tW5mXORWl4OtG9eBeVJpciBqnOTk0n+9FMAPEcMx9Kn6DdahRBCiPKgRIlcSkqKyePIqKgoOnXqZFx/4oknOH/+fKkEptVqiY2N5T//+Q/Xr1+nUqVKtG3bllWrVuHo6Ggs9/nnn2NhYUHv3r3JzMzkmWeeITw83KRFb8WKFQwbNsz4dmv37t2ZN29eqcQpHo0jmyIAqKlryr68UwD4BFRm2aFrALzxVDVj61pRrWyXps/AkJ6OTXAwLn36PIKohRBCiIerRImcl5cXZ86cwdfXl5ycHA4ePGjyZmd6ejqWlpb3HUxkZKTx37a2tqxfv/6ex9jY2PDll1/y5ZdfFlnG1dWV5cuX33dcwrwMej1VAoOxSbVGn6VywjoRAMcqTbkYl0gDrRXOf6VxvWoGzl52hdaRvnUr6evXg1ZLpQ+nohTy6F4IIYQob0rUR65Tp06MHz+e7du3895772FnZ0fr1q2N+48cOUJ1meJIlDKNVkvIa/15qtErZCm5aDQq9u72rDx2E1Rob7DlxN5LHNtZ+CwOhuxsLs241XfTNawfNoGBjzJ8IYQQ4qEpUYvctGnT6NmzJyEhITg4OBAeHo7VbaPhL1myxGRwXiFKS25yBrknUnHGjsP+h3mn2Ry+WvYXNVQtSkoOFpYaGrYrfDDqa0vDyT1/HgtPTzwGD37EkQtROgwGAzk5OeYOQ4gyx9LSstAXJB8XJUrkPDw82L59O6mpqTg4OBS4cT/99JNJ/zUhHtS52BhUgwGnU7emhdvjcITW9dry/YHLoMKzih2QR1BIZeycCk6xlZuUxJX/veTiOXYsGnv7Rxm+EKUiJyeHM2fOYDAYzB2KEGWSs7Mz3t7ej+VIBCVK5Pr371+sckuWLLmvYIS40/bvl5Fy9jzdAt7huPYia122M8zzIz7/KY6qeRqsb+ahtdTQqH3hrXHJn3yKmpmJbePGOHXt8oijF+LBqapKYmIiWq0WX19fNJoS9YgRokJTVZWMjAySk28NQ5U/PNnjpESJXHh4OH5+fjRq1KjIIR6EKC2XTp/k0ukTBLm05B+ussvyOP5pdVgbnYGqQmeNLWAg6Ckf7HXWBY7PiI4mbd06UBS8Jk54LP9SE+VfXl4eGRkZ+Pj4YGdX+Ms8QjzObG1tgVuTAXh6ej52j1lLlMgNGjSIlStXcvr0afr3789rr72Gq6vrw4pNPOaObIpAg4Zars2IsIgFwL92dT6N/ocqeRqcbhjQWCg06uBX4FhVrydp2nQAnF98EdugoEcauxClJX+Wm9v7IwshTOX/kZObm/vYJXIlaqOfP38+iYmJjBs3jjVr1uDr60vv3r1Zv369tNCJUpWTmUHczih87euQomaRrEnFoBjIsG9ERo4e50p2PNHVn4btquLgUrA17vpP/yU7Lg6NkxMeI4ab4QqEKF3SoixE0R7nn48Sd7awtrbmlVdeYePGjRw7doygoCAGDx6Mn58fN27ceBgxisdQ3I4ocrMyCXRvSazFOQB0/s4sj74MQL+QajTrWo0WPQoOd6O/fp3Lc+YA4PHOO1hIq7EQQogK6oF6zSqKgqLcmhJJ3qYSpUVVVY5sisDdujKK1pazmlvJm4dfa5LSsnC3t6Z7w6Kn17r85Tz0169jXbMGLq+8/KjCFkKUA2FhYfTo0eOuZSIjI1EUhevXrz+SmIR4ECVO5LKzs/nhhx9o3749tWvXJjY2lnnz5pGQkICDg8PDiFE8ZrJu3kCfl0tt5+b8pT0PCigeCj/GZlEpTyEs04ZL8dcLPzb+OCkrVwLgNWECygPMNCKEeDB3S5r8/f2NjQH5S5UqVUz2z/lfy3ppmjt3LuHh4cb10NBQRowYUernMbewsDDjfbWwsKBq1aq8/fbbpKSkmJS71+cgyr4SJXKDBw+mUqVKzJo1i65du/LPP//w008/8eyzz8or8aLU2Do40mfCbCrb10SPARWVgMAn+etCGq2yLVGu5XAiOrnAcaqqcmnGDNDrcezQAfsWLcwQvRCiuKZOnUpiYqJxOXTo0EM/p06nw9nZ+aGf53a5ubmP9Hz5OnXqRGJiImfPnmXRokWsWbOGwYUMim6Oz0GUnhJlX9988w1OTk4EBAQQFRXFwIED6dmzZ4FFiAd1c3ciigp21iqJjRPZft4VrzyFgFwtigJNOhV8UzV9/QYy9u5FsbbG8913zRC1EKIkHB0d8fb2Ni4eHh4lrmP06NF069bNuD5nzhwURWHdunXGbbVr1+bb/w0MfnsrYVhYGFFRUcydO9fYGnX27FnjcdHR0TRt2hQ7OztatmxJfHx8sWKaMmUKDRs2ZMmSJVSrVg1ra2tUVSUiIoKnnnoKZ2dn3Nzc6Nq1K6dOnTIe16tXL4YOHWpcHzFiBIqicPToUeDWUDSOjo7FmoccbvVp9/b2pkqVKnTo0IGXXnqJDRs2FChXGp+DMJ8SJXKvv/46bdu2xdnZGZ1OV+QixP26euE82ddvcnN/IgC/um4htNpzbPo7mRZZtx6T1mrmjbOn6XhahsxMLn08CwC3AQOwqlL50QYuxCOiqioZOXlmWcri6AShoaFs377d2E87KioKd3d3oqKiAEhKSuL48eOEhIQUOHbu3Lm0aNGCgQMHGlujfH19jfsnTpzI7NmzOXDgABYWFsUeFB/g5MmT/Pjjj/z888/ExMQAcPPmTUaNGsX+/fvZvHkzGo2G559/3hh7aGgokZGRxjruvJb9+/eTlZVFq1atSnSPAE6fPk1ERASW0t2kwinxgMBCPCyqqrJuziw8MnzwcArmmlUaFzyvcexkFTxyL1AzTwsKNOlcsDXu6uIl5F1MxKJSJdwGvmGG6IV4NDJz9dT9oHgtMqXt2NSO2FmV6GvjrsaNG8ekSZOM6zNmzGDYsGElqqNNmzakp6dz6NAhGjduzPbt2xkzZgyrV68GYOvWrXh5eVGnTp0Cx+p0OqysrLCzs8Pb27vA/unTpxsTwPHjx9OlSxeysrKwsbG5Z1w5OTl89913Jq1bvXr1MimzePFiPD09OXbsGMHBwYSGhjJ8+HCuXLmCVqvl6NGjTJ48mcjISAYPHkxkZCRNmjQpdn/0tWvX4uDggF6vJysrC4DPPvusQLnS+ByE+ZTeT6QQDyjxRDxXEs7RzLcjEZZxXNdk0MGmC4v3JdIh+9ZfkTWbeuHibTpfau6FC1xduBAAr3HvovnfKN9CiLJt7NixhIWFGdfd3d1LXIdOp6Nhw4ZERkZiaWmJRqPhrbfeYvLkyaSnpxMZGVloa1xx1K9f3/jv/KmfkpOTqVq18CkBb+fn51fgEeWpU6d4//332bNnD1euXDG2xCUkJBAcHExwcDBubm5ERUVhaWlJgwYN6N69O1988QVAia+lbdu2fP3112RkZLBo0SKOHz9u8ug2X2l8DsJ8JJETZcaRTRH42NXgmlUe1zUZ5Cq5qJbNsctKoVauVZGtcZc+/gQ1Oxu7Zs1w7NjRDJEL8ejYWmo5NtU8/89tLUt3xHx3d3dq1KjxwPXkP5K0srIiJCQEFxcXgoKC2LlzJ5GRkff9VurtjyHzB5wt7lBb9vb2BbZ169YNX19fFi5ciI+PDwaDgeDgYHJycoznaNOmjfFaQkNDCQ4ORq/XExsby65du0p0Lfb29sb7+8UXX9C2bVv+/e9/8+GHH5qUK63PQZiHJHKiTMi6eYP43dtp7daL/dpbAwBTReGn6Jtc06jonq5EdUsr3HxMHync3LOH9PXrQaOR+VTFY0FRlFJ9vFkRhIaGsnjxYiwsLGjXrh0AISEhrFy5ssj+cfmsrKyM06A9TFevXiUuLo5vv/2W1q1bA7Bjx44C5UJDQ1mwYAFWVlZMnToVRVFo3bo1n376KZmZmffVPy7f5MmT6dy5M2+//TY+PkWPxSnKF/ltIMqEuO1bccQZja2ORO1xDBhw93uS5BPZeDpZ07tnbawsTN/NUfPyuDR9BgAuL7+MTe3a5ghdCHEXqampxs7++Up7ju78fnJr1qxh2rRpwK2EqFevXnh4eFC3bt0ij/X392fv3r2cPXsWBweHhzZ/uIuLC25ubixYsIBKlSqRkJDA+PHjC5TL7ydnYWFhTPhCQ0MZPXo0jRs3xsnJ6b5jCA0NJSgoiBkzZjBv3rz7rkeULTL4mzC7/JkcaumaEmuRAEC6azobjjqhqNCvpX+BJA4gZeUqsk+cQKvT4TGsYL8PIYT5RUZG0qhRI5Plgw8+KNVz6HQ6GjVqhKurqzFpa926NQaD4Z59ysaMGYNWq6Vu3bp4eHiQkJBQqrHl02g0rFy5kujoaIKDgxk5ciSffPJJgXLBwcG4u7vToEEDY9IWEhKCXq+/775+txs1ahQLFy7k/PnzD1yXKBsUtSy+T14GpaWlodPpSE1NfaC/iERBV86fY9W4cbStGsZP1ntRFRWbJ6uwcrMPL9+0JqRbNZ7s5G/y2DQvJYVTHTthSEvDe8pkXF6WqbhExZSVlcWZM2cICAgo1tuSQjyO7vZzUtG/v6VFTpidu68fL7wwiTRNFlpF4ardVeKTAnky2wJHg8K102kF+r5dnjMXQ1oa1nXq4Pzii2aKXAghhDAvSeSE2am5evR/pVPF4MY/ridxbujDwaOpBOXcekOu6bMBJuWzjh3j+o8/AuA9aSKKtnTfpBNClB0rVqzAwcGh0CUoKMgsMQUFBRUZ04oVKx76+fPnNi9qeViPh0XZJC87CLPS5+WSefAKhow8kiyvsMfpMKHp/WierUeDQtUgV7wC/r8pXFVVkqZNB1XF6dlnsWva1IzRCyEetu7du9O8efNC95lrloI//vijyPlTvby8Hvr5fXx8CrxAcud+8fiQRE6YjaqqLH9vJM2tniVFk82fzpE082nFzsgc+uZYAfBEF9PWuLR1f5B58CCKrS2eY8eYI2whxCPk6OiIo6OjucMw4edXcDzLR8nCwkLGfRNG8mhVmM2Fv49icVkhUb3BeqvDXMvR45IbSsMbWrQoVKntgne1/5+713DzJsn/e8vL/a03sfzfSOtCCCHE40oSOWE2RzZFUNOpCUf+N+RIpksmO6KdCf5f37gnuvqblL+yYCF5ly5hWaUKrv/616MOVwghhChzJJETZpGZnkZidBwGB2dSNDfQK3pcfOtzISOXCG+VRp388KnpYiyfk5DAtSVLAPAaPw6NtbW5QhdCCCHKDOkjJ8zi2LYt1LBrSKz2Vmtcgi6BxJOtAD3dQv1pGVrdpPylWR+j5uZi37IlDs88Y4aIhRBCiLJHWuTEI6eqKsc2bcHR0Y8L2muoqDj6+3Dmoh5bSy19mpl2JL6xfQc3Nm8GCwuZT1UIIYS4jSRy4pH7J+4v3G56Emd18da63T9cv/QEg1JtGGDjhP1t03GpOTlcmnFrPlXXPn2wrl690DqFEKI4wsLC6NGjx13LREZGoigK169ffyQxCfEgJJETj5yHrz+B3q24rmQAkOsL2mP22KBQSdWitfz//5bXVnxPzpkzaF1dcR8y2FwhCyHuw92SJn//W9Pu3b5UqVLFZP+cOXNKPaa5c+cSHh5uXA8NDWXEiBGlfp6yICkpiaFDh1KtWjWsra3x9fWlW7dubN68mZycHNzd3Zk2bVqhx86cORN3d3dycnLueo7w8HCTz9DLy4tu3bpx9OhRk3JhYWEFPm9FUTh58mSpXe/jShI58cgZTmZimWNBG0NtoipFYpnXgobZt7prtnquuvHRad6VK1z56isAPEeNRFsB58gT4nE2depUEhMTjcuhQ4ce+jl1Oh3Ozs4P/Ty3K2rw4Ifp7NmzNGnShC1btvDxxx8TGxtLREQEbdu2ZciQIVhZWfHaa68RHh5OYVOuL126lL59+2JlZXXPczk5OZGYmMjFixdZt24dN2/epEuXLgWSwE6dOpl83omJiQQEBBRRqyguSeTEI6WqKuk7LgDwu0skBmfQH6yCFQp23rb4BbsZyyZ//jmGGzewCQ5G17OnmSIWQjwsjo6OeHt7GxcPD48S1zF69Gi6detmXJ8zZw6KorBu3Trjttq1a/Ptt98Cpq2EYWFhREVFMXfuXGML0dmzZ43HRUdH07RpU+zs7GjZsiXx8fHFimnKlCk0bNiQJUuWGFvDVFUlIiKCp556CmdnZ9zc3OjatSunTp0yHterVy+GDh1qXB8xYgSKohhbt/Ly8nB0dGT9+vX3jGHw4MEoisK+fft44YUXqFWrFkFBQYwaNYo9e/YAMGDAAE6dOsW2bdtMjt2+fTsnTpxgwIABxbpeRVHw9vamUqVKNG3alJEjR3Lu3LkC98va2trk8/b29kYrUyw+MEnkxCOjGgxsnTWfxIuJZGiy+MN5O9XpSIPMW9PshPSoYWyNyzxyhNSfVwPcesFBI/9VhQBAVSHnpnmWQlpuzC00NJTt27djMBgAiIqKwt3dnaioKODW48Xjx48TEhJS4Ni5c+fSokULBg4caGwh8vX1Ne6fOHEis2fP5sCBA1hYWNC/f/9ix3Xy5El+/PFHfv75Z+N0Wjdv3mTUqFHs37+fzZs3o9FoeP75542xh4aGEhkZaazjzmvZv38/WVlZtGrV6q7nvnbtGhEREQwZMgR7e/sC+/NbJOvVq8cTTzzB0qVLTfYvWbKEZs2aERwcXOzrzXf9+nW+//57wHxTqD1uZPgR8cicPxaL9QUrNrke4aaShZXeDk10faxQsHSzJqCBO3Ar4UuaPh0A3XPdsWvUyJxhC1G25GbADDPNpTnhIlgVTAzu17hx45g0aZJxfcaMGQwbNqxEdbRp04b09HQOHTpE48aN2b59O2PGjGH16lt/CG7duhUvLy/q1KlT4FidToeVlRV2dnZ4e3sX2D99+nRjAjh+/Hi6dOlCVlYWNjY294wrJyeH7777zqSVsVevXiZlFi9ejKenJ8eOHSM4OJjQ0FCGDx/OlStX0Gq1HD16lMmTJxMZGcngwYOJjIykSZMmODg43PXcJ0+eRFXVQq/5Tv3792fMmDHMmzcPBwcHbty4wU8//cRnn312z2Pzpaam4uDggKqqZGTc6vvcvXv3Audfu3atSeydO3fmp59+KvZ5ROGkmUM8MnERW8l11HFDySJHk4uXSyA10m/9Qgzt+f+tcam//U7W4SNo7OzwGDXanCELIR6isWPHEhMTY1xef/31Eteh0+lo2LAhkZGRxMbGotFoeOuttzh8+DDp6elERkYW2hpXHPXr1zf+u9L/pgRMTk4u1rF+fn4FHhWfOnWKV199lWrVquHk5GTsH5aQcGs8zeDgYNzc3IiKimL79u00aNCA7t27G1vkinst+X3eijNU0yuvvILBYGDVqlUArFq1ClVVefnll4t1nXDrEXlMTAzR0dF88803VK9enW+++aZAubZt25p83l988UWxzyGKJi1y4pHISL2OxWmVv9zPA3Dc6TiXkzqxzDGLYdV8qNnIEwD9jRskfzYbAPfBb2Pp5Wm2mIUokyztbrWMmevcpcjd3b1UJn/PfyRpZWVFSEgILi4uBAUFsXPnTiIjI+/7rdTbHw3mJ0X5j0HvpbBHmt26dcPX15eFCxfi4+ODwWAgODjY+FKAoii0adPGeC2hoaEEBwej1+uJjY1l165dxbqWmjVroigKcXFx9xxqRafT8cILL7B06VIGDBjA0qVLeeGFF3AqwctlGo3G+DnWqVOHpKQkXnrppQJ97+zt7Uvl8xampEVOPBJHN23GzqkqVzTpGDCQ4aXn7AUvFBstr/YLRtHc+iV55euv0V++gpWfHy738de5EBWeotx6vGmOpYwOxp3fT27Lli2EhoYCEBISwsqVK4vsH5fPysoKvV7/0GO8evUqcXFxTJo0iWeeeYbAwEBSUlIKlMtPSiMjIwkNDUVRFFq3bs2nn35KZmbmPfvHAbi6utKxY0e++uorbt68WWD/nePjDRgwgJ07d7J27Vp27txZ7JccijJy5EgOHz7ML7/88kD1iOKRRE48dKrBwPWdZzlmmQjAWcezWKW1BhR6N/VFZ3vrr97s02e49p/vAPCa8B6aYrz2LoQo21JTU00ep8XExBgfJZaW/H5ya9asMSZyoaGhLF++HA8PD+rWrVvksf7+/uzdu5ezZ89y5cqVYre4lZSLiwtubm4sWLCAkydPsmXLFkaNGlWgXGhoKEePHiU2NpbWrVsbt61YsYLGjRsXu6Vs/vz56PV6mjVrxs8//8yJEyeIi4vjiy++oEWLFiZlQ0JCqFGjBq+//jo1atSgTZs2D3StTk5OvPHGG0yePLnQoU1E6ZJETjx0547E4KT15bz2Cioqic7JtIypx8s3rHi1fmXgVp+OSzNnQm4u9iFtcLjPPi1CiLIlMjKSRo0amSwffPBBqZ5Dp9PRqFEjXF1djUlb69atMRgM9+xTNmbMGLRaLXXr1sXDw6PUk8x8Go2GlStXEh0dTXBwMCNHjuSTTz4pUC44OBh3d3caNGhgTNpCQkLQ6/Ul6usXEBDAwYMHadu2LaNHjyY4OJj27duzefNmvv766wLl+/fvT0pKSonezL2b4cOHExcXJy8zPAKKKulysaSlpaHT6UhNTS1R3wEBFzce4WjkUXZZxHPRLhErGlDnTB2ybTSMmN0GjVZD+tat/PP2YLC0pNrvv2Etg0QKAUBWVhZnzpwhICCgWG9LCvE4utvPSUX//pYWOfHQWZxSCdRXwc4uj6POx6h6riYAgc9UQaPVYMjJ4dJHHwHg1u91SeKEEEKIYpJETjxUOf+kk3M2DYNiYJ1bJPXTnsXOoCXDEtp3vpWwXVu2jNxzCWg93HEb9LZ5AxZClCkrVqzAwcGh0CUoKMgsMQUFBRUZ04oVKx76+RMSEoo8v4ODQ6k+Hjb3tYp7k+FHxEOjGgycXLkTVVGI1cVzXZNBwNnGAFRp6Y2FhZbcS8lc+frWeEOeo0ejdSi9wUaFEOVf9+7dad68eaH7zDVzwB9//FHk/KleXl4P/fw+Pj7G2SKK2l9azH2t4t4kkRMPzbm90Zy/dpXdVie4okmi0dX22OktuamFN3rWAiB59qeoGRnYNmiArnt3M0cshChrHB0dcXR0NHcYJvz8/Mx6fgsLi0c2Hpu5r1XcmzxaFQ9N8vp4jlr8Awqct03EN6kZAE6NXbG2tiDj4CHSfl8DioLXpIkyn6oQQghRQtIiJx6K9EuXuZmlIc0mExU9FxwvEmutp742j6UvBaLq9VzKn0+1V09s69Uzc8RCCCFE+SNNIOKhOLt6N3FWlwCI153AXm2MwWBP49ZVcHGw5vrq1WQdPYrGwQHPkSPNHK0QQghRPkkiJ0qdXp/H9bM3SNakAirJVte5cLYxGgX+1coffVoalz/7HAD3d4Zg4eZm3oCFEEKIcqrMJHIzZ85EURSTCYFVVWXKlCn4+Phga2trnLrkdtnZ2QwdOhR3d3fs7e3p3r07//zzj0mZlJQU+vbti06nQ6fT0bdv3wJzzYnSk7D+AKesbs0heMH2Hzoef4sBydV5LsADX1c7Ls+bhz4lBavq1XHt08fM0QohhBDlV5lI5Pbv38+CBQuoX7++yfaPP/6Yzz77jHnz5rF//368vb1p37496enpxjIjRozgl19+YeXKlezYsYMbN27QtWtXk0mQX331VWJiYoiIiCAiIoKYmBj69u37yK7vcZMdm06i5joAGVjgkK1Di8IrT1cn++RJUlZ8D9yaT1Ux0/ABQojHU1hYGD169LhrmcjISBRFkT/4Rblg9kTuxo0b9OnTh4ULF+Li4mLcrqoqc+bMYeLEifTs2ZPg4GCWLVtGRkYG339/KxFITU1l8eLFzJ49m3bt2tGoUSOWL19ObGwsmzZtAiAuLo6IiAgWLVpEixYtaNGiBQsXLmTt2rXEx8eb5ZorstxLN3FIseGl7BacdIojOLEdABe8LXiiuitJ06eDXo9Du2dwaNXKzNEKIR6muyVN/v7+KIpislSpUsVk/5w5c0o9prlz5xIeHm5cDw0NNXkSVJGcP3+eAQMG4OPjg5WVFX5+fgwfPpyrV68WKHv06FF69+6Nh4cH1tbW1KxZk/fff5+MjAyTcrd/blqtFh8fHwYMGEBKSkqxYspPkvMXNzc3nn76aXbu3GlSbsqUKQX+fyiKYvxuF//P7InckCFD6NKlC+3atTPZfubMGZKSkujQoYNxm7W1NSEhIezatQuA6OhocnNzTcr4+PgQHBxsLLN79250Op3JgJJPPvkkOp3OWKYw2dnZpKWlmSzi3m7svAjAKfeLZBjscMpyI0NRade1BumbNpGxew+KlRVe48aZOVIhhLlNnTqVxMRE43Lo0KGHfk6dToezs/NDP8/tihpQ92E6ffo0TZs25fjx4/zwww+cPHmSb775hs2bN9OiRQuuXbtmLLtnzx6aN29OTk4O69at4/jx48yYMYNly5bRvn17cnJyTOrO/9wSEhJYsWIF27ZtY9iwYSWKLz4+nsTERCIjI/Hw8KBLly4kJyeblAkKCjL5/5GYmEibNm3u/6ZUUGZN5FauXMnBgweZOXNmgX1JSUlAwZGjvby8jPuSkpKwsrIyackrrIynp2eB+j09PY1lCjNz5kxjnzqdToevr2/JLu4xlJuWRVL0GVRUltqtpvE/txLs4zqFjnVcSP5oFgCu/f+FldxPIR57jo6OeHt7GxcPD48S1zF69Gi6detmXJ8zZw6KorBu3Trjttq1a/Ptt98Cpq2EYWFhREVFMXfuXGOLz9mzZ43HRUdH07RpU+zs7GjZsmWxn+JMmTKFhg0bsmTJEqpVq4a1tTWqqhIREcFTTz2Fs7Mzbm5udO3alVOnThmP69WrF0OHDjWujxgxAkVRjH3D8/LycHR0ZP369feMYciQIVhZWbFhwwZCQkKoWrUqnTt3ZtOmTVy4cIGJEycCt55+DRgwgMDAQFavXk2zZs3w8/PjxRdfZM2aNezevZvPP//cpO78z61y5cq0bduW119/nYMHDxbr3uTz9PTE29ubevXqMWnSJFJTU9m7d69JGQsLC5P/H97e3lhZWZXoPI8DsyVy58+fZ/jw4SxfvhwbG5siyymKYrKuqmqBbXe6s0xh5e9Vz3vvvUdqaqpxOX/+/F3PKeDcr/v5zWI/P1ntIu+GMy5ZXmQqKs06VCV1WTi5Fy5g4eWF+5tvmjtUIcotVVXJyM0wy6Kqqrkvv4DQ0FC2b9+OwWAAICoqCnd3d6KiooBbf8wfP36ckJCQAsfOnTuXFi1aMHDgQGOLz+1/tE+cOJHZs2dz4MABLCws6N+/f7HjOnnyJD/++CM///yzcTqtmzdvMmrUKPbv38/mzZvRaDQ8//zzxthDQ0OJjIw01nHntezfv5+srCxa3aNbyrVr11i/fj2DBw/G1tbWZJ+3tzd9+vRh1apVqKpKTEwMx44dY9SoUWjuGJS9QYMGtGvXjh9++KHIc124cIG1a9cWOY3avWRkZLB06VLAfFOulXdmGxA4Ojqa5ORkmjRpYtym1+vZtm0b8+bNM/7lk5SURKVKlYxlkpOTja103t7e5OTkkJKSYtIql5ycTMuWLY1lLl26VOD8ly9fvus8cdbW1lhbWz/YRT5G1DwDJ+PPkWWZSw7ZuN2sCkCsnYE51ay5NGohAJ7vjkVjZ2fOUIUo1zLzMmn+/f19aT6ova/uxc6y9H5+x40bx6RJk4zrM2bMKPEjujZt2pCens6hQ4do3Lgx27dvZ8yYMaxevRqArVu34uXlRZ06dQocq9PpsLKyws7ODm9v7wL7p0+fbkwAx48fT5cuXcjKyrpr40O+nJwcvvvuO5NWxl69epmUWbx4MZ6enhw7dozg4GBCQ0MZPnw4V65cQavVcvToUSZPnkxkZCSDBw8mMjKSJk2a4ODgcNdznzhxAlVVCQwMLHR/YGAgKSkpXL58mePHjxu3FVV2x44dJtvyPze9Xk9WVhbNmzfns88+u+c9uV1+f8iMjFt/IDRp0oRnnnnGpExsbKzJtdatW5d9+/aV6DyPA7O1yD3zzDPExsYSExNjXJo2bUqfPn2IiYmhWrVqeHt7s3HjRuMxOTk5REVFGZO0Jk2aYGlpaVImMTGRv/76y1imRYsWpKammnz4e/fuJTU11VhGPLgrO08Sp73VPy7eIY79ATtZ7pBFracqkfHF56hZWdg2bYLTs8+aOVIhRFkxduxYk++A119/vcR16HQ6GjZsSGRkJLGxsWg0Gt566y0OHz5Meno6kZGRhbbGFcftIynkNyjc2Y+rKH5+fgUeFZ86dYpXX32VatWq4eTkREBAAAAJCQkABAcH4+bmRlRUFNu3b6dBgwZ0797d2CL3INdyu/yW1Xs93cove2e5/M/tyJEjbN68GYAuXbqYjBZxL9u3b+fgwYP88MMP+Pn5ER4eXqBFrnbt2ib/P37++edi1/84MVuLnKOjI8HBwSbb7O3tcXNzM24fMWIEM2bMoGbNmtSsWZMZM2ZgZ2fHq6++Ctz6AR4wYACjR4/Gzc0NV1dXxowZQ7169YwvTwQGBtKpUycGDhxo7CPx5ptv0rVrV2rXrv0Ir7jiUlWVY1tjSNVkoFHhmPtJblzqjN5SpY9TCml//AkaDd4TJxbrF4cQomi2FrbsfXXvvQs+pHOXJnd391KZ/D3/kaSVlRUhISG4uLgQFBTEzp07iYyMvO+3Um9PLPJ/d+U/Br0Xe3v7Atu6deuGr68vCxcuxMfHB4PBQHBwsPFlAkVRaNOmjfFaQkNDCQ4ORq/XExsby65du4p1LTVq1EBRFI4dO1boW8N///03Li4uuLu7U6tWLQCOHTtGw4YNCy1bs2ZNk223f241a9Zkzpw5tGjRgq1btxZ4cbEoAQEBODs7U6tWLbKysnj++ef566+/TJ6EWVlZlcr/j4rO7G+t3s27777LiBEjGDx4ME2bNuXChQts2LABR0dHY5nPP/+cHj160Lt3b1q1aoWdnR1r1qxBq9Uay6xYsYJ69erRoUMHOnToQP369fnuu+/McUkVUtbp68QZbrXGXScZmzxnclOb8GyQJ4YvZgPg3PtFbIpouhdCFJ+iKNhZ2pllKat/iOX3k9uyZQuhoaEAhISEsHLlyiL7x+WzsrIqUUvS/bp69SpxcXFMmjSJZ555xvh48075SWlkZCShoaEoikLr1q359NNPyczMvGf/OAA3Nzfat2/P/PnzyczMNNmXlJTEihUreOmll1AUhYYNG1KnTh0+//zzAknq4cOH2bRpE6+88spdz5f/fXvnuYqrb9++GAwG5s+ff1/HP+7M1iJXmNs7ecKtX1hTpkxhypQpRR5jY2PDl19+yZdffllkGVdXV5YvX15KUYo7HfttN0ma6ygqON1oxMsHe/CbnZ43U4+QHR+PRqfDY/hwc4cphDCD1NRUY2f/fK6urqV6jvx+cmvWrGHatGnArYSoV69eeHh4ULdu3SKP9ff3Z+/evZw9exYHB4dSjy2fi4sLbm5uLFiwgEqVKpGQkMD48eMLlMvvJ2dhYUHr1q2N20aPHk3jxo1xcnIq1vnmzZtHy5Yt6dixI9OmTSMgIICjR48yduxYKleuzPTp04Fb37OLFi2iQ4cO9OrVi/feew9vb2/27t3L6NGjadGiRYFWwPT0dJKSklBVlfPnz/Puu+/i7u5+392VNBoNI0aMYNq0abz11lvYST/qEinTLXKi7Mu7msmZa4kAqLkZeNysjgENVb212Pzn1gsOHsOGYnHHEDFCiMdDZGQkjRo1Mlk++OCDUj2HTqejUaNGuLq6GpO21q1bYzAY7tmnbMyYMWi1WurWrYuHh4exv1pp02g0rFy5kujoaIKDgxk5ciSffPJJgXLBwcG4u7vToEEDY9IWEhKCXq8vUf+4mjVrcuDAAapXr85LL71E9erVefPNN2nbti27d+82SVhbtWrFnj170Gq1PPvss9SoUYP33nuPfv36sXHjxgIv/n3wwQdUqlQJHx8funbtir29PRs3bsTtAebN7t+/P7m5ucybN+++63hcKWpZfJ+8DEpLS0On05Gamlrsv4geB9fXnCJ95wVi7c+wNyUFz4z67LXOZQhbcVr/G9a1ahGw+mcUizLV+CtEuZGVlcWZM2cICAgo1tuSQjyO7vZzUtG/v6VFTtw3Q1YeNw9cQkFhj91JPDPqk6voweoyThvXAOA1YYIkcUIIIcRDIomcuG8pexLIzc4hS6dHTfID4LClniHxv4HBgGOnTtg/aZ7xroQQFcOKFStwcHAodAkKCjJLTEFBQUXGtGLFiod+/oSEhCLP7+Dg8NAeDxdH586di4xrxowZZourIpOmEnFfVIPK7qidxFon4JQB3uktyFP02KYfxen4Xyg2NniNHWPuMIUQ5Vz37t2LnDXAXDMB/PHHH0XOn3q3geZLi4+PT4EXSO7cby6LFi0q8u3Vh/UiyeNOEjlxX27+lcwxwz9kK7lcyEzGS8nlqGUWbx36FQC3gW9gWbmyeYMUQpR7jo6OJkNOlQV+fn5mPb+FhUWZHV+tsvzef+QkkRP35cCGXWQo2VjpFTZU20NWZh7ddjphd/0Klj4+uA0YYO4QhRBCiApP+siJEss+n8bhtFO3/p11kXT7XKyTAnghfgMAnuPGoZG364QQQoiHThI5UWJH/zxAiuYGWlXhlH0ihiwf+h84iIU+F7snn8SxQ3tzhyiEEEI8FuTRqiiR3OQM9p8/AlqwSbvBkxlDcU+O5anEhaDV4jXhvTI7jY8QQghR0UiLnCiRhIijxum4tKmOqAo8czgKAJdXXsHmfxMwCyGEEOLhk0ROFFvulUys47LolfMkujQDVhaNuKn/mxpXj6NxdsZj6DvmDlEIIYR4rEgiJ4otfUsCqGDn44JlZiiqxpZWMb8B4DlyJFqdzswRCiHKkrCwMBRFYdCgQQX2DR48GEVRCAsLMymrKAqWlpZ4eXnRvn17lixZgsFgMDnW39+fOXPmFCsGf39/Y722trbUqVOHTz75hNtnpzx79qyxzO3La6+9dt/XLsSjIomcKJa8q5kkx9waLXxHSuKtjVlHcE+/gGWdQJxf6GXG6IQQZZWvry8rV640GSQ2KyuLH374gapVq5qU7dSpE4mJiZw9e5Y///yTtm3bMnz4cLp27UpeXt59xzB16lQSExOJi4tjzJgxTJgwgQULFhQot2nTJhITE43LV199dd/nFOJRkUROFMvfa6NZZbmTTVaHSP0HVAw0P/I7AD4fTELRas0coRCiLGrcuDFVq1Zl9erVxm2rV6/G19eXRo0amZS1trbG29ubypUr07hxYyZMmMBvv/3Gn3/+SXh4+H3H4OjoiLe3N/7+/rzxxhvUr1+fDRs2FCjn5uaGt7e3cdHJUwZRDkgiJ+4p71oWu04dRFXgys1/uGmVjl1aDI4Zl7Ds2Bm7xo3NHaIQjw1VVTFkZJhluf1xZEn861//YunSpcb1JUuW0L9//2Id+/TTT9OgQQOTRPB+qapKZGQkcXFxZpveS4jSJsOPiHv6e100FzXXUFQ4YX0ErbKezrGW5FpaU2PCOHOHJ8RjRc3MJL5xE7Ocu/bBaBQ7uxIf17dvX9577z1jX7SdO3eycuVKIiMji3V8nTp1OHLkSInPm2/cuHFMmjSJnJwccnNzsbGxYdiwYQXKtWzZEo3m/9s3tm/fXqDVUIiyRhI5cVd517PYdSIaNGB/M5OYGheZtUTFKvcm6oC3sXwEE0QLIco3d3d3unTpwrJly1BVlS5duuDu7l7s41VVfaDxKceOHUtYWBiXL19m4sSJPP3007Rs2bJAuVWrVhEYGGhc9/X1ve9zCvGoSCIn7ip+3SFja9wlQyKtjql4peVx015H43cGmjs8IR47iq0ttQ9Gm+3c96t///68886tIYpK+hJBXFwcAQEB931ud3d3atSoQY0aNfj555+pUaMGTz75JO3atTMp5+vrW2YnoxeiKJLIiSLpU7PZFb8fNOBwIwu3Gy/hfqU6sBKHAW+geYBf6kKI+6Moyn093jS3Tp06kZOTA0DHjh2LfdyWLVuIjY1l5MiRpRKHi4sLQ4cOZcyYMRw6dEhmohHlnrzsIIqUtOkEV5Q0FBW4boOisaVawg5uOLlSa0Bfc4cnhChHtFotcXFxxMXFoS3iLffs7GySkpK4cOECBw8eZMaMGTz33HN07dqV119/vdRiGTJkCPHx8fz888+lVqcQ5iKJnCiUPi0H9VAqL2W3olKmPdbaJ9ClHMHxxj84v/UWGmtrc4cohChnnJyccHJyKnJ/REQElSpVwt/fn06dOrF161a++OILfvvttyKTv/vh4eFB3759mTJlSoHBhoUobxT1ft8nf8ykpaWh0+lITU296y+iiuL62tPc2HEB1duGX/9ORYOGpgc+Astsmm3bhCKv7gvxSGRlZXHmzBkCAgKwsbExdzhClEl3+zmp6N/f0iInCtCn53B6TxwqKrsyk9CgQZcSi9ON83gMGSxJnBBCCFFGSCInCjjxRwy/W+znV8s9JJ2+CUDN03+Q6u5DwMsyFZcQomxYsWIFDg4OhS5BQUHmDk+IR0LeWhUm9Ddy2HF0L2ggN+s6qQ521Lx4Gaf0BGzfnYliIf9lhBBlQ/fu3WnevHmh+2TmBvG4kG9lYeLEnzH8o7mKokK89WGqXv2VhrGWXPeuSp1e3c0dnhBCGDk6OuLo6GjuMIQwK3m0Koz0N3PZGbsPAMfMXP72PE/n/aA15FBl1AgUjfx3EUIIIcoS+WYWRicjYjivuQIqXM25SpcD1tjmqlyrUp0q3TqZOzwhhBBC3EESOQGAISOXnYf3AuCUkUeljO5UyXwNAP+xI2X0cyGEEKIMkkROAHBt2znSyQIVDNcsUTQ2+Cds4qp/HXw6PG3u8IQQQghRCHnZQWDIyiN7TzI9c5oRZXGM69qq6K4fxyX1JC6zFkprnBBCCFFGSYuc4MbOi6hZejRuNly7Wg1FY0O1s39wpWY9vEOfMnd4QgghhCiCJHKPOUN2Hke2RZOHnmguo1Ut0F0/ifP1E9R+b4y5wxNClEOKotx1CQsLeyjnvXnzJuPGjaNatWrY2Njg4eFBaGgoa9euNZYJDQ1lxIgRBY4NDw/H2dm5wPbMzExcXFxwdXUlMzOzwH5/f3/jddnZ2REcHMy3335brHjDw8NN7ouXlxfdunXj6NGjJuXCwsIKvY8nT54s1nlExSaPVh9zpzYcYZNyGBsrS6xP+GCl8SPg3B9crduEui2bmTs8IUQ5lJiYaPz3qlWr+OCDD4iPjzdus7W1NSmfm5tbKgP4Dho0iH379jFv3jzq1q3L1atX2bVrF1evXr3vOn/++WeCg4NRVZXVq1fTp0+fAmWmTp3KwIEDuXHjBuHh4QwaNAhnZ2deeumle9bv5OREfHw8qqpy4cIF3n33Xbp06cLx48exsrIyluvUqRNLly41OdbDw+O+r0tUHNIi9xgzZOvZcWA3ANbZWSQ6ncE55TguKfHUnSitcUKI++Pt7W1cdDodiqIY17OysnB2dubHH38kNDQUGxsbli9fDsDSpUsJDAzExsaGOnXqMH/+fJN6L1y4wEsvvYSLiwtubm4899xznD171rh/zZo1TJgwgWeffRZ/f3+aNGnC0KFD6dev331fy+LFi3nttdd47bXXWLx4caFlHB0d8fb2pkaNGkybNo2aNWvy66+/Fqv+/HtTqVIlmjZtysiRIzl37pxJ4gtgbW1tcl+9vb3RarX3fV2i4pBE7jF2ZuMRzimXQYUTNoepfeq/NDr8BVcaPIlbk4bmDk8IcRe52foil7xcffHL5hSvbGkbN24cw4YNIy4ujo4dO7Jw4UImTpzI9OnTiYuLY8aMGbz//vssW7YMgIyMDNq2bYuDgwPbtm1jx44dODg40KlTJ3JycoBbCeQff/xBenp6qcR46tQpdu/eTe/evenduze7du3i9OnT9zzOxsaG3NzcEp/v+vXrfP/994BMMSaKTx6tPqYMOXq27d8FCuiyDRzSnWFonIoBhfrvjzV3eEKIe1gwPKrIfX7BbnR9p4FxfcnY7eTlGAot61PTmedHNzau/2fiLrJuFExChnxTusMQjRgxgp49exrXP/zwQ2bPnm3cFhAQwLFjx/j222/p168fK1euRKPRsGjRIuOb9EuXLsXZ2ZnIyEg6dOjAggUL6NOnD25ubjRo0ICnnnqKF154gVatWpmce/78+SxatMhkW15eHjY2NibblixZQufOnXFxcQFuPd5csmQJ06ZNK/Sa8vLyWL58ObGxsbz99tvFug+pqak4ODigqioZGRnArTlk69SpY1Ju7dq1ODg4GNc7d+7MTz/9VKxziIpNWuQeU2c2/WVsjUvLuEmPfd4AXH2iNc7Bdc0cnRCiomvatKnx35cvX+b8+fMMGDAABwcH4zJt2jROnToFQHR0NCdPnsTR0dG439XVlaysLGOZNm3acPr0aTZv3kyvXr04evQorVu35sMPPzQ5d58+fYiJiTFZpk6dalJGr9ezbNkyXnvtNeO21157jWXLlqHXm7ZQjhs3DgcHB2xtbRkyZAhjx47lrbfeKtZ9cHR0JCYmhujoaL755huqV6/ON998U6Bc27ZtTeL94osvilW/qPikRe4xpObq2b53x63WuCwVy+x2aG2D0Cuf0nCS9I0Tojx4c25IkfuUO/5E7/9J66LL3jFM5OvTWz5IWMVmb29v/LfBcKu1cOHChTRv3tykXH4/MIPBQJMmTVixYkWBum7v9G9paUnr1q1p3bo148ePZ9q0aUydOpVx48YZXx7Q6XTUqFHDpA5PT0+T9fXr1xv75N1Or9ezYcMGOnfubNw2duxYwsLCsLOzo1KlSiUae1Oj0RhjqVOnDklJSbz00kts27bNpJy9vX2BmIUASeQeS2l7LqIYFBQNGFIsUTTWBJz7k2stnyG4dk1zhyeEKAZL6+J3dH9YZUuLl5cXlStX5vTp04W+FQrQuHFjVq1ahaenJ05OTsWuu27duuTl5ZGVlWXyFui9LF68mJdffpmJEyeabP/oo49YvHixSSLn7u5eaknWyJEj+eyzz/jll194/vnnS6VOUbFJIveYUXMN3Nx+kWdy63HA8Tz/KK44pCegu3aMapM+MXd4QojH1JQpUxg2bBhOTk507tyZ7OxsDhw4QEpKCqNGjaJPnz588sknPPfcc0ydOpUqVaqQkJDA6tWrGTt2LFWqVCE0NJRXXnmFpk2b4ubmxrFjx5gwYQJt27YtUfJ3+fJl1qxZw++//05wcLDJvn79+tGlSxcuX778UIb/cHJy4o033mDy5Mn06NFDZtYR9yR95B4zNw8kYUjLQXG0JOGiC4piRcC5P0kN6YRDgL+5wxNCPKbeeOMNFi1aRHh4OPXq1SMkJITw8HACAgIAsLOzY9u2bVStWpWePXsSGBhI//79yczMNCZpHTt2ZNmyZXTo0IHAwECGDh1Kx44d+fHHH0sUy3/+8x/s7e155plnCuxr27Ytjo6OfPfddw9+0UUYPnw4cXFx8jKDKBZFVVXV3EGUB2lpaeh0OlJTU0v0l11ZouYZ2Dz9JypnuXDeQ+XEcUscbvxDw4OfUHNDBHZVKps7RCHEHbKysjhz5gwBAQEF3qoUQtxyt5+TivD9fTfyaPUxcnbrUXYY4tBYKTgc98CaOvif/ZO0dl0kiRNCCCHKIXm0+phQ8wxs27kdFHDKVrlk+xcu1+LQpRzjiQkjzR2eEEJUOEFBQSbDqdy+FPb2rRD3Q1rkHhPnIo9xRk0GBU7a/kXn3Uepdmkr17r2xsbby9zhCSFEhfPHH38UOcODl5f83hWlQxK5x4CqN7BtxzZQwDlb4R/1b6pdgixLa554b7i5wxNCiArJz8/P3CGIx4BZH61+/fXX1K9fHycnJ5ycnGjRogV//vmncX9YWBiKopgsTz75pEkd2dnZDB06FHd3d+zt7enevTv//POPSZmUlBT69u2LTqdDp9PRt29frl+//igusUw4FxXHaTUZgKwbuXQ60gAVhcxuL2Ll5mrm6IQQQghxv8yayFWpUoWPPvqIAwcOcODAAZ5++mmee+45jh49aizTqVMnEhMTjcsff/xhUseIESP45ZdfWLlyJTt27ODGjRt07drVZAqVV199lZiYGCIiIoiIiCAmJoa+ffs+sus0J1Wv3hohXAHnLA0OOa1Jd+9KhpUtT7z7jrnDE0IIIcQDMOuj1W7dupmsT58+na+//po9e/YQFBQEgLW1Nd7e3oUen5qayuLFi/nuu+9o164dAMuXL8fX15dNmzbRsWNH4uLiiIiIYM+ePcapXxYuXEiLFi2Ij4+ndu3aD/EKze/m4WR0ebZYarXor2uwVCzxOxdBXq+XsXTWmTs8IYQQQjyAMvPWql6vZ+XKldy8eZMWLVoYt0dGRuLp6UmtWrUYOHAgycnJxn3R0dHk5ubSoUMH4zYfHx+Cg4PZtWsXALt370an05nM3/fkk0+i0+mMZQqTnZ1NWlqayVLeqAaVG1vP0ySvOs0dG2GtNsU2IxnH1Diajn7b3OEJIYQQ4gGZPZGLjY3FwcEBa2trBg0axC+//ELdunUB6Ny5MytWrGDLli3Mnj2b/fv38/TTT5OdnQ1AUlISVlZWuLi4mNTp5eVFUlKSscydkyHDrQmS88sUZubMmcY+dTqdDl9f39K65EcmM/YyeZczUWy0HDunoiiW+Cesx/Dya1g4OJg7PCGEEEI8ILMncrVr1yYmJoY9e/bw9ttv069fP44dOwbASy+9RJcuXQgODqZbt278+eefHD9+nHXr1t21TlVVTeanK2yuujvL3Om9994jNTXVuJw/f/4+r9A8VIPKlt83cFFzjZO6G2hz7bHJvIJt+t80HfaGucMTQgizOXv2LIqiEBMTY+5QKqwpU6bQsGFDc4fxWDB7ImdlZUWNGjVo2rQpM2fOpEGDBsydO7fQspUqVcLPz48TJ04A4O3tTU5ODikpKSblkpOTjWP0eHt7c+nSpQJ1Xb58+a7j+FhbWxvfps1fypPzu+KJzjvJH1aHOHjiLwD8z0Vg2acfWjs7M0cnhHgchIWF0aNHD5Nt//3vf7GxseHjjz82T1D34eeff6Z58+bodDocHR0JCgpi9OjRxv3h4eE4OzsXeqyiKPz6668Ftr/55ptotVpWrlxZYN+UKVOMIzVotVp8fX154403uHz5crHivX2kBwcHBxo0aEB4eLhJmcjIyAKjQiiKwqRJk4p1DlF2mD2Ru5OqqsZHp3e6evUq58+fp1KlSgA0adIES0tLNm7caCyTmJjIX3/9RcuWLQFo0aIFqamp7Nu3z1hm7969pKamGstUNKpBJWrzVlQFXHK0pKi78Lh8CJuMEzQa8i9zhyeEeEwtWrSIPn36MG/ePN59990SH5+Tk/MQorq7TZs28fLLL/PCCy+wb98+oqOjmT59+gPFkpGRwapVqxg7diyLFy8utExQUBCJiYkkJCTw9ddfs2bNGl5//fVin2Pp0qUkJiZy+PBhXnrpJf71r3+xfv36AuXi4+NNRoYYP378fV+XMA+zJnITJkxg+/btnD17ltjYWCZOnEhkZCR9+vThxo0bjBkzht27d3P27FkiIyPp1q0b7u7uPP/88wDodDoGDBjA6NGj2bx5M4cOHeK1116jXr16xrdYAwMD6dSpEwMHDmTPnj3s2bOHgQMH0rVr1wr7xuqFPcc5bbjVCnne+m867z1KvaOLsO33L7TW1maOTgjxOPr444955513+P7773njjVvdO3bt2kWbNm2wtbXF19eXYcOGcfPmTeMx/v7+TJs2jbCwMHQ6HQMHDjS2fq1fv57AwEAcHByMw1TdbunSpQQGBmJjY0OdOnWYP3/+fcW9du1annrqKcaOHUvt2rWpVasWPXr04Msvv7zve/HTTz9Rt25d3nvvPXbu3MnZs2cLlLGwsMDb25vKlSvTtWtXhg0bxoYNG8jMzCzWOZydnfH29qZ69epMmDABV1dXNmzYUKCcp6cn3t7exsWhGP2n8z+DX3/9lVq1amFjY0P79u3v2gUpNDSUESNGmGzr0aMHYWFhxvX58+dTs2ZNbGxs8PLy4oUXXijWtT7uzJrIXbp0ib59+1K7dm2eeeYZ9u7dS0REBO3bt0er1RIbG8tzzz1HrVq16NevH7Vq1WL37t04Ojoa6/j888/p0aMHvXv3plWrVtjZ2bFmzRq0Wq2xzIoVK6hXrx4dOnSgQ4cO1K9fn++++84cl/zQqarK1o1b/tcaZ4F14mGcM+Cazp1Gbz4eY+cJ8TjIzcoqcsm7o7XobmVzc7KLVfZBjB8/ng8//JC1a9fSq1cv4NaLbh07dqRnz54cOXKEVatWsWPHDt55x3R8y08++YTg4GCio6N5//33gVstWp9++infffcd27ZtIyEhgTFjxhiPWbhwIRMnTmT69OnExcUxY8YM3n//fZYtW1bi2L29vTl69Ch//fXXA9wBU4sXL+a1115Dp9Px7LPPsnTp0nseY2tri8FgIC8vr0Tn0uv1/Pjjj1y7dg1LS8v7DbmAjIwMpk+fzrJly9i5cydpaWm8/PLL913fgQMHGDZsGFOnTiU+Pp6IiAjatGlTavFWZGYdR66oJmW49Z+2sGbgO9nY2PDll1/e9a8jV1dXli9ffl8xljf/7D7BacOtOVVz01Sanu+AXrMJ+4Fvo5TiD7EQwry+6Fd0a0VAo6b0HD/FuD7/zT7kFdFlpUrdYF6a/JFxfeE7/clMLzjc0uhVa+8rzj///JPffvuNzZs38/TTTxu3f/LJJ7z66qvGVpqaNWvyxRdfEBISwtdff42NjQ0ATz/9tEmStmPHDnJzc/nmm2+oXr06AO+88w5Tp041lvnwww+ZPXs2PXv2BCAgIIBjx47x7bff0q9fvxLFP3ToULZv3069evXw8/PjySefpEOHDvTp0wfr255wpKamFqs168SJE+zZs4fVq1cD8NprrzFs2DAmT56MRlN428rff//N119/TbNmzUwaMu7mlVdeQavVkpWVhV6vx9XV1dgSersqVaqYrJ87dw43N7d71p+bm8u8efOMQ3stW7aMwMBA9u3bR7NmzYoV4+0SEhKwt7ena9euODo64ufnR6NGjUpcz+OozPWRE/dPVVUiN25BVVRcciywyW3OVc9WXHPxoMG/XjJ3eEKIx1D9+vXx9/fngw8+ID093bg9Ojqa8PBwHBwcjEvHjh0xGAycOXPGWK5p06YF6rSzszMmcXDrRbj8MUYvX77M+fPnGTBggEnd06ZN49SpUyWO397ennXr1nHy5EkmTZqEg4MDo0ePplmzZmRkZBjLOTo6EhMTU2C50+LFi+nYsSPu7u4APPvss9y8eZNNmzaZlMsfmsvW1pa6devi6+vLihUrih33559/TkxMDBs3bqRhw4Z8/vnn1KhRo0C57du3m8R753BeRbGwsDD5bOrUqYOzszNxcXHFjvF27du3x8/Pj2rVqtG3b19WrFhhcn9F0czaIidKV1Z8Cr7Zbly2SMVw3YCFYkHVhI24DHob5bZHzUKI8m/Ysv8WuU+5o2Vn8IK7JAAa02GYBs5b8kBx3aly5cr8/PPPtG3blk6dOhEREYGjoyMGg4G33nqLYcOGFTimatWqxn/b29sX2H/nI0JFUVBVFQCDwQDcerx6+0DwgEmXm5KqXr061atX54033mDixInUqlWLVatW8a9/3XqBTKPRFJoo3U6v1/Of//yHpKQkLCwsTLYvXrzYZHD72rVr8/vvv6PVavHx8TFp/SsOb29vatSoQY0aNfjpp59o1KgRTZs2NY7Tmi8gIKDIN27vpbAhvIoa1kuj0Rg/o3y5ubnGfzs6OnLw4EEiIyPZsGEDH3zwAVOmTGH//v33Hd/jQhK5CkJVVdI3J1DD4I2NiwsHLqlY5VzHMvcMwX16mjs8IUQps/zfo0dzli2uqlWrEhUVRdu2benQoQPr16+ncePGHD169J7JT0l5eXlRuXJlTp8+TZ8+fUq17nz+/v7Y2dmZvJhRHH/88Qfp6ekcOnTIJKn8+++/6dOnD1evXjU+1swfmqs01KhRg169evHee+/x22+/lUqdeXl5HDhwwPgYNT4+nuvXr1OnTp1Cy3t4eJi8kKLX6/nrr79o27atcZuFhQXt2rWjXbt2TJ48GWdnZ7Zs2WJ8RC4KJ4lcBZF94jo559PBUsP+szfQKE74nd+E99B3Cvx1LoQQj1qVKlWIjIw0JnPffvstLVq0YMiQIQwcOBB7e3vi4uLYuHHjA70RCrfGYRs2bBhOTk507tyZ7OxsDhw4QEpKCqNGjSpxXRkZGTz77LP4+flx/fp1vvjiC3Jzc2nfvn2J6lq8eDFdunShQYMGJtuDgoIYMWIEy5cvZ/jw4SWqs7hGjx5NgwYNOHDgQKGPq0vK0tKSoUOH8sUXX2Bpack777zDk08+WWT/uKeffppRo0axbt06qlevzueff87169eN+9euXcvp06dp06YNLi4u/PHHHxgMhgo7ukRpkm/4CkBVVf5Y9SvHtP9w3iUDTbYTVjlpWBgSqPNCV3OHJ4QQwK3HrFFRUVy/fp2BAwcSFRXFiRMnaN26NY0aNeL99983jhP6IN544w0WLVpEeHg49erVIyQkhPDwcAICAkpcV0hICKdPn+b111+nTp06dO7cmaSkJDZs2FCiJOPSpUusW7fO+Nbu7RRFoWfPnnd9AfBB5Q/L9cEHH5RKfXZ2dowbN45XX32VFi1aYGtrW+jgxvn69+9Pv379eP311wkJCSEgIMCkNc7Z2ZnVq1fz9NNPExgYyDfffMMPP/xAUFBQqcRbkSnqnQ+tRaHS0tLQ6XSkpqaWuVkeLuw/xaK1y1EVFacrNljnNaPGydX4D+tO7e4d7l2BEKLMysrK4syZMwQEBBjf5BTCnMLDwxkxYoRJi5q53e3npCx/f5cGebRaAWz9c+OtN1VzLdGnRFA5LQuN5h9qdStZs78QQgghyhd5tFrOXYw+xSn9rVkcLmtP0f7QJWqfWEXA6BFFvj0khBDilkGDBpkMU3L7MmjQIHOHV8CMGTOKjLdz586lco7OnTsXeY4ZM2aUyjlE6ZFHq8VUVptmV0z9hhOGJFxyLdGcXEG7wyr/BNSh/Z+/mDs0IUQpkEerD1dycjJpaQUHQAZwcnLC09PzEUd0d9euXePatWuF7rO1taVy5coPfI4LFy4UORWYq6srrq6uD3yO0iaPVkW5dPHQaU7qL4ECapoW75zXybb6hZrjSz4ZtRBCPI48PT3LXLJ2N48ikSqNZFA8OpLIlWNb1+b3jbNCm9OEa65ZJBqO0DCkhblDE0IIIcQjIIlcOZV9Lo3AjMpkWmRzMy0TRdHi+88Wgv492tyhCSGEEOIRkZcdyqn0LQl4qjqaujdAm9MUi9wMVIdrVH2yiblDE0IIIcQjIolcOZRzPp2s+BTQwJ4zV1AUhSr/bKXhxDHmDk0IIYQQj5A8Wi2Hflm2Eo2Fgq+uMvprLmjzMlFd0qjcuJ65QxNCCCHEIyQtcuXMpdhzxOde5KjFP+w9fwiAyhe20nSStMYJIcS9hIWF0aNHj7uWiYyMRFGUMjVzQXl09uxZFEUhJibG3KFUaJLIlTObf4vAoKi45FnjfvK/VDv9K7hl4B0sEwsLIcqWuyVN/v7+KIpislSpUsVk/5w5c0o9prlz5xIeHm5cDw0NZcSIEaV+HnMLCwsz3lcLCwuqVq3K22+/TUpKikm5e30OouyTR6vlyKWj5ziZmwQK3NSfocPpTPI0m/D+cq25QxNCiBKbOnUqAwcONK5rtdqHfk6dTvfQz3Gn3NxcLC0tH/l5O3XqxNKlS8nLy+PYsWP079+f69ev88MPP5iUM8fnIEqPtMiVI5t/+f/WuOrR2wFIaN4Gj9rVzByZEEKUnKOjI97e3sbFw8OjxHWMHj2abt26GdfnzJmDoiisW7fOuK127dp8++23gGkrYVhYGFFRUcydO9fYGnX27FnjcdHR0TRt2hQ7OztatmxJfHx8sWKaMmUKDRs2ZMmSJVSrVg1ra2tUVSUiIoKnnnoKZ2dn3Nzc6Nq1K6dOnTIe16tXL4YOHWpcHzHi1lSLR48eBSAvLw9HR0fWr19frDisra3x9vamSpUqdOjQgZdeeokNGzYUKHe/n4OiKHz99dd07twZW1tbAgIC+Omnn4osHx4ejrOzs8m2X3/91WQ6ycOHD9O2bVscHR1xcnKiSZMmHDhwoFjxPK4kkSsnLh1L4FTurTlVtWlasj3e5bqDDy3en2jmyIQQj5Kqqhhy9GZZyuKMjqGhoWzfvh2DwQBAVFQU7u7uREVFAZCUlMTx48cJCQkpcOzcuXNp0aIFAwcOJDExkcTERHx9fY37J06cyOzZszlw4AAWFhb079+/2HGdPHmSH3/8kZ9//tnYR+zmzZuMGjWK/fv3s3nzZjQaDc8//7wx9tDQUCIjI4113Hkt+/fvJysri1atWpXoHgGcPn2aiIiIUm8ZfP/99+nVqxeHDx/mtdde45VXXiEuLu6+6+vTpw9VqlRh//79REdHM378eLO0ZpYn8mi1nNiy+k/0igGXPGvU7EbctMsjuUlDWlTzvffBQogKQ801cPGDXWY5t8/UlihWpffYbdy4cUyaNMm4PmPGDIYNG1aiOtq0aUN6ejqHDh2icePGbN++nTFjxrB69WoAtm7dipeXF3Xq1ClwrE6nw8rKCjs7O7y9vQvsnz59ujEBHD9+PF26dCErK6tYc97m5OTw3XffmbRu9erVy6TM4sWL8fT05NixYwQHBxMaGsrw4cO5cuUKWq2Wo0ePMnnyZCIjIxk8eDCRkZE0adIEBweHYt2btWvX4uDggF6vJysrC4DPPvusQLkH+RxefPFF3njjDQA+/PBDNm7cyJdffsn8+fOLdfydEhISGDt2rPHzqlmz5n3V8ziRRK4cyE3OoMmN6lhaWJKUdhVF0eKdGEnIN/KmqhCi/Bo7dixhYWHGdXd39xLXodPpaNiwIZGRkVhaWqLRaHjrrbeYPHky6enpREZGFtoaVxz169c3/rtSpUoAJCcnU7Vq1Xse6+fnV+AR5alTp3j//ffZs2cPV65cMbbEJSQkEBwcTHBwMG5ubkRFRWFpaUmDBg3o3r07X3zxBUCJr6Vt27Z8/fXXZGRksGjRIo4fP27y6Dbfg3wOLVq0KLD+IG+pjho1ijfeeIPvvvuOdu3a8eKLL1K9evX7ru9xIIlcOZC2JQE7rKnrVpNLV/zR6HNQ/PQ4V6lk7tCEEI+YYqnBZ2pLs527NLm7u1OjRo0Hrif/kaSVlRUhISG4uLgQFBTEzp07iYyMvO+3Um9/pJffjys/+boXe3v7Atu6deuGr68vCxcuxMfHB4PBQHBwMDk5OcZztGnTxngtoaGhBAcHo9friY2NZdeuXSW6Fnt7e+P9/eKLL2jbti3//ve/+fDDD03KldbnkO/2Pm+302g0BR7P5+bmmqxPmTKFV199lXXr1vHnn38yefJkVq5cyfPPP19q8VU00keujMtKTCPz8GUA9py9CIDXpZ0884HMqSrE40hRFDRWWrMsRX1Bm1t+P7ktW7YQGhoKQEhICCtXriyyf1w+Kysr9Hr9Q4/x6tWrxMXFMWnSJJ555hkCAwMLDAUC/5+URkZGEhoaiqIotG7dmk8//ZTMzMz76h+Xb/LkyXz66adcvHjxQS7FxJ49ewqsF/YYG8DDw4P09HRu3rxp3FZY612tWrUYOXIkGzZsoGfPnixdurTU4q2IJJEr435Z8gN/WhzijONVMrM90Bhy0VQDR6+Sv90lhBCPWmpqKjExMSZLQkJCqZ4jv5/cmjVrjIlcaGgoy5cvx8PDg7p16xZ5rL+/P3v37uXs2bMmjztLm4uLC25ubixYsICTJ0+yZcsWRo0aVaBcaGgoR48eJTY2ltatWxu3rVixgsaNG+Pk5HTfMYSGhhIUFMSMGTPuu447/fTTTyxZsoTjx48zefJk9u3bxzvvvFNo2ebNm2NnZ8eECRM4efIk33//vcmYfpmZmbzzzjtERkZy7tw5du7cyf79+wkMDCy1eCsiSeTKsOTj5zmZc4kL2mscSf4LAI9Lu2j/fsEffiGEKIsiIyNp1KiRyfLBBx+U6jl0Oh2NGjXC1dXVmLS1bt0ag8Fwzz5lY8aMQavVUrduXTw8PEo9ycyn0WhYuXIl0dHRBAcHM3LkSD755JMC5YKDg3F3d6dBgwbGpC0kJAS9Xn/fff1uN2rUKBYuXMj58+cfuC6Af//736xcuZL69euzbNkyVqxYUWTi7OrqyvLly/njjz+oV68eP/zwA1OmTDHu12q1XL16lddff51atWrRu3dvOnfuzL///e9SibWiUtSy+D55GZSWloZOpyM1NfWB/iIqiR+mf0t8biIuehsCN/0HG219rraoy/OflO4vQSFE2ZWVlcWZM2cICAgo1tuSQjwqiqLwyy+/3HPKs0fhbj8n5vj+fpTkZYcy6vKJfziZcwkUUDLO45uikm5zlE6TFpg7NCGEEEKUEfJotYza9OO6W+PG6W0I2rUDgKSuvbDVVby/JoQQoigrVqzAwcGh0CUoKMgsMQUFBRUZ04oVKx76+RMSEoo8v4ODQ6k8Hi6L910UTlrkyqDLJ/+/Nc4qVcupwKnknV5Ox/FjzR2aEEI8Ut27d6d58+aF7jPXiP9//PFHgWEz8nl5eT308/v4+Nx1rDYfH58HPkdx7rv0zCobJJErg7b9dz16xYCz3oa87IaoFpDRphnWDgXHJRJCiIrM0dERR0dHc4dhws/Pz6znt7CwKNVx3wpTFu+7KJwkcmVMXmo2TdNrosOe0+kXyVW0uFzZTZe5Mm6cEEIIIUxJH7kyJj3yPFq9QlVdZXJzGqKoemwa2mNlK2+rCSGEEMKUJHJlSFriNdL33xpxO/p/nVV11w7Q7d3B5gxLCCGEEGWUPFotQ/5Y+iMXNKk0tPHj2vVKoBqwa+KIhbWVuUMTQgghRBkkLXJlxJUzFzmZnUy6JpOT144D4HT9IN1HDzJzZEIIIYQoqySRKyM2/fA7eYoBZ70tjaN+oNn+aTg2d0RrKY2mQghREYWFhZWJWRFE+SaJXBlw+ewFTmYnA2B/PRGHbEixvU734W+aOTIhhLh/d0tU/P39mTNnjsm6oiisXLmyQNmgoCAURTGZYD2//J3LRx99dM+4zp49a3KMTqfjySefZM2aNSblwsPDCz3HokWLinX9QjwK0txTBmz+fs3/WuNsqLv7AAC5r7+JRqs1c2RCCPHo+Pr6snTpUl5++WXjtj179pCUlIS9fcFxNKdOncrAgQNNtpVk7LNNmzYRFBTE9evXmT9/Pr169eLgwYMEBwcbyzg5OREfH29ynE6nK/Y5hHjYpEXOzK6cu8DJ7MsAOKZqOdx4ModrP03nN6Q1TgjxeOnTpw9RUVGcP3/euG3JkiX06dMHC4uC7Q6Ojo54e3ubLIUlfEVxc3PD29ubOnXqMH36dHJzc9m6datJGUVRCpzD1tb2nnVPmTKFhg0b8u233+Lr64udnR0vvvgi169fL/KYO1spARo2bMiUKVNM6q1atSrW1tb4+PgwbNiwYl+vqJgkkTOzfau3kqfocdbbkJHdCFWjxbpjMzQa+WiEEEXLyckpcrlz+qjSKPsoeHl50bFjR5YtWwZARkYGq1aton///g/1vLm5uSxcuBAo3Wm/Tp48yY8//siaNWuIiIggJiaGIUOG3Hd9//3vf/n888/59ttvOXHiBL/++iv16tUrtXhF+SSPVs1INag0JhCPbCeOpZ/mhqLBNv0Izw2Sv7CEEHc3Y8aMIvfVrFmTPn36GNc/+eSTIucG9fPz41//+pdxfc6cOWRkZBQod3ur0MPUv39/Ro8ezcSJE/nvf/9L9erVadiwYaFlx40bx6RJk0y2rV27ltDQ0GKdq2XLlmg0GjIzMzEYDPj7+9O7d2+TMqmpqTg4OBjXHRwcSEpKKlb9WVlZLFu2jCpVqgDw5Zdf0qVLF2bPno23t3ex6rhdQkIC3t7etGvXDktLS6pWrUqzZs1KXI+oWKTZx4wUjYLX0EYQ6MSN3Ft9MlxDPKQ1Tgjx2OrSpQs3btxg27ZtLFmy5K6tcWPHjiUmJsZkKWqi98KsWrWKQ4cO8fvvv1OjRg0WLVqEq6urSRlHR0eT+nft2lXs+qtWrWpM4gBatGiBwWAo0OeuuF588UUyMzOpVq0aAwcO5JdffiEvL+++6hIVh7TImZlioeFA5GGwqof1zb/o8aa0xgkh7m3ChAlF7lMUxWR97NixxS47YsSIB4rrQVlYWNC3b18mT57M3r17+eWXX4os6+7u/kCTx/v6+lKzZk1q1qyJg4MDvXr14tixY3h6ehrLaDSaUpugPv9e33nPbz+Xqqom225vSfX19SU+Pp6NGzeyadMmBg8ezCeffEJUVFSpPhIW5Ys0/ZjZlj83Y7AMAsC9rec9SgshxC1WVlZFLnd+qZdG2Uepf//+REVF8dxzz+Hi4vJIzhkSEkJwcDDTp08vtToTEhK4ePGicX337t1oNBpq1apVaHkPDw8SExON62lpaZw5c8akjK2tLd27d+eLL74gMjKS3bt3ExsbW2oxi/JHWuTM7Mzyn9DadkObc4Ye/d8xdzhCCFGqUlNTiYmJMdl25+PLOwUGBnLlyhXs7OzuWi49Pb1AfzU7OzucnJzuK9bRo0fz4osv8u6771K5cuX7quN2NjY29OvXj08//ZS0tDSGDRtG7969i+wf9/TTTxMeHk63bt1wcXHh/fffR3vbMFTh4eHo9XqaN2+OnZ0d3333Hba2tvj5+T1wrKL8kkTOjHJzc7HK+Ismh/dx/v33zB2OEEKUusjISBo1amSyrV+/fvc8zs3N7Z5lPvjgAz744AOTbW+99RbffPNNyYL8n65du+Lv78/06dOZP3/+fdVxuxo1atCzZ0+effZZrl27xrPPPnvXet977z1Onz5N165d0el0fPjhhyYtcs7Oznz00UeMGjUKvV5PvXr1WLNmTbHulai4FPXOB/KiUGlpaeh0OlJTU+/7r72i7N+3gyeaPVWqdQohKoasrCzOnDlDQEAANjY25g5HFNOUKVP49ddfC7RGiofjbj8nD/P7uyyQPnJlgCRxQgghhLgfZk3kvv76a+rXr4+TkxNOTk60aNGCP//807hfVVWmTJmCj48Ptra2hIaGcvToUZM6srOzGTp0KO7u7tjb29O9e3f++ecfkzIpKSn07dsXnU6HTqejb9++dx1dWwghRPk1aNAgHBwcCl0GDRpUKucICgoq8hwrVqwolXMIURxmfbS6Zs0atFqt8dXuZcuW8cknn3Do0CGCgoKYNWsW06dPJzw8nFq1ajFt2jS2bdtGfHy8cT69t99+mzVr1hAeHo6bmxujR4/m2rVrREdHGzuJdu7cmX/++YcFCxYA8Oabb+Lv719gguS7qehNs0KIskkerZZccnIyaWlphe5zcnIyGV7kfp07d67IQZa9vLxKNOereHCP86NV1DLGxcVFXbRokWowGFRvb2/1o48+Mu7LyspSdTqd+s0336iqqqrXr19XLS0t1ZUrVxrLXLhwQdVoNGpERISqqqp67NgxFVD37NljLLN7924VUP/+++9ix5WamqoCampq6oNeohBCFFtmZqZ67NgxNTMz09yhCFFm3e3npKJ/f5eZPnJ6vZ6VK1dy8+ZNWrRowZkzZ0hKSqJDhw7GMtbW1oSEhBhH1o6OjiY3N9ekjI+PD8HBwcYyu3fvRqfTmYz2/eSTT6LT6e46Qnd2djZpaWkmixBCCCFEWWL2RC42NhYHBwesra0ZNGgQv/zyC3Xr1jWODeTl5WVS3svLy7gvKSkJKyurAgNG3lmmsGZ0T0/Pu86XN3PmTGOfOp1Oh6+v7wNdpxBCPAhVBhgQokiP88+H2RO52rVrExMTw549e3j77bfp168fx44dM+6/cyoTVVWLnN6kqDKFlb9XPe+99x6pqanG5fz588W9JCGEKDX5fX1zcnLMHIkQZVdGRgbAYzlVmdkHBLaysjK+7NC0aVP279/P3LlzGTduHHCrRa1SpUrG8snJycZWOm9vb3JyckhJSTFplUtOTqZly5bGMpcuXSpw3suXLxdo7budtbU11tbWD36BQgjxACwsLLCzs+Py5ctYWlqi0Zj9728hygxVVcnIyCA5ORlnZ2eTmTAeF2ZP5O6kqirZ2dkEBATg7e3Nxo0bjaOC5+TkEBUVxaxZswBo0qQJlpaWbNy4kd69ewOQmJjIX3/9xccffwxAixYtSE1NZd++fTRr1gyAvXv3kpqaakz2hBCirFIUhUqVKnHmzBnOnTtn7nCEKJOcnZ2LnPqsojNrIjdhwgQ6d+6Mr68v6enprFy5ksjISCIiIlAUhREjRjBjxgxq1qxJzZo1mTFjBnZ2drz66qsA6HQ6BgwYwOjRo3Fzc8PV1ZUxY8ZQr1492rVrB9yas69Tp04MHDiQb7/9Frg1/EjXrl2pXbu22a5dCCGKy8rKipo1a8rjVSEKYWlp+Vi2xOUzayJ36dIl+vbtS2JiIjqdjvr16xMREUH79u0BePfdd8nMzGTw4MGkpKTQvHlzNmzYYDI+z+eff46FhQW9e/cmMzOTZ555hvDwcJMPdcWKFQwbNsz4dmv37t2ZN2/eo71YIYR4ABqNRsaRE0IUIHOtFlOFH1BQCCGEqIAq+ve39JoVQgghhCinJJETQgghhCinytxbq2VV/hNomeFBCCGEKD/yv7crak8ySeSKKT09HUBmeBBCCCHKofT0dHQ6nbnDKHXyskMxGQwGLl68iKOj4z1nliiJtLQ0fH19OX/+fIXshFmWyL1+NOQ+Pxpynx8Nuc+PxsO8z6qqkp6ejo+PT4UcUFta5IpJo9FQpUqVh1a/k5OT/JJ4RORePxpynx8Nuc+PhtznR+Nh3eeK2BKXr+KlpkIIIYQQjwlJ5IQQQgghyilJ5MzM2tqayZMnY21tbe5QKjy514+G3OdHQ+7zoyH3+dGQ+3z/5GUHIYQQQohySlrkhBBCCCHKKUnkhBBCCCHKKUnkhBBCCCHKKUnkhBBCCCHKKUnkzGz+/PkEBARgY2NDkyZN2L59u7lDqlBmzpzJE088gaOjI56envTo0YP4+Hhzh1XhzZw5E0VRGDFihLlDqXAuXLjAa6+9hpubG3Z2djRs2JDo6Ghzh1Xh5OXlMWnSJAICArC1taVatWpMnToVg8Fg7tDKtW3bttGtWzd8fHxQFIVff/3VZL+qqkyZMgUfHx9sbW0JDQ3l6NGj5gm2nJBEzoxWrVrFiBEjmDhxIocOHaJ169Z07tyZhIQEc4dWYURFRTFkyBD27NnDxo0bycvLo0OHDty8edPcoVVY+/fvZ8GCBdSvX9/coVQ4KSkptGrVCktLS/7880+OHTvG7NmzcXZ2NndoFc6sWbP45ptvmDdvHnFxcXz88cd88sknfPnll+YOrVy7efMmDRo0YN68eYXu//jjj/nss8+YN28e+/fvx9vbm/bt2xvnOxcFyfAjZtS8eXMaN27M119/bdwWGBhIjx49mDlzphkjq7guX76Mp6cnUVFRtGnTxtzhVDg3btygcePGzJ8/n2nTptGwYUPmzJlj7rAqjPHjx7Nz505puX8EunbtipeXF4sXLzZu69WrF3Z2dnz33XdmjKziUBSFX375hR49egC3WuN8fHwYMWIE48aNAyA7OxsvLy9mzZrFW2+9ZcZoyy5pkTOTnJwcoqOj6dChg8n2Dh06sGvXLjNFVfGlpqYC4OrqauZIKqYhQ4bQpUsX2rVrZ+5QKqTff/+dpk2b8uKLL+Lp6UmjRo1YuHChucOqkJ566ik2b97M8ePHATh8+DA7duzg2WefNXNkFdeZM2dISkoy+V60trYmJCREvhfvwsLcATyurly5gl6vx8vLy2S7l5cXSUlJZoqqYlNVlVGjRvHUU08RHBxs7nAqnJUrV3Lw4EH2799v7lAqrNOnT/P1118zatQoJkyYwL59+xg2bBjW1ta8/vrr5g6vQhk3bhypqanUqVMHrVaLXq9n+vTpvPLKK+YOrcLK/+4r7Hvx3Llz5gipXJBEzswURTFZV1W1wDZROt555x2OHDnCjh07zB1KhXP+/HmGDx/Ohg0bsLGxMXc4FZbBYKBp06bMmDEDgEaNGnH06FG+/vprSeRK2apVq1i+fDnff/89QUFBxMTEMGLECHx8fOjXr5+5w6vQ5HuxZCSRMxN3d3e0Wm2B1rfk5OQCf42IBzd06FB+//13tm3bRpUqVcwdToUTHR1NcnIyTZo0MW7T6/Vs27aNefPmkZ2djVarNWOEFUOlSpWoW7euybbAwEB+/vlnM0VUcY0dO5bx48fz8ssvA1CvXj3OnTvHzJkzJZF7SLy9vYFbLXOVKlUybpfvxbuTPnJmYmVlRZMmTdi4caPJ9o0bN9KyZUszRVXxqKrKO++8w+rVq9myZQsBAQHmDqlCeuaZZ4iNjSUmJsa4NG3alD59+hATEyNJXClp1apVgeFzjh8/jp+fn5kiqrgyMjLQaEy/IrVarQw/8hAFBATg7e1t8r2Yk5NDVFSUfC/ehbTImdGoUaPo27cvTZs2pUWLFixYsICEhAQGDRpk7tAqjCFDhvD999/z22+/4ejoaGwB1el02Nramjm6isPR0bFAv0N7e3vc3NykP2IpGjlyJC1btmTGjBn07t2bffv2sWDBAhYsWGDu0Cqcbt26MX36dKpWrUpQUBCHDh3is88+o3///uYOrVy7ceMGJ0+eNK6fOXOGmJgYXF1dqVq1KiNGjGDGjBnUrFmTmjVrMmPGDOzs7Hj11VfNGHUZpwqz+uqrr1Q/Pz/VyspKbdy4sRoVFWXukCoUoNBl6dKl5g6twgsJCVGHDx9u7jAqnDVr1qjBwcGqtbW1WqdOHXXBggXmDqlCSktLU4cPH65WrVpVtbGxUatVq6ZOnDhRzc7ONndo5drWrVsL/Z3cr18/VVVV1WAwqJMnT1a9vb1Va2trtU2bNmpsbKx5gy7jZBw5IYQQQohySvrICSGEEEKUU5LICSGEEEKUU5LICSGEEEKUU5LICSGEEEKUU5LICSGEEEKUU5LICSGEEEKUU5LICSGEEEKUU5LICSEAOHv2LIqiEBMTY+5QjP7++2+efPJJbGxsaNiwYaFlVFXlzTffxNXVtczFb06RkZEoisL169eLLBMeHo6zs/Mji+lO/v7+zJkzx2znF6IikEROiDIiLCwMRVH46KOPTLb/+uuvKIpipqjMa/Lkydjb2xMfH8/mzZsLLRMREUF4eDhr164lMTGx1KYECwsLo0ePHqVSV0UiyZcQZYskckKUITY2NsyaNYuUlBRzh1JqcnJy7vvYU6dO8dRTT+Hn54ebm1uRZSpVqkTLli3x9vbGwqJsTSGt1+tlonUhxEMjiZwQZUi7du3w9vZm5syZRZaZMmVKgceMc+bMwd/f37ie35o0Y8YMvLy8cHZ25t///jd5eXmMHTsWV1dXqlSpwpIlSwrU//fff9OyZUtsbGwICgoiMjLSZP+xY8d49tlncXBwwMvLi759+3LlyhXj/tDQUN555x1GjRqFu7s77du3L/Q6DAYDU6dOpUqVKlhbW9OwYUMiIiKM+xVFITo6mqlTp6IoClOmTClQR1hYGEOHDiUhIQFFUYz3QFVVPv74Y6pVq4atrS0NGjTgv//9r/E4vV7PgAEDCAgIwNbWltq1azN37lyTe7xs2TJ+++03FEVBURQiIyMLfVwZExODoiicPXsW+P/HlWvXrqVu3bpYW1tz7tw5cnJyePfdd6lcuTL29vY0b97c5N6eO3eObt264eLigr29PUFBQfzxxx+F3juA5cuX07RpUxwdHfH29ubVV18lOTm5QLmdO3fSoEEDbGxsaN68ObGxsUXWeerUKZ577jm8vLxwcHDgiSeeYNOmTcb9oaGhnDt3jpEjRxrvS75du3bRpk0bbG1t8fX1ZdiwYdy8edO4Pzk5mW7dumFra0tAQAArVqwoMg4hRPFJIidEGaLVapkxYwZffvkl//zzzwPVtWXLFi5evMi2bdv47LPPmDJlCl27dsXFxYW9e/cyaNAgBg0axPnz502OGzt2LKNHj+bQoUO0bNmS7t27c/XqVQASExMJCQmhYcOGHDhwgIiICC5dukTv3r1N6li2bBkWFhbs3LmTb7/9ttD45s6dy+zZs/n00085cuQIHTt2pHv37pw4ccJ4rqCgIEaPHk1iYiJjxowptI78ZDAxMZH9+/cDMGnSJJYuXcrXX3/N0aNHGTlyJK+99hpRUVHArSSySpUq/Pjjjxw7dowPPviACRMm8OOPPwIwZswYevfuTadOnUhMTCQxMZGWLVsW+95nZGQwc+ZMFi1axNGjR/H09ORf//oXO3fuZOXKlRw5coQXX3yRTp06Ga93yJAhZGdns23bNmJjY5k1axYODg5FniMnJ4cPP/yQw4cP8+uvv3LmzBnCwsIKlBs7diyffvop+/fvx9PTk+7du5Obm1tonTdu3ODZZ59l06ZNHDp0iI4dO9KtWzcSEhIAWL16NVWqVGHq1KnG+wIQGxtLx44d6dmzJ0eOHGHVqlXs2LGDd955x1h3WFgYZ8+eZcuWLfz3v/9l/vz5hSaeQogSUoUQZUK/fv3U5557TlVVVX3yySfV/v37q6qqqr/88ot6+4/q5MmT1QYNGpgc+/nnn6t+fn4mdfn5+al6vd64rXbt2mrr1q2N63l5eaq9vb36ww8/qKqqqmfOnFEB9aOPPjKWyc3NVatUqaLOmjVLVVVVff/999UOHTqYnPv8+fMqoMbHx6uqqqohISFqw4YN73m9Pj4+6vTp0022PfHEE+rgwYON6w0aNFAnT55813ruvPYbN26oNjY26q5du0zKDRgwQH3llVeKrGfw4MFqr169jOu3fx75tm7dqgJqSkqKcduhQ4dUQD1z5oyqqqq6dOlSFVBjYmKMZU6ePKkqiqJeuHDBpL5nnnlGfe+991RVVdV69eqpU6ZMueu13s2+fftUQE1PTzeJdeXKlcYyV69eVW1tbdVVq1YZY9XpdHett27duuqXX35pXPfz81M///xzkzJ9+/ZV33zzTZNt27dvVzUajZqZmanGx8ergLpnzx7j/ri4OBUoUJcQomTKVmcSIQQAs2bN4umnn2b06NH3XUdQUBAazf83unt5eZm8CKDVanFzcyvQKtKiRQvjvy0sLGjatClxcXEAREdHs3Xr1kJbik6dOkWtWrUAaNq06V1jS0tL4+LFi7Rq1cpke6tWrTh8+HAxr7Bwx44dIysrq8Aj3ZycHBo1amRc/+abb1i0aBHnzp0jMzOTnJycIt+MLSkrKyvq169vXD948CCqqhrvT77s7Gxj379hw4bx9ttvs2HDBtq1a0evXr1M6rjToUOHmDJlCjExMVy7ds3YDy8hIYG6desay93+ebq6ulK7dm3j53mnmzdv8u9//5u1a9dy8eJF8vLyyMzMNLbIFSU6OpqTJ0+aPC5VVRWDwcCZM2c4fvy48f9Svjp16pj1jVkhKgpJ5IQog9q0aUPHjh2ZMGFCgcdlGo0GVVVNthX2qMzS0tJkXVGUQrcVpyN+fl8og8FAt27dmDVrVoEylSpVMv7b3t7+nnXeXm8+VVUf+A3d/OtZt24dlStXNtlnbW0NwI8//sjIkSOZPXs2LVq0wNHRkU8++YS9e/fete78xPj2+1/Yvbe1tTW5DoPBgFarJTo6Gq1Wa1I2Pyl+44036NixI+vWrWPDhg3MnDmT2bNnM3To0AL137x5kw4dOtChQweWL1+Oh4cHCQkJdOzYsVgvlxR1j8eOHcv69ev59NNPqVGjBra2trzwwgv3rNNgMPDWW28xbNiwAvuqVq1KfHz8Xc8rhLh/ksgJUUZ99NFHNGzYsEArjoeHB0lJSSZJT2mOnbZnzx7atGkDQF5eHtHR0ca+To0bN+bnn3/G39//gd4OdXJywsfHhx07dhjPBbc6zDdr1uyB4s9/wSAhIYGQkJBCy2zfvp2WLVsyePBg47ZTp06ZlLGyskKv15ts8/DwAG7133NxcQGKd+8bNWqEXq8nOTmZ1q1bF1nO19fX2HfxvffeY+HChYUmcn///TdXrlzho48+wtfXF4ADBw4UWueePXuoWrUqACkpKRw/fpw6deoUWnb79u2EhYXx/PPPA7f6zOW/xJGvsPvSuHFjjh49So0aNQqtNzAwkLy8PA4cOGD8fOPj4+86xp0QonjkZQchyqh69erRp08fvvzyS5PtoaGhXL58mY8//phTp07x1Vdf8eeff5baeb/66it++eUX/v77b4YMGUJKSgr9+/cHbnXIv3btGq+88gr79u3j9OnTbNiwgf79+xf4cr+XsWPHMmvWLFatWkV8fDzjx48nJiaG4cOHP1D8jo6OjBkzhpEjR7Js2TJOnTrFoUOH+Oqrr1i2bBkANWrU4MCBA6xfv57jx4/z/vvvG1+UyOfv78+RI0eIj4/nypUr5ObmUqNGDXx9fZkyZQrHjx9n3bp1zJ49+54x1apViz59+vD666+zevVqzpw5w/79+5k1a5bxzdQRI0awfv16zpw5w8GDB9myZQuBgYGF1le1alWsrKz48ssvOX36NL///jsffvhhoWWnTp3K5s2b+euvvwgLC8Pd3b3I8fFq1KjB6tWriYmJ4fDhw7z66qsFWmz9/f3Ztm0bFy5cML6tPG7cOHbv3s2QIUOIiYnhxIkT/P7778YktHbt2nTq1ImBAweyd+9eoqOjeeONN7C1tb3nvRNC3J0kckKUYR9++GGBx6iBgYHMnz+fr776igYNGrBv375C3+i8Xx999BGzZs2iQYMGbN++nd9++w13d3cAfHx82LlzJ3q9no4dOxIcHMzw4cPR6XQm/fGKY9iwYYwePZrRo0dTr149IiIi+P3336lZs+YDX8OHH37IBx98wMyZMwkMDKRjx46sWbOGgIAAAAYNGkTPnj156aWXaN68OVevXjVpnQMYOHAgtWvXpmnTpnh4eLBz504sLS354Ycf+Pvvv2nQoAGzZs1i2rRpxYpp6dKlvP7664wePZratWvTvXt39u7da2xR0+v1DBkyhMDAQDp16kTt2rWZP39+oXV5eHgQHh7OTz/9RN26dfnoo4/49NNPCy370UcfMXz4cJo0aUJiYiK///47VlZWhZb9/PPPcXFxoWXLlnTr1o2OHTvSuHFjkzJTp07l7NmzVK9e3dhCWb9+faKiojhx4gStW7emUaNGvP/++yaP25cuXYqvry8hISH07NmTN998E09Pz2LdOyFE0RT1zm8JIYQQQghRLkiLnBBCCCFEOSWJnBBCCCFEOSWJnBBCCCFEOSWJnBBCCCFEOSWJnBBCCCFEOSWJnBBCCCFEOSWJnBBCCCFEOSWJnBBCCCFEOSWJnBBCCCFEOSWJnBBCCCFEOSWJnBBCCCFEOSWJnBBCCCFEOfV/Thnxk1v2fEIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2740,7 +6446,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACI2klEQVR4nOzdd3QUVRvH8e+WZNM3jSSEhNBb6IQuTXpVQUGRpoCiIiJYQFCagh0UXxBEQAUVFURUeu8CMQGkSQsJkBACpPfdef8IrCwpJBAyKc/nnD3szt6ZeXazZH+5c+eORlEUBSGEEEKIMkqrdgFCCCGEEGqSMCSEEEKIMk3CkBBCCCHKNAlDQgghhCjTJAwJIYQQokyTMCSEEEKIMk3CkBBCCCHKNAlDQgghhCjTJAwJIYQQokyTMCRKPY1Gk6/b9u3b72s/U6dORaPRFE7R+bR9+/ZCqV0tkZGRTJ48mZYtW+Lp6YmLiwtNmjRh4cKFmEymbO0PHDhA165dcXZ2xsnJiQ4dOrBnz54ct52RkcGnn35KvXr1sLe3x9XVlVatWrF3794C1RgWFpbvz1BYWNi9vA1WLl++zNSpUwkNDb3vbd2ixmezsE2ePJlevXpRoUIFNBoNw4YNy9d6gwYNQqPR0KtXrxyfj4mJ4ZVXXqFSpUoYDAa8vb3p3r07169fL8TqRXGnV7sAIR60ffv2WT2eMWMG27ZtY+vWrVbL69Spc1/7GTFiBN26dbuvbRRU48aN2bdv333Xrpbg4GC+/fZbhgwZwttvv42NjQ3r1q3jhRdeYP/+/SxevNjS9uDBg7Rt25ZmzZrx3XffoSgKH374IR07dmTbtm20bNnS0tZkMvHYY4+xe/du3njjDVq1akVSUhLBwcEkJSUVqMby5ctn+wy9+OKLxMXFsXz58mxt79fly5eZNm0alSpVomHDhve9PVDns1nYZs+eTf369enTp4/V5yIvf/75J6tXr8bFxSXH5y9fvkybNm3Q6/W8/fbbVK9enZiYGLZt20Z6enphli+KO0WIMmbo0KGKo6PjXdslJSUVQTVl2/Xr15X09PRsy1966SUFUMLDwy3Lunbtqnh7e1v9XOLj4xVPT0+lVatWVuvPnj1b0Wq1yr59+x5I3e3atVMCAwMfyLYPHjyoAMqSJUseyPZLKpPJZLnv6OioDB06NM/2sbGxSoUKFZRPP/1UCQgIUHr27JmtzSOPPKJUqFBBuX79emGXK0oYOUwmBNC+fXvq1q3Lzp07adWqFQ4ODjz77LMArFixgi5dulC+fHns7e2pXbs2EyZMyNbDkNOhiEqVKtGrVy/Wr19P48aNsbe3p1atWvn+y3b+/Pk0aNAAJycnnJ2dqVWrFm+99Zbl+TsPk93tkM7tNm/eTMeOHXFxccHBwYHWrVuzZcuWgr5198XNzQ0bG5tsy5s1awbAxYsXLcv27NlD+/btcXBwsCxzdnambdu27N27l8jISMvyzz77jLZt29KiRYsHWL21+Ph4XnvtNSpXroytrS0VKlRg7Nix2T4nP//8M82bN8doNOLg4ECVKlUsn7Xt27fTtGlTAJ555hnLz23q1Km57jc5OdmyXzs7O9zd3QkKCuKHH36wtLnzs7l06dJcPyPt27e3tFMUhXnz5tGwYUPs7e1xc3Pj8ccf59y5c4XwjhWMVluwr6vx48dTvnx5xowZk+PzYWFhrFmzhpEjR+Lm5lYYJYoSTA6TCXFTZGQkgwYN4o033mDmzJmWX76nT5+mR48ejB07FkdHR06ePMkHH3zAgQMHsh1qy8nhw4cZP348EyZMwNvbm0WLFjF8+HCqVatG27Ztc13vxx9/5MUXX+Tll1/m448/RqvVcubMGY4fP57rOjkd0rl69SqDBg2iQoUKlmXLli1jyJAhPPLII3zzzTfY2NiwYMECunbtyoYNG+jYsWOerykzM/OurxtAp9Pd01iVrVu3otfrqVGjhmVZeno6BoMhW9tby44ePUr58uWJiIggLCyM3r1789Zbb/H1119z7do1atasyRtvvMHQoUMLXM/dJCcn065dOy5evMhbb71F/fr1OXbsGO+88w5Hjx5l8+bNaDQa9u3bx4ABAxgwYABTp07Fzs6OCxcuWD5HjRs3ZsmSJTzzzDNMnjyZnj17AuDn55frvseNG8d3333Hu+++S6NGjUhKSuKff/7h2rVrua7Ts2fPbJ+Tffv2MW7cOAIDAy3Lnn/+eZYuXcqYMWP44IMPuH79OtOnT6dVq1YcPnwYb2/vXPehKEqO475yotcX7lfR5s2b+fbbbzl48CA6nS7HNrt27UJRFHx9fXnqqaf4/fffyczMpEWLFsyaNcvqsKsoA1TumRKiyOV0mKxdu3YKoGzZsiXPdc1ms5KRkaHs2LFDAZTDhw9bnpsyZYpy53+pgIAAxc7OTrlw4YJlWUpKiuLu7q48//zzee5r9OjRiqura55ttm3bpgDKtm3bcnw+KSlJadasmVK+fHklLCzMsszd3V3p3bu3VVuTyaQ0aNBAadasWZ77VBRFAfJ1u5dDPRs2bFC0Wq3y6quvWi1v2LChUqNGDavDJRkZGUqVKlUUQPn+++8VRVGUffv2KYDi4uKi1KlTR/npp5+UDRs2KI8//rgCKAsXLixwTXe68zDZrFmzFK1Wqxw8eNCq3S+//KIAytq1axVFUZSPP/5YAZTY2Nhct13Qw2R169ZVHn300Tzb5PTZvN3JkycVDw8PpUOHDkpaWpqiKP+9j5988olV24iICMXe3l5544038tznrc9mfm7nz5/P12u9Ja/DZAkJCUqlSpWUiRMnWpbldJhs1qxZls/JI488oqxfv15ZuXKlUr9+fcXOzs7q/7Yo/aRnSIib3NzcePjhh7MtP3fuHJMnT2br1q1ER0ejKIrluRMnTlC/fv08t9uwYUMqVqxoeWxnZ0eNGjW4cOFCnus1a9aML774gqeeeoonn3yS1q1b4+npme/XYzKZGDBgACdOnGDnzp0EBAQAsHfvXq5fv87QoUOz9fB069aNDz/8kKSkJBwdHXPd9sGDB/NVQ+XKlfNdL8Dff/9N//79LX+d3+7ll19m+PDhjB49mkmTJmE2m5k2bZrlfbzVk2c2mwFITU1l7dq1ltfduXNngoKCmD59OiNHjixQXXfzxx9/ULduXRo2bGj1nnbt2tVyGLN79+6WQ2D9+/dn+PDhtG7d2qrH7l40a9aM5cuXM2HCBLp160bz5s2xt7fP9/pRUVF069aN8uXL8+uvv2Jra2t5TRqNhkGDBlm9Jh8fHxo0aHDXMxibNGmS78+Jr69vvuu9mwkTJmBjY8M777yTZ7tbnxM/Pz9Wrlxp6UFq2bIl1apV48MPP2TZsmWFVpco3iQMCXFTTmcCJSYm0qZNG+zs7Hj33XepUaMGDg4ORERE0LdvX1JSUu66XQ8Pj2zLDAbDXdcdPHgwmZmZfPXVV/Tr1w+z2UzTpk1599136dy58133O2rUKNavX8+ff/5pdVbSlStXAHj88cdzXff69et5hqH8nuWU2yGKnISEhNC5c2eqV6/O2rVrsx0Se/bZZ7l69Srvvvsu8+fPB7K+uF577TU++OADS6i49X7XqlXLEoQga4qFrl27MmvWLKKjo/Hy8sp3bXdz5coVzpw5k+P4J8g6fRugbdu2rF69ms8//5whQ4aQlpZGYGAgkyZN4qmnnrqnfX/++ef4+fmxYsUKPvjgA+zs7OjatSsfffQR1atXz3PdhIQEevToQUZGBuvWrcNoNFq9JkVRcj0UVqVKlTy37eTklO/PSWEdJjtw4ADz5s1j1apVpKamkpqaCmQFn8zMTGJjY7G3t8dgMFg+J506dbL6nJYvX54GDRrw999/F0pNomSQMCTETTmNbdm6dSuXL19m+/bttGvXzrI8Nja2SGp65plneOaZZ0hKSmLnzp1MmTKFXr168e+//1p90d9p6tSpLFq0iCVLltClSxer5271Ls2dOzfXAcZ5jQUBcv3Sv9OSJUvyNR9MSEgInTp1IiAggI0bN1p9Kd/uzTffZOzYsZw+fRpnZ2cCAgJ4/vnncXR0pEmTJgBUrVrVapD17W716hV0MO7deHp6Ym9vn+vA+Nt79B555BEeeeQR0tLS2L9/P7NmzWLgwIFUqlTpnsapODo6Mm3aNKZNm8aVK1dYt24dEyZMoHfv3pw8eTLX9TIyMujXrx9nz55l165d2cYleXp6otFo2LVrV55jtXKzY8cOOnTokK/XcP78eSpVqpSvtnk5fvw4iqLw2GOPZXsuIiICNzc3Zs+ezdixY/Ps0VUUpdA/I6J4kzAkRB5uBaQ7f/EvWLCgSOtwdHSke/fupKen8+ijj3Ls2LFcw9DXX3/NtGnTmD59eo5BpHXr1ri6unL8+HFGjx59T/UU5mGy0NBQOnXqhJ+fH5s2bbrrmT0Gg4G6desCEB4ezooVKxg5cqTl0JBer+eRRx7hl19+ISwszPIlqygK69evp2rVqgU63JgfvXr1YubMmXh4eOT70KDBYKBdu3a4urqyYcMGQkJCaNmypeWzlp9exzt5e3szbNgwDh8+zJw5c0hOTs41GA4fPpzt27ezbt26HINBr169eP/997l06RL9+/cvcC1qHCbr1q0b27Zty7b8ySefpHLlysyaNYtq1aoB0Lx5c/z8/Ni4cSMmk8nSO3T58mUOHz7MwIEDC6UmUTJIGBIiD61atcLNzY1Ro0YxZcoUbGxsWL58OYcPH37g+771Bd+6dWvKly9PVFQUs2bNwmg0Wsae3Gnfvn2MGjWK1q1b07lzZ/bv32/1fIsWLXBycmLu3LkMHTqU69ev8/jjj+Pl5cXVq1c5fPgwV69etRyGyk1QUFChvMZTp07RqVMnAN577z1Onz7N6dOnLc9XrVqVcuXKAfDPP/+wcuVKgoKCMBgMHD58mPfff5/q1aszY8YMq+3OmDGDdevW0a1bN6ZOnYqLiwuLFi3i8OHD/PTTT1Zt27dvz44dO6zGghXU2LFjWblyJW3btuXVV1+lfv36mM1mwsPD2bhxI+PHj6d58+a88847XLx4kY4dO+Ln50dsbCyfffYZNjY2lp7HqlWrYm9vz/Lly6lduzZOTk74+vrmGhiaN29Or169qF+/Pm5ubpw4cYLvvvuOli1b5hqEPvroI7777jtefvllHB0drT4nLi4u1KlTh9atW/Pcc8/xzDPPcOjQIdq2bYujoyORkZHs3r2bevXq8cILL+T6njg7Oxfa5wSyepquXr0KZI2Hu3DhAr/88gsA7dq1o1y5cvj4+ODj45NtXTs7Ozw8PKymDdBqtcyePZv+/fvzyCOP8MILL5CUlMSMGTOwtbVl4sSJhVa7KAFUHLwthCpyO5sst0n09u7dq7Rs2VJxcHBQypUrp4wYMUL5+++/s53xk9vZZDlN9tauXTulXbt2edb5zTffKB06dFC8vb0VW1tbxdfXV+nfv79y5MgRS5s7zyZbsmRJnmft3G7Hjh1Kz549FXd3d8XGxkapUKGC0rNnT+Xnn3/Os67CdLd6b39/T506pbRt21Zxd3dXbG1tlWrVqimTJ09WEhMTc9z20aNHlZ49eyrOzs6KnZ2d0qJFC+X333/P1q5JkyaKj49PgerO6fOSmJioTJ48WalZs6Zia2urGI1GpV69esqrr76qREVFKYqiKH/88YfSvXt3pUKFCoqtra3i5eWl9OjRQ9m1a5fVtn744QelVq1aio2NjQIoU6ZMybWWCRMmKEFBQYqbm5tiMBiUKlWqKK+++qoSExNjaXPnZ3Po0KG5vud3fi4XL16sNG/eXHF0dFTs7e2VqlWrKkOGDFEOHTpUoPfsft064zOnW25nU96S2/9DRVGU1atXK02bNlXs7OwUo9Go9OnTRzl27NgDeAWiONMoyn38OSSEECVYQkIC7u7uzJkzh5deekntcoQQKpERYkKIMmvnzp1UqFCh0E+1F0KULNIzJIQQQogyTXqGhBBCCFGmSRgSQgghRJkmYUgIIYQQZZqEISGEEEKUaTLp4l2YzWYuX76Ms7NzjpdrEEIIIUTxoygKCQkJ+Pr63vXyKhKG7uLy5cv4+/urXYYQQggh7kFERES2a+/dScLQXTg7OwNZb6aLi4vK1QghhBAiP+Lj4/H397d8j+dFwtBd3Do05uLiImFICCGEKGHyM8RFBlALIYQQokyTMCSEEEKIMk3CkBBCCCHKNBkzJIQQJYTZbCY9PV3tMoQoFmxsbNDpdIWyLQlDQghRAqSnp3P+/HnMZrPapQhRbLi6uuLj43Pf8wBKGBJCiGJOURQiIyPR6XT4+/vfdQI5IUo7RVFITk4mOjoagPLly9/X9kpcGJo3bx4fffQRkZGRBAYGMmfOHNq0aZNj2+3bt9OhQ4dsy0+cOEGtWrUedKlCCFEoMjMzSU5OxtfXFwcHB7XLEaJYsLe3ByA6OhovL6/7OmRWov68WLFiBWPHjmXSpEmEhITQpk0bunfvTnh4eJ7rnTp1isjISMutevXqRVSxEELcP5PJBICtra3KlQhRvNz64yAjI+O+tlOiwtCnn37K8OHDGTFiBLVr12bOnDn4+/szf/78PNfz8vLCx8fHciusAVdCCFGU5PqIQlgrrP8TJSYMpaenExwcTJcuXayWd+nShb179+a5bqNGjShfvjwdO3Zk27ZtebZNS0sjPj7e6iaEEEKI0qvEhKGYmBhMJhPe3t5Wy729vYmKispxnfLly7Nw4UJWrlzJqlWrqFmzJh07dmTnzp257mfWrFkYjUbLTS7SKoQQpU9YWBgajYbQ0FC1Sym1pk6dSsOGDdUuI19KTBi65c4uMUVRcu0mq1mzJiNHjqRx48a0bNmSefPm0bNnTz7++ONctz9x4kTi4uIst4iIiEKtXwghypJhw4bx6KOPWi375ZdfsLOz48MPP1SnqHuwcuVKmjdvjtFoxNnZmcDAQMaPH295funSpbi6uua4rkajYfXq1dmWP/fcc+h0On788cdsz02dOhWNRoNGo7GcRThixAiuXr2ar3pvravRaHBycqJBgwYsXbrUqs327dut2t26TZ48OV/7KE1KzNlknp6e6HS6bL1A0dHR2XqL8tKiRQuWLVuW6/MGgwGDwXDPdRZI1D/g6AnOPkWzPyGEUNmiRYt46aWX+N///seIESMKvH56enqRDyTfvHkzTz75JDNnzqRPnz5oNBqOHz/Oli1b7nmbycnJrFixgtdff52vv/6aJ598MlubwMBANm/ejMlkIiQkhOHDh3Pp0iXWrVuXr30sWbKEbt26kZSUxIoVK3jmmWcoX748Xbt2tWp36tQpqwuROzk53fPrKqlKTM+Qra0tTZo0YdOmTVbLN23aRKtWrfK9nZCQkPuej6BQbJjE9YVtWPdn2UvgQoiy6cMPP2T06NF8//33liC0d+9e2rZti729Pf7+/owZM4akpCTLOpUqVeLdd99l2LBhGI1GRo4caemF2bBhA7Vr18bJyYlu3boRGRlptb8lS5ZQu3Zt7OzsqFWrFvPmzbunuv/44w8eeughXn/9dWrWrEmNGjV49NFHmTt37j2/Fz///DN16tRh4sSJ7Nmzh7CwsGxt9Ho9Pj4+VKhQgV69ejFmzBg2btxISkpKvvZxa0LCqlWr8tZbb+Hu7s7GjRuztbvzJKP8hKFbP4PVq1dTo0YN7Ozs6Ny5c55HU9q3b8/YsWOtlj366KMMGzbM8njevHlUr14dOzs7vL29efzxx/P1Wu9XiQlDAOPGjWPRokUsXryYEydO8OqrrxIeHs6oUaOArENcQ4YMsbSfM2cOq1ev5vTp0xw7doyJEyeycuVKRo8erdZLsNiiL0enihV4L3kfcYnX1S5HCFECJadn5npLzTAVetv7MWHCBGbMmMEff/xBv379ADh69Chdu3alb9++HDlyhBUrVrB79+5sv6M/+ugj6tatS3BwMG+//XZWjcnJfPzxx3z33Xfs3LmT8PBwXnvtNcs6X331FZMmTeK9997jxIkTzJw5k7fffptvvvmmwLX7+Phw7Ngx/vnnn/t4B6x9/fXXDBo0CKPRSI8ePViyZMld17G3t8dsNpOZWbCfhclk4qeffuL69evY2Njca8nZJCcn89577/HNN9+wZ88e4uPjc+zhyq9Dhw4xZswYpk+fzqlTp1i/fj1t27YttHrzUmIOkwEMGDCAa9euMX36dCIjI6lbty5r164lICAAgMjISKs5h9LT03nttde4dOkS9vb2BAYG8ueff9KjRw+1XoJF64eew3XZV1zVa1mydhpj+3+mdklCiBKmzjsbcn2uQ81yLHmmmeVxkxmbSbkj9NzSvLI7K55vaXn80AfbuJ6U/RpoYe/3vKc6161bx2+//caWLVt4+OGHLcs/+ugjBg4caOktqF69Op9//jnt2rVj/vz52NnZAfDwww9bBZ3du3eTkZHBl19+SdWqVQEYPXo006dPt7SZMWMGn3zyCX379gWgcuXKHD9+nAULFjB06NAC1f/yyy+za9cu6tWrR0BAAC1atKBLly48/fTTVsMq4uLi8tWrcvr0afbv38+qVasAGDRoEGPGjGHKlCm5zi5+8uRJ5s+fT7NmzXB2ds5X3U899RQ6nY7U1FRMJhPu7u45Hpr08/OzenzhwgU8PDzuuv2MjAy++OILmjdvDsA333xD7dq1OXDgAM2aNbvL2tmFh4fj6OhIr169cHZ2JiAggEaNGhV4O/eiRIUhgBdffJEXX3wxx+fuHBz2xhtv8MYbbxRBVQVnZ3Cgtb4OqznJjthtvJLHQHAhhCjJ6tevT0xMDO+88w5Nmza1fJkHBwdz5swZli9fbmmrKApms5nz589Tu3ZtAIKCgrJt08HBwRKEIOvs4VuXZrh69SoREREMHz6ckSNHWtpkZmZiNBoLXL+joyN//vknZ8+eZdu2bezfv5/x48fz2WefsW/fPsvEf87Ozvz999/Z1r9zot+vv/6arl274unpCUCPHj0YPnw4mzdvtpo+5ujRozg5OWEymUhLS6N9+/YsXLgw33XPnj2bTp06ERERwbhx43j11VepVq1atna7du2yClhubm752r5er7f62dSqVQtXV1dOnDhxT2Goc+fOBAQEUKVKFbp160a3bt147LHHimTW9RIXhkqTZx6eyp9bBnDGAGv3fEfPh4bcbRUhhLA4Pr1rrs9p7/jjKvjtTvluu/vN7Jcxuh8VKlRg5cqVdOjQgW7durF+/XqcnZ0xm808//zzjBkzJts6FStWtNx3dHTM9vydh3s0Gg2KogBYLmb71VdfWXotbrmfSXerVq1K1apVGTFiBJMmTaJGjRqWgckAWq02x7BxO5PJxLfffktUVBR6vd5q+ddff20VhmrWrMmaNWvQ6XT4+voW+OQeHx8fqlWrRrVq1fj5559p1KgRQUFB1KlTx6pd5cqVcz0T7m5y+iM+tz/stVqt5Wd0y+0zR98Kk9u3b2fjxo288847TJ06lYMHD95zffklYUhFVfwDCUo3ss8Qz+/HFkoYEkIUiINt/n+FP6i2+VWxYkV27NhBhw4d6NKlCxs2bKBx48YcO3bsrgGioLy9valQoQLnzp3j6aefLtRt31KpUiUcHBysBnvnx9q1a0lISCAkJMQqmJ08eZKnn36aa9euWQ5R2draFtp7U61aNfr168fEiRP57bffCmWbmZmZHDp0yNILdOrUKWJjY3O99me5cuWsBrmbTCb++ecfq2uI6vV6OnXqRKdOnZgyZQqurq5s3brVcrjzQZEwpLJH6gxn39nZHLSN5UzEcar517n7SkIIUQL5+flZLqDdpUsXFixYQMuWLXnppZcYOXIkjo6OnDhxgk2bNt3XmVqQNU/PmDFjcHFxoXv37qSlpXHo0CFu3LjBuHHjCryt5ORkevToQUBAALGxsXz++edkZGTQuXPnAm3r66+/pmfPnjRo0MBqeWBgIGPHjmXZsmW88sorBdpmfo0fP54GDRpw6NChHA89FpSNjQ0vv/wyn3/+OTY2NowePZoWLVrkeojs4YcfZty4cfz5559UrVqV2bNnExsba3n+jz/+4Ny5c7Rt2xY3NzfWrl2L2WymZs2a913r3ZSos8lKox6thlElXYOigb/23t9/fiGEKO4qVKjAjh07iI2NZeTIkezYsYPTp0/Tpk0bGjVqxNtvv10o05+MGDGCRYsWsXTpUurVq0e7du1YunQplStXLvC22rVrx7lz5xgyZAi1atWie/fuREVFsXHjxgJ9UV+5coU///zTcjbd7TQaDX379uXrr78ucH35Va9ePTp16sQ777xTKNtzcHDgzTffZODAgbRs2RJ7e/scJ5C85dlnn2Xo0KEMGTKEdu3aUblyZateIVdXV1atWsXDDz9M7dq1+fLLL/nhhx8IDAwslHrzolHuPIAnrMTHx2M0GomLi7OalKow7d44i9r7P8TD2Q9eCQWtXEhWCPGf1NRUzp8/T+XKlS1nWAmhpqVLlzJ27Firnh015PV/oyDf39IzVAw81GEsHgYjxIXD6ewTYgkhhBDiwZEwVBzY2EOjQQCc3SOHyoQQoiiNGjUKJyenHG+3JvUtTmbOnJlrvd27dy+UfXTv3j3XfcycObNQ9lGcyGGyuyiKw2QAqVdP88LKHgTbGZhb/yPaNS6cD7QQouSTw2QPVnR0NPHx8Tk+5+LigpeXVxFXlLfr169z/XrOVy6wt7enQoUK972PS5cu5XrZD3d3d9zd3e97H4WhsA6TydlkxYRdueqYtEYUTRqrDn0qYUgIIYqIl5dXsQs8eSmKMFIYgaokkcNkxUiPgCcAOKC/TGTMZZWrEUIIIcoGCUPFyBOdxlE+QyFRp2XJ+sI59VEIIYQQeZMwVIzodDZ0sM+6KN3elL/IzMz5oopCCCGEKDwShoqZ4V1nYDArXLCFFVvmqV2OEEIIUepJGCpmvDwr0dKUdV2aPed/ULkaIYQQovSTMFQMDQkaxwfRMcyJPgUJUWqXI4QQpcqwYcN49NFH82yzfft2NBqN6jMsl3RhYWFoNBpCQ0PVLiVPEoaKoaYNH6GHe31szZkQvFTtcoQQ4p7lFTwqVaqERqOxuvn5+Vk9P2fOnEKv6bPPPmPp0qWWx+3bt2fs2LGFvh+1DRs2zPK+6vV6KlasyAsvvMCNGzes2t3t51AWSBgqrpqNBCDz0BJSUpJVLkYIIR6M6dOnExkZabmFhIQ88H0ajUZcXV0f+H5ul5GRUaT7u6Vbt25ERkYSFhbGokWL+P3333nxxReztVPj51CcSBgqrmr34Qc3b3q5apm/Zora1QghxAPh7OyMj4+P5VauXLkCb2P8+PH07t3b8njOnDloNBr+/PNPy7KaNWuyYMECwLq3atiwYezYsYPPPvvM0isSFhZmWS84OJigoCAcHBxo1aoVp06dyldNU6dOpWHDhixevJgqVapgMBhQFIX169fz0EMP4erqioeHB7169eLs2bOW9fr168fLL79seTx27Fg0Gg3Hjh0DIDMzE2dnZzZs2JCvOgwGAz4+Pvj5+dGlSxcGDBjAxo3Zr4F5rz8HjUbD/Pnz6d69O/b29lSuXJmff/451/ZLly7NFkRXr16NRqOxPD58+DAdOnTA2dkZFxcXmjRpwqFDh/JVz72SMFRc6W057lqHSzZ69sVuwmyWq6YIIW5SFEhPUudWDK/g1L59e3bt2oXZbAZgx44deHp6smPHDgCioqL4999/adeuXbZ1P/vsM1q2bMnIkSMtvSL+/v6W5ydNmsQnn3zCoUOH0Ov1PPvss/mu68yZM/z000+sXLnSMmYmKSmJcePGcfDgQbZs2YJWq+Wxxx6z1N6+fXu2b99u2cadr+XgwYOkpqbSunXrAr1HAOfOnWP9+vXY2NgUeN28vP322/Tr14/Dhw8zaNAgnnrqKU6cOHHP23v66afx8/Pj4MGDBAcHM2HChEKv+U5yOY5i7NmO7/D75iGctDOxZvdPPNp2gNolCSGKg4xkmOmrzr7fugy2joW2uTfffJPJkydbHs+cOZMxY8YUaBtt27YlISGBkJAQGjduzK5du3jttddYtWoVANu2bcPb25tatWplW9doNGJra4uDgwM+Pj7Znn/vvfcsIWrChAn07NmT1NTUfF0jLj09ne+++86ql6Vfv35Wbb7++mu8vLw4fvw4devWpX379rzyyivExMSg0+k4duwYU6ZMYfv27bz44ots376dJk2a4OTklK/35o8//sDJyQmTyURqaioAn376abZ29/NzeOKJJxgxYgQAM2bMYNOmTcydO5d58+5tepjw8HBef/11y8+revXq97SdgpCeoWKssl9jgjKyPvDrj89XuRohhCh8r7/+OqGhoZbbkCFDCrwNo9FIw4YN2b59O0ePHkWr1fL8889z+PBhEhIS2L59e469QvlRv359y/3y5csDWRd2zY+AgIBsh5vOnj3LwIEDqVKlCi4uLlSuXBnICgAAdevWxcPDgx07drBr1y4aNGhAnz59LD1DBX0tHTp0IDQ0lL/++ouXX36Zrl27Wh2Gu+V+fg4tW7bM9vh+eobGjRvHiBEj6NSpE++//77VYcQHRXqGirm+tYbw17n5BBtiOBl+hloVq6ldkhBCbTYOWT00au27EHl6elKt2v3/Xrt1eMnW1pZ27drh5uZGYGAge/bsYfv27fd8ttjth2dujWu5dUjrbhwds/eg9e7dG39/f7766it8fX0xm83UrVuX9PR0yz7atm1reS3t27enbt26mEwmjh49yt69ewv0WhwdHS3v7+eff06HDh2YNm0aM2bMsGpXWD+HW24fA3Q7rVaLcseh1jsHl0+dOpWBAwfy559/sm7dOqZMmcKPP/7IY489Vmj1ZavrgW1ZFIrurUcRkAGpWg3Lt8hAaiEEoNFkHapS45bLl5zabo0b2rp1K+3btwegXbt2/Pjjj7mOF7rF1tYWk+nBX/7o2rVrnDhxgsmTJ9OxY0dq166d7TR3+C/Ybd++nfbt26PRaGjTpg0ff/wxKSkp9zRe6JYpU6bw8ccfc/ly4YXp/fv3Z3uc0yFJgHLlypGQkEBSUpJlWU5zENWoUYNXX32VjRs30rdvX5YsWVJo9eZEwlAxp9Fq6WzM6oI8mHmY5LQ0lSsSQoiCiYuLszoEExoaajksVFhujRv6/fffLWGoffv2LFu2jHLlylGnTp1c161UqRJ//fUXYWFhxMTE5Lvnp6Dc3Nzw8PBg4cKFnDlzhq1btzJu3Lhs7dq3b8+xY8c4evQobdq0sSxbvnw5jRs3xsXF5Z5raN++PYGBgcycOfOet3Gnn3/+mcWLF/Pvv/8yZcoUDhw4wOjRo3Ns27x5cxwcHHjrrbc4c+YM33//vdWcTykpKYwePZrt27dz4cIF9uzZw8GDB6ldu3ah1ZsTCUMlwLNdp9MrMZX3Y65gF75b7XKEEKJAtm/fTqNGjaxu77zzTqHuw2g00qhRI9zd3S3Bp02bNpjN5ruOsXnttdfQ6XTUqVOHcuXKFXpQu0Wr1fLjjz8SHBxM3bp1efXVV/noo4+ytatbty6enp40aNDAEnzatWuHyWS657FPtxs3bhxfffUVERER970tgGnTpvHjjz9Sv359vvnmG5YvX55r+HR3d2fZsmWsXbuWevXq8cMPPzB16lTL8zqdjmvXrjFkyBBq1KhB//796d69O9OmTSuUWnOjUe48eCesxMfHYzQaiYuLu680ft/Wvg4HFkLNnvDU9+rVIYQocqmpqZw/f57KlSvn6ywmIYqKRqPh119/vevlTR6UvP5vFOT7W3qGSoqmWTNS8+86iH0wf7UIIYQQZZGEoZKiXA1O+7fgXXcjE37KPpW6EEKUVsuXL8fJySnHW2BgoCo1BQYG5lrT8uXLH/j+w8PDc92/k5NToRzqK47v+4Mip9aXIH/7tWZF1GWMpvNEXL2CfzlvtUsSQogHrk+fPjRv3jzH5x70zMS5Wbt2ba7XG/P2fvC/m319ffO8Eryv7/1Pypmf9720jLSRMFSC9Hv4DRZ+u4JovZZv1k9j8uB7m91TCCFKEmdnZ5ydndUuw0pAQICq+9fr9YU6L1BOiuP7/qDIYbISRG9jRye7egAcStlNeuaDOf1TCCGEKEskDJUww7tMw0ZROGtQ+HHz12qXI4QQQpR4EoZKGK9yNWmZ6QrAjvNLVa1FCCGEKA0kDJVAAxuOAiDULo59J0LVLUYIIYQo4SQMlUCtGg+kaZqWofHxVIz4Q+1yhBBCiBJNwlAJpNFqWdz0dcbciKPCsRVgfvAXGBRCCFH4hg0bptrszeI/JS4MzZs3zzLtdpMmTdi1a1e+1tuzZw96vZ6GDRs+2AKLSt1+YO8GceFweqPa1QghRI7y+rKvVKkSc+bMsXqs0Wj48ccfs7UNDAxEo9FYXdTzVvs7b++///5d6woLC7Nax2g00qJFC37//XerdkuXLs1xH4sWLcrX6xclQ4kKQytWrGDs2LFMmjSJkJAQ2rRpQ/fu3e8602ZcXBxDhgyhY8eORVRpEbCxx9TgaXbZ2zF1yzQyTXKavRCi5PP392fJkiVWy/bv309UVBSOjo7Z2k+fPp3IyEir28svv5zv/W3evJnIyEj++usvmjVrRr9+/fjnn3+s2ri4uGTbx9NPP31vL1AUSyUqDH366acMHz6cESNGULt2bebMmYO/vz/z58/Pc73nn3+egQMH0rJlyyKqtGhE1O7FS97lWOmYxK+7V6tdjhBC3Lenn36aHTt2WF1RffHixTz99NPo9dnnCXZ2dsbHx8fqllNoyo2Hhwc+Pj7UqlWL9957j4yMDLZt22bVRqPRZNuHvb39Xbc9depUGjZsyIIFC/D398fBwYEnnniC2NjYXNe5s7cMoGHDhlZXdp86dSoVK1bEYDDg6+vLmDFj8v16Rc5KTBhKT08nODiYLl26WC3v0qULe/fuzXW9JUuWcPbsWaZMmfKgSyxylQJa0iQj6z/kluP/U7kaIURRS85IzvWWZkrLd9vUzNR8tS0K3t7edO3alW+++SarluRkVqxYwbPPPvtA95uRkcFXX30FFO4lPs6cOcNPP/3E77//zvr16wkNDeWll1665+398ssvzJ49mwULFnD69GlWr15NvXr1Cq3esqrEXI4jJiYGk8mU7Zov3t7eREVF5bjO6dOnmTBhArt27crxL4qcpKWlkZb23y+R+Pj4ey+6CPSvOZBD5xcTahfF4fNhNKhcSe2ShBBFpPn3OV83CqBNhTbM6/TfJXva/9SelMyUHNsGeQexpNt/h6a6rezGjbQb2dodHXr0PqrNv2effZbx48czadIkfvnlF6pWrZrreM8333yTyZMnWy37448/aN++fb721apVK7RaLSkpKZjNZipVqkT//v2t2sTFxeHk5GR57OTklOv3zp1SU1P55ptv8PPzA2Du3Ln07NmTTz75BB8fn3xt43bh4eH4+PjQqVMnbGxsqFixIs2aNSvwdoS1EtMzdItGo7F6rChKtmUAJpOJgQMHMm3aNGrUqJHv7c+aNQuj0Wi5+fv733fND1LX1i9TIUMhSavlp21T1S5HCCHuW8+ePUlMTGTnzp0sXrw4z16h119/ndDQUKtbbhcXzcmKFSsICQlhzZo1VKtWjUWLFuHu7m7VxtnZ2Wr7eR2NuFPFihUtQQigZcuWmM1mTp06le9t3O6JJ54gJSWFKlWqMHLkSH799VcyMzPvaVviPyWmZ8jT0xOdTpctjUdHR+d4heCEhAQOHTpESEgIo0ePBsBsNqMoCnq9no0bN/Lwww9nW2/ixImMGzfO8jg+Pr5YByKtTk93YxCLkoMJMQUTm5SGq6NB7bKEEEXgr4F/5fqcTquzery9//Zc22o11n8Xr++3/r7qul96vZ7BgwczZcoU/vrrL3799ddc23p6et7XBUv9/f2pXr061atXx8nJiX79+nH8+HG8vLwsbbRabaFdFPXWH+85/RF/a193Xgk+IyPDqt5Tp06xadMmNm/ezIsvvshHH33Ejh07CvXwXllTYnqGbG1tadKkCZs2bbJavmnTJlq1apWtvYuLC0ePHrVK86NGjaJmzZp5/uVgMBhwcXGxuhV3wzpPx85sJsIWvtvwhdrlCCGKiIONQ643g86Q77Z2ert8tS1Kzz77LDt27OCRRx7Bzc2tSPbZrl076taty3vvvVdo2wwPD+fy5cuWx/v27UOr1eZ6xKJcuXJERkZaHsfHx3P+/HmrNvb29vTp04fPP/+c7du3s2/fPo4eLZpDmKVViekZAhg3bhyDBw8mKCiIli1bsnDhQsLDwxk1KuvyFBMnTuTSpUt8++23aLVa6tata7W+l5cXdnZ22ZaXdEbXirTBiwtpl6mcuR0Yr3ZJQghhERcXR2hoqNWyOw9F3al27drExMTg4JB3CEtISMh2xMDBweGe/5AdP348TzzxBG+88QYVKlS4p23czs7OjqFDh/Lxxx8THx/PmDFj6N+/f67jhR5++GGWLl1K7969cXNz4+2330an+6+Xb+nSpZhMJpo3b46DgwPfffcd9vb2BAQE3HetZVmJCkMDBgzg2rVrlnkl6taty9q1ay0fgsjIyLvOOVRazej0IQ5fd0KjjYGEKHAu+MA8IYR4ELZv306jRo2slg0dOvSu63l4eNy1zTvvvMM777xjtez555/nyy+/LFiRN/Xq1YtKlSrx3nvvMW/evLuvcBfVqlWjb9++9OjRg+vXr9OjR488tztx4kTOnTtHr169MBqNzJgxw6pnyNXVlffff59x48ZhMpmoV68ev//+e77eK5E7jXLnwUlhJT4+HqPRSFxcXPE/ZPZ1V4jYD+0nQvsJalcjhCgkqampnD9/3jL7vigZpk6dyurVq7P1ionCk9f/jYJ8f5eYMUMiH5qNJEmj4fvDSzgTdVXtaoQQQogSQcJQKaLU6k3/Cr7McrVl2YbCGwAohBAlzahRo3Bycsrxdmuc6f0KDAzMdR/Lly8vlH2IolGixgyJvGlsDLSyr0145r8cTd1GUlomjgb5EQshyp7p06fz2muv5fhcYQ15WLt2rdVp77fz9vbG2dnZ6jIaoviSb8pSZvjDU/hlw0D+tTPzw9bljOh+90GKQghR2nh5eVnNFfQgyBlcpYccJitlfMrXp7nJGYC95xdlm7xLCCGEENYkDJVCT9fPmrr+qP0Ndvzzj8rVCCEKi/xxI4Q1s9lcKNuRw2Sl0ENNhlPp8OeE2Wj4fe9M2tf7Qe2ShBD3wcbGBo1Gw9WrVylXrlyul3IQoqxQFIX09HSuXr2KVqvF1tb2vrYnYagU0mi1PFquDZ/d2IlDxlFMJpPVDKZCiJJFp9Ph5+fHxYsXCQsLU7scIYoNBwcHKlasiFZ7fwe6ZNLFuyhRky7eJjkpmmtfNME/JR4G/wpVs1+UVghRsphMplzPXhKirNHpdOj1+lx7Sgvy/S09Q6WUg6MXDvWehAML4cAiCUNClAI6nU56eYV4AGQAdWnWdCQAF89tZN/h3SoXI4QQQhRPEoZKs3I1+MQ3kB4VfFi6e7qciSKEEELkQMJQKVerRi8UjYZ/7C9x8MwFtcsRQgghih0JQ6Vct9bj8c5UiNdpWblDrlcmhBBC3EnCUCmnszHQ06UBACdMfxEdn6pyRUIIIUTxImGoDBj68FRsFIXzdgrLNn6ldjlCCCFEsSJhqAxw96hOW8UdgNAr35NhKpzpy4UQQojSQMJQGTG0yQsAhNnHceL8aZWrEUIIIYoPCUNlRKN6TzIj2Z51EZepH7VO7XKEEEKIYkPCUFmh0fBoizE4Kgoc/BrMJrUrEkIIIYoFCUNlSd1+YO+GEhfO2QMr1K5GCCGEKBYkDJUlNvYcrNmdfhV8mBDyEbHJ6WpXJIQQQqhOwlAZUz5oKGdsbDjpkMn3W1eqXY4QQgihOglDZYyfXwuamxwACA5biMks1ysTQghRtkkYKoMGBQ4C4JhjNBsPn1C5GiGEEEJdEobKoDZNX8Q/UyFJq2X9/llqlyOEEEKoSsJQGaTV6XnUozkAp3WhnLkSr3JFQgghhHokDJVRT3aYgr3ZTIQBft2+QO1yhBBCCNXo1S5AqMPFWJFRNtWofmk/rSofU7scIYQQQjXSM1SGPdtxBm1SUtGd/B0SotQuRwghhFCFhKGyrHx98G8B5kwyDnyNoshp9kIIIcoeCUNlXFKTIXzmZuTxs8vZeTJC7XKEEEKIIidhqIyzrfMoq52dOWfQ8dvOD9QuRwghhChyEobKOBtbR3o7BQJwXtlNxPVklSsSQgghipaEIcHg9m+jVxTO2JtZtuk7tcsRQgghipSEIUE5r3q0VlwAOHH1O1LSTSpXJIQQQhQdCUMCgKENRwBw3DGWVX8dUrkaIYQQouiUuDA0b948KleujJ2dHU2aNGHXrl25tt29ezetW7fGw8MDe3t7atWqxezZs4uw2pIjqMEwqmRCmlbDrtCP1S5HCCGEKDIlagbqFStWMHbsWObNm0fr1q1ZsGAB3bt35/jx41SsWDFbe0dHR0aPHk39+vVxdHRk9+7dPP/88zg6OvLcc8+p8AqKL41Wy2DfTpw88ytPmE+D2QzaEpeVhRBCiALTKCVopr3mzZvTuHFj5s+fb1lWu3ZtHn30UWbNyt/V1/v27YujoyPffZe/gcLx8fEYjUbi4uJwcXG5p7pLjLQE+KQ2pCfA4F+h6sNqVySEEELck4J8f5eYP/3T09MJDg6mS5cuVsu7dOnC3r1787WNkJAQ9u7dS7t27XJtk5aWRnx8vNWtzDA4Q8Onsu4fWKRuLUIIIUQRKTFhKCYmBpPJhLe3t9Vyb29voqLyvq6Wn58fBoOBoKAgXnrpJUaMGJFr21mzZmE0Gi03f3//Qqm/xGg6klCDLW9e/4s5a1apXY0QQgjxwJWYMHSLRqOxeqwoSrZld9q1axeHDh3iyy+/ZM6cOfzwww+5tp04cSJxcXGWW0REGbtERbkafOYVwFonBw6HzSM906x2RUIIIcQDVWIGUHt6eqLT6bL1AkVHR2frLbpT5cqVAahXrx5Xrlxh6tSpPPXUUzm2NRgMGAyGwim6hHq61hMcOrOMf50i+SPkFH2b1la7JCGEEOKBKTE9Q7a2tjRp0oRNmzZZLd+0aROtWrXK93YURSEtLa2wyytVOjQbi0+mQrxOy5a/PlS7HCGEEOKBKjE9QwDjxo1j8ODBBAUF0bJlSxYuXEh4eDijRo0Csg5xXbp0iW+//RaA//3vf1SsWJFatWoBWfMOffzxx7z88suqvYaSQGdjoK97I+bFhxJhE8yRiFjq+7uqXZYQQgjxQJSoMDRgwACuXbvG9OnTiYyMpG7duqxdu5aAgAAAIiMjCQ8Pt7Q3m81MnDiR8+fPo9frqVq1Ku+//z7PP/+8Wi+hxHiy7RQW/f4o5+1gxdavqT90vNolCSGEEA9EiZpnSA1lap6hO7z2TXs2cI36CY7MfWYn7o62apckhBBC5EupnGdIFL1hQS9SISOTrhmR2KZdV7scIYQQ4oGQMCRyVbfOE6w1eTIkLhan4z+qXY4QQgjxQEgYErnTaNA2uzm+6uDXYDapW48QQgjxAEgYEnmr2490ezf+zIzhg2XT1K5GCCGEKHQShkTebOyZV7kxE7w8OZi0htNXEtSuSAghhChUEobEXfVv9SZaReGUg4llW35RuxwhhBCiUEkYEnfl69ecVoojAOdjlhKfmqFyRUIIIUThkTAk8mVw3cEAnHKO4ad9R1SuRgghhCg8EoZEvrRoPAr/TEjWatl/5CPMZpmrUwghROkgYUjki1anZ4B3SwAiHP5h8/FIlSsSQgghCoeEIZFv/dq+g5PZTAVTGi6xe9UuRwghhCgUEoZEvjm5+PGba2sWR0XTIvJPtcsRQgghCoWEIVEgXi1GZ905sQYSotQtRgghhCgEEoZEwZSvD/7NuYaZeb+8wfWkdLUrEkIIIe6LhCFRYFENB9DV35eFmr/5evcBtcsRQggh7ouEIVFgPg0GUydDwaTRsPffz8gwmdUuSQghhLhnEoZEweltGVK+LQCXHU+y+vB5lQsSQggh7p2EIXFPHm4ziYoZmSTr4IcDX6hdjhBCCHHPJAyJe6J19WegIQCAq7odBF+IUbkiIYQQ4t5IGBL3rG/L1zCaTMTaZvDZzu/VLkcIIYS4JxKGxD2zr9qRfum22JoVvNP3oShyvTIhhBAlj4Qhce80Gp5tMJwNEZf4KPk0GrXrEUIIIe6BhCFxX4yNh+Gpd4Rrp+HcdrXLEUIIIQpMwpC4PwZnaPAkAId2zWb9iZMqFySEEEIUjIQhcf+ajmC2m5FnNOf5cMfHMnZICCFEiSJhSNw/r1o0ca4GQKzhIFtOXVC5ICGEECL/JAyJQtGm+StUS08nQ2vms/1L1S5HCCGEyDcJQ6JQaGr15Om0rI9TZOafnL0ap3JFQgghRP5IGBKFQ6enT92heGSaSLNJZdaOFWpXJIQQQuSLhCFRaGyDnmVAYjIAh6//SHxKusoVCSGEEHcnYUgUHicvBvi2w85sxkZ3nUOXZCC1EEKI4k+vdgGidHFv/iJfL+9FLZMWW18PtcsRQggh7kp6hkTh8m9Gfbea2GamQsgytasRQggh7krCkChcGg00HQlAxqFF/BS6W+WChBBCiLxJGBKFr94TRDu40tsxg/dCRnMo/KLaFQkhhBC5kjAkCp+tA+XqP42L2YxZa2LWnsVqVySEEELkqsSFoXnz5lG5cmXs7Oxo0qQJu3btyrXtqlWr6Ny5M+XKlcPFxYWWLVuyYcOGIqy27NI0Hc6QuHgAziSvJSo+UeWKhBBCiJyVqDC0YsUKxo4dy6RJkwgJCaFNmzZ0796d8PDwHNvv3LmTzp07s3btWoKDg+nQoQO9e/cmJCSkiCsvgzyq0sWnJV6ZmZj1Sby3Y7naFQkhhBA50igl6BLjzZs3p3HjxsyfP9+yrHbt2jz66KPMmjUrX9sIDAxkwIABvPPOO/lqHx8fj9FoJC4uDhcXl3uqu8z6dwOL/xzObHc3dBk+HBi2Hlu9Tu2qhBBClAEF+f4uMT1D6enpBAcH06VLF6vlXbp0Ye/evfnahtlsJiEhAXd39wdRorhTtU7007phbzZjsoli7r61alckhBBCZFNiwlBMTAwmkwlvb2+r5d7e3kRFReVrG5988glJSUn0798/1zZpaWnEx8db3cQ90uowBo2gb0ISADsjch/fJYQQQqilxIShWzQajdVjRVGyLcvJDz/8wNSpU1mxYgVeXl65tps1axZGo9Fy8/f3v++ay7RGgxmalMayy1Gsfqiv2tUIIYQQ2ZSYMOTp6YlOp8vWCxQdHZ2tt+hOK1asYPjw4fz000906tQpz7YTJ04kLi7OcouIiLjv2ss0B3fK1+5Lg7R0NAcXqV2NEEIIkU2JCUO2trY0adKETZs2WS3ftGkTrVq1ynW9H374gWHDhvH999/Ts2fPu+7HYDDg4uJidRP3qdmIrH+Prebi5ZNExF5Ttx4hhBDiNiUmDAGMGzeORYsWsXjxYk6cOMGrr75KeHg4o0aNArJ6dYYMGWJp/8MPPzBkyBA++eQTWrRoQVRUFFFRUcTFxan1Esom30ZQIYjlTgZ6bxjAhM1z1a5ICCGEsChRYWjAgAHMmTOH6dOn07BhQ3bu3MnatWsJCAgAIDIy0mrOoQULFpCZmclLL71E+fLlLbdXXnlFrZdQdjUbSblME5laM0fi1xGbIpMwCiGEKB5K1DxDapB5hgpJRiqZswPp5W7LJRs93X1e4sOuo9SuSgghRClVKucZEiWcjR36xkMYFJ8AwKZLP2Mym1QuSgghhJAwJIpS0LM8mpiMs8lMpi6ahYf+VLsiIYQQQsKQKEKu/jhV78bjCVnjhb478a3KBQkhhBAShkRRazaSgfEJ6BSFBOUMx66EqV2REEKIMk7CkChaVdrj41qF969e49eKAwn0rqR2RUIIIco4CUOiaGk00HQE3ZKSqXZiJcjJjEIIIVQmYUgUvYZPgY0jXD0JYbuITIhRuyIhhBBlmIQhUfTsjNBgALFaLU9tGk/XX3qQkCaTMAohhFCHhCGhjqYjcTGbSdQkoGhT+Gjvd2pXJIQQooySMCTU4V0HbUBrBt+chPGPCyvINGeqXJQQQoiySMKQUE+zkfROTMLFZCZDc43vjsgkjEIIIYqehCGhnlq9sHfy4ambvUOLjy5Vtx4hhBBlkoQhoR6dDTQZxpPxCegViDWfYeeFg2pXJYQQooyRMCTU1WQYHmjpnZh1NtncQ8tULkgIIURZc09hyGw257o8PDz8vgoSZYyzD5rafRgWF89Lpkos6jlL7YqEEEKUMQUKQ/Hx8fTv3x9HR0e8vb2ZMmUKJpPJ8vzVq1epXLlyoRcpSrlmI6mSkcmoywcxKmlqVyOEEKKMKVAYevvttzl8+DDfffcd7733Ht988w2PPPII6enpljaKXF5BFFTFluAVCJkpEPo9JrOJdFP63dcTQgghCkGBwtDq1atZsGABjz/+OCNGjCA4OJiYmBh69+5NWlrWX/QajeaBFCpKMY0Gmo0A4LcDX9JkSSc+3PeVykUJIYQoKwoUhmJiYggICLA89vDwYNOmTSQkJNCjRw+Sk5MLvUBRRtTrDwYj5oxrmPQxrD67ggxThtpVCSGEKAMKFIb8/f05ceKE1TJnZ2c2btxISkoKjz32WKEWJ8oQgxM0HEjPxCScMzWkcYOfTvyhdlVCCCHKgAKFoS5durBkyZJsy52cnNiwYQN2dnaFVpgog5qOwBYYGn8DgIWHl8gYNCGEEA+cviCNp02bxuXLl3N8ztnZmc2bNxMcHFwohYkyyLMaVOnAgLAdfOnqxvXM8+y99Bet/VqoXZkQQohSrEA9Q25ubgQGBub6vJOTE+3atbM8rlevHhEREfdenSh7mj2Hq9lMr8QUAD75SwZSCyGEeLAe6AzUYWFhZGTIIFhRADW6grEiI+KugwKnEw8QHi8TeQohhHhw5HIconjR6iDoGQIyMxmSoGd84Gz8nPzUrkoIIUQpJmFIFD+Nh4DOltevnWOYjytarXxMhRBCPDjyLSOKH0dPqNsv6/6BrDFDJrMpjxWEEEKIeydhSBRPTUcCkHj8V578YSxtv+9OmkmuWyaEEKLwFXoYunTpUmFvUpRFfk3AtxGGzDTOJ+0i3hTJylNr1K5KCCFEKVRoYSgqKoqXX36ZatWqWZYtWLAAb2/vwtqFKGuajsQGGJSQBMCCUJmEUQghROErUBiKjY3l6aefply5cvj6+vL5559jNpt55513qFKlCvv372fx4sWW9gMHDsTR0bHQixZlRN2+YO/OsPgotGY91zMi2HVxt9pVCSGEKGUKFIbeeustdu7cydChQ3F3d+fVV1+lV69e7N69m3Xr1nHw4EGeeuqpB1WrKGts7KHxYJwVhQ4JOgA+O/S1ykUJIYQobQoUhv7880+WLFnCxx9/zJo1a1AUhRo1arB161armaeFKDRBzwIaXo8/B4qGf+ODOXX9lNpVCSGEKEUKFIYuX75MnTp1AKhSpQp2dnaMGDHigRQmBABulaBGVypkmqiR6ATA/4IX572OEEIIUQAFCkNmsxkbGxvLY51OJ2OCxIPXLOs0+7cSI6hl25XhdUepXJAQQojSpEBXrVcUhWHDhmEwGABITU1l1KhR2QLRqlWrCq9CIao8DO5VaHL9HD9XrwPlK6tdkRBCiFKkQGFo6NChVo8HDRpUqMUIkSOtFpqOgA1vwYFF0OQZ0GjUrkoIIUQpoVFK2MQt8+bN46OPPiIyMpLAwEDmzJlDmzZtcmwbGRnJ+PHjCQ4O5vTp04wZM4Y5c+YUaH/x8fEYjUbi4uJwcXEphFcg7knKDfikNmSmsLrth8y9vIcRTXrwVO0n1a5MCCFEMVSQ7+8SdTmOFStWMHbsWCZNmkRISAht2rShe/fuhIeH59g+LS2NcuXKMWnSJBo0aFDE1YpCZe8G9fsD8HfoMqJNISwIXSLXLBNCCHHfSlQY+vTTTxk+fDgjRoygdu3azJkzB39/f+bPn59j+0qVKvHZZ58xZMgQjEZjEVcrCt3NgdSvJx4Hk4Fr6ZfZcXGHykUJIYQo6UpMGEpPTyc4OJguXbpYLe/SpQt79+4ttP2kpaURHx9vdRPFhE898G+BszmTBvHuAMz7WyZhFEIIcX9KTBiKiYnBZDJlu9aZt7c3UVFRhbafWbNmYTQaLTd/f/9C27YoBDd7h6amnEVRtJyKO8I/Mf+oXJQQQoiSrMSEoVs0d5xFpChKtmX3Y+LEicTFxVluERERhbZtUQhq9wFHL6qlxeAdXwHIuoCrEEIIca9KTBjy9PREp9Nl6wWKjo7O1lt0PwwGAy4uLlY3UYzobaHJMADGp94AYMelzUQmRqpYlBBCiJKsxIQhW1tbmjRpwqZNm6yWb9q0iVatWqlUlVBF0DOg0dEj+TieyfXoXv4FXO1c1a5KCCFECVWgSRfVNm7cOAYPHkxQUBAtW7Zk4cKFhIeHM2pU1uUZJk6cyKVLl/j2228t64SGhgKQmJjI1atXCQ0NxdbW1nKNNVECufhC7V5w/De2+nmh6SKX5xBCCHHvSlQYGjBgANeuXWP69OlERkZSt25d1q5dS0BAAJA1yeKdcw41atTIcj84OJjvv/+egIAAwsLCirJ0UdiajoTjv6E58hN0ngZ2MnWCEEKIe1PiZqAuajIDdTGlKDCvJVw9QXLnd5mRbE946n6+6fklem2JyvhCCCEegFI7A7UQFhoNNB0OQOyuhawJX8SR63+xOXyzyoUJIYQoaSQMiZKrwZNg64xvajjlY6sA8NXhJUhnpxBCiIKQMCRKLoMzNHwKgMnmGBSznn9jjxN6NVTduoQQQpQoEoZEydZ0BADtkg9iG1cbgK+PyCSMQggh8k/CkCjZytWEym3RKGaGpWct2nFpO+Hx4XmvJ4QQQtwkYUiUfM2eA+C5jL2YE6sDCt8e/07dmoQQQpQYEoZEyVejO7j4YZdxg9YJnjibA2nu1U7tqoQQQpQQMiGLKPl0eggaBlvfZZ7bGfTPbFW7IiGEECWI9AyJ0qHxUNDaoI8Mhkt/q12NEEKIEkTCkCgdnLwg8LGs+wcXcexKOK9seI+NYRvVrUsIIUSxJ4fJROnRbCQc/Qnz0ZU8fUaPqdw2wlP+pnNAZzQajdrVCSGEKKakZ0iUHn5Nwac+WlMqzykmFLMNZ+L+5UDUAbUrE0IIUYxJGBKlh0aT1TsEDFW2kRnbBICl/3yjZlVCCCGKOQlDonSp+zjYueKYfIm2KV4oiobdl3dxLvac2pUJIYQopiQMidLF1gEaDQLgLce/yUzMukTH4n8Wq1mVEEKIYkzCkCh9mg4HNFS6sRevG/UB+O3sb+y9tFfduoQQQhRLEoZE6eNeBap1AmCGMQxTbBsau3ankXcjlQsTQghRHMmp9aJ0avYcnNlEm6QN7H4hFHdXd7UrEkIIUUxJz5Aonap1ArdKaNPicD/7u2WxWTETGh2qXl1CCCGKHQlDonTSaiFoeNb9g1+BorDt1CVaLX2SYeuHSSASQghhIWFIlF6NBoHeDqKOkh62l0mrThKbYIdJMfHGzjeIS4tTu0IhhBDFgIQhUXo5uEO9xwGw/Wseswc0JP3Ko5jTPYhMimTavmkoiqJykUIIIdQmYUiUbs1fAI0OTv5B8/gNjO9Un5RLT6EoOjZd2MQvp39Ru0IhhBAqkzAkSjefutBhYtb9P8fzQqCJ1v4NSYvuCsAHBz7gzI0zKhYohBBCbRKGROn30Dio3A4yktGufJbZ/WrhmtGRzMQapJnSmLRnkhwuE0KIMkzCkCj9tDro+xU4loMr/+C5Zzpzn2pCWuQTuGlr806LqWg0GrWrFEIIoRKNIn8S5yk+Ph6j0UhcXBwuLi5qlyPux5nNsKxf1v3+33LctQO1yztLEBJCiFKoIN/f0jMkyo5qnaD12Kz7v71MHfsbliCkKAqhV44SmRipXn1CCCFUIWFIlC0PTwa/ZpAWByuHgymD2OR0+n77P4asH8ybu94k05ypdpVCCCGKkIQhUbbobKDfIrAzwsWDsPVdTkYlcOSsC2aTnpDoEL48/KXaVQohhChCEoZE2eMWAH2+yLq/Zw4tzCG83LYFqVGPAbDwyEIORh1UsUAhhBBFScKQKJvq9IGmI7Lur3qel5s606xcRzJim6CgMGHnBGJTY1UtUQghRNGQMCTKri7vgXc9SI5Bt/o55vSvh2PiE5jSyhGdEs3be96W+YeEEKIMkDAkyi4bO3hiCdg4wvmdeB2ex+cDmpN2+SkUs47tF7ezNXyr2lUKIYR4wCQMibLNszr0/Djr/raZtLY5zUut22Gf8BhPVX2JDhU7qFufEEKIB04mXbwLmXSxjFj1PBz5EVwqYHpuF4k6F4z2NmpXJYQQ4h6V6kkX582bR+XKlbGzs6NJkybs2rUrz/Y7duygSZMm2NnZUaVKFb78Uk6bFjno+Ql4VIP4S+h+H43RTm956vy166w+s1q92oQQQjxQJSoMrVixgrFjxzJp0iRCQkJo06YN3bt3Jzw8PMf258+fp0ePHrRp04aQkBDeeustxowZw8qVK4u4clHsGZzg8SWgM8CptfBXVmhetv8MvVc+wdt73mbd+XUqFymEEOJBKFGHyZo3b07jxo2ZP3++ZVnt2rV59NFHmTVrVrb2b775JmvWrOHEiROWZaNGjeLw4cPs27cvX/uUw2RlzIGvYO1roLWBEZv45B8HFhyZh6HcVuz1Dqzs8wv+zv5qVymEEOIuSuVhsvT0dIKDg+nSpYvV8i5durB3794c19m3b1+29l27duXQoUNkZGQ8sFpFCdZ0BNTqBeYM+OVZXnnIh4bOT5CZHEBKZjKv73iDDLN8doQQojQpMWEoJiYGk8mEt7e31XJvb2+ioqJyXCcqKirH9pmZmcTExOS4TlpaGvHx8VY3UYZoNPDIF2D0h+vn0K8bz9wnm2B/YzCKyY5j1/7hi5Av1K5SCCFEISoxYeiWW1cZv0VRlGzL7tY+p+W3zJo1C6PRaLn5+8shkTLH3g36fQ0aHRz9Ge+zvzDn8YdJjeoHwOJ/FrP3cs69kUIIIUqeEhOGPD090el02XqBoqOjs/X+3OLj45Nje71ej4eHR47rTJw4kbi4OMstIiKicF6AKFkqNs+6wj3A2tdp63ad55s8SvqN5gC8/9dHmBWzigUKIYQoLCUmDNna2tKkSRM2bdpktXzTpk20atUqx3VatmyZrf3GjRsJCgrCxibnOWQMBgMuLi5WN1FGtR4LVTpAZgr8PIxX2/nTwGEwtRy7srDzArSaEvPfRwghRB5K1G/zcePGsWjRIhYvXsyJEyd49dVXCQ8PZ9SoUUBWr86QIUMs7UeNGsWFCxcYN24cJ06cYPHixXz99de89tprar0EUZJotdB3ITh6QfRx9Jsm8f3wNvz8+Mf4OHmpXZ0QQohCUqLC0IABA5gzZw7Tp0+nYcOG7Ny5k7Vr1xIQEABAZGSk1ZxDlStXZu3atWzfvp2GDRsyY8YMPv/8c/r166fWSxAljZNXViBCA8FL0J/8zfJUaoaJr4J/5VjMMfXqE0IIcd9K1DxDapB5hgQAW6bDrk/A4ALP7yTapjyPL5vDDYfllHfw49dHf8HRxlHtKoUQQtxUKucZEkJV7d8C/+aQFg8rh+NuAA+aYM5wJTL5ItP2zlC7QiGEEPdIwpAQ+aHTZ51ub+cKl4LRb3+X/z31EDbXBqEoWtaF/cmas2vUrlIIIcQ9kDAkRH65+sMj/8u6v3cuvld3M/uRx0i/2hGAaXtnEBYXpl59Qggh7omEISEKonYvaPZ81v1fn6eDbyZDA4eTmVSFdHMqY7e+RropXd0ahRBCFIiEISEKqssM8KkPyddg1XO80bkG1bXPYc504Gz8KXZd3KV2hUIIIQpAwpAQBaU3wONLwMYRwnZhs+dTvnzyYWrqnmNq80/oGNBR7QqFEEIUgJxafxdyar3I1eEV8OtzoNHC0N+h0kNqVySEEOImObVeiKLQYAA0fBoUM6wcAUnXLE+tPHyUqbs/wGQ2qVigEEKI/JAwJMT96PEReFSHhEhY/QIoCt/sO8M7B19g5dllfHVksdoVCiGEuAsJQ0LcD1tHeGIp6AxwegPsn0fHWr7o4roBMO/wF4RGh6paohBCiLxJGBLifvnUhW4zs+5vmoJf8kk+7jaCjLgGKJgZs+U14tPj1a1RCCFEriQMCVEYgoZD7T5gzoBfnqFLVXueqDQWc7o7N9KvMGHHFORcBSGEKJ4kDAlRGDQa6DMXjBXhRhj8Ppa3uzfCL3MkiqJl1+XN/HxqpdpVCiGEyIGEISEKi70rPL4YtHo4tgrbI8tYNKAvmhvdAVh69EfMilndGoUQQmQjYUiIwuTfFB5+O+v+ujfxz7zAx11eoafvKFY9tgytRv7LCSFEcSOTLt6FTLooCsxshuWPw9ktUK4WjNwGtg5qVyWEEGWKTLoohJq0WnhsATj5wNWTsP5Ny1NR8ckM/Pk9NoVtUbFAIYQQt5MwJMSD4FQO+i4ENPD3t3D0F0xmhb7ffcrR5B+ZsHMyUUlRalcphBACCUNCPDhV2kHb17Lu/z4WXex53mozBFOKH+lKIqM2jJfLdQghRDEgYUiIB6ndBKjYCtIT4Jdn6VXHhx7er6GYbDmbcIRPDvxP7QqFEKLMkzAkxIOk00O/RWDvBpdDYPNU3uvdnnLpAwH47uQi9l8+qHKRQghRtkkYEuJBM1aAR+dn3d//PwxnN/HNEy9AQhPQKLyy5XXi0uLUrVEIIcowCUNCFIWa3aH5C1n3V79ARf0Npj/0NuY0T5JNcRyKDFW1PCGEKMv0ahcgRJnReRqE74XIw7BqJI8NWcPlpKm0qupJI59AtasTQogyS3qGhCgqegM8vgRsneHCHtj5IS+1bidBSAghVCZhSIii5FEVes/Jur/jQzi/EwBFUXhv8wZ6/DiMlMwU9eoTQogySMKQEEWt3uPQaBCgwMqRkHiVvWev8H3Yu0SkBTN20zS1KxRCiDJFwpAQauj+IXjWhMQoWP0Crat48ZDrSyiKhr3Rf7Li+B9qVyiEEGWGhCEh1GDrCE8sBb0dnNkE+77gs0eewCWtCwAzD0wnPC5C3RqFEKKMkDAkhFq860C397Pub5mG3ZUQvnnsbZTUipg1KTy15nnO3ZBAJIQQD5qEISHU1GQYBD4G5kz45RmqOyu81mg65kwn4s0R9P2tPxcTLqpdpRBClGoShoRQk0YDvT8D1wCIDYffxzCsaWPeavAl2gw/ark2pIJTBSDrjDMhhBCFT6PIb9g8xcfHYzQaiYuLw8XFRe1yRGl1MRgWd8nqIeo1G4KeJTYlCb0WnAyOAHy7/192/XuNST3qU8nTUeWChRCieCvI97f0DAlRHPg1gU5Ts+6vnwhXjuFq72gJQumZJj4NmcGe5Gl0nvsbM/44Tlxyhnr1CiFEKSJhSIjiosVLUL0LZKbCz8MgPcny1NXUKByM59HZX8K24ucs/XsLbT/axuLd50nPNKtXsxBClAIShoQoLrTarKvbO5eHmH9h5QhIjAagglMFfu6zglrutdDqk3CouIhku+1M/+MYXWbvYP+5ayoXL4QQJZeEISGKE0dP6PsVaHRwai3MbQJ7v4DMdCo4VeDb7t/So3IP0Jix8/kdY8VVhF2Pw85Gp3blQghRYpWYMHTjxg0GDx6M0WjEaDQyePBgYmNj81xn1apVdO3aFU9PTzQaDaGhoUVSqxD3pXIbeHYD+DaCtHjYOAm+bA1ntmCvt+f9Nu/zWtBraDVazI4HadrsDxr6u1pW//NIJFFxqerVL4QQJUyJCUMDBw4kNDSU9evXs379ekJDQxk8eHCe6yQlJdG6dWvef//9IqpSiELi3xRGbIU+X4CDZ9Zhs2V94Yen0Nw4z9DAoXzZ6Us87T15q/VLltUirifz6opQ2n+8jU83/UtSWqaKL0IIIUqGEnFq/YkTJ6hTpw779++nefPmAOzfv5+WLVty8uRJatasmef6YWFhVK5cmZCQEBo2bFigfcup9UJ1KbFZV7g/sCDr1HudLbR6GR4aR6pOj53eztJ0d9hJ5qy/xqGwWAC8nA281qUm/Zr4odNq1KlfCCFUUOpOrd+3bx9Go9EShABatGiB0Whk7969hbqvtLQ04uPjrW5CqMreFbrNhBf2QtWHwZQOuz6BL4KwO/473Px75vSN04zbM4Q69Tbw+VN1qejuQHRCGm+sPEKvubvZcyZG3dchhBDFVIkIQ1FRUXh5eWVb7uXlRVRUVKHua9asWZZxSUajEX9//0LdvhD3rFxNGLQKnvwe3CpBQiSsGgGLu0HkYY7GHCXNlMavZ37lx4sTWT6qJpN61MbZTs+JyHhGfHOIG0npar8KIYQodlQNQ1OnTkWj0eR5O3ToEAAaTfYufkVRclx+PyZOnEhcXJzlFhEhF8oUxYhGA7V6wot/wcNvg40DROyHBe3oe3IH8x/6ABdbF47GHGXwuoEE1Ypjx+sdGNaqEi91qIqbo61lU4kynkgIIQDQq7nz0aNH8+STT+bZplKlShw5coQrV65ke+7q1at4e3sXak0GgwGDwVCo2xSi0NnYQdvXoMFTsHkKHP0ZgpfS6tiv/NjqJV65sZ/TsWd4dsOzTGw2kal9+lutvv/cNUZ+e4iXH67G0FaVMOjl1HwhRNmlahjy9PTE09Pzru1atmxJXFwcBw4coFmzZgD89ddfxMXF0apVqwddphDFl7EC9FsEQcNh3esQdRT/rTNZVq4W71RqxIaYEGbsn4HRYKRrpa6W1X4+dJGE1Exmrj3Jd/svMKFbbXrU8yn0nlYhhCgJSsSYodq1a9OtWzdGjhzJ/v372b9/PyNHjqRXr15WZ5LVqlWLX3/91fL4+vXrhIaGcvz4cQBOnTpFaGhooY8zEkJ1AS3huR1ZF3m1d8fh6kk+OvgbY/XlaVmuER0rdrRq/uHj9fno8fp4uxiIuJ7CS9//zeNf7iMk/IZKL0AIIdRTIsIQwPLly6lXrx5dunShS5cu1K9fn++++86qzalTp4iLi7M8XrNmDY0aNaJnz54APPnkkzRq1Igvv/yySGsXokhodRD0LIz5G5o9j0ajY/jpv5j/9wb02z+A9GQyTBmcuHYCnVbDE0H+bHutPWM7VcfeRkfwhRs8Nm8v7/15XO1XIoQQRapEzDOkJplnSJRYV47D+jfh/M6sxy5+vFurOSuvhfBW87d4osYTlqZRcal8vPEUK/++yOz+DXm0UQWVihZCiMJRkO9vCUN3IWFIlGiKAifWwIbJZMaF84aXJ5scHQB4vMbjTGw2EVvdf2eY/XslgWrlnNDenKBxzeHLxKdk8GRTf/S6EtORLIQQEoYKk4QhUSpkpMCez1F2z2aRow1z3YwoGg0NPAKZ/fBcyjmUy7ZKYlomHT7eztWENKp7OTGpZ23a18w+35cQQhRHpW4GaiHEfbKxh/Zvohl9kJF+HfniylWcTWYOXzvGgF97czjq72yrGPRaRneohquDDaejExm25CCDv/6Lk1EyK7sQonSRnqG7kJ4hUSqd38WF9a/ziv4GZ21tcVc0rGszG4eqHbM1jUvO4Ittp1m6N4wMk4JWAwOaVmRc5xqUc5Y5uYQQxZP0DAkh8la5DQHP7WZ53TF0Tslg2pVoHL7rCz8Pg1jrWdeNDjZM6lmHzePa0aOeD2YFfjgQzsUbyerULoQQhUx6hu5CeoZEqZd8Hba+C8FLQDFzxMEZ3yYj8Gz7ZtbhtTscDLvO3jPXeKVTdcuy45fjqeXjbBl4LYQQapMB1IVIwpAoM6KOcmndeJ5ULmKrKMxJ0lOv07tQu0/WNdFyEXE9mY6f7KB2eWfGdanJQ9U80UkoEkKoTA6TCSEKzqcepr5f4e7oTbRezzBnhV/XvgDf9smasygXJ6MSsNFpOHwxjqGLD9Bi1ham/X6MkPAbyN9aQoiSQHqG7kJ6hkRZk5ieyKRdE9h6cQcAT8Yn8Mb1eGyajoAOE8HeLds6VxPS+GLraVaHXiYuJcOyvKK7A18NCaKmj3OR1S+EECCHyQqVhCFRFpkVMwuOLGBe6DwAGqem8smVGDwNrtDxHWg8JOvyH3dIzzSz6/RV1hy+zMZjV9Bq4NDkztjbZrUNvnAdL2c7/N0divLlCCHKIAlDhUjCkCjLtoVvY+LuiSRlJDE4Xc8bl85lPeFTH7p/mHWB2Fwkp2dyIjKBJgFZPUmKotB59k7ORCfSuKIrfRr40rO+r5yeL4R4ICQMFSIJQ6KsOxd3ji8Pf8n05m9jF7IMts2CtJsXRK73BHSeDi6+d91OQmoGz38XzL5z17j1W0ergVZVPenT0JeugT4Y7W0e4CsRQpQlEoYKkYQhIayZE6NZte5FHjm2GRsUsHGENuOg5Wiwsbvr+tHxqfxxJJLfDl/mcESsZXnfxhX4tH/DB1e4EKJMkTBUiCQMCWFtXug85h+eT5BbLT6+eh2PiENZT7hVgrZvQI2u4OiZr21duJbE74cv81voZd7qWZsON699diIynoU7z9GngS8PVffERi4SK4QoIAlDhUjCkBDWtoRvYdLuSSRlJOHj4MMc/14E7pkPCZH/NSrfEKp1hKodwb8Z6PI+/HXr15Dm5nxGs9adYMGOrPFJbg429KhXnj4NfGlayV0mdhRC5IuEoUIkYUiI7M7FnuOVba8QFh+GQWdgStCb9L5yHk6sgaij1o1tnaFKO6j6cFZAcqt01+0fvRjHL8ER/Hk0kpjEdMvy8kY7ejfw5eWHq+FsJ+OLhBC5kzBUiCQMCZGzhPQEJu6ayI6b8xENqj2IcUHjsEm6Dme3wtktWf8mX7Ne0b0qVOuUFYwqPQS2jrnuI9NkZu/Za6w5fJkN/0SRkJaJu6Mtf73V0XLoLC4lQwZeCyGykTBUiCQMCZE7s2JmXug8FhxZgK3Wlh97/Uh1t6xrlqVmpmKntYWow3BmM5zZChcPgDnzvw3obKFii6xwVLUjeAfmeumP1AwT209dJS4lnQFNK2bt36zw0AdbcXeypU8DX3o38KW8Mfv11IQQZY+EoUIkYUiIu9tyYQspphR6VekFZIWkdivaUd6xPEE+QTT1bkpj78YYFQ2c35kVjs5ugdhw6w05+fx3OK1KB3D0yHO/p6IS6PH5LkzmW2OOoGkldx5p6EuPuuVxc7R9IK9XCFH8SRgqRBKGhCi4MzfO8Niax6yWadBQy70WQT5BdKrYicZejeDa2axQdGYLhO2CjGSrNfBt9N9AbL+moNNn29e1xDTW/hPFmtBLHAy7YVmu12qY0rsOg1tWekCvUghRnEkYKkQShoS4N1eTr3LoyiEORh3kYNRBwuLDLM89X/95RjcaDWRdC+1g1EEae9TFeOVYVjA6uxWu/GO9QYMRqrTNCkbVOoJrxWz7vBSbwh83T9U/HhnPL6NaElTJHYB/ryRwPiaJ9jXLYdBnv5SIEKJ0kTBUiCQMCVE4riZfJfhKMAejDtKnWh8alGsAZF3yY8y2MVY9R029m9LYoQLGiIM3B2Jvg5Tr1hv0rPFfMApoDbbW1zs7E51IFU9Hy6n4k1cfZdn+cJzt9HSv60OfBhVoWdUDnZyqL0SpJGGoEEkYEuLB2hC2gS9CvrDqOYL/DqtNajGJBh51ITI0q9fozBa4eBAU03+NdQYIaPXfITWv2tkGYs/dcprlf4UTFZ9qWebpZKBroDcPVfOkW10fyzxHQoiST8JQIZIwJETRyO2w2p+P/UlFl6xDYhvCNnD46mGautWhcXISxgt7s8JRXIT1xpx9odrDWcGoSntwyDpUZjYrHAi7zprDl1l7NJLY5AwAqpRzZOv49pbVQyNiqeblhJMh+xglIUTJIGGoEEkYEkIdV5OvEhIdQueAzpYem3Hbx7Hpwibgv56jpj5NaWrvS+O4q7ic3w1huyEz5b8NabTg2/i/uY18G4NOT3qmmT1nYtjx71XKORt4qUM1ANIzzTScvpG0TDMN/Iy0ruZJy6oeNK7ohp2NjDUSoqSQMFSIJAwJUXxsDd/Krku7OBR1KNthNVutLXsH7sVgViB8L5mnN6E/tx2ij1tvxM6Y1Vt0a24jYwWrp8OvJTPo678Iv55stdxWryUowI0BTf15pKH1OkKI4kfCUCGSMCRE8XTnYTVXgyvf9fjO8vzAPweSac6kqVttmmZC4+izuJzbBamx1hsyVgS3AHAN+O9f14pc1nix+4qefedusOdMDNEJaQC83rWmpRfpWmIaq/6+RKtqHtT2cZHrpglRjEgYKkQShoQoGVIzU7HT2wGQlJFEqx9aYVbMlucth9Uc/XkoLZOWl47DpUNwW5tsdLZg9EdxCyDe4MvZDHd8K9XCJ6AWuAWw5nQaY34MBcDVwYaWVTxoVdWDVtU8qeLpKAOyhVCRhKFCJGFIiJIpOjmaQ1GHOHjlYLbDat0qdeOjdh9Byg1M0SdYe34ttTMUKifdQBcbnjUzdtxF6zPWcmDSOxCp8eJMujthJk8ilHJcVLy4qJQj1cmPD55uY5nnSAhRtCQMFSIJQ0KUDreHoxblW9C1UlfAerZse709Nd1qUsejDnXcalLH4EFlkxl93CW4cQFiL2QFpRsXICESyPvXp9lgROtWEVwDOJXuwalUN7wr1qB6zbq4V6iW50VqhRD3R8JQIZIwJETp9k/MP3x48ENOXj9Jyu1nod30YsMXeaHBC0DWbNmXky5TxVgFvdkEsRE3A9KFm2EpHGIvoNy4gCY55q77TtK7kulSEXuvKth6VLptzFIAuPqD3lDYL1eIMqMg398yiYYQokyr61mXb7t/i8ls4kL8BY5dO8bxa8c5fu04J6+fpI57HUvbA1EHeGXbK9jp7KjhXoM67nWyepGqtKaK62BstDYAaADSErPmP7rZo3Tx/EkSo85ikxBBucwoXDTJOGbGwvVYuH4kh8o04Fw+67Ijtw3sxi0AjH7g5C09S0IUEukZugvpGRKi7DIrZsyKGb026+/GVadX8eHBD0nKSMrW1qAz8Gn7T2nr1xaAlMwU9Fq9JSDd7npSOsEnz3P61DGuhJ+ihuE6T9fEEpxSr57HjrS7F2jrBE5eWcHo9n8d71jmWA70tvf1XghR0shhskIkYUgIcTuzYuZC/AVOXDuR1YN0/Tgnrp0gMSOR3x75jSquVQD45tg3fP7359Rwq0Ftj9pZPUgedajuWh0bnXVASs0wWSZ0jElMI+jdTXgQj7/mKv6aaCrpr9HIOY7qttfwMkdjSIqEzNRsteXJ3u2O0HR7cLptmYM7aGVySVHySRgqRBKGhBB3Y1bMRCRE4Ofkh+5mkHhnzzv8eubXbG1ttDZUd6vOp+0/pYJT9skbFUUh/Hoye89eY+/Za+w7G0NMYrrl+ceb+PHx4/UhLYGk65f5Y28oVewTqaBPwFMTh23KVUiMhsQrWf8mXQVzZv5fjEYHjp7ZQ9OtHqbbl9kZs10DTojiQsJQIZIwJIS4F4qicDHhIseu/zcG6fi14ySkJ6DT6Ng/cL9lXqQPDnxA8JVgS+9RoEcg1d2qY6uzRVEUTkcnsvdMDHvPXuOxRhXoXq88AIcjYnnkf3us9lveaEfVck5ULedIt7rlaVnZDVJu3AxHV/4LSknR1qEp8QokXyvYi9QZbgajcnc/VGfrUCjvqxD5VSrD0I0bNxgzZgxr1qwBoE+fPsydOxdXV9cc22dkZDB58mTWrl3LuXPnMBqNdOrUiffffx9fX99871fCkBCisCiKwsXEi1yIv8BDFR6yLB/450COxhy1aqvX6qnuWp06HnWY3GKyZdzS7U5fSWDRrvOci0nk7NUkrielWz0/uWdtRrTJOmx3Miqe134+TNVyTlTxdKKqlyNVyzlR2dPxv2uumTIgKebuoSkxGtLiC/biDS5g9M8aBO5681/L44rg4CG9TKJQlcow1L17dy5evMjChQsBeO6556hUqRK///57ju3j4uJ4/PHHGTlyJA0aNODGjRuMHTuWzMxMDh06lO/9ShgSQjxolxIvcSzmth6k68eJS4sDoLxjeTY+vtHS9t3975KckUwF5wr4Ovri6+SLr6MvPo4+JKYqlmB09moiPeuVp76fKwBrDl9mzA8h2fat0UAFV3smdK9Fr/pZfygmpWWSlJZJOWdD7rNoZ6TcDEfR1r1OSTksy8/4JhuHm+Eoh6Bk9M/qXdJqC/bGijKt1IWhEydOUKdOHfbv30/z5s0B2L9/Py1btuTkyZPUrFkzX9s5ePAgzZo148KFC1SsWDFf60gYEkIUNUVRuJx0mRPXTpBqSqVXlV6W5W1WtLEEpdtp0NDQqyHfdv/WsmxL+BbsdfaUdyqPLe4cu5jC2atJnLuayNmrWaEpLiUDgK+GBNG5jjcA645G8sLyv3Ey6KlazpEqNw+7VS3nRJVyTlTydMCgz+cga0WBtASIv5w11YBlhu9b9yMgMeru29HZZk0pYAlKN+diuhWanMuDTmaLEf8pdfMM7du3D6PRaAlCAC1atMBoNLJ37958h6G4uDg0Gk2uh9aEEKI40Gg0VHCqkG2AtVkxM63lNM7Hn+dy4mUuJ17mUuIlIpMiSTOlZTuN/9397xKT8t/kjx52HlRwqkB5r/L0rh3IsMBhXE9K5+zVJCp5/nfqfXRCGloNJKZlcvhiHIcvWoev+U83toxbOhWVQPCFG5bQ5Olka92bpNGAnUvWzatWzi84IxXiL+UclOIisp4zpcP1c1m3HN80HRgrZF1499ahuNsPy7n4yfQCIlclIgxFRUXh5eWVbbmXlxdRUfn4iwJITU1lwoQJDBw4MM+EmJaWRlraf/N7xMcX8Li4EEI8IDqtjo4BHbMtVxSFa6nXSL3tcJRZMVPXoy4XEy9yOfEyyZnJXEu9xrXUaxyJOcL11Os8U/cZPJwMeDgZ6PhTRzLMGVmH3Zx8ef6x8hjwwJzuSnKyO9djXbN6laITqerlZNnPtlPRvL/upOWxi52eql7/jUt6rFEFyhvt835hNnbgUTXrlhNTRlbPkiUo3QxLcbfC0yUwZ/wXpi7ktJHbJrG8Myi53pzI0uYudYpSS9UwNHXqVKZNm5Znm4MHDwLkeNxaUZR8XRU6IyODJ598ErPZzLx58/JsO2vWrLvWJIQQxYlGo8HT3tNqmVajZW7HuUDW78q4tDguJ/3Xm+Rh72Fpm25KJzolGoAbaTc4du2Y1baa+jRlcf/Flm29vedtnC444evoyw3saFZTw6UYOy5f1xCfmklIeCwh4bEAtKtRzhKGlu45z0+HLuLtYsDHaIeXsx0+Rju8XQx4u2SdBWcZzH07nU3WzNtuATm/AWYTJETdFpQuZO9dykyFhMtZt4j9OW/H0cs6KBn9sgZ227tlzb9k75513+Asg71LGVXHDMXExBATk/f1eypVqsT333/PuHHjiI2NtXrO1dWV2bNn88wzz+S6fkZGBv379+fcuXNs3boVDw+PXNtCzj1D/v7+MmZICFGqxafHE5kYmXX47WZounW/kVcjJjSbAGQFpybLmuS4DQe9A8282tPNe6xlXFK3Ztfwc/HB096T2RvPseJgJCh6UHTcvHCJxYaxbanp4wzAL8EX2Xz8SlZocjHgfVtw8nKxw9mgz9cfw0DWuKWkq7kHpdhwSE/M/5ultbEOSA7uOT+23L/5WA7TFakSM2bI09MTT0/Pu7Zr2bIlcXFxHDhwgGbNmgHw119/ERcXR6tWrXJd71YQOn36NNu2bbtrEAIwGAwYDHJxRCFE2eJi64KLuws13fMeg2lWzExuPplLSZe4nHiZyMRILiVe4lrqNZIzk3Gx19OzftZ4onRTOkHLglD4729u59s276tvgV/Gc0TFpxIVn8rLu5/AoLPBRmfD1fhMriWaURJ0oOgxpVQkPaaTZd0nu/2Nm4MtNjobIq6lEx2XiYudPa729lR29aN7lU6UczZgZ6Nj7+V9ANjobbDxqoJN+ZrYam2x1dnioHegnL1n1lxMseFkxoahi72E5tZYpZQbWbfk65ByPauHyZyRddZcUnTB3mRbZ3Bwyz0wWf69bbnBRXqhikCJOJsMsk6tv3z5MgsWLACyTq0PCAiwOrW+Vq1azJo1i8cee4zMzEz69evH33//zR9//IG3t7elnbu7O7a2+UvocjaZEELcXWpmKpFJkeg1evxd/AG4lnKNsdvGcjnpMtdTrpOpWM+E3aNyDz5o+wEAGaYMGi9rnOv2XcwNsb8xgivxqSSkZuJWZ3K27d2SmVSNlPARALg52GCoNpWkjIQc29Zyq8uPvb5Hp80KHJ1+7kR0cjS2OltstDbotXrLrZprNea3/SQrFCVfZ9zfH3E15Ro6xYzebEJvNmFjzkRvysQ7M5MJiZlZbVNiWWR05qpOhx4FvaKgV7h5H1zMZgYk/NcztdPejjid9mYbDXpbJ3S2TugNztgZjDR29LcEpkt6HWm2Tugd3NDbu6Ozc0Ons0Wj0aHV6nCzcwONFjRa0pRMFDRotXo0Wh06rQ0ajQ5NKZ2yoMT0DBXE8uXLGTNmDF26dAGyJl384osvrNqcOnWKuLissx4uXrxomaCxYcOGVu22bdtG+/btH3jNQghRVtjp7ahsrGy1zMPeg+96fGd5bFbMZJgzSDelk2HOQKf5b3yQTqvj+x7fk25OtzyfYcrIam9Ox8vBixblWwCQnJ7J0uMXLNs6ezWWyPgkktJTSclII13xxqzXkpZp5kZyBm1ca5CSmUiGOYOohEQS09JAk4lGk8k/EWlUn7SWcs5Z45ZSPdJRUEgzpZFmsr5Yrg3O7ItIwVbviEHvzPHUq1xKupTj+1HJrRI8e/OPdbOJP397jDPx53Ns6601MMA/8GbIusECm1iO2NzZG5QBXMcl7Sp7Tu+wLJ3i48Vf9nY5btfWrBB8IcLyeLx3OXY4ZB8krlEUtEBweBS6m8FpsrszW+wNaADtzZsG0CpZ91fHmnBAh4KGuY4attgoaNCgATTKf+01aPggzh5nRYtJ0bDOaGanTTpaNJjNCumZCn0UZ55qOgIaD87xdRSFEhOG3N3dWbZsWZ5tbu/kqlSpEiWk00sIIcoErUaLQWfAoMs+FEGr0VKvXL18bcfBVs+LDV/Ms42iKMSnZBIVn0oN7x6W8UXL/7rA9lNXuRKfypX4VK4mpGFW4Ep8Glfi09g95FcMejPp5nTeX/8Pfx65BBoTaMycVPQ8dei/wdfzRkzEYJNJppLJz4cusP10FBqNCTBzOsqOelM3YNBrsdVpGdi5Lx208WSaMzkWeYMzV+PQas1oNWZscGQcT2Nw1mFw01LVbTVOqeFkmtKIS0oiKS0ZlAxQMnDQafk38AnsMhMwZMRir5zARUkiE4VMFLL2DopGgxbr70Bzbu+VRoMJ0JozLMtSFAcStbkfntMlRKK7+R17zdadC3ZOQE7fuQquiafwNGftPdLgxt+2zjc3knXrcP0c3Mg5KBaVEhOGhBBCiPzSaDQYHWwwOljPvfR08wCebv7fWWkms0JMYtrNcJRGBWd3S3Bq4J1GbIAraZlm0m/e0jJNpJuy7rco3xJ3x6whF7tCj5IZF27ZbgaQSia3Ds49UqU//u5Z12ebtfYEW/61ni/pBP/1MG0YO8YykHzO5n+Zs/m0Vdsut91f+UIr5ga4AfDVznO8t/bEzWcUEjBTBQ06zGgxs6RDAz72c8KsmFhx4DyfbT2FDhNaFDSaTFpkOqFFQYuZtxv780oFA2aziZ2no1i8+xwassKbFjNPpLmiQ4NBB4NqudLXS4NZMXEmOo5tJ65go1Ow0YFep/CTrx/2Wh0GHbSskEZzu2TMion41HQu3Uiidl1fqNMFNUkYEkIIUWbptBq8Xezwdsl+qGlEmyqWa7vdzfQ+dZncs44lOKVlmrIC1M3g5OXyX2/YIw0rUMfXxer52wOXp9N/Y1preDvTq3556zam/9o621l/jdvb6DDYaLHT67Cz0WJno7t50+Ls5IGDkxGA+lUN9E0y3tY2q439zfYNq3jgY8x6T1y90mlWL9WqnZ2NDoNem+2MviDgyc75esuKlRIzgFotMoBaCCGEKHkK8v1dOoeQCyGEEELkk4QhIYQQQpRpEoaEEEIIUaZJGBJCCCFEmSZhSAghhBBlmoQhIYQQQpRpEoaEEEIIUaZJGBJCCCFEmSZhSAghhBBlmoQhIYQQQpRpEoaEEEIIUaZJGBJCCCFEmSZhSAghhBBlmoQhIYQQQpRperULKO4URQEgPj5e5UqEEEIIkV+3vrdvfY/nRcLQXSQkJADg7++vciVCCCGEKKiEhASMRmOebTRKfiJTGWY2m7l8+TLOzs5oNJpC3XZ8fDz+/v5ERETg4uJSqNsW/5H3uWjI+1w05H0uGvI+F40H+T4rikJCQgK+vr5otXmPCpKeobvQarX4+fk90H24uLjIf7YiIO9z0ZD3uWjI+1w05H0uGg/qfb5bj9AtMoBaCCGEEGWahCEhhBBClGkShlRkMBiYMmUKBoNB7VJKNXmfi4a8z0VD3ueiIe9z0Sgu77MMoBZCCCFEmSY9Q0IIIYQo0yQMCSGEEKJMkzAkhBBCiDJNwpAQQgghyjQJQyqZN28elStXxs7OjiZNmrBr1y61SypVZs2aRdOmTXF2dsbLy4tHH32UU6dOqV1WqTdr1iw0Gg1jx45Vu5RS6dKlSwwaNAgPDw8cHBxo2LAhwcHBapdVqmRmZjJ58mQqV66Mvb09VapUYfr06ZjNZrVLK9F27txJ79698fX1RaPRsHr1aqvnFUVh6tSp+Pr6Ym9vT/v27Tl27FiR1SdhSAUrVqxg7NixTJo0iZCQENq0aUP37t0JDw9Xu7RSY8eOHbz00kvs37+fTZs2kZmZSZcuXUhKSlK7tFLr4MGDLFy4kPr166tdSql048YNWrdujY2NDevWreP48eN88sknuLq6ql1aqfLBBx/w5Zdf8sUXX3DixAk+/PBDPvroI+bOnat2aSVaUlISDRo04Isvvsjx+Q8//JBPP/2UL774goMHD+Lj40Pnzp0t1wd94BRR5Jo1a6aMGjXKalmtWrWUCRMmqFRR6RcdHa0Ayo4dO9QupVRKSEhQqlevrmzatElp166d8sorr6hdUqnz5ptvKg899JDaZZR6PXv2VJ599lmrZX379lUGDRqkUkWlD6D8+uuvlsdms1nx8fFR3n//fcuy1NRUxWg0Kl9++WWR1CQ9Q0UsPT2d4OBgunTpYrW8S5cu7N27V6WqSr+4uDgA3N3dVa6kdHrppZfo2bMnnTp1UruUUmvNmjUEBQXxxBNP4OXlRaNGjfjqq6/ULqvUeeihh9iyZQv//vsvAIcPH2b37t306NFD5cpKr/PnzxMVFWX1vWgwGGjXrl2RfS/KhVqLWExMDCaTCW9vb6vl3t7eREVFqVRV6aYoCuPGjeOhhx6ibt26apdT6vz444/8/fffHDx4UO1SSrVz584xf/58xo0bx1tvvcWBAwcYM2YMBoOBIUOGqF1eqfHmm28SFxdHrVq10Ol0mEwm3nvvPZ566im1Syu1bn335fS9eOHChSKpQcKQSjQajdVjRVGyLROFY/To0Rw5coTdu3erXUqpExERwSuvvMLGjRuxs7NTu5xSzWw2ExQUxMyZMwFo1KgRx44dY/78+RKGCtGKFStYtmwZ33//PYGBgYSGhjJ27Fh8fX0ZOnSo2uWVamp+L0oYKmKenp7odLpsvUDR0dHZUrG4fy+//DJr1qxh586d+Pn5qV1OqRMcHEx0dDRNmjSxLDOZTOzcuZMvvviCtLQ0dDqdihWWHuXLl6dOnTpWy2rXrs3KlStVqqh0ev3115kwYQJPPvkkAPXq1ePChQvMmjVLwtAD4uPjA2T1EJUvX96yvCi/F2XMUBGztbWlSZMmbNq0yWr5pk2baNWqlUpVlT6KojB69GhWrVrF1q1bqVy5stollUodO3bk6NGjhIaGWm5BQUE8/fTThIaGShAqRK1bt842PcS///5LQECAShWVTsnJyWi11l+NOp1OTq1/gCpXroyPj4/V92J6ejo7duwosu9F6RlSwbhx4xg8eDBBQUG0bNmShQsXEh4ezqhRo9QurdR46aWX+P777/ntt99wdna29MQZjUbs7e1Vrq70cHZ2zjYOy9HREQ8PDxmfVcheffVVWrVqxcyZM+nfvz8HDhxg4cKFLFy4UO3SSpXevXvz3nvvUbFiRQIDAwkJCeHTTz/l2WefVbu0Ei0xMZEzZ85YHp8/f57Q0FDc3d2pWLEiY8eOZebMmVSvXp3q1aszc+ZMHBwcGDhwYNEUWCTnrIls/ve//ykBAQGKra2t0rhxYznlu5ABOd6WLFmidmmlnpxa/+D8/vvvSt26dRWDwaDUqlVLWbhwodollTrx8fHKK6+8olSsWFGxs7NTqlSpokyaNElJS0tTu7QSbdu2bTn+Th46dKiiKFmn10+ZMkXx8fFRDAaD0rZtW+Xo0aNFVp9GURSlaGKXEEIIIUTxI2OGhBBCCFGmSRgSQgghRJkmYUgIIYQQZZqEISGEEEKUaRKGhBBCCFGmSRgSQgghRJkmYUgIIYQQZZqEISEEYWFhaDQaQkND1S7F4uTJk7Ro0QI7OzsaNmyYYxtFUXjuuedwd3cvdvWrafv27Wg0GmJjY3Nts3TpUlxdXYuspjtVqlSJOXPmqLZ/IW4nYUiIYmDYsGFoNBref/99q+WrV68usqs2FzdTpkzB0dGRU6dOsWXLlhzbrF+/nqVLl/LHH38QGRlZaJcAGTZsGI8++mihbKs0kQAjSisJQ0IUE3Z2dnzwwQfcuHFD7VIKTXp6+j2ve/bsWR566CECAgLw8PDItU358uVp1aoVPj4+6PXF63KLJpNJLvApRAkgYUiIYqJTp074+Pgwa9asXNtMnTo12yGjOXPmUKlSJcvjW70aM2fOxNvbG1dXV6ZNm0ZmZiavv/467u7u+Pn5sXjx4mzbP3nyJK1atcLOzo7AwEC2b99u9fzx48fp0aMHTk5OeHt7M3jwYGJiYizPt2/fntGjRzNu3Dg8PT3p3Llzjq/DbDYzffp0/Pz8MBgMNGzYkPXr11ue12g0BAcHM336dDQaDVOnTs22jWHDhvHyyy8THh6ORqOxvAeKovDhhx9SpUoV7O3tadCgAb/88otlPZPJxPDhw6lcuTL29vbUrFmTzz77zOo9/uabb/jtt9/QaDRoNBq2b9+e46Gn0NBQNBoNYWFhwH+Hnv744w/q1KmDwWDgwoULpKen88Ybb1ChQgUcHR1p3ry51Xt74cIFevfujZubG46OjgQGBrJ27doc3zuAZcuWERQUhLOzMz4+PgwcOJDo6Ohs7fbs2UODBg2ws7OjefPmHD16NNdtnj17lkceeQRvb2+cnJxo2rQpmzdvtjzfvn17Lly4wKuvvmp5X27Zu3cvbdu2xd7eHn9/f8aMGUNSUpLl+ejoaHr37o29vT2VK1dm+fLludYhhBokDAlRTOh0OmbOnMncuXO5ePHifW1r69atXL58mZ07d/Lpp58ydepUevXqhZubG3/99RejRo1i1KhRREREWK33+uuvM378eEJCQmjVqhV9+vTh2rVrAERGRtKuXTsaNmzIoUOHWL9+PVeuXKF///5W2/jmm2/Q6/Xs2bOHBQsW5FjfZ599xieffMLHH3/MkSNH6Nq1K3369OH06dOWfQUGBjJ+/HgiIyN57bXXctzGrUAVGRnJwYMHAZg8eTJLlixh/vz5HDt2jFdffZVBgwaxY8cOICuI+fn58dNPP3H8+HHeeecd3nrrLX766ScAXnvtNfr370+3bt2IjIwkMjKSVq1a5fu9T05OZtasWSxatIhjx47h5eXFM888w549e/jxxx85cuQITzzxBN26dbO83pdeeom0tDR27tzJ0aNH+eCDD3Bycsp1H+np6cyYMYPDhw+zevVqzp8/z7Bhw7K1e/311/n44485ePAgXl5e9OnTh4yMjBy3mZiYSI8ePdi8eTMhISF07dqV3r17Ex4eDsCqVavw8/Nj+vTplvcF4OjRo3Tt2pW+ffty5MgRVqxYwe7duxk9erRl28OGDSMsLIytW7fyyy+/MG/evBzDmxCqKbJLwgohcjV06FDlkUceURRFUVq0aKE8++yziqIoyq+//qrc/t90ypQpSoMGDazWnT17thIQEGC1rYCAAMVkMlmW1axZU2nTpo3lcWZmpuLo6Kj88MMPiqIoyvnz5xVAef/99y1tMjIyFD8/P+WDDz5QFEVR3n77baVLly5W+46IiFAA5dSpU4qiZF2xvmHDhnd9vb6+vsp7771ntaxp06bKiy++aHncoEEDZcqUKXlu587XnpiYqNjZ2Sl79+61ajd8+HDlqaeeynU7L774otKvXz/L49t/Hrfcuur2jRs3LMtCQkIUQDl//ryiKIqyZMkSBVBCQ0Mtbc6cOaNoNBrl0qVLVtvr2LGjMnHiREVRFKVevXrK1KlT83yteTlw4IACKAkJCVa1/vjjj5Y2165dU+zt7ZUVK1ZYajUajXlut06dOsrcuXMtjwMCApTZs2dbtRk8eLDy3HPPWS3btWuXotVqlZSUFOXUqVMKoOzfv9/y/IkTJxQg27aEUEvxOsAuhOCDDz7g4YcfZvz48fe8jcDAQLTa/zp+vb29rQYX63Q6PDw8sv113rJlS8t9vV5PUFAQJ06cACA4OJht27bl2GNx9uxZatSoAUBQUFCetcXHx3P58mVat25ttbx169YcPnw4n68wZ8ePHyc1NTXb4bn09HQaNWpkefzll1+yaNEiLly4QEpKCunp6bmesVZQtra21K9f3/L477//RlEUy/tzS1pammUs1JgxY3jhhRfYuHEjnTp1ol+/flbbuFNISAhTp07l/+3cX0iTXxjA8W+JxggLwwUZG4tWc5ItVxQJalfOG4MkiBJERCsaaWLSHzDKBW7l6ELmTRcmBFGR0UpKoaBMcrbVioJtNg2hP5TplXTR/vwuYqPlTPn5o5+w53O1nT2c933PO7aHc57zer1eJicn43VJ4+Pj5OXlxeN+vZ+rVq1Cp9PF7+fvpqenOXfuHPfu3ePjx4+EQiG+f/8enxmajcfj4d27dwlLX9FolEgkwtjYGIFAIP5disnNzf1fd7IJ8TtJhoRYZIqLizGZTJw+fXrG0sfSpUuJRqMJbcmWPdLT0xPeL1myJGnbfIp7Y7UhkUiE8vJybDbbjJg1a9bEXy9fvnzOPn/tNyYajS5451zsenp7e1m7dm3CZ8uWLQPgxo0bNDY2Yrfb2blzJ5mZmVy8eBGXy/XHvmPJ5a/jn2zsFQpFwnVEIhHS0tLweDykpaUlxMYSy9raWkwmE729vfT399PW1obdbufo0aMz+p+enqa0tJTS0lKuXr2KUqlkfHwck8k0r4L12ca4ubmZvr4+2tvb0Wq1KBQK9u7dO2efkUiEQ4cOUV9fP+MztVqN3+//43GFWAwkGRJiEbJarWzZsmXGbIJSqeTz588JicN/+WydoaEhiouLAQiFQng8nnjth9Fo5NatW2g0mgXt2lqxYgU5OTk8ffo0fiz4WYS7ffv2BZ1/rGh5fHyckpKSpDEDAwMUFhZy5MiReFswGEyIycjIIBwOJ7QplUrgZz1TVlYWML+xLygoIBwO8+XLF4qKimaNU6lU8VquU6dOcfny5aTJkM/nY2JiAqvVikqlAsDtdiftc2hoCLVaDcDU1BSBQIDc3NyksQMDA1RXV7Nnzx7gZw1RrDA8Jtm4GI1G3r59i1arTdqvXq8nFArhdrvj99fv9//xGUhC/G1SQC3EIpSfn09lZSUdHR0J7bt27eLr169cuHCBYDCIw+Hg/v37/9lxHQ4Ht2/fxufzYTabmZqaoqamBvhZ5Ds5Ocn+/fsZHh5mdHSU/v5+ampqZvxBzqW5uRmbzcb169fx+/2cPHkSr9dLQ0PDgs4/MzOT48eP09jYSHd3N8FgkJcvX+JwOOju7gZAq9Xidrvp6+sjEAjQ0tISL76O0Wg0vH79Gr/fz8TEBD9+/ECr1aJSqTh79iyBQIDe3l7sdvuc57Rx40YqKyupqqqip6eHsbExnj9/js1mi+8YO3bsGH19fYyNjfHixQsePXqEXq9P2p9arSYjI4OOjg5GR0dxOp1YLJaksa2trTx8+JA3b95QXV1Ndnb2rM9P0mq19PT04PV6efXqFQcOHJgxc6jRaHjy5AkfPnyI7yI8ceIEz549w2w24/V6GRkZwel0xhM5nU5HWVkZdXV1uFwuPB4PtbW1KBSKOcdOiL9FkiEhFimLxTJjSUyv19PZ2YnD4cBgMDA8PJx0p9W/ZbVasdlsGAwGBgYGuHPnDtnZ2QDk5OQwODhIOBzGZDKxadMmGhoaWLlyZUJ90nzU19fT1NREU1MT+fn5PHjwAKfTyYYNGxZ8DRaLhTNnztDW1oZer8dkMnH37l3WrVsHwOHDh6moqGDfvn3s2LGDb9++JcwSAdTV1aHT6di2bRtKpZLBwUHS09O5du0aPp8Pg8GAzWbj/Pnz8zqnrq4uqqqqaGpqQqfTsXv3blwuV3xmJxwOYzab0ev1lJWVodPp6OzsTNqXUqnkypUr3Lx5k7y8PKxWK+3t7UljrVYrDQ0NbN26lU+fPuF0OsnIyEgae+nSJbKysigsLKS8vByTyYTRaEyIaW1t5f3796xfvz4+U7Z582YeP37MyMgIRUVFFBQU0NLSkrB02tXVhUqloqSkhIqKCg4ePMjq1avnNXZC/A1Lor//2gohhBBCpBCZGRJCCCFESpNkSAghhBApTZIhIYQQQqQ0SYaEEEIIkdIkGRJCCCFESpNkSAghhBApTZIhIYQQQqQ0SYaEEEIIkdIkGRJCCCFESpNkSAghhBApTZIhIYQQQqQ0SYaEEEIIkdL+AemN3R0pFA0ZAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAHFCAYAAACze45UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADZlElEQVR4nOzdd1gUV9vA4d8usLSldxQBKwh2Yw2CvbeYaKJGjSWaorHGGluiJmoSNXmNxh5jLIm+JvYOElvUqCFq7IhRsAsI0nbn+8OX/VwpAqKL8tzXNZfuzJmZZ2Znl2fPmTlHpSiKghBCCCGEMCm1qQMQQgghhBCSlAkhhBBCFAmSlAkhhBBCFAGSlAkhhBBCFAGSlAkhhBBCFAGSlAkhhBBCFAGSlAkhhBBCFAGSlAkhhBBCFAGSlAkhhBBCFAGFmpTNmTMHlUpFcHBwtsujo6NRqVTMnDnzidtaunQpKpWK6OjofMexf/9+Jk6cyL1797IsCwsLIywsLN/bfBn4+fnRq1evAq2rUqmYOHFiocbzJH5+fqhUKsNka2tL9erV+fbbb3l8IIrw8HCjso9Or7/+ep73mXndZU7m5uaULFmSd955h6tXr2bZX3h4eGEdbr7l5/yIp5fT9fX49LTXxMSJE1GpVIUTdB4Vhev5acTGxjJu3Djq1q2Lq6sr9vb21KhRg++//x6dTpel/B9//EHz5s2xs7NDq9XSsGFD9u3bl+2209PT+eqrr6hUqRLW1tY4OjpSr1499u/fn68YM//+5WUqyN+9x127do2JEydy/Pjxp95WJlNcm4Vt3LhxtGnThhIlSqBSqfL8N7F79+6oVCratGmT7fJbt27x0Ucf4efnh6WlJR4eHrRs2ZI7d+7kKz7zfJV+gsWLFwNw8uRJDh06RO3atQtz83m2f/9+Jk2aRK9evXB0dDRaNnfuXJPEJAqmfv36hiT+2rVrfPXVVwwcOJCEhATGjBmTpfzUqVNp2LCh0TwXF5d873fJkiUEBATw4MED9u7dy7Rp04iIiCAqKgpbW9uCHcwzkN/zIwruwIEDRq8//fRT9uzZw+7du43mV6xY8an207dvX1q0aPFU28iv6tWrc+DAgaeO3VSOHj3KDz/8QI8ePfjkk0+wsLBgy5YtvPfeexw8eNDwtwng8OHDNGjQgFq1arF8+XIURWH69Ok0btyYPXv2ULduXUNZnU5Hx44d+f333/n444+pV68eSUlJHD16lKSkpHzF6OXlleUaev/994mPj2fFihVZyj6ta9euMWnSJPz8/KhatepTbw9Mc20Wtq+//prKlSvTrl07o+siN5s2bWL9+vXY29tnu/zatWuEhIRgbm7OJ598Qrly5bh16xZ79uwhLS0tfwEqheTw4cMKoLRu3VoBlH79+mUpc+nSJQVQZsyY8cTtLVmyRAGUS5cu5TuWGTNmFHjdl5mvr6/Ss2fPAq0LKBMmTCjUeJ7E19dXad26tdG8+Ph4xcHBQSlVqpTR/D179iiA8vPPPz/VPjOvu8OHDxvN/+STTxRA+fHHH432t2fPnqfa39PIz/l5HpKTkxW9Xv/c91tQer1eSU5OLvD6PXv2VGxtbZ9YLikpqcD7EHlz584dJS0tLcv8Dz74QAGUmJgYw7zmzZsrHh4eRu9LQkKC4urqqtSrV89o/a+//lpRq9XKgQMHnkncoaGhSlBQ0DPZdubf5CVLljyT7b+odDqd4f+2trZP/Jt47949pUSJEspXX32V7XeuoihK+/btlRIlSih37tx56vgKrfly0aJFAHz++efUq1ePVatWkZycnG1ZvV7PlClTKFWqFFZWVtSsWZNdu3Y9cR87duygffv2lCxZEisrK8qWLUv//v25deuWoczEiRMZMWIEAP7+/lmaFLJrvrxz5w7vv/8+JUqUQKPRULp0acaOHUtqaqpROZVKxYcffsjy5csJDAzExsaGKlWqsHHjxifGntk88NNPPzFy5Ei8vLzQarW0bduW69evk5iYyLvvvourqyuurq6888473L9/32gbKSkpjB49Gn9/fzQaDSVKlOCDDz7I0kybnp7Oxx9/jKenJzY2Nrz66qv88ccf2cYVFxdH//79KVmyJBqNBn9/fyZNmkRGRsYTj8kU7O3tKV++PNevX3+u+61Tpw4Aly9fzrFMTk3jvXr1ws/Pz2jed999R5UqVdBqtdjZ2REQEFAoNVs5nZ+0tDQ+++wzAgICsLS0xM3NjXfeeYebN28alUtNTWXYsGGGa6dBgwYcPXo0S9N3ZjPv9u3b6d27N25ubtjY2Bg+M6tXr6Zu3brY2tqi1Wpp3rw5x44dM9rXxYsXefPNN/H29jZU9zdu3NiouWX37t2EhYXh4uKCtbU1pUqVolOnTkbfLfn9/M6bN4/AwEAsLS1ZtmzZ05zuLMLCwggODmbv3r3Uq1cPGxsbevfubTgnzZo1w8vLC2trawIDAxk1alSWGpfsmoj8/Pxo06YNW7dupXr16lhbWxMQEJDnX/pPut4eb758UlPbo3bu3Enjxo2xt7fHxsaG+vXr5+n7vDA5OTlhYWGRZX6tWrUA+Pfffw3z9u3bR1hYGDY2NoZ5dnZ2NGjQgP379xMbG2uYP3v2bBo0aGD4/D8PCQkJDB8+3Oh7fvDgwVmuk59//pnatWvj4OCAjY0NpUuXNlxr4eHhvPLKKwC88847hvctt1tQkpOTDfu1srLC2dmZmjVrsnLlSkOZx6/Nx2/3eHR69LtQURTmzp1L1apVsba2xsnJiddff52LFy8WwhnLH7U6f2nPsGHD8PLyYtCgQdkuj46O5rfffqNfv344OTk9dXyF0nz54MEDVq5cySuvvEJwcDC9e/emb9++/Pzzz/Ts2TNL+W+//RZfX19mzZqFXq9n+vTptGzZkoiICKOq48dduHCBunXr0rdvXxwcHIiOjuarr77i1VdfJSoqCgsLC/r27cudO3f45ptvWLdunaEaOKdq+ZSUFBo2bMiFCxeYNGkSlStXJjIykmnTpnH8+HE2bdpkVH7Tpk0cPnyYyZMno9VqmT59Oh07duTMmTOULl36iedqzJgxNGzYkKVLlxIdHc3w4cN56623MDc3p0qVKqxcuZJjx44xZswY7OzsmDNnDvDwou7QoQO7du1i9OjRhISE8NdffzFhwgQOHDjAgQMHsLS0BKBfv3788MMPDB8+nKZNm/L333/z2muvkZiYaBRLXFwctWrVQq1WM378eMqUKcOBAwf47LPPiI6OZsmSJU88nsfpdLo83c+kVqvz/eEAyMjI4MqVK5QvXz7b5Xq9PktCaW7+9Jf5+fPnAXBzc3vqba1atYr333+fgQMHMnPmTNRqNefPn+fUqVNPve3szo9er6d9+/ZERkYammAuX77MhAkTCAsL48iRI1hbWwMPv8BXr17Nxx9/TKNGjTh16hQdO3YkISEh2/317t2b1q1bs3z5cpKSkrCwsGDq1KmMGzeOd955h3HjxpGWlsaMGTMICQnhjz/+MHwWW7VqhU6nY/r06ZQqVYpbt26xf/9+w4+M6OhoWrduTUhICIsXL8bR0ZGrV6+ydetW0tLSsLGxyffnd/369URGRjJ+/Hg8PT1xd3d/6nP+uNjYWLp3787HH3/M1KlTDdf5uXPnaNWqFYMHD8bW1pZ//vmHL774gj/++CNLE2h2Tpw4wbBhwxg1ahQeHh4sXLiQPn36ULZsWRo0aJDjegW53rJrart58ybdu3enRIkShnk//vgjPXr0oH379ixbtgwLCwvmz59P8+bN2bZtG40bN871mPL648/MzKxA9zLt3r0bc3Nzo89DWlqa4bvyUZnzoqKi8PLy4sqVK0RHR9O2bVvGjBnDokWLuH37NhUqVODjjz/O9m/b00pOTiY0NJR///2XMWPGULlyZU6ePMn48eOJiopi586dqFQqDhw4QJcuXejSpQsTJ07EysqKy5cvG66j6tWrs2TJEsNnsHXr1gCULFkyx30PHTqU5cuX89lnn1GtWjWSkpL4+++/uX37do7rtG7dOst1cuDAAYYOHUpQUJBhXv/+/Vm6dCmDBg3iiy++4M6dO0yePJl69epx4sQJPDw8ctyHoijZ3heYncL4rn/Uzp07+eGHHzh8+DBmZmbZlomMjERRFLy9vXnrrbfYsGEDGRkZ1KlTh2nTpuWa02TrqevaFEX54YcfFECZN2+eoiiKkpiYqGi1WiUkJMSoXGbzpbe3t/LgwQPD/ISEBMXZ2Vlp0qSJYd6Tmi/1er2Snp6uXL58WQGUX3/91bAst+bL0NBQJTQ01PB63rx5CqCsWbPGqNwXX3yhAMr27dsN8wDFw8NDSUhIMMyLi4tT1Gq1Mm3atJxPkPL/zV1t27Y1mj948GAFUAYNGmQ0v0OHDoqzs7Ph9datWxVAmT59ulG51atXK4Dy/fffK4qiKKdPn1YAZciQIUblVqxYoQBGVbX9+/dXtFqtcvnyZaOyM2fOVADl5MmTRseel+ZLX19fBXjilNdttWrVSklPTze81/369VMsLCyUjRs3GpXNPL/ZTefOnXvivjJlXncHDx5U0tPTlcTERGXjxo2Km5ubYmdnp8TFxRnt79Hmy8evrUw9e/ZUfH19Da8//PBDxdHRMc8x5SSv52flypUKoKxdu9Zo/czmjblz5yqKoignT55UAGXkyJFG5TLXf/TayTxPPXr0MCobExOjmJubKwMHDjSan5iYqHh6eiqdO3dWFEVRbt26pQDKrFmzcjy+X375RQGU48eP51gmv59fBweHQmliUJTsmy9DQ0MVQNm1a1eu62Z+f0VERCiAcuLECcOyCRMmKI9/Nfv6+ipWVlZGn9UHDx4ozs7OSv/+/XPdV16utyc1xyclJSm1atVSvLy8lOjoaMM8Z2fnLN9pOp1OqVKlilKrVq1c96koSp6+KyhgE9y2bdsUtVqd5buwatWqSvny5Y2asdLT05XSpUsrgPLTTz8piqIoBw4cUADF3t5eqVixorJmzRpl27Ztyuuvv270nfs0Hm++nDZtmqJWq7PcPpH5Wdi8ebOiKP//HX3v3r0ct53f5svg4GClQ4cOuZbJ7tp81D///KO4uLgoDRs2VFJTUxVF+f/z+OWXXxqVvXLlimJtba18/PHHue4zt+/2x6f83rKUW/NlYmKi4ufnp4wePdowL7vmy2nTphmuk/bt2ytbt25V1q5dq1SuXFmxsrIy+mznRaE0Xy5atAhra2vefPNNALRaLW+88QaRkZGcO3cuS/nXXnsNKysrw2s7Ozvatm3L3r17c82Ib9y4wYABA/Dx8cHc3BwLCwt8fX0BOH36dIFi3717N7a2tlme0Mtsqnm8Gr5hw4bY2dkZXnt4eODu7p5rs9ajHn9yIzAwEMDwS+bR+Xfu3DE0YWb+Anr8SZE33ngDW1tbQ5x79uwBoFu3bkblOnfunOVXxMaNG2nYsCHe3t5kZGQYppYtWwIQERGRp2N61IYNGzh8+PATp3fffTdP29u8eTMWFhaG93rBggV88803Wc5Xpi+++CLLvnx8fPJ9HHXq1MHCwgI7OzvatGmDp6cnW7ZsyfUXXV7VqlWLe/fu8dZbb/Hrr78aNb/nV17Oz8aNG3F0dKRt27ZG73PVqlXx9PQ0NFllvt+dO3c22sfrr7+e4y/QTp06Gb3etm0bGRkZ9OjRw2hfVlZWhIaGGvbl7OxMmTJlmDFjBl999RXHjh1Dr9cbbatq1apoNBreffddli1blm1TR34/v40aNSqUJobcODk50ahRoyzzL168SNeuXfH09MTMzAwLCwtCQ0OBvH1/Va1alVKlShleW1lZUb58+Sd+9zzt9abT6ejSpQunT59m8+bNhu/c/fv3c+fOHXr27Gn0Xuv1elq0aMHhw4efeDN8Xr4rDh8+TNu2bfMV859//knnzp0NtRWPGjhwIGfPnuXDDz/k6tWrXLlyhQEDBhjOY2bNZub1mJKSwubNm3njjTdo1qwZa9asoXr16kyePDlfMeXFxo0bCQ4OpmrVqkbntHnz5kbNy5lNk507d2bNmjVGT4YXVK1atdiyZQujRo0iPDycBw8e5Gv9uLg4WrRogZeXF//973/RaDSGY1KpVHTv3t3omDw9PalSpcoTn/itUaNGnq8Tb2/vgh5+FqNGjcLCwoLx48fnWi7zOilZsiRr166lefPmvPbaa2zduhW1Ws306dPztd+nrus7f/48e/fupVOnTiiKYmh6eP3111myZAmLFy/O8qHw9PTMsh1PT0/S0tK4f/8+Dg4OWZbr9XqaNWvGtWvX+OSTT6hUqRK2trbo9Xrq1KmT7wso0+3bt/H09MxSNe7u7o65uXmWqtvsnuSztLTM8/6dnZ2NXmdeuDnNT0lJQavVcvv2bczNzbM0n6lUKjw9PQ1xZv77+Dk2NzfPEvv169fZsGFDtvdiAAVKFipWrJjn5su8ePXVV/n666/R6XScO3eOTz75hA8//JCgoCBeffXVLOVLly5NzZo18x3343744QcCAwMxNzfHw8OjUJ6GyvT222+TkZHBggUL6NSpE3q9nldeeYXPPvuMpk2b5mtbeTk/169f5969e4Zr6nGZ73PmtfN44pndtZPp8fOSeS9b5h+Nx2W+7yqVil27djF58mSmT5/OsGHDcHZ2plu3bkyZMgU7OzvKlCnDzp07mT59Oh988AFJSUmULl2aQYMG8dFHHxlizs/ntzDfx5xkt4/79+8TEhKClZUVn332GeXLl8fGxoYrV67w2muv5en7o6DfPU97vQ0YMICtW7eyadMmo6f4Mt/r3LqcuXPnTq5PK+f1qcCcmo6yc+zYMZo2bUq5cuXYvHlzlqbK3r17c/PmTT777DO+++47AOrWrcvw4cP54osvDM2zmec7ICDAkIjCw2u3efPmTJs2jRs3bhRqE/j169c5f/78E7+TGzRowPr165kzZw49evQgNTWVoKAgxo4dy1tvvVWgfc+ZM4eSJUuyevVqvvjiC6ysrGjevDkzZsygXLlyua6bmJhIq1atSE9PZ8uWLUZ/w69fv46iKDn+oH3SbT9arTbP10lhNV/+8ccfzJ07l3Xr1pGSkkJKSgrw/7fH3Lt3D2traywtLQ3XSZMmTYyuUy8vL6pUqcKff/6Zr30/9REsXrwYRVH45Zdf+OWXX7IsX7ZsGZ999plRsHFxcVnKxcXFodFo0Gq12e7n77//5sSJEyxdutSoLT/zXp+CcnFx4dChQyiKYvTFfuPGDTIyMnB1dX2q7RcWFxcXMjIyuHnzplFipigKcXFxhj+CmRdIXFyc0b0fGRkZWf5Aubq6UrlyZaZMmZLtPgvyq6NMmTJ5qjWcMGFCnvo9c3BwMCRZtWvXpnbt2lSpUoX333+f48ePF+i+tLwIDAzMd3JnZWVFfHx8lvnZJbfvvPMO77zzDklJSezdu5cJEybQpk0bzp49a/QH4Enycn5cXV1xcXFh69at2W4js+Y389q5fv36E6+dTI8nQ5mfl19++eWJx+Hr62t4QOjs2bOsWbOGiRMnkpaWxrx58wAICQkhJCQEnU7HkSNH+Oabbxg8eDAeHh68+eab+f78Po8+lrLbx+7du7l27Rrh4eGG2jEg274Un4WCXm8TJ05k4cKFLFmyhGbNmhktyzy333zzTY43wj+pZjmn5ONxS5YsyVN/UseOHaNJkyb4+vqyffv2bH/gA4wcOZLBgwdz7tw57Ozs8PX1pX///tja2lKjRg3g4XfZow8DPCrzh2dhf/+4urpibW2d4wMcj17P7du3p3379qSmpnLw4EGmTZtG165d8fPzy/99TICtrS2TJk1i0qRJXL9+3VBr1rZtW/75558c10tPT6dTp05cuHCByMjILPetubq6olKpiIyMzPVevpxERERk6eYoJ5cuXcryUFVBnDp1CkVR6NixY5ZlV65cwcnJia+//prBgwdTuXLlHLejKEq+r5GnSsp0Oh3Lli2jTJkyLFy4MMvyjRs38uWXX7JlyxajZrt169YxY8YMQxNmYmIiGzZsICQkJMdfRJlfdI+/gfPnz89SNrNMXn59Nm7cmDVr1rB+/XqjN+CHH34wLC8KGjduzPTp0/nxxx8ZMmSIYf7atWtJSkoyxJn5xMuKFSsMXy4Aa9asyXJTbZs2bdi8eTNlypQptCadDRs2ZHnqLTsFrWYuV64cH3/8MZMmTWL16tUF/lX4LPj5+fHzzz+TmppquAZv377N/v37c+zfxtbWlpYtW5KWlkaHDh04efJkvpKyx2V3ftq0acOqVavQ6XS59h2YebP46tWrqV69umH+L7/8kucbsps3b465uTkXLlzI0rSZm/LlyzNu3DjWrl2b7S9LMzMzateuTUBAACtWrODPP//kzTfffGE+v/n5/nqW8nO9LVq0iEmTJjF58uRsE6L69evj6OjIqVOn+PDDDwsUz+HDh/NUzt/f/4lljh8/TpMmTShZsiQ7dux44neapaWloaPzmJgYVq9eTb9+/QwPvZibm9O+fXt++eUXoqOjDX/sFUVh69atlClTptB/tLdp04apU6fi4uKSp2POPI7Q0FAcHR3Ztm0bx44do27duvn6O/g4Dw8PevXqxYkTJ5g1axbJyck5Jqh9+vQhPDycLVu2ZJugtGnThs8//5yrV69muTUiLzKbL/OisJovW7RoYbgV6FFvvvkm/v7+TJs2jbJlywIPfwyXLFmS7du3o9PpDDnMtWvXOHHiBF27ds3Xvp8qKduyZQvXrl3jiy++yLYrgODgYL799lsWLVpklJSZmZnRtGlThg4dil6v54svviAhIYFJkybluK+AgADKlCnDqFGjUBQFZ2dnNmzYwI4dO7KUrVSpEvDwceaePXtiYWFBhQoVjO4Fy9SjRw/+85//0LNnT6Kjo6lUqRK///47U6dOpVWrVjRp0qQAZ6bwNW3alObNmzNy5EgSEhKoX7++4enLatWq8fbbbwMPa3i6d+/OrFmzsLCwoEmTJvz999/MnDkzS2IwefJkduzYQb169Rg0aBAVKlQgJSWF6OhoNm/ezLx583J9Wic7mef+WRo+fDjz5s1j0qRJdO7cOV9NG8/S22+/zfz58+nevTv9+vXj9u3bTJ8+Pct5z/zir1+/Pl5eXsTFxTFt2jQcHBxybPbLj8fPz5tvvsmKFSto1aoVH330EbVq1cLCwoJ///2XPXv20L59ezp27EhQUBBvvfUWX375JWZmZjRq1IiTJ0/y5Zdf4uDgkKdffH5+fkyePJmxY8dy8eJFWrRogZOTE9evX+ePP/4w/Br/66+/+PDDD3njjTcoV64cGo2G3bt389dffzFq1CgA5s2bx+7du2ndujWlSpUiJSXFUIOQ+bksrM9vr169WLZsWaH90n5cvXr1cHJyYsCAAUyYMAELCwtWrFjBiRMnCn1fjyvI9XbgwAEGDBhA/fr1adq0KQcPHjRaXqdOHbRaLd988w09e/bkzp07vP7667i7u3Pz5k1OnDjBzZs3Dc2DOSmMWw0Azpw5Y3ivp0yZwrlz54zuZy5TpoyhheHvv/9m7dq11KxZE0tLS06cOMHnn39OuXLl+PTTT422++mnn7JlyxZatGjBxIkTsbe3Z+HChZw4cYI1a9YYlQ0LCyMiIuKpRtMYPHgwa9eupUGDBgwZMoTKlSuj1+uJiYlh+/btDBs2jNq1azN+/Hj+/fdfGjduTMmSJbl37x6zZ882uk+xTJkyWFtbs2LFCgIDA9FqtXh7e+eYuNSuXZs2bdpQuXJlnJycOH36NMuXL6du3bo5JmQzZsxg+fLlDBw4EFtbW6PrxN7enooVK1K/fn3effdd3nnnHY4cOUKDBg2wtbUlNjaW33//nUqVKvHee+/leE7s7OwK7TqBhzVvmV0B6XQ6Ll++bGjlCw0Nxc3NDU9Pz2xvs7KyssLFxcUo31Gr1Xz99dd07tyZ9u3b895775GUlMSnn36KRqNh9OjR+QswX48FPKZDhw6KRqNRbty4kWOZN998UzE3N1fi4uIMT19+8cUXyqRJk5SSJUsqGo1GqVatmrJt2zaj9bJ7+vLUqVNK06ZNFTs7O8XJyUl54403lJiYmGyf5hs9erTi7e2tqNVqo6eKsntC7vbt28qAAQMULy8vxdzcXPH19VVGjx6tpKSkGJUDlA8++CDLMealU9acOjfNqbPSzKdcbt68aZj34MEDZeTIkYqvr69iYWGheHl5Ke+9955y9+5do3VTU1OVYcOGKe7u7oqVlZVSp04d5cCBA9nGefPmTWXQoEGKv7+/YmFhoTg7Oys1atRQxo4dq9y/f9/o2ItC57GZ/vOf/yiAsmzZMkVRnn3nsY/L6Wm1ZcuWKYGBgYqVlZVSsWJFZfXq1Vmevly2bJnSsGFDxcPDQ9FoNIq3t7fSuXNn5a+//spXrPk5P+np6crMmTOVKlWqKFZWVopWq1UCAgKU/v37Gz2dmpKSogwdOjTLtePg4GD0FNuTztP69euVhg0bKvb29oqlpaXi6+urvP7668rOnTsVRVGU69evK7169VICAgIUW1tbRavVKpUrV1a+/vprJSMjQ1GUh09tdezYUfH19VUsLS0VFxcXJTQ0VPntt9+M9vW0n19FUZROnTop1tbWWT5Lucnp6cucOgPdv3+/UrduXcXGxkZxc3NT+vbtq/z5559ZnpDL6enL7N7rnJ74fVRerrfHr+fM9zen6VERERFK69atFWdnZ8XCwkIpUaKE0rp166f+LObHk+J99PyeOXNGadCggeLs7KxoNBqlbNmyyrhx44y+7x4VFRWltG7dWrGzszN8JjZs2JClXI0aNRRPT898xZ3d9XL//n1l3LhxSoUKFRSNRqM4ODgolSpVUoYMGWJ4+nvjxo1Ky5YtlRIlSigajUZxd3dXWrVqpURGRhpta+XKlUpAQIBiYWHxxO/wUaNGKTVr1lScnJwUS0tLpXTp0sqQIUOUW7duGco8fm327Nkzx3P++HW5ePFipXbt2oqtra1ibW2tlClTRunRo4dy5MiRfJ2zp5X5hHR205M6A8/tO3f9+vXKK6+8olhZWSkODg5Ku3btjHowyCuVosggeUKInO3fv5/69euzYsWKfFfFvyg8PT15++23mTFjhqlDES+gxMREnJ2dmTVrFh988IGpwxEvMEnKhBAGO3bs4MCBA9SoUQNra2tD046DgwN//fWXUVc2L4uTJ09St25dLl68WGQe7BEvlk2bNvHBBx9w9uzZHJ9yFiIvJCkTxYJer8/SD9bjCrs36IJ60k31BR0NIS8OHTrEsGHDOHXqFImJibi6uhoe/38e3UkIIURxJkmZKBYmTpyY64MkUHiPUz+tJ3Xb0LNnT5YuXfp8ghFCCPHcSFImioVr165x7dq1XMtUrly5SDQ9HDlyJNflrq6uRSJ5FEIIUbgkKRNCCCGEKAKezY0pQgghhBAiX4rGnc3PkV6v59q1a9jZ2T2XIVeEEEII8fQURSExMRFvb+9n9rCTqRW7pOzatWv4+PiYOgwhhBBCFMCVK1fyPdrMi6LYJWWZQy1duXIlx/EIhRBCCFG0JCQk4OPjk+2QiS+LYpeUZTZZ2tvbS1ImhBBCvGBe5luPXs5GWSGEEEKIF4wkZUIIIYQQRYAkZUIIIYQQRUCxu6dMCCFMTafTkZ6ebuowhChyNBrNS9vdRV5IUiaEEM+JoijExcVx7949U4ciRJGkVqvx9/cvEkPemYIkZUII8ZxkJmTu7u7Y2Ni81E+RCZFfmZ27x8bGUqpUqWL5+ZCkTAghngOdTmdIyFxcXEwdjhBFkpubG9euXSMjIwMLCwtTh/PcFd+GWyGEeI4y7yGzsbExcSRCFF2ZzZY6nc7EkZiGJGVCCPEcFccmGSHyqrh/PiQpE0IIIYQoAiQpE0II8cLp1asXHTp0yLVMeHg4KpVKnnYVLwxJyoQQQuQqtwTIz88PlUplNJUsWdJo+axZswo9ptmzZ7N06VLD67CwMAYPHlzo+zG1Xr16Gc6rubk5pUqV4r333uPu3btG5Z70PogXgyRlhejSpXNsXrvc1GEIIcRzNXnyZGJjYw3TsWPHnvk+HRwccHR0fOb7eZSpOvxt0aIFsbGxREdHs3DhQjZs2MD777+fpZwp3gdRuCQpKyTbVvyIbtIWSuyG+Lvxpg5HCCGeGzs7Ozw9PQ2Tm5tbvrcxbNgw2rZta3g9a9YsVCoVmzZtMsyrUKEC8+fPB4xr73r16kVERASzZ8821BJFR0cb1jt69Cg1a9bExsaGevXqcebMmTzFNHHiRKpWrcrixYspXbo0lpaWKIrC1q1befXVV3F0dMTFxYU2bdpw4cIFw3qdOnVi4MCBhteDBw9GpVJx8uRJADIyMrCzs2Pbtm15isPS0hJPT09KlixJs2bN6NKlC9u3b89SrjDeB2FakpQVkpr1G3OyhD0bXaNZ++k8U4cjhHgBKIpCclqGSSZFUUx9+EbCwsKIjIxEr9cDEBERgaurKxEREcDDjnfPnj1LaGholnVnz55N3bp16devn6GWyMfHx7B87NixfPnllxw5cgRzc3N69+6d57jOnz/PmjVrWLt2LcePHwcgKSmJoUOHcvjwYXbt2oVaraZjx46G2MPCwggPDzds4/FjOXz4MCkpKdSvXz9f5wjg4sWLbN26tVj24VUcSOexhcTFz4vrupukW+hItlaRcC8ee0cHU4clhCjCHqTrqDg+b7Ulhe3U5ObYaArnT8DIkSMZN26c4fXUqVMZNGhQvrbRoEEDEhMTOXbsGNWrVycyMpLhw4ezbt06APbs2YOHhwcBAQFZ1nVwcECj0WBjY4Onp2eW5VOmTDEkc6NGjaJ169akpKRgZWX1xLjS0tJYvny5Ua1Tp06djMosWrQId3d3Tp06RXBwMGFhYXz00UfcunULMzMzTp48yYQJEwgPD+f9998nPDycGjVqoNVq83RuNm7ciFarRafTkZKSAsBXX32VpVxhvA/CtKSmrBDVbRWKSlFxyyKZnyf/x9ThCCHEczFixAiOHz9umHr06JHvbTg4OFC1alXCw8OJiopCrVbTv39/Tpw4QWJiIuHh4dnWkuVF5cqVDf/38vIC4MaNG3la19fXN0sz4IULF+jatSulS5fG3t4ef39/AGJiYgAIDg7GxcWFiIgIIiMjqVKlCu3atTPUlOX3WBo2bMjx48c5dOgQAwcOpHnz5kbNo5kK430QpiU1ZYWoUoNaHNiyl2uW93lgbU78nXs4ODuaOiwhRBFlbWHGqcnNTbbvwuLq6krZsmWfejuZzX4ajYbQ0FCcnJwICgpi3759hIeHF/jpykeb+jI7J81sanwSW1vbLPPatm2Lj48PCxYswNvbG71eT3BwMGlpaYZ9NGjQwHAsYWFhBAcHo9PpiIqKYv/+/fk6FltbW8P5nTNnDg0bNmTSpEl8+umnRuUK630QpiM1ZYWsdosGhtqytZO/NXU4QogiTKVSYaMxN8lUFHtOz7yvbPfu3YSFhQEQGhrKqlWrcryfLJNGo3kuQ/Pcvn2b06dPM27cOBo3bkxgYGCW7ing/xPM8PBwwsLCUKlUhISEMHPmTB48eFCg+8kyTZgwgZkzZ3Lt2rWnORRRBElSVsiqhNbCK+3hL6tkWwsSbmf9sAohxIsmPj7eqGns+PHjhua6wpJ5X9mGDRsMSVlYWBg//vgjbm5uVKxYMcd1/fz8OHToENHR0dy6dSvPNWH55eTkhIuLC99//z3nz59n9+7dDB06NEu5sLAwTp48SVRUFCEhIYZ5K1asoHr16tjb2xc4hrCwMIKCgpg6dWqBtyGKJknKnoFazV5Fpai4bZ7Cb599aepwhBDiqYWHh1OtWjWjafz48YW6DwcHB6pVq4azs7MhAQsJCUGv1z/xHqzhw4djZmZGxYoVcXNzK/SEMZNarWbVqlUcPXqU4OBghgwZwowZM7KUCw4OxtXVlSpVqhgSsNDQUHQ6XYHvjXvU0KFDWbBgAVeuXHnqbYmiQ6UUteein7GEhAQcHByIj49/ql8qT/Lz6G8Jpjzmsf/g9VVPtM7yJKYQxVlKSgqXLl3C398/T0/9CVEc5fY5eV5/v01JasqekQZ9O6DVW2LtWY1dU74wdThCCCGEKOIkKXtGPMqU5Ir5ZQDcHpQh/sYtE0ckhBCms2LFCrRabbZTUFCQSWIKCgrKMaYVK1Y88/3HxMTkuH+tVvvMmmBF0SVdYjxDPt1fZfdPW7nofoMzn33DO3MmmTokIYQwiXbt2lG7du1sl5mqd/rNmzfnOJ6lh4fHM9+/t7e3YZSAnJaL4kWSsmfIJ7A0qboUMIMkrTX34m7i6CljkQkhih87Ozvs7OxMHYYRX19fk+7f3Nxc+hUTRqT58hmrGlr7Yb9lmhT++9lsU4cjhBBCiCJKkrJn7JXm9fFOf/jr8L69lnuxeRvaQwghhBDFiyRlz0HlBrUe9lsmtWVCCCGEyIEkZc9B7Rav4p3+sE+V+/Za7l6NNXFEQgghhChqJCl7ToLr10ClqEjS6Nn9adben4UQQghRvElS9pzUbd2A6hledEmtT5V4N+7EyECyQghRUL169aJDhw65lgkPD0elUnHv3r3nEpMQT0uSsuco+K1QLDDD0qcuB6ZIbZkQ4sWQWwLk5+eHSqUymkqWLGm0fNasWYUe0+zZs1m6dKnhdVhYGIMHDy70/RQFcXFxDBw4kNKlS2NpaYmPjw9t27Zl165dpKWl4erqymeffZbtutOmTcPV1ZW0tLRc97F06VKj99DDw4O2bdty8uRJo3K9evXK8n6rVCrOnz9faMdbnElS9hz5B1fgisUVUKsxNy/D7YuXTR2SEEI8tcmTJxMbG2uYjh079sz36eDggKOj4zPfz6Ny6mj2WYqOjqZGjRrs3r2b6dOnExUVxdatW2nYsCEffPABGo2G7t27s3TpUrIbynrJkiW8/fbbaDSaJ+7L3t6e2NhYrl27xqZNm0hKSqJ169ZZEroWLVoYvd+xsbH4+/sX2jEXZ5KUPWfaZhVZr/mDA2632PDFHFOHI4QQT83Ozg5PT0/D5OaW/06yhw0bRtu2bQ2vZ82ahUqlYtOmTYZ5FSpUYP78+YBx7V2vXr2IiIhg9uzZhpqb6Ohow3pHjx6lZs2a2NjYUK9ePc6cOZOnmCZOnEjVqlVZvHixoZZKURS2bt3Kq6++iqOjIy4uLrRp04YLFy4Y1uvUqRMDBw40vB48eDAqlcpQ65SRkYGdnR3btm17Ygzvv/8+KpWKP/74g9dff53y5csTFBTE0KFDOXjwIAB9+vThwoUL7N2712jdyMhIzp07R58+ffJ0vCqVCk9PT7y8vKhZsyZDhgzh8uXLWc6XpaWl0fvt6emJmZlZnvYhcidJ2XNWKaQq1rqHQ4okOrtw8+xFE0ckhDAZRYG0JNNM2dSqmFJYWBiRkZHo9XoAIiIicHV1JSIiAnjYhHf27FlCQ0OzrDt79mzq1q1Lv379DDU3Pj4+huVjx47lyy+/5MiRI5ibm9O7d+88x3X+/HnWrFnD2rVrDUMiJSUlMXToUA4fPsyuXbtQq9V07NjREHtYWBjh4eGGbTx+LIcPHyYlJYX69evnuu87d+6wdetWPvjgA2xtbbMsz6wprFSpEq+88gpLliwxWr548WJq1apFcHBwno8307179/jpp58A0w2DVRzJMEsmUK56EFf/+p3blmlsmvENvRZ8beqQhBCmkJ4MU000vuGYa6DJ+oe+IEaOHMm4ceMMr6dOncqgQYPytY0GDRqQmJjIsWPHqF69OpGRkQwfPpx169YBsGfPHjw8PAgICMiyroODAxqNBhsbGzw9PbMsnzJliiGZGzVqFK1btyYlJQUrK6snxpWWlsby5cuNav86depkVGbRokW4u7tz6tQpgoODCQsL46OPPuLWrVuYmZlx8uRJJkyYQHh4OO+//z7h4eHUqFEDrVab677Pnz+PoijZHvPjevfuzfDhw/n222/RarXcv3+fn3/+ma+++uqJ62aKj49Hq9WiKArJycnAwzFLH9//xo0bjWJv2bIlP//8c573I3ImNWUmENqpCSUynABIdHHlxmm5QVII8eIaMWIEx48fN0w9evTI9zYcHByoWrUq4eHhREVFoVar6d+/PydOnCAxMZHw8PBsa8nyonLlyob/e3l5AXDjRt5GV/H19c3SHHvhwgW6du1K6dKlsbe3N9xPFRMTA0BwcDAuLi5EREQQGRlJlSpVaNeunaGmLK/HknmPmEqlemLZt956C71ez+rVqwFYvXo1iqLw5ptv5uk44WEz9PHjxzl69Cjz5s2jTJkyzJs3L0u5hg0bGr3fc+bIrTiFRWrKTKRMlUCuntzPbat0Nn85h14L5aIWotixsHlYY2WqfRcSV1fXQhlYO7PZT6PREBoaipOTE0FBQezbt4/w8PACP135aPNbZoKT2dT4JNk1G7Zt2xYfHx8WLFiAt7c3er2e4OBgww3xKpWKBg0aGI4lLCyM4OBgdDodUVFR7N+/P0/HUq5cOVQqFadPn35i9x8ODg68/vrrLFmyhD59+rBkyRJef/117O3t83ScAGq12vA+BgQEEBcXR5cuXbLcq2ZraysDqT8jUlNmImFvNP3/2jJXD+JO5u3GUyHES0SletiEaIopD7Uvz1vmfWW7d+8mLCwMgNDQUFatWpXj/WSZNBoNOp3umcd4+/ZtTp8+zbhx42jcuDGBgYHcvXs3S7nMBDM8PJywsDBUKhUhISHMnDmTBw8ePPF+MgBnZ2eaN2/Of/7zH5KSkrIsf7z/tT59+rBv3z42btzIvn378nyDf06GDBnCiRMn+O9///tU2xF5J0mZiahUKvyDA1ApoLKw4o9peW/3F0KI5y0+Pt6oyer48eOG5rrCknlf2YYNGwxJWVhYGD/++CNubm5UrFgxx3X9/Pw4dOgQ0dHR3Lp1K881Yfnl5OSEi4sL33//PefPn2f37t0MHTo0S7mwsDBOnjxJVFQUISEhhnkrVqygevXqea7Bmjt3Ljqdjlq1arF27VrOnTvH6dOnmTNnDnXr1jUqGxoaStmyZenRowdly5alQYMGT3Ws9vb29O3blwkTJmTb3YYofJKUmVCjN5tRP6M07dNfoeIDN+KiTps6JCGEyFZ4eDjVqlUzmsaPH1+o+3BwcKBatWo4OzsbErCQkBD0ev0T78EaPnw4ZmZmVKxYETc3t0JPGDOp1WpWrVrF0aNHCQ4OZsiQIcyYkbUz8ODgYFxdXalSpYohAQsNDUWn0+Xr3jh/f3/+/PNPGjZsyLBhwwgODqZp06bs2rWL7777Lkv53r17c/fu3Xw9YZqbjz76iNOnT8uN/M+JSilm6W9CQgIODg7Ex8fnq639WfnrwCGcf01DyUjl9LU1NPvpe1OHJIR4BlJSUrh06RL+/v55eupPiOIot89JUfv7/SxITZmJVapTi2sWcaSbm3HfuRxXj0aZOiQhhBBCmIAkZSamUql4UMmVNZb7+cs1iZ1zvjV1SEIIUehWrFiBVqvNdgoKCjJJTEFBQTnGtGLFime+/5iYmBz3r9VqC7UJ1tTHKvJGusQoAl7t1IDzJ6K4YnGHeK+S/PvHn5SsVd3UYQkhRKFp164dtWvXznaZqXqM37x5c47jWXp4eDzz/Xt7extGCchpeWEx9bGKvJGkrAgwMzPDq7Q/V2LucMdKx+5v59HjB7m3TAjx8rCzs8POzs7UYRjx9fU16f7Nzc2fW39fpj5WkTfSfFlENO/ZCp8MFwDueflw5cBhE0ckhBBCiOdJkrIiwszcDE/fUqDAHWsde/6T9VFnIYQQQry8JCkrQlq80+b/a8tK+HE5Yr+JIxJCCCHE8yJJWRFiZmGGu09JVIoKR3MX/vlKnsQUQgghigtJyoqYln3a0lQXSCNdZcoqnlwOl9oyIYQQojiQpKyIMbcwhxBHADRlm3Jh5hzTBiSEEEVQr1696NChQ65lwsPDUalUWQbuFqKokqSsCKrVqBE3ze8Qb6niqn8QF7fvMXVIQohiLLcEyM/PD5VKZTSVLFnSaPmsWbMKPabZs2ezdOlSw+uwsDAGDx5c6PspCq5cuUKfPn3w9vZGo9Hg6+vLRx99xO3bt7OUPXnyJJ07d8bNzQ1LS0vKlSvHJ598QnJyslG5R983MzMzvL296dOnD3fv3s1TTJkJb+bk4uJCo0aN2Ldvn1G5iRMnZrk+VCoVO3fuLPgJeYlJUlYEmVuYE+ulZq3mEBdcdOxbvIhiNkSpEOIFMnnyZGJjYw3TsWPHnvk+HRwccHR0fOb7eVROna8+SxcvXqRmzZqcPXuWlStXcv78eebNm8euXbuoW7cud+7cMZQ9ePAgtWvXJi0tjU2bNnH27FmmTp3KsmXLaNq0KWlpaUbbznzfYmJiWLFiBXv37mXQoEH5iu/MmTPExsYSHh6Om5sbrVu35saNG0ZlgoKCjK6P2NhYGjRoUPCT8hIzeVI2d+5cw8CjNWrUIDIyMk/r7du3D3Nzc6pWrfpsAzSRhu80xUf38EnMO6XKcnHLLhNHJIQQ2bOzs8PT09Mwubm55Xsbw4YNo23btobXs2bNQqVSsWnTJsO8ChUqMH/+fMC49q5Xr15EREQwe/ZsQ01MdHS0Yb2jR49Ss2ZNbGxsqFevHmfOnMlTTBMnTqRq1aosXryY0qVLY2lpiaIobN26lVdffRVHR0dcXFxo06YNFy5cMKzXqVMnBg4caHg9ePBgVCoVJ0+eBCAjIwM7Ozu2bdv2xBg++OADNBoN27dvJzQ0lFKlStGyZUt27tzJ1atXGTt2LACKotCnTx8CAwNZt24dtWrVwtfXlzfeeIMNGzZw4MABvv76a6NtZ75vJUqUoGHDhvTo0YM///wzT+cmk7u7O56enlSqVIlx48YRHx/PoUOHjMqYm5sbXR+enp5oNJp87ae4MGlStnr1agYPHszYsWM5duwYISEhtGzZ8onjfcXHx9OjRw8aN278nCJ9/qxtrHB29QIF7trAgaVSWybEy0ZRFJLTk00yFbXvk7CwMCIjI9Hr9QBERETg6upKREQEAHFxcZw9e5bQ0NAs686ePZu6devSr18/Q02Mj4+PYfnYsWP58ssvOXLkCObm5vTu3TvPcZ0/f541a9awdu1aw5BISUlJDB06lMOHD7Nr1y7UajUdO3Y0xB4WFkZ4eLhhG48fy+HDh0lJSaF+/fq57vvOnTts27aN999/H2tra6Nlnp6edOvWjdWrV6MoCsePH+fUqVMMHToUtdr4T3uVKlVo0qQJK1euzHFfV69eZePGjTkOhfUkycnJLFmyBDDdsFkvA5MOs/TVV1/Rp08f+vbtCzz8ZbRt2za+++47pk2bluN6/fv3p2vXrpiZmbF+/frnFO3z16xvS+58HkuM+S1u+1Xg/IatlGvX0tRhCSEKyYOMB9T+qWB/BJ/Woa6HsLGwKZRtjRw5knHjxhleT506Nd/NYA0aNCAxMZFjx45RvXp1IiMjGT58OOvWrQNgz549eHh4EBAQkGVdBwcHNBoNNjY2eHp6Zlk+ZcoUQzI3atQoWrduTUpKClZWVk+MKy0tjeXLlxvV/nXq1MmozKJFi3B3d+fUqVMEBwcTFhbGRx99xK1btzAzM+PkyZNMmDCB8PBw3n//fcLDw6lRowZarTbXfZ87dw5FUQgMDMx2eWBgIHfv3uXmzZucPXvWMC+nsr///rvRvMz3TafTkZKSQu3atfnqq6+eeE4elXn/YHLyw0S/Ro0aWSpMoqKijI61YsWK/PHHH/naT3FhspqytLQ0jh49SrNmzYzmN2vWjP37c+4GYsmSJVy4cIEJEyY86xBNzkZrg5Ozp6G27NAPS4rcr1shhBgxYgTHjx83TD169Mj3NhwcHKhatSrh4eFERUWhVqvp378/J06cIDExkfDw8GxryfKicuXKhv97eXkBZLnvKSe+vr5ZmmMvXLhA165dKV26NPb29vj7+wMYWnmCg4NxcXEhIiKCyMhIqlSpQrt27Qw1ZU9zLI/K/HugUqnyVPbxcpnv219//cWuXQ9vkWndujU6nS7PMURGRvLnn3+ycuVKfH19Wbp0aZaasgoVKhhdH2vXrs3z9osbk9WU3bp1C51Ol2V0eg8PD+Li4rJd59y5c4waNYrIyEjMzfMWempqKqmpqYbXCQkJBQ/aBJr0a8HdL2KJMb/N7dKBnF23kQqd2j55RSFEkWdtbs2hroeeXPAZ7buwuLq6FsrA2pnNfhqNhtDQUJycnAgKCmLfvn2Eh4cX+OnKR5OEzMQks6nxSWxtbbPMa9u2LT4+PixYsABvb2/0ej3BwcGGG+lVKhUNGjQwHEtYWBjBwcHodDqioqLYv39/no6lbNmyqFQqTp06le3Tr//88w9OTk64urpSvnx5AE6dOpXtvdb//PMP5cqVM5r36PtWrlw5Zs2aRd26ddmzZw9NmjR5YnwA/v7+ODo6Ur58eVJSUujYsSN///03lpaWhjIajea5Dbz+ojP5jf6PZ+7ZZfMAOp2Orl27MmnSJMPFlxfTpk3DwcHBMD16n8GLwM5Oi5OTJ5aKBX7qklz7dp7UlgnxklCpVNhY2JhkykvtyvOWeV/Z7t27CQsLAyA0NJRVq1bleD9ZJo1Gk68anoK6ffs2p0+fZty4cTRu3NjQhPi4zAQzPDycsLAwVCoVISEhzJw5kwcPHjzxfjIAFxcXmjZtyty5c3nw4IHRsri4OFasWEGXLl1QqVRUrVqVgIAAvv766ywJ54kTJ9i5cydvvfVWrvszMzMDyLKvvHr77bfR6/XMnTu3QOsLEyZlrq6umJmZZakVu3HjRpbaM4DExESOHDnChx9+iLm5Oebm5kyePJkTJ05gbm7O7t27s93P6NGjiY+PN0xXrlx5JsfzLDX/oBUtMipRgwB8LEtyft1GU4ckhChm4uPjjZqgjh8//sSHsvIr876yDRs2GJKysLAwfvzxR9zc3KhYsWKO6/r5+XHo0CGio6O5detWnmvC8svJyQkXFxe+//57zp8/z+7duxk6dGiWcmFhYZw8eZKoqChCQkIM81asWEH16tWxt7fP0/6+/fZbUlNTad68OXv37uXKlSts3bqVpk2bUqJECaZMmQI8TPAXLlzIqVOn6NSpE3/88QcxMTH8/PPPtG3blrp162apnUtMTCQuLo7Y2Fj++OMPRowYgaurK/Xq1SvQuVGr1QwePJjPP/88S79oIm9MlpRpNBpq1KjBjh07jObv2LEj2wvC3t6eqKgooy+EAQMGGNqqc3pixNLSEnt7e6PpRWNjZcvt6hkAaMq35Pqc/6A8oy8cIYTITnh4ONWqVTOaxo8fX6j7cHBwoFq1ajg7OxsSsJCQEPR6/RPvwRo+fDhmZmZUrFgRNze3Qk8YM6nValatWsXRo0cJDg5myJAhzJgxI0u54OBgXF1dqVKliuHvTmhoKDqdLl/3k5UrV44jR45QpkwZunTpQpkyZXj33Xdp2LAhBw4cwNnZ2VC2fv36HDx4EDMzM1q1akXZsmUZPXo0PXv2ZMeOHUZNigDjx4/Hy8sLb29v2rRpg62tLTt27MDFxaWAZwd69+5Neno6334rYzcXhEoxYVvY6tWrefvtt5k3bx5169bl+++/Z8GCBZw8eRJfX19Gjx7N1atX+eGHH7Jdf+LEiaxfv97wmHJeJCQk4ODgQHx8/AuVoCUl3+fiZ3tJJJWTScd4tVYwgd06mzosIUQepaSkcOnSJUO/jEKIrHL7nLyof7/zw6RdYnTp0oXbt28behUODg5m8+bN+Pr6Ahh6GhZga6PlvH0yJ1L+Bgs1R39eScCbnVD97x4AIYQQQrzYTFpTZgovcqZ948ZtNs5ZSYz5LRyTdDQNqkhQr9xv3BRCFA3FvaZsxYoV9O/fP9tlvr6+ht7un6egoCAuX76c7bL58+fTrVu3Z7r/mJiYXO+TO3XqFKVKlXqmMeSkZcuWOY6wM2bMGMaMGfNM9is1ZeKF4e7ugqONOzFpt7hnY8af61dRsfsbqPLYPYgQQphKu3btcrz311Q9wG/evDnH8Syze+CssHl7e+d6+423t/czjyEnCxcuzPEpzEfvYxOFS/6av2Dq9Qrj3twbD3v5L1eJv5etolKf7qYOSwghcmVnZ4ednZ2pwzCSeauMqZibmxfZ/rtKlChh6hCKJZP3Uybyx9PbHQcrdwDu2Zhz/Lc1KDn80hNCCCHEi0OSshdQ7Z4hlMpwBRXcKl+ZqEU/mjokIYQQQjwlScpeQCV9vLC3dsVZr6WK3p+kJUtQ/je8hxBCCCFeTJKUvaBCP2hI04xgyluUx1Xry6nFP5k6JCGEEEI8BUnKXlBujh5crHAbAE2F1txftBD9IwOvCyGEEOLFIknZC6xGm4YkqJI55aTjcP0Q/vpusalDEkIIIUQBSVL2AvN08ea0ZTyHLM5xy8GSk7s2oU9JMXVYQoiXTK9evVCpVAwYMCDLsvfffx+VSkWvXr2MyqpUKiwsLPDw8KBp06YsXrw4yyDhfn5+zJo1K08x+Pn5GbZrbW1NQEAAM2bM4NH+z6Ojow1lHp26d5dug8SLQZKyF1xw5xr4/O9JzBsVKnP8PwtMHZIQ4iXk4+PDqlWrjDoUTUlJYeXKlVl6nW/RogWxsbFER0ezZcsWGjZsyEcffUSbNm3IyMgocAyZQ/KdPn2a4cOHM2bMGL7//vss5Xbu3ElsbKxh+s9//lPgfQrxPElS9oKrULEMTmYP+y2Lt9VwOnwL+uRkE0clhHjZVK9enVKlSrFu3TrDvHXr1uHj40O1atWMylpaWuLp6UmJEiWoXr06Y8aM4ddff2XLli0sXbq0wDHY2dnh6emJn58fffv2pXLlymzfvj1LORcXFzw9PQ2Tg4NDgfcpxPMkSdlLIKBTVXwyXEAF18tX4dic+aYOSQiRB4qioE9ONslUkGGP33nnHZYsWWJ4vXjxYnr37p2ndRs1akSVKlWMkrqCUhSF8PBwTp8+bbIhmoR4FmSYpZdAxcrl+efn41zhNglaS/75fQdV77+LmdbW1KEJIXKhPHjAmeo1TLLvCn8eRWVjk6913n77bUaPHm24d2vfvn2sWrWK8PDwPK0fEBDAX3/9VYBoHxo5ciTjxo0jLS2N9PR0rKysGDRoUJZy9erVQ63+/zqHyMjILLV5QhRFkpS9JEp3COLu+htcMbvF9QpVOPHNPKqPHmbqsIQQLxFXV1dat27NsmXLUBSF1q1b4+rqmuf1FUVBpVIVeP8jRoygV69e3Lx5k7Fjx9KoUSPq1auXpdzq1asJDAw0vPbx8SnwPoV4niQpe0lUrRHExY0nMMtQEZyqgdXz0Q3sj5lWa+rQhBA5UFlbU+HPoybbd0H07t2bDz/8ECDfN9CfPn0af3//Au0XHiaFZcuWpWzZsqxdu5ayZctSp04dmjRpYlTOx8enyA70LURuJCl7iVTqUx31f65iqdWQbFeKqNnzqDp2uKnDEkLkQKVS5bsJ0dRatGhB2v+GdWvevHme19u9ezdRUVEMGTKkUOJwcnJi4MCBDB8+nGPHjj1VDZwQRYXc6P8SKVcygL9LXQZAE9CWtJ9XoouPN3FUQoiXiZmZGadPn+b06dOYmZllWyY1NZW4uDiuXr3Kn3/+ydSpU2nfvj1t2rShR48ehRbLBx98wJkzZ1i7dm2hbVMIU5Kk7CVTvkUt7pHEAY90fm/UhKNffmPqkIQQLxl7e3vs7e1zXL5161a8vLzw8/OjRYsW7Nmzhzlz5vDrr7/mmMgVhJubG2+//TYTJ07M0jGtEC8ilVKQ56JfYAkJCTg4OBAfH5/rl8qL7Ncxv3BM8zcoUP7oQTovX4m5k5OpwxKiWEtJSeHSpUv4+/tjZWVl6nCEKJJy+5wUh7/fUlP2EnJr5ouP7mG/ZbHlK3NkxmxThySEEEKIJ5Ck7CVUN7QmrhleACTa2XDhrwOk375t4qiEECJ7K1asQKvVZjsFBQWZOjwhnht5+vIlpFKpcGrkg8/eWK6Y3Sa2QhWOTv+aOl98ZurQhBAii3bt2lG7du1sl0mP/aI4kaTsJRXSpBb3dl/hitlt7mttuHDkADVu3MDC3d3UoQkhhBE7Ozvs7OxMHYYQJifNly8plUqFXYiX4d6y6+UrcXzGHFOHJYQQQogcSFL2EgttURcntTNVM/xokeCP5eZfSbt+3dRhCSGEECIbkpS9xNRqNSW7+FEtww97t8pY2pUg6gt5ElMIIYQoiiQpe8m9EliPY+7nADAPaENq+DbSrl41cVRCCCGEeJwkZS85lUqFS2g5bqgS2FEqg31hDTk8baapwxJCCCHEYyQpKwbqVW1ArD6VOPU9ku20RF86Req//5o6LCGEEEI8QpKyYsDMTI2qugMldS4oKrhWvhJHPpth6rCEEC8AlUqV69SrV69nst+kpCRGjhxJ6dKlsbKyws3NjbCwMDZu3GgoExYWxuDBg7Osu3TpUhwdHbPMf/DgAU5OTjg7O/PgwYMsy/38/AzHZWNjQ3BwMPPnz89TvEuXLjU6Lx4eHrRt25aTJ08alevVq1e25/H8+fN52o94uUlSVkw07RSKd1oJAJLttURfOU1qdLRpgxJCFHmxsbGGadasWdjb2xvNmz3b+OGh9PT0QtnvgAEDWL9+Pd9++y3//PMPW7dupVOnTtx+itFJ1q5dS3BwMBUrVmTdunXZlpk8eTKxsbH89ddfdOjQgQEDBrB69eo8bT/z3Fy7do1NmzaRlJRE69atSUtLMyrXokULo3MYGxuLv79/gY9LvDwkKSsmLMzN0VW2M6otOzxVasuEELnz9PQ0TA4ODqhUKsPrlJQUHB0dWbNmDWFhYVhZWfHjjz8CsGTJEgIDA7GysiIgIIC5c+cabffq1at06dIFJycnXFxcaN++PdGP/FDcsGEDY8aMoVWrVvj5+VGjRg0GDhxIz549C3wsixYtonv37nTv3p1FixZlW8bOzg5PT0/Kli3LZ599Rrly5Vi/fn2etp95bry8vKhZsyZDhgzh8uXLnDlzxqicpaWl0Xn19PTEzMyswMclXh6SlBUjzd8Ie6S2zI7LV8+RcuGiiaMSQqSn6nKcMtJ1eS+blreyhW3kyJEMGjSI06dP07x5cxYsWMDYsWOZMmUKp0+fZurUqXzyyScsW7YMgOTkZBo2bIhWq2Xv3r38/vvvaLVaWrRoYahV8vT0ZPPmzSQmJhZKjBcuXODAgQN07tyZzp07s3//fi5efPL3n5WVVYFq/+7du8dPP/0EyFBRIu9kmKViRKOxIL2iLSXPO/Ov2R1u+VUgauqXvLLoP6YOTYhi7fuPInJc5hvsQpsPqxheLx4RSUaaPtuy3uUc6TisuuH1D2P3k3I/a0LxwbxGTxFtVoMHD+a1114zvP7000/58ssvDfP8/f05deoU8+fPp2fPnqxatQq1Ws3ChQtRqVTAw5o1R0dHwsPDadasGd9//z3dunXDxcWFKlWq8Oqrr/L6669Tv359o33PnTuXhQsXGs3LyMjAysrKaN7ixYtp2bIlTk5OwMMmxMWLF/PZZ9mPCZyRkcGPP/5IVFQU7733Xp7OQ3x8PFqtFkVRSE5OBh6O6xkQEGBUbuPGjWi1WsPrli1b8vPPP+dpH+LlJjVlxUzzNxvipnImNK0ire/5YLNvDw/OnDV1WEKIF1jNmjUN/7958yZXrlyhT58+aLVaw/TZZ59x4cIFAI4ePcr58+exs7MzLHd2diYlJcVQpkGDBly8eJFdu3bRqVMnTp48SUhICJ9++qnRvrt168bx48eNpsmTJxuV0el0LFu2jO7duxvmde/enWXLlqHTGdccjhw5Eq1Wi7W1NR988AEjRoygf//+eToPdnZ2HD9+nKNHjzJv3jzKlCnDvHnzspRr2LChUbxz5sgQeOIhqSkrZqwsNVi1tKfcr04oJT3I+GcTf0/7ileWZv3iEEI8H+/ODs1xmeqxn869Z4TkXFZl/LrHlHpPE1ae2draGv6v1z+sxVuwYAG1a9c2Kpd535Rer6dGjRqsWLEiy7bc3NwM/7ewsCAkJISQkBBGjRrFZ599xuTJkxk5ciQajQYABwcHypYta7QNd3d3o9fbtm0z3MP2KJ1Ox/bt22nZsqVh3ogRI+jVqxc2NjZ4eXkZavLyQq1WG2IJCAggLi6OLl26sHfvXqNytra2WWIWAqSmrFhqVLslxx3OolKpUQW24/4/f5J04i9ThyVEsWVhaZbjZG5hlveymryVfZY8PDwoUaIEFy9epGzZskZT5hOG1atX59y5c7i7u2cp4+DgkOO2K1asSEZGBikpKfmKadGiRbz55ptZatS6deuW5YZ/V1dXypYti7e3d74SsuwMGTKEEydO8N///veptiOKD0nKiiELtQVKNRdi1Lf4rXQah+vU5+TEySiKYurQhBAvgYkTJzJt2jRmz57N2bNniYqKYsmSJXz11VfAwyZHV1dX2rdvT2RkJJcuXSIiIoKPPvqIf//XsXVYWBjz58/n6NGjREdHs3nzZsaMGUPDhg2xt7fPcyw3b95kw4YN9OzZk+DgYKOpZ8+e/Pbbb9y8efOZnAd7e3v69u3LhAkT5PtV5IkkZcVUw5BmJGZAkjqVBw4OXLl/m8StW00dlhDiJdC3b18WLlzI0qVLqVSpEqGhoSxdutRQU2ZjY8PevXspVaoUr732GoGBgfTu3ZsHDx4YEq7mzZuzbNkymjVrRmBgIAMHDqR58+asWbMmX7H88MMP2Nra0rhx4yzLGjZsiJ2dHcuXL3/6g87BRx99xOnTp+VGfpEnKqWYpe8JCQk4ODgQHx+fr19bL6NfvtvI7WsXiDW7i93NW7Q8eYqArZtRP/bUkhDi6aWkpHDp0iX8/f2zPBkohHgot89Jcfj7LTVlxVjTbmH4pHkDkOziSlzKfe4sXWbiqIQQQojiSZKyYszBXkuSuzkOeht0ajgdGMit778n/cYNU4cmhBBFSlBQkFEXH49O2T1FKkRBSJcYxVyNt6ph800yhy3Pca+EH8lH/uTm7Nl4T5li6tCEEKLI2Lx5c449+3t4eDznaMTLSpKyYq60tx9HrA9hpbMgxTyd876lsF73X5y6dsU6KMjU4QkhRJHg6+tr6hBEMSDNlwKXtu7USi9Lh9RXUGkqgqJwY9rn8gi3EEII8RxJUiYIq9KAaNcYXBV7rMrXId3MguQjR0jcvsPUoQkhhBDFhiRlAjO1GRZ1XNGjpxru7KjcHoAbM2agT0szcXRCCCFE8SBJmQCgZbW2nLC8xO/m/5BU3ox/vUuS/u+/3P3hB1OHJoQQQhQLkpQJAFytXYkufY9kVSp6Feyr8goAt76bR8atWyaOTgghhHj5SVImDGo3rUupNBcAVPYa4spUQJ+UxM3Zc0wcmRBCZBUdHY1KpeL48eOmDuWlNXHiRKpWrWrqMIoNScqEwStetYhyu4ir3g5FBVsCagBwb+1aUv75x8TRCSFMpVevXnTo0MFo3i+//IKVlRXTp083TVAFsHbtWmrXro2DgwN2dnYEBQUxbNgww/KlS5fi6OiY7boqlYr169dnmf/uu+9iZmbGqlWrsiybOHEiKpUKlUqFmZkZPj4+9O3bN88DoGeuq1Kp0Gq1VKlShaVLlxqVCQ8PNyqXOY0bNy5P+xBFiyRlwkClUuHe3JcK6V4AaG103KkTCno916WLDCHE/yxcuJBu3brx7bff8vHHH+d7/TQTPEC0c+dO3nzzTV5//XX++OMPjh49ypQpU54qluTkZFavXs2IESNYtGhRtmWCgoKIjY0lJiaG7777jg0bNtCjR48872PJkiXExsZy4sQJunTpwjvvvMO2bduylDtz5gyxsbGGadSoUQU+LmE6kpQJI23KtyVGcxWtYoXeDFb5VEGl0ZB86BD3d+82dXhCCBObPn06H374IT/99BN9+/YFYP/+/TRo0ABra2t8fHwYNGgQSUlJhnX8/Pz47LPP6NWrFw4ODvTr189QK7Vt2zYCAwPRarW0aNGC2NhYo/0tWbKEwMBArKysCAgIYO7cuQWKe+PGjbz66quMGDGCChUqUL58eTp06MA333xT4HPx888/U7FiRUaPHs2+ffuIjo7OUsbc3BxPT09KlChBmzZtGDRoENu3b+fBgwd52oejoyOenp6UKVOGMWPG4OzszPbt27OUc3d3x9PT0zBptdonbjvzPVi/fj3ly5fHysqKpk2bcuXKlRzXCQsLY/DgwUbzOnToQK9evQyv586dS7ly5bCyssLDw4PXX389T8cqJCkTj3GwdCDu1QdUTC8BgIv+Fg86dAHg+vTpKNJFhhCFLj0lJccp47HPXG5l09NS81S2oEaNGsWnn37Kxo0b6dSpEwBRUVE0b96c1157jb/++ovVq1fz+++/8+GHHxqtO2PGDIKDgzl69CiffPIJ8LCmaebMmSxfvpy9e/cSExPD8OHDDessWLCAsWPHMmXKFE6fPs3UqVP55JNPWLZsWb5j9/T05OTJk/z9998FPv7HLVq0iO7du+Pg4ECrVq1YsmTJE9extrZGr9eTkZGRr33pdDrWrFnDnTt3sLCwKGjIWSQnJzNlyhSWLVvGvn37SEhI4M033yzw9o4cOcKgQYOYPHkyZ86cYevWrTRo0KDQ4n3ZyTBLIot2VTtybs9eqqf7czPDkUX+zgxy3UL65RjurPgJl3d6mTpEIV4qc3rmXJPgX60mr42aaHg9991uZKSmZlu2ZMVgukz43PB6wYe9eZCYkKXcsNUb8x3jli1b+PXXX9m1axeNGjUyzJ8xYwZdu3Y11J6UK1eOOXPmEBoaynfffYeVlRUAjRo1Mkq4fv/9d9LT05k3bx5lypQB4MMPP2Ty5MmGMp9++ilffvklr732GgD+/v6cOnWK+fPn07Nnz3zFP3DgQCIjI6lUqRK+vr7UqVOHZs2a0a1bNywtLQ3l4uPj81TLdO7cOQ4ePMi6desA6N69O4MGDWLChAmo1dnXd/zzzz9899131KpVCzs7uzzF/dZbb2FmZkZKSgo6nQ5nZ2dDDeWjSpYsafT68uXLuLi4PHH76enpfPvtt9SuXRuAZcuWERgYyB9//EGtWrXyFOOjYmJisLW1pU2bNtjZ2eHr60u1atXyvZ3iSmrKRBbBrsH8XukU1XWlaaxy5OD5RMzffR+AW3PnknHnjokjFEI8b5UrV8bPz4/x48eTmJhomH/06FGWLl2KVqs1TM2bN0ev13Pp0iVDuZo1a2bZpo2NjSEhA/Dy8uLGjRsA3Lx5kytXrtCnTx+jbX/22WdcuHAh3/Hb2tqyadMmzp8/z7hx49BqtQwbNoxatWqRnJxsKGdnZ8fx48ezTI9btGgRzZs3x9XVFYBWrVqRlJTEzp07jcpFRUWh1WqxtramYsWK+Pj4sGLFijzH/fXXX3P8+HF27NhB1apV+frrrylbtmyWcpGRkUbxOjk55Wn75ubmRu9NQEAAjo6OnD59Os8xPqpp06b4+vpSunRp3n77bVasWGF0fkXupKZMZKFSqahXoyFRZ89R6UE5OisWrLAJpFvFQFJPnebmN9/gNWGCqcMU4qUxaNkvOS5TPVbr8v73ufxBV6uMXvb7dvFTxfWoEiVKsHbtWho2bEiLFi3YunUrdnZ26PV6+vfvz6BBg7KsU6pUKcP/bW1tsyx/vBlOpVIZHijS6/XAwybMzFqcTGZmZgU+jjJlylCmTBn69u3L2LFjKV++PKtXr+add94BQK1WZ5v0PEqn0/HDDz8QFxeHubm50fxFixbRrFkzw7wKFSrw22+/YWZmhre3t1GtXF54enpStmxZypYty88//0y1atWoWbMmFStWNCrn7++f45OjT6JSqfI0Dx6en8cf+kpPTzf8387Ojj///JPw8HC2b9/O+PHjmThxIocPHy5wfMWJ1JSJbLXyb8VWtwPcUiVgr/mbhGMROAwbAcC91WtIOXvWxBEK8fKwsLLKcTLXaPJc1kJjmaeyBVWqVCkiIiK4ceMGzZo1IyEhgerVq3Py5ElD4vDopHks9vzw8PCgRIkSXLx4Mct2/f39C7zdR/n5+WFjY2P0UEJebN68mcTERI4dO2ZUO/Xzzz+zfv16bt++bSir0WgMMec3IXtc2bJl6dSpE6NHj36q7TwqIyODI0eOGF6fOXOGe/fuERAQkG15Nzc3o4cxdDpdlvv0zM3NadKkCdOnT+evv/4iOjqa3fKgWJ5ITZnIlo2FDR7V/Ei+nEScWTy2alifbEvzpk1J3LGDG59/gc+ihTn+mhJCvJxKlixJeHg4DRs2pFmzZsyfP5+6devywQcf0K9fP2xtbTl9+jQ7dux4qicb4WE/X4MGDcLe3p6WLVuSmprKkSNHuHv3LkOHDs33tpKTk2nVqhW+vr7cu3ePOXPmkJ6eTtOmTfO1rUWLFtG6dWuqVKliND8oKIjBgwfz448/8tFHH+Vrm3k1bNgwqlSpwpEjR7JtEs4vCwsLBg4cyJw5c7CwsODDDz+kTp06Od5P1qhRI4YOHcqmTZsoU6YMX3/9Nffu3TMs37hxIxcvXqRBgwY4OTmxefNm9Ho9FSpUeOpYiwOT15TNnTsXf39/rKysqFGjBpGRkTmW/f3336lfvz4uLi5YW1sTEBDA119//RyjLV46B3ThT4ujeOmcQAUn9/6B67BhqCwsSNq/n/sREaYOUQhhAiVKlCAiIoJ79+7Rr18/IiIiOHfuHCEhIVSrVo1PPvkELy+vp95P3759WbhwIUuXLqVSpUqEhoaydOnSAtWUhYaGcvHiRXr06EFAQAAtW7YkLi6O7du35ythuH79Ops2bTI8ffoolUrFa6+9lmOfZYWhUqVKNGnShPHjxxfK9mxsbBg5ciRdu3albt26WFtbZ9sRbqbevXvTs2dPevToQWhoKP7+/jRs2NCw3NHRkXXr1tGoUSMCAwOZN28eK1euJCgoqFDifdmpFBP2CLp69Wrefvtt5s6dS/369Zk/fz4LFy7k1KlTRvciZDp27Bj//PMPlStXxtbWlt9//53+/fvz9ddf8+677+ZpnwkJCTg4OBAfH4+9vX1hH9JL5721feh6uAW7rE6i0qup+1ovqu5cw+2Fi9D4+VF6w2+oCvHxbCFeVikpKVy6dMnwI1QIU1u6dCmDBw82qukytdw+J8Xh77dJa8q++uor+vTpQ9++fQkMDGTWrFn4+Pjw3XffZVu+WrVqvPXWWwQFBeHn50f37t1p3rx5rrVr4um0qfYaN3WXcNTboKj17NoYicuAAZi5uJAWHc3dlStNHaIQQgjxUjBZUpaWlsbRo0eNnlIBaNasGfv378/TNo4dO8b+/fsJDQ19FiEKoKlvU7b4/EGw7mHNpU3qZc7dS8ftf09a3fz2P2TcvWvKEIUQggEDBhh1nfHoNGDAAFOHl8XUqVNzjLdly5aFso+WLVvmuI+pU6cWyj5E4TLZjf63bt1Cp9Ph4eFhNN/Dw4O4uLhc1y1ZsiQ3b94kIyODiRMnZtuRXqbU1FRSH+loMSEha0eKImcaMw2B9eph8VMSVuYWpJilsfLXfUwc0Im7P/1E6pkz3PrPXDzHjTV1qEKIYmzy5MlGndM+qig2dQ0YMIDOnTtnu8za2rpQ9rFw4cIch3NydnbG2dnZaHgkYXomf/ry8af3FEV54hN9kZGR3L9/n4MHDzJq1CjKli3LW2+9lW3ZadOmMWnSpEKLtzh6o8IbzLMbS6OM1ugUhTGxKoak6vAYPYqYXu9wd+VKnN56E8tHOoEUQojnyd3dHXd3d1OHkWeZSdGzVKJEiWe6fVH4TNZ86erqipmZWZZasRs3bmSpPXucv78/lSpVol+/fgwZMoSJEyfmWHb06NHEx8cbptwGWhXZ87Hz4XZ9ayzNoaK+BI0zNKw6fAXbOnXQNm4MOh3Xv/jC1GEKIYQQLzSTJWUajYYaNWqwY8cOo/k7duygXr16ed6OoihGzZOPs7S0xN7e3mgS+dc5oAu/Ou0BoBMWbNhzifQMHR4jhoOFBUl7I7kvD1wIIYQQBWbSpy+HDh3KwoULWbx4MadPn2bIkCHExMQYbsocPXo0PXr0MJT/z3/+w4YNGzh37hznzp1jyZIlzJw5k+7du5vqEIqNBiUb8LdXNAnq+9wzu0Z93RHW/HYcjZ8fzt26AXD98y9QMjJMHKkQQgjxYjLpPWVdunTh9u3bTJ48mdjYWIKDg9m8eTO+vr4AxMbGEhMTYyiv1+sZPXo0ly5dwtzcnDJlyvD555/Tv39/Ux1CsWGuNqd9QAfO7j/GXXt70sxSOH/0CLxWA9f33yN+/XrSLlzg7urVhiRNCCGEEHln0s5jTaE4dD73rNxIvsHY6T3pl9qfzZbHUSlqGjTpSsOQstxduZK4SZMxc3CgzPZtmDk4mDpcIYoU6TxWiCeTzmOFyCN3G3fs65Yn9X4sbnp7FJWefTv2AeD4xhtYliuLLj6eW3PnmjhSIcTLrlevXnTo0CHXMuHh4ahUqiLVY/2LKDo6GpVKxfHjx00dyktPkjKRL29Ufos9mt+plPGwM1k9/3L61HVU5ua4jxwFwJ0VP5F66ZIpwxRCFKLcEiA/Pz9UKpXRVLJkSaPls2bNKvSYZs+ezdKlSw2vw8LCGDx4cKHvx9R69eplOK/m5uaUKlWK9957j7uPddr9pPdBvBgkKRP5UsuzFv8ExKNNTkerWKFXp7Nh7V4AtK/WRxsaChkZ3Jg+w8SRCiGel8z7gjOnY8eOPfN9Ojg44Ojo+Mz386j09PTnur9MLVq0IDY2lujoaBYuXMiGDRt4//33s5QzxfsgCpckZSJf1Co1zeq+zom0QwRn+ADwIPUiifcfdkviPvJjMDfn/p493N+3z5ShCiGeEzs7Ozw9PQ2Tm5tbvrcxbNgw2rZta3g9a9YsVCoVmzZtMsyrUKEC8+fPB4xr73r16kVERASzZ8821BJFR0cb1jt69Cg1a9bExsaGevXqcebMmTzFNHHiRKpWrcrixYspXbo0lpaWKIrC1q1befXVV3F0dMTFxYU2bdpw4cIFw3qdOnVi4MCBhteDBw9GpVJx8uRJADIyMrCzs2Pbtm15isPS0hJPT09KlixJs2bN6NKlC9u3b89SrqDvg0ql4rvvvqNly5ZYW1vj7+/Pzz//nGP5pUuXZkmI169fb9Tx+4kTJ2jYsCF2dnbY29tTo0YNjhw5kqd4ijNJykS+dSjbgZ0exyiZakcZnSe3dWXY+s8NACxLl8bpf6Mr3JAuMoTIlaIo6NN0JpmK2jNeYWFhREZGotfrAYiIiMDV1ZWIiAgA4uLiOHv2bLZjHc+ePZu6devSr18/Qy2Rj4+PYfnYsWP58ssvOXLkCObm5vTu3TvPcZ0/f541a9awdu1awz1VSUlJDB06lMOHD7Nr1y7UajUdO3Y0xB4WFkZ4eLhhG48fy+HDh0lJSaF+/fr5OkcAFy9eZOvWrVhYWOR73dx88skndOrUiRMnTtC9e3feeustTp8+XeDtdevWjZIlS3L48GGOHj3KqFGjCj3ml5HJh1kSLx5HK0f8Qury65EIet7pQAl0zPw9mtdrlESlUuH2wfvE//YbqefOce+XtTi92cXUIQtRJCnpeq6N32+SfXtProdKY1Yo2xo5ciTjxo0zvJ46dSqDBg3K1zYaNGhAYmIix44do3r16kRGRjJ8+HDWrVsHwJ49e/Dw8CAgICDLug4ODmg0GmxsbPD09MyyfMqUKYZkbtSoUbRu3ZqUlJQ8PQWblpbG8uXLjWqdOnXqZFRm0aJFuLu7c+rUKYKDgwkLC+Ojjz7i1q1bmJmZcfLkSSZMmEB4eDjvv/8+4eHh1KhRA61Wm6dzs3HjRrRaLTqdjpSUFAC++uqrLOWe5n144403DONIf/rpp+zYsYNvvvmGuQV8cCsmJoYRI0YY3q9y5coVaDvFjdSUiQLpXOktNrr+TqoqjfKYYRmbxJ79/wJg5uiI24cfAnBz9mx0iYmmDFUI8YyNGDGC48ePG6ZHO/3OKwcHB6pWrUp4eDhRUVGo1Wr69+/PiRMnSExMJDw8PNtasryoXLmy4f9eXl7AwyH98sLX1zdLM+CFCxfo2rUrpUuXxt7eHn9/fwBDv5rBwcG4uLgQERFBZGQkVapUoV27doaasvweS8OGDTl+/DiHDh1i4MCBNG/e3Kh5NNPTvA9169bN8vppasqGDh1K3759adKkCZ9//rlR867ImdSUiQKp7FqZEq4+7LxxkLB7tWhjFsOh36KpW7k31nYanN7swt2VK0m7eJFb383D4+MRpg5ZiCJHZaHGe3Leh5Ur7H0XFldXV8qWLfvU28ls9tNoNISGhuLk5ERQUBD79u0jPDy8wE9XPtpslnnfU2ZT45PY2tpmmde2bVt8fHxYsGAB3t7e6PV6goODSUtLM+yjQYMGhmMJCwsjODgYnU5HVFQU+/fvz9ex2NraGs7vnDlzaNiwIZMmTeLTTz81KldY70OmR+8Re5Rarc7S/P34QxATJ06ka9eubNq0iS1btjBhwgRWrVpFx44dCy2+l5HUlIkCUalUdK7QmZibx0lRpXNFc41Uqzh2rv/74XILCzxGjQTgzvLlpF2+bMpwhSiSVCoVao2ZSaac/uCaUuZ9Zbt37yYsLAyA0NBQVq1aleP9ZJk0Gg06ne6Zx3j79m1Onz7NuHHjaNy4MYGBgVm6p4D/TzDDw8MJCwtDpVIREhLCzJkzefDgQYHuJ8s0YcIEZs6cybVr157mUIwcPHgwy+vsmooB3NzcSExMJCkpyTAvuz7Mypcvz5AhQ9i+fTuvvfYaS5YsKbR4X1aSlIkCa126NZcdb5KWdBNvnROo4OTff5L64OHN/doGDbB99VVIT+fGzJkmjlYI8TTi4+ONmsaOHz9uNAxeYci8r2zDhg2GpCwsLIwff/wRNzc3KlasmOO6fn5+HDp0iOjoaG7dupXnmrD8cnJywsXFhe+//57z58+ze/duhg4dmqVcWFgYJ0+eJCoqipCQEMO8FStWUL169afqkT4sLIygoCCmTp1a4G087ueff2bx4sWcPXuWCRMm8Mcff/Dh/25DeVzt2rWxsbFhzJgxnD9/np9++smoz7gHDx7w4YcfEh4ezuXLl9m3bx+HDx8mMDCw0OJ9WUlSJgrM1sKWgJAw/kk8TCXdw85kUy1jObTtvKGMx8iPwcyMxB07STp4yFShCiGeUnh4ONWqVTOaxo8fX6j7cHBwoFq1ajg7OxsSsJCQEPR6/RPvwRo+fDhmZmZUrFgRNze3Qk8YM6nValatWsXRo0cJDg5myJAhzJiRtV/G4OBgXF1dqVKliiEBCw0NRafTFfjeuEcNHTqUBQsWcOXKlafeFsCkSZNYtWoVlStXZtmyZaxYsSLHJNjZ2Zkff/yRzZs3U6lSJVauXMnEiRMNy83MzLh9+zY9evSgfPnydO7cmZYtWzJp0qRCifVlJmNfiqdy9u5ZZk3uzweqQezQnueeOgntgzJ89GlXLP73ZFfc5E+5+9NPWAYE4L/2F1RmhfPElxAvEhn7UhRVKpWK//73v08ctup5kLEvhXgK5Z3Ko1Tx5FzCUUNtWbLmX6Ii/jWUcR34IWp7e1L/+Yd7/3u8XQghhBDGJCkTT63lq29xQn+cUmmOWCkW6M1SOXTshGG5uZMTru+/B8DNWbPR3b9vqlCFECayYsUKtFpttlNQUJBJYgoKCsoxphUrVjzz/cfExOS4f61WWyhNsEXxvIucSZcY4qk192/OutKzif73L6pq/LhMCgccHHjvkTLOXbtyb+Uq0i5f5vb873EflvXGWCHEy6tdu3bUrl0722Wm6ul98+bNOY5n6eHh8cz37+3tne1Ti48uf1p5Oe/F7C6mIk2SMvHULM0sqRTalOWRO/k0YQzBqFlz6T7nbyRS1t0OAJVGg/vIkfz7/vvcWboUxy6d0ZQsaeLIhRDPi52dHXZ2dqYOw4ivr69J929ubl6o/Yplpyied5Ezab4UheKNKl05VuIa++yOPXyNhmV7LnLzyv/35q9tGIZtvboo6encmCFdZAghhBCPkqRMFIpS9qWo512P9c57AKikSsT6eDgbFh1C0T+sGlepVLiPHAVqNYnbtpF8+LApQxZCCCGKFEnKRKHpXL4z6beuczP9GmfN/yXN8i43ks8THXXLUMaqQnkc33gDgOvTPkd5Rh08CiGEEC8aScpEoQn1CcVF7cD5u0eolPGwe4wU6+sc3HTG6EZSt0EDUWu1pJw6Rfz6X00VrhBCCFGkSFImCo252pzqDVtx+cE/2KWb4aa3B5XClTtn+ffM/48NZ+7igut7D5/NvPH1V+gfGT9NCCGEKK4kKROFqlOVN4n2TOJCwnFDbdkDm1gOb75gVM7p7e5YlCqF7uYtbi1YYIpQhRBCiCJFkjJRqDxsPbCtUZaLiccpqXNCq1ihqNO5eOUscRfjDeXUGg3uI4YDcGfJUtKvXjVVyEII8VR69epVJIYoEi8+ScpEoWvXsCc3rRK4cv80wRk+ADyw/deoewwAuyZNsKlVCyU1lRtffmWKUIUQeZBb0uHn58esWbOMXqtUKlatWpWlbFBQECqViqVLl2Yp//j0+eefPzGu6Ohoo3UcHByoU6cOGzZsMCq3dOnSbPexcOHCPB2/EM+LJGWi0NX1rsv1cmaciz9CeZ03bjp7ziieuFV1NiqnUqnwGD0KVCoSNm8m+c9jJopYCFGYfHx8WLJkidG8gwcPEhcXh62tbZbykydPJjY21mgaOHBgnve3c+dOYmNjOXToELVq1aJTp078/fffRmXs7e2z7KNbt24FO0AhnhFJykShU6vU1GrcjqPu0VyxuUb79FeopCvBT3/8m6WsVWAgjq93AuD6tGnSRYYoltLS0nKcHh8GqDDKPmvdunUjIiKCK1euGOYtXryYbt26YW6edSAZOzs7PD09jabskrecuLi44OnpSUBAAFOmTCE9PZ09e/YYlVGpVFn2YW1t/cRtT5w4kapVqzJ//nx8fHywsbHhjTfe4N69ezmu83jtIUDVqlWZOHGi0XZLlSqFpaUl3t7eDBo0KM/HK15eMsySeCY6VunCf84uIC1+I5OS36cdGvodvEyXsu7Y2Vti7/L/X4ZugwaRsGkzKVFRJGzciEO7diaMXIjnb+rUqTkuK1eunFGNzowZM3Icr9HX15d33nnH8HrWrFkkJydnKfdocvAseHh40Lx5c5YtW8a4ceNITk5m9erVRERE8MMPPzyz/aanp7Pgfw8OFeZ4mufPn2fNmjVs2LCBhIQE+vTpwwcffFDgQct/+eUXvv76a1atWkVQUBBxcXGcOHGi0OIVLy6pKRPPhJOVE838mnFYe5J7NklYo6dd0nV+/M9ajmyKNipr7uaGy4ABANz48iv02fwREUK8WHr37s3SpUtRFIVffvmFMmXKULVq1WzLjhw5Eq1WazSFh4fneV/16tVDq9ViZWXFsGHD8PPzo3PnzkZl4uPjjbbv6emZ5+2npKSwbNkyqlatSoMGDfjmm29YtWoVcXFxed7Go2JiYvD09KRJkyaUKlWKWrVq0a9fvwJtS7xcpKZMPDNdKnTh9xPbOJgUzivqBiRbngcFTv0RzStt/LFztjKUde7Zg3urV5N+9Sq3Fy3GbeCHJoxciOdrzJgxOS5TqVRGr0eMGJHnsoMHD36quJ5G69at6d+/P3v37mXx4sX07t07x7IjRoygV69eRvNKlCiR532tXr2agIAAzp49y+DBg5k3bx7Ozsb3sNrZ2fHnn38aXqvVea+TKFWqFCVLljS8rlu3Lnq9njNnzuQrucv0xhtvMGvWLEqXLk2LFi1o1aoVbdu2zbZpVxQvcgWIZ6aKWxWqJvqQdPks9r5N8dY5cc3sLknW/3JsRwwNupQ3lFVbWuI+YgRXBw/m9qJFOL7xOhYF+LIT4kWk0WhMXrawmZub8/bbbzNhwgQOHTrEf//73xzLurq6UrZs2QLvy8fHh3LlylGuXDm0Wi2dOnXi1KlTuLu7G8qo1eqn2sejMpPfx5PgR/f16CgmgFGTs4+PD2fOnGHHjh3s3LmT999/nxkzZhAREVGoza7ixSPNl+KZUalU1G3akVRSuZhwnEq6zKGX4vh7XwzJCcY3HNs1b4Z1zRooKSnc+Eq6yBDiRde7d28iIiJo3749Tk5Oz2WfoaGhBAcHM2XKlELbZkxMDNeuXTO8PnDgAGq1mvLly2db3s3NjdjYWMPrhIQELl26ZFTG2tqadu3aMWfOHMLDwzlw4ABRUVGFFrN4MUlSJp6p9lXe4JpXKucS/qSE3hlHvS2KWkeS+TVO7IoxKqtSqfAYNfphFxm/beCB3PgqRJERHx/P8ePHjaaYmJhc1wkMDOTWrVtZusd4XGJiInFxcUZTQkJCgWMdNmwY8+fP52ohdUptZWVFz549OXHiBJGRkQwaNIjOnTvn2HTZqFEjli9fTmRkJH///Tc9e/bEzMzMsHzp0qUsWrSIv//+m4sXL7J8+XKsra3x9fUtlHjFi0uSMvFM2VrY4lq7CkkZ8Vx9cN5QW/bA9ip/RVwhJcn4KTLr4CAc/tdJ5fWp07I0AQghTCM8PJxq1aoZTePHj3/iei4uLk/semL8+PF4eXkZTR9//HGBY23Tpg1+fn6FVltWtmxZXnvtNVq1akWzZs0IDg5m7ty5OZYfPXo0DRo0oE2bNrRq1YoOHTpQpkwZw3JHR0cWLFhA/fr1qVy5Mrt27WLDhg24uLgUSrzixaVSitlfvYSEBBwcHIiPj8fe3t7U4RQL/9w6zarhgymt+NPA601WWe4jRZWOa1owr/dtimdpB6Py6ddvcKFlS5TkZLxnzsShTWsTRS5E4UlJSeHSpUv4+/tjZWX15BVEkTBx4kTWr1/P8ePHTR1KsZDb56Q4/P2WmjLxzAW4BpIYaMfNlH9J1N8lKMMHlc4JTX3fLAkZgIWHO679+gJw48sv0T948LxDFkIIIZ47ScrEc1G/+eskWWXwu2Y/VXV+tE2vys+nk9Drs6+odX7nHcy9vMiIjeXOI+PkCSGKjwEDBmTpvyxzGvC/vg2fVlBQUI77KGjnsEIUlDRfiuciJSOFJj83ITklibUxs7F4oGICyXTrWZVSySr8K7tiZmH8GyF+0yauDRuOytqaMlu3YuHhnsPWhSj6pPky/27cuJHjDf/29vZGXV4U1OXLl3McIcHDwwM7O7un3ofIu+LefFmgfsr0en22He/p9Xr+/fdfSpUq9dSBiZeLlbkV7cu254dTP3DQ629CLlaiPXp+/3EjDvc8aNylGsENjDuLtG/VirvLf+TB8ePc/PprvD+fZqLohRCm4O7uXiiJV27kiUdRlOSr+TIhIYHOnTtja2uLh4cHEyZMQKfTGZbfvHkTf3//Qg9SvBw6V+iMSoH/3v0FvUrhtsVF9BZXeGD7L8e2X0avMx6MXKVS4TFmNADx69fzIOpvU4QtRKEqZo0TQuRLcf985Csp++STTzhx4gTLly9nypQpLFu2jPbt25OW9v+dgBb3Eypy5mvvS4vbwdT+04bLurNUyvABIMX6OvfuJHDuyI0s61hXrox9u7YAXP/8c7m+xAsrs6f27AYIF0I8lJlPPNqvW3GSr+bL9evXs2zZMsLCwgDo2LEjrVu3pm3btvz2229AzsNOCAEQ1rQzJw8v5GzsfpqV6IWr3p5b6gQe2Fzj6FYnyr/igUptfA25Dx1K4vYdPDh6lMRt27Bv0cJE0QtRcGZmZjg6OnLjxsMfHzY2NvJ9KcQj9Ho9N2/exMbGptiOA5qvo75165ZR+7uLiws7duygefPmtGrVioULFxZ6gOLl0jS4DXu85qO+doO7mrtUzijFbs3fPLCJ5U6sDxdP3KRMNeN7SCw8PXHp25db337Ljekz0DZsiNrS0kRHIETBZfYAn5mYCSGMqdVqSpUqVWx/sOQrKfPx8eH06dNG943Z2dmxfft2mjVrRseOHQs9QPFysVBb4PNqHdLXHCEqNpwQlw7YKFYkq1NIsb7O0S2XKV3VLcsH0qVPb+798gvp165xZ+kyXPu/a6IjEKLgVCoVXl5euLu75/jEnxDFmUajyfZBwuIiX0lZs2bNWLJkCa1atTKar9Vq2bZtG02bNi3U4MTL6fVm77Jgw0GuJ5wno4Seyuk+HLQ4xwPbq6jNKpCalIGV1sJoHbW1Ne5Dh3Dt45Hcnj8fx9c6Yu7mZqIjEOLpmJmZFdt7ZoQQOctXOjpp0iQmTpyY7TI7Ozt27tzJ7t27CyMu8RLztvMmI8gNBYW/7x+ivM4bS8WS27autB1cOUtClsm+TRusKldGn5zMjdmzn3PUQgghxLOVr6TMycmJoKCgHJdrtVpCQ0MNrytVqsSVK1cKHp14aTVq1Q09CicSDmBhYUG31HpcjS/BuVspOa6jUqvxGD0KgPi163gQFfW8whVCCCGeuWfacBsdHS33TYhshVZsxsEWetbUu8iNcsmoUfMGGhbvu0RKUjpnDsZmu55NtWrYt20LikLcxEkoj/STJ4QQQrzIiu/ddMKk1Co1rV95A1SwxHotClAXc2KOnWHu5NXsXHqamzGJ2a7rMfJj1HZ2pJw8yd2Vq55v4EIIIcQzIkmZMJkOZTtgobZgX8IBUnwU4lXJBFueJsH6Ajp1Cke3RGe7nrmrK+5DhwBwc9Ys0qV7ASGEEC8BScqEyThbOdNaX4cuu0qy7+KvOCq2eOqcAIUHtle5cPwmd2KTsl3XsXPnhzf937/Pjc+/eL6BCyGEEM+AJGXCpFrWfgMznYrb/55BcTajiu7hYPYptnHoyeDPbZezXU9lZobXxAmgVpOweTP3f9/3PMMWQgghCl2hJ2VXr14t7E2Kl1jdCmHc8354GZ7IOEJJvQtavQ0KOlKsYzn7x3USbj3Idl2rihVx6t4NgLhPJ6NPTX1ucQshhBCFrdCSsri4OAYOHEjZsmUN8+bPn4+Hh0dh7UK8hFQqFWXDGgBw6vQuVNYWVNM9HMorxT4WvV7Hse0xOa7vNmgQ5u7upF+O4fb3C55LzEIIIcSzkK+k7N69e3Tr1g03Nze8vb2ZM2cOer2e8ePHU7p0aQ4ePMjixYsN5bt27YqtrW2hBy1eLp2avUuylQ6zNB3X3W5QRueBhWKBjhTSrG8BoChKtuuaabV4jBkNwO3vvyf10qXnFrcQQghRmPKVlI0ZM4a9e/fSs2dPnJ2dGTJkCG3atOH3339ny5YtHD58mLfeeutZxSpeUvbWDphVKQlA5Pn1mKnNqZzhQ4rekirtyxDatUKug9PaNW+O7auvoqSnc/3TT3NM4IQQQoiiLF9J2aZNm1iyZAkzZ87kt99+Q1EUypcvz+7du4168hciv1q0fQc9CulXb0A5SyrpSlEm7RUOJWufuK5KpcJz/CeoNBqS9h8gYdPm5xCxEEIIUbjylZRdu3aNihUrAlC6dGmsrKzo27fvMwlMFC/Vy9Ujpr4Naxte5YD/P5hjRhM0bD90heS0DG5fvc+FYzn3R6YpVQqXAf0BuP7F5+gSEp5X6EIIIUShyFdSptfrsbD4/8GizczM5J4xUWgat+pGkrWOxbdXYOFrhwUqGqfCoh+38+PUcPYs/4e0lIwc13fp2xeNnx+6m7e4OUsGLBdCCPFiMc9PYUVR6NWrF5aWlgCkpKQwYMCALInZunXrCi9CUWy08GvB9MPTuXr/Klcq3MPzshklzS9yOSYOe9eSpF634e+Iq1Rv7pvt+mqNBs+JE4jp9Q53V67EoWNHrCsFP+ejEEIIIQomXzVlPXv2xN3dHQcHBxwcHOjevTve3t6G15mTEAVhZW5Fe8cmND7sxrZNc1E5aKikKwFAovoaenUax3ddISMt50HIbevU+f8ByydMkAHLhRBCvDDyVVO2ZMmSQg9g7ty5zJgxg9jYWIKCgpg1axYhISHZll23bh3fffcdx48fJzU1laCgICZOnEjz5s0LPS5hGm0qtGfL0qOoSCb1VRUehxyw09uRqE5E53KDBzc1nN4fS6Wwkjluw2Pkx9wPDyfl1Cnu/rQS57e7P8cjEEIIIQrGpMMsrV69msGDBzN27FiOHTtGSEgILVu2JCYm+85C9+7dS9OmTdm8eTNHjx6lYcOGtG3blmPHjj3nyMWzElS6BkklHzaPb76wEizMeCXjYXNlkuVVFHT8uf0yOp0+x21kGbD8ugxYLoQQougzaVL21Vdf0adPH/r27UtgYCCzZs3Cx8eH7777Ltvys2bN4uOPP+aVV16hXLlyTJ06lXLlyrFhw4bnHLl4lio2agJAwl9nsK7mgp/eDQu9JekZqeicb3P/TipnD8Xlug3DgOVJSdz44vPnEbYQQgjxVEyWlKWlpXH06FGaNWtmNL9Zs2bs378/T9vQ6/UkJibi7OycY5nU1FQSEhKMJlG0tW36DilWeixT1exP/x01aqr/b6DyVLtrWNk9udXdeMDyLTJguRBCiCLPZEnZrVu30Ol0WcbG9PDwIC4u91qQTF9++SVJSUl07tw5xzLTpk0zegjBx8fnqeIWz56Vxhqb6g/HUD12cDOWFZyooPMGxYwMaxteH1OVwHreT96ODFguhBDiBWLS5ksgy/A5iqLkOqROppUrVzJx4kRWr16Nu7t7juVGjx5NfHy8Ybpy5cpTxyyevTbt+qKgoL2Wxm3/+2gw57XUuux+UB5b+yf38p9JBiwXQgjxojBZUubq6oqZmVmWWrEbN25kqT173OrVq+nTpw9r1qyhSZMmuZa1tLTE3t7eaBJFXzn/yiQEO7A/+Da/mu3GzM0aZyypHq9jx6nrKIrCuSPXiVx9NtftyIDlQgghXhQmS8o0Gg01atRgx44dRvN37NhBvXr1clxv5cqV9OrVi59++onWrVs/6zCFCTV95z3OlrrPr/9uxLrew9rQ19HwY8Q/HNp3lB2LTvLXnn+JOXk71+3IgOVCCCFeBCZtvhw6dCgLFy5k8eLFnD59miFDhhATE8OAAQOAh02PPXr0MJRfuXIlPXr04Msvv6ROnTrExcURFxdHfHy8qQ5BPEP1vOtRQluCxLRE9jr9CdZmOJBG2Zt72bZrE6Xr2QEQsfJMrh3KyoDlQgghXgQmTcq6dOnCrFmzmDx5MlWrVmXv3r1s3rwZX9+H/VLFxsYa9Vk2f/58MjIy+OCDD/Dy8jJMH330kakOQTxDZmozOvm2p8JlLb+v+gG72t7YYoWj3hlFUYhO+hNbJwsSbqVwZEt0rtvSlCqF63sPk/3rn8uA5UIIIYoelVLM2nISEhJwcHAgPj5e7i97AURfPs3aj0egoNBo1Cjc1kCykspyywOYq3RUDajF1XAr1GYquoyrhbOXbY7b0qelcal9B9IuXcKpa1c8x3/yHI9ECCHE0ygOf79N/vSlELnx8w0ktaQtKlRs3f0DNpXdsMUS1/SHXWb8dfYI7oHm6HUKET+dyfV+MbVGg+eE8QDcXbmSB1FRz+UYhBBCiLyQpEwUedWatgJAf+JfVDUe3kfWVu9NrM4JvV7PdXUUZhq4du4e187dy3VbxgOWT5QBy4UQQhQZkpSJIq9p47dIswTrVDPWn1yBxt8eS9TUSa9AKubcun0TjzpptBtclRLlnZ64PY+RH6O2szMMWC6EEEIUBZKUiSLP3EKDU81AAC5EROLYtjSooCm2XE8rjd6tHG3eaIxPQM7DbRltTwYsF0IIUQRJUiZeCG06vguAU6yew/F/oK37cJilvnpvVl1x5K9r9w1lE++kcOvf+9luJ5MMWC6EEKKokaRMvBBK+pQjo5Q9V9wfsOnMBuyb+aLWWlAKMzqjYcy6KFLTM/gj4i9+mnSI7YtOosvQ57g9GbBcCCFEUSNJmXhhtBoxit01b7I1cS/3SMChdWkA3sGShOsJzPxmPpv3rENvlcDd2CSO74zJdXtGA5ZPnow+JeWZH4MQQgiRE0nKxAujkntlgl2CSden899z/8Wmqtv/bvpX8SE2nLn3sFySyzkUlY7Dm6KJv/kg120aBiyPkQHLhRBCmJYkZeKF0rlCZ7TJ5vy+7RcUFJzalwU1hGJBRpof6WZW3E9OAJ9r6NL17F11Nte+y4wGLF+wQAYsF0IIYTKSlIkXyqsOr9Ap3JuKh9Ws2bcEC09btPVKAPARWiIflALgVtolMqzvEXPyNhf+vJnrNu2aN8c2JAQlPZ24yZNlwHIhhBAmIUmZeKG4uZfEskJJ1Kj4e/nP3L5/E/umpVDbayiBmoZ6N6JVngCkuF1Ar8ogcs1ZUh9k5LhNlUqF5yfjUFlaknzgoAxYLoQQwiQkKRMvnB4ffUq6BpzumTN//hjUluY4tvYHoCeWnH9QAr2FDQ/SksjwuEJAHU/UZqpct6kpVQrXAf0BGbBcCCGEaUhSJl44Di7uVOvaBQCLw9fYe3gj1pXdsCztgAYVH2DLtvs+2Lu48+a7ranbsSwWGrMnbte5Tx80/v7obt3i5qzZz/owhBBCCCOSlIkXUvOWb5Ne3gm1oiLi+/mkpibj2KEsqFWEYEEZxZmNqYE4u7sZ1tHrFfR6GbBcCCFE0SRJmXhh9fpoKg+s9NgkKCxdPgULdxu0IQ9v+h+qsubfW8l8F34BgAun/mXt9KNEhf+b6zZlwHIhhBCmIkmZeGF5uvrg+0Zzjpe9xzKrXVxPuo59o1KYOWjwVFR0x5K5ey6wbtN2fvx5EVdiL3Lot4vcv5ua63ZlwHIhhBCmIEmZeKF1az0Qpb4f9/XJzDgyA7WlGQ5tHvb0/7bKEjedwu5T11AUhSSn86SmpvD7z2dz3aa5qyvuw4YCMmC5EEKI50eSMvFCU6vUfFLnE9QqNTsubmPjtqVYB7tiWc4RCwWGqazZctsFS60jOtK473CeC3/eJDrqVq7blQHLhRBCPG+SlIkXXgXnCnQt+yat9ntyZvEvnD16AMd2ZcBMRS3FnHpo2Hq/FCqVilSrm6RY3WTvqrOkp+V8v5hKrZYBy4UQQjxXkpSJl8IHNQeS4P7wct4090syrDKwa1ASgOFmNsSlWPLAuRwASQ7nib+bwJHN0bluUwYsF0II8TxJUiZeClqNltY9B3JPm4aSlMqG+V9i19AHM0dLXHQPO5Vdc9UOrZMrelU6ifbnuHrmbq5dZIAMWC6EEOL5kaRMvDRalmvNvUZe6FUKVw4f5czh33Fs+/Cm/24qS0pgzq4HvlhaWVGtdhAdh1dHrc69p38ZsFwIIcTzIkmZeGmoVCqGtZnE32XvA7BtwRwyPMGqghNmCow0t+H0PTXqSq1p2bERZmZ5u/xlwHIhhBDPgyRl4qXi5+BHzQ6duGWfiu5BKjuXfPfwpn9zFVUz1IRhzoJ9V/gn7uHYlslJKRzacJEHiWk5blMGLBdCCPE8SFImXjr9qr7L2bpmxLqkcLEKmLtYYxfqA8AIc1ss9Apj1kVx6VI0s7+aQ+TuA+xfez7XbcqA5UIIIZ41ScrES8fK3IqPmo1hW+3rLI9dy7m757APK4mZsxUOGQp9zaz5M+YeGw/+TaoumSS7i5z8I5qrZ+7mul3jActnPZ+DEUIIUWxIUiZeSg1KNqBJqSboFB2fHfyM6zEXcWjjD8Abegt8UfP9P+Z4epdEUetIdDjLnp/+QZeuz3GbxgOWr5IBy4UQQhQqScrES2tkrZFYm1uj//0CK8YO4dTFSKwCnVErMN5SS2KqjpMW5bGwsCDd8h5xiRc4tuNyrtu0rVMH+3YyYLkQQojCJ0mZeGl52nryXpX3SLbSgQK/r/oB5RUrMFdTIRWaqCzYcCaRUpVqA3Bfe5GDW09z70Zyrtv1+Phj1Pb2MmC5EEKIQiVJmXipda/YHV2wO/+6PUCXns625d+gDS0BwMcWtlgD806q8CnlC2o997T/sO+Xc7lu09zVFfehQwAZsFwIIUThkaRMvNQs1BaMq/sJ+yrdJtVCx/WL5zl1Zz9mLlbYpOn5yNKWq/EpXHUIxsLCAjs7W2p19H3idmXAciGEEIVNkjLx0qvpWZOmQa05GHQHgEO/roZa1gC0TjPDHzVLj9ygUcfuDBr1Lm5ejk/cpgxYLoQQorBJUiaKhaE1hnLL14xLnknodTq2/vofLAOdUCkwxdYevQJTdsWge2QszLvXk3LdpgxYLoQQojBJUiaKBRdrFwbXGMzB4DskaHUEtmiGY9syqCzUlErS087Ckr+v/l979x1fRZU+fvwzM7emJ6QREkLovaNSBBQEREEW14YNXQtWirr2ta0CdlfBxs/yXVfAig1QVJogVQKhF0MCISG9l1vm/P64cCEmICqQkDzv1+uae+eeOXNmApzHM2eeU8x7K/dSVlbOjOfeYdazH3Mw9fhJYmXBciGEECeLBGWi0bi0zaW0adqRz8/dz+eOVVgjnASf3xyASbqTQODFRTtZl7KNnLJ0yoLSWPi/NZjeY+cukwXLhRBCnCwSlIlGw9ANHun7CJquMz91PqszV2PtEYrRxI6tyuSh4FDKXV7+b5uX1i3bgKbYV7GBjT+mH7deWbBcCCHEySBBmWhUOjXpxBXtrgDgtS+e4v0H7iTVuhWAgaWK9rrBDztyCO5wDjaLHY+1jB++X0JpwbHni9VYsPzrb07LuQghhGhYJCgTjc6dPe6kiaMJWeVZlBXk8/PPn2AmGGgKpgaHoQFPf5fK0AsvBKDUsZeFH6w5bp3VFiyfPl0WLBdCCPGHSVAmGp0QWwj39rmXrCZV7EjyPWH54+b/glUnqsjNtUFBZJdU8dU+C62T2oIG27JWsXvDwePWKwuWCyGE+CskKBON0kVJF9Entg9r2ubhCrOSl7+PA07fJP1/eKwEAx+sTqPlOYOxWRxgeCkpLTxunbJguRBCiL9CgjLRKGmaxiNnP4JmNfi2YzroGis2foQZBEall6lRTVAKnpi/myuuupK7Jt1Bj3Pb/W69smC5EEKIP0uCMtFotQxryfhO48kLc7GnnQcTk5/3zwOge66b3g4bOw6W8O0+D2ERISdcryxYLoQQ4s+QoEw0ard0vYW4wDhWJO6H6GCCOsZi7xQOCv4dEIoGvPL9LtLyyjBNkwWfLuGt5+agzGOnvZAFy4UQQvwZEpSJRs1pcfLAWQ9g6jCnxw7aXzeWiEvaoNkNgvKrmBgdTpXH5JF5m/l1VxqrU5ZwoGw7S79ef9x6j16w/OC0qafnZIQQQpzRJCgTjd55zc9jcPxgKg03T69+Gj3YRshQX6b/S0ugiaGzfFcum8ttJMa2BWD5uu8pzC09Zp1HL1hesmAhpct/Oi3nIoQQ4swlQZkQwANnP4DDcLA2ay1fpHzCj6vep0wrRqvw8nLTKACe+norI/5+MRYcePVK5rz3+XHrdHTsSMS11wCQ9dRTsmC5EEKI45KgTAigWVAzbu3mS/761tqZ7E35hdUHvgIgKaOCYRFB5JW5eGlJKhcOuxiArNI9rFqSfNx6I++SBcuFEEKcGAnKhDjk+o7XkxSaxD5LLhX948ip3E9a2VZQ8KARgA58tG4/7timNAtrA8D3ixdSVlJ+zDqNoEBiHnoI8C1YXrF5y+k4FSGEEGcgCcqEOMRqWHn47IcB+NC+lMiObUnO+xEPbqw5lTzZIgaAhz5P4dLrRmMxnXioZNXS5OPWGzx8GEHnnYdyu9l366249u071acihBDiDCRBmRBHObvp2YxMGonSFD90yEA5YFPeUgAGZ7loGWjn15wy3l+fyfAhFzNq2N8ZcnG/49apaRpxzz2LvX17vHl57LvpZjwFBafjdIQQQpxBJCgT4jfu63MfQdYgNlRsJXBED3YX/0KhKxsqvbwUGwnA60v2EN4hkV79O59QnUZQEAlvvok1Lg5XWhr7JkzArKg4lachhBDiDCNBmRC/EemM5K4edwHwtudLmvfuxTbPWgCa7Cnh2uZNcHlNHvo8BaV8SWTTdmfw9WffHrdea0w0CW+/hR4aSuXGTWTccy/K4zm1JyOEEOKMIUGZELW4ot0VdIjoQIm7hOQeFVwy/V8E9PLNKbul0kKgxWBNaj4fr9vP3m0Hee//3mHdpp/ZuOH4i5DbW7Ui4fWZaHY7pT/+SNZT//YHdkIIIRo3CcqEqIWhGzxyziNoaHyRMZ+NRVsIvbAFmsOCll3Bi23jAHh6/jacTUMI1xMB+PrrrykrKztu3QE9exL3/HOgaRTOnUvem2+e8vMRQghR/0lQJsQxdI3qyt/b/h2Ap1c9jdcJJc1LAOi8p5Szo0MoqnAzdeF2xlxxIYY7ELe3ik/mfv67o18hF1xAzCO+Jz1zXn6Fws+On4hWCCFEwydBmRDHMbHnRCIcEewp2sMHye+xbP0c8quyUFVeno4IQ9dgXvIB0izQtXk/UBqp6bvZtHHT79YdcfXVNLn5ZgAyH32U0uXLT/XpCCGEqMckKBPiOELtoUzpNQWAN7bPos/4a1if9x0Aju2F3NepGQAPf76ZgZf1IsTVAoCvv/6G4uLi360/aspkQkaPAq+X/RMnSXJZIYRoxCQoE+J3jG41mp7RPanwVPB+6ZckntebPSUbfd8ddNMsxEF6fjlvrdnLsJFDsLiDcHtcLPlx2e/WrWkacf/+N4H9+qLKyyW5rBBCNGISlAnxOzRN45FzHsHQDH5I/wFtUGvSrTup8lagcip55dCk/7eX/YrRKpjWEX1oHduV4cOHnVj9NhvN/vMf7B06SHJZIYRoxOo8KJs5cyZJSUk4HA569erF8uPMq8nMzGTcuHG0a9cOXdeZNGnS6WuoaNTahLfh2o7XAjB9w3Oce+tNpBT4RsJiknO5tG00HlPx0LzNXDbxXK6ZMBa703bC9fuSy74hyWWFEKIRq9OgbO7cuUyaNImHH36YDRs2cO6553LhhReSnp5ea/mqqiqioqJ4+OGH6dat22lurWjsbut2GzEBMWSUZvBV5VIih7Qjr+oAmgemWAMJslvYkF7Ih2uP/Pl1uz2sX/fLCeUis0ZHkzDrbYzDyWWn3CPJZYUQohHRVB1mrjz77LPp2bMnr7/+un9bhw4dGDNmDFOnTj3uvoMHD6Z79+68/PLLf+iYxcXFhIaGUlRUREhIyJ9ptmjEvk/7nslLJmPVrXw8ci4Bezx4P88FBev7RTFx5R6C7Ra+v2cQWoGLd997lwpVwMUXX0zv3r1P6Bjlv/xC+g03oqqqCLv8cmKfeBxN007xmQkhRP3WGPrvOhspc7lcrF+/nmHDqs+7GTZsGCtXrjxpx6mqqqK4uLjaS4g/a0jzIQxoNgC36Wba+meJ7dOewLNiATh7dxk940MpqfLw+JdbKC92oRdFAPDtwm/Jz88/oWNUSy770UfkvfHGKTsfIYQQ9UedBWW5ubl4vV5iYmKqbY+JiSErK+ukHWfq1KmEhob6XwkJCSetbtH4aJrGQ2c9hE23sSpzFd/u/ZbQ4S3AoePJLufpmGAMXWPB5ix2G146t+uG1RWK2+Pmi3lfYJrmCR2nWnLZV/5D4aefncKzEkIIUR/U+UT/396WUUqd1Fs1Dz74IEVFRf7XPkk3IP6ihJAEbup6EwDPrn2WcksVu01fioyA9fnc1ccX+P/ri830GtOK8MoOYOqkpacxe/ZsqqqqTug41ZLL/utflC77/RQbQgghzlx1FpRFRkZiGEaNUbHs7Owao2d/hd1uJyQkpNpLiL/qxs43khiSSE5FDjOSZ9B1wmjyXAcwsDByz0ESIpwcKKrkzbVp9L+4EyFF7UHp7Nq1i3feeYeioqITOk7UlMmEXjLal1x20mQqUjaf4jMTQghRV+osKLPZbPTq1YtFixZV275o0SL69etXR60S4sTYDTsPnfUQAB9u/5BsRyl6vxBMZRKQa2dq2zAA3l2RitY6mITYJMLyumEoG6Wlx1+w/GiaptH0qacI7NfPl1x2wgRJLiuEEA1Und6+nDJlCrNmzeKdd95h27ZtTJ48mfT0dCZMmAD4bj1ed9111fZJTk4mOTmZ0tJScnJySE5OZuvWrXXRfNHI9WvWj+EthmMqk6dWPUXHscPItu0HIGpVFmM6RWMqeOiLFIbd2pnoyBjahQzkyiuvIjQ09ISPU2ty2RN8aEAIIcSZo05TYoAveeyzzz5LZmYmnTt35qWXXmLgwIEAjB8/nr1797JkyRJ/+drmmyUmJrJ3794TOl5jeKRWnD4Hyw4yet5oyj3lPN73cS4IHED2y8k4jABymhZwfYGd4koPj1zUgXHd4rE6DKw2w7//li1byM/PZ8CAAb87l9KdnU3alVfhPnAAR7euJL73HrrTeapPUQgh6oXG0H/XeVB2ujWGX6o4vf5vy//x3LrnCLWH8tWYr8j9LBnnJgtePKwbnsA93+4gwGawaMogmoX5giilFD9/s40fkz/D4/HQrVs3Ro0ahcViOe6xqn79lbSrxuEtKiLovPOIf/U/aL+zjxBCNASNof+u86cvhTjTjeswjrbhbSmqKuKl9S/R6spBeJuAgYVBGS76tAin3OXlX/M2+zP7b1q8nw1fZxFa2RpN09i4cSP//e9/KS8vP+6x7C1bEv/662h2O6WLF5P15FMntFqAEEKI+k+CMiH+Iotu4dFzHgXg892fszF3I02v6Qk6VG7OY3rPRKyGxg/bs5m2YDtKKVr3iiYsJgA9N5poV3dsNhtpaWnMmjWL3Nzc4x4voGcPmr3wPOi6JJcVQogGRIIyIU6C7tHdGdtmLABPrXoKPcZOUN8435dfb+fB7g4A3lz2Kw98moIj2MaYKT0IiwnAzAsmuqw3IcEh5OfnM2vWLFJTU497vOChQyW5rBBCNDASlAlxkkzqOYlQeyi7Cnbx4bYPCbkgEY/Fg81lo8XPKUwb1Q5dg7nr9nHX7F+wBFoYM9kXmFXlWQjL60HTmDgqKyvZtWvX7x4vYtw4mtxyCyDJZYUQoiGQoEyIkyTcEc6UXlMAmJE8g2xvLmEXtwKgpaULTVOWMPPqntgMnfkpWdz0/jpwGv7ArCJfYd/fgaFDL2Do0KEndMyoyZMIveQSSS4rhBANgARlQpxEY1qPoVtUN8o95Ty39jlCz05ARRtYdCv2LRrO5AXMuqYHATaD5btyueb/rcZt0/yBWe/hLRkwoD+67vur6fF4WLJkCS6Xq9bj+ZLLPinJZYUQogGQoEyIk0jXdB4951F0Tee7tO9YeWAlsVd3Q6GID2yLWlnK/v97jrfHtCAswMqG9EKueHMVpbriikf60Hlgs2r1zZ8/nyVLlvDuu+9SXFxc6zH9yWU7SnJZIYQ4k0lQJsRJ1i6iHePajwPgmdXPYEZaCLu4FQpoHdKDLpXnkPnRB8y95RxiQuzsOFjC399YSUZxpb+OilIX38zcRJukDjidTjIzM5k1axaZmZm1HtMICqT5m29ibdYMV1oa+ybchvk76TWEEELULxKUCXEK3NH9DqKd0aSXpPNOyjsED2hG1I2d0ZwG4fZYzrGNoHmui08m9COxSQD78iv4+xs/sz3LNxq29H872Lspl7VzcrjqsmuJjIykuLiYd955hx07dtR6TEtUFAlvv40RGkrlpk1kTLkH5fGcztMWQgjxF0hQJsQpEGQL4r6z7gNgVsos0ovTcbQNJ2ZSL2yJIeBS5H2wjeAVmUzrXEWf4HJySqq4/I2fWZ9WwIDL2xIa5aQkr5Kl7+zl8r9dTVJSEm63m9mzZ/Pzzz/XmjTW3jLpSHLZJUvIeuJJSS4rhBBnCAnKhDhFhicOp2/TvrhMF8+sfgalFJZQO1G3dCFoYDwApSsOEPBdEUN2fMnFxi6KK9xcM2s1v+QUM2ZKT0KjnBTnVvLt69u4ZOTf6dmzJwBLliyhtLS01uNWSy778cfkvv76aTtnIYQQf56sfSnEKbS3aC9jvxyL23Tz4uAXuSDxAv93FVvzyP9oB6rSS5W3gtU5X7MjyGCusz9eWwAvX9GDQQkRzHvxF4pyKgiJdHDJ5B5s3rGB2NhYWrZsedxjF8yeTdYTTwLQ9OmnCbt07Ck9VyGEOJUaQ/8tI2VCnEItQltwY+cbAZi2Zhr5lUeeinR2bELM3T2xxgdhN5wMjL2M/p6m3HjwM6JL93Pn7F/4atdBxkzp4R8x+/H9bfTr169aQJaWlkZ+LU9bhl91FU1uvRWQ5LJCCHEmkKBMiFPspi43ER8UT3Z5NtfOv5b04nT/d5YIB9ETuhHUz7ckU8ewvgyNuJirchbTJ38tD36Wwn83ZjBmSg/i24dz3rUdqtWdm5vL7NmzmTVrFunp6fxW1KSJR5LLTpwkyWWFEKIek6BMiFPMYXEwY+gM4gLjSC9J55r517ApZ5P/e82iEza6FRHj2qPZdKIdCYxodj0XN/etBjB94XZeXZXK6IndCY1y+vczvSY2m43w8HDKy8t5//332bRpU7Vja5pG038/RWD//qiKCl9y2VqCNyGEEHVPgjIhToOWoS3530X/o0NEBwqqCvjHt/9gcfriamUCukYRfXdPrE0DcRiBnF/agnfaNEMH3lm8nQc/S8Fr+qaA/pqcw5yn1qB5bNxwww20b98er9fLZ599xuLFi6s9calZrTR75RV/ctn0myW5rBBC1EcSlAlxmkQ6I3lvxHv0b9afSm8lk5ZMYu72udXKWCOdRN/ejcCzYkFB210lfBEZyfVZ33BwwQdM/O9qKqo8rJq3h4Kscua9+AtVpSaXX345/fr1A2Dp0qV8+umnuN1uf71HJ5d1p6VLclkhhKiHJCgT4jQKsAbw6vmvMrbNWExl8u/V/+bl9S9jKtNfRrMahI9tQ/jlbdGsOuG5Li6PHstgVzEhi2Zw9+vzGXpbZ0IiHRTnVjLvxV8oK3QxbNgwRo0aha7rbN68mZ9//rnasSW5rBBC1G+SEkOIOqCU4s1NbzIjeQYAI5NG8lT/p7AZtmrl3AfLyPvfNjzZFZjKJKVgGZuL15HWeigPTbiexW9spji3kpAoJ2Mm9yA4wsGvv/7K6tWrueyyy7BYLDWOXb5hA+njb0BVVRF22WXEPvkEmqadlvMWQog/qzH03xKUCVGH5u2exxMrn8CjPJwVexYvnfcSIbbqfy7NKi+F83ZTviEbgIzy3azJ+YZ9oQncNPFeVv8vrUZgVm1/0yQzM5NmzY4sdl7y/ffsv3simCaRd99F1O23n/qTFUKIv6Ax9N9y+1KIOjSm9RhmDJlBgCWANVlruH7B9WSVZVUro9sNwi9vS9jY1mDRaBbQmmHNxtOhvJSZ/3mZPjd08N3KzKlgy7KMGsdYtGgRs2bNYu3atf5twUOHEvuvRwHI/c+rFH766ak9USGEEL9LgjIh6li/Zv14/8L3iXJGsbtwN1fPv5od+dUXHdc0jaCzmhJ9e3csTRwEWkI5v+nVBAQN4rrZ6+lyTRt6jUjk7NHVs/ybpkl5eTlKKb755hsWLlyIafrmr4VfeeVRyWUfk+SyQghRxyQoE6IeaB/Rnv+N/B+tQluRXZ7N9QuvZ1XmqhrlbHFBRN/VA2eXSAzN4HYjlLtKdW6bs4Hs8nWUFuQBvhxm5cUudF1nzJgxnH/++QCsWrWKOXPmUFVVBdSWXDbl9J20EEKIamROmRD1SFFVERMXT2T9wfVYNAtP9n+SUa1G1SinlKJs5QEKv0kFU3HQrCI580NKjDIuun0SqZuCyU4rYcyUHgSF++aYbd68mXnz5uHxeIiJiWHcuHGEhoai3G723XY7ZT/9hBERQYs5s7E1b366T10IIY6rMfTfEpQJUc+4vC4e/ulhFu5dCMDdPe7mpi431fqEpGtfCbn/24ZZWIVHediQ9z2/lmzEEdoLpfUnLDqYMVN6EhRuB2D//v3Mnj2bsrIywsPDueOOO7BYLHhLy0i/7joqt27FmticFrNnY4mIOK3nLYQQx9MY+m+5fSlEPWMzbEwfOJ0bOt0AwH82/IenVj2Fx6yZU8yWEEzs3T2wtQvHolnoEzmCs6MuxlO8CU/5HAqyMpj34i+UFvhuV8bHx3PzzTcTExPD0KFD/SkzjKBAEt58Q5LLCiFEHZKRMiHqsQ+3fci0NdNQKAbFD+LZgc8SYA2oUU6ZiuJl+ylauBcdKHTn8/PBzyn2FGF1DiUivme1ETOv14thGP79S0pKCAoKwpW6l7Rx4/AWFhI0aBDxM15DqyXXmRBCnG6Nof+WkTIh6rFxHcbx0uCXsBt2lu5fyo3f3khuRW6NcpquETo4gehbu1Bu0wmzRjAk7npaBLbFGRJIUU4F8146MmJ2dEBWVFTEm2++yRdffIHRPIH412ei2e2ULl1K1hNPSNZ/IYQ4TSQoE6KeG5I4hFnDZhFmD2NL3haumX8Ne4v21lrWkRRGq3/2IaeJHZtu4eyoi2kR146QcDul+VXk7Ku5EHl6ejplZWUkJyfzwQcfQLt2NHvxBdB1Cj/+hN1DLyBnxgzcB7NP8ZkKIUTjJrcvhThD7C3ay23f38b+0v2E2cN49fxX6R7dvdayylSs/G8KCdsK0dHItmkEnNuEJZ88Q48LR3PW6EvR9CP/T7Zz504++eQTXC4XERERXH311VhWrODg1Gl4Cwp8hQyD4PPPJ/yqKwk455xq+wshxKnWGPpvCcqEOIPkVeRx5w93sjlvM3bDzvRzpzMkccgxyy9btIewH/YTgY4LL+uyv2Zf2Xbi2nVhyD8mEp0Y6y978OBBPvzwQ4qKinA6nVxxxRU0j4uj5NvvKJg7h4p16/1lbYmJhF1xBaF/G4MlPPyUnrMQQkDj6L8lKBPiDFPuLuefy/7J0v1L0dC4/6z7ubrD1ccsv3JjJoVzdtBV+eaR7S5NZkPO92DYGXH7FDoMOMdftqSkhDlz5pCRkYGu64wbN47WrVsDULlzJ4VzP6Loiy8wS0sB0Gw2Qi4cQdiVV+Ls3l0WNhdCnDKNof+WoEyIM5DH9DB19VQ+2vkRANd3vJ4pvaega7XfUvxlbz6LZyVzhccKQL4rh5UHP6XMU0S3C0Zz3vgbMCy+79xuN/PmzSM3N5cbb7wRu933xKZpmui6jllWRtE331AwZw5VW7f5j2Fv357wK68g5OJRGEGBp/L0hRCNUGPovyUoE+IMpZTi/23+f7zyyysADG8xnKcHPI3dsNdafkdWCS+9uZa7KgxC0XGZblbnfMmB8t2cNWYc5141zl/WNE0qKysJCPCl33C73bz22mu0adOG3r17Exsbi1KKypQUCmbPoXj+fNShpZv0gABCRo8i/KqrcLRrd4qvghCisWgM/bcEZUKc4b7a8xX/WvkvPKaHXjG9eOW8Vwi1h9ZaNj2vnIlvrebWIuiML//Y9uKtHIzoyJj7ziIwtPaAbvPmzXzyySf+z/Hx8fTu3ZtOnTphtVrxFhVRNG8eBXPm4kpN9Zdzdu9O+FVXEjxiBLq99rqFEOJENIb+W4IyIRqAVZmrmLx4MqXuUlqGtuT1oa8TFxRXa9ns4krGz1rD+dkursQXKOV5THYG2Lhwcne2LZ9PtwsuxOY8kqRWKcXevXtZt24d27ZtwzRNABwOB927d6dv376+dTSVonz1GgrmzKHk++/hUI4zIzSU0LFjCb/icmwtWpzaiyGEaJAaQ/8tQZkQDcTOgp3c9v1tZJdnE+mMZOaQmXRo0qHWskXlbm54bw1B6aU8jJNANNwaFLTKZfGi/0d40zguuvufxLRsXWPf0tJSNmzYwPr16yksLATgrrvuokmTJtXKubOzKfrsMwo++gjPgUz/9sB+fQm78kqCzz9fVgsQQpywxtB/S1AmRAOSVZbFbd/fxu7C3QRYAnhx8Iv0b9a/1rLlLg+3/nc9e3blMZUAWuF7OnNXVTIbDnyHZhice9V1dB9+MRabrcb+pmmyZ88e9u/fz3nnneff/vXXX+NwOOjVqxfh4eEor5fSZcsomDOHsmXL4dA/OZboaMIuu4ywy/6ONTa2Rv1CCHG0xtB/S1AmRANT4iph8uLJrM5ajaEZPNb3Mf7W5m+1lq3yeJkydyOLUjK5Cwd/wxd8FZDPsvQPqfSWYQ8MpH2/gXQ+bxixrdoc/9glJbz00kv+25utW7emd+/etGnTBsMwcO3fT+FHH1P46ad48/J8OxkGQecNJvyKKwns30+S0gohatUY+m8JyoRogNxeN4+ufJRvfv0GgNu73c6EbhNqzSPmNRWPzEth9pp9DMXCI1oAFgVVys0vZd+RnrMZgK5DRnDBLXce97her5edO3eybt069uzZ498eHBxMr1696NmzJyEhISiXi+JFiyicM5fytWv95azNmxN+xeWEjh0rSWmFENU0hv5bgjIhGiilFP/Z8B9mpcwC4G+t/8ajfR/FqltrLTt94Q7eWLqHzl6D6VoAobqGAiojFAf0bbQeNZBm7Xxz1A7s3M7Kj/9Hp0FDaN3nHKx2R4068/PzWb9+PRs2bKC8vByAESNGcM4551QrV7V7NwVzP6Jo3jzMkhIANKuV4BEjCL/qSpw9ekhSWiFEo+i/JSgTooH7aMdHPL36aUxl0r9Zf14Y9AKB1tqTu76xdA/TFmwnxqvxvAokyXLkVqI72Eb4eQmEnhXL9+/OZNP3CwGwOZ2063suHQcNoVm7jjUCKI/Hw7Zt29iwYQOXXXYZTqcTgG3btpGXl0f37t0JCgrCLC+neP58CmbPoXLLFv/+9rZtCbvyCkJHj8YICjrZl0cIcYZoDP23BGVCNAJL9i3hvqX3UemtpENEB2YMmUFUQFStZWevSeehz1MI9MLNAaH0KTWJM8ByKNjSg61YuoTwa9lGUlZ8T3HOQf++YTFN6TjwfHqPHovVdvy8ZG+//bZ/OaeOHTvSu3dvEhMT0TSNipTNFMyZTfE381GVlQBoAQGEXnwx4VddiaND7U+VCiEarsbQf0tQJkQjkZKTwp0/3kl+ZT5xgXG8PvR1Woa1rLXsN5symTR3A26vwq5pXBUWysAiRRu7gVbhyz2GRcPVLAi9k8n2LcvYuWoF7soKgptEcdNrs9B139Ocpun1vz9MKUVycjLr1q0jIyPDvz0yMpLevXvTrVs3nE4n3uJiiuZ9QcHcubiOmqPm6NaV8CuvIuTCEeiOmrdOhRANT2PovyUoE6IR2Ve8jwnfTyC9JJ0QWwj/Of8/9IrpVWvZn/fk8fx3O1ifVuDboCAhxMHEhEjOyfPAwXJ/2YoQOyGDYsnz7Eah6DRoCABej4d3p0wgvn0nOg4cQkLHzjWerjxw4ADr169n06ZNuN1uANq0acPVVx9ZZF0pRfnatRTOmUPxou/hUDk9NJSwMWMIu/IK7ElJJ+06CSHqn8bQf0tQJkQjk1+Zz10/3sWmnE3YdBvPnPsMw1sMP2b5nQdLmLt2H5/9sp+Ccl8wpAF3B4RwbqkiRsM/j6zComPrFU38yCQMu4W9yev5dOpj/rpCoqLpeO55dBw0hPDY6isOVFZWkpKSwtq1axk8eDAdO3YEfH9nd+7cSZcuXbDb7Xhycyn89DMK587FfeCAf/+Ac84h/MorCR5yPpq15sMMQogzW2PovyUoE6IRqvBU8MCyB/hx348A3Nf7Pq7rdN1x96nyePl2y0Hmrk1nxW5fjjFNwRDdztWanSSv8s87c2sQcV4Cgec05WDmr2xd+gM7fl5OVXmZv764dh0ZdM0NxLWtPj9MKYVSCv3QiNrSpUtZvHgxNpuNrl27HlkQ3eul7KefKJg9h9KlS/1JaY0mTQjo3Rtnl844unTF0akTRlDtDzYIIc4cjaH/lqBMiEbKa3qZvnY6s7fPBuCaDtdwb+97MX4z/6s2aXllfLRuHx+v2092SRUAzbwad1mD6OmBAP3QE5iGRkC3KFytwojoHMqv61azZdmPpG3cgFIm1z37KlGJvtuOlaWl2AKcNeafJScns3z5cvIOJ5ul5oLo7owMCj7+mMJPPsWbm1u9sZqGrVVLnF264ujS2fezXVu0WlYpEELUX42h/5agTIhGTCnF+1ve54X1LwBwQeIFPDPgGRyWE5s87/GaLN6Rw5w16SzekY2pwK5gmNXO9Y4AYku9/rJFho61ZzQtLkrCVV7ErxvW0XXIkdum8197gX1bNtHh3PPoNHAITeITqrWztgXRQ0JCmDhxIobhC+SUy0X5hmQqUzZRkbKZipRN1dbdPEyzWrF36ICzc2ccXbvg7NIFW1KSrCYgRD3WGPpvCcqEECxIXcDDPz2M23TTI7oH/znvP4Q5wv5QHVlFlXy8bh9z1+1jf0EFAB0xmGQE0N4D+qFbm2VKUZkYQvPRrQiPDwbA9HqZdddNlOTl+OuLbd2WTgOH0K7/QJxBwf7tJSUl/ic3W7ZsySWXXOL/bteuXSQlJWE5aqFzT24uFSkpVKakUJGymcpNm/AWFdVovx4UhKNTJ5xdu+Do3AVn1y5YYmMlca0Q9URj6L8lKBNCALA2ay0TF0+kxFVCi5AWvD70deKD4/9wPaapWLEnlzlr9/HdlizcXkVzU+MW5aCfbsF2KMhxmYqCEDvtb+xEYFwQHrebX39Zw5alP5C6YR3q0GiYYbHQ48LRDLrmxt8cx8TlcuE4lBIjIyODt99+G6fTSVxcHFFRUURHRxMVFUVUVJS/nFIK9/79VGzaRGXKZl/AtnUrqqKixrkYUZE4DwVojs5dcHbpjBEW9oeviRDir2sM/bcEZUIIv90Fu7nth9vIKssiwhHBzCEz6RTZ6U/Xl1daxWe/ZDBnbTp7csoIUHCNaecS3Ubo4REoHZxdogge0Aw9NgCL1aCssIDtK5ayZekP5KSlMuDK6zj7b5cD4HG5KMjM8M9FO2z79u18/fXXlJaW1tqWSy65hB49egBQWlpKYWEhUVFR2O12lMdD1Z49vtG0TSlUbE6hasdO8Hpr1GNt3hxnly6++Wldu+Lo0AH90CoFQohTpzH03xKUCSGqyS7P5vbvb2dHwQ4choNhLYZxUdJFnNX0LCy65fcrqIVSinVpBcxZs49vUg7gcpsM9Vr4u26no3ZkYn+BgrK4IJqPTKJp61A0TSN7768EhUcQEBoGwPaVy/jmlWeJbtGKToPOp/2AwQSEhAK+BdEPHDhAdnY2OTk5/p8lJSWMHz+eFi1aAPDLL7/w5ZdfAhAaGuofTTs8shYTE4Ph9VK5bZs/UKtMScGVllbz5AwDe5s21QI1e+vWaJY/d62EELVrDP23BGVCiBpKXaXcu/ReVhxY4d8W4YhgWOIwLmp5Ed2iuv3puVZFFW6+3HiAOWvS2XKgmDboXI6NC7BiwVdnuak46LQQMSiBtv3jsNqPBG6rP/+IlR9/iOn1rSygGwZJPfrQadD5tOzZB8NSM0dZRUUFVqvVP9ds7dq1LF269Jijatdeey2tWrUCIDMzk6ysLKKjo4mw2/Hu2FFtfponJ6fG/prDgaNjR39aDmeXzlibN5f5aUL8BY2h/5agTAhRK1OZbMjewPxf5/Nd2ncUVhX6v4sLjGNE0ghGJo2kbXjbPx1sbM4oYvaadL5IPoC9yss1po2LNBsBh+rzKMV+LxjdIulycSuCwn3raVaUFB+6vfkjB3/d5a/PGRzCjS+/hePQwuVlhQU4goIxjjFqVV5eTk5OTrVRtezsbG699Vb/vw8//PADy5cv9+8TFhZWbVStVUQEaseOQ/PTNlG5eQtmSUmNYxmhoTj8T3v6AjVLVO3rjwohamoM/bcEZUKI3+U23aw6sIoFqQv4If0Hyj1HllhqFdqKC5MuZGTSSBJCEo5Ty7GVuzx8symTuWv3sSmtgItNK1dhp+mhFBVKKaxtwgkf0hxbi5BqQWDuvjS2LP2BbT8tITQqhquees7/3btTbqMgM4OQyChCo2MJjYklNDqWsJhYwps2I7pF7Wt/Hm39+vWkpKSQk5NDWVlZje8nTpxIeHg4AJs3bybzwAHCNZ2QvFycu3bj3byZym3bUC5XjX0tTZv60nJ07owtMRFrsziszZphhIfLqJoQv9EY+m8JyoQQf0iFp4Jl+5exIHUBy/Yvw226/d91iezChUkXMqLFCKIC/two0K6DJcxZu4/P1u+nTbnJeGWn61Fz2SxxgRywGJjNg+lwbjMCQ32jZ6bXS1lRAcERkYAvkJvxjyupqiWQAohq0ZLrpv/H/3nx+29jWCz+4C0sOpbgyKhqo2xlZWXVRtXy8/O5+uqr/asPfPzxx2zZsqXaccLDw4mOjCRcN+hhevFu2UplSgpVu3f7VyH4Lc3pxBoX5wvS4nyBmjUuDluzZlji4rBERkpONdHoNIb+W4IyIcSfVuwq5oe0H1iQuoDVWasxlS+NhYZGn9g+jEwaydDEoYTaQ/9w3VUeL99tOcjctfvYvzufy7ExHCv2Q/POKkzFXreJ3j6CDuc39z8YcDRlmpQVFlCYnUXRwSyKDv0szD5Ik/gEht1yl6+cUvzn2kvxuKuPZmmaTnBkFC269uCCW+70b89J30tQeASOoOBqx9y8eTN79+71B24VR6XZ0HWdhx9+2J/odtGCBRzcu5fQ8gpCcrIJyjpIQFoaZGUdM1jzt8tmw9q0qS9Ya9bMP8J2OICzREWhGb+/MoMQZ5LG0H9LUCaEOClyK3L5du+3LEhdwMacjf7tFt3CgLgBjGw5kkHxgwiwBvzhutPzyvlo3T4WrtnHgFLFZdgI1XwjRR6l2OcyyQ9z0Oq8BNqeFYPN8ceefPR63GxctMAXsB3MpCj7IEUHs/xBWus+fbnk3oeBQwHc9X/HU1WFzRngH1ULjfHdFo1KTCKubQeUUtVG1ioqKhg8eLD/mG+++SaZmdVXG9A0jfCwMCKDgxndvj2eAwdwHzhAVUYGnowM3AcO4Mk6CIdyuB2T1Yo1NvaoQC0Oa1yzIz9jY+TpUHHGaQz9d50HZTNnzuS5554jMzOTTp068fLLL3Puueces/zSpUuZMmUKW7ZsIS4ujn/+859MmDDhhI/XGH6pQtS1/SX7Wbh3IfNT57Or4KiJ+BYngxMGMzJpJP3j+mM1aj4peTyHl3X6ZHUa+o5CrlI2Wh6VUuOg2yTg7Ka0G90S3WEhL6OU/MwywmICCIsJwGo78dEjpRRlhQUUHczCYrMR07I14Fuj8/17b6e0IL/W/Vr1Pocx9z3ir+OzaY8TFB5BWExTQqNj/PPasvMLOHjwoP9WaE5Ojn9kLSIigrvvvttf5zvvvENJSQnR0dFENmlCE6uNMLeb4JISyMzEfShgc2dk4M7KAo/n+CdnGFhjYo7cGv3NSJs1NlbWBhX1TmPov+s0KJs7dy7XXnstM2fOpH///rz55pvMmjWLrVu30rx58xrlU1NT6dy5MzfffDO33norK1as4Pbbb2f27NlceumlJ3TMxvBLFaI+2V2wm/mp85mfOp+M0gz/9hBbCBckXsDIpJH0iul1QguhHy2rqJJP1qWzaVUGQ4oVfbH4l3ICqLTrVBgaBQUuSr1QYirMICsBMQGExQYSFhNA2z4xOIP/XPDhdlVRnJ1NUXYWhYdvjWZn0ax9J/qMGgtAeVEhr99yTa3725xOOg0eyvnjbwXA6/Hwyw8LqTI1DLuddu3b4wwOwRYQwLPPPkdVVVWt9SQmJnLDDTf4P+dmZxNQWQk5Ob4g7eiALcM38qbc7lrr8tM0LNHR1QO1o3/GNUV3nNj6qEKcLI2h/67ToOzss8+mZ8+evP766/5tHTp0YMyYMUydOrVG+fvvv58vv/ySbdu2+bdNmDCBjRs38vPPP5/QMRvDL1WI+kgpRUpuCgtSF7Bw70JyK3L930U7oxmeNJyRSSPp1KTTH3ry0DQVK/fksfCnvUTvLGKgshDJsSfBu5Wi1KsoMSHqnBiadmiCPTaQXdsKSNuWT1hMAOGHRtbCYgJwBP6x0byjuSrK2b1utX8+2+HgrTQ/D4CeIy/hvOtvBnzpO9649doadShNwx4SRnyvs4nr3sd/OzRz/37cpklsRDgX9D8HZ3AIzuAQ3v7v/ygvLycsLKzaMlOHX1aLBU9ubrUgrVrgduAAqrLyd8/NiIrEFtcMa0IC1vhm2OLjscbHY41PkNuj4pRoDP13nQVlLpeLgIAAPv74Y/72t7/5t0+cOJHk5GSWLl1aY5+BAwfSo0cPXnnlFf+2zz//nMsvv5zy8nKs1pr/eFZVVVX7P8zi4mISEhIa9C9ViPrOa3pZd3Ad81PnsyhtESWuI3m9mgc396fYaBn2+ykrjpZXWsXyXbnsyyyh9EApKrcCZ4mbpl5ooXTi0KuNplVrE4pyL5R4FSXm4cBN4Q2wEhwdwPBbOvuf9Kwsc2O1GxiWP/cEpMfloijnIFabnZCoaABK8/NY9PZrVBQXU1Hie1WVH3lytMeFo/yjaocDONOwgK6jH5r7pnSdslZdULUk0AUID3DQv2M7XwAXEkJGXgGxzeJp3rIVdrvv3JRSePPza46wZWTgPuB7b5aX11q/n2H4HkRIiPcFa818AZstwffTiIiQlB/iD5Og7BQ6cOAAzZo1Y8WKFfTr18+//ZlnnuH9999nx44dNfZp27Yt48eP56GHHvJvW7lyJf379+fAgQM0bdq0xj6PP/44TzzxRI3tDfmXKsSZxOV1sSJjBfNT57Nk3xIqvUdGadqFt2Nky5Fc2OJCmgbV/Pt9IpRS5Ja62JtXxt6sUnL3F1OVVYZRUEVwuYcEpZOIjoNjBwnlpqIowoaKdBDYNIjcX0vYva0AW4SD8EO3Qg+/wmMCCAi1nZSgw+vxUFlaQkVJMTaH0x/AlRcXsfrzj/zBW0VxMZWlvveuigo6DRtJ+yEjfSNqGfvZtPInTLsTS3E+joP7fNdF1ylt19N/rMPLTeVs3USgzUpYYAAR4WH+EThncAgRzRKITmqFt7AQ1/4M3Pv34zmQgWv/ftz79uPevx93Rsbv3h7VAgKwNWt2aGQtHlv8oRG3Zr73emDgX752ouGRoOwUOhyUrVy5kr59+/q3P/300/z3v/9l+/btNfZp27YtN9xwAw8++KB/24oVKxgwYACZmZnExsbW2EdGyoQ4c5S7y1m8bzELUhewImMFHnVkwnqP6B5cmHQhwxKH0cTZ5KQczzQVmcWV7M0pJWNfMSUZJZg5FdiLXURUmiQqnXDt2KNhLlNRaipKvBz6qShViqtfGIj10BOgezfl4q7yEhYTQGi08w8/GfpHedxuTK8Hm8O3SHpVeTnbli+moqSYspIiqkp8QV5xSSlZuh3lDMDtrfk0p7UgB0eWb61PpWlURTUjPrEFQ668hqioKPRDT6FarDYsdjsWux2rzYbFZsfQdOLjEuiW2Br3/gxc6ems2bcLraQUrbQMwzTRTYVhmhimwunyEFF+JBgvj47EHhuLs2lTHM3icTRvjqN5c18Q17QpWi13RUTDJ0HZKXS6bl/+VmP4pQrREBRWFrIofRELUhewLmsdCt8/VYZmcE7Tc7gw6UKGNB9CkC3olBzf7TXZX1BB+v5ictOLqMgqQ8+vJLDUQ6wHmirtmLdC3ShyrBqlQRZUkYeSEg+lpqLUC44we7VRta7nx9f5rbyysjJyc3PJzDxA2q5d5BXkExcWSrTTRkVJMXn5hWwtrf6gQVBQEGX5vnmBtryD2Ap9a4B67Q4q4ttgczhwhoRyuIspzs32lc3PxpZ/EADTaqc8sR2GpmFToLxeME0qrb7A1VqYiz33AABKt1DWqhO6UlgUYBhouo5bmYBGOF6SQgKwhoSAxcaa/QfRdA3DYvW3wfR60TWN5k1jOLtLZ9A0FIr5y1ZgsVhxBAZiGAaGYeCqKEcDoptE0K19O9A0NDRWJW/EsFoJDo/wl60sKQZlEhIUTFLzBF9ZTWPvvv3ohkFYdAy6pqErRXleLriqsGo6IVYLyuUGt5vKinJ0j5cguwPd5Qa3i/LiIryVVWhKoWmgo6HpvnZo4E9azG978aO7daVQSuFRXjxeL17TxGN68Xg9eEwTj2ni9XrwKt92r2niNb14lYnX68WrvJim6duuvJjK9H1Wpu+98pVXysRtNsVUQSi8aM50bn3pv3/9D+dRGkP/XecT/Xv16sXMmTP92zp27Mgll1xyzIn+X331FVu3bvVvu+2220hOTpaJ/kI0YAfLDrJw70IWpC5gS96RjPk23caghEFcmHQhA+MHYjfsp6U9lW4v6dmlZPxaSHFGCZ7scmyFLsIqvcR5NezHCbLKD4+oeRUlhkbEqOZEJ4biCLGz4eM9VJW6CYl0EhbpJDTKSUgTByGRTgJCbGh63QRveXl5rFmzxp++47cLufft3ZvuHdvjdlVx8OBBvlq87Jh1JYQEEh9gw11VRWllJdsrjp1zzZqXhSN7PwCmxUpZm27HLnv0yJ5uUNquxzHLWgpzcWbu9ZXVNErb9zp22eICnBl7fGXBV/YYv1+jtIiAfUdSwJS07QHHSOJrlJcQkHZkmk5pm64oy5EngTXTBHwBlVFZTkD6Tv93ZYntURYrAS63L2BTikqLgVfXMKoqCUnfdWg7FDdvhWm1E1peiX6obJnNitvQMNxuIvfuRFOgKUVBsxZ47A6alJajKwUKigJDcBk6mtIIzy5HswSgGU5KwxyYVo3Ygkx0dDTNoCAsEWXo2L0GPVJ30HXejGNe1z+jMfTf9SIlxhtvvEHfvn156623ePvtt9myZQuJiYk8+OCDZGRk8H//93/AkZQYt956KzfffDM///wzEyZMkJQYQjQiacVpzE+dz4LUBaQWpfq3B1oDGdJ8CMMShxEXFEeoPZQwexg24/Tm2youd7F/bxHZaYWUZ5ZBXiUBJW6iXIrQ48xbA/AqhVeBB/Ao32fPoc+VKHYHgtvQcBsaTpfCo+tU2jUqHQYeu4ayGSirjmYzwOb7abEa2Cy672Xo2A+/t+jYjOrf2Sxa9W3+7Yf2M3R0XaO8vJz8/HzMQ0lsQ0NDCQ31rdrgcrk4ePCg/5yUAhMOjVZpBAQGEhgcgtdUuN1ucnNzMQ+N5igFpgKFQikNq92OzWrH7arCVV5Ofm4OWkUZ9goXKicbcrLJzUjFLC5CLyrAKCrARMOja1QGBuJwe4kvKD7UENiUEI3X0NC8XoxD895MDaqCw3B4vCTmlWDqOqahszs6HLfFguGqwlFSiOJQUNa0OVZTEVVSganrKF3jYGgQHsPAUllGQLYvIbDSoCipA5qmE+D2YGo6pq5TYbdi6jqWilIC03ehDgV4xe16oo7xxKpeUUbg3iNZB0pbd0FZa/8fEEuVi6b7MzE0K4ZmZV+zCFzHyM9n9+oMyI/E0CwYupWVIVkUWWpPveJQVq6pGuj//LVtPVl6Ya1lQ0wnoyu70vrZC2v9/s9qDP13vUge++yzz5KZmUnnzp156aWXGDjQ94sfP348e/fuZcmSJf7yS5cuZfLkyf7ksffff78kjxWiEVJKsaNghz9AyyrLqrWc0+L0B2ihttAj7+3V3x+9LcQWgkU/+XO/8nPK2L+7gML9xbgOlmMtdBFa4SXSe9IP5edCUaEU5RpUoA69oBxF+aH3h7eX1/L+t2VcmoZh1bEa+lGBlML0/zzy/o/1Ll7Qq9D0KjSjCk2vBL3yqPe+n9U/V6EZh8rpVVhVBZFlLqILFdGFEF2kiCnE/znkyKpXuA1wW8BlgMt61GeL76fb0Pyf/dsOvz/Ody7dwG0YuCwGXt2GbgRg6AHohhOr7sSiB2DXnTiVHady4MSOAxtO04ZD2bBjxW5asSkdm7JgURo200KoCsBq6lhNjVJPOZgKw9TA9I1ymRqAwlAGMerIsmYZej4uPL5Al0MB76H3FnRamjH+snv0LCo0V41yCoWBTldvIgqFqZlsMzIo1svRHTY0HZSu4XJX4vG4cBhWhnW/gLCL/9jT07+nMfTfdR6UnW6N4ZcqRGNjKpPk7GTmp85nTdYaCisLKXIV+dfi/DOCbcGE2g4Fa47QI++PE8wFW4P/1Pww5TVRLhNvpQdXhRtXhQd3hQdPpQdPhRd3hQt3mQfNVJhVXpTLQ3laKVqVie7xTZa3aBoWDQzAomucypUvq1BUonDjmz/nQeHBxKOZeDFxa168mhe35sGrefFonkMvNx7djUd34dUO/dRdePQqvJrLv5/H//IceU/1z9Xqp5Z9ABMrJlYUNnTNicNlw8CGbnXg1AIIxEGA/2X3vTQ7AcqGU7PhVFac2HBgwaEs2JUFmzJ8L1PH6tWwmDqGF3Qv6B4FbhPlMVFuE7ynt3s1lcKL77BexaH3vm3NOjVBtxloVp3crHKqXF4MhwWL04Il0IIt0IotyIY91IYt2OYvqx0aedUPj8AaWp3NgWwM/bcEZUKIBslUJqXuUooqiyhyFVFYVUhhVSFFVUUUVRUd832Ju+T3Kz8GQzP8I22/F8CF2cMIs4cRYgvBaXGiaRpe04tHefCYHtxed7X3buX2vTfdNb6vqnRRUeilqsCkssAEuwdrq3KU24tZaeL+b1MMdCwaWABDwx/EaYGVVLXIwuLWsXgMAvPCMNAwNIUFsCodq2lg81qxqjM4IazhmySvvKbvfurppOEPcCoqvLjc5qGgSR0VPPnKtO3X1B8EbV6ZSWFuJV7UodvZR8pi0bjskbPQ7Qaa1SDlpwOUFFQSEGrHGWzFGWzDGWwjIMSGM8iK5Q8sMVZfNYb++wz+GyaEEMemazohthBCbCEkkHDC+3lMD8WuYgqrCimuKv79YM7le1/hqcCrvORX5pNfWfu6mMdi0SyYmH9pZK+acmDdkY+2ng6CqyIIrmpCSGWTau+zLKkss88FO2hK5+Ztz6P/ZpzNq3kpteWwP2wrGxIX4DTtOL0OEgvbo6NjoOPQbTh0B07dhkO3Y7XrWIJNnLqTAM2JoygEu2bFptmwaRasWLFiwaZZsFmtBDrtWDDQTY2KYhd4TQ7dB/UFUabpv1Wn6xp4FcprYrpMlHkoYjGPev2WV6F+M3KlAAwNZWhg6NiCbWg2Hc2ik59TgcvlxWP6nsR1exQujy+YsgVb6XVREprVQLPpLP90N4V5lYdGqI4arQLsIVaumzrAP7r02fPrydxd5GuABjaHBZvDwOa0EBBi4+xLWvvbF+awYimswhl0OMiy+oKsYBt2p6Xagx/dLqi5NKE480hQJoQQR7HoFiIcEUQ4Iv7QflXeqlqDtqODu2rfHxq985ieavnYfsuqW7HoFv/Pw+9/u/233//+Ng2rXkJTPZaz9Ht920wrVRY3ZrGJWWTgKdbwFGkYpkFoVSQto4cwYdRYLLoFw7Tw/aP7j9nupG6RjLy6q//zzNsX+4InP++hVxUJHcIZfV0n/zdvT1qKq7L2iXaxLUO59J4jT0u++8+fKC921SinAZHNAvn7vb18o2NexWfPrac4rxIPvqDp6NaExwYwbsqRen94cjX5ObVPeg8KgEF94/yfHZvzCcyvxOYwsDot2B0WbE4Dq8OCI9Ba7XbfBTd2Qtc1rA4Dq9047q3AjgPijvmdaJgkKBNCiJPAbtiJDogmOiD6hPdRSlHuKafEVYKu6TUCJ0M7fqd9SnSq/tE0FWWFVZTkVWC1W4iKCgbA6zHZ0qrk0GT+I5P6lfL9JzQ6oFo9TZoFosya5QCCwqsvbh7cxIm7yoMyfZPMOWofZ3D1fJSOICum75HNGmUtTgu680g357EZEGgl4NDI1NGjVEER1dvQb2xrvB7T/73NYTn008CwVk8oPGhcu+Nf06PPLUIWchfHJnPKhBBCCFHvNYb++8+tpiuEEEIIIU4qCcqEEEIIIeoBCcqEEEIIIeoBCcqEEEIIIeoBCcqEEEIIIeoBCcqEEEIIIeoBCcqEEEIIIeoBCcqEEEIIIeoBCcqEEEIIIeoBCcqEEEIIIeoBCcqEEEIIIeoBCcqEEEIIIeoBCcqEEEIIIeoBCcqEEEIIIeoBS1034HRTSgFQXFxcxy0RQgghxIk63G8f7scbokYXlJWUlACQkJBQxy0RQgghxB9VUlJCaGhoXTfjlNBUQw45a2GaJgcOHCA4OBhN005q3cXFxSQkJLBv3z5CQkJOat3iCLnOp4dc59NDrvPpI9f69DhV11kpRUlJCXFxceh6w5x91ehGynRdJz4+/pQeIyQkRP7CnwZynU8Puc6nh1zn00eu9elxKq5zQx0hO6xhhppCCCGEEGcYCcqEEEIIIeoBCcpOIrvdzmOPPYbdbq/rpjRocp1PD7nOp4dc59NHrvXpIdf5z2t0E/2FEEIIIeojGSkTQgghhKgHJCgTQgghhKgHJCgTQgghhKgHJCgTQgghhKgHJCg7SWbOnElSUhIOh4NevXqxfPnyum5SgzN16lT69OlDcHAw0dHRjBkzhh07dtR1sxq8qVOnomkakyZNquumNDgZGRlcc801NGnShICAALp378769evrulkNisfj4ZFHHiEpKQmn00nLli158sknMU2zrpt2xlu2bBmjRo0iLi4OTdOYN29ete+VUjz++OPExcXhdDoZPHgwW7ZsqZvGniEkKDsJ5s6dy6RJk3j44YfZsGED5557LhdeeCHp6el13bQGZenSpdxxxx2sWrWKRYsW4fF4GDZsGGVlZXXdtAZr7dq1vPXWW3Tt2rWum9LgFBQU0L9/f6xWKwsWLGDr1q288MILhIWF1XXTGpTp06fzxhtv8Nprr7Ft2zaeffZZnnvuOV599dW6btoZr6ysjG7duvHaa6/V+v2zzz7Liy++yGuvvcbatWuJjY3lggsu8K9BLWqhxF921llnqQkTJlTb1r59e/XAAw/UUYsah+zsbAWopUuX1nVTGqSSkhLVpk0btWjRIjVo0CA1ceLEum5Sg3L//ferAQMG1HUzGryLLrpI3XjjjdW2jR07Vl1zzTV11KKGCVCff/65/7Npmio2NlZNmzbNv62yslKFhoaqN954ow5aeGaQkbK/yOVysX79eoYNG1Zt+7Bhw1i5cmUdtapxKCoqAiAiIqKOW9Iw3XHHHVx00UUMHTq0rpvSIH355Zf07t2byy67jOjoaHr06MHbb79d181qcAYMGMAPP/zAzp07Adi4cSM//fQTI0eOrOOWNWypqalkZWVV6xvtdjuDBg2SvvE4Gt2C5Cdbbm4uXq+XmJiYattjYmLIysqqo1Y1fEoppkyZwoABA+jcuXNdN6fBmTNnDr/88gtr166t66Y0WL/++iuvv/46U6ZM4aGHHmLNmjXcfffd2O12rrvuurpuXoNx//33U1RURPv27TEMA6/Xy9NPP81VV11V101r0A73f7X1jWlpaXXRpDOCBGUniaZp1T4rpWpsEyfPnXfeyaZNm/jpp5/quikNzr59+5g4cSLfffcdDoejrpvTYJmmSe/evXnmmWcA6NGjB1u2bOH111+XoOwkmjt3Lh988AEffvghnTp1Ijk5mUmTJhEXF8f1119f181r8KRv/GMkKPuLIiMjMQyjxqhYdnZ2jf9DECfHXXfdxZdffsmyZcuIj4+v6+Y0OOvXryc7O5tevXr5t3m9XpYtW8Zrr71GVVUVhmHUYQsbhqZNm9KxY8dq2zp06MCnn35aRy1qmO677z4eeOABrrzySgC6dOlCWloaU6dOlaDsFIqNjQV8I2ZNmzb1b5e+8fhkTtlfZLPZ6NWrF4sWLaq2fdGiRfTr16+OWtUwKaW48847+eyzz/jxxx9JSkqq6yY1SEOGDCElJYXk5GT/q3fv3lx99dUkJydLQHaS9O/fv0ZKl507d5KYmFhHLWqYysvL0fXqXZ1hGJIS4xRLSkoiNja2Wt/ocrlYunSp9I3HISNlJ8GUKVO49tpr6d27N3379uWtt94iPT2dCRMm1HXTGpQ77riDDz/8kC+++ILg4GD/6GRoaChOp7OOW9dwBAcH15inFxgYSJMmTWT+3kk0efJk+vXrxzPPPMPll1/OmjVreOutt3jrrbfqumkNyqhRo3j66adp3rw5nTp1YsOGDbz44ovceOONdd20M15paSm7d+/2f05NTSU5OZmIiAiaN2/OpEmTeOaZZ2jTpg1t2rThmWeeISAggHHjxtVhq+u5un34s+GYMWOGSkxMVDabTfXs2VPSNJwCQK2vd999t66b1uBJSoxT46uvvlKdO3dWdrtdtW/fXr311lt13aQGp7i4WE2cOFE1b95cORwO1bJlS/Xwww+rqqqqum7aGW/x4sW1/pt8/fXXK6V8aTEee+wxFRsbq+x2uxo4cKBKSUmp20bXc5pSStVRPCiEEEIIIQ6ROWVCCCGEEPWABGVCCCGEEPWABGVCCCGEEPWABGVCCCGEEPWABGVCCCGEEPWABGVCCCGEEPWABGVCCCGEEPWABGVCNEB79+5F0zSSk5Pruil+27dv55xzzsHhcNC9e/dayyiluOWWW4iIiKh37a9LS5YsQdM0CgsLj1nmvffeIyws7LS16bdatGjByy+/XGfHF6IhkKBMiFNg/PjxaJrGtGnTqm2fN28emqbVUavq1mOPPUZgYCA7duzghx9+qLXMwoULee+99/j666/JzMw8acs6jR8/njFjxpyUuhoSCaSEqF8kKBPiFHE4HEyfPp2CgoK6bspJ43K5/vS+e/bsYcCAASQmJtKkSZNjlmnatCn9+vUjNjYWi6V+Lc/r9XplIWshxCkjQZkQp8jQoUOJjY1l6tSpxyzz+OOP17iV9/LLL9OiRQv/58OjPM888wwxMTGEhYXxxBNP4PF4uO+++4iIiCA+Pp533nmnRv3bt2+nX79+OBwOOnXqxJIlS6p9v3XrVkaOHElQUBAxMTFce+215Obm+r8fPHgwd955J1OmTCEyMpILLrig1vMwTZMnn3yS+Ph47HY73bt3Z+HChf7vNU1j/fr1PPnkk2iaxuOPP16jjvHjx3PXXXeRnp6Opmn+a6CU4tlnn6Vly5Y4nU66devGJ5984t/P6/Xyj3/8g6SkJJxOJ+3ateOVV16pdo3ff/99vvjiCzRNQ9M0lixZUustweTkZDRNY+/evcCRW4Jff/01HTt2xG63k5aWhsvl4p///CfNmjUjMDCQs88+u9q1TUtLY9SoUYSHhxMYGEinTp2YP39+rdcO4IMPPqB3794EBwcTGxvLuHHjyM7OrlFuxYoVdOvWDYfDwdlnn01KSsox69yzZw+XXHIJMTExBAUF0adPH77//nv/94MHDyYtLY3Jkyf7r8thK1euZODAgTidThISErj77rspKyvzf5+dnc2oUaNwOp0kJSXxv//975jtEEKcOAnKhDhFDMPgmWee4dVXX2X//v1/qa4ff/yRAwcOsGzZMl588UUef/xxLr74YsLDw1m9ejUTJkxgwoQJ7Nu3r9p+9913H/fccw8bNmygX79+jB49mry8PAAyMzMZNGgQ3bt3Z926dSxcuJCDBw9y+eWXV6vj/fffx2KxsGLFCt58881a2/fKK6/wwgsv8Pzzz7Np0yaGDx/O6NGj2bVrl/9YnTp14p577iEzM5N777231joOB3aZmZmsXbsWgEceeYR3332X119/nS1btjB58mSuueYali5dCvgCwvj4eD766CO2bt3Kv/71Lx566CE++ugjAO69914uv/xyRowYQWZmJpmZmfTr1++Er315eTlTp05l1qxZbNmyhejoaG644QZWrFjBnDlz2LRpE5dddhkjRozwn+8dd9xBVVUVy5YtIyUlhenTpxMUFHTMY7hcLp566ik2btzIvHnzSE1NZfz48TXK3XfffTz//POsXbuW6OhoRo8ejdvtrrXO0tJSRo4cyffff8+GDRsYPnw4o0aNIj09HYDPPvuM+Ph4nnzySf91AUhJSWH48OGMHTuWTZs2MXfuXH766SfuvPNOf93jx49n7969/Pjjj3zyySfMnDmz1iBSCPEH1e166EI0TNdff7265JJLlFJKnXPOOerGG29USin1+eefq6P/2j322GOqW7du1fZ96aWXVGJiYrW6EhMTldfr9W9r166dOvfcc/2fPR6PCgwMVLNnz1ZKKZWamqoANW3aNH8Zt9ut4uPj1fTp05VSSj366KNq2LBh1Y69b98+BagdO3YopZQaNGiQ6t69+++eb1xcnHr66aerbevTp4+6/fbb/Z+7deumHnvssePW89tzLy0tVQ6HQ61cubJauX/84x/qqquuOmY9t99+u7r00kv9n4/+fRy2ePFiBaiCggL/tg0bNihApaamKqWUevfddxWgkpOT/WV2796tNE1TGRkZ1eobMmSIevDBB5VSSnXp0kU9/vjjxz3X41mzZo0CVElJSbW2zpkzx18mLy9POZ1ONXfuXH9bQ0NDj1tvx44d1auvvur/nJiYqF566aVqZa699lp1yy23VNu2fPlypeu6qqioUDt27FCAWrVqlf/7bdu2KaBGXUKIP6Z+TdgQogGaPn06559/Pvfcc8+frqNTp07o+pGB7ZiYmGqT4A3DoEmTJjVGK/r27et/b7FY6N27N9u2bQNg/fr1LF68uNYRnD179tC2bVsAevfufdy2FRcXc+DAAfr3719te//+/dm4ceMJnmHttm7dSmVlZY3bpi6Xix49evg/v/HGG8yaNYu0tDQqKipwuVzHfMLzj7LZbHTt2tX/+ZdffkEp5b8+h1VVVfnnyt19993cdtttfPfddwwdOpRLL720Wh2/tWHDBh5//HGSk5PJz8/3z1tLT0+nY8eO/nJH/z4jIiJo166d//f5W2VlZTzxxBN8/fXXHDhwAI/HQ0VFhX+k7FjWr1/P7t27q92SVEphmiapqans3LnT/2fpsPbt29fpk59CNBQSlAlxig0cOJDhw4fz0EMP1bglpes6Sqlq22q7HWW1Wqt91jSt1m0nMgn98Nwh0zQZNWoU06dPr1GmadOm/veBgYG/W+fR9R6mlPrLT5oePp9vvvmGZs2aVfvObrcD8NFHHzF58mReeOEF+vbtS3BwMM899xyrV68+bt2Hg9yjr39t197pdFY7D9M0MQyD9evXYxhGtbKHA9ybbrqJ4cOH88033/Ddd98xdepUXnjhBe66664a9ZeVlTFs2DCGDRvGBx98QFRUFOnp6QwfPvyEHqw41jW+7777+Pbbb3n++edp3bo1TqeTv//9779bp2ma3Hrrrdx99901vmvevDk7duw47nGFEH+eBGVCnAbTpk2je/fuNUZXoqKiyMrKqhbAnMzcXKtWrWLgwIEAeDwe1q9f758b1LNnTz799FNatGjxl55yDAkJIS4ujp9++sl/LPBNFj/rrLP+UvsPT65PT09n0KBBtZZZvnw5/fr14/bbb/dv27NnT7UyNpsNr9dbbVtUVBTgm+8WHh4OnNi179GjB16vl+zsbM4999xjlktISPDP9XvwwQd5++23aw3Ktm/fTm5uLtOmTSMhIQGAdevW1VrnqlWraN68OQAFBQXs3LmT9u3b11p2+fLljB8/nr/97W+Ab47Z4QcYDqvtuvTs2ZMtW7bQunXrWuvt0KEDHo+HdevW+X+/O3bsOG4ONSHEiZGJ/kKcBl26dOHqq6/m1VdfrbZ98ODB5OTk8Oyzz7Jnzx5mzJjBggULTtpxZ8yYweeff8727du54447KCgo4MYbbwR8k9Hz8/O56qqrWLNmDb/++ivfffcdN954Y42O+vfcd999TJ8+nblz57Jjxw4eeOABkpOTmThx4l9qf3BwMPfeey+TJ0/m/fffZ8+ePWzYsIEZM2bw/vvvA9C6dWvWrVvHt99+y86dO3n00Uf9Dwkc1qJFCzZt2sSOHTvIzc3F7XbTunVrEhISePzxx9m5cyfffPMNL7zwwu+2qW3btlx99dVcd911fPbZZ6SmprJ27VqmT5/uf8Jy0qRJfPvtt6SmpvLLL7/w448/0qFDh1rra968OTabjVdffZVff/2VL7/8kqeeeqrWsk8++SQ//PADmzdvZvz48URGRh4z/1rr1q357LPPSE5OZuPGjYwbN67GSGqLFi1YtmwZGRkZ/qdu77//fn7++WfuuOMOkpOT2bVrF19++aU/oGzXrh0jRozg5ptvZvXq1axfv56bbroJp9P5u9dOCHF8EpQJcZo89dRTNW5VdujQgZkzZzJjxgy6devGmjVran0y8c+aNm0a06dPp1u3bixfvpwvvviCyMhIAOLi4lixYgVer5fhw4fTuXNnJk6cSGhoaLX5ayfi7rvv5p577uGee+6hS5cuLFy4kC+//JI2bdr85XN46qmn+Ne//sXUqVPp0KEDw4cP56uvviIpKQmACRMmMHbsWK644grOPvts8vLyqo2aAdx88820a9eO3r17ExUVxYoVK7BarcyePZvt27fTrVs3pk+fzr///e8TatO7777Lddddxz333EO7du0YPXo0q1ev9o90eb1e7rjjDjp06MCIESNo164dM2fOrLWuqKgo3nvvPT7++GM6duzItGnTeP7552stO23aNCZOnEivXr3IzMzkyy+/xGaz1Vr2pZdeIjw8nH79+jFq1CiGDx9Oz549q5V58skn2bt3L61atfKPHHbt2pWlS5eya9cuzj33XHr06MGjjz5a7Zb2u+++S0JCAoMGDWLs2LHccsstREdHn9C1E0Icm6Z+20sIIYQQQojTTkbKhBBCCCHqAQnKhBBCCCHqAQnKhBBCCCHqAQnKhBBCCCHqAQnKhBBCCCHqAQnKhBBCCCHqAQnKhBBCCCHqAQnKhBBCCCHqAQnKhBBCCCHqAQnKhBBCCCHqAQnKhBBCCCHqAQnKhBBCCCHqgf8PAZkD319KzFIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2750,25 +6456,26 @@ } ], "source": [ - "for metric in metrics[task]:\n", - " results = {}\n", - " for m in methods_rf_plus:\n", - " results[m] = []\n", - " for m in methods_rf_plus:\n", - " results[m].append(combined_df[combined_df['fi'] == m][metric+f\"_before_ablation\"].mean())\n", - " for i in range(num_features):\n", - " results[m].append(combined_df[combined_df['fi'] == m][metric+f\"_after_ablation_{i+1}\"].mean())\n", - " fig, ax = plt.subplots()\n", - " for m in methods_rf_plus:\n", - " if m in [\"Kernel_SHAP_RF_plus\", \"LIME_RF_plus\"]:\n", - " ax.plot(range(num_features+1), results[m], label=m, linestyle='dashed')\n", - " else:\n", - " ax.plot(range(num_features+1), results[m], label=m)\n", - " ax.set(xlabel='Number of features ablated', ylabel=metric,\n", - " title=f'Train size = {n_testsize[\"train_size\"].values[0]}, Test size = {n_testsize[\"test_size\"].values[0]}')\n", - " ax.legend()\n", - " # plt.savefig(f\"ablation_fico.png\")\n", - " plt.show()" + "for a_model in ablation_models[task]:\n", + " for metric in metrics[task]:\n", + " results = {}\n", + " for m in methods_all:\n", + " results[m] = []\n", + " for m in methods_all:\n", + " results[m].append(combined_df[combined_df['fi'] == m][a_model+\"_test_\"+metric+f\"_before_ablation\"].mean())\n", + " for i in range(num_features):\n", + " results[m].append(combined_df[combined_df['fi'] == m][a_model+\"_test_\"+metric+f\"_after_ablation_{i+1}\"].mean())\n", + " fig, ax = plt.subplots()\n", + " for m in methods_all:\n", + " if m in [\"TreeSHAP_RF\",\"Kernel_SHAP_RF_plus\", \"LIME_RF_plus\"]:\n", + " ax.plot(range(num_features+1), results[m], label=m, linestyle='dashed')\n", + " else:\n", + " ax.plot(range(num_features+1), results[m], label=m)\n", + " ax.set(xlabel='Number of features ablated', ylabel=metric,\n", + " title=f'Ablation model = {a_model}, Train size = {n_testsize[\"train_size\"].values[0]}, Test size = {n_testsize[\"test_size\"].values[0]}')\n", + " ax.legend()\n", + " # plt.savefig(f\"ablation_fico.png\")\n", + " plt.show()" ] } ], diff --git a/feature_importance/scripts/competing_methods_local.py b/feature_importance/scripts/competing_methods_local.py index 3539e3d..2c4a85a 100644 --- a/feature_importance/scripts/competing_methods_local.py +++ b/feature_importance/scripts/competing_methods_local.py @@ -15,200 +15,199 @@ from sklearn.metrics import r2_score, mean_absolute_error, accuracy_score, roc_auc_score, mean_squared_error -def MDI_local_sub_stumps(X, y, fit, scoring_fns="auto", return_stability_scores=False, **kwargs): - """ - Compute local MDI importance for each feature and sample. - :param X: design matrix - :param y: response - :param fit: fitted model of interest (tree-based) - :return: dataframe of shape: (n_samples, n_features) +# def MDI_local_sub_stumps(X, y, fit, scoring_fns="auto", return_stability_scores=False, **kwargs): +# """ +# Compute local MDI importance for each feature and sample. +# :param X: design matrix +# :param y: response +# :param fit: fitted model of interest (tree-based) +# :return: dataframe of shape: (n_samples, n_features) - """ - num_samples, num_features = X.shape - if isinstance(fit, RegressorMixin): - RFPlus = RandomForestPlusRegressor - elif isinstance(fit, ClassifierMixin): - RFPlus = RandomForestPlusClassifier - else: - raise ValueError("Unknown task.") - rf_plus_model = RFPlus(rf_model=fit, **kwargs) - rf_plus_model.fit(X, y) +# """ +# num_samples, num_features = X.shape +# if isinstance(fit, RegressorMixin): +# RFPlus = RandomForestPlusRegressor +# elif isinstance(fit, ClassifierMixin): +# RFPlus = RandomForestPlusClassifier +# else: +# raise ValueError("Unknown task.") +# rf_plus_model = RFPlus(rf_model=fit, **kwargs) +# rf_plus_model.fit(X, y) - try: - mdi_plus_scores = rf_plus_model.get_mdi_plus_scores(X=X, y=y, local_scoring_fns=mean_squared_error, version = "sub", lfi=False)["local"].values - if return_stability_scores: - raise NotImplementedError - stability_scores = rf_plus_model.get_mdi_plus_stability_scores(B=25) - except ValueError as e: - if str(e) == 'Transformer representation was empty for all trees.': - mdi_plus_scores = np.zeros((num_samples, num_features)) - stability_scores = None - else: - raise - result_table = pd.DataFrame(mdi_plus_scores, columns=[f'Feature_{i}' for i in range(num_features)]) +# try: +# mdi_plus_scores = rf_plus_model.get_mdi_plus_scores(X=X, y=y, local_scoring_fns=mean_squared_error, version = "sub", lfi=False)["local"].values +# if return_stability_scores: +# raise NotImplementedError +# stability_scores = rf_plus_model.get_mdi_plus_stability_scores(B=25) +# except ValueError as e: +# if str(e) == 'Transformer representation was empty for all trees.': +# mdi_plus_scores = np.zeros((num_samples, num_features)) +# stability_scores = None +# else: +# raise +# result_table = pd.DataFrame(mdi_plus_scores, columns=[f'Feature_{i}' for i in range(num_features)]) - return result_table +# return result_table -def MDI_local_all_stumps(X, y, fit, scoring_fns="auto", return_stability_scores=False, **kwargs): - """ - Wrapper around MDI+ object to get feature importance scores +# def MDI_local_all_stumps(X, y, fit, scoring_fns="auto", return_stability_scores=False, **kwargs): +# """ +# Wrapper around MDI+ object to get feature importance scores - :param X: ndarray of shape (n_samples, n_features) - The covariate matrix. If a pd.DataFrame object is supplied, then - the column names are used in the output - :param y: ndarray of shape (n_samples, n_targets) - The observed responses. - :param rf_model: scikit-learn random forest object or None - The RF model to be used for interpretation. If None, then a new - RandomForestRegressor or RandomForestClassifier is instantiated. - :param kwargs: additional arguments to pass to - RandomForestPlusRegressor or RandomForestPlusClassifier class. - :return: dataframe - [Var, Importance] - Var: variable name - Importance: MDI+ score - """ - num_samples, num_features = X.shape - if isinstance(fit, RegressorMixin): - RFPlus = RandomForestPlusRegressor - elif isinstance(fit, ClassifierMixin): - RFPlus = RandomForestPlusClassifier - else: - raise ValueError("Unknown task.") - rf_plus_model = RFPlus(rf_model=fit, **kwargs) - rf_plus_model.fit(X, y) +# :param X: ndarray of shape (n_samples, n_features) +# The covariate matrix. If a pd.DataFrame object is supplied, then +# the column names are used in the output +# :param y: ndarray of shape (n_samples, n_targets) +# The observed responses. +# :param rf_model: scikit-learn random forest object or None +# The RF model to be used for interpretation. If None, then a new +# RandomForestRegressor or RandomForestClassifier is instantiated. +# :param kwargs: additional arguments to pass to +# RandomForestPlusRegressor or RandomForestPlusClassifier class. +# :return: dataframe - [Var, Importance] +# Var: variable name +# Importance: MDI+ score +# """ +# num_samples, num_features = X.shape +# if isinstance(fit, RegressorMixin): +# RFPlus = RandomForestPlusRegressor +# elif isinstance(fit, ClassifierMixin): +# RFPlus = RandomForestPlusClassifier +# else: +# raise ValueError("Unknown task.") +# rf_plus_model = RFPlus(rf_model=fit, **kwargs) +# rf_plus_model.fit(X, y) - try: - mdi_plus_scores = rf_plus_model.get_mdi_plus_scores(X=X, y=y, local_scoring_fns=mean_squared_error, version = "all", lfi=False)["local"].values - if return_stability_scores: - raise NotImplementedError - stability_scores = rf_plus_model.get_mdi_plus_stability_scores(B=25) - except ValueError as e: - if str(e) == 'Transformer representation was empty for all trees.': - mdi_plus_scores = np.zeros((num_samples, num_features)) - stability_scores = None - else: - raise - result_table = pd.DataFrame(mdi_plus_scores, columns=[f'Feature_{i}' for i in range(num_features)]) +# try: +# mdi_plus_scores = rf_plus_model.get_mdi_plus_scores(X=X, y=y, local_scoring_fns=mean_squared_error, version = "all", lfi=False)["local"].values +# if return_stability_scores: +# raise NotImplementedError +# stability_scores = rf_plus_model.get_mdi_plus_stability_scores(B=25) +# except ValueError as e: +# if str(e) == 'Transformer representation was empty for all trees.': +# mdi_plus_scores = np.zeros((num_samples, num_features)) +# stability_scores = None +# else: +# raise +# result_table = pd.DataFrame(mdi_plus_scores, columns=[f'Feature_{i}' for i in range(num_features)]) - return result_table +# return result_table -def LFI_absolute_sum(X, y, fit, scoring_fns="auto", return_stability_scores=False, **kwargs): - num_samples, num_features = X.shape - if isinstance(fit, RegressorMixin): - RFPlus = RandomForestPlusRegressor - elif isinstance(fit, ClassifierMixin): - RFPlus = RandomForestPlusClassifier - else: - raise ValueError("Unknown task.") - rf_plus_model = RFPlus(rf_model=fit, **kwargs) - rf_plus_model.fit(X, y) +# def LFI_absolute_sum(X, y, fit, scoring_fns="auto", return_stability_scores=False, **kwargs): +# num_samples, num_features = X.shape +# if isinstance(fit, RegressorMixin): +# RFPlus = RandomForestPlusRegressor +# elif isinstance(fit, ClassifierMixin): +# RFPlus = RandomForestPlusClassifier +# else: +# raise ValueError("Unknown task.") +# rf_plus_model = RFPlus(rf_model=fit, **kwargs) +# rf_plus_model.fit(X, y) - try: - mdi_plus_scores = rf_plus_model.get_mdi_plus_scores(X=X, y=y, lfi=True, lfi_abs="outside")["lfi"].values - if return_stability_scores: - raise NotImplementedError - stability_scores = rf_plus_model.get_mdi_plus_stability_scores(B=25) - except ValueError as e: - if str(e) == 'Transformer representation was empty for all trees.': - mdi_plus_scores = np.zeros((num_samples, num_features)) - stability_scores = None - else: - raise - result_table = pd.DataFrame(mdi_plus_scores, columns=[f'Feature_{i}' for i in range(num_features)]) +# try: +# mdi_plus_scores = rf_plus_model.get_mdi_plus_scores(X=X, y=y, lfi=True, lfi_abs="outside")["lfi"].values +# if return_stability_scores: +# raise NotImplementedError +# stability_scores = rf_plus_model.get_mdi_plus_stability_scores(B=25) +# except ValueError as e: +# if str(e) == 'Transformer representation was empty for all trees.': +# mdi_plus_scores = np.zeros((num_samples, num_features)) +# stability_scores = None +# else: +# raise +# result_table = pd.DataFrame(mdi_plus_scores, columns=[f'Feature_{i}' for i in range(num_features)]) - return result_table +# return result_table -def lime_local(X, y, fit): - """ - Compute LIME local importance for each feature and sample. - Larger values indicate more important features. - :param X: design matrix - :param y: response - :param fit: fitted model of interest (tree-based) - :return: dataframe of shape: (n_samples, n_features) +# def lime_local(X, y, fit): +# """ +# Compute LIME local importance for each feature and sample. +# Larger values indicate more important features. +# :param X: design matrix +# :param y: response +# :param fit: fitted model of interest (tree-based) +# :return: dataframe of shape: (n_samples, n_features) - """ +# """ - np.random.seed(1) - num_samples, num_features = X.shape - result = np.zeros((num_samples, num_features)) - explainer = lime.lime_tabular.LimeTabularExplainer(X, verbose=False, mode='regression') - for i in range(num_samples): - exp = explainer.explain_instance(X[i], fit.predict, num_features=num_features) - original_feature_importance = exp.as_map()[1] - sorted_feature_importance = sorted(original_feature_importance, key=lambda x: x[0]) - for j in range(num_features): - result[i,j] = abs(sorted_feature_importance[j][1]) - # Convert the array to a DataFrame - result_table = pd.DataFrame(result, columns=[f'Feature_{i}' for i in range(num_features)]) +# np.random.seed(1) +# num_samples, num_features = X.shape +# result = np.zeros((num_samples, num_features)) +# explainer = lime.lime_tabular.LimeTabularExplainer(X, verbose=False, mode='regression') +# for i in range(num_samples): +# exp = explainer.explain_instance(X[i], fit.predict, num_features=num_features) +# original_feature_importance = exp.as_map()[1] +# sorted_feature_importance = sorted(original_feature_importance, key=lambda x: x[0]) +# for j in range(num_features): +# result[i,j] = abs(sorted_feature_importance[j][1]) +# # Convert the array to a DataFrame +# result_table = pd.DataFrame(result, columns=[f'Feature_{i}' for i in range(num_features)]) - return result_table +# return result_table -def tree_shap_local(X, y, fit): - """ - Compute average treeshap value across observations. - Larger absolute values indicate more important features. - :param X: design matrix - :param y: response - :param fit: fitted model of interest (tree-based) - :return: dataframe of shape: (n_samples, n_features) - """ - explainer = shap.TreeExplainer(fit) - shap_values = explainer.shap_values(X, check_additivity=False) - if sklearn.base.is_classifier(fit): - # Shape values are returned as a list of arrays, one for each class - def add_abs(a, b): - return abs(a) + abs(b) - results = np.sum(np.abs(shap_values),axis=-1) - else: - results = abs(shap_values) - result_table = pd.DataFrame(results, columns=[f'Feature_{i}' for i in range(X.shape[1])]) +# def tree_shap_local(X, y, fit): +# """ +# Compute average treeshap value across observations. +# Larger absolute values indicate more important features. +# :param X: design matrix +# :param y: response +# :param fit: fitted model of interest (tree-based) +# :return: dataframe of shape: (n_samples, n_features) +# """ +# explainer = shap.TreeExplainer(fit) +# shap_values = explainer.shap_values(X, check_additivity=False) +# if sklearn.base.is_classifier(fit): +# # Shape values are returned as a list of arrays, one for each class +# def add_abs(a, b): +# return abs(a) + abs(b) +# results = np.sum(np.abs(shap_values),axis=-1) +# else: +# results = abs(shap_values) +# result_table = pd.DataFrame(results, columns=[f'Feature_{i}' for i in range(X.shape[1])]) - return result_table +# return result_table -def permutation_local(X, y, fit, num_permutations=100): - """ - Compute local permutation importance for each feature and sample. - Larger values indicate more important features. - :param X: design matrix - :param y: response - :param fit: fitted model of interest (tree-based) - :num_permutations: Number of permutations for each feature (default is 100) - :return: dataframe of shape: (n_samples, n_features) - """ +# def permutation_local(X, y, fit, num_permutations=100): +# """ +# Compute local permutation importance for each feature and sample. +# Larger values indicate more important features. +# :param X: design matrix +# :param y: response +# :param fit: fitted model of interest (tree-based) +# :num_permutations: Number of permutations for each feature (default is 100) +# :return: dataframe of shape: (n_samples, n_features) +# """ - # Get the number of samples and features - num_samples, num_features = X.shape +# # Get the number of samples and features +# num_samples, num_features = X.shape - # Initialize array to store local permutation importance - lpi = np.zeros((num_samples, num_features)) +# # Initialize array to store local permutation importance +# lpi = np.zeros((num_samples, num_features)) - # For each feature - for k in range(num_features): - # Permute X_k num_permutations times - for b in range(num_permutations): - X_permuted = X.copy() - X_permuted[:, k] = np.random.permutation(X[:, k]) +# # For each feature +# for k in range(num_features): +# # Permute X_k num_permutations times +# for b in range(num_permutations): +# X_permuted = X.copy() +# X_permuted[:, k] = np.random.permutation(X[:, k]) - # Feed permuted data through the fitted model - y_pred_permuted = fit.predict(X_permuted) +# # Feed permuted data through the fitted model +# y_pred_permuted = fit.predict(X_permuted) - # Calculate MSE for each sample - for i in range(num_samples): - lpi[i, k] += (y[i]-y_pred_permuted[i])**2 +# # Calculate MSE for each sample +# for i in range(num_samples): +# lpi[i, k] += (y[i]-y_pred_permuted[i])**2 - lpi /= num_permutations +# lpi /= num_permutations - # Convert the array to a DataFrame - result_table = pd.DataFrame(lpi, columns=[f'Feature_{i}' for i in range(num_features)]) +# # Convert the array to a DataFrame +# result_table = pd.DataFrame(lpi, columns=[f'Feature_{i}' for i in range(num_features)]) - return result_table +# return result_table -########## Use the following methods if evaluate on a separate test set -def LFI_test_evaluation_RF(X_train, y_train, X_test, y_test, fit, data_fit_on, scoring_fns="auto", return_stability_scores=False, **kwargs): +def LFI_evaluation_RF(X_train, y_train, X_test, y_test, fit, data_fit_on, scoring_fns="auto", return_stability_scores=False, **kwargs): assert data_fit_on in ["train", "test"] if data_fit_on == "train": X_data = X_train @@ -243,7 +242,7 @@ def LFI_test_evaluation_RF(X_train, y_train, X_test, y_test, fit, data_fit_on, s return result_table -def lime_test_evaluation_RF(X_train, y_train, X_test, y_test, fit, data_fit_on): +def lime_evaluation_RF(X_train, y_train, X_test, y_test, fit, data_fit_on): """ Compute LIME local importance for each feature and sample. Larger values indicate more important features. @@ -307,9 +306,11 @@ def tree_shap_evaluation_RF(X_train, y_train, X_test, y_test, fit, data_fit_on): # Shape values are returned as a list of arrays, one for each class def add_abs(a, b): return abs(a) + abs(b) - results = reduce(add_abs, shap_values) + results = np.sum(np.abs(shap_values),axis=-1) else: results = abs(shap_values) + print(X_data.shape) + print(results.shape) result_table = pd.DataFrame(results, columns=[f'Feature_{i}' for i in range(X_data.shape[1])]) return result_table @@ -490,54 +491,54 @@ def LFI_evaluation_RF_plus(X_train, y_train, X_test, y_test, fit, data_fit_on): # return result_table ######################## Considering not using these methods -def LFI_sum_absolute_evaluate(X_train, y_train, X_test, y_test, fit, scoring_fns="auto", return_stability_scores=False, **kwargs): - num_samples, num_features = X_test.shape - if isinstance(fit, RegressorMixin): - RFPlus = RandomForestPlusRegressor - elif isinstance(fit, ClassifierMixin): - RFPlus = RandomForestPlusClassifier - else: - raise ValueError("Unknown task.") - rf_plus_model = RFPlus(rf_model=fit, **kwargs) - rf_plus_model.fit(X_train, y_train) +# def LFI_sum_absolute_evaluate(X_train, y_train, X_test, y_test, fit, scoring_fns="auto", return_stability_scores=False, **kwargs): +# num_samples, num_features = X_test.shape +# if isinstance(fit, RegressorMixin): +# RFPlus = RandomForestPlusRegressor +# elif isinstance(fit, ClassifierMixin): +# RFPlus = RandomForestPlusClassifier +# else: +# raise ValueError("Unknown task.") +# rf_plus_model = RFPlus(rf_model=fit, **kwargs) +# rf_plus_model.fit(X_train, y_train) - try: - mdi_plus_scores = rf_plus_model.get_mdi_plus_scores(X=X_test, y=y_test, lfi=True, lfi_abs="inside", sample_split=None)["lfi"].values - if return_stability_scores: - raise NotImplementedError - stability_scores = rf_plus_model.get_mdi_plus_stability_scores(B=25) - except ValueError as e: - if str(e) == 'Transformer representation was empty for all trees.': - mdi_plus_scores = np.zeros((num_samples, num_features)) - stability_scores = None - else: - raise - result_table = pd.DataFrame(mdi_plus_scores, columns=[f'Feature_{i}' for i in range(num_features)]) +# try: +# mdi_plus_scores = rf_plus_model.get_mdi_plus_scores(X=X_test, y=y_test, lfi=True, lfi_abs="inside", sample_split=None)["lfi"].values +# if return_stability_scores: +# raise NotImplementedError +# stability_scores = rf_plus_model.get_mdi_plus_stability_scores(B=25) +# except ValueError as e: +# if str(e) == 'Transformer representation was empty for all trees.': +# mdi_plus_scores = np.zeros((num_samples, num_features)) +# stability_scores = None +# else: +# raise +# result_table = pd.DataFrame(mdi_plus_scores, columns=[f'Feature_{i}' for i in range(num_features)]) - return result_table +# return result_table -def LFI_sum_absolute(X, y, fit, scoring_fns="auto", return_stability_scores=False, **kwargs): - num_samples, num_features = X.shape - if isinstance(fit, RegressorMixin): - RFPlus = RandomForestPlusRegressor - elif isinstance(fit, ClassifierMixin): - RFPlus = RandomForestPlusClassifier - else: - raise ValueError("Unknown task.") - rf_plus_model = RFPlus(rf_model=fit, **kwargs) - rf_plus_model.fit(X, y) +# def LFI_sum_absolute(X, y, fit, scoring_fns="auto", return_stability_scores=False, **kwargs): +# num_samples, num_features = X.shape +# if isinstance(fit, RegressorMixin): +# RFPlus = RandomForestPlusRegressor +# elif isinstance(fit, ClassifierMixin): +# RFPlus = RandomForestPlusClassifier +# else: +# raise ValueError("Unknown task.") +# rf_plus_model = RFPlus(rf_model=fit, **kwargs) +# rf_plus_model.fit(X, y) - try: - mdi_plus_scores = rf_plus_model.get_mdi_plus_scores(X=X, y=y, lfi=True, lfi_abs="inside")["lfi"].values - if return_stability_scores: - raise NotImplementedError - stability_scores = rf_plus_model.get_mdi_plus_stability_scores(B=25) - except ValueError as e: - if str(e) == 'Transformer representation was empty for all trees.': - mdi_plus_scores = np.zeros((num_samples, num_features)) - stability_scores = None - else: - raise - result_table = pd.DataFrame(mdi_plus_scores, columns=[f'Feature_{i}' for i in range(num_features)]) +# try: +# mdi_plus_scores = rf_plus_model.get_mdi_plus_scores(X=X, y=y, lfi=True, lfi_abs="inside")["lfi"].values +# if return_stability_scores: +# raise NotImplementedError +# stability_scores = rf_plus_model.get_mdi_plus_stability_scores(B=25) +# except ValueError as e: +# if str(e) == 'Transformer representation was empty for all trees.': +# mdi_plus_scores = np.zeros((num_samples, num_features)) +# stability_scores = None +# else: +# raise +# result_table = pd.DataFrame(mdi_plus_scores, columns=[f'Feature_{i}' for i in range(num_features)]) - return result_table \ No newline at end of file +# return result_table \ No newline at end of file