From 59a45b33f79410efaf3f54f32ca613dd63467dc9 Mon Sep 17 00:00:00 2001 From: zachrewolinski Date: Mon, 13 May 2024 21:21:08 -0700 Subject: [PATCH] pushing files from older version of code --- .../01_ablation_regression_script.sh | 2 +- .../01_run_ablation_regression.py | 4 +- feature_importance/feature_ranking.sh | 3 +- feature_importance/feature_ranking_master.sh | 8 + .../hierarchical-polynomial/dgp.py | 24 + .../hierarchical-polynomial}/models.py | 4 +- .../logistic-lss/dgp.py | 26 + .../logistic-lss/models.py | 25 + .../logistic-model/dgp.py | 23 + .../logistic-model/models.py | 25 + .../diabetes-classification/lss-model/dgp.py | 26 + .../lss-model/models.py | 25 + .../hierarchical-polynomial/dgp.py | 24 + .../hierarchical-polynomial/models.py | 25 + .../diabetes-regression/linear-lss/dgp.py | 24 + .../diabetes-regression/linear-lss/models.py | 25 + .../linear-model}/dgp.py | 15 +- .../linear-model/models.py | 25 + .../diabetes-regression/lss-model/dgp.py | 27 + .../diabetes-regression/lss-model/models.py | 25 + .../housing/hierarchical-polynomial/dgp.py | 26 + .../housing/hierarchical-polynomial/models.py | 24 + .../real_x_sim_y/housing/linear-lss/dgp.py | 26 + .../real_x_sim_y/housing/linear-lss/models.py | 24 + .../real_x_sim_y/housing/linear-model/dgp.py | 44 + .../housing/linear-model/models.py | 24 + .../real_x_sim_y/housing/lss-model/dgp.py | 28 + .../real_x_sim_y/housing/lss-model/models.py | 24 + .../ranking_importance_local_sims.ipynb | 331 + ...ms.py => ranking_importance_local_sims.py} | 50 +- ..._data_ablation_visulization_version3.ipynb | 12962 ++-------------- .../run_importance_local_sims.ipynb | 703 - 32 files changed, 2447 insertions(+), 12204 deletions(-) create mode 100644 feature_importance/feature_ranking_master.sh create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/hierarchical-polynomial/dgp.py rename feature_importance/fi_config/mdi_local/real_x_sim_y/{ => diabetes-classification/hierarchical-polynomial}/models.py (88%) create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-lss/dgp.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-lss/models.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-model/dgp.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-model/models.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/lss-model/dgp.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/lss-model/models.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/hierarchical-polynomial/dgp.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/hierarchical-polynomial/models.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-lss/dgp.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-lss/models.py rename feature_importance/fi_config/mdi_local/real_x_sim_y/{ => diabetes-regression/linear-model}/dgp.py (73%) create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-model/models.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/lss-model/dgp.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/lss-model/models.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/housing/hierarchical-polynomial/dgp.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/housing/hierarchical-polynomial/models.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-lss/dgp.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-lss/models.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-model/dgp.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-model/models.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/housing/lss-model/dgp.py create mode 100644 feature_importance/fi_config/mdi_local/real_x_sim_y/housing/lss-model/models.py create mode 100644 feature_importance/ranking_importance_local_sims.ipynb rename feature_importance/{run_importance_local_sims.py => ranking_importance_local_sims.py} (90%) delete mode 100644 feature_importance/run_importance_local_sims.ipynb diff --git a/feature_importance/01_ablation_regression_script.sh b/feature_importance/01_ablation_regression_script.sh index 6686f85..3a9c376 100755 --- a/feature_importance/01_ablation_regression_script.sh +++ b/feature_importance/01_ablation_regression_script.sh @@ -1,5 +1,5 @@ #!/bin/bash -#SBATCH --mail-user=zhongyuan_liang@berkeley.edu +#SBATCH --mail-user=zachrewolinski@berkeley.edu #SBATCH --mail-type=ALL #SBATCH --partition=yugroup diff --git a/feature_importance/01_run_ablation_regression.py b/feature_importance/01_run_ablation_regression.py index 85e3163..3501404 100644 --- a/feature_importance/01_run_ablation_regression.py +++ b/feature_importance/01_run_ablation_regression.py @@ -21,10 +21,12 @@ from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression import xgboost as xgb -from imodels.importance import RandomForestPlusRegressor, RandomForestPlusClassifier sys.path.append(".") sys.path.append("..") sys.path.append("../..") +sys.path.append("/accounts/grad/zachrewolinski/research/imodels") +print("sys.path", sys.path) +from imodels.importance import RandomForestPlusRegressor, RandomForestPlusClassifier import fi_config from util import ModelConfig, FIModelConfig, tp, fp, neg, pos, specificity_score, auroc_score, auprc_score, compute_nsg_feat_corr_w_sig_subspace, apply_splitting_strategy diff --git a/feature_importance/feature_ranking.sh b/feature_importance/feature_ranking.sh index 726cb0f..659942e 100644 --- a/feature_importance/feature_ranking.sh +++ b/feature_importance/feature_ranking.sh @@ -1,10 +1,9 @@ #!/bin/bash #SBATCH --mail-user=zachrewolinski@berkeley.edu #SBATCH --mail-type=ALL -#SBATCH --partition=yugroup source activate mdi -command="run_importance_local_sims.py --nreps 1 --config mdi_local.real_x_sim_y --split_seed 1 --ignore_cache --create_rmd --result_name feature_ranking" +command="ranking_importance_local_sims.py --nreps 1 --config mdi_local.real_x_sim_y.diabetes-classification.lss-model --split_seed ${1} --ignore_cache --create_rmd --result_name diabetes-class-lss" # Execute the command python $command \ No newline at end of file diff --git a/feature_importance/feature_ranking_master.sh b/feature_importance/feature_ranking_master.sh new file mode 100644 index 0000000..2d03158 --- /dev/null +++ b/feature_importance/feature_ranking_master.sh @@ -0,0 +1,8 @@ +#!/bin/bash + +slurm_script="feature_ranking.sh" + +for rep in {1..10} +do + sbatch $slurm_script $rep # Submit SLURM job using the specified script +done \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/hierarchical-polynomial/dgp.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/hierarchical-polynomial/dgp.py new file mode 100644 index 0000000..836a050 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/hierarchical-polynomial/dgp.py @@ -0,0 +1,24 @@ +import sys +sys.path.append("../..") +from feature_importance.scripts.simulations_util import * + + +X_DGP = sample_real_X +X_PARAMS_DICT = { + "fpath": "../data/classification_data/Diabetes/X_diabetes.csv", + "sample_row_n": 442 +} +Y_DGP = hierarchical_poly +Y_PARAMS_DICT = { + "beta": 1, + "sigma": None, + "heritability": 0.4, + "m": 3, + "r": 2 +} + +VARY_PARAM_NAME = ["heritability", "sample_row_n"] +VARY_PARAM_VALS = {"heritability": {"0.1": 0.1, "0.2": 0.2, + "0.4": 0.4, "0.8": 0.8}, + "sample_row_n": {"100": 100, "200": 200, + "400": 400, "600": 600}} \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/models.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/hierarchical-polynomial/models.py similarity index 88% rename from feature_importance/fi_config/mdi_local/real_x_sim_y/models.py rename to feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/hierarchical-polynomial/models.py index ca9d89f..0d225d0 100644 --- a/feature_importance/fi_config/mdi_local/real_x_sim_y/models.py +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/hierarchical-polynomial/models.py @@ -10,7 +10,7 @@ ESTIMATORS = [ [ModelConfig('RF', RandomForestRegressor, model_type='tree', other_params={'n_estimators': 100, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'random_state': 42})], - [ModelConfig('RF_plus', RandomForestPlusClassifier, model_type='t_plus', + [ModelConfig('RF_plus', RandomForestPlusRegressor, model_type='t_plus', other_params={'rf_model': RandomForestRegressor(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42)})] ] @@ -21,5 +21,5 @@ [FIModelConfig('TreeSHAP_RF', tree_shap_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], [FIModelConfig('LFI_with_raw_RF_plus', LFI_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], [FIModelConfig('Kernel_SHAP_RF_plus', kernel_shap_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], - # [FIModelConfig('LIME_RF_plus', lime_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('LIME_RF_plus', lime_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], ] \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-lss/dgp.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-lss/dgp.py new file mode 100644 index 0000000..4d5ab33 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-lss/dgp.py @@ -0,0 +1,26 @@ +import sys +sys.path.append("../..") +from feature_importance.scripts.simulations_util import * + + +X_DGP = sample_real_X +X_PARAMS_DICT = { + "fpath": "../data/classification_data/Diabetes/X_diabetes.csv", + "sample_row_n": 768 +} + +Y_DGP = logistic_partial_linear_lss_model +Y_PARAMS_DICT = { + "s":1, + "m":3, + "r":2, + "tau":0, + "beta": 1, + "heritability": 0.4 +} +VARY_PARAM_NAME = ["heritability", "sample_row_n"] +VARY_PARAM_VALS = {"heritability": {"0.1": 0.1, "0.2": 0.2, + "0.4": 0.4, "0.8": 0.8}, + "sample_row_n": {"100": 100, "200": 200, + "400": 400, "600": 600}} + diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-lss/models.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-lss/models.py new file mode 100644 index 0000000..6ec3ae7 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-lss/models.py @@ -0,0 +1,25 @@ +import copy +import numpy as np +from feature_importance.util import ModelConfig, FIModelConfig +from sklearn.ensemble import RandomForestClassifier +from imodels.importance.rf_plus import RandomForestPlusClassifier +from feature_importance.scripts.competing_methods_local import * + + + +ESTIMATORS = [ + [ModelConfig('RF', RandomForestClassifier, model_type='tree', + other_params={'n_estimators': 100, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'random_state': 42})], + [ModelConfig('RF_plus', RandomForestPlusClassifier, model_type='t_plus', + other_params={'rf_model': RandomForestClassifier(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42)})] +] + +FI_ESTIMATORS = [ + [FIModelConfig('LFI_with_raw_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('MDI_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"include_raw": False, "cv_ridge": 0, "calc_loo_coef":False, "sample_split":"inbag"})], + [FIModelConfig('LFI_with_raw_OOB_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"sample_split":"oob", "fit_on":"test", "calc_loo_coef":False})], + [FIModelConfig('TreeSHAP_RF', tree_shap_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('LFI_with_raw_RF_plus', LFI_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('Kernel_SHAP_RF_plus', kernel_shap_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('LIME_RF_plus', lime_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], +] \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-model/dgp.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-model/dgp.py new file mode 100644 index 0000000..c53c7bf --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-model/dgp.py @@ -0,0 +1,23 @@ +import sys +sys.path.append("../..") +from feature_importance.scripts.simulations_util import * + + +X_DGP = sample_real_X +X_PARAMS_DICT = { + "fpath": "../data/classification_data/Diabetes/X_diabetes.csv", + "sample_row_n": 768 +} + +Y_DGP = logistic_model +Y_PARAMS_DICT = { + "s": 4, + "beta": 1, + "heritability": 0.4 +} + +VARY_PARAM_NAME = ["heritability", "sample_row_n"] +VARY_PARAM_VALS = {"heritability": {"0.1": 0.1, "0.2": 0.2, + "0.4": 0.4, "0.8": 0.8}, + "sample_row_n": {"100": 100, "200": 200, + "400": 400, "600": 600}} \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-model/models.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-model/models.py new file mode 100644 index 0000000..6ec3ae7 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/logistic-model/models.py @@ -0,0 +1,25 @@ +import copy +import numpy as np +from feature_importance.util import ModelConfig, FIModelConfig +from sklearn.ensemble import RandomForestClassifier +from imodels.importance.rf_plus import RandomForestPlusClassifier +from feature_importance.scripts.competing_methods_local import * + + + +ESTIMATORS = [ + [ModelConfig('RF', RandomForestClassifier, model_type='tree', + other_params={'n_estimators': 100, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'random_state': 42})], + [ModelConfig('RF_plus', RandomForestPlusClassifier, model_type='t_plus', + other_params={'rf_model': RandomForestClassifier(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42)})] +] + +FI_ESTIMATORS = [ + [FIModelConfig('LFI_with_raw_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('MDI_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"include_raw": False, "cv_ridge": 0, "calc_loo_coef":False, "sample_split":"inbag"})], + [FIModelConfig('LFI_with_raw_OOB_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"sample_split":"oob", "fit_on":"test", "calc_loo_coef":False})], + [FIModelConfig('TreeSHAP_RF', tree_shap_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('LFI_with_raw_RF_plus', LFI_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('Kernel_SHAP_RF_plus', kernel_shap_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('LIME_RF_plus', lime_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], +] \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/lss-model/dgp.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/lss-model/dgp.py new file mode 100644 index 0000000..d43114f --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/lss-model/dgp.py @@ -0,0 +1,26 @@ +import sys +sys.path.append("../..") +from feature_importance.scripts.simulations_util import * + +X_DGP = sample_real_X +X_PARAMS_DICT = { + "fpath": "../data/classification_data/Diabetes/X_diabetes.csv", + "sample_row_n": None +} + +Y_DGP = lss_model + +Y_PARAMS_DICT = { + "beta": 1, + "sigma": None, + "heritability": 0.4, + "tau": 0, + "m": 3, + "r": 2 +} + +VARY_PARAM_NAME = ["heritability", "sample_row_n"] +VARY_PARAM_VALS = {"heritability": {"0.1": 0.1, "0.2": 0.2, + "0.4": 0.4, "0.8": 0.8}, + "sample_row_n": {"100": 100, "200": 200, + "400": 400, "600": 600}} \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/lss-model/models.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/lss-model/models.py new file mode 100644 index 0000000..0d225d0 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-classification/lss-model/models.py @@ -0,0 +1,25 @@ +import copy +import numpy as np +from feature_importance.util import ModelConfig, FIModelConfig +from sklearn.ensemble import RandomForestRegressor +from imodels.importance.rf_plus import RandomForestPlusRegressor +from feature_importance.scripts.competing_methods_local import * + + + +ESTIMATORS = [ + [ModelConfig('RF', RandomForestRegressor, model_type='tree', + other_params={'n_estimators': 100, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'random_state': 42})], + [ModelConfig('RF_plus', RandomForestPlusRegressor, model_type='t_plus', + other_params={'rf_model': RandomForestRegressor(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42)})] +] + +FI_ESTIMATORS = [ + [FIModelConfig('LFI_with_raw_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('MDI_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"include_raw": False, "cv_ridge": 0, "calc_loo_coef":False, "sample_split":"inbag"})], + [FIModelConfig('LFI_with_raw_OOB_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"sample_split":"oob", "fit_on":"test", "calc_loo_coef":False})], + [FIModelConfig('TreeSHAP_RF', tree_shap_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('LFI_with_raw_RF_plus', LFI_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('Kernel_SHAP_RF_plus', kernel_shap_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('LIME_RF_plus', lime_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], +] \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/hierarchical-polynomial/dgp.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/hierarchical-polynomial/dgp.py new file mode 100644 index 0000000..98cc33d --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/hierarchical-polynomial/dgp.py @@ -0,0 +1,24 @@ +import sys +sys.path.append("../..") +from feature_importance.scripts.simulations_util import * + + +X_DGP = sample_real_X +X_PARAMS_DICT = { + "fpath": "../data/regression_data/Diabetes_regression/X_diabetes_regression.csv", + "sample_row_n": 442 +} +Y_DGP = hierarchical_poly +Y_PARAMS_DICT = { + "beta": 1, + "sigma": None, + "heritability": 0.4, + "m": 3, + "r": 2 +} + +VARY_PARAM_NAME = ["heritability", "sample_row_n"] +VARY_PARAM_VALS = {"heritability": {"0.1": 0.1, "0.2": 0.2, + "0.4": 0.4, "0.8": 0.8}, + "sample_row_n": {"100": 100, "200": 200, + "300": 300, "400": 400}} \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/hierarchical-polynomial/models.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/hierarchical-polynomial/models.py new file mode 100644 index 0000000..0d225d0 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/hierarchical-polynomial/models.py @@ -0,0 +1,25 @@ +import copy +import numpy as np +from feature_importance.util import ModelConfig, FIModelConfig +from sklearn.ensemble import RandomForestRegressor +from imodels.importance.rf_plus import RandomForestPlusRegressor +from feature_importance.scripts.competing_methods_local import * + + + +ESTIMATORS = [ + [ModelConfig('RF', RandomForestRegressor, model_type='tree', + other_params={'n_estimators': 100, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'random_state': 42})], + [ModelConfig('RF_plus', RandomForestPlusRegressor, model_type='t_plus', + other_params={'rf_model': RandomForestRegressor(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42)})] +] + +FI_ESTIMATORS = [ + [FIModelConfig('LFI_with_raw_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('MDI_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"include_raw": False, "cv_ridge": 0, "calc_loo_coef":False, "sample_split":"inbag"})], + [FIModelConfig('LFI_with_raw_OOB_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"sample_split":"oob", "fit_on":"test", "calc_loo_coef":False})], + [FIModelConfig('TreeSHAP_RF', tree_shap_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('LFI_with_raw_RF_plus', LFI_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('Kernel_SHAP_RF_plus', kernel_shap_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('LIME_RF_plus', lime_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], +] \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-lss/dgp.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-lss/dgp.py new file mode 100644 index 0000000..98cc33d --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-lss/dgp.py @@ -0,0 +1,24 @@ +import sys +sys.path.append("../..") +from feature_importance.scripts.simulations_util import * + + +X_DGP = sample_real_X +X_PARAMS_DICT = { + "fpath": "../data/regression_data/Diabetes_regression/X_diabetes_regression.csv", + "sample_row_n": 442 +} +Y_DGP = hierarchical_poly +Y_PARAMS_DICT = { + "beta": 1, + "sigma": None, + "heritability": 0.4, + "m": 3, + "r": 2 +} + +VARY_PARAM_NAME = ["heritability", "sample_row_n"] +VARY_PARAM_VALS = {"heritability": {"0.1": 0.1, "0.2": 0.2, + "0.4": 0.4, "0.8": 0.8}, + "sample_row_n": {"100": 100, "200": 200, + "300": 300, "400": 400}} \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-lss/models.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-lss/models.py new file mode 100644 index 0000000..0d225d0 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-lss/models.py @@ -0,0 +1,25 @@ +import copy +import numpy as np +from feature_importance.util import ModelConfig, FIModelConfig +from sklearn.ensemble import RandomForestRegressor +from imodels.importance.rf_plus import RandomForestPlusRegressor +from feature_importance.scripts.competing_methods_local import * + + + +ESTIMATORS = [ + [ModelConfig('RF', RandomForestRegressor, model_type='tree', + other_params={'n_estimators': 100, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'random_state': 42})], + [ModelConfig('RF_plus', RandomForestPlusRegressor, model_type='t_plus', + other_params={'rf_model': RandomForestRegressor(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42)})] +] + +FI_ESTIMATORS = [ + [FIModelConfig('LFI_with_raw_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('MDI_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"include_raw": False, "cv_ridge": 0, "calc_loo_coef":False, "sample_split":"inbag"})], + [FIModelConfig('LFI_with_raw_OOB_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"sample_split":"oob", "fit_on":"test", "calc_loo_coef":False})], + [FIModelConfig('TreeSHAP_RF', tree_shap_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('LFI_with_raw_RF_plus', LFI_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('Kernel_SHAP_RF_plus', kernel_shap_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('LIME_RF_plus', lime_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], +] \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/dgp.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-model/dgp.py similarity index 73% rename from feature_importance/fi_config/mdi_local/real_x_sim_y/dgp.py rename to feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-model/dgp.py index 660e2ec..2b6256b 100644 --- a/feature_importance/fi_config/mdi_local/real_x_sim_y/dgp.py +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-model/dgp.py @@ -3,11 +3,10 @@ from feature_importance.scripts.simulations_util import * -X_DGP = sample_real_data +X_DGP = sample_real_X X_PARAMS_DICT = { - "X_fpath": "../data/regression_data/Diabetes_regression/X_diabetes_regression.csv", - "sample_row_n": None, - "return_data": "X" + "fpath": "../data/regression_data/Diabetes_regression/X_diabetes_regression.csv", + "sample_row_n": 442 } # X_PARAMS_DICT = { # "X_fpath": "../data/classification_data/Fico/X_fico.csv", @@ -24,7 +23,7 @@ "beta": 1, "sigma": None, "heritability": 0.4, - "s": 4 + "s": 5 } # Y_PARAMS_DICT = { # "y_fpath": "../data/classification_data/Fico/y_fico.csv", @@ -40,4 +39,8 @@ VARY_PARAM_VALS = {"heritability": {"0.1": 0.1, "0.2": 0.2, "0.4": 0.4, "0.8": 0.8}, "sample_row_n": {"100": 100, "200": 200, - "300": 300, "442": 442}} + "300": 300, "400": 400}} + +# VARY_PARAM_NAME = ["heritability"] +# VARY_PARAM_VALS = {"heritability": {"0.1": 0.1, "0.2": 0.2, +# "0.4": 0.4, "0.8": 0.8}} diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-model/models.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-model/models.py new file mode 100644 index 0000000..0d225d0 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/linear-model/models.py @@ -0,0 +1,25 @@ +import copy +import numpy as np +from feature_importance.util import ModelConfig, FIModelConfig +from sklearn.ensemble import RandomForestRegressor +from imodels.importance.rf_plus import RandomForestPlusRegressor +from feature_importance.scripts.competing_methods_local import * + + + +ESTIMATORS = [ + [ModelConfig('RF', RandomForestRegressor, model_type='tree', + other_params={'n_estimators': 100, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'random_state': 42})], + [ModelConfig('RF_plus', RandomForestPlusRegressor, model_type='t_plus', + other_params={'rf_model': RandomForestRegressor(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42)})] +] + +FI_ESTIMATORS = [ + [FIModelConfig('LFI_with_raw_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('MDI_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"include_raw": False, "cv_ridge": 0, "calc_loo_coef":False, "sample_split":"inbag"})], + [FIModelConfig('LFI_with_raw_OOB_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"sample_split":"oob", "fit_on":"test", "calc_loo_coef":False})], + [FIModelConfig('TreeSHAP_RF', tree_shap_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('LFI_with_raw_RF_plus', LFI_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('Kernel_SHAP_RF_plus', kernel_shap_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('LIME_RF_plus', lime_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], +] \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/lss-model/dgp.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/lss-model/dgp.py new file mode 100644 index 0000000..78a86f7 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/lss-model/dgp.py @@ -0,0 +1,27 @@ +import sys +sys.path.append("../..") +from feature_importance.scripts.simulations_util import * + +X_DGP = sample_real_X +X_PARAMS_DICT = { + "fpath": "../data/regression_data/Diabetes_regression/X_diabetes_regression.csv", + "sample_row_n": None, + "sample_col_n": None +} + +Y_DGP = lss_model + +Y_PARAMS_DICT = { + "beta": 1, + "sigma": None, + "heritability": 0.4, + "tau": 0, + "m": 3, + "r": 2 +} + +VARY_PARAM_NAME = ["heritability", "sample_row_n"] +VARY_PARAM_VALS = {"heritability": {"0.1": 0.1, "0.2": 0.2, + "0.4": 0.4, "0.8": 0.8}, + "sample_row_n": {"100": 100, "200": 200, + "300": 300, "400": 400}} \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/lss-model/models.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/lss-model/models.py new file mode 100644 index 0000000..0d225d0 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/diabetes-regression/lss-model/models.py @@ -0,0 +1,25 @@ +import copy +import numpy as np +from feature_importance.util import ModelConfig, FIModelConfig +from sklearn.ensemble import RandomForestRegressor +from imodels.importance.rf_plus import RandomForestPlusRegressor +from feature_importance.scripts.competing_methods_local import * + + + +ESTIMATORS = [ + [ModelConfig('RF', RandomForestRegressor, model_type='tree', + other_params={'n_estimators': 100, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'random_state': 42})], + [ModelConfig('RF_plus', RandomForestPlusRegressor, model_type='t_plus', + other_params={'rf_model': RandomForestRegressor(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42)})] +] + +FI_ESTIMATORS = [ + [FIModelConfig('LFI_with_raw_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('MDI_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"include_raw": False, "cv_ridge": 0, "calc_loo_coef":False, "sample_split":"inbag"})], + [FIModelConfig('LFI_with_raw_OOB_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"sample_split":"oob", "fit_on":"test", "calc_loo_coef":False})], + [FIModelConfig('TreeSHAP_RF', tree_shap_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('LFI_with_raw_RF_plus', LFI_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('Kernel_SHAP_RF_plus', kernel_shap_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('LIME_RF_plus', lime_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], +] \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/hierarchical-polynomial/dgp.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/hierarchical-polynomial/dgp.py new file mode 100644 index 0000000..54e7c76 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/hierarchical-polynomial/dgp.py @@ -0,0 +1,26 @@ +import sys +sys.path.append("../..") +from feature_importance.scripts.simulations_util import * + + +X_DGP = sample_real_X +X_PARAMS_DICT = { + "fpath": "../data/regression_data/CA_housing/X_california_housing.csv", + "sample_row_n": 442 +} +Y_DGP = hierarchical_poly +Y_PARAMS_DICT = { + "beta": 1, + "sigma": None, + "heritability": 0.4, + "m": 3, + "r": 2 +} + +VARY_PARAM_NAME = ["heritability", "sample_row_n"] +VARY_PARAM_VALS = {"heritability": {"0.1": 0.1, "0.2": 0.2, + "0.4": 0.4, "0.8": 0.8}, + "sample_row_n": {"500": 500, "1000": 1000, + "2000": 2000, "4000": 4000, + "6000": 6000, "8000": 8000, + "10000": 10000}} \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/hierarchical-polynomial/models.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/hierarchical-polynomial/models.py new file mode 100644 index 0000000..c885cc3 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/hierarchical-polynomial/models.py @@ -0,0 +1,24 @@ +import copy +import numpy as np +from feature_importance.util import ModelConfig, FIModelConfig +from sklearn.ensemble import RandomForestRegressor +from imodels.importance.rf_plus import RandomForestPlusRegressor +from feature_importance.scripts.competing_methods_local import * + + + +ESTIMATORS = [ + [ModelConfig('RF', RandomForestRegressor, model_type='tree', + other_params={'n_estimators': 100, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'random_state': 42})], + [ModelConfig('RF_plus', RandomForestPlusRegressor, model_type='t_plus', + other_params={'rf_model': RandomForestRegressor(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42)})] +] + +FI_ESTIMATORS = [ + [FIModelConfig('LFI_with_raw_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('MDI_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"include_raw": False, "cv_ridge": 0, "calc_loo_coef":False, "sample_split":"inbag"})], + [FIModelConfig('LFI_with_raw_OOB_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"sample_split":"oob", "fit_on":"test", "calc_loo_coef":False})], + [FIModelConfig('TreeSHAP_RF', tree_shap_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('LFI_with_raw_RF_plus', LFI_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('Kernel_SHAP_RF_plus', kernel_shap_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")] +] \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-lss/dgp.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-lss/dgp.py new file mode 100644 index 0000000..54e7c76 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-lss/dgp.py @@ -0,0 +1,26 @@ +import sys +sys.path.append("../..") +from feature_importance.scripts.simulations_util import * + + +X_DGP = sample_real_X +X_PARAMS_DICT = { + "fpath": "../data/regression_data/CA_housing/X_california_housing.csv", + "sample_row_n": 442 +} +Y_DGP = hierarchical_poly +Y_PARAMS_DICT = { + "beta": 1, + "sigma": None, + "heritability": 0.4, + "m": 3, + "r": 2 +} + +VARY_PARAM_NAME = ["heritability", "sample_row_n"] +VARY_PARAM_VALS = {"heritability": {"0.1": 0.1, "0.2": 0.2, + "0.4": 0.4, "0.8": 0.8}, + "sample_row_n": {"500": 500, "1000": 1000, + "2000": 2000, "4000": 4000, + "6000": 6000, "8000": 8000, + "10000": 10000}} \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-lss/models.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-lss/models.py new file mode 100644 index 0000000..c885cc3 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-lss/models.py @@ -0,0 +1,24 @@ +import copy +import numpy as np +from feature_importance.util import ModelConfig, FIModelConfig +from sklearn.ensemble import RandomForestRegressor +from imodels.importance.rf_plus import RandomForestPlusRegressor +from feature_importance.scripts.competing_methods_local import * + + + +ESTIMATORS = [ + [ModelConfig('RF', RandomForestRegressor, model_type='tree', + other_params={'n_estimators': 100, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'random_state': 42})], + [ModelConfig('RF_plus', RandomForestPlusRegressor, model_type='t_plus', + other_params={'rf_model': RandomForestRegressor(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42)})] +] + +FI_ESTIMATORS = [ + [FIModelConfig('LFI_with_raw_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('MDI_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"include_raw": False, "cv_ridge": 0, "calc_loo_coef":False, "sample_split":"inbag"})], + [FIModelConfig('LFI_with_raw_OOB_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"sample_split":"oob", "fit_on":"test", "calc_loo_coef":False})], + [FIModelConfig('TreeSHAP_RF', tree_shap_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('LFI_with_raw_RF_plus', LFI_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('Kernel_SHAP_RF_plus', kernel_shap_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")] +] \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-model/dgp.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-model/dgp.py new file mode 100644 index 0000000..aa95e89 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-model/dgp.py @@ -0,0 +1,44 @@ +import sys +sys.path.append("../..") +from feature_importance.scripts.simulations_util import * + + +X_DGP = sample_real_X +X_PARAMS_DICT = { + "fpath": "../data/regression_data/CA_housing/X_california_housing.csv", + "sample_row_n": 442 +} +# X_PARAMS_DICT = { +# "X_fpath": "../data/classification_data/Fico/X_fico.csv", +# "sample_row_n": None, +# "return_data": "X" +# } +# X_PARAMS_DICT = { +# "X_fpath": "../data/classification_data/Juvenile/X_juvenile.csv", +# "sample_row_n": None, +# "return_data": "X" +# } +Y_DGP = linear_model +Y_PARAMS_DICT = { + "beta": 1, + "sigma": None, + "heritability": 0.4, + "s": 4 +} +# Y_PARAMS_DICT = { +# "y_fpath": "../data/classification_data/Fico/y_fico.csv", +# "return_data": "y" +# } +# Y_PARAMS_DICT = { +# "y_fpath": "../data/classification_data/Juvenile/y_juvenile.csv", +# "return_data": "y" +# } + +# vary one parameter +VARY_PARAM_NAME = ["heritability", "sample_row_n"] +VARY_PARAM_VALS = {"heritability": {"0.1": 0.1, "0.2": 0.2, + "0.4": 0.4, "0.8": 0.8}, + "sample_row_n": {"500": 500, "1000": 1000, + "2000": 2000, "4000": 4000, + "6000": 6000, "8000": 8000, + "10000": 10000}} \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-model/models.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-model/models.py new file mode 100644 index 0000000..c885cc3 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/linear-model/models.py @@ -0,0 +1,24 @@ +import copy +import numpy as np +from feature_importance.util import ModelConfig, FIModelConfig +from sklearn.ensemble import RandomForestRegressor +from imodels.importance.rf_plus import RandomForestPlusRegressor +from feature_importance.scripts.competing_methods_local import * + + + +ESTIMATORS = [ + [ModelConfig('RF', RandomForestRegressor, model_type='tree', + other_params={'n_estimators': 100, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'random_state': 42})], + [ModelConfig('RF_plus', RandomForestPlusRegressor, model_type='t_plus', + other_params={'rf_model': RandomForestRegressor(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42)})] +] + +FI_ESTIMATORS = [ + [FIModelConfig('LFI_with_raw_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('MDI_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"include_raw": False, "cv_ridge": 0, "calc_loo_coef":False, "sample_split":"inbag"})], + [FIModelConfig('LFI_with_raw_OOB_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"sample_split":"oob", "fit_on":"test", "calc_loo_coef":False})], + [FIModelConfig('TreeSHAP_RF', tree_shap_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('LFI_with_raw_RF_plus', LFI_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('Kernel_SHAP_RF_plus', kernel_shap_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")] +] \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/lss-model/dgp.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/lss-model/dgp.py new file mode 100644 index 0000000..2934369 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/lss-model/dgp.py @@ -0,0 +1,28 @@ +import sys +sys.path.append("../..") +from feature_importance.scripts.simulations_util import * + +X_DGP = sample_real_X +X_PARAMS_DICT = { + "fpath": "../data/regression_data/CA_housing/X_california_housing.csv", + "sample_row_n": None +} + +Y_DGP = lss_model + +Y_PARAMS_DICT = { + "beta": 1, + "sigma": None, + "heritability": 0.4, + "tau": 0, + "m": 3, + "r": 2 +} + +VARY_PARAM_NAME = ["heritability", "sample_row_n"] +VARY_PARAM_VALS = {"heritability": {"0.1": 0.1, "0.2": 0.2, + "0.4": 0.4, "0.8": 0.8}, + "sample_row_n": {"500": 500, "1000": 1000, + "2000": 2000, "4000": 4000, + "6000": 6000, "8000": 8000, + "10000": 10000}} \ No newline at end of file diff --git a/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/lss-model/models.py b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/lss-model/models.py new file mode 100644 index 0000000..c885cc3 --- /dev/null +++ b/feature_importance/fi_config/mdi_local/real_x_sim_y/housing/lss-model/models.py @@ -0,0 +1,24 @@ +import copy +import numpy as np +from feature_importance.util import ModelConfig, FIModelConfig +from sklearn.ensemble import RandomForestRegressor +from imodels.importance.rf_plus import RandomForestPlusRegressor +from feature_importance.scripts.competing_methods_local import * + + + +ESTIMATORS = [ + [ModelConfig('RF', RandomForestRegressor, model_type='tree', + other_params={'n_estimators': 100, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'random_state': 42})], + [ModelConfig('RF_plus', RandomForestPlusRegressor, model_type='t_plus', + other_params={'rf_model': RandomForestRegressor(n_estimators=100, min_samples_leaf=1, max_features='sqrt', random_state=42)})] +] + +FI_ESTIMATORS = [ + [FIModelConfig('LFI_with_raw_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('MDI_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"include_raw": False, "cv_ridge": 0, "calc_loo_coef":False, "sample_split":"inbag"})], + [FIModelConfig('LFI_with_raw_OOB_RF', LFI_evaluation_RF, model_type='tree', splitting_strategy = "train-test", other_params={"sample_split":"oob", "fit_on":"test", "calc_loo_coef":False})], + [FIModelConfig('TreeSHAP_RF', tree_shap_evaluation_RF, model_type='tree', splitting_strategy = "train-test")], + [FIModelConfig('LFI_with_raw_RF_plus', LFI_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")], + [FIModelConfig('Kernel_SHAP_RF_plus', kernel_shap_evaluation_RF_plus, model_type='t_plus', splitting_strategy = "train-test")] +] \ No newline at end of file diff --git a/feature_importance/ranking_importance_local_sims.ipynb b/feature_importance/ranking_importance_local_sims.ipynb new file mode 100644 index 0000000..0392647 --- /dev/null +++ b/feature_importance/ranking_importance_local_sims.ipynb @@ -0,0 +1,331 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 115, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import os\n", + "pd.set_option('display.max_columns', None)" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [], + "source": [ + "directory = \"./results/mdi_local.real_x_sim_y.diabetes-regression.hierarchical-polynomial/diabetes-reg-hierpoly/varying_heritability_sample_row_n/\"\n", + "folder_names = [folder for folder in os.listdir(directory) if os.path.isdir(os.path.join(directory, folder))]\n", + "experiments_seeds = []\n", + "for folder_name in folder_names:\n", + " experiments_seeds.append(int(folder_name[4:]))\n", + "combined_df = pd.DataFrame()\n", + "for seed in experiments_seeds:\n", + " df = pd.read_csv(os.path.join(directory, f\"seed{seed}/results.csv\"))\n", + " combined_df = pd.concat([combined_df, df], ignore_index=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [], + "source": [ + "methods = combined_df[\"fi\"].unique().tolist()\n", + "sample_row_n = combined_df[\"sample_row_n\"].unique().tolist()\n", + "sample_row_n.sort()\n", + "heritability = combined_df[\"heritability\"].unique().tolist()\n", + "heritability.sort()\n", + "seeds = combined_df[\"split_seed\"].unique()\n", + "seeds.sort()\n", + "results = {}\n", + "for r in seeds:\n", + " results[r] = {}\n", + " for h in heritability:\n", + " results[r][h] = {}\n", + " for m in methods:\n", + " results[r][h][m] = {}\n", + " results[r][h][m][\"test_auroc\"] = []\n", + " results[r][h][m][\"test_f1\"] = []\n", + " results[r][h][m][\"test_auprc\"] = []\n", + " results[r][h][m][\"train_auroc\"] = []\n", + " results[r][h][m][\"train_f1\"] = []\n", + " results[r][h][m][\"train_auprc\"] = []\n" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [], + "source": [ + "for r in seeds:\n", + " for h in heritability:\n", + " for m in methods:\n", + " for s in sample_row_n:\n", + " df_sub = combined_df[(combined_df[\"fi\"] == m) & (combined_df[\"sample_row_n\"] == s) & (combined_df[\"heritability\"] == h) & (combined_df[\"split_seed\"] == r)]\n", + " assert len(df_sub[\"test_AUROC\"].unique()) == 1\n", + " assert len(df_sub[\"train_AUROC\"].unique()) == 1\n", + " assert len(df_sub[\"train_AUPRC\"].unique()) == 1\n", + " assert len(df_sub[\"train_AUPRC\"].unique()) == 1\n", + " assert len(df_sub[\"train_F1\"].unique()) == 1\n", + " assert len(df_sub[\"train_F1\"].unique()) == 1\n", + " results[r][h][m][\"test_auroc\"].append(df_sub[\"test_AUROC\"].unique()[0])\n", + " results[r][h][m][\"train_auroc\"].append(df_sub[\"train_AUROC\"].unique()[0])\n", + " results[r][h][m][\"test_auprc\"].append(df_sub[\"test_AUPRC\"].unique()[0])\n", + " results[r][h][m][\"train_auprc\"].append(df_sub[\"train_AUPRC\"].unique()[0])\n", + " results[r][h][m][\"test_f1\"].append(df_sub[\"test_F1\"].unique()[0])\n", + " results[r][h][m][\"train_f1\"].append(df_sub[\"train_F1\"].unique()[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [], + "source": [ + "agg_results = {} \n", + "for h in heritability:\n", + " agg_results[h] = {}\n", + " for m in methods:\n", + " agg_results[h][m] = {}\n", + " agg_results[h][m][\"test_auroc\"] = []\n", + " agg_results[h][m][\"train_auroc\"] = []\n", + " agg_results[h][m][\"test_auprc\"] = []\n", + " agg_results[h][m][\"train_auprc\"] = []\n", + " agg_results[h][m][\"test_f1\"] = []\n", + " agg_results[h][m][\"train_f1\"] = []" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [], + "source": [ + "for h in heritability:\n", + " for m in methods:\n", + " for s in sample_row_n:\n", + " test_auroc = 0\n", + " train_auroc = 0\n", + " test_auprc = 0\n", + " train_auprc = 0\n", + " test_f1 = 0\n", + " train_f1 = 0\n", + " for r in range(1, 11):\n", + " df_sub = combined_df[(combined_df[\"fi\"] == m) & (combined_df[\"sample_row_n\"] == s) & (combined_df[\"heritability\"] == h) & (combined_df[\"split_seed\"] == r)]\n", + " assert len(df_sub[\"test_AUROC\"].unique()) == 1\n", + " assert len(df_sub[\"train_AUROC\"].unique()) == 1\n", + " assert len(df_sub[\"test_AUPRC\"].unique()) == 1\n", + " assert len(df_sub[\"train_AUPRC\"].unique()) == 1\n", + " assert len(df_sub[\"train_F1\"].unique()) == 1\n", + " assert len(df_sub[\"test_F1\"].unique()) == 1\n", + " test_auroc += df_sub[\"test_AUROC\"].unique()[0]\n", + " train_auroc += df_sub[\"train_AUROC\"].unique()[0]\n", + " test_auprc += df_sub[\"test_AUPRC\"].unique()[0]\n", + " train_auprc += df_sub[\"train_AUPRC\"].unique()[0]\n", + " test_f1 += df_sub[\"test_F1\"].unique()[0]\n", + " train_f1 += df_sub[\"train_F1\"].unique()[0]\n", + " test_auroc /= 10\n", + " train_auroc /= 10\n", + " test_auprc /= 10\n", + " train_auprc /= 10\n", + " test_f1 /= 10\n", + " train_f1 /= 10\n", + " agg_results[h][m][\"test_auroc\"].append(test_auroc)\n", + " agg_results[h][m][\"train_auroc\"].append(train_auroc)\n", + " agg_results[h][m][\"test_auprc\"].append(test_auprc)\n", + " agg_results[h][m][\"train_auprc\"].append(train_auprc)\n", + " agg_results[h][m][\"test_f1\"].append(test_f1)\n", + " agg_results[h][m][\"train_f1\"].append(train_f1)" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB+EAAAOlCAYAAACyqZUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1f7H8c/upvdK6C10ISAgJXSxgCICgogKSFG84k+9tmvFclUEvV67XpWqiCiigAKCCojSgiBN6WBooSchIW13z++PmMUlAQJssiG8X8+zj+7smZnvzJYT/cycYzHGGAEAAAAAAAAAAAAAgAtm9XYBAAAAAAAAAAAAAACUF4TwAAAAAAAAAAAAAAB4CCE8AAAAAAAAAAAAAAAeQggPAAAAAAAAAAAAAICHEMIDAAAAAAAAAAAAAOAhhPAAAAAAAAAAAAAAAHgIITwAAAAAAAAAAAAAAB5CCA8AAAAAAAAAAAAAgIcQwgMAAAAAAAAAAAAA4CGE8AAAACgzLBZLsR6LFi264H2dOHFCzz77bJHbmjhxoiwWi3bt2nXB+7kQb775piwWixo3blzk67t27ZLFYtGrr75a5OuvvvpqoePo3Lmz27kMCAhQo0aN9MILLyg3N7fI7ezevVv33nuv4uPjFRAQoMjISHXu3FlTpkyRMabIdQ4cOKDHHntMTZo0UUhIiAICAlS3bl3df//92rp161mP/YcfflDLli0VHBwsi8Wir7/++qzrnK/zOY933HGHatasWWI1lTSLxaJ77733rO1K+ruwaNGiYn2nC9oVPGw2m+Li4tSvXz/98ccf57zfi/39+7uCz+/EiRNLbN2CdhaLRc8++2yRbYYOHepq40mdO3dW586dz2vdmjVr6o477jhru6NHj+qWW25RhQoVZLFY1KtXr/PaX3H9/XfYarUqNDRUderUUb9+/TR9+nQ5nc5C6xT3WIpS3O97cZ2p/yxpf/8sFpy/yMhIde3aVfPnzy/1eryluL+dJeGOO+5wew+Cg4NVs2ZN9ezZUxMmTFBOTs55b3vOnDmn/Y0BAAAALjY+3i4AAAAAKLBs2TK35//+97+1cOFC/fjjj27LGzVqdMH7OnHihJ577jlJKhTwXH/99Vq2bJkqVap0wfu5EOPHj5ckbdy4UStWrFDr1q09st3atWtrypQpkqRDhw7po48+0tNPP63k5GR98MEHbm1/+eUX9ejRQyEhIXrkkUeUkJCgtLQ0ff7557r99ts1e/Zsffrpp7JaT17fu3LlSvXo0UPGGN17771q27at/Pz8tHnzZn3yySdq1aqVjh07dtr6jDG6+eabVa9ePc2aNUvBwcGqX7++R47dU55++mndf//93i6jxJWV70KBl156SV26dFFubq5WrVql559/Xj/88IPWr1+vKlWqeLs8r6hUqZKWLVum+Pj4Et9XaGioJk6cqFGjRrl95zMyMvTFF18oLCxM6enpJV6Hp/373//WV199pfHjxys+Pl5RUVElvs+//w5nZmZq586d+vrrr9WvXz916NBBs2fPVnh4uKv9V199pbCwsBKvqzjO1H+Wlv/7v//TrbfeKofDoU2bNum5557Tddddpx9//FEdO3b0Sk2lqXnz5lq2bJlH/h46H4GBga6/zbKysrR7927NnTtXd955p/7zn/9o3rx5qlq16jlvd86cOXrnnXcI4gEAAFAuEMIDAACgzGjTpo3b89jYWFmt1kLLS1psbKxiY2NLdZ+nWrVqldauXavrr79e3377rcaNG+exED4wMNDtnHbv3l2NGjXSpEmT9OabbyogIECSlJqaqj59+ig8PFwrVqxQXFyca50bb7xRCQkJeuyxx9SsWTM99thjkqT09HTdeOONCggI0NKlS93+J3znzp01YsQITZ8+/Yz17du3T0ePHlXv3r3VtWtXjxxzVlaWAgICPHaXrqcDzxMnTigoKMjr2zhVWfgu/F3dunVdn92OHTsqIiJCw4YN08SJE/Xkk096uTrv8Pf3L7XfyP79++ujjz7SDz/8oKuvvtq1fNq0aXI4HOrVq5c++eSTUqnFkzZs2KD4+HjddtttHtmeMUbZ2dkKDAw8bZtTf4clafjw4ZowYYKGDh2qu+66S9OmTXO9dvnll3uktvKievXqrvPXrl071a1bV506ddK4ceNKPYQvid/eswkLCyv1v43+rqi/zQYNGqQhQ4aoR48e6tu3r5YvX+6l6gAAAICygeHoAQAAcFHJzc3VCy+8oAYNGsjf31+xsbEaMmSIDh065Nbuxx9/VOfOnRUdHa3AwEBVr15dN910k06cOKFdu3a5gsXnnnvONaRqwVC/RQ3B3blzZzVu3FhJSUnq0KGDgoKCVLt2bb388suFhg7euHGjrrnmGgUFBSk2NlYjR47Ut99+e05Dx44bN06S9PLLLysxMVGfffaZTpw4cX4n7Sx8fHzUrFkz5ebmKjU11bX8o48+0sGDB/Xyyy+7BfAFHn30UTVo0ECvvPKK8vLyJEkffvihUlJSNHbs2NPeBde3b9/T1vLss8+61vvXv/4li8XiNmz4zz//rK5duyo0NFRBQUFKTEzUt99+67aNgvdv/vz5Gjp0qGJjYxUUFHRBQ+SeqqjhzI0xevfdd9WsWTMFBgYqMjJSffv21Y4dO9zaFXyWfvrpJyUmJiooKEhDhw6VlB9mXnPNNapUqZICAwPVsGFDPfbYY8rMzCy0/5CQEK1fv17XXHONQkNDXRcs5OTk6Pnnn1fDhg0VEBCg6OhodenSRUuXLi10HB9//LEaNmyooKAgNW3aVN98843b66cbjn7evHnq2rWrwsPDFRQUpIYNG2r06NGu11etWqVbbrlFNWvWVGBgoGrWrKkBAwbozz//PKfzfDYFIVDBdp1Op8aOHev6fahQoYIGDRqkPXv2nHE7Xbt2VYMGDQpNr2CMUZ06dXT99ddLcp+64LXXXlOtWrUUEhKitm3bFhk4zZo1S23btlVQUJBCQ0N19dVXFxrx49lnn5XFYtG6devUr18/hYeHKyoqSg8++KDsdrs2b96sbt26KTQ0VDVr1tTYsWPd1i9qSPlt27ZpyJAhqlu3roKCglSlShXdcMMNWr9+ffFO7GnUr19fiYmJrlE6CowfP951wc6pivueGGM0duxY1ahRQwEBAWrevLnmzp1bZB3p6el6+OGHVatWLfn5+alKlSp64IEHCn1Pzqbg3H3//ff6448/Ck15cvToUd1zzz2qUqWK/Pz8VLt2bT355JOFfksKhnt///331bBhQ/n7+2vSpEnnVEuBIUOG6LrrrtMXX3zh9n05dTj67OxsPfTQQ2rWrJnrM9O2bVvNnDnztNv+3//+p3r16snf31+NGjXSZ599VqhNSkqKRowYoapVq8rPz0+1atXSc889J7vd7jpnZ+o/JWnr1q269dZbVaFCBfn7+6thw4Z655133PbjdDr1wgsvqH79+goMDFRERIQSEhL0xhtvnM9pU8uWLSXlT4VyLsdTYM+ePerbt69CQ0MVERGh2267TUlJSYW+W2f67fXE3ycF3nvvPTVt2lQhISEKDQ1VgwYN9MQTT7heP91w9Ofym7Nx40YNGDBA4eHhiouL09ChQ5WWlnZuJ/4U11xzje68806tWLFCP/30k2t5cfq2O+64w/U5+ftw9wX9zzvvvKOOHTuqQoUKCg4OVpMmTTR27FjX3x8AAABAWcOd8AAAALhoOJ1O3XjjjVqyZIkeffRRJSYm6s8//9Qzzzyjzp07a9WqVQoMDNSuXbt0/fXXq0OHDho/frwiIiK0d+9ezZs3T7m5uapUqZLmzZunbt26adiwYRo+fLgknfWO35SUFN1222166KGH9Mwzz+irr77S448/rsqVK2vQoEGSpP3796tTp04KDg7We++9pwoVKmjq1KnnNB9vVlaWpk6dqiuuuEKNGzfW0KFDNXz4cH3xxRcaPHjw+Z/AM9i5c6ciIiLczsGCBQtks9l0ww03FLmOxWJRz549NXbsWP36669q06aN5s+ff8Z1zmb48OFq2rSp+vTp4xpu2N/fX5K0ePFiXX311UpISNC4cePk7++vd999VzfccIOmTp2q/v37u21r6NChuv766/Xxxx8rMzNTvr6+Z9y30+ksFMwULC+OESNGaOLEibrvvvs0ZswYHT16VM8//7wSExO1du1atwsZ9u/fr9tvv12PPvqoXnrpJdfQ3lu3btV1112nBx54QMHBwdq0aZPGjBmjlStXFpqWITc3Vz179tSIESP02GOPyW63y263q3v37lqyZIkeeOABXXnllbLb7Vq+fLmSk5OVmJjoWv/bb79VUlKSnn/+eYWEhGjs2LHq3bu3Nm/erNq1a5/2OMeNG6c777xTnTp10vvvv68KFSpoy5Yt2rBhg6vNrl27VL9+fd1yyy2KiorS/v379d577+mKK67Q77//rpiYmGKd07PZtm2bpJPf3X/84x/64IMPdO+996pHjx7atWuXnn76aS1atEirV68+7X7vv/9+3Xjjjfrhhx901VVXuZbPnTtX27dv15tvvunW/p133lGDBg30+uuvS8qfnuC6667Tzp07XUH0p59+qttuu03XXHONpk6dqpycHI0dO1adO3fWDz/8oPbt27tt8+abb9btt9+uESNGaMGCBa5w6fvvv9c999yjhx9+WJ9++qn+9a9/qU6dOurTp89pz8u+ffsUHR2tl19+WbGxsTp69KgmTZqk1q1ba82aNRc0vcOwYcM0cuRIHTt2TJGRkdq8ebOWLl2qF154QV9++WWh9sV9T5577jk999xzGjZsmPr27avdu3frzjvvlMPhcKv3xIkT6tSpk/bs2aMnnnhCCQkJ2rhxo0aNGqX169fr+++/L/aIFwVD+d9zzz1KS0tzDQ/fqFEjZWdnq0uXLtq+fbuee+45JSQkaMmSJRo9erR+++23Qhf/fP3111qyZIlGjRqlihUrqkKFCud7itWzZ0/NmTNHS5YsUY0aNYpsk5OTo6NHj+rhhx9WlSpVlJubq++//159+vTRhAkTXH1SgVmzZmnhwoV6/vnnFRwcrHfffVcDBgyQj4+P68KolJQUtWrVSlarVaNGjVJ8fLyWLVumF154Qbt27dKECRPO2n/+/vvvSkxMVPXq1fWf//xHFStW1Hfffaf77rtPhw8f1jPPPCNJGjt2rJ599lk99dRT6tixo/Ly8rRp0ya3C8HOxc6dOyVJ9erVcy0rzvFI+dMBdOnSRUePHtWYMWNUp04dzZs3r1CfUqCo315P/X0SFBSkzz77TPfcc4/+7//+T6+++qqsVqu2bdum33///Yzn4Fx/c2666Sb1799fw4YN0/r16/X4449LUqGLbM5Vz5499e677+qnn35yjUpQnL7t6aefVmZmpqZPn+524UDBdCjbt2/Xrbfe6rr4Zu3atXrxxRe1adOmC64ZAAAAKBEGAAAAKKMGDx5sgoODXc+nTp1qJJkvv/zSrV1SUpKRZN59911jjDHTp083ksxvv/122m0fOnTISDLPPPNModcmTJhgJJmdO3e6lnXq1MlIMitWrHBr26hRI3Pttde6nj/yyCPGYrGYjRs3urW79tprjSSzcOHCsx22mTx5spFk3n//fWOMMcePHzchISGmQ4cObu127txpJJlXXnmlyO288sorRR7HZZddZvLy8kxeXp7Zv3+/GTVqlNv+CjRo0MBUrFjxjLW+9957RpKZNm1asdc5m9MdV5s2bUyFChXM8ePHXcvsdrtp3LixqVq1qnE6ncaYk+/foEGDzml/Z3v8/TwOHjzY1KhRw/V82bJlRpL5z3/+47bt3bt3m8DAQPPoo4+6lhV8ln744Ycz1uV0Ok1eXp5ZvHixkWTWrl3rtn9JZvz48W7rFHx2PvzwwzNuW5KJi4sz6enprmUpKSnGarWa0aNHu5ad+l04fvy4CQsLM+3bt3ed7+Kw2+0mIyPDBAcHmzfeeMO1fOHChcX6XhS0mzZtmsnLyzMnTpwwP/30k6lTp46x2Wxm7dq15o8//jCSzD333OO27ooVK4wk88QTT7iWnfr+ORwOU7t2bXPjjTe6rdu9e3cTHx/vOtaCz0qTJk2M3W53tVu5cqWRZKZOneraXuXKlU2TJk2Mw+FwtTt+/LipUKGCSUxMdC175plnivzsNGvWzEgyM2bMcC3Ly8szsbGxpk+fPq5lBTVNmDDhtOfPbreb3NxcU7duXfPPf/7znNb9e7tXXnnF9Xv09ttvG2Pyf/Nq1aplnE6nGTlypPn7/2Yo7nty7NgxExAQYHr37u3W7pdffjGSTKdOnVzLRo8ebaxWq0lKSnJrW/C7P2fOHNeyGjVqmMGDB5/x2Iw5+bv4d++//76RZD7//HO35WPGjDGSzPz5813LJJnw8HBz9OjRs+7rdPv7u7lz5xpJZsyYMcU+FrvdbvLy8sywYcPM5Zdf7vaaJBMYGGhSUlLc2jdo0MDUqVPHtWzEiBEmJCTE/Pnnn27rv/rqq0aSq187U/957bXXmqpVq5q0tDS35ffee68JCAhwnaMePXqYZs2anfZ4TqfgszhmzBiTl5dnsrOzzW+//Wbatm1rKlWq5PY7Xdzjeeedd4wkM3fuXLd2I0aMKPT9ON1vryf/Prn33ntNRETEGc/Dqb+d5/ObM3bsWLdt3nPPPSYgIOCsv+2n/m12qoLv/T/+8Y8iXz9T33bqb8jpOBwOk5eXZyZPnmxsNluxv3sAAABAaWI4egAAAFw0vvnmG0VEROiGG25w3fVrt9vVrFkzVaxY0TUsa7NmzeTn56e77rpLkyZNKjQc+PmqWLGiWrVq5bYsISHBbcjgxYsXq3HjxmrUqJFbuwEDBhR7P+PGjVNgYKBuueUWSVJISIj69eunJUuWaOvWrRdwBPk2btwoX19f+fr6qlKlSnr++ef1+OOPa8SIEee8LfPX8N2emmv9dDIzM7VixQr17dtXISEhruU2m00DBw7Unj17tHnzZrd1brrppnPax/3336+kpKRCj/vvv/+s637zzTeyWCy6/fbb3T6bFStWVNOmTQsNGRwZGakrr7yy0HZ27NihW2+9VRUrVpTNZpOvr686deokSfrjjz8KtT/1GOfOnauAgADX8PZn0qVLF4WGhrqex8XFqUKFCmccMn7p0qVKT0/XPffcc8b3PCMjw3XHto+Pj3x8fBQSEqLMzMwij6O4+vfvL19fXwUFBaljx45yOByaPn26EhIStHDhQklyGxZbklq1aqWGDRvqhx9+OO12rVar7r33Xn3zzTdKTk6WlH/X5bx584o81uuvv142m831PCEhQdLJYfE3b96sffv2aeDAga5RDqT87/JNN92k5cuXF5peokePHm7PGzZsKIvFou7du7uW+fj4qE6dOmcd1t9ut+ull15So0aN5OfnJx8fH/n5+Wnr1q0XdP4LjqFfv34aP3687Ha7Jk+erCFDhhT5eSjue7Js2TJlZ2cXmpM9MTGx0J3g33zzjRo3bqxmzZq5fdeuvfbac5ry42x+/PFHBQcHF5o+o+BYTv08XXnllYqMjPTIvs0p0yKczhdffKF27dopJCREPj4+8vX11bhx44p8j7t27eo2GofNZlP//v21bds219QA33zzjbp06aLKlSu7nduCz+DixYvPWE92drZ++OEH9e7dW0FBQW7buO6665Sdne2atqFVq1Zau3at7rnnHn333XdKT08v1jEX+Ne//iVfX18FBASoWbNm2rBhg2bPnu02TUhxj2fx4sUKDQ1Vt27d3PZxpn771N9eT/590qpVK6WmpmrAgAGaOXOmDh8+fNbzcT6/OT179nR7npCQoOzsbB08ePCs+zuToj6/59q3FWXNmjXq2bOnoqOjXdsYNGiQHA6HtmzZckE1AwAAACWBEB4AAAAXjQMHDig1NVV+fn6uELngkZKS4vof1fHx8fr+++9VoUIFjRw5UvHx8YqPjz/vuWYLREdHF1rm7++vrKws1/MjR44UOX96UcuKsm3bNv3000+6/vrrZYxRamqqUlNTXUHQ34dc9fHJn13K4XAUua2CodVPHYY9Pj5eSUlJWrlypb744gs1bdpUo0ePLjQ/cPXq1XXo0KEzzrNcMFdrtWrVir3O+Th27JiMMa5haf+ucuXKkvLP/d8V1fZMqlatqpYtWxZ6nG5u+787cOCAjDGKi4sr9Nlcvnx5oRClqNoyMjLUoUMHrVixQi+88IIWLVqkpKQkzZgxQ5LcPmeSFBQUpLCwMLdlhw4dUuXKld1CmNMpzuf5VAVzG5/tnNx66616++23NXz4cH333XdauXKlkpKSFBsbe8btn82YMWOUlJSk1atXKzk5WTt27FCvXr0knXz/T/cZOfXzcaqhQ4cqMDBQ77//vqT8IecDAwOLvKDh1HNXMGVCwbGdrRan06ljx465LY+KinJ77ufnp6CgIAUEBBRanp2dfcZjefDBB/X000+rV69emj17tlasWKGkpCQ1bdr0gs5/gWHDhmn16tV68cUXdejQoUIhe4HivicF/6xYsWKhdqcuO3DggNatW1foexYaGipjTLECy+I4cuSIKlasWOjiggoVKsjHx+eCf2/OpOAii4LftqLMmDFDN998s6pUqaJPPvlEy5YtU1JSkoYOHVrk5+NM57bgWA4cOKDZs2cXOreXXXaZJJ313B45ckR2u11vvfVWoW1cd911btt4/PHH9eqrr2r58uXq3r27oqOj1bVrV61atepsp0fSyYumfv75Z7366qvKy8vTjTfe6Pa+FPd4zrXfLuq315N/nwwcOFDjx4/Xn3/+qZtuukkVKlRQ69attWDBgtOej/P5zTnb79j5OvXze659W1GSk5PVoUMH7d27V2+88YaWLFmipKQk1xzynvhdAwAAADyNOeEBAABw0YiJiVF0dLTmzZtX5Ot/v6u3Q4cO6tChgxwOh1atWqW33npLDzzwgOLi4lx3mJeE6OhoHThwoNDylJSUYq0/fvx4GWM0ffp0TZ8+vdDrkyZN0gsvvCCbzaaYmBjZbDbt3bu3yG3t3btXNput0P9oDwgIUMuWLSVJV1xxhbp06aLLLrtMDzzwgHr06OG60/zqq6/W/PnzNXv27CLPmTFGs2bNUlRUlFq0aCFJuvbaa8+4zvmKjIyU1WrV/v37C722b98+SSo033dJ353/dzExMbJYLFqyZIkryPi7U5cVVduPP/6offv2adGiRa47BCWddo7korYRGxurn3/+WU6ns1hB/LkqmPe54M7ZoqSlpembb77RM888o8cee8y1vGAO6wtRu3Zt12f3VAWf8/379xe6SGDfvn1nnYc+PDxcgwcP1kcffaSHH35YEyZM0K233qqIiIhzrvPvtZxq3759slqtHrtruiiffPKJBg0apJdeeslt+eHDh8/reE7Vrl071a9fX88//7yuvvpq10U4pyrue1LQrqjfyZSUFLe7m2NiYhQYGHjaOaDP9j4XV3R0tFasWCFjjNt37eDBg7Lb7SX6ezNr1ixZLBbXfNpF+eSTT1SrVi1NmzbNbd85OTlFtj/duZVOnv+YmBglJCToxRdfLHIbZ7ooQMr/nS4YnWTkyJFFtqlVq5ak/IvIHnzwQT344INKTU3V999/ryeeeELXXnutdu/eraCgoDPuq+CiKSn/81ixYkXdfvvteuaZZ/T222+f0/FER0dr5cqVhV4/Xb9d1Hvt6b9PhgwZoiFDhigzM1M//fSTnnnmGfXo0UNbtmwpNDpEwTFI3vvN+btZs2ZJkjp37izp3Pu2onz99dfKzMzUjBkz3I7/t99+80TJAAAAQIngTngAAABcNHr06KEjR47I4XAUecdy/fr1C61js9nUunVr191Sq1evluS5O75O1alTJ23YsEG///672/JT7zIvisPh0KRJkxQfH6+FCxcWejz00EPav3+/5s6dKyk/TG/Xrp1mzZpV6M7H7OxszZo1S+3bty90J+2poqOj9fLLL+vAgQN66623XMuHDx+uChUq6PHHHy9yeNqxY8dq06ZNevTRR1132w8bNkwVK1bUo48+etqLAwrufjsXwcHBat26tWbMmOH2njmdTn3yySeqWrWq6tWrd87b9ZQePXrIGKO9e/cW+dls0qTJWbdREOycGtj/73//K3Yd3bt3V3Z2tiZOnHhO9RdXYmKiwsPD9f777592yGyLxSJjTKHj+Oijj047aoMnFAzv/8knn7gtT0pK0h9//KGuXbuedRv33XefDh8+rL59+yo1NVX33nvvedVSv359ValSRZ9++qnbecrMzNSXX36ptm3bnjVkvBAWi6XQ+f/2229P+508H0899ZRuuOEGPfTQQ6dtU9z3pE2bNgoICNCUKVPc2i1durTQ0Ps9evTQ9u3bFR0dXeR37e+B/YXo2rWrMjIy9PXXX7stnzx5suv1kjBhwgTNnTtXAwYMUPXq1U/bzmKxyM/Pzy0QTklJ0cyZM4ts/8MPP7hdIOZwODRt2jTFx8e7LpDo0aOHNmzYoPj4+CLPbUFofbr+MygoSF26dNGaNWuUkJBQ5DaKGoEjIiJCffv21ciRI3X06FHXCCvn4rbbblPnzp314Ycfuj4zxT2eTp066fjx466+tUBx+u0Cnvz75O+Cg4PVvXt3Pfnkk8rNzdXGjRuL3L+3f3MKLFiwQB999JESExPVvn17SefWt53us1XUNowx+vDDDz1XPAAAAOBh3AkPAACAi8Ytt9yiKVOm6LrrrtP999+vVq1aydfXV3v27NHChQt14403qnfv3nr//ff1448/6vrrr1f16tWVnZ3tumvyqquukpR/V1qNGjU0c+ZMde3aVVFRUYqJibngAOeBBx7Q+PHj1b17dz3//POKi4vTp59+qk2bNknSGe9Onjt3rvbt26cxY8a47iD7u8aNG+vtt9/WuHHjXPNHv/zyy+rSpYvatm2rBx54QNWrV1dycrJef/11HThwoNghwqBBg/Taa6/p1Vdf1ciRIxUWFqaIiAjNmDFDPXr0UIsWLfTII4+oadOmSk9P17Rp0zRlyhT1799fjzzyiGs74eHhmjlzpnr06KHLL79c9957r9q2beuaj/qTTz7R2rVr1adPn3M4q/lGjx6tq6++Wl26dNHDDz8sPz8/vfvuu9qwYYOmTp1aqne+n6pdu3a66667NGTIEK1atUodO3ZUcHCw9u/fr59//llNmjTRP/7xjzNuIzExUZGRkbr77rv1zDPPyNfXV1OmTNHatWuLXceAAQM0YcIE3X333dq8ebO6dOkip9OpFStWqGHDhhc8OkFISIj+85//aPjw4brqqqt05513Ki4uTtu2bdPatWv19ttvKywsTB07dtQrr7zi+k4tXrxY48aN88hd2KdTv3593XXXXXrrrbdktVrVvXt37dq1S08//bSqVaumf/7zn2fdRr169dStWzfNnTtX7du3V9OmTc+rFqvVqrFjx+q2225Tjx49NGLECOXk5OiVV15RamqqXn755fPabnH16NFDEydOVIMGDZSQkKBff/1Vr7zySrGmViiu22+/XbfffvsZ2xT3PYmMjNTDDz+sF154QcOHD1e/fv20e/duPfvss4WGUX/ggQf05ZdfqmPHjvrnP/+phIQEOZ1OJScna/78+XrooYfUunXrCz6+QYMG6Z133tHgwYO1a9cuNWnSRD///LNeeuklXXfdda6+5HxlZWW55kfPysrSjh079PXXX+ubb75Rp06dXNMinE6PHj00Y8YM3XPPPerbt692796tf//736pUqZK2bt1aqH1MTIyuvPJKPf300woODta7776rTZs2ufURzz//vBYsWKDExETdd999ql+/vrKzs7Vr1y7NmTNH77//vqpWrXrG/vONN95Q+/bt1aFDB/3jH/9QzZo1dfz4cW3btk2zZ8/Wjz/+KEm64YYb1LhxY7Vs2VKxsbH6888/9frrr6tGjRqqW7fueZ3TMWPGqHXr1vr3v/+tjz76qNjHM3jwYP33v//V7bffrhdeeEF16tTR3Llz9d1330k6c79dwJN/n9x5550KDAxUu3btVKlSJaWkpGj06NEKDw/XFVdcUeT+S/s3x+l0uj6/OTk5Sk5O1ty5c/X555+rYcOG+vzzz11tz6VvK7hgbcyYMerevbtsNpsSEhJ09dVXy8/PTwMGDNCjjz6q7Oxsvffee4WG2AcAAADKFAMAAACUUYMHDzbBwcFuy/Ly8syrr75qmjZtagICAkxISIhp0KCBGTFihNm6dasxxphly5aZ3r17mxo1ahh/f38THR1tOnXqZGbNmuW2re+//95cfvnlxt/f30gygwcPNsYYM2HCBCPJ7Ny509W2U6dO5rLLLiuyxho1argt27Bhg7nqqqtMQECAiYqKMsOGDTOTJk0ykszatWtPe7y9evUyfn5+5uDBg6dtc8sttxgfHx+TkpLiWrZq1SrTu3dvExMTY2w2m4mJiTG9e/c2v/76a6H1T3ccxhjz7bffGknmueeec1uenJxsRo4caWrXrm38/PxMeHi46dixo/nkk0+M0+ksclspKSnmX//6l7nssstMUFCQ8ff3N3Xq1DEjRoww69evP+3xGWPMzp07jSTzyiuvFHptyZIl5sorrzTBwcEmMDDQtGnTxsyePdutTcH7l5SUdMb9FGd/xhjzyiuvFPo8FPW+G2PM+PHjTevWrV31xcfHm0GDBplVq1a52pzpPVi6dKlp27atCQoKMrGxsWb48OFm9erVRpKZMGGC2/5P/W4UyMrKMqNGjTJ169Y1fn5+Jjo62lx55ZVm6dKlrjaSzMiRIwutW6NGDdf3wJiivwvGGDNnzhzTqVMnExwcbIKCgkyjRo3MmDFjXK/v2bPH3HTTTSYyMtKEhoaabt26mQ0bNhTa/sKFC40ks3DhwiKP5dR2X3zxxRnbORwOM2bMGFOvXj3j6+trYmJizO233252797t1u50758xxkycONFIMp999lmh1870WZFknnnmGbdlX3/9tWndurUJCAgwwcHBpmvXruaXX35xa/PMM88YSebQoUOFaizqPT7181NQ098/H8eOHTPDhg0zFSpUMEFBQaZ9+/ZmyZIlplOnTqZTp05nXLcoZ/uOFBg5cqQ59X8zFPc9cTqdZvTo0aZatWrGz8/PJCQkmNmzZxeq2RhjMjIyzFNPPWXq16/v+k1q0qSJ+ec//+n223jq5+10TvedPHLkiLn77rtNpUqVjI+Pj6lRo4Z5/PHHTXZ2tlu7032fzrQ/Sa5HcHCwqV27tunbt6/54osvjMPhKLROUcfy8ssvm5o1axp/f3/TsGFD8+GHH7o+T0XV9+6775r4+Hjj6+trGjRoYKZMmVJoP4cOHTL33XefqVWrlvH19TVRUVGmRYsW5sknnzQZGRmudqfrP43J/7wMHTrUVKlSxfj6+prY2FiTmJhoXnjhBVeb//znPyYxMdHExMQYPz8/U716dTNs2DCza9euM567s30W+/XrZ3x8fMy2bdvO6XiSk5NNnz59TEhIiAkNDTU33XSTmTNnjpFkZs6c6Wp3pt9eT/19MmnSJNOlSxcTFxdn/Pz8TOXKlc3NN99s1q1b52pzut/OC/nNOd3v/akGDx7s9vkNDAw01atXNzfccIMZP368ycnJKbROcfu2nJwcM3z4cBMbG2ssFotbPbNnz3ad2ypVqphHHnnEzJ07t1h9CAAAAOANFmNOM4YgAAAAAI+56667NHXqVB05ckR+fn7eLgfAadx0001avny5du3a5ZpmAcCl56WXXtJTTz2l5ORkj44iAQAAAODSwHD0AAAAgIc9//zzqly5smrXrq2MjAx98803+uijj/TUU08RwANlUE5OjlavXq2VK1fqq6++0muvvUYAD1xC3n77bUlSgwYNlJeXpx9//FFvvvmmbr/9dgJ4AAAAAOeFEB4AAADwMF9fX73yyivas2eP7Ha76tatq9dee03333+/t0sDUIT9+/crMTFRYWFhGjFihP7v//7P2yUBKEVBQUH673//q127diknJ0fVq1fXv/71Lz311FPeLg0AAADARYrh6AEAAAAAAAAAAAAA8BCrtwsAAAAAAAAAAAAAAKC8IIQHAAAAAAAAAAAAAMBDCOEBAAAAAAAAAAAAAPAQQngAAAAAAAAAAAAAADyEEB4AAAAAAAAAAAAAAA8hhAcAAAAAAAAAAAAAwEMI4QEAAAAAAAAAAAAA8BBCeAAAAAAAAAAAAAAAPIQQHgAAAAAAAAAAAAAADyGEBwAAAAAAAAAAAADAQwjhAQAAAAAAAAAAAADwEEJ4AAAAAAAAAAAAAAA8hBAeAAAAAAAAAAAAAAAPIYQHAAAAAAAAAAAAAMBDCOEBAAAAAAAAAAAAAPAQQngAAAAAAAAAAAAAADyEEB4AAAAAAAAAAAAAAA8hhAcAAAAAAAAAAAAAwEMI4QEAAAAAAAAAAAAA8BBCeAAAAAAAAAAAAAAAPIQQHgAAAAAAAAAAAAAADyGEBwAAAAAAAAAAAADAQwjhAQAAAAAAAAAAAADwEEJ4AAAAAAAAAAAAAAA8hBAeAAAAAAAAAAAAAAAPIYQHAAAAAAAAAAAAAMBDCOEBAAAAAAAAAAAAAPAQQngAAAAAAAAAAAAAADyEEB4AAAAAAAAAAAAAAA8hhAcAAAAAAAAAAAAAwEMI4QEAAAAAAAAAAAAA8BBCeAAAAAAAAAAAAAAAPIQQHgAAAAAAAAAAAAAADyGEBwAAAAAAAAAAAADAQwjhAQAAAAAAAAAAAADwEEJ4AAAAAAAAAAAAAAA8hBAeAAAAAAAAAAAAAAAPIYQHAAAAAAAAAAAAAMBDCOEBAAAAAAAAAAAAAPAQQngAAAAAAAAAAAAAADyEEB4AAAAAAAAAAAAAAA8hhAcAAAAAAAAAAAAAwEMI4QEAAAAAAAAAAAAA8BBCeAAAAAAAAAAAAAAAPIQQHgAAAAAAAAAAAAAADyGEBwAAAAAAAAAAAADAQwjhAQAAAAAAAAAAAADwEEJ4AAAAAAAAAAAAAAA8hBAeAAAAAAAAAAAAAAAPIYQHAAAAAAAAAAAAAMBDCOEBAAAAAAAAAAAAAPAQQngAAAAAAAAAAAAAADyEEB4AAAAAAAAAAAAAAA8hhAcAAAAAAAAAAAAAwEMI4QEAAAAAAAAAAAAA8BBCeAAAAAAAAAAAAAAAPIQQHgAAAAAAAAAAAAAADyGEBwAAAAAAAAAAAADAQwjhAQAAAAAAAAAAAADwEEJ4AAAAAAAAAAAAAAA8hBAeAAAAAAAAAAAAAAAPIYQHAAAAAAAAAAAAAMBDCOEBAAAAAAAAAAAAAPAQQngAAAAAAAAAAAAAADyEEB64iE2cOFEWi8X18PHxUdWqVTVkyBDt3btXkvTPf/5TFotFmzZtOu12nnzySVksFq1evVqSVLNmTbft/v3RuXPn0jg0N5999pmaNWumgIAAVa5cWQ888IAyMjKKte7rr7+uPn36qFatWl6rHwCA80E/f2ZbtmzRww8/rBYtWigiIkJRUVFq166dpk+fXgpVAwBw/ujjz83vv/8uf39/WSwWrVq1qgQqBQDAc+jnzy4lJUX33nuvateurcDAQNWoUUPDhg1TcnJyCVcNlC4fbxcA4MJNmDBBDRo0UFZWln766SeNHj1aixcv1vr16zVs2DC9/vrrGj9+vMaOHVtoXafTqcmTJ6tZs2Zq3ry5a3m7du306quvFmofFhZWosdyqilTpuj222/X8OHD9d///ldbtmzRv/71L/3++++aP3/+Wdd///33FRwcrCuvvFKzZ88uhYoBAPAs+vmizZ8/X99++60GDhyoK664Qna7XdOmTVO/fv303HPPadSoUaV0FAAAnB/6+LNzOBwaOnSoYmJitG/fvhKsGAAAz6KfL1pOTo46duyoY8eO6bnnnlOjRo20efNmPfPMM/ruu+/0xx9/KDQ0tJSOBChhBsBFa8KECUaSSUpKclv+9NNPG0nmk08+McYY06pVK1OxYkWTl5dXaBtz5841ksxbb73lWlajRg1z/fXXl2zxxWC3202lSpXMNddc47Z8ypQpRpKZM2fOWbfhcDhc/37ZZZeZTp06ebpMAABKBP38mfv5Q4cOGafTWWj59ddfb4KCgkx2drZH6wUAwFPo48/+3/IFXnnlFVOlShXzxhtvFHnOAAAoa+jnz9zPL1iwwEgyH330kdvyTz/91EgyM2bM8HjNgLcwHD1QDrVp00aS9Oeff0qShg0bppSUFM2dO7dQ2wkTJsjf31+33XZbqdZYHMuXL9f+/fs1ZMgQt+X9+vVTSEiIvvrqq7Nuw2rlZw4AUL7Qz+eLiYmRxWIptLxVq1Y6ceKEjh496tF6AQAoafTx7rZu3apRo0bp3XffLfU7/AAA8DT6+Xy+vr6SpPDwcLflERERkqSAgADPFQt4GekUUA5t27ZNkhQbGytJGjBggIKCgjR+/Hi3dseOHdPMmTPVu3dvRUZGur1mjJHdbi/0MMacdf9FrXc+29qwYYMkKSEhwW25r6+vGjRo4HodAIBLCf38mS1cuFCxsbGqUKHCea0PAIC30Me7H8fw4cPVo0cP9ezZ86ztAQAo6+jn87Vr104tWrTQs88+q6SkJGVkZGj16tV64okn1Lx5c1111VVnPRbgYkEID5QDDodDdrtdGRkZ+vbbb/XCCy8oNDTU9R+qoaGh6tevn7799lsdPHjQtd6UKVOUk5OjYcOGFdrmnDlz5OvrW+jx4osvnrWeotYr6jFp0qQzbufIkSOSpKioqEKvRUVFuV4HAKA8o58vvo8++kiLFi3SU089JZvNds7rAwBQmujjT++dd97R+vXr9dZbb521LQAAZRH9fNF8fHy0cOFC1a5dW61atVJoaKhatGihiIgILViwwHWnPFAe+Hi7AAAXrmAomwJNmjTRe++9p7i4ONeyYcOGadKkSfr444/10EMPScof1qZGjRrq2rVroW22b99e//3vfwstr1KlylnrSUpKKlbdtWrVKla7ooaaPdNyAADKE/r54pk7d65Gjhypvn376v/+7//OaV0AALyBPr5of/75px5//HG9/vrrbucCAICLCf180fLy8tS/f39t2LBBH374oerXr6+dO3fqhRde0NVXX60ff/yx0FD1wMWKEB4oByZPnqyGDRvKx8dHcXFxqlSpUqE2HTp0UL169TRhwgQ99NBDWrdunVavXq1nn322yI4xPDxcLVu2PK96mjVrVqx2Z7tDLTo6WlL+1XWn/of30aNHi7zaDgCA8oZ+/uy+++479enTR1dffbWmTJnChXoAgIsCfXzRRo4cqcaNG+umm25SamqqJOnEiROSpIyMDKWlpfE/5wEAZR79fNHGjRunuXPnKikpyXUsHTp0UPv27RUfH6/XX39dzzzzTLFqBco6hqMHyoGGDRuqZcuWatasWZGdeYGhQ4dq48aNWrlypcaPHy+r1ao77rjD4/V4amibJk2aSJLWr1/vttxut2vTpk1q3Lixx2sHAKCsoZ8/s++++069evVSp06d9OWXX8rPz+/8DgwAgFJGH1+0DRs2aPny5YqMjHQ9Ro4cKUnq0qWLatSocQFHCQBA6aCfL9pvv/0mm82m5s2buy2vXbu2oqOjzzqnPHAx4U544BIyePBgPfXUU/rf//6nWbNmqWvXriXyH6+eGtqmdevWqlSpkiZOnKj+/fu7lk+fPl0ZGRnq06fPBdUJAEB5cin28/Pnz1evXr3Uvn17ff311/L39y9WbQAAXEwutT7+s88+U3Z2ttuyefPmacyYMXr//fd12WWXFatOAAAuBpdaP1+5cmU5HA4lJSWpdevWruVbtmzRkSNHVLVq1WLVCVwMCOGBS0jFihV13XXXacKECTLGaNiwYadtm5qaquXLlxda7u/vr8svv/yM+znfIXFOZbPZNHbsWA0cOFAjRozQgAEDtHXrVj366KO6+uqr1a1bN1fbxYsXq2vXrho1apRGjRrlWr5q1Srt2rVLkpSeni5jjKZPny5JuuKKK7iCHgBQblxq/fzPP/+sXr16qWLFinriiSf022+/uW2/UaNGCgsL80itAAB406XWx586h64k13/Xt2jRwmN1AgBQFlxq/fyQIUP03//+VzfddJOeeuop1a9fXzt27NBLL72k4OBg3X333R6pEygLCOGBS8ywYcM0a9YsRUVFqVevXqdt98svv6ht27aFllepUkV79uwpwQrd3X777bLZbHr55Zc1ceJERUVFadCgQXrxxRfd2hlj5HA45HQ63Za//fbbhYbQ6devnyRpwoQJJTK0DwAA3nIp9fPff/+9srKytGvXLl155ZWFtr1w4UJ17ty5pA8BAIBScSn18QAAXGoupX6+WrVqSkpK0vPPP68xY8Zo//79iouLU9u2bTVq1CjVr1+/1I4DKGkWY4zxdhEAAAAAAAAAAAAAAJQHVm8XAAAAAAAAAAAAAABAeUEIDwAAAAAAAAAAAACAhxDCAwAAAAAAAAAAAADgIYTwAAAAAAAAAAAAAAB4CCE8AAAAAAAAAAAAAAAeQggPAAAAAAAAAAAAAICH+Hi7gLLI6XRq3759Cg0NlcVi8XY5AIBLmDFGx48fV+XKlWW1cu2cJ9DPAwDKCvp5z6KPBwCUFfTxnkc/DwAoK4rbzxPCF2Hfvn2qVq2at8sAAMBl9+7dqlq1qrfLKBfo5wEAZQ39vGfQxwMAyhr6eM+hnwcAlDVn6+cJ4YsQGhoqKf/khYWFebkaAMClLD09XdWqVXP1Tbhw9PMAgLKCft6z6OMBAGUFfbzn0c8DAMqK4vbzhPBFKBjOJiwsjA4dAFAmMNSa59DPAwDKGvp5z6CPBwCUNfTxnkM/DwAoa87WzzMhDQAAAAAAAAAAAAAAHkIIDwAAAAAAAAAAAACAhxDCAwAAAAAAAAAAAADgIYTwAAAAAAAAAAAAAAB4CCE8AAAAAAAAAAAAAAAeQggPAAAAAAAAAAAAAICHEMIDAAAAAAAAAAAAAOAhhPAAAAAAAAAAAAAAAHgIITwAAAAAAAAAAAAAAB5CCA8AAAAAAAAAAAAAgIcQwgMAAAAAAAAAAAAA4CGE8AAAAAAAAAAAAAAAeAghPAAAAAAAAAAAAAAAHkIIDwAAAAAAAAAAAACAhxDCAwAAAAAAAAAAAADgIYTwAAAAAAAAAAAAAAB4CCE8AAAAAAAAAAAAAAAeQggPAAAAAAAAAAAAAICHEMIDAAAAAAAAAAAAAOAhhPAAAAAAAAAAAAAAAHgIITwAAAAAAAAAAAAAAB5CCA8AAAAAAAAAAAAAgIcQwgMAAAAAAAAAAAAA4CGE8AAAAAAAAAAAAAAAeAghPAAAAAAAAAAAAAAAHuL1EP7dd99VrVq1FBAQoBYtWmjJkiVnbP/OO++oYcOGCgwMVP369TV58uRCbb788ks1atRI/v7+atSokb766quSKh8AAAAAAAAAAAAAABevhvDTpk3TAw88oCeffFJr1qxRhw4d1L17dyUnJxfZ/r333tPjjz+uZ599Vhs3btRzzz2nkSNHavbs2a42y5YtU//+/TVw4ECtXbtWAwcO1M0336wVK1aU1mEBAAAAAAAAAAAAAC5RFmOM8dbOW7durebNm+u9995zLWvYsKF69eql0aNHF2qfmJiodu3a6ZVXXnEte+CBB7Rq1Sr9/PPPkqT+/fsrPT1dc+fOdbXp1q2bIiMjNXXq1GLVlZ6ervDwcKWlpSksLOx8Dw8AgAtGn+R5nFMAQFlBn+RZnE8AQFlBn+R5nFMAQFlR3D7Ja3fC5+bm6tdff9U111zjtvyaa67R0qVLi1wnJydHAQEBbssCAwO1cuVK5eXlScq/E/7UbV577bWn3WbBdtPT090eAACgfKCfBwCgfKKPBwCg/KKfBwBc7LwWwh8+fFgOh0NxcXFuy+Pi4pSSklLkOtdee60++ugj/frrrzLGaNWqVRo/frzy8vJ0+PBhSVJKSso5bVOSRo8erfDwcNejWrVqF3h0AACgrKCfBwCgfKKPBwCg/KKfBwBc7Lw6J7wkWSwWt+fGmELLCjz99NPq3r272rRpI19fX91444264447JEk2m+28tilJjz/+uNLS0lyP3bt3n+fRAACAsoZ+HgCA8ok+HgCA8ot+HgDgMU6ntPgVKfNIqe7Wp1T39jcxMTGy2WyF7lA/ePBgoTvZCwQGBmr8+PH63//+pwMHDqhSpUr64IMPFBoaqpiYGElSxYoVz2mbkuTv7y9/f/8LPCIAAFAW0c8DAFA+0ccDAFB+0c8DADzCYZdmjpTWfSZt/lYa/oNktZ19PQ/w2p3wfn5+atGihRYsWOC2fMGCBUpMTDzjur6+vqpatapsNps+++wz9ejRQ1Zr/qG0bdu20Dbnz59/1m0CAAAAAAAAAAAAAMoBe640fUh+AG+xSW3vLbUAXvLinfCS9OCDD2rgwIFq2bKl2rZtqw8++EDJycm6++67JeUPObN3715NnjxZkrRlyxatXLlSrVu31rFjx/Taa69pw4YNmjRpkmub999/vzp27KgxY8boxhtv1MyZM/X999/r559/9soxAgAAAAAAAAAAAABKSV6W9Pkgaet8yeYn9ZsoNbi+VEvwagjfv39/HTlyRM8//7z279+vxo0ba86cOapRo4Ykaf/+/UpOTna1dzgc+s9//qPNmzfL19dXXbp00dKlS1WzZk1Xm8TERH322Wd66qmn9PTTTys+Pl7Tpk1T69atS/vwAAAAAAAAAAAAAAClJSdDmnqLtGuJ5BMo3TJFqtO11MuwGGNMqe+1jEtPT1d4eLjS0tIUFhbm7XIAAJcw+iTP45wCAMoK+iTP4nwCAMoK+iTP45wCAIolK1Wa0k/as1LyC5Vu+1yq4dkpy4vbJ3n1TngAAAAAAAAAAAAAAC5I5mHp415SynopIEK6fYZUtYXXyrF6bc8AAAAAAAAAAAAAAFyI9P3SxOvzA/jgWOmOb10BfPoPyTqx9lCpl0QIDwAAAAAAAAAAAAC4+KQmSxO6S4c2SaGVpSFzpYqNXS/7VQ1R6sxtcmbbS7UsQngAAAAAAAAAAAAAwMXlyHZpfHfp2E4pooY0dK5MZLxy92W4mgTUj1Ls3U1lDSjdWdoJ4QEAAAAAAAAAAAAAF48Dv0vju0npe6SYetLQecrLq6CD763Vof+tkz0129XUt0JQqZdXupE/AAAAAAAAAAAAAADna98a6ePeUtYxKa6xzO1fKWNdntLmrpHsTlkCfGQ/nCWfiACvlUgIDwAAAAAAAAAAAAAo+5KXS1P6STnpUpUWsveYqmPTDihnW6okyb9uhKL61pMt3N+rZRLCAwAAAAAAAAAAAADKth2LpKkDpLwTUo12OtH4fR3733aZbIcsvlaFX1dLwW0qyWKxeLtSQngAAAAAAAAAAAAAQBm2eZ70+SDJkSPFd5X6f6Lc+Sky2Q75VQtV5M315Btb+nO/nw4hPAAAAAAAAAAAAACgbNr4lfTlcMlpl6l3oyw3fyj5+Cv82pryiQpQcOtKsti8f/f73xHCAwAAAAAAAAAAAADKnjVTpFn3yun0U1rYGOWltVSs1U8WSRZfq0ISK3u7wiJZvV0AAAAAAAAAAAAAAABuVn4ozbxHOY56OmCZoMxD9ZX753HlbE/1dmVnxZ3wAAAAAAAAAAAAAICy45c3ZOY/r3T7YB139JVkkS3cX5E311NAfIS3qzsrQngAAAAAAAAAAAAAgPcZIy0arbyFn+lo3mvKM7UlSUHNKyiiZ7ysARdHvH1xVAkAAAAAAAAAAAAAKL+MkeY/JbP0bR3Le1V5prasQT6K6F1XQU1ivF3dOSGEBwAAAAAAAAAAAAB4j9MpzXlIWjVeFosU2cVH6QeiFdGrjmyhft6u7pwRwgMAAAAAAAAAAAAAvMLY83Ri3Gty7E5TmI9F6vmmfJsPUrS3C7sAhPAAAAAAAAAAAAAAgFLnSM3UsfdmKDstUVJrBVzTU37Ne3m7rAtGCA8AAAAAAAAAAAAAKFVZ6/bp2LT1cjpqSspTWAuHfNvf6O2yPIIQHgAAAAAAAAAAAABQKpzZdqV+vVknfjsqKUi+1j8VeWNl+bW+2tuleQwhPAAAAAAAAAAAAACgxBmH0cF3Vst+KEeSU6F+sxV2R29ZarfzdmkeZfV2AQAAAAAAAAAAAACA8s+SfUQhjs9ls6QoNuQFhd81oNwF8BJ3wgMAAAAAAAAAAAAASkju3gwZh1P+EZnSx70UnLlJQZFzZB30uVSxsbfLKxGE8AAAAAAAAAAAAAAAjzIOo+M/7Vb698myhVgVF/CgrGmbZAmrLMvgmVJMXW+XWGII4QEAAAAAAAAAAAAAHmM/nKWjn29WbvJxSZJv9iope7cUWUMaPEuKrOndAksYITwAAAAAAAAAAAAA4IIZY5S5IkVp3+6QyXPK4mdRhN+HCsr7WpbYetKgmVJYZW+XWeII4QEAAAAAAAAAAAAAF8SZ69DRKX8oe/MxSZJ/VZsij/+ffHK25c/9PvBrKSTWu0WWEkJ4AAAAAAAAAAAAAMAFsfhaJZtV8rEovLVFIetvkSU3TarSQrptuhQU5e0SS43V2wUAAAAAAAAAAAAAAC4+zhN5cmbZJUkWi0WRfeoorrddoev65gfwNdrlD0F/CQXwEiE8AAAAAAAAAAAAAOAcZW89pgOvr9axr7e5ltn2/ijfOTdLeSek+K75d8D7h3qxSu9gOHoAAAAAAAAAAAAAQLE4cx1Kn7dLGUv3SZLy9mbIeSJP1p3fSF8Ol5x2qUEPqe94ycffy9V6ByE8AAAAAAAAAAAAAOCscncf19HPN8t+KEuSFNy2ksK715L192nSzJGScUpN+km93pNsvl6u1nsI4QEAAAAAAAAAAAAAp2UcTqX/uFvHFyZLTska5qeovvUUUC9SWvmhNOfh/IbNB0k9XpesNq/W622E8AAAAAAAAAAAAACA0zI5DmUmpUhOKbBprCJvjJc1yFf65Q1pwaj8Rq3/IXUbLVks3i22DCCEBwAAAAAAAAAAAAC4MU4jWSSLxSJrkK+i+tWT84RdQU1jJWOkhS9Ji8fkN+7wsHTlUwTwfyGEBwAAAAAAAAAAAAC42FOzdeyLLQpqHqfgFnGSpIC6kfkvGiPNf0pa9nb+866jpA4PeanSsokQHgAAAAAAAAAAAAAgY4xOrDmo1JnbZXIcyjuYpaCEWFl8rfkNnE5pzkPSqvH5z7uNkdrc7b2CyyhCeAAAAAAAAAAAAAC4xDky85Q6Y6uyNh6RJPlVD1XkzfVPBvAOuzRzpLTuM0kWqeebUvNB3iu4DCOEBwAAAAAAAAAAAIBLWNYfR3Tsy61yZuRJVovCrqqu0E7VZLH9Nce7PVf6cpj0xyzJYpP6fCA16evdosswQngAAAAAAAAAAAAAuETlHTqhI5N/l4zkUyFIUf3ry69KyN8aZEmfD5K2zpdsflK/iVKD671W78WAEB4AAAAAAAAAAAAALlG+sUEK6VBVchqFX1vz5PDzkpSTIU29Rdq1RPIJlG6ZItXp6r1iLxKE8AAAAAAAAAAAAABwiTB2p9J/SFZwizj5xARKksK715TFYnFvmJUqTekn7Vkp+YVKt30u1Ugs/YIvQoTwAAAAAAAAAAAAAHAJyN2fqWPTNisvJVM521MVe3dTWayWwgF85hHp415SyjopIEK6fYZUtYU3Sr4oEcIDAAAAAAAAAAAAQDlmnEYZS/Yobf6fksPIGuyj0I5VZbFaCjdO358fwB/aJAXHSgO/lio2Lu2SL2qE8AAAAAAAAAAAAABQTtmPZOnoF1uUuytdkhTQMEqRferKFupXuHFqsjSpp3RspxRaWRo8S4qpW8oVX/wI4QEAAAAAAAAAAACgHMrdc1yHPlgvk+uQxc+miBtqK6hlXOHh5yXpyPb8AD59jxRRIz+Aj6xZ6jWXB4TwAAAAAAAAAAAAAFAO+VYMlk9MgCx+NkXdXF8+UQFFNzzwuzT5RinzoBRTTxo0UwqrXLrFliOE8AAAAAAAAAAAAABQTmRvOSb/2uGy+Fhl8bEqZmhjWYN8i57/XZL2rZE+7iNlHZXiGufPAR8SW6o1l6TdR0+oWlRQqe7TWqp7AwAAAAAAAAAAAAB4nDPbrqOfb9bh8RuU/mOya7ktxO/0AXzy8vwh6LOOSlVaSINnl6sAfun2w+r62mL9d8EWGWNKbb/cCQ8AAAAAAAAAAAAAF7Hs7ak69sUWOVJzJIuk4uTNOxZJUwdIeSekGu2kW6dJ/qElXGnpWb8nTXdN/lW5dqf+2J8up5Fsp7kWwdMI4QEAAAAAAAAAAADgImTyHEr77k9l/LxXkmSLClDUzfXkXzP8zCtunid9Pkhy5EjxXaX+n0h+pTtke0nafihDgyesVEaOXW1qR+nNAZfLdrrRAEoAITwAAAAAAAAAAAAAXGTyUjJ15NNNsh88IUkKblVR4dfXltXfduYVN34lfTlcctqlBj2kvuMlH/9SqLh07EvN0sCPVuhoZq6aVAnXh4NaKsD3LOfEwwjhAQAAAAAAAAAAAOAiY/GxynEsW9YQX0X2rafABlFnX+m3T6WZIyXjlJr0k3q9J9l8S77YUnI0M1cDx63QvrRs1Y4J1sQhVyg0oPSPjxAeAAAAAAAAAAAAAC4CzhN5sgblh8o+MYGKHthIvlVCZAsuRtC88kNpzsP5/958kNTjdclauneIl6SMHLuGTFip7YcyVSk8QB8Pb63oEO/c4W/1yl4BAAAAAAAAAAAAAMVijFHGsn3a/3KScnakupYH1IssXgD/yxsnA/jW/5BueLNcBfA5dodGfLxKa/ekKTLIVx8Pa6UqEYFeq4c74QEAAAAAAAAAAACgjHKk5ejol1uVs+WYJCnz14Pyrx1RvJWNkRaNlhaPyX/e4WHpyqcki6VkivUCh9Pogc9+0y/bjijIz6aJQ1qpToVQr9ZECA8AAAAAAAAAAAAAZdCJtQd17OvtMll2yceq8O41FdK2cvFWNkaa/5S07O38511HSR0eKrlivcAYoye/Wq+5G1LkZ7Pqg4Et1bRahLfLIoQHAAAAAAAAAAAAgLLEeSJPx2ZuV9baQ5Ik3yohiupfX74Vgoq5Aac05yFp1fj8593GSG3uLqFqvWfsd5v1WdJuWS3SG7c0U/u6Md4uSRIhPAAAAAAAAAAAAACUKdmbj+UH8FYptEt1hV1ZTRabtXgrO+zSzJHSus8kWaSeb0rNB5Vovd7wwU/b9d6i7ZKkl3o3Ufcmlbxc0UmE8AAAAAAAAAAAAABQhgQ2i1XI3gwFNY2VX7VzmN/cnit9OUz6Y5ZksUl9PpCa9C25Qr3k81W79dKcTZKkf3VroFtaVfdyRe6KebkEAAAAAAAAAAAAAKAk5CSn69AH6+Q8kSdJslgsiuhR+9wC+Lwsadpt+QG8zU/q/3G5DOC/25iix75cJ0m6q2Nt3d2ptpcrKow74QEAAAAAAAAAAADAC4zdqfQfk3V84W7JSGkL/lTkjXXOfUM5GdLUW6RdSySfQOmWKVKdrp4v2MuWbj+s/5u6Rk4j3dyyqh7v3kAWi8XbZRVCCA8AAAAAAAAAAAAApSzvQKaOfr5FeXszJOUPQR9+dY1z31BWqjSln7RnpeQXKt32uVQj0bPFlgHr96Tprsm/Ktfu1DWN4vRS7yZlMoCXCOEBAAAAAAAAAAAAoNQYp1HGL/uU9t1OyW5kDfJRRK86CkqIPfeNZR6RPu4lpayTAiKk22dIVVt4umSv234oQ4MnrFRGjl1ta0frzQGXy8dWdmdeJ4QHAAAAAAAAAAAAgFJyfPFupX/3pyQpoH6kIm+qK1uY/7lvKH1/fgB/aJMUHCsN/Fqq2NijtZYF+1KzNPCjFTqamasmVcL1waAWCvC1ebusMyKEBwAAAAAAAAAAAIBSEtK6kk78elAhHaoouFXF8xtSPTVZmtRTOrZTCq0sDZ4lxdT1fLFedjQzVwPHrdC+tGzVjgnWxCFXKDTA19tlnRUhPAAAAAAAAAAAAACUEEdGbn7o3rGKLBaLrEG+ivtnC1ls5zmf+ZHt+QF8+h4pokZ+AB9Z06M1lwUZOXYNmbBS2w9lqlJ4gD4e3lrRIecxYoAXEMIDAAAAAAAAAAAAQAnI+v2Ijs3YKmdGnqzBvgpuGSdJ5x/AH/hdmnyjlHlQiqknDZophVX2YMVlQ47doREfr9LaPWmKDPLVx8NaqUpEoLfLKjZCeAAAAAAAAAAAAADwIGeOXamzd+jEqgOSJJ+4IPlWDr6wje5bI33cR8o6KsU1zp8DPiT2wostYxxOowc++02/bDuiID+bJg5ppToVQr1d1jkhhAcAAAAAAAAAAAAAD8nZmaajn2+W41iOZJFCOlRR+NU1ZfG1nv9Gk5dLU/pJOelSlRbSbdOloCjPFV1GGGP05FfrNXdDivxsVn04qKWaVovwdlnnjBAeAAAAAAAAAAAAADzg+E97lDZ3p2QkW4S/om6uJ//aERe20R2LpKkDpLwTUo120q3TJP+L687w4hr73WZ9lrRbVov05oBmalcnxtslnRdCeAAAAAAAAAAAAADwAL+q+eF4UMs4RfSoLWvABcaxm+dJnw+SHDlSfFep/yeSX5AHKi17Pvhpu95btF2S9FLvJurWuJKXKzp/hPAAAAAAAAAAAAAAcB6M0yhvf6b8qoRIkvxrhyvuny3kW8EDQfnGr6Qvh0tOu9Sgh9R3vOTjf+HbLYM+T9qtl+ZskiT9q1sD3dKqupcrujAXMPEAAAAAAAAAAAAAAFya7EeydOh/63To/bXKO5zlWu6RAP63T6XpQ/MD+Cb9pH4Ty20A/93GFD02Y50kaUTH2vpH53gvV3ThuBMeAAAAAAAAAAAAAIrJGKPMlSlK+3aHTK5TFn+b7IdOyDcm0DM7WPmhNOfh/H9vPkjq8bpktXlm22XM0u2H9X+frpHTSDe3rKrHujfwdkkeQQgPAAAAAAAAAAAAAMXgOJ6rY19uVfamo5Ikv1rhiupXTz5RAZ7ZwS9vSAtG5f97639I3UZLFotntl3GrNuTqjsnrVKuw6lrL4vTS72byFJOjpUQHgAAAAAAAAAAAADOImvDYR2bsVXOE3bJx6Lwa2sqpF0VWaweCI6NkRaNlhaPyX/e4WHpyqfKbQC//VCG7piQpMxch9rWjtYbt1wuH1v5mUmdEB4AAAAAAAAAAAAAziJ3X4acJ+zyrRSsqP715Vsx2DMbNkaa/5S07O38511HSR0e8sy2y6B9qVka+NEKHc3MVZMq4fpgUAsF+Jav4fYJ4QEAAAAAAAAAAACgCCbPKYtv/h3aYV2ryxbsq+DWlWTx8dBd206nNOchadX4/Ofdxkht7vbMtsugo5m5GjhuhfalZat2bLAmDrlCoQG+3i7L48rPPf0AAAAAAAAAAAAA4AEmz6HU2dt18P21MnanJMlis+YPP++pAN5hl77+x18BvEXq+Va5DuAzcuwaMmGlth/KVKXwAH08rLWiQ/y9XVaJ4E54AAAAAAAAAAAAAPhL7p7jOjpts+yHsiRJ2ZuPKfCyaM/uxJ4rzRgu/T5TstikPh9ITfp6dh9lSI7doREfr9LaPWmKDPLVx8NaqUpEoLfLKjGE8AAAAAAAAAAAAAAuecbh1PGFu5X+427JaWQN9VNk37oKrB/l2R3lZUmfD5K2zpdsflK/iVKD6z27jzLE4TS6f+pv+mXbEQX72TRxSCvVqRDq7bJKFCE8AAAAAAAAAAAAgEta3qETOjpts/L2ZEiSApvEKKJXHdmCPTxfeU6GNPUWadcSySdQumWKVKerZ/dRhhhj9ORX6zVvY4r8bFZ9MKilmlaL8HZZJY4QHgAAAAAAAAAAAMAlLXXmduXtyZAlwEeRveIV2DRWFovFszvJSpWm9JP2rJT8QqXbPpdqJHp2H2XMmHmb9VnSblkt0psDmqldnRhvl1QqrN4u4N1331WtWrUUEBCgFi1aaMmSJWdsP2XKFDVt2lRBQUGqVKmShgwZoiNHjrhenzhxoiwWS6FHdnZ2SR8KAAAAAAAAAAAAgItQZO86CmgUrbh/NldQswqeD+Azj0iTbsgP4AMipEEzy30A/7/F2/X+4u2SpNF9mqhb40perqj0eDWEnzZtmh544AE9+eSTWrNmjTp06KDu3bsrOTm5yPY///yzBg0apGHDhmnjxo364osvlJSUpOHDh7u1CwsL0/79+90eAQEBpXFIAAAAAAAAAAAAAMowY4xO/HZQ6d//6VrmEx2omEGN5BPu7/kdHk+RJl4npayTgmOlO76Vqrbw/H7KkM+Tdmv03E2SpMe6N1D/K6p7uaLS5dUQ/rXXXtOwYcM0fPhwNWzYUK+//rqqVaum9957r8j2y5cvV82aNXXfffepVq1aat++vUaMGKFVq1a5tbNYLKpYsaLbAwAAAAAAAAAAAMClzZGZp6NTN+noZ5uV/kOycpLTS3aHqcnS+G7SoU1SaGVpyFypYuOS3aeXzduQosdmrJMkjehYW3d3ivdyRaXPa3PC5+bm6tdff9Vjjz3mtvyaa67R0qVLi1wnMTFRTz75pObMmaPu3bvr4MGDmj59uq6//nq3dhkZGapRo4YcDoeaNWumf//737r88stPW0tOTo5ycnJcz9PTS/jLBgAASg39PAAA5RN9PAAA5Rf9PEqCM8eunG1pkjGyRfjLr2qopPw7onO2pUoWiyxWSVaLZLFIFslitcga6COf6EDXdvIOnchvaznZ1mJV/j99rLIGnozenLmO/CHN/3pdFnl+iHOck6zNR3Vs+lY5j+dKVinsyuryqxJacjs8sl2a1FNK3yNF1JAGz5Iia5bc/sqApdsP676pa+Q0Uv+W1fRY9wbeLskrvBbCHz58WA6HQ3FxcW7L4+LilJKSUuQ6iYmJmjJlivr376/s7GzZ7Xb17NlTb731lqtNgwYNNHHiRDVp0kTp6el644031K5dO61du1Z169YtcrujR4/Wc88957mDAwAAZQb9PAAA5RN9PAAA5Rf9PDzNOI2OTPpdOTvSJEmBTWMVPeCvYNBhdHjchtOuG9AoWjGDGrmeH/jvaslpimzrXydCscObuJ7vf2mFTLbDvdFf4b1/jTDF3pXgWpzy31/lzMj9K6w/GezLapFvXJBiBl/mant40kY50nNPhvp/uyDAJ8JfUf3ru9qmztoue2qO66ICWfTX9vMvMIjoefIO5eM/7ZH9WPZfFw6c3K7FIll8bQrrenI48RNrD8p+LOevbVrct2+zKKTVybm/c3ak/lXv39ud3H5Avcj8ZZLyDp6QMzPPtf+/12KxWuRTIcjV1pGRK5PrdNWoU47P4m9ztXVm25U2d6cyV+RnkD6xgYrqX991MUaJOPC7NPlGKfOgFFMvfw74sMolt78yYN2eVN05aZVyHU5de1mcXuzd+JK98MRrIXyBU0+8Mea0b8bvv/+u++67T6NGjdK1116r/fv365FHHtHdd9+tcePGSZLatGmjNm3auNZp166dmjdvrrfeektvvvlmkdt9/PHH9eCDD7qep6enq1q1ahd6aAAAoAygnwcAoHyijwcAoPyin4enZSzdp5wdabL4WuVbOUS+sYFur/tWDJJxSjJGMvmhvYyRnJIt2NetrTXAJuPIf/3kOvltZT0l3yoqqzeSHCZ/H3/jzMyTM9NeZP3WAJvb87wDJ+Q4ml1kW2eM+7Hl7EhVXsqJItvawvzcQvisDYeVm3y8yLaWAB+3ED5zZYpytqcV2fbUEP74kr3K/uNo0W0lVXmxnfLTcyn9h2RlrT102raVn20rS0B+vJk2b5dOrDpw2raVnmglW1j+/O5/D+BD2lVWeLeasvjaTrvuBdu3Rvq4j5R1VIprLA38WgqJLbn9lQHbDmbojglJysx1KDE+Wm/ccrl8bF6dGd2rvBbCx8TEyGazFbrr/eDBg4Xuji8wevRotWvXTo888ogkKSEhQcHBwerQoYNeeOEFVapUqdA6VqtVV1xxhbZu3XraWvz9/eXv738BRwMAAMoq+nkAAMon+ngAAMov+nl4Ut7BE0qbt0uSFH59bYW0cc+SLD5WxT3Qotjbqzyq7WlfM8Y9WK/0ROu/AnojY+QK640xrju0C8SOSMhv51T+nfYFFwQYI4uPe5AZ1a+eTK4jf5tO9wsCLH7uwXLYVTXkOJGXf5HAKbWcGkIHtYyTf52I/AsFjHstFl/3GgLqRckWEXBy/+bk9k+9GMG3UrBMnvOvfRtXLa51/nZzri3UTz4xgSdfP+X4/t7WYrPI4mt126bbhQ9/v+nXapEtwl+RfesqoE6kSlTycmlKPyknXarSQrptuhQUVbL79LJ9qVkaNG6FjmbmKqFquD4Y1FIBJXmRw0XAayG8n5+fWrRooQULFqh3796u5QsWLNCNN95Y5DonTpyQj497yTZb/ht46g9bAWOMfvvtNzVp0qTI1wEAAAAAAAAAAFD+GIfR0c83S3an/OtFKrh1xRLd36kjPVv9ix9C+sYGFbutf63wYrcNbBxT7LZ/v3v9bEI7VS122/Braha7bUSP2lKP2sVqG9m7riJ7u09FbQqCeON+MUB491qKuCG+0MUPHrdjkTR1gJR3QqrRTrp1muRfgkPelwFHM3M1cNwK7UvLVu3YYE244wqF+Ht9MHav8+oZePDBBzVw4EC1bNlSbdu21QcffKDk5GTdfffdkvKHnNm7d68mT54sSbrhhht055136r333nMNR//AAw+oVatWqlw5fw6F5557Tm3atFHdunWVnp6uN998U7/99pveeecdrx0nAAAAAAAAAAAASlf2H0eUtydDlgAfRd1U95Kdm/pSYimYa16nXBDhVwp3ZW+eJ30+SHLkSPFdpf6fSH7Fv7jiYpSRY9cdE1Zq+6FMVQoP0MfDWis6pGyNZHJgxzb5+PsrukrpTmvi1RC+f//+OnLkiJ5//nnt379fjRs31pw5c1SjRg1J0v79+5WcnOxqf8cdd+j48eN6++239dBDDykiIkJXXnmlxowZ42qTmpqqu+66SykpKQoPD9fll1+un376Sa1atSr14wMAAAAAAAAAAIB3BDaOUdStDSSLZAsvW8EgypmNX0lfDpecdqlBD6nveMmnfH/mcuwO3TV5ldbtSVNkkK8+HtZaVSICvV2Wy9F9mfp17nytmz9O9RM7qsf9j5bq/i3mdOO4X8LS09MVHh6utLQ0hYWFebscAMAljD7J8zinAICygj7JszifAICygj7J8zinAMq03z6VZo6UjFNq0k/q9Z5k8/V2VSXK4TQaOWW15m1MUbCfTZ/e2UZNq0V4uyydSE9Tasoh7VxntO7HPTImW47siap7RVtd+4/7PTIaRnH7JAbkBwAAAAAAAAAAQLlxYs1B+deNkC3Ez9uloLxb+aE05+H8f28+SOrxumQthaHvvcgYoydmrNe8jSnys1n1waCWXg/gD+7aodVzZ+uPJQtlscXIJ2iALBaLaiZUUZte7yu6cmSp10QIDwAAAAAAAAAAgHIhZ1eajn6+WdYgX8X9szlBPErOL29KC57O//fW/5C6jZY8cKd1WTdm3mZNW7VbVov05oBmalcnxit1OB0ObVu1XGvmztaePza4lltkFBZtUccBCarZxDu1SYTwAAAAAAAAAAAAKAecOQ4d/WKLZKSABlEE8CgZxkiLXpYWv5z/vMPD0pVPXRIB/P8Wb9f7i7dLkkb3aaJujSt5pY7Ny5Zo8Sfjdfzwob+WWGX1rSv/kBZqdWNbXX5VDdl8rV6prQAhPAAAAAAAAAAAAC56aXN3ynEkW7YIf0XcUNvb5aA8Mkaa/5S07O38511HSR0e8m5NpeTzpN0aPXeTJOmx7g3U/4rqpbp/43TKYs0P1q02m44fPqTA0DAlXNVdNr8EpR+xKfGmOgqNCijVuk6HEB4AAAAAAAAAAAAXtewtx5S5fL8kKbJvPVkDiMDgYU6nNOchadX4/Ofdxkht7vZuTaVk3oYUPTZjnSRpRKfaurtTfKns1+l0aPuvK7Vm7mxVu6yJ2t40QAd2pWvNDz5qfdPdatPrGvn4+ckYI0sZG4mAXyAAAAAAAAAAAABctJxZdh2bvkWSFJJYWQF1IrxbEMofh12aOVJa95kki9TzTan5IG9XVSqWbj+s+6aukdNI/VtW02PdGpT4PrMzMrR+4Xz99t23Sj90QJJ0dN9eZWUm6I9lByQjWa0V5eOXP+VEWQvgJUJ4AAAAAAAAAAAAXMTSf0iWIz1XPjGBCutW09vloLyx50ozhku/z5QsNqnPB1KTvt6uqlSs25OqOyetUq7DqWsvi9OLvRuXaOB9ZE+yVs+dpd+XLJQ9J0eSFBASqkp1E3V4Xy39sTQ/kG/QpqLa9C6du/HPFyE8AAAAAAAAAAAALlphV1eXyXUoqEWcrH42b5eD8iQvS/p8kLR1vmTzk/pNlBpc7+2qSsW2gxm6Y0KSMnMdSoyP1hu3XC4fm7VE97nqm6+0YeECSVJs9Zqq3fJq7d4co/278gP5mGoh6ti/nipdBKNdEMIDAAAAAAAAAADgomX191Fkn7reLgPlTU6GNPUWadcSySdQumWKVKert6sqFftSszRo3AodzcxVQtVwfTCopQJ8PXuBS3ZmhjYu+l7VGzdVbI1akqTLu92g7IwMNb+up6o2bKxtvx7U2oUb5R/kozY31lajDlVktZa9oeeLQggPAAAAAAAAAACAi4oxRtmbjymgfmSZnA8aF7msVGlKP2nPSskvVLrtc6lGorerKhVHM3M1cNwK7UvLVu3YYE244wqF+HsuUj6yd7fWzPtGvy/+QXk52bqs01Xqds8DkqToajXVfsD9iq4SIkmq06KCMo7lqEHbigoM8fNYDaWBEB4AAAAAAAAAAAAXlROrD+rYF1sU0CBK0YMbEcTDczKPSB/3klLWSQER0u0zpKotvF1VqcjIseuOCSu1/VCmKocH6JNhrRUd4n/B2zVOp3au/VVr5s7WrrWrXcujq1ZX1UaNJUm7/ziqJdO2KDszT7c+20YBwb6yWCy6/OrqF7x/byCEBwAAAAAAAAAAwEXDnpqt1FnbJUl+NUIJ4OE5x1OkyTdKhzZJwbHSwK+lio29XVWpyLE7dNfkVVq3J02RQb6aPKy1KkcEemTbX/z7Se3+fX3+E4tF8S1aq3n3G1TtsgRlHMvRvA/Wa/vqQ5KkwFBfHUs5oUrx4R7Zt7cQwgMAAAAAAAAAAOCiYJxGx6ZvlclxyK96qEI7VvN2SSgvUpOlST2lYzul0MrS4FlSTF1vV1Uq7A6n7p/6m5ZuP6JgP5smDW2lOhVCznt7x/bvVXiFirLa8ueRr96kmQ7u2qHGXa5Ws2t7KCKuohx5Tv0690/9OneX7HlOWSxS485V1apHLQUE+3rq0LyGEB4AAAAAAAAAAAAXhcwV+5WzLVUWX6si+9WTxcZd8PCAI9vzA/j0PVJEjfwAPrKmt6sqFcYYPfnVBs3bmCI/m1UfDmqphKoR574dp1N/rluj1fNma+eaVbrhwcdVr3U7SVLz7jeo+XU95ReQf2d9Xo5D015cqbSDWZKkynUj1KF/PcVUPf/gv6whhAcAAAAAAAAAAECZl3c4S2lzdkqSwrvXkm9skJcrQrlw4Pf8IegzD0ox9aRBM6Wwyt6uqtSMmbdZ01btltUivTmgmRLrxJzT+rlZJ7Txpx+1Zt43OrZvT/5Ci0UHd253hfB+ge7fVV9/myrXiZA9x6HEvnVUt2VcuZtWghAeAAAAAAAAAAAAZZoxRsemb5HJc8q/ToSC21TydkkoD/atkT7uI2UdleIa588BHxLr7apKzf8Wb9f7i7dLkkb3aaJujYv/vXLY7fppygRtWLhAuVknJOWH7flDzl+vyIonL2TIy3Vo9Xd/qkGbigr/6+KZxJvqqP3NdeUXUD7j6vJ5VAAAAAAAAAAAACg3LBaLwq+rpbTZOxTZt54s1vJ11yy8IHm5NKWflJMuVWkh3TZdCorydlWlZlpSskbP3SRJerx7A/W/ovo5rW/z8dH+LZuUm3VCkZWq6PJuPXRZp65ud70bY7Tjt0P6+Yutyjiao8PJx3X9yKaSVC7mfT8TQngAAAAAAAAAAACUef7VwxR7T9NyN2w1vGDHImnqACnvhFSjnXTrNMk/1NtVlZp5G1L0+Iz1kqQRnWprRKf4M7bPy87W70t+1PofF6jvk/9WQEj+3O0dbh0se16eaiZcLovV6rbOsZRMLZm2Rbv/OCZJConyV4PESjLGXBLfYUJ4AAAAAAAAAAAAlEnG7pT9aLZ8K+TfXXsphHcoYZvnSZ8Pkhw5UnxXqf8nkl/Q2dcrJ5ZuO6z7pq6R00j9W1bTY90anLZt2sEUrfnuW21YOF85mZmSpPUL5+uKG/pIkqpdllBondxsu5K+3aV1P+yW02lk87Hq8muqq3m3GvL1s5XMQZVBhPAAAAAAAAAAAAAok9J/SNbxn/Yo4oZ4hTAPPC7Uxq+kL4dLTrvUoIfUd7zk4+/tqkrNuj2punPyKuU6nOp2WUW92LtxoQtbjDHavXG9Vs+dpe2/rpCMkSRFxFXKH3K+89Vn3MeGn/bqtwXJkqSaCTFq36+Oax74SwkhPAAAAAAAAAAAAMqcnOR0HV+0WzKStZzPH41S8Nun0syRknFKTfpJvd6TbJfO52rbwQzdMSFJmbkOJcZH6/VbmsnHZi3U7kRaqr586Wk5HQ5JUo2Ey9W8e0/Vatai0JDzBRx2p2w++a8ldKmqPZuOKaFLVdVsElNyB1TGEcIDAAAAAAAAAACgTHHmOnTs8y2SkYKaxSroEg7zcIFSk6W106SFL+Q/bz5I6vG6ZL10hkbfm5qlQeNW6GhmrhKqhuuDQS0V4Jt//OmHD2rX2tVK6NpNkhQcEanLOl8lq9Wmy7vdoOiq1U673ZwTeVoxe6dStqep779ayGqzysfXpp73NSuNwyrTCOEBAAAAAAAAAABQpqTP2yX74SzZwvwU0TPe2+XgYpJ1TNq5RNqxUNqxSDq64+Rrrf8hdRstnTIEe3l2JCNHA8et0L60bNWODdbEIa0U7GfTnt83aPW8Wdq2crmMcapK/ctcgfs1d/3fGbdpnEZ/LNuv5V9vV9bxPElS8u9HL+k7309FCA8AAAAAAAAAAIAyI3tbqjKW7pMkRfatJ2vQpTNkOM6DPUfavSI/cN+xSNq3Jn/I+QIWm1S1pZRws9Ry2CUVwGfk2DVkYpJ2HMpU5fAATRzYTHtXLtI3c2fr0J87Xe2qN06QPS+3WNs8+Ge6Fk/dooO70iVJkZWC1bF/XVVtEFUix3CxIoQHAAAAAAAAAABAmeDMtuvY9C2SpODWFRVQL9LLFaHMcTqlgxul7X/d6f7nUsme5d4mpr5Uu3P+o2Z7KSDMC4V6V3aeQ3dNXqV1e9IUFeynN6+poNlP3KPs4/nhuY+fvxp16KLLu/VQTPWaZ92ePdehJZ9v1e+/7JOM5BtgU6setdSkS1XZiphb/lJHCA8AAAAAAAAAAIAyweJrU3CbSjqx+oDCr6vt7XJQVqTuPnmn+45F0onD7q8HV8gP3OO7SLU6SeFVSr/GMsTucOr+qau1esseBQeGaOKQK9SoQpBWSgqNidXl1/ZQ4yuvUWBIaLG3afO16lhKpmSk+q0rqm2feAWH+5fcQVzkCOEBAAAAAAAAAABQJlhsFoV1rqbQDlVk4e7aS1dWqrRrycnQ/cg299d9g6Wa7f66272LVKHhJTXM/Jnk5ebqhTc/VcTaRepn7Oo26jUlVI2QJPV/dowiK1WW1WYr1rb2b0tVdJUQ+QX6yGKxqNOA+srJsqtynYiSO4ByghAeAAAAAAAAAAAAXuXMssviY5XFNz94J4C/xNhzpD1J+YH79oXSvtWnzOtulaq0yA/ca3eWql4h+fh5q9oyKePoEa39fq6WffuNwrIzFCbJ4uOr+gEnXG2iq1Yr1rYy03K0bMZ2bV6RomZXVVO7vnXz168SUhKll0uE8AAAAAAAAAAAAPAaY4yOzdiqvAMnFHVLfflVJugr94yRDmw8eaf7n79IeSfc20TXPTnEfM32UkC4Fwot+47sSdbyGdO0ZfnPcjocskg6bgtW1cSrdeugfgoKK/55czicWr9wj1Z+s1N52Q7JItlznTLGyMJIA+eEEB4AAAAAAAAAAABek7X2kLLWH5asFsl4uxqUmLS90o6FfwXvi6XMg+6vB8f+Nbz8X4/wqqVf40XoRHqaNv2yWJK017+S1oY3Ub8+3TS8S71z2s6eTUf102dbdCwl/2KICjVC1fGW+oqrFebxmi8FhPAAAAAAAAAAAADwCkd6jo59vV2SFHZlNfkx3HX5kZ0m7fr55BDzR7a6v+4bJNVIPDnEfIVGkpVpCM4kM/WY1i6YK6vNpjZ9+kuSqjZsrJh21+mdXUE66BeruzvF6+5zDODXL9qjnz7bIkkKCPFV297xati2kixW7n4/X4TwAAAAAAAAAAAAKHXGGB2dvlUm2y7fqiEK7VK8+apRRtlzT87rvmORtPdXyThOvm6xSpWbnxxivuoVko+/l4q9uKRs26LV82Zr89Ilcjrs8gsMUvPuN8gvMEjLth/RiwdqKdfPqf4tq+lf3eqf8/ZrXx6rFbN2qF7rimrVo5YCgn1L4CguLYTwAAAAAAAAAAAAKHWZK1OUs+WY5GNR1M31ZbFxF/RFxRjp4B8nh5jf9YuUl+neJrrOyeHla3aQAiNKv86LlMOepy0rlmrN3Fnav3Wza3mleg3UvNsNsvn6ad2eVN05eZVyHU51u6yiXuzduFhzt+9af1h7Nh1T+351JUnB4f4a+EJb+QcRvnsKITwAAAAAAAAAAABKlf1IltK+3SFJCr+2lnwrBHm5IhRL+r6Td7rvWCRlHHB/PShGqt3pryHmO0kR1b1QZPmwfMY0Lf/yM0mS1eajBokddHm3G1SxTv5Q89sOZuiOCUnKzHWoXZ1ovTGgmXzOciFL2qEs/fzFVu1ad1iSVOOyaFVrFCVJBPAeRggPAAAAAAAAAACA0mWzyq9aqIxTCmlX2dvV4HSy00/O675jkXR4s/vrPoF/zeveOX+I+QqXMa/7eTqwY5usPj6KrV5TktS481XasHCBErp2U8JV3RQcEelquzc1SwPHrdDRzFwlVA3X/wa2lL+P7bTbzst1aPV3f2rNd8ly2J2yWi1K6FpNcbXDSvqwyoT0ed8ppEtnWf1Lb/oDQngAAAAAAAAAAACUKp8If8UMayKT45DFevbhs1FKHHnSnlV/he4L8/+90Lzul58cYr5aa+Z1vwAOu13bkpZp9dzZ2rf5d8W3bKNejzwlSQqvUFF3vjNeVqt7uH4kI0cDx63Q/rRsxccGa+KQVgrxLzryNcZox2+H9PMXW5VxNEeSVLVBpDr0r6eoSsEle3BlgDFGh997T4fffEshXbqo6ttvyWI7/cUKnkQIDwAAAAAAAAAAgFJh8hyy+OaHYBarRZZAoiqvMkY6tOnkne67fpZyM9zbRNX+K3TvItXqIAVGFrEhnIsT6Wla/8N3+m3BHGUcyR8a3mqzyS8wUMbplOWv0QRODeAzcuwaMjFJOw5lqnJ4gD4e1lpRwX6n3Y/D7nQF8CGR/mrfr65qXx5brHnjL3bGGB185VUdHT9ekhTQpHGpjtLALxsAAAAAAAAAAABKnHE4dfD9dfKrGqLw62rL6l86d6TiFOn7pZ2Lpe0L/5rXPcX99aBoqVank3e7R9bwQpHl17LpU7Xi68/lyMuTJAWFRyjhqu5qelU3hURFn3a97DyH7pq8Suv2pCkq2E+Th7VW5YjAQu1ys+3y8bPJarXIx9emDjfX06Hk42rerYZ8/S6N75xxOJTy/L+VOm2aJCnu8ccUNXhwqdZACA8AAAAAAAAAAIASd3zhbuXtzZD9aLbCulaXCOFLR85xadcvJ4eYP7TJ/XWfgJPzutfuLMU1YV53D3I6HDLGyOaTH8sGhobJkZenuNp11Lx7T9Vr20E+vr5n3Ibd4dT9n63R0u1HFOxn08QhV6hOhRC3NsYYbV11QEunb9MVPWrpsg5VJEm1m8WqdrPYkjm4Msjk5Wnf408o/ZtvJItFlf79vCL69i31OgjhAQAAAAAAAAAAUKJy9xxX+o+7JUmRveJlC2Me8RLjyJP2rs4P3HcskvYkSU773xpYpMrNTg4xX6215BvgnVrLsayM4/lDzs//Vm363KKErtdKkhp1ulKxNWurcr0GxRoW3hijJ7/aoO82HpCfzaoPB7dUQtUItzZH9mbop8+2aN/WVEnS77/sV6P2lS+JYef/zpmTo70PPqSMH36QfHxUZewYhV13nVdqIYQHAAAAAAAAAABAiTF5Th39fIvkNApMiFFQ0wreLql8MUY6vCU/cN++8K953Y+7t4msdfJO91odpaAoLxR6aTiUvEtr5s3WH0sWyZ6bI0na9PMiVwjvFxCoKvUbFnt7L8/bpGmrdstqkd4ccLkS42Ncr+WcyNPK2Tu1fvFeGaeRj69VLbrXULOrq196AfyJE9pz773KXLpMFj8/VXnzDYV27uy1egjhAQAAAAAAAAAAUGLS5u+S/eAJWUN8FXFjHW+XUz4cP/DX8PJ/PY7vc389MDJ/Xvf4Ln/N616z1Eu81GxLWq7Vc2dp98Z1rmWxNWurefeeapDY8by2+f7i7frf4h2SpJf7JKhb44qu13atP6wfJ/+hrOP5c8vHN49Vu751FRp16Y1q4EhP1+4RdytrzRpZgoJU7d13FdymtVdrIoQHAAAAAAAAAABAicjZkaaMn/dKkiJvqitb8JnnvsZp5GRIfy49OcT8wd/dX7f5SzXanhxivmIC87qXsrXfz9XujetksVpV94q2urz7DarS4LLzviN9WlKyXp67SZL0xHUNdPMV1dxeDwz1U1ZGniIrBqlD/3qq1vDSHN3AfvSokocNV84ff8gaFqbqH/xPgc2aebssQngAAAAAAAAAAACUDGeuQ9ZAHwU0ilZgw2hvl3PxcNilfatPDjG/Z2Xhed0rJeQH7rU7S9XbSL6BXir20nNkT7LWzJut1r37KzQ6f3j4K27oowo1aqnpNdcpLObCplyYt2G/Hp+xXpJ0d6d43dUxXlkZudq/LU21m8VKkuJqhumG/2uqKvUiZfO5NC+4yEtJUfLQYcrdsUO26GhVHz9OAfXre7ssSYTwAAAAAAAAAAAAKCGBDaLk988WsvhemiFhsRkjHdmWH7jvWCTtWiLlpLu3iaieH7rHd5FqdpSCuaihNDmdDu1cs0qr585W8vrfJEkBIaFqf8sgSVL1xk1VvXHTC97P0m2Hdd/U3+Q00i1XVNMj19TThsV7tHzmDuXlODRgVGtFxAXl77PRpfsZyE1OVvKQocrbu1c+lSqp+vhx8q9Vy9tluRDCAwAAAAAAAAAAwKOMMa5huG2hfl6upozKOCjtWHxyiPn0ve6vB0RItTudHGI+quwEjJeSnBOZ2rDwe635brbSDqRIkiwWq+pc0Ua1mrX06L7W7k7VnZNXKdfhVLfLKur/Eqpr+surdHh3hiQpukqI8nIdHt3nxShn2zYlDxkq+6FD8q1RXTXGj5dvlSreLssNITwAAAAAAAAAAAA8xnkiT4c+XK+wrtUV2DjG2+WUHbmZf83rvij/jveDG91ft/nlDytfMMR8paaS1eaNSvEXh92uCf+8W5mpxyRJ/sHBanLltWp2zfUKrxDn0X1tO5ihOyasVGauQ51rRKlPXoC+/s/q/P0G+ajVDbXVuGNlWW2X9qgSWRs2avfw4XKkpsq/bl1VHz9OPrGx3i6rEEJ4AAAAAAAAAAAAeMyxmduVtz9Tad/tUkCDKFku0fmq5bBL+387OcT87hWSM8+9TcWE/MA9votUrY3kF+SFQlHAOJ3as2mjqjZsLIvFIpuPj+q0Svx/9u47uooyceP49/b0DoQEQq8CoTcBsSCgFCuIggVQENeytpUt7qq/ta29gKCAXRErKBYsKCqggPReExKSkN5z2/z+uBpFQClJJgnP5xzOuXfmvTNPwk0uh2fmfdm/eQPdh4+iw4DBOIKCqvy8afllTJizkrxSD10TIhi0x8eOwkwAOpzemL6jWxESoRklSlevJnXKVPzFxQR17kzS87OxRUWZHeuIVMKLiIiIiIiIiIiIiIhIlShdf5CydQfBCjFj2p1aBbxhQM6uX6eX37MMKgoOHROZBK0GB4r3FmdAqGYKqA0qSkvZ9PXn/PTJIvIzDjDuvkdIaNsegDPGX4Pd6apcXqGq5RRXMGHOSg4UlNOqQShzJ/Vhz7J0dv90kEGXtaNRi4hqOW9dU/ztd+z/y18wyssJ6dmTJs/NxBYWZnaso1IJLyIiIiIiIiIiIiIiIifNV+Qm//2dAIQPboqzabjJiWpA8UHY88u67l9DQeqh+4MiocWgX6eYj2kJ1VTmyvHLO5DGT598yMaln+MpLwPAFRJKQVZGZQnvcFX9ne+/KK7wMmX2D3Tc6yYiJogZk/oQE+okckgS3c9thsWq9wpA4ZIlpN96G4bHQ+iggTR58kmswcFmx/pDKuFFRERERERERERERETkpBiGQd67O/CXenEkhBJxVpLZkaqHuxRSvv95ivmvIXPDofttTmja59cp5ht31brutVBpYQGfzHicPT+tqtwWk9CEbsNH0XHQmTiDqr/gLSn1cM8jKzg93Y0TO70tITSODBT+tlN83fffKvjgA9L//g/w+QgfOpTE/z2MxVn7p+ZXCS8iIiIiIiIiIiIiIiInpXR1JuVbcsFmqV/T0Pt9kL721ynmU1eCz33omEadf51iPqkfOENrPqf8KcPvx2INvC+DwsLI2Z8KFgstu/Wk2/BRNOvctdqmnP+93esP8v7cTTQv9wMWIpqGMfyqDjV2/roi7403yLjnXgAiL7yQxvfdi8VeN+rtupFSREREREREREREREREai1PRikAkec2wxFfh0tow4Dc3b9Z1/0bKP/duu4RTX4u3c8MrOse1sCMpKcMn9eLp6Icb0UFXrcbj7vi58cVeNwVNO3YuXLK+P2bN5K2bfPP+9yVr3GXl5KzP5UrH34Km92B1Wpj6NSbCY+LIzo+oca+lsLsMr5dsIM967JxASUWg47Dkzh/ZGsV8L+T/fzzHHz0MQCix4+n0d+nV15EUReohBcREREREREREREREZGTEjWiJcEdY3E2jzA7yvEryf55XfelsGspFKQcut8VCS0GBu50b3kmxLY65dd193m9eN0VOINDKsvjvIx0inNz8FaW34GS3Ot246mooMf5F2B3OADY8NVn7Fu/Fu9v9nt/Kdc9bi7/v0cJjYoG4OtX5vDTJ4uOmmXiE7OIbpwIwJ51q/nh/QVHHbtr9Q+07XM6AEmdulTJ9+J4ZOwpYM+6bHwY/OTyMubqTgzvlljjOWozwzA4+MST5MyaBUDs1Ck0uPnmOneRgkp4EREREREREREREREROWmulpFmRzg2njLY932gdN+9FDLWH7rf6gis6/7L3e6Nu4Kt9ldqfp8vUHz/Umj/XG77vF4S23WoHLdn7WryM9IPG+d1u/G6KzjvxtsrC8+lr8xhz0+rKsf9cnzD7wfg5lfexf7z+twr3n6Dzcu+Omq+zmedi90ReI9k7t7Ftu+/OepYT0VF5eNfjm+xWLG7XDhcLuxOJ3Zn4LHF8uvd0fGt2tDpzCGV+38ZY3c6iUlsSrNOycf7bT0phmFQkl9BWHTgTv0vSor5weVho9PH38Z2VgH/O4bfT+b9D5D36qsANLz9NmInTzY51Ymp/b8xREREREREREREREREpNbxHCyl4OO9RI1uhT3SZXacP1aSDWteDkwzn7ISfBWH7m/U6ec73QdDs/5Vtq77b9chB8jPzKCipLjyDvHf3jFutdo47YyzK8euWvQuuen7fy3JPb+Ot9odjLv34cqxb//3X+xb/9MRM9jsdm557f3K5+uWLGbXqpVHzTxs2i3Y7IE71kvycslNSz3qWI+7orIkD49rQHRCExzOn0vyn8tvx89l+G+/D2379CemccLPY1yHvSYsOqZybP8x4zl97HisNvuf3g3dpnd/2vTu/4djakpeRgnL3tpBdmoRV9zbj/c2pPPQJ9sgGP5+XnvG9GxqdsRaxfB6OfCvuyl47z0A4v99N9Hjxpmc6sSphBcREREREREREREREZHjYvgMct/ajie1iAIrxI7vaHako8tPhZdGQN5eILDsuzesCZ6mA/Em9sET3x1rWFzllOYAu1avpKyo6NBp1X++WzwoPJx+F/9aDi5+5lHyfinLf1euh8XGMfmpFyrHLnrsAbL27jpizJDIqENK+J2rVpK2ddMRx9qdh170YLXZDttvd/1abv/2YoDEdh2x2R0/3yH+c1Fe+fjQ4/a+4FK6nD208ni/LdXtLhc2+69V44DLrmTAZVceMe/vJXVKJukY70r/ZQr7usJd7mX1x3tZ+3kqfp+B1W7hwy928/fvdgAw9YxWXDeolckpaxfD7Sbtjjsp+vRTsNlIuP+/RI4ebXask6ISXkRERERERERERERERI5L0depeFKLsATZiBxZiwvFvH3w0gg27ytjaVZ/3IYDny8wlTqr9gP7gXdo1LI14x94ovJlX704m4KszCMeMrpx4iElfPa+PRxM2XvEsV63+5DnoVFRhMXEBkpvh7PyTnC700lwWPghYzudOYTmyd0PK8l/ef5bw2+4FSyWwN3kDucf3jHea9TFR933ew2Smh/z2FOdYRjsXJXFd+/spCQ/MNNCs06xhPSJY+r76/EbcFmvpvxtWDuTk9Yu/rIy9t98MyXfLMPicJDw2KNEDBlidqyTphJeREREREREREREREREjpk7vZjCL1IAiBpVi6eiz90DL42EglTaNmtJdpfz+PGTTw8ZYnM4AqV2UNAh25t06ExMYtPD7vy2O52ERkUfMvaMCZPxeioOW4P8l8e/ddH0e445fqfB5xzz2ODwiGMeK1XP5/Wz6Om1pG3LByAiLoiBY9pSEG3n8udX4Pb5GXZaPP+9sPOfTql/KvEVF7N/6vWUrlqFJSiIJs88Q9iA082OVSVUwouIiIiIiIiIiIiIiMgxMbx+cudvA59B0GmxhHRraHakI8vdDS+OhML9ENsa+1WL6GUNp+vIsZVrkNucDqxW2xFfPmzaLcd8qmZdulZNZqmzbHYr4dFB2B1WegxvRtchSezNK+Pq576nxO3j9NaxPDmuKzarCvhfePPySL1uCuUbNmANC6PprOcI6dHD7FhVRiW8iIiIiIiIiIiIiIiIHJPCJfvwZpZiDXUQfWHr2nlXb84ueHEEFKWTG9KBqAnvYI1IIBgOm/Jd5EQYfoNtKzNIaBNFRFwwAP0uak2vkS2IiA0mLb+MCXNWklfqIblJJLMm9MRlP/IFH6ciT1YWqZMmU7FjB7aoKJq+8ALBnU4zO1aVspodQERERERERERERERERGo/w+OnbEsuANEXtsYW5jQ50RFk74B550FROhXRHXhrZytee+BhCg9mmZ1M6omDKUW8+8hqvnhpC98u2FG5PSTCSURsMDnFFUyYs5IDBeW0ahDKvGt6E+bSfdG/8KSlsW/CBCp27MDeoAHNXn2l3hXwoDvhRURERERERERERERE5BhYHFYa3diVso05BHeKMzvO4Q5uC9wBX5IFDTvynX0sJQWf4wgOISQyyux0UseVF3tY8cEuNn2bDgY4XDbiW0ViGEbljBDFFV6unvcjuw+WkBAZxCuT+hATWgsvVjFJxZ49pEychPfAARyJiSS9OA9n06Zmx6oWKuFFRERERERERERERETkmFgcttq5DnzWFnhpJJQchEadyDzjSdbeey8AZ0+aht2pIlROjN9vsPnbdFZ8sIuKEi8AbXo1ov9FrQmLdlWOK/f4uPalVWxIKyAm1Mkrk/uQEBVsVuxap3zrVlImTcaXk4OzZUuS5s3F0aiR2bGqjUp4EREREREREREREREROaryHXl4DpQQNiARi7UWrgGfuSlQwJfmQHxn/OPf5/P7/4th+GnXfxDNu3QzO6HUYZu+SeObN7cDEJsYyqDL2pLQJvqQMV6fn5ve+Inlu3MIddp46ZretGoQZkbcWqls7VpSrpuCv7AQV4cOJL3wPPbYWLNjVSuV8CIiIiIiIiIiIiIiInJE/jIveW9vx1fgBguED2xidqRDZWyAl0ZBWS40ToYJ77N+2XIydu3AGRzC4Csnm51Q6qDfTjHfoX9jNn+XTof+jek0KBGrzXrY2L+/t4HPNmfitFt5/qqedG4SaUbsWqlkxUpSp03DKC0luFs3ms56DltEhNmxqp1KeBERERERERERERERETmi/EW78BW4sccGEdqnsdlxDpW+Fl65AMryIKE7THiXkgpY9sZLAAwYdyVh0TGmRpS6xe/zs2FpGnvWHWTULd2wWi3YnTbGTO911FkgHvx4K2+t2o/VAk+P60b/VnE1nLr2KvrqK9JuvgXD7SakX1+aPvss1pAQs2PVCJXwIiIiIiIiIiIiIiIicpiyTdmUrskCC0SPaYfVaTM70q/S1gQK+PICSOwJE96FoEjcBenENW2Gz+slechws1NKHZK2LY9v5m8nN70EgJ2rM2nbKx7gqAX8c1/vYtY3uwF48OIuDD0tvmbC1gGFixeTduffwOsl7OyzSXzsUawul9mxaoxKeBERERERERERERERETmEr9hN3rs7AQgf1ARXs1o0ffT+1fDKhVBRAE37wBVvQ1AgX3R8Apfd8xBlRYVYrbXoogGptYrzyvn+nZ3sWJUFQFCog74XtKRNj0Z/+Lo3f0jhwY+3AvCP8zowpmfTas9aV+S//TYH/nU3GAYRI0aQ8MD9WBwOs2PVKJXwIiIiIiIiIiIiIiIiUskwDPLe24m/xIMjPoSIIc3MjvSr1B/g1YuhohCS+sEVC8AVfsgQi9VKSGSUOfmkzvD7/Kz9PJUfF+/FW+HDYoHTBiXSZ1RLgkL/uDD+ZOMB/v7eBgCuH9yKawe1rInIdULuSy+R+cCDAESNHUv8v+/GYrWanKrmqYQXERERERERERERERGRSt6sUsq35oLNQvSYdljstaRAS1kRKODdxdDsdLj8LXCFAbDinTepKCul3yXjcAYFmxxU6gKLxcKedQfxVviIbxnJoMva0iAp/E9f993ObG56Yy1+A8b1bsqdQ9vVQNrazzAMsmfOJPuppwGImTiRhnfcjsVy5Kn86zuV8CIiIiIiIiIiIiIiIlLJ0SiURjd2w72/CGdCmNlxAvZ+B69dCp4SaD4QLp8PzlAActPTWPHum/i8XhLatKdNn/4mh5XaqjC7jKAwB84gOxarhUGXtSM3vZi2feKPqSxel5rPdS+vwu3zM7xTPP93QedTtmT+LcMwyPrfI+TOnQtA3E03Enf99af090YlvIiIiIiIiIiIiIiIiBzCER+KIz7U7BgBe5bB62PAUwotB8Nlb4AzBAiUf1/MnYnP66V5cnda9+73h4fyVPjIzyqtfP5rRxh4EBLhJCTCCYDX46Mgq+zQA/ymUwwO+3Wsz+un4OCvY3/fPbpCHJVj/T4/hdnlRz2uM8heOdbwGxTl/m7sbzhcNoLDfx5rGBTnVRxxnMUCNoeV4DBn5baSggowjpzBZrMSFPbrlOylhe6jHtditRwyfXt5iefX4/7u+2C1WnAG/1pPusu9GMahY377V+IM+nWsx+3D8Bs/n9dyyAssgN1pq9zk8/gxfvPF+b0Gaz9PYc1nKXQ5swn9L2oNQIOk8GO6+x1gZ1YRV8/7gRK3j9Nbx/LEZV2xWU/dkvkXhs9Hxj33kv/WWwA0mn4XMVddZXIq86mEFxEREREREREREREREUrXH8QeE4SzybGVkjVi91J4/TLwlkGrs+Cy18Hx63TzW7//hpQNa7E5HJw98c/vvM1NL+Hth1YddX+vES3oPaIFAAVZZbx53w9HHdttSBL9Lw6UuSX5Fbxxz8qjju18RiKDxgWmLS8v8fLav1ccdWz7fvGcfVVHIFA8v/LP5Ucd26p7Q4Zd16ny+ct///6oY5t1jmXEDcmVz1/953K8Hv8Rxya2jeKCW7tXPn/jnpWBcv0IGjYL59LpvSqfz//vDxTnHvligJiEUMbd3afy+dsPriIvo/SIY8Njg7jyv7/OavDeI2s4mFJ0xLHB4Q4m/m9g5fOFT60lfUf+Ecfm7C/G8BtYjqNAT8svY8KcH8gr9ZDcJJJZE3ristv+/IX1nOHxkD797xR++CFYLDS+716iLrnE7Fi1gkp4ERERERERERERERGRU5w3u4y8BdsxfAYNpnbBlRRhdiTY+QW8eTl4y6H1EBj7KjiCKneXlxSz9KXnAeh74Vii4hsf8TBlRe7Ku8WtNguhkT/fOf7LgN/cie1w/VqsWqwWgsN/vcMbOOSubftvxmIBV+hvarff3d3927u0LRZ+vRv8Nwf85ZHNcWi5e8h5fnfbuM1u+d1z62+Od+hY6+9KZ4vNgtVnOXTUL8evhzd4h8W4OP3iNrTq3uC4pknPKa5gwpyVHCgop3XDMOZd05swlypWf0UFaX+9leIvvwS7ncSHHyLivPPMjlVrWAzj95M8SGFhIZGRkRQUFBARUQs+ZERE5JSlz6Sqp++piIjUFvpMqlr6foqISG2hz6Sqp+9p9TP8Bgdnrce9rxBXy0jiJnc+rruEq8WOzwMFvK8C2gyFsa+A3XXIkC/mzmTtpx8RndCEKx9+GrvDcdhh0rbl8eGz6zj9kjacNjDhlF6juroYhnHI9/WXKeOPWO4DVtuvFwr4vD/fif+bwb+9eMD+mwsSvB7fodcg/K7h/O0FFJVT1xu/DnW6bMf9vi4q93D58yvZkFZAYlQwb1/fj8aRwX/+wnrOX1JC6l/+QunyFVicThKfepLwwYPNjlUjjvUzSZdpiIiIiIiIiIiIiIiInMKKl+3Hva8Qi8tG9KVtzS/gt38G868AnxvanQ+XzjusgC8rLmLLsqUAnDPp+iMW8CX5FXz6wka8bj8Zuws4bWBCDYQ/9fz+woZf3j+/23rE1/72zv0/Y3cc+/TvDufJTxVf7vFx3cur2ZBWQGyok5cn9VYBD/gKC0mdMpWyn37CGhJCkxkzCO3b589feIpRCS8iIiIiIiIiIiIiInKK8mSUUPDZPgCiRrTEHh30J6+oZts+hvkTwO+B9iPgknlgdx42LDgsnKsefZZdP64kqVPyYft9Pj+fPr+RsiIPsYlhnHF5O90FL8fM6/Nz0xs/sXx3DmEuOy9e05tWDcLMjmU6b04OKZOvpWLLFqwRESQ9P5vg5MN//kQlvIiIiIiIiIiIiIiIyCnJ8PrJnb8NfAZB7WMI6dnI3EBbPoQFVwcK+I6j4eI5YDv8DvdfhMfE0XXo+Ufct/ydXRzYVYAzyMawKZ2q5M5oOTUYhsHf39vAZ5szcdqtPH9lTzo3iTQ7luk8GRmkTJyEe/dubLGxJM2dQ1C7dmbHqrWOfY4HERERERERERERERERqTdKf8rCc6AEa4id6IvbmHun+OYPYMFVgQK+08Vw8dwjFvBFudnsXbfmDw+1Y1Um675MBeDsqzsS1TCkWiJL/fTgx1t5a9V+rBZ4elw3+rWKNTuS6dwpKey7Yjzu3buxN25Ms1dfUQH/J3QnvIiIiIiIiIiIiIiIyCkopEcjDLcPW6QLW/jhU77XmI3vwjuTwfBB50vhgufAduQKa+lLL7B9xbf0v/QK+l0y7rD9hdllfPnKVgC6D21Gy64NqjW61C/Pfb2LWd/sBuDBi7sw9LR4kxOZr2LnTlKumYj34EEczZJoNncujsREs2PVeirhRURERERERERERERETkEWq4Ww000u0za8De9eFyjgu1wGF8wA65Gnjt+zdjXbV3yLxWqlVc8+RxwTHhNEj2HNSN+eR59RLaozudQzb/6QwoMfBy7g+Md5HRjTs6nJicxXtnETqZMn48vPx9WmDUlz52BvoAtbjoVKeBERERERERERERERkVNI6YaDBLWNweoyeZ30dfPh/alg+KHrFTDq6aMW8B53BV/MnQlA9+GjaNi85RHHWawWeg5vjn9oM6xWE6fXlzrl4w0H+Pt7GwC4fnArrh105PfXqaR01SpSp16Pv7iYoM6dSXp+NraoKLNj1Rmmrwk/Y8YMWrRoQVBQED169GDZsmV/OP61114jOTmZkJAQGjduzDXXXENOTs4hY9555x06duyIy+WiY8eOvPfee9X5JYiIiIiIiIiIiIiIiNQJ5bvyyX1tK5lPrcFf7jUvyNrX4b0pgQK++5Uw6pmjFvAAP7z3FgWZGYTFxtH/0ssP25+yKQeP21f5XAW8HKvvdmZz85tr8RswrndT7hyqtc6Lv/2OlMnX4i8uJqRnT5LmzVUBf5xMLeHnz5/PLbfcwj/+8Q9++uknBg4cyPDhw0lJSTni+G+//ZYrr7ySSZMmsWnTJhYsWMCPP/7I5MmTK8csX76csWPHMmHCBNatW8eECRMYM2YMK1eurKkvS0REREREREREREREpNbxl3vJW7AdgKBWUViDTJowec0r8P40wIAe18CIJ8F69MoqJy2VHz54B4CzrroOZ3DIIfvTd+bz0bPreeehVZSXeKozudQz61Lzue7lVbh9foZ3iuf/LuiMxXJqX8BRuGQJ+6+/HqO8nNBBA2n6/GxsYWFmx6pzTC3hH3vsMSZNmsTkyZPp0KEDTzzxBE2bNmXmzJlHHL9ixQqaN2/OTTfdRIsWLRgwYABTpkxh1apVlWOeeOIJhgwZwvTp02nfvj3Tp0/n7LPP5oknnqihr0pERERERERERERERKT2yf9wN778CmwxQUSeb9J66atfhIV/AQzoNRlGPP6HBbxhGHzxwgz8Pi8tu/eide9+h+wvLXTz6fMb8fsNYhqH4grRSsxybHZmFXH1vB8ocfsY0DqOJy7riu0Un0Gh4IMPSLvlrxgeD+FDh9L0mWewBgebHatOMq2Ed7vdrF69mnPPPfeQ7eeeey7ff//9EV/Tv39/9u/fz+LFizEMg8zMTN5++23OP//8yjHLly8/7JhDhw496jEBKioqKCwsPOSPiIiI1A/6nBcREamf9BkvIiJSf+lzvnqUbc2ldFUmWCDmkrZYXSaU1T/OgUU3Bx73mQrnPQLHcNdxt2EjiW6cwFnXTDnkLmW/z89nL2yktMBNdONQBo9vf8rfxSzHJi2/jAlzfiCv1ENy0yhmTeiBy3705RBOBbmvv0763+4Cn4/ICy8k8dFHsDidZseqs0wr4bOzs/H5fDRq1OiQ7Y0aNSIjI+OIr+nfvz+vvfYaY8eOxel0Eh8fT1RUFE8//XTlmIyMjOM6JsADDzxAZGRk5Z+mTZuexFcmIiIitYk+50VEROonfcaLiIjUX/qcr3q+Eg957wSmoQ87PRFXy8iaD7FyNnx0a+Bx3xtg2IPHVMBbLBba9OnPNY89R2TD+EP2rfhgN2nb83G4bAyf0gmnWdPrS52SU1zBhDkrOVBQTuuGYcy7uhehZlyUUotkP/88mffeB0D0hAk0/u//YbGf2t+Tk2XqdPTAYVckGYZx1KuUNm/ezE033cTdd9/N6tWr+eSTT9izZw9Tp0494WMCTJ8+nYKCgso/qampJ/jViIiISG2jz3kREZH6SZ/xIiIi9Zc+56te4Sd78Rd5sDcMJnJo85oPsGImfHxH4HH/G2Hof4+pgPdUlFc+tvxuyvrdPx3kp89SADjryg5Ex4dWXV6pt4rKPVw970d2HywhMSqYVyb1Jib01L3b2zAMsh5/goOPPgZA7NQpNPr79MN+3uT4mXYJQ1xcHDab7bA71LOysg67k/0XDzzwAKeffjp33BH4Rd2lSxdCQ0MZOHAg//d//0fjxo2Jj48/rmMCuFwuXC7XSX5FIiIiUhvpc15ERKR+0me8iIhI/aXP+aoXcW4zfKUeIs5sisVRw+Xa98/AZ/8IPB7wVzj738dUwKdt28IH/7uPQVdcQ6czhxyyz+/z8/27OwFIPrsprXs0rPLYUv+Ue3xc9/JqNqQVEBvq5JVJvWkceequd274/WTe/wB5r74KQMPbbyN28mSTU9Ufpl3G4HQ66dGjB0uWLDlk+5IlS+jfv/8RX1NaWor1d1de2GyB9RkMwwCgX79+hx3zs88+O+oxRURERERERERERERE6jNbuJO4CR1xNgmv2RN/+8SvBfygO465gPd5vXz+wrOUFRWyf+umw/ZbbVYuuLUbnc9sQr+LWlVxaKmPvD4/N73xE8t35xDmsvPiNb1p2SDM7FimMbxeDvzjn5UFfPy/71YBX8VMncz/1ltvZcKECfTs2ZN+/foxe/ZsUlJSKqeXnz59Omlpabz88ssAjBw5kmuvvZaZM2cydOhQDhw4wC233ELv3r1JSEgA4Oabb2bQoEE89NBDjB49mg8++IDPP/+cb7/91rSvU0REREREREREREREpCYZhoF7XyGu5ias/w6w7FH44t7A4zPugsF3HVMBD/DTxwvJTtlLUFg4g6645ohjwqKDGDS2bVWllXrKMAzWpuYz6+vdfLY5E6fdyvNX9qRzE5N+LmoBw+0m7Y47Kfr0U7DZSLj/v0SOHm12rHrH1BJ+7Nix5OTkcO+993LgwAE6derE4sWLadasGQAHDhwgJSWlcvzVV19NUVERzzzzDLfddhtRUVGcddZZPPTQQ5Vj+vfvz5tvvsk///lP/vWvf9GqVSvmz59Pnz59avzrExERERERERERERERMUPpj5nkvbuD0N7xRF/UpmZP/vXD8NV/A4/P/Aeccecxv7Qw+yDfL3gdgEHjryEk4teydPN36bhC7LTqpunn5Y9tyyhi4bo0Fq07QEpuKQBWCzwzrhv9WsWanM48/rIy9t98MyXfLMPicJDw2KNEDBny5y+U42YxfpnHXSoVFhYSGRlJQUEBERERZscREZFTmD6Tqp6+pyIiUlvoM6lq6fspIiK1hT6Tqp6+p8fPm1tO5hNrMNw+Is9rQfigJjVzYsOApQ/C1w8Gnp99Nwy87bgO8cEj/2Xnj8tJbN+Rsf9+EMvPyxRn7ink3UdW4/cZXPDXbiS2i67q9FLHpeaWsnBdOgvXprMts6hye7DDxpCOjRjftxm9W8SYmNBcvuJi9k+9ntJVq7AEBdHkmWcIG3C62bHqnGP9TDL1TngRERERERERERERERGpOobfIHfBdgy3D2fzCMIGJNbQiY3A3e/f/C/w/Jx7YMAtx3WIXatXsvPH5VhtNs6ZNK2ygC8rdvPJ7A34fQYtuzUgoW1U1WaXOiursJwP1x9g4bp01qbmV2532Cyc0bYho7omcE6HhoQ4T+1K1JuXR+p1UyjfsAFrWBhNZz1HSI8eZseq107td5yIiIiIiIiIiIiInPIMrx+L3Wp2DJEqUfxdOu49BVicVmIubYvFemzrsJ8Uw4Av7oFvHw88P/e/0P8vx32YzN27wGKhx/kXEJfUHAC/32DJnE0U51UQ2TCYs67sgOUY15aX+qmg1MMnmwLF+/JdOfh/nvPbaoF+rWIZlZzAsNMaExniMDdoLeHJyiJ10mQqduzAFhVF0zkvEHzaaWbHqvdUwouIiIiIiIiIiIjIKcubU8bBWeuJGNKMkJ6NVO5JnebJKqXg0z0ARJ7fEntscPWf1DBgyb/g+6cDz4c9CH2vP6FD9b/0clp07UFc02aV2378cA+pW/KwO60Mn9IZV7CqrVNRqdvL51uyWLg2na+3Z+Hx/bradrekKEYlJ3B+l8Y0DA8yMWXt40lLY9/EiXj2pWBv0ICkeXNxtW5tdqxTgn5TiYiIiIiIiIiIiMgpyTAM8t7fia/QTelPWYT0bGR2JJETZvgNct/aBl4DV9toQnvH18BJDfj0H7Di2cDz8x6B3tee1CEbt2lX+XjvhmxWLd4LwOAr2hObGHZSx5a6xe318832gyxcl87nWzIpdfsq97WPD2dkcgKjkhNoGhNiYsraq2LPHlKumYg3IwNHYiJJL87D2bSp2bFOGSrhRUREREREREREROTU5DWwRbjAbiXqoja6C17qNIvVQsQ5zShYvIeYi2vg/WwY8MldsPK5wPPzH4Nek47/MH4/37z+Il3OHkp040PXr8/cUwhA5zMSadenBi4qENP5/AYrd+ewcF06H2/MoKDMU7mvaUwwo5ITGJWcSLv4cBNT1n7lW7eSMmkyvpwcnC1bkjRvLo5GutCsJqmEFxEREREREREREZFTksURWDM7Ykgz7FEus+OInLTg9jEEtY2u/nXg/X74+A748YXA85FPQo+rT+hQG7/+nFWL3mXj0s+57tm5OFy/TifeZ1RL4ltG0qRddBWEltrKMAzWpuazcF06H60/QFZRReW+BuEuRnRpzKjkBLo2jdLFUsegbO1aUq6bgr+wEFeHDiS98Dz22FizY51yVMKLiIiIiIiIiIiIyClNBbzUZYbHj7/Ugy0y8D6ukQL+o1th9TzAAqOehu4TTuhQpYUFfPPaiwD0GX1JZQHv9xtYf/46mnVSeVhfbc8sYuHadBauSyclt7Rye2Swg+Gd4hmVnECflrHYqvs9XY+UrFhB6rQbMEpLCe7WjaaznsMWEWF2rFOSSngREREREREREREROaWU78ij+Lt0oi5ohT0q6M9fIFKLFSzZR8kPB4i+uA0hnRtU78n8fvjwZljzMmCBC2ZA18tP+HDLXn+R8qJC4pKa0234KAA2f5fOthUZnDv5NEIjdYFMfZOaW8rCdeksWpfO1oyiyu3BDhtDOjZiVHICg9o2wGm3mpiybir66ivSbr4Fw+0mpF9fmj77LNaQELNjnbJUwouIiIiIiIiIiIjIKcPv9pH33k58ueUULwsiamSrQLHo94BdhZ/ULRV7Cyheth8MsNiqubT0+2DhjbD2NbBY4YLnIHnsCR9u/5aNbPxqCQDnTL4Bm93OwZQivnljOz6vnx0/ZtL1nKSqSi8myioq56P1B1i4Lp2fUvIrtztsFs5o24BRXRM5p0NDQpyqLU9U4eLFpN35N/B6CTv7bBIfexSrS59pZtK7WUREREREREREREROGUVfpODLLccW4SRiSLPAxqUPwO6vYMwrENHY3IAix8hf4SP3re1gQEiPRgR3rMZp2/0+eH8arH8zUMBf9Dx0vuSED+fzevn8hRkAdD57KIntOlBe4uHjWRvwef007xJH8llNqyq9mKCg1MMnmwLF+/JdOfiNwHaLBfq1jGVUcgLDOsUTFeI0N2g9kP/22xz4191gGESMGEHCA/djcTjMjnXKUwkvIiIiIiIiIiIiIqcEd3oxRcv2AxB1QWusQXbYvBC+eTgwYO+30OVSExOKHLuCxbsDF5REuYga2bL6TuTzwvtTYcMCsNjg4heg00UndcgNX35Gzv4UgsMjGHj51Rh+g8/nbaYop5yIuCDOvqpD9a9tL1WuzO3j8y2ZLFyXztfbDuL2+Sv3dW0axajkBEZ0aUzDCC0DUlVyX3qJzAceBCBq7Fji/303Fqum8q8NVMKLiIiIiIiIiIiISL1n+A3y3t0BfgjuFBu4azhzM7w3NTCgz/Uq4KXOKN+eR8nKDACiL2kbuKCkOvi88O61sOldsNrhkrnQcfRJH7bTmUMoLy4iskFDgsPCWbV4D/s25mBzWBk2pTNBobqLt65we/0s23GQhevSWbI5k1K3r3Jfu0bhjOqawMguCSTFam3yqmQYBtkzZpD99DMAxEycSMM7bsdi0cUrtYVKeBERERERERERERGp94q/T8ezvxhLkI2oUa2hLA/evBw8JdB8IJx7n9kRRY6Jv9RD7tvbAQjrn0BQ66jqOZHPA+9Mgs0fgNUBl74IHUZUyaHtDgd9LwqsJ5+6OZeVi/YAcMa4tjRoGl4l55Dq4/MbrNyTw6J16Xy8MYP8Uk/lvqYxwYxKTmBUciLt4vV3WR0MwyDrf4+QO3cuAA1uvonYqVNVwNcyKuFFREREREREREREpF4z/AalqzMBiBzeAluYDV6bBHl7IDIJLn0JbLrzVuoGi8NKSOc4yrfnETGsefWcxOuGt6+BrR+CzQljXoZ2w0/6sLnpaUQ2bITN/ms9FRrtIrpRCI1bR9Ghf8JJn0Oqh2EYrNtfwMK16Xy4Pp2soorKfQ3CXZzfuTGjuibQrWmUyuBqZPh8ZNxzL/lvvQVAo+l3EXPVVSankiNRCS8iIiIiIiIiIiIi9ZrFaqHhtGRKVmUS2isevvgP7PoC7MFw2WsQGmt2RJFjZnHYiBrZCr/bh9Vpq/oTeCtgwdWwbXGggB/7GrQ996QP6y4vY8H//YOgkFBG3/5PouIbAxDTOJRL7uqJ1abitjbakVnEB2vTWbQ+nX05pZXbI4LsDO8UKN77tozFZtXfX3UzPB7Sp/+dwg8/BIuFxvfdS9Qll5gdS45CJbyIiIiIiIiIiIiI1HsWh42wfgmw4W347onAxtHPQOMupuYSOVb+Ci8Whw3Lz2VntRXw8yfAjk/B5oLLXoc251TJob9f8DrFOdnYbDZCo6PJzyolqmFgnXBnda1pLyckNbeURevTWbg2na0ZRZXbgx02zunYiFHJCQxqG4fLXg3vQTkif0UFaX+9leIvvwS7ncSHHyLivPPMjiV/QL/VRERERERERERERKRe8pd6KF1/kNDejQPF5YH18MFfAjtPvxk66w5CqRsMwyB3/nb8pR5ixrTDHhNU9SfxlMP88bBzCdiDYNwb0OqsKjl01t7drFn8AQBnTZzK7rX5fPHSFvpd2IpuQ5Kq5Bxycg4WVfDR+nQWrktnTUp+5XaHzcIZbRswMjmBIR0bEeJUtVjT/CUlpP7lL5QuX4HF6STxqScJHzzY7FjyJ/STIiIiIiIiIiIiIiL1UsHHeyn5MQP3viJiRsTBm1eAtyxQLJ79b7PjiRyz0jVZlG/OAZsFf4Wv6k/gKYM3L4ddXwaWabh8PrQ8o0oObfj9fD5nBobfT9s+pxPZsANvP7gKw2/gLvNWyTnkxBSUefh0YwYL16Xz/a5s/EZgu8UCfVvEMqprAsM7xRMV4jQ36CnMV1hI6nVTKFu7FmtICE1mzCC0bx+zY8kxUAkvIiIiIiIiIiIiIvVOxe58Sn7MACC0ZwNYcCUUpEB0C7h4Dlg1jbLUDd78cvIX7gIgYkgznI1Dq/YE7lJ4cxzsXgqOELj8LWgxsMoOv+GrzziwfSuOoGD6XzaRj2duwOvx07RjDL1GtKiy88ixKXP7+HxLJgvXpfP1toO4ff7KfclNoxiVnMCILo1pFFENsy3IcfHm5JAy+VoqtmzBGhFB0vOzCU5ONjuWHCOV8CIiIiIiIiIiIiJSrxgeP3nv7gQgtE88rh3/g73LwBEaWOM6JMbkhCLHxvAb5L29A6PChzMpnPBBTar2BO4SeH3srz8f49+GZv2r7PClBfkse+1FAE4fcwUrP8ik4GAZYTEuhkzsiPXn9e2lerm9fr7deZCFa9P5bHMmpe5fZ1No2yiMUckJjExOoFlsFV/gISfMk5FBysRJuHfvxhYbS9LcOQS1a2d2LDkOKuFFREREREREREREpF4p/CoFb3YZ1nAnkYmrYfGMwI4Ln4NGHc0NJ3IcSlYcoGJnPhaHlegx7bBUZWldUQyvj4F934EzDMa/A0l9q+74gKeigrhmzakoLcWwdWHPur1Y7RaGXdeZ4DBNcV6dfH6DH/bksnBdOh9vPEB+qadyX5PoYEYlJzCqawLt4yNMTClH4k5JIeWaiXjS0rA3bkzS3Dm4WmjWiLpGJbyIiIiIiIiIiIiI1BuezBKKvt4PQPQAC9ZPbwrsGHQndBxlYjKR4+M5WErBx3sAiBzeAkdccNUdvKIIXrsUUpaDKyJQwDftXXXH/1lkw0aMufsB0rcf4IMntgIwcExbGjVX8VsdDMNg/f4CFq5L58P16WQWVlTuiwtzMaJLY0Z1TaBb0ygsFs1CUBtV7NhBysRJeA8exNEsiWZz5+JITDQ7lpwAlfAiIiIiIiIiIiIiUm/kvb8TfAZBbcMIWnUF+Cqg7TAYPN3saCLHxwB7bDDWMAehfRtX3XHLC+HVi2H/D+CKhAnvQZMeVXf837FYLCS0bcyAMT6y9xdz2sCEajvXqWpHZhEL16WzaF06e3NKK7eHB9kZ3ime0V0T6dsyFpum/6/VyjZuInXyZHz5+bjatCFp7hzsDRqYHUtOkEp4EREREREREREREak3oka2ouDDXUR5/g9LURrEtoGLZoPVanY0kePiaBhCw790xV/hq7pp6MsL4JWLIG0VBEXChPchsXvVHPs3Vr6/gJL8XE4fMwFXSAgWi4UuZzat8vOcylJzS1m0Pp2Fa9PZmlFUuT3IYeWcDo0YlZzAGe0a4LLbTEwpx6p01SpSp16Pv7iYoM6dSXp+NraoKLNjyUlQCS8iIiIiIiIiIiIi9YYzIYwGCS/Bqs8C02yPeyNQNorUEYbPwGILlO4WuxWbvYouICnLCxTw6WsgODpQwCd0rZpj/0Z+xgFWvP0GXo8baMzpY8/DFaw6qiocLKpg8YYDLFyXzup9eZXb7VYLZ7RtwKiuCZzToRGhLn2/65LiZd+y/8YbMcrLCenZkybPzcQWFmZ2LDlJ+ikUERERERERERERkTrPm1uOPSYIVr8Iq+YAFrjoeYhrY3Y0kWNmeP1kPbeO4PYxhJ/ZFIutigr40lx45QI4sA6CY+CqhRDfuWqO/RuGYfDFvOfwetzEJXVg8/JQDuxZxZi/98Lh0h3ZJ6KgzMOnmzJYtC6d73Zm4zcC2y0W6NsillFdExjeKZ6oEKe5QeWEFH72GWm33Q4eD6GDBtLkySexBgebHUuqgEp4EREREREREREREanTyjZmk/P6VsK7W4jcfHtg45n/gHbDzA0mcpwKv0jBs78YX145oX0bYwurgmK1NBdeHgUZGyAkLlDANzrt5I97BNtXfMfetaux2uyUlfbHYrHQsmsDFfDHqczt44utmSxcm87SbQdx+/yV+5KbRjEqOYERXRrTKCLIxJRysgo++ID0v/8DfD7Chw4l8X8PY3HqYor6QiW8iIiIiIiIiIiIiNRZ/nIveR/sAr8BmxaB4YEOI2HgbWZHEzkuFSmFFC1NBSDqgjZVU8CXZMPLoyFzI4Q2gKsWQcMOJ3/cI6goLWXpS7MBCInuh9cXSWK7KPqMalEt56tvPD4/y3YcZOHadJZszqTE7avc16ZhGKOSExiZnEDzuFATU0pVyX39dTLvvQ+AyAsvpPF992Kxq7atT/S3KSIiIiIiIiIiIiJ1VsEne/EXubE7cojwz4FGHeGC58BaRdN4i9QAv9tH3lvbwYCQrg0I6Rx38gctPhi4Az5rM4Q1ChTwDdqd/HGP4vu3XqU4LxdncCwebzfCopycO6kT1qqaUr8e8vsNVu7JZeG6dD7eeID8Uk/lvibRwYxMTmBUcgLt48OxWCwmJpWqlP388xx89DEAoidMoNH0u7DoM6veUQkvIiIiIiIiIiIiInVSxd4CSlYcACCKR7AEh8Blr4ErzORkIsen8JO9eLPLsEU4iRrV6uQPWJQZKOAPboWweLj6Q4hrc/LHPYqK0hI2f7sUAMM2GLvNwdDrOhMSoam1f88wDDakFbBwbTqL1qeTWVhRuS8uzMWILo0ZmZxA96QoFe/1jGEYHHziSXJmzQIgduoUGtx8s/6e6ymV8CIiIiIiIiIiIiJS5xheP3nv7gAgxPYZQfZNcMkCiGlpcjKR41O+M4/i79MBiL6kLdYQx8kdsCgDXhoJ2dshPCFQwMdWQbH/B1whoYx/4CnevOcNvN5m9L+kNY1bRVbrOeuanVlFLFybzsJ16ezNKa3cHh5kZ3ineEYlJ9K3ZQx2zRxQLxl+P5n3P0Deq68C0PD224idPNnkVFKdVMKLiIiIiIiIiIiISJ1TtDQVb1YZVvKJss+Fc/4Drc8xO5bIcfMVuLE4rIR0b0hQ2+iTO1hheqCAz9kJEU3g6kU1dmFKZIM4Jtw/ha3LD9DlzCY1cs7abn9eKYvWHWDhunS2HCis3B7ksHJOh0aMSk7gjHYNcNltJqaU6mZ4vRz4190UvPceWCzE3/0voseNMzuWVDOV8CIiIiIiIiIiIiJS51itxVgoJ8oxG2vnodD/JrMjiZyQ0B6NcCaFY4twndyBCvbDiyMgbw9ENg2sAR/TompCHkVJfh6Zu3fSsnsvAEIinHQf2qxaz1nbHSyqYPGGQPG+el9e5Xa71cKgtg0YlZzAkI6NCHWpojsVGG43aXfcSdGnn4LNRsID9xM5apTZsaQG6CdcREREREREREREROoWTxlhO64n2LUPa3xTGDUftKau1GGOBiEnd4D8VHhpBOTthagkuOpDiK7+Mnzpyy+w9buvad37PEbfNq3az1dbFZZ7+GRjBovWpfPdzmz8RmC7xQJ9WsQwKjmR4Z3iiQ51mhtUapS/rIz9N91MybJlWBwOEh57lIghQ8yOJTVEJbyIiIiIiIiIiIiI1BmG349l0c1wYB22kBi47DVwnmSBKVLDfCUecl7eTOTw5rian+Ta6Xn7AgV8fgpENw8U8FFNqyTnH9m7/ie2fvc1YCFlSzRZ+wpp2Cyi2s9bW5R7fHyxJYsP1qaxdNtB3D5/5b7kJpGMTE5gRJcE4iODTEwpZvEVF7N/6vWUrlqFJSiIJs88Q9iA082OJTVIJbyIiIiIiIiIiIiI1Am+QjfZM74ismQrQXYbjHmpRu72FalKhmGQ//5O3PsKyX9/Fw1v6obFeoIzOeTuCawBX5AaWPv9qg8hMrFqAx+B1+1myewZANhcXek2tOcpUcB7fH6+3ZHNwnXpfLYpgxK3r3Jf64ZhjE5OYGRyAs3jQk1MKWbz5uWReu11lG/ciDUsjKazniOkRw+zY0kNUwkvIiIiIiIiIiIiInVC/hvL8eSHUGC5Ctd5HiwtBpkdSeS4la07SNmGbLBaiL607YkX8Dm7AgV8YRrEtg6sAR+RULVhj2LFuwsoPHgALKE0OW0Y/S5qVSPnNYPfb/DD3lwWrkvn4w0HyCv1VO5LjApmZHICo5IT6NA4HIuWxTjlebKySJ00iYodO7FFRdF0zgsEn3aa2bHEBCrhRURERERERERERKTWK/txC2V7rICP6NN2Yul7v9mRRI6br6CCvPd3ARBxdhLOxLATO1D2zkABX5QOcW0DBXx4fBUmPbrc9DR+eP8tAEJjz2H4lJ7YbNYaOXdNMQyDDWkFLFybzofrD5BRWF65Ly7MyfmdGzOqawLdk6JVvEslT1oa+yZOxLMvBXuDBiTNm4urdWuzY4lJVMKLiIiIiIiIiIiISK3mLyok//2dQBRhkd/jHPtvUPEldYxhGOS+swOj3IujSRjhg5uc2IEObg8U8MUZ0KB9oIAPa1i1YY/CMAwWPvoEhuHD6mjOiJsuJjTKVSPnrgk7s4pYuDadResPsCe7pHJ7eJCdYafFM6prAv1axmKvZxcdyMmr2L2HlIkT8WZk4EhMJOnFeTibNjU7lphIJbyIiIiIiIiIiIiI1F6GQeHs1/D5OmGzZhFx7QRwBJmdSuS4lfyQQcX2PLBbiBnTDsuJFLlZWwMFfEkWNOwIVy6EsAZVH/YoLBYLjdoMIjc9k94XXE2TdjE1du7qkpZfxqJ16Sxcm87mA4WV24McVs7u0IhRyQmc0bYBQQ6biSmlNivfupWUSZPx5eTgbNmSpHlzcTRqZHYsMZlKeBERERERERERERGptSoWzab4YEcAos+LxxqnOwulbqrYXQBA5NAWOBqGHP8BMjfDy6Og5CA06hQo4ENjqzjlnxs+dSRdhwwgvmVUjZ+7qmQXV7B4wwEWrk1n1b68yu12q4WBbeIY3TWRczo2IsylGk3+WNnataRcNwV/YSGuDh1ImvMC9pi6f3GKnDz99hARERERERERERGR2mnHEspWbgM6EpJUSNCA881OJHLCYi5rR3lyA4Lan0BBl7ExUMCX5kB850ABH1JzRZ/fb+AuKSMoPHDxQONW0TV27qpS7vEF7nhfl873u3Lw+Q0gsLJF7+YxjOqawHmdGhMd6jQ5qdQVJStWkDrtBozSUoK7daPprOewRUSYHUtqCZXwIiIiIiIiIiIiIlL75OyCtycRaS/A2Soe15hbzE4kclIsFgvBHU/gzvUD6+Hl0VCWC427woT3arSAB/jypaVsWDKDfpeOp88Fo7BYLDV6/pO1M6uYaa+tZntmceW2Lk0iGZWcwIguCcRHaokLOT5FX31F2s23YLjdhPTrS9Nnn8UacgIzXEi9pRJeRERERERERERERGqXiiJ4YxxUFGBJ6kPIlTeDXXenSt3jySyhaFkaUee3xBp8ApVM+tpAAV+eDwndAwV8cFQVp/xju9dlsn7JKxi+Mvau30DfC0fX6PlP1qJ16dz1znpK3D4ahLuY0LcZI5MTaBEXanY0qaMKFy8m7c6/gddL2Nlnk/jYo1hdLrNjSS2jEl5EREREREREREREag+/H+PdqRRndCIk0odtzMtgV7khdY/h85P71nY8acVgQMylbY/vAGmr4ZULobwAmvSC8e9AUGT1hD2KwuwyPn72dQxfFjZHMCNvvqFGz38y3F4/9y/ewovf7wWgX8tYnhzXlYbhuutdTlzeggVk3P1vMAwiRowg4YH7sTgcZseSWkglvIiIiIiIiIiIiIjUHt/8j9JN5RR4p1LsthAf3JC6NfG1SEDhl6l40oqxBNuJHNrs+F68fxW8chFUFEDTPnDF2xBUs2tNez0+Pnz2e8oLlgFwxvhrCI2qG2vBp+WXccNra1ibmg/ADWe24q/ntMVus5obTOq03JdeIvOBBwGIGjuW+H/fjcWq95QcmUp4EREREREREREREakdti7G99Wz5HufAyBsQDMsdhUcUve4U4so+ioFgOgLWmGLOI7ZHFJ/CBTw7iJI6gdXLABXeDUlPbplb24nc8dHgJuGLdrS9dxhNZ7hRCzdlsUt89eSX+ohMtjB42OTOat9I7NjSR1mGAbZM2aQ/fQzAMRMnEjDO27HYtElYnJ0KuFFRERERERERERExHwHt8G715HvmYJBOI7GoYQNaGJ2KpHjZnh85L61DfwQ3CWOkOSGx/7ifcvhtUvAXQzNBsDl88EVVn1hj2Lr8gNsWPo9fs92LBYrQ6f+pdbf8evzGzz5xQ6e/nIHhgFdmkTy7OXdaRoTYnY0qcMMwyDr4f+RO28eAA1uvonYqVNVwMufUgkvIiIiIiIiIiIiIuYqy4c3xlFW1pYy/2CwQPTFbbDYVHJI3VPw6T68B8uwhjuIGt362F+49zt47VLwlEDzgYEC3hlafUH/QOPWUQSHFeApsdD9vFE0bN7SlBzHKqe4gpvfXMu3O7MBGN83iX+N6IjLbjM5mdRlhs9Hxj33kv/WWwA0mn4XMVddZXIqqStUwouIiIiIiIiIiIiIefw+eGcy/pz95PvuBiDs9EScTWp++m2Rk+Uv91K6/iAA0Re3xRbqOLYX7lkGr48BTym0HAyXvQFO8+7gjmwQzDWP3Ex2ykhiEhJNy3EsVu/L5YbXfiKjsJxgh40HLurMBd1qd2ap/QyPh/S7plP40UdgsdD4vnuJuuQSs2NJHaISXkRERERERERERETM89V/YecSivxX4/PHYotyETGkmdmpRE6INchOo5u7U74ph+D2Mcf2ot1L4fXLwFsGrc6Gy14DR3C15jwSw2+Qta+IRi0iALA7bMS3alPjOY6VYRjM+XYPD368Fa/foFWDUJ4b34M2jXQBj5wcf0UFaX+9leIvvwS7ncSHHyLivPPMjiV1jEp4ERERERERERERETHHpvdg2aMAhI8egH9fPEGdYrG6NIW01F22UAehveOPbfDOL+DNy8FbDm3OhTGvgCOoegMexepP9rJi4W4aJm7g7GsuJrZJU1NyHIuicg93vr2ejzdmADAyOYEHL+pMqEu1l5wcf0kJqX/5C6XLV2BxOkl86knCBw82O5bUQfptJCIiIiIiIiIiIiI1L2MjvD8t8LjfX7D2vJTonuZGEjlR5dvz8JV4COnaAIvFcmwv2vF5oID3VUDbYTDmZbC7qjfoUaRuzmXloj34K7aQuvFz3vjXcq6bMQ9nsHlT4h/NlgOFTHttDXuyS3DYLPxrREcm9G127N93kaPwFRaSet0UytauxRoSQpMZMwjt28fsWFJHqYQXERERERERERERkZpVmhsoHz2leBIvxH72f1B9JnWVv9RD7oLt+Ivc4PMT2vMY7oLf/inMHw8+N7Q7Hy59EezOas96JEW55Xw2ZxOGrwzDuwyAXqMvqZUF/IJVqfzz/Y1UeP0kRgXz7BXd6do0yuxYUg94c3JImXwtFVu2YI2IIOn52QQnJ5sdS+owlfAiIiIiIiIiIiIiUnN8Xnh7IuTvwxvWnax9k3G+vI3Yy9tjDdJ/WUvdk/fBLvxFbuwNgglJbvDnL9i6GN66Evwe6DASLp5rWgHv8/j5ZPZGyks82G0rqXCXENskiZ4jLjAlz9GUe3z8Z+Em3vwxFYDB7Rrw+JiuRIea832T+sWTkUHKNRNx79mDLTaWpLlzCGrXzuxYUsfpXzQiIiIiIiIiIiIiUnM+/zfs/grDHkJeyP0Y2V7w+rFoHXipg0rXH6Rs3UGwQsyYdlgcf/I+3rIIFlwTKOA7XgAXvwA2R41kPZJv395B1t5CbLZMSrLXAHDOpGnY7OZl+r19OSVc/+oaNh8oxGKBW89pyw1ntsZq1fwZcvLcKSmkXDMRT1oa9saNSZo7B1eLFmbHknpAJbyIiIiIiIiIiIiI1Iz1b8HyZwAoTZ5DxXdesFuIuqiN1nOWOsdX5Cb//Z0AhA9uirNp+B+/YNP78M4k8Huh08Vw4WywmVfTZOwuYOPXaRj4sVu/AeC0wefQpGMn0zL93qebMrh9wTqKyr3Ehjp58rJuDGgTZ3YsqScqduwgZeIkvAcP4miWRLO5c3EkJpodS+oJlfAiIiIiIiIiIiIiUv3S18LCGwHw9f4bBaujAS8RZyfhiAs2NZrI8TIMg7x3duAv9eJICCXirKQ/fsHGd+Cda8HwQecxcMFMUwt4gPiWkZx1ZXt2/rCU7ctTCQoLZ9AV15ia6Rcen5//fbqN2d/sBqBns2ieubw78ZFBJieT+qJs4yZSJ0/Gl5+Pq00bkubOwd7gGJaTEDlGKuFFREREREREREREpHoVH4Q3rwBvObQ5l4Kii/CXHMTeKITwgU3MTidy3NypRZRvzQWbJTANvd169MHrF8B714Hhh+RxMPpZsNaO5Rc69E+gbe8xxLd0ERoVTUhEpNmRyCws58bXf+KHvbkATB7Qgr8Nb4/D9gffY5HjULpqFalTpuIvKSGoc2eSnp+NLSrK7FhSz6iEFxEREREREREREZHq4/PAgquhcD/EtKK86+OUvrIHLBB9cZs/Li9FailXUgRx13bGl1OOIz706APXzYf3pwYK+K7jYdRTphbwhmGw5tN9dByQQHCYEwCb3U6vUReblum3vt+VzU1v/ER2sZtwl53/XdqFYZ0amx1L6pHiZd+y/8YbMcrLCenViyYzZ2IL+4OfYZETpBJeRERERERERERERKrPp/+Afd+CMxzGvYGlNAJ7XDCuNlG4kiLMTidywoJaRUGrPxiw9nV4fxpgQPcrYcSTYDX3opOflqSw4v3dbPn+AEMnJxKT0Bib3WFqJgC/32Dm17t49LNt+A1oHx/OzPE9aBGnclSqTuFnn5F22+3g8RA6aCBNnnwSa7CWQ5HqoRJeRERERERERERERKrHT6/CD7MCjy+aBQ3a4QIa3dwdwzBMjSZyIko3ZONMCMUe+yfF3ZqXYeFNgAE9J8J5j5pewKdty2PFe7sA6HRGI95/+D/YnS5G3/5PYhISTcuVX+rm1rfW8eXWLAAu7dGE+y7oRJCjdkzZL3WfYRjkL1hAxn/uAb+f8KFDSfzfw1icTrOjSQ3wG35e3vQy57c8nwYhDWrsvCrhRURERERERERERKTq7V8FH/418HjwdIx252H5eZfFYa18LFJXeLJKyZ2/DYsVGt7QFUejo9ylvWoefHhL4HGva+G8/4HF3Hd8SX4Fn87ZhGFAu77xFGZ8TeHBLMLjGhAeE2tarvX787n+1TWk5Zfhslu5b3QnxvRqaloeqV8Mv5+iJZ+TPXMmFVu3AhB54YU0vu9eLHZVpKeCvPI8pn87ne/SvmPp/qXMOXcOthpaEkTvMBERERERERERERGpWkUZMH88+NzQ7nyMAXeQ/fwGgjrEENY/EYtNFbzULYbPIHfBdvD6cbaJwt4w5MgDf3wBProt8LjP9TDsAdMLeJ/Pz6fPb6Ss0E1sYhidBgbxxr/eB+DsiVNxBAXVeCbDMHh1ZQr3LdqM2+enWWwIM67ozmkJkTWeReofw+ej8JNPyHnuOSp27ATAGhJC7LWTiZ0yBYvJs1JIzVibtZbbv76dzNJMXDYXo1uNrrECHlTCi4iIiIiIiIiIiEhV8lbA/AlQdADi2sGFz1G8IoOK3QW404oJSW6ILUJTAEvdUrQ0FU9qEZYgG9GXtMVypGJ95Sz4+M7A435/gXP/z/QCHmD5u7s4sKsAZ5CNodd25NOZ9+L3+Wjdqy+tevSp8Tylbi9/f3cD769NB+Dcjo14ZEwyEUHmr00vdZvh9VK4eDHZM5/DvWcPANawMGKunEDMlVdii4oyN6DUCMMweHXLqzy26jG8hpdmEc149IxHaRfTrkZzqIQXERERERERERERkarz8Z2w/wdwRcJlr+Mtd1L42V4AIs9roQJe6hx3WjGFX6QAEDWqFfZI1+GDls+AT6cHHve/CYbcWysKeHeZlz3rDgJw9tUdSduynLStm3G4gjjz6utqPM/OrGKuf3U1O7KKsVkt3DWsPZMHtjjyRQ0ix8jweChY9CHZs57Dsy/ws2qNjCTmqiuJGT8eW0SEyQmlphS5i/j39/9myb4lAAxpNoR7+99LmDOsxrOohBcRERERERERERGRqrFqLqx+EbDAJXMwYluR/9JmDLcfZ/MIQnvFm51Q5LgYXj+5b20Dv0HQabGEdGt4+KDvn4bP/hl4POBWOPvuWlHAAziD7Vw6vRf7NmQT39LJvFvnAdDv0suJiDvC11KNFq5L56531lPq9tEw3MUzl3end4uYGs0g9YvhdpP/wQfkzJqNZ/9+AGxRUcRccw3RV1yOLazmi1cxz9bcrdy29DZSilKwW+3c3vN2Lm9/uWkX+aiEFxEREREREREREZGTt285LP55Ku6z74Y2Qyhbf5DyrblgsxB9URss1tpRTIocq+Ll6XgzS7GGOoi+sPXhZc63j8Pn/wk8HnQHnPmPWlPA/yIo1EG7vo0pzD5IoxatKMnPo/vwUTV2/gqvj/s/2sJLy/cB0K9lLE+N60aD8CPMKCByDPxuNwXvvkv27Nl40w8AYIuJIXbSRKIvuwxraKjJCaUmGYbBuzve5f6V9+P2u2kc2phHzniELg26mJpLJbyIiIiIiIiIiIiInJyCNHjrSvB7oOMFMOCv+Es95C/cBUD44KY4GoaYm1HkBIT1S8Bf6sXZJAxb2O+WUvjmEfjyvsDjwdNh8F01H/AIDMPgi5e2EN8igtMGJVZeOBAR14CL/34vZUWF2Ow1Uw/tzyvlhtd/Yl1qPgB/ObM1fx3SFpsuyJET4C8vJ3/B2+S88ALezEwAbA3iiJ00ieixY7EGB5ucUGpaqaeU/678Lwt3LQRgYOJA7h9wP1FBUeYGQyW8iIiIiIiIiIiIiJwMTznMHw8lWdDwNLhgBlgsVOwpxF/qxd4wmIgzm5qdUuSEWOxWIoc2P3zH0odg6f2Bx2f+E864o0Zz/ZH1X+5n24oMdvyQSWK7aKLjf70r2GKxEBIRWSM5lm7L4pb5a8kv9RAZ7ODxscmc1b5RjZxb6hd/WRl58+eTM2cOvoPZANgbNSJ28mSiLr0Ea1CQyQnFDLsLdnPb0tvYmb8Tq8XKjd1uZGKniVgtVrOjASrhRUREREREREREROREGQZ8+FdIXwPB0XDZa+AMFH7Bp8XS6KZuGF4/Fnvt+A9xkWNVtjWXoDZRWGy/e+8aBix9AL5+KPD87Lth4G01H/AoDuzM5/t3dgLQ/5LWRMeH8uOidynIPMCAy64iqAbWyPb5DZ78fDtPf7UTw4AuTSJ59vLuNI3RbBhyfPwlJeS9+SY5c+fhy8kBwJ7QmLjrriPyoouwOp1/cgSprxbvXsx/lv+HMm8ZsUGx/O+M/9ErvpfZsQ6hEl5ERERERERERERETszKWbDudbBY4ZJ5ENPikN2OeK3LK3VP+Y48cl7chKNJGA2nJGNx/FzEGwZ8+X+w7JHA8yH3wuk3mxf0d0oL3Xz6/Eb8foPWPRvS5cwmFGRl8v1br+F1V5DQtgMdB51VrRmyiyu4+c2f+G5noDCd0LcZ/xzRAZfdVq3nlfrFV1xM3muvkztvHr78fAAcTZoQO+U6okaPxqLy/ZTl9rl5+MeHmb9tPgC94nvx8KCHiQuOMznZ4VTCi4iIiIiIiIiIiMjx2/MNfPr3wOMh90GrMwEo/uEAzsRwnInVf8etSFXzl3nJe3s7AM6m4YcW8J//B757IvB86P3Q7wZTMh6J3+fnsxc2UlLgJjo+hDPHtwfgy3nP4XVX0KRjJzoMPLNaM6zam8tfXv+JjMJygh02Hry4M6O7JlbrOaV+8RUWkvvqq+S+9DL+ggIAHM2SiJsylciRI7A4HCYnFDPtL9rP7V/fzqacTQBc2/lapnWdht1aO+vu2plKRERERERERERERGqvvH3w1lVg+KDL2Moy0pNRQv77uwCDRjd1153wUufkL9qFr8CNPTaIyOE/z+xgGLDkX/D904Hnwx6CvlPNC3kEKz7YTdr2fBwuG8OndsYZZGfHj8vZveZHrDY750y6AYvFUi3nNgyDOd/u4cGPt+L1G7RqEMpz43vQplF4tZxP6h9ffj65L79M7suv4C8uBsDZogVx108l4rzzsNhVZ57qlqYu5e/f/p0idxGRrkjuH3A/g5oMMjvWH9K7VkRERERERERERESOnbsU5l8BZbnQOBlGPgkWC4bfIO/dHeA3COoQg72R1n+WuqVsUzala7LAAtFj2mF12gIF/Kd/hxUzAoPOewR6X2tu0CMICnVgscBZV3YgOj4Ud3kZX86bBUCvURcR26RptZy3sNzDnQvW88mmDABGJifw4EWdCXWpfpI/583LI3fei+S9+ir+0lIAXG1aEzt1KhHDhmGxaRmDU53X7+Wpn55i3sZ5AHSO68wjZzxCQliCycn+nH4LioiIiIiIiIiIiMixMQxYeCNkbICQOBj7GjiCAShZeQB3ShEWp42oC1pX2123ItXBV+wm792dAIQPaoKrWUTg/f7x3+CHQJnN+Y9Br0kmpjy67kOb0bJbA6IaBi5++X7B6xTnZBPZsBF9LhxTLefcnF7ItNdWszenFIfNwt0jOjK+bzP97Muf8mZnkzNvHnlvvInxS/nerh1x06YRPuQcLFaryQmlNsgqzeKOr+9gTdYaAC5vfzm397wdh61uLEugEl5EREREREREREREjs33T8PGt8FqhzEvQ1Tg7lpfQQUFn+wFIHJYc+yRLhNDihy//EW78Zd4cMSHEDGkGfj9sPh2WDUHsARmfOhxldkxD+Fx+8AAhytwt/AvBby7vIwty74C4KyJU3G4gqr83AtWpfLP9zdS4fWTGBXMs1d0p2vTqCo/j9QvnqwscufMJW/+fIzycgCCOnYk7oZphJ15psp3qbTiwAr+9s3fyC3PJdQRyj3972Fo86FmxzouKuFFRERERERERERE5M/t/AI+/3fg8bAHofnplbvyPtiFUeHDmRROaN/GJgUUOXER5yThK6ggalQrLFbgo7/C6hcBC4x+BrqNNznhoQzD4OvXtnEwtYjhUzoT9ZvlH5xBwVz1yLNsX/4tLbv1qtLzlnt8/PuDTcxflQrA4HYNeHxMV6JDnVV6HqlfPBkZ5Dz/AvkLFmC43QAEdelC3LTrCTvjDM2eIJX8hp/Z62czY+0MDAzaRLfhsTMeo3lkc7OjHTeV8CIiIiIiIiIiIiLyx3J3w9sTwfAHyshekyt3le/Io3xzDlgtRF/UBotVZYrUPY4GITSY0gWLYcCim+CnVwALXDATuo4zO95hNi1LZ9vKDCxWCyX5FYeU8AAhEZF0HXp+lZ5zb3YJ17+2hi0HCrFa4NYhbZk2uDVW/czLUXjS0sh+/nkK3nkXw+MBILhbN+JuuIHQ0/urfJdD5JXnMX3ZdL5L/w6AC1pfwN/7/J1ge7DJyU6MSngRERERERERERERObqKYnjzCijPh8SecN6j8JvixNUqiqjRrfCX+3DEh5qXU+Q4GYaB50AJzoQwACyGHxbeCGtfA4sVLpwFXapnPfWTkbmnkGVvbQeg7wUtSWwXDUBpQT5p2zbTule/Ki83P9mYwR0L1lFU4SU21MlT47pxeuu4Kj2H1B/u1FRyZs8m/733wesFIKRXL+JumEZInz4q3+Uwa7PWcvvXt5NZmonL5uIfff7BhW0uNDvWSVEJLyIiIiIiIiIiIiJHZhjw/lTI2gxhjWDsq+A4dH1pi9VCWL8EkwJWjdLCAkIiIs2OITWsZMUB8hfuIvzMpkSe0xTenwbr3wSLDS6aDZ0vMTviYcqK3Xzy/Ab8XoOW3RrQbUhS5b6vX53L5m++pOfIizhj/MQqOZ/H5+d/n25j9je7AejZLJpnLu9OfGTVrzMvdZ97716yZ82mYOFC8PkACOnXl7jrrye0d2+T00ltZBgGr2x+hcdXP47X8NI8ojmPnPEI7WLamR3tpKmEFxEREREREREREZEjW/YIbFkEVkeggI/4db13b3YZ1ggnVqfNxIAnL337Fhbc9w/6XXI5vUZdrDs0TxHe7DIKFu8BA6zBNnhvCmxYECjgL5kDp9W+OzD9foMlczdTnFtBZMNgzrqyQ+X7NWXjejZ/8yVYLLTtc3qVnC+zsJy/vL6GH/fmAXDtwBbcOaw9Dpu1So4v9UfF7t1kP/cchR9+BH4/AKEDBhA37XpCunc3OZ3UVkXuIu7+7m4+T/kcgKHNh/Kffv8hzBlmcrKqoRJeRERERERERERERA637RP48r+Bx+c/Ck1/vYvR8PrJfnkThtcgdnyHyum86xp3WSkfPvkIXrebfRu20Xu0CvhTgeE3yF2wHcPjx9UygrAD/4LN74HVDpfMg46jzI54RD99to/UzbnYnVaGT+mMKzhQ8Xg9Hj6fMwOA5HOG07jNyd9B+v3ObG568yeyi92Eu+z879IuDOvU+M9fKKeU8u3byXnuOQo//iQwcwoQNngwcdOuJ7hLF5PTSW22JWcLt319G6lFqditdu7oeQfj2o+rVxfCmX650owZM2jRogVBQUH06NGDZcuWHXXs1VdfjcViOezPaaedVjnmxRdfPOKY8vLymvhyREREREREREREROq+7B3w7rWAAT0nQY+rDtldtDQVb1YZhtuHPcplTsYq8MXcWRRlZ4I1Aot9MMbPJZLUb0Xf7Me9rxCLy0Z08HNYNr8XmO1hzMu1toAHaNenMfEtIxl8RXtiE3+98GXVonfJS99PSGQUA8ZdeVLn8PsNnv1qJ+PnrCS72E2HxhEsunGACng5RPnWrey/6Wb2jBpN4eKPwTAIO+dsmr/9Nk2fm6kCXo7KMAwWbF/A+MXjSS1KpXFoY14e9jKXd7i8XhXwYPKd8PPnz+eWW25hxowZnH766cyaNYvhw4ezefNmkpKSDhv/5JNP8uCDD1Y+93q9JCcnc+mllx4yLiIigm3bth2yLShI65OIiIiIiIiIiIiI/KnyAnhjHFQUQlI/GPbgIbs9WaUUfpUKQNTIllhDHGakPGnbV3zL5m++ACAk+nzOndy93hUAcjhPRgmFS/YBENXwc+y7XgebE8a8Au2GmZzuj4VFu7jw9u5Yrb++T/MzDrDy3fkADL5yMkGhJz4rRX6pm7/OX8tX2w4CMKZnE+4d3YkgR91eckKqTtnGTWTPnEnxF19UbgsfOpS466cS1L69icmkLij1lPJ/K/6PRbsXATCoySDuH3A/ka5Ik5NVD1NL+Mcee4xJkyYxefJkAJ544gk+/fRTZs6cyQMPPHDY+MjISCIjf/2LeP/998nLy+Oaa645ZJzFYiE+Pr56w4uIiIiIiIiIiIjUN34/vDsFcnZAeELgzmC7s3K34TfIe3cH+AyC2kUT3KWBiWFPnOH3883rrwJgC+rNWVedTURcsMmppLoZPj+587cF3r8RewjJehTsLhj7KrQ91+x4R+T1+Ejbnk+z02IBDingAb6Y9xxej5ukTsm0P/2MEz7PutR8pr22hrT8Mlx2K/eN7sSYXk1PKrvUH2Xr1pE9YybFX38d2GCxEDF8OLFTpxDUtq254aRO2J2/m9u+vo2d+TuxWqzc2O1GJnaaiNVi+qTt1ca0Et7tdrN69WruuuuuQ7afe+65fP/998d0jDlz5nDOOefQrFmzQ7YXFxfTrFkzfD4fXbt25b777qNbt25Vll1ERERERERERESkXvr6Qdj+MdhccNmrENbwkN0lqzJw7y3E4rASdUHrOnvnuMftxxl2Kbb8b2l/+iganBbNroPFtGpQN9e2l2NktRDWpwGFi9OJrvgXFrsLxr0Orc8xO9lRLXtzO5u/O0DvkS3odX6Lw/b3GD6KouyDnD1p2gn9PBqGwasr9nHfh1tw+/w0jw1hxhU96JgQURXxpY4rXbOG7GdnUPLdd4ENVisRI84nbupUXC1bmhtO6ozFuxfzn+X/ocxbRlxwHA8Pephe8b3MjlXtTCvhs7Oz8fl8NGrU6JDtjRo1IiMj409ff+DAAT7++GNef/31Q7a3b9+eF198kc6dO1NYWMiTTz7J6aefzrp162jTps0Rj1VRUUFFRUXl88LCwhP4ikRERKQ20ue8iIhI/aTPeBGRarB5IXz9UODxyCchscchu32FbgoW7wEg4tzm2KPr7hKgmXsKKS20EZ14DgPHdWDKm2tZm5rPs1d054y2dfPu/vqkuj7nLd4KQnfeQojlKywOB4ybD63OrJJjV4fN36Wz+bsDYIH4Fkeerrl51x5clXxiSymUVHj5+3sb+GBtOgDDTovn4Uu7EBFUN5eYkKpT8sMPZM+YSemKFYENNhuRo0YRN+U6nM2bm5pN6g63z83DPz7M/G2BJTN6xffi4UEPExccZ3KymmHqdPTAYR8MhmEc04fFiy++SFRUFBdccMEh2/v27Uvfvn0rn59++ul0796dp59+mqeeeuqIx3rggQe45557jj+8iIiI1Hr6nBcREamf9BkvIlLFMjfDe1MDj/tOg67jDh9jAVfLKHyFFYSdnlCz+arIwX17OJiylw4DBnPp9J54Knw8tWw33+7MJsRpIz6i7l5YUJ9U2+f8t4/Dzs+xOILh8vnQ8sSnb69uB1OK+OaN7QD0GdmCph1jDtnvKS/HERR4v55IAb8zq4ipr65hZ1YxNquF6cPbM2lAizo7u4WcPMMwKF2xguxnZ1C6alVgo91O1IUXEnvdtTibankCOXb7i/Zz29e3sTlnMwDXdr6WaV2nYbeaXk3XGNMm2o+Li8Nmsx1213tWVtZhd8f/nmEYzJ07lwkTJuB0Ov9wrNVqpVevXuzYseOoY6ZPn05BQUHln9TU1GP/QkRERKRW0+e8iIhI/aTPeBGRKlSWB29eDp4SaDEIhtx3xGG2cCdxV3akweTOWKx1r6jzuCv46Kn/8fEzj7Jm8UJiE8P4saiEWd/sBuB/lyTTLj7c5JQC1fg5P+Cv0GEkjH+7Vhfw5SUePpm9AZ/XT7POsfQY1vyQ/Zm7dzJ72tWs+XgRhmEc9/E/WJvGqGe+Y2dWMY0iXLx5XV8mD2ypAv4UZRgGxcu+Zd/lV5ByzURKV63C4nAQNe4yWn/6CY3vu1cFvByXr1K+YsyHY9ics5lIVyTPnv0sN3W/6ZQq4MHEO+GdTic9evRgyZIlXHjhhZXblyxZwujRo//wtV9//TU7d+5k0qRJf3oewzBYu3YtnTt3PuoYl8uFy+U69vAiIiJSZ+hzXkREpH7SZ7yISBXx++DtSZC3ByKT4JIXwXbofxsbfuOQ0t0aVDf/E33Zay+Ssz+FoLBIOgwczJYDhdz59noArh/civO7NDY5ofyi2j7nHUEw9tWqP24VMvwGn7+4mcLsciLigjjn6o6H/Pz5/T4+f+FZykuKSd++he7DRx7zsSu8Pv7vwy28smIfAKe3juXJy7oRF6Z/U52KDMOgeOlSsmfMpHzDBgAsTidRY8YQO3kSjvh4kxNKXePxe3h6zdPM2zQPgC5xXXjkjEdoHHZqfr6a+q+lW2+9lQkTJtCzZ0/69evH7NmzSUlJYerUwLRH06dPJy0tjZdffvmQ182ZM4c+ffrQqVOnw455zz330LdvX9q0aUNhYSFPPfUUa9eu5dlnn62Rr0lERERERERERESkzvjiXtj1BdiD4bLXIDT2sCEFH+7GX+Yl8vwW2ML+eGbS2mrv2tX89MkiACyOcyj2OLjulRWUeXwMatuA289tZ3JCkYD9W/PYtyEHm93KsOs6ExR66Prs65d8QsauHTiDQxh85eRjP25eKTe8toZ1+wsAuPGs1txyTltsdXBWCzk5ht9P8ZdfcnDGDCo2bwHAEhRE9NixxEyaiKNhQ5MTSl2UWZLJnd/cyZqsNQBc0eEKbutxGw6b409eWX+ZWsKPHTuWnJwc7r33Xg4cOECnTp1YvHgxzZo1A+DAgQOkpKQc8pqCggLeeecdnnzyySMeMz8/n+uuu46MjAwiIyPp1q0b33zzDb179672r0dERERERERERESkztj4Dnz3RODx6GegcZfDhlSkFFK8PB0MCOneEFubulfClxYWsPiZxwGwuboy4LIh3Pb+BlJzy0iKCeGpy7qqiJRao2nHGM6dfBo+r58GSYcuj1CSn8eyN14CYMC4KwmLjjnSIQ7z1dYsbpm/loIyD1EhDh4f25Uz26loPdUYfj9Fny0he+ZMKrZtA8ASEkLM5eOIueYa7LGHX4QlciyWpy/nrmV3kVueS6gjlHv638PQ5kPNjmU60+cNmjZtGtOmTTvivhdffPGwbZGRkZSWlh71eI8//jiPP/54VcUTERERERERERERqX8yNsD7NwQen34zdL7ksCGGz0/+uzsCBXy3hgS1ia7hkCfPMAw+fe4pyorysVhjadXrQhaXFrFsRzbBDhuzr+xBVEjdu7BA6rc2PRsdcfvSl1/AXVZKo5ZtSB4y/E+P4/MbPL5kO898tROA5CaRPHtFd5pEh1RpXqndDJ+Pwk8+IXvmTNw7dwFgDQ0levx4Yq6+Cnt03fvdLrWD3/Aza/0sZq6diYFB2+i2PHrGozSPbG52tFrB9BJeRERERERERERERGpQSQ68eTl4y6DVWXD2v484rOibNDwZpVhD7ESOaFnDIatGxs7t7F69ErAS1nAk/l4NeO79wNrH/7u0C+3jI8wNKAL4PH6+e2cnPYY3IzTyyOuz71u/lq3ffY3FYmXItTdgtdr+8JjZxRXc9MZPfL8rB4Ar+zXjH+d3wGX/49dJ/WF4vRQuXkz2zOdw79kDgDU8nJgJE4i5cgK2qChzA0qdlluey/Rl0/k+/XsALmpzEdN7TyfIHmRystpDJbyIiIiIiIiIiIjIqcLnhbevhvwUiG4Bl8yFI5R5nuwyCr/YB0DkiJbYQuvmmq4edxyOsEsw/Pl0vKQP1360CYApZ7RkRJcEk9OJBHz79g42fp3G/m15XPav3liPsDxCdupeLFYrXc89n0YtW//h8X7cm8tfXl9DZmEFIU4bD1zUmdFdE6srvtQyhsdDwcJFZM+ahefnJZ+tkZHEXHUlMePHY4vQxUdyctZmreW2r28jqzSLIFsQ/+z7T0a3Hm12rFpHJbyIiIiIiIiIiIjIqWLJv2DPN+AIhXFvQPDh0xAbhkH+ezvAa+BqE0VIt7q7dvSOVZnYHEm0HdCHvy/fSZnHx8A2cdw5tL3Z0UQA2LYyg41fp4EF+l/U6ogFPECP8y8gqVMyEQ2O/vNoGAYvLNvDg59sxec3aN0wjOfGd6d1w/CjvkbqD8PtJv/998mZNRtPWhoAtqgoYiZOJPrycdjCwkxOKHWdYRi8vPllnlj9BF7DS/OI5jw6+FHaRrc1O1qtpBJeRERERERERERE5FSw9g1YMSPw+MLnoGGHIw7zFVTgySrD4rASfUFrLJYjl4K12YavPqNpxy6cdWUHGreJ4qHNqaTkltI0Jpinx3XDdpSiU6Qm5aQVs/TVrQD0PK85zTvH/eH4Bs1aHHVfYbmHOxas49NNmQCM7prA/Rd2JtSlGqi+87vdFLzzDtmzn8d74AAAtthYYidOJPqysVhDQ01OKPVBobuQu7+7my9SvgBgWPNh/Kf/fwh16P11NPrtKyIiIiIiIiIiIlLfpa2BRTcHHg+6EzqOOupQe1QQ8bf2wJ1ahD02uIYCVp39WzexZNYz2F0urn70WT4sLOTrndkEO2zMntCTqBCn2RFFqCjz8vGsDXg9fpp2jKHX+YcX7IZh8M1r8+g46CwaJDU/6rE2pRcw7bU17MspxWmz8q+RHRnfJ6lOXkAjx85fXk7+grfJeeEFvJmBiy9sDeKImzyZqDFjsAbXvd/fUjttydnCrUtvZX/xfuxWO3f2upPL2l2m3zF/QiW8iIiIiIiIiIiISH1WnAXzx4OvAtoOg8HT//Ql1mA7QW0Pn6q+tqsoLeGjJx/BMPy06tmXbw/4mLF0FwAPXdKFDo21FrKYzzAMvnxpCwVZZYTFuBgyseMRp6Hf9v03rFr0LuuWfMx1M+YRFHr4dOJv/ZjKvz7YSIXXT2JUMDOu6E5y06ga+CrELP7SUvLmv0XO3Dn4DmYDYI+PJ3byZKIuuRhrUJDJCaW+MAyDt3e8zYMrH8Ttd5MQmsAjZzxC5wadzY5WJ6iEFxEREREREREREamvvG5460ooTIPYNnDRbLBajzi0fEcevkI3Id0b1tm72z6fM5Pi3INYrJGUWQZy94J1AEwZ1JJRyQkmpxMJKC/xkJdRgtVuYdh1nQkOO3x2hvKSYpa+/AIAvUddfFgBX+b2cfcHG1mwej8AZ7VvyGNjkjXTQz3mLykh7403yJk7D19uLgD2hMbEXTeFyIsuxOrU371UnVJPKfetuI8Pd38IwKAmg7h/wP1EuiJNTlZ3qIQXERERERERERERqa8+nQ4py8EVAePegKAj/+e53+0j750d+PIrMNw+wvrVvcJ663dfs/XbpYCF4JgRvFBUTKnbx4DWcdwxtJ3Z8UQqBYc5ueSunmTuLqRR8yPPzvDd/Fcoyc8jOqEJPUddfMi+PdklXP/qarZmFGG1wG3ntuP6M1od8W56qft8xcXkvfoauS++iC8/HwBHkybETZ1C5KhRWFS+SxXbnb+bW5feyq6CXVgtVm7sdiMTO03EajnyRXxyZCrhRUREREREREREROqj1S/Bjy8AFrjoeYhrc9ShhUv24cuvwBblIqR7o5rLWEUKs7P4bPazANiC+rC9RTO2ZufRJDqYp8d1w25TcSDm8/uNyqLcGWSnaceYI47L2LmdtZ8tBuCcSddjdzgq932y8QB3LFhPUYWXuDAnT13Wjf6t46o/vNQ4X2Ehua+8Qu5LL+MvLATA0SyJuKnXEznifCy/eV+IVJWPdn/EPcvvocxbRlxwHA8Pephe8b3MjlUnqYQXERERERERERERqW9Sf4CPbgs8Pusf0G7YUYe69xdR/G0aAFEXtMbqstVEwiq1/J238JSXYrHFQ9szeS87jyCHlVkTehAdqrtExXw+n59FT64lqVMs3YYkHXXJB7/Px5LnnwXDoMPAM0nqlAyAx+fnoY+38sK3ewDo1Tyap8d1Jz5S63/XN778fHJffpncl1/BX1wMgLNlS+Kun0rE8OFY7Kr2pOpV+Cp4+IeHeWv7WwD0ju/NQ4MeIi5YF/mcKP2kioiIiIiIiIiIiNQnhQdg/njwe6DDKBh4+1GHGj6DvHd3gAHByQ0Ibn/kO3NrPdtAbEG5uGK68lhhPljgoYu7cFqC1q6V2mH5u7tI257PwZQi2vZqRFj0kcvzLd8uJWvvLlyhoZwxfiIAGQXl/OX1NazalwfAdYNacsfQdjg0w0O94s3NJXfei+S99hr+0lIAXG1aE3f99YQPHYrFVvcukJK6IbUolduW3saW3C0AXNv5Wm7oegM2q95zJ0MlvIiIiIiIiIiIiEh94a0IFPDFmdCwI1wwE45yxy1A8XdpeNJLsATbiRrRsgaDVp2SggrSthXiDB3AW0EePIaXawe2YHTXRLOjiQCwY1Um675IBeDsqzsetYAH6DBgMBUlxThDQgmNiua7ndnc9MZP5JS4CXfZ+d+lyQzrFF9T0aUGeLOzyZk7j7w33sAoKwPA1b59oHwfcg4Wqy62kOrzZcqX/PPbf1LkKSLSFckDAx5gYJOBZseqF1TCi4iIiIiIiIiIiNQHhgEf3QppqyAoEi57DVxhRx3uL/VQ+Pk+AKLOa4EtvG5N2+6pKGf955/QdegIzrujO3c8s5I9bi+nt47lb8Pamx1PBIDcAyV89cpWALoPTaJl1wZ/ON5qs9H9vNH4/QZPf7GDxz7fjmFAh8YRzLyiO83jQmsittQAT2YWuXPnkDf/LYzycgCCTjuNuBumEXbmmUddskCkKnj8Hp5a8xQvbnoRgC4NuvDIoEdoHNbY3GD1iEp4ERERERERERERkfrgxxfgp1fBYoVL5kLMH9/Zbg1xEDexE6Vrsgjp2aiGQladr1+Zy7oli0ndsokPYoewzF1GYlQwT4/rjl3TdEst4C738smsDXgqfCS2i6LPqKP/TOam7yciriF2p5O8Ejd/fWstS7cdBGBsz6bcM/o0ghyaGro+8GRkkPP8C+QvWIDhdgMQlNyFBtOmETpokMp3qXaZJZnc+c2drMlaA8D4DuO5tcetOGwOk5PVLyrhRUREREREREREROq6vd/BJ3cFHp/zH2h9zjG9zNU8Elfzurdu+q7VP7BuyeLA49jOfLXtIEEOK7Mm9CAmtG7d0S/1k2EYfPXqVvIySgmNdHLupE5Yj3JxiMddwbsP/geLxUK78bfwty8yScsvw2W3ct8FnRjTs2kNp5fq4ElLI/v55yl4510MjweA4O7diZs2jdDT+6t8lxqxPH05dy27i9zyXMIcYdx7+r0MaTbE7Fj1kkp4ERERERERERERkbqsYD+8dSX4vdDpYuh/0x8O95V4MMq92GODayhg1SrJz+PjZ58AwObqztubHGD389DFXeiUWPcuKJD6q3GrKPauz2botZ0IiTj6xSE/vPcWBZkZWMOiuO7dHZQaDprHhjDjih50TIiowcRSHdwpKWTPnk3B+x+A1wtASK9exN1wAyF9eqt8lxrh8/uYvX42M9fNxMCgXXQ7Hhv8GEkRSWZHq7dUwouIiIiIiIiIiIjUVZ4yePMKKM2G+M4w6hn4k0Kn4KPdlK7PJvrC1oT2qFvT0BuGwScznqCipBCLLY59Uf3Zb/MxaUALRndNNDueSCWLxUKXM5vQpmdDgsOPXsDnpKXywwfvALAopA+lhoNhp8Xz8KVdiAjS1NB1WcWePeTMmk3BokXg8wEQ2r8fcddfT0ivXiank1NJbnkud31zF8sPLAfg4jYXc1fvuwiyB5mcrH5TCS8iIiIiIiIiIiJSFxkGLLoZDqyFkFi47HVwhvzhS8p35FG6JgssYG9Q9+6EX/fZYvauWw3Y8IUP5+MgH/1bxzJ9eHuzo4kAUFbkxmq34goO1C9/VMAbhsGiGU/j93nZE9yMlLCW/PO8Dkwa0EJ3R9dhFbt2kf3cLAo/+gj8fgBCBw4MlO/du5mcTk41P2X9xO1f305WaRZBtiD+2fefjG492uxYpwSV8CIiIiIiIiIiIiJ10YoZsH4+WGxw6YsQ9cdTyvrdPvLe2wlAaN/GuJLq1jTXnvJylr3xCgD24IG8ExZBbIyLp8d1w36UtbZFapLf5+fTFzZSnFvB8KmdiU0M+8Pxr776Ljk7N+Ox2NnU/CzevLofPZvH1FBaqWrl27eT89xzFH78SeAiKSBs8GDipl1PcJcuJqeTU41hGLy8+WUeX/04PsNH84jmPDr4UdpGtzU72ilDJbyIiIiIiIiIiIhIXbPrK/jsn4HHQ++HFoP+9CVFX6Tgyy3HFuEkcmjz6s1XDdwVFlyRl+Hzr+GniE5kBhu8M6EHsWEus6OJALBy4R7StuXjcNmw2o5+J3uF18f/vbMK5+I3CAGyWg1kwe0jiNN7uU4q37KF7BkzKVqypHJb2DlnE3f99QSfdpqJyeRUVegu5F/f/osvU78EYFjzYfyn/38IdYSanOzUohJeREREREREREREpC7J2wtvXwOGH5Ivhz5T/vQl7vRiipbtByDqgtZYg+refw3vXZ+NpyKCvLBBLAuu4JGLk+mUGGl2LBEAdq89yJpP9wFw1pUdiI4/ctmVmlvKDa+vYdfedM5yNaS5q4IH/30jTufRp62X2qlsw0ayZ86k+MtA0YnFQvjQocRdP5Wgdu3MDSenrM05m7lt6W3sL96P3Wrnzl53clm7y7TEhQnq3r+0RERERERERERERE5V7hJ48wooy4OE7jDicfiT/1g3/AZ57+4APwR3iiW4Y2wNha0aaVs3Yxh+XO2a8WGUlyyfl6sGtODCbk3MjiYCQH5WKV+8uBmA5LOb0rpHwyOO+3JrJn+dv46CMg9REVFcOPnf9EsMVgFfx5StXcvBmTMp+fqbwAaLhYjzziNu6hRcbdqYG05OWYZhsGD7Ah764SHcfjcJoQk8OvhROsV1MjvaKUslvIiIiIiIiIiIiEhdYBjwwQ2QuRFCG8DYV8ERdEyvC24fgy+/gqhRras/ZxUqLy7mo6f+R3FuDj+2GskWEujbJobp57U3O5oIAB63j09mbcRd7qNx60j6XdTqsDFen5/HP9/Os1/tAiC5aRQzruhOYlRwTceVk1C6ejXZM2ZS8t13gQ1WK5EjRxA7ZQquli3NDSentFJPKfeuuJePdn8EwBlNzuC/A/5LpEuzxZjpuEr4wsJCwsLCsFqth2z3+XyUlJQQERFRpeFERETk1KR/c4iIiNRf+pwXETkJ3z0Bm94DqwPGvAKRicf0MovNSsQ5zQgb1ASr01a9GauQYRgsef5ZinIO4g6OYZWnAQnRQTx7eXccNuufH0Bq1Kn6Gb/yg93kpBUTHOFk6ORO2H733jxYVMFNb/zE8t05AFwbnUJ36w5ibJ0BlfB1QcnKH8ieMYPSlSsDG2w2IkePJm7KdTibNTM3nJzyduXv4talt7K7YDc2i40bu93INZ2uwWrR56TZjvlv4L333qNnz56Ul5cftq+iooJevXqxaNGiKg0nIiIipx79m0NERKT+0ue8iMhJ2PE5fH5P4PF5D0Ozfn/6EsMwMHxG5fO6VMADbPl2KdtXLAMs+B3nYnW4mDWhJ7FhLrOjye+cyp/xPYY1I+m0GIZOPo3QqEPfmz/syeX8p5axfHcOIU4bj57fjPBNX7B56efsWv2DSYnlWBiGQcn337N3/HhSrroqUMA7HESNGUOrTz8h4f7/qoAX0324+0PGfTSO3QW7aRDcgBfOfYFJnSepgK8ljvlvYebMmdx5552EhIQcti8kJIS//e1vPPPMM1UaTkRERE49+jeHiIhI/aXPeRGRE5SzC96eCBjQ42roOfGYXla2IZusZ37CnVpUrfGqQ0FWJp8/PwMAe1A/voyI5f6LOtO5iabWrY1O5c/44HAnI/6STGLb6MpthmEw+5tdjHt+BVlFFbRpGMbCv5yOfeUHeCrKSWjXkdMGnWViajkawzAoXraMfeMuJ2XiJMpWrcbicBB9+Thaf/oJje+9B2eTJmbHlFNcha+Ce5ffy/Rl0ynzltEnvg9vjXyLnvE9zY4mv3HMJfzGjRsZPHjwUfcPGjSIDRs2VEUmEREROYXp3xwiIiL1lz7nRUROQEURvDEOKgqgaR8Y/vAxvcxf6iF/4S48B0oo25pbzSGrlt/v46OnHsFTUYbFlsDGiO4MPCOJi3uo+KqtTrXP+LJiNzt+zKx8brFYKh8XlHmY8spq7l+8FZ/f4IKuCXzwl9OxpG5m54/LsdpsnDN5Ghar7lStTQzDoOirr9g7Ziyp115H2dq1WFwuoidMoNXnS4i/+24cCQlmxxQhtSiVCYsnsGD7AixYmNJlCrOGzCIuOM7saPI7x7wmfF5eHl6v96j7PR4P/8/efYdHVaZ9HP9Oz0x6QkgjkITeQUCkWFHBuupa17K7dl0rrr2uvaxYV8W+9v7aVrFioQhSpBeBAKkEUiZ96nn/GAxEgiSQZFJ+n+vKlZlzzjznnhFzn+Q+9/OUlZW1SFAiIiLSdemaQ0REpPNSnhcRaaZgEP7vYti2BqJT4dRXwNq0qdjdn28kWOXD2t1JzKEZrRxoy1r702wKf10F2KmJnkzVwBhuPmZguMOSP9CVcnwwaPDViyvJXVlKeXENY47Jqt+3PN/Npa8vYnNpDXaLmduOG8SZY3vi93j49qXpAIw65gSSemaGKXr5PSMYpOrbb9n61FN4Vq4CwBQRQfzpp5Nw7t+xde8e5ghFdvhm8zfcOutWKn2VxDniuO/A+5iYPjHcYcluNLkIn5mZyYIFCxgwYECj+xcsWEAvrX8hIiIi+0jXHCIiIp2X8ryISDP98BCs/hQsdjjtNYhOadLLPBvKqf65CID4k/pisnasjttAsDdW1xEYJitzU+P47zmjsFk61nvoajpKjg9WV+MrLsZksYDZgsli3vHdYgl1p+/u+3Y/f5pD7spSrDYz2SOSgFAX9TsLcrn1oxV4/UHS45w8fdZ+DOsRB8DcD96iYmsx0d2SGPfnM8Lx1uV3jGCQyi+/ZNvTz+BZswYAk8tFwl/OIOHvf8eamBjmCEV28AV9PLbwMf678r8ADE8azr8P/jcpkU27LpDwaHIR/qSTTuLmm2/miCOOIDk5ucG+oqIibrnlFs4666wWD1BERES6Fl1ziIiIdF7K8yIizbD6M/ju3tDjYx+BHk1b59XwBSn7YB0AkWNTcGR2rDXUDcNg5uc5WB1Dme3yc9/5o+gW1bTufwmfjpLjq+fOJe+yy/fuxRYLJYlDWDLoQgD6r32DkpNuYJvZQpUvSJo/yHMmM3a7lcRoJ5bvLKy3WAiYTSxzGmCCIcVu8v/6t4YF/u03AmAxY9rjd/OuNw+YmzmGxQJmc+M3IpjMjRyzu++7ieMPbmbAZN71mJ2m8m8LRiBAxecz2PbM03jXrQfAHBlJ/NlnkfDXv2KNj2/TeET2pKi6iOt+uI7FxYsBOHvQ2Vy939XYLLYwRyZ7YjIMw2jKgZWVlYwbN47Nmzdz1lln0b9/f0wmE6tWreL1118nIyODn376iejo6NaOudVVVFQQGxuL2+0mJiYm3OGIiEgX1hVzUmtfc3TFz1RERNqnrpiTWjPPd8XPU0Q6sa1r4LlJ4K2E/S+Eox9q8kvdX26k8ttczNE2UqaOxuxsch9W2C2b+SUFsX259O2VDPNaOOOMQZy6f89wh9VsXTEndZTf5Su/nUnB9ddDIIARDDb4vie1EYn8POp6/LZI0vO/p/+v7zT5vD6LmYK4KHqVVOx17J2WybTnWQga+767Gw/M5j98jefXdXg3bgTAHB1NwjnnkHDO2VhiO9YNS9I1zCmYww0/3ECZp4woWxR3TriTI3odEe6wurym5qQmX4FFR0cze/ZsbrzxRt5+++369Vvi4+M566yzuPfeeztFAV5ERETCS9ccIiIinZfyvIhIE9SWw5tnhArwvSbC5Hub/FIjaODdFCryxR3fu0MV4H/9eS5fPvM4VdZozOmnMeyQXh2yAN9VdZQcH33YofT/eX6j+35flN/5u7/Ox0fPrsNfWEdSWgSTrzuXH389hodnrKLO4yPRaeX6I/syLC0GgkGMQBCCgQbfs4MBjEBg+/5GvgeCGMGG338/RoPvwWCjr2nyGLt5r7t8D+7Fa3a+uWFPfaCGAX4/vx3VpK7RfWSOjSXxb38l/qyzsLSDf5civxcIBpi+dDrPLHkGA4P+8f2Zdsg0esYoL3YkTe6E35lhGGzbtg3DMEhKSmrz6UJaW1e8U1FERNqnrp6TWuOao6t/piIi0n509ZzU0nm+q3+eItJJBAPw5unw65cQmwEXfgeR3Zo1hBE0qFtbRkT/+A7zd9uqslJeuvpSvLVVLIoZjm/Usbx+wdgOuw58V89JnfF3+Q2/bOXzZ5YREWnjpBtG8eS8jbwwKweA/TMTeOIvI0mOiWjwmpoKN7krltHvgAkd5v/F1mAYRsPifP2NADvdgLDbY37//Q9uYtjpZobd3rQQDGKKiCD68COwREWG+6MRaVRJbQk3/HgDPxX+BMCf+/6ZG/a/gQhrxB5eKW2lxTvhd7Zs2TLWrl2LyWSiX79+DB06dK8DFREREdkdXXOIiIh0XsrzIiKNmHlPqABvjYDTXmt2AR7AZDbhHJDQCsG1DiMY5PMnH8FbW4XJkkRk/EHcc+Z+HbYAL50zx2ePSOKYfwzD7fFx/nu/sHBTqNP/ooOyuXZyf6yN/Hv98Y2XWT7zK0YedRyH/e2itg653TCZTGC10nVvQxBpukVbFnHt99dSXFtMhCWCW8fdyvG9jw93WLKXmlWEnz9/Pueddx4rV67ktwZ6k8nE4MGDeeGFFxgzZkyrBCkiIiJdi645REREOi/leRGR3Vjxf/Djw6HHxz8BaSOa/FK/20PV7AJiJvXE7LC0TnytZPEXn7J5+WLAgifqKC66YDRJ0Y5whyV7obPn+LwIuPLD5ZRUe4mOsPLvU4YzeXBK48euXsHymV8B0H/cQW0Zpoh0QIZh8N8V/+XRRY8SMAJkxmQy7ZBp9I3vG+7QZB80+XbClStXMmnSJJxOJ6+99hqLFi1i4cKFvPrqqzgcDiZNmsTKlStbM1YRERHpAnTNISIi0nkpz4uI7EbRcvjw0tDjcZfBsFOb9fLyj9ZT9UMeZe+tbYXgWs+2zRv57pUXAbA4DyLj+BGM6psYllgMw8C3ZUtYzt0ZdMYcX1ftY8azyyjfWsPj3/zK2S/Oo6Tay6DUGD69fOJuC/ABv5+vn/sPAEMnTSa9/8C2DFtEOpgKbwVXzryShxc+TMAIcFTmUbx17FsqwHcCTV4T/pRTTiEQCPD+++/vsn6JYRicdNJJ2Gw23nnnnVYJtC2Fe30ZERGR33TFnNTa1xxd8TMVEZH2qSvmpNbM813x8xSRTqKmFJ49BMo3QfYhcOb7YGn6BKa1y7dR8toqMJtIvmIktpSOs87xf2+9iW1rl2K2ZuIdfibXXzcuLHEYPh+Ft9xK9Zw59HrzTew90vdpvK6Ykzrb7/JG0OCzp5eycVkJVZFmnrZWgwnO2D+D248bTIRt9zNOzP/oPX5842Wc0TH8/dHpOKOiWz1eEemYVpSs4JrvriG/Kh+b2cZ1Y67jtP6n7fJzVNqXFl8T/rvvvuPzzz9v9D+8yWTipptu4uijj967aEVERES20zWHiIhI56U8LyLyOwE/vHduqAAf1wtOfqlZBfhgnZ+yj9YDEH1wjw5VgK+s9ZFTMYE4e5DahIlcfWV4pioPVleTd+VVVM+aBRYLdcuX73MRvivqbDl+4Reb2LishAAG75tqiLCbufuEoZw8qscfvs5dvIW5770JwMFnn6cCvIg0yjAM3l37LvfPvx9f0Ed6VDoPH/wwg7sNDndo0oKafEVXWVlJcnLybvenpKRQWVnZIkGJiIhI16VrDhERkc5LeV5E5He+uQM2zASbC05/A1wJzXq5e8ZGgpVerN2cxBzWs3VibAXBoMGtLy8iyxMBUUdw2pWjiHA0/eaDluIvKSH3ooupW74ck9NJj0cfIergg9s8js6gM+X4zStLmPfxBgC+dPqITHHx3zP3Y2Dqnjvwv315On6vhx6DhjDooMNaO1QR6YBqfDX8a+6/+CznMwAO6XEId0+8m1hHbJgjk5bW5DXhMzMzmT9//m73z5s3j169erVIUCIiItJ16ZpDRESk81KeFxHZydJ3Yc4ToccnPAUpQ5r1cs9GN9U/FQIQd2IfTLYm/6k3rGqrKnniubf5cONW3oz1MfjEbLKz49o8Dm9uLhv/8hfqli/HEhdHr5dfUgF+H3SWHL+lqIr/e3opGLDE7qfn6CQ+vmxCkwrwAKOO/hPdemZy+Hn/0HTSIrKL9eXrOeN/Z/BZzmdYTBamjprK44c9rgJ8J9XkK7PTTjuNqVOnsnz58l32LVu2jH/+85+cfvrpLRqciIiIdD265hAREem8lOdFRLYr+AU+viz0+MBrYPCJzR7C/flGAFyjk4noHddiobUmwzB44+GH8X/7GuPLfmLqyYM5/MisNo+jdsUKNp5+Br5Nm7Glp9PrzTdwDh/e5nF0Jp0hx6/Od/PsffOx+gy2WILs/+fe/Ocv+xEdYWvyGD2HDOecB58gsUdGK0YqIh3RJ+s/4Yz/ncEG9waSnEm8MPkF/j7k77phpxMzGYZhNOXAuro6Jk2axLx58zjiiCMYOHAgACtXruTrr79m//3359tvvyUiIqJVA24LFRUVxMbG4na7iYlp2h1uIiIiraEr5qTWvuboip+piIi0T10xJ7Vmnu+Kn6eIdFBVW+G5Q8GdC32PhDPeArOl2cMEKrxUfLWJ2KMyMbuaXiQMp+8++R8LX3uaIGaqJl/Kv86d0uYxVM+ZQ95llxOsqcExcCAZ05/B1r17i56jK+akjv67/IeL87nrvWUcXW4l3jAx9qJBTBie2uTXe+tqsUc4WzwuEen4PAEP98+/n/fWvgfA2NSxPHDgAyQ6E8McmeytpuakJi+0ExERwcyZM3nkkUd48803+f777wHo168fd999N1dffTUOh2PfIxcREZEuTdccIiIinZfyvIh0eQEfvPu3UAE+oTec9NxeFeABLDF24v/ct2Xja0X5m3OZ/8bzWACbczyXH31gm8fg/uRTCm66CXw+XAccQI8nn8ASFdXmcXRGHTXH1/kC3PXpSl6ftxmATSPi+OtBfenTv+nFseKNG3jnXzdywEmnMerYE9XVKiL1cityueb7a1hVugoTJi4cdiGXDL8Ey17mfulYmtwJ35V0xTsVRUSkfVJOann6TEVEpL1QTmpZ+jxFpEP47DqYPx3s0XDBN5DUv1kvN4IG3k0VOLI61tqxAb+f+/9xGRHleZis6QyecgWTzx7cpjGUvPQyxQ88AEDM0UeRev/9mO32VjmXclLLa43PNLe0hktfX8SqPDcBM1xxWF+umNQXi7npRXQjGOTN266l8Nc19Bs7geOm3tgisYlIx/fNpm+4dfatVPoqiXPEcf+B9zMhfUK4w5IW0NSc1OQ14feksLCQyy67rKWGExEREWmUrjlEREQ6L+V5EenUFr8WKsADnDS92QV4gOoFRWydvpTS99a2cHCt68lpTxNRngcmBzEZJzDp9AFtdm4jGGTLAw/WF+DjzzmbtH//u9UK8NK49pbjv1m1hWOfmMWaPDd/r47ggX49ubKZBXiAZd9+SeGva7BFODnkbxe0UrQi0pH4gj4e+vkhrvruKip9lQxPGs67x72rAnwX1OTp6CG0fsvMmTOx2WyceuqpxMXFsW3bNu655x6eeeYZsrKyWitOERER6UJ0zSEiItJ5Kc+LSJeUtwA+vTr0+JAbYcAxzR4iUOHF/VkOALbkyJaMrlV9MX813oVfYQZsUZM48fIDsdraZhpew+ul4Kabqfj0UwC6X/tPEs49V9OFt5KOkOP9gSDTvlrLU9+tBwPOMSKJ8wepXVuBt9ZPRKStyWPVuMv58Y2XAZh42llEJ3RrpahFpKMoqi7i2u+v5ZetvwBw9qCzuXrU1djMTf/ZIp1Hk4vwn376KX/+85/x+XwAPPjggzz33HOceuqpDBkyhHfffZdjjz221QIVERGRrkHXHCIiIp2X8ryIdEmVW+DtsyDghQHHwkHX7dUw5Z+sx6gLYOsRRdSEtBYOsnVs3FbNPR9v4sSokzD5cjj4jONITG+bNdgDVdXkX3E51XPmgtVK2j13E/unP7XJubuijpLj/zNzfagAD1ySmkTU6irMVhNTLhzarAI8wPevvUhddRXdM3szYnL435uIhNec/Dnc8OMNlHnKiLJFcdeEuzi81+HhDkvCqMnT0d9zzz1cfPHFVFRU8O9//5sNGzZw8cUX8/777zNz5sx2kUBFRESk49M1h4iISOelPC8iXY7fC++cDZWFkDQATnwGzM1fIbR2ZQm1y7aBGeJP6oupmVNmh0O1x8+Fry4gqxLstp5k7ncCww7t0Sbn9m/bxuZzzqF6zlxMLhcZTz+tAnwr6yg5/u8TMxmcFsNDB/cnem01AAee2o/krOatM795+VJW/vAtmEwcfsGlmC1tM7uDiLQ/gWCA//zyHy7++mLKPGUMSBjA28e+rQK8YDIMw2jKgXFxccyfP59+/frh9/uJiIjgk08+4aijjmrtGNtcRUUFsbGxuN1uYmKal3xFRERaUlfMSa19zdEVP1MREWmfumJOas083xU/TxHpAD65Cha+BI5YuHAmJPZu9hBBj58t0xYScHuJOrgHcUeFf0rvPTEMg38+9h5f5/pwxHfn8f37MHT/VCLjHK1+bu/GjWy+4EJ8ublYEhLImD4d59AhrX7enXXFnNSRfpevLK3j3fsXUFvhpf/YFCb9bWCzlyhYPOMTvnvleYZOmsLh512yT/GISMdVUlvCDT/ewE+FPwHw575/5ob9byDCGhHmyKQ1NTUnNXk6+oqKCuLi4kIvslpxOp3069dvnwMVERER2ZmuOURERDov5XkR6VIWvBgqwGOCk1/YqwI8QMUXmwi4vVgSIoiZ1LNlY2wlT/1vIQnz3uIMI8DYE2/lgImZbXLe2mXLyL3oYgKlpdgyMuj5/HPYe/Vqk3N3dR0lxweDBl+9uILaCi+J6ZEcfGb/ZhfgAUZOOY6MwcOISkhshShFpCNYtGUR135/LcW1xTitTm494FaO631cuMOSdqTJRXiAlStXUlRUBITuZlyzZg3V1dUNjhk2bFjLRSciIiJdkq45REREOi/leRHpEjbNhc+2r/0+6Tboe8ReD+XoE0ftim3En9gHs739T3k9c1UR6999jvSgB2v3nhx0wPA2OW/Vjz+Sd+VVGDU1RAwaRMaz07F269Ym55aQjpDjzWYTA8enUl5cy5QLh2Lbh/+numXoBg+RrsgwDF5e8TKPLXqMgBEgKzaLaQdPo098n3CHJu1Mk6ejN5vNmEwmGjv8t+0mk4lAINDiQba1rjhdkIiItE9dMSe19jVHV/xMRUSkfeqKOak183xX/DxFpJ1y58Ozh0B1MQw6AU55Gfai03Znhi+Iydb8teTb2qaSaq6/4wnGFM8CrPTa7zJOvr7118R1f/QRBTffAn4/kePHk/7441iiIlv9vLvTFXNSR/td3ucNNLsAbxgGP7z+EgMmHExy1t7NbCEiHZvb4+aW2bfwXe53AByVdRR3jLsDl80V1rikbbX4dPQ5OTktEpiIiIjIH9E1h4iISOelPC8inZ6vDt4+K1SA7z4YTnhqrwvwhj+IyRoqvHeEAny1x8/Upz/ngOI5ANgiD+HAU/dv1XMahkHpTC4oUQABAABJREFUiy9S/NC/AYg57jjS7rkbk93equeVXXW0HL83HfC/zpvNgk8+4Jcv/8eFT72MMyq6FSITkfZqRckKrvnuGvKr8rGZbdyw/w2c0u+UvVrSQrqGJhfhe2ntHBEREWkDuuYQERHpvJTnRaRTMwz49GooWATOeDj9dbDvXTe2f1stxc8uJfaIXrhGJ7f7P/AbhsH17yxk4OqPMRPEbOvNuD8fT3JW63WBG8EgxQ88QOl/XwEg4dxz6f7PazCZ2/8NC51RZ8/xnpoaZr78LACjjz1JBXiRLsQwDN5Z8w4P/PwAvqCP9Kh0Hj7kYQYnDg53aNLONbkI/8MPPzS6PTY2lj59+hAZGb7pfURERKTz0DWHiIhI56U8LyKd2vxnYckbYDLDyS9BQtZeDWMYBmX/9yvBCi81S7fiGp3cwoG2vOk/bKBg9ldk+UrBFEmPQX9m1FF79/6bIuj1UnjDDVR89jkA3a+/nsS//63Vzid71tlz/Jx3XqOqrJS45FTGnnBKuMMRkTZS46vhX3P/xWc5nwFwSMYh3D3hbmIdsWGOTDqCJhfhDznkkN3us1gsXHLJJTz88MPYbLaWiEtERES6KF1ziIiIdF7K8yLSaeX8CDNuDD0+8m7ofeheD1WzsBjPejcmm5n4E/q0+y74H9Zu5cEZqxnr2A9LRBC7syeTLxyD2dw6cQeqqsi77HJqfvoJbDbS7ruP2GOPaZVzSdN15hy/ZcM6Fs/4FIBJ512CVcsdiHQJ68rWMfX7qeS4c7CYLFy535X8bfDf2n1elvajyUX4srKyRreXl5czf/58rr32WlJSUrjppptaLDgRERHpenTNISIi0nkpz4tIp1S+Gd79KxgBGHYaHHDpXg8VqPLi/mwDADGH98Ka6GypKFvF5pIaLn9zMeYgHIALq3Mik/4+iJhurRO3r7iY3AsvwrN6NWaXix5PPkHk+PGtci5pns6a44PBAF8//x8MI0j/8QeROXy/cIckIm3gk/WfcNdPd1Hrr6W7szsPHvwgo5JHhTss6WCaXISPjW18aoXY2Fh69eqF3W7npptu6nBJVERERNoXXXOIiIh0XsrzItLpeGvgrTOhpgRSh8Nxj8E+dMi5P91AsMaPLTWSqInpLRhoy6vx+rnwlZ9JKV6Oa8Bo/nrWGDYt2ka//Vtn+nzPhhxyL7gAX34+lm7dyJj+DM7BWo+3veisOX7t3FkUrf8Vu9PFIeecH+5wRKSVeQIe7pt3H+//+j4AY1PH8sCBD5DoTAxzZNIRNbkIvyfDhw9n06ZNLTWciIiISKN0zSEiItJ5Kc+LSIdiGPDx5VC0FFzd4LTXwbb3HeB1a8uo+WUrmCD+z30xWdrvdLeGYXDde0ux/Dqfw0q+J6mwgNjYiQyflNEq56tdsoTciy4mUF6OrVdPej7/PPaM1jmXtI6OmuP7jZtIXXU1FpuVqPiEcIcjIq0otyKXqd9PZXXpakyYuGj4RVw87GIsZku4Q5MOqsWK8AUFBXTv3r2lhhMRERFplK45REREOi/leRHpUOY8AcvfA7MVTn0F4vatKOzNrwQTRE1Ix94juoWCbB3P/biBWQtXcUbpbAAGjhuPyWxulXNVfvcd+VdPxaitJWLoUDKeeRprojoSO5qOmuPNZgsjjjw63GGISCv7etPX3Dr7Vqp8VcQ74rn/wPsZn67lTmTftEgRvri4mFtuuYXDDjusJYYTERERaZSuOURERDov5XkR6VDWfQNf3x56POV+yJywz0PGHNoTR+84bMmR+zxWa/rx1608+NkKTi7+Bqvhx2zNIDZ5XKucq/z9Dyi87TYIBIg88EB6PPoI5sj2/fnIrjpiji8tyCM6sRs2R0S4QxGRVuQL+nhk4SO8uvJVAEYkjeChgx8iJTIlzJFJZ9DkIvzIkSMxNbKekdvtJi8vj4EDB/LWW2+1aHAiIiLS9eiaQ0REpPNSnheRTqF0A7x3LhhBGHkWjGm5daIdPWNabKzWkFtaw+VvLmZ06QKSvMVgcpDc92R679ey68AbhkHJ9GfZ+uijAMT+6U+k3n0XJputRc8jLacz5Xi/18uHD95JMBDgT/+8haReWeEOSURaQVF1Ef/8/p8s2boEgHMGncNVo67CZlaukZbR5CL8CSec0Oj2mJgYBgwYwJFHHonFonURREREZN/omkNERKTzUp4XkQ7PUwVvnQl15dBjDBwzDRopPDaVETAo/2Q9URPSsCW5Wi7OVlDrDXDhqwtxlm5mtHsxABHRR3LUxQdgsbbcVPRGIMCWe+6l7I03AEi84AKSpl7daIFX2o/OlOPnf/QeZYUFRMYnEJPU8abQF5E9m50/mxt+vIFyTzlRtijunnA3k3pNCndY0sk0uQh/++237/EYv9+P1dpiy8yLiIhIF6RrDhERkc5LeV5EOjTDgA8vgeKVEJUMp74KVsc+DVk1O5/qnwqpXVFC6vVjMLVgMbslGYbB9e8vZVWBm7+V/IgJA7N9EAeffSzxKS03PXzQ46Hguuup/OILMJlIvvFGEs45u8XGl9bTWXJ8WWE+8z98B4BD/3oBDpeWPxDpTALBAE8veZpnlz6LgcHAhIE8fPDDZMRkhDs06YRa5Kpu5cqVTJ06lfT09JYYTkRERKRRuuYQERHpvJTnRaTd+/FhWPUxmG1w2msQk7pPw/lLaqn4ahMAsUf2arcFeIDnf8zh4yUFOMxm0lNPwWzrS+8xJzP4wLQWO0egooLc8y+g8osvMNlspE97WAX4TqKj5HjDMPj6hacJ+P1kDt+PfgdMDHdIItKCSmpLuOjri5i+dDoGBqf0O4VXj35VBXhpNXt921lVVRVvvfUWL7zwAj///DMHHHAAN9xwQ0vGJiIiIqJrDhERkU5MeV5EOoy1X8C3d4ceH/MwZOy/T8MZhkHZh+swfEEc2bG4Rrfsmuotadav27jv81UAXDeiF3UztxCbehKH/21Ei00R79uyhdwLLsSzdi3mqCh6PPkkkQeMbZGxJTw6Yo5fPecHNi/7BYvNxqRzL9ESCCIdnGEYbKzYyOz82cwumM2CogXUBepwWp3cesCtHNf7uHCHKJ1cs4vws2bN4vnnn+f9998nKyuLlStX8v333zNhwoTWiE9ERES6KF1ziIiIdF7K8yLSoWz7Fd4/HzBg9Hkw6q/7PGTtL1vx/FoOVhNxJ/Vtt8W+3NIaLn9zES5fFcdnOzj31EHkDk3BhAlXjL1FzuFZv57NF1yAv6AQS1I3ej73HBEDBrTI2NL2OmqOr6uu4vtXngfggBNPIy5l32a6EJHwqPJWMa9oXqjwnj+bguqCBvv7xvfloYMeondc7zBFKF1Jk4vwDz74IC+++CJVVVWcccYZzJo1i+HDh2Oz2YiPj2/NGEVERKQL0TWHiIhI56U8LyIdTp0b3jwDPBXQcxxMuX+fhwxU+yj/dD0AMZN6Yuvm3OcxW0OtN8BFry6kvNrDWRXfE/dDLsv6RTDs8Cktdo6axYvJu/gSAm439sxMMp5/HnuP9j1luTSuo+f4gM9Hat/+lOTnMfr4P4c7HBFpoqARZHXpauYUzGFW/iyWFC/Bb/jr99vMNvZL3o+JaROZkD6BPnF92u2Nb9L5NLkIf9NNN3H99ddz5513YrFYWjMmERER6cJ0zSEiItJ5Kc+LSIcSDMIHF0HJrxCdBqe+AtZ97/6umpVPsNqPNdlF9IE9WiDQlmcYBjd8sJSVhRUcWLucOPdmrHYHGUOGtdg5Kr+dSf7UqRh1dUQMH0bGM89g7QDFWmlcR8/xkXHx/Omft1BbVYnVZgt3OCLyB0rrSplTMIc5+XOYXTCb0rrSBvt7xfRifNp4JqZPZHTyaFw2V5gila6uyUX4O++8k5dffplXX32VM844g7PPPpshQ4a0ZmwiIiLSBemaQ0REpPNSnheRDuX7+2Ht52BxwOmvQ1T3Fhk2ZlJPTHYzjt5xmKzmFhmzpb0wK4ePfikgxbeNEVt/AsAWeSiRcS3zGZS9+y5Ft98BwSCRBx9Ej0cewexSkaQj66g53jCMBl2xzqjoMEYjIo3xB/0s3bqUWfmzmFMwh5UlKzEw6vc7rU7Gpo5lQtoEJqRNICMmI4zRiuzQrE74m266ie+//54XX3yRAw44gN69e2MYBmVlZa0Zo4iIiHQhuuYQERHpvJTnRaTDWPUJfP9A6PFxj0H6fi02tMlqJubQni02Xkubs24b932+GmvQx2mV3xMMBjDb+nDAicdhj2jyn5MbZRgG255+mm2PPwFA7EknkfqvOzCp87jD66g5fvGMT9iy/lcOPvs8XLFx4Q5HRLYrrCpkdkFoXfd5hfOo9FU22N8/vj8T0kNF95HdR2KzKI9I+2MyDMPY82G7qqys5PXXX+ell15i4cKF7L///px88slMnTq1pWNscxUVFcTGxuJ2u4mJiQl3OCIi0oUpJ7X8NYc+UxERaS+Uk1o2z+vzFJEWU7wKnj8cvFVwwKUw5b4WGbZufTmOXjHttvsdIK+shuOemEVZjY9zWURkzjwwRZK53xWc9M/xmMx7v46uEQhQdNddlL/1NgCJF19E0pVXdsq1eZWTOsbv8pWl23h56iV4a2s54oLLGHb4lBYZV0Sar85fx6Iti5hVMIvZ+bPZ4N7QYH+cI45xqeOYkD6B8WnjSXIlhSlSkabnpL0uwu9s2bJlvPDCC7zxxhsUFxfv63Bhp4skERFpL5STGmqJaw59piIi0l4oJzW0r3len6eItIjaMnjuMCjdAFkHwVn/B5Z96/4G8BZUUfzkYqxJLrpfMhzzPnaUt4Zab4CTn5nDioIKJsTWsN8v/wXAlXgqZ99zKlHxEXs9drCujvx//pOqr78Bk4nkW28h4S9/aanQ2x3lpIba6+/ynzxyP2t/mkVq3/6ccedDmMzt9wYZkc7GMAxyKnKYkz+HWQWzWFC0AE/AU7/fbDIzrNswxqePZ2LaRAYlDsJitoQxYpEd2rQI/xufz4etE0wdpIskERFpL5STGrcv1xz6TEVEpL1QTmrc3uZ5fZ4isk8CPqgshE+vhnVfQ2xPuPA7iEzc56GNoEHxU7/gy6vCOSSRxLMG7Xu8LcwwDK5++xc+/KWAxEg7Lx4zlO+efAcj4ObYKy6iz6i9Xws+4HaTe+k/qF24EJPdTtpDDxEz+cgWjL79UU5qXHv6XT5n8QI+uP8OTGYzZ933KN0zs/d5TBH5Y1XeKuYVzqufZr6guqDB/u6u7kxMn8j4tPEckHoAsY7YMEUq8seampNa9JbLzlCAFxERkfZP1xwiIiKdl/K8iLSKOje480Jf5Zt3PP7tq7IAjGDoWKsTTn+9RQrwAFVzCvDlVWGKsBB3fO8WGbOlvTh7Ix/+UoDFbOI/Z+5H3ox8rPYhDBiXsk8FeF9hIbkXXojn13WYo6PJeOo/uMaMacHIpSNpLzne5/XwzYtPA7DfUcerAC/SSoJGkNWlq5mdP5vZBbNZUrwEv+Gv328z2xiVPKq+8N4nrk+nXKJEuq72N++RiIiIiIiIiIiISFMF/FBV9AdF9lzwVOx5HIsd4jPhiLsgdViLhOYvr6Piy40AxB6VhSXG0SLjtqQ567dx72erALh+CIzo7sB2wRAWf7WJYYdl7PW4nl9/ZfMFF+IvKsKanEzGs88S0b9fS4UtstfmffAO7uItRCV2Y/wpnXdZBJFwKK0rZU7BHGbnz2ZOwRxK60ob7O8V04sJaROYkD6B0cmjcdlcYYpUpPWpCC8iIiIiIiIiIiLtl6eyYUG9PLdhkb0iH4zAnsdxJkBsD4jNCH2Py2j4PLI7tOCa0IZhUP7hegxvEHtmDJFjUlps7JaSV1bDZW8sJhA0OLWPndrPn+a/s97hjDsfZPTRWXs9bs3CheRecinBigrsvXvT87lnsaWltWDkInvH7/WyatZMAA7724XYnSoAiuwLX9DH0q1L67vdV5WswmDHKtguq4v9U/dnYtpExqePJyN672/uEuloVIQXERERERERERGR8AgGoGrL7gvs7lyoK9/zOGYrxKQ3UmDfqchuj2z1t7Oz2qXbqFtdChYT8Sf1xWRuX1Ps1vkCXPzaQkqrvQxLjWLgqvco9XpJSOtBdEK3vR638uuvyb/mnxgeD86RI8l4+ikscXEtF7jIPrDa7Zzz4BOsnv09fcaMC3c4Ih1SYVVh/bruPxX+RJWvqsH+AQkDGJ82nonpExmRNAKbpX0sRSHS1ppdhLdYLBQWFtK9e8O1gEpKSujevTuBQBPuOhURERHZA11ziIiIdF7K8yJdiLd6RzHdnfe7InsuVBRA0LfncSLidhTTG+tij0oGs6XV305z2NIicWTHYs+Kxda9fXXbGobBTR8sY3l+BQmRdi6KWsvqvBwwRRCfdjymvZwRoOyttyi68y4IBok67DDSpz2MOSKihaOX9qwj5HiHK5LhRxwd7jBEOow6fx0LtyxkVv4s5hTMYYN7Q4P9cY44xqWNY0LaBManjSfJlRSmSEXal2YX4Q3DaHS7x+PBbrfvc0AiIiIioGsOERGRzkx5XqSTCAahung3Rfbt32tL9zyOybK9i303BfbYHuCIbv3308JsSS66XTAUguGOZFcvz9nIB4vzsZhN3HNABCuf/xiAiNjJjDluSLPHMwyDbU88ybanngIg7pRTSLn9NkxWTcTa1SjHi3R8hmGQU5ETmmI+fzYLtizAE/DU7zebzAzrNowJ6ROYkDaBQYmDsLSzG+FE2oMmXwU9/vjjAJhMJp5//nmioqLq9wUCAX744QcGDBjQ8hGKiIhIl6JrDhERkc5LeV6kg/HWhNZb312BvSIfAt49j+OI3Wlq+N+K7DsV2KNT210X+74wfAFMttD7MZlM0M7e2tz1Jdz9v1UA3HBYLza++yBgYLEP4bC/HkNsUvO69g2/n6J//Yvyd98DoNs//kG3y/4Reu/SZSjHi3Rsld5K5hfOZ1bBLGbnz6awurDB/mRXcn3RfWzqWGIdsWGKVKTjaHIR/pFHHgFCd8A888wzWCw7rh7tdjuZmZk888wzLR+hiIiIdCm65hAREem8lOdF2hHDgOqtOwrq9UX2nZ7XbNvzOCYzRKf9cZE9ouv8od7wBdny+GIcfeKInZKJ2dG+OsHzy2u57I1FBIIGJ45MJzPne5aWl2Ayx9F33MkMGJfarPGCtbXkT72GqpkzwWwm5bbbiD/9tFaKXtoz5XiRjiVoBFlVuoo5+XOYlT+LJVuXEDB2LBdhM9sYnTy6vvDeO663bq4SaaYmXwXm5OQAcOihh/LBBx8QHx/fakGJiIhI16VrDhERadfKNkJ8Zrij6LCU50XakK+uYRd7Y0X2naaW3S17VCNrse/cxZ4GlvZVaA6nipmb8W+tJVgXIPbIzHCH00CdL8DFry6kpNrL4LQY7j1xKLNfD2K2rSeq21gm/XV4swos/rIy8i65lNpffsHkcJD+8L+JPvzwVnwH0p4px4u0fyW1JcwpmFP/VVrXcMmYzJhMJqSH1nUfnTwal615M6OISEPNvkKeOXNmg+eBQIBly5bRq1cvJVYRERFpMbrmEBGRdqc0B54aB/2OhBOeBntkuCPqsJTnRfaRYUBNyR8X2KuLmzCQKTQVfIMu9p4Nn0fEgTrfmsRXVE3ld3kAxB3fG7Oz/dycYBgGN//fcpblu4l32Zh+9ij8VT7WL6rAHnUMUy4eQUSkrcnj+QoK2Hz+BXg3bMAcE0PG00/hGjWqFd+BdBTK8SLthy/oY+nWpaG13Qtms7JkZYP9LquLsaljmZg+kfFp4+kR3SNMkYp0Ts2+ErzqqqsYOnQo5513HoFAgIMOOoi5c+ficrn49NNPOeSQQ5o13lNPPcVDDz1EYWEhgwcP5tFHH+XAAw9s9Ni//e1v/Pe//91l+6BBg1ixYkX98/fff59bb72V9evX07t3b+655x5OPPHEZsUlIiIi4dXS1xwiIiL7xDDg06vAXwu1ZaCukH2iPC+yB34vVOTtKKi786B8c8Pn/to9j2Nz7bmL3Wpv/ffTBRhBg7IPfoWgQcSgRJxDEsMdUgOvzN3E+4vysJhNPHn6COrWLSV99FhOuWkMeavLyBiQ0OSx6tasJfeCC/AXF2NNSaHnc8/i6Nu3FaOXjkQ5XiS8CqoKmF0wm9n5s5lXOI8qX1WD/QMSBjAhbQIT0icwImkENkvTb8ASkeZpdhH+3Xff5ayzzgLgk08+YePGjaxevZpXXnmFm2++mdmzZzd5rLfffpurrrqKp556igkTJjB9+nSOOuooVq5cSc+ePXc5/rHHHuP++++vf+73+xk+fDinnHJK/ba5c+dy2mmncdddd3HiiSfyf//3f5x66qnMmjWLsWPHNvftioiISJi05DWHiIjIPlvyJmz4DqwRcOyj6grdR8rz0qUZRuhmnp271t252zvZtz+v2gIYex4rKuUPutgzwBmvn1dtpHpeId7NlZgcFuL+1L7WzZ23oYS7Pg11P9541AAsy2fy0duvMvjgw5ly6VUkpDZ9Zpfq+fPJ+8dlBCsrcfTtQ8Zzz2FLSWmt0KUDUo4XaVt1/joWblnIrPxZzC6YTY47p8H+OEcc49LG1Xe7d3N2C1OkIl2PyTCMJlzR7xAREcG6devo0aMHF154IS6Xi0cffZScnByGDx9ORUVFk8caO3Ys++23H08//XT9toEDB3LCCSdw33337fH1H374ISeddBI5OTn06tULgNNOO42Kigo+//zz+uOmTJlCfHw8b775ZpPiqqioIDY2FrfbTUxMTJPfj4iISEvryjmpJa85dtaVP1MREdlLVcXw5BioK4fD/wUTr2qRYbtyTmqNPN+VP09pZwK+7Wux71Rgr58ufvs2X/Wex7E6GxbYYzO2d7Jvfx6TDlZH678f2aOA20PRtIUYngBxf+pN1Li0cIdUr6C8luOemEVJtZcTRqRx/WgXb956HUYwwJRLr2bwwZOaPFbFF19ScO21GF4vztGjyPjPf7DExrZi9B1XV85J+l1epHUZhkGOO4dZ+bOYUzCHBVsW4Al46vebTWaGJw1nfNp4JqZPZGDCQCxmSxgjFul8mpqTmt0Jn5yczMqVK0lNTWXGjBk89dRTANTU1GCxNP1/ZK/Xy8KFC7nhhhsabD/yyCOZM2dOk8Z44YUXOPzww+sL8BDqhL/66qsbHDd58mQeffTR3Y7j8XjweHb8kNrbCwERERFpOS11zaE8LyIi++zz60MF+JRhMO6ycEfTKbREnleOl7AwDKhz/3EXe2UhTepij+y++wJ7bAa4EtXF3kH4imvAbMLeM5rIsanhDqdenS/AJa8tpKTay6DUGO48ui9v33QVRjCAxd6PhIymr+Fe+vrrbLn7HjAMoo84nLSHHsIcEdGK0UtHpd/lRVpepbeSeYXz6gvvhdWFDfYnu5LrO93Hpo4l1qEbpETag2YX4f/+979z6qmnkpqaislk4ogjjgBg3rx5DBgwoMnjbNu2jUAgQHJycoPtycnJFBUV7fH1hYWFfP7557zxxhsNthcVFTV7zPvuu49//etfTY5dREREWl9LXXMoz4uIyD5Z8zms+ABMFjj+CbA0+9doaURL5HnleGk1NaWwdfXuu9i9lXsew+JoWFCvX499+/OYNLA5W/+9SJuI6BtPytRRGN4AJnP7uHHCMAxu+XA5S/LcxLtsTD97FHPfeJ6KrUVgiiJzv1NIydpzkcYwDLY++hgl06cDEHfG6aTccgumZhRTpWvR7/Ii+y5oBFlVuorZ+aG13ZdsXULACNTvt5vtjEoexYT0CUxIm0DvuPa1DIqIhDT7rwd33HEHQ4YMITc3l1NOOQWHIzTtlcVi2aWrvSl+/4PBMIwm/bB4+eWXiYuL44QTTtjnMW+88UamTp1a/7yiooKMjIw9xiAiIiKtp6WuOZTnRURkr9VVwP+uCT0e9w9IGxHWcDqTlsjzyvHS4rw1MPux0Je/9o+PdXX74yK7qxuYzW0Tt7QLlmh7uENo4NWfNvHewjzMJnjyL/tRt34Jy2d+CUBkt2M54tz99vg3WMPno/D2O3B/8AEASVdeQeLFF6vQI39Iv8uL7J2S2hLmFMxhdsFs5hbMpbSutMH+zJjM+qL76JTROK26mU+kvdurW/hPPvlkAOrq6uq3/fWvf23WGN26dcNisezSoV5cXLxLJ/vvGYbBiy++yNlnn43d3vACNyUlpdljOhyO+osBERERaT9a4ppDeV5ERPbaN3eG1nWOz4RDbgx3NJ3OvuZ55XhpMYYBy9+Hr26HirzQttiM0P/7jXaxp4PdFdaQpX1wf7UJe1oUzsGJ4Q6lgfk5pdz5yUoAbjxqIPtnRDH93icAsDhGM/mCyUTG/vHPz2BNDXlXX0319z+A2UzKv+4g/pRTWj126Rz0u7zInvmCPpYUL2FOwRxm5c9iVemqBvtdVhdjU8fWTzPfI7pHmCIVkb3V7CJ8IBDg3nvv5ZlnnmHLli2sXbuW7Oxsbr31VjIzMznvvPOaNI7dbmfUqFF89dVXnHjiifXbv/rqK/70pz/94Wu///571q1b1+i5xo0bx1dffdVgXfgvv/yS8ePHN/EdioiISHvQUtccIiIie2XzT/Dz86HHxz2mglsLU56XdqNgMXx+A+T+FHoe2xOOvAsG/Unrscsf8mx0U/nNZgCSr9oPW0pkmCMKKXTXcunrC/EHDY4fnsb5B2bhqfbjiD4Wn3ceww4/mazhSX84hr+sjNyLLqZu6VJMERGkT5tG9GGHttE7kI5OOV5k9/Kr8pmdP5s5BXP4qfAnqn3VDfYPTBjI+LTxTEifwIikEdgstjBFKiItodnzYt1zzz28/PLLPPjggw260IcOHcrzzz/frLGmTp3K888/z4svvsiqVau4+uqr2bx5MxdffDEQmnLmnHPO2eV1L7zwAmPHjmXIkCG77Lvyyiv58ssveeCBB1i9ejUPPPAAX3/9NVdddVXz3qiIiIiEVUtec4iIiDSL3wMfXwEYMOIsyD4k3BF1OsrzEnZVxfDRZfDsoaECvM0Fh94Cl82HwSeoAC9/yPAHKfvgVwBco5PbTQG+zhfg4tcWsa3Ky8DUGB748zBMJhMr5xTg9aTQvfcZHHjawD8cw5uXx6Yz/kLd0qVYYmPp+dKLKsBLsyjHi+xQ569jVv4sHpj/AMd/eDxT3p/CXT/dxTebv6HaV02cI46js47m3on3MvPUmbxz3DtcNeoqxqSMUQFepBNodif8K6+8wrPPPsukSZPqi+UAw4YNY/Xq1c0a67TTTqOkpIQ777yTwsJChgwZwmeffUavXr0AKCwsZPPmzQ1e43a7ef/993nssccaHXP8+PG89dZb3HLLLdx666307t2bt99+m7FjxzbznYqIiEg4teQ1h4iISLP8OA22rYHIpFBHrLQ45XkJG78H5j0D3z8E3srQtqGnwuF3QGx6WEOTjqPyu1z8xbWYo2zEHZ0V7nCA0PKdt320nCW55cS5bDx79ihqthZQazIz8oie2COsdO8Vjc1h2e0YdatXs/mCCwhs3YY1LZWezz+PIzu7Dd+FdAbK8dKVGYbBBvcGZufPZnbBbBZuWYgn4KnfbzFZGJY0jAlpE5iQPoGBCQOxmHf/c1lEOrZmF+Hz8/Pp06fPLtuDwSA+n6/ZAVx66aVceumlje57+eWXd9kWGxtLTU3NH4558skn1687IyIiIh1TS19ziIiINEnxKvjx4dDjox4EV0J44+mklOelzRkGrJ0BX9wEpRtC29JGwpQHoKcaN6TpfMU1VMzMBSDuuGzMrvbRqfjavM28syAPswmePGM/UqNtvHHfA5RtKeT4qTcx5KBRf/j66p/mkXfZZQSrqnD060fGc89hS+7eRtFLZ6IcL11NpbeSeYXzmJU/i9kFsymqLmqwP9mVzMT0iUxIn8DY1LHE2GPCFKmItLVmF+EHDx7Mjz/+WN+t/pt3332XkSNHtlhgIiIi0rXpmkNERNpcMAAfXw5BH/Q7CgafGO6IOi3leWlTxavhixth/beh51HJoc73YaeDudkrNUoXZgSN0DT0AYOI/vE4h/3x2upt5eeNpfzr4xUA3HDUACb27cbMV55n6+aNOKNj6Z75x93sFZ9/TsF112P4fLjGjKHHf57EEqMikewd5Xjp7IJGkFUlq5iVP4s5BXNYsnUJASNQv99utjM6ZTTj08YzMX0i2bHZmLTMjUiX1OQi/Lnnnstjjz3G7bffztlnn01+fj7BYJAPPviANWvW8Morr/Dpp5+2ZqwiIiLSBeiaQ0REwubnFyDvZ7BHwzEPa03oVqA8L22qtgy+ux/mPwdGACx2GPcPOPAacESHOzrpgDzry/FurMBkMxP3pz7toqhS5K7jktcW4Q8aHDc8jQsOzGbTsl9Y9L8PAXAmHIUrJm63ry995VW23HcfGAbRkyeT9uADmB2OtgleOhXleOnMttVuY27BXGYXzGZO/hzKPGUN9mfGZDIxfSLj08YzOmU0TqszTJGKSHtiMgzDaMqBFouFwsJCunfvzhdffMG9997LwoULCQaD7Lffftx2220ceeSRrR1vm6ioqCA2Nha3202M7voUEZEw6oo5qbWvObriZyoiIk1QngtPHQDeqlABfsz5rX7KrpiTWjPPd8XPU3Yj4IdFL8O390BtaWjbgGPhyLsgQetby76pXV1KsMpH5OjkcIeCxx/gtOk/8UtuOQNSovng0vGYvLW8dPWl1FaUYbEP4+grrqDfmJRdXmsYBlunTaPkuecBiD/zTJJvuhGTRWsTt4SumJP0u7x0Jr6gjyXFS5hdMJvZ+bNZVbqqwf5IWyRjU8YyIT20tnt6VHqYIhWRcGhqTmpyJ/zOtfrJkyczefLkfYtQREREpBG65hARkTZnGPC/qaECfMYBMOrccEfUaSnPS6vb8D3MuBGKQ1NzkzQQptwHvQ8Nb1zSaTgHJIQ7BCD08/S2D1fwS245sU4bz549GqfNwsePPUFtRRkmczwDDzql8QK8z0fhLbfi/ugjAJKmTiXxgvPbRWe/dFzK8dLR5VflMzs/VHSfVzSPal91g/0DEwaGiu5pExjefTg2sy1MkYpIR9GsNeF1ISYiIiJtQdccIiLSppa/D79+GZqq+vjHtUZ0K1Oel1ZRmgNf3QqrPgk9d8bDoTfDqL+DpVl//hLZhTe3EkusA0uMPdyh1Ht93mbeXpCL2QRPnDGSnokufp0/h3UL5gBmYtNO4JCzhu7yumB1NXlXXkX1rFlgsZB6113EnXRi278B6ZSU46UjqfXXsqBoAXMK5jArfxYbKzY22B/viGdc2jgmpk9kXNo4ujm7hSdQEemwmvVbSL9+/faYSEtLS/cpIBERERFdc4iISJupKYXPrw89PuhaSOof3ni6AOV5aVGeKpg1DeY8CQEPmCyh5SQOuQFc7aNjWTq2oMdPyWsrCXoCdDt3CI6e4Z8Ge8HGUv71SWi2h+umDOCgfkkABI1eWCLGYjLZOeriSTicDf/06y8pIfeii6lbvhyT00mPxx4l6qCD2jx+6byU46U9q/HVsLZsLUu2LmFOwRwWFC3AG/TW77eYLAxPGs74tPFMTJ/IwMSBmE26OVdE9l6zivD/+te/iI2Nba1YRERERABdc4iISBv64mao2RaasnrCVeGOpktQnpcWEQzC0rfh6zugqii0LfsQmHI/dB8Yzsikk6n4YhMBtxdLQgS2lMhwh8OWijoueX0RvoDBMcNSueigbACMoMGiL/KwOScw6qhepPWNa/A6b24um88/H9+mzVji48mY/gzOYcPC8A6kM1OOl/bAMAy21Gxhdelq1pSuYU3ZGtaUriG3MhcDo8GxKZEpTEgLres+NnUsMfbw32glIp1Hs4rwp59+Ot27d2+tWEREREQAXXOIiEgbWfcNLHkDMMHxT4C1/Uwz3Jkpz8s+y1sAn18H+QtDz+OzYPK90P8o0FTI0oK8uZVUzS0AIP7EPpjtlrDG4/EHuPi1hWyt9DAgJZqHTh6GyWRi07Jf6DFwMCdMHckvX+Uy5tisBq+rXbGC3AsvIlBSgi09nYznn8ORlbWbs4jsPeV4aWvegJf15evrC+2/fa/wVjR6fJIziQEJAzgg9QAmpE8gOzZbyyiISKtpchFeP4hERESkLeiaQ0RE2oS3Gj69KvR47EWQMSas4XQVyvOyTyoKQ53vS98KPbdHhZaROOASsDrCGpp0PkYgSNn7a8EA18juRPSND3dI3PHxShZvLifWaWP62aNw2a0UrF3N+/feRlKvLE67/T7Gndi7wWuqZs8m//IrCNbU4Bg4kIzpz2BTkVRagXK8tLbSulLWlK5hbdnaUJd72RpyynPwG/5djrWarGTFZdE/vj8DEgbQL74f/RP6kxChpWpEpO00uQhvGMaeDxIRERHZR7rmEBGRNjHzXijfDLEZcNgt4Y6my1Cel73iq4O5T8KP08BXHdo24iyYdBtEJ4c3Num0Kn/Mx1dUg9llJfaY8HeNvzFvM2/O34zJBI+fMZJeiZF4a2v45NEHMYJBEtJ6YHe6GrzG/cmnFNx0E/h8uA44gB5PPoElKipM70A6O+V4aSmBYIBNlZtYW7qj2L62dC3FtcWNHh9jj6F/Qn/6x/ev/947rjd2i2a5EpHwanIRPhgMtmYcIiIiIoCuOUREpA3kL4Sfngo9PvYRcESHN54uRHlemsUwYNUn8OXNoZtmAHrsD0fdD+mjwhubdGr+bbVUfB36Nxd7bDaWqPAWchZuKuP2j5cDcO3k/hzcLwmAb16cTlVJMZijSe5zfIPXlLz0MsUPPABAzNFHk3r/fZjtKkhJ61GOl71R7ave0dm+vcv917JfqQvUNXp8z+ieDQruAxIGkOxK1kwMItIuNWtNeBEREREREZEOLeCDj68AIwhDT4G+R4Q7IhFpTNFymHEDbPwx9Dw6DY64E4aerHXfpdWZo+1EjU3Bt7UW18jwTt2+paKOS15biC9gcPTQFC45ODTd/Np5s1n5wzcARCcdx+CDQt36RjBI8UP/pvSllwBI+Os5dL/+ekxmc3jegIgIoZkSCqsLG3S2ry5dTV5VXqPHO61O+sb3DRXbtxfc+8b3JdIW2caRi4jsPRXhRUREREREpOuY8zhsWQ7OBJhyf7ijEZHfqy6BmXfDwpdDN8tYI2D8FTDxKrDrD+/SNswOC3HH9cYIGmHtrvT6g1zy2kKKKz30T47moZOHYzKZqCzdxoynHgfAErE/Uy6ejDPKjuH1UnDTzVR8+ikA3a+9loRz/64OURFpU56Ah3Xl61hbupY1ZWtYXbqatWVrqfRWNnp8d1d3BiQMaDCdfEZ0BhazpY0jFxFpWSrCi4iIiIiISNewbR18F5qalyn3QWS38MYjIjsEfPDz8/DdfVDnDm0bfGKo+z2uZ3hjky4h6A3g3VSBIzMWky3UNW4yh7d4fccnK1i0uZyYCCvTzx5FpCP0p9wvpz+Fr64akyWZkUedTM9BiQSqqsm/4nKq58wFq5W0e+8h9vjj93AG2dnybcv5ZP0n3LD/DbpxQaSJttVu26XYnuPOIWAEdjnWarbSO7Y3/RP60y++X33hPS4iru0DFxFpAyrCi4iIiIiISOcXDMInV0LAA70Pg2GnhTsiEfnNuq9hxo2wbW3oecpQmPIAZE4Ib1zSqQXr/Hg2VeDd4MaT48abVwVBA3tmDPF/7ostyRXW+N6cv5k35m3GZILHzxhJZrfQTBCGYWC2TcRsLSQx81gm/Lk//m3byL3wIupWrsTkctHj8ceJmqj/f5oqtyKXxxc/zoyNMwAYlTyKIzOPDHNUIu2LP+hnU8Um1pSuYXXZ6vrC+7babY0eH+eIo398f/ol7Ci2Z8dmY7PY2jhyEZHwURFeREREREREOr/Fr8CmWWBzwbGPak1pkfZg2zr48mZYGyp84UqESbfByLNBU9BKK9r28grq1pSC0XC7JdaBNSECkzW866cv2lzG7R+tAOCfR/bnkP471qXfklNBwTpwxp/GMZeOJpify+YLLsSXm4slIYGM6dNxDh0SrtA7lLK6Mp5d+ixvrXkLf9CPCRPH9T6Ood2Ghjs0kbCq9Faytmwta0rXsKZsDWtK17CufB2egGeXY02Y6BXTa0dn+/Yu92RXsmaUEJEuT0V4ERERERER6dwqCuHL20KPD7sV4nuFNx6Rrq7ODT88BD89A0EfmK0w9mI46FpwxoU7OukkgjU+PDkVeHLc+LZU0+3cIfUFIZPdDAZYEiJwZMWGvrJjscQ7wl40Kq6o4+JXF+INBDlqSAqXHtIbAL/Xy5YN60gfMIjjrxpBZUkdrtIcNl50MYHSUmw9e9LzuWex91KO25Nafy2vr3qdF5a9QJWvCoAJaRO4etTV9E/oH+boRNqOYRjkV+U3KLavKVtDflV+o8c7rc76Ynu/+H70T+hP37i+uGzhnTlERKS9UhFeREREREREOrfPrwWPG9L2g7EXhTsaka4rGIBfXodv7oTqraFtfY+EyfdCt77hjU06vEC1D88GN94cN54NocL7zp3u/m219VPMxxzRi9ijs7HGOcIUbeO8/iCXvr6I4koP/ZKj+Pcpw+tvCvjxjZdZNOMTJp5+DmNPOIWqH39k01+vwqipIWLQIDKenY61W7cwv4P2LRAM8PH6j3nylycprikGYEDCAK4edTXj08aHOTqR1lXnr2N9+XpWl66uL7ivLVtbfyPK76VEpjAgfgD9EvrRP74/AxIG0CO6B2ZTeGcKERHpSFSEFxERERERkc5r5cew6pNQp+3xT2iKa5Fw2TQXZlwPhUtCzxP7horv/bTusuydQKUXc4QVky1UEKr8Po+qH/IaHGNNcuLI3t7lHm2v3x7u9d53585PV7BgUxnREVamnz2aSEfoT7cblyxi0ecfA9C9Vxbujz6i4OZbwO8ncvx40h9/HEtUZDhDb9cMw2BW/iymLZzGuvJ1AKRGpnLFfldwdNbRKipKp7Otdluo2L5Th/vGio0EjeAux9rMNvrE9dllOvlYR2wYIhcR6VxUhBcREREREZHOqbYcPrs29HjCVZCiNXJF2lx5Lnx1G6z4IPTcEQuH3AD7XwAWW3hjkw4l4Pbg2d7l7tngxr+tlm7nDiGiXzwAjt6x1K0pDRXdt08xv3Phvb17++fNvPbTZkwmePz0kWR1CxXVayrc/O/xhwGwuUZinbuMgscfBCDmuONIu+duTPaO8z7b2oqSFTyy4BHmFc0DINoezUXDLuL0AafjsLSvmRBEmssX9LHRvZE1ZWtYW7q2vsu9tK600eMTIhJ2mU4+KzYLm1n5WESkNagILyIiIiIiIp3T17dDVREk9gmtNS0ibcdbA7MfC335awETjPobHHYLRGrKbGkaX3ENlT/k4clxEyipa7jTFNr/WxHe2T8BZ/+EMES57xZvLuPWD1cAcM0R/Th0QHcg1ME946nHqatyYzInkhXfn6rH7wEg4dxz6f7PazCZ1cXdmLzKPJ5Y/ASf5XwGhLp9zxx4JucPPV8dvtIhVXgr6qeQ/63LfX35erxB7y7Hmk1mesX0ajCdfP+E/iQ5k+qXuBARkdanIryIiIiIiIh0PhtnwcKXQ4+PexxsEWENR6TLMAxY/j58dTtUbJ8avNdEmHIfpA4Lb2zSbhmGQaC0Dk+OG0t8BBG940I7ggY1C7aEHpvAlhYV6nLPjsWRGYPZ1fG7N4sr67j4tYV4A0EmD07m0kP61O9b9u0X5CyeB5iJiTqEzC/+DUD3668n8e9/C0/A7Vx5XTnPLXuON1e/iS/oA+DY7GO5bORlpEelhzk6kT0LGkHyK/NZU7amvrN9belaCqoLGj0+0hYZ6mrfXmgfkDCA3nG9cVqdbRy5iIj8norwIiIiIiIi0rn4auHjK0KPR/0dMieENx6RrqJgMXx+A+T+FHoe2xOOvAsG/QnUeSc7MQwD/7ZaPDluvBvcoU53d6ib0zUiqb4Ib+3uIvqwDOw9Y0JF94jO9adMrz/IP15fxJYKD326R/HwqSMwm0P/r1SVlvDti88CYI2YwNBf3sZqDpL2wL+JPfaYcIbdLtX563hj9Rs8v/R5Kn2VAIxNHcvUUVMZlDgozNGJNK7WX8u6snWsLltd3+W+pnQNNf6aRo9Pj0qvn0b+t6J7elQ6ZpNmxBARaY8615WriIiIiIiIyPcPQul6iEqBI/4V7mhEOr+qYvjmTlj8GmCAzQUTp8L4y8CmTjxpyPAHKXro5/qiez2LCXuPaGxpUfWbTGYTsUdmtm2AbeiuT1fy88YyoiOsPHv2KKIcO/5UGwg4sUVOwqhZS5+iQuICW+kx/Rkix48PY8TtTyAY4H85/+OJxU9QVF0EQL/4fkwdNZXxaeM19ba0C4ZhsLV2K6tLV9cX2leXrmZz5WaCRnCX4+1mO33i+9QX2vvH96dfQj9i7DFhiF5ERPaWivAiIiIiIiLSeRQtC61BDXDMwxChdV9FWo3fC/OeCd344g11njL0VDj8DojVtM9dmRE08BfX4Nne5W4EDbqdHepGNlnNmCNtBKp82DOiQ1PLZ8Vi7xWD2W4Jc+Rt552fc3n1p02YTPDY6SPITopqsH/BeyvAPJCkgJ0+1a/S67VXiRikju6dzcmfw7SF01hTtgaAlMgULhtxGcdmH4vF3HX+LUn74gv62FC+YUexvWw1a0vXUuYpa/T4xIjEBp3t/eP7kxmbidWs0o2ISEenn+QiIiIiIiLSOQT88PHlYARg4PEw8NhwRyTSORkGrP0CvrgpNOsEQNpImPIA9Bwb3tgkbHxF1dStKw9NMZ/jJljj37HTYiLoDdQX2RPPHIglxo7J1jULpb/klnPLh8sBuPrwfhw2ILl+39bNG7HmF5L+yrXUxo2jl3kzWW++jj0jI1zhtjurS1czbcE05hbOBSDaFs35w87nLwP+QoQ1IszRSVfi9rhZU7qmfv32tWVrWV++Hl/Qt8uxFpOFzJhM+iX0Y0DCgPqiezdntzBELiIibUFFeBEREREREekc5j0TWpPaEQtHPxTuaEQ6p+LV8MWNsP7b0POo5FDn+7DTwaw1absKI2DgK6rGlhZZP923+8tN1K0sqT/GZDNjz4zBkRWLIzsWk2XHvw9rYtddpmBrpYeLX12INxDkyEHJXHZon/p9nppq/u/Om/CWlTGmtpLBPTaRMf0ZrAkJYYy4/SioKuDJxU/y6YZPMTCwmq2cMeAMLhx6IXERceEOTzqxoBEktzK3fhr5tWVrWVO2pn4JhN+LskXRL357sX17d3vvuN66SUREpItREV5EREREREQ6vtIc+Pbu0OMj74LolPDGI9LZ1JbBd/fD/OdCs01Y7DDuH3DgNeCIDnd00sqMQBBvfhXeHHdoivmNFRieACnXjcGaECoqRfSPh0AQ+/aiuz09qkHhXcDrD/KP1xdRVFFH76RIHj51OGbzjjXLP7v9JiorK3AGgnQbM4Zejz6GOTIyjBG3D26PmxeWvcDrq17HG/QCcFTWUVwx8gp6RPcIc3TS2dT4avi1/NdQh/v2Lve1ZWup9dc2enx6VHp9Z/tvXe5pkWn1NyiJiEjXpSK8iIiIiIiIdGyGAZ9eDf5ayDwQ9jsn3BGJdB4BPyx6Gb69B2pLQ9sGHBu62SUhO6yhSeur+7WMyh/y8G6qwPAGG+wzRVjwl9TWF+GjxqYSNTY1HGF2GPf8byXzN5YS7bDy7DmjiY6wAWAYBgvuvJ0Nm9cDJuKTjyb7yUsx2WzhDTjMPAEPb61+i2eXPkuFtwKAMSljuGbUNQzuNjjM0UlHZxgGW2q21Bfaf/u+uWIzBsYuxzssDvrG9aV/Qv/6Lvd+8f2IskeFIXoREekIVIQXERERERGRjm3JW7BhJlgccNxjoM4jkZax4XuYcSMUrwg9TxoIU+6D3oeGNy5pcYYviDe3As8GNxEDE7Gnh4pKhieA59dyAExOa2hq+e2d7rbUSExm/bxtqncX5PLfuZsAeOS0EfRO2v4ZBwJsuON2Zq/+BcxgidifA6ee3aUL8EEjyGc5n/HEoicoqC4AoE9cH64edTUHph+oDmPZJ3ML5vLCshdYXbYat8fd6DFJziT6JfSjf3z/+i73njE9sZpVThERkaZT1hAREREREZGOq2praH1qgENugMTe4Y1HpDMozYGvboVVn4SeR8TBYbfAqL+DRX9K6gyC3gDezZV4tk8v782tAH+o89MwqC/CO7JjiTsuG3t2HLZkl4rue2lJbjk3f7gcgKsP78fhg5IBCHo85F17Hd9tWEUg0o7JksKY40+lR/+uuwb8T4U/MW3BNFaVrgKgu7M7l428jON7H4/FbAlzdNIZ+II+5hXNA8BispAVm0X/hP4MiB9QX3hPdCaGOUoREekM9JuTiIiIiIiIdFwzbgitVZ0yFMZfHu5oRDo2TxXMmgZznoSAB0wWGHMeHHIjuLpuUbAzMAyjvnvYt7WGLY8ugkDD6ZbNUbb6tdzrt7lsRE1Ib9NYO5ttVR4ufm0hXn+QIwYlc/lhfQAIVFSQ94/LWLlhLeU9ugE2kvuewgF/6hvegMNkTekaHln0CLPzZwMQaYvk/KHnc+bAM3FanWGOTjqTod2Gcuf4O+mf0J/ecb1xWBzhDklERDopFeFFRERERESkY1r7BSx/D0xmOP4JsHTdqXtF9kkwCEvfhq/vgKqi0Lasg2HK/ZA8KKyhyd4J1vnxbKrAuyHU6W5LjST+pFBx15roxGQ1Y460YM/eMb28tZtT03y3MF8gyKWvL6LQXUd2UiTTTh2O2WzCt2ULuRdciGftWkzZR2C22bBFZHL0JROxWM3hDrtNFVUX8eTiJ/l4/ccYGFhNVk4bcBoXDruQhAjd/CMtLz4inhP7nhjuMEREpAtQEV5EREREREQ6Hk8lfDo19HjcPyBtZHjjEemo8hbA59dB/sLQ8/gsmHwP9D8aVJDtUGpXl+JZX44nx40vvwp2anQPVPvqH5vMJlL+ORpzlE1F91Z2z/9WMT+nlCiHlWfPHk10hA3P+vVsvuAC/AWFkJxObt8TsXsMDjqjH/EpkeEOuc1UeCt4cdmLvLbqNTwBDwCTMydzxcgr6BnTM8zRiYiIiOw7FeFFRERERESk4/nmLqjIg/hMOOSmcEcj0vFUFIY635e+FXpuj4KDroUDLgGrpuZt7wLVPvxba3BkxtZvc3+eg39LTf1zS0JEfZe7Iyu2west0fY2i7Wren9hHi/P2QjAI6eNoE/3KGoWLybv4ksIuN1U9sli+NPPkmKLZ9WcQoYc1DWm/fcGvLy95m2mL52O2+MGYFTyKKaOmsqwpGFhjk5ERESk5agILyIiIiIiIh1L7nyY/2zo8bGPgt0V1nBEOhRfHcx9En6cBr7q0LYRZ8Gk2yA6ObyxyW4Fqrx4ckJTy3tz3PiKajDZzKTdPg7T9unLXSOSCJR5cGTFYs+OxRqrmynCZVmemxv/bxkAV07qyxGDkqn8dib5U6di1NVRNnwQc/FQ+PZ/OW7qDYw/qU+YI259QSPIFxu/4LFFj5FflQ9Admw2V4+6moN7HKxZGURERKTTURFeREREREREOg6/Fz6+HDBgxJnQ+9BwRyTSMRgGrPoEvrwZyjeHtvXYH466H9JHhTc22a2qnwqomlOAv7h2l32WeAcBtwdrohOAmEM1hXd7sK3Kw0WvLsDrD3L4wO5cOakvZe++S9Htd0AwiPXAiSzyV0GNh5ik7pjNlnCH3Op+LvqZhxc8zIqSFQAkOZO4dMSlnNDnBKxm/XlaREREOidd5YiIiIiIiEjHMesR2LoaIpPgyLvDHY1Ix1C0HGbcABt/DD2PToMj7oShJ2vd93bC7/bg3eDGk+MmZlJPLNu72IN1gfoCvC3FhX2n6eUtUZpSvr3xBYL84/VFFLjryE6K5OFTh1PyzNNse/wJAGJOOpG5LiueZYswWbrRc+gxYY64df1a9iuPLnqUH/J+AMBldXHukHM5e9DZuGyaxUZEREQ6NxXhRUREREREpGMoXg0/PBR6fNQD4EoIbzwi7V11Ccy8Bxa+BEYQrBEw/gqYeBXYI8MdXZfmL6vDs73o7tngJlBaV7/PkR2La0R3AFxDu2Hr5sSeFYsl0haucKWJ7v1sFfNySolyWJn+l5HUPHAv5W+9DUDiJReTP6A3m158BrCQ2PMkeg3pnEtAbKnewlNLnuLDdR8SNIJYTVZO7ncyFw+/mERnYrjDExEREWkTKsKLiIiIiIhI+xcMhqahD/qg3xQYfFK4IxJpvwI++PkF+O5eqHOHtg0+MdT9Hqcpy9uaYRgQNDBZQmu3167YRsmrqxoeZAJbehSOrFis3Xd0CFsTnfXTzUv79sGiPF6avRGAaX8aQMQ9N1P+9TdgMpF86y0YBx/Id9ddAYAt8kCO/sehWO2dayr6Km8VLy5/kVdXvkpdIHRjyRG9juCKkVeQGZsZ3uBERERE2piK8CIiIiIiItL+LXgB8uaDPQqOeVhTaIvszrqvYcZNsG1N6HnKUJjyAGROCG9cXYhhGPi31dZ3uns3uIkcl0bMoRkA2HvGgNmEvUeo6G7PjsXRKwZzhP5M11Etz3dz4wfLAJh6QAr9Hr6ZqoULMdntpP37IaKPOIJXrruKoN+H2dqLiaedTFJGdJijbjm+gI931r7D9CXTKfOUATCy+0imjprKiO4jwhuciIiISJjo6l5ERERERETaN3cefH1H6PHhd0Bsj3BGI9I+bVsHX94Ma2eEnrsSYdJtMPJsMHeubtv2yPAFqF64pb7wHqz0Ndjv3egGQkV4S7SdtDvGYe5kXdBdVUmVh4teXYjHH+SENAvHPH8HtevWYY6OJuOp/+AaM4ZAIIjZfiAmSxUZw05l5BG9wh12izAMgy83fcljix4jtzIXgMyYTK4edTWHZhyKSTfMiYiISBemIryIiIiIiIi0X4YB/7sGvFXQY38YfV64I5IuIFBRgTkyEpOlAxRJ69zww0Pw0zOh5RrMVhh7MRx0LTjjwh1dp2QEDXxbagjW+IjoHRfaaDbh/l8Ohi8Yem41Yc+IxpEViyM7DnvPhl3PKsB3Dv5AkMveWEx+eS3jLW4uef9ZvFu2YE1OJuPZZ4no3w+AdQuKqShJIDr5HKZcOBaTueMXpxcULeCRhY+wdNtSABIjErl0xKWc1PckrGb9yVlEREREV0QiIiIiIiLSfq34INTZa7bB8U+A2RzuiKQLKLz5Zqq+/wF7r57Ys7KxZ2XhyM7CnhX6skS3g2mkgwH45XX45k6o3hra1vdImHwvdOsb3tg6GSNo4CusxpPjxrPBjXejm2CNH2uSk5RrRgNgspiJHJ+G2WbGkR2LPSMGk00/rzq7+z5fzdwNJYxyb+LWn18mWFWJvXdvej73LLa0NOqqq6hxl9Nv/3QC/iARLhtR8RHhDnufbCjfwCOLHuG73O8AcFqd/H3w3/nr4L/isrnCGpuIiIhIe6IivIiIiIiIiLRPNaXw2XWhxwf9E7oPCG880mV48/IxvF48v67D8+u6XfZbkrrhyMzCnp2NPSsTR3aoUG9LS2ub7vlNc2HG9VC4JPQ8sW+o+N7vyNY/dxdT9tE6ahYXY9QFGmw32c1Y4iMw/EFM1lCxPe6orHCEKGHyf4vzeGFWDuMKlnPLL2+A14tz5Egynn4KS1wchmHw9fNPsX7BPCZffAWDJhwc7pD3ydaarTy15Ck++PUDgkYQi8nCn/v+mUtGXEI3Z7dwhyciIiLS7qgILyIiIiIiIu3Tl7dAzTZIGgATrw53NNKFZL33Lr7CQrw5OXg3bMCTk4N3Qw7enBz8W7cS2LqNmq3bqPn55wavM9nt2Hv1CnXMZ2fhyPqtUJ+FJSpq3wMrz4WvbgvNEAHgiIVDrocxF4DVvu/jd0GGP4ivqBpvQRW+gmp8hdUkXTC0vrCO38CoC2ByWHBkxoS63LNisadHYbKo072rWp7v5ob3l3F0zhwuW/ohJiNI1GGHkT7tYcwRoU73VbO+Y82cHzCZzcR2TwlzxHuv2lfNS8tf4pWVr1DrrwXgsIzDuHLUlWTHZoc5OhEREZH2S0V4ERERERERaX/WzwxNtY0pNA291RHuiKQLMVks2Hv0wN6jBxx4YIN9gaqqUHE+JwfPhg14czbi3bAB76ZN27vnf8Xz66+7jGlNSmq0OG9LTd1z97y3BmY/Fvry1wImGPVXOPQWiEpqwXfeNdStKaVm6TZ8BVX4ttRA0Giw37elBnt66KaJqIlpRI5NwZYahcnS8dfxln1XWu3lolcWcMqyzzlzzVcAxJ16Kim33YrJGvpTq7t4C189+xQArriJJPXqE7Z495Yv6OP9te/z9JKnKa0rBWBY0jCuGXUN+yXvF+boRERERNo/FeFFRERERESkffHWwCdXhh7vfyFk7B/eeER2YomKwjl0KM6hQxtsNwIBfAUFDYvzOTl4cjYQ2LoN/9at+LdupWb+/AavM9nt2DMzGxbot69Db4l0wfL34avboSIv9IJeE2HKfZA6rK3ecocUqPLiK/itw72K2ClZWBNCHcrewmpqFm6pP9bssmJLi8KWFoU9PRJr/I6bfmzJkW0eu7Rf/kCQy1/7mT9/9ypHbZoHQLfLLqPbPy7FZArdpBEMBvj0sX/j99ZisqQxcsqJWO1tsExFCzEMg282f8Njix5jY8VGAHrF9OLK/a7k8J6H179PEREREfljKsKLiIiIiIhI+/LdvVC+CWJ6wKRbwx2NSJOYLBbsGRnYMzKIOuigBvsClZU7dc/nbH+8Ae/G7d3za9fiWbt2lzGtURbsrhrsMX4c3XtgP+wc7IeciS05DZXBGvJtqd7R3Z5fRaDC22C/c0i3+iJ8RN94DF8Qe1oUtvRILLEOFRalSR76aAmHvzmNA4pWgtlMyu23E3/aqQ2Omf/hexStWwXYSR1wCmOO7R2eYPfC4uLFPLzgYZZsXQJAQkQClwy/hD/3+zM2sy3M0YmIiIh0LCrCi4iIiIiISPtRsBjm/if0+Nhp4IgObzwiLcASHY1z2DCcwxp2r9d3z++87vy6tXjWriRQ5cVfFcBf5aCm2AHrgjDnZbj7ZUwOR333vCM7K9RFn5m1fe35ztu5bQQN/Ntq8RVU4S2oxjW0G/aM0M8IX3ENld9sbnC8tZsTW1pkqMs9dcfnYk+Pqp9uXqSpPvlxJf3+fSODSjcRtNvp+cg0oidNanDM1k05zHnndQAiYidx9CUTMFvM4Qi3WXLcOTy26DG+2fwNAE6rk3MGncPfBv+NKLv+XxERERHZGyrCi4iIiIiISPsQ8MHHl4MRhCEnQ7/J4Y5IpFU16J6fMA7mPQMRP0K/SgJeE97uU/AkT8Zb5A6tO78xJ9Q97/HgWbMGz5o1VP5uTGv37tvXm8/EsX1ae0d2FtbUVEzm9l8M3Fmg2kfdypLtU8pX4yuswvAG6/ebndb6Irw9IxrXqGRsaZHY00NFd7NDf/aSlrFi0Woipl5Cn8pivK4o+j4/Hdd+u66LHgjEYonYn6C/jEP/eiKxSa4wRNt022q38cySZ3hv7XsEjABmk5kT+5zIpSMupbure7jDExEREenQ9NuIiIiIiIiItA9zn4SiZeCMhyn3hzsakbZhGLD2C/jiJihdH9qWNhLLlAdw9hyL8/eHBwL48vN3rDu/YUNomvuNGwls24a/uBh/cTE1P/3U4HWmiAjsvXrtsu68IysTc2R4u+eDngC+wlCh3drdRUSfOAACbg9l7//a4FiTzYwtNdTdbs/Y0aFrjYsg4ZR+bRm2dBFbflmB+/zz6FHjpiI6gaGvv4yrX99Gj/3po01YI8aTPbIbA8entnGkTVfjq+G/K/7LSyteotZfC8AhPQ7hqlFX0Tuu40yfLyIiItKeqQgvIiIiIiIi4VeyHr7bXniffB9EJYU3HpG2sHUNzLgR1oemgCYqGQ6/A4adDrvpWjdZLNh79sTesycc0nBfoKJil3XnPTk5eDdtxqir2333fHLyjuJ8Zhb27GwcWZmt0j1v+IN4ctz1U8r78qvwl9SCEdrvGp1cX4S3dXfh6BOHLTVy+/rtUVi7OTGZtX67tI2Kn+ZRcNElxHtqyY9LZb83/4srK2OX47Zu3khCWjpTLhjCTx+t54ATemMytb9/p/6gnw9+/YCnfnmKkroSAIYkDmHq6KmMSRkT5uhEREREOhcV4UVERERERCS8DAM+uRL8dZB9KAw/PdwRibSu2jL47gGY/ywYAbDYYdw/4MBrwBG918NaYmJwDh+Oc/jwBtsNvz/UPf/buvM5OXhyQp30gZIS/Fu24N+yhZq5jXTPZ2aG1p3fvua8PTsLR+aeu+cNwyBQ4cWXX4XJYiKif0JoeyDItheW73K8OcaOPS2qfnp5AJPVTNL5Q/f24xDZJxVffMnma/5JhN/Hym7ZDH7pWRKy0nc5rrq8jHfvvImoxG6ceP1tHHLmgDBE+8cMw2Bm7kweXfQoOe4cADKiM7hyvys5steR7fKGAREREZGOTkV4ERERERERCa9Fr8DGH8HmguMeBRUDpLMK+GHRy/DtPVBbGto24Fg48i5IyG6105qs1tBU9L16wSGHNAzJ7d5elN9Yv+68Z0MO3s3bu+dXr8azevUuY1pTUurXnbdlZmFNzsTs6E6gxoqvsBpfQRXBaj8A9qyY+iK82WHF0TcOc4Q1NKV8WmhqeUu0vdXev0hzlb7+OkV334PFMJidOoT0hx5iQN9dC/CGYfC/x6dRW1lBVGI3nNGxYYj2jy3ZuoRpC6axqHgRAPGOeC4afhGn9jsVm8UW5uhEREREOi8V4UVERERERCR8Kovgy1tDjw+9GeIzwxqOSKvZ8H1o6vniFaHnSQNhyn3Q+9CwhmWJjcU5YgTOESMabDf8fnx5eTu65zfmhB7nbMbwOzAC0dTM/am+ez5yykOYI4zfjW5gdgUx2z0Ea2owu1wAJJ2n7nZpP4xgkGBNLcHqKoJVVbg//IiS557DBHyaNQ7j8ms4f3Rmo69dPOMTclcsBiz0GHQaVlv7KWpvqtjEY4se46tNXwHgsDg4Z9A5/H3I34m27/2MGyIiIiLSNCrCi4iIiIiISPh8di143JA2EsZeHO5oRFpeaQ58dSus+iT0PCIODrsFRv0dLO33zzImqxVrWgaGKQFTRH/McdWYu1dh7VUNAQOT00Tk0K31684HPUUEaksJlG8mWL6ZgHszwYoCCPoA2PoAWFNTcWRlYs/KDk1tn5WJIzsba0qKpsOWZgt6vQSrQoXzYHU1waoqAlVVBKuqQwX16uodz3c6LlD9u201NaFlUX7nvwOnUHjs6bw4ZVCj59+Wu4nvX30RAHvUwQw/Ynijx7W1ktoSpi+dzrtr3sVv+DFh4oQ+J3DpiEtJiUwJd3giIiIiXUb7/W1PREREREREOrdVn8Cqj8FkgeOfaNcFSZFm81TBrGkw50kIeEL/zsecB4fcCK6EcEe3i2CND9/WWhy9Yuq3bXtxOd6NFbsca4qwYE+NIva4cZhslvrths+HNy8Pb87GBuvOezdsIFBWhr+wEH9hIdVz5jYcz+kMFeQzs7BnZ9cX5+2ZmZidztZ709LmjECAYE1NfdE8VDiv3lFIr65qWDj/rbheves2w+dr2eCsVnBFUmJx8nLWwawdcTCfnLEfFvOuN4j4fT4+nvYAwYAfszWTg848mcS0qJaNp5lqfDW8uvJVXlz+IjX+GgAOTD+Qq0ZdRb/4fmGNTURERKQr0l84REREREREpO3VlsP//hl6POFKSNH01NJJBIOw9G34+g6oKgptyzoYptwPyY131LYlwzAIVnjxFlThK6jGm1+Fr6CKQLkHTJB2x3jMjlBh3ZYaib+kFntaFLbtX/a0SCwJEY12rptsNhxZWTiysoCG0+z7y8rqi/P1687nbF97vrYWz8pVeFau2mXMUPd8VqhzPjs0tj07G2tysrrn24hhGBg7dZ3v6Davrp/CvcG2qqqGxfTq33WdtzCzy4U5KgpzZGToe1QklqgozJENtxlOF26zg5Kgla1BC4U+C/keM5vqTOTUGGyu8hMk9G/KabPwf+eMItbV+PTys99+jbKCzWBykrnfaQw7NKPF31dT+YN+Plr3Ef/55T9srd0KwKDEQUwdNZWxqWPDFpeIiIhIV6civIiIiIiIiLS93wqUCb3h4OvCHY1Iy8hbAJ9fB/kLQ8/jM2HyvdD/aAhDwdgIGgRK67DER2CyhM5f/vF6qucWNnq8JT6CQIUHc1Jo7fa4Y7KJ/1OfFonFGh+PNT4e134jG8ZY3z0fKsp7NmyoL9Y37J6f0+B1JpcLR2bm9mnts3Bkby/Uq3u+nhEI7FQUr244Vfvvt/1WOK+ubjhVe1VoG35/ywZns2GpL5CHiuTmyEgskVENttUfs327Zftx9ce4XJgsoZtG6nwB8spq2VxeS15ZDfllteSV1ZJfXkve1hqKKz2/m3XeAAI7PTdht5rpleDipmMGMiAlht3x+wdgsqThij+AI8/fPyw3hBiGwQ95P/DIwkdY714PQHpUOleMvIIpWVMwm8xtHpOIiIiI7KAivIiIiIiIiLStjbNh4Uuhx8c/DjYVzKSDqygM3Viy9K3Qc3sUHPRPOOBSsDraJAQjEMS/tba+s/23TnfDEyD5qv2wpUQCYO3mBBNYu7u2d7hHbu9wj8LsbPhnIpO19Yt4DbvnG9rRPb9he4F+e/d8bi5GTQ11K1dSt3LlLq+zpqXi+G3d+d+657OyOkT3vGEYGHV1O61xvqNA3uQ1zqurCVRXY7RG1/nOBfDIyO1F8Z0K55GuUBd6feF8e3E9aufiehRmu73Z5672+Mn9rcC+sZa8snLyyrcX2stq2Fbl3eMYETYzPeJdpMc56RHvDD2O3/44zkm3KAfmRqaf35l7ay1r5tdhjz6NyRcOIzK2bf4f39nybct5eMHDLNiyAIBYRywXDbuI0/qfht3S/M9WRERERFqeivAiIiIiIiLSdnx18MkVocej/gaZE8Majsg+8dXB3Cfhx2ngqw5tG3EWTLoVolNa7bRBbwCTyYTJFiqSV88vouzjdeA3dj3YasJfWldfhI8cnULkmBTMdsuux7Yzf9g9n5uHd2MO3g0b8OTk4N0Qehxwu/EXFOIvKKR69uwGrzO7XNgzMxuuO5+Vhb1Xr33unjf8/oaF8+qd1jP//Rrnu133PPSdQGDPJ2wGk93eoHi+o7v8j6dvb1A4j4wMdZ2bW+/GjIo6H3ml2zvXd+pkzysPPS6r2fMa8FEOKz3infVF9vTfCu3bnydE2vf6RgzDMNi6KYfumdkcf+UI8teWkTU8aa/G2lu5Fbk8vvhxZmycAYDdbOesQWdx3tDziLHvvnNfRERERNqeivAiIiIiIiLSdn54CErWQVQKHP6vcEcjsncMA1Z9Al/eDOWbQ9t67A9H3Q/po1r0VMFa//au9h1ruPu31pB45kCcQ7oBYI6xg9/A5LBgS4usX8Pdnh6FNcmJybKjcPrbeu8dmclmw5EdmoKeww5rsC/UPb9TcT5nI94NG/Dm5hLcXfe8yYQtNXV753yoQG92uZq0xvlvhXOjrq6F36SpYUG8QYF858L5zp3oO23buXi+F13nLc0wDMprfPUF9rzfCuxlO4rulXV7nvI+1mnbbYG9R7yTWKet1WY7WPnDt8x46hHG/OlkDvrL3+jRP75VztOYsroynl36LG+teQt/0I8JE8f1Po7LRlxGalRqm8UhIiIiIk2nIryIiIiIiIi0jaLlMPvR0ONj/g3OuHBGI7J3ipbDjBtg44+h59FpcMSdMPTkfV733QgamLZPhe3Z6Kb0nbUEShsv7vqKa/itd9uRHUvKtaNDa7/vYSrtzm5H9/x+DbYbXm/92vP1685vCE1zH3C78RUU4Cso2KV7vrlMDsdOXea/W+N8l6naf7dt+3ZLVCQmp7NVu85bmmEYlFR7txfWf7ce+/bn1d49d/gnRNobdrLH7ZgyPj3eSUyErQ3eza7KtxTx9fNPA+BwutrsvLX+Wl5f9TovLHuBKl8VABPSJnD1qKvpn9C/zeIQERERkeZTEV5ERERERERaXzAAH18OQT8MPC701QEZhtHu15SWVlJdAjPvgYUvgREEawSMvwImXgX2yGYNZRgGgdI6vAXV2zvcQ2u4R09MJ/rgDADMkbb6Arwl3lG/brstLRJ7ehTm6B3dzWa7BXPivk2n3tmZ7HYc2dk4srOJnjSpwT5/WVl9Qf63decNn29HIb1B0Tyy8anaIyOxREZiagdd560hGDTYWuVp0MWev9N67PnltdT5gnscJynasUsne4+dnrvs7e9PlcFAgE8eeRC/tw6zrQdZoya3+jkDwQAfr/+YJ395kuKaYgAGJAzg6lFXMz5tfKufX0RERET2Xfu7shUREREREZHOZ950KFgEjlg46qFwR9NsgSov7hkbMbusxB2dHe5wpC0FfPDzC/DdvVDnDm0bfGKo+z2uZ/OGcnsofXsN3oIqjLpdu4K9BdX1j62JTrqdPxR7WiRmV3i6f7sKa3w81lGjcI1q2aUEOpJA0KCoom57B/uunewF5XV4A39cZDeZIDk6YqcCu5P0OFf9VPFpcU4ibB1vOYSfPnib4py1YHKQPuhUuvVovbXXDcNgVv4spi2cxrrydQCkRqZyxX5XcHTW0ZhNHWd2BBEREZGuTkV4ERERERERaV1lm+Dbu0KPj7wTYjrO+rVGwKB6fiHuLzZh1PnBYiJ6YjqWGEe4Q5O2sO5rmHETbFsTep4yFKY8AJkTGj3c8AXxFVXXr+HuLajGkRFN3PG9ATC7bHg2VkDQAIsJW0pkfXe7LT0KW8qOjnqT2UREn7jWfofSRfgCQYrcdeQ2NlV8eS2F5XX4g8YfjmExm0iJiagvsPfYPlX8b0X31FgndmvnKhIXrF3N3PffAsAZewRTLhqHuZWWfFhRsoJHFjzCvKJ5AETbo7lo2EWcPuB0HBblHBEREZGORkV4ERERERERaT2GAZ9eDb4a6DURRp4T7oiazLPRTflH6/EVhrqTbamRxP2ptwrwXUHJevjiJlg7I/TclQiTboORZ4O5YSevETQoe28t3vwq/Ftr4PfNwsaOwqbJZibxLwOwJERg6+7C1MkKlhI+Hn+AgvKdOtnrp4oPPS+qqGMPNXZsFhNpcTuvx+5q0NWeEhOB1dJ1/s36vB4+eeQhMIKY7QM4/PwTiGmFZR/yKvN4YvETfJbzGQA2s40zB57J+UPPJ9YR2+LnExEREZG2oSK8iIiIiIiItJ6l78D6b8DigOMeA3PHKOBUfJdLxYyNAJicVmIn9yJy/1RMrdQBKe1IwAcvHwOVhWC2wtiLCex3Fb5SC97vC/AVVGGymUk4tT8Q6lj35LgJlHkAMEdad1q/PQp7elSD4Z1DurX5W5KOr9YbaNC5Xr8u+/Y12osrPXscw2410yNuR1G9R7yrwfrs3aMjsOhnXD0jYMFsG4vJMoeBE0+n35iUFh2/vK6c55Y9x5ur38QX9AFwbPaxXDbyMtKj0lv0XCIiIiLS9lSEFxERERERkdZRvQ1m3BB6fMj10K1PeONphoh+8VR8tYnIUcnETM7EEqk1ubsMiw0O+ieVs4vxuA7Hu9AgOHN1g0NMTiuGYWAyhQqWsVOyMNnM2NKjsMTY67eLNFWVx09+WS355TU7Fdh3FN23VXn3OIbTZml0PfbfnneLdLTaVOqd0S/f5OL19iGx12AOPWdEi41b56/jjdVv8PzS56n0VQIwNnUs14y6hoGJA1vsPCIiIiISXirCi4iIiIiISOuYcQPUlkLyEBh/Rbij+UN168rwFdYQfWCo+9CeFkXKdWOwxmrq+S5p9HnULVmOZ1156LkJrN2c2zvcI7GlRYER2g7gGp4Urkilg3DX+uqL6r9fjz2vrJbyGt8ex4hyWLd3sP82ZbyrQVd7vMumG0BaQHV5GSazmVFTehHwB+k1OBGHc9//hBoIBvhfzv94YvETFFUXAdAvvh9TR01lfNp4/bcTERER6WRUhBcREREREZGWt/ZLWPYumMxw/OOh7uJ2yF/uwf2/DdQu2wZmiOgXhy05EqDRAnx+eS02i4nu0RFtHaq0JZOJyLEpOAclYkuLxJYahdlh2fPrpEsyDIPyGt/2DvaG08X/9ryyzr/HcWKdtt0U2J30iHMR47SqUNvKvLU1fPbkw5TkbuLYq65n3AlDWmTcOflzmLZwGmvK1gCQEpnCZSMu49jsY7GY9bNFREREpDNSEV5ERERERERalqcSPr069PiASyF9VHjjaYThD1L5Yx6V3+Zi+IJggqgD0rBE2xs9PhA0eHXuRh76Yg0H9k3imbPb33uSluUaqu52CTEMg21V3gYF9vzfFdxrvIE9jpMYad/teuzpcU6iI9rnzUqdQTAYoKa8HEwmouITAKipcPP9K89TVVZKVWkJVWUleGtrAbDa7ThjYvf5vKtKVvHIwkeYWzgXgGhbNOcPO5+/DPgLEVbdzCUiIiLSmakILyIiIiIiIi3r27uhIg/iesKhN4U7ml3UrinF/fF6/CV1ANgzY4j7Ux/sqZGNHr+mqJLr31/KL7nlAGyt8lDt8RPp0K/UIp1NQXktX63cwuqiyh1TxpfV4vEH9/japGhHowX2jHgnaXFOXHb9zGgNwUAAsyXUTe6trWHxjE+pKisJFda3f1WXl2MYQYZNmsIRF14GgNVmY+WPM3cd0OQksedxJKT12OuYCqoKeHLxk3y64VMMDKxmK2cMOIMLh15IXETcXo8rIiIiIh2Hrv5FRERERESk5eT+DPOmhx4f+yjYGy9sh0uwxkfpG6sxPAHM0XbijsnCOTyp0Sme63wB/jNzHU9/tx5/0CDKYeX6owZw5v49MZs1JbRIZ7FxWzWfLy9ixvJCluS5Gz3GZIKUmIhGp4tPjwsV2SNsmla8Nfi9XnJ+WbC9W720QXG9qqyE/uMP4sgLL68/ftZbrzQ6jslsxu/1ABAMBFn8dRFxaUdQ7baAKQqTOfRldzoZe+KAvZr63+1x8/yy53lj1Rt4g14Ajso6iitGXkGP6L0v6ouIiIhIx6MivIiIiIiIiLQMvxc+vhwwYPgZ0GdSuCMCQlPPm6xmAMwuG7FH9sLv9hBzWE/MEY3/WjxvQwk3/t8yNmytBuCIQcnc+afBpMY62yxuEWkdhmGwdksVM5YX8fnyQlYXVdbvM5lgTK8EDshOoEeCix7bC+4psRHYt/8ckX0XDAYoKyzYpaD+W6E9Y/AwDvrL30LHBvx8/PC9ux2rqrSk/rHd6WLopMk4o2OISkgkKiGR6PhEzLZoaqtt9BrUDQCzxcyvP2+hrnYoFjskpkfRc3ACPQcnkto7Fksz/1t7Ah7eWv0Wzy59lgpvBQD7p+zP1FFTGdxtcDM/HRERERHpDFSEFxERERERkZYx+1HYugpc3WDy7gsmbcUwDOpWlFD+6QbiT+pLRL94AKImpO/2Ne5aH/d/vpo3528GQtNL33n8YKYMSdmrrkgRaR8Mw2B5fgWfLy9kxvIiNmyrrt9nMZsY3zuRKUNSOGJQMt2jtVb33goGA1SXl1FdWkrl76aE756ZzahjTgBC3e0vT71kt+M4o6LrH9udLjIGDcURGbWjsL79+29fOzvywssJBIJs2eBm0/JSFn1ZwrbcPGwOC+c9fGB9gX3UlEwMw6DnoESi4h17936NIJ/lfMYTi56goLoAgD5xfZg6aioT0ycqb4iIiIh0YSrCi4iIiIiIyL7bugZ+eCj0+KgHwJUQ1nB8W2so/3g9nl/LAaj8Ia++CL87M5YXcttHKyiuDE1XfMb+GdwwZSCxLltrhysirSAYNFi0uYwZy4uYsaKIvLLa+n12i5kD+3arL7zHuexhjLRj8NbWUPnbGutlpVSWlhDTLYmBEw8BwOep44m/nophBBt9fW2Fu74Ib49wEpXYDbsjokEx/bev+JS0Bq899fb7mhTjxmXbWDW7kNzVpfjqAg32xae4qHZ7iEkMzWgycHxqM979rn4q/IlpC6axqnQVAN2d3bls5GUc3/t4LGYtTSAiIiLS1akILyIiIiIiIvsmGISPr4CAF/pOhiF/Dl8ongCV326mclY+BAywmIg+uAfRh2Ts9jVbKuq47aPlfLFiCwBZ3SK576ShHJCduNvXiEj75A8EmZ9TyufLi/hiRVH9TTUATpuFQwckMXlwCocN6E50hG6wgVD3ek15OVWlJVSWleBwRtJzyDAAAn4fr1x7OVVlJXhra3d5beaIUfVFeJsjArvTibeulsi4+FBBPX5HYT2pZ2aD11701Mv7FHfAF6RgXTnde0Xj2H6z1La8Kjb8shWAiCgbPQeFppjPGJiAK6ZlbrRYU7qGRxY9wuz82QBE2iI5f+j5nDnwTJxWLVkiIiIiIiEqwouIiIiIiMi+Wfgi5P4E9ig45uHQosphULuqhPL/W0egwgtAxIAE4o7Nxtqt8aJIMGjwxvzNPPD5aio9fqxmExcdnM3lh/UlwqYuRpGOwuMPMGddCTOWF/HVqi2UVnvr90U7rEwa2J0pQ1I5uF8STrsFwzCo8deQX1VMeV05ZZ4yyurKcHvclHnKKK8rJ0gQh8WB3WzHbrGHHm//vvNju+V3+82N77eaw/MnOG9tDVVlpRiGQWJ66GakYDDAJ9Puq19/vbq8DCO4o3s9c8So+iK8xWqjurysvgBvdzobFNZTevdtcL5zH51ORHQ05lbqBHdvrWHzilI2ryghb00Zfm+QI88bTN8xyQBkj0jCCBr0HJxI957RmMwtl4+Kqot4cvGTfLz+YwwMrCYrpw04jQuHXUhCRHhnfxERERGR9kdFeBEREREREdl77nz46o7Q40m3Q9zuO85bXcAgUOHFkhBB3HHZOAfuvpN9XXEVN36wlJ83lgEwPCOO+08aysDUmLaKVkT2Qa03wPdrt/L5sgK+XZNHVcCNyVKDyVJNbJKH/mkWeiYZRLs8VHjdvJtfzrMbynDXhQrtvqCvTeO1mCx/XMxvpNj/++MaFPZNNqx+E67IGBwWBzazjc2ffYffXY3HXYHHXUFtWTm+ujoAeg3fj5NvuhMAs9lC7spleKqr6+Mzmc313euJ6T0axH7SjXfgiIwiOiERu9P1h+/TFRvXsh8cUFlax+KvNrN5eQnurQ278V2xdnzeHdPOJ6RGknBMVouev8JbwQvLXuD1Va/jCYRmVpicOZkrRl5Bz5ieLXouEREREek8VIQXERERERGRvWMY8L9rwFsJPfaHMee16emDdX58RdU4MmMBiBicSPyp/XANTcJkMzf6Gq8/yDPfr+fJb9fhDQRx2S3888j+/HV8JpYW7JgUkeYzDINaf22oG91TXt+lXl5XTrmnnOLqUn7dVkRuxTbK68oxzNWYLNWYsgJE7TROEFjlhVX5f3w+u9lOfEQ88RHxxDpiiXfEE+eIIy4iDqvJiifgwRvw4gl48AV9eAKeBtt++77z/p23+YP++nMFjAC1/lpq/btO6b77DwSyCyKJrP1/9u47vsr6/P/46z475+Rk70kGOyB7qgwBwY2ztbVV6/p219atbV1FsXtorXX8tK21FQdWQUEEZCgqyl5JIHuvk7PHff/+OOGEQNiBJHA9H488cp9zj/O5T8ZJzvu+ro8eq0+P1WvA6tVj9eqJ8umpSfKybEJ9ZPOvf5SFOXBoBbrfoPJxzRqe+Me4SNifW2RBZzSgRptQos0oNjNmowWTPohJv4tlax7oejGA24y5+dguFjjcRQXHMk+6pmm01rkJ+lWSc+xAuLnKlo8qAdDpFNIKYsktSiRneAKJmdEop6j7ij/k57Vdr/Hs5mdp87UBMDZ1LHeOvZORySNPyWMKIYQQQogzh4TwQgghhBBCCCFOzPa3YPcS0Bnhsj/CKWo/fDBN1XBvrKdt6V5QNVJ/Og69zYiiKNjGpB52vy/KWrjvjc3srnMCMH1wMo9dUURW/JErO4UQx29/oN7q6xqkt/paafG2RJYjQXvHsl/1H/3ggGKGA6NXk85EnCUuHKR3fI41xxJvCQfrBwbs+9dFGaJOWYALEFJD+FV/l9DeH/JTV1qMs6kRV0sL7tYWvK1t+FrbCTjaMSTHYr9mcmR7z0cfgDfY7fETQ9GMTE6LHL9icICA5sdlDtBu8tNqcuOyhAgatI4BEa7kDkDTgY1C3B0fp5hBMUQCeaPeGAnuozQbyc25JDTkEFOXgcltw5PeiGPW1sj2ljHZGJKDmHODuKOMlOrNVPnMGMuM3U4BsP/YBz6OUWc8pq+3qqm8v+99/rDxD1Q5w1dy5Mfm85OxP2Fa1rRT+j0jhBBCCCHOHL0ewj/99NM89dRT1NTUMHz4cH7/+99z3nnnHXZ7n8/HI488wj/+8Q9qa2vJysrigQce4OabbwbgpZde4qabbjpkP4/Hg8ViOWXnIYQQQgghhBBnFXczvHdXePm8n0LK0NPysP4qJ61vF+MvbwfAkByF2u5HbzMedh+nL8hTS3fy8idlaBok2kz8/NJhXHZOhoQpQhyDAwP1Q4LzA0P1jqB9f+h+rIH6wYw6E2adnWDAisttQg3Z0IJWtJCNhKg4Rmdkcm7+AEZlZkRC9lMdqB+N3+OmvbkpPM/6/o+W8Gd7YjIzb7o9su2Spx/E2+7o9jgx5lhuGHZD5PYHU4KEgsHIHOzRCYnYO+Zkt8bFdZ17/Yqux9I0jaAaPKSC/1gq+/dfMNBlvdpNB4DQ4Y/jD/kJap0XEAS1IMFgEHcwnPiPqJnGgOYRpLXnodc636IMKUFqvTW8v+fNzistzIAD2HIiX51O3bb513UN7+s99exp2QNAclQy3xv1PS4vvByDrtffRhVCCCGEEP1Ir/71+Nprr/HjH/+Yp59+mqlTp/Lss88yb948tm/fTk5O93MqXXvttdTV1fH8889TWFhIfX09wWDXK4JjYmLYtWtXl/skgBdCCCGEEEKIHrTsIXA1QNJgOO/OU/5wIVcAxwf7cG2oBQ0Uk46YC3KJnpqBYui+9TzAhzvqePCtrdS0hedFvmpMFg9ePJR4m+mUj1mIvmh/oN7ma4uE5QcH6geva/O1RebCPl5GnbFrNbolLlyRbo6L3B9njiMYiOLLvQHW7HLzRZkLTesM1Iek2Zk3Ip25RWkMSj117ce7o6oh3K2tOJubaG/pDNjNVhsTLr86st1z3/8OXmd7t8dIzOr6HldqXgE+t4vo+AOC9f2fE5O6bDvn9h+e8NgVRcGoN2LUG4nu0rD/9NnfDcDZ7qamtJX4QaZISL/x+UbaHOH39IzxGlF5IQy5PpQMN3G6eIaoPzrmsH//RQIHX0hw8Pft/nXtdP+12s9qsHJz0c3cMOwGrEbpliKEEEIIIY5fr4bwv/3tb/nOd77DLbfcAsDvf/973n//fZ555hkWLFhwyPZLly5l1apVlJaWkpCQAMCAAQMO2U5RFNLS0k7p2IUQQgghhBDirFW6Er78B6DAZX8Cg/mUPpzqDVL32y9QXQEAokYlEzcvD33s4R+3od3HL9/ZxrubawDITojiV/NHcN7A5FM6ViFON0/Qc0hL9wOX91emt/naIhXrJxWoH6bd+4Gt3vcH7fHm+CNWqO9rdLFkay1/21rDpsqaA9YonJMVy9yicPCel2Q7ofGerJfv+j6NleVoqnrIuoTM7C4hfHRCImooFA7V4xO6VK7HpXR9j+rqBx495WPvbZqq0VDRTvm2Jsq3NVO714Gmatz45FRsceHf3ZY5DThbfOQMTyAu5dQE3ZqmRar+D6zu77YDgBoO+zU0pmZMJTEq8egPIIQQQgghxGH0Wgjv9/v54osvuPfee7vcP2fOHNatW9ftPosXL2bcuHEsXLiQV155BZvNxmWXXcajjz5KVFRUZDun00lubi6hUIhRo0bx6KOPMnr06MOOxefz4fN1/gPqcHTfEkwIIYQQ/Y+8zgshRA/zu+GdH4WXx98CORNP+UPqLAaiihLx7XMQf3kB5vy4w26raRr//bySx9/bQZsngE6BW8/L58ezBhFlOj1z1ovT40x8jd8fqB91HvUDKta9Ie8JPdb+QD3WEhuZLz3e0hGsHxSk7w/XT7blu6Zp7Kl3smRLLUu21rCztrMaWVFgfG4Cc4vSuLAojcy4qCMcqec1VVZQtuVLxsy7rOuYVRVFp8MWF98RsIeD9fi09C7bfeNXv8NgPPy0GGeLmuJWtn5cRcX2ZjztgS7r4tNtOFt82DouoMofdeovilIUJdxyXi/dT4Tob87E13khhBBnl14L4RsbGwmFQqSmpna5PzU1ldra2m73KS0tZc2aNVgsFt58800aGxv57ne/S3NzMy+88AIAQ4YM4aWXXmLEiBE4HA7+8Ic/MHXqVDZt2sTAgQO7Pe6CBQt4+OGHe/YEhRBCCNEnyOu8EEL0sJULoGUfxGTCBT8/JQ8RavfT9v4+7NOyMCaHqyNjL8pHMehQ9IcPAPc1urj/zS2sK2kCYHhGDE9eNZKizNhTMk7Ru/r6a7w36I2E5QdXonc3r3qrt/WEA3WDznBohXo3FesHhutWg/W0tHXXNI2tVQ6WbK1h6bZaShtckXV6ncLk/ETmFqUxZ3gqKfbTP5VgY/k+PnnjNXZ9sgY0jezhI0nOGQDApXfeh9FsOXTu9W6cjQG8GlKp29eOPcFCdHw4WHc0edn9aR0ARoue7CEJ5AxPIHtYAjGJp/fCCiFE/9bXX+eFEEKIo1E0TdN644Grq6vJzMxk3bp1TJ48OXL/448/ziuvvMLOnTsP2WfOnDl8/PHH1NbWEhsbfhPljTfe4Oqrr8blcnWpht9PVVXGjBnD+eefzx//+Mdux9LdVXXZ2dm0tbURExNzsqcqhBBCnDCHw0FsbKy8Jp0EeZ0XQogeVP0VPDcDNBW+/hoMntujh9dCGs5PqnEsK0PzhjAPiif55qKj7hcIqTz3cSl/WL4HX1DFYtTxk1mD+M65eRj0h58vvrfJ6/zJOZ2v8fsD9QMr0g83d/r+2z0RqEfmTj+o9fuBLeDjLfGnLVA/Vqqq8WVFC0u21LJ0Wy2VLZ7IOpNex3kDk5hblMasoanE23qnQrl+XymfvvEauz9dG7mvcPwkzrv+RhIysnplTP2Bq9VH+fZwi/mKHc343EEmzy9gzIW5AHicfr5aVkHO8ATSCmLR9+HfwUKcSvIaf/Lkf3khhBB91bG+zvdaJXxSUhJ6vf6Qqvf6+vpDquP3S09PJzMzMxLAAwwdOhRN06isrOy20l2n0zF+/Hj27Nlz2LGYzWbM5lM7h6EQQggheoe8zgshRA8JBWDx98MB/PArezyA95W20rq4hECtGwBjZjQxF+Qcdb/Nla3cs2gLO2rCLUrPLUzi8flF5Cb2zhzS4vQ5la/xj33yGJsbNkeCd0/Qc/SdumHQGbqE5ZG507sJ0vcv24y2PhWoH6tgSGXD3maWbK3l/W211Ld3BidRRj3TBycztyiNmUNSsFt6r2rc2dzEhy88Q/Fnn0TuGzRxKhOvvI6UAfm9Nq6+zOcOsPH9Msq2NtNU5eyyzmw1oIbUyO2oaBOT5xec7iEKIc5A8r+8EEKI/q7XQniTycTYsWNZtmwZ8+fPj9y/bNkyLr/88m73mTp1Kv/9739xOp1ER0cDsHv3bnQ6HVlZ3V+lrGkaX331FSNGjOj5kxBCCCGEEEKIs8X6v0DtFrDEwbwne+ywoTYfre/txbOpAQCd1UDMhQOwjU9D0R0+iHT7g/z2g928sHYvqgZxViMPXjyMq8Zk9ssAU/Qt+xz72NG8o8t9BsXQtTr9MKH6gfOq99dA/Vj5gyprSxpZuqWWZTvqaHb5I+vsZgMXDE1hblE60wYlE2U6cjv308Vss1G9eycoCoMnncukK68jqaP9vAhzNHlwt/lJyw8XweiNOjZ/VEnQr4ICKTl2cooSyR2eSMqAGHRH+F0thBBCCCHE2arXQniAO++8kxtuuIFx48YxefJk/va3v1FeXs4dd9wBwH333UdVVRUvv/wyANdffz2PPvooN910Ew8//DCNjY3cdddd3HzzzZFW9A8//DCTJk1i4MCBOBwO/vjHP/LVV1/xl7/8pdfOUwghhBBCCCH6taaS8FzwABf+CqJTeuzQ7q/qwwG8ArYJacTMGYDeduQq2dW7G7j/zS2RFteXnZPBzy8dRlK0VEuJnnHHyDv41rBvdZlX/UwP1I+Vxx9i1e4Glm6t4cMd9bT7gpF18VYjs4elMq8onSmFiZgNvR+8V+/eyfaPP+KCm25H0ekwmi1ceMePiE1JIzEru7eH1ycEAyGq97RSvq2Z8m1NtNS6iU+zcv0vJwFgMOqZcGk+1hgTOcMSiLL3zhQCQgghhBBC9Ce9GsJfd911NDU18cgjj1BTU0NRURHvvfceubnheaRqamooLy+PbB8dHc2yZcv4wQ9+wLhx40hMTOTaa6/lsccei2zT2trKbbfdFpk3fvTo0axevZoJEyac9vMTQgghhBBCiH5P0+CdH0HQC/nTYdT1J31I1RtEZwn/Oxo9NRN/jQv7eVmYMqOPuF+zy89j/9vOG19WAZAZF8VjVxQxY0jPXRQgBMC4tHG9PYQ+xekLsmJnPUu31vDRzgY8gVBkXYrdzIXD05hXlMaEvAQMfWQO8Kqd21m/6FXKNn8JQE7RSAZNnApA/pjxvTm0PmPXp7Xs+ayOql0tBAOdLeUVBSw2IwFfCKM5fCHF6NlHnx5ECCGEEEII0UnRNE3r7UH0NQ6Hg9jYWNra2oiJient4QghhDiLyWtSz5PnVAghjtPGV8JzwRui4LvrISHvhA8VbPHS9r9SAo0eUn84GuUYwzpN03j7q2oe+d92ml1+FAVunDKAn80ZjM3cq9eWnxR5TepZ8nz2rFa3n2Xb61i6tZaPixvxBztD2sy4KOYWhYP3MTnxfaodecX2LXyy6FXKt24GQKfXM+z8mUycfx1xqWm9PLreE/CFqNrdQs7wxMjXa8UrO9ixtgYAW6yJnOGJ5AxPJGtIPJajdCQRQhyZvCb1PHlOhRBC9BXH+prUf9+tEEIIIYQQQghxarXXwQcPhJdnPnDCAbwWUGlfXUn7ygq0gAo68O1zYCmIO+q+Fc1uHnhrK6t3h+eMH5xq54mrRjA6J/6ExiKEOLyGdh/vb6vl/W21rC9pIqh21m3kJ9k6gvd0ijJj+lxrfq/Tydu/fozKHVsB0OkNDJ9+AROvuIbYlLMvfNc0jZYaN+Xbmyjb2kR1cStqUOPqe8aRmhd+o3DIpDTiUqzkFiWSkCHTLQghhBBCCNGTJIQXQgghhBBCCNG9JXeDtw3SR8HE/zuhQ3h2NNH6TimhZi8AprxY4i8vwJhmO+J+IVXjxbV7+c0Hu/EEQpgMOn44s5Dbzi/AZOgb7a6FOBNUt3pYurWWpVtr+aysmQP7JQ5Js0eC90Gp0X06pDXbbAR8PvQGA0Uz5jDh8quJST77pqpoqnayeUUl5duacLb4uqyzJ1jwOP2R2xkD48kYKBc0CSGEEEIIcSpICC+EEEIIIYQQ4lA734Xtb4Gih8v+BPrj+/dR9QVpfnUX3p3NAOhiTMRdnEfUyOSjBnnbqx3c+8ZmNle2ATAhL4EFV46gIPnIc8YLIY7NvkYXS7fVsmRrLZsqWrusOycrlrlF6cwtSiMv6cgXy/QWTdPY99UXbFyymEt+fC9mqxVFUZhz+w+IssdgT0zq7SGeFpqm0VjpxGjSE5dqBcDnDrJ9TTUAeoOOzEFxHW3mE4hLtfbpCymEEEIIIYQ4k0gIL4QQQgghhBCiK28bvPvT8PLUH0L6yOM+hGLSo/lDoFeIPjeTmJnZ6I4yf7s3EOIPH+7hb6tLCakadouB+y8aynXjsvvUnNNC9DeaprGn3smSLbUs2VrDztr2yDpFgXG58ZHgPTMuqhdHemSaplG6cQPrX/83daV7APjq/f8xcf61AKQMyO/N4Z0WXleAih3NlG9ronxbM26Hn6LzM5l2/WAA0vJiOGdWNtlDEsgYFIfRpO/lEQshhBBCCHF2khBeCCGEEEIIIURXyx+G9hpIyIdp9xzTLpqm4d3WhLkgDl2UAUVRiJtfCBoYU6xH3X9dSSP3v7GFfU1uAOYVpfHwZcNJibGc1KkIcbbSNI2tVQ6WbqthydZaShtckXV6ncLk/ETmFqUxZ3gqKfa+/XOmqSrFn3/CJ4teo35fCQAGs5lRcy6maMbsXh7dqaeGVL5YWkb5tibq9jq6TBlgMOk44CY6vY5zrx542scohBBCCCGE6EpCeCGEEEIIIYQQncrWw+fPh5cv/QMYj14VG6h30/pOCb49rURPySDusgIAjMlHD9/b3AEef287//m8EoDUGDOPXF7EhcPTTvwchDhLqarGlxUtLNlSy9JttVS2eCLrTHod5w5MYm5RGrOHphJvM/XiSI9dKBjgXw/8LBK+Gy1RjL7wYsZeMh9rTGwvj+7UcDv8tNS6yBwUnq9dp9ex85NaHA3hr2dChi3SYj6jIA69UdebwxVCCCGEEEJ0Q0J4IYQQQgghhBBhAS8s/kF4ecy3IO/8I26u+oI4PqzAuaYKVA0MCjrrsf2bqWka726p4ZeLt9Po9AHwzUk53D13CDEW40mdhhBnk2BIZcPeZpZsreX9bbXUt/si66KMeqYPTmZuURozh6Rg7yc/W5qmReYu1xuMJGZl01pXzei5lzH24suJssf08gh7lhpSqdvroHx7M2Vbm2gob8dk0XPzb85Drw8H7GPn5qKpGjnDE7En9O3OBUIIIYQQQggJ4YUQQgghhBBC7Pfxr6FpD0SnwuxHDruZpml4NjXQ+u5e1HY/AJahCcRdko8h8eiV89WtHn7+9laW76gHoCDZxhNXjWT8gISeOQ8hznD+oMrakkaWbqll2Y46ml3+yDq72cDMoSnMK0pj2qAUovrRnOBqKMSudav59K3/ctlPHyAhIxOA879xEzNvugNLdHQvj7Bn7dvSyM71NVTsaMHvCXZZF5MchbvNHwnch03N6I0hCiGEEEIIIU6QhPBCCCGEEEIIIaBuG6z5XXj5oqcgKv6wm7avqsSxdB8A+kQLcZcWEDXk6AG6qmr849MynlyyE5c/hFGv8H/TC/nejALMhv4TFArRG7yBECt3NfD+tlqW76ij3dsZ2sZbjcwelsq8onSmFCb2u58nNRRix5qVfPrma7TUVAPwxf/eZPZt3wcgOiGxN4fXI0JBlZqSNlJy7Jiiwm/HNZS3U7KxAQCzzUDO0ARyihLJHpqALdbcm8MVQgghhBBCnCQJ4YUQQgghhBDibKeGwm3o1SAMuQSGXnbEzW1jU3GuqyZ6cjr2c7NQjmE+4t117dy7aDMby1sBGJMTxxNXjWRQqr0nzkCIM5LTF2TFznqWbq3ho50NeAKhyLpku5kLh4eD94l5CRj0/W9e8FAwwPbVH/HpW/+hra4WAIs9hnEXX8GoCy/p5dGdPEejJ9JivmpXCwFfiAtvLaJwbAoA+aOT0TTIGZ5ASm4MOp3SyyMWQgghhBBC9BQJ4YUQQgghhBDibLfhb1D1BZhjwlXwSmcQpKka7o11+PY5SLh6EAB6u4n0u8ejGI4e+vmCIf7yUQnPrCwmENKwmfTcM28I35yYK4GTEN1odftZtr2OpVtr+bi4EX9QjazLjItiblEa84rSGJMT369/hjRN418P/oz6vSUARMXEMu6S+Yy68GJMlqNPa9FXtTd7+Wp5OeXbmmmtc3dZF2U34j+gg0FiRjSJGWdWi30hhBBCCCFEmITwQgghhBBCCHE2aymDDx8NL89+GGI65x32V7bT+nYJ/op2AKznJGMZGG5TfywB/Gf7mrl30WZKGlwAzBqawiOXF5ER138DNiFOhYZ2Hx9sr2Xp1lrWlzQRVLXIurwkWyR4H5EZi6L03+A9GAigNxhQFAVFUSgcPwlncxPjL7uKc2bNw2ix9PYQj4umabTVewgGQiRldXb12LyiEgBFp5CWH0PO8ERyhyeSlBWN0o8vnBBCCCGEEEIcOwnhhRBCCCGEEOJspWnwv59AwAW5U2HMjQCEXAEc7+/D9VktaKCY9MTMysGcH3tMh3V4Azy5ZCf//LQcgKRoMw9fNpyLRqT16wBRiJ5U3eph6dZalm6r5bN9zWiduTtD0uwdwXs6g1Kj+/3PTcDvY8uHH/DZ4teZfev3yR8zHoBxF89n3CXzMZr7T/ju9wap2t1K+bYmyrc14Wj0kluUyCXfPwcAe4KFsfNySc62kzUkHrPV2MsjFkIIIYQQQvQGCeGFEEIIIYQQ4my15b9Q8iHozXDpH9BQcH1STdv7ZWiecMtk6+gUYufloY8xHdMh399Wy8/f3kqdwwfAdeOyuf+iocRKECUEZU0ulmytZcnWWjZVtHZZNzIrNhK85yXZemeAPSzg87J5+VI+W7wIV2sLAJs/fD8SwvenyvdNKyrYt7mR6uJW1GDnFRM6vYKihKvi918sMenygt4aphBCCCGEEKKPkBBeCCGEEEIIIc5GrkZYck94edrdkDQQAiHaV1eheYIY02zEXV6AOe/Yqt/rHF5+8fY2lm6rBWBAopVfXTmCKQVJp+oMTjtN0wgG/BhN5t4eiugnNE1jT72TJVvCFe87ahyRdYoC43LjmVuUztyiNDLPoGka/F4Pmz54j8//9ybutlYA7EnJTLziWoZPn9W7gzuKUEDF6wrQXO0ie1hC5P69mxqo2tUKgD3RQu7wRHKKEskcFIfJIm+vCSGEEEIIIbqS/xKEEEIIIYQQ4mz0/v3gaSaUOBHdpB+iAIpRT9zlBYSavNgmpqPoj94CW1U1/v1ZBQuW7KDdG0SvU7j9/Hx+eMFALEb9qT+P06SpspwPX/gr9oRE5n3/p709HNGHaZrGtmoHS7bWsGRrLaUNrsg6vU5hUn4Cc4vSuXBYKikx/acS/Hi8tfBRKrZtBiA2JZUJV1zL8Gkz0RtOT0cMTdMIeEN43QF8rmDnZ1eAIZPSMJjCv5u2rqqk+It6vK4gPncArytA0K9GjnPTwnOxdnQBGTE9i7xzkskdnkhsSlS/nyJACCGEEEIIcWpJCC+EEEIIIYQQZ5s9y9E2vY5TvQJHwy3EftFI9OQMAKIGJxxl504lDU7ue2MLG/Y2A+F22k9cOZJhGTGnZNi9we9xs37Rv9n43tuooRAGg4GJ0+eQUDSit4cm+hBV1fiyoiVS8V7Z4omsM+l1nDswiblFacwemkq87dimduhPfG4XOoMh0iXinNkX0d7YwMQrr2PoudPRG07u7Sdniw9nixevK4DPHQ7TffuX3QGmfX1wpBp9zX/3sOWjSlRV6/ZYOcMSiEkKdx1wNHmp2t166EYKxKVYaW/2RkL4gtEpJ3UOQgghhBBCiLOLhPBCCCGEEEIIcTbxOfG+8Qyt/j8S1HIB8GxvwjYp/ZgrO/1Blb+tLuGPK4rxB1WijHp+OmcQN03NQ687M6pDNU1j17rVrHrleZwt4YsMsuKSKFy/EcfjC4h/5WWUkwwWRf8WDKls2NfM0q21vL+tljqHL7LOYtQxY3AKc4vSmDEkhRjL6akAP928Licb31vMxiVvM+nKrzHukvkADJo4hYETJqPT68NV6b4QXleA6Hhz5PdM5c5m6svbD6hUPzBgD3LdQxMwR4V/xj57dy/b11QfdhwTL82PhPA6vRIJ4PUGHWabAYvNiNka/swBv6IGjkslOdveZRuz1Yg5yoByhvwuE0IIIYQQQvQOecdACCGEEEIIIc4SwTYfbX9/F0/LjwHQWfXEzM3DNi7tmAP4L8tbuO+NLeysbQfg/EHJPH5FEdkJ1lM17NPO2dzEe3/+TWc77YQkhte3ErfqUwBM+XlogYCE8Gchf1BlbUkjS7fUsmxHHc0uf2RdtNnABUNTmFeUxrRBKUSZzpzpGCBc7e/3hENyR0MrWz96lz2ffkDQH676L934Gebo8ZRvb8bnCnRWrbsDqMFwKH7L786PBOt7vqhn+8eHD9Z9rkBk2+h4MzFJlnBA3hGmm/cH61ZjlznZR8/JYeSMbCw2Q6Tt/OEk59hJzrGf1PMihBBCCCGEEN2RdwyEEEIIIYQQ4izg/qqeltd3oQUzgBC2oRB7zSR01mOr0HX5gvz6g128tG4fmgYJNhM/v2QYl4/KOOPmRjZHR+NoqENvNHFO4VBS3n4PnceLPjaWtEcfIWbOnN4eojiNvIEQK3c18P62WpbvqKPdG4ysi7MamT00lXkj0phamITZ0D+Cd4/Tj7vN3zEPerDLZ58ryPlfGxSpBF/96i52f1aHzxNEC3kI+r4g5P0SCACQkJXDlKu/zsCJU1j16h72bW7s9jF1egWfuzNYT8+PJeRXD6hCN2KxGSLhujW2s23/+IvzGH9x3jGdW1T0mdfuXwghhBBCCNH/SAgvhBBCCCGEEGcBQ6IRLahiUnYSN2wvphueOOZ9P9pZz4NvbaWqNVzxeuXoTB68ZBgJZ8jc1pqmUbpxA3mjx6HT6TGazMz99u04n30O7d9vAGCbMoX0BQswpsq80GcDpy/Iip31LN1aw0c7G/AEQpF1yXYzFw5PZV5ROhPzEjDodad9fJqq4feFIoE2QNXuFlpq3ZH50r3uYKTFu88d4LoHJkSC9VX/2k3JxvrDHn/SFfmYOy7QCakaPnf4woOA5yNU/04AjJZUErJnMP9nV2OLswAwaHwqqbkx4bbuto5QvaN63WjWd7lgZ8jkdIZMTu/ZJ0YIIYQQQggh+ggJ4YUQQgghhBDiDBRs9uLb14ZtTCoApr1/J9n0H0y2JpQrPzumYzQ6fTzyznYWbwq3jM6Kj+Lx+SOYNij5lI37dGusKGPFi89SsW0zM2++g9EXXoJz1Src9z+A1tSEYjSS8rOfEn/DDSi60x+2itNP0zTm/n41lS2eyH2ZcVFcODyNeSPSGJMTj76H5gsPBdUD5kEP4PeGyC1KjKzf/FEltaVtnZXqB4TqGvDdv8yIBOtbVlYdMVj3eYLhOdGBKLsRS7SxyzzoB1ah7w/LXa0tDJsSy6gLsjFbjTgac1n+3J+YdOXXKBg74ZCficxB8WQOiu+R50YIIYQQQggh+jMJ4YUQQgghhBDiDKIFQrSvqsSxshJUDVOWHaNSCasWYtb5Yd7fwZZ45GNoGos2VvHYu9tpdQfQKXDz1DzunDMIq+nM+DfS73Gz7vVX+XLJYtRQCIPRRMjjpfaRR2j516sAmAcOJOPXv8YyeBAAzTUu/N4gaXmxvTl0cYopisL0wcmsLW5iblEa84rSGJEZe8RpF/ze/UH6Qa3d3UEC/hATL82PbLvynzsp29qE1x0k6At1PZDSNViv3tN6zMF6Wn4MakjtOl/6AfOmGw+YH33a1wcz7euDD3vc9uZG1ry2iC3L32fY+TOZfdv3AbDGFPCNX/3ujJuCQgghhBBCCCF62pnx7okQQgghhBBCnOU0TcO7o5nW/5USavYCYM6PBTR454cQ8kPhbBhx9RGPU9bk4oE3t7KmODyv89D0GJ68agQjs+JO8RmcHpqmsXPdala/8jzOlmYACsdPYvKU6bQ/toCW0lIAEr79LZLvvBOd2YzH6eezd/ay9eNq4lKi+NpDE9D1Qgtycfo8ePEwmssctDf58O1p57OvWiLzpXvdAbSQxqU/HBXZfslft1C5s6X7gykw4eK8SLDudQVxtvi6rDdHGSKhecAfwmQJv10zaEIqafkxkZbu4YC9M1w3GDuD9VGzchg1K+ekztvR2MCGt19n64r3CQXDLeibaypR1RA6XfixJIAXQgghhBBCiKOTEF4IIYQQQggh+rlAo4e2d0rw7gqHgPoYE7GX5BM1Ignl8xegfD0YbXDJb+EwAVowpPL8mr38bvluvAEVs0HHj2cN4pbz8jCeQYHzqlf+zhfvvg1AXGo60791C3FfbaH+9u9CIIAhOZn0JxYQPXUqoYDKlx+U8/mSffg9wY59rPg9ISzRZ85zIg5lMer57H/7jhisa6oWCdYtNiM6g4LFauwyF7qlY250NaRFWthPuCSP0XNyItuYogzoDtPePn/U6Zn6oa2+jg1v/5etHy1HDYW/1zOHDGPyVdeTM+IcCd6FEEIIIYQQ4jhJCC+EEEIIIYQQ/ZgWCNHw9Feo7iDoFeznZWGfkY3OrAdHNSz7RXjDC34Ocd1XyW6tauOeRZvZVu0AYHJ+IguuHMGAJNvpOo3TZuh5M9n84QeMv+xKRo2bQv1DP6d+wwYA7LNnk/bIwxji49E0jTd/u5G6veHnJCk7mnOvHkjmYJnv+myRkhsD0DlfurWzCt1iNaJpGgrhcHrWzcPQ6ZRjCqsTMvrez9WWFR+weflSALKHjWDy1V8na9gICd+FEEIIIYQQ4gRJCC+EEEIIIYQQ/YymaZFwTDHqsU/PxlvcStyl+RiTrfs3gnd/Cv52yBwHE2495Dgef4jfLd/N82v2ElI1YqOMPHDxUK4Zm3VGhG/7W8+3NzYw4fJwG/7UvAJue/pFfCtXUX71Najt7ShWK2kP3E/slVd2Pq+KwpDJ6bQ3e5l0eQFDJqVFqp7F2WHy/IJj3lbfz7pFtNRUEfT7Sc7NA2DsxZfTUL6X8ZdcSdawol4enRBCCCGEEEL0fxLCCyGEEEIIIUQ/Eqhz0fp2CfYZ2VgGhquyo8/NJPq8zK7B+fa3Ydd7oDPCZX8Cnb7LcdbsaeT+N7dQ3uwG4JKR6fzi0uEk282n7VxOpcaKMla88Fcqtm9Bp9dTMHYiiVnZhNrbaXr0URyL3wHAcs5IMhcuxGdPZflL28kbmUzh2BQAhk1NZ9CE1Mj83EL0d83VlXz6xmvsWLOKzCHDuO6XTwAQZY9h/t0/7+XRCSGEEEIIIcSZQ95JEEIIIYQQQoh+QPUGcSwvx7muGlQN1RvEXBiHoiiHVmh7WuC9u8LL590JqcMiq1pcfh57dweLNlYCkB5r4bErirhgaOrpOpVTyu9xs+71V/lyyWLUUAiD0cTE+dcSm5KK+/PPqb77HgLV1aDTkXTHHcTefCtfrqjmy2WfEAqo1Ja0kT86GZ1OQafXYepnFc5CdKexooxP3/wPO9etDnfJAExRUQS8XowWSy+PTgghhBBCCCHOPBLCCyGEEEIIIUQfpmka7q8aaHuvFLU9AIBlWCJxl+QfvmX8Bw+Bqx6SBsF5P40cZ/Gmah55ZztNLj+KAt+alMtdc4cQbe7//xrubz2/+pXncbY0A1AwbhIzvn0rMfEJNPz5LzQ99xyoKsasLNKeeJJyXxr/e+Rz3A4/ABkD45h6dSE6aTsvzhCNFWWsf/1Vdn+6NhK+F4ybxOSrvkZqfmEvj04IIYQQQgghzlz9/50WIYQQQgghhDhD+WtctL5djH+fAwBDUhRxl+ZjGZxw+J1KV8GXr4SXL/sTGMxUtrh58K2trNzVAMCg1GgWXDmSsbnxp/oUThuPo41lf/szAa+HuNR0Ztx0G/mjx+Pbu5d93/0+3q1bAYidPx/tGz/gf29V0FS5E4CY5CimXllI3qikw1/YIEQ/VL+3hN2frAFg4IQpTLrqa6QMyO/lUQkhhBBCCCHEmU9CeCGEEEIIIYToo4KNbvz7HChGHfYLcrCfm4liOEJ79IAH3vlReHn8LYSyJvL/1uzl1x/swu0PYdLr+P7MQu6YVoDpSMfpJ4J+PwaTCQBrbBznff1beF1Oxl96FXqjkZbX/kPdE0+geTzoYmNJf/hhYuZeSMWOZpoqnZiiDIy/eAAjpmWhN/b/50OIutJi3G2t5I0eB8CQqdOoKd7NyFlzSc4Z0LuDE0IIIYQQQoiziITwQgghhBBCCNFHaKpGsMmDMdkKQFRREjFzcrGOTcUQaz76AVY+AS17wZ7BrqI7ufuZdWyqaAVg/IB4Flw5ksKU6FN4BqfHga3n5373TnJHjgJg9NxLAQg2N1P54EM4V6wAwDD5fAy33EXM1HD77eyhCUy7fjAFY5KJijb1yjkI0ZNq9uzikzf+TenGz4hOTOI7f3gOg9GITq/ngpvv6O3hCSGEEEIIIcRZR0J4IYQQQgghhOgD/BXttLxdTKjZS9rPxqGzGlEUhZiZOcd2gJpNsO5PALyR8RPufnYTQVXDbjZw70VD+Pr4nDNirvPGijJWvPBXKrZvAWDjkrcjITyAc/Vqqu9/gFBjI5rJQuvXHmB7Qwrqf6r4RlE2to6LGYrOz+yN4QvRo6p27eCTRa+yb9NGABRFR86wEQS8HgxGYy+PTgghhBBCCCHOXhLCCyGEEEIIIUQvCjn9ON4vw/V5LWigmPX4q11YCuOO4yBBWPwD0EJ8ZJjKnZsyAY0Lh6fy8GVFpMVaTtXwTxu/x836Rf9m43tvo4ZCGIwmJs6/lnGXXgmA6vVS/9SvafnnP9GA1qILKSmcj6M8BARJzIzG6wxEQngh+rP6faWseuV5yrduAkDR6Rh2/kwmzr+W+LSMXh6dEEIIIYQQQggJ4YUQQgghhBCiF2ghDdeGGtreL0PzBgGwjkkhdl4eevvxtUj3fPwnomo20arZuMv5TVLsZh65fDhzi9JPxdBPu5IvPmX5c3/B2dIMQOH4SUz/1q3EpqQC4N2xg6q77sJfXEJ7dDZ7p36XRl8MtIaIijEx6fJ8hkxOPyM6AQgBoAaDlG/dhE6vZ/i0C5hwxbXEpab19rCEEEIIIYQQQnSQEF4IIYQQQgghTjMtoFL/zFcEql0AGNNtxF1egHlA7PEdR9NY9ckGJq38FQCPB7/BnIkjuGfuEGKjzpxW1KFAAGdLM3Gp6cy86XbyRo8DQFNVml98ifrf/x4CAUJpOXwx7B5UH+iNOkbNymbMhbmYLPKvr+i/NE2jfMsmmmsqGX3hJQCkFQ5ixo23UzhuIjHJKb08QiGEEEIIIYQQB5N3IoQQQgghhDgMTdPQ/CqqK4DqDqC6g6iuACFXAM0XwphqJaooKbJ9oNGDLsqALsqAIhW34ggUow5Tpp1gi4/YC3OxTUg/7u+Z2jYvD721hW8X/wSL3s9G/UiuvuEeJhYkHX3nPs7vcdNUWUH6wMEADJw4lbnf/QmDJ5+HwRTuEhCoqaH63vtwbvgMnaYSfcEFpD/6CK0rmvA4/Ey6ogB7Qv9vwy/OXpqmsW/TRtYvepWa3TvRG40MHD+Z6IREAMbMu7SXRyiEEEIIIYQQ4nAkhBdCCCGEEGcVLagSqHWFA3V3OFAPh+zh2+YBsURPCc+nq7oC1Dz26WGPFXVOciSE10Iadb/+PLJOsRjQ2cKBvM5qxJwfS8z07Mh696b68DZRBvRWIzqrAcUi4f2ZSgupONdVEzU0EUNSFACx8wYQM3cAetvxVayrqsY/N5SzcMlO5gaXc65xGwGdmeG3v4g5pX8H8JqmsWvdala98jyhYJCbfv8sUdF2FEVh+LQLIts5liyh+hcPUx01hNJJjzLjXMi6eT6KojD1ynj5ORL9mqZplG78jE8WvUptyR4ADEYTI2fNRWeQt3GEEEIIIYQQoj+Q/96EEEIIIUS/o2kaqKDow0Gb6g/h3d50SKC+f9kyLJHY2bnhbb1B6v/81eEPriiREF63v523QQkH5baOD6sBncWAKdveOSZfEMWsR/OFwre9QULeIKGO9bqozj+9tZBK86u7unns8HaWoYkkXDMocnfrkr3ojDp0HWG9zmrsCPcN4fFIq+0+zVvcQuviEoL1HnzFrSTeOBxFUdBZj79dfHF9O/cu2sLnZS0k08rPo/4FGhgveABSCk/B6E+fxooyVrz4LBXbNgMQl5pOe2MDUdGdP2chp5O6Rx9j38ptFA+8g3Z7DgClSioFSvj3gQTwoj9rKN/H0qd/R/3eEgAMJjPnzLmI8ZdeiS0uvpdHJ4QQQgghhBDiWMm7dUIIIYQQoldpmoYWUFHdARSdDn1MuNW06gnSvqbqkFbwqitAyB3ENj6V+MvDoaPmD9H8725C7Q6GFGtkWRdlRB9j6gzTbcZwqN1x25hqi2yr6BUyHpmCYtShKEcO9nRWI5kPT0ELqaieYOeFAO7wsj7O1HnOQRVzYVyX9Zo/BBrh5aDauW1Ixbmq8rCPax4UT/LNRZHbDX/fgmLQhc+towo/HNwb0MdbMOfEdHnuj3Ze4sQFW320vVuKZ0sjADqbocv0BcfDFwzxzMoSnv6oBH9IxWbS85/0t7DXOSFtJEz6Xk8O/bTye9yse/1VvlyyGDUUwmAyM/GKaxh36ZWR1vMA7o0b2fPAE+yyTqJh9BwATBY9Yy8awMgZWb01fCF6lDUmlubKCoxmC6MuvJhxl8zHGhvX28MSQgghhBBCCHGcJIQXQgghhBA9SvWHOqrQwyG03m7CmBYOtkNOP62LSzoDdXeAkCsIHaGzbXJ6Z7CuarR/WH74x3EHI8s6qxFzQWyXMF1nNaLvqFzXx5sj2yp6hfT7Jx7z+ehM+uM6f0WvQx9tQh9tOuw2OrOB5FtGdLlPC+4P7wMoBl3nClXDPj07/Jx6ugb7qieAztq1wt5X3HrYxz04sK959BNQlM7q+gOCe2OaDdu41Mi2gVoXilkfbptv0kt4fwRaUKX940raV1SgBVRQIHpyBjGzck6o+v2LsmbuXbSFPfVOAGYMTubXI6tJfOcDUPRw2Z9A3z//tfN73Lz40+/ibApfqFA4fhLTv3UrsSmd33taIEDjM8/w2Xv72JdzC5rOgKLA8PMzmXBJHlH2w/+sCdGXqWqI3Z+spWrnNi64+f8AsMXFc+md95FWOAhrTGwvj1AIIYQQQgghxInqn+/UCCGEEEKI0+LgQH1/JbohzYalIA6AYJuPppe2RcJhLaB2OYZtUjrxV3S0yVYUPJsbu38wvQKqFrmpizJgm5R+SKAeCYyjO8NMRaeQfOvIHj33000x6NDbTegPChQVo57YuQMOu592wHMGkPjNoV3Dek/HBQ+eIKaMzip/LaRGLmRQXQHA0+U45kHxXUL4+mc2RVrto1e6VNmbcmKIuygvsq37y3owKOiijF0C/mPpKHAmcH5ag+P9MgBMA2KIu6wAU0b0cR+n3Rvgqfd38conZWgaJNpM/OKy4Vw62Ibyl2+HN5ryfcgY1YOjP71MUVbyzhlDxbYtzLzpdvJGj+uy3r9vH1V334N382aMGeeh6QzkDIll6rVDSDjg+1mI/kRVQ+xa9zGfvPEazVUVAAw9dwYZg4YAkD9mfG8OTwghhBBCCCFED5AQXgghhBDiLKGFNELt/s727h3zpYc6bpvzYrGOTAYg2OSh7vcbDwnU97NNSo+E8IpBR6DG1XUDvRKuQLca0B8QluuiDMRekh8O1Lu0gj+0ulrRKZ3hvTisA+e/VvS6Y293rlNIv28Cqif8PaB5goQOqLI3JFkim2qqFp7vPqhCSIOQhuoMoDoD4UOZu3YLaHmzONxe/2B6BUthHEk3dVbjt763N3yMjpb5Bwb3+mjjIRcl9FWaqkW+FtET0vFsaSR6YjpRo5JP6MKDZdvreOitrdQ6vABcPTaLBy4aSrzNBO/+FNqrIT4Ppt/Xo+dxqvk9btYv+jcjZ80lPi0DgGk33ILeYOjSel5VVbb9dTGO/75GQs1mdDExjL/zCoYOHE3WYJkXW/RPaijEjjUr+fTN/9BSUwWA2WZj7EVXkJApUyoIIYQQQgghxJlEQnghhBBCiH5M9Yfwlzki1eqhg+ZPjxqeSPTkcNAVbPZQ95svDn8wjUgIr4sydAbweqWjEt0Qafd+YFWvLspA0k3Djxio76foFOznZvbcEyBOmKIo6GPN6GPNHK1BuqJTyLh/IpqmoQXUg+a7P6glvqp1ne/eE/68P7w/mOuTmu4De8CUbSfle6Mitxue34IW1NBbu851r7Ma0ceZsQzsDGe1kIqi13Vz1J6l+kO0r6rEu7uFlDvOQdErKEYdybePPKHwvb7dy8OLt/PulhoAchKs/Gr+CM4d2HFxRfkn8Nnfw8uX/RGMUT11KqeUpmnsXLea1a88j7OlmaaKMq6872EAzFZrl23rtlex8k8f06ilYMmZz4xsC9lP/gpjejpxvTB2IXpCS00Vbyz4Ja114Z9tS7SdcZfMZ9SFlxzyMyCEEEIIIYQQov+TEF4IIYQQopdpgRCa1jn3eMgVwLO5AdUV6AjVg10q123j04i5ICe8rcNP4/NbD3tsQ2JnNbPeZowE6jqr4ZD27qbcmMi2isVA2t3jwy3EzUee/1vRKVgGJ5zs0yD6AUVRUEz68PdqnLn7bXQKSd8a1uU+TdPQ/CqqJwBa1/vtM7LC0x14ugb7qifYZcoBAH9Z++ED+xx7lxC+duHnkQsEdFZjR/v88LIhOQr7eZ1Vp/4qJ4pBiWynGI4e3muahndbE63/KyXU6gPAs60xciHL8Qbwmqbxn88rePzdHTi8QfQ6hVvOy+PHFwwiquN3A0EfLP5BeHn0DZB3/nE9Rm9prChjxQt/pWL7FgDi0tIZPffSQ7ZztflY+7f17CkOgpKCTg2Ql2cg696/YbQc7VIRIfq2mOQUQqEgUfYYxl16JaPmXIQpSsJ3IYQQQgghhDhTSQgvhBBCCNGDtECIUEcVus5qwBAXDsFDbT4cKysOCdRVVwAtoGKfkU3shQPCx/AEaX275LCPEXL4Ist6mxFDqvXQ+dI7bhtTOt/gV6IMZD429ZjCQUWnYEiwHHU7IY6FoigoZv0hbesVRSFmRs4xHyfxhqGHVOGHw/sghuSuFeGqJ/yzFWrzE2rzd1lnyrF3CeGbXtkeCdKB8IUGVgO6KAPGjGgSrhkUWef6og5UDffmBnx7WgHQx5qJvSTv2KcCOMjeRhf3vbGZT0qbASjKjOGJK0dSlBnbdcOPfwONu8GWAnMePaHHOp38HjfrXn+VL5csRg2FMJjMTJx/LeMumd+l9XzAH+KrpXv5YsleQpoeFB1prp2c/71zSZ40shfPQIgTEwwE2PrRMnav/5irHngUvcGA3mDkirseIj4tA6NFXl+FEEIIIYQQ4kwnIbwQQgghxAkKNnloeav4kEB9P/v0bGLnDgBAC6i41tcc9liqOxBZ1kUbiSpK7Gzv3tHiPTzHerjtdmTbKANpPxl7TOM9kdbYQvQlB1a6H036fRO7hPSRZVcA3UHzzOuiDGj+EKonCBpo/hAhf4hQqw/F2LUq3vFBGaG2jsBer2A/Pwv7jOxIJ4vjEQip/G11KX/4cA/+oIrFqOOnswdz09QBGA5upV+3HT7+bXj5oqcgqu/Pi755+VK++N+bABSOn8yMb99KTHLKIdtVrNrKhveaAD0xjr2MyW9n6O9uRxfVP1rtC7Ff0O9ny4r32fD26zibmwDYtW41w86fCUDKgPzeHJ4QQgghhBBCiNNIQnghhBBCiJOwvxK2C50SniNb3xl66+ymcFB3UKCus4aXlQMqhHUWA4nfHHbocYUQx0wXFa5kPxapPxoDhOez17wdoX1He3wOak1vGRRPyOFDZzNin5mDMenEguJNFa3cs2gzO2vbAThvYBKPXzGCnMRu2lOroXAbejUAgy+GYZef0GOeDqFgEL0h/LyPmnsp5Vs3MXrupeSNHtdlO1ebD6vdSPP/exn/b39LRt7VJIZqGH3XddinT++FkQtx4gI+L5uXv89n7yzC1RLuaBGdkMiEy69m4KSpvTw6IYQQQgghhBC9QUJ4IYQQQogTpI8xEX/NoHCgbusaqB9cda4z6yPt5oUQfZOiU1A6uk8cTvxVA0/qMVy+IL/5YDcvrduLqkGc1chDFw/jyjGZh+9W8dnfoepzMMfAxb+GPtjVYn/r+Yptm/nG479Fp9djMBq58r6Hu2zX1uBh/ZvFlG9rYrrjNULrVwIwLrOW9Mcew5CY2AujF+LEuVpbePnuH+BuawXAnpTMxCuuYfj02RiMh/9dIoQQQgghhBDizCYhvBBCCCHECVKMemxjU3t7GEKIfmLlrnoeeHMrVa0eAK4YlcFDlwwjMdp8+J1aK2B5R5A965cQk3HqB3ocNE1j57rVrHrl+UgFcOnGzygcP6nLdj53gM+XlLH5owrUoAaaSlWJi3SLhdR77yXuumv7zZQZ/pCfoBrEauyma4E4K6hqCJ0u3MHGFhdPYlYOBpOZifOvYfi0C9AbJHwXQgghhBBCiLOdhPBCCCGEEEIIcQo1OX08+r/tvPVVNQCZcVE8Nr+IGYMPnR+9C02Dd++EgAtyJsPYm07DaI9dY0UZH77wDJXbtwIQl5rOzJtu79J6Xg2pbPu4mg3v7MXrCgAQ37yDgSVvkDQgnoyX3sCcn9cr4z8Ra6vWsmDDAs7NPJd7J9zb28MRp5nP7ear9//HpuVL+OaC32ONiQXgou//lKiY2MhUDEIIIYQQQgghhPyHKIQQQgghhBCngKZpvPllFY/+bzst7gA6BW6cksdP5wzCZj6Gf8W2LoI9H4DeBJf+EXS6o+9zGoSCAT5+9WW+XLIYNRQKVwBfcQ3jLr0Sg8nUuV1I5b+/+pymKicANn8jBTv/Q2LLdpJuvZXk738P5YDt+7IaZw0LP1vI8vLlAHiDXn44+odSDX+W8LqcfLnkHb547y18LhcAW1Z8wMQrrgHC878LIYQQQgghhBAHkhBeCCGEEEIIIXpYRbOb+9/cwsd7GgEYkmbniatGMio77tgO4GqCJXeHl8+/G5IHnZqBngCd3kBt8W7UUIjC8ZOY/q1biU05dGoOvV5H5qBYnLWt5O56g4yqjzGnp5HxystYx43r5sh9jz/k5/9t+3/8bfPf8Ia86BU91w+9nu+e810J4M8CHmc7G99bzJdLFuNzh8P3hIwsJl15HYOnnN/LoxNCCCGEEEII0ZdJCC+EEEIIIYQQPSQYUnlx7T5+u2w3nkAIk0HHjy4YyG3n52PUH0cl+/v3g7sJUobB1B+dugEfo8aKMuyJyZitVhRFYdYt36W9saFL63m3w8+n75RSdH4mydl2/GVlpL7xGLHbtmEMeoi59FLSfv4Qeru9F8/k2K2pWsMTG56gzFEGwNjUsTww8QEGxg/s5ZGJ0yHg8/Lij2/H0+4AIDErh0lXfY1Bk6ZG5oMXQgghhBBCCCEOR0J4IYQQQgghhOgBW6vauO+NLWypagNgUn4Cv5o/gvzk6OM7UPFy2PxvQIHL/gSG3mvZ7nO7Wf/6v9i4ZDFj5l3K9G/dCkBSdi5J2bkABP0hNq2o4IslZQR8Idrq3UzP2Uvt479Cc7sx2+2k/eLXxF5yca+dx/Godlaz8LOFfFj+IQBJUUn8bNzPuCjvIhRF6eXRidPFaLYwaNJUqnftYNLVX2fg+MkofWRKCCGEEEIIIYQQfZ+E8EIIIYQQQghxEjz+EL//cDd//3gvIVUjxmLggYuHcu247OMPbX1OeOcn4eWJd0BW77Rt1zSNnetWs+qV53G1NAPgaGxAU9VIEKlpGns+r2P9myU4m30AJGdaySteTM2zrwFgHTeOjCefwJiZ2SvncTz8IT8vbXuJ5zY/F2k9/42h3+D/zvk/ok3HeSGFOCNM++Z3MJhMEr4LIYQQQgghhDhuEsILIYQQQgghxAlaW9zI/W9uoazJDcDFI9L5xWXDSLFbTuyAH/0K2sohNgdmPtiDIz12jRVlrHjhr1Rs3wJAXGo6M2+6vUvr+dq9baz5zx7q9oZbdUfHmxk9LITluXsI1deDwUDyj35I4s03o+j7fuvuNVVrWPDpAsrbywEYlzqO+yfeL63nz3JGywn+HAshhBBCCCGEOOtJCC+EEEIIIYQQx6nV7efxd3fw3y8qAUiLsfDoFUXMHpZ64get/AI+fSa8fMnvwHz6q693rl3Fkr/8FjUUwmAyM/GKaxh36ZUYTF1b4jeUtVO314HBrGfMrEwyNr+B4/EXCQGmvDwyfv0UUcOHn/bxH68qZxULNyxkRcUKAJKjkvnZuJ8xL2+etJ4XQgghhBBCCCHECZMQXgghhBBCCCGOIqRqVDS7Ka53squunRfX7qXR6UdR4JsTc7l77mDsFuNJPEAAFv8ANBVGXgcDZ/Xc4I9D9vCRGExmcopGMv1btxKbEr6owO8J4mjykpQVvjBg2HkZuFp9DMr20/rwT3Hs3g1A3Ne/Rurdd6OLiuqV8R8rX8jHS1tf4rktz+EL+dArer459Jvccc4d0npeCCGEEEIIIYQQJ01CeCGEEEIIIYTo4A2EKGlwUtLgorjeSUm9k+J6J3sbXfhDapdtC1OiefKqEYzNTTj5B177B6jfBtZEuHDByR/vGDVWlLFnwzomX/V1AGxx8Xz7138hJikZADWksmNdDZ8uLsVoMXD9zyeiN+rQKTCobQ31P/8tmt+PPiGB9Mcfwz5jxmkb+4n6uPJjFmxYQEV7BQDj08Zz/4T7KYwv7OWRCSGEEEIIIYQQ4kwhIbwQQgghhBDirNPq9lPcEbAX1zspaXBS3OCkssWDpnW/j9mgIz85msKUaMbkxHH9xBzMhh6Y77xxD6xaGF6e+wTYEk/+mEfh97hZ9/qrfLlkMWooRFrBIPJGjQWIBPDl25tY+3oxzdUuAMxWI+0tXmyak5r77sO1bh0A0dOmkf74YxiSkk75uE9GlbOKJzc8yUcVHwHh1vN3jb+LuQPmSut5IYQQQgghhBBC9CgJ4YUQQgghhBBnJE3TqG7zdla0Nzgjy00u/2H3i7MaKUyOpqAjcN//kREXhV7Xw2GtqsI7P4KQDwpnwYhrevb4B9E0jZ3rVrPqledxtTQDUDh+EgkZWZFtmqtdrF1UTPm2JgDMNgMTLslj+PmZuFZ8yN6Hfk6otRXFYiH1nruJ+9rX+nSI7Qv5eHHri/x9y9/xhXwYFAPfHBZuPW8z2np7eEIIIYQQQgghhDgDSQgvhBBCCCGE6NcCIZWyJtcBVe2uSHW72x867H4ZsRYKDgjZ94fuiTbT6QuVN/4/KFsLRhtc8js4hY/bWFHGihf+SsX2LQDEpaYz86bbyRs9LrJNS62Lfz+2AU3V0OkVRkzPYtxFAzDhp/bnD9G26A0ALMOGkfHUQswFBadsvD1hdeVqntjwRKT1/IS0Cdw/8X4K4vr2uIUQQgghhBBCCNG/SQgvhBBCCCHEcWqqqqBi2xbiUlJJLRxEVLS9t4d0VnD6gpTsbx2/v5V8g5PyJjdBtfse8gadwoAkW7iyPcUWDtyT7eQn27CZe/nfIUcNLPt5ePmChyAu55Q9lKqGePvXj9FaW4PBZGbiFdcw7tIrMZhMaJoWueggPs1G9tAEDEYdk+cXEJdqxbNpE6V33U2gvBwUhcRbvkPyD36AYjKdsvGerMr2Sp787ElWVqwEICUqhbvG38WFAy7s01X7QgghhBBCCCGEODNICC+EEEIIIcQxCHi97Fr/MVs+Wkb1ru1d1uWNGsuV9z0cuR0KBtAbjKd7iGcETdNodPojAfuBoXtNm/ew+9lM+nBVe3J0pLq9IDma3EQrRr3uNJ7BcXjvZ+BzQOZYmHBbjx9e0zTQNBSdDp1Oz7Rvfodtq5Yz/Vu3EpuSiqZpFH9Rz+dL9nHZD0dhjQmH6vPuKMJg1KMFgzT85S80Pv0MhEIY0tPJeOIJbBMn9PhYe4ov5OOFrS/w/JbnI63nbxh2A7efc7u0nhdCCCGEEEIIIcRpIyG8EEIIIYQQR6FpGi/f8wNaa2sAUHQ6MocMw9ncRGttDdbYuMi2aijE07d8g9iUVNIKB5FWMIi0goEkZeei0+t76Qz6npCqUdni7lrV3tFKvs0TOOx+SdFmCjsq2g+csz0txtK/Kpy3L4ad/wOdAS77E+h69nujsaKMD194hiFTpnHO7HlAeO73wvGTAKjb62DNf/dQW9oGwJfLypl6VSEABqMef0UF1Xffg+fLLwGIuegi0n7xc/SxsT06zp60unI1Cz5dQKWzEoCJaRO5b+J90npeCCGEEEIIIYQQp52E8EIIIURPU1Voq4D43N4eiRDiBHmc7ez5ZC1FM2ej0+lRFIXC8ZMp3rCeohmzGT7tAqITEiPbBn2+yL5NVRX4PW4ayvbSULaXLR++D4DBZCYlr4CiGbMYMWNOr5xXb/AGQuxtPHC+9vDnvY0ufEG1230UBbLjrZGAPdJKPtlOrPUM6DDgaQ1XwQOc+xNIHd5jh/a53ax//V9sXLIYTVVpra2haMZs9Ibwv37tzV7Wv1nCns/qADCYdIyek8vo2eFW+Jqm0fbW29Q99hiqy4UuOpq0X/yc2Esv7bEx9rTK9kqe3PAkKytXAtJ6XgghhBBCCCGEEL1PQnghhBCip614FD77O1z9Agyc3dujEUIcI01VKd+6mS0ffUDxZ+sJBQLEJKcw4JwxAEy55nrO/8ZNh4R6UdF2OGBO+KTsXG57+iVqi3dTW7L/oxi/x031ru0MOGd0ZNv25kY++OsfOyrmB5JWMAhbXPzpOeEe1uYOUNzQTkm9i+IDqtsrWtxo3U/XjsmgIz/p0Kr2vCQbFuMZ3DVg2c/BWQeJA+G8n/XIITVNY+e61ax65XlcLc0AFI6fzIxv3xoJ4De8U8rGD8oJBVRQYMikNCZeVkB0vBmAUGsrNb/4Je3vhy8ciRo7lownn8SUldkjY+xp3qCXF7e+yPNbpfW8EEIIIYQQQggh+hYJ4YUQQoietPm/sOa34WVPS++ORQhxTNqbGtm2cjlbPlqGo6Eucn/ygHwOTI+NZssxHU9RFOyJSdgTkxg4cQoQDviba6qoK9lDSl5na+zaPbvZt2kj+zZtjNxnT0wmrTAcyBeOn0xCRt8JQDVNo9bhPah9vJPieheNTt9h94uxGDqr2g+Yrz0r3oped5ZVKu/9GDb+v/DyZX8E47F9Xx1Jc3Uly577M5XbtwIQl5bOzBtvJ2/0uC7bed1BQgGVjIFxnHvNQJJzOi8eca1fT/W99xGsqwODgeTvf5/EW29B6aNTKKyqWMWCDQuoclYBMDF9IvdPuJ/8uPxeHpkQQgghhBBCCCGEhPBCCCFEz6n8At7+Xnj53J/AyGt7dzxCiKNqqqzg//3se2hauC262WpjyLnTGTFjNqn5hT32OIpOR2JmNomZ2V3uTy0o5ILvfDdSNd9UVUF7UwPtTQ3s+XQd9qTkSAjfVFlB+bZNpBcMIik3D4Px1LVlD4RUypo652svqXdS3BD+7PKHDrtfeqwlErAXdLSRL0yJJinaJG3BAQIeeOeH4eVxN0PulJ45rNdL5Y5tGExmJs6/lnGXzMdgMlGxsxlrjInEjGgAJlycR9bgePLOSYp8PVS/n4bf/Z7mF18EwDRgABlPPUXUiKIeGVtPq2iv4MkNT7KqchUAKdYU7h5/N3Ny58j3mBBCCCGEEEIIIfoMCeGFEEKInuCohn9fDyEfDJoHM3/e2yMSQnSjqaqCpspyBk2cCkBCZhYJmVlExcQwYsYcBk6ccswV7z0hJimFUXMugjkXAeD3uKkrLaa2ZA+1xbvJGDg4sm3pxg2s/mc4KNUbDCTn5nW0sQ9/JGRkouh0x/X4bn+wo318e0fYHm4lX9bkIhDqvoe8QaeQm2jt0j6+MCWa/ORoos3y78URrXoSmkvBng6zfnnCh9E0jcbyfSTn5gGQml/I7Fu/T+6IUcSmpNJS62Ldoh3s29JE5uB4Lv/xKBRFwRJtJH9UcuQ4vj17qLrrbnw7dwIQd911pN5zNzqr9aRO81TwBr28sPUFnt/yPH7Vj0Ex8K3h3+L2kbdjNfa98QohhBBCCCGEEOLsJu+SCSGEECcr4AkH8M5aSB4KVz0HxxmECSFOnYDXy65P1rBlxQdU79qOKcpK3jljMVosKIrCNx7/LUbL6Qvej8QUZSV7+Eiyh488ZF1McioDRo2ltmQP3nZHOKgv2QO8C8D1j/+G9MJwaO9oqIeOtvgATS5/pJo90ka+3kl1m/ewY7Ga9F2C9oLk8NztOQk2TAb5HXfcajbD2j+Gly/+DVhiT+gwjRVlfPjCM1Tv2sm3f/1nEjKyABh5wYV4nQFW/3s3W1dXoakaOp1CYoYNNaShN3RWiWuaRss//kn9r3+N5vOhj48n/fHHsM+cedKneSqsrFjJExueiLSen5Q+ifsm3kd+rLSeF0IIIYQQQgghRN8kIbwQQghxMjQN3v4+VH8JUQnw9VfBbD/6fkKIU0rTNOpK9rBlxQfsXLcKv8cDhNvCZw0rwuN0RIL3vhLAH83gyecyePK5aJpGW30dtSW7I23sGyvKSMzOo6LZTXG9ky3/eZ7AtrX4jTbqLClU6ZOoM6dQZ07Bp+96vknRJvL3h+0HhO5pMRZ0Z9t87adKKAiLfwBaCIZdAUMuPu5D+Nxu1r/+LzYuWYymqhhMZur3lpCQkUUoqLJlZSWfv7cPnzsIwICRSUy5soD4NFuX4wTq66m5/wFca9YAYDvvPDJ+9TiG5ORDHrO3VTgqeOKzJ1hduRqAVGsqd42/S1rPCyGEEEIIIYQQos+TEF4IIYQ4GR//Bra+DjoDXPcKJOT19ojEaaL5/fj27sWQmIg+Ph5Fr+/tIYkDbHxvMStffi5yOy41naIZsxk+7QKiExJ7cWQnzx9SqdWslEQPpDgjnWLjWIrj2/nTox/iC4bntp9TX89AFEwBF9mBvWSzN7K/ak8k86aHGJSZQGFKNLEWw3G3sRfH6dNnoOarcPX7vIXHtaumaexcu4pV/3gBV0szAIXjJzPj27cSk5wCwK5Pa1n7ejEAiVnRnHt1IVlDEg45VvuHH1Lz4EOEWlpQzGZS7rqL+G9c3+cCbW/Qy/Nbn+eFLS+EW8/rDHx72Le5beRt0npeCCGEEEIIIYQQ/YKE8EIIIcSJ2vkurHg0vHzRUzDg3N4djzit/JWV7L38ivANnQ59fDyGhAT0SYkYEpMwJCagT0wKh/SJCeH7khLRJyaiM5l6dexnGk1VKd+2GbPVRlrBQAAKxk1kzb9fZuCEyYyYOYesoUX9Lmh2eANdWseXdLSSL292o3Y/XTsmg478JBvGETegSzCRpbZgd1QTrC+jcW8xLTXVxFuNXD+1MLLPogW/wNXS3DG//EDSCgaRlJ2LTi4s6RnNe2HF4+HlOY+DPfWYd9U0jbcWPkLpxs8AiEtLZ+aNt5M3ehwBXyiy3eBJaezeUMugCWkMmZx+SAcD1e2mbsETtP73vwCYhwwh89dPYS4spC/RNI2VFSt58rMnI63nJ6dP5r6J95EXKxe5CSGEEEIIIYQQov+QEF4IIYQ4EbVbYdGt4eUJt8G4m3t3POK0U10u9AkJhFpaQFUJNTURamqCPXuOuq/Obu8I5xMxJCaGw/mExEhIb+j40CcmobNZ+1yVal/R3tTItpXL2bpyGW31dRSMm8QVdz0IQFxqGv/33D8wWaJ6eZRHpmkadQ5fJGCPhO4NTurbfYfdz24xdGkfv3/u9uwEK/ojtJD3Op20Nzd2Pr6qUrN7Jz63i4ayvWz58H0ADCYzKXkF5BSdw9Rrv9FzJ3y20TT4348h6IG882H0N49rd0VRyBwynPKtm5k4/1rGXTIfr0tl+Yvbqd3bxtd/PhG9QYder+OKn4zp9hieLVuo/tld+MvKQFFIuPkmkn/0oz53MVCFo4IFGxbwcdXHQLj1/N3j72Z27mz5HSiEEEIIIYQQQoh+R0J4IYQQ4ni5GuHVr0PABXnT4MIFvT0i0QuiRoxg0Lq1aMEgoZYWgs3NBBsbCTU1EWxsItQc/hzsCOeDTU0Em5shEEBtb8ff3g779h31cRSLpaPCPumgSvtDK+z1sbH9rtr7eIWCQUo3bmDLig/Y99VGNC3cft1stRGTlIymaZHA7lQF8Jqq4XEG8Dj9xCRGYTQfvWI8GFIp75ivvbjBSUm9i+IGJ6X1Ttp9wcPulxZj6QjZbeHPHfO1J0ebTyiYtERHY4mO7rxDUfj2r/9ywPzye6gt2YPf46Z613aMZnOX/Zf85bfEJCV3VM0PwhYXf9xjOKtsehVKV4LBApf8Ho7yNdM0jZ3rVmNPSCRraBEAYy++nCFTzsdiT+CL98v56oNygoHw933FjmYGjEjq/lihEE3PPUfDn/8CwSCGtDQynngC26SJPXmGJ80T9PD8lud5ceuL0npeCCGEEEIIIYQQZwwJ4YUQQojjEfTDazdAWzkk5MM1L4FeXk7PZorBgCE5GUNyMgwefMRtNU1DdTjCgXxjI6Hm5o6gvpFQU3M4sG9sDAf6TU1objea10uguppAdfXRB2MwYIiPP6YKe0NCPIrR2EPPwunz5pMPU7b5y8jtrKFFjJg5h4ETp2A0W076+KGQigLo9OGLGWpL2yjeWI+rxYer1YezxYerzYcaCveDn3PLcAaOC7cXr9vrYPunNfjMOloVlepAgGK3lz1NLvY1uQiEuu8hr9cp5CZYIwF7YXI4bC9ItmG3nNqvkaIo2BOTsCcmMXDCFCBcHd9SW01t8W7Mts7A3u1oY/vqFV32tycmh1vYFw4iZ/hI0goHndLx9ivOelh6X3h5+n2QWHDEzRsryvjwhWeo3L6VxKwcbnjyj+gNBnQ6A1V7gnzy9ie42/wApBfGMvXqgaQOiOn2WP7KSqrvvgfPxo0A2OfNJf2Xv0QfG9tz53eSNE3jo4qPWPjZQmk9L4QQQgghhBBCiDOOpAZCCCHEsdI0eO+nUL4OzDHw9X+DNaG3RyX6EUVR0MfGoo+NxZyff9TtVbe7ayX94Srsm5pQ29ogGCTY0ECwoYHDNzLvpI+N7abCPiEc2CcldWmZr4s6/W3dA14vuz9dS+H4yZit4YrYgnETaSjby/DpsyiaPpuEjMzjPm5bg4eaktbOUP2Az+52P5f/eDRZg8MV3k1VTjYtrzj0IAroTXrW17bx7/81UVzvRF/sZGxz5yZmYDgwQNFo05lYZw9hy7SGQ/aYKHLsFobkx5OXasdk6DsdDBSdjoSMLBIysrrcr9PrueA73+2omN9NU1UF7U0NtDc1sGfDOs6ZPS8Swgf9frZ89AHpBYNIys3D0A8v+DhpS+8FbyukjYTJ3z/sZn6Pm3Wvv8qXSxajhkIYTGaGTDkf0PB5grz12400VjgBiEmyMHl+IQVjkrvthKBpGo7Fi6l95FFUlwudzUbqQw8Se/nlfaqle7mjnAUbFrCmag0AabY07h5/N7NyZvWpcQohhBBCCCGEEEKcKAnhhRBCiGP16bOw8WVQdHD1C5B85KpnIU6WzmrFZLVCdvZRt9X8foItLV0q7ENNjQSbmsOV9o37W+I3EWpugVCIUFsbobY2/CUlxzSW/YG8PikRw+Eq7BMT0MXEnHCQpmkadaXFbFnxPjvXrsLv8TD71gAjZ80FYMSMOYy8YC56Q9c/Y/3eII5GL84WbzhUbw2H6q6W8PL06weTXhgHQOXOZlb+c9dhx+Bq7byEISU3hlGzsrHFmYmOt2C0G1hZ0cILn5dR1uKENXsi22YGdahmHUmKgSRFhy0AuqCGTVOwhRT+ddt40vPDlcibPqxgzT/3UKmALdZMTJKFmMQo7B2fc4sSscb0rTm7LbZoRs25COZcBITD47q9JZE29jkjRkW2bSjby4oX/gqA3mAgOTeP1IJBpBcOIq1gIAkZWWf21Am7lsLWRaDo4bI/ddsxZX/r+VWvPI+rJXz1RuH4SUz/1q3EpoS7K+gNYI0xYbLoGXdRHiNnZKE3dv+8hdraqPnlL2lfshSAqDFjyFj4JKasrG637w2eoIe/b/k7L259kYAawKAzcNPwm7hlxC3Sel4IIYQQQgghhBBnFAnhhRBCiGNRsgLe72grPPsRGDi7d8cj+oTFJYuZmDaRVFtqbw8FxWTCmJqKMfXoY9FUlVBr62Eq7Dtb4+8P7zW/H9XtRnW7CVR0UxV+8FiMxnA4f0iFfcf89QkJnZX28fEoej0eZzs7Pl7J1o8+oKFsb+RYsSlphIIKdfscB1Sse3G2+hh1QQ7JOXYAij+v56N/7DzsmBxNXtILw8vxaTayhsQTHWfuCNfN2OItkdtR0Z1V28k5dpJz7LS6/byyvoyX3ttHkyvcEjw2ysjonDgKkjvayKdEU5AcTYKtMzz3uQM4mry0N3pJzLBF7g8GQhhMOoJ+NXyxQKuPmuK2yPqr7hkbCeF3fVrLzvU1xCRasCdFRQL7mKQoouzGXqscNkVZyR42guxhI7pdnzdqLDUle/C2OyJzzW/64F0Apn/rFsZefAUAPrcbn9uJPbH76u5+x9cO794ZXp78PcgY1e1mZVu+4r0/PgVAXFo6M2+8nfRB57BxaRmj58QTZQ9//addPxijSR+53R3XJ59Sfe+9BGtrQa8n+fvfI/HWW1EMfePfPU3TWFGxgoUbFlLtCk+tMSVjCvdNuI8BsQN6d3BCCCGEEEIIIYQQp0DfeFdGCCGE6Msai+G/N4KmwqhvHLGtsDh77GvbxwNrHgBgZPJIZufM5oLcC8i2H71qvbcpOh2GhAQMCQmYBw484raapqG6XJ1z1Tc2hsP7xo6q+oNa46tOJ1ogQLC2NhwIHoGqGPBZ4vAkZbIh3oWqhOdM1ykKuSmZxKWMYkflQNa9pQCfH7J/ztCESAhvizdjsRmxxXeE6nFmouM6l5Oy7JH9MgbGcfmPRx/Tc1XV6uH5j/fy78/KcftDAGTFR3HreflcMy4Lq+nIf06brUaSrUaSs+1d7h87dwBjLszF0x7A0eShvdGLo8mDo9GLo9FDbHJn+/+G8nYqd7Z0e3yDSceVd42NHL+hvB1Hk6cjpLdgtvZOG/j0gYO58r6H0TSNtvo6akt2Ryrm6/YWk5pXGNm2dOMG3vvTr7HGxkXml08vGERqwUCi7N3Ped6nffgIOKogfkB4LvgDaJoWudAgd8Qo8seMJ33gEEbPvZyd6xv48KH1+NxBAr4Q064Pd1uJSTz8VBCq30/DH/5A8wsvgqZhzM0h86mniBo58pSd3vE6uPV8ui2du8ffzQU5F5wZF10IIYQQQgghhBBCdKPXQ/inn36ap556ipqaGoYPH87vf/97zjvvvMNu7/P5eOSRR/jHP/5BbW0tWVlZPPDAA9x8882RbRYtWsRDDz1ESUkJBQUFPP7448yfP/90nI4QQogzjacVXr0OvG2QPREu+R1IaCAAZ8DJ6JTRfFX/FZsbNrO5YTO/+eI3DEkYwqycWczOnU1+3NHnfe/rFEVBHx2NPjoa04ABR91e9XoJNTfjqWmgrbIJZ1070f5GjI46Qk3N1LSY2KoW4Fbb0KyjOndsfxNFc5LZ4mJo+TaMoWKaEhpg5CDQVMz+Nsy+ViwhJ1E6H1FmldA/VlDzvhFDYhIxSYlcc2EChiQbhsQ49ImJ6Gy2Ew75dtQ4+NvqUhZvqiakhi8OGJYew+3T8rl4RDoG/cm3UlcUBWuMCWuMibS82MNuN3RqOklZ0TgaPTiawiF9e1O4G0DQr2KLNUe23bWhtssc9marAXtiZ6v7MXNyIxX2BwbCp4qiKMSlphGXmtYxzzmooRAc8LDtTY0oOh3utlZKN35G6cbPIuviUtO5+Ed3k1Zw5ItF+ozyT2HDc+HlS/8ApnCL9f2t5z9bvIhrf/4rLLZoFEXh8rseYt/mJv77xJe01XsASMiwkT8q+agP5Sspoepnd+HbsQOAuGuuJvXee9HZbEfZ8/TwBD08t/k5Xtr2EgE1gFFn5MbhN0rreSGEEEIIIYQQQpwVejWEf+211/jxj3/M008/zdSpU3n22WeZN28e27dvJycnp9t9rr32Wurq6nj++ecpLCykvr6eYDAYWb9+/Xquu+46Hn30UebPn8+bb77Jtddey5o1a5g4ceLpOjUhhBBnglAQXr8ZmoohJguu+wcYzEffT5wVipKKeHneyzS4G/iw/EOWly3n87rP2dm8k53NO/nzV38mPzafWbmzmJUziyEJQ86Iqk9N0/A6A+iNOkyW8J+SDeXtbF5ZiavF29Eu3offG+rYw84FN05g4LhkSjduYNfid2na8xagYbbkYzDFYrXpsCRfgtWgkR/bQlJwAsHGJsxNrSQ2voSuoQK1uQkCgUPG03qEsSpmc8cc9kndtMY/YDkpCX1sLCgKn5Q28+zqElbuaogcZ2phIrefX8B5A5N65WuYmBFNYkb0IfeHAirtzV6i7J3V7tFxZlLzYnA0evC0B/C5g/jcThornACMnt35N/a6RcXs+rSWmKSozlb3iZbw7SQL9sQodLqeP1+dXt/l9oTLr2b0vEtp2FcaqZavLdlNS001rXU12OLjI9t++uZ/2LX+40jFfFrBIJKycw85Zq8I+mDxDwANRn0T8qcD0FhRxooX/krF9i0AfPHu20y99hs0lLezdtEeqna1AhBlNzLxsnyGTs044vOuaRot//oX9QufQvP50MfFkf7Yo9hnzTrFJ3hsNE1jRfkKnvzsSWpcNQBMzZjKvRPuldbzQgghhBBCCCGEOGsomqZpvfXgEydOZMyYMTzzzDOR+4YOHcoVV1zBggULDtl+6dKlfO1rX6O0tJSEhIRuj3ndddfhcDhYsmRJ5L65c+cSHx/Pq6++ekzjcjgcxMbG0tbWRkxMP2yBKYQQomcsvR8++QsYrXDzUkg/57QPQV6Tet6pfE5bvC2srFjJsrJlrK9ZT1DtvFAwKzorHMjnzmJE0gh0yslXUp9KjkYPezc1hudhb/XhbPF2zF3uJxRUueDbQxkyOR2Asm1N/O9Pmw45hinKgMXajj2+lJrdn+Jua42sS8kfwvQbbiNr6MBjCrY1TUN1ODrmsG8k1Nx8yBz2ocbG8PrmZjS3+7jOV9PpaLfYaTDYaLVE02aOJj4zldFDUkhPjcJgDmEwetHrnRi0FhR3HbgbwRQNltgjfMR1vW2OAd3p+doHfKEure7bm7xMuaow8nwveXYLpV82HHb/G5+cGqmy3/N5HS217gPmo7dgizWjnIKQfj+v00n9vhJyijp/97755MNdKuUBDCYzKQPySSscxJRrvoHZ2ktV1h8tgFVPgC0ZvrcBv2Jh3euv8uWSxaihEAaTmYnzr2XcJfMxmEys/vdutqysRG/QMWpWNmMuzMUUdeRrpIMNDVQ/8ACu1R8DYDv3XNJ/9TjGlJTTcYZHVeYoY8GnC1hbvRYIt56/Z/w9zMyZeUZchHQqyOt8z5LnUwghRF8hr0k9T55TIYQQfcWxvib1WiW83+/niy++4N577+1y/5w5c1i3bl23+yxevJhx48axcOFCXnnlFWw2G5dddhmPPvooUVHhuRLXr1/PT37yky77XXjhhfz+978/JechhBDiDLXxlXAADzD/r70SwIv+J94Sz/yB85k/cD7t/nZWVa7iw7IPWVO1hkpnJS9te4mXtr1EijWFC3IuYHbubMakjEGvOz1VvD5PkMaK9ki1urPVh6tl/2cvk+cXMHhSOFhvrXOz5r97Dnssr6uzKj0xw8bEy/OJjjOH52SPC8/DXr7lc97+9TPUd2xnjY1j+LQLKJoxm4SMrOMau6Io6GNj0cfGYs4/ept/1e3uMld9sLGJUHNTZ3Df0ECgoQ5fQxM6jxdFVYlxtxFDGzg6DlIBfAI13Rxfb1LRW0KY7EHMsUHMMUFMMeHPOsORrnFVwkH8wWF9VNxRwvyOQN8UfcwhvtGsP2wVPcDMG4Ywbt6AcJv7A+akb2/y4Hb4I23rAUq+qKfkoMBeZ1CwJ4Qr5+feWhQJkJ0tXnR6HVF240kFr5bo6C4BPMCsW78XrpaPVMzvwe9xU717B/VlpUz7ZucUVZ+/8wY+tytSMW+Liz/4IXpO/Q74+Dfh5XkL2fnlFla+8jyulmYACsdP5tzrb8YclYDBFH5ex18ygKA/xLiLBxxx3vf92ld8RM2DDxJqbkYxmUj52c+I/+Y3UE7TRR1H4g64+fuWvx/Sev7WkbcSZTj6uQkhhBBCCCGEEEKcaXothG9sbCQUCpGamtrl/tTUVGpra7vdp7S0lDVr1mCxWHjzzTdpbGzku9/9Ls3NzbzwwgsA1NbWHtcxITzPvM/ni9x2OByH3VYIIcRZoGw9/K/jgq7p98Gwy3t3POKk9NbrvN1k55L8S7gk/xLcATdrq9eyrGwZqytXU++u59Wdr/LqzldJsCQwI3sGs3NnMyFtAka98egHP4Cmafi9oUil+sEB+/DzM8kbmQRA3d423vnjoRXr+7U3dz5PsSlWCsakdAbr8eFgPTrOjC3WjN7YGfxFx1sYOzeXutJi/J4G4tNGApBTNBKz1UbmkGEUzZxD/ujx6A2n+M/PoB+ctejaazE5qsFbC2o1GGogqgbiatB0NShxLuiYZlwLQdCnI+jVE/LpCHp1hLx6gl4dQZ+eUMBC0Gck6IWQOwSqRsivI+TX4XcYcVYd8PgKGOPMmBONmOLAHBPEHO3GZGlDr/MAGvjawh9tJ3B+iq77EP/AivsjBfqmaOgIxs1WI8k5RpJz7Ic8zMHzxeeOSMRkNdDeMSe9s9mHGtRoqw8vG82dF5Ks+c8eSr5swGDWh9vbH9TqfsCIRHT6EwuO7QlJ2CckMXDClPA4VZWW2mpqi3fjaXd0aUu/ZcUHNFdXdu6bmBxpY59eOIjs4SNPaAyHUEPhNvRqAAbNg+Hz2ffXP+BqaSYuLZ0Z376NgD+Ld/5YSnxaLZf9aBSKohAVbWLmt4Ye/fBuN3VPLqT1tdcAMA8eTMZTC7EMGtQz4z8JmqbxYfmHLPxsYWfr+cyp3DfhPnJjcnt5dOJsIP/LCyGEEGcueZ0XQgjR3/XqnPDAIdUxB7/hdyBVVVEUhX/+85/ExsYC8Nvf/parr76av/zlL5Fq+OM5JsCCBQt4+OGHT+Y0hBBCnClay+G1b4bDlGFXwPl39/aIxEnqC6/zVqOV2bmzmZ07G1/IxyfVn7CsbBkfVXxEs7eZRXsWsWjPIuwmO9OzpjMrdxZTMqZg1pnxOAMd4XpnyJ4zPJGMgXEAVO5oYfEfvzrsY6flx0ZCeHuChdiUqAMCdUv4c8ft2OTOitXY5Cjm3lZ01HPzONvZ8fFKtn70AQ1le0nOGcANC/+EoiiYoqzc9vSLmKJ6oD24poG7GdqrwVED7Qd8OGrC97fXguvw7dX32/9XoUOz0qRLxJScQUpmHlGxGRCTAfb08EdMOthSQN/5J7OmqoRaWwk1NRGoq8dfWoqvpARfSTH+4hJCra0EWnwEWnwHPKIOiMeQMhhzXg6mnHTMmUmY02IwpdowGAPgbQt/eFo7l7t8tELID5oaXva2ntjzqOjBEnNom/yDwnzloDB/aFEsQ8flhKfnUBTUkIqz1Ud7oxePM9ClLX3AHwIFgr4QzdUumqtdnc+EQeGOP06P3F7/Vgltde5u5qO3YDAevUOEotORkJF1SGcFTdMYc9Hl1BTvorZ4N01VFbQ3NdDe1MCeDetIzMrhxt88Hdl+9ydrsCclk5ybj8F4fBfC8Nnz+Ms2EjDEY7v4N6AonH/9jcSnZ5IxaBqfvF1GfdmO8PnrFDztgS5dBo7Es3Ub1T/7Gf59+wBIuPFGku/8CTrTse1/Ku1r28eCDQtYVx3uYpZuS+eeCfcwM1taz4vTpy+8xgshhBDi1JDXeSGEEP1dr4XwSUlJ6PX6QyrU6+vrD6lk3y89PZ3MzMxIAA/hOeQ1TaOyspKBAweSlpZ2XMcEuO+++7jzzjsjtx0OB9nZ2SdyWkIIIfoznxNe/Xp4nue0kXDFM6dt7mZx6vS113mz3sy07Gmcm3EePx3i4vOSTXxRupl1no/Y69/JO6Xv8MnmTVy4uwVbIBZFPfR70GDSRUJ4W1x4zm6z1dC1Wj3OTHS8hdS8znmJ4tNsfPORySd9DpqqUrF9C1tWfMCeDesIBcKt6fVGI4nZuQT9PoxmC8CxBfB+d/eBuqPj8/7bIf+xDVBn7AzR7ek06xNZW2fko2o91Wo8tVo8sSk53DR9OBePTMd4HFXZik6HISEBQ0IC5oED4dypXdYHm5vxFRfjLynBV1IaCeeDDQ0E6+sJ1tfj+rTrMfWJiZgLCjAV5GMuGI+5sABzQQH6pKSuYWbA2zWU73a57TCBfiuowXDZv6cl/HEidAawxKKzxBLT8YElDqo6g/xLJ8YSOjeOdn8sDo8Nh8uCo92Aow00TdclsK/c0Ux9WXu3D2VPtHDDY5Mjz0HlrhbQNGKSwheSHKmaXlEUzpk9j3NmzwPA73FTt7ck0sY+LjUtsq0aCrHkL78j6Peh0xtIGZBHakG4Wj6tYCAJGVmHbfmutZSz8/U/sqp6LKm5ucyPzQQg4DfRUjeEz5duBcBo0TNu3gBGzsw6posLtFCIpr8/T8Of/gTBIIbUVDKeWIBt8sn//J4sd8DNc1ue46VtLxFUgxh1Rm4quolbRtwirefFadfXXuOFEEII0XPkdV4IIUR/12shvMlkYuzYsSxbtoz58+dH7l+2bBmXX95929+pU6fy3//+F6fTSXR0eG7L3bt3o9PpyMoKV79MnjyZZcuWdZkX/oMPPmDKlCmHHYvZbMZsNvfEaQkhhOivVBXevB3qtoYrX7/+Kph6oHpX9LreeJ0P+EK4Wn0YLXpsseHHbql1sf7Nkki7eHe7HzqmDrczhAcvnYt+XAvLy5bzyY4vifaF56/WUPEY21GiVRIS7WSnp5Oc2xmsx6VZue2P0zCaTs+88gDLn3+azcuXRm4n5+YxYuYchpw7najoA1qbh4LhyvSDq9cPrmT3HkdfdmtSJFwPB+0ZYE8De8fnmAyISkBTFDbsbebZ1aWs2Fkf2X1yfiK/nJbPtEHJp6Ra15CQgGHCBGwTJnS5P+Rw4CspCYfzxSWR5UB1NaGmJtxNTbg3bOiyjy4mBnNBAebCAkwF4WDeXFCAIX3g8Y9d0yDgOXyV/eGC/AMDfS0UDvLdTeGPI9ADcR0fXVeY4KnOwH6irYiWgRk4Aok4fLG0e2w4XGYCAR061YNS+Xlk2/WLyqgvdwKg6BSi48zhqvmkKOJTrYy58PDtz01RVrKHjSB72IhD1nldTrKHFVFTsgdvuyMy1/ymD94FYNCkc7n0J/d2PI0a7U2N2BOTaKoo48Mnfkhl0wAAml0KnnYHLXUqb//uS9SQhqLAsPMymXBJ3jFXvweqqqi65x48n38BgP3CC0l/+Jfo4w55Nk8rTdNYXr6chZ8tpNYVvuj53MxzuXfCvdJ6XvQa+V9eCCGEOHPJ67wQQoj+rlfb0d95553ccMMNjBs3jsmTJ/O3v/2N8vJy7rjjDiB8tVtVVRUvv/wyANdffz2PPvooN910Ew8//DCNjY3cdddd3HzzzZFW9D/60Y84//zzefLJJ7n88st5++23Wb58OWvWrOm18xRCCNEPrFwAO/8XDoi+9k+IzTr6PuKs52r1se3jqsj8687WcMDucwcBmHBpHuMvzgPCGejeTY1d9tfplUg7+OhYC8NSxzI2dSzBUSE+HbGZDe1r+bDhfcpc+yL7GEIGJlZPZJZxFjNzZpJgSUB3CgP4UDBI6ZefkTqggJjkFAAKxkxg59pVDB17DiPOKSAlOoTi3AmrVnatZHfWhdunHwujrWu4vj9QP7A1fHQaGI4cZKqqxgfb63h2dQlflrcC4SnQ5xWlcdv5BYzKjjvxJ+Mk6GNisI4ejXX06C73qy4XvtK94Yr5ks7W9oGKSlSHA8+XX+L58ssu++is1nAon5+PqbAAc0Eh5oJ8jFlZKPrDfC8oSvjCIpM1/FweL00Dv+vIQX0kyG/tfr2mhrsZuBoi0wbk8AU5Bz6OBTQzeDU7PtUOz1dHVsW2/hi/oZD2UAoh1Uh7s5f2Zi/sbiXG6mKM/sVIYP/me1m4PXpi4o3YkyzEJEcTkxpHTGo0MYlRWKI7W85bY2K58r6H0TQNR0MdNR3V8rXFu6nbW0xybl5k2/amBp773s1YY+PwONrQNA2DEmLixZcw7mu3YTAaMVnVcFv9RAtTriokMTP6mJ/mtnfeofbhR1CdTnRWK6kPPkjs/Ct6vb37wa3nM2wZ3DPhHmZkz+j1sQkhhBBCCCGEEEL0RYqmaVpvDuDpp59m4cKF1NTUUFRUxO9+9zvOP/98AG688Ub27dvHypUrI9vv3LmTH/zgB6xdu5bExESuvfZaHnvssUgID/D666/z4IMPUlpaSkFBAY8//jhXXnnlMY/J4XAQGxtLW1sbMTExR99BCCFE/7Z1Ebx+c3j5ir/CqK/37ngOIK9JPa8nn9PmGhevPvxpt+sMZj2jLshm4mX5QHie7F3rayJt4m1xZqKijV1ac3dH0zR2t+zmw/IPWVa2jOLW4sg6naJjTMoYZuXOYlbOLFJth59+55gFfdBeQ3PpNrauWcO2r3bhdvuZMMTKeQNc0F6N6qgl5Pdi1B1DwK7oITr1oOr1birZzTHhoPgE+YIh3txYxd9Wl1LaGJ6D3GTQcfXYLG49L5+8JNsJH7s3qD4f/n37Dm1tv68MgsFu91FMJkz5+Qe0ti8MV9Hn5KAc7zznPU3TwO88TKv8w4X5By472N86QtMU3GocjlBqx0cKBsXPaNvbkYd7of4lPGpsdyMhxtDADUN+E5nz/qu6CShGCzFxCjHxBuxJUZjsMWCJRTXaCRlsGGNTwRLDvm1beWPBL9DU8Pd+YXQjhZOvY59vJnNvH4HeEG5b73UGugT9RxNyOKh9+BEc74ar76NGjSJj4ZOYcnKOsuepdXDreZPOxE1FN/GdEd+R1vM9RF7ne5Y8n0IIIfoKeU3qefKcCiGE6CuO9TWp10P4vkhe0IUQ4ixS/SW8MBeCXpjyA5jzWG+PqAt5Tep5Pfmc+r1B1i4qPmAOdjPRcRZs8WZMFv0pqRDd17aP5eXLWVa2jO1N27usG5k8ktk5s7kg9wKy7QfNlaeq4RbiB7eGP6A9fKCtlt21Ora2pVHp7gwwrXo/YxOrmJBY2fWYlriu7eBj0g9tDW9LBt2pq9Rv8wT416flvLB2Lw3tPgBiLAa+NXkA354ygGT7mdW+UAsE8JeXH9rafu9eNJ+v+50MBky5uYe0tjfl5aHrL+0dVRX87YdvlX/QfY5WLTwPvcsSnpfeH0t7R2CfYCjn8oSHI4d+of5FPGpcl4ezKG3EGOpJM+7kvJgXIve3KzkYLQrNHgWn08AObqPSORCA864byMgZxz9HpWvDBqrvvZdgdQ3o9ST93/+RdMftKIbea1qmaRrLypbx1OdPRVrPn5d5HvdOuJecmN69MOBMI6/zPUueTyGEEH2FvCb1PHlOhRBC9BUSwp8EeUEXQoizRHst/G1GOJQcOAe+/u9TGhaeCHlN6nln0nNa5axiedlyPtz3AV81bkGj88+6IYYYZmFltidIfntD+PtdDRz2WJoGfy8ZjyNgAUBBIy9Zo6gwjvxBuejjumkNb7Ke8nM8nNo2Ly+s3cu/Pi3H6QtXhqfHWvjOuXl8bUIO0eZenXXptNNCIQJVVfiKS/CXdobzvpISNLe7+510OozZWZF29uFwvhBzfh46W//qHHBUagh8DvC2obpb0fnDy5qnjfVrzTjaCIf2bgu+QOeFCVnWXVye9Hj4AgDghfoX8Kjx2HRNuNU4NPToDArnzMxm7LwBmKOO/ftO8/tp+NOfafr730HTMGZnk/nUQqJGjerpsz8upW2lLPh0AZ/UfAJAZnQm94y/h+nZ06X1/ClwJr0m9QXyfAohhOgr5DWp58lzKoQQoq841teks+vdSSGEEGK/gBf+fX04gE8aDFc93+cCeCEIBcBZ31Gt3jHP+gGV7JntNXy7vZZv+xw06HV8aLWy3Gblc4uZnUEHO3HwZyPkRweZpViZ5fYwxBiHEpOO15xOcauN4aMGo8Sko9gzyFv6Kft2FVM080KGT5+FPSGpt5+BQ+ypa+dvq0t566sqAqHwRQeDU+3cPi2fS8/JwKjX9fIIe4ei12PKyQm3L585I3K/pmkEa2s7QvkDWtsXF6M6HATKygmUleNcsaLL8QwZ6R3hfEf1fH4B5oJ89LHdt3jv83R6iIqHqHh08Z13K8CUMV039XmCtDd5cDR6MZpGwbD/g1CQkKuV4INbwK/hUhMBKBybwuT5BcQkHV9rdl9pKdU/uwvv9nA3i9irriT1vvvRR/fexQ/ugJtnNz/Ly9tfjrSev3nEzXyn6DtYDJZeG5cQQgghhBBCCCFEfySV8N2Qq+qEEOIMp2nw5u2w+bVwO+1bV0BiQW+PqlvymtTz+sRzqmngaTmkHXznckfg7qwHjvFPNZM90g6+xZbMSqPKskAj692VBLVQx+PCCE8WY+sy0O1pQg0G+drDC8kcMgwAv9eD0WRG0fW9IPvzfc38dVUJy3fUR+6bkJfA/00rYPrgZKnQPU6aphFqbIxUyx/Y2j7U1HTY/QzJyZgKCzDnH9DavrAQQ0LCaRx979E0Da8zgKPRiylKT3za8YXmmqbR+u9/U/fkQjSvF31sLGmPPkLMnDmnaMTHNqYPyj7gqc+eos5dB8D5Wedz7/h7yY45/vb64vj0idekM4g8n0IIIfoKeU3qefKcCiGE6CukEr4PCTZ6CLkDmLLt8gaxEEL0BWv/EA7gFT1c+3KPB/DBkMpXFa0Mz4glyiTV9WedgKcjUK89oHr9oEr29loIeo/teDpDRxv4tK7t4A+cd92eBmZ7ZJd4YH7HR7u/nQ+3v8cXH76Lfms9drceqEMFHLEqL29+iVlx1zAmZQwmy/FV855qqqqxfEcdz64u5YuyFgAUBS4clsZt0/IZkxN/lCOIw1EUBUNyMobkZGyTJnVZF2xpwV9aekD1fCm+khKCtbUEGxoINjTgXv9Jl330cXHhcP7A1vaFhRhSUs6ov38VRSHKbiLKbjrufYNNTdQ88CDOlSsBsE2ZTPqCBRhTU3t4lMeuu9bz9064l+nZ03ttTEIIIYQQQgghhBBnAgnhT4P2tVW41tegT7BgPScZ6znJGI+zakYIIUQP2bUUlv8yvDzvScif1iOHbXL6WL2ngY92NrBqdwNtngAv3DiOmUN6L1wRp1hrBWz8f4dWsntajv0YUQkdIXp610DdntERtKeDNQlOojLdU91A6RP/JE5TAQM6swlnoY11iXuptLWBp4J/vb+EBEsCM7JnMDt3NhPSJmDUG0/4MU+WLxji7S+reXZ1CSUNLgBMeh1Xjc3klvPyKUiO7rWxnQ0M8fEYxo7FOnZsl/tDTmdnO/uSYvwdlfOBqipCra14Pv8Cz+dfdNlHFx2NqSC/a2v7ggKMGRl9suPCqdK+ciU1DzxIqKkJxWgk5Wc/Jf6GG3rtOXAH3Px18195Zfsrkdbz3xnxHW4uullazwshhBBCCCGEEEL0AAnhTwNFUVCMOkLNXto/qqD9owoMqdZIIG9I7FtVZ0IIccaq3wGLvgNoMO5mmHDrCR9KVTW2Vrfx0c4GPtpVz6bKVg6c4CU2ykhju//kxyz6Lk8zrH6q+3WGqM4QPVK5vn+5I2iPTgNjz4ddzdVVtNZWkz9mPADJOQOISU4mOiGRETMvZNDEqRgtFnwhH59Uf8KysmV8VPERzd5mFu1ZxKI9i7Cb7MzInsEFORcwJWPKaQvlHN4Ar35azgtr91Ln8AFgtxj45qRcbpoygJQYCQd7kz46mqhzziHqnHO63K96PPj37g23ti8uwV/a8bm8HNXpxLtpM95Nm7vso0RFYc7LO6S1vSk7G8Vw5vyLono81C1cSOur/wbAPHAgGb9+Csvgwb0yHk3TeL/sfZ767Cnq3eGpHaZlTeOe8fdI63khhBBCCNHvqaqK3y/vxQhxMKPRiF4v3TqFON1kTvhunIr5ZVT//2fvvuOjqtIGjv+mtySTXkmlBQhdujRBLLiuih0VVBDdXRWQYq/YRcX1tSAorkqxsK69oAQRBEXpHdJo6T0zk2n3/WPChJggLQ14vp9PyMy955577k2ZMM95nuPBsb0Y28YCHDuLweO77Rqrnuh7+55RZTqFEKJVshXDW8OhJAuSBsON/4UTzPQts7v4eXchy3fmk76zgMLK6jr7O8cEMTw1gvNSI+neJhit5tQzHGXNs8bXaPfUVgw/zmqgNHwMGK2+uunNxFXtYPfa1Wz+8Tv2b9+CKTCISW+8i0br+x6vttkwmM1HP97rYl3uOpZlL+OHnB8octSuCW7SmhjSZggjE0cyJG4IZt3R+zlZ+eUO5q/KZOGaHCqq3QBEBxm59dxkru0bT6Cx5bLyxcnzOp24srP9wfnDpe2dmZkoLleDx6h0OvRJSbWl7du1RZ+Sgj4pCbX+xEvAtyT71q0cnD4DZ0YGAKHjbiJi6lTUBkOLjCejNIOnfn2KtYfWAlJ6vrWQ1/nGJfdTCCFEayGvSY3vWPfU6XSSmZmJ1+ttgdEJ0foFBwcTHR0tsSghGoGsCd/KqPUaf+a71+7GvqUQ28YC9HEB/l96ikeh6IPtGDuGYEoLR2ORN5yFEKJReFzw4U2+AHxIkm8d+OMIwCuKws68Cn+2++/ZJXi8tXPXAgxazm0XzvDUCIZ2iCTaKlm6ZxVzKFzyYosOIS9jD5t//I7tP6fjtNsAUKnURLfrgL28nIDQMIC/DMAD6NQ6BsQOYEDsAO7vdz8bCjawLHsZy3KWkVuVy7dZ3/Jt1rfo1XoGxg3k/MTzGdpmKFaD9ZTGvye/krd+yuC/6w/g9PjeKGkfGcBtQ1L4e4849Nqzp1z5mUit12No3x5D+/Z1tituN859++qXts/IQHE4qN69m+rdu6k48iCNBn1CQk1Q3pc5b2jbFn1yMmpT66oqpXg8FL39NgWv/BtcLrQREcQ8/TQB5w5qkfH4S89vfQ+34sagMXBr2q3cnHazlJ4XQgghhBBnBEVROHToEBqNhvj4eNRn0dJXQhyLoijYbDby833V0GJiYlp4REKcPSQI3wLUJi2WPtFY+kRzZCGC6r2lOLYV4dhWROn/9mJsH4ypRySmzqGoDfKlEkKIk/b1DMhaCfpAuG6xL3h6FFXVblbvLfJlu+/I52CZo87+dpEBDO8YwfCOkZyTFCpBQtFifv3fx6xcuMD/PCgiiq7Dz6fLsJEEhoWfdL8atYbeUb3pHdWbGX1msLVoK99nf8+y7GXkVOSQvi+d9H3paFVa+sX0Y2TiSM5LOI9Q49F/rv7s9+wS3lyxl++35/mXceiTFMKkIW05LzUStVpmZZ/JVFothuRkDMnJBI6s3a54vbgOHsK5d09N5vzemkD9XryVlTgzM3FmZgLLjuhMhS4uzheQ/1Npe01AQLNfm+vgQQ7OvBfbb78BEHj+SKIffxxtSEizj6Wh0vPD2gxjRt8ZxAdK6XkhhBBCCHHmcLvd2Gw2YmNjMR9jEroQZyNTzeT1/Px8IiMjpTS9EM1EIrst7MjSH7poC9aLkrBtKMB1qArHzhIcO0so0aoxdQol8LwE9DGWFhytEEKchn59C9a9DahgzDyI7FSvSWZhFct35LN8Zz5rM4r9GbkABq2agW3DOC81kmEdI4kPlf/MieanKAr7t23GGBBIRGIyACm9+rD6ow9o12cAXc8bRUKXbqgaeba/SqUiLTyNtPA0JveazK6SXSzLWcay7GXsKd3DqoOrWHVwFU+seYJekb0YmTiSkQkjibJE1evL61VYvjOfN1bs5besEv/28ztHcfvQFHonHn8QX5yZVGo1+jZx6NvEETB0qH+7oii48/Op3uMrZ1+9d68/e95TWopr/35c+/fDihV1+tNGR2NISalX2r6pAuJlX3xJ7mOP4a2oQGU2E33/fVjHjGmRUn8ZpRk8tfYp1ub6Ss+3CWjDvX3vZWj80GMcKYQQQgghxOnH4/EAoD/NlrASojkdnqDicrkkCC9EM5E14RvQGtbsceXbsG0swL6xAHehHYDIO3uij/Nl9HiqXKiNWlQayRQTQoijylgB710OigdGPgbnTgbA4fKwNrOY5TvySd+ZT1aRrc5h8aEmzusYybDUSAakhGHUtdwfpq3hNelMczrd08riIrau+IEty7+nNO8QqYOGMvqu6f791bYqDOaWmaCXWZbJDzk/8H3292wr2lZnX7eIbpyfcD4jEkcQZYrjfxsOMPenDHbnVwKg06i4omcbJg5JoV1k82crizOHu7i4Jjhfs+58xl6ce/biLig46jGasDAMbdvWK22vCQ8/qYC5p6KC3MefoPzzzwEwdu9G3HPPoU9MPOnrOllVrire2PgG7297v7b0fNdbuSXtFgyallmLXvy10+k16XQg91MIIURrIa9Jje+v7qnD4SAzM5Pk5GSMRllySYiGyM+JEI1H1oQ/zekizVjPTyRoZAKug1U4dhWji619k73sywwcO4sxdfWtM69PDEIlpVuFEKJW0V7fOvCKB7pdy/7OE0lfk83yHfms3luE3eXxN9VpVPRNDmV4x0iGp0aSEm5pkcxFIQC8Hg8Z69ex+cdvyVy/DsXrq8ygN5kw/emPupYKwAMkW5OZ0HUCE7pO4EDlAZZlL+OHnB/YkL+BTQWb2FSwidm/z0btjMNe2hl3RVcCDbFc3z+BWwYlExUk/+ETp04bGoq2b18sffvW2e4pL68tZ39EaXvXwYN4ioqwFRVh+/XXOseorVYMKSn+cvaGtu0wtE1BGxNz1NcE27p1HJwxE9fBg6BWE3777YTfcTsqna7JrrkhiqLwTdY3vPDbC+Tba0rPxw9jZp+ZtAls06xjEUIIIYQQQgghhBAShG/1VCoV+rgAfwY8gOJVqM4ux1vlpmrNIarWHEJj1WPq5gvI6+ICJHgkhDi7OcpQFl2HylHKAUsXbsu6kq3PpddpEh1kZHhqBMM6RjKoXTgBBnlJFK3DR7MeYP+2Lf7ncamdSRs+io79z0XXSmcqxwXEMa7LOMZ1Gcf2/P288PMn/JqfjmLMwKs/gCHyAIbI70kKSiYg+nyKXSOJVFLl7xXRZDRBQZh79sTcs2ed7d6qKqozMn3l7I8obe/atx9vWRn29euxr19f5xi12VwTlG+Lvm2KLzifkkzpfz+l6K23wOtF16YNsc89h7lX3fM1h72le3lq7VP8muubVNAmoA339buPIW2GNPtYhBBCCCGEEKe38ePHU1payqeffnrUNunp6QwfPpySkhKCg4ObbWxCCHG6kYjDaUilVhE99Ryq95Zi25CPfWsRnjInlSsPULnyAMbUUMLHd2npYQohRLPLL3ewYmcunZbfRpptJ4eUUC4r+gcFOFGroHdiCMM6RnJeaiSp0YESABQtzlXtYPevv9C+30B0el+p6JSefSjav48uQ0eQNvx8wuLiW3iUxyejoJK3Vmbwye8HcHraAe1IjlTon5ZLiep31uauIas8k7mb5jJ301zaBLTxrSGfOJKu4V1Rqxp3PXshGqK2WDB1TcPUNa3Odm91Nc6srNrS9nszfIH6rGy8NhuOzZtxbN7cYJ/Wyy4j6sEH0AQ079IKDZWen9B1Ajen3Syl54UQQgghhDgN/FXAOykpiezs7Drb4uLi2L9/v3//5MmTmTx5cqOOac6cORy5gvGwYcPo0aMHL7/8cqOepzXYt28fjz76KF9//TWFhYXExMRw2WWX8fDDDxMWFlan7datW3nsscdYvnw55eXlJCQkcO2113Lffff511qHul83tVpNVFQUF110ES+88AIhISHHHNPhCQ6HhYaG0r17d5544gkGDRrk3/7oo4/y2GOP1Tv++++/Z+TIkSd8L4QQTUOC8KcplUaFsUMIxg4hKC4vjp3FvjXktxejb3NE1rzLQ+Xqg5i6RqANbZ3Zc0IIcbI8XoUN+0pJ35nP8p35bDlQzn3aD0jTrsWu6JmmmcngXmkM7xjJkPYRWM3NWx5YiKPJy9jD5uXfs+PndKptVaiAToN9/8nqccFoel18KRrt6fH9uj6nhDdXZPDttlwO/z+9V0Iwtw9ty8hOUajVKmACFc4KVuxfwbLsZaw6sIr9lftZsHUBC7YuINIcycgEX0C+V2QvNGpNi16TOPuoDQaMHTti7NixznbF5cKZk1O/tH1mJurAQKIffICgCy9s1rEqisLXmV8ze91sf+n54fHDmdFnhpSeF0IIIYQQ4gzy+OOPM3HiRP9zjabp/69stVqb/Bx/5nK50DXzkl4ZGRkMGDCADh06sGjRIpKTk9m6dSvTp0/n66+/Zs2aNYSGhgKwZs0aRo4cyciRI/nyyy+Jiori119/5Z577uHHH39k+fLl6PV6f9+Hv24ej4ddu3Zx2223cdddd/Hee+8d9/h27txJUFAQBQUFzJo1i9GjR7Nr1y4iIyP9bbp06cKyZcvqHHd4zEKI1kGC8GcAlU6NKS0cU1o43mo3eGpnqtl3FFP2dRZlX2ehTwjE3D0CU7cINIH6v+hRCCFar5IqJz/tLmD5jnxW7CqgxOby7xuj/olJ2i8ByDvvJd4bPLYmAChEy3NUVbLj5xVs/vE78rP2+rcHRUTVaacztP5Jc4qikL6zgDdW7GVtZrF/+8hOkUwa2pY+SfX/0xeoD+SSlEu4JOUSbC4bPx/4mWU5y/hp/0/k2/JZuGMhC3csJNQYyvD44ZyfeD59o/ui05wekxHEmUml02GoKUV/JMXjAbW62Suq7CnZw1O/PsVvub8BEB8Yz71975XS80IIIYQQQpyBAgMDiY6OPqU+7rnnHnbt2sXnn38OwMsvv8yUKVP44osvGD16NAAdO3Zk6tSpTJo0qU52/vjx41mxYgUrVqxgzpw5AGRmZvr7/v3335k5cybbtm2jR48evPPOO3T808Tmhjz66KN8+umn3HXXXcyaNYusrCw8Hg/ffvsts2bNYsuWLWg0GgYMGMCcOXNoW/P/sTFjxhAbG8u///1vACZPnsycOXPYsmULXbp0we12ExISwscff8wFF1zwl2P45z//iV6v57vvvsNkMgGQkJBAz549adu2LQ888ACvv/46iqJw66230qlTJ5YuXYpa7avil5iYSIcOHejZsycvvfQSM2fO9Pd95NctLi6Om266icWLFx/7i3WEyMhIgoODiY6O5sEHH+TDDz9k7dq1/O1vf/O30Wq1p/z9IYRoWhKEP8Oo/7SmsdqoxZBipTqzDGdOBc6cCkq/yMDQNrgmIB9e7xghhGhNFEVh68Fylu/wZbtv2FeKt3auEUFGLUM6RDAm4iDD1rwNHmDIDJKG3tBiYxbiz2zlZbz1z1twO6sB0Gi1tOszgK7nXUBCWjdU6tOjFLvL4+XzjQd5c0UGO/MqANBpVPy9RxyThqTQPirwuPox68yMShrFqKRRVHuqWXNwDd9nf8/yfcspdhTzye5P+GT3JwTqAxkeP5wRCSMYGDsQo7b1T1AQZwdVM2SgHKnKVcXrG17ng+0f+EvPT+w6kfFp46X0vBBCCCGEEH+iKAp2l6dFzm3SaVrV8ofDhg1j/vz5eL1e1Go1K1asIDw8nBUrVjB69Ghyc3PZtWsXQ4cOrXfsnDlz2LVrF2lpaTz++OMAREREkJWVBcADDzzA7NmziYiI4Pbbb+eWW25h1apVxzWuPXv28OGHH/LJJ5/4M/yrqqqYOnUqXbt2paqqiocffpjLL7+cDRs2oFarGTZsGHPnzvX3ceS1dOnShd9++w2Hw1GnbHtDiouL+fbbb3nyySf9AfjDoqOjGTt2LEuWLOG1115jw4YNbNu2jYULF/oD8Id1796dkSNHsmjRojpB+CMdOHCAL774gn79+h3Xffkzm83GO++8A9Ds1QKEEKdOoq9nOGP7EIztQ/CUO7FtKsC+sQDnvgqq95RSvacUQ7JVgvBNxF1SQtEbb+B1VBM5ZTKa4OCWHpIQp41yh4tVuwtZvjOf9J0F5FdU19mfGh3I8NRIhneMpFdCMNrKgzD3GvA4IfUSGHZfC41cCJ/KkmIO7tpOh36+//iZg6xEt2uPo6KCrueNotPg4ZgCg1p4lMevqtrN4t/2MX9lBgfLHAAEGLRc3y+BmwclEWM1HaOHozNoDAyNH8rQ+KG4vC5+y/2NH7J/4IecHyhyFPHZ3s/4bO9nmLQmhrQZwsjEkQyJG4JZZz5250Kc5g6Xnn9h3QsU2AsAOC/+PGb0nUFcQFwLj04IIYQQQojWye7y0Pnhb1vk3NsevwCzvnHeb585cyYPPvig//lTTz3FXXfddUJ9DBkyhIqKCtavX0+vXr1YuXIl06ZNY+nSpQAsX76cqKgoUlNT6x1rtVrR6/WYzeYGM66ffPJJf/D+3nvvZfTo0TgcDozGY0+gdzqdvPfee0RERPi3jRkzpk6b+fPnExkZybZt20hLS2PYsGHcfffdFBYWotFo2Lp1K4888gjp6en84x//ID09nd69exMQEPDn09Wxe/duFEWhU6dODe7v1KkTJSUlFBQUsGvXLv+2o7X9+eef62w7/HXzeDw4HA769evHiy++eMx7cqQ2bXxLjdlsNhRFoXfv3owYMaJOm82bN9e51s6dO/Prr7+e0HmEEE1Loq9nCU2QnsBz4wg8Nw53kR3bpgLceTa04bVvmhcv2Yni8WLuHomxYwgq7emRldfaKB4PpR9+SP7Lc/CWlQFQufIn4l54AXOvXi08OiFaJ0VR2JNfyfKd+fy4I591WSW4j0h3N+s1DGoXznmpkQzrGFE34OesgkXXQVU+RKXB5W/CaZJVLM4sXo+HzA3r2Pzjd2T88RsqlYo2r7+L2RoMwN+nPYjBbGlVM+KPpaCimndXZ/HemmzK7L6lH8IDDNxybhJj+yViNTXuLGydWsfA2IEMjB3I/f3uZ0PBBpZlL2NZzjJyq3L5Nutbvs36Fr1az8C4gZyfeD5D2wzFamj+NeuEaGp7Svbw5NonWZe3DoCEwATu7Xsvg9sMbuGRCSGEEEIIIZrD9OnTGT9+vP95eHj4CfdhtVrp0aMH6enp6HQ61Go1kyZN4pFHHqGiooL09PQGs+CPR7du3fyPY2JiAMjPzychIeGYxyYmJtYJwAPs3buXhx56iDVr1lBYWIjX6wUgJyeHtLQ00tLSCAsLY8WKFeh0Orp3786ll17KK6+8AnBK13IkRfG9J3k8798oilKv3eGvm6Io7Nu3j/vvv5/Ro0fz008/+bP+j2XlypVYLBbWr1/PzJkzWbBgQb1M+I4dO/LZZ5/5nxsMUiVNiNZGgvBnIW2YiaDhdV8IvQ43ts0F4FawbypEZdRiSgvD3D0CQ9tgVLKm8nGx/fEHuU/Monr7dgAMqal47TZc2Tlk33gTEXfeSdhtE0+bssNCNCWb080ve4tYvjOf5TsKOFBqr7M/JcLC8I6+bPc+ySEYtA38ker1wqd3QO4mMIfDdYvA8NezXYVobCW5B9my/Hu2rviBqpLa9dFjOnamqqzUH4Q3Wk6f782swireWpnBR7/vx+n2/ac3JdzCbUNSuKxnHEZd05fi1qg19I7qTe+o3szoM4MthVv4Pud7lmUvY1/FPtL3pZO+Lx2tSku/mH6MTBzJeQnnEWqsvx69EKeTSmclr2/0lZ73KB6MGiMTu01kXJdxUnpeCCGEEEKI42DSadj2+F+vCd6U524s4eHhtGvX7pT7GTZsGOnp6ej1eoYOHUpISAhdunRh1apVpKenM3ny5JPq98ig8OFA9OHA+bFYLJZ62/72t78RHx/PW2+9RWxsLF6vl7S0NJxOp/8cQ4YM8V/LsGHDSEtLw+PxsHnzZlavXn1c19KuXTtUKhXbtm3jsssuq7d/x44dhISEEB4eTocOHQD869431LZ9+/Z1th35dWvfvj0vv/wyAwYMYPny5YwcOfKY4wNITk4mODiYDh064HA4uPzyy9myZUudQLter2+U7w8hRNORILwAQGXQEDmpO7aNBdg2FeAtd2Jbl4dtXR7qAB2Bw+IJPFdKXh6Nu6CA/BdmU/a//wGgDgoiYvLdhFx9NV5HNbmPPUb5559T8PLL2H5dS+yzz6L900w/Ic4G2UVVLN+Rz487C1iTUeQP7gHotWoGpIT5s90Tw+r/MV7PT8/Btv+BWgfXfgDBx55pK0Rj2vnLz3zx8jP+56YgK12GjiBt2PmEtYlvwZGdnI37Snnzp718vSWXmonf9IgP5vahbTm/cxSaFpqUp1Kp6BrRla4RXZnSawq7SnaxLGcZy7KXsad0D6sOrmLVwVU8seYJekX2YmTiSEYmjCTKEtUi4xXiZCiKwpeZXzJ73WwK7YUAjEgYwYw+M4gNiG3h0QkhhBBCCHH6UKlUjVYS/kxweF14rVbrDwIPHTqUxYsXH3U9+MP0ej0ej6fJx1hUVMT27dt58803GTzYV/3rz2XeAf+68Hq9nscffxyVSsXgwYN54YUXsNvtx1wPHiAsLIzzzz+f1157jSlTptRZFz43N5cPPviAm266CZVKRY8ePUhNTeWll17i2muvrbMu/MaNG1m2bBlPP/30X57vcPa73W7/y3ZHc+ONN/L444/7xyuEOH3IK5EAfH+Y6OMD0ccHYr04merMMuwbC7BvKcRb6arT1utw4y52oIs5vUrqNgXF5aL4/Q8ofPVVvFVVoFIRfOWVREyZjDbUl4mnCdAS+9yzWPr3J3fWLKpW/0LGZZcT++yzBJx77D8KhDidVbs9/JpZzPIdBaTvzCejsKrO/rhgE+elRjI8NYIBKeGY9CcwW3jb/yC95o/cS16ChP6NOHIhjk9CWje0egPxndNIO28UbXv3RaNt3BLtTU1RFFbsKuDNFRn8klHk335eaiSThqTQNzm0Vb3eq1QqOoZ2pGNoR/7Z459klmXyQ84PfJ/9PduKtrEubx3r8tbxzK/P0C2iG+cnnM+IxBHEB55+kyLE2WN3yW6eXPskv+f9DvhKz9/X7z7OjTu3hUcmhBBCCCGEaEplZWVs2LChzrbQ0Mat8HZ4XfjPP/+cWbNmAb5g9pgxY4iIiKBz585HPTYpKYm1a9eSlZVFQEBAo4/tsJCQEMLCwpg7dy4xMTHk5ORw77331mt3eF14rVbrD9YPGzaMe+65h169ehEUFHRc53v11VcZOHAgF1xwAbNmzSI5OZmtW7cyffp04uLiePLJJwHfexDz5s1j1KhRjBkzhvvuu4/o6GjWrl3LPffcw4ABA+pl31dUVJCbm+svRz9jxgzCw8MZOHDgSd0btVrN5MmTmTVrFpMmTcJsNp9UP0KI5idBeFGPSq3C2DYYY9tggv/eFsfuUvRxtSV07ZsLKflkN9oIE+buEZh6RKI7Ym35s0XVL7+QO+tJnHv3AmDs1o3ohx7E1LVrvbYqlYrgMVdg6tGdA1OmUr1rF/smTCBs4kQi7roTle70CtgI8VcOltpJ31nA8p35rNpTiM1ZO1tWq1bRJymU4akRDO8YSbvIgJML7h3aCP+93fe4/z+h142NNHohTowpMIhJr7+LMeD0KTV/mMvj5ctNh3hjxV525FYAvp/RS3vEctuQFFKjj+8/ri0t2ZrMhK4TmNB1AgcqD/jWkM9exoaCDWwq2MSmgk3M/n02qaGpjEwYyfmJ55MSnNLSwxYC8JWef23jayzcvrBO6fnxXcaj1+hbenhCCCGEEEKIJpaenk7Pnj3rbBs3blyjnsNqtdKzZ09ycnL8AffBgwfj9XqPuYb6tGnTGDduHJ07d8Zut5OZmdmoYztMrVazePFi7rrrLtLS0ujYsSOvvPIKw4YNq9MuLS2N8PBwEhMT/QH3oUOH4vF4Tmg9+Pbt27Nu3ToeffRRrrnmGoqKioiOjuayyy7jkUceqTPZYNCgQaxZs4bHHnuMiy++mPLychISEhg3bhz33XdfvbXYH374YR5++GEAIiIi6NOnD99//77TIb8AALHiSURBVD1hYWEneXfglltu4ZFHHuHVV19lxowZJ92PEKJ5qRTlcLFRcVh5eTlWq5WysrLjnjl1Nin/IYfy5Tngrv3W0cUF+ALy3SLQBp/Za1W6Dh4k77nnqfjmGwA0oaFE3jMV6+WXH9da716Hg7xnn6V00WIATD16EDf7BXRxUu5fnJ7cHi9/5JTy44580nfm+4N5h0UGGnxru6dGMKhdOIHGU5x0UpkPc4dD+X5oOwKu/xA0Z+6cMnlNanxn+z21Od0s+W0f81ZmcqDUVwrNrNdwXd8Ebj03mdjgM2NiXb4tnx9zfmRZ9jJ+y/sNr1K7/EWKNcVfsj41NLVVZfqLs0NDpedHJoxkep/pUnr+LHO2vyY1NrmfQgghWgt5TWp8f3VPHQ4HmZmZJCcnYzQaW2iEQrRu8nMiROM53td5CcI3QP5IOjavw419axG2jQVU7ymBw+9rqyHmgf5oLGdeZrfX6aT47XcofPNNFLsd1GpCxo4l4s5/oTmJ75Pyb77l0EMP4a2oQB0URMysJwgaNaoJRi5E4yuoqGbFLl+2+0+7CqhwuP371CromRDC8I4RDOsYSZfYoMYLcLmrYcElsP9XCGsPE5aBKbhx+m6l5DWp8Z2t97Sospp3V2fxnzXZlNp8S82EB+i5eVAyN/RLxGo+8167DytxlLB833K+z/6eNYfW4PbW/s5qE9DGF5BPHEnX8K6oVceeUCfEqdhVsoun1j7lLz2fGJTIfX3vY1CcLFN0NjpbX5OaitxPIYQQrYW8JjU+CcILcWrk50SIxnO8r/NnbuqgaFJqoxZL7ygsvaPwVLmwby7EtjEflUZdJwBf9k0m2nAzprQw1MbT99utIj2dvKefxpWdA4D5nHOIeuhBjB07nnSfQRdegDGtCwfuuQfHxk0cuOtubNdfT+TMGagNZ3Y1gTOZoih1As6lX2WCxwsqFajwfaBCpQJNqJGAfjH+tuXp+1CcHlD59gMcfqCx6rGcE+1vW7n2EEp1TZn3mj4P968x6zD3jPS3tW0swHs4SK4C1eG2gMqgwdwtwt/WsbMYr91dr19FgewyO99UO0jfmc+m/WV0RUMQKroCFoOBrnHBdG1jJS3OSqBZh7F9iL9f58FKvHZ3zeWo4HCMq+b69AmB/vvmLrL7xqCqHScqFSoUWP4k2n2/oTJZ4brFeNxmvAU237F/umeoQGM1oFL7nnsdbhSn94ivQ21blQpURq2/reL2ongU3+UfeX8P3xe1SjJnxWkjp8jGWysz+HDdPqrdvllzSWFmJg5JYUyvNhh1mhYeYdMLMYZwRfsruKL9FVQ4K1ixfwXLspex6sAq9lfuZ8HWBSzYuoBIcyQjE3wB+V6RvdCoz/x7I5pPhbOC1za8xqIdi/yl5yd1n8RNnW+S0vNCCCGEEEKIk/LBBx8wadKkBvclJiaydevWZh4RdOnShezs7Ab3vfnmm4wdO7ZJz39k2f2GbNu2jYSEhCYdw9FcdNFFrFy5ssF9999/P/fff38zj0gI0ZRO36ioaDU0Fh0B/WMI6B+D4qkt9eopd1KxYj8oUPKpCmPHUMzdIzCmhqLWnx5vajtzcsh76mkq09MB0EZGEjljBkGjL26UAJy+TRuS3n+fgjlzKJo3n5KFC7H98QdxL76IISX5lPsXTUfxKriL7Lhyq3Dl2nDnVuHKs6GLCyDsulR/u8rVB8HtbbAPQ4q1ThC+8qf9eG3uBtvq2gTUCcJXLN+Hp7S6wbbaKHOdIHz5smzcBfYG22qCDXWC8GXfZeM6UNlgWw9eXqF23xS9hQ7OmifVQIYdMuxUk4tTpybuidqMvrJvsqjeVdJgvwBtnhlc2/brTOxbio7S8mJije+gumoBhLejbMlObOvzj9pvzIP90ATo/f1Wrc09atvomX3QhvhmgZZ9m0XlygNHbRs1pRe6KIuv7ffZVPyQU2eSBSoIvTYVc9fwo/YhRFPbvL+MN3/ay1ebD+GtqXvUrY2V24e25YIu0WjUZ+dEkkB9IJekXMIlKZdgc9n4+cDPLMtexor9K8i35bNwx0IW7lhIqDGU4fHDOT/xfPpG90WnOXMrBYimpSgKX2R8wex1syly+F7fzk88n+nnTCcmIOYYRwshhBBCCCHE0V166aX069evwX06Xcv8P/arr77C5XI1uC8qKqrJzx8bG8uGDRv+cn9LmTdvHnZ7w+/THrkOvRDizCBBeNGoVJojSrhqVASNTMS2MR93vh3H1iIcW4tQ6TWYOodiGRiLIaF1lmPy2u0Uzp1L8bz5KC4X6HSEjbuJsNvvQBNgadRzqXQ6IqdNw9yvHwdn3kv1jh1kXnkl0Q8/RPBllzXqucSJUxQFpdrjr+SgKAoFr2/EebCq4eD6n2JagUPiwKOgAP5/FN8nbVjdsj+WPtF4D2e3H14ppOaTJrhudQRTWjjeKpe/rXJkW2vdbDpj+xDckeaa89btV31E5QpFUagKNVBmd1Jic1JZkz1/OLbsUMPFXaIZ3jGSoR0j0C3b57sPiuLv7/Bjla5uOWdtsAFPpMl/7XXG/Sdqs853Dcrh4SrgdoK9zDee8x+Dtuf5HuvVqIyaI/qtHYuiUJsVD7WZ9UdbhOXIr92JLNRy5D098gtxQp0I0TgUReHnPYW8sWIvq/bUTmYZ2iGC24e2pX9KqFRxOIJZZ2ZU0ihGJY2i2lPNmoNr+D77e5bvW06xo5hPdn/CJ7s/IVAfyPD44YxIGMHA2IEYtVK2TRyfncU7eWrtU/yR/wcASUFJ3Nf3PgbGDWzhkQkhhBBCCCHOBIGBgQQGBrb0MOpITExs0fNrtVratWvXomM4mri4uJYeghCiGcma8A2QNXsal6IouHJt2DfmY9tYgKfEl70bMqY9lj6+zF7F5QWNyl8KuqUoikLFt9+R99yzuA8eAsAyaBBRD9yPISWlyc/vysvn4IwZ2NauBcD690uJfvhh1JbGDfyLhnkdbn9muyuvClduFe48G5pgA1F39fK3y3v5D1y5Vah0arRRZnRRFnTRFnTRZnTRFjSBp09J2cpqNz/vLiR9Zz7Ld+aTV143u75jVCDDUiMY3jGS3okh6DQtsFZywU6YNxKqy6HXOPjbnLrB9ZOkHJ48cDhwfkSJecXtRfEq/HnixOGA+5Gl673VHt8yAjX7/d2ZtY1S9UNekxrfmXhP3R4vX24+xJsrMth2qBwAjVrFpd1juW1ICp1izozrbC4ur4vfcn9jWfYyfsj5gWJHsX+fSWtiSJshjEwcyZC4IZh15hYcqWit/lx63qQ1cVu326T0vKjnTHxNaklyP4UQQrQW8prU+GRNeCFOjfycCNF4ZE140WqoVCr0MRb0MckEXZCEc18F9g0FmLqE+dtUrj1ExYr9mLuFY+oegT4+sNkz9ar37iV31ixsv6wBQBcbS9T99xEwYkSzjUUXFUnC2/MpmjuXgn+/Stn/PsO+cRNxL72IsVOnZhnD2UBxe/GUVqMNN/m3FczdRHVG2VHbK17FH3QNubI9aqMWTaixxSeOnChFUdhbUEX6znx+3JHPb1nFuDy1c7FMOg2D2oUxrGMkw1MjiQs2/UVvzcBWDAuv8QXgEwfBxS80SgAeqLuO/J9KGKi06j8XNTgqtUEDhtNjiQ1x5rE7PXy4bh9vrcxgf4mvnJlJp+HavvHcem4ybUIkQHwydGodA2MHMjB2IA/0e4ANBRtYlr2MZTnLyK3K5dusb/k261u0Ki0WvQWDxoBRY8SgNWDSmDBoDXW2GTVGjFrjyW3TGjFqjOjUOqlicBpQFIXPMz7nxXUvSul5IYQQQgghhBBCiLOYBOFFs1KpVBgSguqVoXfsKMZb4aRy1UEqVx1EE2rE3D0Cc/cIdNFNmwXuqayk8P9eo/i998DtRqXXEzZxImETbkVtav4ApEqjIfyOOzD36cOBadNxZmWRdc21RM6cQcj118sb8CdA8Sp4Shz1s9sL7ah0GmIfHeC/n2qz79ehxqpHF21BG21BF+XLbNdFmOsE2/VtWleJp2NxuDz8sreI5TXZ7vuK6647lBRmZnhqJMM7RtI3ORSjrpUElD0u+Gg8lGRCcAJc/R/QSvagEADFVU7+80sW767OosTmW5oizKJn/MAkbuifSIhFflYai0atoXdUb3pH9WZGnxlsKdzC9znfsyx7Gfsq9lFW3fAErsamQuUPyB8O2Bs0hlMP/B/uU2Oo079O3TJrB57OGiw93+8+BsZK6XkhhBBCCCGEEEKIs40E4UWrED6+C45dJdg2FuDYVoSn2EHF8n1ULN+HLi6AyH/2aPSMY0VRKP/8c/Kefx5PQSEAASNGEHXvTPTx8Y16rpNhPucckv+7lEP3P0Dl8uXkPTEL25o1xMyahcZqbenhtTqeSieuPBvGtsH+bUXvb8exrajhA1QqvJUuf+l46yVtCRnTAbXpzPi1uK/Y5gu678hn9d4iqo9Yv16vUdMvJZThNdnuyeGtdLmDb++HzBWgD4DrFoMlvKVHJESL21dsY97KDJas24fD5fu5Tgg1M3FIClf1btN6JtGcoVQqFV0jutI1oitTek0hz5aHzWXD7rFT7a7G4XH4PzvcDqo91VR7qnG4HUfd5j/uKNu8iu/rrKBgd9uxu+1QfYyBNgKNSlMvMH9Sgf8/Bfnr9HnENq369H39LXeW+0vPexWvlJ4XQgghhBBCCCGEEBKEF62DSqvG1DkMU+cwvE4Pju3FvoD8zmI0VkOdAHzV+nyMba1oggwnfT7H9u3kznoS+++/A6BPTCTqgfsJGDLklK+lMWlDQmjz2v9R8t575D3/AhXfL8O+dStxL8zG3KtnSw+vRXirPbjzbTXZ7VX+LHdvlS8TNObBfmgCfG94ayNMoFWhi6jJaI+2oD28bnuQvk5VAW3wyX8/tQZOt5ffsopZvsOX7b63oKrO/lir0Z/tPrBdGGZ9K//1v+5t+HUuoIIr5kJUl5YekRAtasuBMub+lMGXmw/h8fqWkEiLC+L2oW25KC0GzWm2NMaZQKVSEW2JbtJzKIqC2+v+yyD/8W473sD/YR7Fg81tw+a2Nek1HqZVaxvMyD9W4N+kNfn2HxHQP55tapX6lMd8uPT87HWzKXYUA77S8zP6zGjy7w0hhBBCCCGEEEII0bq18iiMOBup9Rp/KXqv3Y3X7vbvcxfaKVmyE1RgSLZi6h6BKS0cjeX4SqZ6SkspeOUVShYvAa8XlclE+B13EDp+HGp968xUUqlUhN50E6ZevTlwz1Rc2Tlk33gjEXfdRdjECajUp/4mcmukeLy4C+24cqswpob51t0Gyr/NonL1wfoHqEAbZvJlt9cE4YPOS8A6KgmV5swMTuWWOUivKTH/8+5Cqpwe/z6NWsU5iSH+wHuHqIDTZymDzJXw1XTf4/MehNTRLTseIVqIoiis3lvEGyv2snJ3oX/74Pbh3D60LQPbhp0+P9fipKhUKnQaHTqNDprhzxRFUXB6nb7A/AkG+f9y2+FAv6e6Thun1+k/t9vrptJbSaWrsukvFNCr9XWC/EcN/NcE7w/vOxzQ16l1fJHxBevz1wNSel4IIYQQQghxZhg/fjylpaV8+umnR22Tnp7O8OHDKSkpITg4uNnGJoQQpxsJwotWTW3S1ikP7rW70ScG4cwupzqjjOqMMkr/txdj+2BMPSIxdQ5Fbaj/ba14PJR+8gkFL76Ep7QUgKCLLyZyxnR00adHppIprQvJn3xC7qOPUf7FFxS89BK2tWuJfe5ZtOGnd5luT6UT5/5Kf2a7O9eGq8AGHl+2Z8Qd3TEkBgGgi7agDtT5MtujLOhqMtu1kWbU+rplmA8H7s8Ubo+XDftKWb4znx93FLD9UHmd/eEBBoZ1jOC81EgGtQvHajoN1/MtzoQPbwKvG9KuhMH3tPSIhGh2bo+Xb7bm8uaKDDYf8K03rlGrGN01hklDU+gSK0uSiKahUqn82eJWQ9N/n3kVb73A/AkF+d1/yuY/yrbDx7m8Lv+5nV4nTqeTCipO6RpMWhOTuk3ips43+SZLCCGEEEIIIcRx+quAd1JSEtnZ2XW2xcXFsX//fv/+yZMnM3ny5EYd05w5c1AUxf982LBh9OjRg5dffrlRz9PSxo8fz7vvvguARqMhNjaW0aNH89RTTxESEuJvd6yvgxBC/BUJwovTij4+kMg7uuMucWDfVIBtQwGuQ1U4dpbg2FmC6vpUzN0i6hxj37iR3Cdm4diyBQBD+/ZEPfggln59W+ISTokmIIDY55/DMqA/uU/Momr1ajIuu5zYZ58hYNCglh7eMXltLl+gPc+GsWMo2lAjALaNBZR9nlGvvUqvQRdt9gfjAcznRGHpe3pMnGgMRZXVrNhVwPKdBfy0q4Aye20AQaWCHvHBvrXdO0bSJTYI9elcktpRDouuA3sxxPaCv7/qu0ghzhIOl4eP1u3jrZWZ5BT7SoAbdWqu7ZPArecmEx9qbuERCtG41Co1Jq0Jk9bULOfzeD0nF+Q/yrZIUyQTu02U0vNCCCGEEEKIJvH4448zceJE/3ONpukTjqzW5p/473K50Omaf1LzhRdeyDvvvIPb7Wbbtm3ccsstlJaWsmjRojrtWuLrIIQ4M0gQXpyWtCFGAofGEzg0Hle+zbd+/I5iTJ1C/W3Kvt1FRfof2FZ9hKdgB+qAACLuupOQ665D1QIv6o1FpVIRPGYMph49ODB5CtW7d7NvwkTCJk4k4s5/tZpr85Q7cewuqV23Pc+Gt7y27GzIVRp/EF4fG4A26vC67eaaDHcLmmADqj8Flf/8/Ezj9SpsOVjG8h0F/Lgzn037Szli8ilWk46hHSIYnhrB0A6RhFpa5zIKJ8zrgaW3QcF2CIiGaz8AXfMEZYRoaSVVTt5bk827q7MoqvL9ngwx6xg3MImbBiSdOT/nQrQwjVqDWW3GrJMJLUIIIYQQQojWLzAwkOhTrOJ6zz33sGvXLj7//HMAXn75ZaZMmcIXX3zB6NG+JSA7duzI1KlTmTRpUp3s/PHjx7NixQpWrFjBnDlzAMjMzPT3/fvvvzNz5ky2bdtGjx49eOedd+jYseMxx/Too4/y6aefctdddzFr1iyysrLweDx8++23zJo1iy1btqDRaBgwYABz5syhbdu2AIwZM4bY2Fj+/e9/AzB58mTmzJnDli1b6NKlC263m5CQED7++GMuuOCCY47DYDD472+bNm245pprWLBgQb12jfF1EEKcnSQIL057ukgz1vMTsZ6fCIDidlP8wSKq1hlRW+IwD5wMODF1j8TSPwE0Z8a3vaFtW5I++pC8p5+hdMkSiubOxfbbb8S98Dy6uLhmGYPiVXAX2XHl2nxrt3cI8ZeNdx6qpOSjXfWO0YQYfCXlA2onCxiSrURP6d0sY26NyuwuVu4uYPmOAlbsyqew0llnf5fYIF+2e2oE3dsEo9WoW2ikTejHJ2DX16A1wrULISi2pUckRJPbX2Jj/s+ZLP51H3aXB4A2ISZuG5LCVb3jMellZrUQQgghhBBCCHHCFAVctpY5t87cqio7Dhs2jPnz5+P1elGr1axYsYLw8HBWrFjB6NGjyc3NZdeuXQwdOrTesXPmzGHXrl2kpaXx+OOPAxAREUFWVhYADzzwALNnzyYiIoLbb7+dW265hVWrVh3XuPbs2cOHH37IJ5984s8sr6qqYurUqXTt2pWqqioefvhhLr/8cjZs2IBarWbYsGHMnTvX38eR19KlSxd+++03HA4Hg06iYmxGRgbffPNNi2TkCyHOXGdGNFKIGlW//krerCep3rULTWg7DN0uQBvVA6Vaj31jKfaNpWiseix9ogkamdjSwz1laqORmMcexTKgP4cefAj7+vVkXH4FMU/OIuj88xv9fJ4KJ7b1+f7MdleeDdze2gaK4g/C62MsGFKsvvXaa9Zt10WaURvl146iKOzMq2D5jgKW78zn9+wSPN7adPcAg5Zz24UzPDWCYR0jiQoytuBom8HGJfDzS77Hl74Kbc6MCRmesjI0LVDCS7R+2w+V8+aKvXy+6ZD/Z79zTBC3D2vLxWnRZ+ZEGyGEEEIIIYQQorm4bPBUCyV43H8Q9JZG6WrmzJk8+OCD/udPPfUUd9111wn1MWTIECoqKli/fj29evVi5cqVTJs2jaVLlwKwfPlyoqKiSE1NrXes1WpFr9djNpsbzAR/8skn/cH7e++9l9GjR+NwODAaj/1eptPp5L333iMionZp2TFjxtRpM3/+fCIjI9m2bRtpaWkMGzaMu+++m8LCQjQaDVu3buWRRx4hPT2df/zjH6Snp9O7d28CAgKO69588cUXBAQE4PF4cDgcALz44ov12jXG10EIcXaSaJg4I7jy8sh/7nnKv/wSAI3VSsTdNxJ85RhATfXeUmwbC7BvKcRT5sRd5PAfqygK7iIHuvDTt/R10IUXYkxL48DUe3Bs2sSBO+/Cdv31RM6cgdpgOKG+vA53TQl5G668KgyJQZh7RPr3lX2VWae9Sqf2lZKPsqBvE+jfrgkyEHFbt1O/uDNEVbWbVXsKWb6zgPSd+Rwqc9TZ3y4ygPNSIxnWMYJzEkPRa8+SINz+dfDZnb7H506Fble17Hgagae8nMLX36Bk8WKSP/kYQ0pKSw9JtAKKovBLRhFvrshgxa4C//Zz24UzaWgK57YLR9WKZsoLIYQQQgghhBCiZU2fPp3x48f7n4eHh59wH1arlR49epCeno5Op0OtVjNp0iQeeeQRKioqSE9PbzAL/nh061b73m9MTAwA+fn5JCQkHPPYxMTEOgF4gL179/LQQw+xZs0aCgsL8Xp9yV85OTmkpaWRlpZGWFgYK1asQKfT0b17dy699FJeeeUVgBO+luHDh/P6669js9mYN28eu3bt4s4776zXrjG+DkKIs5ME4cVpTXE6KXr3XQpffwPFZgOViuBrryHirrvQhoT42xk7hGDsEIJyWTscO4vRhNTOxnMdrCL/3+vRxVgwdY/A3D0Cbcjpl3msb9OGpPffI//lORS//TYlCxdiW7+euBdnY0hOPupxXoebiuX7/IF3T1l13f02tz8Irw0zYeoegS7CVLN+uwVNqPGMX6f9ZGUVVvHDjnzSd+azNqMYp6e2aoBRp2Zg23CGd/Rlu8eHnoXr05YdgMXXg6caOo6G8x5q6RGdEsXtpmTJEgr//Sqe0lIAyr/6moh//bNlByZalMer8O3WXN5csZeN+8sAUKvg4q4xTBrSlq5tpFqCEEIIIYQQQgjRqHRmX0Z6S527kYSHh9OuXbtT7mfYsGGkp6ej1+sZOnQoISEhdOnShVWrVpGens7kyZNPqt8jS7cfTiw4HDg/FoulfrWAv/3tb8THx/PWW28RGxuL1+slLS0Np9PpP8eQIUP81zJs2DDS0tLweDxs3ryZ1atXn9C1WCwW//195ZVXGD58OI899hhPPPFEnXaN9XUQQpx9JAgvTluVK38m78kncdasQWPq2ZOoBx/A1KXLUY9R6dSY0urOVHMdrAS1CtehKlyHqij/Jgt9YhDmbuGYukWgCdQ35WU0KpVeT9SM6Vj69+PgzHup3r6dzDFXETXzEYxpA2vKyFehjTBjPd9Xjl+lVVOx8gAcUQ5dY9X7yshH+UrK+/tXqwi7rn5pIlFLURRW7Cpg/s+ZrNxdWGdfQqjZn+3ePyUMo+4sXu/ZafMF4CvzILIzXPEmqE/f7P/Kn34i79nncO7dC4C+XVuiZs4kYPDgFh6ZaCkOl4dP/tjPWz9lkFXkW4fOoFVzTZ94JpybQkLYWTjxRgghhBBCCCGEaA4qVaOVhD8THF4XXqvVMnLkSACGDh3K4sWLj7oe/GF6vR6Px9PkYywqKmL79u28+eabDK55P+3nn3+u1+7wuvB6vZ7HH38clUrF4MGDeeGFF7Db7Se1HvxhjzzyCBdddBF33HEHsbEttJyBEOKMIkF4cdpx7t9P3jPPULnsBwA04eFETZ9G0KWXnlQpX0ufaExdwrBtKcS+oYDqzDKc2eU4s8sp/SKDyH/0QB8feOyOWhHLuYMJ++cb2P7YDeogqtYbqVq/zb9f1yagThA+6Lx41AE6dFEWdFFm1Gbd0boWR+FwefjfhgPMW5nJ7vxKwJftOqBtGMM7RjI8NZKUcIuUmwZQFPjsX3BoA5jD4LpFYDi9fsYOc+zaRf5zz1NV858CTUgI4Xf+i5Crr0allZfYs1GZzcV7a7JYsDqLwkrfTO1gs46bBiQxbkAiYQEntkSIEEIIIYQQQgghzlxlZWVs2LChzrbQ0NBGPcfhdeE///xzZs2aBfiC2WPGjCEiIoLOnTsf9dikpCTWrl1LVlYWAQEBjT62w0JCQggLC2Pu3LnExMSQk5PDvffeW6/d4XXhtVqtP1g/bNgw7rnnHnr16kVQUNBJj2HYsGF06dKFp556ildfffWk+xFCiMMkQiBOG16Hg6J58yl66y2U6mrQaAi98UbC//kPNIGnFsBTm3UE9I0hoG8MnvJqbJsKsW8swF3sQBcb4G9X9XseKo0KY+cw1PqWy2L2Vntw5VXhrlm33ZVbhdqoJexG3x9MKrUK58FqVHpfGXnF48JbcQi85QSe3w9zj6Q6/QWNTGzuSzhjFFVW8/6aHN5bUxtwCzBouaZPPOMHJp2dZeaPZeULsOUTUGvh6vcgJKmlR3TC3MXFFLzyCqUffgReL+h0vt9Ht09Ccwp/7IvT18FSO/N/zmTRrznYnL4Z4nHBJiYMTuaaPvGY9fInlxBCCCGEEEIIIepKT0+nZ8+edbaNGzeuUc9htVrp2bMnOTk5/oD74MGD8Xq9x1xDfdq0aYwbN47OnTtjt9vJzMxs1LEdplarWbx4MXfddRdpaWl07NiRV155hWHDhtVpl5aWRnh4OImJif6A+9ChQ/F4PCe9tv2Rpk6dys0338zMmTOJj48/5f6EEGc3laIoyrGbnV3Ky8uxWq2UlZWd0swp0TgURaHyxx/Je+ppXAcOAGDu35/oB+7H0L59k57ba3ejNvkCJ4pXIffZX/GUOVHp1Bg7h2HuHoGxQwgqbdOU0Va8Sp311kuW7saxpxRPsaNeW7VZS8xD/f2Z1rYN+aBWoYu24MzcwsEZM3Dn5aHS64mcOYOQ66+XrOxTsCe/kvk/Z7L0j/1Uu31rHcVajdw8KJlr+sYTZJRqAg3a/jksucH3+G9zoPf4Fh3OifI6nZS89x6Fr7+Bt9JX8SBw1Cgip92DPiGhSc4pr0mNrzHv6c7cCt78aS+fbTiIu2ZZj9ToQO4Y1paLu8ag05y+yywIIYRoevI637jkfgohhGgt5DWp8f3VPXU4HGRmZpKcnIzRaGyhEQrRusnPiRCN53hf5yUtS7Rq1RmZ5D31lL/UszY6mqh7ZxJ4wQXNEkA+HIAHUNxezL2isG0swFPswL6xAPvGAlRGLaa0MCy9ozAkW/+it6NTFAVPWTWuXBuu3CrcuVW4cm14nR5iZvTxt3OXOPwBeHVgTfn4aAu6aDO6qLrrHJl7RPof6yL7kvzpfzl03/1UpqeT98QsbGvWEDNrFhrryY35bKQoCr/sLWLez5n8uCPfv717GysTBqdwUVo0Wgm4HV3uFlg6yfe476TTKgCvKAoV335H/gsv4Nq/HwBj586Ez5iJM6EzezILOPTjT3hclYyaeHELj1Y0l2+2HOL29//wPx+QEsbtw9oypH24THISQgghhBBCCCGEEEKIs5gE4UWr5K2qovCNNyha8C64XKh0OkJvvYXw225DbW6Z8t5qvQbrBUkEjUrEtb8S28YCbJsK8JY7sa3LQ6VT+4PwhwtMNBSE8TrcqI21P3ol/9uD7Y98lGpPg+f12lz+NdqDRiSgDItHF21BYzmxTGttSAhtXn+NkvfeI+/5F6j4fhn2rVuJmz0b859KHom6nG4vX2w6yLyVmWw7VA6ASgWjOkcxYXAK5ySGSMDtWCoLYNF14KqClGFwwVMtPaLjZt+8hbxnnsH+++8AbO08jLLIMOxuO85X3kDxloFSXdNaxchbLkCtabnlKkTzGdw+glCLngEpYdw2JIXu8cEtPSQhhBBCCCGEEEKcRT744AMmTZrU4L7ExES2bt3azCOCLl26kJ2d3eC+N998k7Fjxzbp+Y8su9+Qbdu2kdBEFS2FEOJIEoQXrYqiKJR/9RX5zz2POy8PAMvQIUTffz/6xNaxbrlKpUIfH4g+PhDrxclUZ5Zh31SAuWdt5rkzs4ziD3dh7h6BNsLsW7c9z5fl7q1wEvvYwNo15RV8AXi1Cm2EqU5muy7aguqIgL0h6dSy1lUqFaE33YSpV28OTJ2KKyeH7BtuJOLuuwmbcCsqtWRxH6nU5mThrzm8uzqLvHJfkNWk03D1OW24eVAySeGWY/QgAHA74cMboSwHQtvCVQtA07peflzVDsoLCijNzyUvYz+FOQcp3r+PyryDuFyVjNq0HY3RSNitt1KwdT+2kg31+tDqLZit4TgqKzBbg5v9GkTzsxi0rJg+jEBZfkIIIYQQQgghhBAt4NJLL6Vfv34N7tPpWub9iq+++gqXy9XgvqioqCY/f2xsLBs2bPjL/UII0RxaVxTkDFV8sIrKEgdqjQq1Rl3zufaxNcKEpmZNcZfTg9ftrdPubMmwdezcRd6sWdh++w0AXXw8UfffR+Dw4S08sqNTqVUY2wZjbBtcZ7ttcyGe0moqVuxv8Dh3gR19XAAAAefGEdA/Bm24qcnWlv8zU1oXkpd+Qu4jj1L+5ZcUvPgitjVriH3uWbTh4c0yhtYsq7CKt1dl8tG6/dhdvgoFUUEGxg1M4vq+CQSb9S08wtOIosCXUyHnFzBY4brFYApp9mG4nU7KCwsoz8+lrCCfsoI8zr32RtRq32SYRQ8/TUHW7w0frALNxaNpO2Mauuho2r/9KcUHowiLiyEqpQ1RyW2wRkahN5qa8YpEayEBeCGEEEIIIYQQQrSUwMBAAgMDW3oYdSS2cDKdVqulXbt2LToGIYQACcI3iy0r9rN5xYGj7r/hif5YI3wl1td9mckf3+bU2a9Sq/wB+THTexNWE7zdtHw/m5bv8wfsNUcE91VqFUOu6UBorC9TN2tzIbvX5dUG99V1JwJ0HhTjH0Ph/koO7Cqp6a/+pIGo5CAsVgMAtnIn5YX2BiYYqNBo1BgsWrQ6X5BL8Sqgql+i3VNeTsG/X6Vk4ULweFAZjYRPuo3QW25BbTA0wleg+QVfnIwhxYp9UyFemwtdlAVtlNmX5R5lrlOOXhfeMoE7TUAAsS88j2XgAHKfmEXV6tVkXHY5cc89i2XgwBYZU0tSFIXfskqYtzKD77fnUbOiAJ1igpg4OJlLusWib6ZJEmeUtW/A+vdApYYr34aIDk1yGo/bTUVhAdbIKH9Fh/XffsGOn1dQmpeLrayk3jHdRlxE8OHZt+ogQI9KY0WtCkDv0WByebCaTSScP5SUq0eiM/p+H4285bImuQYhhBBCCCGEEEIIIYQQQpwZJAjfDCwhBsLjA/B6lJoPL16PgqfmsVpTG9jzeJR6xyteBY9XwePyBeQPs1c4Kcu3H/W8blftGuPFB6vYtTbvqG0TOoX6g/CH9pTy84e7j9p29D+7YenqC0Zlbynix/9sP2rbURO60P4cX5Br7/oCvn1rS51JBSqPC2xVqDwdaR/ajbY9I4iaOYMCu4VPXtzUcPUAtYoug2NJ6BIGQGmejU0/1k5GUPknAfjax3UIISo5yHfPKp1kby5qcNKAWqMmKNxIUJgvKO5xeSkvamiCQc2kB61vLA1R6TSYu0Zg7hpx1HvTGqhUKoLHjMHUvTsHpkylevducm6dQNjEiUTcdScq7Zn/K8Lt8fLVllzmr8xg4/4y//bzUiOZcG4yA9qGnTXVKBrdnmXw7f2+x6NmQfuRp9xl4b5scvfsoqwgn/KCPMry8ygvyKeyuAhF8TLx1bcJivAtDbFzzR4O7jry95MOlToIlcaKSh1EZYmT4JoY/LkDBpCXeRD99t8w2QvRt4kjcto0Ai8YJV9/IYQQQgghhBBCCCGEEEKckDM/wtYK9L4wid4XJh1X20FXtGPAZW3rBOt9AXvf48BQo79t53Njie8cWq/t4edBR2RYx3UMYeCYdvXbeX1tA0JrM86DIky06x1ZZ/+R/RottaV3tXo1gWHGo45Bc8QEA6/HC9SdVABq0AWCDkIm3UGbGwYD4NhQQH52xVHvU3znUP/jimLHX1YaGDimnT8IX5Zv54d3jz5poO/fkukzOhmA0nwbi5/49ahte45KYOAVvrI25YV2Fs/61R+kP7Iqgd6ooX2fKHqMTPBff+H+SgJCDRgtulYR4DO0a0fSRx+S99TTlH74IUVz52L77TfiZr+A7gxdI6fc4WLJr/tYsDqLA6W+ySwGrZorerXh1nOTaBfZuso4nXYKd8NHt4DihR43QP9//GVzr9dDZXFxncC673MeF915D4GhvmUStv30I7999slRetFQkJPnD8JHJvcmP9uIWmslODqK8PgIwmIDCI21EBpjwRppxpmTQ/7zL1D9/fcEA+qAAMKn30PIDTectpU4hBBCCCGEEEIIIYQQQgjRsiQI38qo1Co0ahUaLYDmL9sGhhrrBOX/SlRSEFFJQcfVNrFLGIk1WebH0v6cKH+me0MUpTazv23PSGIeUFPw+lxKv/oaRaVBZbJgvX4sARdejDW6NugZnWJl9D+71asecPhxTDurv21gmJFzLk6q365mAkFYTUl+AJ1RQ0LnUDweBcX756oECqbAumt9G8zaOuc94nLqZMF73F5cjtrKA4riRvGWo3hLUamDie0QUtPORVl+JUue/AOVSuWbxFDzdQwIMxIYYiS2fTCx7YOP6/43JrXRSMzjj2EZ0J9DDz2Mff16Mi6/gtgnZxE48tQzmFuLfcU2FqzOYslv+6isdgMQHqDnxv5J3NA/gbAACbyeMnsJLLoWqssgvj9c8iKKolBVUuzLYM/PJblXH4wW39Iav/7vY1YteR+vx91gd4U5B/xB+IqSINTaxDoZ7b4PKyqNBYMlzn9c37/1ocfIXlijTHUmBAF4KiooeOEFSt57D8XlArWa4KuvIuLOO9GGHd/vPyGEEEIIIYQQQgghhBBCiIZIEF40qcNZ3orHQ9lHSyiY8wresjJMQNClfyNy2jR0kZH1jjMH6UnqGn5c5wiONNPv0pTjahsWG8Df7upxfG3jApjw4pA623yBe19lArXGd20lhw6wa81qEjvtp7wgj/LCXKrKijgcse958c107OebqLBvyyY+efoRQAUqIyqVkapCI3kqI6gNaPRp9L74XGLbB2MrLyNr41ZWL91HQKiVoLAQrNEhWMMtvqB9qIGgMBM6w19P1jhRQRddhDEtjQNT78GxeTP7/3UnIWPHEjlj+mmdGbw+p4R5KzP5esshvDWTKTpEBTDh3BQu7RGLUde49/FsoygKKAoqxQsf3cy+nAJ2OHpQpu5B+bS7KC/Mx+Ny+dtf89iztEntAoBGa8TrcaNSq9GbQlBrrHg8AXg9AajUQbhdtROI2vUZRNbWEKwRJkJjLITGWvzZ7cGRZjS62mB7QIgRQv40Treb0o8+ouCVf+Mp8a0Tbxk0iMiZMzB2aJr16oUQQgghhBBCCCGEEEIIcXaRILxocrY//iD3iVlUb/eVgTekphL94AOYzzmnhUf21xRFwVFZQWnuIUrzDtX53Peyq2jbuy8AxQf38/Pid+sdrzOaCI6KpkPfjoS38WX5O6oqD/cOih1FsR9+BkBcx67EtPVl+edl7OHrV58CoOwg1Bbc14PagM44iN6XXMigMe0oy8/l96++pHCfC0uIlcBQK9aoEEKiQwmODMFsDUarr5vl/1f08fEkffA++S/Pofjttyn54ANsf/xB3IuzMSQnn8htbFEer8L323J5a2Umv2eX+LcPbh/OhMEpDGkf3iqWAzhdVNtslBw64CsZf0S5+MPl46984AniMv8DGcsp8iSwKT8Q8rf6j1ep1JitoRgsoVSVOv3btcaOGKwTQWVBpVKjAGoNqIGgcCMaXYC/bdueEbTtORSt/sQnTVSuXEnes8/i3LMXAH3btkTNnIFl8GD5PhBCCCGEEEIIIYQQQgghRKORILxoMq78fApmz6bsf58BoA4KImLy3YRcfTUqbev41lO8XipLiynNPURQeATWyGgA9m3dxP9eeJJqW1WDxxXmZPmD8OHxiaQOGkpwdCzBUdH+z2ZrcL3AXuqgobTt05/qykoclRU4KiuxV1X4nyf3PIewNhEAaLQ6IpPaYisrp9pWhavaVtOLE7xONHqVfzmC4oMHWP/1f496nYGRIxl41VWkDYmjICeL7+f+HyqVAUuwlYBQK6bAQIwBARgDAolKaU9obBwqvZ6IaVMx9TmH3PsfoHr7djLHXEnMIw9j/fvfT+W2N7mqajcfrtvH26sy2Vfsm+ig16j5e49Ybh2cTGr08S3NcLZxVFXWrMWe61+Tvfv5FxHWJgGA7SuX88Pbrx/1+LJfPyYuw7c/ZMQ9tNthx+sNxGk3U1VuwFahx6PSYLOBy1lbASM6JYrA8HxCYwIIi/Vlt4fGWgiJttSr9HAywffq3bvJe+55qlauBEATHEz4nf/y/S7S6U64PyGEEEIIIYQQQgghTtX48eN59913mTRpEm+88Uadff/4xz94/fXXGTduHAsWLPC3BdBqtYSGhtKtWzeuu+46xo8fj1pdWx0yKSmJyZMnM3ny5GOOISkpiezsbACMRiOJiYnceuutTJs2zf/edlZWFskNJGaNHTuW999//2QvXwghznitIxIqziiKy0Xx+x9Q+OqreKuqQKUi+MoriZgyGW1oaIuNq6q0hN1rV/uy2Wsy2svycnG7fBm5g68fT9+/XwmAKcjqD8AHhIYRHB1DcFTNR3QM0W3b+/u1RkYz+q7pxz0Ond6ALtRAQOhfrzudkNaNG5+d43/u9XqorqrCUeUL2FsjojAF+rLmA0PD6DLsYvKzCnBUVuK0V+F2VuFx20FxYK/U4PV4AagsLuLQ7u1HPW9ij78z6KqriGkXTN7ePSx8Yzb6jnHo7OFobDb0b87B/L8PCe7Tl/aDhpDUrScATruN/MwMjAEBGGoC+jp985avP1RmZ8HqLBauzaHC4VtfPMSs44b+idw4IJHIQGOzjqe1cdptlBXkExAahinAV50hc/06Vi7+D+X5eQ1OOolp18EfhLdGRmEJCSUoIhJrRBQBYRFodcEoSiDVhRWYd8wBPTD8AbQxf2f/5+vr9KVSgSXYQGisBVNgbfA7KjmIcU8NavTrdRcXU/Dvf1P64Ufg8YBOR+gNNxB+x+1ogmQihhBCCCGEEEIIIYRoWfHx8SxevJiXXnoJk8kEgMPhYNGiRSQkJNRpe+GFF/LOO+/g8XjIy8vjm2++4e677+bjjz/ms88+Q3uSiW+PP/44EydOxOFwsGzZMu644w6CgoKYNGlSnXbLli2jS5cu/ueHxyuEEKJhEoQXjarql1/InfUkzr2+cs/Gbt2IfuhBTF27Nul5Xc5qyvPzKMk9RFneIf/nDv3Ppet5owCwlZU2mMWrUquxRkShOeKPlJCYOMa98H9Yo6KbPZB8NGq1BlNgEKbA+sHD8IQkLrzjH/W2e9xeKkscVBTasUZZAIhMSmHQtXexOX0v9ooKvB47eB0oigMUBwd3Q8G+CmLaBeOorADAabfjBDDXBLGryshJ/x6qdUS3TcNo0VG4L4clj91b5/xand4XkLcE0Oviv9NtxAWA72ux6YdvMQbUZOBbAmoe+54bTGZUR8zePJYtB8qYtzKDLzYdwl2z4HtKuIVbzk1mTK82mE4ie/p0VpafR8b63/zl4g9ntR/+el585zQ6nTsMAAWFgqwM/7FmazBBEZEERURhjYwiNC7evy8ypSvdL3yE4oNVFB+sJGu7o3YtBYIwmruS1DMRhkwnrMpNm9QQ/7rthz8bzE2fee51Oil5730K33gDb4XvmgPPH0nktGnoExOb/PxCCCGEEEIIIYQQQhyPXr16kZGRwdKlSxk7diwAS5cuJT4+npSUlDptDQYD0dG+Sq5xcXH06tWL/v37M2LECBYsWMCECRNOagyBgYH+fidMmMDrr7/Od999Vy8IHxYW5m8nhBDi2CQILxqF6+BB8p59jopvvwVAExpK5D1TsV5++QkFU/9Ktc1Gad4hdAYjobFxAJTkHuTDx++nsqiwwWOCwiP9QfjgqBhSevclJDoGa1QMIVExBEfHEhgeUScAD6DRagmPP/2DdRqtGmuEGWuE2b/NEhxC/8tH0f9y37r39gqXL1Bf5KCi2PcRleTLsE/s1pML/vkyy9/bAEpNoL4mYK8oDnZssRL42pf0m/Z3FEUhKCKGqtLymgx8L26XE3dJMVUlxbgcdv8YSvNyWbXkvaOOu/8V1zDomhsBKC/I5/u3Xq0N2AcEYrQEoDcHsKvUw2fZHlbkKrXHpoQy4dwUzkuNRK0+s9b5djmrqSgsqF2L/Yh12ftddjXt+vQHoGh/Dj++/UaDfRgDAnE7a9djj2nXkctnPuLLcg8Op6rM6wuyH6qi+GAVuVkGomr+3le88Mc32XX7s2gJZTdhynbioqvg76+BSoUxQMffJ/dsmhtxFIqiUPHd9+S/8AKuffsAMHTuRNTMe7H069usYxFCCCGEEEIIIYQQLUNRFOxu+7EbNgGT1lRvidJjufnmm3nnnXf8Qfi3336bW265hfT09GMee95559G9e3eWLl160kH4wxRFYcWKFWzfvp327dsf+wAhhBB/SYLw4pR4q6spfucdCt94E8XhALWakLFjibjzXydd7tnlcLD7t18ozT1IaV6u/7O9vAyA7udfzMgJvqxvizXYH4DXm8z+cvGH12aPSmnn71dnNHL5jIdP8YrPLCqVCnOQHnOQnsjE+l8vtUZD6oBk4jrE1AnSlx8qp3jDLqocalz/fZ8DOT8SM+sJho2fxXfztqJVFMCJ4nWAUo2iOPhjmZagyDza94nCYLGQOmgE5YWleNx23NU2qm2VOKoqcFdXY6wplQ5QWVJM1sY/jnoNjuDeaMP6cUm3GK7raGLNSw+wd0MgB4/IrjdYAjAGBJDYtQdJ3XsB4Ha5KNqfg6lmv9504n8gNza3y0VFUW2QPbptByKTfBHwrA2/88nTjxz12KL9Of4gfGhsG9r16e/PZvd/Do/EYDbXOU6jNbNrnZHigwcpy9+L16vU2a8oCt3P82XDW4L1dBveBmuk2ZfdHm3C/NUtsPNLCIiCictBX7f/5mLfspX8Z57Btm4dANqICCKmTMF62d8bbSKQEEIIIYQQQgghhGj97G47/Rb2a5Fzr71+LWbdib0/duONN3LfffeRlZWFSqVi1apVLF68+LiC8ACpqals2rTpJEbrM3PmTB588EGcTiculwuj0chdd91Vr93AgQPrrD2/cuVKevZs3iQcIYQ4nUgQXpy0ivR08p56GldODgDmc84h6qEHMXbseNRjFK+XiuKiOiXjS3MPEdW2vX89dq/Xw9evzm7weLM1uE7Wut5kZuyTLxIUGYUpMKjFg6hnIq1OQ0i0hZBoS53titKD4nffJf/3XVR8vxXH1q1YHnyW/pelHBGwr6ai2IG72oPTDlq974+0sLh4Ogy8nu/mba09j0FDRJQBS7CW0iIDeVnlRCUFYY2MYtSkuyksLuX3XQfYuS8fVbUNo7cas+KkV5d2vDxuODFWEwd37eDn6moqq6sbrI6g1ev9Qfjygjzev/du/z6VWu3PsjcGBNB58Hn0uGA0AE6HnS3Lv6+z318+3xKAWnN85e49bjdejxudwVfWv/jgAdYsXezLas/Po7KkGJTaIPi5197kD8IHhIYBoDOaagLrvnXZDz+OSq6dcBIcHcPfpz2I16tQXmCn+GAV2VsqKT6YQdHBKiLiAxl5c2dffwYN2VuKcDu9AOiNmiPKxwcQmVQ7OUOlUjH4mg61F/TDE74AvMYA13wA1rjjug+NyZWXR8GLL1H2v//5xmg0EnbLLYTdegtqi+UYRwshhBBCCCGEEEII0bLCw8MZPXo07777LoqiMHr0aMLDw4/7eEVRTul98enTpzN+/HgKCgp44IEHOO+88xg4cGC9dkuWLKFTp07+5/Hx8fXaCCGEqCVBeHHCnNnZ5D31NJUrVgCgjYwkcsYMgkZfjEqlwuN2U16Qh9fjJayN74XYVe3g/fumUJafi8flqt+nw+4PwhvMFtqe0w9zkJXg6Fh/Vrs1MrpeFi9AdLsO9baJpqdSqQgbPx5z73M4cM89uHJyKLtzPImT7ybs1lv92ceKolBtc1NR5CAo3Og/XqNVE5kYSEVJNfZyJ+5qDyW5NkpyffuTu/nWF9rn0PDxNivhW9S4VCGEqxXcoRraJ1np3SmC8CgLwTVB8KiUttz6yjwclRW1H1VV/sdxHTv7z+92OrGEhOKorMDjcqF4vdjLy/wVFxK71c7irCwuYvmCuUe9F71HX8awm3zlnhyVlXw/998YAwLRm83Yy8soq1mXvaKwkEHX3ki/y64CwOt2sX3l8jp9aQ0GrBG+wHpQZJR/e2hcPP+YtxBjQGC9P6oVr4LDVvtzpSgKHz/7O0X7K/G4vX/1ZUSlVjHs+o6YAvWExlqwBBuO74/2zR/Dyhd8jy99BeL7HPuYRuS12Sh6+x2K5s9HsfvKiwVd+jcip0xBFxPTrGMRQgghhBBCCCGEEK2HSWti7fVrW+zcJ+OWW27hX//6FwD/93//d0LHbt++neTk5JM6L/gmAbRr14527drxySef0K5dO/r378/IkSPrtIuPj6ddu3ZH6UUIIcSfSRBeHDevzUbh3LkUz38bxeVC0emwXXoR3l49yc7NovSphynNPUh5YQGK10tyj95ccd9jAOgMRmylJXhcLtQaDdbIKKxRMb7y8VExRCTW/SPhsukPtcQlipNg6ppG8tJPyH34Ecq/+oqC2S9iW7OW2GefQRsejkqlwmjRYbTo6hyX0iOClB4RALidHipLqv3l7iuKHOxxVvPI/LWs3F1IH4eWYegIUlQEeYBKcG0pY80WX8D8otu7ktIjAo1WR0WRns0r7ASEBhAYGk5gmJGY9kYCw4yYAmvHEJmUwu1v/AfwrbXuC9RXUl1Zib2qgpDoWH9bjVZLhwGDqa6qPCLAX0m1rQrwLXVwmK28lF1rVx31flUUFvgfWyOjGXz9eF9We2QU1ogoTEHWBoPgao0GoyWQiiKHf732w2u3lxyqIiTGwtX3+wLhKpUKt9ODx+1Fq1MTEmM5Irvd93Gkjv1PMGh94Hf43z99jwfdDd2vPbHjT4Hi9VL22WcUvPQy7rw8AEy9ehF170xM3bo12ziEEEIIIYQQQgghROukUqlOuCR8S7vwwgtxOp0AXHDBBcd93I8//sjmzZuZMmVKo4wjJCSEO++8k2nTprF+/XqpPCuEEKdAgvDiqByVlZTmHaIk9yD5P68kb9XP6CoqSHW5sAwaROT99zFv1v1U79la71it3oDqTyW6L7/3USzBwQSGRRx3+W5xetAEBBA7+wXMA/qT9+RTVK1aRcbllxP33HNYBgw45vFavYbgKDPGUAOrN1Qyb88+dq+uBECtgsg+4fTuEU+SyeAP0lcW15a8t0bUzjAt2F9B5sb6pejBl30/+h/diO8cCkDRwUoKsisICDUSGGohNDYUjbb++uHWyGj+Nnlmve1ej4dqW1WdNceNAYGcd/OkmiB9JcaAoDrrsluswf62OqPRXwHiSIqiUFVaTWVpNdHJVv/2JU/9RtH+ygavrbzIXqf01IhxnTCYtQSGmVCrG/GP5fJDsHgsuB3Q/gIYcfR16hubbd068p55FseWLQDo4uKInD6NwAsukP8QCCGEEEIIIYQQQojTlkajYfv27f7HDamuriY3NxePx0NeXh7ffPMNTz/9NJdccgk33XRTo43ln//8J88++yyffPIJV15Z/71LIYQQx0eC8GcxRVGwlZXiqKz0l40H+OiJB8jPysBRWVH3AJOWAJ2VkQ88RsCIEahUKlJ698Xrdh9RNt6X2W4JCa0XFIvtkNoclyVaiEqlIuSqqzD36MGBqVOp3r2HnFtuJWzSbUT861+otEf/dVNUWc37a3J4b00WhZW+GZ8BBi3X9Iln/MAk4kNrZ65Gp1iP1g0AiV3C0Ok1VJY46qxNX1VWjcftxXhENnz2liJ+Wbr3iIsAS5CewDAjAaFG+lyc7M8ad9rdKIDBVHsdao0GU2DtmukA5iArPS/82zHv12G2cidFByprMtsrfVnuh2w47W70Ji0TXhzs/1kKCjNScqiK4CgzYbGHs9sDCI21EBRurPMzF5kYdLRTnjyXHRZfDxWHICIVxswDddNPqHHu20f+C7Op+PZbANQWC2G3TyL0pptQGwxNfn4hhBBCCCGEEEIIIZpaUNBfv5/3zTffEBMTg1arJSQkhO7du/PKK68wbtw41Or6iUUnKyIightvvJFHH32UK664otH6FUKIs40E4c8S+7dvofjAfkrzDlGae8j/2VXtIKxNAuNnv+Zva68ptw2gd3mwOJ2YXV4iunUn7pJLCRx6nr/txf+6p9mvRbRuhvbtSfrwQ/KefobSDz+k6I03sf36G3EvPI8uNrZO2z35lcz/OZOlf+ynumbt8lirkZsHJXNN33iCjLqGTvGXwuICCIsLqLfd4/ZSVVqNJbg2aBsQbCC+UwgVxb5S+B6Xl6oyJ1VlTsgop9eoRH/bLSsP8MvSvehNWgJDDQSGGmsy6H0f8Z1D65XcP5Kt3EnxoSrK8m10GRzn3/7Du9vI2Vpcr71arcJi1eO0uzGYff2ed2MndCYNGk3j/VF93BQFPrsTDv4BphC4bjEYmyDQfwRPRQWFb7xByX/eQ3G5QK0m+KqriLjrTrRhYU16biGEEEIIIYQQQgghmtKCBQv+cv+nn35ap+2x2h+WlZV13GM4Wtu5c+f6HyclJaEoynH3KYQQwkeC8GcAj9tFWX5enQC71+Nl5K13+Nv8+M6bFGRn1j9YpULxev1lrBVFYUCHrpT+uhFjXgFar0LAiBFE3TsTfXx8/eOFaIDaZCLm8cew9O/HoYcfwf7HH2RcfgWxT84iYMQIftlbxLyfM/lxR77/mG5trEwYnMJFadHomiDIrNGqCQo31dnWoW80HfpGA77KEPYKV50MemtkbXtHhQvwZcQXHXBTdKCqTl9X39/HH4Tftuogu9bmYrYaqCqtpvhQFY5Kl79tSs8ITAF6wDdpoLzQUWe99tAYC8FR5nql8Y0BJz4podH8/BJs/gjUWrj6PxCa3GSnUtxuSj/+mIJX/o2n2DdBwTJwIJEzZ2Ls2KHJziuEEEIIIYQQQgghhBBCCNEYJAh/mnA5HFQUFxEaW5tB+93cf5O9aT0VhYUoirdOe63BwIhbbveXp47v3JWA0DB/ufjDn4MiotDqfIE9x/bt5D4xC/cffxAA6BMTiXrgfgKGDGm26xRnlqCLL8bYtSsHpt6DY/Nm9v/rTlZ2PY/nk0bh0mhRqeD8TlFMHJLCOYkhLbqut0qlwhykxxykb7CU+8Ax7ehzSTIVxUeuR++oeV5NYJjR37ZwXyUHdpX+6QS+cvKhsQG4HB5MNcn6Ay5vy8Ar2jXhlTWCHV/BD4/7Hl/0HCQ33e+EypU/k//cs1Tv3gOAPiWFqJkzsAwZIuu+CyGEEEIIIYQQQghxnD744AMmTZrU4L7ExES2bt3azCMSQoiziwThW5mCnCwK92VTmnuQsrxcSnIPUZZ3iKrSEnQGI3e++5E/EGUvL6O8wJdJrDMYa9Zkj8UaFU1IdCxejwdNzTrcw8ffdtRzekpLKXjlFUoWLwGvF5XZTPgdtxM6bhxqvb7pL1qc0WxhUXwz6THsr73KRdt+ZPDmH4nbt5NtE2Zw1WWDSAq3tPQQj5vOoPFlrMf89Zi7DIklKjmIqtJqzFY9oTEWQmIs6PT1109v9YHlvK2wdCKgQJ8J0OfWJjlN9d695D37LFU/rQRAY7USfuedhFxzNSpdC1YAEEIIIYQQQgghhBDiNHTppZfSr1+/Bvfp5P02IYRochKEb0aKolBVWkJp7sGasvG5VBQVcOE/pvgDcauWvMfedWsbPF6j11NdVYUxwJdC2+/yazjnkisIjo7BbA0+4WCe4vFQ+vEnFLz0Ep7SUsCXuRw5Yzq66OiTv9CznMfrweFxYHfbsbvtBBuCCdQHtvSwml1WYRVvr8rko3X7sbs80OFidkS3559rF5JSeoB2r91HSOQjcOmlLT3URhcWG0BYbP116U87VUWw6FpwVkLSYLjwmUY/hbukhMJ/v0rJkiXg8YBOR+j11xP+jzvQWK2Nfj4hhBBCCCGEEEIIIc4GgYGBBAaefe9LCyFEayFB+Gaw9r8fsmP1T5TmHcJdXV1v/9Abb8Uc5As2RaW0w1FZWVsy/nD5+KgYf/D9sOi27U96TPYNG8h9YhaOmpIzhvbtiXrwQSz9+p50n6cLRVFwep3YXXZ/oNzutmNz23C4HXW2Hf5wuB3Y3Laj7jvyebWn7tdYp9ZxUfJFXN/perqEdWmhq24eiqLwW1YJ81Zm8P32PBTFt71TTBATBydzSbeLUBVdx8Fp07H99hsHZ8ykavUvRD/0IGrL6ZMRf1ZwO+HDm6A0B0KSfevAaxpvhqzX6aTk/Q8ofP11vBUVAASMHEHUtGnok5Ia7TwtJac8h493f8zt3W7HrDO39HCEEEIIIYQQQgghhBBCCNGMJAjfDGxlpRTmZAGgUqkJiojAGhVDSHQM1qgY1OraEtUDxlzHgDHXNdlY3EVF5M9+kbKlSwFQBwQQcdedhFx3Xasq+ez2uhsMcv85EN5g0Nxlx+5pYNvhYzwOvIq3Wa7DqDHi8Dj4bO9nfLb3M7pHdGdsp7GMTByJTt167vepcnu8fLUll/krM9i4v8y//bzUSCacm8yAtmG1lRqiokhY8A6Fr79B4WuvUfbpp9g3biTu5ZcwduzYQlcg6lAU+Ho6ZP8M+kC4bjGYQxupa4WK778n/4XZuHJyADB06kTUzJlY+jdcHut04VW8/HzgZxbuWMiqA6sASAhM4MoOV7bwyIQQQgghhBBCCCGEEEII0ZwkCN8M0oafT1L3XgRHxxAUEYlG2/zBV8XtpmThIgr+/W9/1qn1iiuInDoFbXj4ifenKHVKrv85yG1z2+plmh81aN7Ah8vrauxb0CCdWodJa/rLD6PW2PA+nQmTpoFtWhNGjRGj1ohapWZTwSYW7ljIt1nfsrFgIxsLNhJhiuCqjldxVYerCDed+P1vLcodLpb8uo8Fq7M4UGoHwKBVc0WvNtx6bhLtIhsud6TSaIj41z8x9+3DwWnTcWZmknXV1UTddy/B117b+tdJP9P9+hb8vgBQwZVvQ2Rqo3Rr37qV/GeexfbbbwBoIsKJnDwF62V/R6XRHOPo1qusuoxP93zK4h2L2V+5HwAVKga3GUyKNaWFRyeEEEIIIYQQQgghhBBCiOYmQfhmEJGYTERicrOf1+VxYXPbKF/zC1XPvYyyNxsAd/sEiv95JXvaR2Mv+hF73tGD4X8VNG8OKlQNBrlN2iMC4LpjB87NWnOD27Xqpv8R6BbRjW4R3Zh2zjQ+2vkRH+76kAJ7Aa9teI23Nr3FBUkXMLbTWNLC05p8LI1lX7GNBauzWPLbPiqr3QCEB+i5sX8SN/RPICzAcFz9WPr2Jfl/n3Lo3vuoXLGC3Mcep+qXNcTMegJNUFBTXoI4mr3L4Zt7fY/Pfww6jDrlLl15+RS8/DJln34KioLKYCD0lpsJnzDhtF6GYGfxThbtWMSXGV/i8DgACNQHckW7K7im4zXEB8W38AiFEEIIIYQQQgghhBBCCNESJAjfgryK9+hrjbvsdTPN3XZsrtp2Do/jmJnmQWUubvzRy6DtvoW5K4ywcJiaH7sfQMl7BfIa5zoMGsNxZY6bteaj7jNqjf5A+ZEBd71af8ZkRYebwrmjxx1M6DqB77K/Y+GOhWwq2MQXGV/wRcYXdAvvxvWdrmdU4ih0jbj2dmNan1PCvJWZfL3lEN6a9d47RAUw4dwULu0Ri1F34tnM2pAQ2rzxOsUL3iX/xRep+O47HFu2EPfibEw9ejTuBYi/VrQXPhoHige6XwcD7zql7rx2O0Vvv03RvPkodt/EnaC//Y3IKZPRxcY2xoibncvr4ofsH1i0YxF/5P/h394xpCPXd7qei5IvwqQ1teAIhRBCCCGEEEIIIYQQQgjR0iQI38Tmb57PygMrG8wor/ZUN8k5tW6F0b8pjFnlxegCL7DiHAPfjAzBE2SmQwNl1Y2a2uC4WVcbDPdvbyDb/PB+jfr0LSPdEnQaHaNTRjM6ZTRbCrewcPtCvsn6hk2Fm9i0chMvrHuBqztczVUdW0epeo9X4fttuby1MpPfs0v82we3D2fC4BSGtA8/5YkSKpWKsJvHYz6nNwem3oNr3z6ybriRyMl3E3rLLajU6lO9DHEsjjJYdK3vc5s+cMnLcJJfV8XrpfyLL8h/8SXcubkAmHr2JOremZi6d2/EQTefAlsBH+/6mI92fUSBvQAArUrL+Ynnc12n6+gR0eOMmTAkhBBCCCGEEEIIIYQQQohTI0H4JpZdns3veb8fs90Jr0d+tI/fd6B6+W2UnAMAGHv0IPqhB+nSpQv/aOqLFScsLTyNpwY/xdRzpvLxro/5cGdNqfqNrzF381wuSLqA61Ovp1tEt2YfW1W1mw/X7ePtVZnsK/ZlMes0Kv7eI44Jg5NJjW78cvGmrl1JXvoJuY88QvlXX5P/wmyq1qwl9tln0IaFNfr5RA2vBz6+BQp3QVAcXPMB6Iwn1ZXtjz/Ie/oZHJs3A6CLjSVy+jQCL7zwtAtSK4rC+vz1LNqxiGXZy3ArNUsvmMK5usPVXNnhSiLMES08SiGEEEIIIYQQQghxujnW+2Tjxo1jwYIFjX7eqqoqHn/8cT766CMOHjxIYGAgXbp0Ydq0aVxyySUADBs2jB49evDyyy/XOXbBggVMnjyZ0tLSOtvtdjuxsbGoVCoOHDiAyVS3SmRSUhLZ2b6lck0mEykpKdx5551MmjTpmONdsGABN998s/95ZGQkffv25ZlnnqFLly7+7ePHj+fdd9+td/zu3btp167dMc8jhBBNQYLwTWxMhzEMjBvoK8V+RLb5kZnlRo3xlINTzv37yXviGSqX/YACaMLDiZo+jaBLLz3tAl9no3BTOLd3v51b025lWc4yFm5fyIaCDXyZ8SVfZnxJ1/CuXJd6HRckXYBeo2/SsRwqs7NgdRYL1+ZQ4fAFHYPNOm7sn8iN/ROJDDq54Ozx0gQGEjt7NuYBA8h78imqfv6ZjMsuI+6557AMGNCk5z5rff8w7FkGWhNcuxACo064C+f+/eS/MJuKb74BQG2xEDZpEqHjbkJtMDT2iJuU3W3nq4yvWLRjETtLdvq394rsxXWp1zEiYUSrXTJCCCGEEEIIIYQQQrR+hw4d8j9esmQJDz/8MDt31r4P9edAtsvlQqc79fejbr/9dn799VdeffVVOnfuTFFREatXr6aoqOik+/zkk09IS0tDURSWLl3K2LFj67V5/PHHmThxIpWVlSxYsIDbb7+d4OBgrrnmmmP2HxQUxM6dO1EUhQMHDjBjxgxGjx7Nrl270Otr3yu/8MILeeedd+ocGxEhCTRCiJYjQfgm1j2iO90jmq78stfhoOiteRTNm4dSXQ0aDaE33kj4P/+BJjCwyc4rmoZOo+Oi5Iu4KPkithZtZeH2hXyd+TWbCzez+efNzF43m6s6XsXVHa5u9AzcLQfKmLcygy82HcJds+B7SriFW85NZkyvNpj0zbfsgEqlIuSqqzD36MH+KVNw7tlLzi23EjbpNiL+9S9UWvnV1WjWfwC/vOp7fPnrENvjhA73VFZS9OabFC94F8XlArWa4DFjiLj7LrThLb+cwonYV7GPJTuW8N89/6XcWQ6AUWNkdMpork29ltTQ1BYeoRBCCCGEEEIIIYQ4E0RHR/sfW61WVCqVf1tWVhYxMTEsWbKE1157jTVr1vD6669z880388477/Dcc8+RmZlJUlISd911F//4R20N3AMHDjB16lS+++471Go15557LnPmzCEpKQmAzz//nDlz5nDxxRcDviz13r17n9K1zJ8/nxtuuAFFUZg/f36DQfjAwED/9c2aNYsPP/yQTz/99LiC8Efem5iYGKZMmcKll17Kzp076dq1q7+dwWCoc1+FEKKlSSTrNKUoCpU//EDe08/gOuArPW/u35/oB+7H0L59C49ONIYuYV148twnmdp7Kp/s/oQlO5eQb8vnjY1vMG/TPM5POp/rU6+ne0T3k6524PUq/Lgjn3k/Z7Amo9i/vX9KKBPOTeG81EjU6parpGBo357kjz4i76mnKf3oI4reeBPbr78RN/sFdDExLTauM0bOWvhisu/x0JnQ5fLjPlRxuyn9+BMKXnkFT7Hve8cycACRM2di7NixCQbbNLyKl9UHV7NoxyJW7l+Jgm8CSpuANlybei2XtbsMq8HawqMUQgghhBBCCCGEEMdLURQUu71Fzq0ymRqtMu3MmTOZPXs277zzDgaDgbfeeotHHnmEV199lZ49e7J+/XomTpyIxWJh3Lhx2Gw2hg8fzuDBg/npp5/QarXMmjWLCy+8kE2bNqHX64mOjuarr77iiiuuILARkvj27t3LL7/8wtKlS1EUhcmTJ5ORkUFKSspfHmc0GnG5XCd8vtLSUhYuXAjQKJUBhBCiKUkQvqktfxq2/Q9CEiEkyfcRfPhxIugtJ9xldUYmeU/5ynQDaGNiiJo5k8ALRknp+TNQmCmM27rdxs1pN/NDzg8s2r6IP/L/4OvMr/k682u6hHXh+k7Xc2HShcddqt7u9PDJH/t5++dMMgqrANCqVVzSLYZbz02ha5vWE3RUm0zEPPE4lgH9OfTQw9j/+IOMyy4n9qknCRwxoqWHd/oq3QdLxoLHCZ0uhaH3HvehlT+vIv/ZZ6nevRsAfXIykTOmEzBs2GnzO6jcWc7/9vyPxTsWk1OR498+KG4Q16dez6DYQWjUzVf9QQghhBBCCCGEEEI0DsVuZ2evU8vuPlkd//gdldncKH1NnjyZK664wv/8iSeeYPbs2f5tycnJbNu2jTfffJNx48axePFi1Go18+bN879H98477xAcHEx6ejqjRo1i7ty5jB07lrCwMLp37865557LlVdeyaBBg+qc+7XXXmPevHl1trndbozGukuVvv3221x00UWEhIQAvpLwb7/9NrNmzWrwmtxuN++//z6bN2/mjjvuOK77UFZWRkBAAIqiYLPZALj00ktJTa1btfKLL74gICDA//yiiy7io48+Oq5zCCFEU5AgfFMr2F770RBLRN2g/JFB+qA40NR+ibxVVRS+/jpF7/4HXC5UOh2ht95C+G23oW6kF3bReunUOi5MupALky5ke9F2Fu5YyFcZX7G1aCsP/PwAs9fN5soOV3J1h6uJsjS8pnd+hYP/rM7m/bXZlNp8Mw0DjVqu75fA+IFJxFhNDR7XGgRdfDHGtDQOTL0Hx5Yt7P/nvwi54QYiZ0xHrT++yQeihrMKFl0HVQUQ3RUufwPU6mMeVr13L3nPPUfVip8A0FithP/rX4Rcew2q02Tm6a6SXSzesZgvMr7A7vbNiA7UBXJZ+8u4puM1JAYltvAIhRBCCCGEEEIIIYSAc845x/+4oKCAffv2ceuttzJx4kT/drfbjdXqS6j6/fff2bNnT70Md4fDwd69ewEYMmQIGRkZrFmzhlWrVvHjjz8yZ84cHnvsMR566CH/MWPHjuWBBx6o08/SpUt56qmn/M89Hg/vvvsuc+bM8W+74YYbmDJlCo899hgaTW2Cy8yZM3nwwQeprq5Gr9czffp0Jk2adFz3ITAwkD/++AO3282KFSt4/vnneeONN+q1Gz58OK+//rr/ucVy4gmQQgjRmCQI39RGzYJeN0FJNpRkQWnN55JscJT6gmBVBXBgXf1j1VqwtkGxJlCebST/6wzcpb6ZXpZBA4h+6GH0NWu5iLNLp7BOPDHoCab0nsLS3UtZvGMxebY85m6ay9ub32Zk4kjGdhrrL1W/I7eceSsz+WzDQZweLwDxoSZuGZTM1efEYzGcHr8K9AkJJC38gPwXX6J4wQJK3n8f2x+/0+bFF+Vn4Xh5vfDf2yFvs28S0LWLjlmRw11SQuGr/0fJ4sXg8YBWS+jY6wm/4w40wcHNM+5T4PK6WJ6znEU7FrEur/Z3bbvgdlzf6XpGJ4/GrJOJTEIIIYQQQgghhBBnApXJRMc/fm+xczeWI4PIXq/vPd233nqLfv361Wl3ONjt9Xrp3bs3H3zwQb2+IiIi/I91Oh2DBw9m8ODB3HvvvcyaNYvHH3+cmTNnoq9JdrJarbRr165OH5GRkXWef/vttxw4cKDeuu4ej4fvvvuOiy66yL9t+vTpjB8/HrPZTExMzAlV01Sr1f6xpKamkpubyzXXXMNPP/1Up53FYqk3ZiGEaEmnR+TtdBac4PtoiL20blD+yCB9aQ54nDgy95P3ewW2AgMAOoubqF5lBMZ9Agu/q58973+eALrWm9UsGkeoMZQJXScwvst4fsz5kYU7FvJ73u98k/UN32R9Q7ylPZSfy7bdKaD4MpV7J4YwcXAy53eORtOC672fLJVeT9S9MzH378ehe++jett2Mq8YQ/Rjj2L9299aenit34pnYftnoNHDNR9AcPxRmypOJ8UfLKTw9dfxlpcDEDBiBJHT7sGQnNxcIz5phfZCPt71MR/t+oh8Wz4AGpWGEQkjuC71OnpH9T5tyucLIYQQQgghhBBCiOOjUqkarSR8axEVFUVcXBwZGRmMHTu2wTa9evViyZIlREZGEhQUdNx9d+7cGbfbjcPh8Afhj8f8+fO59tpr62XMP/PMM8yfP79OED48PLzRAuRTpkzhxRdf5L///S+XX355o/QphBBNocWD8K+99hrPP/88hw4dokuXLrz88ssMHjy4wbbp6ekMHz683vbt27f71/9YsGABN998c702dru93nolLc4U7PuI6V5vl6e0lIIXn6Pku/+B14tKpyF8aBtCu3pRV+ZAxSFwVkDeFt9HQwKijx6kD4wBWe/4jKFVaxmVNIpRSaPYlL+N53+Zz4aS5eyr2g2a3QS0s5CgP4+p/cYxskPHlh5uowgcNgzjp//l4LTp2Nat4+D0GVSt/oXohx6U5RmOZut/YcUzvseXvAwJ/RpspigKlT/8QN7zz+PK9q2XbkhNJeremVj692+mwZ4cRVHYWLCRRTsW8V32d7i9bsA3YeWqDldxZYcribZEt/AohRBCCCGEEEIIIYQ4MY8++ih33XUXQUFBXHTRRVRXV7Nu3TpKSkqYOnUqY8eO5fnnn+fvf/87jz/+OG3atCEnJ4elS5cyffp02rRpw7Bhw7juuus455xzCAsLY9u2bdx///0MHz78hAL3BQUFfP7553z22WekpaXV2Tdu3DhGjx5NQUFBnQz8xhIUFMSECRN45JFHuOyyyyTJRgjRarVoEH7JkiVMnjyZ1157jUGDBvHmm29y0UUXsW3bNhISjpI9DuzcubPOC8Kff5EHBQWxc+fOOttaXQD+KBSvl7L/fkr+7Nl4iosBCBw1iqiZM9DFxdU2dNmhdN+fStxn+TLqS7Ohuhwqc30f+9bWP5FGD9b4hteiD0kEU0iTX6toXEWV1by/Jof31hygsPI80PQjIOx3LBFrsWmL2Of9nGlrvmLEwRFc3+l6ekX2Ou3/QNFFR5Pw7gIKX3udwtdfp+y//8W+cSNxL72IseOZMdmg0RzcAP+9w/d4wL+gZ8MzZh3btpH3zLPYfv0VAE14OJGT78Z6+eWoNK134o7D7eDrzK9ZtGMR24u3+7d3j+jOdanXcX7i+eg1xz+TVwghhBBCCCGEEEKI1mTChAmYzWaef/55ZsyYgcVioWvXrkyePBkAs9nMTz/9xMyZM7niiiuoqKggLi6OESNG+OMpF1xwAe+++y73338/NpuN2NhYLrnkEh5++OETGst//vMfLBYLI0aMqLdv+PDhBAYG8t577zF16tRTvu6G3H333bzyyit89NFHXH311U1yDiGEOFUqRVGUljp5v3796NWrF6+//rp/W6dOnbjssst4+umn67U/nAlfUlJC8FHWIV6wYAGTJ0+mtLT0pMdVXl6O1WqlrKzshGZ/nSr75i3kznoCx8ZNAOhTUoh+8AEsAweeWEeKAvaS2sD8n0vel+2DmuzQozJaGyhxn1TzOR60hhO8OtFU9uRXMP/nLJb+sZ9qt29toFirkZsHJXNN33jMehXp+9L5YPsHddbDTg1N5frU67ko+SKM2tNjkspfqVr7KwenT8edn+8rWX//fQRfc81pP9GgUVTkwVvDofwAtBsJ139YrxKGKz+fgpfnUPbf/4KioDIYCL15PGETJqIJ+Os141vSgcoDLNm5hKW7l1JWXQaAXq3n4pSLuTb1WrqEdWnhEZ66lnpNOpPJPRVCCNFayGtS45L7KYQQorWQ16TG91f31OFwkJmZSXJy8mmTjCdEc5OfEyEaz/G+zrdYJrzT6eT333/n3nvvrbN91KhRrF69+i+P7dmzJw6Hg86dO/Pggw/WK1FfWVlJYmIiHo+HHj168MQTT9CzZ8+j9lddXU11dbX/eXnN2sfNxV1SQsGLL1H68cegKKjNZsL/9S9CbxiL6gTWYPFTqcAc6vuI61V/v9fjC8b9eR36w8+r8sFRBrmbfB/1TwBBsUdZiz4RAqJArT7xcYvjpigKv+wt4q2VGSzfWeDf3q2NlQmDU7goLRqdpvZrMDJxJCMTR7KzeCeLdiziy4wv2VG8g4dXP8yLv7/ImPZjuDb12tO6TLelX1+SP/0vB++7j6oVP5H76GNUrf6FmFlPoDmb/7PjcsCSsb6f+fAOcOXbdQLwXrudonfeoWjefBSbDYCgSy4hcuoUdLGxLTXqv+RVvKw5tIZFOxaxYt8KFHxzyWItsVyTeg1XtLuCYGNwyw5StCot/TovhBBCiKYhr/FCCCHEmUte54UQQpzuWiwIX1hYiMfjISoqqs72qKgocnNzGzwmJiaGuXPn0rt3b6qrq3nvvfcYMWIE6enpDBkyBIDU1FQWLFhA165dKS8vZ86cOQwaNIiNGzfSvn37Bvt9+umneeyxxxr3Ao+D4vFQsmQJBXNewVvmy+AMuvRvRE6bhi4ysulOrNZAcILvI3lw/f3OKijNqQ3K/zlQ76ryBfTKD0D2qvrHa42+vo8WpDeexQHRU+R0e/li00Hmrcxk2yHfH54qFZzfKYqJQ1I4JzHkLzO/O4Z25NGBjzKl9xSW7l7K4h2LOVh1kPlb5rNg6wLOSziP61Ovp3dU79Myg1wbGkr8669T/O5/yH/xRSq++w7H1q3EvTgbU/fuLT285qco8MVk2P8bGIPhusW+Khf4lr4o//JL8me/iLvmd66pRw+i7p2JqUePFhvyX6lwVvDZ3s9YvGMxWeVZ/u0DYgZwXep1DPn/9u49vsf6/+P44/PZ+Xxg7IBtjsPKSDnknJxCDoVRkZSSEDoX0i/5VjroXF8hh02O34oUZQtROZUcw5zNhNlsZqfr98fHPsw2hg+bfZ732+19s+u63td1vd/X9fns5bbX9X5flVrgYC69U+ZLySmpOC8iIiLXl2K8iIhI2aU4bx/q1q3Lvn37Ct322Wef0a9f4a/UFBG5GZTYdPSHDx8mJCSEX3/9lSZNmljXv/7668yYMYPt27cX6zhdunTBZDLxzTffFLo9NzeXBg0a0KJFCyZPnlxoncKeqqtcufJ1nS4off16Ev/vdc5us7y72CUigsCXX8K9YcPrcj6bMQxI+/ei99DvPb986hAYOZc+hpv/+aT8xYl6n8rg4HSdO3HzSU7PZPbv+5n+616Oplg+q25ODtzfsBID7wwnrPzVTReek5tD3ME4Zm+bze+Jv1vX1/SrSd+IvnSq2gk3Rzeb9OFGO7N5M4eeHknWwYPg6EiFEcPxHzgQkz3N0rB6Mix7BUwO8MB8qGaZNSR9w0aOTpxIxl+WmS4cg4OoMGoU3p06lcqHL3ad3EXsjli+2f0NZ7LPAODh5EG36t3oXas34T7hJdzC60tT2F27kojzIiIixaE4f20U40VEpLRSjL92VxLnNc32zWvfvn1kZWUVuq1ixYp4eXnd4BaVXfqeiNhOqZ+Ovnz58jg4OBQY9Z6UlFRgdPylNG7cmJkzZxa53Ww2c/vtt/PPP/8UWcfFxQUXl+vzjvOMrBwczSYcz00NnpWURNLbb5PyzbeW9nl7EzBiOH69emFyLLHbUXwmE3gGWEqlQh4YyMmCUwcLTnGft5x+HM6csJTDGws5vhm8K51L0l/0Lnq/UPAIsLTBTuz9N40vVycwd91BzmRZHm6o4OVC/6Zh9GtUBV/3q3hdwQUczA7cVeUu7qpyFztP7iRmewzf7f6OnSd3Mm7NON7d8C49avSgT60+BHuWzqnJi+J2yy2EL1zAkTFjSP1+KUlvTyJt7W8E/2cijuXKlXTzrr+dP8CyMZafO0yEaq3JPHiIpElvk/r9UgDM7u6UGzwY//4PYS5l//HKzs0m7kAcMdtj8j0gUs2nGtER0XSu1hkPp9L7rnopXa5nnBcREZGSoxgvIiJSdinO24fQ0NCSboKIyHVTYllfZ2dnbrvtNpYtW0b37t2t65ctW8a9995b7ONs3LiRoKCgIrcbhsGmTZu45ZZbrqm9V2v8d1uZ/dt+PB2g+95VdP9rKW5ZGRiY2BzVkj/bRePo4Y/H8l14ujji5eqIp8sFxfX8v14uTrg6mUvlSFUrByfwD7eUwpxNtSTm842kvyBRn50Bp/Zbyt6VBfd3ci84xb11NH0oON/8STnDMPhj70n+u3IPy7YdJW+uitpB3gxqFk6XesE4O9p+NHdNv5qMbTKWEQ1GsPCfhcTuiOXQ6UNM/Xsq07dMp3Xl1vSr3Y+GFRuW7s/gBRy8vAh55x2SmzTh6OsTSFu1ij3duhHy1lt4NG5c0s27fpK2w7xHAANuG0BOnWiOT3qHE9OnY2RmgsmE7309CRg2DMeAgJJubT7HzxxnwT8LmLNjDkfTjwJgNplpU7kN0RHR3B54+03z+RMREREREREREREREftUokOvR44cyYMPPkjDhg1p0qQJn3/+Ofv37+fxxx8H4IUXXuDQoUN89dVXALz33nuEhYVRt25dMjMzmTlzJvPnz2f+/PnWY7766qs0btyYGjVqkJKSwuTJk9m0aRMfffRRifTxdEY2UUk7eWLzIqqkJgGw3a8yn9zanZ1+VWBnKpBa7OOZTZxL1jtZk/MeLo54XZy0L5DAt9TLS/R7uDji5FAC03K7eEFgpKVczDDg9NGCo+fzllMOQVY6HNtmKYXxCCj6XfTeIeBQemcbyM7JZcnfiUxZuYc/D56yrm9dK4BHm1elSbVyNyT56OPiw4DIATxY50F+OfgLs7bP4rcjv/HT/p/4af9P1PCrQd+IvtxT9Z6bYqp6k8mEX69euEVFcWjkSDJ37Wb/wwMp9/hgAp588uaYgeJKpJ+AmD6QmYpR+U6STzfiWIeO5Bw/DoB7k8ZUfO45XCMiSrih+W0+tpmY7TEs3buUrFzLFFR+Ln7cV/M+7q95P0GeRT9sJSIiIiIiIiIiIiIiUpqUaPapd+/eHD9+nPHjx3PkyBEiIyNZsmSJdQqSI0eOsH//fmv9zMxMRo8ezaFDh3Bzc6Nu3bosXryYTp06WeskJyfz2GOPkZiYiI+PD/Xr1+eXX37hjjvuuOH9MwyDZzbEcvpXy/vqDV8/MgY8jk+Lu3kyM5fTZ7NJO5vN6YxsUs/9e/rsBSXjgn8zszEMyDUgJSOblIzsa26fq5MZTxcnPF0cLkjeO51L0jtYf85L6ntcOFL/gsS+u7ODbZLDJhN4BVpKlUYFt2eftUx1f/F76POS9BnJkHbMUg7+UXB/syP4VCo8Se8XDm5+JTLVfUpGFnN+P8C0X/dyKNnyvmsXRzM9GlTikWZhVK9QMu+9cTA70LpKa1pXac2uk7uI2R7Dt3u+5Z+T//Dqmld5d/279KzRk94RvQnxDCmRNl4J15o1CZ87l6MTJpA8dx7HP/mU9N//IOTtt3C6xGwaN5WcLPj6ITiZQNrpyhxdaObsrtcAcA4Lo8Kzz+LZulWpGUl+NucsP+z9gZhtMfx9/G/r+lvK30J0RDTtwtrh4qBpx0RERERERERERERE5OZiMoy8ya4lT0pKCj4+Ppw6dQpvb+9rOtaxjz7i348+xq9fPwKeGorDVR4vN9fgTFYOp89mk3ouOZ92wc+nM7LOJe9zOH02y5rAT83IJi0zO9/y2ezca+rTxcwmzo/Gd80/4j4vsX8+0e9U6Mj8vCT/NU2zfib5XGK+kJH0yfsgJ/PS+zt7FRw9n7fsWwWcbDvq+8CJdKb9upc5fxzg9FnLQxXlPZ15sHEYDzSuQjnP0pd8TMlMsUxVvz2Wg6cPApapwltWakm/2v24I/COUpPgvZRTixeTOGYsuWlpOPj4EPTGBLzatCnpZl27xaM4+9M0kv7y4/RBJwDMPj4EPDkEvz59MDk7l3ADLQ6fPszXO75mwT8LOHn2JABOZic6hnekT60+3BJQMq8PKa1sGZPEQtdURERKC8Uk29L1FBGR0kIxyfYudU0zMjJISEggPDwcV1fXEmqhSOmm74mI7RQ3zpexeZhLn3KPPIJX27txrVXzmo5jNpvwOJeorniN/2/LysnNn8C/eBT+BSPz086tS70w0X9B3dxzo/NTMyzH49Tlz38pLo7mAtPqe12Q2M9L4Ocfme90vr57LTz96+Lu5IDZfEEyODcXTicW/h76k3sh9QhkpsLRzZZSGM/AopP0XsFgLt4DBBv3n+S/KxP4/u8j5J57BKZGBU8GNQ/n3qgQXJ0crvbyXXfezt70r9ufB2o/wMpDK5m9bTZrjqxhxYEVrDiwguq+1YmOiKZz1c64O7mXdHOL5HPPPbhFRnJo5Cgytmzh4JAn8XvoQSqMHo25lCSqr1T2zx/w76dfc3JXABgmcHTEr280AUOG4ODrW9LNwzAMfkv8jZhtMcQdjCPXsDwMFOgRSO9avelRowf+rv4l3EoREREREREREREREZFrp5HwhdCTisVjGOdG559L2hdnav3UCxL750f1Z5GRZdvR+SYTeDoXNTK/4NT63o45lM9OxC/zCD4Zh/BIP4Tr6QM4puzHnLwPzqZc+oQOzpbR8oW9i75cdXKcPFi2NZEvViawft9J627Na5TnkWbhtKwZcFOMIC/MnuQ9zN4+m292f8OZbMt0+l7OXvSo3oM+EX2o5FWphFtYNCMzk6RJ73Bi+nQAXOvUIeSdSTiHhZVsw66AkZnJiQ//j3+nziE3y/IgiGebNlQYPRqXquEl3DpIy0rjm93fELs9lj2n9ljXNwpqRHRENC0rtcTRrOfBLkUxyfZ0TUVEpLRQTLItXU8RESktFJNsTyPhb5y9e/cSHh7Oxo0biYqKKunmlEnjxo1j0aJFbNq06YadU98TEdvRSHi57kwmE+7Ojrg7O1LhGo+VnZNL2tkcUs8WHG1fWAL/wkT/xaP6c3INDANSz9W7Mq5AtXPFwtnBRLBLBjWcjhPu+C+h5iSCjSSCchMtifusIzjkZMLxXZZykVyTAztM4ezNjMArtzZ+DhHcFVWDQc3DiQi8+f8TXtW3Ki83fpnhDYazaNciYrbHcCD1ANO3TuerrV/RsnJL+kb0pXFQ41L3oIHJ2ZmKLzyPe+NGHHnhRTK2biWhR08CX30Vny6dS7p5l2QYBqd//pmkiRPIPHAYMOMS6E7FCR/g0bRpSTePPaf2ELs9lm92f0NaVhoA7o7udK3WlT4RfajmW+0yRxARERERERERESm7BgwYQHJyMosWLbKumzdvHg888ADjx4/n2WefLbnGXYH58+fz5ptvsn37dnJzc6lSpQodOnRg0qRJAEybNo0RI0aQnJxcYF+TycTChQvp1q1bvvWPPfYYU6ZMYdasWfTp0yfftnHjxvHqq68CYDabCQ4Opn379rzxxhsEBARctr0X/o3aw8ODatWq8fTTTzNgwADr+ri4OFq3bl1g35deeon/+7//u+w5RERASXgpJRwdzPi4m/Fxd7qm4xiGQUZW7kVT62dZptbPLGKkfhE/p2fmAJCZY7A33YW9BAPBBc5pJpcgjlPZfIzKpiQqm5KoYkqisukYVUxHCSCFOsYu6jju4nG+wzCZMZ2Mgr/uhJTmUKUxuPpcU79LAy9nLx6s8yD9avdj1aFVzN42m9WHVxN3II64A3FU86lGdEQ0Xap1KXVT1Xu1bo3rooUcHv0M6evWcfiZZ0hbs4bAl1/C7F662gqQsW0bRyf+h/TffgPAwTWHgOb++L61HJOrZ4m1Kyc3h/iD8cRsj2HtkbXW9WHeYURHRNO1Wlc8nUuufSIiIiIiIiIiIqXVf//7X5588kk++ugjBg0adMX7Z2Zm4nyDX7W5fPly+vTpw4QJE+jatSsmk4mtW7fy008/XfUx09PTmTNnDs888wxTpkwpkIQHqFu3LsuXLycnJ4eNGzfyyCOPcOjQIb7//vtinWPq1Kl06NCBtLQ05syZw8MPP0xQUBDt27fPV2/Hjh35Rrl6eupvmyJSfErCS5liMplwc3bAzdmBAC+XazpWdk4uaZk5BUfbn5tC//TZnAt+DiU1I5t/z2az96KR+XU9UhgSfpRGpq047l+N6WQCHN5gKb9+ACYzBNWD0DshrDmENrmpk/Jmk5kWlVrQolILEk4lELM9hv/t+h+7T+3m/377P97f8D7danQjulY0lb0rl3RzrZwCA6kybSr/fvIp/378MacWLODMn38S8s47uNaqWdLNAyArKYlj77/PqQULwTAwOZjwr5VCuds9cRi6CEooAX8y4yQL/lnAnB1zOJJ2BLB8DlpWakl0RHSpnAVBRERERERERESktHjzzTcZM2YMs2fPpmfPngD8+uuvPP/88/zxxx+UL1+e7t2788Ybb+Dh4QFAWFgYgwYNYteuXdbR5K1bt2bEiBHMmTOHESNGcODAAZo1a8bUqVMJCgqynm/q1Km8+eabJCQkEBYWxrBhwxgyZMgVt/u7776jWbNmPPPMM9Z1NWvWLDCy/UrMnTuXOnXq8MILLxAUFMTevXsJu+j1oY6OjgQGBgIQEhLCsGHDGDNmDGfOnMHNze2y5/D19bXu/+KLLzJp0iR+/PHHAkn4ChUq4Ovre0Xtzxv5P23aNJ599ln2799P8+bN+fLLL6lcufC/h7dq1YqoqCjee+8967pu3brh6+vLtGnTAPj444959913OXDgAD4+PjRv3px58+ZdUdtE5MZSEl6kCI4OZnzczPi4Xdvo/AJOHYJ9q2HvSti7Ck7sgcMbLWXNh5akfOCtENbMUqo0ATdf27bhBgn3CefFRi8yrP4w/rf7f8Rsj2Ffyj5mbJ3BzK0zaVGpBX0j+tIkuEmpSNKaHB0JeGoo7nfcweHRo8ncvZu9vXpR8YXn8e3du8TamJuRwYlp0/j38y8w0tMB8G5QmQoh63DycYKHZoNX4A1v15Z/tzB7+2yWJiwlMzcTAF8XX3rU6EGvWr0I8Qy54W0SEREREREREREByDqbU+Q2kxkcnRyKV9cEjs6Xr+vk4lDo+st5/vnn+eijj/juu+9o27YtAJs3b6Z9+/a89tprTJkyhWPHjjF06FCGDh3K1KlTrfu+9dZbvPLKK7z88ssArFq1ivT0dN5++21mzJiB2WzmgQceYPTo0cyaNQuAL774grFjx/Lhhx9Sv359Nm7cyKOPPoqHhwf9+/e/orYHBgYye/Zs/v77byIjI6+q/xebMmUKDzzwAD4+PnTq1ImpU6dap58vipubG7m5uWRnX9nraXNycpg/fz4nTpzAycl2eYD09HRef/11pk+fjrOzM0OGDKFPnz6sXr36qo63bt06hg0bxowZM2jatCknTpxg5cqVNmuviFwfSsKL3Gg+IXBrL0sBSDkMey9Myu+GI5ssZc2HgAmCbj03Sv5Oy0h5N78S7MCV83T2pF/tfkRHRLP60Gpmb5/NqkOriD8YT/zBeMJ9wq3TlXs4eZR0c/FodAfh/1vE4eefJ+2XlSSOe5W0NWsJem08DhdMP3S9GYZByneLSXrnHbKPWEaYu9a7lYr3NcR9y7l3D937OYQ0uGFtyszJ5Ie9PxC7PZa//v3Lur62f2361u5Lh7AOuDq63rD2iIiIiIiIiIiIFObz4fFFbguNLEfnofWsy18+s5LszNxC6wbX8KX7qPN/f/vqpV/JOJ1VoN6Tn7a54jZ+//33/O9//+Onn36iTZvz+7/11lv07duXESNGAFCjRg0mT55My5Yt+eSTT3B1tfz9rU2bNowePdq636pVq8jKyuLTTz+lWrVqAAwdOpTx48db67z22mtMmjSJHj16ABAeHs7WrVv57LPPrjgJ/9RTT7Fy5UpuueUWQkNDady4Me3ataNfv364uJyfqfbUqVPFmsr9n3/+Ye3atSxYsACABx54gGHDhjF27FjMZnOh+2zfvp1PPvmEO+64Ay8vr2K1Ozo6GgcHBzIyMsjJycHf37/QVwBUqlQp3/K+ffsoV67cZY+flZXFhx9+SKNGjQCYPn06tWvX5vfff+eOO+4oVhsvtH//fjw8POjcuTNeXl6EhoZSv379Kz6OiNxYSsKLlDTvYLj1fksBSDmSf6T88V1w5E9LyUvKB95iScqH3QmhTW+apLzZZKZ5peY0r9Scvaf2ErsjlkW7FpFwKoEJv01g8obJdKvejeiIaKp4VynRtjr6+1P50085MW06Se+8Q+oPP5Dx99+EvDMJt3r1Ln+Aa5S+cSNHJ04k409LotsxKIgKo0bhfWsApun3WCo1Hw233Hfd2wKQmJbI1zu+Zv4/8zmRccLSJrMj7cPaEx0Rza3lby0VsxmIiIiIiIiIiIjcLG699Vb+/fdfxowZw+23325NIq9fv55du3ZZR6+DZcBObm4uCQkJ1K5dG4CGDRsWOKa7u7s1AQ8QFBREUlISAMeOHePAgQM88sgjPProo9Y62dnZ+Phc+StSPTw8WLx4Mbt372bFihWsXbuWUaNG8f7777NmzRrc3d0B8PLyYsOGDQX2r1GjRr7lKVOm0L59e8qXLw9Ap06deOSRR1i+fDnt2rWz1tu8eTOenp7k5ORw9uxZWrVqxeeff17sdr/77ru0bduWAwcOMHLkSJ5++mmqV69eoN7KlSvzJfb9/Ir3d3hHR8d89yYiIgJfX1+2bdt2VUn4u+++m9DQUKpWrUqHDh3o0KED3bt3t15fESmdlIQXKW28gyyJ1bzkqjUpv+pcUv4fSPzLUtZ+hCUpH3kuKX9u+np3/xLtQnGE+YTx/B3PMzRqKN/s/oaY7THsTdnLzG0zmbltJs1DmtO3dl+aBjfFbCr8KcfrzWQ2U27gw7g3vI1DI0eRdfAge/s9QIWnR+D/8MOYinj68lpkHTpE0qRJpCz5HgCzuzvlHnsM/wH9MZ89Dp+3gpxMiOgMrV+y+fkvZBgG646uI2Z7DD/v/5kcwzLVVgX3CvSu1ZseNXpQ3q38dW2DiIiIiIiIiIjI1Xjs/ZZFbrv4z40D32pedN2Lxp089HrTa2lWPiEhIcyfP5/WrVvToUMHli5dipeXF7m5uQwePJhhw4YV2KdKlfODl/LeD3+hi6dVN5lMGIYBQG6uZbT/F198YR2lncfB4eqm0weoVq0a1apVY9CgQbz00kvUrFmTOXPm8PDDDwNgNpsLTXJfKCcnh6+++orExEQcHR3zrZ8yZUq+JHytWrX45ptvcHBwIDg4ON+o++IIDAykevXqVK9enblz51K/fn0aNmxInTp18tULDw+/4nfC5ylswFJRg5jMZrP1HuXJyjo/20LeQwxxcXH8+OOPjBkzhnHjxvHHH39cdftE5PpTEl6ktLs4KZ+aaEnG5yXm/90JiZstZe3HgAkqRp5/p3xo01KdlPd09qRv7b70iejDmsNrmLVtFisPrbSWMO8w+kT04d5q9+LpfPkpi64Ht1tvJXzhAo68MobUpUtJeutt0tb+RvDEN3AsxvRDxZFz+jTHP/+CE9OmYWRmgsmET88eVBg+HMeAAMhMh9hoSEuy3N/un8F1eAgAID0rne/2fEfM9hh2Je+yrr898HaiI6JpXbk1jmaFDxERERERERERKb2u5B3t16tucVSpUoX4+Hhat25Nu3bt+OGHH2jQoAFbtmy5bOL6SlWsWJGQkBD27NlDv379bHrsPGFhYbi7u5OWlnZF+y1ZsoTU1FQ2btyY74GA7du3069fP44fP26dCt7Z2dlm16Z69er07NmTF154gf/97382OWZ2djbr1q2zjnrfsWMHycnJREREFFo/ICCAI+deRwqWBw/+/vtvWrdubV3n6OhI27Ztadu2LWPHjsXX15eff/7Z+loBESl9lEURudl4BV6UlD8K+1ade6/8Kvh3BxzdbCm/fWKpky8pf2epTMqbTWbuDLmTO0PuZH/KfmK2x7Bo1yL2puxl4u8T+WDjB9xb7V6iI6IJ8wm74e1z8PIi5N13SG7ShKMTJpC2ciUJ3boT/NabeDRufNXHNXJySJ4/n2PvTybn+HEA3Bs1ouLzz+F6blopDAP+N8TySgL3ctBnNrjY/oGEvaf2MmfHHBbtWsTprNMAuDm60aVqF/pE9KGGX43LHEFERERERERERESuVKVKlYiLi7Mm4j/77DOaNGnCk08+yaOPPoqHhwfbtm1j2bJlfPDBB9d0rnHjxjFs2DC8vb3p2LEjZ8+eZd26dZw8eZKRI0de8bHS09Pp1KkToaGhJCcnM3nyZLKysrj77ruv6FhTpkzhnnvuod5FrwKtW7cuI0aMYObMmQwfPvyKjllco0aNol69eqxbt67QKf6vlJOTE0899RSTJ0/GycmJoUOH0rhx4yKnom/Tpg0jR45k8eLFVKtWjXfffZfk5GTr9u+++449e/bQokUL/Pz8WLJkCbm5udSqVeua2yoi14+S8CI3O6+KENnTUgBOJ52fun7faji2HY7+bSm/fWqpU6Fu/qS8h21Gc9tKFe8qPHfHcwytP5Rvd3/L7O2zSTiVwOzts5m9fTZ3htxJv4h+3Bly5w2dqt5kMuHXuxduUVEcGjmSzN272f/wQMo/8TjlhwzB5Hhlv1LT1qzh6MT/cHbHDgCcQ0Op8NyzeLZunX9qol/egi0LwewEvWeCX6jN+pSTm8PKQyuJ2R7Dr4d/ta4P9Q6lT60+dK3eFW9nb5udT0RERERERERERAoKCQmxjoh/9NFHiY+P56WXXqJ58+YYhkG1atXo3bv3NZ9n0KBBuLu789Zbb/Hss8/i4eHBLbfcwogRI674WC1btuSjjz7ioYce4ujRo/j5+VG/fn1+/PHHK0oQHz16lMWLFzN79uwC20wmEz169GDKlCnXLQl/yy230LZtW8aMGcOSJUuu+Xju7u4899xz9O3bl4MHD9KsWTO+/PLLIusPHDiQP//8k4ceeghHR0eefvrpfKPgfX19WbBgAePGjSMjI4MaNWoQExND3bp1r7mtInL9mIyLXzQhpKSk4OPjw6lTp/D2VvJJbnKnky54p/xqOLatYJ0KdS5Kypeu93wbhsGaI2uYvW02vxz8BQPLr628RPG91e/Fy9nrhrYpNz2dxAkTODVvPgBuDW8j5O23cQoMvOy+Z/ckkPTWW5xesQIAs7c3AU8OwS86GpOzc/7KW7+Brx+0/Nz1A2jwkE3an5yRzMJdC5mzYw6HTh8CwISJFpVaEB0RTZPgJjf0AQcpmmKS7emaiohIaaGYZFu6niIiUlooJtnepa5pRkYGCQkJhIeH4+rqWkItFLGYNm0aI0aMyDeSvTTQ90TEdoob5zUSXqSs86wAdbtbCsDpY+eT8vtWQ9LW8+X3zy11AmrnT8p7BpRc+7E87dg0uClNg5tyIOUAMTtiWPTPIval7OM/f/yHDzZ+QNdqXYmuHU1Vn6o3pE1md3eC/+//8GjchMSxYzmzbj0J93Yj6I038GrTutB9cpKTOfbRx5yMiYHsbHB0xC86mvJDnsDRz6/gDkf+goWDLT83esImCfhtx7cRsz2GJQlLOJtzFgBvZ2961OhBr1q9qOxV+ZrPISIiIiIiIiIiIiIiYs+UhBexN54BULebpQCk/XvBSPlVlmT8sW2W8scXljoBtSHsznNJ+WYlmpSv7F2ZZ29/lqFR56eq33NqD7E7YondEUvT4Kb0q92PZiHNbshIbp/O9+B2SySHRo4iY8sWDg4Zgn//hwgYNQrzuVHtRlYWJ2NiOPbRx+SeOgWAZ+vWVHjmGVyqhhd+4NPHILYvZKVD1dbQ7v+uuo1ZOVks27eMmO0xbDq2ybo+wj+C6IhoOoZ3xM3R7aqPLyIiIiIiIiIiImXP448/zsyZMwvd9sADD/Dpp5/e4BZd2oQJE5gwYUKh25o3b873339/zefo2LEjK1euLHTbiy++SHBw8DWfQ0TKBk1HXwhNFyR2Le34RUn5LQXrBERYRsjnjZb3rHDj23mOYRj8lvgbs7bNIv5AvHWq+spelYmOiKZb9W43ZKr63MxMjk2axInpXwHgWqcOIe++w9ndu0l68y0y9+4FwKVmTSo+/xweTZsWfbDsszC9KxxYC+Wqw6Dl4FbISPnLSEpPYu7OuczdMZfjGccBcDQ5cnfY3fSN6Eu9gHr53z0vpZJiku3pmoqISGmhmGRbup4iIlJaKCbZnqajLxlJSUmkpKQUus3b25sKFUru78KFOXHiBCdOnCh0m5ubGyEhIdd8jkOHDnHmzJlCt/n7++Pv73/N57ge9D0RsZ3ixnkl4Quh/ySJXCDtOOz/9XxS/ujfBeuUr5V/pLxXxRvfTuBA6gHmbJ/Dgl0LSM1MBcDN0Y2u1brSN6IvVX2v/1T1qT+v4MgLL5Bz6hQ4OlqmnQccypUjYPgwfHv2xOTgUPQBDAP+NxQ2zQQXH3j0Jyhfo9jnNwyD9UfXE7sjlp/2/US2YTl/gFsA99e6n/tq3EeAe8m+XkCujGKS7emaiohIaaGYZFu6niIiUlooJtmekvAi10bfExHb0TvhRcQ2PMpB7S6WApB+AvZdlJT/d4elrPvSUqd8zfPvkw9rBl6BN6Splb0qM/r20QyJGsJ3e74jZnsMu5J3MWfHHObsmEPjoMb0q92P5iHNcTBfIhF+DbzatMb1f4s4NHo0Z9atx+TsjP+AAZR77FEcPD0vf4C1H1sS8CYz3D+12An49Kx0FicsJmZ7DP+c/Me6vkGFBkTXjuauKnfhZHa62m6JiIiIiIiIiIiIiIhIMSkJLyJXxt0fane2FLAk5fevOZeUXwmJf8O/Oy0lLylfrsb5qetD7wTvoOvbRCd3etXqxf017+f3xN+ZvW02cQfjWHtkLWuPrCXEM4ToiGi61+iOt7Ptn0Z2CgwkdNo0Tv/yC64RETgV9z1A/yyHH1+2/Nx+AlS/67K77E/ZT+yOWBb9s4jULMvof1cHV+6peg/REdHU8q91td0QERERERERERERERGRq6AkvIhcG3d/iLjHUuCCpPzqc0n5zXD8H0tZP9VSp1z181PXhzW7bkl5k8lEo6BGNApqxKHTh5izfQ7z/5nPodOHeHvd23y06SO6VO1C39p9qeZbzbbndnTEq02b4u9wbCfMexiMXKj/IDR6vMiquUYuqw6tImZ7DKsOrbKur+RZiT4RfehWvRs+Lj7X0nwRERERERERERERERG5SkrCi4htXZyUP3MS9q2BfeeS8kf+guO7LGX9NEsd/2rnRso3t7xb3ruYI8evQIhnCCMbjuSJqCdYvGcxs7fP5p+T//D1zq/5eufXNApqRN+IvrSs1PK6TVVfpDMnIaYPnE2BKk3gnnfAZCpQ7dTZUyzatYg5O+ZwIPWAdX2zkGZER0TTLKQZZpP5RrZcRERERERERERERERELqIkvIhcX25+ENHJUgDOJF8wff0qSPwLTuy2lA3TLXX8q55PyofeCT4htmuOoxv31byPnjV6su7oOmZvm83PB37mtyO/8duR3wjxDKFPrT50r9H9xowmz8mGuQMs/fepAr1mgKNzvio7TuwgZnsMi/csJiMnAwAvZy+6V+9O71q9qeJd5fq3U0RERERERERERERERIpFSXgRubHcfKFWR0uBc0n5tZZR8vtWw5E/4cQeS9nwlaWOX3j+kfI+la65GSaTidsDb+f2wNs5fPowc3acn6p+0vpJfLTpIzpX60zfiL7U8Ktxzecr0g8vwp44cPKA6BjwDAAgKzeLn/b9RMz2GDYkbbBWr+FXg74RfekU3gl3J/fr1y4RERERERERERGxKwMGDCA5OZlFixYVWScuLo7WrVtz8uRJfH19b1jbypq9e/cSHh7Oxo0biYqKKunmiMh1oCS8iJQsN1+o1cFSADJOnU/K710NRzbByQRL2TjDUscv7IKkfLNrTsoHewbz9G1P80S9J1iSsITZ22az4+QO5u2cx7yd87gj8A76RvSlVeVWtp2qfv00+P0zy889PoPASI6lH2PeznnM3TmXY2eOAeBgcqBtaFuiI6JpUKEBpkKmqhcREREREREREZGbx6US3mFhYezbty/fupCQEA4ePGjdPmLECEaMGGHTNr3//vsYhmFdbtWqFVFRUbz33ns2PU9JGzBgANOnW2ZldXBwIDg4mHvuuYcJEybg5+dnrXe5+yAicilKwotI6eLqAzXbWwpARsoFSflV55Lyey1l40xLHd/Q8wn5sGbgW/nqTu3oSo8aPehevTvrj65n9vbZ/Lz/Z35P/J3fE38n2COY3hG96Vmj57VPVb93FSweBYDR+iU2latETPyzLNu3jGwjG4ByruW4v9b93FfjPip6VLy284mIiIiIiIiIiMhNY/z48Tz66KPWZQcHGw4OKoKPzw14PedFsrKycHJyuuHn7dChA1OnTiU7O5utW7cycOBAkpOTiYmJyVevJO6DiJQN5pJugIjIJbl6Q8120O41eGwFPLcP+s2DO4dDyG1gcoDkfbBpJix6HN6LhPdugUVDYNNsSN5/xac0mUw0DGzIO63eYWnPpQy6ZRC+Lr4cTjvMu+vfpe3ctoz7dRw7Tuy4uj6d3AtzHuSMkcOCWi3odeoPHvr+Ib7f+z3ZRjZRAVH8p/l/WHbfMp6MelIJeBERERERERERETvj5eVFYGCgtQQEBFzxMUaNGkWXLl2sy++99x4mk4nFixdb19WqVYvPPrPM1jlgwAC6detm/Tk+Pp73338fk8mEyWRi79691v3Wr19Pw4YNcXd3p2nTpuzYUby/lY4bN46oqCi+/PJLqlatiouLC4ZhsHTpUpo1a4avry/lypWjc+fO7N6927pfz549eeqpp6zLI0aMwGQysWXLFgCys7Px8vLihx9+KFY7XFxcCAwMpFKlSrRr147evXvz448/Fqh3tffBZDLxySef0LFjR9zc3AgPD2fu3LlF1p82bVqB6f0XLVqUb1bUP//8k9atW+Pl5YW3tze33XYb69atK1Z7ROTG00h4Ebm5uHpDjbstBeBsKuz/7fxI+cMbLYn3TbMsBcC3CoQ2Oz9S3i+02KcL9AhkeIPhDL51MN8nfM/s7bPZfmI78/+Zz/x/5tOwYkP61e5Hq8qtcDQX41fq2VQOxPbma9dcFlSsQkrmXsgEFwcXOoV3ok9EH+qUq3Pl10VERERERERERESssjIyitxmMptxdHYuVl3MJpycXS5b18nV9cobeZ21atWKKVOmkJubi9lsJj4+nvLlyxMfH88999xDYmIiO3fupGXLlgX2ff/999m5cyeRkZGMHz8egICAAGsi/qWXXmLSpEkEBATw+OOPM3DgQFavXl2sdu3atYuvv/6a+fPnW0eWp6WlMXLkSG655RbS0tIYM2YM3bt3Z9OmTZjNZlq1asXnn39uPcaFfalbty5//PEHGRkZ3HnnnVd8nfbs2cPSpUttPiL/lVdeYeLEibz//vvMmDGD6OhoIiMjqV279lUdr1+/ftSvX59PPvkEBwcHNm3aVCKzCIhI8SgJLyI3NxcvqNHWUsCSlD/wmyUhv3cVHNpgSconz4Y/Z1vq+FQ5l5C/89z09aFwmfesuzq60r1Gd7pV78bGpI3M3j6b5fuWs+7oOtYdXUegRyC9a1mmqvdz9Suwf66Ry5pDq4n5+Tl+cUvDcPcGDEI8Q+hTqw/dqnfD19XXttdGRERERERERETETk3uf1+R28LrN6TH8+Osyx8/1o/ss2cLrVupTiS9x060Ln8xdCBnUlMK1Bs157urb2whnnvuOV5++WXr8oQJExg2bNgVHaNFixakpqayceNGGjRowMqVKxk9ejQLFiwAYMWKFVSsWJGIiIgC+/r4+ODs7Iy7uzuBgYEFtr/++uvW5P3zzz/PPffcQ0ZGBq7FeBghMzOTGTNm5BtV3rNnz3x1pkyZQoUKFdi6dSuRkZG0atWK4cOH8++//+Lg4MCWLVsYO3YscXFxDBkyhLi4OG677TY8PT2LdW2+++47PD09ycnJIePcgxXvvPNOgXrXch/uv/9+Bg0aBMBrr73GsmXL+OCDD/j444+Ltf/F9u/fzzPPPGO9XzVq1Liq44jIjaEkvIiULS5eUL2tpQCcPZ0/KX94A5zab0nIW5PylS3J+NBzSXm/sCKT8iaTiQYVG9CgYgMS0xL5esfXzNs5j8S0RN7f8D6f/vkpncI70bd2XyL8I0jJTOGbXd8QuyOWfSn78g7Cnf6RREc9TrOQZjiY9R4hEREREREREREROe+ZZ55hwIAB1uXy5ctf8TF8fHyIiooiLi4OJycnzGYzgwcPZuzYsaSmphIXF1foKPjiuPXWW60/BwUFAZCUlESVKlUuu29oaGiBad13797NK6+8wtq1a/n333/Jzc0FLInnyMhIIiMjKVeuHPHx8Tg5OVGvXj26du3K5MmTAa64L61bt+aTTz4hPT2d//73v+zcuTPfdPd5ruU+NGnSpMDypk2bir3/xUaOHMmgQYOYMWMGbdu25f7776datWpXfTwRub6UhBeRss3FE6rfZSkAmWkXjZRfD6cOwJ8xlgLgXSn/SHm/8EKT8oEegQxrMIzB9QazNGEps7bNYtuJbSzctZCFuxZSp1wdEk4lcCb7DACeubl0Sz1N78bPE3bHEzfqCoiIiIiIiIiIiNidYdPnFbnNZDbnWx7y+ayiD2TO/3fBRz/88praVVzly5enevXq13ycVq1aERcXh7OzMy1btsTPz4+6deuyevVq4uLiGDFixFUd98Jp0PPeW56XOL8cDw+PAuu6dOlC5cqV+eKLLwgODiY3N5fIyEgyMzOt52jRooW1L61atSIyMpKcnBw2b97Mr7/+ekV98fDwsF7fyZMn07p1a1599VVee+21fPVsdR/ymIoY/GU2mzEMI9+6rKysfMvjxo2jb9++LF68mO+//56xY8cSGxtL9+7dbdY+EbEdJeFFxL44e0C1NpYC55Lyv+dPyqcchL9iLQXAO+T8++RD7wT/qvmS8i4OLtxb/V66VuvKn8f+ZNa2WSzft5ytx7cCUN0jhOgD2+iccgr3psNBCXgREREREREREZHr6kre0X696pYGee+Fd3R0pG1by+yhLVu2JDY2tsj3wedxdnYmJyfnurfx+PHjbNu2jc8++4zmzZsDsGrVqgL18t4L7+zszPjx4zGZTDRv3py3336bM2fOXNX74POMHTuWjh078sQTTxAcHHzVx7nQ2rVreeihh/It169fv9C6AQEBpKamkpaWZn1IobBR8zVr1qRmzZo8/fTTREdHM3XqVCXhRUopJeFFxL45e0C11pYC55Py+1ZbkvIH10HKIfhrjqUAeAWfT8qHNbMm5U0mE1EVooiqEMXRtKPEH4wn3NGLhgtHYDqdDDU7wl1jSqyrIiIiIiIiIiIiUnqcOnWqQKLV39/fpufIey/8t99+y//93/8BlmR2z549CQgIoE6dOkXuGxYWxm+//cbevXvx9PS0edvy+Pn5Ua5cOT7//HOCgoLYv38/zz//fIF6ee+Fd3R0tCbrW7VqxahRo2jQoAHe3t5X3YZWrVpRt25dJkyYwIcffnjVx7nQ3LlzadiwIc2aNWPWrFn8/vvvTJkypdC6jRo1wt3dnRdffJGnnnqK33//nWnTplm3nzlzhmeeeYb77ruP8PBwDh48yB9//EHPnj1t0lYRsT0l4UVELlQgKZ8OB3+HvXlJ+T8g9TBs/tpSALyCLkjKNwf/qlT0qEivql1gakc4nQgBtaHnF6D3v4uIiIiIiIiIiAiW95hfPDK6f//+Nj2Hj48P9evXZ//+/daEe/PmzcnNzb3sO9RHjx5N//79qVOnDmfOnCEhIcGmbctjNpuJjY1l2LBhREZGUqtWLSZPnkyrVq3y1YuMjKR8+fKEhoZaE+4tW7YkJyfnqt9tf6GRI0fy8MMP89xzz1G5cuVrPt6rr75KbGwsQ4YMITAwkFmzZhX50IO/vz8zZ87kmWee4fPPP6dt27aMGzeOxx57DAAHBweOHz/OQw89xNGjRylfvjw9evTg1VdfveZ2isj1YTIufsmEkJKSgo+PD6dOnbqmJ6dEpAzKTLck4vddkJTPycxfxzPQkpDPSIZdy8HNHx79GfzDS6TJcnNTTLI9XVMRESktFJNsS9dTRERKC8Uk27vUNc3IyCAhIYHw8HBcb7Kp4qXsMplMLFy4kG7dupV0UwB9T0RsqbhxXiPhRUSuhLM7VG1pKQBZZyyJ+L2rLKPlD/5uGfn+9zzLdrMj9PpKCXgRERERERERERERERE7oSS8iMi1cHKD8BaWAueS8ussSfnDG6FebwhvXrJtFBERERERERERkTJn1qxZDB48uNBtoaGhbNmy5Qa3COrWrcu+ffsK3fbZZ5/Rr1+/63r+C6fdL8zWrVupUqXKNZ2jNF53ESl9lIQXEbElJzdL0l2JdxEREREREREREbmOunbtSqNGjQrd5uTkdINbY7FkyRKysrIK3VaxYsXrfv7g4GA2bdp0ye3XqjjXXW+CFhEl4UVERERERERERERERG4yXl5eeHl5lXQz8gkNDS3R8zs6OlK9evXreo7SeN1FpPQxl3QDREREREREREREREREREREygol4UVERERERERERERERERERGxESXgREREREREREREREREREREbURJeRERERERERERERERERETERpSEFxERERERERERERERERERsREl4UVERERERERERERERERERGxESXgREREREREREREREREpNQYMGEC3bt1KuhkiIldNSXgREREREREREREREZEb6FJJ5rCwMN577718yyaTidjY2AJ169ati8lkYtq0aQXqX1wmTpx42Xbt3bs33z4+Pj40btyYb7/9Nl+9adOmFXqO//73v8Xqv4hIWedY0g0QERERERERERERERGRolWuXJmpU6fSp08f67q1a9eSmJiIh4dHgfrjx4/n0UcfzbfOy8ur2Odbvnw5devWJTk5mY8//piePXuyYcMGIiMjrXW8vb3ZsWNHvv18fHyKfQ4RkbJMI+FFRERERERERERERKRMyc3MKbIYWblXUDenWHWvt379+hEfH8+BAwes67788kv69euHo2PB8ZZeXl4EBgbmK4Ul64tSrlw5AgMDiYiI4PXXXycrK4sVK1bkq2MymQqcw83N7bLHHjduHFFRUXz22WdUrlwZd3d37r//fpKTk4vc5+LZAQCioqIYN25cvuNWqVIFFxcXgoODGTZsWLH7KyJiaxoJLyIiIiIiIiIiIiIiZcrhMb8Wuc21lh/lHz4/ovvIa2sLJObzOIf7UGHwrdblxP/8Tm5adoF6lSY2v4bWXl7FihVp374906dP5+WXXyY9PZ05c+YQHx/PV199dd3Om5WVxRdffAGAk5OTzY67a9cuvv76a7799ltSUlJ45JFHePLJJ5k1a9ZVHW/evHm8++67xMbGUrduXRITE/nzzz9t1l4RkSulkfAiIiIiIiIiIiIiIiKl3MCBA5k2bRqGYTBv3jyqVatGVFRUoXWfe+45PD0985W4uLhin6tp06Z4enri6urKqFGjCAsLo1evXvnqnDp1Kt/xAwMDi338jIwMpk+fTlRUFC1atOCDDz4gNjaWxMTEYh/jQvv37ycwMJC2bdtSpUoV7rjjjgLT8YuI3EgaCS8iIiIiIiIiIiIiImVK8PimRW4zmUz5loNeaXyJuvmXA5+745radS3uueceBg8ezC+//MKXX37JwIEDi6z7zDPPMGDAgHzrQkJCin2uOXPmEBERwc6dOxkxYgSffvop/v7++ep4eXmxYcMG67LZXPxxn1WqVKFSpUrW5SZNmpCbm8uOHTuuKJmf5/777+e9996jatWqdOjQgU6dOtGlS5dCp+oXEbkR9NtHRERERERERERERETKFLOzQ4nXtTVHR0cefPBBxo4dy2+//cbChQuLrFu+fHmqV69+1eeqXLkyNWrUoEaNGnh6etKzZ0+2bt1KhQoVrHXMZvM1neNCeQ9GXPyAxIXnMgwj37qsrKx87d2xYwfLli1j+fLlDBkyhLfeeov4+HibTqMvIlJcmo5eRERERERERERERETkJjBw4EDi4+O599578fPzuyHnbNmyJZGRkbz++us2O+b+/fs5fPiwdXnNmjWYzWZq1qxZaP2AgACOHDliXU5JSSEhISFfHTc3N7p27crkyZOJi4tjzZo1bN682WZtFhG5EhoJLyIiIiIiIiIiIiIicoOdOnWKTZs25Vt38ZTvF6tduzb//vsv7u7ul6yXmppa4P3q7u7ueHt7X1VbR40axf3338+zzz57RdPaF8XV1ZX+/fvz9ttvk5KSwrBhw+jVq1eRU9G3adOGadOm0aVLF/z8/HjllVdwcDg/K8G0adPIycmhUaNGuLu7M2PGDNzc3AgNDb3mtoqIXA0l4UVERERERERERERERG6wuLg46tevn29d//79L7tfuXLlLltnzJgxjBkzJt+6wYMH8+mnn15ZI8/p3LkzYWFhvP7663z88cdXdYwLVa9enR49etCpUydOnDhBp06dLnncF154gT179tC5c2d8fHx47bXX8o2E9/X1ZeLEiYwcOZKcnBxuueUWvv3222JdKxGR68FkXPwSDSElJQUfHx9OnTp11U+FiYiI2IJiku3pmoqISGmhmGRbup4iIlJaKCbZ3qWuaUZGBgkJCYSHh+Pq6lpCLZQrMW7cOBYtWlRgFgC5fvQ9EbGd4sZ5vRNeRERERERERERERERERETERpSEFxERERERERERERERsQOPP/44np6ehZbHH3/cJueoW7dukeeYNWuWTc4hIlLa6Z3wIiIiIiIiIiIiIiIidmD8+PGMHj260G22en3CkiVLyMrKKnRbxYoV8fLyYty4cTY5l4hIaaUkvIiIiIiIiIiIiIiIiB2oUKECFSpUuK7nCA0Nva7HFxG5GWg6ehERERERERERERERuakZhlHSTRAptfT9ELnxlIQXEREREREREREREZGbkoODAwCZmZkl3BKR0is9PR0AJyenEm6JiP3QdPQiIiIiIiIiIiIiInJTcnR0xN3dnWPHjuHk5ITZrLGHInkMwyA9PZ2kpCR8fX2tD62IyPWnJLyIiIiIiIiIiIiIiNyUTCYTQUFBJCQksG/fvpJujkip5OvrS2BgYEk3Q8SuKAkvIiIiIiIiIiIiIiI3LWdnZ2rUqKEp6UUK4eTkpBHwIiVASXgREREREREREREREbmpmc1mXF1dS7oZIiIiAOjlKCIiIiIiIiIiIiIiIiIiIjaiJLyIiIiIiIiIiIiIiIiIiIiNKAkvIiIiIiIiIiIiIiIiIiJiI3onfCEMwwAgJSWlhFsiIiL2Li8W5cUmuXaK8yIiUlooztuWYryIiJQWivG2pzgvIiKlRXHjvJLwhUhNTQWgcuXKJdwSERERi9TUVHx8fEq6GWWC4ryIiJQ2ivO2oRgvIiKljWK87SjOi4hIaXO5OG8y9DheAbm5uRw+fBgvLy9MJtM1HSslJYXKlStz4MABvL29bdTCm4f6r/6r/+q/Pfbfln03DIPU1FSCg4Mxm/UWGVtQnLcde+6/Pfcd1H/1X/1XnC+dFONtR/1X/9V/++y/PfcdFONLO8V527Hn/ttz30H9V//V/xsd5zUSvhBms5lKlSrZ9Jje3t52+aHOo/6r/+q/+m+PbNV3PTVvW4rztmfP/bfnvoP6r/6r/4rzpYtivO2p/+q/+m+f/bfnvoNifGmlOG979tx/e+47qP/qv/p/o+K8HsMTERERERERERERERERERGxESXhRUREREREREREREREREREbERJ+OvMxcWFsWPH4uLiUtJNKRHqv/qv/qv/9th/e+67vbH3e23P/bfnvoP6r/6r//bcf3th7/dZ/Vf/1X/77L899x3Uf3ti7/fanvtvz30H9V/9V/9vdP9NhmEYN+xsIiIiIiIiIiIiIiIiIiIiZZhGwouIiIiIiIiIiIiIiIiIiNiIkvAiIiIiIiIiIiIiIiIiIiI2oiS8iIiIiIiIiIiIiIiIiIiIjSgJLyIiIiIiIiIiIiIiIiIiYiNKwl+lX375hS5duhAcHIzJZGLRokX5thuGwbhx4wgODsbNzY1WrVqxZcuWfHXOnj3LU089Rfny5fHw8KBr164cPHjwBvbi6lyu7wMGDMBkMuUrjRs3zlfnZu07wBtvvMHtt9+Ol5cXFSpUoFu3buzYsSNfnbJ8/4vT/7L6Gfjkk0+49dZb8fb2xtvbmyZNmvD9999bt5fl+w6X739Zve9FeeONNzCZTIwYMcK6rqx/BuyFPcd4sO84rxhvvzEeFOcV589TjC/b7DnO23OMB/uO84rxivGK8ecpzpdd9hzjwb7jvD3HeFCcV5xXnM9TGmO8kvBXKS0tjXr16vHhhx8Wuv3NN9/knXfe4cMPP+SPP/4gMDCQu+++m9TUVGudESNGsHDhQmJjY1m1ahWnT5+mc+fO5OTk3KhuXJXL9R2gQ4cOHDlyxFqWLFmSb/vN2neA+Ph4nnzySdauXcuyZcvIzs6mXbt2pKWlWeuU5ftfnP5D2fwMVKpUiYkTJ7Ju3TrWrVtHmzZtuPfee62/tMvyfYfL9x/K5n0vzB9//MHnn3/Orbfemm99Wf8M2At7jvFg33FeMd5+YzwozivOWyjGl332HOftOcaDfcd5xXjFeMV4C8X5ss2eYzzYd5y35xgPivOK84rzUIpjvCHXDDAWLlxoXc7NzTUCAwONiRMnWtdlZGQYPj4+xqeffmoYhmEkJycbTk5ORmxsrLXOoUOHDLPZbCxduvSGtf1aXdx3wzCM/v37G/fee2+R+5SVvudJSkoyACM+Pt4wDPu6/4ZRsP+GYV+fAT8/P+O///2v3d33PHn9Nwz7ue+pqalGjRo1jGXLlhktW7Y0hg8fbhiG/X337YU9x3jDUJxXjLfvGG8YivP2FucV4+2PPcd5e4/xhmHfcV4xXjHe3mK8YSjO2xt7jvGGoThvzzHeMBTnDUNx3t7ifGmO8RoJfx0kJCSQmJhIu3btrOtcXFxo2bIlv/76KwDr168nKysrX53g4GAiIyOtdW5mcXFxVKhQgZo1a/Loo4+SlJRk3VbW+n7q1CkA/P39Afu7/xf3P09Z/wzk5OQQGxtLWloaTZo0sbv7fnH/85T1+w7w5JNPcs8999C2bdt86+3tM2CvdJ8t7OG7Dorx9hrjQXHeXuO8YrzoXpf97/mF7DnOK8YrxttbjAfFeXun+2xhD991sO8YD4rzivP2F+dLc4x3vOYjSAGJiYkAVKxYMd/6ihUrsm/fPmsdZ2dn/Pz8CtTJ2/9m1bFjR+6//35CQ0NJSEjglVdeoU2bNqxfvx4XF5cy1XfDMBg5ciTNmjUjMjISsK/7X1j/oWx/BjZv3kyTJk3IyMjA09OThQsXUqdOHesv5LJ+34vqP5Tt+54nNjaWDRs28McffxTYZk/ffXum+2wf33VQjLfHGA+K8/Yc5xXjBXSvy/r3/EL2HOcV4xXj7S3Gg+K86D6DfXzXwb5jPCjOK87bX5wv7TFeSfjryGQy5Vs2DKPAuosVp05p17t3b+vPkZGRNGzYkNDQUBYvXkyPHj2K3O9m7PvQoUP566+/WLVqVYFt9nD/i+p/Wf4M1KpVi02bNpGcnMz8+fPp378/8fHx1u1l/b4X1f86deqU6fsOcODAAYYPH86PP/6Iq6trkfXK+mdALOz5Ppf173oexXj7i/GgOG+vcV4xXi5mr/e6LH/PL2bPcV4xXjHenmI8KM5LfvZ8n8v6dz2PPcd4UJxXnLevOH8zxHhNR38dBAYGAhR4SiIpKcn6xEVgYCCZmZmcPHmyyDplRVBQEKGhofzzzz9A2en7U089xTfffMOKFSuoVKmSdb293P+i+l+YsvQZcHZ2pnr16jRs2JA33niDevXq8f7779vNfS+q/4UpS/cdLFPTJCUlcdttt+Ho6IijoyPx8fFMnjwZR0dHax/K+mfA3tnLd/1KlLXvOijG22uMB8V5e43zivGSx16+68VVlr7nF7LnOK8YrxhvbzEeFOfFwl6+61eirH3Xwb5jPCjOK87bX5y/GWK8kvDXQXh4OIGBgSxbtsy6LjMzk/j4eJo2bQrAbbfdhpOTU746R44c4e+//7bWKSuOHz/OgQMHCAoKAm7+vhuGwdChQ1mwYAE///wz4eHh+baX9ft/uf4Xpqx9Bi5kGAZnz54t8/e9KHn9L0xZu+933XUXmzdvZtOmTdbSsGFD+vXrx6ZNm6hatapdfgbsjb1+1y+lLH3XFeMV4y+mOG8fcV4xXvLY63e9KGXpew72HecV4wtSjLePGA+K82Jhr9/1SylL33V7jvGgOF8YxXn7iPM3RYw35KqkpqYaGzduNDZu3GgAxjvvvGNs3LjR2Ldvn2EYhjFx4kTDx8fHWLBggbF582YjOjraCAoKMlJSUqzHePzxx41KlSoZy5cvNzZs2GC0adPGqFevnpGdnV1S3SqWS/U9NTXVGDVqlPHrr78aCQkJxooVK4wmTZoYISEhZaLvhmEYTzzxhOHj42PExcUZR44csZb09HRrnbJ8/y/X/7L8GXjhhReMX375xUhISDD++usv48UXXzTMZrPx448/GoZRtu+7YVy6/2X5vl9Ky5YtjeHDh1uXy/pnwF7Yc4w3DPuO84rx9hvjDUNxXnE+P8X4ssue47w9x3jDsO84rxivGK8Yn5/ifNlkzzHeMOw7zttzjDcMxXnFecX5C5W2GK8k/FVasWKFARQo/fv3NwzDMHJzc42xY8cagYGBhouLi9GiRQtj8+bN+Y5x5swZY+jQoYa/v7/h5uZmdO7c2di/f38J9ObKXKrv6enpRrt27YyAgADDycnJqFKlitG/f/8C/bpZ+24YRqF9B4ypU6da65Tl+3+5/pflz8DAgQON0NBQw9nZ2QgICDDuuusuazA3jLJ93w3j0v0vy/f9Ui4O6mX9M2Av7DnGG4Z9x3nFePuN8YahOK84n59ifNllz3HenmO8Ydh3nFeMV4xXjM9Pcb5ssucYbxj2HeftOcYbhuK84rzi/IVKW4w3GYZhXH68vIiIiIiIiIiIiIiIiIiIiFyO3gkvIiIiIiIiIiIiIiIiIiJiI0rCi4iIiIiIiIiIiIiIiIiI2IiS8CIiIiIiIiIiIiIiIiIiIjaiJLyIiIiIiIiIiIiIiIiIiIiNKAkvIiIiIiIiIiIiIiIiIiJiI0rCi4iIiIiIiIiIiIiIiIiI2IiS8CIiIiIiIiIiIiIiIiIiIjaiJLyIXBcmk4lFixZd13OMGzeOqKio63oOERERKUhxXkREpGxSjBcRESm7FOdFbiwl4UVuUklJSQwePJgqVarg4uJCYGAg7du3Z82aNSXdNJuZP38+jRo1wsfHBy8vL+rWrcuoUaOs20ePHs1PP/1Ugi0UERG5PhTnFedFRKRsUoxXjBcRkbJLcV5xXuRCjiXdABG5Oj179iQrK4vp06dTtWpVjh49yk8//cSJEydKumk2sXz5cvr06cOECRPo2rUrJpOJrVu35gvgnp6eeHp6lmArRURErg/FecV5EREpmxTjFeNFRKTsUpxXnBfJxxCRm87JkycNwIiLi7tkvUmTJhmRkZGGu7u7UalSJeOJJ54wUlNTrdunTp1q+Pj4GN9++61Rs2ZNw83NzejZs6dx+vRpY9q0aUZoaKjh6+trDB061MjOzrbuFxoaaowfP96Ijo42PDw8jKCgIGPy5Mn5zg0YCxcutC4fPHjQ6NWrl+Hr62v4+/sbXbt2NRISEops+/Dhw41WrVpdsn9jx4416tWrl++cF5fQ0FDr9i1bthgdO3Y0PDw8jAoVKhgPPPCAcezYsUueQ0RE5EZTnLdQnBcRkbJGMd5CMV5ERMoixXkLxXmR8zQdvchNKO9pskWLFnH27Nki65nNZiZPnszff//N9OnT+fnnn3n22Wfz1UlPT2fy5MnExsaydOlS4uLi6NGjB0uWLGHJkiXMmDGDzz//nHnz5uXb76233uLWW29lw4YNvPDCCzz99NMsW7as0Hakp6fTunVrPD09+eWXX1i1ahWenp506NCBzMzMQvcJDAxky5Yt/P3338W+LkeOHLGWXbt2Ub16dVq0aGHd1rJlS6Kioli3bh1Lly7l6NGj9OrVq9jHFxERuREU5wunOC8iIjc7xfjCKcaLiEhZoDhfOMV5sWsl/RSAiFydefPmGX5+foarq6vRtGlT44UXXjD+/PPPS+7z9ddfG+XKlbMuT5061QCMXbt2WdcNHjzYcHd3z/f0Xfv27Y3Bgwdbl0NDQ40OHTrkO3bv3r2Njh07Wpe54Km6KVOmGLVq1TJyc3Ot28+ePWu4ubkZP/zwQ6FtPX36tNGpUyfrk3G9e/c2pkyZYmRkZFjrXPxUXZ7c3Fyje/fuxm233Wakp6cbhmEYr7zyitGuXbt89Q4cOGAAxo4dOwptg4iISElRnFecFxGRskkxXjFeRETKLsV5xXmRC2kkvMhNqmfPnhw+fJhvvvmG9u3bExcXR4MGDZg2bZq1zooVK7j77rsJCQnBy8uLhx56iOPHj5OWlmat4+7uTrVq1azLFStWJCwsLN97WypWrEhSUlK+8zdp0qTA8rZt2wpt6/r169m1axdeXl7WJwL9/f3JyMhg9+7dhe7j4eHB4sWL2bVrFy+//DKenp6MGjWKO+64g/T09EtemxdffJE1a9awaNEi3NzcrG1YsWKF9fyenp5EREQAFNkGERGRkqI4XzTFeRERuZkpxhdNMV5ERG52ivNFU5wXe+RY0g0Qkavn6urK3Xffzd13382YMWMYNGgQY8eOZcCAAezbt49OnTrx+OOP89prr+Hv78+qVat45JFHyMrKsh7Dyckp3zFNJlOh63Jzcy/bHpPJVOj63NxcbrvtNmbNmlVgW0BAwCWPWa1aNapVq8agQYN46aWXqFmzJnPmzOHhhx8utP7MmTN59913iYuLo1KlSvna0KVLF/7zn/8U2CcoKOiSbRARESkJivMFKc6LiEhZoBhfkGK8iIiUFYrzBSnOi71SEl6kDKlTpw6LFi0CYN26dWRnZzNp0iTMZsukF19//bXNzrV27doCy3lPqV2sQYMGzJkzhwoVKuDt7X3V5wwLC8Pd3T3fU4EXWrNmDYMGDeKzzz6jcePGBdowf/58wsLCcHTUrz4REbn5KM4rzouISNmkGK8YLyIiZZfivOK82C9NRy9yEzp+/Dht2rRh5syZ/PXXXyQkJDB37lzefPNN7r33XsDyNFp2djYffPABe/bsYcaMGXz66ac2a8Pq1at588032blzJx999BFz585l+PDhhdbt168f5cuX595772XlypUkJCQQHx/P8OHDOXjwYKH7jBs3jmeffZa4uDgSEhLYuHEjAwcOJCsri7vvvrtA/cTERLp3706fPn1o3749iYmJJCYmcuzYMQCefPJJTpw4QXR0NL///jt79uzhxx9/ZODAgeTk5NjsuoiIiFwrxXnFeRERKZsU4xXjRUSk7FKcV5wXuZiS8CI3IU9PTxo1asS7775LixYtiIyM5JVXXuHRRx/lww8/BCAqKop33nmH//znP0RGRjJr1izeeOMNm7Vh1KhRrF+/nvr16/Paa68xadIk2rdvX2hdd3d3fvnlF6pUqUKPHj2oXbs2AwcO5MyZM0U+ZdeyZUv27NnDQw89REREBB07diQxMZEff/yRWrVqFai/fft2jh49yvTp0wkKCrKW22+/HYDg4GBWr15NTk4O7du3JzIykuHDh+Pj42N96lBERKQ0UJxXnBcRkbJJMV4xXkREyi7FecV5kYuZDMMwSroRInJzCQsLY8SIEYwYMaKkmyIiIiI2pjgvIiJSNinGi4iIlF2K8yKljx4lERERERERERERERERERERsREl4UVERERERERERERERERERGxE09GLiIiIiIiIiIiIiIiIiIjYiEbCi4iIiIiIiIiIiIiIiIiI2IiS8CIiIiIiIiIiIiIiIiIiIjaiJLyIiIiIiIiIiIiIiIiIiIiNKAkvIiIiIiIiIiIiIiIiIiJiI0rCi4iIiIiIiIiIiIiIiIiI2IiS8CIiIiIiIiIiIiIiIiIiIjaiJLyIiIiIiIiIiIiIiIiIiIiNKAkvIiIiIiIiIiIiIiIiIiJiI0rCi4iIiIiIiIiIiIiIiIiI2Mj/A6L3Omiugu0zAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create subplots\n", + "fig, axs = plt.subplots(1, 4, figsize=(25, 10), sharey=True)\n", + "\n", + "for i in range(len(heritability)):\n", + " h = heritability[i]\n", + " for m in methods:\n", + " if \"RF_plus\" in m:\n", + " axs[i].plot(sample_row_n, agg_results[h][m][\"test_auroc\"], label=m, linestyle='dashed')\n", + " else:\n", + " axs[i].plot(sample_row_n, agg_results[h][m][\"test_auroc\"], label=m)\n", + " axs[i].set_xlabel('Sample Size')\n", + " axs[i].set_ylabel('Test AUROC')\n", + " axs[i].set_title('PVE = ' + str(h))\n", + " \n", + "# Share the label in the last plot\n", + "axs[3].legend()\n", + "\n", + "fig.suptitle(\"Testing AUROC for Hierarchical Polynomial Model for Diabetes Regression Data\")\n", + "\n", + "# Show the plots\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB+EAAAOlCAYAAACyqZUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hURcPG4Wd3s+mFFBJ6aNKRDtIERJqAgALSq4rt9cVXP3uvYMUGNnovioKIgoLYQJr0Kr2XQEhvu/P9EbMQEiAJmwL+7uvaS/bsnJk5Z8/uIM/OHIsxxggAAAAAAAAAAAAAAFw1a2F3AAAAAAAAAAAAAACA6wUhPAAAAAAAAAAAAAAAbkIIDwAAAAAAAAAAAACAmxDCAwAAAAAAAAAAAADgJoTwAAAAAAAAAAAAAAC4CSE8AAAAAAAAAAAAAABuQggPAAAAAAAAAAAAAICbEMIDAAAAAAAAAAAAAOAmhPAAAAAAAAAAAAAAALgJITwAAACKHIvFkqPHzz//fNVtJSQk6MUXX8y2rkmTJslisWj//v1X3c7V+OCDD2SxWFSrVq1sX9+/f78sFovefvvtbF9/++23sxxH69atM51LHx8f1alTR2PGjJHT6XSVGzJkSKZynp6eqlSpkh577DHFxMRkaSs5OVkfffSRWrRooeDgYHl6eqp06dLq3bu3VqxYccVj3b9/vzp37qyQkBBZLBaNHDnyivtcjfLly6tLly7ZvrZ27VpZLBZNmjTJta2oXBN51bp160teRxfKuKYuPHZ3s1gsevHFF3NU7sJHUFCQWrdurUWLFuW6zWv9/btY+fLlNWTIkHzdt3z58rJYLGrdunW2r0+ZMsWt38kZXnzxRVksljztO2TIEJUvXz5HZZ999lmVK1dOHh4eKlasWJ7ay6mMY8p4+Pr6qkyZMurQoYM+/PBDxcbGZtknN8dysZx+3nNj7Nix+fq9cDkZ12LGw8/PT/Xr19dHH30kY0yh9Kkw5PS7090yvj8zHt7e3ipRooTatGmjN954QydPnsxz3du2bdOLL7543Xw3AwAAAJLkUdgdAAAAAC62cuXKTM9feeUVLV++XMuWLcu0vUaNGlfdVkJCgl566SVJyhIyde7cWStXrlTJkiWvup2rMWHCBEnS1q1b9eeff6pJkyZuqbdixYqaPn26JOnkyZP65JNP9Mgjj+jYsWMaPXq0q5yPj4/r3EdHR2vevHl65513tGnTJi1ZssRV7vTp0+rYsaM2bdqkYcOG6f/+7/8UEhKiI0eO6JtvvlHbtm21bt061alT55J9euSRR/Tnn39qwoQJKlGiRKGf+4sVlWsiv5UsWVIrV65UpUqVCrsrkqSePXvq0UcfldPp1N69e/Xqq6+qa9euWrhwoTp37lzY3Ss08+fPV2BgYL63ExAQoF9++UV79uzJck1MmDBBgYGB2f4op6j75ptv9Nprr+mZZ55Rp06d5OXlVSDtfv/99woKClJKSoqOHj2qn376SY8//rjeeustLVy4MNN35HPPPaf//ve/BdKvnBg7dqzCwsLy/OOPq9W8eXPXD86OHj2qd999V//5z38UExOjp59+ulD6VNBWrlypMmXKFFr7EydOVLVq1ZSamqqTJ0/qt99+0+jRo/X2229r9uzZuvXWW3Nd57Zt2/TSSy+pdevWef7RCQAAAFDUEMIDAACgyLnpppsyPS9evLisVmuW7fmtePHiKl68eIG2ebG1a9dq48aN6ty5sxYtWqTx48e7LYT38fHJdE47deqkatWq6aOPPtKrr74qu90uSVnOfceOHbV3714tXbpU+/btU4UKFSRJgwYN0saNG/XDDz/olltuydRWnz599L///U/BwcGX7dOWLVvUuHFjde/e3S3H6HA4lJaW5rZwzd3XREJCgnx9fa+qjsTERHl7e+d51nB2vLy8CvzzdjkRERGu/jRr1kxNmzZV5cqVNWbMmH91CF+vXr0CaadFixbavHmzJkyYoNdee821fc+ePfrll19099136/PPPy+QvrjTli1bJEkPP/ywwsPD3VJnTj7TDRo0UFhYmOt5nz599NBDD6lVq1a6/fbbtWvXLtd3VlH5IUxRUaxYsUzfTbfeeqvKlSunTz/9tMBD+Pz47s2Jwv5urlWrlho2bOh6fuedd+qRRx5RixYtdMcdd2j37t2KiIgoxB4CAAAARQPL0QMAAOCalJKSoldffVXVqlWTl5eXihcvrqFDh+rUqVOZyi1btkytW7dWaGiofHx8VK5cOd15551KSEjQ/v37XYHqSy+95FpiNWOGX3ZLV2cs77tmzRq1bNlSvr6+qlixokaNGpVpGXcpfeZ6+/bt5evrq+LFi+vBBx/UokWLcrVs8/jx4yVJo0aNUrNmzTRr1iwlJCTk7aRdgd1uV4MGDZSQkJDlPF4s4x/gT5w4IUlat26dFi9erOHDh2cJ4DM0atRI5cqVy/a1n3/+WRaLRX///bcWL17sei8yzv3Bgwc1YMAAhYeHy8vLS9WrV9c777yT6ZxnLKH+5ptv6tVXX1WFChXk5eWl5cuX5/ZUXNKlljP/8ccf1bZtWwUGBsrX11fNmzfXTz/9lKlMxlLU69evV8+ePRUcHOwK2NauXas+ffqofPny8vHxUfny5dW3b18dOHAg2/aXLFmiYcOGqXjx4vL19VVycrIkacaMGWratKn8/f3l7++vunXruq6hC13p+r3UcvQ7duxQ3759FRERIS8vL5UrV06DBg1ytX/q1Ck98MADqlGjhvz9/RUeHq5bbrlFv/76a57O96VUqlRJxYsXz3R+FixYoKZNm8rX11cBAQFq165dllU1LvbKK6/Iw8NDhw4dyvLasGHDFBoaqqSkJEnnb13w/fffq379+vLx8VG1atVcK1VcaMuWLerWrZuCg4Pl7e2tunXravLkyZnKZFzzM2bM0BNPPKGSJUvK399fXbt21YkTJxQbG6t7771XYWFhCgsL09ChQxUXF5epjouXlE9KStKjjz6qunXrKigoSCEhIWratKm++eabK57Ty7FarRo0aJAmT56c6TqZMGGCypYte8mZrzl9TxYtWqS6devKy8tLFSpUuOStNYwxGjt2rOrWrSsfHx8FBwerZ8+e2rt3b66PqXz58nr22Wclpf/I48Ilvp1Op958803X+BIeHq5Bgwbp8OHDmerIGA9++eUXNWvWTL6+vho2bFiu+yJJderU0TPPPKODBw9q9uzZru3ZLUf/8ccf6+abb1Z4eLj8/PxUu3Ztvfnmm0pNTc227l9//VU33XSTfHx8VLp0aT333HNyOByZyuRkTC1fvry2bt2qFStWuL6jL+xbTEyMHnvsMVWoUMF1K5KRI0cqPj4+U1tz585VkyZNFBQU5PoOyut5CwwMVJUqVVxjUW6OR0q/hcqjjz6qEiVKyNfXVzfffLPWrVuX5bN1pe/e2bNnq2nTpvLz85O/v786dOigv/76K1Nbe/fuVZ8+fVSqVCl5eXkpIiJCbdu21YYNG1xlLvd3lgzZLUefm++cmTNn6plnnlGpUqUUGBioW2+9VTt37sztqc+kXLlyeueddxQbG6tPP/3UtT0nY9ukSZPUq1cvSVKbNm1c11bG+LN06VJ169ZNZcqUkbe3typXrqwRI0bo9OnTV9VnAAAAIL8RwgMAAOCa43Q61a1bN40aNUr9+vXTokWLNGrUKC1dulStW7dWYmKipPP3F/f09NSECRP0/fffa9SoUfLz81NKSopKliyp77//XpI0fPhwrVy5UitXrtRzzz132faPHz+u/v37a8CAAVqwYIE6deqkp556StOmTXOVOXbsmFq1aqWdO3dq3LhxmjJlimJjY/XQQw/l+DgTExM1c+ZMNWrUSLVq1dKwYcMUGxuruXPn5uGs5cyePXvk4eFxxRnr+/btk4eHhypWrChJrmXp8zqDvX79+lq5cqVKlCih5s2bu96LkiVL6tSpU2rWrJmWLFmiV155RQsWLNCtt96qxx57LNvz+cEHH2jZsmV6++23tXjxYlWrVu2ybRtjlJaWluVxcUh1KdOmTVP79u0VGBioyZMna86cOQoJCVGHDh2yBPGSdMcdd6hy5cqaO3euPvnkE0np12rVqlU1ZswY/fDDDxo9erSOHTumRo0aZRs0DBs2THa7XVOnTtW8efNkt9v1/PPPq3///ipVqpQmTZqk+fPna/DgwVmC/Jxcv9nZuHGjGjVqpFWrVunll1/W4sWL9cYbbyg5OVkpKSmSpDNnzkiSXnjhBS1atEgTJ05UxYoV1bp1a7feL/zs2bOKiopy/YhmxowZ6tatmwIDAzVz5kyNHz9eZ8+eVevWrfXbb79dsp4RI0bIw8MjU2iUcRyzZs3S8OHD5e3tnekcPProo3rkkUf0zTff6MYbb9Tw4cP1yy+/uMrs3LlTzZo109atW/XBBx/oq6++Uo0aNTRkyBC9+eabWfrw9NNP6+TJk5o0aZLeeecd/fzzz+rbt6/uvPNOBQUFaebMmXr88cc1derUK870TU5O1pkzZ/TYY4/p66+/1syZM12zU6dMmZKjc3spw4YN09GjR/XDDz9ISl9lYvLkyRoyZIis1qz/tJDT9+Snn35St27dFBAQoFmzZumtt97SnDlzNHHixCx1jhgxQiNHjtStt96qr7/+WmPHjtXWrVvVrFmzLCHslcyfP1/Dhw+XlL48/MqVK3X33XdLku6//3498cQTateunRYsWKBXXnlF33//vZo1a5bl83js2DENGDBA/fr103fffacHHnggV/240O233y5Jma6n7OzZs0f9+vXT1KlT9e2332r48OF66623NGLEiCxljx8/rj59+qh///765ptv1LNnT7366quZlrjP6Zg6f/58VaxYUfXq1XN9R8+fP19S+goArVq10uTJk/Xwww9r8eLFeuKJJzRp0iTdfvvtrnu2r1y5UnfddZcqVqyoWbNmadGiRXr++eeVlpaWp3OWlpamQ4cOqUqVKrk+HkkaOnSoxowZo6FDh+qbb77RnXfeqR49eig6Ojrb9rL77n399dfVt29f1ahRQ3PmzNHUqVMVGxurli1batu2ba59b7vtNq1bt05vvvmmli5dqnHjxqlevXqutq70d5ZLyct3zoEDB/TFF1/os88+0+7du9W1a9ccj3mXctttt8lms2W6fnMytnXu3Fmvv/66pPQfmGRcWxmrnOzZs0dNmzbVuHHjtGTJEj3//PP6888/1aJFi0v+8AQAAAAoEgwAAABQxA0ePNj4+fm5ns+cOdNIMl9++WWmcmvWrDGSzNixY40xxsybN89IMhs2bLhk3adOnTKSzAsvvJDltYkTJxpJZt++fa5trVq1MpLMn3/+malsjRo1TIcOHVzP/+///s9YLBazdevWTOU6dOhgJJnly5df6bDNlClTjCTzySefGGOMiY2NNf7+/qZly5aZyu3bt89IMm+99Va29bz11lvZHkfNmjVNamqqSU1NNUePHjVPPvmkkWR69erlKpdx7jPKnT592owbN85YrVbz9NNPu8rdd999RpLZsWPHFY/rciIjI03nzp0zbcvo18Xn/P777zcWi8Xs3Lkz03moVKmSSUlJyXF7ki77mDhxoqv8xddEfHy8CQkJMV27ds1Ur8PhMHXq1DGNGzd2bXvhhReMJPP8889fsV9paWkmLi7O+Pn5mffffz9L+4MGDcpUfu/evcZms5n+/ftftt6cXr8Z5/LCY7/llltMsWLFzMmTJ6/Y/wuPIzU11bRt29b06NEj02uX+txdTJJ54IEHTGpqqklJSTHbt283nTp1MpLMxx9/bBwOhylVqpSpXbu2cTgcrv1iY2NNeHi4adasmWtbdp/pwYMHm/DwcJOcnOzaNnr0aGO1WjOVi4yMNN7e3ubAgQOubYmJiSYkJMSMGDHCta1Pnz7Gy8vLHDx4MNNxdOrUyfj6+pro6GhjjDHLly83krJcOyNHjjSSzMMPP5xpe/fu3U1ISEimbZGRkWbw4MGXPHcZ53/48OGmXr16udr3wnIZn8lWrVqZnj17GmOMWbRokbFYLGbfvn1m7ty5mb7XcvOeNGnSxJQqVcokJia6tsXExJiQkBBz4T9ZrFy50kgy77zzTqb+HTp0yPj4+JjHH3/ctW3w4MEmMjLyiseW8Zk8deqUa9v27dtd19yF/vzzTyMp0/dexufpp59+umJbl2rvQomJiUaS6dSpU46PxeFwmNTUVDNlyhRjs9nMmTNnsvTvm2++ybTPPffcY6xWq+tazumYaowxNWvWNK1atcrSjzfeeMNYrVazZs2aTNszxuHvvvvOGGPM22+/bSS5Pge5ERkZaW677TbXeHTgwAFzzz33GLvdbr799ltXuZwez9atW40k88QTT2Qql7H/hZ+PS333Hjx40Hh4eJj//Oc/mbbHxsaaEiVKmN69extjjDl9+rSRZMaMGXPJ48vJ31mMyfrdmdvvnNtuuy1TuTlz5hhJZuXKlZdtN+McXPweXygiIsJUr179kq9famy7+DvkUpxOp+u9z+7aBgAAAIoSZsIDAADgmvPtt9+qWLFi6tq1a6aZy3Xr1lWJEiVcM27r1q0rT09P3XvvvZo8eXKelizOTokSJdS4ceNM22688cZMM45XrFihWrVqqUaNGpnK9e3bN8ftjB8/Xj4+PurTp48kyd/fX7169dKvv/6q3bt3X8URpNu6davsdrvsdrtKlSqld955R/37989yb+f4+HhXubCwMN1///266667Mt0bOj8tW7ZMNWrUyHLOhwwZImOMli1blmn77bff7rqffU60aNFCa9asyfLIyczhP/74Q2fOnNHgwYMzXYtOp1MdO3bUmjVrsizFfOedd2apJy4uTk888YQqV64sDw8PeXh4yN/fX/Hx8dq+fXuW8hfXsXTpUjkcDj344INX7HNOrt+LJSQkaMWKFerdu7dr9vmlfPLJJ6pfv768vb3l4eEhu92un376KdvjyKmxY8fKbrfL09NT1atX1x9//KGXX35ZDzzwgHbu3KmjR49q4MCBmWZk+/v7684779SqVasuewuH//73vzp58qRrhQmn06lx48apc+fOWZYBr1u3bqZbKnh7e6tKlSqZzt2yZcvUtm1blS1bNtO+Q4YMUUJCQpbl2Lt06ZLpefXq1SUpy73uq1evrjNnzmRZkv5ic+fOVfPmzeXv7+86/+PHj7+q859h2LBhWrBggaKiojR+/Hi1adMmyzmSlOP3JD4+XmvWrNEdd9yRacWBgIAAde3aNVOd3377rSwWiwYMGJDps1aiRAnVqVPHbSstZNy+4sKlyCWpcePGql69epbVLYKDgy95C47cMv/MFr+Sv/76S7fffrtCQ0Nls9lkt9s1aNAgORwO7dq1K1PZgIAA1wz7DP369ZPT6XTNWM7pmHo53377rWrVqqW6detmqqNDhw6ZbsHSqFEjSVLv3r01Z84cHTlyJEfHnOG7775zjUeRkZH6/PPP9eGHH2b6vOT0eFasWOHqy4V69uwpDw+PbNu/+Lv3hx9+UFpamgYNGpSpLW9vb7Vq1crVVkhIiCpVqqS33npL7777rv76668st7DJ699Zcvudc/H1cOONN0rSZceAnLr4Gs7t2JadkydP6r777lPZsmVd32mRkZGS5JbvNQAAACC/EMIDAADgmnPixAlFR0fL09PT9Y/xGY/jx4+7ljitVKmSfvzxR4WHh+vBBx9UpUqVVKlSJb3//vtX1X5oaGiWbV5eXpmWuI2KilJERESWctlty87ff/+tX375RZ07d5YxRtHR0YqOjlbPnj0lKdN9qDPCgkstJZuxzO/FwXSlSpW0Zs0arV27Vlu2bFF0dLSmTZumoKCgTOV8fHxcwfTChQvVunVrzZw5U6NGjXKVyQgm9+3bl6Pjy42oqCiVLFkyy/ZSpUq5Xr9QdmUvJygoSA0bNszyyAhDLydjCeyePXtmuRZHjx4tY4xrifbL9a9fv3766KOPdPfdd+uHH37Q6tWrtWbNGhUvXjzTdXWpOjLuc1ymTJkr9jkn1+/Fzp49K4fDccX63333Xd1///1q0qSJvvzyS61atUpr1qxRx44dL1v/lfTu3dt1re7cuVNRUVGu20ZkvP+XukacTqfOnj17ybrr1aunli1b6uOPP5aUHuDt378/21sd5PSzn5vrNSQkJNNzT0/Py27PuEd9dr766iv17t1bpUuX1rRp07Ry5UqtWbNGw4YNu+x+OdWzZ095e3vrvffe08KFC13LuV8sp+/J2bNn5XQ6VaJEiSzlLt524sQJGWMUERGR5bO2atUqt90f+kp9v9rvm8vJCEEzrpXsHDx4UC1bttSRI0f0/vvv69dff9WaNWtc1+/Fn7PsxpyMc5txLDkdUy/nxIkT2rRpU5b9AwICZIxx1XHzzTfr66+/dgXXZcqUUa1atTRz5swcnKHzP5patWqVpk6dqvLly+uhhx7KdIuDnB5PxvFffI48PDyy/axLWd/vjDGgUaNGWdqaPXu2qy2LxaKffvpJHTp00Jtvvqn69eurePHievjhhxUbGysp739nye13zsXH5uXlJSnrtZNb8fHxioqKynT95nZsu5jT6VT79u311Vdf6fHHH9dPP/2k1atXa9WqVW7pMwAAAJCfsv9pLwAAAFCEhYWFKTQ01HU/94sFBAS4/tyyZUu1bNlSDodDa9eu1YcffqiRI0cqIiLCNcM8P4SGhmZ7j+Ljx4/naP8JEybIGKN58+Zp3rx5WV6fPHmyXn31VdlsNoWFhclms11yRuGRI0dks9my/MO7t7e3GjZseMW+WK3WTOXatWunBg0a6KWXXlL//v1VtmxZdejQQU8//bS+/vprdezYMUfHmFOhoaE6duxYlu1Hjx6VlH49XMhisbi1/cvJaPvDDz/UTTfdlG2ZiwOei/t37tw5ffvtt3rhhRf05JNPurZn3N87OxfXkTE7/fDhw1lmQ7pDSEiIbDabDh8+fNly06ZNU+vWrTVu3LhM2zNCprwqXrz4Ja/VjOv6UteI1WpVcHDwZet/+OGH1atXL61fv14fffSRqlSponbt2uWpr7m9Xt1p2rRpqlChgmbPnp3pGklOTnZL/b6+vurTp4/eeOMNBQYG6o477si2XE7fE2OMLBZLtt+LF28LCwuTxWLRr7/+6goNL5Tdtry4sO8X/+jk6NGj+fp9s2DBAklS69atL1nm66+/Vnx8vL766ivXbGBJ2rBhQ7blLzcOZRxrbsbUSwkLC5OPj0+mH4hd/HqGbt26qVu3bkpOTtaqVav0xhtvqF+/fipfvryaNm162XYyfjQlSU2aNFGTJk1Up04dPfDAA9qwYYOsVmuOjyfj+E+cOKHSpUu7Xk9LS8sSXGe4+P3OOK558+Zlej+yExkZqfHjx0uSdu3apTlz5ujFF19USkqKPvnkE0l5+ztLYX7nXGjRokVyOByu6zcvY9vFtmzZoo0bN2rSpEkaPHiwa/vff//t1r4DAAAA+YGZ8AAAALjmdOnSRVFRUXI4HNnOYK5atWqWfWw2m5o0aeKaLbh+/XpJ7psBdrFWrVppy5Yt2rZtW6bts2bNuuK+DodDkydPVqVKlbR8+fIsj0cffVTHjh3T4sWLJaWH6c2bN9eCBQuyzHZNSkrSggUL1KJFi0zLPV8NLy8vffzxx0pKStKrr74qSapfv746deqk8ePHZ1kePsPatWt18ODBXLfXtm1bbdu2zfWeZZgyZYosFovatGmT+4Nwk+bNm6tYsWLatm1bttdiw4YNXTOYL8ViscgYkyVE/OKLLy65usHF2rdvL5vNliX8dhcfHx+1atVKc+fOveysWIvFkuU4Nm3alGU5ZHeqWrWqSpcurRkzZmRaCjk+Pl5ffvmlmjZtKl9f38vW0aNHD5UrV06PPvqofvzxRz3wwAN5Dlfbtm2rZcuWuQKwDFOmTJGvr+8lf6zhDhaLRZ6enpn6fvz4cX3zzTdua+P+++9X165d9fzzz1/yOyWn74mfn58aN26sr776KtN3V2xsrBYuXJipzi5dusgYoyNHjmT7Oatdu7Zbji9jaflp06Zl2r5mzRpt375dbdu2dUs7F9u4caNef/11lS9fPsvy6BfKeG8v/JwZY7LcRiRDbGysK9zPMGPGDFmtVt18882ScjemXmrVjC5dumjPnj0KDQ3Nto7sblvg5eWlVq1aafTo0ZLSl9nPrRtuuEGPP/64Nm/erNmzZ+fqeDKOP2O/DPPmzXOtIHMlHTp0kIeHh/bs2XPJMSA7VapU0bPPPqvatWtnGdukS/+dJTuF+Z2T4eDBg3rssccUFBSkESNGSMrd2Hapv4tld71L0qeffurW/gMAAAD5gZnwAAAAuOb06dNH06dP12233ab//ve/aty4sex2uw4fPqzly5erW7du6tGjhz755BMtW7ZMnTt3Vrly5ZSUlOSapXfrrbdKSp8RFxkZqW+++UZt27ZVSEiIwsLCsg0McmPkyJGaMGGCOnXqpJdfflkRERGaMWOGduzYIUmZ7pN8scWLF+vo0aMaPXp0tjMia9WqpY8++kjjx4933U961KhRatOmjZo2baqRI0eqXLlyOnjwoMaMGaMTJ07kKPzPjVatWum2227TxIkT9eSTT6pChQqaMmWKOnbsqE6dOmnYsGHq1KmTgoODdezYMS1cuFAzZ87UunXrMt1TOyceeeQRTZkyRZ07d9bLL7+syMhILVq0SGPHjtX999+vKlWquPXYcsPf318ffvihBg8erDNnzqhnz54KDw/XqVOntHHjRp06deqKwXhgYKBuvvlmvfXWW65rb8WKFRo/fryKFSuWo36UL19eTz/9tF555RUlJiaqb9++CgoK0rZt23T69Gm99NJLV32s7777rlq0aKEmTZroySefVOXKlXXixAktWLBAn376qQICAtSlSxe98soreuGFF9SqVSvt3LlTL7/8sipUqJDjUCu3rFar3nzzTfXv319dunTRiBEjlJycrLfeekvR0dGZbptwKTabTQ8++KCeeOIJ+fn5ZbkfeG688MIL+vbbb9WmTRs9//zzCgkJ0fTp07Vo0SK9+eabWW734E5dunTRV199pQceeEA9e/bUoUOH9Morr6hkyZLavXu3W9qoW7euvv7668uWyc178sorr6hjx45q166dHn30UTkcDo0ePVp+fn6ZZss2b95c9957r4YOHaq1a9fq5ptvlp+fn44dO6bffvtNtWvX1v3333/Vx1e1alXde++9+vDDD2W1WtWpUyft379fzz33nMqWLatHHnnkqttYt26dgoKClJqaqqNHj+qnn37S1KlTFR4eroULF172hzvt2rWTp6en+vbtq8cff1xJSUkaN27cJW+5EBoaqvvvv18HDx5UlSpV9N133+nzzz/X/fff7/ouzumYKkm1a9fWrFmzNHv2bFWsWFHe3t6qXbu2Ro4cqS+//FI333yzHnnkEd14441yOp06ePCglixZokcffVRNmjTR888/r8OHD6tt27YqU6aMoqOj9f7778tut6tVq1Z5Op+PPfaYPvnkE7300kvq3bt3jo+nZs2a6tu3r9555x3ZbDbdcsst2rp1q9555x0FBQVddpzOUL58eb388st65plntHfvXnXs2FHBwcE6ceKEVq9eLT8/P7300kvatGmTHnroIfXq1Us33HCDPD09tWzZMm3atMk1Szwnf2fJTkF/52zZskVpaWlKS0vTyZMn9euvv2rixImy2WyaP3++a2WW3IxttWrVkiR99tlnCggIkLe3typUqKBq1aqpUqVKevLJJ2WMUUhIiBYuXKilS5e69ZgAAACAfGEAAACAIm7w4MHGz88v07bU1FTz9ttvmzp16hhvb2/j7+9vqlWrZkaMGGF2795tjDFm5cqVpkePHiYyMtJ4eXmZ0NBQ06pVK7NgwYJMdf3444+mXr16xsvLy0gygwcPNsYYM3HiRCPJ7Nu3z1W2VatWpmbNmtn2MTIyMtO2LVu2mFtvvdV4e3ubkJAQM3z4cDN58mQjyWzcuPGSx9u9e3fj6elpTp48eckyffr0MR4eHub48eOubWvXrjU9evQwYWFhxmazmbCwMNOjRw+zbt26LPtf6jiyO66Lz32GzZs3G6vVaoYOHeralpiYaD744APTtGlTExgYaDw8PEypUqXMHXfcYRYtWnTF9iIjI03nzp2zbD9w4IDp16+fCQ0NNXa73VStWtW89dZbxuFwuMrs27fPSDJvvfXWFdu5UnvGGLNmzRojyUycONG1LbtrwhhjVqxYYTp37mxCQkKM3W43pUuXNp07dzZz5851lXnhhReMJHPq1KksbR0+fNjceeedJjg42AQEBJiOHTuaLVu2mMjISNf1eGH7a9asybbPU6ZMMY0aNXJ9JurVq5ep/zm9fjPO5YX7GmPMtm3bTK9evUxoaKjx9PQ05cqVM0OGDDFJSUnGGGOSk5PNY489ZkqXLm28vb1N/fr1zddff53t50OSeeGFF7I9jovLPfjgg1cs9/XXX5smTZoYb29v4+fnZ9q2bWt+//33TGUu9f4ZY8z+/fuNJHPfffdlW/+lrpVWrVqZVq1aZdq2efNm07VrVxMUFGQ8PT1NnTp1spzL5cuXG0mZrpEL+3jxe5zd9XPx9WGMMaNGjTLly5c3Xl5epnr16ubzzz937Xvx8Vy8b26O+0Jz5841kszy5cszbc/Je2KMMQsWLDA33nij65oaNWpUtn02xpgJEyaYJk2aGD8/P+Pj42MqVapkBg0aZNauXesqk931lp1LfSYdDocZPXq0qVKlirHb7SYsLMwMGDDAHDp0KFO5nH6PXtxexsPLy8uULFnStG/f3rz//vsmJiYmyz7ZHcvChQtdY1/p0qXN//3f/5nFixdneQ8y+vfzzz+bhg0butp7+umnTWpqaqY6czKmGpP+OWnfvr0JCAgwkjL1LS4uzjz77LOmatWqxtPT0wQFBZnatWubRx55xDVWffvtt6ZTp06mdOnSxtPT04SHh5vbbrvN/Prrr1c8f5e7Fj/++GMjyUyePDlXx5OUlGT+97//mfDwcOPt7W1uuukms3LlShMUFGQeeeQRV7krffd+/fXXpk2bNiYwMNB4eXmZyMhI07NnT/Pjjz8aY4w5ceKEGTJkiKlWrZrx8/Mz/v7+5sYbbzTvvfeeSUtLM8bk/O8s2X13Xs13zqW+7y+WcQ4yHhnvX6tWrczrr7+e7d9Zcjq2GWPMmDFjTIUKFYzNZsvUn23btpl27dqZgIAAExwcbHr16mUOHjyY4zEEAAAAKCwWYy5YGw4AAABAvrr33ns1c+ZMRUVFXXGZcgAF58MPP9TDDz+sLVu2qGbNmoXdHQCF5I8//lDz5s01ffp09evXr7C7AwAAAOAaxXL0AAAAQD55+eWXVapUKVWsWFFxcXH69ttv9cUXX+jZZ58lgAeKiL/++kv79u3Tyy+/rG7duhHAA/8iS5cu1cqVK9WgQQP5+Pho48aNGjVqlG644Qbdcccdhd09AAAAANcwQngAAAAgn9jtdr311ls6fPiw0tLSdMMNN+jdd9/Vf//738LuGoB/9OjRQ8ePH1fLli31ySefFHZ3ABSgwMBALVmyRGPGjFFsbKzCwsLUqVMnvfHGG/L29i7s7gEAAAC4hrEcPQAAAAAAAAAAAAAAbmIt7A4AAAAAAAAAAAAAAHC9IIQHAAAAAAAAAAAAAMBNCOEBAAAAAAAAAAAAAHATQngAAAAAAAAAAAAAANyEEB4AAAAAAAAAAAAAADchhAcAAAAAAAAAAAAAwE0I4QEAAAAAAAAAAAAAcBNCeAAAAAAAAAAAAAAA3IQQHgAAAAAAAAAAAAAANyGEBwAAAAAAAAAAAADATQjhAQAAAAAAAAAAAABwE0J4AAAAAAAAAAAAAADchBAeAAAAAAAAAAAAAAA3IYQHAAAAAAAAAAAAAMBNCOEBAAAAAAAAAAAAAHATQngAAAAAAAAAAAAAANyEEB4AAAAAAAAAAAAAADchhAcAAAAAAAAAAAAAwE0I4QEAAAAAAAAAAAAAcBNCeAAAAAAAAAAAAAAA3IQQHgAAAAAAAAAAAAAANyGEBwAAAAAAAAAAAADATQjhAQAAAAAAAAAAAABwE0J4AAAAAAAAAAAAAADchBAeAAAAAAAAAAAAAAA3IYQHAAAAAAAAAAAAAMBNCOEBAAAAAAAAAAAAAHATQngAAAAAAAAAAAAAANyEEB4AAAAAAAAAAAAAADchhAcAAAAAAAAAAAAAwE0I4QEAAAAAAAAAAAAAcBNCeAAAAAAAAAAAAAAA3IQQHgAAAAAAAAAAAAAANyGEBwAAAAAAAAAAAADATQjhAQAAAAAAAAAAAABwE0J4AAAAAAAAAAAAAADchBAeAAAAAAAAAAAAAAA3IYQHAAAAAAAAAAAAAMBNCOEBAAAAAAAAAAAAAHATQngAAAAAAAAAAAAAANyEEB4AAAAAAAAAAAAAADchhAcAAAAAAAAAAAAAwE0I4QEAAAAAAAAAAAAAcBNCeAAAAAAAAAAAAAAA3IQQHgAAAAAAAAAAAAAANyGEBwAAAAAAAAAAAADATQjhAQAAAAAAAAAAAABwE0J4AAAAAAAAAAAAAADchBAeAAAAAAAAAAAAAAA3IYQHAAAAAAAAAAAAAMBNCOEBAAAAAAAAAAAAAHATQngAAAAAAAAAAAAAANyEEB4AAAAAAAAAAAAAADchhAcAAAAAAAAAAAAAwE0I4QEAAAAAAAAAAAAAcBNCeAAAAAAAAAAAAAAA3IQQHgAAAAAAAAAAAAAANyGEBwAAAAAAAAAAAADATQjhAQAAAAAAAAAAAABwE0J4AAAAAAAAAAAAAADchBAeAAAAAAAAAAAAAAA3IYQHAAAAAAAAAAAAAMBNCOEBAAAAAAAAAAAAAHATQngAAAAAAAAAAAAAANyEEB64hk2aNEkWi8X18PDwUJkyZTR06FAdOXJEkvTII4/IYrFox44dl6znmWeekcVi0fr16yVJ5cuXz1TvhY/WrVsXxKFlMmvWLNWtW1fe3t4qVaqURo4cqbi4uBztO2bMGN1xxx2qUKFCofUfAIC8YJy/vF27dumxxx5TgwYNVKxYMYWEhKh58+aaN29eAfQaAIC8Y4zPnW3btsnLy0sWi0Vr167Nh54CAOA+jPNXdvz4cT300EOqWLGifHx8FBkZqeHDh+vgwYP53GugYHkUdgcAXL2JEyeqWrVqSkxM1C+//KI33nhDK1as0ObNmzV8+HCNGTNGEyZM0JtvvpllX6fTqSlTpqhu3bqqX7++a3vz5s319ttvZykfGBiYr8dysenTp2vAgAG6++679d5772nXrl164okntG3bNi1ZsuSK+3/yySfy8/PTLbfcooULFxZAjwEAcC/G+ewtWbJEixYt0sCBA9WoUSOlpaVp9uzZ6tWrl1566SU9//zzBXQUAADkDWP8lTkcDg0bNkxhYWE6evRoPvYYAAD3YpzPXnJysm6++WadPXtWL730kmrUqKGdO3fqhRde0A8//KDt27crICCggI4EyGcGwDVr4sSJRpJZs2ZNpu3PPfeckWSmTZtmjDGmcePGpkSJEiY1NTVLHYsXLzaSzIcffujaFhkZaTp37py/nc+BtLQ0U7JkSdO+fftM26dPn24kme++++6KdTgcDtefa9asaVq1auXubgIAkC8Y5y8/zp86dco4nc4s2zt37mx8fX1NUlKSW/sLAIC7MMZf+f/lM7z11lumdOnS5v3338/2nAEAUNQwzl9+nF+6dKmRZL744otM22fMmGEkma+++srtfQYKC8vRA9ehm266SZJ04MABSdLw4cN1/PhxLV68OEvZiRMnysvLS/379y/QPubEqlWrdOzYMQ0dOjTT9l69esnf31/z58+/Yh1WK19zAIDrC+N8urCwMFkslizbGzdurISEBJ05c8at/QUAIL8xxme2e/duPf/88xo7dmyBz/ADAMDdGOfT2e12SVJQUFCm7cWKFZMkeXt7u6+zQCEjnQKuQ3///bckqXjx4pKkvn37ytfXVxMmTMhU7uzZs/rmm2/Uo0cPBQcHZ3rNGKO0tLQsD2PMFdvPbr+81LVlyxZJ0o033phpu91uV7Vq1VyvAwDwb8I4f3nLly9X8eLFFR4enqf9AQAoLIzxmY/j7rvvVpcuXXT77bdfsTwAAEUd43y65s2bq0GDBnrxxRe1Zs0axcXFaf369Xr66adVv3593XrrrVc8FuBaQQgPXAccDofS0tIUFxenRYsW6dVXX1VAQIDrf1QDAgLUq1cvLVq0SCdPnnTtN336dCUnJ2v48OFZ6vzuu+9kt9uzPF577bUr9ie7/bJ7TJ48+bL1REVFSZJCQkKyvBYSEuJ6HQCA6xnjfM598cUX+vnnn/Xss8/KZrPlen8AAAoSY/ylffzxx9q8ebM+/PDDK5YFAKAoYpzPnoeHh5YvX66KFSuqcePGCggIUIMGDVSsWDEtXbrUNVMeuB54FHYHAFy9jKVsMtSuXVvjxo1TRESEa9vw4cM1efJkTZ06VY8++qik9GVtIiMj1bZt2yx1tmjRQu+9916W7aVLl75if9asWZOjfleoUCFH5bJbavZy2wEAuJ4wzufM4sWL9eCDD6pnz576z3/+k6t9AQAoDIzx2Ttw4ICeeuopjRkzJtO5AADgWsI4n73U1FTddddd2rJliz7//HNVrVpV+/bt06uvvqp27dpp2bJlWZaqB65VhPDAdWDKlCmqXr26PDw8FBERoZIlS2Yp07JlS1WpUkUTJ07Uo48+qk2bNmn9+vV68cUXsx0Yg4KC1LBhwzz1p27dujkqd6UZaqGhoZLSf1138f94nzlzJttf2wEAcL1hnL+yH374QXfccYfatWun6dOn80M9AMA1gTE+ew8++KBq1aqlO++8U9HR0ZKkhIQESVJcXJzOnTvHP84DAIo8xvnsjR8/XosXL9aaNWtcx9KyZUu1aNFClSpV0pgxY/TCCy/kqK9AUcdy9MB1oHr16mrYsKHq1q2b7WCeYdiwYdq6datWr16tCRMmyGq1asiQIW7vj7uWtqldu7YkafPmzZm2p6WlaceOHapVq5bb+w4AQFHDOH95P/zwg7p3765WrVrpyy+/lKenZ94ODACAAsYYn70tW7Zo1apVCg4Odj0efPBBSVKbNm0UGRl5FUcJAEDBYJzP3oYNG2Sz2VS/fv1M2ytWrKjQ0NAr3lMeuJYwEx74Fxk8eLCeffZZffrpp1qwYIHatm2bL//z6q6lbZo0aaKSJUtq0qRJuuuuu1zb582bp7i4ON1xxx1X1U8AAK4n/8ZxfsmSJerevbtatGihr7/+Wl5eXjnqGwAA15J/2xg/a9YsJSUlZdr2/fffa/To0frkk09Us2bNHPUTAIBrwb9tnC9VqpQcDofWrFmjJk2auLbv2rVLUVFRKlOmTI76CVwLCOGBf5ESJUrotttu08SJE2WM0fDhwy9ZNjo6WqtWrcqy3cvLS/Xq1btsO3ldEudiNptNb775pgYOHKgRI0aob9++2r17tx5//HG1a9dOHTt2dJVdsWKF2rZtq+eff17PP/+8a/vatWu1f/9+SVJMTIyMMZo3b54kqVGjRvyCHgBw3fi3jfO//fabunfvrhIlSujpp5/Whg0bMtVfo0YNBQYGuqWvAAAUpn/bGH/xPXQluf6/vkGDBm7rJwAARcG/bZwfOnSo3nvvPd1555169tlnVbVqVe3du1evv/66/Pz8dN9997mln0BRQAgP/MsMHz5cCxYsUEhIiLp3737Jcr///ruaNm2aZXvp0qV1+PDhfOxhZgMGDJDNZtOoUaM0adIkhYSEaNCgQXrttdcylTPGyOFwyOl0Ztr+0UcfZVlCp1evXpKkiRMn5svSPgAAFJZ/0zj/448/KjExUfv379ctt9ySpe7ly5erdevW+X0IAAAUiH/TGA8AwL/Nv2mcL1u2rNasWaOXX35Zo0eP1rFjxxQREaGmTZvq+eefV9WqVQvsOID8ZjHGmMLuBAAAAAAAAAAAAAAA1wNrYXcAAAAAAAAAAAAAAIDrBSE8AAAAAAAAAAAAAABuQggPAAAAAAAAAAAAAICbEMIDAAAAAAAAAAAAAOAmhPAAAAAAAAAAAAAAALgJITwAAAAAAAAAAAAAAG7iUdgdKIqcTqeOHj2qgIAAWSyWwu4OAOBfzBij2NhYlSpVSlYrv51zB8Z5AEBRwTjvXozxAICigjHe/RjnAQBFRU7HeUL4bBw9elRly5Yt7G4AAOBy6NAhlSlTprC7cV1gnAcAFDWM8+7BGA8AKGoY492HcR4AUNRcaZwnhM9GQECApPSTFxgYWMi9AQD8m8XExKhs2bKusQlXj3EeAFBUMM67F2M8AKCoYIx3P8Z5AEBRkdNxnhA+GxnL2QQGBjKgAwCKBJZacx/GeQBAUcM47x6M8QCAooYx3n0Y5wEARc2VxnluSAMAAAAAAAAAAAAAgJsQwgMAAAAAAAAAAAAA4CaE8AAAAAAAAAAAAAAAuAkhPAAAAAAAAAAAAAAAbkIIDwAAAAAAAAAAAACAmxDCAwAAAAAAAAAAAADgJoTwAAAAAAAAAAAAAAC4CSE8AAAAAAAAAAAAAABuQggPAAAAAAAAAAAAAICbEMIDAAAAAAAAAAAAAOAmhPAAAAAAAAAAAAAAALgJITwAAAAAAAAAAAAAAG5CCA8AAAAAAAAAAAAAgJsQwgMAAAAAAAAAAAAA4CaE8AAAAAAAAAAAAAAAuAkhPAAAAAAAAAAAAAAAbkIIDwAAAAAAAAAAAACAmxDCAwAAAAAAAAAAAADgJoTwAAAAAAAAAAAAAAC4CSE8AAAAAAAAAAAAAABuQggPAAAAAAAAAAAAAICbEMIDAAAAAAAAAAAAAOAmhPAAAAAAAAAAAAAAALgJITwAAAAAAAAAAAAAAG5S6CH82LFjVaFCBXl7e6tBgwb69ddfL1v+448/VvXq1eXj46OqVatqypQpmV6fNGmSLBZLlkdSUlJ+HgYAAAAAAAAAAAAAAPIozMZnz56tkSNHauzYsWrevLk+/fRTderUSdu2bVO5cuWylB83bpyeeuopff7552rUqJFWr16te+65R8HBwerataurXGBgoHbu3JlpX29v73w/HgAAAAAAAAAAAADAv1uhhvDvvvuuhg8frrvvvluSNGbMGP3www8aN26c3njjjSzlp06dqhEjRuiuu+6SJFWsWFGrVq3S6NGjM4XwFotFJUqUKJiDAAAAAAAAAAAAAADgH4UWwqekpGjdunV68sknM21v3769/vjjj2z3SU5OzjKj3cfHR6tXr1ZqaqrsdrskKS4uTpGRkXI4HKpbt65eeeUV1atX75J9SU5OVnJysut5TExMXg8LAAAUMYzzAABcnxjjAQC4fjHOAwCudYV2T/jTp0/L4XAoIiIi0/aIiAgdP3482306dOigL774QuvWrZMxRmvXrtWECROUmpqq06dPS5KqVaumSZMmacGCBZo5c6a8vb3VvHlz7d69+5J9eeONNxQUFOR6lC1b1n0HCgAAChXjPAAA1yfGeAAArl+M8wCAa12hhfAZLBZLpufGmCzbMjz33HPq1KmTbrrpJtntdnXr1k1DhgyRJNlsNknSTTfdpAEDBqhOnTpq2bKl5syZoypVqujDDz+8ZB+eeuopnTt3zvU4dOiQew4OAAAUOsZ5AACuT4zxAABcvxjnAQDXukIL4cPCwmSz2bLMej958mSW2fEZfHx8NGHCBCUkJGj//v06ePCgypcvr4CAAIWFhWW7j9VqVaNGjS47E97Ly0uBgYGZHgAA4PrAOA8AwPWJMR4AgOsX4zwAwG2cTumXt6W4UwXabKGF8J6enmrQoIGWLl2aafvSpUvVrFmzy+5rt9tVpkwZ2Ww2zZo1S126dJHVmv2hGGO0YcMGlSxZ0m19BwAAAAAAAAAAAAAUYalJ0ryh0rJXpJl9JKejwJr2KLCWsvG///1PAwcOVMOGDdW0aVN99tlnOnjwoO677z5J6UvOHDlyRFOmTJEk7dq1S6tXr1aTJk109uxZvfvuu9qyZYsmT57sqvOll17STTfdpBtuuEExMTH64IMPtGHDBn388ceFcowAAAAAAAAAAAAAgAKUcEaa1U86uFKy2qWb7pestgJrvlBD+LvuuktRUVF6+eWXdezYMdWqVUvfffedIiMjJUnHjh3TwYMHXeUdDofeeecd7dy5U3a7XW3atNEff/yh8uXLu8pER0fr3nvv1fHjxxUUFKR69erpl19+UePGjQv68AAAAAAAAAAAAAAABensAWl6T+n0LskrSOozTapwc4F2wWKMMQXa4jUgJiZGQUFBOnfuHPeaAQAUKsYk9+OcAgCKCsYk9+J8AgCKCsYk9+OcAgBy7OgGaUZvKe6EFFha6j9PiqjhtupzOiYV6kx4AAAAAAAAAAAAAACu2u4fpTmDpNR4KaKW1H+uFFiqULpCCA8AAAAAAAAAAAAAuHatnyot/K9kHFLF1lLvqZJ34a2eQggPAAAAAAAAAAAAALj2GCOtGC39/Eb68xv7SLd/KHl4Fmq3COEBAAAAAAAAAAAAANcWR6r07Ujpr2npz1s+Jt3yrGSxFGq3JEJ4AAAAAAAAAAAAAMC1JDlWmjtE+vtHyWKVOr8jNRxW2L1yIYQHAAAAAAAAAAAAAFwbYo9L03tJxzdJdl+p50SpasfC7lUmhPAAAAAAAAAAAAAAgKLv1E5pWk/p3EHJN0zqP0cq3aCwe5UFITwAAAAAAAAAAAAAoGg7sFKa2UdKipZCKkkD5kkhFQu7V9kihAcAAAAAAAAAAAAAFF1bv5a+uldyJEtlGkl9Z0t+oYXdq0uyFnYHAAAAAAAAAAAAAADI1sqx0twh6QF8tS7SoAVFOoCXmAkPAAAAAAAAAAAAAChqnE5pyTPSqrHpzxvdI3UaLVlthduvHCCEBwAAAAAAAAAAAAAUHalJ0vx7pW3fpD9v97LU7GHJYincfuUQITwAAAAAAAAAAAAAoGhIOCPN6icdXCnZPKXu46TaPQu7V7lCCA8AAAAAAAAAAAAAKHxnD0jTe0qnd0leQVKf6VKFloXdq1wjhAcAAAAAAAAAAAAAFK6jG6QZvaW4E1JgGWnAPCm8emH3Kk8I4QEAAAAAAAAAAAAAhWf3j9KcQVJqvBRRS+o/VwosddXVJh+MkS3QUx7FvN3QyZyzFmhrAAAAAAAAAAAAAABkWD8lfQZ8arxUsbU0dLFbAnjjcOrM7J2KmrxNzmTH1fczFwjhAQAAAAAAAAAAAAAFyxhp+RvSgv9IxiHd2EfqN1fyDnRL9RabVaF9q8kj3Nct9eUGy9EDAAAAAAAAAAAAAAqOI1VaOFLaMC39ecvHpFuelSyWq6rWmZymlMNx8q5UTJLkWSZAoX2rXV1f84AQHgAAAAAAAAAAAABQMJJjpTmDpT0/SRar1PldqeHQq6427UySTk/eqrSoJIWPuFGeZQPc0Nm8IYQHAAAAAAAAAAAAAOS/2OPS9F7S8U2S3VfqOVGq2vGqq03ee05R07bJmZAma4DdDR29OoTwAAAAAAAAAAAAAID8dWqnNK2ndO6g5Bsm9Z8jlW5w1dXGrT6m6K/3SE4je2l/hQ6qIY8gLzd0OO8I4QEAAAAAAAAAAAAA+efAH9LMvlJStBRSSRowTwqpeFVVGofRuUV7FffHUUmSz41hCu5ZRVZPmxs6fHUI4QEAAAAAAAAAAAAA+WPrfOmrEZIjWSrTSOo7W/ILvepqE9afcAXwge0iFXBLWVkslquu1x0I4QEAAAAAAAAAAAAA7rfyY+mHZyQZqVoX6Y7PJU9ft1Tt2yBCSX9Hy7d2mHxqhbmlTnchhAcAAAAAAAAAAAAAuI/TKS15Rlo1Nv1543uljqMk69UtFZ+8/5w8ywTI4mGVxWpRaN9qbuis+xHCAwAAAAAAAAAAAADcIzVJmn+vtO2b9OftXpGa/Ue6iqXijTGK/+OoohftlW/dcAX3qlJklp7PDiE8AAAAAAAAAAAAAODqJZyRZvaVDq2SbJ5S93FS7Z5XVaVJcyp6wR7Frz5+fqPTSDZCeAAAAAAAAAAAAADA9ersfmlaTylqt+QVJPWZLlVoeVVVOuJTFTVtm1L2xUgWKahTBfm3LF2kZ8FLhPAAAAAAAAAAAAAAgKtx9C9pem8p/qQUWEYaME8Kr35VVaYej9fpKdvkOJMki5dNIX2ryadaiJs6nL8I4QEAAAAAAAAAAAAAebN7qTRnsJQaL0XUkvrPlQJLXVWVxuHU6Ulb5YhOli3EW2GDa8ge4eemDuc/QngAAAAAAAAAAAAAQO6tnyItHCkZh1SxtdR7quQdeNXVWmxWBfesotgVhxTSp5psfvarrrMgEcIDAAAAAAAAAAAAAHLOGOnnUdKKUenP6/SVun4geXjmvcpUp1JPJcizlL8kybtyMXlVCiry93/PjrWwOwAAAAAAAAAAAAAAuEY4UqVvHjofwN/8f1L3cVcVwDtiU3Tqs0069dkmpZ5KcG13RwC//ViMjDFXXU9uEMIDAAAAAAAAAAAAAK4sOVaacZe0YZpksUpdxki3PCtdRVieciROJz/6SymHYiWLRc7YVLd198dtJ9Tlw9/00sJtcjoLLohnOXoAAAAAAAAAAAAAwOXFHpem95KOb5LsvlLPiVLVjldVZcKmUzo7d5dMqlMexX0UOrim7GE+bunun3uj9OCM9XI4jWIS3Rfs5wQhPAAAAAAAAAAAAADg0k7tlKb1lM4dlPyKS/1mS6Ub5Lk64zSKXXZQMT8elCR5VQlWaN9qsvq4J77ecuSc7p68VslpTt1aPVyje94oq7Xg7i1PCA8AAAAAAAAAAAAAyN6BP6SZfaWkaCmkkjTgSymkwlVVGb/muCuA929RWkG3VZDFTSH53lNxGjxhtWKT09S4Qog+6ldfdlvB3qWdEB4AAAAAAAAAAAAAkNXW+dJXIyRHslSmsdR3luQXetXV+jWIUOLm0/KtU1x+jUq4oaPpjp1L1MDxqxUVn6KapQL1xeCG8rbb3FZ/ThHCAwAAAAAAAAAAAAAyW/mx9MPT6X+u1kW68wvJnvf7tacej5dHuK8sVossHlaFDa8li8V9S8SfiU/RwPGrdSQ6URXD/DR5WGMFetvdVn9uFOy8ewAAAAAAAAAAAABA0eV0SIufPB/AN75X6j3lqgL4+PUndOLDv3Ru8T7XNncG8HHJaRo6cbX+PhmnkkHemjK8scL8vdxWf24xEx4AAAAAAAAAAAAAIKUmSl/dK21fkP683StSs/9IeQzMjdPo3A/7FbfisCQpLSpJxmFksbkvgE9Oc2jE1LXaePicgn3tmjq8scoE+7qt/rwghAcAAAAAAAAAAACAf7uEM9LMvtKhVZLNU+o+TqrdM8/VOZPSdGbWTiXtOCNJCmhTVoHtImWxui+AdziNRs7aoN//jpKvp00ThzZW5fAAt9WfV4TwAAAAAAAAAAAAAPBvdna/NK2nFLVb8g6S+syQyrfIc3VpUYk6PWWb0k4kSB5WhfS8Qb51w93XX0nGGD391WYt3nJcnjarPh/UUHXLFnNrG3lFCA8AAAAAAAAAAAAA/1ZH/5Km95biT0qBZaQB86Tw6nmuzqQ5derzzXJEJ8sa4KmwQTXkWdb9s9NHfb9Ds9cektUifdC3rppXDnN7G3lFCA8AAAAAAAAAAAAA/0a7l0pzBkup8VJEban/XCmw5FVVafGwKqhzBcWuOKywgTVkC/JyU2fP+2TFHn26Yq8k6Y07aqtjravrs7sRwgMAAAAAAAAAAADAv836KdLCkZJxSBVbS72nSt6BearKOIwc0UnyCPWRJPnWLi6fmmFuvf97hlmrD2rU4h2SpKc6VdNdjcq5vY2rZS3sDgAAAAAAAAAAAAAACogx0vLXpQX/SQ/g6/SV+s3NcwDvTEjV6UlbdHLcRqWdS3Ztz48AfvHmY3p6/mZJ0n2tKmlEq0pub8MdmAkPAAAAAAAAAAAAAP8GjtT02e8bpqU/v/n/pDbPSJa8BeappxIUNXmb0k4nymK3Ku1kgjzyYfl5Sfpt92n9d9YGOY3Up1FZPdGxar604w6E8AAAAAAAAAAAAABwvUuOTb//+56fJItN6vKu1GBInqtL2nVWUTO2yyQ5ZCvmpdBBNeRZyt99/b3AhkPRunfqWqU4nOpUq4Re61Fbljz+cKAgEMIDAAAAAAAAAAAAwPUs9rg0vad0fLNk95V6TZKqdMhTVcYYxf1+VOcW7ZWM5BkZqNCB1WXz93Rvn/+x+0SshkxcrYQUh1pUDtOYPnVly4el7t2JEB4AAAAAAAAAAAAArlendkrT7pTOHZL8ikv95kil6+e5uvjVx3Xu272SJN8GEQruUVkWD6u7epvJ4bMJGjh+taITUlWnbDF9OrCBvDxs+dKWOxHCAwAAAAAAAAAAAMD16MAf0sw+UtI5KaSSNOBLKaTCVVXpWzdc8X8ek2+9cPm3KJ1vy8Kfik3WwPGrdTwmSTeE+2vSkEby87o24u1ro5cAAAAAAAAAAAAAgJzbOl/66l7JkSKVaSz1nSX5heapqrSzSbIV85LFYpHVy6bwB+vKYsuf2e+SFJOUqsETVmvf6XiVLuajqcObKNgvf5a7zw/5d2YAAAAAAAAAAAAAAAVv5cfS3CHpAXy1LtLgBXkO4BO3RenEe+sVu+Kwa1t+BvBJqQ7dPWmtth2LUZi/p6bd3UQlgrzzrb38QAgPAAAAAAAAAAAAANcDp0Na/KT0w9PpzxuPkHpPkew+ua7KGKOYnw8pauo2mRSHkv+OlnEaN3c4s1SHUw/NWK/V+88owMtDk4Y2VoUwv3xtMz+wHD0AAAAAAAAAAAAAXOtSE9OXn9++IP15+1elpg9Jebhnu0l16uyXu5Sw4ZQkye+mkirWtaIs1vy5/7skOZ1GT8zbpB+3n5SXh1VfDG6oWqWD8q29/EQIDwAAAAAAAAAAAADXsoQz0sy+0qFVks1T6j5Oqt0zT1U5YlIUNXWbUg7FSlapWNdK8m9ays0dzswYo1cWbdNXfx2RzWrRx/3qq0nFvC2fXxQQwgMAAAAAAAAAAADAtersfmlaTylqt+QdJPWZIZVvkaeqTKpTJ8dtkONssiw+HgrtX13elYu5tbvZ+XDZ35r4+35J0tu9btStNSLyvc38RAgPAAAAAAAAAAAAANeio39J03tL8SelwDLSgHlSePU8V2exWxXQuqzifj+isEE15RGW+3vJ59bUlfv17tJdkqQXutZQj3pl8r3N/EYIDwAAAAAAAAAAAADXml1LpLlDpNR4KaK21H+uFFgy19UYp5EzPlW2AE9Jkn+TkvKrHy6L3ebmDmf1zYYjen7BVknSw21v0NDmFfK9zYJgLewOAAAAAAAAAAAAAAByYd1kaWaf9AC+Yhtp6Hd5CuCdKQ6dmbFdJz/ZKEd8qmt7QQTwy3ec1KNzNsoYaXDTSD1y6w353mZBYSY8AAAAAAAAAAAAAFwLjJF+fkNaMTr9eZ1+0u0fSDZ7rqtKi05W1OStSj0WL9ksSjkUK59qIW7ucPbW7j+j+6evU5rTqFvdUnqha01ZLJYCabsgEMIDAAAAAAAAAAAAQFHnSJUW/lfaMD39+c2PS22elvIQXicfiFHU1G1yxqXK6mdX6MDq8iof5OYOZ2/7sRgNm7RGSalOta5aXG/3qiOr9foJ4CVCeAAAAAAAAAAAAAAo2pJjpTmDpD3LJItN6vKu1GBInqqKX3dCZ7/aLTmM7CX8FDq4hjyCvd3b30s4EBWvgeNXKyYpTQ0jgzWufwPZbdffHdQJ4QEAAAAAAAAAAACgqIo9Lk3vKR3fLNl9pV6TpSrt81RV/Orj6QG8JO8aoQq5q6qsXvl//3dJOhGTpAHj/9TpuGRVKxGg8UMaycezYNouaITwAAAAAAAAAAAAAFAUndyRHsCfOyT5FZf6zZFK189zdd41Q2VbcUi+dYor8NZIWQpoGfjohBQNGr9ah84kKjLUV1OGN1aQT+7vY3+tIIQHAAAAAAAAAAAAgKJm/+/SrL5S0jkptLLUf54UUiHX1TjiU2XzSw+8bX52RTxcT1avgouJE1LSNGzSGu08EavwAC9NG95E4QEFs/x9Ybn+FtgHAAAAAAAAAAAAgGvZlq+kqd3TA/iyTaThS/MUwCftidaJd9YqbvUx17aCDOBT0pwaMXWd1h+MVpCPXVOHN1HZEN8Ca7+wEMIDAAAAAAAAAAAAQFFgjPTHR9K8oZIjRarWRRr0jeQbkuuq4v48ptPjt8iZkKaEdSdlnCYfOnxpDqfR/+Zs0K+7T8vHbtOEIY1UtURAgfahsLAcPQAAAAAAAAAAAAAUNqdD+uEZ6c9x6c8bj5A6viFZbbmqxjiMor/do/iV6bPffeoUV0jPGwrs/u+SZIzR899s0bebjslus+jTgQ3UIDK4wNovbITwAAAAAAAAAAAAAFCYUhOlr+6Vti9If97+VanpQ5Ild8G5MyFVUTN2KPnvaElSYIdIBbQuK0su67la7yzZpel/HpTFIr13V13dXKV4gbZf2AjhAQAAAAAAAAAAAKCwJJyRZvaRDv0p2TylHp9Ite7MdTUm1aGT4zYq7VSiLJ5WhfSuKp9aYfnQ4cv74te9+mj535KkV7vXUpcbSxV4HwobITwAAAAAAAAAAAAAFIaz+6Vpd0pRf0veQVKfmVL55nmqymK3ybd+uOL/PK7QQTXkWcrfvX3NgXnrDuvVRdslSf/Xoar6N4ks8D4UBYTwAAAAAAAAAAAAAFDQjqyXZvSW4k9JQWWl/vOk8Gq5qsIYI5PskNU7PfYNaF1W/k1Kyuprz48eX9aSrcf1xJebJEl3t6igB1pXKvA+FBXWwu4AAAAAAAAAAAAAAPyr7FoiTeqSHsBH1JaGL819AJ/m1Nkvd+vUp5vkTHFIkiwWS6EE8Cv3ROmhmX/J4TTq2aCMnulcvcDvQ3+xuDNRWvzxu9q8fEmBt81MeAAAAAAAAAAAAAAoKOsmS98+IhmHVLGN1HuK5B2YqyoccSmKmrZdKftjJIuUvCdaPtVD86nDl7f58DndM2WtUtKcal8jQqPuqF2oAXxaSorWLfpaf86fo9TkJB3Y9Jeqt2gjD3vB/TiBEB4AAAAAAAAAAAAA8psx0vLXpV/eTH9ep590+weSLXfhcMqxeEVN3ipHdLIsXjaF9qsm76oh+dDhK9tzKk6DJ65WXHKamlYM1Qd968nDVniLsZ89dkTzXnteMadOSJL8QyPV4LaBBRrAS4TwAAAAAAAAAAAAAJC/HKnSgoeljTPSn7d6Qmr9lJTLGeOJW6N0ZvYOmRSnPEK9FTq4puzhvvnQ4Ss7Gp2ogV/8qTPxKapdOkifDWogb7utUPqSIbB4hGx2u/yDQ+Ub2kbnTpfV+h+TVbNVinwCPAusH4TwAAAAAAAAAAAAAJBfkmKkOYOkvcsli03q8p7UYHCuq4lfe0Jnv9wlGcmrcjGF9qtWKPd/l6Qz8SkaOP5PHT2XpIrF/TRpaCMFeBd8XxLORWv94oVq2rOPbB522Tw81O2xZxQYWly/zd2nhLUndcvA6gUawEuE8AAAAAAAAAAAAACQP2KOSTN6Scc3S3ZfqddkqUr7PFXlVbmYrH52+dQOU7EuFWUppGXf45LTNGTiau05Fa+SQd6aOryJQv29CrQPjrRU/bV4oVZ+OUspiQny9vdXwy495Eh1KrR0WUlSyz5VVLddOQWX8CvQvkmE8AAAAAAAAAAAAADgfid3SNN7SucOSX7FpX5zpNL1c1WFM8Uhq2f6Eu8exbwU8d/6shXwrO4LJaU6dM/ktdp0+JxC/Dw1dXgTlS7mU2DtG2O0d/0arZj6hc4eOypJCq9QSREVbtDP03coNipJnR+qI6vVIg+7rVACeIkQHgAAAAAAAAAAAADca//v0qy+UtI5KbSy1H+eFFIhV1WkHI5V1NRtKta1knxqhUlSoQbwaQ6nHp75l1bujZKfp02ThjZS5XD/Ams/6vAh/Tzlc+3fuF6S5BtUTC36DlLkjc215IvtOrEvRrJIR3dHq0zV4ALrV3YI4QEAAAAAAAAAAADAXbZ8Kc2/T3KkSGWbSH1nSb4huaoiYeMpnZ23SybVqZifD8m7RqgsVks+dfjKjDF66qvNWrLthDw9rPp8cEPdWKZYgfZhxdQvtH/jelltHmrQuZua9LhLpw8na96o9UqMTZWXr4faDatZ6AG8RAgPAAAAAAAAAAAAAFfPGGnlR9KSZ9OfV+8q3fG5ZM/5cu3GaRTz4wHFLjskSfKuGqyQvtUKPYB/Y/EOzV13WFaL9GHfempWKSzf23U6HHKkpsru7S1JajVwuGx2T908YKiKRZTUxp8O6Y+v9sg4jULL+KvTiNoKKl5wS+NfDiE8AAAAAAAAAAAAAFwNp0P64Wnpz0/Snze5T+rwumS15byKFIfOzt6pxK1RkiT/m0srqGOFQg3gJWncij367Je9kqTRd96oDjVL5HubBzZv0M+TP1fp6rV06/D7JUmhZcqp22PPSJJ+//JvbVh6UJJUpXGEWg+oJrtnzs91fiOEBwAAAAAAAAAAAIC8Sk2UvrpH2r4w/Xn716SmD0qWnIfnzhSHTo3bqNRj8ZLNouAeN8ivYUQ+dTjnZvx5UG9+v1OS9Gzn6urVsGy+tnf2+FGtmDpBe9aukiQlxJzTzf0Gy9PHN1O5Ko0jtO3XI2rSraJqty4jSy7OdUEghAcAAAAAAAAAAACAvEg4I83sIx36U7J5Sj0+kWrdmetqrJ42eVUMkiM2RaEDa8grMjAfOps7izYd0zNfb5YkPdC6ku5uWTHf2kpOSNCf82dr/XffyJGWJovVqrodOqtpz36uAD4+Oll+xbwkScXLBmjga83k7WfPtz5dDUJ4AAAAAAAAAAAAAMitM/uk6T2lqL8l7yCpz0ypfPNcVWHSnLJ4WCVJQbdVVECrMrIFeuVHb3Pll12nNHL2XzJG6teknP6vQ9V8a+vIjm1a8O7rSjgXLUmKvLGe2gy+R6FlykmSjNNo7eL9Wvf9AXX/Xz2VqBAkSUU2gJcI4QEAAAAAAAAAAAAgd46sl2b0luJPSUFlpf7zpPBqOd7dOI3Ofb9PKYdiVXx4bVk8rLLYLEUigF9/8KxGTF2nVIdR5xtL6pVutfJ1uffgUqXlSEtVcMlSajXwblWs38jVXnJCqn6cuE37N0dJkg5siXKF8EUZITwAAAAAAAAAAAAA5NSuJdLcwVJqglSittRvrhRYMse7O5PSdGbmDiXtPCtJStp1Vj41QvOrt7my83ishk5co8RUh1reEKb3eteVzereAD7m9Ent+P0XNbr9TlksFvkGBqnXs68prFykbB7nZ7dHHYnT4k8269ypRNk8rGrVr6qqN8v5eS5MhPAAAAAAAAAAAAAAkBPrJknf/k8yDqnSLVLvKZJXQI53T4tK1OnJ25R2MkHysCqk1w1FJoA/dCZBA8f/qXOJqapXrpg+HdhAnv8sle8OqUlJWr3gS61d8KXSUlMUVjZSFes3kiRFVKycqezutSe0bMp2paU45R/ipU4jais8MtBtfclvhPAAAAAAAAAAAAAAcDnGSMtfl355M/153f5S1/clW87vS560J1pnpm+XMyFN1kBPhQ2qIc8yOQ/w89Op2GQNHP+nTsYmq2pEgCYOaSRfT/dEycYY7fjtZ/0yY5LizqQvK1+mei0FhIZlW/7Q9jNa8sXW9HLVgtX+7pry8fd0S18KCiE8AAAAAAAAAAAAAFyKI1Va8LC0cUb681ZPSK2fknJxn/SEDSd1Zs4uyWlkL+OvsEE1isT93yXpXGKqBk1Yrf1RCSoT7KMpwxurmK97Qu/jf+/Sssmf6diuHZKkwOIRajVgqG5o0vyS95kvUzVYFeqEKbiEn5p0qyirm5fDLwiE8AAAAAAAAAAAAACQnaQYac4gae9yyWKTurwnNRic62rspfxl8bTKu2qIQnreIIvdlg+dzb3EFIfunrxG24/FKMzfS9OGN1FEoLdb6nY6Hfruo3d09tgR2b281aRHbzXo3F0enlkD/lMHY1WshK/snjZZrBZ1HFH7mgzfMxDCAwAAAAAAAAAAAMDFYo5J03tJJzZLdj+p1ySpSvsc724cRhZbepBsD/dVxEP1ZAv1vuQM8IKW6nDqwRnrtWb/WQV4e2jKsMYqH+Z3VXWmpaTIYrXK5uEhq9WmVgOHa9eq39Sy72D5h4Rmu8+2345qxaydqlw/XLcOrSGLxXJNB/ASITwAAAAAAAAAAAAAZHZyuzStpxRzWPILl/rPkUrVy/HuqScTFDVtm4p1qyzvSsUkSR5hPvnU2dxzOo0em7tRy3aclLfdqglDGqlGqcA812eM0d+rV2rFtPGq3+l21b+tmySpUoPGqtSgcbb7OFKd+mX2Lm377agkKTXZIWeakc1+bQfwkmQt7A4AAAAAAAAAAAAAQJGx/zdpQof0AD70BunupbkK4JN2ntHJjzco7WSizn23T8aYfOxs7hlj9NLCrfpmw1F5WC0a17+BGpUPyXN9J/fv1dyXn9aCd1/XuZMntHnZEhmn87L7xJ5J0lfvrE8P4C3STd0rqtOI2rLZ3RtfOxMSdOR//1Py3r1urfdKmAkPAAAAAAAAAAAAAJK05Utp/n2SI0Uq20TqO0vyzVlAbYxR3O9HdW7RXslInuUDFTqgepFZfj7D+z/t1uSVB2SxSO/0rqM21cLzVE9CzDn9PnuqNv+0RMY45WH3VMPb71Dj23vKYr10mH5451kt+WKLEmNT5eXnofbDaqpczeyXqr8ajrh4HbpvhBLXrlPS9h2q+O1CWWw2t7eTHUJ4AAAAAAAAAAAAAP9uxkgrP5KWPJv+vHpX6Y7PJXvOlpA3aU6d/fpvJaw9IUnybRih4O6VZfEoWguTT/p9n8b8uFuS9NLtNdWtbuk81bN79R/6Ydz7Sk6IlyRVadpSrfoPVWDxywf6aSkOLZ2wVYmxqQor669OI2orMB+W6XfExurQPfcqccMGWQMCVGrUGwUWwEuE8AAAAAAAAAAAAAD+zZwO6funpNWfpj9vcp/U4XXJmrPQ1pns0OmJW5SyP0aySEGdK8q/eakiNwP+67+O6MWF2yRJj9xaRYOals9zXcVKlFJKYqLCy1dSmyH3qEz1Wjnaz8PTpvbDamrHqmO6uW9V2T3dH4w7zp3TwXvuVdKmTbIGBancF1/Ip3bO+ucuhPAAAAAAAAAAAAAA/p1SE6Uv75Z2fJv+vP1rUtMHpVwE6BZPqzyCvZV6LF6h/arJu2re76+eX5btOKFH526UJA1pVl4Pt62cq/2jDh/SkZ1bdWPbjpKk4uXK664XR6lklaqyXuHHCtEnEhQTlahyNdKXnC9dNVilqwbn4SiuLO3sWR0afreStm2TrVgxlZs4Qd7Vq+dLW5dDCA8AAAAAAAAAAADg3yc+SprZRzq8WrJ5Sj0+lWrdkePdjdPIYrXIYrEo+I4bFNC2nOz5sLT61Vq974zun7ZeDqdRj3ql9XyXGjmepZ8UF6eV82Zow5JFMsaodNUaCi1TTpJUulqNK+6/f9NpLZ24TcYY9XqyoYJL+F3VsVxO2pkzOjhsuJJ37JAtJETlJk6Ud9Uq+dbe5RDCAwAAAAAAAAAAAPh3ObNPmt5Tivpb8g6S+syUyjfP0a7GGMX+fEgph+MU2r96ehBvtxbJAH7r0XMaPmmNktOcalstXG/2vFFW65UDeKfDoU0//aDf50xTUmyMJKlig8by8PTMUbvGabRm0T6tWbRfklSyUpA8ffIvmk47fVoHhw5T8u7dsoWFKXLSRHlVzt1sf3cihAcAAAAAAAAAAADw73FkvTSjtxR/SgoqK/WfJ4VXy9GuJtWhM/N2K3HjKUlS0o4z8vlnmfWiZt/peA2esFqxyWlqXD5EH/evL7vNesX9Dm7ZqOWTP9fpg/slSaFlyqn14HtU/sZ6OWo3KT5VP07cpgNboiRJtVuXUfOelWXzuHLbeZF68qQODhmqlL175REernKTJsmrYoV8aSunCOEBAAAAAAAAAAAA/Dvs+kGaO0RKTZBK1Jb6zZUCS+ZoV0dMsk5P2abUw3GS1aJi3SoV2QD++LkkDfjiT52OS1GNkoH6YkhDedsvf+92SUpOiNc3b7+mlMQEefv5q1nv/qrT7jZZbVfeV5JOH47T4k83K+ZUomx2q1r3r6pqN+Xs/OZF6vHjOjh4iFIOHJBHyZKKnDRRnpGR+dZeThHCAwAAAAAAAAAAALj+rZ0oLfqfZJxSpVuk3lMkr4Ac7ZpyOFanp2yTMyZFVl8PhfSvLu9KxfK3v3kUnZCiQRP+1JHoRJUP9dXkYY0V6G2/ZPnU5CTZvbwlSV6+fmreu7/OHj+mZr36yScgMFdt7/zzuGJOJSog1FudRtRW8XI5O795kXr0qA4MHqLUQ4dkL1VK5aZMlmeZMvnWXm4QwgMAAAAAAAAAAAC4fhkjLX9N+uWt9Od1+0td35dslw6mL5S45bSiZu2U0pzyCPdV2OAa8ggtevd/l6T45DQNmbhGu07EqUSgt6YOb6LiAV7ZljVOp7as+FG/zZyijvePVIV6DSVJ9W/rluf2b+peUVarVK9dpLz9c3Z+8yLl8BEdHDxYqUeOyF62rCInTZS9dOl8ay+3COEBAAAAAAAAAAAAXH/SkqW9P0vrJks7F6Vva/Wk1PpJyWLJcTW2IC9JRt7VQhTSp6qs3kUzYk1Oc+i+aeu04VC0ivnaNXV4Y5UN8c227JEd27R88mc6sfdvSdKGJYtcIXxuJMSk6K8lB3RTj0qy2ayy2axq2qPyVR3HlaQcPKgDg4co7dgxeUZGqtzkSbKXKJGvbeZW0bxCAAAAAAAAAAAAACC3kmOl3UulHd9Ku5ZIKbHp2y02qesYqf6gHFVjjJHln6Des2yAwu+vK3tJP1msOQ/vC5LDafS/2Rv16+7T8vW0aeKQRrohIutS8DGnT+qX6ZO0849fJEmePr666c4+qt+pa67bPL7vnL7/dIvio5NlsVrU7I78Dd8lKXnfPh0cPERpJ0/Ks2JFlZs4UfaI8HxvN7cI4QEAAAAAAAAAAABcuxLOSDsXS9sXSnuWSY7k868FlJKqd5Hq9JVK189RdWlnk3Rm5g4Vu72SPMukB9mepf3zo+duYYzRs19v1qLNx2S3WfTpwAaqVy44S7kNS77TiqnjlZaSLFksqt2mnZrfNVB+xbKWvVJ72347ql9m75IzzSi4hK+qNyvprsO5pOQ9e3RgyBA5Tp2W1w2VVW7iRHmEheV7u3lBCA8AAAAAAAAAAADg2hJzLH22+/aF0v7fJOM4/1pIRal6V6n67VKp+pLVmuNqkw/EKGrqNjnjUnV2/t8Kf6iua0Z8UfXmDzs1c/UhWS3S+33qqeUNxbMt5x8corSUZJWpXkutB9+jiAqVct1WWqpDv8zape2/H5MkVapXXLcMri7PfF6iP2nXLh0cMlSOM2fkVbWqyk2cII+QkHxt82oQwgMAAAAAAAAAAAAo+qL2nA/eD6/J/FpE7X+C965SePVc3fM9Q/zaEzo7f7fkMLKX9FPowOpFPoD/7Jc9GvfzHknSaz1q67ba52ekH9+zW7FRp3RD42aSpEoNm6jXc6+pbM0b83RcsWeS9P2nm3XyQKwsFumm7pVUr325fD9HSTt2pAfw0dHyqlFd5caPl0dw7mbvFzRCeAAAAAAAAAAAAABFjzHSia3ng/cTWzK/XqbxP8F7l/TZ73ltxml0bvE+xf16RJLkUzNUwXdVldXTdjW9z3dz1h7S69/tkCQ90bGa+jYuJ0mKO3tGv82coq0rfpS3f4DK1KgtH/8AWSwWlatVJ8/tpSY7dPZ4grz8PNRheC2VrZH/M9ETt2zVweHD5Tx3Tt61a6vcF5/LFhSU7+1eLUJ4AAAAAAAAAAAAXNcSt5xW7G9HZLFaFDasliwe6cuTJ2w8pbTTibJ42WT1smX6r8XLQ/YIX1msRXsm9HXH6ZSOrJO2L0gP3s/uO/+axSZVaJkevFftLAVe/X3InSkOnZm+XUk7z0qSAtqWU2DbckX+ff9+y3E9+eUmSdKImyvq/taVlJaSonXffaM/589RalKiJKlivYYyTqdb2gwp6adOI2orKNxHgWE+bqnzchI3bdLB4XfLGRsrnzp1VPaLz2ULCMj3dt2BEB4AAAAAAAAAAADXraRdZxU1Y4fkNJJVku18uJqw6ZSStkZdct9SLzeT5Z/Z0Ge/2q3Eradl8fKQ1fOfwN77n8De06ZiXSvK6pUevSUfiJHjbNIFob5H5oDfbi3yy5wXKEeadOD39NB9x7dS7LHzr3l4S5VuSQ/eq3SUfN07+zrjBxnysCqkVxX51sn+fupFyR9/n9bDM/+S00h3NSyrJzpW1e7Vf2jF1PE6d/KEJKlk5apqM+Relbyhap7bSUlK08/Td6pmi1IqXTV9+feCmP0uSQnr/9Khe+6RMz5ePg0aqOynn8jm718gbbsDITwAAAAAAAAAAACuSylH4xQ1bbvkNPK5MUw+tYtnCr+9qwTL5meXM9khk+yQMzlNJuPPKQ5Z7FZXWWd8qpzxaVJ8mhzZtFWsayXXn+NXH1fCuhOX7FfJpxvLFuglSYpdcUiJW6L+mX1/4Yz89ODev0kJWX3tkqS0qEQ5E9Iyl/W0FflZ29lKTZL2Lk8P3nd+JyWePf+aZ4BUpUN68F75Vskr/8JXi9WikL7VlBaVJM/SRT/k3XgoWvdMWasUh1Mda5bQaz1qKfr4MS149w3JGPkHh6hl/6Gq3ryVLFbrlSu8hOgTCfruk806eyxex/6O1oCXm8pmz3t9uZGwdq0O3TtCzoQE+TZurLLjxsrq51cgbbsLITwAAAAAAAAAAACuO2nRyTo9aatMikNeFYMU0rvq+VnP//BvkvPlzIt1r6zA9pHnA/skxz+BfVqWwN4e7iOvSkEXhPsOV7gvSRav8/caTz2VqJRDsZds17d+uDJqjvvjqOJ+P5qljMXTKouXTeEj6sjjn2XCEzacVOKOM66Z+Bcvt+99Q7CsPulRoTMpTcZh0l/zyMegNSlG2r0kfbb77qVSStwFBxoqVb1Nqn67VLGV5OGVb92IW3VUqUfjVaxHZVksFlm9Pa6JAP7vk7EaMnG14lMcal4+SGP61JWHzaqQUqVVr2MXefn4qlG3nvL0vrql4vdtPKUfJ25TSpJDvkGean93rQIL4ONX/alD998vk5go36Y3qezYsbL65P/S9+5GCA8AAAAAAAAAAIDrijMpTacnbpEzJkUe4b4KHVjjqsNlW4CnbAGeOSob0KqsAlqVzbLdOI1MqsO1xL0kBbQoLZ/qoXKmOGSS0jIF9s5khysolySLt4dsxbxcZeQ06fWmOGVSnNIFx5hyOE6JG05dso8Rj9R31R332xHF/Hgw/QUPS5bgPviOG2QP95UkJe89p6Q90VlC/YyZ+x7FfWS94PgUH5U+0337wvSZ746U868Flk6f7V6ti1SuqWTL3+jSOJyKXrhX8avSl7v3rhEqn2oFs7z61ToSnaiB41frXHySOln3qNbatYrvGinv0unX2S1DRlx1G06n0Zpv92ntd/slSSUrB6nDPbXkF5R/P4i4UNzvv+vwgw/JJCXJr0ULlfnoQ1m9vQukbXcjhAcAAAAAAAAAAMB1xZmQJqU5ZQ3wVNiwmpmC7MJksVpk8crcF3sJP9lL5Gyp7aB2kQpqFylJMsZIac5Ms+1tAXZXWZ+aobIFeZ6fsZ/yz4z8f4J+q8/5sibVeb6RNCNn2kXL7v8T9ktS8t5oxf508JJ9LH7fjfIKjpN2LFLcH4d17kRTWeUri+V2WdVOFk/JGhgiS1hJBXSo4zr21JMJSjkclSXUz3h+tcvuOxNSFTV9u5L3nJMsUmCH8vL+5z7nRd3puGQN/OJPeR7bqcHnVsk/6YySJG1c8p1uGXr14bskpaU4tPjTLTq4NUqSdGObMmrWs7JstoKZAR/3yy86/NB/ZFJS5N+qlUp/8L6sXgUT/ueHovGNAwAAAAAAAAAAALiJR4i3ij9QV87YFHkUuzZn0l6JxWKR7DbZ7DYpm5XUvSoEyatCUI7qCupUQYHtIzMtnX/+v2myBZ8PQ+1lAuR3U8kLyvwzez8hSc74BFkX3Sud+l6S5EzrIyN/OeQvZeT4yZJOSTrlkF+rNFe9SbvP6tzCvZfsY+iQmq5Z64lbTytm2aEss/Et3h6yetrkc2OY7MXTZ+474lKUeiROZxfskSMqSRZPq0LuqiafmqE5OjeFLTYpVfd/vFg1ty9R+cT0Hz/4BAapRZ+BqtWmndvasdmt8vL1kIfdqtYDqqlqkxJuq/tKYpct15H//lcmNVX+bduqzHvvyuKZs1UniipCeAAAAAAAAAAAAFwX0k4nuu6JbvOzy+Znv8IeyGCxWWXxtcrqe/lz5lMtJD0MN0Y6vjn9/u7bF0oJ2ySL0gN2WaSyTeRfuY58SpeQ8SpxPtS/YNl9j5Dz9/q2BXrJ64Zi58P9pH/+m5ImOSWr1/kl7h3RyUo9EpelbxnspfxcIXzSzrM6O3dXehvBXgobXDPHKw8UtqRUh1544R012v+HbHLKYrOpfqfb1fTOPvLydc8xOB1OWW1WWSwWtRlQTQ06Riq0dDa/6sgnMUuX6sgj/5PS0hTQoYNKv/2WLPZr/3NLCA8AAAAAAAAAAIBrXvya4zo7f7eKda8s/8YlC7s71yenUzq8Rtq+ID14jz5w/jWrh1Th5vR7vFftLAVEyCopp4uZ+9YOk2/tsCzbM5bdl/V8Td41QhUa4p3tzH2T7JBHyPnVDyweFtlCvOVZ0k/FelSWzf/amGGd5nDqoRl/6cy5NJWWU8Vr1lfXe0YouGRpt9TvcDj1x5d/KzYqSZ1G1JbFapHdy1awAfz33+vIo49JDocCb7tNpd4cLYvH9RFfXx9HAQAAAAAAAAAAgH+tpF1ndXb+bskpOc4mF3Z3ri+OVGn/b+mh+45vpbgT51/z8JYq35oevFfpIPm4/x7rGcvuX8gj2FsewTm7zYBvnXD51gl3e7/yy8EtG2Wx2jRmi0M/bj8h75C6uveOm9Wx/c1uayP+XLJ++HyLjv19TpJ09O9ola7i/vfucs4t/FZHn3hCcjoV1O12lXzttesmgJcI4QEAAAAAAAAAAHANSzkap6hp2yWn5FsvXIHtIwu7S9e+1ERpz7L04H3nYikp+vxrXoFSlY7pwXvltpLntbG0e1EXfeK4Vkwdr7/XrJQzKEJfBXeXzWbThwMaql2NCLe1c3zvOX3/6WbFn0uRp7dNbYfUKPAAPvrrr3Xs6WfSA/g77lDJV16WxWa78o7XEEJ4AAAAAAAAAAAAXJPSopN0euJWmRSHvCoGKfjOG9JnTiP3ks5Ju5emLzW/e6mUmnD+Nb/iUtXbpOq3py8573FtLOl+LUhJTNCf8+do3aKv5UhLkyxWbXEWl4dxaNSd9dwWwBtjtPXXo/p19i45HUbBJf3UaUQtBZco2B9RRM+bp2PPPS8Zo2K9e6vEiy/IYs3pTQuuHYV+RGPHjlWFChXk7e2tBg0a6Ndff71s+Y8//ljVq1eXj4+PqlatqilTpmQp8+WXX6pGjRry8vJSjRo1NH/+/PzqPgAAAAAAAAAAAAqBMzFNpydulTM2RR4RvgodWEMWj0KPvq4tcaekdZOlaT2lNytJXw6Xtn2THsAHlZVuekAaulh6dKd0+wfSDbcSwLuJcTq15ecfNWHkCK3+Zp4caWmyl6um6aV6aUVYSz15ex3d2aCM29pb9fVerZixU06HUaX6xdXziQYFHsCfnTVLx559TjJGwf36XbcBvFTIM+Fnz56tkSNHauzYsWrevLk+/fRTderUSdu2bVO5cuWylB83bpyeeuopff7552rUqJFWr16te+65R8HBwerataskaeXKlbrrrrv0yiuvqEePHpo/f7569+6t3377TU2aNCnoQwQAAAAAAAAAAEA+iF9/QmknEmQN8FTY0Jqy+rAAdI6cOyxt/zZ9qfmDf0jGef61sCrpy8xX7yqVrCuxqkC+ObB5g34YN0aSVKxESfm26KGn1zllbBb955bKGt6iglvbq1A3TJuWHVKjrhVUr125Al8x4sy06Trx6quSpJDBgxT+5JPX9aoVFmOMKazGmzRpovr162vcuHGubdWrV1f37t31xhtvZCnfrFkzNW/eXG+99ZZr28iRI7V27Vr99ttvkqS77rpLMTExWrx4satMx44dFRwcrJkzZ+aoXzExMQoKCtK5c+cUGBiY18MDAOCqMSa5H+cUAFBUMCa5F+cTAFBUMCa5H+cUl2KMUdwvR+RVuZg8S/sXdneKttO705eZ375QOvpX5tdK1j0fvBevWijd+7dwpKXK5mGXlH79LnjnNZWqWkNxlW7SvdM3KNVhNPCmSL3craZbAurE2BT5BJxfuSD+XLL8gryuut7cipo0SSdHjZYkhQwfpvDHHrtmA/icjkmF9pOglJQUrVu3Tk8++WSm7e3bt9cff/yR7T7Jycny9vbOtM3Hx0erV69Wamqq7Ha7Vq5cqUceeSRTmQ4dOmjMmDGX7EtycrKSk5Ndz2NiYnJ5NAAAoKhinAcA4PrEGA8AwPWLcR5XYoyRxWKRxWJRQCv3Ldd9XTFGOr4pPXTfvlA6teOCFy1Suab/BO9dpGJZV6eGe6UmJ2nNgq+0ZflSDXrzQ3n7+8tisej2R5/R+oNn9cAXq5XqMOpap5Reuv3qA3hjjP5aclBrv9uvHo/VV/GyAZJUKAH86c8/16l33pUkhd43QsX/+99rNoDPjUIL4U+fPi2Hw6GIiIhM2yMiInT8+PFs9+nQoYO++OILde/eXfXr19e6des0YcIEpaam6vTp0ypZsqSOHz+eqzol6Y033tBLL7109QcFAACKHMZ5AACuT4zxAABcvxjncTnxa44rcctphfSrLquXrbC7U7Q4HdKh1eeD93MHz79mtUsVW6UH71Vvk/zDC6+f/yLGGO384xf9Mn2SYqNOSZK2rvhJDTp3kyTtPBGroRPXKDHVoVZViuudXnVktV5dQJ2SlKZlk7drz1/p7e1Zf9IVwhe00+PG6dT7H0iSwh56SGEPPvCvCOClQr4nvKQsJzrj10vZee6553T8+HHddNNNMsYoIiJCQ4YM0Ztvvimb7fwXbW7qlKSnnnpK//vf/1zPY2JiVLZs2bwcDgAAKGIY5wEAuD4xxgMAcP1inMelJO06q7Pzd0tOKWH9Cfk3LVXYXSp8aSnS/l/TQ/cdi6T4k+df8/CRbrhVqn67dEN7yadYoXXz3+jE3r+1bNJnOrpzmyQpIKy4Wg0Ypio3tZAkHYxK0MDxqxWTlKYGkcH6ZEADeXpYr6rNs8fjtfiTzTp7PEFWm0Ut76qimi0L/nNijNHpDz/S6bFjJUnFR/5XYffdV+D9KEyFFsKHhYXJZrNlmaF+8uTJLDPZM/j4+GjChAn69NNPdeLECZUsWVKfffaZAgICFBYWJkkqUaJEruqUJC8vL3l5FfzyCwAAIP8xzgMAcH1ijAcA4PrFOI/spByNU9S07ZJT8q0XLr+bShZ2lwpPSoK056f04H3X91LSufOveQVJVTulz3ivdIvk6Vt4/fyXMk6nln7+kTYvXyoZIw8vLzXu1lMNu94hu2f6d9vJmCQNGP+nTsUmq1qJAE0Y3Eg+nle3ssPeDaf046RtSk1yyC/IUx1H1FaJikHuOKRcMcbo1HtjFPXZZ5Kk8P97TKHDhxd4PwpboYXw/8/efUdXVeVtHP/elt57IYXQO4ogRUAUFKUoosPMWFFQFCvOjDrj2McuVlQUFHV0nLENHcGGFBFF6Z1AEpJAei+3nfeP6wR5RWk3uUl4Pmu5PGWffX43ucll5Tl7bz8/P/r06cOyZcsYN25cw/Fly5Zx0UUX/ea1NpuNNm08a3y8//77jB49GrPZ82TIgAEDWLZs2WHrwi9dupSBAwc2wqsQERERERERERERERGRxuQsq6PozS0Ydhf+GeFEju9wykxp3aC2DHYthW3zYNdn4Kw9dC44DjqP8gTv6YPB6uezMgVMP2WWGAZdBg9j8B+uJjQ6puF8eY2Dq95YS3ZJDalRQbx9bT/Cg2wndc+crSUsfnUTAEkdIjh/cneCwpr+fWAYBgVPPU3JG28AEH/P3URdfXWT19Ec+HQ6+mnTpnHllVdyxhlnMGDAAF577TWys7OZ8tN0BPfccw+5ubm8/fbbAOzcuZO1a9dy5plnUlpayvTp09m8eTNvvfVWQ5+33XYbQ4YM4YknnuCiiy5i7ty5fPbZZ6xcudInr1FEREREREREREREREROjLvWSdGbW3BX2rHGBxF9ZVdMJzlld4tRVeCZYn7bfNj7Nbgdh85FpHqmme8yBtr0BfPJjaKWE2cYBru/X0NMm1QiE5MBGDThSroPG0FSxy6Hta21u7j2re/YfqCS2FB//nndmcSFBZx0DcmdI0ntGkVkQjADxrfDYmn6nxHDMDj42GOUvv0OAPF/v5eoyy9v8jqaC5+G8BMmTKC4uJiHHnqI/Px8unfvzqJFi0hLSwMgPz+f7OzshvYul4tnnnmGHTt2YLPZGDZsGKtXryY9Pb2hzcCBA3n//fe59957+fvf/067du3497//zZlnntnUL09EREREREREREREREROQsl/duA8WIM5zI+Yid0wB/o02mp8ZdmwbYEneM/+BjAOnYvt7Andu4yBhJ5wqs0G0AwVZu/jq7deI3vzRjJO78u4u+4HIDgikuCIyMPa2p1ubnx3HeuySgkLsPLOdf1IjT7x5QKKc6sIjwvEarNgNpu4cGpPn4Tv4JmC/8DDD1P2r/cBSHjwQSIn/M4ntTQXPv9NddNNN3HTTTcd8dycOXMO2+/SpQs//vjjUfu89NJLufTSS71RnoiIiIiIiIiIiIiIiPhI2PA0nIW1RP2xM9aIkx8x3CwV7vBMM79tAeSvP/xc0umHgveYDj4pT36ppqKc1f95l42fLcEw3FhsNmLT2uJ2uzAfYVYCt9vgTx9s4KsdhQTYzLw5sS+dE8JO+P471uTz5bs76NQvnmFXekbb+zSAv/9+yj74EEwmEh95mIjx431SS3Pi8xBeRERERERERERERERE5Ej8kkOIv6MPJksrGvVtGJ6wfdt8z39FOw+dM5khdaAndO88CiJSfFam/JLL6WTD0oWs/vA96qurAehw5kCGXnEt4XEJR7zGMAzun7eFeRvysFlMvHpFH/qkRZ3g/d2s+nA3m77aD0BVmR2Xw43F5qMA3uUi/96/U/7JJ2A2k/TYo4RfdJFPamluFMKLiIiIiIiIiIiIiIhIs1H9YwHW6AD8Uz0jhVtFAO92QfYaT+i+fQGU5xw6Z7ZBu2Ge4L3ThRAc47s65Tdt+vxTvnzrdQBi09oy7OrJpHTr+ZvXPLtsJ++sycJkgmd+15uzO8Wd0L2ry+v59LXN5O8pB+CMUen0G9UWk9k3Px+G00nePX+lYv58sFhIeuIJwkeP8kktzZFCeBEREREREREREREREWkW6naUUPrBDkwWM3E398YWH+zrkk6c0w57v/ZMNb99IdQUHTpnC4YOw6HLWOgwAgLCfVen/CaX04nF6olUuw8bwdavv6D7sBF0P2fEEaee/7k3Vu7lhS92A/DQRd0Z2yvphGrI313Gktc2U1Nhxy/AwvBru9G2p+8e1jAcDvLuuouKRYvBaiX56acJG3m+z+ppjhTCi4iIiIiIiIiIiIiIiM/Zc6sofnc7uCGwVwzWuCBfl3T87NWw+zPPiPedn0J9xaFzARGeke5dxnhGvtsCfVamHF1ddRVrPvoXOVs2c/mj0zFbLFj9/PjDI09jMh199PlH6/bz0IKtANw5oiNX9k87oTocdheLX9tMbYWdqKRgLrihBxHxvvvZMOx2cv/0ZyqXLgWbjTbPTid0+HCf1dNcKYQXERERERERERERERERn3KW1VE0ZwuG3YV/+wgix3c4pqCzWagt9QTu2+Z7Anhn3aFzIfHQebQneE8/Cyw239Upx8TtdrHp86Ws+vc71FZ6HqLI/PF72p9xJsAxvS8/23qQv3y0EYBrB7Xl5nPan3A9Nj8L517dhR1rDnD25Z3wC/BdvOu228m9/Q6qvvgCk81G8gvPEzpsmM/qac4UwouIiIiIiIiIiIiIiIjPuGudFL25BXelHWt8ENFXdMFkNfu6rN9WedCztvu2+bBvBbidh85FpntC9y5jIfkMMDfz1yINcrZs5Mu3Xqcway8AUckpDLtqEum9+xxzH99mFjP1vR9wuQ3Gn96Ge0d1Oe4HSiqKaqksqSO5YyQAad2iSesWfVx9eJu7vp79t95K9fKvMfn50WbGS4QMHuzTmpozhfAiIiIiIiIiIiIiIiLiE4bTTfE7W3EerMEc5kfMxO6YfTjS9zeV7oNtPwXvOd8CxqFzcV1/Ct7HQHx3aCmj+AUAe10tS15+ll3frgbAPziYgZddQa8RFzSsB38sNueWM+mt76l3uhneJZ4nxvfAbD6+90L21mKWzt4CBlx2zxmEx/p+WQZ3XR37p95M9apVmAICSHl5BsEDB/q6rGatmf4WExERERERERERERERkVbPMDAFWDH5W4i5phvWCH9fV3SIYUDhdk/ovm0+HNh4+PnkMw4F79HtfFOjeIXNP4DaigpMJjO9zruAgZddTmBo2HH1kVlYxdVvrKWy3smZbaN46Y+nYbUc+ywIhmHww6dZrJmbCQbEpYViPo7rG4u7poacm6ZSs2YNpqAgUl55heAz+/m6rGZPIbyIiIiIiIiIiIiIiIj4hMlmIfqKLjgLa7DFB/u6HE/wnvfDoeC9ePehcyYzpA3yTDPfeRSEJ/uuTjkphtvNtpVfkdGnHwHBIZhMJoZPmorhdhGTmn7c/eWX13Ll7LUUV9vpnhzGrKvPIMBmOebr7bVOPn9rG5nrCwHoOiiRwb/viPU4+mgMrqpq9k+ZQs3332MOCiLl9dcI6nPsU/OfyhTCi4iIiIiIiIiIiIiISJOy76/EluwJP01mk28DeJcTsr/xhO7bF0BF7qFzFj9od45ntHvHCyDYt+tyy8nL27mNL+e8xoE9u+gz6mLOvmoSANFtUk6ov5JqO1fOXktuWS0ZMcHMmdiP0ADbsV+fX83iVzdRdrAGs9XEkAkd6TbY9w94uKqqyJl8PbU//og5JMQTwJ92mq/LajEUwouIiIiIiIiIiIiIiEiTqdtRQtFbWwjqHUfk+I6YLD5YP91ZD5nLYds82LEIaooPnfMLgQ4jPMF7+xEQcHzTkkvzVFlcxNfvvsn2VcsB8AsMJDQ65qT6rKp3MvHNtewuqCIxPIC3r+tHTMjxLamw+etcyg7WEBzhz8gbupPQNvykavIGV0UF2ZMnU7dhI+awMFJnzyKwRw9fl9WiKIQXERERERERERERERGRJmHPraL43e3g/ulAUy55XV8Fu5fBtgWw81OwVx46FxgJnUZ5gveMs8EW0ISFSWPK3b6VHd+sYNOXS3HW14PJRPezR3DW768kOCLyhPutd7q44Z3v2bC/nMggG+9c1482kUHH3c+gS9pjAvpckE5QmN8J1+MtrrIysidNpm7zZizh4aS8MZvAbt18XVaLoxBeREREREREREREREREGp2ztI6iOZsx7C7820cQeUkHTKYmGAXvtMOX/4BvXwVn3aHjoYnQebQneE8bBBbFZi2R4XZTVnCAoux9FGVnUZS9j7P+cBWRiZ4p3fN3befHJfMBSO7clWFXX098RvuTuqfLbXD7++tZtbuYYD8Lcyb2o31c6DFdW1tlZ+MX++k7ui1mswmLzczgCR1Pqh5vcZaWkn3tddRv24YlMpLUN98goHNnX5fVIum3iYiIiIiIiIiIiIiIiDQqd62Toje34K50YI0PIvqKLpisTTAMvmg3fHQd5K/37Ee2ha5jofMYSO4D5qYcii/ekr97BxuWLaYoO4vi3GzPCPef6XDmwIYQvk2X7pw2cgyp3XvR7owzT/rBD8Mw+OvHm1i8+QB+FjOvXXUGvVIijunawuxKFr+6icoSz8MgZ47NOKlavMlZXEz2xGup37kTS3S0J4Dv2DweDmiJFMKLiIiIiIiIiIiIiIhIozGcborf2YqzoAZLmB8xE7tjDmjkiMowYP27sOgv4Kj2TDc/9kXPyPemGH0vJ8VRV0fR/qyGke1FOVn0HTue9F6nA1BdWsqWrz5raG+1+RHVJoXY1HRiUtKIa3topHtC+44ktPdemPz4ku38+/sczCZ44Q+nMaj9sa0rv/2bfL56bwcuh5uw2EDa94nzWk0ny1lYSNbEidh378EaG0vqW3Pwz2g+Dwi0RArhRUREREREREREREREpNHYsyup31eByd9C9DXdsEb4N+4Na8tgwe2w5RPPfvpgGDcTwpMb975yUoqy97HqP/+kKDuLsoIDngcpfiala4+GED6hXQf6j/8DsalpxKSmE5GQiNlsafQaX12+h5nLMwF4/JKejOyecNRrXE43Kz/YxebluQCk9YhmxMSu+AfZGrXWY+U4WED2Nddg37sXa3w8aW/NwS893ddltXgK4UVERERERERERERERKTR+GeEEzOxGwB+SSGNe7PsNfDRJCjPAbMVhv0NBt0GTRDQyq8zDIPq0hKKsvdRmJPVsH5792HDOW3kGE8jk4nd361puCYoPIKYFE/IHpOaRpvO3RrOhURFM+h3lzfpa3h/bTaPL94OwF8v7Mzv+qYc9ZrqsnqWvLaJA5kVAPQd3Za+F6ZjMjeP2Rgc+flkXXMNjqxsrEmJpM2Zg19qqq/LahUUwouIiIiIiIiIiIiIiIjXGS43JotnzfWADpGNezOXE1Y8DcufAMMNkekw/g1o06dx7yu/YLjdmMye73tlcRGLXnqaouws6qoqf9H2YGZ6w3ZkYjJnXzWZmNQ0YlPTCQqPaKKKj27xpnz++skmAKYMbcf1Q9od03W1VXaKcqrwC7QyYmJX0nse29T1TcG+P5fsa67BsX8/tuRkUt96C782mi3CWxTCi4iIiIiIiIiIiIiIiFfV7iihfH4m0Vd3xRYb1Lg3K8uGjyZDzk+jqHv+Hi58CgLCGve+pziX00lp3v5DI9tzPGu4t+3dh+GTbgIgICSE/du2gGFgMpmJSEzyrNv+0zTy8W0PhdkWq5U+oy7y1cv5VSt3FXHb++txG/CHfincNbLTMV8b0yaU8yZ3JzIhiIi4Rv45OA72nByyrr4aZ14+ttRU0t6agy0x0ddltSoK4UVERERERERERERERMRr7LlVlLy7DcPupmp1HpEXtW+8m23+GObfDvXl4BcKo6dDz9813v1OQYZhYK+txT/IEyI77Xbe+9s0inP343Y5f9G+MHtfw7bNP4Axd9xNeGw8UW1SsPn5N1XZXrE+p4zr3/keu8vNhT0SeOTiHphMvz6VvMPu4uv3d9LtrCQSMsIBaNuMRr8D2PftI+vqa3AePIhfejqpb83BFh/v67JaHYXwIiIiIiIiIiIiIiIi4hXO0jqK5mzGsLvxbx9BxKiMxrlRfRUsuQt+/KdnP/kMGD8Loto2zv1OEXXVVQ3rtRfl7KMwO4vinCzi23XgsnsfAcDq50dtdRVulxO/wECiU9KITTk0uj0mNf2wPjueOcgHr+Tk7TpYyTVvrqXG7mJwhxiendAby2+s5V5eWMvimZso3l9F7vZSLn+wPxabuQkrPrr6zEyyr74GZ2Ehfu3akTbnTayxsb4uq1VSCC8iIiIiIiIiIiIiIiInzV3joOjNLbgrHdgSgoi+ogsmayOEkHk/wofXQckewASD74Sz7waLzfv3aqWcDgfVpSWExx0aAf32XbdSuC/ziO1L8vYftj/2jnsICo8gLDbuN0eGt1T7S2u4cvZaymoc9E6J4NUr+uBvtfxq+6wtxSybvYX6GieBoTbOvbpL8wvgd+0ia+K1uIqK8O/QgdQ5b2KNjvZ1Wa2WQngRERERERERERERERE5KYbTTfE/t+EsqMES5kf0xO6YA7wcQ7nd8M1L8PlD4HZAWDJc8hqkn+Xd+7QihttNeWHBT+u172tYu700P5eQqBgmvzS7oW1AUDAAodGxDaPaY1M8/49KbnNYv4kdjn1d9JamsLKeK2ev5UBFHR3iQnjzmr4E+x/5vWy4DdYt2ce38/eCAXHpYVxwQ3dCIgOauOrfVrdjB9nXTMRVWop/ly6kvjEba2Skr8tq1RTCi4iIiIiIiIiIiIiIyEmpWJZFfWY5Jn8L0RO7Yw338trflQfgkymQ+aVnv8sYGPMCBEV59z4tWG1lBWUH8g8LyD94+G/kbN10xPb2mmoc9vqGddrPv/E2/INDCAgOaZJ6m6OKOgdXv7GWvUXVtIkM5J3rziQy2O+IbZ12F0tnb2HvhiIAug5OYsjvOja7EfB1W7eSPfFaXOXlBHTrRursWVgiInxdVqunEF5EREREREREREREREROSsiQNthzKgkdloJfYrB3O9+xBObeBDXFYA2ECx6H06+GVjgN+rFw2Osp2Z9D4c9Gthdl76O6rBST2cytb32I1c8THEckJJK3cxtRySme9dpT0oj9ad32kKjow6aSD49L8NVLahbqHC4mzfmerfkVxIT48c51Z5IQ/usj2i02MyaTCbPVxNDfd6LrWUlNWO2xqd20iezrJuGuqCCgV09SX38dS1iYr8s6JSiEFxERERERERERERERkZNiCbYRM7mHd9cHd9TBsvtg7UzPfnwPuHQ2xLbeqdB/zu12UX7wAEXZWbQ740zMFs+a5Mtmvsi2lV8d8ZqwmFiqy0oaAvUhV1zLudfdhMWqSPC3OFxupr77A2v3lRDqb2XOxH60jTnywySG28BkNmEymTj36i6UFdQQl9b8gu3a9evJnjQZd1UVgaedRsrrr2EJOXVnOWhq+okTERERERERERERERGR41a7vQRXWR0h/T0jgL0awBdsgw+vg4Itnv3+N8HwB8Dq5Wnum4naygoK9mZSlLPvpxHuWRTvz8Zprwdg4rOvEpXkWZc9JjWdwNAwz8j21DRiUjwj3GNSUvELDDqs31N5avlj5XYb/OXDjXy+vQB/q5nZ1/Sle3L4L9u53KyZm0lVaT0jru2KyWTCL9DaLAP4mnXryLn+BtzV1QSe0YeUV2diCfHyDBXymxTCi4iIiIiIiIiIiIiIyHGx51ZR8t42DLsbc7CNoB6x3unYMOD72fDp38BZB8GxcPEr0GGEd/r3MUddHUX7sxpGtweFecLeH5fM55sP//WL9labH9EpqdhraxuOnTF6HH3HjvfuQw+nKMMweHjhVj75MReL2cTLl59Ov7ZRv2hXW2ln6ewt7N9eCkD3IUkkdYhs6nKPSfXateRMuRGjpoagM88k5ZWXMQcFHf1C8SqF8CIiIiIiIiIiIiIiInLMnKV1FM3ZjGF3498hgsCu0d7puLoY5t0COxZ69tsP9wTwIXHe6b+JVZWWkLt9C0XZ+yjMzqI4J4uyggOeBw2AcRH3k3F6XwBi09oSmZjkGdWemvbT+u3pRCQkYDZbDuv3f9PSy8l78YvdvLlqHwDPXNaLc7vE/6JNQVYFi2duoqqkHqu/hXOu7Nx8A/hvviHnxpsw6uoIHjiQNjNewhwY6OuyTkkK4UVEREREREREREREROSYuGscFL25GXelA1tCMNGXd8FkMZ98x5nL4ZMboDIfLH4w/EE4cwqYvdB3IzIMg6rSYoqysyjKyaJt7z7EpKQBkL15A4tfeuYX1wSFRxCTmo7FZms41qHfQDr0G9hkdQu8880+pi/bCcADY7py8WnJv2izdVUeX/9rJy6nm/C4QC6Y0oPopOY5xX/VipXsv/lmjPp6gocOoc0LL2D2b53LN7QECuFFRERERERERERERETkqAynm6J3tuEsqMUS5kf0xG6YA04yanI54ItHYNXzgAHRHeDS2ZDYyys1e1t1WSm7v1tDUY5n3fai7H3UVVc1nLdYLA0hfFxaWxLbd/pp3fafRrenpjdMQS++M3d9LvfN2wLAbed24JpBbX/RZs1/97BuSRYA6T1jGD6xK/6BzTNarfzqK3JvuRXD4SDknHNIfu5ZzH5+vi7rlNY83ykiIiIiIiIiIiIiIiLSbBiGQcmHO7HvLcfkbyF6Ynes4Sc5yrZ4D3w0CfJ+8Oz3uQbOfxT8gk+63pPhcjopzdtPYY4nZE/p0p303n0AKC84yGezZhzW3mQ2E5mYTExKGuHxiQ3HY1LT+eM/fjkSXnzry+0F3PmfDRgGXD0gjduHdzhiu5SuUfy4LJu+o9LpMzIdk9nUxJUem8rPP2f/7XeAw0HoiBEkP/M0JgXwPqcQXkRERERERERERERERI7KLzGY2k1FRF/RBb/EkwjKDQM2vA+L/gT2KgiIgLEvQNeLvFbr8aitrGDj559SlL2PopwsSnL343Y5G87ba2saQviYlFTSf5pyPvanke1RSW2wKvRsEb7bV8KN767D6Ta4qHcS94/phsl0KFyvr3HgH+RZJiC5YyRXPDyA0KgAX5V7VBVLPiX3T38Cp5PQC0aS/OSTmH62zIH4jkJ4ERERERERERERETm1GQaYmucIR5HmwmQyETo0hcCesVgjTyKUrCuHBdNg84ee/bRBcMlrEN7GO4X+CsPtJnfnNgqz9lKck0VMalt6n3eh55xhsPJfbx3W3i8w6Kcp5NNI7dH7sOPj73mwUWuVxrEtv4Jr53xHncPNsE6xPH1ZL8w/jW43DIONX+znu4V7ueTPfYj66SGTZh3AL1pE7p//Ai4XYaNHk/T4Y5isin6bC30nREREREREREREROTUtvoFyN8IFzwJwdG+rkakWanPqsAWH9Sw9vtJBfA5a+Gj66AsG0wWGHYPnDUNzBYvVXtkLqeTec/8g8wfvms4lt7r9IYQPigsnJ7DRxIWE0dMajqxqemExsQeNkJaWras4mqunL2WyjonfdMjefnyPtgsZgAc9S6+/Od2dn13EIAd3x5gwMXtfFnuUZXPm0fe3feA2034xReT+I9HMFka9+dIjo9CeBERERERERERERE5dRXtgi/+Aa56aH8u9P6jrysSaTbs+yspmr0Ja3QgMdd1xxJyglOuu12wYjp89RgYLohIhfGzIaWfdws+AsMwWPb6S2T+8B1Wmx+pPXoRk5JGYscuh7UbMfnmRq9FmpbT5ebbvSUs2JjHok0HKK910CUxjFlX9yXQzxNYlxfWsPjVzRTnVmEymxg0vj09z2ncWRlOVtlHH5N/771gGERcdikJDz6IyWz2dVny/yiEFxEREREREREREZFTk9sFc6d6Avh250KvP/i6IpFmw1lSR9FbWzDsbswhNsyBJxgpleXAx9dD9mrPfo/LYNQzEBDuvWJ/w+oP3mXLV59hMpkZfcfdtOvT+MG/+I7LbbD2p+B9yeYDFFfbG851iAvhrWv7Eh7oWTN936YiPntzK/U1TgJDbYy8vjtJHSJ9VfoxKf33fzhw//0ARPzh9yT8/e8K4JsphfAiIiIiIiIiIiIicmr6dibkfAt+oTDmea0LL/ITd42DojmbcVc6sCUEE315F0yWEwj6ts6Febd41oH3C/GE7z0nNNnPWlVpCT8ung/A8Ek3KYBvpdxug+/2lbBwUz6LNh2gqKq+4VxkkI2R3RMZ0zORfm2jsP70Ps7eWszClzeCAfFtwxh5fQ9CIv199RKOScm773Lw4UcAiLzySuL/eo+WTGjGFMKLiIiIiIiIiIiIyKmneA98/pBn+7yHICLFt/WINBOG003RO9twFtRiCfMjemK3hvXgj5m9GpbcAz+85dlP7gPjZ0FUhvcL/g0hkVFMePAJsjb+SM/hI5v03tK43G6DH7JLWbAxn0Wb8imoPBS8hwfaGNktgdG9EumfEd2w9vvPJXeKJKl9BFGJwZx1WQcstuY9mrzk7bc5+OhjAERNnEjcX/6sAL6ZUwgvIiIiIiIiIiIiIqcWt9szOtdZC22HQJ+Jvq5IpFkw3AYlH+zEvrcck7+F6IndsYYf5+jg/A3w4XVQvAswwVm3w7C/gcXWGCUfkdvlwmzxrPkdm5pObGp6k91bGo9hGPyYU8bCn4L3/PK6hnOhAVbO75bA6J6JDGofc8TgvexgDaExAVgsZiwWM2Nu7YXVZmnKl3BCime/QcFTTwEQPXkysdPuUADfAiiEFxEREREREREREZFTy/ezIWsV2IJh7Iuahl7kJ+5KO/V7y8FsIvqKLvglBh/HxW749hX47AFw2SE0EcbNhIyhjVbvkZTk5fLfJx/kvBtupU2X7oedK86t4tt5mQ37DUHmT//rdGYCGb1jAU9gu2Zu5k/tOKydCWh3ehztTo8DoKq0jm8+2XPoRg3tPBtpPaLpcEY8ALWVdlZ/vPt/Bfy8OZgguWMknc5MAMBe62TVT20PtTl0TXxGGJ37JwLgcrhZ9eGuw9r8vN6YlFC6DPS0NQyDVR/u/kWb/10bmRBE10FJDS9nzdw9uF3Gz35VHrooPCaQrmcdartuyT6cdvcRvhYQHOFPt8HJDac2fJ6Dvc55qOnP+g8MtdFtcDKGYbBxfzlLF+xhZ1Y55XUOAFKA9lY/OsSH0C09gjHjOuFn9QTvO749QE2F/bA+HfUufliaTddBiQz+XUeAFhHAF706k8LnngMg5qYbibnlFgXwLYRCeBERERERERERERE5dZTug2X3e7aHPwCR6T4sRqR5sYT7E3dTbxz7KwnoEHnsF1YehP/eCHs+9+x3GgUXvQRBUY1T6K+oLivl48fuo7zgICvff5sJDzxxWGBZW+Vg74aiX70+oW14w3ZdjYM9PxT8atuIhGDane7Zrq9xsnPtwV9tGxTu1xDCO+pdbP/mwK+2tVrNDSG80+Fm64q8X23rdLgOhfAuN5uW5/5q2/Z94hpCePAE4L8mrUf0YSH8+s9ycDncR2yb3DHisBB+/bIc6qodR2wblx52WAi//vNsqkrqj9g2KDaA+VWVLNyUR05JLddW+NPbbQb+34wKVbVUlxn4XXZo5PuGz3MozK48Yr8ledW4nG4s1uY9/bxhGBTNeJmil14CIObWW4i96SYfVyXHQyG8iIiIiIiIiIiIiJwaDAPm3QqOakgbBH0n+boikWbBXe/C7O8ZFWyN8McacRxT0O9a5gngqwvBGgDnPwpnXNvkM0zY62r55IkHKS84SER8ImOn/RWTyYTD7sLm53ltkfFBnH15Jwzj/13804H4jEMhfFh0IEN+3/FnbY2fNyW+bVhD26BwPwZd2v7/d/e/S4hLD2045x9kZcC4dj9re3gxsSmH2lr9zJw5tu0v6v3ffkybkIZjFouZMy5M5//7X//RSSGHHT/9/LRfvKb/1RuREHRY257D2uB2Gw3nf942LDbwsLZdz0rCYXd5zv/U8f8uC40KOKxtx34J1Fc7POcNg9IaBznFNWSX1HCgopJVy0sBCLRZMJIDCQ0JJCE8AIvZ5On7p44DQg4P5tO6RxOZGNRw/n+vLy4tlJ7D2mA+wlT1zYlhGBQ+/zzFr84EIHbaNGKun+zjquR4mYz//9MtVFRUEB4eTnl5OWFhYUe/QEREpJHoM8n79DUVEZHmQp9J3qWvp4iIHJN1c2D+bWANhBtXQXS7o15yvPSZ5H36mjYu+/5Kit7cTMTFHQjqEXPsFzrrPbNKfPuKZz+uG1w6G+K6NE6hv8HldPLfpx5m3/p1BIaG8YdHniYyIYmygzX8d/oPDLikfcPocmledhyoZOHGPBZsyiezsLrheIDNzDmd4xjdM4lhneII9Gv+U8d7g2EYFD7zDMWzZgMQd9ddRE+8xrdFyWGO9TNJI+FFREREREREREREpPUr3w+f3uvZPufeRgngRVoaZ0kdRW9twV3tpPq7AwR2jz629aYLd8CH18HBTZ79M6fA8AfBFvDb1zUCwzBY9tpL7Fu/Dqu/P+Puvp/IhCQqS+qY+9yPVJfb2fB5Dh3OiGv2I6BPFbsLqliwMY+FG/PZVVDVcNzPamZYp1hG90zinM5xBPufWjGmYRgUPP4EJW+9BUD8X/9K1FVX+rgqOVGn1rtXRERERERERERERE49huEZAW+vhDb9oP+Nvq5IxOfcNQ6K5mzGXenAlhBM9B87Hz2ANwzPjBJL7gFnLQRFw8WvQMfzm6TmI9n85TK2LP8Mk9nMmNvvJrF9J2or7cx7fj1VpfVExAcx5pZeCuB9LLOwioUb81m4KZ/tBw6t1+5nMTOkYyxjeiVybpd4Qk6x4P1/DMPg4CP/oPTddwFIuP8+Iv/wBx9XJSfj1Hwni4iIiIiIiIiIiMipY/17sPszsPjDRTPAfGpMayzyawynm6J3tuEsqMUS7kfMxG6YA44SGdWUwPxbYdt8z37GMBj3KoT6dpr3Lmedzb6NP5LWozcZp/fFXutk/osbKDtYQ0ikP2Nv601gqJ9PazxVZRVXs2BjPgs35rM1v6LhuM1iYnCHWEb3TGR413jCAmy/0UvrZ7jdHHjwIcr+/W8wmUh46EEiL7vM12XJSVIILyIiIiIiIiIiIiKtV0U+fHqPZ3vYPRDb0bf1iPiY4TYo+WAn9r3lmPwtxEzsjiXc/7cv2rsCPr4eKvPAbIPh90P/qWD2/ehyq58fo2/7CyaTCafdxcKXN1KYXUlgqI2xt/UmNKrpp8g/leWU1LBwkyd435Rb3nDcajYxqH0Mo3smcl7XBMKDTu3g/X8Ml4v8++6j/KOPwWQi8dFHiRh3sa/LEi9QCC8iIiIiIiIiIiIirZNhwII7oK4ckk6HAbf4uiIRn6vdUEjthkIwm4i+ogu2hOBfb+xywFePwYrpgAFR7eDS2ZB0WpPVeyR5O7ezZ923nDXhSkxmc8M0+tvXHCBvVxl+ARbG3NKbyN96beI1uWW1LNqYz4JN+WzIKWs4bjGbGNgumlE9Ejm/WwKRwZqR4OcMl4v8v/6V8rnzwGwm6YknCB8z2tdliZcohBcRERERERERERGR1mnTB7BzsWfk7kUzwKI/iYsE9oolJLcKW2IwAR0if71hyV74aBLkfu/ZP+1KGPk4+Ic0TaG/VlZeLp88+RB1lRUEhoZxxuhxDee6DU6iuqyelC6RxKaG+rDK1u9Aed1PI97z+CG7rOG42QT9M6IZ1TORkd0SiA45yiwLpyjD6STvrrupWLgQLBaSn36KsAsu8HVZ4kX6F4eIiIiIiIiIiIiItD6VB2HxXzzbQ++C+K6+rUekmTCZTUSMzvjtRhv/Awumgb0S/MNhzHPQ/ZImqe+3VJeV8vFj91FXWUFCuw70Gn4BhmFguA3MFs+I+DPHHuW1yQkrqKhj0aZ8Fm7K57t9pQ3HTSbolx7F6J6JjOyeSGyogvffYjgc5P7pz1R++ilYrSRPf4aw887zdVniZQrhRURERERERERERKR1MQxYdCfUlkJCTzjrdl9XJOJT9v2VVK89QMTYdpisv7GOe10FLPoTbPy3Zz+lP4x/HSJSm6bQ32CvreHjxx+gvOAgEfGJjLvrfmwBAXw7L5Oi/VWcP6kbVj+Lr8tsdQor61myOZ8FG/NZu68Ewzh0rm96JKN6JHJhj0TiwgJ8V2QLYtjt7J82jarPPgebjTbPP0foOef4uixpBArhRURERERERERERKR12fIJbJsPZitc/DJYbL6uSMRnnCV1FM3ZgrvKgTnYRvj56UduuP97+Og6KN0HJjMMvRsG39kslnFwOZ3Mm/4YBXv3EBgWziV/fZCg8AjWf5bN94v2AZC1pZh2p8X5ttBWoriqniVbDrBwYz5rMotx/yx4Pz01gtE9k7igRwKJ4YG+K7IFctvt5N56G1VffYXJz482L75AyNChvi5LGonvf3OKiIiIiIiIiIiIiHhLdZFnJC94AsSEHr6tR8SH3DUOit7cjLvKgS0xmNChbY7QyAWrnoMvHwW3E8JTPaPfU/s3eb2/ZtnrL5G18Ues/v5cctf9RCYksW11Pqs+3A3AmWMzFMCfpNJqO59uOcDCTfms3lOM62fJe6+UCMb0TOSCHokkRyh4PxHuujr233Ir1StWYPL3p82MGYScNcjXZUkjUggvIiIiIiIiIiIiIq3Hoj9DTTHEdYPBf/J1NSI+YzjdFL2zFWdhLZZwP2Ku6YY54P/FQuW58MkNsG+FZ7/bJTD6WQiMaPJ6f0vb3n3Y8c0Kxtx+NwntO5L5YyFfvrMNgF7DU+hzQZqPK2yZymscfLrVM+J91e4inD8L3nskhzO6p2eq+ZSoIB9W2fK5a2vZP3Uq1au/wRQYSMorLxPcv/k85CKNQyG8iIiIiIiIiIiIiLQO2+bDlo/BZIGLZ4DVz9cVifiE4TYo+WAn9r0VmPwtxEzsjiXc//BG2xbAvJuhthRswXDhU9D7j2Ay+abo39BpwGBSuvUkKCycnO0lfDp7M4YBXQYmMmh8e0zNsObmqqLOwbItB1m4KZ8VuwpxuA4F710TwxjdK5FRPRJJiw72YZWth7u6mpwbb6Jm7VpMQUGkznyVoL59fV2WNAGF8CIiIiIiIiIiIiLS8tWUwIJpnu1Bt0HSab6tR8SHKpZlUbuhEMwmoq/sgi3hZ4GqvQY+/Suse9Ozn9gbLn0Dotv5pNZfs2/jj0QnpxAaHQNAUFg4TruLz97YittpkHFaLGdf3kkB/DGoqnfy2daDLNiYz9c7C7G73A3nOieENox4z4gN8WGVrY+rqpqcG26gdt06zMHBpLz+OkGn67PpVKEQXkRERERERERERERaviV3Q3UBxHSCoXf5uhoRn/JvH0HVN/lEjMkgoH3koRMHNsGH10HRDs/+wFvhnL83u1kj8nZuY+6TDxMQFsYfHnySsFjPeu9WPwsXTOnB+s9yGDGxK2aL2ceVNl/V9U4+317Awo15fLmjELvzUPDeIS6E0T2TGNUzgfZxoT6ssvVyVVaSM2kytRs2YA4NJXXW6wT26uXrsqQJKYQXERERERERERERkZZtxxLY+G8wmeHil8EW4OuKRHwqoF0ECX8+A0uwzXPAMODbmbDs7+CyQ0gCjHsV2g3zbaFHUJK3n0+eeAinw05cWltCoqIxDKNhxHtCRjgjrw/3cZXNU63dxRfbC1i4KY8vthdQ5zgUvGfEBDO6ZyKjeyXRMV7Be2NylZeTPWkydZs2YQ4PJ3X2bAK7d/N1WacswzD4z47/MLrdaIJtTbfMgkJ4EREREREREREREWm5astgwe2e7f43QZszfFmNiM/Yc6swWU3Y4j0hU0MAX1UIc2+CXUs9+x0vgIteguAYH1X666rLSvno0fupq6okoX1HRt92F7VVTha/uokhv+9IXFqYr0tsduocLr7aUcCCjfl8vq2AWoer4Vx6dBCjeiYyumcSnRNCNXV/E3CWlpJz3STqtm7FEhFB6ptvENCli6/LOmUZhsGT3z3JP7f9k8X7FjP7vNlYzJYmubdCeBERERERERERERFpuZb+DSrzIaodnHOvr6sR8QlnSR1Fb27GcBrETuqOX5ufRjrv/gw+udGzVIPFH87/B/SdBM0wjLXX1vDxYw9QUXiQiIRExt11Py6Xhfkv/EBxbjVf/nM7v7unLyZz86u9qdU5XHy9s5CFm/L5bOtBqu2HgveUqEBG9UhidM9EuiWFKXhvQs6SErInXkv9jh1YoqJIffNNAjp19HVZpyy34eaRNY/wwc4PABiZPrLJAnhQCC8iIiIiIiIiIiIiLdXuz+DHfwImuGgG2AJ9XZFIk3PXOCh6czPuKge2xGCsMYHgrIfPH4JvXvI0iu0Cl86G+OY5JbbL6WDe9Mco2LeHwLBwxt/zEDb/EOY9/yPFudUEhfsx8voep3QAb3e6WbGrkIUb81m29SCV9c6Gc8kRgT+NeE+kR3K4gncfcBYVkT1xIvW7dmOJiSFtzpv4t2/v67JOWU63k/tX38+8PfMwYeLBgQ8yrsO4Jq1BIbyIiIiIiIiIiIiItDx1FTDvNs/2mTdA2gDf1iPiA4bTTdE7W3EW1mIJ9ydmYjfMVXvhw2vhwEZPo76T4byHm/VDKvU1NVSXlWLzD+CSux8gNDqehS9v4EBmBf5BVsbe2pvw2OZbf2NxuNys3F3Ewo35LN1ygIq6Q8F7YngAF/bwBO+9UyIUvPuQo6CA7GsmYs/MxBoXR+qcOfhntPV1Wacsh9vBPSvu4dN9n2IxWXj0rEe5MOPCJq9DIbyIiIiIiIiIiIiItDzL7oOK/RCZDufe5+tqRJqc4TYo+c8O7HsrMPlbiLmmK5Zd78OSu8FRA4FRnhkiOjd9+HS8gsLC+f2DT1CUnUVc2/YsnbWZnG2lWP3MjL65F9HJIb4usck4XW6+ySxmwYZ8Pt16gLIaR8O5uFB/LuyRyJheiZyWEon5FJ4ZoLlwHDhA9tXXYM/KwpqYSNqcN/FLS/N1Wacsu8vOn5b/iS9zvsRqtvLUkKcYnjbcJ7UohBcRERERERERERGRliVzOax707M99iXwC/ZtPSI+UP7pPmo3FoHFRPSEFGwrboKtcz0n2w6FcTMhLNG3RR5F2cEDRMQnAOAfFExy5678uDSbPT8UYraauHBKTxIywn1cZeNzutys3VvC/I35fLrlACXV9oZzMSH+XNgjgdE9kzgjTcF7c+LIzSXrmok4cnKwJSWR+vZb+LVp4+uyTlm1zlru+PIOVuWtws/sx7PDnmVImyE+q0chvIiIiIiIiIiIiIi0HPVVMO9mz/YZ10Hbwb6tR8QHDKcbe3YlAJFDIWDJSM/MEGYrnPN3GHgrmM0+rvK37Vq7mvnPPs7QK66lz6iLG453PzuZ3F2ldBmYSErXKN8V2MhcboPv9pWwYGMeSzYfoKjqUPAeHezHyO6e4L1f2ygsCt6bHfv+/WRfdTWOvDxsKSmkzXkTW3Kyr8s6ZdU4arj5i5v57sB3BFoDeeGcF+if2N+nNSmEFxEREREREREREZGW4/MHoSwbwlNhxIO+rkbEJ0xWM7HXdKbukzcI/OYeMNwQlQHjZ0FyH1+Xd1S5O7ax6IWnMdxuinNzMAyjYU1zm5+FUTf1bJVrnLvdBuuyS1mwIY9Fmw9QWFnfcC4yyMbI7p413s9sG4XV0rwfojiV2bOyyLpmIs78fPzS0kh9aw62hARfl3XKqrRXcuNnN7KhcAPBtmBmnDuDPvG+/z2oEF5EREREREREREREWoZ9q2Dta57tsc+Df6hv6xFpYq4qO5YQPyjdh+mjyQTuX+s50ftyuOCJFvEzUZybw3+ffAinw07G6X0Zft1NbFmRR3V5Pf1Gt8VkMrWqAN7tNvgxp4wFG/NYtCmfgxWHgvfwQBvnd4tndM8kBrSLxqbgvdmrz9xL9jXX4CwowC8jg9Q338QWH+frsk5ZZXVl3PDZDWwt3kqoXygzh8+kR2wPX5cFKIQXERERERERERERkZbAXgNzp3q2T78K2p3j23pEmpizpI6Cl9cT1KaM8LzrMdnLwT8MRj8LPS71dXnHpKq0hI8fu5+6qkoS2ndk9G13seeHIpb/awcYEJ8WRnrPGF+XedIMw2DD/nLPiPdN+eSV1zWcCw2wcl7XBEb3SmRQuxj8rAreW4r63bvJmjgRV2ER/h3ak/rmm1hjWv77taUqri1m8rLJ7CrdRaR/JK+d9xqdozr7uqwGCuFFREREREREREREpPn74hEo3QthyXDeI76uRqRJuWscFL2xEXeVg/odBzH86jGl9PNMPx+Z5uvyjkl9TQ0fP/4AFYUFRCQkMu6u+8ndVcVnb24FA7oPSSatR7SvyzxhhmGwObeCBRvzWLAxn9yy2oZzIf5WRnSNZ3TPRM7qEIO/1eLDSuVE1O3YSfbEibhKSvDv1InUN9/AGhXl67JOWQerDzJ52WT2lu8lJjCG10e8TvvI9r4u6zAK4UVERERERERERESkecv+Fta87Nke8zwEhPu2HpEmZDjcFL2+FmeRGwsFxPg/hHnobTDkL2BpOTHPzjUrKdyXSVB4BOPveYiyAoNPX9uM223QoW88Q37fscVNQ28YBlvzK1iwMZ+FG/PJLqlpOBfkZ2F4F0/wPqRjLAE2Be8tVd22bWRPvBZXWRn+XbuQOns21shIX5d1ysqrymPS0knkVOaQEJzArPNmkRbW/B5Gajm/nUVERERERERERETk1OOo/WkaegN6/RE6jPB1RSJNxnC6KHl5Afb8KExUExP1KpYJ70DaQF+Xdtx6nHMeTns9iR0643CEsHDGjzgdbtJ6RHPuNV0wmVtGAG8YBtsPVLJwYz4LN+Wzt6i64VygzcI5XeIY0zORszvFKXhvBWo3byH7uutwl5cT0KMHqbNexxKuB8F8Jbsim0lLJ5FfnU9ySDKzz59Nckiyr8s6IoXwIiIiIiIiIiIiItJ8ffUYFO+CkAQY+ahXu3bbXZQvyCT03FSs4f5e7VvkpFXkU/7qu9SWnAk4iO7wFbY//gcCW9YIXLfLhdniCaNPGzkGe62Tf96/Bnutk8T24Zw/uTsWS/NfF33XwUrmb8xn4cY89hQeCt79rWbO6RzH6J5JDOscS5CforfWonbDBrInTcZdWUlgr16kzHodS2ior8s6ZWWWZTJp6SQKawtJD0vn9fNeJyE4wddl/Sr9JhARERERERERERGR5il3Hax+0bM9+lmvh48VS7OoXnuA+qwK4m8/vcVNhS2t2PZF2D96nKrKhwGI7FdGwLjHoIW9R3/8dAE716zkoj/dS0BwCAB+gVb6X5TBlq9zGTW1Fza/5jtafE9hFQs25LNwUx47D1Y1HPezmjm7YyyjeyVxbuc4gv0Vt7U2NT/8SM7kybirqwns04eUma9iCQnxdVmnrB0lO7h+2fWU1JXQPqI9r5/3OjGBMb4u6zfpt4KIiIiIiIiIiIiIND/OevjvVDDc0OMy6HyhV7uvz6qgalUuAOEXtlUAL82DoxaW3gvfzcIPiIp9H2fn6wkeNdjXlR23XWtX88WbM8Ew2L7qa3qfd+hnuOugJDr3T8DcDEfA7y2qZuHGPBZszGf7gcqG434WM0M6xjC6ZxLndokjNMDmwyqlMdV89x05N0zBXVNDUL9+pLzyMubgYF+XdcraUrSF65ddT4W9gi5RXZg5YiaRAc1/RhCF8CIiIiIiIiIiIiLS/Hz9FBRug+BYGPmEV7s2HG5KP9wJBgSdHkdgpyiv9i9yQg5ugQ+v87zvAQbcTNC594G15S2VkLt9K4teeBoMg57DR9LlrBF8/tZWBoxrT1CYH0CzCuCzi2tYsCmPhRvz2ZJX0XDcajYxuIMneB/eNZ7wQAXvrV31mjXk3HgTRm0twQMH0GbGDMyBgb4u65T1Y8GP3PTZTVQ5qugZ25NXhr9CmF+Yr8s6JgrhRURERERERERERKR5yd8AK6Z7ti98GoKjvdp9xedZOAtrMYfaiBid4dW+RY6bYcDa12HpvTgdEZQaTxI5vh3W3sN9XdkJKd6fw3+ffAinw05Gn34MveJ6Fr68ibxdZZQX1DLuT81j6Yf9pTUs3JjPwk35bNxf3nDcYjYxqH0Mo3smcl7XeCKC/HxYpTSlqpWr2D91KkZ9PcGDB9PmxRcwBwT4uqxT1tr8tdz8xc3UOmvpE9+HGefOINjWcmYkUAgvIiIiIiIiIiIiIs2H0/7TNPQu6HoRdLvYq93b91dS+fV+ACIv7oA5SCNbxYeqi2DuVNi5BJcRSpHpKZz2KMrWRxHT29fFHb+q0hI+fvx+6qqrSGzfiQtu/jPL3txO3q4ybAEWBk/o6NMAPq+slkWb8lmwMZ/1OWUNx80mGNguhlE9Ezm/WwJRwQreTzVVy5ez/5ZbMex2QoYOJfmF5zH7t7xZKFqLlbkruf3L26l31TMgcQDPn/M8gdaWNSOBQngRERERERERERERaT5WPgsHN0FgFFz4jNe7r/gyB9wQ2CuWwG7eHWEvclz2fAmfTIGqAxjmYIoDZ+EsDsYS7k/kJe19Xd0JWfzS01QUFhCZmMTFf/47K/6dyb6NRVhsZkbd1JPY1NAmr8kwDNZklvDq8j0s31nYcNxsgjPbRjOqZyIjuycQE6LA9VRV+cWX5N52G4bDQcjwc2kzfTomPz2I4StfZH/BncvvxOl2MrTNUJ45+xn8LS3v51MhvIiIiIiIiIiIiIg0Dwe3eNaCB7jwKQiJ9fotoiZ0ovLLHEIGJXm9b5Fj4rTDFw/D6hcAMKI7UxL0PPZdDkwBFmKu7YYlrOUFTgDnTJzCkpef5cJb/8L3nxaw89uDmMwmRk7uTnLHyCatxe02WLr1AK8sz2TDT6PeTSbomx7FmJ6JnN89gbhQTTV+qqtYupTcaXeC00no+eeT/PRTmGyaIcVXluxdwj0r7sFpOBmRNoInBj+BzdIyvx8K4UVERERERERERETE91xO+O9N4HZAp1HQfXyj3MbsZyH8/PRG6VvkqIp2w0fXQf56z/4Z11Ju3EjtqoNgMRF9RVds8S1nzeP/L7pNKn/8x3TWf5bDpi/3gwnOvboL6T1jmqyGeqeLT37I5bWvM8ksqgbAz2rmsj5tuH5IBmnRLffrK95VsXgxuX/6M7hchI0aRdITj2OyKjr1lbm753Lf6vtwG25GZ4zm4UEPYzW33O9Hy61cRERERERERERERFqP1c97gsmACBg93TNk1UsMl0HN+gKCTovDZPbdetRyCjMMWP8uLPoLOKohMBLGvkh1VV+qPtoFQOSlHQloH+HbOk/ANx/+i+TO3Ujt3hMAk8lEu9Ni2fJ1Lr3OTaHTmQlNUkdFnYP3vs3mjZV7KaisByAswMpVA9K5emA6saEtc3YBaRzl8+eTd9fd4HYTftFYEh99FJPF4uuyTln/2fEfHl7zMADjO4zn7/3/jsXcsr8fCuFFRERERERERERExLcKtsNXj3u2Rz4Ood4N7SpX7KdiyT5qNxURc003r/YtclS1ZbDgDtjysWc/fTCMmwnhyQSU12NLDCawRwzBp8X5tMwT8cPi+az+4F0sVisTn51JeFw8AGExgUz4ez9sfo0fohVU1PHGqn28uyaLynonAAlhAUwa3Jbf90slxF9RmByu7JP/kv/Xv4JhEH7JJSQ+/JACeB96Z+s7PPndkwD8sfMfuavfXZhNZh9XdfL0m0dEREREREREREREfMftgrlTwWWHDudBr997tXtHQQ0Vy7IACOzRdFNiiwCQvQY+mgTlOWCywDl/g0G3w08jPC3h/sTe2AuTreUFTju/XcWXb70GQP/xf6A4z0xxXiEZvWMBGj2Azyys4vUVmXy0Lhe7yw1A+7gQbhiSwUW9k/GztryvqTS+sg8/JP/v94FhEPG735HwwP2YzHqv+MqsTbN4/ofnAZjYfSJ3nH4HJi/OhONLCuFFRERERERERERExHe+mQG534N/GIx+zrvT0LsNSj/cCS6DgE6RBJ3e8kYaSwvlcsKKp2H5E2C4ITIdxs+GNmfgLK7FnldFUA9PWG1ugtHi3rZ/+xYWvfg0GAa9RlxAUpfhLJyxEcNlcPG000nqENFo996QU8ary/ewZMsBDMNzrE9aJFOGtuPcznGYteSE/IrS99/nwAMPAhD5xz8S//d7W03g29IYhsGM9TOYuXEmADf2upEbe93Yqr4fCuFFRERERERERERExDeKdsOX//Bsn/8PCE/2avdVq/KwZ1di8rcQMa5Dq/rjvjRjZdnw8fWQ/Y1nv+fv4cKnICAMV7WDojlbcBbWYlzmJrhPvG9rPQHF+3OY++TDuBwO2p3Rn27DLmfeCxtwOw0yeseSkBHm9XsahsHXu4p49as9fJNZ3HD83M5xTDm7HX3To7x+T2k9DJeLkjlvUfDUUwBEXX0VcXffrc8EHzEMg+nrpjNnyxwAbj/9dq7rcZ1vi2oECuFFREREREREREREpOn9bxp6Zx20OwdOu9Kr3TuLaqlYug+A8FFtsUb4e7V/kSPa/DHMvx3qy8EvFEZPh56/A8BwuCl+ZyvOwlos4f4ENOJo8cZSXVbKR4/dR111FYkdOzPwspuY9+JGnPUu2nSOZMR1XTFbvDe1t9PlZuGmfGYuz2RrfgUAVrOJsb2TuGFIOzolhHrtXtL6GIZB1VdfUTj9Wep37QIgetJ1xN55pwJ4H3Ebbh779jHe3/E+AHf3u5vLu1zu46oah0J4EREREREREREREWl6a1+DnDXgFwJjXvDqNPQApf/djeFw498+guC+CV7tW+QX6qtgyV3w4z89+8lnwPhZENUW8CyNUPLBDuz7KjAFWIi5thuWsJb3YEhASAhtOnfjQOZuhl/3Fxa9spX6aifxbcO4YEoPrDbvTK1fa3fxwbocXl+RSU5JLQBBfhZ+3zeV6wa3JTki0Cv3kdar5ocfKXjmGWrXrQPAHBZG7M03E3nlFQrgfcTldvHQmof4eNfHmDDx9wF/57KOl/m6rEajEF5EREREREREREREmlZJJnzmWZeXEQ9BRIrXbxF+YVvK5u0h8hJNQy+NLO9H+GgSFO8GTDD4Tjj7brDYGpqUL9lL7cYisJiIvrIrtvhg39V7EixWGxdMnUbZwVIWvLyT6nI7UUnBjJ7aC7+Ak4+cSqvtvLMmizmr91FSbQcgKtiPawamc2X/NCKD/U76HtK61e/aRcGzz1H1xRcAmPz9ibryCqInT8YSHu7j6k5dTreTv638G4v2LsJsMvPIoEcY026Mr8tqVArhRURERERERERERKTpuN0w71Zw1kL6YOgzsVFu45cUQtyUXo3StwjgeS9/8xJ8/hC4HRCWDJe8BulnHdasanUeVV/nAhB1aUcC2kX4oNgTZ7jdbFu1nM6DhmA2WzCZzUTER5HaNYqszcWMvbU3ASG2o3f0G/LKapm1Yi/vf5dNjd0FQJvIQK4fksFlfVII9PPOCHtpvRz5+RS++BLl//2v52fTbCZi/CXETJ2KLUGzofiSw+XgL1//hc+yP8NqsvL4kMc5P/18X5fV6BTCi4iIiIiIiIiIiEjTWfcG7FsBtiAY+yKYvbd+tGEYOItqscUGea1PkSOqPACfTIHMLz37nUd73s9BUb9o6qqoByDs/DSCTotryiq9YsX7b/Pd3A/Z++P3XHjLnzCZTJjMJob8viN11Q4CQ058dPrOg5W8unwP89bn4XQbAHRJDGPK0AxG9UjE6sX15aV1cpaWUvza65S++y6G3TN7QuiIEcTecTv+GRk+rk7qXfVM+2oaX+//GpvZxjNDn2FY6jBfl9UkFMKLiIiIiIiIiIiISNMoy4Zl93u2z72/Yb1sb6n5/iCln+wm7NxUws5NPebrNueW4zYMeraJ8Go90krtWAJzb4KaYrAGwsjHoM818CvLHoSPbIt/h0j8M1reVNg/LJ7Pd3M/BCC1x2n8uCybXuemYLGYMZlMJxzAf7evhFe/2sPn2wsajg3IiGbK2e0Y0iFGS0jIUblraih5+x2KZ83CXVUFQFC/fsTdOY3AXpoFpTmocdRw25e3sSZ/DQGWAJ4f9jwDkwf6uqwmoxBeRERERERERERERBqfYXimobdXQeoA6He9V7t3lddTtjAT3AYm27GPnnW5De76aCNb8yt45rJeXHJ6G6/WJa2Iow6W3QdrZ3r243vApbMhttMvmrrK6zEH2Rreiy1tCnqAnd+u4su3XgNg0ISryN2VwJ4f9lCwr5KR13c/7v7cboPPth1k5teZrMsqBTzPLYzslsCUoe3olRLhzfKllTIcDso++ojCGTNwFRYB4N+5M3F3TiP4rLP0AEczUWWvYurnU/mh4AcCrYHMOHcGfRP6+rqsJqUQXkREREREREREREQa3w9ve6butgbARTO8Pg196Se7Mepc2FJCCTkr+Zivff+7bLbkVRAaYGVIx1iv1SStTME2+PA6KNji2e9/k2c2B1vAL5q6qh0Uvr4Jc4iNmKu6Yg46ufXSfWH/ts0sevFpMAx6jbiAmqru7PnhAGaLiW5nJR1XX3anm7nrc5n5dSa7Czwjlv0sZsb3SWby4AwyYkMa4yVIK2MYBpWffkrhs89hz8oCwNamDbG33UbYqAsxefEzRU5OeX05N312ExuLNhJiC+GV4a/QO663r8tqcgrhRURERERERERERKRxlefC0ns92+fcC9HtvNp97YZC6raXgMVE1KUdMJmPbSRkabWdpz7dAcCdIzoSE+Lv1bqkFTAM+H42fPo3cNZBcCxc/Ap0GHHk5g43xW9vxVlUi8XpxnAaTVzwySven81/n3oYl8NB+779CYwYwfrP9mMywYhru5HS9Zfr3h9JVb2T99dmM3vlXvLL6wAI9bdyef80rh2UTlzYLx9gEDmS6m++oeCZ6dRt3gyAJSqKmBtvJHLC7zD5ndiSCNI4SupKuGHZDWwv2U64fzgzR8ykW3Q3X5flEwrhRURERERERERERKTxGAbMvw3qK6BNX88IYi9yVdopm7cHgLBzUrHFBx/ztc8s20FZjYPOCaFc0T/Nq3VJK1BdDPNugR0LPfvtzoVxr0JI3BGbG26Dkv/swJ5VgSnAQszEbljCWl5AWF5wEJfdQVLHLiR1mcDa+TkAnH1FZ9r3OfJr/7nCynreWr2Pt7/ZR0WdE4C4UH+uPastfzwzlbCAljczgPhG7ZYtFD4znerVqwEwBwURde21RF1zDZaQY/9dL02jqLaISZ9OYk/5HqIConj9vNfpGNnR12X5jEJ4EREREREREREREWk8G/4Fu5eBxf+naegtXu2+bN4e3DVObInBhJ597Ou5b8kr571vswF4YGw3rBZNZSw/k7kcPrkBKvPBbIMRD8KZN/7mMgrlS/ZSu6kILCair+x6XA+ENCcZp/flsvse5eA+E6s/9gTwAy9pT9dBvz0NfVZxNa99ncmH6/ZT73R7+ooJ5vohGYw7PRl/q3d/9qX1smdlUfj881QsWuw5YLMROWECMTdOwRod7dvi5IgOVB9g0tJJZFVkERcYx+vnv05GeIavy/IphfAiIiIiIiIiIiIi0jgq8mHJ3Z7ts++G2E5e7d4wDPzSw6jbVUrkZR0xHWOQbhgGD8zbgtuA0T0T6Z+hUEd+4nLAl/+Alc8BBkR3gEtnQ2Kv37ysanUeVV/nAhB1WUcC2kU0eqne5HI6qKkoJzQqBoCkjp1xG6XY/A/Qc1gbTjsv9Vev3ZxbzivL97B4Uz7un2bf75USwY1DMxjRNQHLMS4PIeIsLKTolVco/c8H4HSCyUTY6NHE3noLfikpvi5PfsX+yv1MWjqJ3KpckoKTmHXeLFLC9P1SCC8iIiIiIiIiIiIi3mcYsHAa1JVD0mkw8Fav38JkMhE6KJngPvGYA479z91z1+fx3b5SAm0W/jaqi9frkhaqeA98NAnyfvDsn341jHwM/H57RLu7zknF51kAhJ2fTlDvo0/Z3pwYbjdLXn6OnK2buOTuB4hL94xebdMpkt//vR+h0b9cu90wDFbvKeaVr/awcndRw/GhHWOZMrQd/TOiMJkUvsuxcVVVUTx7NiVz3sKorQUgeMhg4qZNI6BzZx9XJ79lX/k+rlt6HQU1BaSGpjLrvFkkhiT6uqxmQSG8iIiIiIiIiIiIiHjfpg9hxyLPVN4XvQwW7/452nC6MVk9I9+PJ4Cvqnfy6KJtANx8TnsSwwO9Wpe0QIYBG96HRX8CexUEhMOYF6Dbxcd0uTnASuwNvajZUHhcSyI0F1+/N4ftq5ZjtljYvz0Xi18c0UkhAITFHP7z4XIbLN6cz8zlmWzKLQfAYjYxumciNwxpR9eksCavX1out91O6XvvUfzqTFxlZQAE9OpJ3J13Etyvn2+Lk6PaVbqLyUsnU1xXTEZ4Bq+f9zpxQS3rIaTGpBBeRERERERERERERLyrqgAW/9mzPfQvEN/Vq93XbiumbEEmUeM74J8RcVzXvvj5Lgoq60mPDmLS4LZerUtaoLpyWHgnbPrAs582CC55DcKPHqYbhtEw2tsWF0T4iLTGrLRR/LBoLt/P/xiAAb+7gXWfGvyw7AfGTTud6OSQhnZ1DhcfrtvP6ysyySquASDAZmbCGSlMGpxBSlSQT+qXlslwuSifN5/CF1/AmZcPgF9GBrF33E7o8OGaRaEF2Fa8jeuXXU9ZfRmdIjsxc8RMogO1tMvPKYQXEREREREREREREe9aeCfUlkJCDzjrDq927a51UvrJbtwVdmq3lxxXCL+nsIo3Vu0F4L4xXfG3Wrxam7QwOWvho+ugLBtMFjj7Hhg8DcxHf1+4qh0UvbmZ8JHpBLSPbIJivW/nmpV8+fYsAM4Y/Qe2rgrFXusgsX04YbGeEfDltQ7+uSaLN1ftpajKDkBEkI2rBqRz9YA0okP8fVa/tDyGYVD11VcUTn+W+l27ALDGxxNz81Qixo3DZFVs2RJsLNzIlGVTqHRU0j26O6+OeJVw/3Bfl9Xs6N0sIiIiIiIiIiIiIt6z5RPYNg/M1p+mobd5tfuyhZm4K+xYYwKPa+SxYRg8OH8rDpfBOZ3jOKdzvFfrkhbE7YIV0+Grx8BwQUQqjJ8NKcc2/bXhcFH89lYc+6so+2Q38dP6YLKYG7lo79q/dTOLXnoGDIOuQ89n39Z0aivriUkJYdRNPSmudTB72Q7e+zabarsLgKTwACYNzmBC3xSC/RUvyfGp+eFHCp55htp16wAwh4URc/1kIq+4AnNAgI+rk2P1/YHvmfr5VGqcNZwWdxozzp1BqF+or8tqlvRbUkRERERERERERES8o7oYFv7Js33WNEjs6dXu63aVUvP9QTBB5KUdMNmOfST7sq0H+XpnIX4WM/eN9u70+NKClO+Hj6+HrFWe/e6XwujpnnXgj4HhNij5z07sWRWYAqxEX9W1xQXwhmHwzUfv4XI4aHtaP0oO9qGqtI7wuEC6/6E99y7cyn/X5+JwGQB0ig/lhqEZjOmVhK2FvVbxvfpduyh49jmqvvgCAJO/P1FXXkH05MlYwjV6uiX5Ju8bbv3iVupcdZyZcCYvnPMCQTYtRfFrFMKLiIiIiIiIiIiIiHcs/gvUFEFcVxjyZ6927a53UvqRZ/rikAFJ+Kcfe3hT53Dx0IKtAEwe0pb0mGCv1iYtxI4l8Mn1nnXg/ULgwqeh1+/hONafLl+8l9pNRWAxEXNVF2zxLe+9ZDKZGHvnvaz693sU5nWl7GAdfqE2VrexcO9r3zS065cexZSzMxjWKU5rdMtxc+TnU/jiS5T/97/gdoPZTMT4S4iZOhVbQoKvy5PjtDxnOdO+mobdbees5LN49uxnCbBqBoPfohBeRERERERERERERE7e9oWw+UMwmeGiGWD182r35Yv34SqrxxLpT9j56cd17czlmewvrSUxPICpw9p7tS5pQaz+UFcBSafD+FkQ3e64Lq9alUvVilwAoi7riH9GRCMU2Xjcbhfmn9a79w8KYuCEq3nvmXXYLTCbSkoyKwAY0TWeKUPb0SetZa51L77lLC2l+LXXKX33XQy7HYDQESOIveN2/DMyfFydnIhlWcv4y9d/wel2ck7KOTw19Cn8LN79jG+NFMKLiIiIiIiIiIiIyMmpKYEFd3i2B94Kyad7tXvDZeAqrwcgcnwHzP7HPg39/tIaXv5qNwB/vbALQX76s/gpq90wuPwDaDv0uB8Sqc8so2xBJgBhI9MJ6h3XGBU2GqfDwSeP309az9PpPWocCzbmM3N5JnuqKgkLMlHpB5f1bsMNQzNoH6f1neX4uWtqKHn7HYpnzcJdVQVAUL9+xN05jcBevXxcnZyoBZkLuHflvbgMFxekX8A/Bv8Dm9nm67JaBP1rQ0REREREREREREROzqd/haqDENMRzr7H692bLCair+qKPacS/9Sw47r2Hwu3Ue900z8jitE9E71em7QwHUac0GV+qWEEnRaHyWYmdGgbLxfVuAy3m09feY7szRvJ3rGD59fYWGV44qFgfwvjz0zl2rPakhge6ONKpSUyHA7KPvqIwhkzcBUWAeDfuTNxd04j+KyztJRBC/bxro95YPUDGBhc1O4iHhz4IBbzsT8Ed6pTCC8iIiIiIiIiIiIiJ27np7DhX4DJMw29rXHWiDWZTMcdwK/cVcTizQewmE08MLabwiA5YSarmcjLOoJBi3sfLX1rNttXLceNmezgCxhYGkpQqJveF6ZzxZlphAdpVKscP8MwqFyyhMLnnseelQWArU0bYm+7jbBRF2Iym31coZyMf23/F49++ygAEzpN4K9n/hWzSd/T46EQXkREREREREREREROTF05zL/dsz1gKqT082r39dkVVK/JJ2J0BubjDAodLjcPzN8CwJX90+iccHwBvoir2kH1t/mEnp2CyWzyhO8tKH/PKanh7dffJuCHBQBkhZ9LF5NnTe7bxnWl+8AkX5YnLVj1N99Q8Mx06jZvBsASFUXMjTcSOeF3mPy0VnhLN2fzHJ5Z9wwAV3a9kj+f8ecW9/BRc6AQXkREREREREREREROzKd/g8o8iMqAYX/zateGw03phztxFtRiDrASMbbdcV3/1up97C6oIjrYjztGdPRqbdL6GQ4XxW9vxZ5VgavSTuRF7X1d0jHbmlfBzK/3sG31Cs47uBSAktghdHH2AGDwhI4K4OWE1G7ZQuEz06levRoAc1AQUddeS9Q112AJCfZxdXKyDMNg5saZzFg/A4DJPSZzy2m3KIA/QQrhRUREREREREREROT47f4cfnyHhmno/YK82n3F59meAD7URtjw1OO6tqCyjuc+2wXAX0Z2IjxQ023LsTPcBiX/3oE9qwJTgJWQ/om+LumoDMNgTWYJry7fw/KdhYQ6Krjy4GeYgPAOZ+Ff2AdM0G9MW3oOa1lr2ovv2bOyKHz+eSoWLfYcsNmInDCBmBunYI2O9m1x4hWGYfDCjy8wa9MsAG457Rau73m9j6tq2RTCi4iIiIiIiIiIiMjxqa+E+bd5tvtdD2kDvdq9fX8llV/nABB5cfvjnor+icU7qKp30qtNOJf1SfFqbdL6lS/aS+3mYrCYiLmqC7b45jvC1+02WLr1AK8sz2RDThkAZhMM6dOJ7mdeTfmWTZQU9MVkMtHrnBTOuDDdp/VKy+IsLKTolVco/c8H4HSCyUTY6NHE3noLfin63dpaGIbBk989yT+3/ROAP53xJ67udrWPq2r5FMKLiIiIiIiIiIiIyPFZdh+U50BEGgy/36tdG043pR/uAjcE9owhsFvMcV2/LquUj37YD8ADY7thNmsaXTl2latyqVqZC0DUZR3xz4jwbUG/ot7p4pMfcnnt60wyi6oB8LOauaxPG64fkkFadDBwOhu/7MeKf++i84AEBl3aXtNKyzFxVVVRPHs2JXPewqitBSB4yGDipk0joHNnH1cn3uQ23Dyy5hE+2PkBAPeeeS8TOk/wcVWtg0J4ERERERERERERETl2mcvh+zc82xe9BH7eHSVc+VUOjgPVmIOPfx14l9vg/nmbAfjdGW04LTXSq7VJ61a7pYjyBZkAhI1MJ6h3nI8r+qWKOgfvfZvNGyv3UlBZD0BYgJWrBqTzh96xbP7kn8T5pTW07zkshcjEYJI7RGDSAylyFG67ndL33qP41Zm4ysoACOjVk7g77yS4Xz/fFide53Q7uX/1/czbMw8TJh4c+CDjOozzdVmthkJ4ERERERERERERETk29VUw7xbP9hnXQtshXu3ecLip/v4gABFj22EJ8Tuu6//9XQ6bcysIDbDyl5HHPlrTaXdh9bMc172klbKYCe4TR+jQ5rVuekFFHW+s2se7a7KorHcCkBAWwKTBbfl9v1QCzAYfP3ofOVs3Ubw/l0vueYSAYM8yDimdo3xZurQAhstF+bz5FL74As68fAD8MjKIveN2QocP1wwKrZDD7eCeFffw6b5PsZgsPHrWo1yYcaGvy2pVFMKLiIiIiIiIiIiIyLH5/CEoy4LwFBjxkNe7N9nMxN96GjU/FhDYM/a4ri2rsfPUp9sBuGN4R2JC/I/tuoM1fPTUOvqOSqfH0DYaLXwKC+wWQ/zNgVhjg5pN6JhZWMXrKzL5aF0udpcbgHaxwdwwtB0X907Gz2rGcLtZ+MJT5GzdhC0gkJrqM/nv9B8Yc2tvgsOP7edATk2GYVD11VcUTn+W+l27ALDGxxNz81Qixo3DZFWM2BrZXXb+tPxPfJnzJVazlaeHPM25aef6uqxWRz89IiIiIiIiIiIiInJ0Wath7UzP9pjnwT+0UW5jDrIRMij5uK+bvmwnpTUOOsaHcOWAtKNf8JOyghrcLoN9m4rpcXbzGv0sjc9V7cCwu7BGBgBgS/Du8gonakNOGa8u38OSLQcwDM+xPmmRTBnajnM7x2H+2cMiy//5Bju+WYHZYiU4Zhx11REEucFiMfuoemkJan74kYJnnqF23ToAzGFhxFw/mcgrrsAcEODj6qSx1DpruePLO1iVtwo/sx/PDnuWIW28O6uNeCiEFxEREREREREREZHfZq+BuVM926ddCe29O2LOUVCDI7eKwN6xJzQCeWteBf9ckwXAA2O7YTuO8DG9Rwx/fOBM3C6j2Yx+lqZhOFwUv70VZ0ktMdd0xy85xLf1GAZf7yri1a/28E1mccPxczvHMeXsdvRN/+W08usW/pd1C/8LQHjiGGqrEwiNDmDsrb0JCLE1VenSgtTv2kXBs89R9cUXAJj8/Ym68gqiJ0/GEh7u4+qkMdU4arj5i5v57sB3BFoDeeGcF+if2N/XZbVaCuFFRERERERERERE5Ld9+Q8oyYTQJDj/H17t2nAblH64E3t2JWEldYSdm3p81xsGD8zbgtuAUT0TGdgu5rhr0JTdpx7DbVDy7x3YsyowBVgxWX33AIbT5WbhpnxmLs9ka34FAFazibG9k7hhSDs6JRx51omda1by1duzAIhMHkFtdVsCw/wYe1tvQiL1npbDOfLyKHzxJcrnzgW3G8xmIsZfQszUqdgSEnxdnjSySnslN312E+sL1xNsC+blc1/m9PjTfV1Wq6YQXkRERERERERERER+Xc53sOZlz/aY5yDAuyMlq1bnYc+uxORvIahP3HFfP29DHmv3lRBos/C3C7sc83UrP9hFm86RpPc4/tBeWr7yRXup3VwMFhMxV3XBFt/009DX2l18sC6H11dkklNSC0CQn4Xf903lusFtSY4I/M3rY1LbEhYbj9nalprq7gQEWxl7a28i4oKaonxpIZylpRS/9jql776LYbcDEDpiBLF33I5/RoaPq5OmUFZXxg2f3cDW4q2E+oUyc/hMesT28HVZrZ5CeBERERERERERERE5MkcdzL0JDDf0/D10PN+r3TuLa6n4dB8A4Re2xRpxfOsQV9c7eXTRNgCmDmtH0lFCy//Zt7GIDZ/nsPHL/VxwQyLJHVPxC1RweaqoXJVL1cpcAKIu64h/RkST3r+02s47a7KYs3ofJdWeUDQq2I9rBqZzZf80IoP9jqmfqKRkLvrzoyx6ZSc2t4tRU3sR08a3U+pL8+GuqaHk7XconjULd1UVAEH9+hF35zQCe/XycXXSVIpri5m8bDK7SncR6R/Ja+e9Rueozr4u65SgEF5EREREREREREREjmz541C0E0LiYeRjXu3acBuUfrQLw+HGPyOc4L7HPx3yi1/s5mBFPalRQUwafGwjOu11Tpb/awcA3c6KYukrj2Lx8+OSux8gKqnNcdcgLUvtliLKF2QCEDYynaDexz/7wonKK6tl1oq9vP9dNjV2FwBtIgO5fkgGl/VJIdDPctQ+KouLKMnbT1qP3gDEpcUz/i/hlBfWkthO63kLGA4HZR99ROGMGbgKiwDw79yZuDunEXzWWZhMvlt6QZpWQU0Bk5ZOYm/5XmICY5h13izaRbTzdVmnDIXwIiIiIiIiIiIiIvJLuT/Aqhc826OmQ1CUV7uvXnuA+sxyTDYzkeM7YDIfXzCUWVjF7JWeMPW+0V0JsB09wARYMzeTqtJ6QqP9Kc2dT1VpCZFJbQiN0rT0rZ1hGFR+nQsGBJ+ZQOjQpnnoYufBSl5dvod56/Nwug0AuiSGMWVoBqN6JGK1mI+pn7rqKj5+7H5K8vYz7Jo76H3e2QCERgUQGnV8s0hI62MYBpVLllD43PPYs7IAsLVpQ+xttxI2ahQm87G9z6R1yKvKY9LSSeRU5pAQnMCs82aRFpbm67JOKQrhRURERERERERERORwznqYOxUMF3QfD11Ge7V7d52T8sV7Ac9oZGv0sU0j/z+GYfDg/K04XAbDOsVybpdjG818ILOcTV/tByCty0G+n78Gs8XKqFv+hC1AIWZrZzKZiLm2O1Urcwk9O6XRRwR/t6+EV7/aw+fbCxqODciIZsrZ7RjSIea47u90OJj79CMU5WThFxTOqo/LCYkuoH2fphvJL81X9TffUPDMdOo2bwbAEhVFzI03Ejnhd5j8jm15A2k9siuymbR0EvnV+SSHJDP7/NkkhyT7uqxTjs8fe3n55Zdp27YtAQEB9OnThxUrVvxm+3fffZdevXoRFBREYmIiEydOpLi4uOH8nDlzMJlMv/ivrq6usV+KiIiIiIiIiIiISOvw9dNQsBWCYuCCp7zevTnASszVXQk6LY6QAUnHff1n2wpYvrMQP4uZ+8Z0O6Yw0+Vy8+U/t4MB6T0srF/6LgBn/f5K4jPaH3cN0jKZ/S2EnZuKydI4AbzbbbB0ywHGv7Kay179hs+3F2AywQXdE5g7dRD/ur4/QzvGHlcAb7jdLJ4xnf1bN2OxBYBlLBBKZbFyj1Nd7ZYtZF97HdkTr6Vu82bMQUHE3Hwz7ZYuJerKKxTAn4IyyzK5Zsk15Ffnkx6Wzlsj31IA7yM+HQn/73//m9tvv52XX36ZQYMGMXPmTC644AK2bt1KamrqL9qvXLmSq666imeffZYxY8aQm5vLlClTmDRpEp988klDu7CwMHbs2HHYtQF6ilFERERERERERETk6PI3wsrpnu1RT0NwdKPcxj8jAv+MiOO+rs7h4uEFWwG4bnBb2sYEH9N1e9cXUZJXjX+wmeKsj3HW15PavSdnjB533DWI/H92p5u563OZ+XUmuwuqAPCzmBnfJ5nJgzPIiA054b6X/3M2O79ZgclswRwwGrM1ltNHpnHaeb/MUeTUYM/KovD556lYtNhzwGYjcsIEYm6cgjW6cX5nS/O3o2QH1y+7npK6EtpHtOf1814nJlBLrfiKT0P46dOnc9111zFp0iQAnnvuOT799FNeeeUVHnvssV+0X7NmDenp6dx6660AtG3blhtuuIEnn3zysHYmk4mEhITGfwEiIiIiIiIiIiIirYnLAXNvArcTuoyFbt4NqF0VdgyH67inn/+517/OJLukhoSwAG4eduwj2Nv3icNs6cH2lfPYtmIPAcEhjJw6Tesky0mpqnfy/tpsZq/cS365Z2R6qL+Vy/unce2gdOLCTm6A4PcLPmHdwrkA2ILOx2xNpdvgJPpflHHStUvL4ywspOiVVyj9zwfgdILJRNjo0cTeegt+KSm+Lk98aEvRFq5fdj0V9gq6RHVh5oiZRAZE+rqsU5rPQni73c66deu4++67Dzt+3nnnsXr16iNeM3DgQP72t7+xaNEiLrjgAgoKCvjwww8ZNWrUYe2qqqpIS0vD5XLRu3dvHn74YU477bRGey0iIiIiIiIiIiIircLKZ+HAJgiMglHPeLVrwzAo/WQX9bvLiLysI0E9Y4+7j9yyWmZ8tRuAey7sTLD/8f2JO6N3LAltx1NfvZ9uZw8nNEojBOXEFFbW89bqfbz9zT4q6pwAxIX6c+1ZbfnjmamEBdhO+h6GYVC8PxsAv+AhmG2daX9GHEP+0KnR17OX5sVVVUXx7NmUzHkLo7YWgOAhg4mbNo2Azp19XJ342vqC9dz42Y1UOaroGduTV4a/QphfmK/LOuX5LIQvKirC5XIRHx9/2PH4+HgOHDhwxGsGDhzIu+++y4QJE6irq8PpdDJ27FhefPHFhjadO3dmzpw59OjRg4qKCp5//nkGDRrEhg0b6NChwxH7ra+vp76+vmG/oqLCC69QREREmgN9zouIiLRO+owXEWkEB7fA8p9mHb3gSQiJ82r3tRsKqdtWAhYTtrigE+rjHwu3Uudw069tFGN7Hdta8vu3lxCVFEJQmGdt5KDwCC7+y30KMZux5vw5n1VczWtfZ/Lhuv3UO90AZMQEc/2QDMadnoy/1eK1e5lMJs674Vbq69LI3hZKardohl/TFbNZ791Thdtup/S99yh+dSausjIAAnr1JO7OOwnu18+3xUmzsDZ/LTd/cTO1zlr6xPdhxrkzCLYd2zIt0rh8Oh098It/6BiG8av/+Nm6dSu33nor9913H+effz75+fn8+c9/ZsqUKcyePRuA/v37079//4ZrBg0axOmnn86LL77ICy+8cMR+H3vsMR588EEvvSIRERFpTvQ5LyIi0jrpM15ExMtcTvjvTeB2QKcLocel3u2+0k7ZvD0AhJ2Tii3h+AOCVbuLWLTpAGYTPDi22zGF6NXl9Sx5bTOGYTDokiC6Du4L/PLv0tK8NMfP+c255byyfA+LN+XjNjzHeqVEcOPQDEZ0TcDixWC8oqiAkKhozGYLJpOJMbdexMav9tP1rCQsVi2fcCowXC7K582n8MUXcOblA+CXkUHsHbcTOny4focJACtzV3L7l7dT76pnQOIAnj/neQKtJ77ci3iXyTAMwxc3ttvtBAUF8cEHHzBu3KF1hW677TbWr1/P8uXLf3HNlVdeSV1dHR988EHDsZUrVzJ48GDy8vJITEw84r0mT57M/v37Wbx48RHPH+mpupSUFMrLywkL03QNIiLiOxUVFYSHh+sz6SToc15ERJorfc6fHH3Gi4h42Yrp8PmDEBAOU9dCaIJXuy9+dxu1m4qwJQYTd3NvTJbjCxIdLjcXPr+CXQVVXD0gjQcv6n5M1336+mZ2rysgKGQPJTlz6T5sBOfdcGujBlj6jD95zeVz3jAMVu8p5pWv9rByd1HD8aEdY5kytB39M6K8/l6qKCrkX3//E7Gp7Rh1+5/xD1SgdioxDIOqr76icPqz1O/aBYA1Pp6Ym6cSMW4cJqvPx9ZKM/FF9hf8afmfcLgdnN3mbJ4++2n8Lf6+LuuUcKyf8z77afXz86NPnz4sW7bssBB+2bJlXHTRRUe8pqamBuv/+wVjsXimdvm1ZwkMw2D9+vX06NHjV2vx9/fH319vTBERkdZIn/MiIiKtkz7jRUS8qHAHfPWYZ3vk414P4Gs2FVG7qQjMEHlpx+MO4AHe/iaLXQVVRAX7MW1Ep2O6Zt/GInavK8Awyqgo+BSAiPhEjSBtAXz9Oe9yGyzenM/M5Zlsyi0HwGI2MbpnIjcMaUfXpMZ5EKCuuoqPH7ufqpJi6qpMLHtjExfccIZGv58ian74kYJnnqF23ToAzGFhxFw/mcgrrsAcEODj6qQ5WbJ3CfesuAen4WRE2gieGPwENovN12XJ/+PTR2amTZvGlVdeyRlnnMGAAQN47bXXyM7OZsqUKQDcc8895Obm8vbbbwMwZswYJk+ezCuvvNIwHf3tt99Ov379SEryrP/z4IMP0r9/fzp06EBFRQUvvPAC69evZ8aMGT57nSIiIiIiIiIiIiLNktsFc6eCyw7tR0CvP3i3+xoHZXN3AxA6NAW/5JDj7qOwsp7nlu0E4M/ndyI86OhBg73OyfJ/7cAwXNjMn1FfX0ebrt3pe9H4476/nDrqHC4+XLef11dkklVcA0CAzcyEM1KYNDiDlKigRru3025n7tOPULw/G4stFEvgxRTlOKitdBASqQcPW7P6XbsoePY5qr74AgCTvz9RV15B9OTJWMLDfVydNDdzd8/lvtX34TbcjM4YzcODHsZq1gwJzZFPvysTJkyguLiYhx56iPz8fLp3786iRYtIS0sDID8/n+zs7Ib211xzDZWVlbz00kvceeedREREcM455/DEE080tCkrK+P666/nwIEDhIeHc9ppp/H111/Tr1+/Jn99IiIiIiIiIiIiIs3amldg/3fgHwZjngcvjxI3+VkI7pdA3bYSws5NPaE+nliyncp6Jz3bhPO7M1KO6Zo1czOpKq3HYv6eqpJs/IODuWDqnZjNlhOqQVq38loH/1yTxZur9lJUZQcgIsjGVQPSuXpAGtEhjRuCG243i2dMZ//WzZgt/lgCLiYwNJqxt/VWAN+KOfLyKHzxJcrnzgW3G8xmIsZfQszUqdgSvDsjibQO/9nxHx5e8zAA4zuM574B92E2aaaM5spna8I3Z1qzR0REmgt9JnmfvqYiItJc6DPJu/T1FBE5AcV74JWB4KyDMS9An6sb7VaGy31C09D/kF3KJS+vBuCTmwZyWmrkUa85sLecj55ch9u+H0f1BxiGwejb76LTgMHHff8Toc8k72usr+mB8jpmr8zkvW+zqba7AEgKD2DS4Awm9E0h2L9pxjF++dbr/LBoLpgs2ILHERDalovvOI24NL1/WiNnaSnFM1+j9L33MOyehz5CR4wg9o7b8c/I8HF10ly9s/UdnvzuSQD+2PmP3NXvLgXwPtLs14QXERERERERERERER9xu2HuzZ4APuNsOP0q73Zvd2GymBqC9xMJ4N1ugwfmbQHg0j5tjimAB4hKCKbbWQlsWvYmhmHQbei5TRbAS8uwu6CSmcsz+e/6XBwuzzjFTvGh3DA0gzG9krCdwPv1RJUdPMDGzxYDYAs6H7/AdEbd2FMBfCvkrqmh5O13KJ41C3dVFQBB/foRd+c0Anv18nF10pzN2jSL5394HoCJ3Sdyx+l3YPLyzDXifQrhRURERERERERERE41370O2avBFuwZBe/lP+aXz8/EnltJ5GWd8EsMPqE+/vN9Dhv3lxPqb+WukZ2P+Tq/QCtnX96VtK63s+aTf3POxBtO6P7S+mzOLef5z3exbOvBhmP90qOYcnYGwzrF+STUiohP4Pwb/86y2V9h8e/C+ZO7kdzp2B44kZbBcDgo++gjCmfMwFVYBIB/587E3TmN4LPOUpgqv8owDGasn8HMjTMBuKnXTUzpNUXvmRZCIbyIiIiIiIiIiIjIqaRkL3z2gGd7xIMQmebV7ut2lVL93QEAjDrnCfVRXuPgyU93AHDb8A7Ehh59Xez6Ggd+gdaGcKLtaX1I7326wgppsP/r1VzzzP1cGBQJCYm069GBlPAMbAUO7NZKbElJmIOCmqQWt9uF2WwBoPPA0wiLTaeqtJ62vWKb5P7S+AzDoHLJEgqfex57VhYAtjZtiL3tVsJGjcJk1lTi8usMw2D6uunM2TIHgNtPv53relzn26LkuCiEFxERERERERERETlVuN0w7xZw1ED6YDjDu3/Qd9e7KP1oFwDBAxLxbxt+Qv1MX7aDkmo7HeJCuHpg+lHbG26DRa9swmkvY8C4drTp7HmwQAG8/FzfgHoK6iuJqq+E0mzY9i0H/l8bS2QktuRkz39JSYf/PzkJS0jISddRmLWX+c8+znk33EGbLp5ZHpI6aPR7a1L9zTcUPDOdus2bAbBERRFz441ETvgdJj8/H1cnzZ3bcPPYt4/x/o73Abi7391c3uVyH1clx0shvIiIiIiIiIiIiMipYt2bsG8F2IJg7Avg5ZGY5Uv24iqrxxLpT/jItifUx7b8Ct5Z4xk1+uDYbse0Pve21fnk7izBUf0fPt5eythp95De6/QTur+0XpHnjSCoYwccubk48vJw5Ob9bDsXd2UlrtJSXKWlDeHp/2cOD8eWnIQtKQm/I4T15rCw33z4o6KogI8fu5+q0hI+fuIVLv/HP4hOPvlgX5qH2i1bKHxmOtWrVwNgDgoi6tpribrmGiwhJ7Y0h5xaXG4XD615iI93fYwJE/cNuI9LO17q67LkBCiEFxERERERERERETkVlGXDsvs82+feB1EZXu2+fm851d/kAxA5vgNmf8tx92EYBvfP24LbgAt7JDCwfcxRr6kur2f1x7tx1X2L25GH1RpEZGLycd9bWj9zcDCB3boR2K3bEc+7KioaAvn/H9A7cnNxlZfjLi+nvryc+q3bjnyPkJAjj6JPSsIVGcHHz/6DqtISTJZozH7ns+u7gwrhWwF7VhaFzz9PxaLFngM2G5ETJhBz4xSs0dG+LU5aDKfbyd9W/o1FexdhNpl5ZNAjjGk3xtdlyQlSCC8iIiIiIiIiIiLS2hkGzLsV7FWQ0h/63eDV7t12F6Uf7gQguF8CAe1PbGrt+RvzWbu3hACbmb+N6npM16z49y5qK7Jx1q0BYPikmwiPiz+h+8upzRIWhiUsjIDOnY943lVVjSMv9/CgPu9QWO8qLsZdVUX9jh3U79hx+LUmE2szEikNCcRkCsYv5BLSgstpX/glFYt3NoT1luhoLaPQgjgLCyl8+WXKPvgQnE4wmQgbPZrYW2/BLyXF1+VJC+JwOfjL13/hs+zPsJqsPD7kcc5PP9/XZclJUAgvIiIiIiIiIiIi0tr9+A5kfgnWALhohtenoTdqnZhD/LA43IRfeGLT0FfXO/nHwq0A3HR2e5IjAo96zd6NRexel4OjejFg0OWss+ly1tkndH+Ro7GEBGPp2JGAjh2PeN5dW+sJ5f/faHp7bi7f1JZSGmgD/LCFXkJsSSYZK2ZRuNh9WB8mf/8jjqL/3zr11tgYTF7++ZXj56qspHj2bEreehujthaA4CGDiZs27Vcf4hD5NfWueqZ9NY2v93+NzWxj+tnTOTvlbF+XJSdJIbyIiIiIiIiIiIhIa1aeC5/+zbM97G8Q097rt7CE+xN7Q09cpXWYA07sz84vfbmbgxX1pEYFcf2Qo0+Vb6918vW/duCo+RLDXU5YbDznXnfjCd1bxBvMgYH4t2uHf7t2hx3/fsEn5L8zGzBjCxlLUnIcQ8814z5r8mGj6Z0HD2LU12Pfuxf73r1HvIfJZsOalHhYQP/ztemt8fGYLMe/FIQcG7fdTul771H86kxcZWUABPTqSdyddxLcr59vi5MWqcZRw21f3saa/DUEWAJ4ftjzDEwe6OuyxAsUwouIiIiIiIiIiIi0VoYBC26H+gpIPgMGTG20W5nMJqzRRx+9fiR7i6qZtSITgL+P7kqA7eghYk2FHbczE7d9KyaTmQtvvhP/oOATur/bbseorcUSHn5C14v8lp7DR7Ju4Urq69uR2L4bY+44Db8jPKxi2O04Dh781TXpHQcPYjgcOLKycWRlH/lmViu2+PiGkfOHjaZvk4wtPh6TzdbIr7j1MVwuyufNp/DFF3Dm5QPgl5FB7B23Ezp8uJYQkBNSZa9i6udT+aHgBwKtgcw4dwZ9E/r6uizxEoXwIiIiIiIiIiIiIq3Vhvdh11Kw+P00Db13R8iWL92HYXcTdl4aZr8T7/uh+VtwuAyGdoxleJe4Y7omIj6IPz54GV++XUVYdBjJnY9tDfkjOfjww1R/u5Y2L75IQKcjTzUucqL8AgK5ZvrjrP54DwMuanfEAB7A5OeHX0rKr64lbjidOA8exJGXhz33CGvT5+eDw9EQ2h+R2Yw1Ph5bctIRR9NbExMx+/l566W3eIZhUPXVVxROf5b6XbsAsMbHE3PzVCLGjcNkVcwmJ6a8vpybPruJjUUbCbGF8MrwV+gd19vXZYkX6beDiIiIiIiIiIiISGtUeQCW3OXZPvtuiPPuOsX23Coqv8oBN/hnhBPYNfqE+vl820G+3FGIzWLi/jFdj2tEqX9QACOn3IhhGCd0b4DSf/+Hsg8+BLMZZ2EhKIQXL8jevIHcHdvof8kETCYT/oE2hl1+cj+DJqu1YYR7UN9fjpY1XC6cRUWHRs7//9H0eXkYdjvO/Hyc+fnUsu4INzFhjY09bB36Q9ue4N4cEHBSr6OlqPnhRwqeeYbadZ6vkzksjJjrJxN5xRWnzNdAGkdJXQk3LLuB7SXbCfcPZ+aImXSL7ubrssTLFMKLiIiIiIiIiIiItDaGAQumQV05JPaGgbd5t3unm9IPdoIbAnvEnHAAX+dw8eD8rQBce1ZbMmJDjnrNj0uzKcndxZA/DsHm75lW+0Sngq758UcOPPIIALG3307IWYNOqB+RnyvYl8ncp/+BvbaG4lw3o2/9Y5Pc12SxeKaij4+H00//xXnD7cZVXNwQyNv/F9bn5TWMpjdqa3EWFOAsKKB2/foj3scSHX1YKH/YaPqkJMzBJ7YsRHNRv2sXBc8+R9UXXwBg8vcn6soriJ48WUtWyEkrqi1i0qeT2FO+h6iAKF4/73U6Rurhr9ZIIbyIiIiIiIiIiIhIa7P5I9ixEMw2uPhlsHj3T8GVX+XgOFCNOchKxEXtTrifWSsyyS6pIT7Mn1vO6XDU9qUHqln90Srqyv5F9uYFXP6PR/ELOLF16J2FheTedjs4HISefz7RkyedUD8iP1dRVMDHjz+AvbYGkzWZ/L0JVJfXExzu7+vSMJnNWGNjscbGEti79y/OG4aBq7T019ekz83FXVODq7gYV3ExdRs3HvE+loiII69H/9O2JTS0kV/piXHk5VH44kuUz50LbjeYzUSMv+T/2Lvv6KiqvY3j36npvYdA6L1XRVCRZsVyr12v+tpQwd4b9ooNULC3q9feOwiCKAJShdB7Qnrv0877x0AgAhJgkkl5PmuxPJlzZu/fjJB9kmf23sRedx22xER/lyfNQFZ5Flf8dAXbSrYRHxTPq2NfpX1Ee3+XJfVEIbyIiIiIiIiIiIhIc1KWC9/d5j0+9jZI8O0St86sckrm7AAgclwHLKGHt3/0zqJKXpyzCYC7T+5GaMA//7ra8BjMfmcl1SXfAB7iWidiCzi8JaENh4P0G2/ClZODvWMHkh599LBn04vsVllWyqePTaK8sACTOYbgyDM5dcKARhHA14XJZMIaHY01OpqgXr32OW8YBp7i4ppZ9K6a2fQ7a8J6T0kJ7qIi3EVFVK1evd9+zOHh+yxxv/dsenNERIP+e3QVFpL/8isUvv8+hsMBQNjo0cTddCMB7RWQim+kl6ZzxU9XkFGWQXJIMq+NeY3W4a39XZbUI4XwIiIiIiIiIiIiIs3Jd7dCZQEk9ILhN/u0acNtUPDJenAbBHaLJqhP3GG39eh3a6h0uhncNppxfZIPen3abzvZ8dcXGJ5iQqNiGXXldYcd1GU/8SSVS5ZgDg0lZepULKFNe/ls8T+Xw8GXTz9CQcYOMIUSEHEWJ187iKQOzWf5cpPJhCUyEktkJIHdu+/3Gndp6V6z5/edTe8uKsJTUkJ1SQnVa9futw1zSEjtWfS796Zv5T22REX5JKT3VFRQ8M475L/2Op6yMgCCBw8m/pabCerT54jbF9lta/FWLv/pcnIqcmgT1obXxrxGUmiSv8uSeqYQXkRERERERERERKS5SPsS0r4AkwVOnwYWm0+bd2aX48qtxBRoJerMjocdhP2+KY9vV2ZiNsED43octJ3y4mrmvvcdbsdqwMQp199KYMjB94/fn6LPPqfw/fcBSH76KQLatTusdkR2MwyD76c9Q8ba1WAKwB52JmOvPJo2PWL8XVqDs4SFYenShcAuXfZ73lNe7g3lD7AnvTsvD095OdUbNlC9YcN+2zAFBXnD+eTkmmB+9yx6a3Iy1thYTGbzAWs0nE6KPv2U3BdfxJ2bB0BA167E33IzIcOGaVUM8akNhRu48qcrya/Kp31Ee14b8xpxwYf/ATZpOhTCi4iIiIiIiIiIiDQH5fnw7S3e42E3QXJfn3dhTw4l4eYBuHIqsIQf3hLbTreHB77yLlN94ZBUuieHH/Q5s99eRGXRDwAMPv3fpHTveVh9V/61iqwHHgAgdsIEwkaMOKx2RPZmMpmIatUdWIgtZBwn/GcYHQfE+7usRskcEkJAp04EdOq03/OeykqcmZn7zqLf9V9XTg5GZSWOTZtwbNq03zZMdvteIX2rWkG9MyuLvClTcWzbBoAtJYW4G64n/JRT/jG4Fzkca/LXcNXMqyiqLqJLVBdeHv0yMUEt78M5LZVCeBEREREREREREZHm4Ic7oDwX4rrBcbfXWzfWiACsR7DH9bsLtrE+u4yoYBu3jOl80OuLcyvYtPgjMKqJad2BoedceFj9ugoKSL/+egyHg9ARI4i99prDakdkf4adezqBYZ0wW0PoMbyVv8tpssxBQQS0b3/Avdg9DgeuzMyaYP7vs+ld2dkYDgeOrVtxbN16wH4s0dHEXnMNUeeeg8lur6dXIy3ZytyVjJ85nlJnKT1jejJj9AwiAprP9hRycArhRURERERERERERJq6td/BXx+DyQxnvAjWww/J96d8STbmUBtBXaKPqJ28smqem7UegNvGdiUy+ODhV0RcMKffMpE5b7/E6bfchsV66L/WNlwuMm66GVdmJva2bUl+6knNepUjtnnZYhLadyIkIhKAgSfvf5908R2z3Y49NRV7aup+zxtOJ87sbJzp+86id2ZkYDgcRJ57LtGXXoolNKSBq5eW4s+sP7nu5+uocFXQL74fL418iVD74W2hIk2XQngRERERERERERGRpqyyEL65yXs8dCK0GuDT5l35lRR9sRHD6SH2ip4Edow67Lae+mEtpVUuerYK59xBrev8vHZ9O9O2z3OHvVdzzuRnqFi4EHNwMCnTpmIJCzusdkR22/bXcr546hEstggufuIZopO1x3NjYLLZsKekYE9J8Xcp0kIt2LmA62dfT5W7iiGJQ5hywhSCbcH+Lkv8QB/1ExEREREREREREWnKfrgbyrIgphMcf7dPmzY8BoWfbsBweghoH0FA+8jDbmv5jiI++jMdgAfH9cRi/udAPWNDDqvmLq35+nAD+OJvvqXgrbcASHricQI6djysdkR2y9m6mS+efgTD48bjiWXtH4X+LklEGoF56fOY8PMEqtxVDGs1jGkjpymAb8E0E15ERERERERERESkqdowE1a8D5jg9BfBFujT5ssXZ1G9uRiTzUzUvzphOkhwfiAej8GkL1cBcFb/VgxI/efZ9G6Xh6+emUpF4XLS087lxGsuOqx+q9auJfPeewGIueoqwseMOax2RHYryc3hk0cn4aquwmRNof2gCxgyTh/sEGnpZm6bye3zbsflcXFC6xN4+rinsVsOvuWKNF+aCS8iIiIiIiIiIiLSFFUVw1fXe4+PuhbaDPFp866iKoq/2wJA+Ni2WGOCDrutj5fsYEV6MaEBVu48qetBr5/56ldUFC4DDDoO7HZYfbqLikifMBGjqoqQYcOIu+H6w2pHZLfKslI+evg+KksKMZljaN3zIk6+ph8Wq6IWkZbs283fctvc23B5XJzU9iQmHz9ZAbwohBcRERERERERERFpkn66F0p3QnR7OOFenzZtGAaFn23EqHZjTw0ndGjyYbdVXOnkqR/WAXDjqE7Eh/3zbP2MdTtYPfe/AHQYOJaOgw59j3vD7Sbj1ttwpqdjS0mh1eSnMVksh168yC5ORzWfPfYgxdkZYAolvtNFjLthCDa7/l6JtGSfb/icu369C7fh5vQOp/P48MexmW3+LksaAS1HLyIiIiIiIiIiItLUbJoNS9/xHo+bBnbf7jlbvamY6vWFYDUd0TL0AM/NXE9+uYOO8aFcMrTtP17rcbn5cvLTYFQREJLMqTdefVh95r4whfL58zEFBpIybSqWyMjDakdkt8qSEvIzcsAUQHSb8znr1uMICFbQJtKS/W/t/3hs4WMAnNvlXO4ecjdmk+Y/i5dCeBEREREREREREZGmpLp0zzL0g6+Ctsf4vIvAjpHEXNQNd5kTW/zhB/xrs0p4949tADxwWg9sln8OJ7576V0qSzYDVsbdfDtW26Ev51vy00/kv/IKAEmPPEJg14Mvfy9yMOGxcZx931PM+e8fnDpxDMHhWmpapCV7a9VbPLPkGQAu7n4xtw28DZPp8D+wJs2PQngRERERERERERGRpmTmJCjeAZGpMHJSvXUT1DP2iJ5vGAaTvlyN22NwYo9EhnX65/ayNm5j3W+fA9B12Dm06dnxkPus3riRzDvvAiD60kuJOPWUQy9cZC/FOdlExCcAkNQxkfMnna6gTaQFMwyDl1e+zIvLXwTgyl5XMrHfRH1fkH1oTQQRERERERERERGRpmLLr/Dn697jcVMhINSnzVdvKcZd6vBJW9+szGThlgICrGbuPbXbQa+Pb9+aHiPOIzS2Nydee94h9+cuLSX9ugl4KioIHjKE+FtvOZyyRWqsnjub166/kl/e/azmMQVtIi2XYRhMWTalJoCf2G8i1/e/Xt8XZL80E15ERERERERERESkKXCUw1cTvMcDLoP2x/m0eXeZg/z/poEBsVf2xp4UcthtVThcPPbdGgCuPb4jKVEHX9LebDZz4vjzMYzzDjnQMDwedt5+B45t27AmJdHquWcxWfXrbzl8W1cs48fpL4DhYeWclRx15mkEhmoPeJGWyjAMnlr8FP9d818Abh14K5f0uMTPVUljppnwIiIiIiIiIiIiIk3Bzw9D4VYIT4HRD/m8+aKvNuEpd2EJD8AWF3REbb04ZyOZxVWkRAVx9XHt//HaHWvWUppfXPP14cwozJs+nbI5czDZ7aRMnYo1OvqQ2xDZLXvLJj5/6hEMw43F3oVTJl6jAF6kBfMYHh7+4+GaAP7eIfcqgJeD0kcBRURERERERERERBq77X/Awhne43EvQGC4T5uvXJVH5co8MEPU2Z0xWQ9//tbWvHJenbcFgPtO7U6gzXLAa8uLCvnssUl4PFbGjr+H7sO7H3J/pXPmkDd1GgCJDzxAUM8eh1e4CN494D968D48rmrM1hRGX30DHfol+LssEfETl8fFpN8n8dWmrzBh4sGhD3JmpzP9XZY0AQrhRURERERERERERBozZyV8eR1gQN+LoOMonzbvqXBS+MVGAMKOa4291ZHtM//QN2k43B6O7RzHmO4HDi8Nj4cvJz+Ny1GOyRJHcFTMIfdVvWULO2+7HYCoCy4g8iwFI3L4KktLeP++u3FUlmCyxDL8opvoMayNv8sSET9xepzc9etd/Lj1RywmC48Ne4yT25/s77KkiVAILyIiIiIiIiIiItKYzXkU8jdCWBKMfdTnzRd9sxlPmRNrfBDhJxxZ4Dh7bTaz1+Zgs5iYdFr3f1xafsl3X5O5YSVgocvQ/9C256HNNnaXlZM+cSKesjKC+vcn4c47jqh2kd8//oaKomwwhTLo9OsZeFIXf5ckIn7icDu4de6tzNkxB6vZyuRjJzMydaS/y5ImRCG8iIiIiIiIiIiISGOV/icseNF7fOrzEBTp0+ar1hdSsTQHTBD1786YbIe/DH21y81DX6cB8H/HtKND3IFn1Odu38q8994EICjqBEZeOuyQ+jIMg8x77sGxcRPWuDhSXngek91+2LWLABz/n3PJ3lZETOueDDunn7/LERE/qXRVctOcm/ht52/YzXaeG/Ecx6Yc6++ypIlRCC8iIiIiIiIiIiLSGDmr4ItrwfBA73Ohy4k+78LeJoyQo5Iw2cwEtDmyfeZf+3ULW/MriA8LYOLITge8zumo5utnn8TwuDDb2jHy/84hMNR2SH3lv/YapT/+CDYbraa8gDUu7ohql5bLMAwMw4PZbMFitXD+A9eAwT+u4iAizVeFs4IJsyewOGsxQdYgppwwhaOSjvJ3WdIE1fljjbNnz6Z79+6UlJTsc664uJgePXrw66+/+rQ4ERERaXl0zyEiItJ8aZwXETlEc5+EvHUQEg8nPlEvXZgDrUSd0ZGIk9sdUTuZxZVMm+3dV/6uk7sSGnDg+V9/fPoBhZk7wBRM237n0XlQ4iH1VTb/N3Kfex6AxHvuIbifZiz7W1Me4+e8/R5v3Hgn1eUVgDd8N5kVwIu0RKWOUq6eeTWLsxYTYgthxqgZCuDlsNU5hH/++ee58sorCQ/f99OQERERXH311Tz77LM+LU5ERERaHt1ziIiINF8a50VEDsHOZfDbC97jU5+F4GifNu8qrsYwjJqvj3TW76PfrqHS6WZQ2yjO6NvqH6/tM3oc4XHdCYw8iZGX9j+kvh3p6WTccgt4PESe/W8izz3niOoW32iqY/zir79n2fcfUJy9hplvfOPvckTEj4qqirjipytYnrucMHsYr45+lf4J/f1dljRhdQ7hV6xYwYknHni5ozFjxrBkyRKfFCUiIiItl+45REREmi+N8yIideRywBfXgeGGHmdBt9N82ryn2k3ujBXkvfYX7hLHEbe3YFM+36zMxGyCB8b1OGioHh4bxZXTnuI/j51PeExQnfvxVFaSPmEinuJiAnv3JuG++7RkeCPRFMf4tPl/MO+/0wEIizuaMVee5eeKRMRf8ivz+b+f/o+0/DSiAqJ4Y+wb9Irr5e+ypImrcwifnZ2NzXbgfXmsViu5ubk+KUpERERaLt1ziIiINF8a50VE6ujXyZCzGoJj4eSnfd58yY9bcRdW48qvwhRgOaK2XG4PD369GoALhrShR3LEfq8zDINtfy2v9VhYdGCd+zEMg8z77qd67VosMTGkTHkBs91+2HWLbzW1MX7bqrX8MO0pwENgeA8ueuwW7IEH3kJBRJqvnIocLvvxMjYUbiA2KJY3T3yTrtFd/V2WNAN1DuFbtWrFX3/9dcDzK1euJCkpySdFiYiISMulew4REZHmS+O8iEgdZK6EX5/xHp/8NITE+rT56i3FlP2+E4Cof3XCfIQh/H//2MbarFIig23cMrrLAa9b8dN3fPLIvbx+4wOUF1cfcj+F77xDyTffgNVKyvPPYUs8tH3kpX41pTE+d3sGnz3+AIbhwBaYykWP3ktweN0/ECIizcfOsp1c+sOlbCneQmJIIm+d+BYdIjv4uyxpJuocwp988sncf//9VFVV7XOusrKSSZMmceqpp/q0OBEREWl5dM8hIiLSfGmcFxE5CLcTvrwWPC7vEvQ9zvRp8x6Hm8JP1gMQMiiRwE5RR9ReXlk1z870tnfrmC5Ehex/Znp++nZ+efd1AMqKQlk1N+OQ+in/YyHZT3lXBEi4/XaCBw06gqqlPjSVMd7j8fDhAw/hcZVhscVx3kMPEhEf5u+yRMQPtpds59IfLmVH6Q5ahbbirRPfIjU81d9lSTNiMgzDqMuF2dnZ9O/fH4vFwoQJE+jSpQsmk4k1a9bw4osv4na7Wbp0KQkJCfVdc70rKSkhIiKC4uJiwsPD/V2OiIi0YC1xTKrve46W+J6KiEjj1BLHpPoc51vi+ykizdDcp2HOIxAUBdctgtB4nzZf9N1myuZlYAm3k3DzAMxHuPz2HZ+s5MM/d9AjOZyvJgzDYt53f3aX08n799xM7rYtmK1tiWl3ARfcPwSrvW4z8J2ZmWz5179xFxQQPu40kp98stHvA98Sx6Sm9LP88pl/8ss7L3PmnfeS2kOBm0hLtLloM1f8dAW5lbm0DW/La2NeIyGk6eeb0jDqOibV+S4rISGB33//nWuuuYa77rqL3dm9yWRi7NixvPTSS80igBcRERH/0j2HiIhI86VxXkTkH+SsgblPeo9PesrnAXz19hLKfvXOQI88s+MRB/ArdhTx0ZIdADx0eo/9BvAA8//3NrnbtoApCFvIWEZc1LXOAbynupr0idfjLiggoHs3kh58sNEH8C1VUxrj+44eSI/j+mKzaw94kZZoXcE6rpp5FQVVBXSM7MirY14lNsi3W7+IwCGE8ACpqal89913FBYWsnHjRgzDoFOnTkRFeZctysjIoFWrVvVSqIiIiLQcuucQERFpvjTOi4jsh9sFX1wLHid0Pgl6ne3zLkwWfIEs5QABAABJREFUM9a4YOytQgnqFnNEbXk8Bvd/tRrDgLP6tWJAavR+r9u6chlLvv0CAFvwWLod04HWXfd/7d8ZhkHWgw9RtWoVlshIUqZMxRwUdER1S/1qSmO8AniRlml13mqumnkVJY4SukV34+XRLxMVeGRbs4gcSJ33hN9bVFQUgwYNYvDgwURFRZGVlcXEiRPp2LGjr+sTERGRFkz3HCIiIs2XxnkRkb0smAY7l0JgBJz6HNTDbG97q1ASru9H5OkdjritT5ams2JHEaEBVu48qet+r3E5HPw4/XkALAF9CI3pwjH/6lTnPoo++IDizz4Ds5lWzz6DPaVxhLdycBrjRaSxMQyDhZkLueKnKyhxlNA7rjevjX1NAbzUqzqH8EVFRVx44YXExcWRnJzMlClT8Hg83H///bRv354//viDN954oz5rFRERkRZA9xwiIiLNl8Z5EZH9yF0Pcx7zHo99HMKTfNq84TFqjk1W8xEvQ19c6eSpH9YCcP3IjsSHB+73Oqvdzuirr8ce3A5r0LEMO6cTgaG2OvVRsXQpWY89DkD8LTcTMnToEdUs9U9jvIg0JoZhsL1kO5+s/4Tb597OCR+fwBU/XUGZs4wBCQN4ZfQrhNsPvJe3iC/U+Y7r7rvvZt68eVxyySX88MMP3HTTTfzwww9UVVXx/fffc9xxx9VnnSIiItJC6J5DRESk+dI4LyLyNx43fHkduKuhw0joe4FPmzdcHnJeXklQ9xjCjk3BZDnyGfbPz1pPXpmDDnEhXDq03T9e277vAK6e3of1i7LpNLBu+4E7s3NIv+EGcDoJO+lEov/v/464Zql/GuNFxN8yyjJYlLmIxVmLWZS1iOyK7Frn7WY7o9uOZtLRkwiyansTqX91DuG//fZb3nzzTUaNGsW1115Lx44d6dy5M88//3w9liciIiItje45REREmi+N8yIif7NwBqQvAnsYjJvi82XoS+em49xRiju/kpBBCVhC7UfU3rqsUt5ZsA2AB8b1wG7dd6HVwqydmExmIhMSAbAHWul5bN2WkjccDjJuuAF3bh4BnTqR/MgjmOphaX7xPY3xItLQssqzagL3xVmLySjLqHXearbSO7Y3g5MGMzhxML3jehNgCfBTtdIS1TmE37lzJ927dwegffv2BAYGcsUVV9RbYSIiItIy6Z5DRESk+dI4LyKyl/xN8PPD3uMxD0NEik+bd2aVUzJ7OwCR4zoccQBvGAYPfLUat8dgbI8EhneK2+cat8vJN88/SWHmTvqMuYpjzx+FyVz3ED3rsceoXL4cc3g4KdOmYg4JOaKapeFojBeR+pZXmVcrdN9Wsq3WeYvJQo/YHgxO9IbufeP7asa7+FWdQ3iPx4PNtmfPHovFQohugkRERMTHdM8hIiLSfGmcFxHZxeOBryaCqxLaHQcDLvVp84bboOCT9eA2COwWTVCffQPzQ/XdX1ks2JxPgNXMvad03+81v334X3K2bMJiC+avuZWYzOs59vwudWq/6NNPKfrgQzCZaPX0U9hTU4+4Zmk4GuNFxNcKqwprhe6bizfXOm82mekW3Y3BiYMZlDiI/gn9CbHp+440HnUO4Q3D4NJLLyUgwLtUQ1VVFePHj99nIP3ss898W6GIiIi0KLrnEBERab40zouI7LL4Ndj2G9hCYNxUny9DXzY/A2d6GaZAC1FndDziJd0rHC4e+TYNgPHHdaB1dPA+12xftYLFX3u/f5vtozBbw+g+PLlO7VeuXEnWAw8CEHf9REK1f3iTozFeRI5UcXUxS7KX1ATv6wvX73NNl6guDEocxJCkIfRP6E+4PdwPlYrUTZ1D+EsuuaTW1xdddJHPixERERHRPYeIiEjzpXFeRAQo3AqzHvAej34Qonw749uZW0HxzK0ARJ7SHkvEke9/+9KcTWQWV5ESFcQ1x3fY53xlaQnfv/gsGAYBYX0xWTvSb3QbYlPCDtq2Kz+f9OtvwHA6CR05kpirrz7ieqXhaYwXkUNV5ihjac5SFmUuYlHWItYWrMXAqHVNx8iODEocxODEwQxMGEhkYKR/ihU5DHUO4d988836rENEREQE0D2HiIhIc6ZxXkRaPMPwLkPvLIfUYTDwcp934cwoAyCgUyTBAxOOuL1t+eW8Ms+7BPC9p3Qn0Gapdd4wDGa+Oo2ygnwCQuPAMpyIuCAGndL2oG0bTicZN96EKysLe7t2JD/5BCaz+YhrloanMV5EDqbCWcHynOUsyvKG7mn5abgNd61r2oa39S4vnzSIQQmDiAmK8VO1IkeuziE8wLZt2/jpp59wOp0cf/zxdO++/71/RERERI6E7jlERESaL43zItKiLXkTtswDaxCMmwL1EDgH943HlhyKyW4+4mXoAR7+Jg2H28PwTrGM7bFvqL/+j9/YsPB3TGYLhnkMZpON4y/sgtVu2U9rteVMnkzF4sWYQ0JIeXEaltDQI65X/EdjvIjsrcpVxYrcFTV7uv+V9xcuj6vWNSmhKQxOGlwz2z0+ON5P1Yr4Xp1D+Hnz5nHyySdTUVHhfaLVyttvv835559fb8WJiIhIy6N7DhERkeZL47yItGhFO+Cn+73HI++HmH2XdfcVW/y+e7Yfjjlrc5i1Jger2cSk03rsN9TvMHAIA049kw2LS3A4Euh6dCIpXaMP2nbxV19R8PY7ACQ/+QQB7dv7pGbxD43xIuJ0O1mZt9I70z1zEStzV+LwOGpdkxSSVBO4D04cTFJokp+qFal/JsMwjINfBscddxzh4eG8/PLLBAUFcdddd/Htt9+yY8eO+q6xwZWUlBAREUFxcTHh4eH+LkdERFqwljgm1fc9R0t8T0VEpHFqiWNSfY7zLfH9FJEmxDDgv2fBptnQeghc9j2YDz5TvO7NGxR9sZHgAQkEtPHN98Bql5uxz81ja34FVw5vxz2n/POs5uytJSz8chNjLu9JYKjtH6+tSktj6wUXYlRVEXPNeOJvuMEnNTcWLXFM0s/yIi2P0+Nkdd5qFmctZlHWIpbnLKfKXVXrmriguFqhe0pYik9WaRHxp7qOSXUO4aOjo5k3bx49e/YEoLy8nPDwcPLy8oiKivJN1Y2EBnQREWksWuKYVN/3HC3xPRURkcapJY5J9TnOt8T3U0SakKXvwlcTwBoI4+dDbCefNl+2MJOizzdisltIumsw5qBD2oV0v176ZSNP/bCOuLAAZt9yHGGBtYP1bX8tp3X3Xpgth/ZhAldhIVv/fTbOjAxCjh1O6+nTMR1iG41dSxyT9LO8SPPn9rhZW7CWRVmLWJi1kGXZy6hwVdS6JjowuiZ0H5Q4iLbhbRW6S7NT1zGpzndjRUVFxMfv2YshJCSE4OBgioqKml0ILyIiIv6jew4REZHmS+O8iLRIJTvhx3u8xyPu9nkA7yqqpvi7LQCEj0n1SQCfVVzFtNkbAbjrpK77BPDpaav45NH7SOrYmbHX3EtMq7p9DzfcbnbecivOjAxsbdrQ6umnm10A31JpjBdpfjyGh/WF61mU6d3TfUn2EkqdpbWuiQiIYGDCwJrgvWNkR4XuIrsc0h1ZWloaWVlZNV8bhsGaNWsoLd3zj653796+q05ERERaJN1ziIiINF8a50WkRTEM+OYmqC6GVgPg6Ak+bt6g6PMNGNVu7G3CCB2a7JN2H/tuDRUONwNSozizX6ta56rKyvhu2jNgGJitMXz0+HKGjGtP/zGpB2039/nnKf/9d0xBQaRMnYolIsIn9UrjoDFepGkzDINNRZtYmLWQxVmL+TP7T4qri2tdE2oL3RO6Jw2mc1RnzCaznyoWadwOKYQfOXIkf1+9/tRTT8VkMmEYBiaTCbfb7dMCRUREpOXRPYeIiEjzpXFeRFqUlR/B+h/AYofTX/LpPvAAFUtzqFpXCFYTUf/ujMl85LMPF27O56sVOzGZ4MFxPWrNaDQMg5mvvUhpfi7h8YmUFA7G4zKwWA4ewJT88AP5r74GQPJjjxLYpfMR1yqNi8Z4kabFMAy2lmyt2dN9cdZiCqoKal0TZA2if0L/mj3du0Z3xWo+8hVXRFqCOv9L2bJlS33WISIiIgLonkNERKQ50zgvIi1KaTZ8f7v3+Lg7IL6rT5t3lzgo+nozAOGjUrHFBx9xmy63h0lfrQbg/MFt6Nmq9kz1tHmzWb/gV0xmMzFtziJzk5n4tuH0GpHyj+1WrV/Pzru9S/JHX/5/hJ900hHXKo2LxniRxs8wDNJL01mUtagmdM+tzK11TaAlkL7xfWv2dO8R2wOb2XaAFkXkn9Q5hE9NPfhyQiIiIiJHSvccIiIizZfGeRFpMQwDvr0ZqoogqQ8cc4PPuyhflIlR5cLWKpSw4f8cgtfVewu3szarlMhgG7eN6VLrXFFWJj+/MQOAbsPOYPNfgZjNJkZc1BXzP8zAd5eUkD5xIkZFBcFHH0X8TTf5pFZpXDTGizROmWWZtUL3zPLMWudtZht94vp4Z7onDaZXbC/sFrufqhVpXuocws+bN2+/j0dERNCxY0dCQkJ8VpSIiIi0XLrnEBERab40zotIi7H6M1j7DZitcPqLYPH9LMKwkW0wh9uxtw7HZDnyZejzy6p55qd1ANwypgtRIbVDmJmvTsNZVUly5+5kbe8EOOk7ug2xKaEHbNPweMi47Tac27ZjS06m1bPPYrJqGePmSGO8SOOQU5FTE7gvylxEell6rfNWk5Vecb28e7onDqZPXB8CrYF+qlakeavzHc/xxx9/wHMWi4VrrrmGZ555BptNy1KIiIjI4dM9h4iISPOlcV5EWoTyPPjuNu/x8FshsVe9dGMymQgdnOSz9ib/tI6SKhfdk8K5YHCbfc6f8H/j+fn16US2Oo0NiyuJiAti0Clt/7HNvGkvUj53HqaAAFpNnYI1Kspn9UrjojFexD/yK/NZnL2YxZnefd23lmytdd5istA9pnvNnu594/sSbDvy7UtE5ODqHMIXFhbu9/GioiIWLVrEbbfdRmJiInfffbfPihMREZGWR/ccIiIizZfGeRFpEb67FSryIaEnDL/F582XL84iqFcs5kDfzShfmV7EB4t3APDg6T2w7Gd5+ZhWrTnn/sdY9tN2tizfzPEXdsFqtxywzdKffybvpZcASHroQYJ69PBZvdL4aIwXaRhFVUX8mf1nzWz3jUUba503YaJrdNea5eX7x/cn1H7gFUtEpP7U+U4tIiLigI+npqZit9u5++67NYiKiIjIEdE9h4iISPOlcV5Emr20r2D152CyeJeht/p2X93KVXkUfrqBkjk7SLypPybbgUPwuvJ4DO7/cjWGAWf0TWZQ2+iac9UV5eTt2E6rLt1qHus3pg1dhyYSFHrg11a9eQs7b78DgKiLLiLi9NOPuE5p3DTGi9SPUkcpS7KXsDBzIYuzFrO+cD0GRq1rOkV1YkjiEAYlDmJAwgAiAvb/71FEGpbPPi7Zp08ftm3b5qvmRERERPZL9xwiIiLNl8Z5EWnSKgrg25u9x8NuhOS+Pm3eU+Gk8EvvjMfg3nE+CeABPl2azvIdRYTYLdx1crda535+fTprf5vH8ZdcSb8TT8Vk8s6Q/6cA3l1WRvqECXjKywkaOICEO273SZ3StGmMF6mbcmc5S7OXevd0z1rEmoI1eAxPrWvaR7Sv2dN9YOJAogOjD9CaiPiTz0L4nTt3Eh8f76vmRERERPZL9xwiIiLNl8Z5EWnSvr8DynMhriscd4fPmy/6ZjOeUifWuCDCR+67Z/vhKKly8uQPawG4fmQnEsIDa86t+XUOa+b/gslsJjgihY8eW8zwczuT3DHygO0ZHg+Zd92FY/NmrAkJpDz/PCbtAS5ojBc5kEpXJctzlrMoaxGLshaxOm81bsNd65o2YW0YnOTd031Q4iBig2L9VK2IHAqfhPA5OTnce++9nHDCCb5oTkRERGS/dM8hIiLSfGmcF5Embd338NdHYDLD6S+BNcCnzVeuK6BiaQ6YIOrfnTHZzD5p94VZG8grc9A+LoTLjmlX83hxTjazXp8OwFFnnkfa7x7ydpSx9Mdt/xjC57/yKqUzZ2Gy2UiZ8gLWWAVFojFeZG/V7mpW5q70hu6Zi1iZtxKXx1XrmlahrWpmug9KHERiSKKfqhWRI1HnEL5fv341yw3trbi4mPT0dLp168YHH3zg0+JERESk5dE9h4iISPOlcV5EmqXKQvj6Ru/x0RMgZYBPm/dUuSj6bAMAoce0IiA13Cftrs8u5a3ftwIw6bQe2K3eYN/jdvPdtGdwVFaQ3LkbofHDyJy9EWuAhePO73LA9srmzSP3hRcASLj/PoL69PFJndI0aIwX2T+n28mq/FU1e7qvyF1Btbu61jUJwQk1gfvgpMG0Cm3lp2pFxJfqHMKfccYZ+308PDycrl27MmbMGCwW3+xDJCIiIi2X7jlERKTRMgz45XHoewFEtfV3NU2SxnkRaZZ+vAfKsiCmI4y42+fNl8zchrvYgSUmkPAxqT5p0zAMHvhqNW6PwejuCRzXOa7m3MIvPmLnujTsQUEcf8lEvpm2BYCjxrUnLDpwv+05tm8n49bbwDCIPOccos4+2yd1StOhMV7Ey+VxkZafxqKsRSzOWsyynGVUuiprXRMTGOMN3ZO8s93bhLXZ74dYRKRpq3MIP2nSpINe43K5sFp9ts28iIiItEC65xARkUYr7UuY+yQsfBluXgP2YH9X1ORonBeRZmfDTFj+HmDyLkNvC/J5F2EjWuMudRB6VBJmu29CzO9XZfH7pnzsVjP3n9q95vH89B0s+OR/AIy8/FqW/1yMo8pNfNtweo1I2W9bnooK0idMxFNSQlCfPiTce49PapSmRWO8tFRuj5u1hWtZnLmYRVmLWJqzlHJnea1rogKiGJg4kMGJ3n3d20W0U+gu0gL4ZMRLS0vjtdde47333iM7O9sXTYqIiIjsQ/ccIiLiNy4HzNr1y+UhVyuArwca50Wkyakqhq9v8B4fdQ20GVIv3VhC7cRc0M1n7VU63Dz67RoAxh/XgdbRe8a06FYpjLriWrI2ricgtAebl63CbDYx4qKumM37BkaGYZB5771Ur1+PJTaWVlOmYLbbfVarNA8a46U58RgeNhRuYHGWN3T/M/tPSh2lta4Js4cxMGFX6J40mI6RHTGbzH6qWET85bBD+LKyMj744ANef/11Fi9ezFFHHcWdd97py9pEREREdM8hIiKNw+LXoHArhMTD0Ov9XU2zoXFeRJq0mfdDSQZEtYMT7vN5847McuxJIT5vd/ovG8koqqRVZBDXHNeh1jmTyUTvkSfSe+SJzHozDYC+Y9oQmxK637YK3nyLku++B6uVlBeex5YQ7/N6pWnSGC/NhWEYbC7eXLO8/OKsxRRVF9W6JsQWwoCEATX7uneJ6oLFrO0XRFq6Qw7h58+fz2uvvcann35Ku3btSEtLY+7cuRxzzDH1UZ+IiIi0ULrnEBGRRqOy0LsMPcAJ90DA/oMIqTuN8yLS5G3+BZa85T0+fZrPV0ip3lpM7ssrCeoVS/S5XTFZfLNs8fb8CmbM2wzAvad0I2jX8vYZ69YQk9KawJA9Y9zIS7uR2iuGdr1j99tW+R9/kDN5MgAJd91J8IABPqlRmjaN8dLUGYbB9tLt3tB91xLz+VX5ta4JsgbRL74fgxIHMSRxCN1iumE1a6sFEamtzt8VnnrqKd544w3Kyso4//zzmT9/Pn369MFmsxEVFVWfNYqIiEgLonsOERFpdOZNhqoiiOsGfS/ydzVNmsZ5EWkWqsvgq4ne40FXQtthPm3ecLop/GQDGGCyW3wWwAM89E0aDpeHYzrGcGLPRABK8nL4/MkHsAcFc859jxGZmAR4Z8V3Gpiw33acGRlk3HgTeDxEnHEGURdc4LMapWnSGC9NWXppes3y8ouyFpFTkVPrfIAlgL5xfRmUOIjBSYPpGdMTm8Xmp2pFpKmocwh/9913c8cdd/DQQw9hsWgZDREREakfuucQEZFGpXArLHrFezzmYbBohsuR0DgvIs3CrAegaDtEtIFRD/i8+eKZ23HlVWIOsxN5SnuftfvLuhxmrcnGajbxwGk9MJlMeDxuvp/2LNXl5UQnpRAcEcPCrzfTd1QbAoL2P+Z5qqpIn3g97qIiAnv0IPGBSZhMvvuggDRNGuOlKckqz2Jx1mIWZi5kcdZidpbvrHXearbSO7Y3Q5KGMChxEL3jehNgCfBTtSLSVNX5twcPPfQQb731Fu+++y7nn38+F198MT179qzP2kRERKQF0j2HiIg0Kj8/BG4HtD8eOo7ydzVNnsZ5EWnyts6Hxa96j8dN8fkWJY4dpZT9mg5A1JkdMR8gCD/kdl0eHvrau8f7pUPb0ikhDIDFX35K+ppV2AKDOHnirSz/OYM/v93K1pV5nHP3oH3CdcMwyJr0AFVpaViiokiZOgVzYKBPapSmTWO8NDaGYZBXmce2km1sL93u/W/JdtYXrmd76fZa11pNVnrE9qjZ071vfF+CrEF+qlxEmotDmgl/9913M3fuXN544w2OOuooOnTogGEYFBYW1meNIiIi0oLonkNERBqN9D9h1aeACUY/DJrld8Q0zotIk+aogC8neI/7XwIdRvi0ecPloeDj9WBAcN84grrH+KztN37bwua8cmJDA7hhVCcAsjau5/eP3wPghMuuxmOEs+SHtQD0H5O639nthe+9T/GXX4LZTKvnnsWWnOyzGqVp0xgv/mAYBgVVBbVC9t2h+/aS7VS4Kvb7PLPJTPfo7gxKGsTgxMH0j+9PsC24gasXkebOZBiGcThPLC0t5b333uPNN99kyZIlDB48mH//+9/cfPPNvq6xwZWUlBAREUFxcTHh4eH+LkdERFowjUm+v+fQeyoiInViGPDmSbB9AfS5AM6c7vMuNCb5dpzX+yki9e6Hu+CPlyC8FVy7AAIjfNp88U9bKZ29A3OojYSbBmAJ8c1+w1nFVYx85hfKHW4mn92Hfw9IwVFVyX/vvIHCzJ10PmoYp1x/O188u4zMTcWk9ozhlOt67xPCV/z5J9suvQxcLuLvuIOYyy71SX3NkcYk/SwvvlVUVcS20r1C9pLtNV+XOcsO+DyzyUxSSBKp4am0CWtDangqbSPa0ieuD2H2sAZ8BSLSnNR1TDrsEH5vf/31F6+//jrvv/8+OTk5R9qc32lAFxGRxkJjUm2+uOfQeyoiInWy5mv48CKwBsLEpRDRyuddaEyq7UjHeb2fIlKvtv8Bb5wIGHDhp9DJ91uUVK0roPCzjUSc2o7gXnE+a/eGD5bx5fKd9GsTyafjh2I2m/jl3ddZ8s3nhMbEcslT09i4tJi576/DGmDhgklDCIuuvcS8MzubLWf9C3d+PuEnn0zyM5O1D/w/0JhUm36Wl7oocZTsN2TfVrKNEkfJAZ9nwkRiSCJtwtuQGpbq/W+4978poSnYLfYGfBUi0hI0aAi/m9PpxGbzzSc0/UkDuoiINBYak/bvSO459J6KiMhBuRzw0hAo2AzDb4WR99VLNxqT9u9wx3m9nyJSb5yVMGMY5G+EvhfCGS/VW1cehxuz3eKz9hZtKeCclxdgMsFX1w2jV4p39n5laQkzX51Gv7GnEpXchf89+AeOKjfDzu5En5Gt/1aTg20XX0zVipUEdOlC2/+9jzm4+S3bnF+Zz7KcZYxKPfIPWGhM2j/9LC/lzvJ9lo3f/XVh9T9vWxAfHF9rRvvu0D0lLIVAa+A/PldExJfqOibVeU/4umgOAbyIiIg0frrnEBGRerXkTW8AHxIHw270dzUtjsZ5EWl05jzmDeBDE2Hsoz5v3nC6Mdm8wbsvA3i3x2DSV6sBOG9Qm5oAHiAoLJxxN98NwM9vpeGochPfNpxeI1L2aSf7kUepWrESc0QEKVOnNMsAfkfpDsbPHE96WTovjHiB41sf7++SmiWN8S1DhbOCHaU79gnZt5VsI78q/x+fGxsUWztk3xW6tw5rrT3bRaTJ8WkILyIiIiIiItKkVRXDL094j4+/CwK0V6SISIuW/icsmOY9Pu15CIryafPO7HJyX/mL8LGphAxK9OkS7+8v3MaazBIigmzcNrYLhsfD1hVLadt3QK1+hv6rI4YBfUe3wWyu3X/hRx9R9NFHYDLRavLT2Nu08Vl9jcXagrWMnzme/Kp8WoW2om14W3+XJNLoVbmq2FG6Y59l47eXbCen8p+3HIgOjKZNWJtay8bvXkY+xBbSQK9ARKT+KYQXERERERER2e3XZ6GyAGI7Q/9L/F2NiIj4k6savrwODA/0Oge6nOTT5g23QcEnG/CUO6lKKyBkUKLP2i4odzD5p/UA3DKmM9EhdhZ//Rnz/vsGPUeMYez462uuDQqzM+qy7vu0Ubl8OdkPPwJA3A03EDp8uM/qaywWZi7khjk3UO4sp0tUF6aPmk5ccJy/yxJpFBxuB+ml6fvOaC/dRlZ51j8+NyIgoiZY3x2y7w7cw+z6kKuItAwK4UVEREREREQAirbDH9O9x6MfBot+ZBYRadHmPgm5ayEkHk560ufNl/2WgXNHKaYAC1FndvTpLPinf1xHcaWTrolhXDC4DdmbNzL/f+8AkNSpCwC5O0qJTQndb7+u3FzSr78Bw+kkbPRoYq6+yme1NRY/bP2Bu3+9G6fHyaDEQbww4gWFg9LiOD1OMkozakL23UH79tLtZJZn4jE8B3xumC1sT8i+117tqeGpRAREHPB5IiItxSH/RsFisZCZmUl8fHytx/Pz84mPj8ftdvusOBEREWm5dM8hIiIN7ueHwV0NbYdD57H+rqZZ0zgvIo3ezmUw/3nv8SnPQHC0T5t35lZQ/NM2ACJPbY8lIsBnbf+VXswHi7cD8NDpPTFcDr6dOhmP20XHQUfT64QxZG4s4rPJS2nXJ5YTr+qJ2WKueb7hdJJ+0024cnKwd+hA0uOP+/QDAo3B+2ve54lFT2BgMDp1NE8MfwK7xe7vspoFjfGNj8vjYmfZzpoZ7XsvIb+zbCdu48D/T4KtwTUz2PcO2duEtyEqIKrZfW8QEfGlQw7hDcPY7+PV1dXY7bpREREREd/QPYeIiDSojKXw10fe4zEPg36hWK80zotIo+ZywBfXgeGGHmdC93E+bd7wGBR+ugFcHgI6RRI8MMFnbXs8BpO+WoVhwOl9kxncLpqZr06jcGc6oVHRjLl6Ih6XwZz/rgUgMMRWK4AHyH7yKSr/XII5NJSUqVOxhDafPZoNw2Dqsqm8+terAJzX5TzuHHwnFrPFz5U1Hxrj/cPtcZNZnrnvHu2l28kozcBluA743CBrEK3DWteazb57dntMYIyCdhGRw1TnEH7KlCkAmEwmXnvtNUJDQ2vOud1u5s2bR9euXX1foYiIiLQouucQEZEGZxjw033e497nQnI//9bTjGmcF5EmYf6zkLMagmPg5Mk+b758wU4cW0sw2S1EndXJpwHX58syWLq9iGC7hbtO6sbGxX+wctYPAJx43c0EhYWz6JstFGZVEBRmY+i/OtZ6ftEXX1D43/8CkPzUkwS0b+ez2vzN5XHx0IKH+Hzj5wBc3+96ruh1hQJGH9EYX/88hofs8uzaIfuu0D29NB2nx3nA5wZYAmgd1nqfkL1NWBvig+P170BEpB7UOYR/7rnnAO8n2WbMmIHFsufTgXa7nbZt2zJjxgzfVygiIiItiu45RESkwa3/AbbNB0sAnHCfv6tp1jTOi0ijl7UK5j3tPT75aQiJ9XkX7goXmCDipLZYowJ91m5plZPHv/fOcJ94QidiAuCzV6YCMPC0s0jt1ZeCzHKW/LAVgOHndiYwxFbz/MrVq8ma9AAAsddeS9gJJ/isNn+rdFVy29zbmJs+F7PJzKSjJ3FWp7P8XVazojHeNwzDIKcip2aP9r1ntO8o3UG1u/qAz7WZbd6gPbwNqWF7gvbU8FTig+Mxm8wHfK6IiPhenUP4LVu2ADBixAg+++wzoqKi6q0oERERabl0zyEiIg3K7dwzC/7oayGytX/raeY0zotIo+asgi+vBY8Lup4KPeonpI0YnUpQz1hsCcE+bfeFWRvIK6umXWwI/zesLTarhVNvuJ0l337BMedejOEx+OW/a/G4DFJ7xdBxwJ49u12FhaRPnIhRXU3o8ccTO+E6n9bmT0VVRUyYPYEVuSsIsAQw+bjJHN/6eH+X1exojK87wzDIr8rfJ2TfVrKNHaU7qHRVHvC5VpOVlLCUWnu07w7bE4MTtbWCiEgjcsh7ws+ZM6fW1263m7/++ovU1FQNrCIiIuIzuucQEZEGsfRtyN/gXXJ42E3+rqbF0DgvIo2CswoylsDW+bD1V0hfDK4qCIqCU56Felye2Z7k233WN+aU8tbvWwGYdFp3AqzeIK5Nzz606dkHgFXzMsjcVIwtwMJx53epWX7acLnIuOlmXDszsaemkvzUk5jMzWPGbGZZJlfPupotxVsIt4fz4sgX6Rvf199lNWsa470Mw6CwurAmZN8dtG8v2c720u2UO8sP+FyLyUJyaPK+M9rDUkkKTcJqPuRYR0RE/OCQv1vfeOON9OrVi8svvxy3282xxx7LggULCA4O5ptvvuH444+vhzJFRESkpdE9h4iI1LuqEpjzuPf4+LsgMMK/9bQgGudFxC+cVZDx567QfT7sWAR/X9o5NBFOnwZhCT7t2lVUTeFnG4g8tT22eN/OgDcMgwe+SsPlMRjVLYFeIVUUZWUSmZhU67qIuCDCYgLpM7I1YdF7lsHPefY5Kv74A1NwMCnTpmIJD/dpff6yoXAD42eNJ6cih4TgBF4e/TIdIjv4u6xmr6WN8cXVxbVC9t2z27eXbKfUWXrA55kweYP2sDa1lo1vE9aGVqGtsFlsB3yuiIg0DYccwn/88cdcdNFFAHz99dds3bqVtWvX8s4773DPPffw22+/+bxIERERaXl0zyEiIvXut+ehIg9iOsKAS/1dTYuicV5EGoSzyju7fet82PbbAUL3BGg7bNef4d4xwccz4A3DoOjzDVSvL6Toi43EXdXbp+3/uDqL+RvzsFvN3DOmI19PvpuSvFxOv/UeUnv1rbmudbdozr9/CBbbnlnuxd9+S8EbbwCQ/NhjBHTq5NPa/GVJ9hImzp5IqaOUjpEdmT5qOokhif4uq0VojmN8qaN0z4z20j0h+7bSbRRXF//jcxNDEmvNZt+9hHxKWAp2i72BXoGIiPjDIYfw+fn5JCZ6b1i+++47zj77bDp37szll1/OlClTfF6giIiItEy65xARkXpVnA4LXvQej3oQNNuoQWmcF5F6sXfovnW+99gPofvfVSzNoWpdIVhNRJ7R0adtVzrcPPzNGgCuPrY9m7//H/np2wmOiCQutR0AHo+B2ex9jbaAPftFV61bR+a99wEQc+UVhJ841qe1+cvP23/m9rm34/A46B/fnyknTCEiQKvdNJSmOsaXO8trgvWafdp3LR1fUFXwj8+ND4rfE7LvtYR867DWBFoD//G5IiLSfB1yCJ+QkEBaWhpJSUn88MMPvPTSSwBUVFRgsVgO8mwRERGRutE9h4iI1KvZj3j3/W0zFLqe4u9qWhyN8yLiE87K/YTujtrXhCb+LXTvUO+h+97cJQ6Kvt4MQPioVJ8vRT997iYyiipJjgjk5IhCvnv9WwBOuvYmgsMjqK508emTf9Lr+BR6HtsK064w3l1URPqEiRiVlYQccwxxN97o07r85eP1H/PIH4/gMTyMaD2Cp459SiFoA2vsY3xuRS7Lc5fXhOy7l5HPq8z7x+fFBMbsCdn3mtHeOqw1wTbf/rsWEZHm4ZBD+Msuu4xzzjmHpKQkTCYTo0ePBmDhwoV07drV5wWKiIhIy6R7DhERqTeZK2DFB97jMY80aBgjXhrnReSwOCu9S8pv++2fQ/d2w/eE7tHt/fZ93jAMCr/YiFHlwtYqlLDhKT5tf0dBBTPmbgLgzuNTmPPaQwD0P/l02vYdAMCCzzdRmFXBitk76DY0CavdguF2k3Hb7Th37MDWqhXJk5/G1AjC0SNhGAYzVszgpRXewPdfnf7FvUfdi9V8yL/+liPU2Mf4PzL/4O75d+/3XFRA1D4he5vwNrQJa0OoPbSBKxURkabukO9CHnjgAXr27MmOHTs4++yzCQgIAMBisXDnnXf6vEARERFpmXTPISIi9cIw4Kd7AQN6/htSBvi7ohZJ47yI1Mnu0H33TPeMP/cN3cOSas9092Po/neVf+VRlZYPZhNR/+6MyeLbuh7+Jg2Hy8PQ9tE4f3mfypJi4tq0Zfj5lwCwc2MRq+dlADDiwq5Y7d6gPXfqVMp//RVTYCAp06ZijYryaV0Nze1x8+jCR/l4/ccAjO8znmv7XIupkfw9aGka+xjfIbIDvWJ71Vo2fnfYHm4P93d5IiLSjJgMwzAO98lVVVUEBja/5XxKSkqIiIiguLiY8HANvCIi4j8ak7x8ec+h91REpIVb/xO8fzZY7DDhT4hK9VspGpO8fDXO6/0UaQYcFZC+d+i+ZD+he/JeofuwRhW6/13uG6uoXl9I2Mg2RIz27Xgzd30ul7yxCIvZxKtDTSx790WsNjsXPv4csa1TcTs9fPjoIgqzKuh2TBInXNwNgJKZM8mYeD0AyU8/TcRpp/q0roZW7a7mjnl38PP2nzFh4p4h93Bu13P9XZbGpF30s7yIiDRHdR2TDnkmvNvt5rHHHmPGjBlkZ2ezfv162rdvz3333Ufbtm25/PLLj6hwEREREdA9h4iI1AO3C2be5z0eMt6vAXxLp3FeRIB9Q/f0P8HjrH1NWLJ3efnUYxp96P53sZd0p3xxFiEDE33arsPl4cGvVgNwydFtOe7ETlhLsgmLiSW2tXdsW/LDVgqzKggKtzP0rI4AVG/aROYd3pnI0Zf8p8kH8CWOEib+PJGlOUuxm+08eeyTjEod5e+yWjyN8SIiIl7mQ33Co48+yltvvcVTTz2F3W6vebxXr1689tprPi1OREREWi7dc4iIiM8texdy10JQFAy/xd/VtGga50VaKEc5bJoDPz8Mr4+FJ9rAO6fDvKdh+wJvAB/eCnqfC+OmwvXL4OY0OOsVGHAJxHRoMgE8gMliJvSoZEzWQ/4V7D9687ctbM4rJzbUzo2jO2Gx2jj2gkvpN9YbqhfsLGfJD9sAGH5OJwJDbLhLS0mfMBFPRQXBgwYRf+utPq2poWWXZ3PJ95ewNGcpobZQZoyeoQC+kdAYLyIi4nXIM+HfeecdXnnlFUaOHMn48eNrHu/duzdr1671aXEiIiLScumeQ0REfKq6FOY85j0+7g4IivRrOS2dxnmRFsJRDjsW7prp/pt3efm/z3QPb+Xdy3338vJRbZtU0P53ngonZQszCRue4vPwHSC7pIopP28A4PrOLkKs+75XmZuKMDwGbXvF0HFAPIbHw8477sSxZQvWxERaPf8cJpvN57U1lM3Fmxk/czyZ5ZnEBcUxfdR0ukR38XdZsovGeBEREa9DDuEzMjLo2LHjPo97PB6cTud+niEiIiJy6HTPISIiPvXbFCjPgah2MFDLoPqbxnmRZqpW6L5rT3ePq/Y14Sm1l5dv4qH73xV9u4WKJdk408uIubi7z9t/4vu1lDvcjAjNJ/fTj/hwxSzOmfQ41r1mHPcY3or41HACQ22YTCZyp0+nbPZsTHY7KVOnYI2J8XldDWVF7gqu+/k6iquLaRvelpdHv0xyaLK/y5K9aIwXERHxOuQQvkePHvz666+kptbeO+/jjz+mX79+PitMREREWjbdc4iIiM+U7ITfp3qPRz8IVvs/Xy/1TuO8SDNRXVY7dN+5dN/QPaL1nlnubYdBZGqzCt33VrWugIol2WCC0GNTfN7+4q0FfL4sgyBPJf23/ogDSOjQqVYAv1tcmzAASn/5hbyp0wBInDSJoF69fF5XQ5mXPo9bfrmFKncVvWN7M23kNKICo/xdlvyNxngRERGvOofw//d//8cLL7zApEmTuPjii8nIyMDj8fDZZ5+xbt063nnnHb755pv6rFVERERaAN1ziIiIz815FFyV0HoIdBvn72paNI3zIk1cdRns+GPP8vIHDN33Xl4+df9tNTOeKheFn20EIHRoMgGp4T5t3+0xmPTlajAMLnb+gaO0mJiUNhx70WU11yz8ajMdB8YTkxwKgGPrVnbedjsYBpHnn0fkv87yaU0N6fMNn/PgggdxG26GtRrGM8c9Q7At2N9lyV40xouIiNRmMgzDqMuFFouFzMxM4uPj+fHHH3nsscdYsmQJHo+H/v37c//99zNmzJj6rrdBlJSUEBERQXFxMeHhvr1hFhERORQtcUyq73uOlvieioi0aFmrYMYwwIDLZ0HrQf6uqEZLHJPqc5xvie+nSL2rFbrPh53L9g3dI9tA6rAWF7r/XeHnGyhfmIUlOpCEG/tjtlt82v67f2zjvi9WMahyDUdl/YLFauXCx54jLrUdAJuW5fDDy6uw2s1c8tgx2E0Otp53HtUbNhLUrx+pb7+FaT8z5hs7wzB4fdXrvLD0BQDGdRjHA0MfwGZu3Hvat8QxST/Li4hIS1HXManOM+H3zurHjh3L2LFjj6xCERERkf3QPYeIiPjUzPsAA3qc2agC+JZK47xII1ddCtsXwtZf94Tuhrv2NZFt9sx0Tz2mxYbue6vaWET5wiwAov7VyecBfGG5g2d+WkeUo5Cjcn8DYPgFl9UE8NWVLuZ9sB6APie0JiDESsaNt1G9YSPWuDhavfB8kwzgPYaHpxY/xXtr3gPg8p6Xc0P/GzA10+0MmjqN8SIiIrUd0p7wusERERGRhqB7DhER8YmNs2DTbDDbYOQkf1cju2icF2lEqkth+99muu8Tuqfutbz8Md4QXmoYhkHxN5sACDkqicAOkT7vY/JP6ygqd3BRya/gdpLaux/9Tzqt5vyCzzdRUewgIj6Igae0peD11yn98Uew2Wj1wgvY4uN9XlN9c7gd3D3/bn7c+iMAdwy6g4u6X+TnquRgNMaLiIjscUghfOfOnQ86kBYUFBxRQSIiIiK65xARkSPmccNP93mPB18F0e38W4/U0Dgv4kdVJbBj75nuy/cN3aPa7rW8vEL3gzGZTMRc3J2SWduJOLGtz9tflVHM+4u2g8nEyCuvp2D2R4wdfwMmsxmAnRuLWD0vA4ARF3alatEf5Dz7HACJd99FcP9+Pq+pvpU5yrhxzo0szFqI1WzlsWGPcVK7k/xdltSBxngREZE9DimEf/DBB4mIiKivWkREREQA3XOIiIgPLH8PctIgMAKOvdXf1cheNM6LNKCqkl0z3XeF7pkr9h+6tx3mne2eegxEtvZLqU2ZNSaI6HO7+LxdwzCY9NVqDANO65PMiCE9YMiDNefdTg+//HctAN2OSSIupJyt/7kFPB4i/nUWkeed5/Oa6lteZR7XzrqWNQVrCLYG8/yI5zk6+Wh/lyV1pDFeRERkj0MK4c877zzim+DyRSIiItK06J5DRESOiKMcZj/qPT72dgiO9m89UovGeZF6tE/ovhwMT+1rotrtCt2HKXQ/AobTjSOjjIC29Rc4fr4sg9WbM2nrKebuk0/Y53zabzspzKogKNzO0SenkH7FJbiLiwns1YvE++9vckuDbyvZxtUzryajLIPowGimj5pO95ju/i5LDoHGeBERkT3qHMI3tZs2ERERaZp0zyEiIkfs92lQluXdx3jwlf6uRvaicV7Ex6qK9zPT/UCh+3Dv8vIRKf6ptZkpnrWdsrnphI1sQ8ToVJ+3X1rl5PHv1nBC3i90qNhK1oI4kk48rdY1PYYn43Z5CI0OpOCJh6leswZLdDQpU17AHBDg85rq0+q81Vz787UUVBXQOqw1L496mdbh+oBIU6IxXkREpLY6h/CGYdRnHSIiIiKA7jlEROQIlWbBby94j0c9ANamFUI0dxrnRY5QVTFsW+AN3bf9tv/QPbp97eXlI1r5p9ZmzLGjlLJ56QDYW4XWSx9TZ28kfudyOlRswWyxkty52z7XmC1m+o5qQ8E775D99ddgsdDq+eewJSXVS0315feM37nxlxupdFXSLbobL416idigWH+XJYdIY7yIiEhtdQ7hPR7PwS8SEREROUK65xARkSMy5zFwlkOrgdDjTH9XI3+jcV7kEFUW1Z7pnrVyP6F7B+8Md4XuDcJweSj4ZD0YENQ3jqDuMT7vY2NOGZ/NXsq/C34DYNh5F5PQvmPN+ewtJcSkhGC1WShftIjsJ58CIOH22wgZPNjn9dSnbzZ/w33z78NluDgq6SieH/E8IbYQf5clh0FjvIiISG2HtCe8iIiIiIiISKOVnQbL3vUej30UtCyqiDQ1lUWwfYE3cN/6K2SuBP42uzS6Q+3l5cOT/VFpi1Uyezuu7ArMITYiT+vg8/YNw+ChL1dyQvYsbIaLNj17M/DUPR8qKyus5ssXlhESEcDJ5yeTe+NN4HYTftppRP3nPz6vpz69vfptJv85GYCT2p3Eo8c8is1i83NVIiIiIr6hEF5ERERERESah5n3e2eIdjsN2hzl72pERA6ustC7vPy23w4cusd0rL28fHjTWmq8OXHsLKP0F+8y9JGnd8AS4vvA+MfV2TgXf0+CIxd7SCgnXnczJrO55vy8D9bhrHJjTzBTeN9tuAsKCOjWjaSHHmwye3J7DA/PLXmOt1a/BcBF3S7itkG3YTaZ//mJIiIiIk2IQngRERERERFp+jbNgY0zwWyFUQ/6uxoRkf3bHbrvnume9Rf7hu6dai8vr9C9UTDcBoWfrAePQVCPGIJ6+X7P8iqnmymfzOWE4mUAnDj+esKi9/SzaVkOW1bkYTab6Fk0i+q/VmKJiCBl6hTMQUE+r6c+OD1O7v/tfr7Z/A0ANw+4mUt7XNpkPkAgIiIiUlcK4UVERERERKRp87jhp/u8x4OugBjfLw8sInJYKgr2Wl5+/j+E7sP2/AlL9EupchBmCDs2hZJZ24k8o2O9hMYz5m4irTKEiNajuax7AJ0GD605V13hZN4H6wHollIG77wLZjPJzz6DPSXF57XUhwpnBTf/cjO/7fwNi8nCQ8c8xLgO4/xdloiIiEi9UAgvIiIiIiIiTdvKDyH7LwiIgGNv93c1ItKS1Qrdf4WsVewTusd23hO4px6j0L2JMJlMBPeNJ6h3HCaz7wP4HQUVTP9lE5hMXPifsxnTO7nW+QWfb6Ki2EF4hJnYDyYBEHfTjYQec4zPa6kPBVUFXDfrOlblryLIGsQzxz3D8JTh/i5LREREpN4ohBcREREREZGmy1EBPz/sPT72FgiJ8W89ItKyVBTAtt/3zHTP3l/o3mXX8vLDIHUYhCX4pVQ5PIbHwKhyYQ727v9eHwE8wDNvfwvVFo7ulMwpvWpvQbBzQxGrf90JQOflb2BxVBI2diwxV1xRL7X4WnppOuNnjWdbyTYiAyJ5ceSL9I7r7e+yREREROqVQngRERERERFpuv54EUp3QkQbGHy1v6sRkeauogC2/bYrdP/tH0L3vWe6K3RvysrmZ1A6L52oszoR1L1+Pug1849VJCx8nwvMdsZd+vg+S92HRgXQplsUxoo/CN+2mIBOHUl+7NEmsY/62oK1XDPrGvIq80gOSWbG6Bm0i2jn77JERERE6p1CeBEREREREWmaynJg/vPe45H3gy3Qr+WISDNUK3TfPdP9b+K67gnc2w6D0PiGr1PqhTOvkuKftoHLg6fcWS99VFY5mPfK80QaTiwxrenTLXWfa8JjgxhY9DUFCz7GHBZGytSpmENC6qUeX1qUuYgb5txAmbOMzlGdmT5qOvHB+vchIiIiLYNCeBEREREREWmafnkcHGWQ3A96/svf1UgzUr5gAdVbthD5739jttv9XY40FMOAom2wcxls27Wve87qfa/bHbrvDt4VujdLhseg8JP14PIQ0DGS4IH1s6LBa1NfJrI8C4c5gP/ccRdms6XmnNvpwWIzU/TpZxT973+YTSaSn34Ke9u29VKLL/249Ufu+vUunB4nAxMGMuWEKYTZw/xdloiIiEiDUQgvIiIiIiIiTU/uOljytvd4zCNgNvu3Hmk2DMMg5+nJVKWlkf/qa8RefTWRZ52JSWF882IYUJzuDdwzl3v/u3MZVBbue21ct7+F7nENXq40vPKFmTi2lmCym4k6q1O9LP3+159LqfrzJ8xA0ikX0yplz17whsfgy+eXEWavJvGtp7ACsROuI+z4431eh6+9v+Z9nlj0BAYGo1NH8/jwxwmwBPi7LBEREZEGpRBeREREREREmp6Zk8BwQ5dTvMGYiK+43UT86yxceXm4MjPJeuAB8l95hdhrryHi9NMx2Wz+rlAOlWFAaeaeoH3ncu9/K/L2vdZsg4QekDJIoXsL5iqoovj7LQBEnNQOa7TvtzupKi/ju2nPYMUgK6EXN11weq3zq3/NIHNTMTmeamI9JiJPOIHYa67xeR2+ZBgGU5dN5dW/XgXg3C7nctfgu7DsNbtfREREpKXw+1SBl156iXbt2hEYGMiAAQP49ddf//H69957jz59+hAcHExSUhKXXXYZ+fn5ta759NNP6d69OwEBAXTv3p3PP/+8Pl+CiIiIiIiINKQt82D992CywOgH/V2NNDMmq5XoCy+kw08/knD3XVhiY3Hu3Enmvfex6eRTKPrscwyXy99lyj8pzYJ1P8Ccx+G9c+CZLvBsN/jgApj3NGyc6Q3gzVZI7A39/wOnPgdX/QJ3Z8DVc+GUydDjDAXwLZBhGBR+tgHD4cHeLpyQIUkHf9Jh+OK117BWFlNsDefciddjNu+ZaV9WWM3vn28CoMOmLwlPiiT5yScwNeJVX1weF5N+n1QTwE/oO4F7htyjAF5ERERaLL/OhP/www+58cYbeemllzjmmGN4+eWXOemkk0hLS6NNmzb7XD9//nz+85//8Nxzz3HaaaeRkZHB+PHjueKKK2qC9gULFnDuuefy8MMPc+aZZ/L5559zzjnnMH/+fIYMGdLQL1FERERERER8yeOBn+71Hg/8P4jt1GBduz0Gd3y6kouOSqVv68gG61f8wxwYSPR//kPk2WdT+MGH5L/6Ks4dO8i8+27yXp5B3HXXEX7KKZgsCpj8qiy39nLyO5d5Z73/nckC8d0guS8k9YXk/t4Z7zbfz3CWJs5lYAm3Y7KZif5XZ0xm3y9D7/YY/M/VncSQrcQOGcXATrWD/nkfrMNZ5Sa8ZAutC/8k5eMPsYQ13v3UK12V3Db3Nuamz8VsMnP/Uffzr87/8ndZIiIiIn5lMgzD8FfnQ4YMoX///kyfPr3msW7dunHGGWfw+OOP73P95MmTmT59Ops2bap5bOrUqTz11FPs2LEDgHPPPZeSkhK+//77mmtOPPFEoqKi+N///lenukpKSoiIiKC4uJjw8PDDfXkiIiJHTGOS7+k9FRFp4lZ8CJ9fBfYwuGE5hMQ2WNcv/bKRp35YR0SQjd/uPIHQgCP7XLvGJN+q7/fTU1FB4fvvk//a67iLigCwt2tH7HXXEX7SiQrjG0J5PmTutZz8zuVQkr7vdSYzxHaB5H67/vSFhJ5gD27ggqUpMZwesJhqQndXURXWyPr5kMZ7C7dxz+erCAu0MufW44kN3bNf+qZlOfzw8ipMHjeDljxBl8fvIHzMmHqpwxeKqoqYMHsCK3JXEGAJ4Oljn2ZEmxH+LsvvNMb7nt5TERFpLOo6JvltJrzD4WDJkiXceeedtR4fM2YMv//++36fM3ToUO655x6+++47TjrpJHJycvjkk0845ZRTaq5ZsGABN910U63njR07lueff97nr0FEREREREQakLMSfn7Iezz8pgYN4FdlFPPczPUA3HNKtyMO4KXpMQcHE3PFFUSedz6F771H/htv4NiyhZ233krejOnETZhA2JgxjXq56CalsnBP2L57pnvR9v1caPKuiFETuPeDxF5gD2nggqUp8lQ4qVxbQFVaPlXrC4m9rCcB7SIA6iWA97jdrFywgKd/Lgfg5tGdawXw1RVO5v03DYA2O34i9aLTGnUAn1mWyfhZ49lcvJlwezjTRk6jX3w/f5clIiIi0ij47bcGeXl5uN1uEhISaj2ekJBAVlbWfp8zdOhQ3nvvPc4991yqqqpwuVyMGzeOqVOn1lyTlZV1SG0CVFdXU11dXfN1SUnJ4bwkERERaYQ0zouINCN/TPfOeg1vBUdd22DdVjnd3PjhcpxugxN7JHL2gJQG61sOzF9jvCU0hNirryLqwgsofPdd8t98C8fGTWTceBMBnTsTO+E6wkaNUhh/KKqKIXPFXkvKL4fCLfu/NqbjruXkdwXuSb0hoPEu0y2Nj6ugisq0fKrS8qneWgyePeeqNhbVhPD14Y/PPmTBJ+/TP7QrGT3HcfFRqbXO523IxlVcSrCjjB6tSoi7/ol6q+VIbSjcwPhZ48mpyCEhOIEZo2bQMaqjv8uSZkQ/y4uISFPn94/um0y191UyDGOfx3ZLS0vj+uuv5/7772fs2LFkZmZy2223MX78eF5//fXDahPg8ccf58EHHzyCVyEiIiKNlcZ5EZFmojwPfn3WezzyfrAFNVjXT3y/lo05ZcSFBfDYWb3+8edLaTj+HuMtoaHEXnMNURdeSMHb71Dw9ttUr19PxvU3ENCtG3ETJxA6YoT+vvxddSlkrqy9h3vBpv1fG9Vuz3Lyyf0gqQ8E1l9AKs2fY2cZOVOW1XrMlhhCYPdogrrHYGsVWm99Z6xbw4JPvVtlpge14sFxPbBa9nxYx3C7cU95gCELl+NO7Uyb915qtNtcLM1eyoTZEyh1lNIhogMzRs8gMSTR32VJM+PvcV5ERORI+S2Ej42NxWKx7DNDPScnZ5+Z7Ls9/vjjHHPMMdx2220A9O7dm5CQEIYPH84jjzxCUlISiYmJh9QmwF133cXNN99c83VJSQmtW7c+3JcmIiIijYjGeRGRZmLuk+AohcTe0Ouchut2fS5v/b4VgKf/3ZvoEHuD9S3/rLGM8ZbwcOImTiD64ovIf/ttCt9+h+o1a0i/9joCe/QgduIEQo87rmWG8Y5yb+C+ezn5ncsgbwNg7HttZJu9Zrf39QbuwdENXLA0F4bLQ/WWYipX52MOshIxti3gDdwtEQFYYwIJ7B5DUPcYrNH1s+/73qorKvh+2mQwDNaGdKLz0OM4ukNMrWtyn3+B8t9+wx4URNtnJ2GJjKz3ug7H7O2zuX3e7VS7q+kb15dpI6cREaAPx4jvNZZxXkRE5HD5LYS32+0MGDCAmTNncuaZZ9Y8PnPmTE4//fT9PqeiogKrtXbJll2fCDUM7w9wRx99NDNnzqy1L/xPP/3E0KFDD1hLQEAAAQEBBzwvIiIiTZfGeRGRZiBvA/z5hvd4zCPQQMt8F5Y7uO3jFQBccnQqx3eJb5B+pW4a2xhviYwk/oYbiP7Pfyh4400K3nuPqtWrSR9/DYG9exM3cSIhw45pvmG8owKyV+1ZTn7nMshbB4Zn32vDU/bMbt8duofE7HudyCHwVLmoWlfoXWp+bQFGtRsAc6iN8NGpmMwmTGYTibcNxGRt2O0iZr8xneKcbIqtYSxMPJ4fT+lW6/zCaTOp/GIJ8UDyIw8T2KVLg9ZXV5+s/4SH/3gYj+Hh+NbH8/SxTxNorf8PMUjL1NjGeRERkUPl1+Xob775Zi6++GIGDhzI0UcfzSuvvML27dsZP3484P20W0ZGBu+88w4Ap512GldeeSXTp0+vWY7+xhtvZPDgwSQnJwNwww03cOyxx/Lkk09y+umn8+WXXzJr1izmz5/vt9cpIiIiIiIiR2DWA+BxQecTof1xDdKlYRjc9dlf5JRW0yEuhDtP6nbwJ4kA1qgo4m+5mehLLyH/9TcofP99qlauZMeVVxLUrx9xEycQfPTRTTuMd1ZB9mrYudQbuGcuh5w1YLj3vTYsaU/YvjtwD41r4IKluSv8fAPlf2aDe88qC+ZQG0HdYgjsXntFhYYO4Nf8Npe0X+fgwcTMuJFcPboHSRF7tlTJWpDGkpUGRo/LiU08hohTTmnQ+urCMAxmrJzBS8tfAuBfnf7FvUfdi9Xs951ORURERBotv94pnXvuueTn5/PQQw+RmZlJz549+e6770hNTQUgMzOT7du311x/6aWXUlpayrRp07jllluIjIzkhBNO4Mknn6y5ZujQoXzwwQfce++93HfffXTo0IEPP/yQIUOGNPjrExERERERkSO09TdY+w2YLDD6oQbr9pMl6fywOgur2cQL5/UjyN449+WVxssaE0PC7bcRc9ml5L/2OoUffEDlsmVs/7/LCRo4gLiJ1xMyZLC/yzw4VzXkpNXewz1njfeDMX8XEl87cE/uC2HaJ1p8xzAMXNkVVK7JJ2xYCiabN1A3BVrBbWCNCyKoewyB3WOwtw7DZPbvh10clRXMfn06AH9G9sfeqgNXDG9Xc95VVMzPL/+JEZhCgnsH3e+50l+lHpDb4+axhY/x0fqPALiq91VM6DuhaX+QSERERKQBmIzd67hLjZKSEiIiIiguLiY8PNzf5YiISAumMcn39J6KiDQhHg+8NtI723bAZXDa8w3S7fb8Ck56YR7lDje3je3CdSM61ks/GpN8q7G/n87sHPJffZWiDz/EcDoBCB4yxDszfuBAP1e3i9u5K3Bfvidwz14NHue+1wbH7gnad4fuYUmgYE58zHAbOLZ593evXFOAu6AKgJhLexDU1TvL3VVUjeF0Y4sL9mep+/XHbwt55/X3+T5uFK9dOpiR3RIAMDwefr32Wf6iPxZPNefd2Y/I9o3rQyvV7mrunHcns7bPwoSJu4fczXldz/N3WU1CYx+TmiK9pyIi0ljUdUzSmkEiIiIiIiLSOK3+zBvA20Ph+LsapEu3x+Dmj5ZT7nAzqG0U44/r0CD9SvNnS4gn8d57iLnicvJfeYXCjz+hYuFCti1cSMjQo4mdOJHgfv0ariC3C3LXepeS3x24Z60Cd/W+1wZF1V5OPrkfRKQocJd65cypoPSXHVStLcBTsdfKC1YTgR2jMAfuWaHEGtk49402DIOX1pmYFz+GE7rG1wTwANuff4U0VzewwqDjYxtdAF/iKOH62dezJHsJNrONJ4Y/wZi2Y/xdloiIiEiToRBeREREREREGh9nFcx60Ht8zI0QlvCPl/vKjLmb+HNbIaEBVp49py8WPy9lLM2PLTGRxPvvJ+aKK8ib8TJFn31G+e8LKP99ASHDhxM3cQJBvXv7tlOPG/LW77Wk/HLI+gtclfteGxBRe3Z7cl+ITFXgLvXOXerAcLixxuzaL90wqFiaA4A52Epg12iCuscQ0DkKcyPfIiRn62ZsAQEsLrAwb30udouZ+0/tXnO+5OfZ/PF7Je7YIGIjXPQ7r5GshrFLTkUO42eNZ0PhBkJtoUw5YQqDEgf5uywRERGRJkUhvIiIiIiIiDQ+i16B4u3e5a2Pvq5BulyZXsRzM9cD8OC4HrSObnzLGkvzYUtOJumhB4m56kryZsyg+PMvKP/1V8p//ZXQ444jduJEgnr2OPSGPR7I31h7D/esleCs2PfagHBI6lM7dI9qp8BdGowzt4LK1flUpeXj2FFKUK9YYi7oBoA1PpjwUW0IaB+BPTUCk6Vp/L10VFbw9bOPU1ZUyC+ppwJxXDG8HW1jQwCo3ryFdQ9OIa/79ZjwMOr6oZgb0Qe+NhdvZvzM8WSWZxIXFMf0UdPpEt3F32WJiIiINDkK4UVERERERKRxqSiAeZO9xyfcB/b6D8MrHW5u/HA5Lo/Byb0SOat/q3rvUwTAnpJC8iOPEHvVVeS9NJ3ir76ibO5cyubOJfSEE4ibOIHAbt32/2SPBwq31A7cM1eAo2zfa20huwL3fnv+RLcHs7l+X6DI31RvL6FqdT6Vafm4cmuvxuCpcGEYBiaTCZPJRPioVD9Vefhmv/UKRdmZEBrF6qpwEqMCuW5ERwDcZeWkT5xIaM4mhrT9Hvt/JhDTKtTPFe+xIncFE36eQFF1EW3D2zJj9AxahWo8FBERETkcCuFFRERERESkcZn7FFQXQ0Iv6HNeg3T52Hdr2JxbTkJ4AI+e0QuTZgJLA7O3aUPyE48Tc/VV5E2fTsk331I2ezZls2cTNno0sROuIzDOtmc5+d2Be3XJvo3ZgiGxd+0Z7jEdwdy4l/CW5slwG7VmsRd9uQlnxq4PilhMBLSPIKhHDIHdYrBGNM693etq3YL5rP5lFphMfBV5PA5LAHef0o2QACuGYZB51104Nm3CGh9P32duxxoX5++Sa8xLn8ctv9xClbuKXrG9mDZyGtGB0f4uS0RERKTJUggvIiIiIiIijUf+Jlj8qvd4zMMNEhrOWZvDu39sA2Dy2X2ICrHXe58iBxLQrh2tnnyS2PPHkffiNEp+W0HpzJmUzpxJWOtK4nqWEhDh2vMEayAk9toTtif1hdjOYNGvfMR/3OVOqtYWUJmWT/XmYpLuGIQ50Pt3MrhfPI7YIIK6xxDYJarm8aauJC+Xma9OBaCgwzC2uRMZ0i6a03onAZD/yqvsXLAGW0gcXae80KgC+C82fsEDvz+A23BzTKtjePa4Zwm2aUsWERERkSPRPO5yRUREREREpHmY9QB4XNBxNHQYUe/d5ZdVc9snKwG47Ji2DO/UeEIRaSEMA0oy9lpSfjnsXEZAZQGtUiD2RCu5q8Io3RFU8ye8XxKxF5xGwKBRENcVLDZ/vwoRXPmVVKZ5g3fH1mIw9pyr3lhEUM9YAMKGNb/lzT0eNz+8+CzV5eWEtGrHi65uWCwmHjy9ByaTibJf55P1wjRWD7wTR1gCsYFtaO3vogHDMHh91eu8sPQFAMZ1GMcDQx/AZtb3FBEREZEjpRBeREREREREGoftf8Car8BkhtEP1Xt3hmFw12d/kVdWTaf4UO44sWu99ylCSebf9nBfDuW5+15ntkFCdwIG9CPlon5UVUaT98FPlM76mZJlmZSseI2I07KIveYa7G3bNvSrEKmlfGk2hR+tr/WYLTGEwO7RBHWPwdaI9j2vD6vn/syOtL+wBQTyXexIPCUWLj0qla6J4Th27CDj1lvZ1mYMFcGJBIXYiWsd5u+S8Rgenlr8FO+teQ+Ay3pexk39b9J2LCIiIiI+ohBeRERERERE/M8w4Kd7vcf9LoKE7vXe5Ud/7uCntGxsFhPPn9eXQJv2yxYfK832hux7h+5l2fteZ7J4/84n9d2zrHxCD7Du2R87EEgZNo6qtDRyp71I2ezZFH/5FcXffEvEuHHEXnsN9taNYW6tNGeGy0P15mIq0/IJaBdBcB/v6iEB7SLADAFtIwjsHkNQ9xis0YF+rrbhdB9+AsXZWawstrJyi43oEDs3jeqMp6KC9AkTKXEGsy11LADHntuZwBD/zjR3uB3cM/8eftj6AwC3D7qdi7tf7NeaRERERJobhfAiIiIiIiLif2lfQPpisAXDiHvqvbtt+eU8+HUaALeM6UKP5Ih671OaufK8WsvJs3MZlO7c9zqTGeK67Qrb++4J3G1BdeomsHt3Wr/0IpV/rSJ32lTK586j+PPPKf76ayLPPIOYq8djT2l+y32L/3iqXFStK6AyrYCqtQUY1W4A3IVVNSG8NSqQ5PuPbjb7ux8qi9VK51POYfzkuYCL28d2ITzIys5b76Jq3XrWDbodw2Shbe9YOvT377YnZY4ybvzlRhZmLsRqtvLoMY9ycvuT/VqTiIiISHPUMu+MRUREREREpPFwVXv3ggc45gYIS6zf7twebvxwORUON0PaRXPl8Pb12p80TUVfbcKxoxRrfDC2hGDvf+ODsUQGYKoqrL2c/M7lULxjP62YIK7LntntSX0hsRfYg4+4vqBePWnz8stUrlhB7tRplM+fT9HHn1D0xZdEnnUWseOvxpaUdMT9SMtleAzy315N1cYicO/Z4N0caiOoe0zNHu81j7fAAH7Dot9p338QFquNJ79fR1m1iz4pEZwzsDUFb71NybffktH6eIpD2mALsHDseZ39utx7XmUe1866ljUFawi2BvPciOcYmjzUb/WIiIiINGct7+5YREREREREGpfFr0HhVghNhKET6727l37ZxLLtRYQFWHnmnD5YzNr/VvblSC/FscP7Z28mHFhNW4m334rJ5AHAbYRjxowptsOewD25nzdwD6jfvbCD+vShzWuvUrF0KblTp1Kx4A+KPvyQ4s8+I/Lss4m5+ipsCQn1WoM0fYZh4MyqwJleSsgg7wehTGYThtMDbgNrXBBB3WMI7B6DvXUYJn3fZMOi3/nqmcdI7NiZzv93F58uTQfggXE9qFy0iJzJk6kKiGRz53+BG446owNhflyif3vJdq6eeTXpZelEB0bz0qiX6BHTw2/1iIiIiDR3CuFFRERERETEfyoKYO5T3uMT7gF7SL12t3xHES/8vAGAh8/oSUrUkc9IlmZo0atEha3GGVmEqywAp6cNLqM1TiMFAzsewjHFtKtZTj5/cV8cOSZs7iCs1cHYyoOxlgRjCzRhjfFgsprrveTg/v1JffNNKhYvJnfKVCoWL6bw/fcp+uQTIs89l5grr8AWH1/vdUjTYbgNqrcWU5WWT+WaAtwFVWCCwK7RWMLsAESc3A5TgAVbnL5X7q2sIJ+fXp4KQKtuvXjwu7UAnD0ghZ7WSrbcdBO43cSecjy9j25L1uYSeh7nv20iVuet5tqfr6WgqoCU0BReHv0ybcLb+K0eERERkZZAIbyIiIiIiIj4z6/PQFURxHeHvhfWa1cVDhc3fbgct8fg1N5JnN43uV77kyZs1afYti/ABt7fnES1heR+GAl9cYX2wxM6FDovrbncPXcRuKu9M4mzKqjcqylLZABJdw6u+bpqUxHmYBu22CBMNt+H88GDBpH67juU/7GQ3KlTqVyyhMJ336Xoo4+IOv98Yq64HGts7MEbkmarelsJ5QszqVpbgKfCteeE1Uxgp0g8Va6aEN6eEuanKhsvw+Ph+xefpaqslPh2HchofxyrvlpDWICV245vS/r4y3EXFhLQvRutHppE68BAPB4Ds59WD/h95+/cOOdGKl2VdIvuxkujXiI2SN8DREREROqbQngRERERERHxj4ItsPBl7/Hoh8FsqdfuHv12DVvyykkMD+TRM3r5dV9eaeT6XQydRu/Zxz04GgATeIP5v0m8YxDuwiqcuZW4sitw5nj/uLIrsMYG1bq24MN1eEocYAJrTFDNXvPW+CBsSaHYk3yzGkTIUUMIHjKY8t9/J2/KVCpXrKDgrbco/PBDoi44n5jLL8caHe2TvqRxc5c6MFlMmIO9f3tduZVULM0BwBxsJbBrNEE9YgjoFIXZXr/fh5uDJd9+wfZVK7DaAxh+5Y2c+Z53dZUbR3XC9cwTVK1eDVFxtHphCuZA7/Lz/grgv938Lff+di8uj4shSUN4YcQLhNjqd8UZEREREfFSCC8iIiIiIiL+8fND4HFC+xHQcWT9drUmm/cWbgfgmXP6EBG8vyhVZJd+h7Yqg8ls8gbqMUHQdU+wbRgGRrV7z9cuD9aoQJwOD0aVC1deJa68SqrS8gGwtwsn/uo+NdeXzN6OJdxeE9SbAw/t1zgmk4nQY44hZOhQyufPJ3fKVKr++ouC19+g8H8fEH3RRURfdinWqKhDalcaP2dOBZVp+VSl5ePYUUrEye0IG54CQGC3aEKHtSKoewz21HBMFn0gqa5ytm7m1/+9A8CIS67kjVXlFFY46ZwQyritv5P3xRdgNpP+74dZ9d9MTvhPJDGtQv1S69ur32byn5MBOKntSTwy7BHsFrtfahERERFpiRTCi4iIiIiISMPbsRhWfwaYYMzDUI+z0vPKqrnj05UAXD6sHcd01DK80jBMJhOmvYJzk9VM/DV9MAwDT5kTZ3YFrl2z5p3ZFQSk7ln62+NwUzJzGxh72rOE27EmeAP5gPaRBPWIqXMdocOHEzJsGGW//ELe1GlUpaWR/8orFL73HlH/uZiYSy/FEhHhs9cuDcvwGDh2lFK52hu8u/Iqa53f+2tLiI3IU9s3dIlNnmEYzHx1Gh63iw4Dj8LS7Wj+O20+AA93cJN395PeC6+6m/Vr3UAp1RXOBq/TY3h4fsnzvLn6TQAu6nYRtw26DbPJ99tfiIiIiMiBKYQXERERERGRhmUY8NO93uO+F0Jir3rsyuDOT1eSV+agS0IYt43tUm99idSVyWTCEmb37rvdMXK/1xhOD6FHJ9csbe8pceDe9ad6QxGeKndNCG+4POS9uQprXDC2hOA9M+dDbbW2XTCZTISNGEHo8cdTNns2uVOnUb12LfnTZ1D47n+JvvRSoi/5D5Yw7QPeFBiGUfP/13B5yH31L3B5vCctJgI6RBLUPZqgbjFYIgL8WGnzYDKZOHnircx993XGXDWBS/+XhseAc1IDiHpqEm6Xi5CTTuHXwg5ABd2HJZPcqWFXmXB6nEz6bRJfb/4agBv738j/9fw/bb8iIiIi4gcK4UVERERERKRhrfkadvwB1iA44Z567eqDxTuYtSYHu8XM8+f1JdCm/Y6labCE2Igc16Hma0+ly7vP/K5Z8/bU8JpzrrxKqjcVU72puFYb5mAr1vhgQgYkEDIoEfAGtwBhI0cSOmIEpbNmkTd1GtUbNpA3bRoF77xDzGWXEnXxxVhC/bOMthyYu9xJ1doCKtPy8ZQ5ib/Gu32B2W4huFcshscgqHsMgV2iDnn7Ajm4qMRkzrjtPr5cnsGirQWEmj1c8fMruPPyCOjcmZ3DrqRoZgbB4XaGntXh4A36UIWzgpvn3sxvGb9hMVl4cOiDnN7x9AatQURERET20N24iIiIiIiINByXA2ZN8h4PnQjhyfXW1Za8ch76Og2A28Z2oVtS+EGeIdJ4mYOsBKSGE5C6799jc5idqLM71yxt78qpwFVQhafChWNrCYFd9szGdeVXkTN12V4z5ruT9NSbVK9dTP5r03Bs2kTuC1MoeOttoi+/nOgLL8AcEtKQL1X+xpVfSWWaN3h3bC2utUWBq6AKa3QgANHnaqWP+lBeVEhBxg5a9+jt/braxWPfrQHguZzZuFf9hTk8nOBJk1n2RjoAw8/tTECwrcFqLKgq4LpZ17EqfxVB1iAmHzeZY1OObbD+RURERGRfCuFFRERERESk4fz5BhRshpB4OOb6euvG6fZw44fLqXS6Obp9DJcPa1dvfYn4myXERsiAhFqPGU43ztxKXDkV2JL2hOiu7AqMajeO7aU4tpfu9YwQAvvfRfgZ5ZR8+hyOrVvJfeFFCj/4iqgLziD6gvMxBwc30CuS3Yq/30Lp3PRaj9mSQgjsHkNQ9xgsUVpmvj4ZHg8/vPQcW1cuY+Rl4+k79hSmzt5Idkk15+cuI+W3H8BkIvnpp/jp52I8boO2vWPp0D+uwWpML01n/KzxbCvZRmRAJC+OfJHecb0brH8RERER2T+F8CIiIiIiItIwKotg7hPe4xF3QUD97Ts9bfZGVuwoIizQyjPn9MFs1n640rKYbBbsyaHYk2svKR/YJYqEm/rjzK6omTnvzK7AlVeJ4fQQMrgfsZd9Tcm335L/7o/YO55P5Ton6bd/gy0plOCBXbElh3tn0scEYrKY/fQKmxfD5aF6czGVafmEHpWELdH7wQlbShiYIaBtRE3wvnvmu9S/ZT98zdYVS7Ha7LTu0YvNuWW8Pn8zXQq2cfHCjwCIu+F6LP2OxvP7CmyBFo47v3OD7cG+rmAd42eNJ68yj+SQZGaMnkG7CH3oTERERKQxUAgvIiIiIiIiDWP+s1BZCLFdoN9/6q2bpdsLmTZnIwCPnNGT5MigeutLpKkxWc3YEkKwJdReYt5wG7gKKrGE2jFZrUScfjqWpEEUfb4Rk8WGKTQJdymUzskAMgCIOqczIf29M/Bd+ZU40kuxxodgiw3CZFM4fzCeKlfN/u5V6woxqt0AWEJtNSF8UNdoku89CnMDLm0uXrnbtjDvvTcBOO7iy4lu1Zqb31xMSHkJDy/9LyaXk9BRI4m56ipMZjP/umMgBTvLCY1qmA9JLM5azPWzr6fMWUanqE7MGDWD+OD4BulbRERERA5OIbyIiIiIiIjUv8Jt8McM7/GYh8FSPz+Olle7uOnD5bg9Bqf3Teb0vq3qpR+R5sZkMWGLq73cfOjgZEIGJuHKLaPoqzmUzVkMhGIOS8Icnkzl0nkE9Twds91O1bpCir7atKsxsMYE7dpzPhhrQjCBnSKxhNob/oU1Qu6Sago+Xk/15mJw79ng3RxmI6hbDAEdI2seM9nM+kCDHzgd1Xw3dTJul4v2/QfRZ8zJzFqTw/y1WTz557uElRVib9+e5CeewGT2/v8xm03EpoQepGXf+GnrT9z56504PU4GJAxgyglTCLeHN0jfIiIiIlI3CuFFRERERESk/s1+GNzV0O5Y6DSm3rp55Ns0tuVXkBwRyEOn96y3fqR5e2/Ne2ws2shp7U+jX3y/BltaujEymU3YEsKIu3IcsZecSNFnn5E342VcWdmUfQ2F700n9uqrsXcYjj01HGd2BUaVC1deJa68SqrS8gGIu6ZPTQhftb6Qqo1F3oA+PghbfDDmwOb5KyrDMHBmluMpcxLYOQoAc4gNx45ScBtY44MI6h5DYPcY7ClhmLR1RqPw63tvkbdjG8ERkYwdfwPVLg8Pf5PGFau+pkfeZswhIaRMm8rWDRXkbM1i0CntsNotDVLb/9b+j8cXPo6Bwag2o3ji2CcIsAQ0SN8iIiIiUnfN8yccERERERERaTwylsBfHwMmGPMI1FOgOTMtm/8t2oHJBJPP6UNEkJZvlkNnGAYfrP2ArSVb+WT9J7QKbcUp7U/h1Pantvi9lk12O1HnnUfEWWdR9PHH5L/8Cq7MTLIeeABbcjKx115D7OXjMKrAmVOOK6eyZs95W/yeWfZV6woo+21nrbYtEfaamfNhx7XGEt50Z80bboPqrcVUpeVTmZaPu7AaS3QgibcNxGQyYbKYiT63C9a4YGyx2i6jscnevJFlP3wNwInX3kRwRCRTf95Ax+W/csbm+QAkP/UkRkJr5s1YSEWJg8AQO/3GtKnXugzDYOqyqbz616sAnNvlXO4afBcWc8OE/yIiIiJyaBTCi4iIiIiISP0xDPjpPu9xn/MgqU+9dJNTWsUdn64E4Mrh7RnaIbZe+pGW4d6j7uXrTV8zc9tMMsoyeGXlK7yy8hV6xvTk1A6ncmLbE4kJivF3mX5jttuJvvBCIv/1L4o++oi8V17FuXMnmffeR97LrxB77bVEnHYqgR2j9vv8gE5RYFAT0HtKHbiLvX+qNxQRNqJ1zbUlc3ZQvaEQa8Kupe3jg7ElBGMOsTW6FQqq1hVQsTyXyrUFGJWuPSesZmwJwRgON6YA76/igrq13L8/jZHh8VBdWUFgSCjx7Tpw4rU3UbAznXZ9B5BRVMn3n//CY8s/BiD22msIGzmSOf9dS0WJg8iEYHqNqN+tT1weFw//8TCfbfgMgOv6XsfVva9udP8GRERERGQPk2EYxsEva1lKSkqIiIiguLiY8HDtpyQiIv6jMcn39J6KiDSwtd/CBxeANRAmLoGIFJ93YRgG//fWYuasy6VrYhhfTjiGAGvjnxmoMcm36uP9rHRV8suOX/h609f8vvN33IYbAIvJwjGtjuG09qdxfOvjCbQG+qS/pspTWUnhBx+S/+qruAsKALCnphJ73bWEn3IKJss//3v0VDhx5lbiyq7AVVBJ+Ni2NeFi3lurqVpbsM9zzMFWrPHBxF7ao2Ype4/D7d1DvYGCSXepw/thgF1LyBd+sZHyPzJr6gvsFkNQ9xgCOkVibqClyuXgXE4n+Tu2kbN1MzlbN5GzZTO527bQru8ATrv5rn2uv/nVXxj30t0kVBYScuyxtJ4xnZ0bi/ni2WUAnHlLf5I7RdZbvZWuSm6fezu/pP+C2WTmvqPu49+d/11v/YlvaIz3Pb2nIiLSWNR1TNJMeBEREREREakfbifMvN97fNS19RLAA7y3cDtz1uVit5p54bx+TSKAl6YhyBrESe1O4qR2J5Ffmc8PW3/gm03fsCp/FfPS5zEvfR4hthBGp47m1PanMihxEGaT2d9lNzhzUBAxl11K1LnnUPj+++S/9jqObdvYefsd5E2fQex11xF+0okHDOPNwTYCUm0EpO77C6zwsW0J6hWLM6cCV3YFzpwK3IVVeCpcODPLMQXsabPww3VUbSraM2M+PrhmBr0lIsAn+607cyqoTMunKi0fx45S4q7uTUDbCACC+8ZhspoJ6h6DPTUck0WzlP3N7XJhsXp//WkYBv+791ayt2zC43btc21+xo59HvttXRYD33mWhMpCjOQUWj39FG63wS/vrQOg+/Dkeg3gi6uLmfDzBJbnLifAEsCTxz7JyDYj660/EREREfEdhfAiIiIiIiJSP5a8BfkbITgWht1UL11syi3jkW/TALjjxK50SQyrl35EYoJiuLDbhVzY7UI2F2/m283f8u3mb8koy+CLjV/wxcYvSAhOqNk/vlNUJ3+X3ODMwcHEXHEFkeedT+F775H/xhs4tmxh5623kjdjOnETJhA2Zgwmc90/qGBPCsGeFFLrMcPpxplbibvUUWvWuzOvEqPKjWN7KY7tpbVrC7GSdO9RNdc7MsowB1qwRAX+YzhveAwc20uoTCugKi0fV15lrfOOHWU1IXxA24iaY2l45UWF5GzZtGuGu3eWuz0wmIuffAEAk8mE2+3C43btWna+PXFtO5DQtj3x7ToQlVR7SXmn28PS+x5jVO4GnPYAOs94EUtEBAu/2kxRdgXB4XaGntmh3l5PVnkWV8+8ms3FmwmzhzHthGn0T+hfb/2JiIiIiG8phBcRERERERHfqyqGXx73Hh9/JwT6ftlQp9vDTR8up8rp4ZiOMVw2tK3P+xDZn/YR7ZnYbyLX9b2OZTnL+GbzN/y49UeyK7J5Y9UbvLHqDbpGd+XU9qdycruTiQuO83fJDcoSGkLs1VcRdeEFFL77LvlvvoVj4yYybryJgM6diZ1wHWGjRh1SGL83k82CPTl0n8cTJvbDlVdZs9e8K8c7c96VV4klPKBWYF/4yXqcmeXe/drjgmpmztsSds2ejwsGwJlRRu6MlXu9OBMBHSIJ6h5DULdoLBEBh/Ua5PAZhlHr/+Ws115k4+I/KC8q3Odas8WK2+XEYrUBMHb8DQSGhhIWE3fQbQu+nfIuo1bOBCDuoYcJ7NwZR6WLv35JB2D4uZ0JCLb56mXVsrFwI1fPupqcihzig+N5edTLdIzqWC99iYiIiEj9UAgvIiIiIiIivjf/eajIh5hOMODSeuli6s8bWJleTHiglcln98Hsg6WmRQ6F2WRmQMIABiQM4M7Bd/Jr+q98velr5mXMY23BWtYWrOXZJc8yJHEIp3U4jZFtRhJsC/Z32Q3GEhpK7DXXEHXhhRS8/Q4Fb79N9fr1ZFx/AwHduhE3cQKhI0b4bA93k9WMLTEEW+LfZs67PXgq9iw/bvw/e3cdHleV/3H8PZqJTlwaaaSSugsUaGlx2gX2t/iy6GLFYYEFFpcFdnFdFl9YYPEWLS1SCnX3pmmkbdx19P7+mJI2pJ4pqXxez9Nnb+aee86ZIcns5HPP9xgGJpsZrGbw+vGUNOEpaeKXNe7WxDCSbxgGgC01AmtiKLZuEYT2jcPRK6ZtD3rZ93xeL9WbigMr27escq8tL+XSZ15pu4mjtbExEMCbTMSmpJKYlUNiZjaJmTkkZGa1BfAAiZnZuzVuyaLldP/3YwCUnXQ6fU6dBIA91MqZd4xk7dxScobum5trFpUvYvL0yTS4G8h2ZvPCMS+QEpGyT8YSERERkX3HZBiG0dWT2N/U19fjdDqpq6sjKir4qzVERER2l96Tgk+vqYjIb6C2GJ4ZDt5WOOu/kHtS0IdYUFjN6S/8jN+AZ84ZwsSB3YI+xr6m96Tg2p9ezzpXHV8VfMXU/KksKl/U9nioNZTxGeOZlD2JUSmjsJoPrTDXV1tL1euvU/P6G/ibmwFw9OtH/NVXETF2bNDC+N1l+A18Na14tuw1/8vKeVtiGLFn9N7a7lcrr2XfW/jFFFZ8/w1VxYX4vB33b7/oiRfbyseXbViPz+MmISMLm8PR6bF9dXXMP/EUoqrLWJvWh5M/fxerfd+seP+1GUUzuPmHm3H5XAxKGMSzE57FGaItDg5E+9N70sFCr6mIiOwvdvc96dD6tCciIiIiIiL73oz7AwF89yOg94lB777R5eX6d5fgN+C0Iam/WQDfmleDp7SZyCNSd91YDmnOECdn9D6DM3qfQXFDMVPzp/JZ/mcU1he27SUfHxrPiVknMjF7In1i+xwSIa8lOprEa68l9k9/ovqVV6l+6y1aV6xg4+VX4Bg4kISrryb8iDG/2WthMpuwxoVijQsltG/cjtsdAv9tfmvN9XXtVreXF+Rz5l0PER4dEzhfF9jfHcAeGkZiVmBle2CFezbOxOS2vpKygrMvu2EY+GpqWH3dTURVl1EWGkP6E49htdtoqG6ltryZ9NzYoIy1Pe+vfZ/7Zt+H3/AzNm0sj459lFBr6D4bT0RERET2LYXwIiIiIiIiEjybF8PSdwLHx90H+yC8unfKCoqqm0mNDuWeU/oFvf8dCcl0Uj+9mJBs53b3oxbZnvTIdK4YdAWXD7ycZZXLmLJ+Cl8WfEllSyVvrnyTN1e+SY4zh4k5Ezk56+RDouy0NSaGxBtvIPaC86l6+RVq3n6b1qVLKf7znwkdMoSEq68i7LDDFH4fZDYsms/iaZ9TXpBPY1Vlh/PlBflkDQ5sA5B7+FFbysrn4ExMCtr3guHz4S0txV1cjLuwCE9xEe6iYtzFxXiKivA3NWEBXGYrP11wM7f1z8QwDH54Zy0FSys57LQchh7fPShzaZuTYfDi0hd5dvGzAJzW4zTuPOzOQ65ShoiIiMjBRv9vTkRERERERILDMODrOwLHA06H1KFBH+LL5aW8N38jJhM8dsYgohz7tkSwv8WLKcSCyWzCZDUTf2G/wF7SInvIZDIxMGEgAxMGcvPIm5m1aRZT86fybdG3rK9bz5MLn+TJhU8yInkEE7Mncmz3Y4m0R3b1tPcpa1wcSTf/hbgLL6Dq3y9T8847tCxaRNFFFxM6fBgJV19D+KiRXT1N2U1+n4/qzRvbVrhXFOZzxNnnk9IjUNq/qbaG/AVz29pHJ6dsXd2elUO3Xrlt5+IzMonPyNy7ebhceDZuxF1UhKfol5C9CE9RMZ5NmzA8np1eXxIWy3+GnMrfLzoBgPULKyhYWonZYiJzQPxezWlHfH4fD819iHfXvAvApQMv5arBV+kGFBEREZGDgEJ4ERERERERCY51X0PBTLCEwPi/Bb378vpW/vrhUgAuOyqHUdk7Lh8dDJ7yZipfX0FovziiT8oGwGy37NMx5dBgM9sYlz6OcenjaHA38E3hN0zJn8K80nlt/x6Y/QDj0scxKWcSY7qNwWb5bfak7grWhASS/norsRddRNVLL1H77ru0zF9A0fnnEzZqVGBl/PDhXT1N2Y6KogIWfzWV8oJ8KgsL8Hrc7c6XrFvbFsKn9xvI0RdcSmJmNgndswkJC9vrcX319biLivEUFbYL2d3FxXjLygI3he2IzYalWzfqYpLIt0WzyBtGfkgsJeFxlIbFYtjsPPKHgSRGOmht8jDz3bUADD2hO7Hdwvd6zr/m8rm49Ydb+aboG0yY+Ouov3J27tlB619EREREupZCeBEREREREek8nxe+3hK8j74cYoJfrvcv7y+lptlD35Qobji2V1D7/7XWNdVUvb0aw+WjZXkVUeMzMDv0EVqCL9IeyWk9T+O0nqdR0ljCZxs+Y+r6qayvW8/XhV/zdeHXRIdEc0LmCUzKmcSA+AEH7SpZW1IiyXfcTtwlF1P1r39R87/3aZ4zh8I5cwg//DDir76asCFDunqah5zWxsYt+7YH9m/vfdgR5AwbBYCrqZGl33zZ1tbmCCWhe9aW1e3ZZPQb2HbOmZjE0BN/t1tjGoaBt7wiUC6+sKhdyO4pKsJXV7fT683h4dgyMrCnp2PPSMeWnkF5VDyzmkP5sszH/OI6/Nvk9DFhNsb1TmR8biJH9UrAGRq46eXnj9bTXO8mJjmM4Sdk7uYrtmv17nqunXEt88vmYzPbeOjIhzg+8/ig9S8iIiIiXU9/QRAREREREZHOW/QGVK6B0Fg44oagd//m7EK+X1tBiNXMk2cNxm7dNyXhDcOgcdZm6j7LBwPsmVHE/bGPAnj5TaREpHDJgEu4uP/FrK5ezZT8KXye/zlVrVW8s+Yd3lnzDt2junNy9slMzJpIelR6V095n7AlJ5N8553EXXIJlS+8SO2HH9L00880/fQz4UceScLVVxE6cOCuO5K90lxXy5JpX7SF7vUV5e3Oh0ZEtoXwiZnZjDjlD4HQPTOHmOQUTObd+/1seDx4Nm/GXVS0pXT8lpC9uAh38UaM1tadXm+Jj98asmdkYN8SutsyMrDExODy+pmzoZoZq8qYvrqcjTUtQEvb9bnJkYzPTWRCn0QGp8dgMbe/uWXT2hpW/rgZgHF/zMUSpK1IypvLufyby1lXs44IWwRPHv0kI1O07YKIiIjIwUZ/RRAREREREZHOcTXAtw8GjsfdCqHRQe0+r7yBBz5bBcCtJ+bSM2nf7JNteP3UfrKepnmlAIQNTyLm1B6Y9lHgL7IjJpOJPnF96BPXhxuG3cCckjlMyZ/CjKIZFNYX8tzi53hu8XMMThjMpJxJHJ95PM4QZ1dPO+hs3bqRcu89xF36ZypfeIG6jz6maeZMmmbOJGLsWOKvvprQ/v26epoHJMPvp6Z0M+UbAkF7XFoG/cZOAMDv9/PT/95q196ZmNS2f3vGgEFtj9tDwzjqnAt2OI6/qQl3cXEgZC8uDpSQLw7s0+4pKQGfb8eTtFiwpaS0rWS3Z2Rgy0gPhO1paZjDO5aGL69vZcbqcqavzmdWXiXN7q39261mDs+JY0JuIkfnJpIWs+Ny+D6vn+/eWgNAvyO70a1H9I7nuQc21G3g8mmXs7lpM/Gh8Tx/zPPkxuYGpW8RERER2b8ohBcREREREZHOmfUkNFVAbA4MuzCoXbu9fq57dzEur58je8Zz/mGZQe3/F4ZhUPXmSlrX1IAJnCdlEXFE6kFb9lsOHFazlTGpYxiTOoZmTzPTi6YzNX8qs0tms7hiMYsrFvPQ3Ic4KvUoJuVM4qi0o7Bb7F097aCyp6XR7f77ib/0Uiqfe566Tz+l8fvvafz+eyImTCDhqsk4+vTp6mnu13xeDyt/+Dawun1DPhWFG/C4tq40zx46oi2Ej4iJZdCxJxGT0i2wf3tmNo7wiO32axgGvurq7Ybs7uJifJWVO52XyeHAnp7WPmRPzwgE7926YbLZdnq932+wfHMd01eVM2N1Ocs2tS9TnxQVwvjcJMbnJjKmRxxh9t37U6jZYmLkpCwWflXIYafl7NY1u7K0YimTp0+m1lVL96juvHDMC6RFpgWlbxERERHZ/5gMwzB23ezQUl9fj9PppK6ujqioqK6ejoiIHML0nhR8ek1FRIKsbhM8PQy8LXDmf6DPpKB2/+hXq3n22/VEh9n46rqjSIpyBLX/bTUvraDmg3XEnp1LaG7sPhvnF3pPCq5D7fUsby7niw1fMDV/KqurV7c9HmmP5PjM45mYPZEhiUMwmw6+Sg6uDRuofP556qd+Bn4/AJHHHkv8VVfh6N2ri2fXtVzNzVRs2b/dbLUx+LiTgMDK92cuOhN3y9Zy7FZ7CAkZmSRmZZPWpz+5Y8Zut0/D58NTUrp1Bfs2IbunqAh/U9NO52RxOtv2Z7d1z9gasqdnYE1M2OObnZpcXn7Mq2TGqnJmrCmnosHV7vyg9Ggm5Ab2d+/XLapTN1MZhhGUm7FmbpzJjd/fSIu3hf5x/Xn2mGeJdez79xnpOofae9JvQa+piIjsL3b3PUkr4UVERERERGTvfftAIIBPHw25E4Pa9byCap7/bj0AD542YJ8E8H6XD3OIBYCwgQmE5ERjCd/5ykuR/UFiWCLn9zuf8/udz7qadUzNn8pn+Z9R1lzG+2vf5/2175MakcpJWScxKWcSWc6srp5y0IRkZZH6yCPEX345lc8+R/3nn9MwbRoN06YReeIJJEyeTEiPHl09zd9EwZKFlK5ftyV4z6e2rKTtXExKalsIbzKb6T/uWEwWC0mZ2SRm5RDTLRWzOfD7z+9y4crL+1XIvmWf9k2bwOPZ6TysycnbDdntGelYghCWFVc3M33L3u5z8qtx+/xt58LtFo7smcD4PomM651AYuTev1f4/QauZg+hEYFqEsEI4D/J+4S7froLn+FjTLcxPDbuMcJsOy6FLyIiIiIHB62E3w7dVSciIvsLvScFn15TEZEgKl0GLxwJGHDJdEgbHrSuG1o9nPjkTDbWtPB/Q9P45xmDdn3RHjAMg8aZm2j8cRMJkwdjdYYEtf/dofek4NLrCX7Dz/zS+UzJn8K0wmk0ebauUO4X149JOZM4IfME4kLjunCWwedat46KZ5+j4csvAw+YTESddBLxk68kJDu7aycXBIbfT115GeUF62mqq2XI8VtveHrjL1dRUVTQrn1kXAKJWdkkZfVg9P+d1RYk++rqth+yFxfjLS3d+SRsNuypqVv2ZO++JWQP7M9uS0vDHBLc36Fen5+FRbVMX13GjFXlrCtvbHc+IzaM8bmJTOiTyMisWEKslr0ey+f1s3ltLRuWVbJ+QTl+n8HYc3rTY1hip56DYRi8svwVnlj4BACTsidxz5h7sJl1o9ehQO9JwafXVERE9hdaCS8iIiIiIiL7jmHA13cABvT7fVADeIC7P13JxpoW0mJCuft3fYPat+H1U/NRHs0LygBoXlRO1Lj0oI4h0hXMJjMjU0YyMmUkt4+6ne+Kv2Nq/lRmbZrFiqoVrKhawaPzHuXwboczKWcS49LHEWoN7eppd1pIz56kPfE4rWsup/KZZ2mYNo36zz6j/osvcE6aSPwVV2DPzOzqae62qo3FlOStabd/u7ulGQCLzcbACSdgsQb+pJczfBRx6d0De7d3zyI2IgprdU1byL75xpvaysb76up2Nizm8PBA2fiMjHYhuz09HWtyMibL3gfdu6O22c33ayuYsbqc79ZUUNeydfW9xWxiePcYJvRJZHxuEjkJ4Z1ape5q9lCwtJINS6soWlmFp9XXds5qM2P4O7dmyW/4eXTeo/xn1X8AuLDfhVw37LqDcnsIEREREdk+hfAiIiIiIiKy5/KmQ/53YLHDMXcFtesvlpXwwcKNmE3w+JmDiXQEb9Wgr9FN1X9W4S6oBxM4J2YTcXi3oPUvsr9wWB2ckHUCJ2SdQHVrdWD/+PVTWV61nJmbZjJz00zCbeEck3EME3MmMiJpBBbzvg1Z9zVH796kPf0UrStXUvHMszTOmEHdJ59SN/UznL/7HfFXXoE9ff+54cbd2kJFwQYqigoYdOyJbaHyrPfeZN2cn9q1tVitxGdkkpCRSfO6tZgqq3AXFdGjaFMgZJ/2A61FxWxyubY31NZ+4uPbgvXAqvZfjjOwxMQEpfz67jIMg7zyRqavLmfG6nIWFNbg2yb8jg6zMa5XAuP7JDG2ZwLOsL1/LzAMA7/XwGILhODlRQ1889qqtvOhUXayBsSROTCetD6x2Ox7/7Pg9rm548c7+KLgCwBuGn4T5/c7f6/7ExEREZEDk0J4ERERERER2TM+75ZV8MDISyEmM2hdl9W38tePlgFwxbgcRmTGBq1vT2kTla+vwFfjwhRiIe6cXBy9g9e/yP4q1hHLuX3O5dw+57KhbkPb/vGbGjfxyfpP+GT9JySGJXJy9slMzJ5Ir5heXT3lTnH07Uv6c8/Ssmw5Fc88TdP3P1D30UfUTZlC9GmnEnfZ5djTUn/TObU01FOWn0d5QT7lG9ZTXpBPTenmQFURIGvwUJyJyQB0y+pBU1kpseFRRJssRDW2EFpegXfucjyfTGPjky/ueCCLBVtKSqBMfEY69vSMrWF7Whrm8PDf4unukMvrY05+NTNWlzN9dRnF1S3tzvdOiuToLWXmh6RHY7Xs/cpxn89PSV4dBUsrKVhaSfcBcRx5RuB7u1uPaFJynHTrFU3WwAQSu0diMnf+BoRGdyPXfXcdc0rmYDVbuX/M/ZycfXKn+xURERGRA4/2hN8O7S8jIiL7C70nBZ9eUxGRIFjwOky5BhzRcO1iCI0JSrd+v8H5r85l5rpK+qdG8eEVY7Bbg1O611VUT+W/l2O4fVjiHMSf3w9bYlhQ+t5bek8KLr2ee8YwDBaVL2Jq/lS+LPiSBndD27neMb2ZmD2Rk7JPIjGsc/ti7w9aliyh4ulnaPrxx8ADNhvRv/898Zdfhi0lJahjGYZBfUU55QXryeg/mJCwwO+ZH956lXmfftChfVhoGDGOcAaFRhFaWoG7qAhfVdVOxzA5HG2r19tWtKdvKSHfrRsm2/6153h5Qyvfra5g+uoyZq6rpNm9tfS73WLmsJw4JvRJ5OjeiaTHdu73cmuTh6KVVRQsraJoRRWuZm/buZjkMM65e3Sn+t+ZypZKrvzmSlZVryLUGsoT457g8NTD99l4sn/Te1Lw6TUVEZH9hfaEFxERERERkeBzNcK3DwSOx94StAAe4I2fC5i5rhKHzcwTZw4JWgAPYEsKxxrrwBxmJfbcPljC96+QSuS3ZjKZGJo0lKFJQ7l15K38sPEHpuZP5fuN37OmZg1rFqzhsQWPMSplFJNyJjEhYwLhtq5dRb23QgcNIuPfL9G8cCEVTz9N88+zqX33Xeo+/JDo008n7rJLsSUl7XG/fp+P6s0b261uryjIp7WpEYBTLruOlNBw3EXFOFasIsJiw+n2EllbT2RdA1EtbkK8WwPpbdeEW5xObN27dwzZ0zOwJib8pmXj95Tfb7Bicz3TV5cxY3U5Sze234s+ITKECbmJjM9NZEyPeMJDgvPnScMw+N9D86ivbG17zBFhI7N/oMx8et99V/mkqL6Iy6ZdxsbGjcQ6YnluwnP0i++3z8YTERERkf2fVsJvh+6qExGR/YXek4JPr6mISCd9+xB8//dACfrJ88BqD0q368oamPj0j7i8fu49pR9/Oiyz030aXj9YTG1hla/BjTnMimkvyxsbhkHFU08RdfzxOHJzOz0/vScFl17P4Khz1fFVwVdMzZ/KovJFbY+HWkM5Ov1oJuVMYnTKaKzmA3ddR/O8eVQ89TTN8+YBYLLbiT7zTOL+fAm2xO2v/Pe4WqksKiQqIZHw6MDNR0u+nMo3r77Qoa3JMIhs9dCrpIrEhubtT8JkwpqcvN2Q3Z6RjuUA+x5udnv5cV0lM7bs717e0H5v+oFpTsbnJjIhN4l+3aIwd6L0u99vUJofKDNfur6OU28c2tbfd2+vYfO6WrIGxpE5MIGkrM6NtTtWVK3gym+upLq1mrSINF489kUyojL26Ziy/9N7UvDpNRURkf3F7r4nKYTfDr2hi4jI/kLvScGn11REpBMaSuGpIeBphtNfg36nBaVbt9fPqc/OYmVJPWN7JfDahSM6vcrT1+im6s1VOPrEEjUuvdNzNPx+Su+9l9p33sUSF0fOl19giYzsVJ96TwouvZ7BV9xQzGf5nzE1fyqF9YVtj8c54jgx60Qm5kykb2zf/XpV9s40zZ5DxdNP07JgAQCmkBBizj6biHPPprK2moqCfMrWraFs/TpqqyowDIPhCalk1jbjLi6msr6WOTndiGpxbfnnxtniIsLlxmwANhv2tLRfheyB/dltaWmYQ0K69gXopOLqZr5dU870VeX8nF+F2+tvOxdmt3Bkz3gm5CYxrncCiVGOTo3lbvFStLKagmWVFC6rorXJ03butJuG0q1HNAA+rx9LEKuo7MpPm3/i+m+vp9nbTG5sLs8f8zzxofG/2fiy/9J7UvDpNRURkf2FytGLiIiIiIhIcH37QCCATxsBfU8NWrePTVvLypJ6YsJsPPqHgZ0O9NwlTVS9vgJfrQtPeTMRI5Mxh+19+XnD56Pk9juo+/hjMJlIvOGGTgfwIgeC9Mh0Lh90OZcNvIzllcuZkj+FLzd8SVVrFf9Z9R/+s+o/ZDuzmZQziZOyTqJbRLeunvIeCR89irBRI2n66Scqn3qaliVLWPe/d5i78AeM7fwesnt8NC1eQnNloLy6EzihoAJ7Rjr2Hu1Ddnt6OtbkZEwWy2/8rPYdr8/PouJapq8q59vV5awpa2h3Pj02lAm5SYzPTWRUdiwh1uA891U/bea7t9bg921dRxQSZqX7ljLz8akRbY//lgH85/mfc/us2/H6vYxKHsUTRz9BhD1i1xeKiIiIyCFBIbyIiIiIiIjsWtkKWPSfwPFxD0CQVr7Oya/ixR/WA/DQ7wd2erVky4oqqt9djeH2Y40PJe78vp0L4D0eNt9yC/WffwEWC90efhjnxJM7NUeRA43JZGJAwgAGJAzgLyP+wk+bfmJq/lS+Lf6W/Lp8nlz4JE8ufJLhScOZlDOJY7ofQ5R9/16laBgG5QX5rJ8/m8i4BPq/81+afvwRy1NPYTKacbg9RLW4cLa4iLY7iE9IJqpHBvYJGW0huy0jA0tMzAFbCWB31DV7+H5dBTNWlfHd2gpqm7euQDebYHj3WMb3SWRCbiI9EiM69VoYfoOygnoKllaS3jeW1F6Bsv8xKeH4fQbRSWFkDogja1A8ydlOzHu5tUgwvLHiDR6d/ygAx2cez4NHPIjdEpztWURERETk4KAQXkRERERERHZt2p1g+KHvKZAxKihd1rd6uOG9JRgGnDE8jRP6J+91X4Zh0PDdRuq/LgADQnpEE3dObqcCeL/bzabrb6Bx+nSw2Uh97J9EHXvsXvcncjCwmW2MTR/L2PSxNLgb+KbwG6bmT2Ve6Tzml81nftl8Hpj9AOPSxzExeyJHpB6BzbL3P4fB5PN62bhyOXnzZ7N+wRwaKisASMzKYcD444g48kh6HnEEf/zuW0K8vkDYnpaGOTy8i2f+2zEMg/UVTcxYXcb0VeXML6zB59+6At0ZamNc7wTG5yYytlcC0WGdC57drV42rqphw7JKCpdV0tIQCPlbGtxtIXxS9yjOuXsUMcld/9/BMAweX/g4ry5/FYBz+5zLzSNuxmzquhsCRERERGT/pBBeREREREREdi5vOuR9A2YbTLgraN3e/ckKNtW2kBEbxp2T+nWqr5r319G8oAyA8MNSiJ6YjakTqyT9LS1svPoamn78EVNICGlPP0XEUUd1ao4iB5tIeySn9TyN03qeRmlTadv+8Xm1eXxd+DVfF35NdEg0x2cez6ScSQyM7/x2E3vrm38/x+pZ3+Nqbmp7zBoSQubAofQYMRrDMDCZTJhMJhKOHt8lc+wqLq+PuRuqA2Xm15RTWNXc7nzPxIgtq92TGJoRjTUIK9A9Lh9f/ms5m9bU4NtmL3m7w0JGvzi6D9i6r7rJbNovAniP38PdP93Np+s/BeDaoddycf+LD+pKCCIiIiKy9xTCi4iIiIiIyI75fYFV8AAj/wxxOUHpdurSzXy4aBNmEzx+5iAiQjr38dSeHknzojKif5dDxOjO7Uvtb2qi+IoraZ47F1NoKOnPP0f46NGd6lPkYJccnszFAy7mov4XsaZmDVPWT+HzDZ9T2VLJu2ve5d0175IRmcHE7IlMzJ5IelT6PptLfWUFRcsW02/cMW0BaWtTI67mJsKc0eQMG0nO8NFkDBiEzR6yz+axP6tocPHtmnJmrCpn5roKmty+tnN2i5lR2bFMyE1kfG4SGXFhnRrLMAwqihqoK2+h54gkAGwhFuorW/B5/UTFO8gcEE/moHi69Yj+Tfd1313NnmZu+P4GZm2ahcVk4e7D7+bUHqd29bREREREZD+mEF5ERERERER2bMk7ULYcHE446i9B6bKkroXbP1oOwOSjezCse+xe9WP4DUzmQMAWMTqFkBwntoTOhUW+hgaK/3wpLYsXYw4PJ/2lfxE2dGin+hQ5lJhMJnJjc8mNzeX6Ydczt2QuU/KnML1oOkUNRTy35DmeW/IcgxIGMSl7EsdnHk+0I7pTYxqGQUXhBtbPn0Pe/NmUb1gPQHJOT+IzMgEYecofGHriJFJ69MZk3v9C3n3NMAxWbK5nxupypq8uZ0lxbbvzCZEhjO+dyPg+iRzRI57wTt4Y5XX72Lh6S5n5pZU01bmxhVjIHpyAxRZ4/cee3YvQKDuxKeH79WrymtYaJk+fzLLKZTgsDv457p8clabKKCIiIiKycwrhRUREREREZPvczTDjvsDxkTdB2N6F5dvy+w1u+t8S6lo8DExzcs2EnnvVT8vySuqnF5Hw5wFt+753NoD31tRQfMmfaV2xArPTSca/XyJ0wIBO9SlyKLOarRyeejiHpx5Os6eZ6UXTmZo/ldkls1lSsYQlFUv4+7y/c2TqkUzMnsjY9LGEWHZ/ZXrVxmKWfPM56+fPpb6ibOsJk4luvfrgbm1peygxMzuYT+2A0Oz2Miuvihmry5mxuoyyele78wNSnYzPTWRCn0T6d3NiNnc+CC9YWsmKHzezcVU1Xs/WMvO2EAvpfWNpbfYQ7gz8N07L7fx7yr62qXETl0+7nIL6ApwhTp6d8CyDEgZ19bRERERE5ACgEF5ERERERES27+dnoaEEojNg5KVB6fLVnwqYlVeFw2bm8TMHY9vDvYUNw6Dh22Lqvy4EoGHmJpzHZ3Z6Xt6qKoouvAjX2rVYYmLIePUVHLm57dpUFDfg8/hJznZ2ejzZv1U0uAizWzq9Gli2CrOFMSlnEpNyJlHRXMHnGz7ns/zPWFW9im+Lv+Xb4m+JtEVyXOZxTMyeyNCkoZhN7X8/uFua8Xo8hEUFfgbrK8tZ9MUUAKw2OxkDB9NjxGhyho4kzBn9Wz/F/cLGmma+3bLa/af1Vbi32W891GbhiJ7xTMhN5OjcRJKiHJ0ayzAMqjY1EhUfit0R+Fmp2txIwdJKACJiQsgaGE/mwHhSe8W0rYA/UKypXsPl31xOZUslKeEpvHDsC2Q7D72bOURERERk7+jTpIiIiIiIiHTUUAY/Ph44nnAX2DoX1gCsKW3g4S9XA3DHyX3JSYjYo+sNj4/q99fRsqQCgIjDuxF1TPdOz8tTVkbRhRfhzs/HmpBAxquvENKjR7s25YX1fPzYLAy/l9/fPI6E9MhOjyv7r5vfX8K3ayqIDLGS7HQE/kU5SHE6SHaGkuJ0kLTl6+gw235dSnt/lBCWwPn9zuf8fueTV5PH1PypfLbhM0qbSvlg3Qd8sO4DuoV34+Tsk5kQdyTetaXkzZ9N8fIlDDnxd4z940UApPcbyIAJx5M1ZDiZA4Zgc3T+99SBxuc3WFxcw/RV5cxYXc7q0oZ251OjQzmmTyLj+yQxKisWh83SufE8fjauraFgaSUFSytprHFx7MV96TUiGYCcIYkYfoPMgfHEpUYcsD8b80rncc2Ma2j0NNIjugcvHPMCSeFJXT0tERERETmAKIQXERERERGRjr57CDxNkDoM+v9fp7tzeX1c+84i3F4/43MTOXdUxh5d76t3U/nmSjzFDWA2EX1KDhGjUjo9L8+mTRRecCGe4mKs3VLo/uqr2Lu3D/ZL8+v45PGZNFW+i8UGZssoQCH8way+1QtAg8tLQ3kj68obd9g2xGpuF9InOR2kRAXC+mRn4LH4iBAsQSj1fTDqEdOD64ZdxzVDr2F+6Xymrp/CnOXfEpfXyOavp/Bl3dft2lcWFbQdW202jrv06t94xl2vrsXDD2sr+HZ1Od+uKaem2dN2zmyCYd1jGJ+bxIQ+ifRM7HwQ7m71sn5hBQXLKileWY3H5Ws7Z7WZaapxt30dnRTG8JOyOjVeV/u64GtunXkrHr+HYUnDeGr8U0TZo7p6WiIiIiJygFEILyIiIiIiIu2Vr4aFrweOj7sfgrCS8Z9fr2V1aQNx4XYe/r+BexQKecqaqHx5Ob56N+YwK7Hn9sGRE93pObkLCym84EK8JSXY0tPp/tqr2FJT27XZnFfLp098T3PVexj+OkIjErCYfTvoUQ4WH1xxOI0uL6V1rYF/9a2U1rVQUtdKWX0rJVser2py4/L6KaxqprCqeYf9WcwmEiND2kL5pG1W1f8S3idGhRBi7dwq5QOVYRiYTWZGpoxkRNJwXnhzA821tW3nK6JdFCU2synZRd9e5YTmf87RGUcTag3tukn/hgzDIL+yiRmrypm+uox5BTX4/Ebb+SiHlbG9E5mQm8jYXgnEhNs7PZ6n1Yc9NPBnQ3eLjxlvrGo7H+a0kzkwnqwB8aTlxmC177/ft63eVmpdtdS56qh11VLjqqGuNXC87ePb/mtwB6oJTMiYwMNHPUyIJaSLn4WIiIiIHIgUwouIiIiIiEh70+4Eww+5E6H74Z3u7uf1Vbw0Mx+Av//fQBIi9yzQMEfYwWrGmhhK/J/6YY3vfPDmysuj6MKL8FZUYM/OJuPVV7AltS81bBgGc6fk42oqwPDX4UxK4Yw7HyAqPrHT48v+LyLESo/ECHok7njbBJfXR3m9KxDKbxPUbw3uWylvcOHzG5TUBcL7RTsZMy7c3hbU/7K6/tfl7w+Wfeo9ra0ULF3I+vlzKMvP40+PPI3JbMZkNtN79JHUlpXQY/hoYvv34oea2RTnf0Z15VJ+3DyLHzfPIswaxjHdj2FSziRGJI3AYt5/g+C94fb6mVdQvaXMfBkFv7rJo0diBBNyExmfm8iw7jFYLZ3bb93n9bM5r7atzHx0YhiTrhkMBPZ27zUqiaj4ULIGxpOQHonpN67sYBgGDZ6GdgH6LyF6jaumXZhe56qjpjXwWKuvda/GO6v3Wdw68taD7vtKRERERH47B8cnNxEREREREQmO/O9h3VdgtsIx93S6u7oWDze+txjDgLNHpnNs393bU9cwjLbV8pZwGwkX9cccYcPs6PzH2NZVqyi66GJ8NTWE9O5NxisvY42L69DOZDJxwqUDmPdZBBHOXvQcOYqImNhOjy8HjxCrhfTYMNJjw3bYxuc3qGzcEtTXtVBa10rJloD+l7C+pK4Vt9dPVZObqiY3KzbX77C/SId1Szi/JazfTlC/v+5T31Rbw/oFc1k/fzZFy5bg9WwtY16St4ZuvfoAMP7Cy9pdd05yNuf0OYeCugKm5k9lav5UNjVu4tP1n/Lp+k9JDEvk5KyTOTn7ZHrH9v5Nn1MwVTa6+G5NBTNWl/HD2koaXd62czaLidHZcYzfErx3jwvv9HitjR4KV1RRsLSSohVVuFt97c75PH4stkC4f+yF/To93i+8fm+HFejtvm7t+Fi9qx6v4d1159thNVlxhjiJDolu+99oR+A4JiSm/eMh0cSFxuEMcQbt+YqIiIjIoUkhvIiIiIiIiAT4/fD1HYHj4RdBfI9Od3nnJ8vZXNdKZlwYd5zcd7euMTw+qv+3FkfPGMJHJAMEZfU7QMvSpRRd8mf89fU4+vcn498vYYmObtemvqqF1oYSouITcUREcOQZvYBeQRlfDj0Ws4mkqEBATnr0dtsYhkFts2fLivoWSutcW1fVbxPYN7i8NLR6aWg98PapX/jFFL59/V9gbC2j7kxMImf4aHoMH0Vyzq5/xjKdmVw15ComD57M4orFTF0/lS8LvqS8uZxXV7zKqytepVdMLyZlT+LErBNJCt+9m366imEYrCyp31JmvpwlG2u3fXmIj7BzdO9EJvRJ5IieCUQEuQrC16+soHhlddvXoZE2MgfEkzkwnvQ+sW0B/M60eFu2G6DvLFhv8DTs9ZxDraFt4XmHYH1LuP7L8S+PR9gi9subUkRERETk4KYQXkRERERERAKWvQelSyEkCsbe0unuPlm8iU8Wb8ZiNvHYmYN3q4y2r95F5Rsr8WxspHVVNY4+sVgiOre/8S+aFyyg+NLL8Dc1ETpkCOn/ehFLZGS7NgVLK/ns2a/wNH9EQkYGf7j9fkLCdrzKWSQYTCYTMeF2YsLt9O0WtcN22+5TX1LX0m5/+l/C+j3Zpz4pMiQQ0DsdJEeFkuwMaVtVnxy1d/vU+/0+Nq9dzfr5c8gZPoq03MAK6sSsbDAMkrJ70mP4KHJGjCY+vftehaMmk4khiUMYkjiEW0bewsxNM5m6firfb/yetTVr+eeCf/LYgscYlTKKidkTOab7MYTbOr9yPBha3D5+Wl/J9NXlzFhVTml9+3Lp/VOjGJ+bxPjcRAamOjF38kYJv89Pyfq6QJn5ZVWcev0QwqMDW4JkDoijuc5F5oB4MgbEEtbNRL2nnlpXCT9XrGor675toN5ub3VXHS6fa6/nFmWPaheYxzhi2gXq7cL1LQG79mcXERERkQOFQngREREREREBTwtMvzdwfOQNEB7fqe4217Zwx8fLAbjq6B4MzYjZ5TXujQ1UvrESf70bc5iVuD/2CVoA3/TzzxRfORmjpYWwUaNIf+5ZzOHtQ7n8RRV8/txnuOo/BrxYbXa0eFL2J3u6T/2Ogvqy+lZ8foPNda1s3sU+9fER9rYy9zvap96Ol8JlS8ib9zP5C+fRUl8HgKe1pS2E79Yrl0uff43I2M79bvk1u8XOhIwJTMiYQJ2rjq8Lv2bq+qksLF/I7JLZzC6Zzf2z7+fojKOZlD2Jw7odhtX82/45bHNtCzNWlzNjdTmz8ipxef1t5xw2M0f0SGBCn0SO7p1IstPR6fGamlpYs2QTBUsrKV/dzLbbor809b9UZa0PBOqtddQOCATrdbPq8Bm+HXe6E1aTtW0FeofgfAcl4KPsUdpvXUREREQOagrhRUREREREBGY/B/WbwJkOoy7vVFd+v8GN7y2hodXLoPRorhq/67L2zUsqqP7fWvD6sSaGEX9+X6xxwSlB3/j992y8+hoMt5vwI48k7emnMDvaB115C8r54vkpuBs+BXxkDBjCqX+5HVtI5wMxkd/S3uxTv23Z+5ItIf0v+9RXNrqpbNz+PvU2v4fjKr4ho2Uj1m3367Y7cGQPoDGxF6tK6kmOCuxTH+wA/tecIU5O73U6p/c6nY0NG/ks/zOm5k+loL6ALzZ8wRcbviDWEctJWScxMWcifWP77pMy5T6/weLiWmasLmP6qnJWl7Yvv54aHRrY271PIodlx+GwbT+MNgyjXbn3X1afdyj3vk0J+NDSeI5efj4WY2ufLdZGiqJXUhi7gmLXKjx5O169HmoN3X6I7ojeYbgebgtXuXcRERERkV9RCC8iIiIiInKoa6yAmY8HjifcCbbOhd8v/7iBn/OrCLVZeOLMwdgsO99XuG5aIQ3TiwBw9I4h9uxczI7gfFyt//prNt14E3g8RBwzgdTHHsNsb7+6fu3cUr568WPcjZ8DfnKGjWLi9bditdmCMgeR/c3u7lNf0+zZsoJ+S1BfVEzN5k0URmQGHq9tIc5djdXwUm+JYEN4FvlhmWx2pOB3WeAnN/w0EwjsU7/t6vlkZyjJUduUvw/yPvVpkWlcNugyLh14KSuqVjBl/RS+LPiS6tZq/rPqP/xn1X/IcmYxKXsSJ2efTLeIbp0ar77Vw8y1lUxfXcZ3ayqobnK3nTObYEiGkzG9whmSaScm0kO9u5qa1vW8u7a2Q7Be46oJrFJ31eL2u7c7nskwkdSQSfea/tSGeliTuAKAkJAaTAbUhJZRGr+OupRN+BObiAmNpn9IBkeEDGwXoP+6BLzdEpzqIyIiIiIihzqF8CIiIiIiIoe67/8O7gZIGQz9/9CprlaV1PPoV2sA+NvEvmTF73ofZtOW0C3iyFScJ2a1fd1ZdVOmsvnWW8HnI+qkk+j28N8x/SpYXz27hGkvfYK78TPAoPdhR3HiVTdgserjshzaTCYTMaFWWjdtpmrhbNzz58CmYpJCw7jn329hsQZ+llbNi6PZEkpzRBKl9a3tyt//sqr+l33qC6qaKejkPvVJUQ7s1p3f2PPr59E/vj/94/tz04ib+Hnzz0xZP4Vvi79lQ90Gnlr0FE8teophScOYmD2R4zKPI8oetdM+PT4Pta5alpdu5vu8QuYVbSSvqgzD3IzJ0oQpqpnIuBaiItzY7a14jEbyPPWs3ejn1Y27PfU2NrON6JBoYi3xpNf2IbEim4iSZMyuwH8DezcvV40/b2uQPjGMpMQ4lXsXEREREelC+quCiIiIiIjIoaxyHcx/NXB83P1g3v1w69daPT6ue2cxbp+fY/okcvbI9N26LnJ8OvbuUTh6RO/12L9W+8EHlNzxNzAMnKedRsr992GydAykmuvcYE7AGhJB79GjOO7yqzEruJJD3KbVK1nxw3TyF8ylqbam7XGzxUJyTk+a6+qIjAuUlu8zYsQu+2v1BPapL60P7FNfup3y93u6T/3W/ekdpDhDO+xbHx7S8U9eNrONo9KO4qi0o2h0NzKtcBqf5X/G3NK5LChbwIKyBTw05yHGpo+lZ3TPjiXgW2upbq2l1ferGwlsYE/uOM96A/hV5fcwa1i71efb20M9OiQap2PLSvWQGBwWB1+9tIKCZZX4vUZbXyFhVjL6xZE1KJ6e6UlbB3Hu8j+JiIiIiIjsYwrhRUREREREDmXT7gLDB71OhKwjO9XVP75aw5qyBuIj7Pz9/wbucI9gd3ED9d8UEntuH8x2CyaTKagBfPVbb1F23/0ARJ99Fsl/+xumHdxcMPT47sSlRhCTdCSRcfE7bCdyMGtpbMBmD8G6ZauGouVLWDb9KwDsoaFkDh5Oj+GjyBoyHEd4xB7377BZyIgLIyNux/vUe32B/ecD4XzHfep/Ce633ad++aaO+9T/ItJh3U75+/ZB/ak9TuW0nqdR2lTK5xs+Z8r6KeTV5jGtcBrTCqft9DkZhgn8oTjMkcSGxpAeFU9KZFwgRHcEwvWYkPal3p0hzl2Wezf8BuWFDZSsqiX1mNR2j/u9Bs6EUDIHxpM1MJ7kHk4su9juQ0REREREuoZCeBERERERkUNVwY+w5jMwWeDYezrV1ay8Sv794wYAHv6/gcRHhGy3XfPicqrfXwteg/pvCok+KbtT4/5a1cuvUP7oowDEXnABibfc3OFmgHXzy6gs+J6UHjlkDh5G9/5xQZ2DyIGgrryUvHlzyJv/M5tWr2TitTfTa/QRAPQcdThNtTX0GD6KtH4Dsf5qG4d9wWoxB8Jx5673qS+pa2lX9v6XgL6krpWyulYaXF4aWr00tDaytqxxh2O236d+CCOjDuOw9BI2un+itKmG0mozpTUW/L4wjC3/ou3RHJHTneNzMzmqVyKRjs6/Nh63j42rqtmwtJLCZVU01wf2gc8aFI8zIXDjwshJ2Rx2Wg7RSWE7vMFJRERERET2HwrhRUREREREDkV+P3x9R+B42AWQ0Huvu6pr9nDje0sAOGdUBhP6JHVoY/gDoXvDjGIAHH1iiZqQsddjdujfMKh87jkqn34GgLgrLifhmms6hFULvy7kh7fewNc6B4vNzkWPv0BUQmLQ5iGyvzIMg7L8PNbPn03e/DlUFhW0O1+an9cWwsend+eYS67sglnunMlkIjbcTmy4nX7ddlxzvaHVQ1l9K6V1rh2Wv9/5PvVD2n3VNyWKCX0SGZ+byKC0aMzm4ITgm9bWsGhaERtX1+Dz+NsetzksZPSNw7dN6fn4tD2vQCAiIiIiIl1HIbyIiIiIiMihaPkHsHkR2CNh3F/3uhvDMLj942WU1reSFR/OHSf36dDG7/ZR8+4aWlZUARAxNg3n8ZmYghRkGYZBxWOPU/XSSwAkXHcd8Zdf1qHd/C828ON/X8XnWgjA4WecqwBeDhkNlRW8ddv1bV+bzGbS+vSnx/BR5AwfhTNxO5uaH6AiHTYiHTZ6JEbusM0v+9SX1LV0COhL6lqJj7AzPjeJo3MTSHGGdnpOhmFQWdyII8JGZKwDAFezl8Jlgd+LkXGOtjLz3XpGY7GqzLyIiIiIyIFMIbyIiIiIiMihxtMK07eUnz/iOohI2OuuPlm8malLS7CYTTx+5mDC7O0/ZnprXVS9vgJPSRNYTMT8vifhwzqulN9bhmFQ9uBD1Lz5JgBJf72V2PPP79Bu7tT1/PTuy/jcSwEYf9HlDDl+YtDmIbK/aG1sZMOieeTNn4PZYuHka/4CQFRCIqm5fQl3xpAzYjRZQ4YTGrHjkPpgtzv71HeW1+1j45oaCpZWUrCsiqZaF8NPymTU7wLbcKT3iWX0qdlkDogntlu4ysyLiIiIiBxEFMKLiIiIiIgcaua8AHXFEJUKo/e+5PTGmmb+9vFyAK6d0JPB293H2cDX4MYcbiPuT30J6R611+N16Nnvp/Suu6n93/8ASL77bmLOOrN9G8Ngzid5/PzBv/C7V4HJxPGXXUP/o48N2jxEulp9RTl582ezfv5sNq5agd/nA8Bis+FubcHuCKzkPvPuhxX07mM+j581c0spWFpJ8apqvO6tZeatdjPebcvOh1gYdkJmF8xSRERERET2NYXwIiIiIiIih5KmKpj5WOB4/N/AvnerQH1+gxvfW0KDy8uQjGiuHJez3XbWaAfxF/TDHG7DGuPY21l3YHi9lNx+O3WffApmMykPPED0aad2aLfgy0LmfDwFv3sVJpOZk66+kdwxY4M2D5Gu9vWLT7FsxtftHotLyyBn+Ch6DB+NzR7S9rgC+OAzDIOWBg9hUXYATGb46YM8XM1eAMKjQ9rKzKf2jsZqs3TldEVERERE5DeiEF5ERERERORQ8sMj4KqD5AEw8Mxdt9+Bf8/MZ86GasLsFp44czBWS2D/YsNvUP91Ifa0CEL7xwNgTwtuyWvD7WbTX26m4auvwGIh9dFHiDrppO22zRoUz5Lpw3CENDLq1OPoMWJ0UOci8lvxeb1sXLmcvPmzOez/ziLMGQ0EAneTyUy33n0C+7uPGE1McreunexBzufxs2ldDQVLqyhYWolhGPzpwcMxmUyYLWYGjk/HZILMAfHEp0fo5gcRERERkUOQQngREREREZFDRdV6mPfvwPFx94PZvFfdrNhcxz++XgPAXZP60j0uHAC/y0f1u2toXVmFyW4muXsUlkh7UKb+C7/Lxabrrqfx228x2WykPvE4kRMmdGjncbVisdmI6xbBufccjiNcq9/lwONqbmbD4vmsnz+HDYvm42puAiAxK5sBRx8HQL9xx9DnyKMJi3J25VQPei2NbgqXB0L3opXVeFp9becsNjMNVa1ExQfK/o+cmNVV0xQRERERkf2EQngREREREZFDxTd3gd8LPY+D7HF71UWrx8f17y7G4zM4rm8SZwxPB8Bb00rV6yvxlDaB1UT0aT2DH8C3tLBx8lU0/fQTppAQ0p55mogjj2zXxvAbfPffpRQtfp2krAyOv/waHOG2oM5DZF+r2lTMt6/9i+IVy/D7vG2PhzmjyR46kvj07m2POcIjumKKBz3DMICtJfznf1bA0m83tp0Pi7KTOTCezIHxpOXGYLOrzLyIiIiIiGylEF5ERERERORQUPgzrJoS2LD42Hv3upuHv1zN2rJG4iNCeOj3AzCZTLgK6qh6cxX+Jg/mCBtxf+pLSEZUECcPvsYmNl5xBc3z5mEKCyP9uecIHz2qXRu/32DaKwtZMeM5DF8ZDZWbGP37M4lOTgnqXOTQMP2NVWxeW9PxxJZQ9o/3jm4LaGe+u5aildU7asoZt43AuiWknf3xejYsrWxrYxgGPnc5ht+DPSydU28YQmhEJIXLFoNhYA2JwxHVm9Co3tjDUqmrtjDzvXpgHidfOZDw6MCe70tmFLN2Tmm7gbetgn7cxf3aVmqvnLWZVbNK2rfZpu24c3OJTQlUuFg7r5QVP2zeQVsTY/7Qg4T0wJYTG5ZUsOy7rUF12zy2fDlyUjZJWYHfDcWrqlkyvXibtu27HnJ8d7r1iAagJK+WRdOKtvP6BloPGJdKWm4sABVFDSz4sqBdp9vOu8/hKWT0jQOgenMT878oYFsmExgGlBXUc/Qfc0nrHQNA5qB4NufVkjkgELwnZkRiMqvMvIiIiIiIbJ9CeBERERERkYOdYcDXtweOh/4JEvvsVTcz11Xw6qwCAB49fSBxESE0LSij5sN14DOwpYQTd35frNGOIE08wFdfT/GfL6VlyRLMERGk/+tfhA0d0q6N3+fnq5fmseqH5zF8ldhDIzj9zgcUwMtea65zU1/ZusPz2+7z3VTnoraseYdtjW2Om2pdVG1qwO/diN+zHr8nH8Nfh8maRkjkGRh+gzBnNCdeeT3Fq2zkLfLg9UJDNVDdfgyf19923FjjorywYYdz8Lq3aVvdSml+3Q7bely+bdq62Lyudodt3c1bV+o31rgoXrWdGxe2GHB0Wru2hcurdti29+itP7uNtS42LKncYdvMgfFtx011LtYvrNhh2249oqFv4Lilwc26eWU7bFuwtLIthE/PjeXM20fusK2IiIiIiMi2FMKLiIiIiIgc7FZ8CJsWgC0cxt22V13UNru56X9LADhvdHeO7p0IgGdzI/gMHP3iiD2zN+Ygl2T21tRQdPHFuFauwuJ0kv7yy4T279eujc/n58vnf2bNrBcw/DWEhDs5+96HiEvLCOpc5NByxOk9cE3MbJ+gE7inBaP9gyMnZTNwfPo2bY2tbQGL1QxA3vw5NFR8h+FaiKelqe16i9VGco8kDj9jIPbQwJ9q+h41nuQeTfQ5srWt3191T2jU1i0f+hyWQmrP6F+12zrPiNiQtuMew5OIT4vc0vbXnYMzIbTtOGtQPJFxv7qxZpu2MVtWzAOk5cZwzIV9t2lntGsen7a1dH5KDyfj/9SHX79Wv0jIiGw7Tuwexbhze/+62zbJ2Vsrb8SmhHPUWb2209bYMm502zlnYihHnN5zm7ZbO46KCyWtTwwiIiIiIiJ7QyG8iIiIiIjIwczrgm/uCRwfcR1EJu1xF4ZhcNtHyyird5GdEM5tJ21dSe88KRtbSgRhQxODXprZW1FB0UUX41q3DktcHBmvvIyjd+92bXxeP5898yN5c17E8NcRGhXL2fc+RExKalDnAuD1e/nn/H8yPmM8I5JHBL1/2b/EJIfvutEWsSnbb9tcX0dYlLPt62XTvyR/4TwAQiOjyB46kpwRo8gcMASbo2MFidhu4cR227157FHblPAdzvnXYpLDd/u12JO20YlhRCeG7VZbZ0IozoTd+5mOig9lwLi0XTcEImIcDJqQvlttRURERERE9oRCeBERERERkYPZ3JegthAikuGwyXvVxYcLN/H5slKsZhNPn9iP1s/ycUzKwWQ1Y7KYCB++58H+rnhKSym64ELcBQVYExPJeO1VQrKzO7Rb+u1GCpblYfgbCI9J5Jz7/k5UQmLQ59PobuSmH25i1qZZfJb/GZ///nMi7BG7vlAOKYZhULWxiPXz55A3fzal69dxyVP/xpkY+BnpN+4YYrql0WP4KLr17oPZHNzKESIiIiIiIrJ/UAgvIiIiIiJysGquhh8eCRyPvwPsu7+y9xfF1c3c9ekKAO4d1p2YD/JoavJicliJPjErmLNt4964kaILLsSzcSO2bt3IeO1V7BnbLy0/cHwa5YUjccZn0v+oQUTExgV9PpsbNzN5+mTyavNwWBz87bC/KYCXNn6fj81rVpE3fzbr58+htqyk3fnN61a3hfC9Ro2h16gxXTFNERERERER+Q0phBcRERERETlY/fAPaK2DxH4w+Jw9vtznN7jhvcU0urxcGefkqIU1+H0GttQIIg7vtg8mDK4NGyi68CK8paXYumfQ/dVXsXVrP5bX46OyKJ+Q8HBikrtx/CX998lcAJZULOGaGddQ3VpNfGg8z4x/hn7x/XZ9oRwy8ubPZspjD7V9bbHZyOg/iB7DR5M9bCQRMbFdODsRERERERHpCgrhRUREREREDkbV+TD3X4Hj4+6DvSh7/eIP61lQUMN15lD+UGUAEDognpjTe2G2B7+MduvatRRddDG+ykrsPXLIeOUVbIntS8t7XD4+eHgKJWv+Q3h0JGfd8zBR8cEvPw/w5YYvuf3H23H73fSO6c0zE54hOTx5n4wl+7+m2hrWL5jL+vmzSc3tx8hT/gBA5sAhhEfH0H3AYHJGjCZz0FDsjtAunq2IiIiIiIh0JYXwIiIiIiIiB6Nv7gG/B3ImQI8Je3z58k11vPDVWh4ilDF+GwCREzKImpCByWwK9mxpXbkyEMDX1hKSm0vGKy9jjW2/gtjd6uV/D35E6Zq3AQ9hzixCwoJfFt4wDF5c+iLPLn4WgLFpY3nkqEcIs4UFfSzZv1VtKm7b371k3RowAjejNNZUt4Xw9tAwLnv+dUxmc1dOVURERERERPYjCuFFREREREQONsVzYeXHYDIHVsHvoRa3j2vfWUS0YWKY2QZmM7Gn9yJsUELw5wq0LF5M0Z8vxd/QgGPgQDJe+hcWp7NdG1eLl/fu/x/lee8APpJ79OeMO+/GFuII6lzcPjd3/XQXU/OnAnBe3/O4cdiNWPaikoAcuAzD4O07bqQ0b227x5Oye5AzfBQ9ho9u97gCeBEREREREdmWQngREREREZGDiWHA13cEjgefC0l7vn/5379YxfqKJhIjQ3D+LhdntAN7emSQJxrQPG8exZddjr+5mdBhw0h/8QUsEe1Xt7c2eXj3vv9SueF9wE9an6H83213YLXbgzqX6tZqrvv2OhaVL8JisnDbqNs4o/cZQR1DDgwmkwlnYjLlG/JJ7zeAHsNHkzN8FJFx8V09NRERERERETkAKIQXERERERE5mKz6FIrngC0Mjr59jy9fMGUtS3/eCMCjpw8iode+Wf0O0DhrFhsnX4XR2krYYaNJf/ZZzGHtS763Nnp49/73qNzwP8Agc9BhnHrzLViswf04m1+bz+Tpk9nYuJFIWyT/GPcPDu92eFDHkAPLUedeyLF/nkxIWHhXT0VEREREREQOMArhRUREREREDhZeN0y7K3B8+NUQlbLblxo+g7JP80iaU8b9hPLZ8FjG7sMAvmHGt2y69loMj4eIsWNJfepJzCEhHdqVFdbTWBuD2RZH9uB+TLrhBsxBLg3/8+afufG7G2nwNJAakcpzE54jOzo7qGPIgScqft99/4uIiIiIiMjBTSG8iIiIiIjIwWL+y1CzAcIT4fBrdvsyf6uXqrdX411bA8D0cLj6d3321Syp//JLNt30F/B6iTzuOFL/8SimHZSW794vjhMuHU5Y1DCSsxOCvvf2e2ve48E5D+IzfAxJHMITRz9BrCM2qGOIiIiIiIiIyKFFIbyIiIiIiMjBoKUGvn84cDz+dgiJ2Hn7LbyVLVS+vgJvRQutGPzd3Mp1F40i1L5vPi7Wffopm2/9K/j9RE2cSLe/P4TpV6Xlm+pcLPz8QyJjoxh8/MnkDE0M+jx8fh//XPBP3lz5JgATsydyz+H3YLcEd595ERERERERETn0KIQXERER6YTWdTWEZDkxWYO7MlNEZI/N/GcgiE/oA4P/uFuXtK6vpfqtVfibvVTg51aaOeW4nvRPde6TKda89x6ld90NhoHzD/9Hyj33YLK0Ly3fUN3CW3c8QVPVLABSeuWSlJUT1Hk0e5q55Ydb+G7jdwBMHjyZywZehslkCuo4IiIiIiIiInJoUggvIiISbE1VULYMssd19UxkH/NWtlD58nLM4VbChiURPjIFW3xoV09LRA5FNQUw58XA8XH3gWX3Puo1LyjD3+yl0A7XuJvIyYzhsqOCG3j/ovqNNyl78EEAYs49l6Tbb+tQWr6uspm3bv8HLbVzARh56h+DHsCXNpVy1fSrWFOzBrvZzgNHPMAJWScEdQwRERERERERObQphBcREQkmw4Cp18KqKXDsfTBm9/fjlQOPt6YVS5QdX72bxh820fjDJkJynISPTCG0X5xWx4vIb2f6feBzB24A63HMbl8Wc1pPFtQ1M3n9ZuwhVv55xiAs5uCvBq986SUq/vkYALEXX0TiTTd1WHVeV97Ef27/O631iwA4/MyLOez3pwV1HiuqVnD19KupaKkg1hHLU+OfYlDCoKCOISIiIiIiIiKiEF5ERCSYlrwTCODNVsge29WzkX3M0TOG5FtG0rqmmqa5pbSuqca1vg7X+jrM4TbiL+qPPXX39mQWEdlrGxfA8vcBU+AGsJ2UVPe3eGmcvZnIsemYzCaWldVzxYYSvMDfT+lHemxYUKdmGAaVTz9D5XPPARA/eTLxV03uEMBXlzTw9h0P4GpcDsDY865g+MSTgzqXbwq/4a8z/0qrr5Ue0T14ZsIzpEakBnUMERERERERERFQCC8iIhI8tcXwxc2B43F/hRStrDsUmCwmQvvGEdo3Dm9tK01zS2maX4bh9mNL3Fqa3lPZgjU6RKvjRSS4DAO+viNwPOhsSBm4w6aeyhaqXl+Bt6IFw2tgH5vGde8uxus3OHlACqcNCW4gbRgG5f/4B9UvvwJAwo03EP/nP3doV1vWzP8eeG9LAG9iwiXXMvjY3V/NvzvzeGX5Kzyx8AkAxqSO4R9H/YMIu26SEhEREREREZF9QyG8iIhIMPj98PEV4KqHtJEw5rqunpF0AWu0A+dxmURN6I63ohmTzQIEAqCq11fgb/ESPiyJ8JHJWOO0d7yIBMHqz6DoJ7A6YPwdO2zWmldD1VurMVq8WJwhhPaL477PV5Ff0URSVAgPnNa/w+r0zjD8fsruf4Cat98GIOm224j903nbbWsPtRIZ3w+oYswfRtN/3FFBm4fH5+G+2ffxUd5HAJydezY3j7gZq1kfhUVERERERERk39FfHkRERIJhzvNQMBNs4XDaC2DRW+yhzGQxYUsOb/vaV+fG3+rD3+ih4fuNNHy/kZAe0YSPSia0j/aOF5G95PPAtDsDx4ddBc7tr2RvnL2Z2k/Xgx/sGZHEndeXHzbV8ubsQgD+efpgosPsQZuW4fNRctdd1L3/AZhMJN99NzFnntGhnae1FcPwExYVxinXD8FsHkpoZPDmUeeq4/rvrmde6TzMJjM3j7iZc/ucG7T+RURERERERER2RAmBiIhIZ5Wvgm/uCRwffz/E5XTtfGS/Y40OIeXWkbSurqJxTimudTW48mpx5dVijrARPSmbsEGJXT1NETnQzH8VqtdDeAIccV2H04bPoHbqepp+LgEgbEgiMb/vSbXLw1/eXwrAhWMyOaJnfNCmZHi9bL71r9RPnQpmM90eehDnKad0aLdpbRlfP/8Q4dGhnHbrXYQ7HUGbA0BhfSGTp0+msL6QcFs4jxz1CEelBW+FvYiIiIiIiIjIziiEFxER6QyvGz78M/hc0PM4GHZhV89I9lMmi4nQfvGE9ovHW91K07xSmuaX4m/wYA63tbXzt3ox2cyYLFodLyI70VoH3z0UOB73VwiJ7NDEW9FM07xSMEHU8ZlEjk0D4Nb/LqOy0UWvpAhuOSE3aFMy3G423XgTDdOmgdVK6j8eJeqEEzq0K1q5mQ8fvBOfp5SGqlBqy0pJyMgM2jzmlc7jum+vo95dT0p4Cs9MeIZeMb2C1r+IiIiIiIiIyK4ohBcREemM7/8OpcsgNBZ+9wwEcT9dOXhZYx04j88k6pgMWtfWEJId3Xau/psimheXEz48ObB3fGxwV4eKyEHix8ehpRrie8HQ87fbxJYcTuzpvTBZzYT2C6x2f3deEdNWlmGzmHjizCE4bJagTMfvcrHpmmtp/P57TDYbqU8+SeT4ozu0K1haxEcP34XfW4HZEsZpf70vqAH8R+s+4t7Z9+L1exkYP5Anxz9JfGjwVvqLiIiIiIiIiOwOhfAiIiJ7q2hOIAQBmPQERCZ16XTkwGOymAntE9f2tWEYtK6rCewd/10xDd8XE9IjmohRKTj6xGp1vIgE1BbDz88Fjo+9DyxbP9a1rqvBHGbDnhoB0G6ri4LKJu6ZshKAm47rTd9uUUGZjr+5mY1XXUXTTz9jcjhIe/YZIsaM6dAub0E+U/55N35fNRZbBGfe/SApPbKDMwfDz5MLn+SV5a8AcHzm8dw/5n4cVt3IJCIiIiIiIiK/PYXwIiIie8PVCB9dCoYfBp4FfTvudyuyp0wmE0nXDKFlZTVNc0twratt+2eOtBF5RFpbOWkROYTNuC+wDUrmkdDreCBwE0/TzyXUTl2PJcJO4tVDsETa2y7x+vxc/95imt0+RmXFcsmRwQm/fY2NFF9+OS3zF2AOCyPthecJHzmyQ7s1s9fy2VP3YPjqsNqdnHP/30nonh6UObR4W7ht5m18U/QNAJcOvJTJgydjNunGJRERERERERHpGgrhRURE9sbXt0NNATjT4aRHuno2chAxWcyEDYgnbEA83qqWLXvHl+Fv8OBrcLe1MwwD/IZWx4scajYvgqXvBo6Puw9MJgyfn9pP19M0pxSAkB7RmEPbf9R79tv1LCqqJdJh5bEzB2Mxd377FF9dHUV/vpTWpUsxR0aS8dK/CB08uEO72rJmpr++BMPfis0Rwx8feoTYbimdHh+gvLmcq2dczcqqldjMNu45/B4m5UwKSt8iIiIiIiIiIntLIbyIiMieWvsVLHgtcHzqc+Bwdul05OBljQvFeUIWUcd0p2VVFfZuEW3nXOvrqH53DeHDkwJ7x8eo5LLIQc8w4Ou/BY4HngndhuBr8lD91ipc+XVgAucJWUQclYrJtDVkX1xcy1Mz1gFw3yn9SY0O7fRUvNXVFF18Ca5Vq7BER5P+8r8J7ddvu22diaEMOmYIJevCOebC4UQnJW633Z5aXb2aq6ZfRVlzGdEh0Tx59JMMTRoalL5FRERERERERDpDIbyIiMieaKqET64KHI+eDFlHde185JBgspoJG5DQ7rHmxeX4G9w0fFtMw3fFOHrFED4yGUduHCZL51e4ish+aO2XUDATLCEw/m94ypupfH0FvqpWTHYLsWf1JrRvXLtLmt1ern93MT6/waRB3ThlcLdOT8NTXk7RRRfhzluPJT6ejFdextGrV4d2pfnr8La6SOvbn8N/n4Pfn40lSNU7viv+jpt/uJkWbwtZziyeHf8s6VHBKW8vIiIiIiIiItJZCuFFRER2l2HA1OugqRwScmHCnV09IzmExZzaA0evGJrmluLKq6V1TQ2ta2owR9kJH55E1PgMTFaVqhc5aPi8MG3L+85hV0J0OvVvr8JX1YolJoT48/thSw7vcNn9n61iQ2UTKU4H95/Sv90K+b3h2byZwgsvxFNYhDU5mYxXXyEkK6tDu3lTf+bHt/+JxQZn3v0wSVk5WIJwg5BhGLy58k3+Mf8fGBiMShnFY+MeI8oe1em+RURERERERESCRSG8iIjI7lryDqyaAmYb/P5fYFP5b+k6JquZsIEJhA1MwFvZQuO8Uprnl+Gvd9OyrJKoY7u3tTUMo9PBm4h0sYWvQ+VaCIuDI64HIOb3PTHZLThPyMQSYe9wyfRVZbw9pwiAf54+CGeYrVNTcBcXU3T+BXg2b8aWmkrG669hT0vr0O7nD7/np3efADxEJvQgOik4+797/B4emvMQ/1v7PwD+0OsP3DbqNmzmzj0vEREREREREZFgUwgvIiKyO2qL4IubA8fjboWUQV07H5FtWONDiT4xC+ex3WlZWQUmU1vobnh8lD2zmND+8YSPSMYaHdLFsxWRPdZaD989hGFYac5+iLCQKEyA2WEl9g8dy8ADVDa6uOWDpQBcckQWh/eI79QUXPn5FF1wId7ycuyZmWS89iq25OQO7Wa+8w1zP3oa8BER15PzHnqQkLDO70Ff767npu9u4ueSnzFh4sbhN/Knvn/SDUYiIiIiIiIisl9SCC8iIrIrfj98fCW46iFtJIy5rqtnJLJdv6yO31bz8iq8Zc00lBXRMKMIR+/YwN7xvWO1d7zIgWLWk/gaXVQZ/8A9vxv+pM1EHpm6w+aGYXDrB0upbHSTmxzJTcf37tTwrWvWUnTRRfiqqgjp2YOMV17BmpDQod13b37GgqkvAn6iEvty/qP3YXd0/saf4oZirpp+Ffl1+YRaQ3n4yIc5OuPoTvcrIiIiIiIiIrKvKIQXERHZldnPQcFMsIXDaS+ARW+fcuAIGxCPyWyiaU4Jrvw6WldX07q6GovTTtjwZCIOS9luGWsR2U/UbcLz48dUuv+Jz0jBFGLBmrDzleX/nVvMN6vKsVvMPHHWYBw2y14P37J8BcUXX4yvro6Qvn3IePllrDExHdrNfPdbFkx9ATCI6TaQPz18D1Z758vELypfxLUzrqXGVUNiWCLPjH+GPnF9Ot2viIiIiIiIiMi+pBRBRERkZ8pWwvR7A8fHPwBxOV07H5E9ZLKaCRuUQNigBDwVzTTNLaV5QRm+OjcN04sIG5KIJaKrZykiO9Ly4StUtzyIQRiWmBDiL+iHLSl8h+03VDZx39SVANx8Qm9yk6P2euzmhYsovvRS/I2NhA4aRPpL/8IS1bG/1kYPq2eD2dqdmG7xnPfQHVisnf+oOTV/KnfOuhOP30PfuL48Pf5pEsMSO92viIiIiIiIiMi+phBeRERkR7xu+PBS8Lmg5/Ew7IKunpFIp9gSwog+ORvncZm0rKjEvbkRW/zWFbU1n+RhCbcRNiIZq1N7x4t0JcMwaPx8PnVrjgQs2LuZibt4CJbwHa8u9/j8XPfuYlo8Pg7PieOiMVl7PX7TnLkUX3EFRnMzYcOHk/bCC1giOob/hmHgiLAx6eqh5C9KYfSpPTFb9n7l/S99Prv4WV5c+iIAEzIm8OARDxJmC+tUvyIiIiIiIiIivxWF8CIiIjvy3UNQtgxCY+F3T4NJ+2fLwcFkMxM2OJGwwVtXlPrq3TTNKQE/1E8vwpEbS/ioFBy9YjCZ9b0v8lvzljZRN7MZsBAev5boKy/EZDXv9JpnZuSxpLiWKIeVf5w+CPNe/uw2zvyRjVddheFyEX744aQ9+wzm0I4l8H9857+4W+o5+oJLSc52kpzt3KvxttXqbeVvs/7GlwVfAnBR/4u4dui1mE07f+4iIiIiIiIiIvsThfAiIiLbUzQHZj0ROJ70JEQmdel0RPY1c5iV2DN60zinBPeGelpXVdO6qhpLdAjhI5IJH5GEJUqr40V+K7bGn4m2voZhthNx0V27DOAXFtXwzLd5ANx/2gC6Re983/gdaZg+nU3XXY/h8RBx9NGkPvE45pD2P/uGYfD+Q89StCQQlGcPG0nmwCF7Nd62Klsqufbba1lasRSrycqdh93JaT1P63S/IiIiIiIiIiK/NYXwIiIiv+ZqhI8uBcMPg86Gvr/r6hmJ7HMm69bV8Z7yLXvHLyzDV+uiflohJoeFyDGpXT1NkYOap7QJrGZsMTb4+g4irKvh8GsgNnOn1zW5vFz/7mJ8foNTB3fjd4O67dX49Z9/zqabbwGvl8gTTiD1kYcx2e3t2vj9ft677wk2rZwBQM7wU4MSwK+rWcdV069ic9NmouxRPHH0E4xIHtHpfkVEREREREREuoJCeBERkV/76jaoKQBnOpz4cFfPRuQ3Z0sMI3piNs7jM2leXknzgjLCh2wtXd+8rBJvebNWx4sEUcuqKqr/uwaL007i4SsxV6yG0Bg48sZdXnvf1JUUVjXTzengnlP679X4tR99TMntt4Pfj/OU35HywAOYrO0/Lvp9Pv571yOUrpsFQI9Rf+CUGy7Yq/G29eOmH7np+5to8jSREZnBsxOeJdOZ2el+RURERERERES6ikJ4ERGRba35Eha+Dpjg1OfBsef72/r8BmvLGuiTEhX8+Yn8hkw2M+FDEtsF8AANP2zEU9xA/fRCHLlxRIxKJqSn9o4X2RuGYdA4cxN1X2wAAyzhFowfHgucHHsLhEbv9PqvV5TyzrxiTCb45xmDcYba9ngONe+8Q+nd9wAQffrpJN9zNyZz+/L3Pp+Xt257kIqCuQD0OfJcTrrq7D0e69feXvU2D897GL/hZ3jScB4f9zjRjuhO9ysiIiIiIiIi0pUUwouIiPyiqRI+vTpwfNhkyDpyj7swDIO/fbKc9xds5KmzhnBC/+QgT1KkaxmGQcTh3WiaU4K7oJ7WlVW0rqzCEhNC+MhkwoclY4my77ojEcHw+qn5KI/mBWUAhI9KJjrqfUwzN0BMFgy/eKfXlze0cuuHywC49MhsDsuJ2+M5VL/+OmUP/R2AmPPOI+m2v2Iytb+hxjAMvv7XDCoK5gEm+k+4gOMv/b89HmtbXr+XR+c9ytur3wbglJxTuOuwu7BZ9vwmAhERERERERGR/Y1CeBEREQDDgCnXQlM5JPSB8X/bq24en7aWt+cUYTKB3zCCPEmRrmcymdpWx3vKmmiaU0rTwnJ8NS7qvyrEtaGehIv2rhy2yKHE1+im6s1VuAvrwQTRE7MJ72/C9MxTgQbH3gPWHd/QYhgGt7y/lOomN31SorjhuF57PIfKF16k4oknAIj78yUk3HBDhwAewO81cLsSsIUdT7+jujPhwkl7PNa2Gt2N/OWHv/Djph8BuHbotVzc/+Ltji0iIiIiIiIiciBSCC8iIgKw5L+weiqYbfD7F8Hm2OMuXp21gadm5AFw3yn9OWlASrBnKbJfsSWFE/27HJwnZtK8tJKmuaVEjNxa/cFX56JpYRnhw5OxRGp1vMi2aqfk4y6sx+SwEHdOHxy9YuCTq8DTDOmjoM/vdnr9f+YU8e2aCuxWM0+cOZgQq2W3xzYMg4onn6TqhRcBiL/6KuKvvLJDCO5xtdLa1EhkbDwnXTmQjavTyRoYv+dPdhubGzczefpk8mrzcFgcPHjkgxzb/dhO9SkiIiIiIiIisr8x77rJvvXcc8+RlZWFw+Fg2LBhzJw5c4dtL7jgAkwmU4d//fr1a2vz2muvbbdNa2vrb/F0RETkQFRbBJ/fHDg++q+QMmiPu/hk8SbumbISgBuO7cUfR3cP5gxF9msmm4XwYUkkXjEIR7+t5bCb5pVS/1UhJQ/Npeo/K2ldV4PhV4UIEYDoSdmE9Igm8crBgQC+dDks+k/g5HEPwE5Wha+vaOSBzwLvObeckEvv5MjdHtcwDMoffqQtgE/8y00kTJ7cIYBvaWzirdtu4717bqOptgab3dLpAH5pxVLO+ewc8mrziA+N59UTXlUALyIiIiIiIiIHpS4N4d99912uu+46br/9dhYtWsSRRx7JiSeeSFFR0XbbP/nkk5SUlLT9Ky4uJjY2ltNPP71du6ioqHbtSkpKcDj2fEWjiIgcAvx++OgKcDcEVh6OuW6Pu/huTTk3vrcEgPMP687V43sEeZIiB45tgzxbcjj2jEjwG7Qsr6Ly5eWU/mM+9d8V42twd+EsRX57hmHgyq9t+9oSYSfhkgHYEsMCD0y7EzCg32mQPmKH/Xh8fq5/dzGtHj9H9IjnwsMzd38Ofj+l995L9WuvAZB0xx3EXdxx3/nmujpeveEmqjaupaGqmvrK8t0eY0e+LPiSi766iKrWKnrH9Oa/J/+X/vHaukJEREREREREDk5dWo7+scce4+KLL+aSSy4B4IknnuCrr77i+eef56GHHurQ3ul04nQ6277++OOPqamp4cILL2zXzmQykZyc/OvLRUREOpr9LBT+CLZwOO0FMO9+OV+ARUU1XPGfhXj9Br8b1I27JvXTnrYiW4T2jye0fzzukiaa5pbQvLAcX3Ur9V8W0PBdMd1uH43J1uWFmUT2OcPjp+bDdTQvKifmjF6ED01q3yDvG1g/PbAlyoS7dtrXU9PXsXRjHc5QG/84fRBm8+695xg+HyV3/I26jz4Ck4mU++4l+g9/6NCuobqaN/5yC62NJWBycMTZN5PSo/duP9cO4xoG/1r6L55Z/AwAY9PG8vBRDxNuC9/rPkVERERERERE9ndd9ldPt9vNggULOO6449o9ftxxx/HTTz/tVh8vv/wyxxxzDN27ty/529jYSPfu3UlLS2PixIksWrQoaPMWEZGDSNlKmH5v4Pj4ByA2e48uzytv4MLX5tHi8XFkz/g9CkNEDiX2lHBiTulByu2jiPlDT+wZkYT2j28XwDfNK8XXqNXxcvDxNbipeGkpzYvKwRwI5Nvx++DrOwPHIy+F2Kwd9rWgsJpnv80D4MHTBpDs3L1qX4bHw+a/3BwI4C0Wuj3yyHYD+LqKCl678cYtAXwYEy6+neEnj9y9J7odbp+b23+8vS2AP6/veTx59JMK4EVERERERETkoNdlK+ErKyvx+XwkJbVfBZKUlERpaekury8pKeGLL77g7bffbvd4bm4ur732GgMGDKC+vp4nn3ySMWPGsGTJEnr27LndvlwuFy6Xq+3r+vr6vXhGIiJyQPG64cNLweeGnsfDsAv26PLNtS2c9/Jcaps9DEqP5oU/DsNu1Yre/dG+fJ9vcDcQad/9vZgPdWa7hfDhyYQPT8bwbg0i3RsbqPlgHVhMhPaLI3xkCiHZTky6qUUOcO7NjVS9vhJfnQuTw0rcubk4esa0b7T4bShfAQ4nHHXTDvtqdHm5/t0l+A34/ZBUTh6Ysltz8LvdbL7xRhqmfQM2G6n/+AdRxx/XoV1NSSlv3nozntZqTOYIjr30DgYcvffl4mtaa7ju2+tYWL4Qi8nCbaNu44zeZ+x1fyLbo8/yIiIiBy+9z4uIyIGuy9OCX5fsNQxjt8r4vvbaa0RHR3Pqqae2e3z06NH88Y9/ZNCgQRx55JG899579OrVi6effnqHfT300ENtpe6dTifp6el79VxEROQA8t1DULYMQmPhd0/DHpSQr25yc97LcyipayUnIZxXLxhBeEiX7vAiO7Gv3uebPE2c9OFJ3PDdDaysWhmUPg8lpm1uWjG8fmzpkeAzaFlaSeW/l1H2z/k0fL9Rq+PlgNWyvJKK55fgq3NhjQ8lcfKgjgG8uwlm3B84PupmCIvdYX/3TllBUXUzqdGh3H1Kv92ag7+1lY1XXUXDtG8w2e2kPf3UdgN4wzD44Z08vG4/JrOTE6+6u1MBfH5dPud8dg4LyxcSaYvkuWOeUwAv+4Q+y4uIiBy89D4vIiIHui4L4ePj47FYLB1WvZeXl3dYHf9rhmHwyiuvcN5552G323fa1mw2M2LECNatW7fDNn/961+pq6tr+1dcXLz7T0RERA48RbNh1hOB40lPQuTO33e21eTycuFr81hf0USK08EbF48iNnzn70XStfbV+/zPm3+m1lXLtMJpnDn1TC7/5nIWlC0ISt+HmpBMJ0mTB5N4zRDCR6dgCrHgrWql7osNlDw0F/fGhq6eosge8ZQ3U/XWKgyPn5Ce0SReOQhbQljHhj8/C42lEN0dRv55h/19ubyE9+ZvxGSCx88cTJTDtss5+JuaKL7scpp+mIkpNJT0F18gcty47bY1mUz0HJFNaNyZnHz9PfQZk7u7T7WDnzf/zB8/+yMbGzeSGpHKmye9yeHdDt/r/kR2Rp/lRUREDl56nxcRkQNdly3bs9vtDBs2jGnTpnHaaae1PT5t2jROOeWUnV77/fffk5eXx8UXX7zLcQzDYPHixQwYMGCHbUJCQggJCdn9yYuIyIHL1QAfXQaGHwadA31/t9uXur1+Lv/PApYU1xIdZuPNi0eSGh26DycrwbCv3ueP6X4MH/7uQ15e/jJfbPiCWZtmMWvTLIYmDuWSAZdwROoRu1XdR7ayd4vAfmoPnCdm0bK0gsY5Jfjq3dhSItrauArrscaHYgnfdQgp0lVsiWFEHp2Ov8VL9MQcTJbt/C5oKIMfnwgcH3M3WLf/e6q8vpW/frgMgMvH5jAya8er5X/ha2ig+LLLaVm4EHN4OOkvvkDY8OEd2pVtWE/15o30GTOWvkd0o/uAOMKde//78n9r/8cDsx/AZ/gYkjiEJ45+gljHrucrsrf0WV5EROTgpfd5ERE50HVp7dwbbriB8847j+HDh3PYYYfxr3/9i6KiIi6//HIgcLfbpk2beOONN9pd9/LLLzNq1Cj69+9YIvGee+5h9OjR9OzZk/r6ep566ikWL17Ms88++5s8JxER2c99dTvUFIAzHU78+25f5vcb3Pi/JcxcV0mozcKrF4ygR6L2Aj+UGYZBj4hM/n7k35k8aDKvrniVj/M+ZmH5Qq6cfiW5sblcPOBijs04FovZ0tXTPaCYQyyEj0gmfEQyvkZ3W4Bp+Ayq3lqFv8lDaP94wkcmB/aO180Osh/w1Qe2TrBEBaqjRB3bfeffm989CJ4mSB0O/U7bbhPDMPjL+0upafbQr1sU1x/Ta9fzqK2l6JI/07p8OeaoKDL+/RKhAwd2aFe0fAUfPnQXfp8bR3gEWYOH7XUA7/P7eGzBY7yxMvC57eTsk7nn8HsIseiPpiIiIiIiIiJyaOrSEP7MM8+kqqqKe++9l5KSEvr378/nn39O9+7dASgpKaGoqKjdNXV1dXzwwQc8+eST2+2ztraWSy+9lNLSUpxOJ0OGDOGHH35g5MiR+/z5iIjIfm7NF7DwdcAEpz4PDuduXWYYBvdMWcGUJZuxmk28cN4whmTE7PpCOah5S0rIO+ZYbCkp2NLT+XN6Gucn/ZEfjTw+bZ1DUfMq/lJ1E92dmVzc/2ImZk/EZtHq7T1lidi63YOvwY0lyo6/3k3LkgpallRgjQ8lfGQyYcOStDpeuox7UyNVb6zAHGkn8bKBmGyWnQfw5atg4ZYbjY9/AHbQ9s3ZhXy/toIQq5knzhyM3brz3cS8VVUUXXQxrjVrsMTEkPHKyzj69OnQLn/RYj5+5F4Mv5uQiAxSevbe7ef6a82eZm6ZeQvfFX8HwOTBk7ls4GW6OUZEREREREREDmkmwzCMrp7E/qa+vh6n00ldXR1RUVFdPR0REQmGpkp4bjQ0VcBhVwVCj9309PR1/HPaWgCePGswpwxO3Vez7EDvScEXrNe0ac5cis4/f6dtmkNMlEUblEebaIgPp2e/Ixgx9GQiM3tg69YNk92+0+tl+9ybGmmaU0Lz4goMty/woMVEzCk9CB+Z3LWTk0NO87JKat5bg+HxY00IJf7iAVijd7EC/K3TYd3X0GcSnPmf7TbJK2/g5Kd+xOX1c/ekvlwwJmunXXrKyim68ELc+flYEuLp/uqrhPTo0aHd2jlzmfr4gxiGF0tId07/212k9kzc7ee7rdKmUq6ecTWrq1djN9u5/4j7OTHrxL3q61Cl9/ng0uspIiL7C70nBZ9eUxER2V/s7ntSl66EFxER+U0YBky5NhDAJ/SB8X/b7UvfmlPYFsDfNanvbxrAy/4tbOQIes78AXfxRjwbi3EXF+Mp3oh7Y+B/vWVlhLkMssogq8yANY0w60vK+ZJyALMZa3IS9rR0bOlp2NPTsaWlY09Pw5aejiUmRitJd8CeGoH99z1xnpxF8+IKmuaW4tnUiK1beFsbX50LrGatjpd9xjAMGqYXUf9NoHJXSK8Y4s7JxezYxUes9d8GAnizFY65Z7tN3F4/1727GJfXz1G9EvjTYZk77dKzaROFF16Ep6gIa0oK3V99BXtmx2tWzvyRL559FAwfVkcOZ955J8k5cbvzdDtYUbWCa6ZfQ3lLObGOWJ4a/xSDEgbtVV8iIiIiIiIiIgcbhfAiInLwW/JfWD0VzDb4/b/A5tityz5fVsIdHy8H4OrxPbhwF6sQ5dBiMpmwJiRgTUiAoUM6nPe3tuLZvBlPcTHNhRtYs+x7StYtwVnVQmItODx+vJtL8G4ugblzO1xvDgvDlr4loN82qE9Px5aailmr6DGHWIkYlULEqBQ8pU3YkreG8HXTCmleXE5Y/3jCR6Vgz4zSTQ0SNH63j5r319KytBKAiDHdcJ6Ujcmyi+8xvx+mbbkRbMQlEJez3WZPfLOW5ZvqiQ6z8egfBmI277hfd2EhhRdeiHdzCbb0dDJefRV7WscbxopXruGLZx4GDGyhvTnrnr+R2D16d55uB9MLp/PXH/9Ki7eFHtE9eGbCM6RG6CY1EREREREREZFfKIQXEZGDW00hfH5z4Pjov0LKwN26bFZeJde9sxjDgHNGZXDDsb324STlYGR2OAjJziYkO5sIxpLIBXj9Xr4q+Ip7l75ExeY8Emsgrd7KWEsugzzJ2EqqcG8MrKL3NzfjWrMG15o1HTs3mbAmJ2NPC6yat6entV9FHxt7yAXO2wbwhmHgrWwBr0Hz4gqaF1dgTQwlfGQK4UMTMYdpdbwEvk+Atp8VX50L98YG/C3ewL9m79bjFi9R49IJyXYC0LKkIhDAm01En5pDxMiU3Rt06btQugxCnHDUzdttMndDNc9/vx6Ah04bQFLUjm8cc61fT9EFF+KtqMCelUXGa69iS0rabtslM1qwhAzGYnVz9j23E5++5yU8DcPg1RWv8sSCJzAwGNNtDI+OfZRIe+Qe9yUiIiIiIiIicjBTCC8iIgcvvx8+vhLcDZA+CsZct1uXLdtYx6VvzMft83Ni/2TuO6X/IRdoyr5hNVs5OftkTsw6ke+Lv+elZS/xbeUyvmUFVtMaTjrlJC4ecA85jlQ8mzZvt8y9p7gYf3Mz3pISvCUlMG9eh3FMYWFbA/ptg/pfVtGH7GK/6gOcyWQi4bKBeDY20jS3lOYl5XjLW6ibmk/dlxuIGJNK9ImqbHGwMHz+dsG5LSG07UYLd3EDzYvLfxWqe9rax53Th9C+gXLsrvw6qt/dzk0vW3gHJrSF8OZIO+ZIG3Fn5xKSHb17E3U3w4z7AsdH3QjhHcvAN7R6uP7dwA1gfxiWxokDdhzut65eTdFFF+OrriakVy8yXnkZa3x8h3Z+vw+z2cJRZ/Wmtel3jD8vl9huex6ae3we7pt9Hx/lfQTAWb3P4paRt2A16yOliIiIiIiIiMiv6S8mIiJy8Jr9LBT+CLZwOO0FMFt2eUl+RSMXvDqXJrePw3PieOKswVh2UgZYZG+YTWaOzjiacenjmFs6l5eWvcSckjl8uv5TpqyfwjHdj+HiARfTL/uoDtcahoGvpgZPcfF296P3lpRiNDfjWrsW19q12x3fmpTUscz9lpX0lvj4g+KmE5PJhD09Ent65Na94+eU4Clpwmzf+rvA8PkxXD6tju9iht/AcPnwN3varT7/JTgPGxiPNS4UgJblldRPL2o7Z7h97fqK+1PftmDdW9lC46zNOxzX3+xtO7Y4Q7CnR2IOs2IKtWL+5V+YDXOolZDMrSvHHT2jSbl11K7Lz29r9nNQvwmcGTDysu02ufvTlWyqbSEtJpS7JvXdYVcty5ZRdMmf8dfV4ejXj/R/v4Q1JqZDuzkfv8+mVcv43U13EBUfyv/dPHyvfr7rXHXc8N0NzC2di9lk5uYRN3Nun3P3uB8RERERERERkUOFQngRETk4la2A6fcGjk94EGKzd31JfSvnvTyXqiY3/VOjePG8YYRYdx3ci+wtk8nEqJRRjEoZxbKKZfx72b+ZUTyDaYXTmFY4jTHdxnDJgEsYljSsLTgzmUxYY2OxxsYSOmhQhz79bjfezZu3CegDq+fdGzfiKSrC39SEt6wMb1kZLfMXdJyTw9FW3r5jUJ+G2bHj0tj7K7PDSsToFMJHJePZ2IglemslgNZV1VS9s4awgfGEj0zG3l17x++tX5d391a34tnc2D5Ub/G2Be3OE7Kwp0YA0DS7hNpP1++wb1tiWFsIb3j9eEqaOrQxOSwdbqawpYQTOS5tS6Bu2xquhwX+1xJhb2sbku0kcfLg3XquJot5t9q1aSyHHx8PHE+4E2wdf44+X1bCBws3YjbB42cOJtKx/RtDmhcsoPjSy/A3NRE6ZAjp/3oRS2T7le2GYfDdG2+y8PP3AFg39yf6jBm7V9/bhfWFXDX9KgrqCwizhvHo2Ec5Kq3jDUIiIiIiIiIiIrKVQngRETn4eF3w4WXgc0OvE2Do+bu8pK7Zw59ensum2hYy48J47cKROwxARPaFAQkDeHL8k6yrWccry1/hiw1fMGvzLGZtnsXghMH8eeCfOTL1yF2GaGa7HXtmJvbMzA7nDMPAV1u7ZRV9xzL3ntJSjNZWXOvycK3L227/1oSEdvvQb7uS3poQj8m8h+Hkb+iX1fHbas2rBa+f5oXlNC8sx5oURvjIZMKHHLp7xxtef7vQ3JYUhtkR+Njgyq+jZXnldkN1f4uXhIsHtJVsb11dvdNg3TfaBVtCeHNYoH+TzdwWkpu2BOfmUCuWqPZhefxF/dtWqv8SrJu2U7XElhyO84T9YOuB7/4O7kboNgT6/1+H02X1rdz20TIArhiXw4jM2O120zR7NsVXXInR0kLYyJGkP/8c5vDwdm0Mw2Dav19i2TefAhCZMI7eo4/cq2nPK53H9d9dT52rjpTwFJ6Z8Ay9YnrtVV8iIiIiIiIiIocShfAiInLw+e4hKFsGYXEw6SnYRWjZ4vZx8evzWFPWQGJkCG9ePIr4iIN7z2zZf/WM6clDRz7ElYOv5LXlr/FR3kcsrljM5OmT6R3Tm0sGXMKx3Y/FshvbK/yayWTCGhODNSaG0IEDO5w33G48JSXbLXPvKSrG39iIt6ICb0UFLQsXduw/JARbWlrHfei3PGYOC9ur12Rfij4lh7ChiTTNKaVlaQXesmbqpuRT90UBYQPjifl9T0zW/ffGgh0x/AZGa8ey7r/shx4+LAlLVOD3XNOCMhpnbmo7Z7j97fpKuHRgW7DuKW2i8aedlHdv2aa8e0wI9ozIdmXdty3zbtsSwAOE9o8n9f743XqtLVEhbXM/IFSsgQWvBY6Pux9+daOK329w0/+WUNvsYUCqk2snbD/kbvz+ezZefQ2G2034EUeQ9vRTmEND27Ux/H6+eO5ZVs38CoDIxGM5597LMe/pyn3g47yPuefne/D6vQyIH8BT458iPrTjnvMiIiIiIiIiItKRQngRETm4FP4Ms54MHE96EiKTdtrc4/Mz+e2FzC+sIcph5Y2LR5Ieu/8FhXLoSY9M52+H/Y3LB13OGyvf4L0177GmZg1/+eEvdI/qzkX9L2JS9iRsluCt1jbZ7di7d8fevXuHc4Zh4K+r206Z+y0r6UtKMFwu3OvX416//dXPlvj4wKr5tjL3W4N6a0JCl6yiN5lMhGREEZIRhX9SNs2LygN7x5c2461oaRcKG17/bxrIdyjvXtmCp7Rpu6G6v8VLzCk9sMYHQtmGb4upn1a4w75Duke1BdmG24en9Ffl3U1gCgmsSP9lHgD29Egix6W3K+m+bYn3bcu7h/aJI7RP3G491wPxRofdNu0uMHzQ+2TIPKLD6dd/LmDmukocNjOPnzkY+3Zei/pp09h0w43g8RAxYQKpjz+G2W5v18bv9zH18cdYN/d7AJwpJ3P2PRcR7tyzGxb8hp+nFj7Fy8tfBuD4zOO5f8z9OKwH3lYUIiIiIiIiIiJdRSG8iIgcPFwN8NFlYPhh0DnQZ9JOm/v9Bre8v5QZq8sJsZp55YIR5CZH/UaTFdk9CWEJ3Dj8Ri4ZcAlvr36bt1a9RWF9IXf9dBfPLX6OC/pdwO97/p4w2769ecRkMmGJjiY0OprQAf07nDc8HjylpVtK3Xfcj95fV4evspKWykpaFi3q2L/dji0tbTv70KdjT0vtUHJ7XzA7rEQc1o3w0Sm4ixvAtzV89jd7KP3HfBx94ggflYw9PXK399duV9692YOtWwRme6CSQevaGlpXV3co6/5L0J50zRBsyYHn3rykYqfBuq/e3RbCt5V3t5vb74cetnVV+i8cubHEx4VuPRdqxeTYfnl3e3pkh5L+shMbZsLaL8BkgWPv6XB6bVkDf/9iNQC3n9SHHokRHdrUTf2MzbfcAj4fkSeeQOojj2Cydbz5pmDJetbN+xkwEZP2O86663zCouwd2u1Mi7eF23+8nWmF0wC4dOClTB48GbPpIL5JQkRERERERERkH1AILyIiB4+vboPaQnCmw4l/32lTwzB48PNVfLhoExaziefOHcrwHezBK7I/cIY4uWLQFZzf93z+t/Z/vL7idcqay3h43sO8uPRF/tjnj5yVexbOEGeXzM9ks2FPT8eens724nJfXR3ujRsDq+Y3FuMuKt4a1G/ejOF2487Px52fT9N2rrfExbWVuf91UG9NTMRk2fPy/Dt8LltWx2+rZWU1/mYvzQvKaF5Qhi05nLBhiZhsZvzNXiJGp7QF240/b6ZpTknbanXD0768e9J1QzFvCdbdxQ07L+/e7Gk7tsY5sHeP2lre/ZdV6FvCc2vC1tLk4SOSCR+RvFsrzK0xDqwxWuUcdH4/fH1H4Hj4RRDfs91pt9fPde8sxuX1M653An8c3bECRe0HH1Byx9/AMHCeeiopD9y/w+/1knwz9vBTiYgzOOvOswmN2LMAvqK5gqtnXM2KqhXYzDbuOfweJuXs/GY2ERERERERERHZPoXwIiJycFjzBSx8AzDBaS+AY+dB5Is/5PPvHzcA8Mj/DWRCn52XrRfZX4TZwji/3/mcnXs2n6z/hFeWvcLGxo08s/gZXl3xKmf2PpPz+p633+3dbHE6CXU6Ce3Xr8M5w+vdZhX9NvvQb1lJ76urw1dVRUtVFS1LlnS43mSzYUtN3Vre/lcr6S0RnV9FHzYsEWtCKE1zSmheWomntIm6zza0nXf0icO+JYT3t3jxlDb/apJgcmwp777NCvuQrCgij05vF6ybw6yYQm1byrtvXfEcNjiRsMGJuzXfg7q8+4Fi+ftQshjskTDu1g6nH5u2lpUl9cSG23nkDwM7VFaofustyu67H4Dos84k+c47O2zZ4HG1UldeRnx6dw4/LYeQUCv9x6biCN+zbSrWVK9h8vTJlDWXER0SzRNHP8GwpGF79nxFRERERERERKSNQngRETnwNVXCp1cHjg+bvN09d7f13rziduV//29Y2r6eoUjQ2S12Tu91Oqf1OI2vCr7i38v+TV5tHq8sf4W3Vr3FqT1O5cL+F5IakdrVU90lk9WKPS0Ne1oa4Ycd1uG8r74ez8aN25S53yao37QZw+PBXVCAu6Bg+6voY2ICAf2WlfS/BPX29DSsycm7tYreZDIR0j2KkO5RRE/MpmlROa61NZis5sBqdPvWcDRsYAL29MhtQnUbphDLdsu7h2RHE5IdvScvlxwIPC0w/d7A8ZHXQ3j7m2Jm51fx4g/rAXjo9wNIjGxfiaDqlVcpf+QRAGLP/xOJt97aIaR3tzTzv/vuoqa0mDPveoiE7lkMPylzj6f6ffH33PzDzTR7m8lyZvHs+GdJj0rf435ERERERERERGQrhfAiInJgMwyYci00VUBiXxj/t502/3pFKbd+uBSAy8Zm8+ejsn+LWcpByvAbrJ1XRlxqBDEpYVgsv/3qY6vZysnZJ3Ni1on8sPEHXlr6Eksrl/Lumnd5f+37nJx9Mhf3v5js6AP3e90SFYWlb18cfft2OGf4fHhLS7e7D72nuBhfTU3bv9alSzt2brNh65bScR/69EBgb4nsuP+5OcxG5JhUIsds/wYHa3xo297scoia8wLUFUNUKoy+st2p+lYPN763BMOAM4enc3y/5LZzhmFQ+fzzVD71NABxl11GwnXXdgjgWxsbeefu26kqXo/ZGoKr+VeVF3aDYRj8Z9V/+Mf8f+A3/IxKGcU/x/6zy7a0EBERERERERE5mCiEFxGRA9vit2H1VDDb4LQXwbbjfY3n5Fdx1X8X4Tfg9GFp3HpC7m84UTno+DzUT/s333zcGwCz1URsSjjxaRHEp0UG/jc9gpCwPSsLvbfMJjPj0scxNm0s80rn8dKyl5hdMptP13/KlPVTmJAxgUsGXEK/+I7l4A9kJoslUIo+NRX+n737Do+i3B44/p3tLX03vRN66EgREVCs2BA7iogFKyJgv9d21Xt/1wbWq6KggGLDAvYGIggo0jsphBbS2ybb5/fHwkKoAQIJcD7Ps092Z955551JspPsmfcceu6z3l9Ts3MW/ebd9eh3Beq3bgWvF++mArybCvbbvzYiYncd+pTUeoF6fXwcik7+nBZ7cZbA3BeDz89+DPT1b8h4/MtVbK2oIzXawj8v3n1jiaqqFL80ntK33gLAMfpe7Lffvk/3tVWVfPjYI1Rs3wSKiYRWNxKXeXjXM2/Ay38W/oeP138MwBWtruCRno+g1xyf9yshhBBCCCGEEEKIk518aiiEEOLEVb4Jvn0w+HzAI5DQ8YBNV2+r4pb3/sLjCzCwbRz/vrzDPjMLhTgsJRvwzn2DRP2tlPjS8fislGyuoWRzDVAIQNfzUuk9OAsAd62XLevKsSfbCI8x7zc1eWNQFIUeCT3okdCDlSUrmbhiIj8X/MxPBT/xU8FPnJ54Ord0uIXucd1Pid8Brc2Gtk0bTG32DVKqfj++oqLd6e03F9SrR+8vKwvWo6+sxLVy5b6d63QYUlMxtsjEkNli99fMDDQWy3E4OtEszfk/cFdBfEfocFW9VTOXbePzJVvRKPDS1Z2xGYP/jqmqStF//kPZe+8DEPvgg8TcNHyfrmvKSvnwsUeoKt4KioWUDjcx+P5z0RsOXVJhlypPFeNmj+OP7X+goDC2+1iGtRt2SrwfCCGEEEIIIYQQQhwvEoQXQghxYgr44Ys7wFMNKb2gz70HbFpQWsuwdxdR7fbRIz2aV6/rgq4J0oaLk4+9YycGF76DWpZHtT+WEl86Jd4MSnwZlPjSsS9+DcprIb4DO3yn8d03MQDoTVrsSTbsyTZikm3YU8KISbSiO4xAWkNk27MZP2A8G8uDteK/yfuG+dvmM3/bfDo5OnFrh1s5M/nMUzb4pmi16BMS0CckQI8e+6z31zjxbt05az6U5n7XjPotwVr0ubl4cnOBn+ptq0tMwLhnYL5FJoYWLdBFRR2noxNNomQj/PVu8Pm5T4Nm97Vme2Udj36+AoC7B2TRLS34s6AGAhQ++RQVH30EQPzjjxF17bX7dF1dVsIHjzxATXkRKDbSO9/MpWPOOqz3jc3Vm7n757vJrczFrDPzn77/4azUs470aIUQQgghhBBCCCHEAUgQXgghxInpj9dg0zzQW2HwG6DZfxCiqNrFDe8upKTGTZv4MN6+sTsmfeMGOsUpKq4dXD0FAMVVSfiOVYQXriCzcDkUfgtFa1B9HigACuajuhfh0F1HmS8Vr8vA9pxKtudUhrobcEMb2vVJBKC6zEX5dicxyTasEcajHmpWVBbP9n2WOzvfyeRVk/l8w+csK17G3b/cTauoVtzS4RbOTTsX7QF+j05VWpsVbevWmFq33medGgjgKyzEnZuHJzcHd04unpwc3Lm5+MvK8G3bjm/bdpy//16/z6goDC0y9wnQ6xISTtmbIU4qPz0OAR+0Oh8y+4UWBwIq4z5ZRpXLR6fkCO45uyUAqs/H9kf/QeWXX4JGQ8LTTxN5+eD9dl20yUNtjRFFE056t1u55N4z0R3G9WxJ0RLu/eVeyt3lxFpiefWsV2kb0/bojlcIIYQQQgghhBBC7JcE4YUQQpx4dqyCX/4VfH7+vyE6c7/Nqlxehr/7J5tKa0mJNvP+iB5EmKXerTgGTBGQdnrwsYvPg1KyHgpXQOEK0gqXk1b4NP66Gip8SaFZ86W+dIq9Gdh/uxk2R0N8Bzbt6MycXw0AmMMNO+vMB2vM25PCiIwzozmCbA7JYcn8o9c/uL3T7by/+n0+WvsR68vX88BvD/Bq2KuMyB7BxS0uxqA1NNaZOWkpGg36xET0iYlwRp9663zl5Xhyc3Hn5ODJycWdGwzQe7dtw19eTt1fi6n7a3H9/iwWjBkZoQC9oUUmxhYtMKSkoOjlfeuEsGk+rJ0FihbOeareqnfn5TFvYylmvZaXru6MXqtB9XrZ+sADVH/7HWi1JP73/4gYNOiA3RvMJkwRg0lsaeaiu/ug1TX8PWBW7iwem/cY3oCXttFteeWsV4izxh3xoQohhBBCCCGEEEKIg1NUVVWbehDNTVVVFREREVRWVhIeHt7UwxFCCLEnnxvePgt2rIRWF8C1H8J+Zo+6vH5ufHcRC/PKsNsMfHr76aTbrU0w4KMj16TG16TnVFWhcnMoME/hCti+HLWiANj9o7yq9hyWOi+hwp8I7BtoGzy2C4ktg6msywud1FV7iUm2YTQf3v2Vle5KPlz7IVPXTKXSHZyVH2uJZXj74QxpOQSLXuqaN6ZAbS3uvLx9A/SbNoHPt/+N9Ppg3fnMzN2B+cxMjBlSd75ZCQRg4tmw7W/oPgIueim0am1hFZe8Og+PL8Azg7MZ2jONgMfD1tH3UfPLL6DXk/zSi4QNHLhPt0X5ueQt+Yueg4O15Ys2VRGTbEPbwJtwVFXl9WWv879l/wPgrJSz+Hfff8vvdjMi1/nGJedTCCFEcyHXpMYn51QIIURz0dBrksyEF0IIcWL59dlgAN4SA5e8vN8AvM8fYNSHS1iYV0aYUcfkm3qckAF4cRJSFIhMDT7a7J7xqtSVQ+HKUGC+feFy2hffh9enpdSXSokvg1JvevCrL42YH66G1S0hviOrVrZh2Z9+AMLtJuzJYcEZ8zvrzYdFmw6Y5jzCGMHtnW5nWLthfLr+U95b9R5FtUX898//8tbytxjadijXtrmWCGPEcTk9JzuNxYK5fXvM7dvXW656vXg2b94jML/za14eam0tnpwcPDk58GP9/vSJiRhatNgnQC9155vAqhnBALzBBv0fDi12+/yMnr4Ujy/A2W1iua5HKoG6OrbcfQ/OefNQjEaSX30FW9+++3S5fcM6PvnXP/G6a7FERNLhrHOJTWv4h41uv5t//v5Pvs3/FoCbsm9idNfRaJTDz6IhhBBCCCGEEEIIIQ6PBOGPA1VVpcanEEI0hk1/wLwJwecXTwBb7D5NVFXl0c9X8sPqHRh0Gt4a1p3sJAkgimbOHAUZfYOPXXxu9MVriS9cQfzOGfMUfojqrkEpVqF4IQC66uuwaQZQE7BTVeKiqsRF7tLiUDc3/rsPtqhgXfnigmoAohOsaPW7A3EWvYVh7YdxTZtrmJkzk3dWvsPm6s28tvQ1Jq2cxNVtrmZYu2HYzfbjcDKaF1VV8dTV4aqpDj6cNbhqanA7a/C6XcQkp5LeqetR7UPR6zFmZmLMzIRz9tj3rrrzObmhuvO7AvT+8nK827bh3bYN59y59frTRkfvDMzvVXc+Pl7+Jj0WfG74+cng8z6j612bXvhhPWsLq4mxGvjPkI4EnLVsufNOahctQrFYSHn9Nay9eu3T5ebVK/js2Sfwe93ojMkktul2WEMqqSvh3l/vZXnxcnSKjn/2/ieXt7z8aI5SCCGEEEIIIYQQQhwGCcIfB3XLiqldXkLkRZnook1NPRwhhDgxuavh85GACp2HQtuL99vsue/X8dFfm9Eo8PI1XejdIub4jlOIxqIzQkKn4GOXQAClYtMe6eyX06twDr2qPsAVCKPEmx6qNV/iS8elRmL96ipI6ADxHVn0cxL569xoNApRCRZikm31Zs6bbQaGtBrCpVmX8uOmH3l7xdtsKN/ApJWTmLZ6GoNbDmZ4++EkhyU33Xk5QmoggKIJ3ngQ8PvJW7oYt7MGV001dTuD6rsC7XEtWtHnqqGh7V696aoD9pvcNrteEH7ex1MJi7bjSMvAnpKG3nTkf/vVqzvf94x663zl5XhycvYJ0Pu2bcdfVkZtWRm1f/1VbxuNxRJMZb9HYN6Q2QJDagqKTv4tOGKL3oKKAghLgN53hRbPzynh7bm5APxnSEeiVTebbx1J3dKlaGw2Ut56E0vXfW/gyF+6mM+fe4aAz4NGl0K7AbcTFR/d4OFsKN/A3T/fzTbnNsIN4bzU/yV6JPQ4+uMUQgghhBBCCCGEEA0mn7YdY6pfpfK7fPwVbgrXlxPWL5nw/skoem1TD00IIU4s3z0MFZsgIhXO/89+m0ycm8vrs3MAeHZwB87Pjj+eIxTi2NNoIDoj+Gh3ye7lzlJMO1aQXLiC5O3LofBHKFlPIKCi5AUgbzYA+orRGJVuuAM2Src6Kd3qZP3CHQDojFpue+lMFI2CTqOji3o67/Q4k2WeP5m4ciLLipfx0bqP+HT9p1yYcSE3d7iZFpEtjuvhq6qK11WHq6YGl7MGncFIdGISAD6Ph/mfTKs3W33P5y269WDQqPtDfX3x36cOvJ89nmu0WgxmMwGfH5PNhskWhtEa/KrV64nL2H0OPHW1LPhs+u6NFYXIuHgcqRk40jJIbpdNSrsOjXIudFFR6Lp3x9K9e73lAacTd15+KDAf+lpQQKC2FtfKlbhWrqzfmV6PIS0VY2aLYFr7XQH6jAw0ZnOjjPekVVsGvz0XfH7WP8EQrLVeWedl3MfLUFW4tkcKAxIMFAy/Cdfq1WgiIkidOBFzh+x9utv45wK+evE/qAEfGl0Gnc4fyYCh7VE0Dctg8PvW3xk3ZxxOr5PUsFReO/s10iPSG+tohRBCCCGEEEIIIUQDSRD+GFO0Cvab2lPxVQ7unEqqfy6g9u8dRA7KxNQ+RlKCCiFEQ6z9BpZMARQY/AaY9q2J+/mSLTz99RoA7j+vNdf0SD3OgxSiCVljILN/8LGLtw5N0ZrQjHkKV3Cu/m1Uz3hqAjGUeDMo3WPWvFnjQflsEsR3gPhO/DLFTHmRG51Bw2VJo7k0po6//X+wyPsb3274npm5Mzk79Wxu6XAL2fZ9g4kHE/D7dwbHq3cG1KtDQfPI+AQyu5wGBIPanz77WCj9u6ummoDfH+qnTZ9+ocC6Rqvlz68+O+A+XTXVoecarZbkttlo9XpMOwPqJpst9Dwirv4NPHe8NQ2dwXDI4/L7fHS/+HKKN+VRUpCPs6KcisLtVBRuZ8Oi+WQPODcUhPd5vcx+7y3sOwP09pQ0jBZLw0/iAWisVszZ7TFn76fufEFBsO58bm4wMJ+TE6w7X1eHZ2MOno059TtTlJ115zN3B+h31qDXRkYe9VhPCr89B65KiOsAna4JLX7sy5Vsq3SRHmPh4V6xFAy7EfeGDWijo0md9C6m1q336aqqpIivXvw3asCPRt+SroNu5cxr2jb4/4Xpa6fz70X/JqAG6BbXjfH9xxNpimysIxVCCCGEEEIIIYQQh0GC8MeBPs6K/ZYO1K0oofLrPPzlbkqnrsHYMpLIS1qgdxz9B65CCHHScpbAzFHB573vgvQz9mny69oi7v9kOQAj+mRwZ//jOztXiGZJb4akrsHHLoEASnkeYduXEVa4gozCFVA4BWoKCagaWBWAVZ+jqgrG8mfQKS3weQzsyKuCPEimO8l0xx1RyaR2j/Fzwc/8XPAzAzUXcY6jMy0ik3A7nbhqqncGzYOB86S27el6QXDmfl11Fa/fct0Bh92mT79QEF5nMLJ9/dp92mh1Oky2sHqp3jVaLaddegUGownjzhnrZqtt9/Ow+jfvXP3E/jNq7E9DAvAA5rBw+l0/IvS6trKC4oL8UFA+rWPn0LqyrZtZ9uO39baPiI0LBeUzu3QnoeW+gdojpej1wQB6i/rvj2oggG/7dty5ucEAfU4u7txggN5fUYF361a8W7fi/G2vuvMxMTvrztcP0Ovi4k6dm0xLc2DR28Hn5/4LNMFMV18u3cqXS7eh1Si8dFYixSNuwpOfjy42ltTJkzBmZu63ux15KlpTfwK+bZx28c30ubJ1g86lP+Dnub+eY9qaaQBc2uJSHu/9OHqtvnGOUwghhBBCiBNEIBDA4/E09TCEaHb0ej1arWRnFuJ4kyD8caIoCpaODkxtoqn+dTPVv23BvaGCQLUHJAgvhBD7p6ow815wFkNsu2Cq370s3lTGHdMW4wuoDO6SxD8GNXzWoBCnHI0GYloEH9mXAztnpRfl4970N7qKjYTVbEApXMFFgcdYXJZEpS+CKm84Tr+FOr8eT0BBW1XHU4Z2/NUNvqlcT9rvPVhT8Q5rDrBbRasNBeGNVmtoudFixWSzhdK7m2xhJLRss3u4Wi2X3v9PjBZLcL3VhslmQ2cw7vf3/MzrhjfaqWoMlohI0jp0Jq1D533WGS1Welx6RShIX1NWSmXRDiqLdpDz1wJ0en0oCF9VXMSCGdNxpGXgSM3AnpaOyWprlDEqGg36pCT0SUnY+vatt85XVhaqO+/O3R2g923fjr+0lNrSUmr//LPeNhqrNVh3PjMTQ4tddeczMaSchHXnf34SAl7IOgdaDABga0Ud//gimO7//k5hhD14N54tW9AlJpA2eTKG1H2ztPg8HnQGA6nZMSS2OoOk1lH0HtyiQdcyp9fJ/XPuZ+7W4E0S93a9l5uzb5broBBCCCGEOOV4PB7y8vIIBAJNPRQhmqXIyEji4+Pl/0UhjqOT7JOw5k9j0BJxXjrWbnHUrSnFmBkZWufd4UQXa5E3QSGE2GXpNFg7CzR6uPwt0JvqrV5XWM1Nk/7E5Q3Qv7WD/17REU0D6+YKcTJRVRWfx71XHfRgiveoxCSS2wRTkzsryvnm1RdC69zOGty1zlA/nc65kIG3vAtAoLSQP+68ZY+91O18QADQF27hmaXrGKHEMMtYBZpoFMWEojGBYgo+V4zYU+10PLt3aJzbN1Zx88vvEW6PRNOAu7CzuvdslHPU3ETExtF3j5sG6qqrKNkZkC8uyCe57e4U/4W5G1jxyw/1tg+zO3CkpuNIy6T16X1xpKY3+hh10dHooqOxnHZaveUBpxN3bl6o3vyuAL2noICA04lrxQpcK1bU20bR6zGkp2HYVW9+z7rzpvrv7SeEgoWw+ktQNHDOUwAEAirjPl5GtcvH2WFuzn7jMbyFhehTU0mbPAl9YuI+3fw1cwarfvuFqx57FnNYOIPHdkWr1zTo/4HtNdu565e72FC+AZPWxLN9n+WctHMa/VCFEEIIIYRo7lRVZfv27Wi1WlJSUtBoNE09JCGaDVVVqa2tpaioCICEhIQmHpEQpw4JwjcRnd1MWN/k0GtfhYuiV5eiT7IReWkWhgTrQbYWQohTQPkm+Pah4PMBjwTrVO9hS3ktw95dSJXLR9fUSF4f2hW9Vv7JEicHn8dDcUEe7poa6nYG1N171E5P7dCZdn2DM28riwqZNOYO/F7vfvvqdM6FoSC8RqulYMXS/bYzmM0oe9zEYoxy0PHs8+vNVDdbrZj8lRjrtmJ15kFVEi22L+fe6FHssBv50NCaP5VWhNVFEeNMwlGbhNf0J/GFM0DJpcbUli9e3AqALdqIPTkMe7INe4oNe7KN8Jj6YziVmMPCSWnfkZT2HfdZF52QRM/BV1NcEExrX1VcRHVJMdUlxeT+/Sex6RmhIPzWdWtY+esPOFLTd6a2T98nFf/R0litmDtkY+6QXW+56vHsrDufWz9An5uH6nLh3rAR94aNVO+5kaKgT0oKpbXfM0CvjYho1HEflKqCuzqYeaW2NFgKxVkMtSU7n+/9uji4XZfrIa4dAO/8nscfuaW0riti3Nx38JWWYsjMJHXSJPRxsXvtTuWPzz7kj08+AGDdH7/T+dwL0Rkalh5wRfEK7vnlHkpdpdjNdl456xWy7dmH3lAIIYQQQoiTkM/no7a2lsTERCwWyTorxN7MZjMARUVFxMbGSmp6IY4TCcI3E96tNQB48qsoevlvrL0SiDgnDY1FajkKIU5BAT98fjt4qiGlF/S5t97q0ho3w95ZxI4qNy1jbbw7/DQsBrmkiebD63HjrqlBq9eHAqC1VZWsnvPzzlnqe85YDwbXs/ufQ6/LrwaguqyEDx4de8D+dQZjKAhvsFhDAXiNVovJFrYzaG7DbAsjJmV3+muj1coFd4/FZLNhsoYFv9rCMFqsaPdKFa7RaDnntrsPfbCqCtWFxBWuYHThciq3L2F6xRdM1Xup0GjRqFqmbHIzbPlE+pfGE6a9n2q/g5oyNzVlbvKXl4S66np+Gr0vC9Ys97r9lG13EpNobXBg8mRlT03njD1murucNcFZ8wX5lGzKJy6zZWjd1rWrWPnrj/W2t0XHBIPyaRl0Gng+EbHxx2ScisGAMSsLY1ZWveVqIIB32/ZQYD70NScHf2Ul3i1b8G7ZgnPOb/W209rt9erOG1sEU9zrYmMPPVNcVcFTszuAvmfwvLY0+HXv1/7DrB1pi4MBjwKwZnsVz32/jhYVW3l+8btQXYmxdWtS330HXUzMXkNT+W3aZP6a+RkAOlMfEluf0eDdfp//PY/+/ihuv5tWUa147ezXiLcem++pEEIIIYQQJwK/3w+AwWBo4pEI0XztukHF6/VKEF6I40QiFs2Eub2duLE2Kr/Oo25FCc4/tlO3vJiI8zKwdI87ZWeFCSFOUX+8CgXzwWCDwf8Dze4/DGvcPm6a/Ce5JU6SIs28f3MPIi3yT5ZoGpVFO/j1vbd3pnevxr0zqO7zBoN5PQdfxRnXDAPAXetkztR3D9hXTdnuYLTZFk6Y3VGvDvru52HEZe4OcposVm597V1MVht6k/mgwUmNRhsK3jcaRYHwhOCj1blEACOBG5xFzFj6FpPyZ1Hk8/N8TBRvR9YxtGocV1UE8HpSKfZmUOpLp8SXSakvlZit02F+BMR3YEd1Ol++kYOiQGScBXvKzlnzyTZikm1YI4yNexwnEJPVRnLb7Hop63dJad+BXkOupaQgj+JNeVQW7aCmrJSaslLyli6mzelnhtqu+2MueUv+wp6ajiM1A0d6Bpbwxp99rmg0GJKTMCQnYTtz9/5VVcVfVoY7JwdPbm4oMO/OzcVXWIi/pITakhJqFy2q15/GYsaQ5MCYEInBYcIYpcEY4UdvrEGpK90ddPe5Dn+weitY7TsfDrDY9/M6JvjcFgdaPS6vn9HTl5JRnMd/Fr2DzlWLKTub1Ilvo42MrNe9Ggjwy+S3WPr9LAB05v70u/4qYtMOna1AVVXeXvE2ryx5BYAzk8/kv2f+F6teMmgJIYQQQggBSJlXIQ5Cfj+EOP4kCN+M6CJNxAxti2tjBRVf5eArqqV8xgaci3fgGNlRAvFCiFND4Ur45eng8/OeheiM0Cq3z8/IKX+xfEsl0VYD79/cg4QIcxMNVIhgQC3nrwX7XadoNPg8u2fWWsIjaXtG/2Aw3WYLBdR3zVwPtztCbU02G7e9NqlBY1A0GsLtsYdueJxZrLFc3+cfXNXrAWblzuKdFe9QUF3A61GRTI4xcLU5jhuc5XQqnA915fhVLRQp8IMPAJerN2btHdT5wygvrKW8sJYNf+4I9X/WsDa0PT1YY7uuxkNdlZfIODOaU7wsRUJWaxKyWodeu2trKdm8KRSUj05KCa3btHwJq+b8XG97a2RUMCiflsFplww5JkH5XRRvHTqtE12SFmtkNLT2Q60VnAn4y3bg2bwNz9YS3IXVuEvdeCoUPDU6ArV1uDYU4NpQUL8/jYohzIch3IcxXI8hHIzROgzxUWgiHHsE0ncG0a32+kF2ix0Mh5+68rnv16FftZSnFryLyefG3LUrKW/+D21YWL12gYCfH958lVWzg5kKdJaBnHXjFXTon7y/buvx+D08+ceTfJXzFQDXt72ecd3HodXI7AUhhBBCCCGEEEKI5kiC8M2QKSuSuHu7UPPHdqp+3IQxM0IC8EKIU4PPDZ+PDKYEbnUBdB0WWuUPqNz30VLmbSzFatAy+abTaOGwNeFghQBrVBQDb7lrv4F1g7n+rHSjxcKF94xrwtE2DYPWwOUtL+fSFpfy46YfeXvF26wvX88kZw7TNAYGn3kzw9MuILm6GApXwPZlULiCrIo/aGH8g9pAFCW+DEq86ZT40inxZVHhiyc6fzKY0yChI7lrI5g9fSNavYaYRCsxybZQvfmYZBtG86n7J6/RYiGpdVuSWrfdZ13bvgMIi3FQvDNAX7GjEGdFOc6KcjYtX0Kvy68Jtf1z5gyKN+Xh2Bmgd6RlYImIrH8nvbdur9TvB6urXgpe5wHHrQXMgDkSiNy9XKX4Yh8AANb6SURBVFVMePx23LU2PNUm3BXgLvXgKapB9fhwV+pxV+r3qjsfQJ+sx5gZg6FFRjCtvSOY4l4bfugZ6Aczb2MJi2d8z78WTsLk92Lp1YuU115FY913dnptRSUbFv4FKOgt53H2iMG075t0yH2Uu8oZ/eto/i76G62i5ZGej3BV66uOatxCCCGEEEIIsT/Dhw+noqKCL7744oBtZs+ezYABAygvLydyr+xfQgghdjt1P5Fs5hSthrAzkrB0cqAYd89w8Wypxr2pCluvRBStBOaFECeZX5+FHSuDsxQveTmY5ppgCt7HvlzJNysK0WsV3ryhOx2TI5t2rEIAeqOJTudc0NTDOCFoNVrOzzif89LPY+7Wuby9/G2WFi/lo/Uf8+mGz7gg4wJu7ngzWf0eCG5QV4GyYxXWwhVYC1eQVrgMimZCwIs3YES7zgvrAwC4ay9Hp7kKn9dI0aZqijZVA9tD+x48riuJWZEA1JS7CQQChEWbTvlUbCntOpDSrkPotcdVR+nmAooL8qguKcao10DlFnCWkDvve7bkbWXNHtubDeCw+XEYnfR15KD11hz+ILTG+jPRd81QrzdLfffsdcVgxago7F2M4JB15zdvxrt5M8yZU3/3DvvuevN7fNXFOg7581FR6+H9F6fy5IJ3MQR8WM/sS/LLL6MxmfbbvqxQBf1g9NoSzrn5olAmh4PJrczl7p/vZnP1Zmx6Gy/0e4HTk04/5HZCCCGEEEKI5u9gAe/09HQ2bdpUb1lSUhJbtmwJrR89ejSjR49u1DFNmDABVVVDr/v370/nzp0ZP358o+6nOdi8eTNPPPEE3377LSUlJSQkJHDZZZfx2GOPERMTU6/tqlWrePLJJ/n111+pqqoiNTWVa665hocffjhUax3qf980Gg1xcXFccMEFPP/880RFRR1yTLtucNglOjqaTp068a9//Ys+ffqElj/xxBM8+eST+2z/448/MnDgwMM+F0KIY0OC8M2cNmx3nWM1oFL+ZQ7ezdU4FxUSeUkLTC0im25wQgjRmDbNh3kTgs8vfhlsu9Nrj/9pA9MWFqAo8NLVnTmjpb2JBimEOFqKonBm8pn0TerL4h2LmbhiIvO2zWNW7ixm5c7irJSzuKXDLXRwdID0PsHHLj4PlKxDX7gCti8PzpwvXEFXZtDF/DmV/vg9Zs1nUOpvQY0viujcd8DfDuI7sPyXOpb8uBmjRUdMkg17im1nrfkwohOsaPUncTp7n2fnLPTinTPWS3c/dxZjqC0lwVlMwq5Z68/cHdq0py+SNEcYxS4rxW4rFR4zdR6FgjItJVoT/SN3BuA1en4ubosLM/ZoE7GOCOwJ8dgccShWx75BdmNY6Iaro3HEdeeLS6gtLqF24cJ6/WlsNgwtMvcJ0OuTk1G0WlRV5d1n3+HuX99GpwYwn302yS+9iMZgqNeP1+2iMGcDKe06kNouhj5XdMMaYaB1r4RDHtOC7QsYM3sM1Z5qkmxJvHb2a7SIbHHU50oIIYQQQghxYnjqqae49dZbQ6+12mNfjioi4tiVJDsQr9eLXq8/rvvMzc2ld+/etGrVig8//JCMjAxWrVrF/fffz7fffsuCBQuIjo4GYMGCBQwcOJCBAwfy9ddfExcXx6JFixg7diy//PILv/76K4Y9/hfc9X3z+/2sX7+e2267jVGjRjFlypQGj2/dunWEh4dTXFzM008/zaBBg1i/fj2xsbs/L23fvj0//fRTve12jVkI0TxIEP4EY+0eR1VpHb4dtZS8vQJzJwcRF2agi9h7PpAQQpxA3NXw+e2ACp2HQtuLQqve/yOfCT9vAOCpS7O5qOOhZw4KIZo/RVHoHt+d7vHdWVW6indWvMNPm37il82/8MvmX+iZ0JNbO9xKj/geu2ck6wwQ3yH46HxdcJmqQkUBSuEKIguXE1m4gqzCuVD5AQCugA3T/BqYH2zucY5Co5yJuxa2bahg24aK0Jg0GoVh/z4d686/q6pK6tAbtZjD6gdWmw2/d4/078XBFO97Btn3XueuPPx9aHRgsZMe5yDdurOWusWO1xBFaZ2e4ko/Po0Zzn0jGFg3hrPxrpuoKS2BogCsLQfKMdm24EjLILGVhjOuubDRT8WBKIqCLiYGXUwM1h496q3z1zjx5OUGA/Q5ubhzgwF6z+bNBGpqcC1bjmvZ8vr9GQyoyakUh8Vw7rJFaFHxDziHtPEvoOz1oZGnrpbP//svtq1bw6X3P0pml9Poel5ag8b96fpPeWbBM/hUH50dnZlw1gSiTfJhihBCCCGEEKeSsLAw4uPjj6qPsWPHsn79embOnAnA+PHjue+++5g1axaDBg0CoHXr1owZM4aRI0fWm50/fPhw5syZw5w5c5gwIThxJi8vL9T34sWLefDBB1m9ejWdO3dm0qRJtG7d+pBjeuKJJ/jiiy8YNWoUTz/9NPn5+fj9fr7//nuefvppVq5ciVarpXfv3kyYMIEWLYI3Iw8ZMoTExEReeeUVAEaPHs2ECRNYuXIl7du3x+fzERUVxaeffsp555130DHcddddGAwGfvjhB8xmMwCpqal06dKFFi1a8Oijj/LGG2+gqio333wzbdu2ZcaMGWg0wRv309LSaNWqFV26dOGll17iwQcfDPW95/ctKSmJYcOGMX369EN/s/YQGxtLZGQk8fHx/OMf/+Djjz9m4cKFXHzxxaE2Op3uqH8+hBDHlgThTyCKRsHWMwFztp2qHzfhXLidumXFuNaUEnZWKmFnJKHoTuLZW0KIk9d3D0PFJohIhfP/E1o8c9k2Hv9qFQCjB7bkhl4NC14IIU4s7WPa82L/F8mtzOXdFe/yde7XLNy+kIXbF9LR3pFbOtxCv5R+aJT9/J2jKBCVFnzscQMPtWWwYyWmPWbMU7yW/taX6Wt5nTJfMqWhWfOZlPhbgKLFsvZ9SOgAce2Z92k+uUuLsUYYsKfsrjHvSAkjwmFG0TRyOnu/b/fs9IPVVd8VWHcdQVBd0e6V6t0eCqyzR5A9OGM9BkyR+52prgfidz72pKoq59x6F8X5eRQX5FNSkE/Zti24aqrZvGo5fp+vXvsZ/34cvdlCbFoG9tR0HGnphMUcOhV8Y9DarJg7dMDcoUO95QGPh8oNuWxeupryNevx5OZi2FpAZMk2DB4P5G7EwUYAtvU6m7NefQllrxkpLmcNnz37OIUb16FoDGg0Dbth1h/wM/7v8UxeNRmACzMu5Kk+T2HUyg23QgghhBBCNJSqqtR5/U2yb7Ne26xKn/Xv35933nmHQCCARqNhzpw52O125syZw6BBgygsLGT9+vX069dvn20nTJjA+vXryc7O5qmnngLA4XCQn58PwKOPPsoLL7yAw+Hg9ttvZ8SIEcybN69B49q4cSMff/wxn332WWiGv9PpZMyYMXTo0AGn08ljjz3G4MGDWbp0KRqNhv79+/PWW2+F+tjzWNq3b8+ff/6Jy+Wql7Z9f8rKyvj+++955plnQgH4XeLj4xk6dCgfffQRr7/+OkuXLmX16tV88MEHoQD8Lp06dWLgwIF8+OGH9YLwe9q6dSuzZs2iZ8+eDTove6utrWXSpEkAxz1bgBDi6EkQ/gSkteqJuiwL62nxVHyVg2dTFVXf5aONMGLtEnvoDsRx4y0sRHW7MaRJ4FCIA1r7NSyZAigw+A0whQPw2/pixny8FFWFYb3TuPfslk07TiHEMZcZkcnTZzzNnZ3vZPKqyczYMIPlJcsZ9esosiKzuKXDLZyXfh46TQP+hLVEQ8aZwccuXhcUr0VbuBxH4QochSug8FPwVKOq4FLDUb6t2tlYwV31f0BLnJUenJWlbFpZGurKZNMz4r9nhALxy37ZjKfOh9Gix2jRYbToMJk1GDVOTFRipvTQgfW68sM/aYomVC899PWAQXZ7MKiuOXY3bSqKQmaX08jsclpomc/joXRLAcUF+Rj2qJfudbvIW/Y3qCrr/5gbWm60WnGkZpDZrQenXXz5MRsrQGmNmw1FNWzc+cgpDn7dXukCjEAHSO0AqaCoAWJry2ntKqVjoJykrBSuGHfTPgH42qpKPn3mnxTn54JixBB2BTpTyiHHUuut5aG5D/Hr5l8BuLPzndze8fZm9QGeEEIIIYQQJ4I6r592j33fJPte/dR5WAyNE3Z58MEH+cc//hF6/eyzzzJq1KjD6uPMM8+kurqaJUuW0LVrV+bOncu4ceOYMWMGAL/++itxcXG0adNmn20jIiIwGAxYLJb9zrh+5plnQsH7hx56iEGDBuFyuTDt8X/fgXg8HqZMmYLD4QgtGzJkSL0277zzDrGxsaxevZrs7Gz69+/PvffeS0lJCVqtllWrVvH4448ze/Zs7rzzTmbPnk23bt2w2WwH3feGDRtQVZW2bdvud33btm0pLy+nuLiY9evXh5YdqO3vv/9eb9mu75vf78flctGzZ09efPHFQ56TPSUnJwPBILyqqnTr1o2zzz67XpsVK1bUO9Z27dqxaNGiw9qPEOLYkiD8CcyQZMNxe0dqlxRRt6IES6fdFyzVH0DRyqz4puIrL6fk9Tconz4dfD7CL74Ix6h7MSQnNfXQhGheaorhq53/PJx+N6SfAcDSzRXcPnUxXr/KRR0TeOLi9idUEMJfWUnFp58SPXz4PsEZIcShJdoSeaTnI9zW8Tamrp7K9HXT2VixkYfmPsSrS15lRIcRXNriUgzaw0wTrzdBYufgY5dAACryUbYvx7xrxnzhCqjexmXhD+CxmSj1pVPiS6fEm0FJoCVl3mTC9VUoyz4Aby04i1n1TXvKa8L2u1urpoThsbvr+P1ccQ/VgQyMSixGTTVGxYlJU41R48SiqSQzemMoeO41xqELi0Kx2esH2XcF1s1RxzSo3hh0BgNxmVnEZWbVW67Rahny0BMUF+QHH5vyKNu6GbfTyZY1K4mIjQu19ft8THlwFNFJyThSM7CnpeNIzSDCEYtyiOMPBFS2VdbtE2jfWFRDea33gNs5woxkOWxkxdZ/xIYZD3hNqikv45N/PUrZ1s2gWDBFXsGgu84iuXXUQce4w7mDe365hzVlazBoDDx9xtNckHHBQbcRQgghhBBCnNzuv/9+hg8fHnptt9sPu4+IiAg6d+7M7Nmz0ev1aDQaRo4cyeOPP051dTWzZ8/e7yz4hujYsWPoeUJCAgBFRUWkpqYectu0tLR6AXiAnJwc/vnPf7JgwQJKSkoIBAIAFBQUkJ2dTXZ2NjExMcyZMwe9Xk+nTp245JJLePnllwGO6lj2pKoqQIM+i1RVdZ92u75vqqqyefNmHnnkEQYNGsRvv/0WmvV/KHPnzsVqtbJkyRIefPBBJk+evM9M+NatW/PVV1+FXhuNkkFNiOZGgvAnOEVRsHaNw9p194eUAY+fopeXYO5oJ6x/ChqDBICOl4DLRdn7Uyh96y0CNTWh5VVfzaT62++IGjqUmJG3oYs6+AexQpwSVBVm3huc/RnbDgYE7+zdWFTDTZMWUevx07elnRev6oymsVM+HyOBujrKpk6l9O2JBKqq0EZGETnk2M7iFOJkZjfbGd1tNCM6jGD62ulMXT2VLTVbeOqPp3hj6Rvc2P5Grmx1JRa95ch3otFAdGbw0f6y3cudJVC4HEPhChJ2Pij5AdQAAVWDKxAGX+5OB9+KIVSbHbgDYbhVK+6ADZdqwx2wYdLWgb11aGb6jkWnHThgH2kg84EzQq+/+u9iCvMqMZp3zq637pxpb/ViDS/jjKtiQm0LcyvxewMYrbrQjHy9sXmlQtyTVqcnvXM30jt3Cy3z+7yUbd1CcUE+4TG7P5Ap37aF0i0FlG4pYMPC+aHlBrMZe0o67fsPpG3/c9hUWhsKtG/YUc3G4hpyipwHTEWpKJAcZd4r2B5GlsNGhOXwUv3VVlUy/fEHqdyxHRQr5qiruOju/qS2jznodqtLV3PPz/dQVFdEtCmaCQMm0Dm282HtWwghhBBCCLGbWa9l9VMHrwl+LPfdWOx2O1lZWYdueAj9+/dn9uzZGAwG+vXrR1RUFO3bt2fevHnMnj2b0aNHH1G/ewaFd/3fuStwfihWq3WfZRdffDEpKSm8/fbbJCYmEggEyM7OxuPxhPZx5plnho6lf//+ZGdn4/f7WbFiBfPnz2/QsWRlZaEoCqtXr+ayyy7bZ/3atWuJiorCbrfTqlUrgFDd+/21bdmyfvbOPb9vLVu2ZPz48fTu3Ztff/2VgQMHHnJ8ABkZGURGRtKqVStcLheDBw9m5cqV9QLtBoOhUX4+hBDHjgThT0J1y4rxldRR/ctmav8uIvKiTEztY5rtB7AnA9Xvp/KrmRRPmICvsBAAY9u2xN0/Dk1YOEUvvEDtggWUTZ5MxWefEXPrrUTfcD2avWrOCHFKWToN1n0NGj1c/hboTWyvrGPYOwspr/XSKTmCN67vhkHXvGd4Aqg+HxWfzaDktdfwFRUBYGyZhS4+7hBbCiEaItwQzm0db+P6ttfz+cbPmbRyEjtqd/D8X8/z9oq3GdpmKNe1vY4IY0Tj7dRqhxZnBR+7eGqhaA2awuVYCldAWQ4Yw8Bip3tohrp9j5rqdjBHoypa0NwY6qZfp3KcVW7cTh/uWh+uWi/uWh9upxejpf6f5+5aL6gE19f6qCpx7R5ipJEzrtr9z/68TzdSmFu/TrxGo2C06rBGGrn60R6h5St/24qz0o3Jog8F7U2WncF7qw5rRNPcQa/V6XGkZeBIy6i3PCI2nisefZrigjwK8/LYlpdDdeFWPHV1bFu/htm1Mfz8sx9fQCXcW8VlhV/hMdixGqJJNMRQYXIQHZ9Ay/hggL3FzoB7pt2GuZFuWNUZLAQCCSgaZzAAP+pMUtpEH3Sbnwt+5uG5D1PnqyMrMotXz36VJJtkThJCCCGEEOJoKIrSaCnhTwa76sLrdLpQELhfv35Mnz79gPXgdzEYDPj9+7+puTGVlpayZs0a3nzzTfr27QuwT5p3IFQX3mAw8NRTT6EoCn379uX555+nrq7ukPXgAWJiYjjnnHN4/fXXue++++rVhS8sLGTatGkMGzYMRVHo3Lkzbdq04aWXXuKaa66pVxd+2bJl/PTTT/z73/8+6P52zX6vq6tr0LnY2w033MBTTz0VGq8Q4sQhV6KTkKV7HIpJR+XXufgr3JROXYMxK5LIS1qgjz2KmWJiv2p+n0fR88/jXrsWAF1CArGj7yX84otD6VFTJ72L8/d5FL3wAu61ayl+8UXKp03Dcc/dRFx2GYpOfhXFKaY8H759MPj8rEchvgPlTg83vLOIbZUuMh1W3h1+GjZj8/7dUFWV6u9/oHj8eDz5+QDoExOxj7qHiIsvllT0QjQyi97C0LZDuarVVczKncU7K99hU9UmXl/2OpNWTeLq1lczrN0wHBbHoTs7EgYLJHcLPg7D3rdBJh0iNfmern60x+4g/c5AvbvWi8vpQ6Ot33NYjGnnumD7gF8lEFCpq/ai2atM0boF2ynMrdrvPnUGDSNf7h96/duH6yjd5tw5Az84w37PgH3L7nGhmz09Lh86vWaf/R2JilpPKG38xqIaNhZ72FgUwdaK1qiG1mhS/ER6K4nxlFKixuALqFgMWrqZ64jYUk2Er5oWtXm7j2uHEUdZOqddOoSWnVsf9fj2VlftRWseiDmmF5eM6k1SqwN/n1VVZfKqyby0+CVUVPok9uG5fs8RZth/hgQhhBBCCCHEyamyspKlS5fWWxYdffCbeQ/XrrrwM2fO5OmnnwaCwewhQ4bgcDho167dAbdNT09n4cKF5OfnY7PZGn1su0RFRRETE8Nbb71FQkICBQUFPPTQQ/u021UXXqfThYL1/fv3Z+zYsXTt2pXw8PAG7e/VV1/l9NNP57zzzuPpp58mIyODVatWcf/995OUlMQzzzwDBG/omDhxIueeey5Dhgzh4YcfJj4+noULFzJ27Fh69+69z+z76upqCgsLQ+noH3jgAex2O6effvoRnRuNRsPo0aN5+umnGTlyJBaLxHiEOFE07+iGOCKKomDpYMfUOorqOVuonrMZ98YKdoz/G1ufRCIuyEA5QVI7N2eutWspeu55nPPmAaAJC8M+8jaibrgBzV71VxRFwdb3DKx9Tqdq1iyKx0/Au20b2//xT0onTyZ2zBhsAwZItgJxagj44fM7wFMDqb3h9FHUenyMeO9PNhbVEB9u4v0RPYixNe86Rs4//qDohRdxrVwJgDYqCvsdtxN5zTVoDIdZp1oIcVj0Wj2DWw7mkhaX8GPBj0xcPpF15euYvGoy09ZMY3DWYIZnDyclLKWph3rUtHoN1ghjg2amn3tz+9BzVVXxeQKhgL3fVz8lYFa3OOzJYcH1O4P7rlof7lovemP9G4iKN1cfNGDf6rT40OsfJq5i08pSDCZtKEhvtOgx7fza/7rWob9Dd+RX4anz4lRVttV6yK+uI6fcycZiJznFNZTUeA54rNFWw84Z7RlkxdpouXNme0KECU9dHTtyu1NSkBeqNV+6uQCf2832jevwe3fXgc9fvoQf33oFe2qwxnxwFn46kfEJaDSHvpGqKD+XZT9+w9kj7iDCYeGy+7riqfWRkBV5wG28fi9PL3yaGRtmAHB166t5qMdD6DTyr5kQQgghhBCnmtmzZ9OlS5d6y2688cYDtD4yERERdOnShYKCglDAvW/fvgQCgUPWUB83bhw33ngj7dq1o66ujry8vIO2P1IajYbp06czatQosrOzad26NS+//DL9+/ev1y47Oxu73U5aWloo4N6vXz/8fv9h1YNv2bIlf/31F0888QRXX301paWlxMfHc9lll/H444/Xu9mgT58+LFiwgCeffJILL7yQqqoqUlNTufHGG3n44Yf3qcX+2GOP8dhjjwHgcDg47bTT+PHHH4mJOXipsoMZMWIEjz/+OK+++ioPPPDAEfcjhDi+FFVV1aYeRHNTVVVFREQElZWVDb5zqjnzldZRMSsX15oyzNkxxFx/4DvbxKF5t2+neMLLVH75ZbCmtV5P9HXXEnP77Q2u9R7weCj/4ANK3/gf/spg2lhzt27Ejh2LpWuXQ2wtxAlu3gT48TEw2OD23/GEp3Hr+38xZ30xEWY9n9zem1ZxzXcmYN3KVRS/+CLO+cGaxIrFQszw4USPuAmtzdbo+zvZrknNgZzTk4+qqvy+9XfeXvE2S4qWAKBVtJyfcT43Z99My6iWh+hB7ElV1Xo3BhbmVlJd5to5G9+7M41+MGivKArn35YdavvZf/86YMBea9DQ4va2oZntYX+W46iuf3NAABWXAi5F5d0wNwmRJrLiwmjv1mJHgyPaTGKslegoUyiwb7QE0+cf7CbTgN9PeeE2ijflkdw2G1tU8AOVP2fO4Lep7+7TXmcwYk9Jpd+wW0hu036/52X7xnV89sxjuGud9L7iOk6/8rpDnttKdyVjZo9hUeEiNIqGB057gOvaXCc3Yp7C5JrUuOR8CiGEaC7kmtT4DnZOXS4XeXl5ZGRkYDKZmmiEQjRv8nsiRONp6HVeplucAnQxZuw3tse1rgzdHuno/VUe/NUeDEmNHzQ6Gfmrqyl9623K3n8f1e0GIPzCC3Dcdx+GlMObaacxGIgZPpzIIUMofXsiZe+/T93ixWy67jpsA88mdswYjJmZx+IwhGhahSvhl2DaK87/N4HIdO7/eClz1hdj1mt5d/hpzTYA787Lo/jll6n+9rvgAr2eqKuvxn7H7eiO4k5WIcTRUxSFvsl96Zvcl8U7FvP2ireZt3UeX+d+zde5XzMgZQC3dLiFjo6OTT3UE8LeAeH4zAjiMyMatO0FozqxYUsVOVuqKCisYXtJLcWldVRVulEDKv95/69Q23PcetBoMKsKZhS0KmhQsKhg02lZ+VR/rDvLksx6dRmbVpaymXI272e/t7/aH+3OIPwfn29k+8bKYPr8fWbjt8IcFhnaru0ZA4nNyKJ086bQzPmSgk34PG4Kczag0+/ObLLsx29Z+MXHOFLTiU5MYvnPP+B11aHRJRLf8sxDnpuCqgLu+vku8qvysegsPNfvOc5MPvR2QgghhBBCCCGEEOLEI0H4U4ipdf16LZXf5lG7tAhrzwQizk1DY9E30ciaN9XjoXz6R5S8/jr+igoAzN27EffAA5g7Ht2H+dqwMGLH3EfU0OsoefVVKj6bQc1PP1Pz62wihwzBftdd6ONiG+EohGgGfG6YcRv4PdDqAtTO1/PUrNV8uXQbOo3C69d3pVtaw+skHy/eHUWUvP46FZ9+Cn4/KArhF1+EY9QoDMnJTT08IcReusV1o1tcN1aXrmbiion8tOknft38K79u/pWe8T25peMt9IzvKTOPj1KVyxua0Z4Tqtlew+ayWgL7y7NlAJNeQzt7OFk7U8fveqTHWDHoNPg8fty1Ply1XrxufygAD5DZ2UF4jCmUMt9d68PlDH4N+FW0ut016Eu3OtmeU3nAsWd12/231R+fb2b9ohL0xnCMlm4Yrb1I7axBUarwe4uJiN39Pr951TpqSkuoKS0hb0nwZgKNLoWwuCsItx/8JoW/Cv9i9OzRVLoribfG8+pZr9I6uvHr0gshhBBCCCFOLdOmTWPkyJH7XZeWlsaqVauO84igffv2bNq0ab/r3nzzTYYOHXpM979n2v39Wb16Nampqcd0DAdywQUXMHfu3P2ue+SRR3jkkUeO84iEEMeSBOFPUapfRQ2ooIJzwXbqlhcTfl461tPipV78TqqqUv399xS9+BLeggIADJmZxI4b2+j12/VxcST8619E33gjRS+Np+bnn6n4+GMqv/qK6OE3EnPzzWjDmufsYCEa7NdnoGgVWOxwycu8PieXyfPzAXj+yk4MaN28bjjxV1ZSOvEdyqZMQXW5ALD164djzH2YWkvgRIjmrl1MO17s/yK5lbm8u+Jdvs79moWFC1lYuJAO9g7c0uEW+qf0R6NoDt3ZKUpVVYpr3PsE2jcW1bCjyn3A7cJNup112sPqBduTIs1oDvJ3ps6gRWfQYo007rOu3RmJBx3nnnpcnEHb0xNCAf1Q+nynD5/XXy9g7671AeB1+/G6/dSU73lcDgzm3WPRW/piCLMT8Jeg+opB0RPm6MdlY3oQc5DMUl9u/JIn/ngCX8BHB3sHXj7rZexm+wHbCyGEEEIIIURDXXLJJfTs2XO/6/T6ppl098033+D1eve7Li4u7pjvPzExkaVLlx50fVOZOHEidXV1+123Zx16IcTJQWrC78epVLPHlVNBxVc5+HbUAqBPshF5SQuMaSf3cR9K7eLF7Pjvf3EtWw6A1m7HcffdRF4xBEV37O9dqV28mKLnX6Buyc66tpGR2O+8g8hrrkFjMBxiayGaoU3zYdKFgApXT+PD6o48PGMFAI9d1I4RZ2Q07fj2EHC5KJ86lZK3JxKoDM6kNHfpQuzYMVi6dz/u4zmVrknHi5zTU9P2mu1MXjWZzzZ8htsfDLRmRWZxc4ebOT/9fHSaU/fe1EBAZWtFXWhm+8aiGjYUVbOxqIYql++A28WFG4MBdkcwyN5iZ7DdYTOeMJkGAgEVT93uWfXuXV9rvXhcfrqelxZqO3/GRgpWle4M7vsIjzFx3q3ZRCdY99+3GuCVJa8wccVEAM5NO5dnzngGk05q74nd5JrUuOR8CiGEaC7kmtT4pCa8EEdHfk+EaDwNvc5LEH4/TrU/klS/Ss2CbVT9uAnV5Qcg+to2WDo5mnhkx587N4+iF1+g5qefAVDMZmJGjCD6ppvQ2vb/AeuxoqoqNT//TNGLL+HJzQVAn5yM4957CR90IYpGZu6JE4SrCv7XByoKoPP1fJf1D+6c9jcBFe4a0IL7z2vT1CMEQPX5qPj8c0pefQ3fjh0AGFtm4bjvvsPKfuHz+NEZtI02rlPtmnQ8yDk9tZXWlTJ1zVSmr51OjbcGgCRbEiOyR3Bp1qUYtfvOwj5ZeHwB8kud9YLtG4tqyC2pweUN7HcbjQIp0ZZ9Au1ZsTbCTVLK6EDqfHU8+vuj/LjpRwBu7XArd3e5WzIviH3INalxyfkUQgjRXMg1qfFJEF6IoyO/J0I0noZe50/dKT8iRNEqhPVJwtLJQeV3+bjWl2Nq3fzqMh9LvpISil97jYqPPwnWfNZoiLziCux334U+tmlSZCuKQtjAgdj696dixgxKXnkV75YtbLv/fkonvUvs2LHY+vRpkrEJcVi+fzgYgI9MZWHrcYyaupSACtf2SGHcuU2f1l1VVap/+JHi8ePx5OUBoEtMwHHPKCIuuRhF27CAurPSzZ+z8ihYXcZ1j/ds1EC8EKLxxJhjuLfrvYzIHsFH6z5iyuopbK3Zyr8W/Is3lr3Bje1u5MrWV2LVH9+b7xqT0+0jp7h+oH1jcQ2bSmvx77dgOxi0GjLs1n3qtWfYrZj08n52OIprixn1yyhWlq5Ep9Hx5OlPckmLS5p6WEIIIYQQQgghhBDiOJIgvAjR2gxEX9GKgMuHxhT80VBVlfLPNmDpHIspK7JpB3gMBGprKZ08mbKJ7xCoDabktw0YQOzYMRizspp4dEGKTkfUVVcRcdFFlL0/hdKJE3GvXsPmm2/BevrpOMaOwdy+fVMPU4j9W/s1LJkKKOSe8QI3T1+Pxx/g/PbxPH1ZhyZPV+xcsICiF17EtSKYGl8bGYn9jtuDpR+MDZsN63H5WPJDAUt/KsDnCc4kzVteQsvux77GlWhagYCKL6Ci1ypN/rMsDl+YIYxbOtzC0LZDmbFhBpNXTabQWcgLi1/g7RVvM7TtUK5rcx2RpsimHuoBlTk9+6SQzymqYVul64Db2Iy64Gx2R/1ge0qUGZ1WZmkfrXVl67j7l7spdBYSaYxk/IDxdIvr1tTDEkIIIYQQQgghhBDHmQThxT52BeAB6pYVU/vXDmr/2oG5g52IQZnoIk/8NK2q3x+cXf7yK/iKiwEwZWcTe//9WHv2aOLR7Z/GYsF++0gir76K0v/9j7IPPsQ5fz7O+fMJv+giHKPvxZCc3NTDFGK3mmL4ahQAFV1u58pvFWrcXnplRjP+ms5oNU0XtKxbuYriF1/EOX8+AIrFQszw4USPuAmtzdagPvy+AKvmbuOvb/Koq/YCEJcRzumXZ5HYMvJYDV00IznFNZzz0m9oNQpmvRazQRv8qtdiMmgx6zVYDLrga70Ws0Gzs51uZzsNZsPOdXptsK1BE3ptNmix6HWYDBoMWo0E+o8Rs87M0LZDuarVVczKncW7K98lvyqfN5a9weRVk7mq1VUMaz+MWEvTZMZRVZVtla56wfacnTPby5yeA25ntxlosVegPSvWRny4SX6WjpHftvzG/XPup9ZXS3p4Oq+d/Rqp4alNPSwhhBBCCCGEEEII0QQkCC8OytQqCmvvBJwLtlO3ogTX2jLCBqQQ1jcZRX/izZZSVZWaOXMofuEF3Bs2AjvrrN83mvALLjgh6qzroqKIe/hhom64geIJL1M1cyZVs2ZR9f33RF17Dfbbb0cXHd3UwxSnOlWFmaOgtgSvvS2D1wyg1OmhfWI4bw/r3mSpjT35+RRNmED1t98FF+j1RF19NfbbR6Kz2xveT52Pj5/9k8riOgAi4yz0uiyTzM4OCW6dQuq8fgD8AZUat48at++Y7UujsDvQv2ewf1ewfo9g/v7a7Qr2Wwz1tzPrd29r1J3agX69Vs/gloO5pMUl/FTwExNXTGRt2VreW/0eH6z9gEuzLmVE+xGkhKcck/37/AE2ldXuE2jPKarB6fEfcLukSDNZsTZa7hVsj7QYjsk4xb5UVWXammk899dzBNQAPeN78kL/F4gwRjT10IQQQgghhBBCCCFEE1FUVd1/YchTWFVVFREREVRWVhIeHt7Uw2kWPNtqqPgqB09+FQDaGBORF7fA3ObECfbWrVxF0XPPUbtwIQCaiAjsd9xO1HXXoTGcuB9Uu1avpuiFF3HOmweAxmol5tZbiB42DI3F0sSjE6esv6fAV3ejavTcaX2Bb4vtpMVY+PT203GEHf9sGt6iIkpef52KTz8Dnw8UJZhBYtQ9GFKOLKD27f9WsD23kh4XZdC2TwIaQNFq2L5xHQs+m845t92DLero3yPlmtT4Guuc7gq+u7x+6jx+aj1+6rz+0Ou6Pb/ufO7y7m5X5/Xj2vm8due6ur229R2gfvexoOwK9O85q7/eTP09Z/nv225XcN9iqP86OKM/+PVECvSrqsq8bfN4e/nb/F30NwAaRcP56edzc4ebaRXV6oj6dXn9+9ZrL6ohv9SJ17//77dOo5But+6TQj7TYcVikHtqm5Iv4OM/i/7DR+s+AmBIyyE82utR9Bp9E49MnCjkOt+45HwKIYRoLuSa1PgOdk5dLhd5eXlkZGRgMpmaaIQnh+HDh1NRUcEXX3xxwDazZ89mwIABlJeXExkZedzGJo6O/J4I0Xgaep2XT+1EgxgSbThGdqRuWTEVX+fhL3VR9X0+plZRKE2YUrohPFu2Ujx+PFWzZgGgGAxE3XA99ttuQxtx4s9QMrVrR+o7E3HOn8+O55/HvXoNxeMnUD7tA+x3303kkMtRdPKrLo6j8nz47iEAplmu59tiO44wI1NG9DzuAXh/VRWlE9+h7P33UV3BGsnWfmcSe999mNq0aXA/JVtqWDQzl75XtyIsOvhHat9rWqKUuwlsrqbsvdW4cytYZpvP2iW/AbDw8485e8TtjX9QotnQahQizHoizMcu2Ob1B+oF60MB+72C+3sH/F173xSwx40Crno3BQTw+ANAMIFF7c42OI/ZIe03eL93Cv/dKfn3SuG/87VpV/r+ncv2TOlv1GnQNMLfJoqicEbSGZyRdAaLdyxm4oqJ/L71d77J+4Zv8r6hf0p/bmp/E8lhySgoKIqCRtGgIXijQXWdn/xSJ7nFTvJKasktriWnuJat5XWoqgLs+dh9blrE7htsT4uxopd67c1OtaeacXPGMX/bfBQUxnYfy7B2w06YG02EEEIIIYQQTetgAe/09HQ2bdpUb1lSUhJbtmwJrR89ejSjR49u1DFNmDCBPedt9u/fn86dOzN+/PhG3U9TGz58OO+99x4AWq2WxMREBg0axLPPPktUVFSo3aG+D0IIcTASmRMNpigKls6xmNpGU/XLZsxtokMBeNUbQFVVNIamSTG9P/7KSkr+9yblU6eieoP1msMvvpjY0feiT0pq4tE1Puvpp5Px6adUffMtxePH492yhcLHH6ds8mQcY+4jbOBA+VBYHHsBP3x+O3hqWG/M5rGSswkz6Xh/RA9SY45fZoaAy0X5tGmUvPU2gcpKAMydOxM7dgyW005rcD/VZS4WfZXL2oWFoILVoKVbh2jcGytw51QQcNZPP163oRRF0dCu31l0v2hwox6TODXptRr0Wg3hpmMb6HeFgveBnYF+3x6z+gM7g/a+nV8DoXXBdoHQLP96s/r3uCnA4wuE9rdr2bFk0mv2m5q/3qz+Q6TwN+0xgz9c34pHur7AljYb+HjD+/xc8COzN89m9ubZDR+UBogDW9y+qxQ0aJRgIH87Gnb4NMzfrqBsDwb2dwX4FXZ/VRQlFPCvt2zPdnu02fVcowSD+RpFs9/t9r6ZYM++9tdvQ8azvza7+tpnPHvup4HjOeDxH+ic7DUejaIBhdDzvcceGh872ykafAEfz//5PDmVOZh1Zv7T9z+clXrWUf3cCiGEEEIIIcSennrqKW699dbQa6322H/2HtEEk9a8Xi96/fHPJnb++eczadIkfD4fq1evZsSIEVRUVPDhhx/Wa9cU3wchxMlBgvDisGmMOiIvyKi3rPq3LTgXbSdiUCbmDvYmDfYGPB7Kp06j5M03Q8E3S69exN4/DnP79k02ruNB0WiIuGgQYeeeQ8X0jyh54w08eXlsvWdUMAB5/zgs3bo19TDFyWz+K1DwBy6NmRFVt6DX6XjnxtNom3B8Uq+pPh8Vn39Oyauv4duxAwBDVgti77sP21lnNfi9yeX0svi7TaybvQW/LwAqZHWLpX3rSCpmbNzdUK/BlBmBMSsKp6kK0+/RDL/6daITk4/F4QlxTOwK9Icdw0C/zx/A5asfrN/fzPxDpfA/WKp/9x6Bfpc3gMsboBzvMTias1AMHTDbf0MTthwUL6CiKEdeOkAlgF8FpEjUCSfWHMsrZ79Cu5h2TT0UIYQQQgghxEkmLCyM+Pj4o+pj7NixrF+/npkzZwIwfvx47rvvPmbNmsWgQYMAaN26NWPGjGHkyJH1ZucPHz6cOXPmMGfOHCZMmABAXl5eqO/Fixfz4IMPsnr1ajp37sykSZNo3br1Icf0xBNP8MUXXzBq1Ciefvpp8vPz8fv9fP/99zz99NOsXLkSrVZL7969mTBhAi1atABgyJAhJCYm8sorrwAwevRoJkyYwMqVK2nfvj0+n4+oqCg+/fRTzjvvvEOOw2g0hs5vcnIyV199NZMnT96nXWN8H4QQpyYJwoujpvpVapcV4a/0UPbBWoyZEURe2gJ9nPX4jiMQoOrrb4KzwLduBcDYsiWx94/D2rfvKTULXGMwED3sBiIuH0zpO+9QNvk96pYuZdPQ67GddRaxY+7DmJXV1MMUJ5vClfDrMwA85r6e7Uocb17XlR4ZR18X/VBUVaX6hx8pHj8ez85/BnQJCTjuuYeISy9BaeAdqgG3n3VfbqT0zx1EAedatWy1mki/oR1x6eH4nV6Klhayoy6P5at/JemMjpx900gAwkjiotPaHqtDFOKEptNqsGk12IzH7k9Pf0DdK9X+7pn5e6f0r/Pslb5/V7u9Uvjvnfrf5d2Zut/joHbbEGAIGgXSYqy0cNho4bCSFWsl02Ehw27BZtIRUAME1AAqKqqqEiCYPWjXsoAafL3n811t6rXfa7tdzwMEbxTa9XzPvgJqcLyhMey5n7362HsMe/axZ9v9bV9v7Ps51gP1VW98hziOA419z2X7PZd7jWd/2x9oPHt/D/YeT2p4Ko/2fJQ4637SGwghhBBCCCGajqqCt7Zp9q23QDP6HLp///688847BAIBNBoNc+bMwW63M2fOHAYNGkRhYSHr16+nX79++2w7YcIE1q9fT3Z2Nk899RQADoeD/Px8AB599FFeeOEFHA4Ht99+OyNGjGDevHkNGtfGjRv5+OOP+eyzz0Izy51OJ2PGjKFDhw44nU4ee+wxBg8ezNKlS9FoNPTv35+33nor1Meex9K+fXv+/PNPXC4Xffr0OezzlJuby3fffdckM/KFECcvCcKLo6ZoFeLu6ULV7C1Uz9mCO7eSHRP+xnZ6EuEDU9GYjv2PmXPBQoqeew7XqlUA6GJjcdw7iojLLmtw8O1kpLXZiL33XqKuvZaS116n4tNPqfnlF2pmzybi8sE47r4bvdzFJxqDzw0zbgO/hx/9XfnY35/nrujAwHbHPjDhXLCQohdfxLV8OQDayEhibh9J1LXXojEeugZ9wO2n+rctuHMq8BRUExZQCdPu/mepZdtootPDqauuYtGXn7J04df4PG4AbEV21EAARSO1moVoalqNgtWow3oMA/2BgIrLtztY7/OrJESaMOpO3b81hBBCCCGEEKLZ8dbCs4lNs+9HtoGhcSanPfjgg/zjH/8IvX722WcZNWrUYfVx5plnUl1dzZIlS+jatStz585l3LhxzJgxA4Bff/2VuLg42rRps8+2ERERGAwGLBbLfmeCP/PMM6Hg/UMPPcSgQYNwuVyYTKZDjsvj8TBlyhQcDkdo2ZAhQ+q1eeedd4iNjWX16tVkZ2fTv39/7r33XkpKStBqtaxatYrHH3+c2bNnc+eddzJ79my6deuGzWZr0LmZNWsWNpsNv9+Py+UC4MUXX9ynXWN8H4QQpyYJwotGoei1RJyThrVbHBWzcnGtLqXm963ULi0i+prWmLKijsl+3Rs2UPT8C9TMmQOAxmIh5rZbiR42DI3l+NWfbu70sbEkPPkE0TcOo/il8VT/+COVn35G1cxZRA8bRsytt6ANPz7pwsVJ6penoWgVJWo4D3tv5eEL2nJl95Rjusu6VasofvElnDvvsFUsFmKG30j0iBFoD/DHthpQ8RY6CTi9mFpGoaoqm9eVo/1tC+yc4aqJNOKOMBLbOwFTViQ+jY/5n0xj8ddf4KmrAyChVRvOuHoYqdkdj+kxCiGaF41GwWLQYTHIn9BCCCGEEEIIIY6t+++/n+HDh4de2+32w+4jIiKCzp07M3v2bPR6PRqNhpEjR/L4449TXV3N7Nmz9zsLviE6dtz9uVhCQgIARUVFpKamHnLbtLS0egF4gJycHP75z3+yYMECSkpKCASCn9UVFBSQnZ1NdnY2MTExzJkzB71eT6dOnbjkkkt4+eWXAQ77WAYMGMAbb7xBbW0tEydOZP369dxzzz37tGuM74MQ4tQknyCKRqWLNmEf1g7X+nIqvsrBV+5CF3XoO98Ol3dHESWvvkLFZzMgEACdjqirrsJ+153oYmIafX8nC2NmJsmvvEztkiUUPf8CdYsXU/r221R8/DExt99O1NDr0BgMTT1McaLJn4c6/xUU4GHvLVx+ZhdG9mtxzHbn2bSJ4gkTqPrm2+CCXb//d96Bbj9/BPvKXLg2luPeWIE7p5KA04suxoRyZWv+mLGRresr6JJooeNFmZiyItHFmOttP++DD/jzy08BcKRncsbVN5DRpfspVeJCCCGEEEIIIYQQ4oShtwRnpDfVvhuJ3W4nqxFKivbv35/Zs2djMBjo168fUVFRtG/fnnnz5jF79mxGjx59RP3umbp91+dkuwLnh2K17pst4OKLLyYlJYW3336bxMREAoEA2dnZeDye0D7OPPPM0LH079+f7Oxs/H4/K1asYP78+Yd1LFarNXR+X375ZQYMGMCTTz7Jv/71r3rtGuv7IIQ49UgQXhwTplZRxI3uimdzdb2AlvPvHZhaR6O1HlltFX+Nk7J336F00mTUnTNSw845B8eY+zBmZDTK2E8Fli5dSJs6hZpfZ1P04gt4NuZQ9H//R/mUKTjuHUX4xRdLem3RMK4q3J/ehhGVj339CO98GQ9fsG/6qsbgLSqi5PXXqfj0M/D5AAi/6CIc947CkLLvrPuqnzbh/LsIf5mr/gqdhvI6H3P+8xd+QKvToLa3Y+4Wh1anwef14qquwhYdvKGn+6DLKFixjNMuGUKrnqfL74YQQgghhBBCCCFEc6YojZYS/mSwqy68Tqdj4MCBAPTr14/p06cfsB78LgaDAb/ff8zHWFpaypo1a3jzzTfp27cvAL///vs+7XbVhTcYDDz11FMoikLfvn15/vnnqaurO6J68Ls8/vjjXHDBBdxxxx0kJjZROQMhxElFgvDimFF0GowZEaHX7oIqyj9ej8aiI/zcNKw9ElA0DZtJqnq9VHz6KcWvvoa/tBQAc+fOxD5wP5auXY/J+E92iqIQdtYAbP3OpPKLLyh++RW827ax7cGHKJ00mdixY7CecYbM9hUHVfH5WCJrtrA54GBO5hgmDOnQ6D8z/qoqSt95l7L33w/dfGM9sy+x992HqW1bAm4/devKcOdWEnFuGoo2GCT3V3uCAXiNgiElDE1KGLmFtfz9dzH+gAoKtO4ZT4+LMwiPMRPw+1nxyw/88dmHRCUkceU/ngbAEhHJ9f9+qVGPSQghhBBCCCGEEEKIyspKli5dWm9ZdHR0o+5jV134mTNn8vTTwc+7+vfvz5AhQ3A4HLRr1+6A26anp7Nw4ULy8/Ox2WyNPrZdoqKiiImJ4a233iIhIYGCggIeeuihfdrtqguv0+lCwfr+/fszduxYunbtSvhRlFzt378/7du359lnn+XVV1894n6EEGIXCcKL40ZRFPTxVryFTiq+yMG5sJDIS1tgTI844DaqqlLzyy8UPf8Cnrw8APRpqcSOGUvYuedIgLgRKFotkUOGED5oEGVTplD61tu4165l8623YenVi9ixYzF3yG7qYYpmqPjPGTjWfUxAVXjL/gDPX98XnbbxZokHXC7Kp31A6Vtv4a+sBMDcqRP2++5DH98G98YKquYsw7O5GvxqcH3b6NB7irVnAqa2MRgzwtEYdayZv50/Z+UDkNo+mt6DW2BPDkMNBFgzbw5/fDKN8u3BVGWq34+zohxrZNQRj7/WW4ulEVOQCSGEEEIIIYQQQoiTy+zZs+nSpUu9ZTfeeGOj7iMiIoIuXbpQUFAQCrj37duXQCBwyBrq48aN48Ybb6Rdu3bU1dWRt/Mz+sam0WiYPn06o0aNIjs7m9atW/Pyyy/Tv3//eu2ys7Ox2+2kpaWFAu79+vXD7/cfcW37PY0ZM4abbrqJBx98kJT9ZN4UQojDoaiqqjb1IJqbqqoqIiIiqKysPKo7p8S+VL+Kc+F2Kn/YhOoKppO2dIkl4oIMtOH1a5HXLVvGjueeo+6vxQBoo6Kw33UXUVddiSJ1y48Zf0UFJW++RfnUqaheLwDhF16AY/RoDKmpTTw60VyU7NiC9o3TiaKST4yXc+69bxFhObIyE3tTfb5gdoZXX8NXWAiAoUULYu8bjcbekYoZG1E99dNgaaOMmLKisPVJRB8fTDfm9weoKq4jaufrQEDl58mraXt6AsltolFVlZy/FjLv46mUFOQDYA4Lp8dlV9Lp3AvRG4xHNP6CqgKmrpnKlxu/5MNBH5IZmXmEZyJIrkmNT86pEEKI5kKuSY1LzqcQQojmQq5Jje9g59TlcpGXl0dGRgYmk6mJRihE8ya/J0I0noZe52UmvDiuFK2C7fREzB3tVH2/CedfhdQuKcJdUEX82O4oGgVPQQFFL75E9XffBbcxGokePpyYW25GGxbWxEdw8tNGRhL34ANEXz+U4pdfofKrr6j65luqfviRqKuvxn7nHehiYpp6mKIJVdd52DhxBL2oZKOSxpkjxzdKAF5VVap//JHi8RPwFlaic7TBfMaV2HqnEjP8AhStFndBFarHj8aiw5gVibFFJKasSHQx5nr95C4tZsEXufg8foY+2QudQYtGo3DOiPahdusXzGPW+P8AYLRY6X7RYLpeeAkG8+HPXldVlcU7FvP+6veZvXk2KsH7277N/5a7Ot91dCdGCCGEEEIIIYQQQgghhBAnFAnCHweqqkra9L1obQaihrTE2iOe8q9ysPWIx19ZQcnrb1A+fTp4vaAoRFx2GY57R6GPj2/qIZ9y9ElJJP7ff4i+aThFL76I87e5lE+bRuXnnxN98whihg9HY7U29TDFceby+vngf88y0rsQDzpMV79DXPSBS0o0VPWcBZROnkmg1oK+xc0YOzpC67RR8ShaLQCGpDBiR3VBH29F0ez7vrptYwV/zNhIYW4VACabnrLtTmLTgnejuWpqMNlsAGSd1gtHajqZ3XrQ/aLLQ8sPh9fv5bv875iyegprytaElvdN6ssN7W6gV0Kvw+5TCCGEEEIIIYQQQoiGmDZtGiNHjtzvurS0NFatWnWcRwTt27dn06ZN+1335ptvMnTo0GO6/z3T7u/P6tWrSZWMr0KI40CC8MfBitlbWL9oB+kd7KR3jCEmySZB+Z0MKWHYb2pN2dSpbLnjLQI1NegSu2HqdD7R13fF2u3AF0txfJjatCH1rbdwLlhI0fPP41q5kpJXXqX8w+k47rqTyCuuQNE3Thpy0bz5AypPT/mGhyreAAXKetxPcpvTjqivXTcnuVavpuilN1Cir0AXd/7uBgoYUsMxZkVibhO9e7FWwZC4b7C8bJuTP77IIX95CQA6g4bOA1Ppck4qBrOOHbkb+f2jKZRv38pNL/4PrU6HVqfj+v+bgEajPezxV7or+WT9J3y45kOK6ooAMGqNXNLiEq5ve/1Rp6AXQgghhBBCCCGEEOJQLrnkEnr27Lnfdfom+sz2m2++wbuzzOne4uLijvn+ExMTWbp06UHXCyHE8SBB+OMgb1kJO/Kq2JFXxcKvcrFFG3cG5O0ktYpEpz/8ANDJQPX7qZw5k+IJL+Pbvh0AY9t2mDqPJFAHFV+U468oIOzMZBS9polHK6y9epL+ycdUf/cdRS+Nx1tQQOGTT1E2+T0c991H2Hnnys0lJzFVVfnn50u5LP9f2DQuKmNPI/78+xu+vT+AZ3M17o0VuDZWAF686z+k6ptvALCcfSbacBuWLimYOyZizAhHY2zYJaqqpI7pTy9CDagoGoV2fRI47aIMrBFGSrcUMO+jqWxYNB8ARaNh2/o1pLTrAHDYAfj8ynymrpnKVzlfUeerA8ButnNtm2u5stWVRJmiDqs/IYQQQgghhBBCCCGOVFhYGGHNrIRrWlpak+5fp9ORlZXVpGMQQgiQIPxxMXB4O/JXlJC/opQta8qoKXOzcs5WVs7ZismqZ/j/9UGrO7WCzDXz5lH03PO4164FQJeQQOzoewm/+GJ8RXWUf5mDJ6+Sqh834Vy8g8iLMjG1jZYgbxNTFIXwCy4g7OyzKf/kE0peex3Ppk1sHT0aU8eOxI4bi7VHj6YepjgGXvhhPeF//48e+nX4dBYirp0Ihwhge3c4cW2owL2xAnduJarHH1qn+lzUfPs9AOGDBmG/8zSMLdIbPJ6AP4BGG3zfDLebyehoB6DXZZlExVupKNzOt1M+YPXvs0FVQVFo26cfva+8jqj4w7vbVVVV/iz8k/dXv8+cLXNCy1tHtWZY+2Gcn34+Bq3hsPoUQgghhBBCCCGEEEIIIcTJS4Lwx4E10kj7vkm075uEz+Nny7py8pcHg/IxSdZ6AfifJ68mItZMekf7SZm23rV2LUXPPY9z3jwANGFh2EfeRtT116MxmQDQx1tx3NaBuuXFVHydh7/MRen7qzG1jiLy4hbo7OamPAQBKAYD0UOHEnHpZZRNmkTppEm4li+nYNiN2Pr1wzFmDKbWrZp6mKKRvPt7Hj/P/pkvDZ8AoLvwvxCVvk87f5Ubbbgx9LpiZi7ujRW7Gyg+vNtX4C9cha9oDdYzTid2zH2Y2rZt8Fj83gArf9vK0p8KGPJAN2xRwfeNc29pH3ovLS/cxuQxdxDwB4P+LXuczulXXoc9dd8xH4zX7+Xb/G+ZsnoKa8vWhpb3S+7HsHbDOC3+tJPuPVoIIYQQQgghhBBCCCGEEEdPgvDHmc6gDaai72BHVVXctb7QuuoyF2sXFAKw8Ks8bFF7pK1vfWKnrfcWFlI8fgKVX34ZnJWq1xN17TXY77gDXdS+6ZsVRcHSKRZTmxiqfy2geu5WXOvK8fV1SxC+GdHarDjuuZuoa66m5I03KP/4E2rmzKHmt9+IuOwyHPfcjV5q7JzQvliylf/MWsaXhtcxKH5ofSF0uR4Av9OLO6cCd04wxby/1EXCP3qitQVnhZvaRAMq/oocqr+dgm/rWkDF1KkjCU8+j7Vnw7MmqAGVDX/tYMGXuVSXugBYMWcrvS9rEVyv+oFgED4qPpGU9h1RNBrOuPoG4jIPL/1Uuas8WO997YeU1AVrzJu0Ji7NupShbYeSEZFxWP0JIYQQQgghhBBCCCGEEOLUIkH4JqQoCiarPvTaYNYx4Po25C0vCaatL3ez8retrPxtKzqDhp6XZNJ5YGoTjvjw+aurKX17ImXvvYfqdgMQdsH5xN53H4bUQx+Lxqgl4vwMLN3icK0uxZQVGVrnLa5FZzfLTNRmQOdwEP/YY0QPG0bR+AlUf/cdlZ9/TtXXXxN1w/XYb7sNbUREUw9THKbZ64oY98kyxuk+oa1mM6rFjrfHf6n9Nh/3xnK8252g7rGBBrzbnGhbGVB9Pvw7FlAx9VV8hcGbiwwtWhB732hsZ599WL+3m1eXMf/zjZRsrgHAGmGgx8WZtOkdj6umhr9mzWDFLz9w43OvYomIBODScY+iN5oO63hzK3OZujpY793tD75fxZpjubZtsN57hFF+hoUQQgghhBBCCCGEEEIIcWgShG9GjGYd7c5IpN0ZifukrXdWuLFG7E7zXF7oZOPiItI72rEnN7+09arHQ/n0jyh5/XX8FRUAmLt3I+7++zF36nTY/ekdFvT9LKHX/ko3Ra8swZAcRuQlLdDHWxtr6OIoGNLTSR7/EnXLb6Loueep/fNPyt55l4pPPg2WHRg6NFR2QDRvizeVc/eUvxkSKOBm/R8AKJe8jLfCQM1v+aF2ujgLpqxIjFmRGDMiUIxaqn78keLxE/Dk5ATbJCTguPtuIi69BEXX8MuOqqp888YK8pcHZ6MbTFq6nJdGp7NTUAMeFn35CX/NmoHb6QRg1W+/cNrFlwM0OACvqioLti/g/dXv8/vW30PL20a3ZVj7YZyXdh56rf4gPQghhBBCCCGEEEIIIYQQQtQnQfhmau+09SWba4iI3Z2GPefvYhbNzGPRzN1p69M6xJDcJqpJ09arqkr19z9Q9NKLeDcVAGDIzCR23FhsAwY02s0Cns3VqAFw51ay4+W/sfVOJHxgGhqz/Eg3B+aOHUl9/z2cv/1G0fMv4N6wgaLnnqds6jQc99wTDMZqT9zyCicrVVXx7ahl85Id5M8t4LOAGSvtcfnPRH+aFdoMwlTlxtItDlPLSIwtItGGGULbOxcuoujFF3AtWw6ANiKCmJEjiRp6HRqj8UC7PSBFUYhOsFCwSiG7XxLdL0xHZ1BZ9sNXLPriE+qqqwCwp6TR5+obaNG9Z4P79vg9fJ37NVPWTGFD+Ybg/lDon9KfYe2G0S2uW7O7uUkIIYQQQgghhBBCCCGEECcGiVieABRFwZEaVm+ZPdlGekf7ftPWp7SNpt91revNnD8eav/+m6L/+y91y5YBoI2JwXHP3UReccVhzX5tCHO2nfgxNiq/zqVuVSk187ZRu7SYiAvSsXSNQ9FI8KypKYqCrV8/rGecQeVXMyl++WV827ez/ZFHKJs0CcfYMdj69ZNAZzPgr/ZQ8XUu7pwKAtVeDEBPgjdJaKhCNdnhvMcA0IYbib6yVb3tXatXU/TSeJxz5wKgmM1E3ziMmJtvRhtW/73rYOpqPCz+ZhNZ3WOJzwymfu96XhrtzkgiwmHG7/MyacydVO4IprePSkik95VDadO7L4pG06B9lLnK+GjdR0xfO50yVxkAZp2Zy7Iu4/q215MafmKV/BBCCCGEEEIIIYQQJ6bhw4fz3nvvMXLkSP73v//VW3fnnXfyxhtvcOONNzJ58uRQWwCdTkd0dDQdO3bk2muvZfjw4Wj2+GwsPT2d0aNHM3r06EOOIT09nU2bNgFgMplIS0vj5ptvZty4caHPbfPz88nIyNhn26FDhzJ16tQjPXwhhDjpSRD+BJXe0U56R/vutPUrSslfXoKzws2WteX1as1vXl2GKUx/zNLWu3PzKH7pRap//AkIBuBiRowg+qab0NqOXZp4XbSJmBva4dpQTsVXOfiK6yj/dAPOv3bguK2jBOKbCUWrJXLwZYRfeAHlU6dR8tZbuDdsYMvtd2A57TRix409ohIF4sj4nV7cuRWggqWjAwCNSUfdylLwBXCjshQ/mLdwsf8l9Eoeyg1fgyl8n748BQUUT3iZqq+/Di7Q6Yi66kpibr8dfWxsg8fk9fhZ/stm/v5uEx6Xn6KCKgaP7YqiKBjMOoyW4PuZVqcno3N3cv5aSO8rrqV9v7PRNDCjwsbyjUxdM5WZOTPxBDwAxFniuK7tdQxpOUTqvQshhBBCCCGEEEKI4y4lJYXp06fz0ksvYTYHM+G6XC4+/PBDUlPrTxY5//zzmTRpEn6/nx07dvDdd99x77338umnn/LVV1+hO8KJcE899RS33norLpeLn376iTvuuIPw8HBGjhxZr91PP/1E+/btQ693jVcIIcT+SRD+GPP5A9R5/YSZjk1N4Xpp669tRcnmGiqKatHqdt/59ttH66nYUYstykhaBzvpjZS23ldSQvFrr1Hx8Sfg94NGQ+SQIdjvufuwAnBHy9Qyirh7u1IzfxtVPxVgTAuXAHwzpDEaibl5BJFXDKH07bcpe38KtX/+Sf7V1xB23nk4Rt+LcT93VIqjE/D48eRX4cqpwL2xAu+2GlCDtdx3BeEVvQbLoAyenZfDlyXVtAp38ZX2MbR1ZdDnXkg7vV6fvuJiSt54g/KPPwGfD4DwQYNwjLoHQ1paw8fmD7D2j0IWzczFWRkMjNtTbHS/MB1UlfUL5zH/kw+44K4xxGVmAXDGNTfQ74ab0ekP/Z6qqirzt81nyuopzNs2L7Q8OyabYe2HMTBtIHqN1HsXQgghhBBCCCGEEE2ja9eu5ObmMmPGDIYOHQrAjBkzSElJITMzs15bo9FIfHw8AElJSXTt2pVevXpx9tlnM3nyZG655ZYjGkNYWFio31tuuYU33niDH374YZ8gfExMTKidEEKIQ5Mg/DH2yeItPP/9OkYPbMk1PVLRaxuWMvlI7Epbv2fqeq/HT1S8hZpyFzXlblb9tpVVe6Stb3laHC27xx3WfgK1tZS99x6lb08kUFsLgK1/f2LHjcWYldWox9RQik5D2JnJWDrHohh331zg2VqDp6AKa48EFK0E5psDbUQEsePGETV0KMWvvErl559T/f33VP/0E5FXXYnjzjvRORxNPcyTQun0tdStKAG/Wm+5Ls6CKSsSNaCiaBQ8vgD3rt7M3JIqosw6Pk78EG1+GcRlw4BHQ9v5q6spffddyia/h1pXB4C1b19i7xuNqV27wxrb5tVlzP1kA+XbnQCERZvoeWkmLbvHkr98MVMfnkpRfg4Ai778lIvvewgAo+XQ2TVcPhdf537N1DVT2VixEQCNouGslLMY1n4YnR2dpQyCEEIIIYQQQgghxElKVVXqfHVNsm+zznzYnzvddNNNTJo0KRSEf/fddxkxYgSzZ88+5LZnnXUWnTp1YsaMGUcchN9FVVXmzJnDmjVraNmy5VH1JYQQQoLwx9yXS7dS6vTwzy9XMWlePg9d0IZz2sUdtwCQ3qDlwjs6htLWb1pRSv6KEmrK3eQtK8EcZggF4QMBldKtNQdMW6/6/VR+/jnFL7+Cr6gIAFP79sQ+8ADWnj2Oy/EcijbcEHquBlQqvtyIp6Aa58JCIi9tgTFDUk43F/qEBBKffYbo4TdS/OJL1MyeTcWH06n88itihg8nesSIY1rO4GShqiq+olpcGyvwFFQTfXXrUCYIRasBv4o2wogxKxJTViTGFpH1fk8CAZUxHy9l7oYSLAYtX/bJw/r7j6A1wOA3QWck4HZT/sGHlL75Jv6KCgBMnToSO2bsEf/uV5e7KN/uxGjV0f2CdDr0S2bb+pV89MQLbFu/BgC9yUy3QZfR/aLLGtRnSV0JH637iI/WfkS5uxwAi87C5S0v57q215ESlnJEYxVCCCGEEEIIIYQQJ446Xx09P+jZJPteeN1CLHrLYW1zww038PDDD5Ofn4+iKMybN4/p06c3KAgP0KZNG5YvX34Eow168MEH+cc//oHH48Hr9WIymRg1atQ+7U4//fR6tefnzp1Lly5djni/QghxspMg/DE25eaeTF9UwPifNpBb4uS2KYvpkR7NI4Pa0jkl8riNY8+09WeqrSjZUsOmFSUktooKtSnKr+Kz/y6un7a+dRRavQbnb79R9PzzuDcEZ5Xqk5JwjLmP8AsuQNEcu9n9R8vSJRZvcR3eQifFby7H0tlBxIUZaMONTT00sZOpVStS/vcGzkWLKHrhBVzLllPy+uuUT5+O/c47ibrqShSD4dAdnUJ8FW7cGytwbyzHlVNBoNobWuc9MxlDkg2AsP7JhA1IQRdj2v+NNarKEzNXMWv5dvRahfcuc5D63c3BlQMeRbW3ofKzGRS/+iq+7dsBMGRm4rhvNGEDBx7WzUTlhU6clR6SWwffc9r0TsDl9NL+jESMFj3fvvoCq+f+CoBOb6Dz+Rdx2iVDsIQf+saZ9eXrmbJ6Cl/nfo03EDwXCdYEhrYdyuUtLyfMEHaIHoQQQgghhBBCCCGEaBp2u51Bgwbx3nvvoaoqgwYNwm63N3h7VVWPatLf/fffz/DhwykuLubRRx/lrLPO4vTTT9+n3UcffUTbtm1Dr1NSZMKLEEIcjAThjzG9VsMNvdO5rEsS/5uTw8S5eSzKL+Oy1+ZxcadEHjivNSnRh3dn3NFSFAVHShiOlPqBqcqiWnQGTf209TqIcW8mcuNvxBZvxxgRgf3224kaeh2aZh4YVTQKtt6JmDs6qPo+H+efhdQuLaZudRnhZ6di65OIomu+NxCcaqw9epA+fTrVP/xI8Ysv4tm0iR1PP03Z++8TO/pews4/v1nf8HG8VP+2hcpv8uov1GkwZoQHZ7nbdtc41zsO/t7y8s8bef+PTSgKvHhlB05bfAt4alBTelNT246iSy/DkxNMCa+Lj8dxz91EXHopiq7hlw5npZs/v85n9e/bsEYYGPpUL3R6LRqNQtdzd9ePj2/ZmrXz59Jx4Hn0vOwqbNExB+03oAb4fevvTFk9hQXbF4SWd3R0ZFi7YZydejY6jVzihBBCCCGEEEIIIU41Zp2ZhdctbLJ9H4kRI0Zw9913A/Daa68d1rZr1qwhIyPjiPYLwZsAsrKyyMrK4rPPPiMrK4tevXoxcODAeu1SUlLIaqJytEIIcSKSCMVxUJizgcqiHVzfwsHlbTvz+h87mLF0KzOXbeP7lYXceHoadw9oSYRFf+jOjqHWvRJo0S2WresqyPljE/l/b6fOZ2aHNoUdrYeSMKAbWfcORRsRgcflQ3+Ud9gdL1qrnqjLW2LtEU/Flzl4NldT+W0eGpsea7e4ph6e2IOiKISfdy5hZw2g4rPPKH71NbwFBWwdMxbTu5OIHTcWa69eTT3MY071+nHnV+HeWIFrYwXhZ6dibhcMShuSbaCAITkMY1Zk8JEajqI/vBsUpizYxEs/rQfgiYvbc3HNp7B5Ac6yCIpXmqlbeS8AmogI7LfdFrzxxmRqcP8el48lPxaw9KfN+Nx+AOzJNty1Pqqc25n/yQdkde9Jmz79AOhw1nlkdjmNiNiD/07W+eqYmTOTqWumklcZvBlBo2gYmDqQG9rdQOfYzod1HoQQQgghhBBCCCHEyUVRlMNOCd/Uzj//fDweDwDnnXdeg7f75ZdfWLFiBffdd1+jjCMqKop77rmHcePGsWTJkhPi838hhGiuJAh/HKye+wtLvp0Zep1qMPJgZDTb/WYKPEamzu7Bx39t4Z6zsrimazwWsxGNRtskY1VqazB98y6JU6YQ7/VSY02ips8VVCV3pu24O9DsrDU9/7ON5K8oJb1DDOkd7CS3iUJnaJoxN5QhOQzHHZ2o/buI2uXFWLrEhtapfhVFK39QNBeKXk/UNdcQcfHFlL73HmUT38G1ciUFw2/C2rcvsWPHYGrTpqmH2WhUv4pnazXunArcGypwb6oCvxpa795YsTsInxZO4uO90ZiO/O376+XbeezLlQCMOrslN2ZW4/q//1C0NBrndhOwFsVsJnrYMGJuHoE2PLzBffv9AVbP3cafX+dRtzNNflxGOKdf3gJbpJe5H7zB6jm/oKoBivJyaN27L4pGg06vP2gAvri2mA/Xfsgn6z+hwl0BgE1vC9V7T7IlHfH5EEIIIYQQQgghhBCiKWm1WtasWRN6vj9ut5vCwkL8fj87duzgu+++49///jcXXXQRw4YNa7Sx3HXXXfzf//0fn332GVdccUWj9SuEEKcaCcIfB+H2WBJbtaWqeAc1FeX4PG58RdsJB7KB4lZns7LMy9Nfr2HJR5PILF1GhN1BuCOOcHss4Q7Hzq/BfnTHIA18wOOhfNoHlPzvfwQqKwGw9upFxrhxmLPb79N+6/oKnBVuVs3dxqq529DpNSS3jQ4G5TvasUY0z5rrikbB2j0Oa/fdwT7V62fHK0uwdHQQ1i8ZRd+8byY4lWisVhx33knU1VdT8sb/KJ8+HefcueT9/jsRl1yMY9Qo9EknXvBVVVVUtz8USPeXuyh+fVm9NtoIA8YWwZnupqyo0HJFq0HRHnla/t83lDD6oyWoKgztmcpdLRS2jhxK1broYAOdjsgrr8B+xx3oY2MP3tl+FG+q5rfpwRn2EbFmel/Wgth0LYu+mM7yn74n4PcBkNmtB32uuv6QJQbWlq1lyuopfJP3Db5AcNskWxJD2w5lcNZgbAbbYY9RCCGEEEIIIYQQQojmJvwQE2G+++47EhIS0Ol0REVF0alTJ15++WVuvPFGNI1YxtPhcHDDDTfwxBNPcPnllzdav0IIcapRVFVVD93s1FJVVUVERASVlZWHvPAdLp/XS01pCVUlRVQW76CmtJTTBl/NZ39v4YUf1tN945e0qM074PZ3vD0NS3gEAH9/+xXbN6wj3BEbCtLvCtrrjQ1LG60GAlR98y3FL72Ed+tWAIwtWxJ7/zisffseMN2Mz+tn67oK8leUkL+8hJpyd2hdRKyZ65/q3dBT0uScfxZS/tkGALRRRiIvaoGpXbSk2mmGPAUFFI8fT9U33wI7Z8wPHUrMyNvQRUUdYuum5atw495YgTsnmGLemBpGzA3tgGBQvujlJeiiTaEU8zq7udF/BpdvqeDatxbg9PgZkmFm7I55VE7/EALBy0D4uWfjGHs/hrS0Q/RUX3WZi7Do3e85v05diyPFRtszEln5y/fMfn8iPk/wPSK1Q2f6XHU9ia0OnMkgoAb4bctvTFk9hUWFi0LLu8R24YZ2N3BWyllomyhbSFM4ltekU5WcUyGEEM2FXJMal5xPIYQQzYVckxrfwc6py+UiLy+PjIwMTIdRTlGIU4n8ngjReBp6nZeZ8MeZTq8nMj6ByPiEesuvPi2Vizsl8tbsFKb9uhxdXSVhvmq6Rat0jwG1ppzaqkrMYbu/mQUrl5Pz14L97sccHsGI8W9isgZniW5ZvRJXrZNwu4NwRywmqw3nwkUUPfccrpXBtNQ6hwPHvaOIGDwY5QApb3Yfh5a07BjSsmM485pWlG6tIX95CXnLS0nMigi18/sCfPT0IhJaRpLRTNPWW7rHoRi0VH6Ti7/cTemU1RhbRRF5cSZ6x4lVO+hkZ0hNJenFF4m+aQRFL7xA7YIFlE2eTMVnnxFz661ED7vhsOqWNzZVVesFzl3ry6lbXYp7YwW+krp6bd0F1aH2iqIQO6rLMb3xI6e4huGT/kR11vBI6SLO/P4nKuuCY7LGu3Dc/zDmQbcdVp+lW2v44/Mctq4rZ+hTvbFFBTNgDLh+d4A9Mj4Bn8dNYqu2nHHNDaS073jA/mq9tXyV8xXT1kwjvyofAK2i5dy0c7mh3Q10cHQ4zKMWQgghhBBCCCGEEEIIIYQ4/iQI34xYDDpGn9ua63ql8dJPG/jozwLWe+CTHQpDe6Yy6uyW9YJ0Xc67iKQ27agqLqKqpCj4tbgIT10tXpcLo8UaavvX11/UC9jrUTDVuTB7fFjS4jnjkiE4bhqBxmLB63Gj02gaHBBUFAV7chj25DC6X5iBGtidXGHbhgrKC2spL6xl9a609W2iSO9oJ72DHWtk46WtV1UVv+rHF/DhC/jwq368AW/o+a7lvoAPn7qzTWDncrsP/9U+wv8KELVUg3t9Odtf+osd7evI71aFjz3aqz68Ae/ubQ+yL7/qJ9IYSY/4HvRI6EG0KbrRjvdUZu6QTeqkd3H+Po+iF17AvXYtxS++SPm0aTjuuZuIyy5D0R3925uqqqieABrj7htH6laV4C2qJVDjxV/jJeD0Bp87PRBQSfzn7iwQ1b9vxb2+PPhCAX1yGKasyGCa+bTwer9jxzIAX1jpYsSb8+i37GeGbvwVq6sGFTDFQmz7EqznXwWHEYCvLnOxaGYuaxcUggoajcK2DeVkdIxkyfez0Gi1dL9oMABpHTpzzZP/JbF12wMe4w7njlC99ypPFQBh+jCuaHUF17a5lgRbwn63E0IIIYQQQgghhBBC7N+0adMYOXLkftelpaWxatWq4zwiIYQ4tUgQvhmKDTfx78s7cFOfdP79zRp+XVfMe39sYsbfW7ljQAtG9MnApNeS1rEzaR0777O9y1mDs7y8XsArKiGR2JQ0Krdtxe334UXFazZSbTaiNRhQb7yC7YFyfFXFzHvtTXasWoM5OhJTdCTG6AgMkeHoosLQRVoxpcQRUAIHD2rvfO3z+PGfb4RNYWgKwvE5jeSvKCV/RSmwjtLTVlLRIr9+UFvd3Y834A0FtXd9DbXdzz4bQ2KGg5GFV9LDmU1e3nr+5XvrqPv8ZP0nALSKakXPhJ70SuhFt7huWPXWQ2wpDkRRFGx9z8Da53SqZs2iePwEvNu2sf0f/6R08mRix4zBNmDAPoHfgMdPoM6HLmL3DSDOxTvwbncScHrxO3cF1j34a7woOg1JT54ealuzsHB3YH0/VF8ARReswWRMC0cXYwoG3jMj0ZiP/1tueXUdrz44nicXfkVcXQUAhowMHH2shHl/QIlKg/P/06C+XE4vf3+3ieW/bsHvCwDQomssp12YwqYVvzFx1EfUVlZgMJtpd+ZZodIZSW3a7be/VaWrmLJ6Ct/nfR/6/U0JSwnVe7foJROFEEIIIYQQQgghhBBH4pJLLqFnz577XafX64/zaIQQ4tQjQfhjbFnxMgqqCvY7Q/qAs7T3CEQnZPk4K9bJyu3lVLncvLLKz1vrIDXGRKRVU7/PPQLTe/ajr/Px/+3dd3gU1f7H8ffuZtN7b6RQAwSpUkWKKM0GXitVxZ9cCyC2q14VsV476LUjIKKgIlwLdgEL0qv0EnpCGuk9O78/FhaWBAgQSEg+r+eZh+zMmTPnzGT58vCdc87liwvov6QU91IoM5tY2sTKr61dKXFxwaXcxJQ5lzvafNXOcIJK3cg/mEb+wTSn/pSZbXzcdy8czmu22eqHV6EL+R5l5HmUkedZRp5HOQXuZdjMx5zoD/hBYEEkcYdaEnOoJWF5sfxa/C0Zuw8AEHOoBXGZiewP3MAB362UWUqr5Rm4mF1wMbnY/zS7YDFZHD8fe8xitjg+fxuzgp2ZaWT65NHLsxcuZhd8S73wKfEk27/QqR6r2ep0rsVsse87fHxP7h6WJi9l66Gtjm3Gxhm4mFxIDE6kU0QnOkV0onVIa1wtrtXS53qlHLwu7Yt720vJ+2UeGW+/Q8n2HRx86QsOzd2JW+MWYPFwjFg3Sm2Y3CxOifXCdWkUbak8sW6Ulzsl1t2bBGDxccXibcXsbcXsZcXi7YrZy/4Z89Gkv+9lMee27ydhGAaZP/7M+qdeYEim/TtmCgklfOy9+CVYMX0xHEwmGPQOuPmcsr6y0nJmTVxKfnYJAJFN/Ol8TTzpe5Yz5/lXyE23/13hFxpGl3/cgru3d6X1lNvKWbRvER9t/IiVB1c69rcPa8+wFsPoGd2zXq33LiIiIiIiIiIici74+Pjg43Pq//cTEZFzQ0n4c+yzLZ/x1Y6vzr4iKxx5Oa0cSMoH8k9+itlmcNkag+v/sOF/uOzWSJjR28yWBjagyFH22CT1Hz0L8S4qw6fQilehBc9CC54FJtzzAYsLF4Ve5CjfcGkm7hkVk+UGYPi7UTKyLS4WKy5mF8y7s7H4mHFp5oU1oBSX8mRu9xyG1WKvK+c7bwpTXWmR2g2Ti4FXnAm/pmb8m1rx8nd1Sp5bTPZEtyN5fkz7jy1jMVmqbZrvzM+2ULA6Fe8ukfj2icHseXpvC2YUZrA8ZTlLkpewNHkp+/L2sSZtDWvS1vDuundxt7jTLqydIymfEJBQL5ORRrkNW34Z5XklGCXluMX5OY7lLNhDyZ7coyPW80oxissBDifWR+J/3XVkvP8BBRs8MHs1ozS5HMg77hqGc2K9ZRAuoZ72xLqXK2ZvKxYvqyOxfqQcgE/3qHN/E85SwfLlHHzlVYrWrCEMyHP1xOe2UTQdfSvmshx4q7O9YLcxENv1hPUcu8a9i9VC047h7N6QQZdBjbC6pvHdmw9zKNme4PcOCKTzdTeR2OtyLC4VvxsFpQXM2z6Pjzd9zN7cvfY6TS70je/LsBbDaBnUsnpvgoiIiIiIiIiIiIiISA1REv4caxrQlC4RXU458vr45PHxZY+UN2xmFm8/xC8b0yksBQwzF0UHcfPFccQG+hw+x4Jl8SrMb82EPfsBMEVH4nXv/9H18t70tLg6XedsEtVb/f8kc/8+pzXpc9JTKS8tJcgzhFu7/NtRdsbnY0ndtYNSoBDw8PXDNzgUz5AQAiMb0KXfZewITSVpfTq5GfnkbXchb7uN/fOLCYlxZdADrbG61kxS2ig3MEptYEDe4gMUrE3Fr188nu3DMJmrdu+CPILoF9+PfvH9ANift5+lyUsdSfnMokwWH1jM4gOLAfB19aVjeEdHUj7ON+6crht+rhjlBrYC+xTv5XmlGCXleLQIchzP/j6J4l05R48XHl1WwORqJmpiN8fnkt25FG3OrHgRiwmTmwWjzIbFx4fQ8feRs2gbuT/8TuGqv7AV5WCUFuDTuxtBd47ENSrM6V56d6wba44Xbd5M6quvkv/b7/bPFivfNLmUAc8+SELLWDAM+PJeKMiAsETo9Vil9RiGwZ4Nmfw1dwc9hzQjvKH9RYiOV8XTeVAjzGYTWQfLyE49iIePLx2vvZ7WVwzA6upWoa6U/BQ+2fQJX2z7gtySXMD+u3190+u5OeFmwrzCztHdEBERERERERERERERqRkmwzCMmm5EbZOTk4Ofnx/Z2dn4+vrWdHMqlZFXzORftjFz6R7KbAZmE9x4cQz3RBRR+t9JFK6wT/Ns8fcn+O67CbjxBkyu52eqc8NmoyAnm6L8PIKiGjj2z3/jZdJ2J5GTnkpJYaHTOQGR0dz22jv28w2DaQ+MIftgCmYXX8rLvPHwDaJD/0R8Q8PwCw0nJckV32APohMCzmtivmj7IbK+2kFZqr391mhvAq5pjGuDs5vWxzAMtmdtZ2nyUpYmL2X5weXklzpPdRDmGeZIyHcK71RjyUvDZmArLHNM716eX4JRYsOr/dH2HJq3neKdWfYyBWX2qREOM1nNRD19NLGePm1DxcS6CfsodC8rYfe2dYxEL9yYQXluiX2U+jFTwZvcT/wiSfH27aS+9jp5v/xir9rDg8ARwwkaNQrLCaZMv9CU7N1L2uQ3yPnmGzAMbGYz38V0YlbzK3jpzt70Sgi1F1w5Hb4eAxZXuGMBhCdWqCt1dw6Lv9zO/i1ZAMS2CmLgXRexe/0aDmzZRNfrb3GU3bl6OdEJLXH1qLh2+9/pf/PRho/4cfePlBv22QpifWMZ2nwoVze6Wuu9n4YLISZdaHRPRUSktlBMql66nyIiUlsoJlW/k93ToqIikpKSiI+Px93dvYZaKFK76XsiUn2qGueVhK/EhfSPpJ1pefzn+82sW7aBERu/o8f+tQCY3NwIHDGCoDtGYall674YhkFxfj7ZaQfJSU8lNy0Vi9WV1pf3d5T576hbKMrNqfT8gIgoSspuprzMhsVqxuryB94BrkQ2aUBwgwh8Q8LwDQnB2z8Qk9lcaR1n1f5yG3mLD5Dz8x7HVOiBNyfg2Tqk2q5RZitjQ8YGR1J+depqSm3O0/7H+cbRKaITnSM6c3H4xfi5+Z2gtpMzDAOjqPzw9O4lR0ekl9rwueTo1OuZszZTtD0LW0Ep2JzrqJBYn76Bok3OiXWzp4sjcR5yeytHYr1oexa2wtLDifXDa6t7uFR5hoGqKli5ktSXX6Fw9WoALAEBBP9zNP433YT5PL2gUt3K0tNJf/sdDn32GZTafz8OdujOo/5dOeAdwqs3tGZwu2h74cyd8PYlUJoPl0+EbmOd6spOK2DJvJ1sX5kKgNnFxEU9o4loVMDy/33Kvk1/AzDsP5MJjWtYaXvKbeUs2LuAjzZ+xOrU1Y79HcM7MqzFMC6NvhSzqfq/k3XdhRSTLhS6pyIiUlsoJlUv3U8REaktFJOqn5LwImdH3xOR6lPVOK/p6C9wMS6lPLX3RzIXfIqprAwbJn6Oac/8DldzW/dO/MOr9o30NZlMuHt74+7tTVh8o0rL3PHmFHLT08hJSyX78BT3R6a69w4IxT8igqT16eRlFpOftoasA0Xs2+Bch9niQoOWrfjHY0879u1YuRRXdw98Q0LxDgzG4nL6XwGTxYxP92g8W4eS/X0SRdsO4d4s4LTrORkXswutQ1rTOqQ1/3fR/1FUVsTq1NWOpPzGzI3sytnFrpxdzN4yGxMmmgc1tyflwzrRJqA1rkUWx7rpR9ZQp8yGb59Yx3XSp2+gaOshKK/kXRwXM97dIh0jzG3F5djyjr4IYHJ3ObyGun0zym2YLPYEq2/vGLy7RR097mnFZKk8qe7e2L/6btxJeLZvT+wnM8n75RdSX32Nkp07Ofjc82R+NIOQsWPxHTjgnLy0cS6U5+WR+eGHZEybjlFQAIBXt26s7nszY1cVAfDvgc2PJuBt5TD3n/YEfExX6HKPU33Lv01ixbe7sNkMMEGzjuHEt7Gx5vuPWfL54Vk1rFZaXz4A74DACu3JL81n7ra5fLzpY/bn2ZfAcDG7MCB+AMNaDCMhMOFc3QoREREREREREREREZFaR0n4C5StqIjMGTPIeO99bLm5mACvSy5h89XD+WJzKXszC3l4zno+/GMXjwxIoEfTkAtqPXFXdw+ComMIio45YZnuNzUlY38ef80ZzMGd+8jNTMOw5eDmXkhxQRa28jJs5QZJa9OIbh6I1dXC929PcoywN5nMeAcG4RsSgm9wKOGNm9Ku/9WO+svLSrG4WE94fYuvK4E3NMNWUIrZ3f5VMgyDrHnb8WwdilvDMxuZXhk3w8rFnm1pH5bInd7Dyc/KYU9KEqnpyaTmHuSlgA/ZmLGRjRkbafqtL5kFtsorcjHjc1mM8+/C4QS8yc2C2dtqH5F+eMNmwOHkuV+/OHwvj3UcPzKSvTJnOz3/uWIymfDp0wfvnj3J+vJL0t94k9J9+zjw4INkTp1K6AP349W1a00384RsxcUc+vRTMt55l/KsLADcW7Ui9P7x/OETx30f2xPm/+zZiFHdjxmt/uck2LsEXH1g0Dtgdl7CwcvfDZvNIKZlIK0vC2TNdx8z74XFAJgtFhJ7Xk6nwTfiG+w828OBvAN8sukT5mybQ15pHgB+bn7c0PQGbk64mRDP6psdQkRERERERERERERE5EKhJPwFxrDZyP7qK9ImTaYsORkAt4QEQh98AO9u3YgBegwoZ8Zfu3nj1+1sOZjLyKnLuaRxMI8MSKBlZPUlhmuayWQiONqHq8ba16guyClh998ZRCcE4OVnJS8zgy3L9jP/7fVYrGaimvni5R+Fm4cXeYfSKS8tJTcjjdyMNPazkYKcbKck/LujR2Aym/ENDjk8xX3o4Z9DCYiIIjDSPsrY7Hk0UV+4Lo38pSnkL03Bo00I/v3jsfi5Vdr+8twSynNKHKPUj50KHptB4A3NHGXTPvibkt3O0/OH4kIoDcAlhr533MKylGUsTV6KLdmAAigylZDtkkuWJZc8ayFWHzf8/AMpyNxKk8CmmEwm/K9uBNc0xuJlxWQ9+Shwa5jX6T2gWszk4kLADTfgd+WVZH40g4wPPqBo40b23HY7Xl27EvrA/bi3aFHTzXQwysvJ/t9XpL35BmUH7N971/h4QsaNw+eKy1malMm9Hy7DZsANHaJ5qO/R3x2S18GC5+w/93+Bct8GbPptPx4+Vhq1ta8Vn9A5HP9QTyKb+FNSVMj+LRvBZKL5JT3p+o9b8A+PcGrP2rS1fLThI37Z84tjvfd4v3iGNh/KVY2uwsPF49zfFBERERERERERkQvUqQbMjRgxgmnTplX7dfPz85k4cSKff/45Bw4cwMfHh5YtW/LAAw9w5ZVXAtCzZ0/atGnD66+/7nTutGnTGDduHFmHBwcdUVhYSGSkfUbV/fv34+Hh/H+DcXFx7N69GwAPDw8aNmzIvffey5133nnK9k6bNo1bb73V8Tk0NJSOHTvywgsv0LJlS8f+kSNHMn369Arnb9u2jcaNG5/yOiIi54KS8BeQvD//JPWllynevBkAl4gIQsaOwe+qqzBZjo5sdXOxMKp7Q65v34A3F2xj+uLd/LE9nSvf+IPBbaN5oG9TIvzqXpLM09eV5l2PJgt9Q0Lx8i/DJ7CQ3Mwi9vydBdjXnQ9P8CKqiRsNElwoLjhEdupBfIKCHeeWFhVReHjEfEF2Fik7tjldK/aitk7T3M9/42XcfXzw8wsjMD4IaxIUrkmjaGMGHonB2Irsicrg4UcTuxkfb6qQWHewmAi4vqnjH2NmLytYTIfXTbevne4Yse5txccjlKsaXcVVja6irE0J+4v2sypjOUuSl7AsZRnZxdn2eg3gGwh0D6RTeCc6Rdi3aGv0mdzyC57Z05Pg0Xfif+MNZLzzDpmffEr+4sUkDV6M75VXEjJuLK7RNXdvDMMgb8EC0l57jeJt2wFwCQsj+J678R80CJOLCxsOZHPH9BWUlNm4okUYzw1qdfQf8aVFMPdOsJViNB3ITuMKlkxcRtbBArwD3YhNDKIgO5MNC3+m8+AbAfssFH1Hj8U3JJTgBkeXLiizlfHLnl/4aONHrEtb59jfOaIzw1oM45KoS7Teu4iIiIiIiIiISBUkHx5gBzB79myeeOIJtmzZ4th3fCK7tLQUq/XEs7ZW1ejRo1m2bBlvvvkmLVq0ICMjg8WLF5ORkXHGdc6ZM4fExEQMw+DLL79kyJAhFcpMnDiRO+64g7y8PKZNm8bo0aPx9/fnxhtvPGX9vr6+bNmyBcMw2L9/Pw899BADBw5k69atuLq6Osr169ePqVOnOp0bEqKZOkWk5igJfwEo2rKF1JdeJv+PPwAwe3sTdOf/EThsGGZ39xOe5+dp5bGBLRjeJY4Xf9jC12sPMGfVPr5Zd4BR3eMZ3aMRPu5nH7hrsxbdImneNYLMA/nsWp/OrnXppCTlkLEvn8z9+XQYeAke3vZAnZ1WQGlxOVY3Cy5ubtw15VPHOvS5R9amP/w5OCbOcY3SoiI2/bHQ6boBrmG0C7qcYKIoWJVq32kx2aerTzmAb0gYFl9XzD6Hp3/3dsXsZT2aZPey2hPmh3OpQTcngIupSksKuHi7EusdT2xwPDc0uwGbYWNL5haWJi9lScoSVh1cRWZRJt/t+o7vdn0HQJR3FJ0jOtMpohMdwzsS5BF0trf+guISEEDYI48QMGwYaZMmk/P11+R88w05P/xAwM03EfzPf+ISEHBe21SwYgWpr7xK4erVAJj9/Aj+vzsIGDLE8b3fnZHPiA+Xk1tcRqf4QCbf3BYXyzGJ8F+fhtSNHDB34a/dY0j57W8A3L2ttOjmz28fT2HdL99RXlpKYFQDmnW5BICG7S52VJFbksuX277kk02fcCD/AABWs5WBDQcytPlQmgUeM+peRERERERERERETik8PNzxs5+fHyaTybFv165dREREMHv2bN566y2WLFnC22+/za233srUqVN58cUXSUpKIi4ujjFjxnDXXXc56tq/fz/jx4/nxx9/xGw2c8kllzBp0iTi4uIA+Prrr5k0aRIDBgwA7KPU27dvf1Z9mTJlCkOHDsUwDKZMmVJpEt7Hx8fRv2eeeYbPPvuMefPmVSkJf+y9iYiI4L777uPqq69my5YttGrVylHOzc3N6b6KiNQ0JeFrsdKUFNImTSZ73jwwDLBazygh2CDQkzdubsvtl8Tz3LebWLYrk/8u2MGsZXsZ16cJN3WMwWqpuyNYTSYTQVHeBEV5075fHIW59mnrs1ILHAl4gF+mbyJ1Vy7RCQHEXRRMXKsgwuIbERbf6JTXuOy2f5KTfjhJfzhR/0vyx0R7NqNpQmea9OiG2cuV0qIiPrxvNGazhYCISPu691Ex9j+jG+ATEVnpOvSnmir+ZMwmM82DmtM8qDkjE0dSWl7KuvR1LE1eytLkpaxLW8f+vP3M2TaHOdvmANAkoAmdwjvROaIz7cPa4+3qfcbXv5C4RkcT9dKLBN06ktRXXiX/zz859NEMsr+cS9Co2wkcPhyzp+c5bUPRli2kvfoaeYsWAWBydydw+HCCRt2OxdfXUS41p4hhU5aRnldM8whf3h/RAXfrMWu97/qDrN+/5M/cR9hV3BEowMXVTGL3YMqKVvDX7EmUFhcBEN08Ed/j3grdl7uPmZtmMnf7XPJL8wEIcAvgxoQbubHZjQR7BCMiIiIiIiIiIlLbGIaBUVhYI9c2eXhUaSBVVTz88MO88sorTJ06FTc3N95//32efPJJ3nzzTdq2bcvq1au544478PLyYsSIERQUFNCrVy+6d+/Ob7/9houLC8888wz9+vVj3bp1uLq6Eh4ezvz58xk8eDA+Pj5n3cYdO3bw119/8eWXX2IYBuPGjWPnzp00bNjwpOe5u7tTWlp62tfLysrik08+AaiWmQFERM4lJeFrofLcXDLe/4DM6dMxiosB8OnXj9Dx9+EaE3PG9bZp4M/sOzvz08aDvPDdZnam5/P4/zYwdfEu/tUvgctbhFXbPxBqMw8fVxK6OK9xXV5moyC7hPIyG7v/zmD33xksAoIbeBPXKpiGbUIIian8HyVWd3fa9B1YYX9ZSQm5GWlYXKx4h9jX3s7YvxerqxulxUVk7NtDxr49Tue07NGHfneNO9ymUrYt+4ug6BgCIqJwqaZ/VFgtVtqHtad9WHvuanMXBaUFrDy40p6UT1nK5szNbDu0jW2HtvHxpo+xmCwkBifSKcKelG8d0hpXi+upL3QBc2/RgpgpH5C/eDEHX36Z4o2bSHt9EodmfkLwvffgP3gwJpfq/euzZN8+0iZPJufrb+wv3Vgs+P/jHwTfdRfWsFCnstmFpYyYupw9mQXEBHoy/baL8T12VouibJg7mgKbH7uKO2Iym0joEoqLZQ2r579NcYE9qR7eqAndbhxG7EVtMZnsMzWsSVvDjI0z+GXPL9gMGwCN/BoxrMUwBjYciLvLiWffEBERERERERERqWlGYSFb2p3d6O4z1WzVSkzVNIhn3LhxDB482PH56aef5pVXXnHsi4+PZ+PGjbz77ruMGDGCWbNmYTab+eCDDxz/zz916lT8/f1ZuHAhV1xxBe+99x5DhgwhKCiI1q1bc8kll/CPf/yDbt26OV37rbfe4oMPPnDaV1ZWhvtxM/N++OGH9O/fn4DDgwb79evHhx9+yDPPPFNpn8rKyvj4449Zv349//znP6t0H7Kzs/H29sYwDAoKCgC4+uqrSUhIcCr3zTff4O19dDBZ//79+fzzz6t0DRGRc0FJ+FrEKCnh0OzPSH/rLcoPHQLAo317wh56EI/WravlGiaTiStahtMrIZRZy/bw2s/b2JmWz//NWEnH+EAeG9Cc1g38q+VaFxKLi5khEzsfM219BilJ2aTvzbNv+/IYeNdFjvJlJeW4uFpOUiO4uLoSEBHltC8oqgH3TvuM3Ix0RxI+fd8eMvftJWP/HoKiGzjKHko+wLeTXgTAZDbjHx5JUFQDghvEEBgdQ2STZviFnv30Op5WT7pHd6d7dHf7dYsOsSxlmWOk/J7cPaxNW8vatLW8t+493C3utA1t60jKJwQmYDGf/F5cqLy6diX+iy/Imf8daa+/Tum+faQ88SSZ06YTOv4+vC+77KxfXClLTyf9nXc5NHs2HH7706d/P0LHjsX18DRRxyoqLeeOj1awKTmHYG83ZtzekVAf+z9+iwvLSE3KocGWxyB7L5GhsXTuGk3DDlH4h3ky89H3KS7IJ7hBLN1uHEajDp0wmUyU2kr5edfPzNg4g/Xp6x3X6hbZjWEthtE1smu9eEFHRERERERERESktujQoYPj57S0NPbu3cvtt9/OHXfc4dhfVlaGn58fACtXrmT79u0VRrgXFRWxY8cOAC699FJ27tzJkiVL+PPPP/n111+ZNGkSTz31FI8//rjjnCFDhvDYY4851fPll1/y3HPPOT6Xl5czffp0Jk2a5Ng3dOhQ7rvvPp566ikslqP/Z/zwww/z73//m+LiYlxdXXnwwQe58847q3QffHx8WLVqFWVlZSxatIiXXnqJd955p0K5Xr168fbbbzs+e3l5Val+EZFzRUn4WsAwDHJ/+JHU116ldLd9ZLRrfDyhD9yPd+/e5yT5ZbWYGdYljmvaRvHOwh1M+SOJZUmZXPPfP7mqdSQP9W1Gg8BzO+12bXOiaet3rUsnvs3Rqbpz0gv5ZMJSopoFEH9RELGtgvEJrProYJPZjG9IKL4hocS3PfoPKcMwsJWXOT6XlZQQ0TSBzH17KS7I59CBfRw6sI/ty/8CoNsNQ+l83U0A5Gams/bH+YentY8hMDIaF9czG60e4B5A37i+9I3rC8CBvAOOUfJLk5eSXpjOX8l/8VeyvR0+rj5cHHaxIykf7xdfpxK2JrMZvysH4nPF5WTNmk36229TsnMn++65F4+2bQl98AE827U77XrL8/LI/HAqGdOmYRx+g9Ora1dCxo/HI7FlpeeUldu499PVLEvKxMfNhem3XUxskBflpTb+/m0/K+bvoqy4hKEB3+FuNrMh8k5aXRaNq4f9u9xz2ChyD2WQ0KU7JrOZnJIc5mydw8xNMzlYcBAAV7MrVzW6iqHNh9I4oPEZ3jUREREREREREZGaYfLwoNmqlTV27epybBLZZrPPWPn+++/TqVMnp3JHkt02m4327dszc+bMCnWFHLMUpdVqpXv37nTv3p1//etfPPPMM0ycOJGHH34Y18P/p+zn50fjxs7/Nxga6jxb5w8//MD+/fsrrOteXl7Ojz/+SP/+/R37HnzwQUaOHImnpycRERGn9f/HZrPZ0ZaEhARSUlK48cYb+e2335zKeXl5VWiziEhNUhK+hhWsWkXqf16kcO1aACxBQYTcew/+112H6TysaeLrbuWhfgkM7RzLKz9u5cvV+/h67QF++DuFEV1juadXE/w86+faKkemrT9+6vp9mw9RXmZjz4YM9mzIgE+3Oqatj2sVTGisDybz6SehTSaT03rw4Y2acMvTL2MYBvmHMg+PmN9Dxr69pO/bQ1jDo/+gOLhjO0vnfnZMXWb8wsIcSflmXboTGnfydXhOJNI7kkFNBjGoySAMw2Bn9k6WJC9hafJSVqSsILckl1/3/sqve38FINQjlE4RnRxbuNfZj9avDcyurgQOH4bf4EFkTJlC5rTpFK5eze5bhuDduzeh4+/DrQr/yLOVlJD16aekv/OuY8YL91atCB1/H15dupzwPMMweHTuen7aeBBXFzMfjOhAi3Bfti5LYelXO8lJt6/v7u9ygHVZkWwobEf25u8osAQ5XtaIbpEIwN6cvXy86WPmbp9LYZl9faxA90BuSriJG5reQJBH0FndKxERERERERERkZpiMpmqbUr42iIsLIyoqCh27tzJkCFDKi3Trl07Zs+eTWhoKL6+vlWuu0WLFpSVlVFUVORIwlfFlClTuOmmmyqMmH/hhReYMmWKUxI+ODi42hLk9913H6+++ipz585l0KBB1VKniMi5oCT8ubZ6JuxcCJFtIbINhF8Ebt4U70wi7bVXyf3pZ8D+hlzQrbcSeNttWLzP/zQpkf4evHJDa267JI7n5m/iz+0ZvP97Ep+t2MeYy5owrHMsri7m896u2qh5twjCGvqya13FaetXzN9F/9GtaHjMyPmzZTKZ8A4MwjswiLiL2lZaxjsgkIv69LNPcb93D0X5eWSlJJOVksyOFUsJiY13JOH3bfqb5V/NcSTog6JjCIpqgNX91KP5TSYTjfwb0ci/EUOaD6HMVsamjE0sTVnKkuQlrD64mtTCVL7e+TVf7/wagDjfOEdCvmN4R/zc/Krt3tQEi7c3oWPHEnDzzaT/9y2yvviCvF9/JW/hQvwGDyLk3nuxhoVVOM8oLyf7q69Je2MyZQeSAXCNiyNk3Dh8+l5xyrc///P9Fj5bsQ+zCd68uS2RxSY+f2EFaXtyAfDwtRJr/Zw9e/5mcUkgUIKnnz9eAYH26xsGq1JX8dGGj1iwdwEGBgCN/RszvMVwBjQcgJvFrRrvlIiIiIiIiIiIiFSXCRMmMGbMGHx9fenfvz/FxcWsWLGCQ4cOMX78eIYMGcJLL73ENddcw8SJE4mOjmbPnj18+eWXPPjgg0RHR9OzZ09uvvlmOnToQFBQEBs3buTRRx+lV69ep5W4T0tL4+uvv+arr74iMTHR6diIESMYOHAgaWlpTiPwq4uvry+jRo3iySef5Nprr61Ts7KKSN2iJPy5tv0n2DAX1ttHKZcVWUjfEc2hDaVgA8wm/AddS/CYcVjDQk9e13nQMtKPj2/vxMKtaTw/fxNbD+bx9Dcbmb54Fw/3S2BAq/B6H9RMJhNBkd4ERR4zbf0G+7T1+7dmEZ0Q4Ci78vtd7FqXgZe/K55+bnj6ujo2Lz83gqK9MZ/BqPnjhTduSnjjpoA92VqQneVYcz5j316nUfMpO7axc9Vydq5a7lSHb0gYQdEN6HbDUEd5wzBO+rxdzC60CmlFq5BWjGo1iuLyYtakrmFpsj0pvyFjA7tydrErZxezt8zGhImEwAQ6R3SmU0Qn2oa2xdN6Yb6Vag0NJeKpCQSOGE7aa6+R+9PPZH8xh5xvviVw+HCCRt2OxdcXwzDIW7CAtNdeo3jbdgBcQkMJvudu/AcPxuRy6r+G3/9tJ+8ssq/b9MLgi7ikQSAfPbqY8jIbVncLsS3yOLj+Q9bszgI8cff04OJrb6Rt3yvB1cI3O79hxsYZbMzY6Kize1R3hrUYRueIzvX+Oy0iIiIiIiIiIlLbjRo1Ck9PT1566SUeeughvLy8aNWqFePGjQPA09OT3377jYcffpjBgweTm5tLVFQUl112mSPB3rdvX6ZPn86jjz5KQUEBkZGRXHnllTzxxBOn1ZaPPvoILy8vLrvssgrHevXqhY+PDzNmzGD8+PFn3e/KjB07lsmTJ/P5559zww03nJNriIicLZNhGEZNN6K2ycnJwc/Pj+zs7NN6+6tSuxfD7j+x7VpF5o9ryFhjw1ZmH1HuHVlEaOsc3PwNCEk4Olo+sh2EtQRr1dcZPxfKym18sXIfr/y0lbTcYgDaxvjz2IDmdIgLrNG21VY2m+GUVP/sueWOkcqVGf1GTyxW++/D0q92cnBXjlOS3pG093PFP9TzjKa5P17G/r3s/XsdGfvto+Yz9u+lIDvLcXzIc68R3qgJAGt++JblX88hKKoBgdExBB9Zcz6qAW5VmNIppySHFSkr7GvKJy9lR/YOp+MuZhdah7R2rCefGJyI1XxhLn9QsHo1qS+/QuFK+3pTFj8/AoYNI3/xYgpXrQLA7OtL8P/dQcDQoZirMPMAwJyV+7j/87V42GDMgAT+2bMRAEv+t4PS4nI6DIjj13eeZfPylVjNZbTv0JQO/3yeIksZn2/9nE83f0pqQSoAbhY3rm50NUObD6Wh/5ktTyDnX7XGJAF0T0VEpPZQTKpeup8iIlJbKCZVv5Pd06KiIpKSkoiPj8e9iv/nJlLf6HsiUn2qGuc1Ev4cM6I7kb38AGkffENZKoAZ98YNCL2qOV4+B+HAKsg7CKkb7Nuaj+0nml0gtMUxifm2ENoSXKq+JsvZcrGYualjDFe1juT933fy3m87Wb0ni3+88xf9WobzcP8E4oPP/9T5tdnxo9ovG9mczAP5FOSUHN2ySyjIKaa81OZIwAOk7sph78bME9Y9+o2eWA7Xv/zbJNL25FY6ut7TzxVvf7cTJuyDohoQFNXAaV9BTjaZ+/aSsX+P07H0vbvJSUslJy2VpDUrnc7xCQph8CMTCG4Q66jDbLHg7uXtKOPr6kvvmN70jukNQFpBGktTljqS8sn5yaw8uJKVB1fy1pq38HTxpH1Ye0dSvklAE8ymC2MZBM+2bYn9eAZ5CxaS+uorlGzfQfqbbwJgcncncNgw++h4v6pPx//r5oM88fk6eha60KHUyqAY+1rtydu20LyLH36h4WArp6vbErwDD3Jxm0hSbxzHS+te46sdXznWew/2CObmhJu5vun1BLgHnOySIiIiIiIiIiIiIiIicpY0Er4S1fmm4u5bb6XgryUAWKOiCLnvPnwH9MdkPiaxmJMMB1Y7bwXpFSuzuNpHyEe2tW8RbSC0OVjOz8jh1JwiXvt5K7OX78VmgIvZxNDOsYy5rAmBXufv5YC6KnlHNtmpBY5EfX5O8eGEfQnlZTaGP9vVUfarSavZu+nQCes6doT9yu93kbE/3zGi3svXFU9fe7Le088Vdy/rCacjL8rLI33f7sMj5u1T22fs20P+IfvLAndPmYW7tz3pvmD6+6ya/z+8AwIJahBrT/Yfs+78kXJHGIbB3ty9LElewtLkpSxLWUZWcZZTmQC3ADpGdLQn5cM7E+0TfUFMnW6UlZH9v/+R+fFMPC66iOC77jrt5SaWbUtn0juraJdvwR17n5tebCEvYxE7Vy6j+SU9GXDvA/D7qxi/PMVy7wBmJF7GooPLHeu9NwtoxvCWw+kX1w9Xi76jFyq9PV/9dE9FRKS2UEyqXrqfIiJSWygmVT+NhK+bWrZsye7duys99u677zJkyJDz3KK6S98TkeqjkfC1hO8VV1C0cRPBo0cTMOQWzK6VJMJ8I+xbwgD7Z8OA7H2QvMY5MV946OjPR1jcILzV0cR8ZFsIbgqW6n+0ob7uPD/4Im7tFs/z8zexYEsa0xbvYs7KfdzVqzG3dovD3Wqp9uvWFxGN/IhoVLVR0u36xtKwTQj5TqPr7SPsbeWG0wj7fZsPsW/zSRL2b/bE4mJP8q7+aQ+HUvKPmw4/irg28bS41A2rm/35FuXlkXlgn1Ni/ciU9nmHMsk7lMnudaudr/PuDLz87aOwk7dtoby8jJDoGG5odgM3NLsBm2Fj66GtjvXkVx5cyaHiQ/yw6wd+2PUDAJFekXSK6OTYgj2Cq3S/zjeTiwv+112H/3XXnfa5tnIbC3/YxfJvkuhqs3+PfYMLcXNdxbofl9rrN5mxWF0p2buCH5a9xkeR4Wx2c4WDywDoEd2D4S2Gc3H4xRfESwsiIiIiIiIiIiJS/8yfP5/S0tJKj4WFhZ3n1oiIVC+NhK9Edb6paJSWYsvPx+Lvf3aNMgzI2n04Cb/m6J/F2RXLWj0rJuaDGoO5ehPkf25P59lvN7ExOQeASD93HuzXjGtaR1WYll3OH8MwnBKvu9ank3WwoMLo+oKcEgBuf7m7o+z/Xl998oT9f3tisdgT/OsW7CUrtRAvvyPT4bvhYi2juCCVvIz9ZB7YR8b+vWTs3UNpSTF3vT/T0a65/3mKnauWA+Dp509wgxgCo+wj5oOjY4hKaEGZUc769PX2qetTlrI2bS1ltjKn9jT2b2xPyId3okN4B3xcfarnJtagz15eSdp2+/e60JxNVNgmkjctwTBsADTr0p3Ea67ix6yFzFrzDmlm+1/h7hZ3rml8DUOaDyHeL77G2i/VT2/PVz/dUxERqS0Uk6qX7qeIiNQWiknVTyPhRc6Ovici1Ucj4WsJk9V69gl4AJMJAuLsW8tB9n02GxxKOma0/BpIXgslubB3qX07wtUbIlofncY+si0ENgTzma+33a1xMN/cewnz1uznpR+2cCC7iPtmr2XKH0k82r85XRvXzlHKdd3xI5/jWgVDq8rL2sptTp8Te0QR1dTfkajPP7x+fUF2CS5uFkcCHmDnmnT2b6k8YW8yuzH6jdswHy6/9tcklszbYZ8G39cVTF54B4aQl5lGQXYWe7Kz2PP3OgCs7h7cO+0zrGYr7cLa4fJ3Kp1NDfC+6C72u2WxMnc9S1OWsjlzM9uztrM9azszN83EbDKTGJToGCXfJrQNbha3M72NNSI9r5jvs3NoYTLYEWzh+oQ8Vn+1GICG7TsSN6AXX+cu4Kk/R1BUXgRmCC03uLn1/3F94gj83Kq+3ryIiIiIiIiIiIiIiIicG0rCX8jMZghqZN9a/cO+z2aDzB3O09gnr4WSPNj9p307ws33aGL+yBYQZ0/4V7kJJga3i2ZAqwg+/DOJtxfs4O/9OdzywVJ6J4TySP8EmoRd+KOT6yqzxfkljEZtQ6FtxXKGYVBW4pywb941grB438PT4Rc7psUvzC3B3cvFqe6ktVnHJezbAe1w8y/BbMmi+/XBZO7fQ+b+veRnl7Fi/q7Do+tdWTZvLtmp+x1nuvv4MjgqHp+ILuQGGGyLyWdpylJ25+xmXfo61qWv4/317+NmcaNNaBs6R3SmU3gnWgS1wFLNs0GcrUMp+Sz5304atgkhsnUQd7y3kN15qeyMjmLWPZ0JdO1IXspePLo2ZW7+r/y+8i7Huc2LSxienUPfK9/D2vyqGuyFiIiIiIiIiIiIiIiIHEtJ+LrGbIbgJvbtohvs+2zlkL7VeSr7lHVQnAO7frdvR7j7Q2Qb58S8X4NTJubdrRbu6tmYGzs0YPIv25i5dA+/bk5l4ZZUbrw4hvsub0Koj6Y4uVCZTCbHevBHNOsUXmlZm82gpMB52vimHcMIivJyXr8+u5iSIlfcvaJo1evolPjzXlvFsq+THJ9LC6MxW90wyjMwbNkU5eawf/MG2LwB35AGDLz6X9wQMYqiuHz++vptMsoz2OF6gH3uh1iXv4KlB5aCCXysPnQI70CniE50juhMQ7+GNbZeen52Mcu/3cXGPw5g2AwO7kpj/dxldNy1lObuAdz+yCQCvc3MT/qeGU1WsnXrpwCYMNEz6hKGb/qN9hkpmNoOAyXgRUREREREREREREREahUl4esDswVCm9u3NrfY95WXQdpm5xHzB/+GoizYudC+HeEZ5DyNfWRb8I2sNDEf5O3GU9ckMqJrHP/5fjM/bDjIp8v28L81+7nz0kbccWk8nq76tavLzGYT7t5Wp30tukVWWra0pJzifOeEfcM2ofiFeB4zwr43BTkl2MoNPLxNDLw7hsx9e0jft4cdq3L468sdABiGjeKs7bhTTktcaUkYADZXM5nexeR7+JAaVsps63ymus7Cw8dKYkwCHaMvpnNEZyK8I87B3XBWUlTG6p/2sObnvZQVl2MYpfj4b+Xgnt+ILCsEoEGAKz9u/5DZC+aSUZQBgIeLB4MaD2JI8yHE/PI8ZOwF/1jo9/w5b7OIiIiIiIiIiIiIiIicHmVD6yuLC4Qn2rd2w+z7ykogbdNxifmNUJAB23+2b0d4hR4zWr6N/U+foyOjG4Z48+6wDizflckz325i7d4sXvt5KzOX7ub+K5ryj/YNsJhrZhSy1B5WVwtWV+cR9hf1iq5QzjAMigvKKC4oxS/Ek7D4RgB4B+0hfX8uBdkl5GcVkm0eQHFBKkZ5OhiHMMqzMJfYCM60EuUXQ7OCK4/Wl/0+JnMaO13+ZLPbKja2XkXTpm24uEl3ItOaYS1zw9PPzTEtvoePK+az+J3dsTqVRZ9soTC3FMMow9N7G4VZi0nflY0FOOTqQ1E3fxZ6Lad4m33ZiDDPMIY0H8LgJoPt671v/ArWfgKYYNC74KalHkRERERERERERERERGobJeHlKBdX+xrxEa2h/Uj7vrJiOLjhmMT8GkjdCPmpsO0H+3aET4TzNPYRbbg4LoR5d3Xlm3XJvPjDZvZmFvLwnPVM/XMXjwxoTo+mITXRU7nAmEwm3L2suHs5j7Bve0XMcSW7Ul5mozC3hOLCMvyCXTmUvJ+MfXvYs6mQ8vIQCrJLyMlIozgrD6M8D8qTcS2GNr+b4Pe1rLGsZqVnY/xdrgXsCXuMXExmHzx83fD2d+P6Rzo4prLftT6d0uJyR7Le088NV3dLhanuPbytFOaW4hfqQUzzLJbP+w6AbKs7qxuWsbvh3xgmwAaJQYkMbzmcPrF9sJoP9zn3IHw91v5zt7EQ26U6b7GIiIiIiIiIiIgIu3btIj4+ntWrV9OmTZuabk6dNGHCBObNm8eaNWtquikicg4pCS8n5+IGUe3s2xGlhZDytz0pn7zG/mfaZshNhi3JsGX+0bK+0Zgi23BVZFv6XtOa2fsjePn3dDan5DLiw2V0bxLMI/2b0yLS97x3Teomi4sZ7wB3vAPsn0Ni4wmJjSeh29EytvJyMvYnkJq0i4M7d5G6L4mMtF0UpmViLTeT7ZZDjs9GPEt88Sh2wZL+CWClOCeQ3PRglv4vidCYeIKiG7Dy+72k7Mh1boPVjKevK827RnDxwHgMmw0P7wIG3HURMS0DKbUV8/uKz1nptZ8d8buxmcFsMnNZg94MbzmcNiFtnJP4hgFf3QuFmRDWCno9eu5vpIiIiIiIiIiIiJwzI0eOJCsri3nz5jn2ffHFFwwdOpSJEyfy0EMP1VzjTsOcOXN48cUX2bx5MzabjZiYGPr168crr7wCwLRp0xg3bhxZWVkVzjWZTMydO5drr73Waf///d//MWXKFGbOnMlNN93kdGzChAk89dRTAJjNZiIjI+nbty/PP/88ISGnHvR37P+7enl50ahRI+677z5Gjhzp2L9w4UJ69epV4dzHHnuMZ5555pTXEBEBJeHlTFg9oMHF9u2IknxIWe88lX36NsjZZ982f4MrMAwY4hfLZv9GfJsexuod8dz0xm6uaNeM+69oSoSfR031SuoRs8VCSEwcITFxtOxxdH95WRlZKQfINQrYWLqTpSlLWfn3Utr/asFilGKUH6Qs/yB/frrBcY5/fGcim/SnIKeU/EO5FOXtwlYeRE6JHyu/34WH115WfjObgpxsrn3xP7y7/h0+2vAJ+RdlA2A1uXNLwj+4pfktNPBpUHmDV023zzphcYXB79lfjhEREREREREREZE644MPPuDuu+/mv//9L6NGjTrt80tKSnB1dT0HLTuxn3/+mZtuuonnnnuOq6++GpPJxMaNG/nll1/OuM6CggJmz57Ngw8+yJQpUyok4QFatmzJzz//THl5OatXr+b2229n//79fPfdd1W6xtSpU+nXrx/5+fnMnj2bW2+9lYiICPr27etUbsuWLfj6Hh1A6O3tfcb9EpH6R0l4qR6uXhDT2b4dUZwLyeucE/OZOzBn76YFu2lhAQ4vB560PoxV6xvhFX8xHbv1xjOmHbhrdLycXxYXF4KiYwgC4khgQMMB0BV2X7+LxRt+ZsPW5RzcsxO3rDL88qz45Vv51utb0qJ+4OL2F9O2pCG5U76312V1xWLz4Ye3MwAwXC2MmD6YZP8CAGyl/rT2Gcg7196Fr9tJftczd8L3h0e+934cwlqcy1sgIiIiIiIiIiIi59mLL77IE088wSeffMJ1110HwOLFi/nXv/7F8uXLCQ4OZtCgQTz//PN4eXkBEBcXx6hRo9i+fbtjNHmvXr0YN24cs2fPZty4cezdu5dLLrmEqVOnEhER4bje1KlTefHFF0lKSiIuLo4xY8Zw1113nXa7v/nmGy655BIefPBBx76mTZtWGNl+Oj7//HNatGjBI488QkREBLt27SIuLs6pjIuLC+Hh4QBERUUxZswYnnjiCQoLC/HwOPVAP39/f8f5jz76KK+88go//vhjhSR8aGgo/v7+p9X+IyP/p02bxkMPPcSePXvo3r07H374IQ0aVD4Iq2fPnrRp04bXX3/dse/aa6/F39+fadOmAfDWW2/x2muvsXfvXvz8/OjevTtffPHFabVNRM4vJeHl3HHzgbhu9u2IwixIXnt0GvsDq+HQLuLNB4nnIOxeDLsnYWCCoMaYjl1jPrwVuOlNMzn/YgPiiL1kFFwyCpthY9uhbSxNXsrSA0tITk4nrziLn3b/xPp0dzr6BOCXb4XSEgpKM7C5mFgfm8WGhjmUWG0YRTEUpV9C3/jLeeP69pjNphNf2FYOc0dDaT7EdoMud5+/TouIiIiIiIiIiFzASovLT3jMZAYXq6VqZU3g4nrqslY3S6X7T+Vf//oX//3vf/nmm2/o06cPAOvXr6dv3748/fTTTJkyhbS0NO655x7uuecepk6d6jj3pZde4vHHH+ff//43AH/88QcFBQW8/PLLzJgxA7PZzNChQ3nggQeYOXMmAO+//z5PPvkkb775Jm3btmX16tXccccdeHl5MWLEiNNqe3h4OJ988gl///03iYmJZ9T/402ZMoWhQ4fi5+fHgAEDmDp1qmP6+RPx8PDAZrNRVlZ2WtcqLy9nzpw5ZGZmYrVaz6bZTgoKCnj22WeZPn06rq6u3HXXXdx00038+eefZ1TfihUrGDNmDDNmzKBr165kZmby+++/V1t7ReTcUBJezi8Pf2jYw74dUZCJcWAN29b8Tsqmv2hYto1oUzpkbLNv6z+zlzOZIbgZRLY5mpgPSwRXz5roidRTZpOZZoHNaBbYjOEth1NqK2VD+gaWJC9hafJSvgtdS1l5Kd4FLvgUuJDhW0KpO3QO68nS1S3Jyoqie5NgXruh3ckT8AB/vg57l4KrD1z7NpjP7B/yIiIiIiIiIiIi9c17Yxed8FhsYhBX3tPa8fnDB3+nrMRWadnIJv4Mur+d4/NHjy2mKK+0Qrm73+l92m387rvv+N///scvv/xC795Hz3/ppZe45ZZbGDduHABNmjRh8uTJ9OjRg7fffht3d3cAevfuzQMPPOA4748//qC0tJR33nmHRo0aAXDPPfcwceJER5mnn36aV155hcGDBwMQHx/Pxo0beffdd087CX/vvffy+++/06pVK2JjY+ncuTNXXHEFQ4YMwc3t6JKa2dnZVZrKfdu2bSxZsoQvv/wSgKFDhzJmzBiefPJJzGZzpeds3ryZt99+m44dO+Lj41Oldt98881YLBaKioooLy8nMDCw0iUAoqOjnT7v3r2boKCgU9ZfWlrKm2++SadOnQCYPn06zZs3Z9myZXTs2LFKbTzWnj178PLy4sorr8THx4fY2Fjatm172vWIyPmlJLzUPM9ATI1707Rxb+LLbXy6bA/TflpBg6KttDLtpIf3PlpbknAtSIG0TfZt7af2c00WCG1+NDEf0RbCWoLVvUa7JPWH1WylTWgb2oS2YXTr0RSWFbL64GqWpCxhQ/oG+gQmcFnUYO6evous7CJaN/DnnaHtcXWp/B+NDslrYcHz9p/7/wcCYs99Z0REREREREREROS8ueiii0hPT+eJJ57g4osvdiSRV65cyfbt2x2j1wEMw8Bms5GUlETz5s0B6NChQ4U6PT09HQl4gIiICFJTUwFIS0tj79693H777dxxxx2OMmVlZfj5+Z12+728vPj222/ZsWMHCxYsYMmSJdx///1MmjSJv/76C09P+wA6Hx8fVq1aVeH8Jk2aOH2eMmUKffv2JTg4GIABAwZw++238/PPP3PFFVc4yq1fvx5vb2/Ky8spLi6mZ8+evPfee1Vu92uvvUafPn3Yu3cv48eP57777qNx48YVyv3+++9Oif2AgIAq1e/i4uL0bBISEvD392fTpk1nlIS//PLLiY2NpWHDhvTr149+/foxaNAgx/0VkdpJSXipVawWM8O7xHFt2yjeWbiD9/9I4s1s+xuIQ1u6MbZFPiG5m+zT2O9fBfmpcPBv+7b6Y3slZhcIbXF0tHxkW/tnF9ca7JnUFx4uHnSN6krXqK4AHMov4R/vLCY5u4hGIV5MHXkxXm6n+Ku3tAi+/D+wlULCldDmlvPQchERERERERERkbrj/yb1OOEx03HjY257qfuJyx43meXwZ7ueTbOcREVFMWfOHHr16kW/fv34/vvv8fHxwWazceeddzJmzJgK58TExDh+PrI+/LGOn1bdZDJhGAYANpv9/9rff/99xyjtIyyWM5+Fs1GjRjRq1IhRo0bx2GOP0bRpU2bPns2tt94KgNlsrjTJfazy8nI++ugjUlJScHFxcdo/ZcoUpyR8s2bN+Oqrr7BYLERGRjqNuq+K8PBwGjduTOPGjfn8889p27YtHTp0oEWLFk7l4uPjT3tN+CNMx//inGAf2O/PkWd0RGnp0dkWjrzEsHDhQn788UeeeOIJJkyYwPLly8+4fSJy7ikJL7WSr7uVh/olMLRzLC//uIW5q/fz8YZiPtvsyshu13D3tffj5+ECuclH15Y/sAYOrIKCDEhZZ99WTbdXaHG1j5A/NjEfkgCW6lvnReR4+cVl3DptOTvS8onwc+ej2zsR6FWFl0F+fRrSNoNXCFw1qeK/9EVEREREREREROSkTmeN9nNVtipiYmJYtGgRvXr14oorruCHH36gXbt2bNiw4ZSJ69MVFhZGVFQUO3fuZMiQIdVa9xFxcXF4enqSn59/WufNnz+f3NxcVq9e7fRCwObNmxkyZAgZGRmOqeBdXV2r7d40btyY6667jkceeYT//e9/1VJnWVkZK1ascIx637JlC1lZWSQkJFRaPiQkhOTkZMfn8vJy/v77b3r16uXY5+LiQp8+fejTpw9PPvkk/v7+/Prrr45lBUSk9lESXmq1SH8PXr2hDbd1i+f57zbx5/YM3vttJ5+t2Mu9vZswrHMsrgkDIWGg/QTDgOx9xyTmD29FWUd/PsLFHcJbQUSbo4n54KZg0ddCzk5abjGbU3J4d9FO1uzNwt/Tyke3dSTK3+PUJyf9Bn/91/7z1W+AV/C5bayIiIiIiIiIiIjUqOjoaBYuXOhIxL/77rt06dKFu+++mzvuuAMvLy82bdrETz/9xBtvvHFW15owYQJjxozB19eX/v37U1xczIoVKzh06BDjx48/7boKCgoYMGAAsbGxZGVlMXnyZEpLS7n88stPq64pU6YwcOBAWrdu7bS/ZcuWjBs3jo8//pixY8eeVp1Vdf/999O6dWtWrFhR6RT/p8tqtXLvvfcyefJkrFYr99xzD507dz7hVPS9e/dm/PjxfPvttzRq1IjXXnuNrKwsx/FvvvmGnTt3cumllxIQEMD8+fOx2Ww0a9bsrNsqIudOjWcb33rrLV566SWSk5Np2bIlr7/+Ot27Vz71y8iRI5k+fXqF/S1atGDDhg2Oz3PmzOHxxx9nx44dNGrUiGeffZZBgwadsz7IuZcY5cfHt3di4dY0np+/ia0H83j6m4189NcuHuqbwIBW4fapXEwm8G9g31pcbT/ZMCBr93GJ+bVQnA37ltu3I6yeEH7R4aR8G/ufQY3BXL1vN0rdUFJmY3tqHptTcticksum5Bw2JeeSnlfsKONhtfDhyItpEuZzkpoOK8qGuf8EDGg3HJr1P3eNFxERERERERERkVojKirKMSL+jjvuYNGiRTz22GN0794dwzBo1KgRN95441lfZ9SoUXh6evLSSy/x0EMP4eXlRatWrRg3btxp19WjRw/++9//Mnz4cA4ePEhAQABt27blxx9/PK0E8cGDB/n222/55JNPKhwzmUwMHjyYKVOmnLMkfKtWrejTpw9PPPEE8+fPP+v6PD09efjhh7nlllvYt28fl1xyCR9++OEJy992222sXbuW4cOH4+Liwn333ec0Ct7f358vv/ySCRMmUFRURJMmTfj0009p2bLlWbdVRM4dk3H8QhPn0ezZsxk2bBhvvfUW3bp149133+WDDz5g48aNTuuaHJGdnU1hYaHjc1lZGa1bt+bee+9lwoQJAPz11190796dp59+mkGDBjF37lyeeOIJ/vjjjwprnJxITk4Ofn5+ZGdn4+vrWy19lepTVm7ji5X7eOWnraTl2pOd7WL8eWxgc9rHBlatEpsNDiU5T2WfvAZK8iqWdfWGiNbOU9kHxIPZXLGs1FmpuUVsTrYn2o8k3Len5lFmq/hXqMkE8UFeNI/w5bZL4mkfG1C1i8wdDWs/Bf9Y+Oef4FaFxL3UeYpJ1U/3VEREagvFpOql+ykiIrWFYlL1O9k9LSoqIikpifj4eNzd3WuohSJ206ZNY9y4cU4j2WsDfU9Eqk9V43yNJuE7depEu3btePvttx37mjdvzrXXXsvzzz9/yvPnzZvH4MGDSUpKIjY2FoAbb7yRnJwcvvvuO0e5fv36ERAQwKefflqldukfSReG/OIy3v99J+/9tpOCknIA+rUM5+H+CcQHe51+hTYbZGx3HjGfsg5KCyqWdfODiIuOS8zHae3uOqC4rNw+uv2YhPvmlBzS80oqLe/r7kJChC8tInxJCPchIcKXZmE+eLie5uwJG7+Cz4aByQy3fgcxnauhN1IXKCZVP91TERGpLRSTqpfup4iI1BaKSdVPSXi5UCgJL1L3VTXO19h09CUlJaxcuZJ//etfTvuvuOIKFi9eXKU6pkyZQp8+fRwJeLCPhL/vvvucyvXt25fXX3/9hPUUFxdTXHx0+uicnJwqXV9qlpebC+P6NOWWjjG89vNWZi/fy/cbUvh500GGdo5lzGVNCPRyrXqFZjOENLVvrQ9P62Mrh/StxyXm19unst/1u307wt3/mKR8G/uffg2UmK+lDMMgLbeYjceMbN+cnMuOtMpHt5tNEB/sVSHhHunnbl8K4WzkHoSvD0+l1G2sEvAi1UxxXkREpG5SjBcREam7FOdrh9GjR/Pxxx9Xemzo0KG8884757lFJ/fcc8/x3HPPVXqse/fuToM3z1T//v35/fffKz326KOPEhkZedbXEJG6ocaS8Onp6ZSXlxMWFua0PywsjJSUlFOen5yczHfffVdhjZCUlJTTrvP555/nqaeeOo3WS20S6uvO84Mv4tZu8Tw/fxMLtqQxbfEu5qzcx929GzOyaxzu1jNc091sgdDm9q3NLfZ95aWQttk+hf2RxPzBv6EoC3YusG9HeAZBaAvwjwG/6GO2BuAbBa6eZ9t9qYKiUvvo9mNHtm9KziUzv/LR7X4eVppH+JAQ7kvzCB+aR/jSJPQMRrdXhWHAV/dAYSaEtYKej1b/NUTqOcV5ERGRukkxXkREpO5SnK8dJk6cyAMPPFDpsdo4y8Po0aO54YYbKj3m4eFRLdf44IMPnJZNPlZgYCCBgYGMHDmyWq4lIhe2GkvCH3H8CFLDMKo0qnTatGn4+/tz7bXXnnWdjzzyCOPHj3d8zsnJoUGDBqdsg9QuTcN8mHprR/7cns6z325iY3IOL3y3mRl/7ebBvs24unUkZnM1jEq3WCG8lX1rN8y+r6wEUjc6j5hP3QgFGc6j5Y/nGXQ0KX9skt738J/eYVp7/jQYhkHqkdHtjunkc9iRlk/5CUa3NwzxJiHcnmg/knAP962G0e1VtXIabPsRLK4w+D1wOY3ZG0SkShTnRURE6ibFeBERkbpLcb52CA0NJTQ0tKabUWVHkuDnUlRU1DmtX0TqjhpLwgcHB2OxWCqMUE9NTa0wkv14hmHw4YcfMmzYMFxdnRNW4eHhp12nm5sbbm5up9kDqa26NQ7mm3svYd6a/bz0wxb2ZxUybvYaPvhjJ48OaE7XRsHVf1EX18NT0LcBbrXvKy2Cgxvs68xn74Xsfcdse6Ekz56kL8iA5LWV12u2gm9kxST9sZ/dvKu/PxeAI6Pbj0+4HyoorbS8v6eV5uG+JBxOtDcP96VJmPeZz5JQHTJ2wA+P2X++7AkIa1FzbRGpwxTnRURE6ibFeBERkbpLcV5ERC50NZaEd3V1pX379vz0008MGjTIsf+nn37immuuOem5ixYtYvv27dx+++0VjnXp0oWffvrJaV34H3/8ka5du1Zf46XWM5tNDG4XzYBWEXz4ZxJvLdjB3/tzuOX9pVyWEMq/+ifQJMzn3DbC6g7R7e3b8QwDirKPJuVz9h2XpN8HOQfAVgpZu+3bibj7V5KkPyZR7xNun1b/AmUYBik5RWxOznVavz0pvfLR7RaziYbBXjSPcE64h/m6nb/R7VVRXgZzR0NpPsReAp3vrukWiYiIiIiIiIiIiIiISDWo0enox48fz7Bhw+jQoQNdunThvffeY8+ePYwePRqwTzmzf/9+PvroI6fzpkyZQqdOnUhMTKxQ59ixY7n00kv5z3/+wzXXXMP//vc/fv75Z/7444/z0iepXdytFu7q2ZgbOzRg8i/bmLl0D79sTmXBllRu6hjDuD5NCPVxP/8NM5nAw9++hVf8PQbsSdq8FOfR88ePpi/Ktq9FX5QFB9ef4FoW+/rzJ0rS+0WDe+1Yv6eotJytB3PtI9tTchxruGedYHR7gKfVnmw/Zu32xqE1PLq9qv58HfYtA1cfGPS2lh0QERERERERERERERGpI2o0CX/jjTeSkZHBxIkTSU5OJjExkfnz5xMbGwtAcnIye/bscTonOzubOXPmMGnSpErr7Nq1K7NmzeLf//43jz/+OI0aNWL27Nl06tTpnPdHaq8gbzeeuiaREV3j+M/3m/lhw0E+WbqHeav3M7pHI0Z1j8fTtUa/DhVZXI4myU+kKAdy9p84SZ9zAGxlkL3Hvp2Imx/4HZ+oPyZJ7xMBFmu1dc0wDJKzi9icksOmw1PJHxndXsngdixmE41DvEmI8HFKuIf61LLR7VWVvBYWPm//ecCL4B9Ts+0RERERERERERERERGRamMyDKOSlFf9lpOTg5+fH9nZ2fj61o4RwlK9liVl8uz8TazdmwVAmK8b91/ejOvaR2MxX4BJ3ROxlUPewRMn6bP3QeGhU9djMtsT8SdK0vtF26fFryQhXlhyeHT7MQn3zSm5ZBdWPro90MvVnmQP9yUhwp5wbxzqjZvLBTC6vSpKi+C9HpC2GRKuhBs/rvS+iRyhmFT9dE9FRKS2UEyqXrqfIiJSWygmVb+T3dOioiKSkpKIj4/H3b0GZj0VuQDoeyJSfaoa52vZ0F+R86NjfCDz7urKN+uSefGHzezNLOShOev48M8kHhnQnB5NQ2q6idXDbAHfSPvWoGPlZYrzDo+mPz5Jf2Rt+v1QXmL/M2c/7F1aaTWGqzdl3pFku4aRQjA7SwPZkO/D2hwf9hlBHDQCKT3mrxwXs4nGod4khPscXr/dl+bhPoRcqKPbq+qXifYEvFcoXDVJCXgRERERERERERGpFUaOHElWVhbz5s07YZmFCxfSq1cvDh06hL+//3lrW12za9cu4uPjWb16NW3atKnp5ojIOaAkvNRbJpOJq1pHckXLMGb8tZs3ft3O5pRcRny4jO5Ngnmkf3NaRNaDN1XdvCGkmX2rjM0G+WlOo+dLD+0hP3UX5Yf24lZwAO+yLEwleVgztxLMVoKBROBqANfD1WAi3xpEiXcULgEN8AqNwyUg5vBIejP4BYCHW91OSif9Bkv+a//56jfAK7hm2yMiIiIiIiIiIiI14mQJ77i4OHbv3u20Lyoqin379jmOjxs3jnHjxlVrmyZNmsSxkyf37NmTNm3a8Prrr1frdWrayJEjmT59OgAWi4XIyEgGDhzIc889R0BAgKPcqZ6DiMjJKAkv9Z6bi4VR3Rvyj/bRvPnrdj76aze/b0vnj+2/c127aO6/oikRfh413cwaYRgG+7KK2JwCm5N92ZTSgM3J/iRlxGMYPRzl3CkmwpRJjCWD1j55tPDKId6aSagtHZ+SFFxy9mMuL8anNB0OpcOhtbCzkgu6eJx8ynvfKLBeoFPlFGXD3H/af243Apr1q9n2iIiIiIiIiIiISK01ceJE7rjjDsdni+XcL9fp5+d3zq9xvNLSUqxW63m/br9+/Zg6dSplZWVs3LiR2267jaysLD799FOncjXxHESkblASXuQwf09X/n1lC4Z3iePFHzbzzbpkvli5j2/WHWDUJQ0Z3bMR3m519ytTUFLGlpRcNiUfWb89h83JueQWl1VaPtjbzb52++F12xPCfWkU4o2ri7liYcOA/PQTr0ufvQ/yU6GsEDK22bcT8Qo9cZLer4F9dHltHE3/3cOQsw8C4qDvczXdGhEREREREREREanFfHx8CA8PP6s67r//frZu3crXX38NwOuvv859993HN998w8CBAwFo1qwZ48eP584773QanT9y5EgWLVrEokWLmDRpEgBJSUmOuleuXMnDDz/Mxo0badOmDVOnTqVZsxPMtnqMCRMmMG/ePMaMGcMzzzzDrl27KC8v54cffuCZZ57h77//xmKx0KVLFyZNmkSjRo0AuO6664iMjOSNN94AYNy4cUyaNIm///6bli1bUlZWRkBAAF988QV9+/Y9ZTvc3Nwc9zc6Opobb7yRadOmVSh3ps/BZDLx1ltv8dVXX7Fw4ULCw8N58cUXuf766ystP23aNMaNG0dWVpZj37x58xg0aJBjdoK1a9cybtw4VqxYgclkokmTJrz77rt06NDhtNsnIude3c0oipyhmCBP3rylHbdfcojn5m9i+a5DvLlgO7OW72Fsn6bcfHEDXCyVJJovEIZhsO9QIZuSc5wS7rszCzhmpiEHq8VE41Afe8I93JfmEb40O7x2e5WZTOAdYt+i2lVeprTo8Nr0J0jSZ++zJ+nzU+3bgVWV12NxO3mS3i8KrOd5ZoON/4O1n4LJDIPetS8BICIiIiIiIiIiIudMaVHRCY+ZzGZcXF2rVBazCaur2ynLWt1r3wyePXv2ZMqUKdhsNsxmM4sWLSI4OJhFixYxcOBAUlJS2Lp1Kz169Khw7qRJk9i6dSuJiYlMnDgRgJCQEHbt2gXAY489xiuvvEJISAijR4/mtttu488//6xSu7Zv385nn33GnDlzHCPL8/PzGT9+PK1atSI/P58nnniCQYMGsWbNGsxmMz179uS9995z1HFsX1q2bMny5cspKiqiW7dup32fdu7cyffff1/tI/Iff/xxXnjhBSZNmsSMGTO4+eabSUxMpHnz5mdU35AhQ2jbti1vv/02FouFNWvW1MgsAiJSNUrCi5xA25gAPruzCz9uPMh/vtvMzvR8Hp/3N9P+TOJf/ZvTp3kopto44voY+cVlbE5xHtm+OSWXvBOMbg/1cSPh8Mj2Iwn3hiFeWM/HSwdWdwhqZN8qYxhQkGlPzDuS9ccl6XNToLwYMnfYtxPxDK6YmD82ae8VCuZq6nNuCnw9zv5zt7EQ07l66hUREREREREREZETmjziHyc8Ft+2A4P/NcHx+a3/G0JZcXGlZaNbJHLjky84Pr9/z20U5uZUKHf/7G/OvLGVePjhh/n3v//t+Pzcc88xZsyY06rj0ksvJTc3l9WrV9OuXTt+//13HnjgAb788ksAFixYQFhYGAkJCRXO9fPzw9XVFU9Pz0pHgj/77LOO5P2//vUvBg4cSFFREe5VeBmhpKSEGTNmEBIS4th33XXXOZWZMmUKoaGhbNy4kcTERHr27MnYsWNJT0/HYrGwYcMGnnzySRYuXMhdd93FwoULad++Pd7eVRsA9c033+Dt7U15eTlFh1+sePXVVyuUO5vncP311zNq1CgAnn76aX766SfeeOMN3nrrrSqdf7w9e/bw4IMPOp5XkyZNzqgeETk/lIQXOQmTyUTfluH0Tgjl02V7eP3nbexIy+eOj1bQKT6QxwY256Jo/5puJjabfXT7xuQcNqfYk+2bUnLYnVFQaXlXi5kmYd4khPs6ppRPCPchyPs0RrefbyYTeAXZt8g2lZcpK4HcAyceSZ+1F0rzoSDdviWvqbwes/VwYv74kfSHE/W+UVUbzW4Y8NW9UJgJYa2g56Nn2nsRERERERERERGpRx588EFGjhzp+BwcHHzadfj5+dGmTRsWLlyI1WrFbDZz55138uSTT5Kbm8vChQsrHQVfFRdddJHj54iICABSU1OJiYk55bmxsbFOCXiAHTt28Pjjj7NkyRLS09Ox2WyAPfGcmJhIYmIiQUFBLFq0CKvVSuvWrbn66quZPHkywGn3pVevXrz99tsUFBTwwQcfsHXrVu69994K5c7mOXTp0qXC5zVr1lT5/OONHz+eUaNGMWPGDPr06cP111/vmK5fRGofJeFFqsBqMTO8SxzXto3inYU7mPJHEkuTMrn6zT+5pk0kD1zRjAaBnuelLXnFZWxJsU8lvyk5h80puWw5yej2MF+3w0n2own3+ODzNLr9fHNxta+5HhBX+XHDgKKsk095n5sMtlI4tMu+nYhHwEmmvI8G7zBYNR22/QgWVxj8nr19IiIiIiIiIiIics6Nmf7FCY+ZjpsF8673Zp64IrPzbKh3vPnhWbWrqoKDg2ncuPFZ19OzZ08WLlyIq6srPXr0ICAggJYtW/Lnn3+ycOFCxo0bd0b1HjsN+pEZY48kzk/Fy8urwr6rrrqKBg0a8P777xMZGYnNZiMxMZGSkhLHNS699FJHX3r27EliYiLl5eWsX7+exYsXn1ZfvLy8HPd38uTJ9OrVi6eeeoqnn37aqVx1PYcjTjS7rtlsdqz9fkRpaanT5wkTJnDLLbfw7bff8t133/Hkk08ya9YsBg0aVG3tE5HqoyS8yGnwdbfyUL8EhnaO5eUftzB39X7+t+YA361P4dZucdzVqzF+HtWzBovNZrD3UIFj7fYjCfc9mScY3e5ipqljdLsvzcN9SIjwJdBLiV8Hk8mePPcIgPBWlZcpL7Un4k82mr4kFwoP2beU9ZXXY3axJ/0BLnsCwlqcmz6JiIiIiIiIiIhIBaezRvu5KlsbHFkX3sXFhT59+gDQo0cPZs2adcL14I9wdXWlvLz8nLcxIyODTZs28e6779K9e3cA/vjjjwrljqwL7+rqysSJEzGZTHTv3p2XX36ZwsLCM1oP/ognn3yS/v37889//pPIyMgzrudYS5YsYfjw4U6f27ZtW2nZkJAQcnNzyc/Pd7ykUNmo+aZNm9K0aVPuu+8+br75ZqZOnaokvEgtpSS8yBmI9Pfg1RvacFu3eJ7/bhN/bs/g3d92MnvFXsb0bsLQzrG4ulR9pHluUSlbUuyJ9k2H/9ySkktBSeX/wAn3dad5hM/h9dvtCff4YC9c6uLo9vPNYgX/GPt2IkXZJ07SZ++3r1lvOzwzQfyl0Pnu89N2ERERERERERERuWBkZ2dXSLQGBgZW6zWOrAv/9ddf88wzzwD2ZPZ1111HSEgILVqcePBQXFwcS5cuZdeuXXh7e1d7244ICAggKCiI9957j4iICPbs2cO//vWvCuWOrAvv4uLiSNb37NmT+++/n3bt2uHr63vGbejZsyctW7bkueee48033zzjeo71+eef06FDBy655BJmzpzJsmXLmDJlSqVlO3XqhKenJ48++ij33nsvy5YtY9q0aY7jhYWFPPjgg/zjH/8gPj6effv2sXz5cq677rpqaauIVD8l4UXOQmKUHx/f3omFW9N4fv4mth7MY+I3G5n+1y4e7pdA/8Rwp+llbDaD3ZkFbE7OcSTcN6fksDezsNL6XV3MNAvzsSfcD49wTwj3IUCj22uWu599C2tZ+fHyMsg7aN9Cm4NZL0eIiIiIiIiIiIiIs4ULF1YYGT1ixIhqvYafnx9t27Zlz549joR79+7dsdlsp1xD/YEHHmDEiBG0aNGCwsJCkpKSqrVtR5jNZmbNmsWYMWNITEykWbNmTJ48mZ49ezqVS0xMJDg4mNjYWEfCvUePHpSXl5/x2vbHGj9+PLfeeisPP/wwDRo0OOv6nnrqKWbNmsVdd91FeHg4M2fOPOFLD4GBgXz88cc8+OCDvPfee/Tp04cJEybwf//3fwBYLBYyMjIYPnw4Bw8eJDg4mMGDB/PUU0+ddTtF5NwwGccvMiHk5OTg5+dHdnb2Wb05JfVLWbmNL1bu45WftpKWWwxAuxh/Bl4UyfbUPMfo9sLSyke3R/q5k3A4yd48wr5+e1yQRreL1HeKSdVP91RERGoLxaTqpfspIiK1hWJS9TvZPS0qKiIpKYn4+HjcL7Cp4qXuMplMzJ07l2uvvbammwLoeyJSnaoa5zUSXqSauFjM3NQxhqtaR/L+7zt5d9FOVu3JYtWeLKdybi5mmoX70Dzcl4QIH8fodn9PjW4XERERERERERERERERudApCS9SzbzcXBjXpym3dIzhrYU72HeokIRwH0fCPS7IC4vZdOqKREREREREREREREROYObMmdx5552VHouNjWXDhg3nuUXQsmVLdu/eXemxd999lyFDhpzT6x877X5lNm7cSExMzFldozbedxGpfZSEFzlHQn3dmXD1CdYMFxERERERERERERE5C1dffTWdOnWq9JjVaj3PrbGbP38+paWllR4LCws759ePjIxkzZo1Jz1+tqpy37UStIgoCS8iIiIiIiIiIiIiInKB8fHxwcfHp6ab4SQ2NrZGr+/i4kLjxo3P6TVq430XkdrHXNMNEBERERERERERERERERERqSuUhBcREREREREREREREREREakmSsKLiIiIiIiIiIiIiIiIiIhUEyXhRUREREREREREREREREREqomS8CIiIiIiIiIiIiIiIiIiItVESXgREREREREREREREREREZFqoiS8iIiIiIiIiIiIiIiI1BojR47k2muvrelmiIicMSXhRUREREREREREREREzqOTJZnj4uJ4/fXXnT6bTCZmzZpVoWzLli0xmUxMmzatQvnjtxdeeOGU7dq1a5fTOX5+fnTu3Jmvv/7aqdy0adMqvcYHH3xQpf6LiNR1LjXdABERERERERERERERETmxBg0aMHXqVG666SbHviVLlpCSkoKXl1eF8hMnTuSOO+5w2ufj41Pl6/3888+0bNmSrKws3nrrLa677jpWrVpFYmKio4yvry9btmxxOs/Pz6/K1xARqcs0El5EREREREREREREROoUW0n5CTej1HYaZcurVPZcGzJkCIsWLWLv3r2OfR9++CFDhgzBxaXieEsfHx/Cw8OdtsqS9ScSFBREeHg4CQkJPPvss5SWlrJgwQKnMiaTqcI1PDw8Tln3hAkTaNOmDe+++y4NGjTA09OT66+/nqysrBOec/zsAABt2rRhwoQJTvXGxMTg5uZGZGQkY8aMqXJ/RUSqm0bCi4iIiIiIiIiIiIhInXLgicUnPObeLIDgW4+O6E5+ekmFxPwRrvF+hN55keNzyn+WYcsvq1Au+oXuZ9HaUwsLC6Nv375Mnz6df//73xQUFDB79mwWLVrERx99dM6uW1payvvvvw+A1Wqttnq3b9/OZ599xtdff01OTg633347d999NzNnzjyj+r744gtee+01Zs2aRcuWLUlJSWHt2rXV1l4RkdOlkfAiIiIiIiIiIiIiIiK13G233ca0adMwDIMvvviCRo0a0aZNm0rLPvzww3h7ezttCxcurPK1unbtire3N+7u7tx///3ExcVxww03OJXJzs52qj88PLzK9RcVFTF9+nTatGnDpZdeyhtvvMGsWbNISUmpch3H2rNnD+Hh4fTp04eYmBg6duxYYTp+EZHzSSPhRURERERERERERESkTomc2PWEx0wmk9PniMc7n6Ss8+fwhzueVbvOxsCBA7nzzjv57bff+PDDD7nttttOWPbBBx9k5MiRTvuioqKqfK3Zs2eTkJDA1q1bGTduHO+88w6BgYFOZXx8fFi1apXjs9lc9XGfMTExREdHOz536dIFm83Gli1bTiuZf8T111/P66+/TsOGDenXrx8DBgzgqquuqnSqfhGR80F/+4iIiIiIiIiIiIiISJ1idrXUeNnq5uLiwrBhw3jyySdZunQpc+fOPWHZ4OBgGjdufMbXatCgAU2aNKFJkyZ4e3tz3XXXsXHjRkJDQx1lzGbzWV3jWEdejDj+BYljr2UYhtO+0tJSp/Zu2bKFn376iZ9//pm77rqLl156iUWLFlXrNPoiIlWl6ehFREREREREREREREQuALfddhuLFi3immuuISAg4Lxcs0ePHiQmJvLss89WW5179uzhwIEDjs9//fUXZrOZpk2bVlo+JCSE5ORkx+ecnBySkpKcynh4eHD11VczefJkFi5cyF9//cX69eurrc0iIqdDI+FFRERERERERERERETOs+zsbNasWeO07/gp34/XvHlz0tPT8fT0PGm53NzcCuure3p64uvre0Ztvf/++7n++ut56KGHTmta+xNxd3dnxIgRvPzyy+Tk5DBmzBhuuOGGE05F37t3b6ZNm8ZVV11FQEAAjz/+OBbL0VkJpk2bRnl5OZ06dcLT05MZM2bg4eFBbGzsWbdVRORMKAkvIiIiIiIiIiIiIiJyni1cuJC2bds67RsxYsQpzwsKCjplmSeeeIInnnjCad+dd97JO++8c3qNPOzKK68kLi6OZ599lrfeeuuM6jhW48aNGTx4MAMGDCAzM5MBAwactN5HHnmEnTt3cuWVV+Ln58fTTz/tNBLe39+fF154gfHjx1NeXk6rVq34+uuvq3SvRETOBZNx/CIaQk5ODn5+fmRnZ5/xW2EiIiLVQTGp+umeiohIbaGYVL10P0VEpLZQTKp+J7unRUVFJCUlER8fj7u7ew21UE7HhAkTmDdvXoVZAOTc0fdEpPpUNc5rTXgREREREREREREREREREZFqoiS8iIiIiIiIiIiIiIhIPTB69Gi8vb0r3UaPHl0t12jZsuUJrzFz5sxquYaISG2nNeFFRERERERERERERETqgYkTJ/LAAw9Ueqy6lk+YP38+paWllR4LCwvDx8eHCRMmVMu1RERqKyXhRURERERERERERERE6oHQ0FBCQ0PP6TViY2PPaf0iIhcCTUcvIiIiIiIiIiIiIiIXNMMwaroJIrWWvh8i55+S8CIiIiIiIiIiIiIickGyWCwAlJSU1HBLRGqvgoICAKxWaw23RKT+0HT0IiIiIiIiIiIiIiJyQXJxccHT05O0tDSsVitms8YeihxhGAYFBQWkpqbi7+/veGlFRM49JeFFREREREREREREROSCZDKZiIiIICkpid27d9d0c0RqJX9/f8LDw2u6GSL1ipLwIiIiIiIiIiIiIiJywXJ1daVJkyaakl6kElarVSPgRWqAkvAiIiIiIiIiIiIiInJBM5vNuLu713QzREREANDiKCIiIiIiIiIiIiIiIiIiItVESXgREREREREREREREREREZFqoiS8iIiIiIiIiIiIiIiIiIhINdGa8JUwDAOAnJycGm6JiIjUd0di0ZHYJGdPcV5ERGoLxfnqpRgvIiK1hWJ89VOcFxGR2qKqcV5J+Erk5uYC0KBBgxpuiYiIiF1ubi5+fn413Yw6QXFeRERqG8X56qEYLyIitY1ifPVRnBcRkdrmVHHeZOh1vApsNhsHDhzAx8cHk8l0VnXl5OTQoEED9u7di6+vbzW18MKh/qv/6r/6Xx/7X519NwyD3NxcIiMjMZu1ikx1UJyvPvW5//W576D+q//qv+J87aQYX33Uf/Vf/a+f/a/PfQfF+NpOcb761Of+1+e+g/qv/qv/5zvOayR8JcxmM9HR0dVap6+vb738pT5C/Vf/1X/1vz6qrr7rrfnqpThf/epz/+tz30H9V//Vf8X52kUxvvqp/+q/+l8/+1+f+w6K8bWV4nz1q8/9r899B/Vf/Vf/z1ec12t4IiIiIiIiIiIiIiIiIiIi1URJeBERERERERERERERERERkWqiJPw55ubmxpNPPombm1tNN6VGqP/qv/qv/tfH/tfnvtc39f1Z1+f+1+e+g/qv/qv/9bn/9UV9f87qv/qv/tfP/tfnvoP6X5/U92ddn/tfn/sO6r/6r/6f7/6bDMMwztvVRERERERERERERERERERE6jCNhBcREREREREREREREREREakmSsKLiIiIiIiIiIiIiIiIiIhUEyXhRUREREREREREREREREREqomS8CIiIiIiIiIiIiIiIiIiItVESfgz9Ntvv3HVVVcRGRmJyWRi3rx5TscNw2DChAlERkbi4eFBz5492bBhg1OZ4uJi7r33XoKDg/Hy8uLqq69m375957EXZ+ZUfR85ciQmk8lp69y5s1OZC7XvAM8//zwXX3wxPj4+hIaGcu2117JlyxanMnX5+Vel/3X1d+Dtt9/moosuwtfXF19fX7p06cJ3333nOF6Xnzucuv919bmfyPPPP4/JZGLcuHGOfXX9d6C+qM8xHup3nFeMr78xHhTnFeePUoyv2+pznK/PMR7qd5xXjFeMV4w/SnG+7qrPMR7qd5yvzzEeFOcV5xXnj6iNMV5J+DOUn59P69atefPNNys9/uKLL/Lqq6/y5ptvsnz5csLDw7n88svJzc11lBk3bhxz585l1qxZ/PHHH+Tl5XHllVdSXl5+vrpxRk7Vd4B+/fqRnJzs2ObPn+90/ELtO8CiRYu4++67WbJkCT/99BNlZWVcccUV5OfnO8rU5edflf5D3fwdiI6O5oUXXmDFihWsWLGC3r17c8011zj+0q7Lzx1O3X+om8+9MsuXL+e9997joosuctpf138H6ov6HOOhfsd5xfj6G+NBcV5x3k4xvu6rz3G+Psd4qN9xXjFeMV4x3k5xvm6rzzEe6necr88xHhTnFecV56EWx3hDzhpgzJ071/HZZrMZ4eHhxgsvvODYV1RUZPj5+RnvvPOOYRiGkZWVZVitVmPWrFmOMvv37zfMZrPx/fffn7e2n63j+24YhjFixAjjmmuuOeE5daXvR6SmphqAsWjRIsMw6tfzN4yK/TeM+vU7EBAQYHzwwQf17rkfcaT/hlF/nntubq7RpEkT46effjJ69OhhjB071jCM+vfdry/qc4w3DMV5xfj6HeMNQ3G+vsV5xfj6pz7H+foe4w2jfsd5xXjF+PoW4w1Dcb6+qc8x3jAU5+tzjDcMxXnDUJyvb3G+Nsd4jYQ/B5KSkkhJSeGKK65w7HNzc6NHjx4sXrwYgJUrV1JaWupUJjIyksTEREeZC9nChQsJDQ2ladOm3HHHHaSmpjqO1bW+Z2dnAxAYGAjUv+d/fP+PqOu/A+Xl5cyaNYv8/Hy6dOlS75778f0/oq4/d4C7776bgQMH0qdPH6f99e13oL7Sc7arD991UIyvrzEeFOfra5xXjBc967r/PT9WfY7zivGK8fUtxoPifH2n52xXH77rUL9jPCjOK87Xvzhfm2O8y1nXIBWkpKQAEBYW5rQ/LCyM3bt3O8q4uroSEBBQocyR8y9U/fv35/rrryc2NpakpCQef/xxevfuzcqVK3Fzc6tTfTcMg/Hjx3PJJZeQmJgI1K/nX1n/oW7/Dqxfv54uXbpQVFSEt7c3c+fOpUWLFo6/kOv6cz9R/6FuP/cjZs2axapVq1i+fHmFY/Xpu1+f6TnXj+86KMbXxxgPivP1Oc4rxgvoWdf17/mx6nOcV4xXjK9vMR4U50XPGerHdx3qd4wHxXnF+foX52t7jFcS/hwymUxOnw3DqLDveFUpU9vdeOONjp8TExPp0KEDsbGxfPvttwwePPiE512Ifb/nnntYt24df/zxR4Vj9eH5n6j/dfl3oFmzZqxZs4asrCzmzJnDiBEjWLRokeN4XX/uJ+p/ixYt6vRzB9i7dy9jx47lxx9/xN3d/YTl6vrvgNjV5+dc17/rRyjG178YD4rz9TXOK8bL8errs67L3/Pj1ec4rxivGF+fYjwozouz+vyc6/p3/Yj6HONBcV5xvn7F+Qshxms6+nMgPDwcoMJbEqmpqY43LsLDwykpKeHQoUMnLFNXREREEBsby7Zt24C60/d7772Xr776igULFhAdHe3YX1+e/4n6X5m69Dvg6upK48aN6dChA88//zytW7dm0qRJ9ea5n6j/lalLzx3sU9OkpqbSvn17XFxccHFxYdGiRUyePBkXFxdHH+r670B9V1++66ejrn3XQTG+vsZ4UJyvr3FeMV6OqC/f9aqqS9/zY9XnOK8Yrxhf32I8KM6LXX35rp+OuvZdh/od40FxXnG+/sX5CyHGKwl/DsTHxxMeHs5PP/3k2FdSUsKiRYvo2rUrAO3bt8dqtTqVSU5O5u+//3aUqSsyMjLYu3cvERERwIXfd8MwuOeee/jyyy/59ddfiY+Pdzpe15//qfpfmbr2O3AswzAoLi6u88/9RI70vzJ17blfdtllrF+/njVr1ji2Dh06MGTIENasWUPDhg3r5e9AfVNfv+snU5e+64rxivHHU5yvH3FeMV6OqK/f9ROpS99zqN9xXjG+IsX4+hHjQXFe7Orrd/1k6tJ3vT7HeFCcr4zifP2I8xdEjDfkjOTm5hqrV682Vq9ebQDGq6++aqxevdrYvXu3YRiG8cILLxh+fn7Gl19+aaxfv964+eabjYiICCMnJ8dRx+jRo43o6Gjj559/NlatWmX07t3baN26tVFWVlZT3aqSk/U9NzfXuP/++43FixcbSUlJxoIFC4wuXboYUVFRdaLvhmEY//znPw0/Pz9j4cKFRnJysmMrKChwlKnLz/9U/a/LvwOPPPKI8dtvvxlJSUnGunXrjEcffdQwm83Gjz/+aBhG3X7uhnHy/tfl534yPXr0MMaOHev4XNd/B+qL+hzjDaN+x3nF+Pob4w1DcV5x3plifN1Vn+N8fY7xhlG/47xivGK8Yrwzxfm6qT7HeMOo33G+Psd4w1CcV5xXnD9WbYvxSsKfoQULFhhAhW3EiBGGYRiGzWYznnzySSM8PNxwc3MzLr30UmP9+vVOdRQWFhr33HOPERgYaHh4eBhXXnmlsWfPnhrozek5Wd8LCgqMK664wggJCTGsVqsRExNjjBgxokK/LtS+G4ZRad8BY+rUqY4ydfn5n6r/dfl34LbbbjNiY2MNV1dXIyQkxLjsssscwdww6vZzN4yT978uP/eTOT6o1/XfgfqiPsd4w6jfcV4xvv7GeMNQnFecd6YYX3fV5zhfn2O8YdTvOK8YrxivGO9Mcb5uqs8x3jDqd5yvzzHeMBTnFecV549V22K8yTAM49Tj5UVERERERERERERERERERORUtCa8iIiIiIiIiIiIiIiIiIhINVESXkREREREREREREREREREpJooCS8iIiIiIiIiIiIiIiIiIlJNlIQXERERERERERERERERERGpJkrCi4iIiIiIiIiIiIiIiIiIVBMl4UVERERERERERERERERERKqJkvAiIiIiIiIiIiIiIiIiIiLVREl4ETknTCYT8+bNO6fXmDBhAm3atDmn1xAREZGKFOdFRETqJsV4ERGRuktxXuT8UhJe5AKVmprKnXfeSUxMDG5uboSHh9O3b1/++uuvmm5atZkzZw6dOnXCz88PHx8fWrZsyf333+84/sADD/DLL7/UYAtFRETODcV5xXkREambFOMV40VEpO5SnFecFzmWS003QETOzHXXXUdpaSnTp0+nYcOGHDx4kF9++YXMzMyablq1+Pnnn7npppt47rnnuPrqqzGZTGzcuNEpgHt7e+Pt7V2DrRQRETk3FOcV50VEpG5SjFeMFxGRuktxXnFexIkhIhecQ4cOGYCxcOHCk5Z75ZVXjMTERMPT09OIjo42/vnPfxq5ubmO41OnTjX8/PyMr7/+2mjatKnh4eFhXHfddUZeXp4xbdo0IzY21vD39zfuueceo6yszHFebGysMXHiROPmm282vLy8jIiICGPy5MlO1waMuXPnOj7v27fPuOGGGwx/f38jMDDQuPrqq42kpKQTtn3s2LFGz549T9q/J5980mjdurXTNY/fYmNjHcc3bNhg9O/f3/Dy8jJCQ0ONoUOHGmlpaSe9hoiIyPmmOG+nOC8iInWNYrydYryIiNRFivN2ivMiR2k6epEL0JG3yebNm0dxcfEJy5nNZiZPnszff//N9OnT+fXXX3nooYecyhQUFDB58mRmzZrF999/z8KFCxk8eDDz589n/vz5zJgxg/fee48vvvjC6byXXnqJiy66iFWrVvHII49w33338dNPP1XajoKCAnr16oW3tze//fYbf/zxB97e3vTr14+SkpJKzwkPD2fDhg38/fffVb4vycnJjm379u00btyYSy+91HGsR48etGnThhUrVvD9999z8OBBbrjhhirXLyIicj4ozldOcV5ERC50ivGVU4wXEZG6QHG+corzUq/V9FsAInJmvvjiCyMgIMBwd3c3unbtajzyyCPG2rVrT3rOZ599ZgQFBTk+T5061QCM7du3O/bdeeedhqenp9Pbd3379jXuvPNOx+fY2FijX79+TnXfeOONRv/+/R2fOeatuilTphjNmjUzbDab43hxcbHh4eFh/PDDD5W2NS8vzxgwYIDjzbgbb7zRmDJlilFUVOQoc/xbdUfYbDZj0KBBRvv27Y2CggLDMAzj8ccfN6644gqncnv37jUAY8uWLZW2QUREpKYozivOi4hI3aQYrxgvIiJ1l+K84rzIsTQSXuQCdd1113HgwAG++uor+vbty8KFC2nXrh3Tpk1zlFmwYAGXX345UVFR+Pj4MHz4cDIyMsjPz3eU8fT0pFGjRo7PYWFhxMXFOa3bEhYWRmpqqtP1u3TpUuHzpk2bKm3rypUr2b59Oz4+Po43AgMDAykqKmLHjh2VnuPl5cW3337L9u3b+fe//423tzf3338/HTt2pKCg4KT35tFHH+Wvv/5i3rx5eHh4ONqwYMECx/W9vb1JSEgAOGEbREREaori/IkpzouIyIVMMf7EFONFRORCpzh/YorzUh+51HQDROTMubu7c/nll3P55ZfzxBNPMGrUKJ588klGjhzJ7t27GTBgAKNHj+bpp58mMDCQP/74g9tvv53S0lJHHVar1alOk8lU6T6bzXbK9phMpkr322w22rdvz8yZMyscCwkJOWmdjRo1olGjRowaNYrHHnuMpk2bMnv2bG699dZKy3/88ce89tprLFy4kOjoaKc2XHXVVfznP/+pcE5ERMRJ2yAiIlITFOcrUpwXEZG6QDG+IsV4ERGpKxTnK1Kcl/pKSXiROqRFixbMmzcPgBUrVlBWVsYrr7yC2Wyf9OKzzz6rtmstWbKkwucjb6kdr127dsyePZvQ0FB8fX3P+JpxcXF4eno6vRV4rL/++otRo0bx7rvv0rlz5wptmDNnDnFxcbi46K8+ERG58CjOK86LiEjdpBivGC8iInWX4rzivNRfmo5e5AKUkZFB7969+fjjj1m3bh1JSUl8/vnnvPjii1xzzTWA/W20srIy3njjDXbu3MmMGTN45513qq0Nf/75Jy+++CJbt27lv//9L59//jljx46ttOyQIUMIDg7mmmuu4ffffycpKYlFixYxduxY9u3bV+k5EyZM4KGHHmLhwoUkJSWxevVqbrvtNkpLS7n88ssrlE9JSWHQoEHcdNNN9O3bl5SUFFJSUkhLSwPg7rvvJjMzk5tvvplly5axc+dOfvzxR2677TbKy8ur7b6IiIicLcV5xXkREambFOMV40VEpO5SnFecFzmekvAiFyBvb286derEa6+9xqWXXkpiYiKPP/44d9xxB2+++SYAbdq04dVXX+U///kPiYmJzJw5k+eff77a2nD//fezcuVK2rZty9NPP80rr7xC3759Ky3r6enJb7/9RkxMDIMHD6Z58+bcdtttFBYWnvAtux49erBz506GDx9OQkIC/fv3JyUlhR9//JFmzZpVKL9582YOHjzI9OnTiYiIcGwXX3wxAJGRkfz555+Ul5fTt29fEhMTGTt2LH5+fo63DkVERGoDxXnFeRERqZsU4xXjRUSk7lKcV5wXOZ7JMAyjphshIheWuLg4xo0bx7hx42q6KSIiIlLNFOdFRETqJsV4ERGRuktxXqT20askIiIiIiIiIiIiIiIiIiIi1URJeBERERERERERERERERERkWqi6ehFRERERERERERERERERESqiUbCi4iIiIiIiIiIiIiIiIiIVBMl4UVERERERERERERERERERKqJkvAiIiIiIiIiIiIiIiIiIiLVREl4ERERERERERERERERERGRaqIkvIiIiIiIiIiIiIiIiIiISDVREl5ERERERERERERERERERKSaKAkvIiIiIiIiIiIiIiIiIiJSTZSEFxERERERERERERERERERqSZKwouIiIiIiIiIiIiIiIiIiFST/wfqWGWTX7VdNAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create subplots\n", + "fig, axs = plt.subplots(1, 4, figsize=(25, 10), sharey=True)\n", + "\n", + "for i in range(len(heritability)):\n", + " h = heritability[i]\n", + " for m in methods:\n", + " if \"RF_plus\" in m:\n", + " axs[i].plot(sample_row_n, agg_results[h][m][\"test_auprc\"], label=m, linestyle='dashed')\n", + " else:\n", + " axs[i].plot(sample_row_n, agg_results[h][m][\"test_auprc\"], label=m)\n", + " axs[i].set_xlabel('Sample Size')\n", + " axs[i].set_ylabel('Test AUPRC')\n", + " axs[i].set_title('PVE = ' + str(h))\n", + " \n", + "# Share the label in the last plot\n", + "axs[3].legend()\n", + "\n", + "fig.suptitle(\"Testing AUPRC for Hierarchical Polynomial Model for Diabetes Regression Data\")\n", + "\n", + "# Show the plots\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB+EAAAOlCAYAAACyqZUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1dvG8Xt303sBQiCQ0HsLHZQgTUCqoCiKUgV7wdcuiA2xl59go4lKL4p0aRZ6laKAtNBCT++78/4RshASIMAmG+D7ua5cOGenPDO7mQPee86YDMMwBAAAAAAAAAAAAAAArpvZ2QUAAAAAAAAAAAAAAHCzIIQHAAAAAAAAAAAAAMBBCOEBAAAAAAAAAAAAAHAQQngAAAAAAAAAAAAAAByEEB4AAAAAAAAAAAAAAAchhAcAAAAAAAAAAAAAwEEI4QEAAAAAAAAAAAAAcBBCeAAAAAAAAAAAAAAAHIQQHgAAAAAAAAAAAAAAByGEBwAAgNOYTKZ8/axYseK6jvPGG2/IZDJd07YrVqxwSA3X65dffpHJZFJwcLDS0tLyXMdkMumJJ57I87UZM2bkOo++ffvmuM5ubm6qUKGCnn/+ecXHx+e5n9OnT+vll19W9erV5eXlJT8/PzVp0kRffvmlMjIy8twmPj5e77zzjho0aCA/Pz+5u7srIiJC/fv316ZNm6547ps3b1ZUVJT8/f1lMpn06aefXnGb63G11/F6Pl9FQUREhDp16nTF9Qr6d+HAgQMymUyaMGFCvtbL/jGbzQoODlbHjh21evXqqz7ujf7+XcxkMumNN94o0G2zr33fvn3zfP3NN9+0r3PgwIFrqiUvffv2VURExDVt27JlS7Vs2fKK66Wnp2vIkCEKDQ2VxWJR3bp1r+l4+XXxfdjb21sRERHq0qWLxo8fn+f9Pr/nkpf8/r5fjXfffVdz5sxx6D7z6+K/L/j5+alZs2aaPHmyU+pxhvzeOwtC9v0z+8fLy0thYWG688479cUXXyghIeGa971q1Sq98cYbio2NdVzBAAAAQCFycXYBAAAAuHVdHJi99dZbWr58uZYtW5ajvXr16td1nIEDB6p9+/bXtG1kZKRWr1593TVcr7Fjx0qSzpw5ozlz5qhXr14O2a+np6f9esfGxmrGjBn66KOP9Pfff2vx4sU51v3333/Vrl07JSYmaujQoWrWrJlSUlL066+/6umnn9b06dM1f/58eXl52bfZu3ev2rVrpxMnTmjIkCEaMWKEfHx8dODAAU2bNk3169dXbGys/P39L1lj//79lZSUpClTpigwMPCaQ7iCcj2frxtJUfldyPbkk0+qd+/eslqt2rFjh0aMGKE77rhDq1evVr169ZxdntOsXr1aYWFhBX4cX19fTZ8+XV988YV8fX3t7YZhaMKECfLz87vkl3mKsjFjxujrr7/WF198ofr168vHx6fAj3nhfTglJUWHDh3SggULNGjQIH300UdauHBhjvd09OjRBV7T1Xj33XfVs2dPdevWzSnH79mzp4YOHSrDMLR//369++676t27twzDUO/evZ1SU2EKDQ3V6tWrVaFCBafVsHDhQvn7+ys9PV1Hjx7V0qVL9cILL+iDDz7Q3LlzVadOnave56pVqzRixAj17dtXAQEBji8aAAAAKGCE8AAAAHCaJk2a5FguXry4zGZzrvaLJScn5wh6ryQsLOyaQ6nskd7OFBMTo/nz56tVq1ZatWqVxo4d67AQ/uLr3b59e+3bt09LlizR/v37Va5cOUmS1WpVjx49FB8fr3Xr1qly5cr2bTp27KioqCjdd999eu655/TVV1/Zt+nevbtOnTql1atXq2bNmvZtoqKi9PDDD2vBggVydXW9bI3bt2/XoEGD1KFDB4ecc0ZGhkwmk1xcHPPPoev5fOXlaj/fBbWPixWF34ULlS1b1l5P8+bNVbFiRbVu3VqjR4/Wt99+6+TqnKew3qOuXbtq5syZmjJligYNGmRvX7Zsmfbv369BgwbdkO/D9u3b5enpecnZMK5FSkqKPD09L/l6Xv3eQw89pH79+qlTp07q2bOn1qxZY3+tqHwRpqgICQmxX7+mTZuqefPmioiI0Ndff13oIXxB3HuvxN3d3en35vr166tYsWL25fvuu09PPPGEoqKi1KVLF+3evVvu7u5OrBAAAAAofExHDwAAgCKtZcuWqlmzpn7//Xc1a9ZMXl5e6t+/vyRp6tSpateunUJDQ+Xp6alq1arppZdeUlJSUo595DXddPaUvAsXLlRkZKQ8PT1VtWpVjRs3Lsd6eU3B3bdvX/n4+Oi///5Tx44d5ePjozJlymjo0KG5pg4+fPiwevbsKV9fXwUEBOiBBx7Q+vXrr2rq2IkTJyozM1PPPvus7r77bi1dulQHDx7M5xW8eg0aNJAkHT9+3N42e/Zs7dy5Uy+99FKOAD5br1691K5dO40dO1YxMTGSpDlz5mjbtm16+eWXcwTwF+rQocMlA4sJEybIZDIpMzNTY8aMsU93m2379u3q2rWrAgMD5eHhobp162rixIk59pH9/k2aNElDhw5V6dKl5e7urv/+++/qLsplXGo686lTp6pp06by9vaWj4+P7rzzTm3evDnHOtmfpW3btqldu3by9fVV69atJUlLlixR165dFRYWJg8PD1WsWFGDBw/WqVOn8jz+pk2b1LNnTwUGBtpHRNpsNn3xxReqW7euPD09FRAQoCZNmuiXX37JVe+1/C5I0tq1a9W5c2cFBwfLw8NDFSpU0DPPPGN//b///lO/fv1UqVIleXl5qXTp0urcubO2bduW72ucH9kh1IW/G+PGjVOdOnXk4eGhoKAgde/eXf/8889l9zNgwAAFBQUpOTk512utWrVSjRo17MvZjy6YNGmSqlWrJi8vL9WpU0e//vprrm3//PNPtW7dWr6+vvLy8lKzZs00b968HOtkf+aXLVumQYMGKTg4WH5+fnrooYeUlJSkmJgY3XvvvQoICFBoaKief/75XI+BuHhK+ZMnT+qxxx5T9erV5ePjoxIlSqhVq1b6448/LnsdrsTf31/du3fP9TkZN26cmjdvnud9Ivv1/LwnEyZMUJUqVeTu7q5q1arp+++/z3N/6enpevvtt1W1alW5u7urePHi6tevn06ePHnV52QymfTdd98pJSXFfr/Jvk+npqbq5ZdfVrly5eTm5qbSpUvr8ccfzzVVdnbfMmvWLNWrV08eHh4aMWLEVdciSe3atdOgQYO0du1a/f777/b2vKajHzFihBo3bqygoCD5+fkpMjJSY8eOlWEYee579uzZql27tjw8PFS+fHl9/vnnudaJj4/X888/n+Ocn3nmmRx9rMlkUlJSkiZOnGi/ZhfWFhMTo8GDByssLExubm4qV66cRowYoczMzBzHGjNmjOrUqSMfHx/5+vqqatWqeuWVV67hqknh4eEqXrx4jj4sv+cjZc0Kk30f8PHx0V133aV9+/bl+t263L3XMAyNHj3afu8NDAxUz549tW/fvhzH2rx5szp16qQSJUrI3d1dpUqV0l133aXDhw/b15k+fboaN24sf39/eXl5qXz58va/B0mXno7+au45y5cv16OPPqpixYopODhYd999t44ePXrV1/5CderU0auvvqro6GhNnTrV3p6fvu2NN97Q//3f/0mSypUrl+vxRPn9+x8AAADgTITwAAAAKPKOHTumBx98UL1799b8+fP12GOPSZL27Nmjjh07auzYsVq4cKGeeeYZTZs2TZ07d87Xfrdu3aqhQ4fq2Wef1c8//6zatWtrwIABOcKOS8nIyFCXLl3UunVr/fzzz+rfv78++eQTjRo1yr5OUlKS7rjjDi1fvlyjRo3StGnTFBISctWj2MeNG6fQ0FB16NBB/fv3l81mK9Bnv+7fv18uLi4qX768vW3JkiWSdNnphrt166bMzEz7/yTPns7+Wqcovuuuu+yPLOjZs6dWr15tX961a5eaNWumHTt26PPPP9esWbNUvXp19e3bV++//36ufb388suKjo7WV199pblz56pEiRKXPbZhGMrMzMz1Y7PZ8lX7u+++q/vvv1/Vq1fXtGnTNGnSJCUkJOj222/Xzp07c6ybnp6uLl26qFWrVvr555/tgd3evXvVtGlTjRkzRosXL9awYcO0du1a3XbbbbmCV0m6++67VbFiRU2fPt0+G0Hfvn319NNPq2HDhpo6daqmTJmiLl265HpO97X+LixatEi33367oqOj9fHHH2vBggV67bXXcoRfR48eVXBwsN577z0tXLhQX375pVxcXNS4cWPt2rUrX9czP7K/WFG8eHFJ0siRIzVgwADVqFFDs2bN0meffaa///5bTZs21Z49ey65n6efflpnz57VTz/9lKN9586dWr58uR5//PEc7fPmzdP//vc/vfnmm5o5c6Y9WL4wbFu5cqVatWqluLg4jR07VpMnT5avr686d+6cI5zKNnDgQPn7+2vKlCl67bXX9NNPP2nQoEG66667VKdOHc2YMUMPP/ywPvroI33xxReXvS5nzpyRJA0fPlzz5s3T+PHjVb58ebVs2TLXFyqu1oABA7RmzRp7iB4bG6tZs2ZpwIABea6f3/dkwoQJ6tevn6pVq6aZM2fqtdde01tvvZXrUSU2m01du3bVe++9p969e2vevHl67733tGTJErVs2VIpKSlXdT6rV69Wx44d5enpab/f3HXXXTIMQ926ddOHH36oPn36aN68eXruuec0ceJEtWrVKteXrzZt2qT/+7//01NPPaWFCxeqR48eV1XHhbp06SJJV/xdPHDggAYPHqxp06Zp1qxZuvvuu/Xkk0/qrbfeyrXuli1b9Mwzz+jZZ5/V7Nmz1axZMz399NP68MMP7eskJycrKipKEydO1FNPPaUFCxboxRdf1IQJE9SlSxd7uL969Wp5enqqY8eO9muWPV1+TEyMGjVqpEWLFmnYsGFasGCBBgwYoJEjR+aYPWHKlCl67LHHFBUVpdmzZ2vOnDl69tlnrzlQjYuL05kzZ3J8ESS/52Oz2dS5c2f99NNPevHFFzV79mw1btz4so8cyeveO3jwYD3zzDNq06aN5syZo9GjR2vHjh1q1qyZ/f6YlJSktm3b6vjx4/ryyy+1ZMkSffrppypbtqz9WeqrV69Wr169VL58eU2ZMkXz5s3TsGHDcn2J4WLXcs9xdXXVTz/9pPfff18rVqzQgw8+eHUXPg95fX7z07cNHDhQTz75pCRp1qxZ9s9WZGSkpOv/+x8AAABQKAwAAACgiHj44YcNb2/vHG1RUVGGJGPp0qWX3dZmsxkZGRnGypUrDUnG1q1b7a8NHz7cuPivvuHh4YaHh4dx8OBBe1tKSooRFBRkDB482N62fPlyQ5KxfPnyHHVKMqZNm5Zjnx07djSqVKliX/7yyy8NScaCBQtyrDd48GBDkjF+/PjLnpNhGMbvv/9uSDJeeukl+3mWK1fOCA8PN2w2W451JRmPP/54nvuZPn16nufh7e1tZGRkGBkZGcapU6eMMWPGGGaz2XjllVdybN++fXtDkpGamnrJWhcsWGBIMkaNGpXvbfIjr/O67777DHd3dyM6OjpHe4cOHQwvLy8jNjbWMIzz71+LFi2u6nhX+rnwOl78+YqOjjZcXFyMJ598Msd+ExISjJIlSxr33nuvvS37szRu3LjL1pT9+T548KAhyfj5559zHX/YsGE5tsn+7Lz66quX3ff1/C5UqFDBqFChgpGSknLZY1woMzPTSE9PNypVqmQ8++yz9vb9+/fn6/cie71Ro0YZGRkZRmpqqrFx40ajYcOGhiRj3rx5xtmzZw1PT0+jY8eOObaNjo423N3djd69e9vb8ro/REVFGXXr1s3R9uijjxp+fn5GQkKCvU2SERISYsTHx9vbYmJiDLPZbIwcOdLe1qRJE6NEiRI5ts3MzDRq1qxphIWF2X+Xx48fb0jK9dnp1q2bIcn4+OOPc7TXrVvXiIyMzNEmyRg+fPglr19mZqaRkZFhtG7d2ujevftVbXvheo8//rj9fvT8888bhpF1z/Px8TESEhKMDz74wJBk7N+/3zAMI9/vidVqNUqVKmVERkbmuMcdOHDAcHV1NcLDw+1tkydPNiQZM2fOzLHP9evXG5KM0aNH29uioqKMqKioK55bXv3QwoULDUnG+++/n6N96tSphiTjm2++sbeFh4cbFovF2LVr1xWPdanjXeiff/4xJBmPPvpovs/FarUaGRkZxptvvmkEBwfnuI7h4eGGyWQytmzZkmObtm3bGn5+fkZSUpJhGIYxcuRIw2w2G+vXr8+x3owZMwxJxvz58+1t3t7exsMPP5yrjsGDBxs+Pj457i2GYRgffvihIcnYsWOHYRiG8cQTTxgBAQGXPJ/LkWQ89thjRkZGhpGenm7s3r3b6NKli+Hr62ts2LDBvl5+z2fevHmGJGPMmDE51hs5cmSu349L3XtXr15tSDI++uijHO2HDh0yPD09jRdeeMEwDMPYsGGDIcmYM2fOJc8v+1pl92l5yeveebX3nMceeyzHPt9//31DknHs2LFLHvfCa3Dy5Mk8X09JSTEkGR06dMjz9cv1bRffQy7lcn//AwAAAJyJkfAAAAAo8gIDA9WqVatc7fv27VPv3r1VsmRJWSwWubq6KioqSpKuOOW0JNWtW1dly5a1L3t4eKhy5cr5murdZDLlGnFVu3btHNuuXLlSvr6+uUbQ3X///Vfcf7axY8dKkn3qWZPJpL59++rgwYNaunRpvvdzKUlJSXJ1dZWrq6uKFSumRx99VL169dI777xz1fsyzo0kzGtqdkdbtmyZWrdurTJlyuRo79u3r5KTk+0j5rNd7UjUe++9V+vXr8/1c+FMB5eyaNEiZWZm6qGHHsoxit7Dw0NRUVF5jj7Oq74TJ05oyJAhKlOmjFxcXOTq6qrw8HBJeX++L97HggULJCnXyO28XMvvwu7du7V3714NGDBAHh4el1wvMzNT7777rqpXry43Nze5uLjIzc1Ne/bsydfv6aW8+OKLcnV1lYeHh+rXr6/o6Gh9/fXX9hG5KSkp6tu3b45typQpo1atWl3xd+fpp5/Wli1b9Ndff0nKmsZ60qRJevjhh+Xj45Nj3TvuuEO+vr725ZCQEJUoUcJ+7ZKSkrR27Vr17Nkzx7YWi0V9+vTR4cOHc80I0KlTpxzL1apVk5Q1O8TF7fm5X3311VeKjIyUh4eH/bO0dOnS67r+0vn70aRJk5SZmamxY8fq3nvvzXWNJOX7Pdm1a5eOHj2q3r1757iXhIeHq1mzZjm2/fXXXxUQEKDOnTvn+F2rW7euSpYsed0j/bNlj8C/uPZ77rlH3t7euT5PtWvXvuR0/FfLuMR08nnV2KZNG/n7+9v7w2HDhun06dM6ceJEjnVr1KihOnXq5Gjr3bu34uPjtWnTJklZ17ZmzZqqW7dujmt755135vlYirz8+uuvuuOOO1SqVKkc++jQoYOkrD5Skho1aqTY2Fjdf//9+vnnn3M9cuNKRo8eLVdXV7m5ualy5cpasGCBJk+erPr16+eoJT/nk13Tvffem+MYl+u3L773/vrrrzKZTHrwwQdzHKtkyZKqU6eO/VgVK1ZUYGCgXnzxRX311Ve5ZkmRpIYNG9rrmTZtmo4cOXLF63Et95zsEevZateuLUnX/eibvD6/V9u35eV6//4HAAAAFAZCeAAAABR5oaGhudoSExN1++23a+3atXr77be1YsUKrV+/XrNmzZKkfE1DHBwcnKvN3d09X9t6eXnlCh7d3d2VmppqXz59+rRCQkJybZtXW14SEhI0ffp0NWrUSMWLF1dsbKxiY2PVvXt3mUwme0CfzWKxyGq15rmv7KlrXV1dc7R7enraA+a5c+eqZcuWmjx5st57770c62UHtPv3779kvdlTnGcH4/nZ5lqdPn06z89FqVKl7K9fKK91L6d48eJq0KBBrp8Lp+i/lOyphhs2bGj/gkP2z9SpU3MFTF5eXvLz88vRZrPZ1K5dO82aNUsvvPCCli5dqnXr1mnNmjWS8v58X3yOJ0+elMViUcmSJa9Y87X8LmQ/czssLOyy+37uuef0+uuvq1u3bpo7d67Wrl2r9evXq06dOlc9XfiFnn76aa1fv14bN27U3r17dezYMT3yyCOSzr//l/qMXPz5uFjXrl0VERGhL7/8UlLW9OhJSUl5fqHhStfu7NmzMgzjqj6vQUFBOZbd3Nwu2X7hPScvH3/8sR599FE1btxYM2fO1Jo1a7R+/Xq1b9/+uq5/tuznr7/77rvatGnTJaeiz+97kv1nXp/bi9uOHz+u2NhYubm55fpdi4mJueow91JOnz4tFxcX+6MOsplMJpUsWfK67zeXkx2CZn9W8rJu3Tq1a9dOkvTtt9/qr7/+0vr16/Xqq69Kyn2/uNy1zT6X48eP6++//851XX19fWUYRr6u7fHjxzV37txc+6hRo4Yk2ffRp08fjRs3TgcPHlSPHj1UokQJNW7c2P4YlCvJ/tLUqlWr9PXXX8vX11f33Xdfjkcc5Pd8st/ri3/XLtdvX/x+Hz9+XIZhKCQkJNfx1qxZYz+Wv7+/Vq5cqbp16+qVV15RjRo1VKpUKQ0fPtw+LXuLFi00Z84c+xe7wsLCVLNmTU2ePPmS9VzLPefi+5i7u7uk/P1d6nIu/vxeS992MUf8/Q8AAAAoDC7OLgAAAAC4krxGVi9btkxHjx7VihUr7KOfpKxnEhcVwcHBWrduXa72mJiYfG0/efJkJScna926dQoMDMz1+uzZs3X27Fn7ayEhIZccJZfdfnGQYDab1aBBA/ty27ZtVb9+fY0YMUIPPPCAPVBv27atvvnmG82ZM0cvvfRSnseYM2eOXFxc1LJlS0nSnXfeecVtrlVwcLCOHTuWq/3o0aOSpGLFiuVoL4zR+dmyjz1jxgz76L7Lyau27du3a+vWrZowYYIefvhhe3v2c8/zs5/ixYvLarUqJibGoaHghfuXpMOHD192vR9++EEPPfSQ3n333Rztp06dUkBAwDUfPywsLMdn90LZgdKlPiMXfz4uZjab9fjjj+uVV17RRx99pNGjR6t169aqUqXKVdcZGBgos9l8VZ9XR/rhhx/UsmVLjRkzJkd79jOnr1eZMmXUpk0bjRgxQlWqVMk1Wj1bft+T7PXyuk9e3FasWDEFBwdr4cKFeR7zwhkKrkdwcLAyMzN18uTJHEG8YRiKiYmxj1bO5sj7zS+//CJJ9vtqXqZMmSJXV1f9+uuvOb4cNmfOnDzXv9y1zb7+xYoVk6enp8aNG5fnPvLzmS1WrJhq1659yZlVLvxiQb9+/dSvXz8lJSXp999/1/Dhw9WpUyft3r37ivfR7C9NSVLTpk1VrVo1RUVF6dlnn9Wvv/56VeeT/V6fOXMmRxB/uX774ve7WLFiMplM+uOPP+xh9oUubKtVq5amTJkiwzD0999/a8KECXrzzTfl6elp7ze7du2qrl27Ki0tTWvWrNHIkSPVu3dvRUREqGnTprn27+x7zoUu/vxeS992sRvh738AAACAxEh4AAAA3KCy/6f3xf+D++uvv3ZGOXmKiopSQkKCfVrwbFOmTMnX9mPHjpWvr6+WLl2q5cuX5/j54IMPlJaWph9//NG+fps2bbR8+XL7COVshmFo+vTpioiIUMWKFS97THd3d3355ZdKTU3V22+/bW/v3r27qlevrvfee0+7d+/Otd3UqVO1ePFiDRw40D6ismvXrqpVq5ZGjhyp7du353m8RYsWKTk5OV/X40KtW7e2/4/4C33//ffy8vJSkyZNrnqfjnLnnXfKxcVFe/fuzXM0/aWC4ws54vOdPeXzxeGro1SuXFkVKlTQuHHjlJaWdsn1TCZTrvOYN29evqZVvlZNmzaVp6enfvjhhxzthw8ftj/K4EoGDhwoNzc3PfDAA9q1a5eeeOKJa6rF29tbjRs31qxZs3KM0LTZbPrhhx8UFhbmsKnL85LX9f/7779zPbLhegwdOlSdO3fW66+/fsl18vueVKlSRaGhoZo8eXKOqawPHjyoVatW5di2U6dOOn36tKxWa56/Z9fypYm8ZNd2ce0zZ85UUlJSvj5P12LJkiX67rvv1KxZM912222XXM9kMsnFxUUWi8XelpKSokmTJuW5/o4dO7R169YcbT/99JN8fX0VGRkpKeva7t27V8HBwXle24iICPu2l5o1o1OnTtq+fbsqVKiQ5z7yGt3v7e2tDh066NVXX1V6erp27Nhx2WuUl9tvv10PPfSQ5s2bZ/+c5/d8skPdqVOn5thnfvvt7GMZhqEjR47keaxatWrl2sZkMqlOnTr65JNPFBAQYH8swIXc3d0VFRVlfyzK5s2b8zy+s+852bZu3ap3331XERER9un9r6Zvu9Ro/Bvh738AAACAxEh4AAAA3KCaNWumwMBADRkyRMOHD5erq6t+/PHHXMGCMz388MP65JNP9OCDD+rtt99WxYoVtWDBAi1atEhS1mjbS9m+fbvWrVunRx99VK1atcr1evPmzfXRRx9p7Nix9nBw2LBhmjt3rho3bqyXXnpJlSpVUkxMjL799lutX79e06ZNy1fdUVFR6tixo8aPH6+XXnpJ5cqVk8Vi0cyZM9W2bVs1bdpUQ4cOVdOmTZWWlqa5c+fqm2++UVRUlD766CP7fiwWi2bPnq127dqpadOmevTRR3XHHXfI29tbBw8e1IwZMzR37lydPXv2ai6rJGn48OH25w0PGzZMQUFB+vHHHzVv3jy9//778vf3v+p9OkpERITefPNNvfrqq9q3b5/at2+vwMBAHT9+XOvWrZO3t7dGjBhx2X1UrVpVFSpU0EsvvSTDMBQUFKS5c+fme3pmKSuI6tOnj95++20dP35cnTp1kru7uzZv3iwvLy89+eST13uq+vLLL9W5c2c1adJEzz77rMqWLavo6GgtWrTI/gWRTp06acKECapatapq166tjRs36oMPPrjiNPbXIyAgQK+//rpeeeUVPfTQQ7r//vt1+vRpjRgxQh4eHho+fHi+9vHQQw9pzJgxCg8PV+fOna+5npEjR6pt27a644479Pzzz8vNzU2jR4/W9u3bNXny5AKdqaFTp0566623NHz4cEVFRWnXrl168803Va5cOftjKq5Xu3bt7NOhX0p+3xOz2ay33npLAwcOVPfu3TVo0CDFxsbqjTfeyDWN+n333acff/xRHTt21NNPP61GjRrJ1dVVhw8f1vLly9W1a1d17979us+vbdu2uvPOO/Xiiy8qPj5ezZs3199//63hw4erXr166tOnz3Xt32az2afjTktLU3R0tBYsWKBp06apWrVqV7x333XXXfr444/Vu3dvPfLIIzp9+rQ+/PDDPEdhS1kj0Lt06aI33nhDoaGh+uGHH7RkyRKNGjVKXl5ekqRnnnlGM2fOVIsWLfTss8+qdu3astlsio6O1uLFizV06FA1btxYUtZo7hUrVmju3LkKDQ2Vr6+vqlSpojfffFNLlixRs2bN9NRTT6lKlSpKTU3VgQMHNH/+fH311VcKCwvToEGD5OnpqebNmys0NFQxMTEaOXKk/P39c80ykF9vvfWWpk6dqtdff12//fZbvs+nffv2at68uYYOHar4+HjVr19fq1ev1vfffy/p8v12tubNm+uRRx5Rv379tGHDBrVo0ULe3t46duyY/vzzT9WqVUuPPvqofv31V40ePVrdunVT+fLlZRiGZs2apdjYWLVt21ZSVr9++PBhtW7dWmFhYYqNjdVnn32W4xnoeSnse87GjRvl7++vjIwMHT16VEuXLtWkSZNUokQJzZ071/5Ijavp27K/rPDZZ5/p4Ycflqurq322jaL+9z8AAABAIoQHAADADSo4OFjz5s3T0KFD9eCDD8rb21tdu3bV1KlT7SP5nM3b21vLli3TM888oxdeeEEmk0nt2rXT6NGj1bFjx8tOxZ39vPfBgwfn+bqrq6v69u2r9957T5s2bVJkZKQqVKigdevWacSIEXrjjTd08uRJ+fj4qFGjRlqyZEmeYf6ljBo1SgsXLtRbb71ln763atWq2rJliz788ENNmjRJb731llxcXFS9enV9+umneuSRR3I9c75ChQratGmTvvjiC82ePVtjxoxRWlqaQkND1aJFC/3555/XFJhXqVJFq1at0iuvvKLHH39cKSkpqlatmsaPH6++ffte9f4c7eWXX1b16tX12WefafLkyUpLS1PJkiXVsGFDDRky5Irbu7q6au7cuXr66ac1ePBgubi4qE2bNvrtt99UtmzZfNcxYcIERUZGauzYsZowYYI8PT1VvXp1vfLKK9dzenZ33nmnfv/9d7355pt66qmnlJqaqrCwMHXp0sW+TnZgNHLkSCUmJioyMlKzZs3Sa6+95pAaLuXll19WiRIl9Pnnn2vq1Kny9PRUy5Yt9e6776pSpUr52kevXr00ZswYPfroo/kK3y4lKipKy5Yt0/Dhw9W3b1/ZbDbVqVNHv/zyizp16nTN+82PV199VcnJyRo7dqzef/99Va9eXV999ZVmz56tFStWFOixL5bf9yT7ufKjRo3S3XffrYiICL3yyitauXJljpotFot++eUXffbZZ5o0aZJGjhwpFxcXhYWFKSoqKs8Rx9fCZDJpzpw5euONNzR+/Hi98847KlasmPr06aN33333kmF3fqWkpNinFff09FTx4sVVp04dffvtt3rggQfsAealtGrVSuPGjdOoUaPUuXNnlS5dWoMGDVKJEiXs1/JCdevWVb9+/TR8+HDt2bNHpUqV0scff6xnn33Wvo63t7f++OMPvffee/rmm2+0f/9+eXp6qmzZsmrTpk2OkfCfffaZHn/8cd13331KTk5WVFSUVqxYodDQUG3YsEFvvfWWPvjgAx0+fFi+vr4qV66c/ctJUtYXhiZMmKBp06bp7NmzKlasmG677TZ9//33Oab/vxplypTRk08+qQ8++EC///67WrRoka/zMZvNmjt3roYOHar33ntP6enpat68uX744Qc1adIk34/Q+Prrr9WkSRN9/fXXGj16tGw2m0qVKqXmzZurUaNGkqRKlSopICBA77//vo4ePSo3NzdVqVIlx1TtjRs31oYNG/Tiiy/q5MmTCggIUIMGDbRs2TLVqFHjkscv7HtO+/btJWWNTg8KClKtWrU0atQo9evXL8djIa6mb2vZsqVefvllTZw4Ud9++61sNpuWL1+uli1bFvm//wEAAACSZDIunN8NAAAAQIF799139dprryk6OrpARwMDuD5Dhw7VmDFjdOjQIfuzsgHcen766Sc98MAD+uuvv9SsWTNnlwMAAADgBsBIeAAAAKAA/e9//5OUNYo8IyNDy5Yt0+eff64HH3yQAB4ootasWaPdu3dr9OjRGjx4MAE8cAuZPHmyjhw5olq1aslsNmvNmjX64IMP1KJFCwJ4AAAAAPlGCA8AAAAUIC8vL33yySc6cOCA0tLSVLZsWb344osFPhU3gGvXtGlTeXl5qVOnTnr77bedXQ6AQuTr66spU6bo7bffVlJSkkJDQ9W3b1/uBQAAAACuCtPRAwAAAAAAAAAAAADgIGZnFwAAAAAAAAAAAAAAwM2CEB4AAAAAAAAAAAAAAAchhAcAAAAAAAAAAAAAwEEI4QEAAAAAAAAAAAAAcBBCeAAAAAAAAAAAAAAAHIQQHgAAAAAAAAAAAAAAByGEBwAAAAAAAAAAAADAQQjhAQAAAAAAAAAAAABwEEJ4AAAAAAAAAAAAAAAchBAeAAAAAAAAAAAAAAAHIYQHAAAAAAAAAAAAAMBBCOEBAAAAAAAAAAAAAHAQQngAAAAAAAAAAAAAAByEEB4AAAAAAAAAAAAAAAchhAcAAAAAAAAAAAAAwEEI4QEAAAAAAAAAAAAAcBBCeAAAAAAAAAAAAAAAHIQQHgAAAAAAAAAAAAAAByGEBwAAAAAAAAAAAADAQQjhAQAAAAAAAAAAAABwEEJ4AAAAAAAAAAAAAAAchBAeAAAAAAAAAAAAAAAHIYQHAAAAAAAAAAAAAMBBCOEBAAAAAAAAAAAAAHAQQngAAAAAAAAAAAAAAByEEB4AAAAAAAAAAAAAAAchhAcAAAAAAAAAAAAAwEEI4QEAAAAAAAAAAAAAcBBCeAAAAAAAAAAAAAAAHIQQHgAAAAAAAAAAAAAAByGEBwAAAAAAAAAAAADAQQjhAQAAAAAAAAAAAABwEEJ4AAAAAAAAAAAAAAAchBAeAAAAAAAAAAAAAAAHIYQHAAAAAAAAAAAAAMBBCOEBAAAAAAAAAAAAAHAQQngAAAAAAAAAAAAAAByEEB4AAAAAAAAAAAAAAAchhAcAAAAAAAAAAAAAwEEI4QEAAAAAAAAAAAAAcBBCeAAAAAAAAAAAAAAAHIQQHgAAAAAAAAAAAAAAByGEBwAAAAAAAAAAAADAQQjhAQAAAAAAAAAAAABwEEJ4AAAAAAAAAAAAAAAchBAeAAAAAAAAAAAAAAAHIYQHAAAAAAAAAAAAAMBBCOEBAAAAAAAAAAAAAHAQQngAAAAAAAAAAAAAAByEEB4AAAAAAAAAAAAAAAchhAcAAAAAAAAAAAAAwEEI4QEAAAAAAAAAAAAAcBBCeAAAAAAAAAAAAAAAHIQQHgAAAAAAAAAAAAAAByGEBwAAAAAAAAAAAADAQQjhAQAAAAAAAAAAAABwEEJ4AAAAAAAAAAAAAAAchBAeAAAAAAAAAAAAAAAHIYQHAAAAAAAAAAAAAMBBCOEBAAAAAAAAAAAAAHAQQngAAAAAAAAAAAAAAByEEB4AAAAAAAAAAAAAAAchhAcAAAAAAAAAAAAAwEEI4QEAAAAAAAAAAAAAcBBCeOAGNmHCBJlMJvuPi4uLwsLC1K9fPx05ckSS9Oyzz8pkMunff/+95H5effVVmUwmbdq0SZIUERGRY78X/rRs2bIwTi2HKVOmqG7duvLw8FCpUqX0zDPPKDExMV/bfvrpp7r77rtVrlw5p9UPAMC1oJ+/vN27d+v5559X/fr1FRAQoKCgIDVv3lwzZswohKoBALh29PFXZ+fOnXJ3d5fJZNKGDRsKoFIAAByHfv7KYmJi9MQTT6h8+fLy9PRUeHi4BgwYoOjo6AKuGihcLs4uAMD1Gz9+vKpWraqUlBT9/vvvGjlypFauXKlt27ZpwIAB+vTTTzVu3Di9//77uba12Wz6/vvvVbduXUVGRtrbmzdvrg8//DDX+n5+fgV6Lhf78ccf9eCDD2rgwIH65JNPtHv3br344ovauXOnFi9efMXtv/rqK3l7e6tVq1aaO3duIVQMAIBj0c/nbfHixZo3b5769Omjhg0bKjMzU1OnTtU999yjESNGaNiwYYV0FgAAXBv6+CuzWq3q37+/ihUrpqNHjxZgxQAAOBb9fN7S0tLUokULnT17ViNGjFD16tW1a9cuDR8+XIsWLdI///wjX1/fQjoToIAZAG5Y48ePNyQZ69evz9H++uuvG5KMH374wTAMw2jUqJFRsmRJIyMjI9c+FixYYEgyvvjiC3tbeHi4cddddxVs8fmQmZlphIaGGu3atcvR/uOPPxqSjPnz519xH1ar1f7fNWrUMKKiohxdJgAABYJ+/vL9/MmTJw2bzZar/a677jK8vLyM1NRUh9YLAICj0Mdf+d/y2T744AOjdOnSxmeffZbnNQMAoKihn798P79kyRJDkvHdd9/laP/pp58MScasWbMcXjPgLExHD9yEmjRpIkk6ePCgJGnAgAGKiYnRggULcq07fvx4ubu764EHHijUGvNjzZo1OnbsmPr165ej/Z577pGPj49mz559xX2YzdzmAAA3F/r5LMWKFZPJZMrV3qhRIyUnJ+vMmTMOrRcAgIJGH5/Tnj17NGzYMI0ePbrQR/gBAOBo9PNZXF1dJUn+/v452gMCAiRJHh4ejisWcDLSKeAm9N9//0mSihcvLkm6//775eXlpXHjxuVY7+zZs/r555/VvXt3BQYG5njNMAxlZmbm+jEM44rHz2u7a9nX9u3bJUm1a9fO0e7q6qqqVavaXwcA4FZCP395y5cvV/HixVWiRIlr2h4AAGehj895HgMHDlSnTp3UpUuXK64PAEBRRz+fpXnz5qpfv77eeOMNrV+/XomJidq0aZNeeeUVRUZGqk2bNlc8F+BGQQgP3ASsVqsyMzOVmJioefPm6e2335avr6/9H6q+vr665557NG/ePJ04ccK+3Y8//qi0tDQNGDAg1z7nz58vV1fXXD/vvPPOFevJa7u8fiZOnHjZ/Zw+fVqSFBQUlOu1oKAg++sAANzM6Ofz77vvvtOKFSv02muvyWKxXPX2AAAUJvr4S/vyyy+1bds2ffHFF1dcFwCAooh+Pm8uLi5avny5ypcvr0aNGsnX11f169dXQECAlixZYh8pD9wMXJxdAIDrlz2VTbZatWppzJgxCgkJsbcNGDBAEydO1KRJkzR06FBJWdPahIeHq3Xr1rn2edttt+mTTz7J1V66dOkr1rN+/fp81V2uXLl8rZfXVLOXawcA4GZCP58/CxYs0OOPP66ePXvqySefvKptAQBwBvr4vB08eFAvv/yyPv300xzXAgCAGwn9fN4yMjLUq1cvbd++Xd9++62qVKmi/fv36+2331bbtm21bNmyXFPVAzcqQnjgJvD999+rWrVqcnFxUUhIiEJDQ3Otc/vtt6ty5coaP368hg4dqr///lubNm3SG2+8kWfH6O/vrwYNGlxTPXXr1s3XelcaoRYcHCwp69t1F//D+8yZM3l+2w4AgJsN/fyVLVq0SHfffbfatm2rH3/8kS/qAQBuCPTxeXv88cdVs2ZN9ejRQ7GxsZKk5ORkSVJiYqLi4uL4n/MAgCKPfj5vY8eO1YIFC7R+/Xr7udx+++267bbbVKFCBX366acaPnx4vmoFijqmowduAtWqVVODBg1Ut27dPDvzbP3799eOHTu0bt06jRs3TmazWX379nV4PY6a2qZWrVqSpG3btuVoz8zM1L///quaNWs6vHYAAIoa+vnLW7Rokbp166aoqCjNnDlTbm5u13ZiAAAUMvr4vG3fvl1r1qxRYGCg/efxxx+XJN1xxx0KDw+/jrMEAKBw0M/nbcuWLbJYLIqMjMzRXr58eQUHB1/xmfLAjYSR8MAt5OGHH9Zrr72mr7/+Wr/88otat25dIP94ddTUNo0bN1ZoaKgmTJigXr162dtnzJihxMRE3X333ddVJwAAN5NbsZ9fvHixunXrpttuu01z5syRu7t7vmoDAOBGcqv18VOmTFFqamqOtoULF2rUqFH66quvVKNGjXzVCQDAjeBW6+dLlSolq9Wq9evXq3Hjxvb23bt36/Tp0woLC8tXncCNgBAeuIWULFlSHTt21Pjx42UYhgYMGHDJdWNjY7VmzZpc7e7u7qpXr95lj3OtU+JczGKx6P3331efPn00ePBg3X///dqzZ49eeOEFtW3bVu3bt7evu3LlSrVu3VrDhg3TsGHD7O0bNmzQgQMHJEnx8fEyDEMzZsyQJDVs2JBv0AMAbhq3Wj//559/qlu3bipZsqReeeUVbdmyJcf+q1evLj8/P4fUCgCAM91qffzFz9CVZP93ff369R1WJwAARcGt1s/369dPn3zyiXr06KHXXntNVapU0b59+/Tuu+/K29tbQ4YMcUidQFFACA/cYgYMGKBffvlFQUFB6tat2yXX++uvv9S0adNc7aVLl9bhw4cLsMKcHnzwQVksFr333nuaMGGCgoKC9NBDD+mdd97JsZ5hGLJarbLZbDna//e//+WaQueee+6RJI0fP75ApvYBAMBZbqV+/rffflNKSooOHDigVq1a5dr38uXL1bJly4I+BQAACsWt1McDAHCruZX6+TJlymj9+vV68803NWrUKB07dkwhISFq2rSphg0bpipVqhTaeQAFzWQYhuHsIgAAAAAAAAAAAAAAuBmYnV0AAAAAAAAAAAAAAAA3C0J4AAAAAAAAAAAAAAAchBAeAAAAAAAAAAAAAAAHIYQHAAAAAAAAAAAAAMBBCOEBAAAAAAAAAAAAAHAQQngAAAAAAAAAAAAAABzExdkFFEU2m01Hjx6Vr6+vTCaTs8sBANzCDMNQQkKCSpUqJbOZ7845Av08AKCooJ93LPp4AEBRQR/vePTzAICiIr/9PCF8Ho4ePaoyZco4uwwAAOwOHTqksLAwZ5dxU6CfBwAUNfTzjkEfDwAoaujjHYd+HgBQ1FypnyeEz4Ovr6+krIvn5+fn5GoAALey+Ph4lSlTxt434frRzwMAigr6eceijwcAFBX08Y5HPw8AKCry288TwuchezobPz8/OnQAQJHAVGuOQz8PAChq6Ocdgz4eAFDU0Mc7Dv08AKCouVI/zwNpAAAAAAAAAAAAAABwEEJ4AAAAAAAAAAAAAAAchBAeAAAAAAAAAAAAAAAHIYQHAAAAAAAAAAAAAMBBCOEBAAAAAAAAAAAAAHAQQngAAAAAAAAAAAAAAByEEB4AAAAAAAAAAAAAAAchhAcAAAAAAAAAAAAAwEEI4QEAAAAAAAAAAAAAcBBCeAAAAAAAAAAAAAAAHMTpIfzo0aNVrlw5eXh4qH79+vrjjz8uu/6XX36patWqydPTU1WqVNH333+fa52ZM2eqevXqcnd3V/Xq1TV79uyCKh8AAAAAAAAAAAAAADunhvBTp07VM888o1dffVWbN2/W7bffrg4dOig6OjrP9ceMGaOXX35Zb7zxhnbs2KERI0bo8ccf19y5c+3rrF69Wr169VKfPn20detW9enTR/fee6/Wrl1bWKcFAAAAAAAAAAAAALhFmQzDMJx18MaNGysyMlJjxoyxt1WrVk3dunXTyJEjc63frFkzNW/eXB988IG97ZlnntGGDRv0559/SpJ69eql+Ph4LViwwL5O+/btFRgYqMmTJ+errvj4ePn7+ysuLk5+fn7XenoAAFw3+iTH45oCAIoK+iTH4noCAIoK+iTH45oCAIqK/PZJThsJn56ero0bN6pdu3Y52tu1a6dVq1bluU1aWpo8PDxytHl6emrdunXKyMiQlDUS/uJ93nnnnZfcJwAAAAAAAAAAAAAAjuLirAOfOnVKVqtVISEhOdpDQkIUExOT5zZ33nmnvvvuO3Xr1k2RkZHauHGjxo0bp4yMDJ06dUqhoaGKiYm5qn1KWeF+WlqafTk+Pv46zgwAABQl9PMAANyc6OMBALh50c8DAG50Tn0mvCSZTKYcy4Zh5GrL9vrrr6tDhw5q0qSJXF1d1bVrV/Xt21eSZLFYrmmfkjRy5Ej5+/vbf8qUKXONZwMAAIoa+nkAAG5O9PEAANy86OcBADc6p4XwxYoVk8ViyTVC/cSJE7lGsmfz9PTUuHHjlJycrAMHDig6OloRERHy9fVVsWLFJEklS5a8qn1K0ssvv6y4uDj7z6FDh67z7AAAQFFBPw8AwM2JPh4AgJsX/TwA4EbntBDezc1N9evX15IlS3K0L1myRM2aNbvstq6urgoLC5PFYtGUKVPUqVMnmc1Zp9K0adNc+1y8ePFl9+nu7i4/P78cPwAA4OZAPw8AwM2JPh4AgJsX/TwA4EbntGfCS9Jzzz2nPn36qEGDBmratKm++eYbRUdHa8iQIZKyvu125MgRff/995Kk3bt3a926dWrcuLHOnj2rjz/+WNu3b9fEiRPt+3z66afVokULjRo1Sl27dtXPP/+s3377TX/++adTzhEAAAAAAAAAAAAAcOtwagjfq1cvnT59Wm+++aaOHTummjVrav78+QoPD5ckHTt2TNHR0fb1rVarPvroI+3atUuurq664447tGrVKkVERNjXadasmaZMmaLXXntNr7/+uipUqKCpU6eqcePGhX16AAAAAAAAAAAAAIBbjMkwDMPZRRQ18fHx8vf3V1xcHNPcAACcij7J8bimAICigj7JsbieAICigj7J8bimAICiIr99ktOeCQ8AAAAAAAAAAAAAwM2GEB4AAAAAAAAAAAAAAAchhAcAAAAAAAAAAAAAwEEI4QEAAAAAAAAAAAAAcBBCeAAAAAAAAAAAAAAAHIQQHgAAAAAAAAAAAAAAByGEBwAAAAAAAAAAAADAQQjhAQAAAAAAAAAAAABwEEJ4AAAAAAAAAAAAAAAchBAeAAAAAAAAAAAAAHDTMaxWGX99IcUdKdTjuhTq0QAAAAAAAAAAAAAAKGDp/+5X3LS/5JG+Ub67F0oPz5XMhTNGnRAeAAAAAAAAAAAAAHBTyDiRrPiZa5Vy0EVSuDJM3eVTO0Emk6nQaiCEBwAAAAAAAAAAAADc0DLj0pSweJ+SNp5UVgxulZfPFvn17iBT+SqFWgshPAAAAAAAAAAAAADghhY3a6tSdqVJMsnDvFr+Daxy7fKc5OJe6LUQwgMAAAAAAAAAAAAAbii2dKuMDJssXi7ShnHyO/SFbOaB8vP5Ve73PC9VauO02gjhAQAAAAAAAAAAAAA3BMNqU9L6GMUvjZZHeW8Fmd6T/v1VrpKKV18udfte8inh1BoJ4QEAAAAAAAAAAAAARZphM5Sy7ZTiFx9Q5ulUSVL69l2yuSyR2eIqtR0hNX5UMpudXCkhPAAAAAAAAAAAAACgiDIMQ2l7YhW36IAyjiRKksxu6fKzjZO3ZaFMxSKkHmOlUnWdWueFCOEBAAAAAAAAAAAAAEVS8vrjOjtrjyTJ5GaSr88y+SR9KbNLqlTvQan9KMndx8lV5kQIDwAAAAAAAAAAAAAoMgyrIZPFJEnyrF1Mcb8dlFeps/I98pwsyUckD3+p8xip5t1OrjRvhPAAAAAAAAAAAAAAAKfLjEtT/JKDyjyVouKDa8tkMslsSlVo1Uky/T0pa6UyjaW7v5UCw51b7GUQwgMAAAAAAAAAAAAAnMaWnKH4FYeUuOqolGlIktKjE+Tuuk+a0V+mM3slk1lq8X9SixckS9GOuYt2dQAAAAAAAAAAAACAm5It3arEv44oYeVhGalWSZJbhJ/87wyX+5GJ0m8jJFuG5Fc6a/R7RHMnV5w/hPAAAAAAAAAAAAAAgEKVcSpFJ7/eKltChiTJtaS3/NpHyKNUukw/95P2LstasVpnqfPnkleQE6u9OoTwAAAAAAAAAAAAAIBC5RLkIYu3q0yuFvm3DZdnneIy7f1N+vpRKemk5OIptR8p1e8rmUzOLveqEMIDAAAAAAAAAAAAAAqMYRhK2xOrxFVHFfxAVZlcLTKZTQruU10Wf3eZlCEtfkVaMzprgxI1pJ7jpBJVnVv4NSKEBwAAAAAAAAAAAAAUiLToeMUvPKC0fXGSpMTVx+TbIkyS5BLsKZ3cLc3sL8Vsy9qg0WCp7ZuSq4ezSr5uhPAAAAAAAAAAAAAAAIfKOJGs+EUHlLLjdFaDxSSfpqXkVT8ka9kwpM2TpAUvShnJklew1HW0VKW984p2EEJ4AAAAAAAAAAAAAIBDGDZDsbP/U9KGGMmQZJK8IkPk17asXALOjW5PiZV+fUbaMTtruVyU1P1ryS/USVU7FiE8AAAAAAAAAAAAAMAhTGaTbMkZkiF5VA+W/53hcg3xPr9C9Bpp5iApLloyu0itXpOaPS2Zzc4r2sEI4QEAAAAAAAAAAAAA18SWblXiX0flVa+4faS7f4dy8mkRJvdwvwtWtEq/fyitfE8ybFJgOanHWCmsvpMqLziE8AAAAAAAAAAAAACAq2JYbUpaH6P4pdGyJWQo83SKgnpWliS5FPOUSzHP8yvHHpJmPSJFr8parn2fdNeHkruvEyoveITwAAAAAAAAAAAAAIB8MWyGUradVNzig7KeTpUkWYI85FEpIO8Ndv4s/fKklBonuflKnT6Wat9beAU7ASE8AAAAAAAAAAAAAOCKUvecVdyC/co4miRJMvu4yq9VWXk3KimTy0XPdE9Plha+JG2amLVcur7U4zspqHwhV134COEBAAAAAAAAAAAAAFeUtjdOGUeTZHK3yLdFmHxuKy2zuyX3ijHbpBkDpFO7JJmk256V7nhFsrgWes3OQAgPAAAAAAAAAAAAAMgl40SyDKsht1BvSZJvVJhkGPJpESaLdx6BumFIa7+WlrwuWdMln5LS3d9I5aMKuXLnIoQHAAAAAAAAAAAAANhlxqUpfslBJW88Lreyfio+pLZMJpPMni7y71Au742STklzHpP2LMpartxB6vql5B1ceIUXEYTwAAAAAAAAAAAAAADZkjMUv+KwElcdlTJtkiSzt6uMdKtM7peJlvcuk2YPkRKPSxZ3qd3bUqNBkslUSJUXLYTwAAAAAAAAAAAAAHALs6VblfjXUSWsPCQj1SpJcovwk3+HcnIP97v0hpnp0vK3pb8+y1ouXlXqMVYqWbMQqi66COEBAAAAAAAAAAAA4BaWuuO04hcdkCS5lvSWX/sIeVQJlOlyI9lP75VmDpCObs5abtBfaveO5OZV8AUXcYTwAAAAAAAAAAAAAHALMWyGrLFpcgnykCR51ikuj79Pyqt2cXnWKS6T+QrTyG+dIs0bKqUnSh4BUtf/SdU6F3zhNwhCeAAAAAAAAAAAAAC4BRiGobQ9sYpbuF+2xAyV/L8GMrlaZDKbVOzhGlfeQWp8Vvi+bVrWcvht0t3fSP6lC7bwGwwhPAAAAAAAAAAAAADc5NIPJShuwX6l7YuTJJncLUo/mnT5Z75f6PCGrOnnzx6QTBap5cvS7c9JZkvBFX2DIoQHAAAAAAAAAAAAgJtUxolkxS8+oJTtp7MaLCb5NC0l35Zhsvi4XXkHNqv016fS8nclW6YUUFbqMVYq06hA676REcIDAAAAAAAAAAAAwE0o80yqjn+6UbJJMklekSHya1NWLoEe+dtB/FFp1iPSgT+ylmv2kDp9Inn4F1jNNwNCeAAAAAAAAAAAAAC4SRiZNplczJIklyAPeVQLlgzJ/85wuYZ4539H/86Xfn5cSjkjuXpLHT+Q6vaWTKYCqvzmQQgPAAAAAAAAAAAAADc4W7pViX8dUeJfR1XiyXpy8XeXJAXfX9UeyudLRoq0+HVp/bdZy6F1pB7jpGIVC6DqmxMhPAAAAAAAAAAAAADcoAyrTUnrYxS/NFq2hAxJUtLaY/JvFyFJVxfAn/hHmtFfOrEza7npE1LrYZKLu4OrvrkRwgMAAAAAAAAAAADADcawGUrZdkrxiw8o83SqJMkS5CH/tuHyrFP8KndmSBvGSotelTJTJe8SUvcxUsU2BVD5zY8QHgAAAAAAAAAAAABuIIbN0Mlv/lb6gXhJktnHVX6tysq7UcmrG/kuSclnpF+elP79NWu5Yhup2xjJp4SDqy58qRlWvfHLDj3RqqLCAr0K7biE8AAAAAAAAAAAAABwAzGZTXIP91PGsST53l5aPreHyexuufod7f9DmvWIlHBUMrtKbUdIjR+VzFcZ5BdBmVabnp6yWYt2HNf6A2e0+NkoWcymQjk2ITwAAAAAAAAAAAAAFGEZJ5IVv/iAfG4rLfcIf0mS7x1l5HN7aVl83K5+h9YMacV70h8fSTKk4EpSz7FSaB3HFu4khmHo1dnbtWjHcblZzHqra81CC+AlQngAAAAAAAAAAAAAKJIy49KU8Fu0kjbESIZkTcpUicG1JUlmj2uMes8ekGYOlA6vz1qu10fqMEpy83ZM0UXA+4t2aeqGQzKbpM/vr6tmFYsV6vEJ4QEAAAAAAAAAAACgCLElZyh+xWElrjoqZdokSR7Vg+V/Z/j17XjbDOnXZ6W0eMndX+r8qVTz7usvuAj55ve9GrNiryTp3e611L5maKHXQAgPAAAAAAAAAAAAAEVE4tpjiluwX0aqVZLkFuEn/w7l5B7ud+07TUuUFrwgbfkxa7lMY6nHd1JAWQdUXHRM33BI787/V5L0Yvuquq+Rc86PEB4AAAAAAAAAAAAAigiTxSwj1SrXkt7yax8hjyqBMpmu43nmRzdLMwZIZ/ZKJrPU4v+kFi9IlpsrKl68I0YvzdomSXqkRXkNiSrvtFpurisLAAAAAAAAAAAAADcIw2YoZdspmSwmedbMem65V2QJmdwt8qwRLJP5OsJ3m01a/T9p6ZuSLUPyC5N6fCuFN3NQ9UXHmn2n9cTkzbLaDPWsH6aXO1S9vi8uXCdCeAAAAAAAAAAAAAAoRIZhKG1PrOIWHVDGkURZ/N3lUSVIJlezTGaTvGoVu74DJByX5gyR9i7LWq7WReryueQZeP3FFzHbj8Rp4MQNSs+0qU21EL13dy2nBvASITwAAAAAAAAAAAAAFJr0QwmKW7BfafviJEkmd4u8G5WUZDjmALsXS3MelZJPSS6eUvuRUv2+kpOD6YKw/1SS+o5fp8S0TDUuF6T/9a4nF4vZ2WURwgMAAAAAAAAAAABAQcs8laK4BfuVsuN0VoPFJJ+mpeTbMkwWHzcHHCBN+u0Nac3orOWQmlKPsVKJqte/7yIoJi5VD363VqcS01U91E/fPtxAHq4WZ5cliRAeAAAAAAAAAAAAAAqcNSkjK4A3SV6RIfJrU1YugR6O2fnJ3dLM/lLMtqzlxkOkNiMkVwftv4iJTU7XQ+PW6khsiiKCvTSxfyP5ebg6uyw7QngAAAAAAAAAAAAAcDBbcobSohPkWTVIkuQe7ie/9hHyrBYk1xBvxxzEMKTNk6QFL0oZyZJXsNR1tFSlvWP2XwQlp2eq/4T12n08USF+7po0oLGK+7o7u6wcCOEBAAAAAAAAAAAAwEFs6VYl/nVUCSsPycg0FPp/DWTxzwqJ/VqWcdyBUmKluU9LO+dkLZdvKXX/WvIt6bhjFDHpmTY9+sMmbYqOlb+nq77v31hlgrycXVYuhPAAAAAAAAAAAAAAcJ0Mq01J648rfulB2RIyJEmuJb1lTcqwh/AOE71GmjlQijskmV2kVq9LzZ6SzGbHHqcIsdkMPT99q1buPilPV4vG9W2oKiV9nV1WngjhAQAAAAAAAAAAAOAaGTZDKdtOKX7xAWWeTpUkWYI85N8uXJ61i8tkNjnuYNZM6Y8PpZWjJMMmBZaTeo6VStd33DGKIMMwNGLuDv2y9ahczCaNeTBS9cMDnV3WJRHCAwAAAAAAAAAAAMA1siWm68z0XVKmIbOPq/xalZV3o5IyuTh4VHrsIWnWICl6ddZynfuljh9I7kVzNLgjfbZ0jyauPiiTSfro3jpqWaWEs0u6LEJ4AAAAAAAAAAAAALgKGSeT5Vo861nkFj/3rGe9m0zyua20zO4Wxx9wxxxp7lNSapzk5it1+kSqfY/jj1METVx1QJ/+tkeS9EbnGupat7STK7oyQngAAAAAAAAAAAAAyIeME8mKX3RAKTtOq/hjdeRe1k+S5NcmvGAOmJ4kLXxZ2jQxa7l0fanHWCmoXMEcr4j5ecsRvTF3hyTpmTaV9HCzCOcWlE+E8AAAAAAAAAAAAABwGZlxaYpfclDJG49LhiSTlH4g3h7CF4iYbdKM/tKp3VkHvO1Z6Y5XJItrwR2zCFmx64SGTtsqw5Aebhqup1tXcnZJ+UYIDwAAAAAAAAAAAAB5sCVnKH7FISWuOiplGpIkj+rB8r8zXK4h3gVzUMOQ1n4lLRkmWdMln5LS3d9I5aMK5nhF0MaDZzXkh43KtBnqUqeUhneuIZPJ5Oyy8o0QHgAAAAAAAAAAAAAuYhiGTnz9tzKPJ0uS3Mr5yb99ObmHF+Do98ST0s+PSXsWZy1X7iB1/VLyDi64YxYxu2IS1H/CeqVm2BRVubg+vKeOzOYbJ4CXCOEBAAAAAAAAAAAAQJJkWG2SySST2SSTySTf20orcdVR+bWPkEflwIIdjb13mTR7iJR4XLK4S3e+IzUcKN1AI8Cv16Ezyeozdq3iUjIUWTZAYx6MlJuL2dllXTVCeAAAAAAAAAAAAAC3NMNmKGXbScUtPii/VmXlXT9EkuRVP0Re9UNkKsiR2Jnp0rK3pFWfZy0Xryb1HCuF1Ci4YxZBJxPS1GfsWp1ISFPlEB+N69tQXm43Zpx9Y1YNAAAAAAAAAAAAANfJMAyl7YlV3ML9yjiaJElKXHNMXpElZDo3Ir5And4rzRwgHd2ctdxgQNYIeFfPgj1uEROfmqG+49fpwOlkhQV66vv+jRXg5ebssq4ZITwAAAAAAAAAAACAW05adLziFx5Q2r44SZLJ3SLfFmHyua10wU47L0mGIW2dIs1/XkpPlDwDpS7/k6p1KtjjFkGpGVYNnLhBO47Gq5iPmyYNaKyS/h7OLuu6EMIDAAAAAAAAAAAAuKXELTmohKXRWQsWk3yalpLvHWVk8XYt+IOnxkvznpO2Tc9aDr9Nuvsbyb90wR+7iMm02vTET5u1bv8Z+bq7aEK/RipXzNvZZV03QngAAAAAAAAAAAAAtxSPSgFKWBYtr8gQ+bUtK5eAQhp5fWh91vTzsQclk0W642Xptucks6Vwjl+EGIahl2Zt02//HJebi1nfPtxANUv7O7sshyCEBwAAAAAAAAAAAHBTMmyGrAnpSvzriMxuFvm1CZckuUf4q+QLDeUSWEjhu80q/fmJtPxdybBKAWWlHmOlMo0K5/hFjGEYenf+P5qx8bDMJul/99dTk/LBzi7LYQjhAQAAAAAAAAAAANxwjAybrEnpOUaxJ/x1ROkH4mWNT5c1Lk3WhHTJakiSTK5meTcJlcXHTZIKL4CPPyrNekQ68EfWcs0eUqdPJI+bY9T3tfhq5T59+8d+SdJ7PWqrXY2STq7IsQjhAQAAAAAAAAAAABQZhmHIZDLZl1N2nlb6kUTZ4tNljU+TNS7rT1typmQxqfRbzWUyZ62fvj9OKdtP59yhSXIt5SO/tuEyF8Yz3y/07zzp58ellLOSq7fU8QOpbm/pgvO71UxZF61RC/+VJL3asZrubVDGyRU5HiE8AAAAAAAAAAAAgEKVEZOkjBPJ9kDdPnI9Pl22pAyVGt7UHqwnbzqeO1jPZjLJlpIpy7lw3SsyRG4R/rL4u8ni5571p6+bTBZzYZ1alowUafFr0vrvspZD60g9xknFKhZuHUXMwu3H9MrsbZKkIVEVNKhFeSdXVDAI4QEAAAAAAAAAAABcN1tqZlaQHpdzxLo1Ll3WxHSVeKyuPViPXxqtlG2nLr2v5Az7tPHulQJl9nKVxc9NFn/3HH+aPF1yjJr3rF4Enit+fKc0c4B0YmfWctMnpNbDJRc359blZKv+O6WnJm+RzZB6NSijF9tXcXZJBYYQHgAAAAAAAAAAAMAlGVZD1sSskeq2C0asW+PTFXhPZXuwfnbmnssH60kZsvhmBdGuod6yxqefH7Hu55bjv81e56eN92kcWrAn6CiGkTXyffFrUmaq5F1C6j5GqtjG2ZU53d+HYzXo+w1Kt9rUvkZJvdO9Zo4vTxQUm80mW6ZVLm6F+xgCp4fwo0eP1gcffKBjx46pRo0a+vTTT3X77bdfcv0ff/xR77//vvbs2SN/f3+1b99eH374oYKDs77VMmHCBPXr1y/XdikpKfLw8Ciw8wAAAAAAAAAAAABuNLY06/nR6nFpsiaky7dF2PlgfdYeJa2PkYy8t/fvWM4erFv83GTycDkXpucxat3dYt/Or1VZ+bUqW+DnV2iSz0g/PyHtmpe1XLGt1G2M5FPcuXUVAXtPJqrv+PVKSreqaflgfXpfXbkU8OMBDJtNfy/7XX9Omaywag3UdeigAj3exZwawk+dOlXPPPOMRo8erebNm+vrr79Whw4dtHPnTpUtm/uX7s8//9RDDz2kTz75RJ07d9aRI0c0ZMgQDRw4ULNnz7av5+fnp127duXYlgAeAAAAAAAAAAAAtwrDZsiWlGEfte5RNej8VPDLopW85YSsceky0qy5tvWODJHFLytYN7lZsgJ4s2TxvXDUurvMfm4yWc6PZva/q7wCOlcolPMrUvb/Ic16REo4KlncpDYjpMZDJHMhP4e+CDoWl6I+363VmaR01Srtr28eqi8PV8uVN7xG1sxM/fPnSv0xebKSY2MkSXs3Jigt9WG5exTe4wCcGsJ//PHHGjBggAYOHChJ+vTTT7Vo0SKNGTNGI0eOzLX+mjVrFBERoaeeekqSVK5cOQ0ePFjvv/9+jvVMJpNKlixZ8CcAAAAAAAAAAAAAFDIjwyprXLosQR72YD1p43Gl/nvm/DPZE9Il2/nh66GvNLYH67bkTGWeSLG/ZnK35JgK/sJh775RYfJtESazj6v9WJdypddvOtYMacVI6Y+PJRlScCWp51gptI6zKysSzialq8/YdToal6ryxbw1oV9D+XoU3LTwpw8f0qz3hiv+5IlzLW4KCG2i9o89WKgBvOTEED49PV0bN27USy+9lKO9Xbt2WrVqVZ7bNGvWTK+++qrmz5+vDh066MSJE5oxY4buuuuuHOslJiYqPDxcVqtVdevW1VtvvaV69eoV2LkAAAAAAAAAAAAA18swssLv7Gdlp/4Xq7T9cfbR7Lb4c38mZ0qSQl9pJIufuyQp41hS7uexmySzT9az1o2M8yPevRuGyKNqYFbo7u8ms/ulI8PsqeZxkbMHpJkDpcPrs5YjH5Lavye5eTu1rKIiKS1TfSes138nElXSz0OTBjZWsI+7w49jGIb998U/pKSsmZly8/SV2bWebu/dQ7Vali+UZ89fzGkh/KlTp2S1WhUSEpKjPSQkRDExMXlu06xZM/3444/q1auXUlNTlZmZqS5duuiLL76wr1O1alVNmDBBtWrVUnx8vD777DM1b95cW7duVaVKlfLcb1pamtLS0uzL8fHxDjhDAABQFNDPAwBwc6KPBwDg5kU/j5tdxslkZRxLOv8M9nPBetZPmkJfaGgP1lN3nVHiH0fy3I/J1SxrUqZ9Xc8awXIJdLdPE2/xd5fFJ+d08dlcQ7zlGkJYfM22zZB+fVZKi5fc/aUun0k1uju7qiIjLdOqIT9s1NZDsQrwctWkAY1UOsDTocdISYjXpgVzdWDLRtXv/Lw8fNwUUauYur84XIElS8lmc5GHd8GNur8Sp05HLynXNw8u/LbCxXbu3KmnnnpKw4YN05133qljx47p//7v/zRkyBCNHTtWktSkSRM1adLEvk3z5s0VGRmpL774Qp9//nme+x05cqRGjBjhoDMCAABFCf08AAA3J/p4AABuXvTzuBHZ0jJlPXsuTI9Lswfq2UF7sX417VPBJ62LuWSwLilrmvlzwbp7hL+MdGuO57BnTxtv8rDkyNTcy/nLvZx/wZ7orS4tQZr/grT1p6zlMk2kHt9KAWWdW1cRYrUZem7aVv2x55S83Cwa37ehKoX4Omz/CWdOaeOvc/T3bwuVkZYqSVr87a/yK1FDvd8IUEi5Cg471vUwGdnzWhSy9PR0eXl5afr06ere/fw3Q55++mlt2bJFK1euzLVNnz59lJqaqunTp9vb/vzzT91+++06evSoQkND8zzWoEGDdPjwYS1YsCDP1/P6Vl2ZMmUUFxcnPz+/az1FAACuW3x8vPz9/emTrgP9PACgqKKfvz708QCAooo+/vrRz6MoMayGrInp55+znj0dfFya/DuVl8UnK1iPnb9Pib9fOlgv8XhduZXJCiKTNhxX0oaYrEDdz80+Jfz5/3bPc/Q6nOzIJmnmAOnMPslkllq8ILX4P8ni9DHPRYZhGHp1znb9tDZarhaTxvVtqNsrFXfIvs/GHNX6X2Zq58qlsmZmPY7B5FJCLu6N5OpVWQ07lle9dmVlcTE75HiXkt9+3mmfCjc3N9WvX19LlizJEcIvWbJEXbt2zXOb5ORkubjkLNlisUg6/4yMixmGoS1btqhWrVqXrMXd3V3u7o5/BgEAAHA++nkAAG5O9PEAANy86OdRWGxpmeeD9XN/ejcKleXcFNbxvx1U/NJo6RLDWX2al7aH8BY/d5m9XGTxc5M5j1HrLsXOT8Xt3SBE3g1C8t4pih6bTVr9hbT0LcmWIfmFZY1+D2/m7MqKnI+X7NZPa6NlMkmf9KrrsAD+9OFDmvj84zIMmyTJ1bOsZGkgs0u4wmsEq8X9leVf3Mshx3IUp34147nnnlOfPn3UoEEDNW3aVN98842io6M1ZMgQSdLLL7+sI0eO6Pvvv5ckde7cWYMGDdKYMWPs09E/88wzatSokUqVKiVJGjFihJo0aaJKlSopPj5en3/+ubZs2aIvv/zSaecJAAAAAAAAAAAA50tcd0yJfxyRNT5dRpo11+vuFQLsIbzJwyUrgDebzo1Sd8sxet3s62bfzqd5KfneVrqwTgOFJSFGmj1E2rc8a7laF6nL55JnoHPrKoLG/blfXyz7T5L0Vtea6lS71HXtL+HMKfkGFZMkBZUOU2ilKjK7eOjEocoyu5SWl5+bbru3kirWL3HJR507k1ND+F69eun06dN68803dezYMdWsWVPz589XeHi4JOnYsWOKjo62r9+3b18lJCTof//7n4YOHaqAgAC1atVKo0aNsq8TGxurRx55RDExMfL391e9evX0+++/q1GjRoV+fgAAAAAAAAAAACg6jHSbMk+m2JdN7pas0er+7lnBurvF/pp3/RB51Skus7erTObLh3xFMQTEddq9WJrzqJR8SnLxlDq8J0U+LPFe5zJ782G9+etOSdLQtpX1YJPwa9qPYRg6uG2L1s2Zrpi9ezToy3Hy9PGVyWRSz9fflqubuxaP3SEPLxc17lZB7p5F91EATnsmfFHGM3sAAEUFfZLjcU0BAEUFfZJjcT0BAEUFfZLjcU1xvTJPpding888m6rM06n2aeIvDN0BSVJmmrRkuLR2TNZySC2p51ipeBXn1lVELfv3uAZ9v1FWm6F+zSM0rFP1q/5SimGz6b8Na7R29nQd37dHkmS2uKjlw8/o8K4A3dGnmnwC3c+ta1zxSzEFqcg/Ex4AAAAAAAAAAAAoSKl7zurUuO3yaVZK/p3KyyXQQy6BHs4uC0XVyd3SjP7S8W1Zy42HSG1GSK58ZvKy/sAZPfrDJllthrrXK63X77q6AN6amaldq37X2jnTdebIIUmSi5u7arZsJ7N7pNb8nCib7YxWz/lPbfvVkCSnBvBXgxAeAAAAAAAAAAAANx1bWqbOztwjGedGzzKNOC7FMKRN30sLX5IykiWvYKnbGKnync6urMj651i8+k9Yr7RMm1pVLaH3e9aW+SoD8qTYs1r01WeyWa1y9/JWvfadVCy8udb+EqOEMwmSpPJ1i6tJ1woFcQoFihAeAAAAAAAAAAAAN524+ftljU2TJdBd/u3LObscFFUpZ6W5T0s7f85aLt9S6v615FvSqWUVZdGnk/XQuHVKSM1Ug/BAfdk7Uq4W8xW3S0tO1sG/N6lyk9skSX7FiiuyY1d5+vqpYsPWWjf3sLYsPyBJ8glyV4v7qqhc7WIFeSoFhhAeAAAAAAAAAAAAN5XU/84qaW2MJCmwZ2We/Y68HVwtzRokxR2SzC5S62FS0ycl85UD5VvViYRUPTh2rU4mpKlqSV+N7dtQnm6X//1Kjo/T5oVztXnhXKUlJemhD/6n4mUjJElRD/aXJK2e/Z/2bj4pk9mkOq3LqOFdEXLzuHGj7Bu3cgAAAAAAAAAAAOAitrRMnZ2xR5Lk3SRUHhUCnFsQih5rpvTHh9LKUZJhk4LKSz3GSqUjnV1ZkRaXkqGHxq5T9JlklQ3y0vf9G8nf0/WS6yecOaWNv87W1t8WKjMtTZIUVCpMqYlZU81brTZZzo2gr98hQnEnUtTgrggVC/Mt+JMpYITwAAAAAAAAAAAAuGnELThwfhr6DkxDj4vEHsoa/R69Omu5Tm+p4/uS+40f/BaklHSrBk5cr39jElTMx12TBjRSCT+PvNdNiNcfkydqx4qlslkzJUkh5Suqcbd7VbFhE6Wn2fT7lN06dThB3Z+LlMlskpuHi9oPrlWYp1SgCOEBAAAAAAAAAABw03Ar66uUv08qsAfT0OMiO+ZIc5+SUuMkN1+p0ydS7XucXVWRl2G16YmfNmn9gbPy9XDR9/0bKTzY+5Lru7i7a++GtbJZMxVWvaYad7tX4bXrSZL2bjqpP6btVnJcuiTp8O6zKlM1qFDOozARwgMAAAAAAAAAAOCm4R0ZIs8awTK7E4PhnPQkaeFL0qbvs5ZL18+afj6ImRKuxGYz9MKMv7X03xNydzFr7MMNVb2UX451juz6R//8sUyt+z8qk9ksVzd3tRnwmLz8A1S6anVJUvypFK2cvFvRO05LkvyLeyqqd5WbMoCXCOEBAAAAAAAAAABwEzAybDK5Zj1fmgAekqSEGGnzD9LGCVLcIUkm6bZnpTtekSyXfpY5shiGobfn/aPZm4/IYjZp9AORalQuyP7awb83a+2caTq8c7skKbx2PVVq1EySVKlx1p9Wq01blkRrw7wDysywyexiUuSd4arfPlwurjfvTBXcgQAAAAAAAAAAAHBDS9sXq9NTdimwW0V5Vg92djlwJptN2rdc2jhe2rVAsmU9k1y+oVL3r6XyUc6t7wYyesVejftrvyTpg5611bpaiAybTf+tX6O1c6bp+L7/JElmi4tqRLVS8bK5ZxYwSfpv4wllZthUunKAonpXUWDJS09lf7MghAcAAAAAAAAAAMANy5Zu1ZkZe2SLT1fqv2cI4W9VCcelLT9IGydKsQfPt5dpLNXvK1XvJrl5Oau6G86Paw/qg0W7JEmvd6quuyPDlBwXq6kjXtaZI4ckZT37vXbr9mrQqbt8g4vZt01NzJCLu1kurhaZLWbd8WBVnTmWpCqNS8pkMjnlfAobITwAAAAAAAAAAABuWPELD8h6JlUWf3f5d+QZ37cU+6j3CdKu+edHvbv7S3XuywrfQ6o7s8Ib0ry/j+m1OVlTzD/RsoIG3Jb1e+Xp5y9Xdw+5e3urXvvOqte+s7z8/O3bGYahXWti9NfM/1QzqrQady4vSSoR7qcS4X65D3QTI4QHAAAAAAAAAADADSltX5wSVx2VJAX2qCSzB9HXLeFSo97DGkkN+jHq/Tr8seeknpm6WS7WdPUJOKKghb8orcXHcvfylslkUscnh8o7IEjuXjmv79mYJK38aZeO7I6VJB3cdloNO0bIbDE74SycjzsRAAAAAAAAAAAAbji2dKvOzNwtSfJuWFIelQOdXBEKlM0m7V+RNer933kXjXrvdW7Uew0nFnjj23IoVk+N/1ORp7eofuIOWQ6m6qykHSt+U2THrpKkoFJhObbJzLBq44KD2rT4oGyZhlxczWrYqZzqtC5zywbwEiE8AAAAAAAAAAAAbkDxiw7IejpVFn83+d/FNPQ3rcQT0uYfpE0TpbMHzreHNcoK3mt0Z9S7A2zbdUD/+/Q79Tq7Xa5G1hccgkqFqVG3e1S1eVSe25w4GK/F3+1Q3MkUSVJ4zWC1uK+y/Ip5FlrdRRUhPAAAAAAAAAAAAG4ohs2QLSUrKAy8m2nobzo2m7R/pbRx/EWj3v2k2udGvZes6dQSbyb7j5zU/OHPqNq58L14RAU17dFLFRs0kcl86dHsHt6uSopNk7e/m267t7IqRBaXyWQqrLKLNO5IAAAAAAAAAAAAuKGYzCYF3VtFPreVllspH2eXA0dJPHn+We9n959vD2t4wah3b6eVdzOJP3lCfsVL6HRimgZM2aEKXuVU3Jyq+x/pp5oNG+YZphs2Q0f2xCqsStajH/yKearjY7UVEuEnN09i5wtxNQAAAAAAAAAAAHBDIoC/Cdhs0oHfpQ3Zo94zstrto94flkrWcm6NN5Ej/+7U2jnTdGDLJt0z8nM9Pu+w9p1MUnqF9hrxeAuVCsh7KvlThxO04sddOr4/Xt2HRqpUpQBJUplqQYVY/Y2DEB4AAAAAAAAAAAA3hLSD8UpYeViB3SrK4ufm7HJwPRJPSlt+zHrW+5l959tLN8ga9V7zbka9O4hhGDq4dZPWzpmuw/9slySZTGZ9MGGe/k6LUJC3myYMappnAJ+emqn1v+7X1mWHZdgMuXpYlBibWtincMMhhAcAAAAAAAAAAECRZ2RYdXb6bmWeSlG8n5sCu1V0dkm4WjabdOCPrGe9//PrRaPe7z33rHdGvTuKYbNpz/rVWjt7mk7s3ytJMltcVL1FK/1qVNXcgxnydrNoQr+Gqlgi96wS+7ee1O9TdyvxTJokqUK94rrt3sryCXQv1PO4ERHCAwAAAAAAAAAAoMiLW3JQmadSZPZzk3+7cGeXg6uReFLa+pO0ccJFo97rS/X7Meq9gGSmp2vJt18qNSFeLu7uqtOmvSI7dtO7K49p7vpDcrOY9c1DDVQ7LCDXtst/+Fc7/zwqSfIN9lCL+yorolaxQj6DGxchPAAAAAAAAAAAAIq0tIPxSvzjiCQp8O5KMnu5OrkiXJFhSPt/zwre/5l7ftS7m+/5Ue+htZ1Z4U0nIz1Nu1f/qeotWslkMsnVw0NNuvdSalKC6rXvLC8/f72/8F9NWX9IZpP0+f111bxi3sF6qYr++nfVMdVtW0YN7ionVzdLIZ/NjY0QHgAAAAAAAAAAAEWWkWHV2Rm7JUPyiiwhz6pBzi4Jl5N0KutZ7xsnSmf2nm8vFSk16CfVuFtyzz31Oa5dWnKStiyap00LflFyXKw8ff1UPrKhJKn+XV3t6337+z6NXpH1nrzTvZba1wy1v3Z8f7zSkjNUtkawJKly45IKKe+vgBJehXgmNw9CeAAAAAAAAAAAABRZcUuilXkyRWZfNwV0Ku/scpAXwzj3rPcJWaPerelZ7W6+Uu17zo16r+PMCm9KyXGx2rTgF21e+KvSU5IlSX7FQ2S1ZuZad8bGw3pn/j+SpBfaV9H9jcpKktJSMrVmzl5t//2IvHzd1PuNxnL3cpXJZCKAvw6E8AAAAAAAAAAAACiSjAyrUneeliQFdq/INPRFTdLpc6PeJ+Qe9V6/r1SzB6PeC0BGepr++GmCti1drMz0NElSUOkyatztHlVp1kIWl5wR8JKdx/XizL8lSQNvK6dHoyrIMAz9t+GE/py+R8nxWV+aKFMtSIZRuOdysyKEBwAAAAAAAAAAQJFkcrWoxFP1lLL9lDyrBzu7HEjnRr3/KW0cf9Godx+p1rlR76XqOrPCm56Lq5sO79yuzPQ0hZSvpMbd71HFBk1kMptzrbtm32k9/tMmWW2GekSG6ZWO1RR/KkUrJ+/WoZ1nJEkBIV6Kur+ywnjUg8MQwgMAAAAAAAAAAKDIMrtZ5B0Z4uwykHRa2vpT1qj30/+dby9V79yo956Mei8gJw7s06b5v6hV/8Fy8/CUyWRSy4cGyWazKrxWXZlMpjy3234kToMmblB6pk1tqoVoVI9aSo5L05Q31ykzwyaLi1n1O4Qrsl24LK65A3xcO0J4AAAAAAAAAAAAFCnphxKUHh0v76alZDLnHTCiEBiGdPAvacN46Z9fGPVeyA7/u0PrZk/T/i0bJUnFyoarQafukqSyNWtfdtv9p5LUd/w6JaRlqlG5IP2vdz25WMzyCfRQhcgSSopLU9T9VRQQwnPfCwIhPAAAAAAAAAAAAIoMI8OmM9N3K/NEsmxpVvm1Kuvskm49SaelrZPPjXrfc749tG5W8F6rp+Tu66Tibm6GYejA1k1aO3uajvy7Q5JkMplVpdntiqhdL1/7OB6fqj5j1+pUYrpqF/fVQA9/ZSRkyCPIIklq+UAVWVzNlxxBj+tHCA8AAAAAAAAAAIAiI35ptDJPJMvs4yrvxqHOLufWYRjSwVVZz3rf+fNFo957nhv1nr8QGNcmMyNDU4a9oOP7sr74YHFxUY2oNmrQ5W4FliyVr33EJWfoobHrdPhMilq6ear5EWnPnhhlJmeq46NZo+dd3CwFdg7IQggPAAAAAAAAAACAIiH9UIISVh6SJAV2ryiLt6uTK7oFJJ85P+r91O7z7aF1pPr9GPVewAybTSZz1vPYXVxd5V8iRKePRKtOmw6q36mbfIOK5XtfyemZ6j9xvU4dTdRD6R4KiZPSlang0t6KvDO8oE4BeSCEBwAAAAAAAAAAgNMZmTadmbFbMiTPOsXlWSP/4SOukn3U+4Rzo97TstpdvbNC9wb9GPVewDLSUrVt2RJtmj9HPV59yz7SPapPf7UZ+Jg8ff2uan/pmTY99v1Gef6boIfT3GWRSS5uZjXqVF61W4fJYjEXxGngEgjhAQAAAAAAAAAA4HTxS6OVeTxrGvqALhWcXc7N6VKj3kvWzgrea/aUPK4u/MXVSUtO0pZF87Rx/s9KiY+TJG1ZNE93PDxIkuRXrMRV79NmM/T89K1K3h6rqLSs2SMiahfT7b0qyS/Y03HFI98I4QEAAAAAAAAAAOBU1oR0JfxxRJIU2I1p6B3KMKTo1VnB+445F41675E15XypepLJ5Mwqb3rJcbHatOAXbV74q9JTkiVJfsVD1LBLD9Vs2eaa92uz2TRi7k79svWoPDxN6hDsr6hOFVSubjGZeE+dhhAeAAAAAAAAAAAATmXxdVOJR+soZfspedZkGnqHSD4jbZ1ybtT7rvPtJWude9b7PYx6LyQ2q1WTXnxKiWfPSJKCw8qqUbd7VKXp7bK4XFtca7MZ2vH7Ea1YHq3vU89KJmlUrzrqWre0I0vHNSKEBwAAAAAAAAAAgNO5lfaRW2kfZ5dxYzMMKXqNtHH8RaPevaSaPc496z2SUe+FIPZ4jPxLhMhkMslssajmHW11YOsmNep+ryrWbyyT+dqf0X4yOkErfvxXJw4myCypipdF9/WoQgBfhBDCAwAAAAAAAAAAwCkyYpJkGJJbqLezS7mxpZw9P+r95L/n20NqSQ36SrXuZdR7ITm+f6/WzZmu3Wv/Uo+XRyiiTqQkqUmP+9Ts3geva4r49NRMrftlv/5efkiGIaXJ0B+eGWrXvpz6Ni/nqFOAAxDCAwAAAAAAAAAAoNAZmTadmbJLGSeTFXx/Vaahv1qGIR1aK20YL+2cI2WmZrVnj3qv308qzaj3wnL4n+1aN2e69m/ZaG87smunPYS3uLhe874Nw9D+Laf0x7TdSjybNbvBLjerlnqk6+5m4Xq2beXrKx4ORwgPAAAAAAAAAACAQhe//JAyYpJk9naRWwSjtPMt5ay0deq5Ue//nG8PqSnV7yvVvlfy8HdWdbcUwzB0YMtGrZ0zTUf+3SlJMpnMqtq8hRp17aliZSMcdCBp48IDSjybJvcAN003krTLlKnOdUppRJca1zW6HgWDEB4AAAAAAAAAAACFKv1oohKWH5IkBXStKIuPm5MrKuIMQzq07tyz3mdfNOr97nOj3usz6r2wGYZW/jBOpw9Hy+LiohpRbdSwSw8FlAy97l1brTbJJllczTKZTWr5QFWt/+OwXttzSGdSM9WicnF9dE8dmc2850URITwAAAAAAAAAAAAKjWG16ez03ZLNkGfNYHnWYhr6S0o5K/09LWvU+4md59sZ9e4U1swM/fvX76rcpLlc3T1kMpvVtOf9OrZnl+p36ibfIMd8lmP2xWnFj7sUUStYTbpVkCSl+lg04uARnUnNUL2yAfrqwUi5uZgdcjw4HiE8AAAAAAAAAAAACk3C8kPKOJYks5eLArpWZCrti9lHvU+Qdsw6P+rdxTPrWe8NGPVe2DLSUrVt2WJtmDtbCadPKj0lWfXad5YkVWl6u6o0vd0hx0lNytCaOXu148+jkiGlJKarfscIxaVnqs/YtToen6bKIT4a37ehvNyIeYsy3h0AAAAAAAAAAAAUiowTyYpflj0NfQVZfJmG3i4lVvp7au5R7yVqZAXvte6RPAOcVNytKTUpUVsXz9fG+T8rJT5OkuQdGCRXdw+HHscwDO1ed1x/zdijlIQMSVLVpiXVrEdFpdpsenjcOh04nazSAZ76vn9jBXjxe1PUEcIDAAAAAAAAAACgULgU85R/hwilH0mUZ+3izi7H+QxDOrw+K3jfPkvKTMlqd/E8/6z3sAaMei9khmHor6mTtHnhr0pPSZYk+ZcIUcMuPVUjqrVc3BwXgsefStHyH/7V4X/PSpICS3opqncVla4cqNQMqwaOW6cdR+MV7O2mSQMaqaS/Y78AgIJBCA8AAAAAAAAAAIBCYTKb5Ht7mAzDuLWnoU+JveBZ7zvOt5eonhW8176XUe9OZDKZdOpQtNJTkhUcVlaNu92jKs1ayGyxOP5YZpNi9sfL4mpWgw4Rqte2rCyuZmVabXpy8mat3X9GPu4umti/kcoX93H48W921vh4Hf2/F1T82WfkUbVqoR2XEB4AAAAAAAAAAAAFKjM2VRZvV5lcs0LMWzKANwzp8AZp4/iLRr17SDXuzppyPqwho96d4MzRw1r/y0w17XG//IqXkCQ1v/cB1WzZRhXqN5LJbHbs8Y4lKSjUW5LkG+Shtn2rKzjMW/7FvSRljcR/edY2Ldl5XG4uZn37UAPVLO3v0BpuBZlnz+rQgIFK3blT6QcPqvy8X2UqgC9S5IUQHgAAAAAAAAAAAAXGsNp0etI/MtKsCnqgmtzOhY+3jNS486Pej28/3168WlbwXvteyTPQaeXdyo7v+0/r5kzX7nWrJMOQi5u7WvcfIkkqHl5OxcPLOfR4KQnp+mvmf9q1JkZdn62nsCpZ73v5ejkfzfDegn81feNhmU3SF/fXU9MKwQ6t41aQceKEDg0YoLQ9/8kSFKTSn35SaAG8RAgPAAAAAAAAAACAApSw8rAyjiTK5Okii4+rs8spHIYhHdkobRgvbZ+Ze9R7/b5SmUaMeneSw/9s19o503Vgy0Z7W4UGTVS9xR0FcjzDZuifVce0atZ/SkvOlEzS8f1x9hD+Ql+t3Kuvf98nSXqvR23dWaNkgdR0M8s4elQH+/VTxsFouZQoobLjx8m9QoVCrYEQHgAAAAAAAAAAAAUiIyZJ8UujJUmBXSrI4uvm5IoK2CVHvVfNetZ7nV6MenciwzA0e9QI7d+8QZJkMptVtXmUGnXpoWJlIwrkmKePJGrlT7t0bG+cJKlYGR9F9a6ikuVyTy8/dX203lvwryTp5Q5VdW+DMgVS080s/eBBHezXT5lHj8m1VCmVnTBebmXLFnodhPAAAAAAAAAAAABwOMNq6Mz03ZLVkEe1IHnWLX7ljW5EhiEd2SRtHJf1rPeM5Kx2Fw+pRvdzo94bM+q9ENisVqUmJSo1MVGpiQlKTUpQamKiSlepLv8SITKZTCpWJlzR27ao5h1t1aBzDwWEFNxI802LD2rtnH2y2Qy5uFvUuHM51b4jTGZL7mfML9weo5dnbZMkDY4qr8FRhTty+2aQ9t9/iu7XX5knT8otPFxlJ4yXa2ioU2ohhAcAAAAAAAAAAIDDJfx+bhp6DxcFdq8k080WQqfGSdumSxsmSMe3nW/PHvVe+17JK8hp5d3o0pKTFX/qxLkw/Vyonh2uJyaodpsOCimXFVTvWv2nFn/9udJTkvPcV8cnn5d/iRBJUsMuPRTZsat8Agv+vfEN9JDNZqhcnWK6vVdl+QZ55Lneqr2n9NTkzbIZUq8GZfRS+6oFXtvNJnXnTkUPGCjr2bNyr1RJZceNlUtx533xhxAeAAAAAAAAAAAADpVxPEnxvx2UJAV0KS+L300yDb191Pu5Z71nj3q3uGeNem/Qj1Hv5xiGofSUZFlc3eTi6ipJOnP0sKK3/20P0lMTEy8I2BPUqt8Qla1ZW5K0Z90qLRrz6SX3H1a1hj2Et7i65gjg3Ty95OHjKw8fn3N/+tpf8/T1K4CzzZIUm6bYE8kqXTnrkQMVG5SQd6C7SlUMuOQ22w7H6ZHvNyrdalO76iF6p3vNm+8LKwUsefNmHXpksGwJCfKoUUNlvvtWLoHOfewDITwAAAAAAAAAAAAcyuThIvcKATKZTfKqV8LZ5Vy/1Hhp27lnvcdcMOq9WJWs4L12r5t21Ls1M1NpSYlKuWAkemilKvLyy3qmefT2v7V9+eILQvUEpSQmKi0xUYZh090vvaFy9RpIko7u/ldLx46+5LGSzp62/7eXn788/fztYbqnj6/cvX2ygnVvXwWXCbevW7ZGLfX75Otzr/nIbLEU0NXIm81maPvKw1rz8z65uJrV+40m8vB2lclkumwAv/dkoh4ev06JaZlqUj5In99fTy55TFWPS0tau06HHn1URnKyPCMjVebrr2Tx9b3yhgWMEB4AAOD/2bvv6KiqhY3Dv+npFVIIhN6r9CJFREERu1KsCNjFXrB9lnuv7VoAu4JcC4pdQVRAQEF6FekQIAmEkt4z7Xx/DAYjBBGSTBLeZy2WM2f2nHkHkowr79l7i4iIiIiIiIhIhbKGO6gzui2Gy1tzZ/UaBuxb4yveN3wBrgLfcYsD2l7sW3I+sWeNmfXudjopzM0pLcuPFOu+5d47DBxMRJxv/+xNixaw+JP3Kc7Px1VcdNS5Lnno/2hyRjcA8jIOsXnxwnJft7ggv/R2ZHwCzbr1KjNL/c/let3ERqVjm3Tuxq3vfHRC780eGERUYNAJja1oB/fksvCjrRxKzgMgKj6YkkI3AcG24z4vLaeIa6esILPASbuEMN65tisBtqq9eKCmy1+0iNTb78AoKSGoV08avPYa5iD/fB38lUp4ERERERERERERERERqRCGy4PpcJFoMpkw2WtgqVic69vrffU02P/bkeN1WviK944j/Dbr3fB6ATCZfbOls/bv48DO7Uf2Si/Iozi/4PB/fcu7xzRqAsD6ud+z8P13yj13/dZtS0t4w+slL/1QmccdwcG+8jw4FIv1SMEc17QF/a8ZQ0BwyFFLwAcEh2C1H9mKIKFlaxJaPlIxfxl+5ixys/zbJDYsTMUwwB5opdclTWl7Zj1M5uNfmJFV4OTaKSvYm11EkzrBTBvdndCA45f2Ulbu3LnsvedecLkI6d+fhEkTMTsc/o5VSiW8iIiIiIiIiIiIiIiInDLDY3Do7Q1YY4OIuKAJ5oAaVkP9sdf7X2e9t7nIt+R8Yq8Km/XudrkoObwXelF+HjENG2M/PJM7+ff1bF+x5Eix/qdl4IsLCxj51PPUa9EagKTVK49brOdnZZSW8AEhIZgt1r+U5MGlt0Oj65Y+r3GnLoz694uljzmCgjCbj31BRXT9BkTXb1Ahfy81RUmRm4+fXE5BdgkAzbvF0ufyZgSH/30JXFDiZvS0lWw/mE9cWADvj+lOnZDqUx7XBDkzZ7LvoQng8RA6ZAgJzz+H6U8Xe1QHNeynn4iIiIiIiIiIiIiIiFRH+Yv34kzJw3WokPBzGkJNKOFL8o7Mek9bf+R4nRbQ5XroOLLcWe+GYeAqKf5TSZ5fOgO9OD+ftv3PJjgiEoDfF8xlzexvKCrw7ZXuKikuc66RT79QWqwf2rObdT9+V27k4vwjy7tHxMXToE37o2egH94bPaZR09KxbfqeRZt+A09oe4Cg8AiCwiP+dtzpyhFoJbFNFPu2Z9N/ZEsatDmxlRGcbi83f7iadSnZRATZ+GBMd+pHVo/l02uKrE8/Zf//PQGGQfjFFxP/r6cxWavfz5rql0hERERERERERERERERqFNfBQnLm7gYg4oImWE5gRrBf7VsLq96DDZ+XmfWe03AombFnURzUgOKcfIpn/1i6Z/ofy7uHx8QCsPTz6Sz9/ONyXyKhVdvSEt5ZVMih5N1lB5hMh5dwD8F7eJl5gHotWtHzshEEBP9RrIccvu27HxgaVjq2aZfuNO3S/YTe8h9L2Ms/5/F4WT8vhWZdYgirEwhAnyuaY7GasJ7gPu4er8E9n65j0fZ0Am0Wpl7fjeaxoZUZu9bJfP99DvznGQAiRo4g7rHHqu3XtUp4EREREREREREREREROWmG1yDr823gNnC0iCSoS6y/Ix0lK20va2d/RWHy7xQf2E1xURHFHivFnvaM7JRNdN9roNMofp/1Pcumll+sd7/4ytISPiA4BACL1VpmBrojOITAw0u9/6Fp155EJTQos1e6IyjomAVifPOWxDdvWcF/A3Ky0nZks3D6VjL3FbBvezZDb+uAyWTCEXjiNathGDz+ze/M+i0Nm8XEm9d0oXNiZCWmrn3S33yLQ6+8AkDUDTcQc/99J7Sqg7+ohBcREREREREREREREZGTlr94L87kPEwOC5GXNq92xVhhTjafPjKe/IKSw0eswJEZyMUXvQet2gAQHhNLTKOmBIQEl5l9HhASiiM4pLSAB2h/9mDaDxyM1eH42/ccHhNb5rlS/RUXuFj65Q42/ZoGQECIjWZdY07qXC/P3cZHy5MxmeClKzvRv0XdioxaqxmGwaGXXyHj7bcBqHP77dS57dZq93Pmr1TCi4iIiIiIiIiIiIiIyElxHSokZ84ewLcMvTWimi1DX5LPgf/dTFFhEZH2YjoluAhofiYBrQcRUKceASGhhNU5Uqy2GzCIdgMGndCpbY6AykotfmQYBtuW7+fXL3ZQlOcCoE2feHpd0oyAENs/Pt97v+5i0vwdADx1UTuGdaxXoXlrM8MwOPCfZ8j64AMAYu6/j+gxY/yc6sSohBcREREREREREREREZGT4slxYnZYsDUOI6hrNZvpnbETPrmKxpmbGdUkHPOZd1PnvLugms+gFf/avCSNBR9sASCqXjD9R7WkXrOIkzrX12v38uTMTQDcc04LrunZsKJi1nqGx8P+J54g+7PPAYh9/DGiRo3yc6oTpxJeRERERERERERERERETkpAswhi7+kCHm/1Wh56248Yn4/D5MyBkDhihn8ADbr7O5XUAC26x/Lb/FSad4uh06BELFbzSZ1nwZaD3PfZegCu792IOwY2q8iYtZrhcrFvwsPkzpoFZjPx//43EZdc7O9Y/4hKeBERERERERERERERETlpluB/vkR3pfF64ZcXKJj3X75Jbc1ZHQKJH/c/CI3zdzKpplI2Z7Jx0T7OHdMGs8WM1Wbhyke6YTaf/EUlq3ZncstHq3F7DS7uVI/HL2hTvS5Sqca8Tif77r2XvLnzwGol4YXnCTvvPH/H+sdUwouIiIiIiIiIiIiIiMgJM7wGGR9uJqhjHQI71K0+5WJxDnx1M94ts/lub3vSisKYd6AxVwfHUE0SSjVSmOvk18+3s23FAQA2toig/YD6AKdUwG9Oy+WGaSspdnkZ0LIuL1zR8ZTOdzrxFhWROv5OChYtwmSzkTBxIqEDz/J3rJOiEl5EREREREREREREREROWP6SfRRvyqBkRzaOphFYQuz+jgSHtsInV0HGdpZmNCGlMAKbI4Dz73gAk/nklhOX2snwGmxcvI9lX++kpNANJmg/oD4te5z6agnJGYVcO3UFucVuujaM5I2rumCz6OvvRHjyC0i95RYKV67EFBhIg9deJbh3b3/HOmkq4UVEREREREREREREROSEuNKLyP1xNwDhQxtXjwJ+8yz46iZw5rPb24xl6fUAg3PG3UZ0/Qb+TifVSHpqPj9P38L+pFwA6iaGMuCqlsQ0DDvlcx/MK+aaqcs5lFdCq7hQplzXjUC75ZTPezrw5OSQfOONFK//DXNwMA3efougLl38HeuUqIQXERERERERERERERGRv2V4DbI+34bh8uJoGk5wdz/vs+71wMJn4JcXAMiLPZPZq0LByKfD2UNo3bdmLmMtlWfRjG3sT8rFFmChx4VNaD+gfoUsFZ9T5OK6qSvZk1FIg6hA/ndDd8KDbBWQuPZzZ2aSPGYsJZs3YwkPp8G77xLYvp2/Y50ylfAiIiIiIiIiIiIiIiLyt/KX7sO5OxeT3ULkZS38uxd8URZ8MQ52zAXA2/0WvlvmoSh/M3UbNmbA9eP8l00AMAwDDDAdLrldTg8FWSV43F7fH5cX9+H/etxe6tQPIbxuEAC5GUVsX3kAj9vwPX54zB/jW3SLpVGHOgBk7M1n/vubcbuOnPfIfw26nt+Iruc3AqDfiBasmr2bPpc3JyTSUSHvs9jlYdz/VrE5LZc6IQ4+uKEHsWEBFXLu2s514CDJN9yAc+dOLNHRJE6dSkDLFv6OVSFUwouIiIiIiIiIiIiIiMhxudOLyP1hNwDh5zfGGuXHkvHAJvhkFGTtAmsADJuEu8UwHBtewB4YyLC7H8Jmr5iCtSYyDAOvx8BkNpXO8i4pdJH/RwH+R6Ht8uJ1G7jdHuo1iywtpdNT89m1/tCxS22Xl45nNyC+WQQAKZsy+fWL7X8Za5Q+Z+C1rWndOx6AvVuz+O6138rN3W9EC9oP8JXweRnFLPs6qdyx0QnBpSW8x+3l4J68csd63N4/PS+EweMqbpa1y+Pl9ulrWLE7k1CHlf/d0I1GdYIr7Py1mTN1L8mjR+NKScEaF0fie1NxNG7s71gVRiW8iIiIiIiIiIiIiIiIHFfR1szqsQz971/CN7eBqxDCE2HEhxDfETtw8f2PkZm2l8j4BL/F83p85bbVbiktwAtySijMcZYW356/lNuN2tchIMS3dPm+7Vkkb8zE7fbi/WOm+J/K7V6XNCUq3lfyblmWxurv9xw53x/nd3vBgAvv7ESD1lEAbF91kJ+nby0393k3tycksi7gm1m+Yuaucsc27lSX+Ga+2y6nh4y9BeWO/XMBbrVbsAdYsNjMWKyH/9jMWA/fDwy1l44NjnDQqnc8FqsZ6+FxFqvp8HgLcU3DS8eGxwQx9LYOpee1/uX8jqDKqUO9XoMHP/+NeZsP4rCaefe6rrStF/73TxRKdu0i+YYxuNPSsNWvT+K0adjr++/7tjKohBcREREREREREREREZHjCu2TgC02CGtUYOny4lXK44b5T8GvE333mwyAy6bitARhMwxMJhMms5nohAbHfLrXa7BvezbOIneZ5dBb9ozDarMAkLT2EGk7s/+y9LlROn7Q9W0ICvMVxat/2M3GRfuOmiluGL7XG/VEDyLjfGX5hoWprP5+T7lv7YoJXUtL+P1Juaz+ofyxnQY1gMMlvLPIQ/aBwuP8lR0pwO0BFgJDbWXK6T/fDgg+UhlGxgXRtm+9I2NsZYvtmIahpWPjmoRz4fhOvrF/LsEP37YHWkrH1m8ZybhX+peb988iYoI4+9rWJzTWEWilUfs6JzS2ohiGwb9nb+bLtXuxmE28NqozPZpEV2mGmqp42zaSbxiDJz0de5MmJL43FVtsrL9jVTiV8CIiIiIiIiIiIiIiIvK3AppF+ueFCzPh89GQtNB3v8+dMPBxPIbB5088RERcPQaNvRV7QOAxn+71Gnz36nqSN2Ue9VjjjnVLS/jULZls+HlvuTFcJW7AV8I7izzkZRSXO/bPBXhAsI3gCMfhmdyWw4W26XBRbcFqP1JUxzQMpcNZ9csU4H+e3R0RE1Q6tkmnOtSpH4zFasFiMx1VsNsDjpy3Rfc4WpzgCgYxDcOIaRh2QmODwuwEtYk6obG1yesLdzJlsW+1gOcv68CgNrWvRK4MRb9vJGXMGDw5OThatiRx6hSs0bXz4gWV8CIiIiIiIiIiIiIiInIUw2uQ++NugnvE+28P+LT1MONqyE4GWxBc9Bq0uxSARe+/S9r2rWTuS6Uo9+pyS/jV3+8meVMmFpuZOvVDyszWNpmPjKvfOgqL3XLUcuZ/lOYBIUeWS2/brx6NO9Upu/z5n2eOW4+cuNOgRDoNSjyht1u/VRT1W51YqR0SGUBIpJ/+XU5j05cn88KPvqX9Hx3amsu61PdzopqhcM0aUm68CW9+PgEdOpD49ltYIiL8HavSqIQXERERERERERERERGRoxQsTyPv51QKVh8g/sFumGyWv39SRVo/A2aOB3cxRDaGER9BbFsAtq9cyurvvgZgyC13Ex5z7JnIxQUu1v+UAsCAq1rSqmd8uS/XpFNdmnSqe0LRwqIDCYs+dukvtdfsDWk88vUGAG47qylj+zbxc6KaoWDpUlJuvQ2jqIigrl2p/+YbWEJC/B2rUqmEFxERERERERERERERkTLcmcXkfO9bbjtsYGLVFvAeF8x9HJa97rvf7By47B0I9C2Hn31gPz++/goAXS64hGbdepZ7qoBgG5c/2JUdqw8et4AX+TuLt6dz1yfrMAwY2T2R+85t6e9INULewoXsHX8nhtNJcJ8+1H91MubA2n8Bi0p4ERERERERERERERERKWV4DbI+34bh9GJvHEZwVZbX+Yfgs+thz2Lf/X73w4AJYPZdBOB2uZj1yrOUFBYQ36IVfUde97enjIgNouv5jSovs9R661KyufGDVTg9Xs5rF8e/Lm6HyWTyd6xqL/eHH9h73/3gdhNy9tkkvPwSZrv9759YC6iEFxERERERERERERERkVIFK/ZTkpSDyWYm6vIWmMxVVDbuXQ0zroHcvWAPgUvehNbDygz55cOpHEjaQUBoGBfc+SAW67GrrvXzU4iuF3zC+6uLlGfHwTxGv7eCQqeHPs2ieWVEJyxV9T1Rg2V//TVpDz8CXi9h559PveeexWSz+TtWlTH7O4CIiIiIiIiIiIiIiIhUD+7MYnJmH16GfkgjrFW17/naD2Hqeb4CPro5jJt/VAEP0LRrD4LCIzj/tnsIq3Ps/dtTt2bx62fb+WbiOtJT8ys7udRie7OLuGbKCrIKXXSsH85b13TFYa3CrRlqqKxPPiHtoQng9RJ+2aXUe+H506qAB82EFxERERERERERERERkcPyFqZgOD3YG4UR0qte5b+g2wk/ToCV7/rutzzfNwM+IPyYwxu278TYSe9iCwg45uOFuU7mTtmIYUCr3vHUqR9SWcmllsvIL+GaKctJyymmSd1g3hvdnRCHqtW/k/HeNA4+9xwAkVdfTezDEzCZT7954fpKEREREREREREREREREQAihjXFHGwjqEts5S9Dn7cfPr0OUpYBJjjrYeh7H/ylsHM5SyjIzCQizrc3fXkFvNdrMHfqRgpznUTVC6bfiBaVm19qrfwSN6OnrSTpUAH1wgP4cEwPooJPj73MT5ZhGKS//jrpk18FIHrcOOreczcm0+m5dL9KeBEREREREREREREREQHAZDMTPrhR5b9Qygrf/u/5+8ERDpe9Ay0GH3Pogmlvs3XJLwy57R6ad+tV7ilXf7+b1C1ZWO1mBo9th82uZcPlnytxe7jpg1X8lppDZJCN98f0oF5EFW3LUEMZhsGhF18k490pANS9czzRN9982hbwoBJeRERERERERERERETktGYYBkXrDxHYvi4mSyWXZoYBq9+D2Q+A1wV1W8GI6RDd9JjDNy1awIaffgSTCZvj2DPgwbcP/MpZvr3s+49qSVS94EqJL7Wbx2tw1yfr+HVHBkF2C9NGd6dZjLY0OB7D6+XAv/5N1vTpAMQ89CDR11/v31DVgEp4ERERERERERERERGR01jhygNkfbkd+/L91B3XvvKWoXcVw+z7YO0HvvttLoKLXgfHsUvOjNQU5r7jW9q612UjaNThjHJPvXt9euk+8K16xld4dKn9DMPg0a838P3v+7FbzLx9TVc6Nojwd6xqzfB4SHvscXK+/BJMJuKeeILI4Vf6O1a1YP77IZXr9ddfp3HjxgQEBNClSxcWLVp03PEfffQRHTt2JCgoiPj4eEaPHk1GRkaZMV988QVt2rTB4XDQpk0bvvrqq8p8CyIiIiIiIiIiIiIiIjWSO7uY7O+SAAhsE1V5BXzOXph2vq+AN5lh0BNwxf/KLeBdxcXMfPkZ3CUlJLbrSM/LRhz39H2uaMY5Y9rQb7j2gZeT8985W/l4RQomE7wyohNnNq/j70jVmuFyse/++30FvNlMveeeVQH/J34t4WfMmMFdd93FI488wtq1a+nbty/nnXceycnJxxy/ePFirr32WsaMGcPGjRv57LPPWLlyJWPHji0ds3TpUoYPH84111zD+vXrueaaa7jyyitZvnx5Vb0tERERERERERERERGRas8wDLK+3IFR4sGeGEpIn4TKeaHdv8Lb/WHvagiIgKs+hzPvhuPsF/3T1DfISE0mOCKS8++4D7P5+Pu7m0wmWnSLw+bQPvDyz727KInXFuwE4N8Xt+f89lpN4Xi8JSWkjr+T3Nnfg81GwssvE37hhf6OVa34tYR/6aWXGDNmDGPHjqV169a88sorNGjQgDfeeOOY45ctW0ajRo0YP348jRs35swzz+Smm25i1apVpWNeeeUVzjnnHCZMmECrVq2YMGECZ599Nq+88koVvSsREREREREREREREZHqr3DVAUq2ZYHVROQVLSp+FrxhwPK34P0LoeAQxLaDGxdCs7OP+7TtK5aw8eefMJnMDL3zAYIjIo85LnVrFt+/uYHiAlfF5pbTyherU/nXd5sBuH9wS0b1SPRzourNW1hI6i23kr9gASaHgwavTiZs8Ln+jlXt+K2EdzqdrF69mnPPLfuPcu6557JkyZJjPqd3796kpqYye/ZsDMPgwIEDfP755wwdOrR0zNKlS4865+DBg8s9J0BJSQm5ubll/oiIiEjtoM95ERGR2kmf8SIiUpEMw/B3BPkTfc5XDXd2CdmzfMvQh5/bCFvdoIp9AVcRfH0LfP8AeN3Q7nIYMweiGv/tU5t07kaXoRfRZ/jVNGjT/phjCnOdzJ2ykaR1h1j9w56KzS6njXmbDvDAF78BMObMxtw6oKmfE1Vvnvx8ksfdSMGSJZiCgmjw1puE9O/v71jVkt9K+PT0dDweD7GxsWWOx8bGsn///mM+p3fv3nz00UcMHz4cu91OXFwcERERTJ48uXTM/v37/9E5AZ555hnCw8NL/zRo0OAU3pmIiIhUJ/qcFxERqZ30GS8iIhWleFsW6e9txJVe5O8ocpg+56tG9rc7jyxDf2YFL0OfnQxTB8P6j8FkgcH/gcveBXvwCT3dYrUx4NpxdL/4imM+7vUazJ26kcJcJ1H1guk+7O+LfZG/Wp6UwW3T1+DxGlzaOYFHzm+N6ThbJJzuPNnZJI++gaLVqzGHhpL47rsE9+zp71jVll+XoweO+mI2DKPcL/BNmzYxfvx4Hn/8cVavXs0PP/zArl27uPnmm0/6nAATJkwgJyen9E9KSspJvhsRERGpbvQ5LyIiUjvpM15ERCqC4fKS/c0OSrZlUfDNHN/S2eJ3+pyvGuGDG2JvHE7k5RW8DH3Sz/BWf0hbD0HRcO3X0Ou24+7/Dr4uZ/PihXjc7tJj5XU7q7/fTeqWLKx2M4PHtsNm1z7w8s9s3JfD2P+tosTtZVDrGJ67rAPmit6OoRZxp6ez59rrKN6wAUtEBInT3iOo8xn+jlWtWf31wnXq1MFisRw1Q/3gwYNHzWT/wzPPPEOfPn24//77AejQoQPBwcH07duXf/3rX8THxxMXF/ePzgngcDhwOByn+I5ERESkOtLnvIiISO2kz3gREakIeT+n4M4oxmzOJiz5Jlh1CLqN9Xes054+56uGLTaYmJs6VNwJDQOWvgpzHwfDC/GdYPiHEHFiKxn8Nu8H5r37Ght++pErHvs3JvOx55Gmbs1i5axdAPQf1ZKoeic2u17kD7vTC7hu6kryStx0bxTFq6M6Y7P4fd5yteXav5/k0Tfg3LULS906NJw6FUfz5v6OVe357SvKbrfTpUsX5s6dW+b43Llz6d279zGfU1hYiPkvP3QtFt/VTX/s2dOrV6+jzjlnzpxyzykiIiIiIiIiIiIipx93RhG5C30zrCMsb2Gu2wA6jvJzKpHKZRgGroOFFX9iZwF8MQbmPOor4DuOght+OOEC/sCunSz439sANO7crdwC/o994A0DWvWOp1XP+Ap7C3J6OJBbzNVTlpOeX0Lr+DDeua4rATatpFAeZ0oKe666GueuXVjj42n0wQcq4E+Q32bCA9xzzz1cc801dO3alV69evH222+TnJxcurz8hAkT2Lt3L++//z4Aw4YNY9y4cbzxxhsMHjyYtLQ07rrrLrp37069evUAuPPOO+nXrx/PPfccF110Ed988w3z5s1j8eLFfnufIiIiIiIiIiIiIlJ9GIZB9rc7wW3gMK8l0LoMLvsJ7EH+jiZSqQrXHCTr822EDkwk/JyGFXPSzCT45Go4uBHMVhjyrG9FiRPcW7uksIBZLz+Lx+WiSZfudL3gkvLz5zoxW01E1Qum34gWFZNfThs5hS6unbKC1KwiGkYH8b8buhEeaPN3rGqrJCmJ5NE34D5wAFtiIg3fm4otIcHfsWoMv5bww4cPJyMjg6eeeoq0tDTatWvH7NmzadjQ94M/LS2N5OTk0vHXX389eXl5vPrqq9x7771EREQwcOBAnnvuudIxvXv35pNPPuHRRx/lscceo2nTpsyYMYMePXpU+fsTERERERERERERkeqneFMGxVuzADcR1jcxnfN/EN/R37FEKpUnp4TsmTvBAJOtghZK3jEPPh8DxdkQHANX/g8anvjKxIZh8OObE8k+kEZY3RjOu/WecveBB6hTP4Thj3SnpNClfeDlHylyerjhfyvZeiCPuqEOPrihBzGhAf6OVW0Vb91K8g1j8GRkYG/WlMSpU7HFxPg7Vo1iMv5Yx11K5ebmEh4eTk5ODmFhYf6OIyIipzF9JlU8/Z2KiEh1oc+kiqW/TxER+ScOvbOekp25hFpmEN4iGa75GspZ/vqf0mdSxdPf6akzDIOM/22ieEsmtvohxNzSCZPlxGaql3NCWPwS/PQ0YEBCVxj+AYTV+0enWfP9TBZMewuzxcqIp54jvlnLY47zuL1YrNqzW/4Zr9dgU1ouy5IymLl+H+tTcwgLsDLjpl60jtfPkvIUbdhA8thxeHNycLRpTeK772KNivJ3rGrjRD+T/DoTXkRERERERERERESkqtVJ/JL8PUkEhyyHSxZWWAEvUl0Vrj1I8ZZMsJiIuqLFqRXwJXnw9a2w+Vvf/S7Xw3nPg9Xxz05TWMjSz6cD0P+aG8ot4AtznXzx/Cq6DGlE6z7xx50pL6c3r9dg28E8lu7MYOnODJbvyiSnyFX6eIDNzNTru6mAP47CVatIuelmvAUFBHbqRIO338Kii59Oikp4ERERERERERERETl9JP2MaelEQq0GXPThP565K1LTeHKdZH+bBEDYoIbYYoNP/mTpO2DGVXBoC5htcP4L0HX0SZ3KERTEiKeeZ+PPP3HGkGHHHGN4Dea9t5Hc9GLW/ZRCix6xWG1ahl58DMNgx8F8liZlsCwpg2VJmWQWOMuMCbZb6NY4il5NohnSLo6G0afw9V/L5f/6K6m33Y5RXExQjx40eP01zMH6+zpZKuFFREREREREREREpNYzDIOilbsJ/OU2TBjQ+TpofeziT6S2MAyDrK+2YxS7sSWEENqv/smfbOsP8OU4KMmF0Hi48n1o0P2U8kUnNKDfqOvLfXz1D3tI2ZyF1W5myLh2KuBPc4ZhsCu9gKVJvpnuy5IySc8vKTMm0Gaha6NIejWNpmeTaNonhGOzaLWTv5M3fz5777wLw+UiuF9f6k+ahDkgwN+xajSV8CIiIiIiIiIiIiJS6xWtO0Tml6nYTHcRE/8mpiHP+DuSSJUIaBWFc0/uyS9D7/XCL8/DwsPfM4m94Ir/QWjsSeX5bd4PRNZLoEGb9scdt3dbFitm+mbw9x/Zkqh6mpF7ujEMg5TMIpYmpZeW7vtzi8uMcVjNdGkYSa8m0fRqGk2H+hHYrSrd/4nc2bPZe/8D4PEQes451Hvxv5jtdn/HqvFUwouIiIiIiIiIiIhIreYtdpP9zUbASqB1FabL3wG7Cj2p/UwmEyE94gk6Iwaz/SRmkRfnwJc3wbbvffe7jYPB/wHryRV0e7dsYt6U18GAq599hZhGTY45rjDXyZwpGzEMaNUrjla94k/q9aTm2ZtdVLqn+7KkDPZmF5V53G4x0ykxorR079QgggCtkHDSsr/4krTHHgOvl7ALh1HvP//BZFV9XBH0tygiIiIiIiIiIiIitVruzN/wFluxmvYSOqgV1DvD35FEKpVhGBgub2nxflIF/MEtvv3fM3aAxQEXvAxnXHXSmQpzc5g18TkMr5dWffpTt2HjY2c/vA98YY6TyPhg+o1oedKvKdXf/pziMjPdkzMLyzxuNZvo2OBI6d6lYaRK9wqS+dFHHHj6XwBEXHklcU/8HyazVhGoKCrhRURERERERERERKTWcqZmk786DzATUX8xpr4T/R1JpNIVrT9Ezg+7ibysOQHNI//5CTZ9C1/fAs58CKsPwz+AhM4nncfwevn+1RfJz8wgsl59zhl3GybTsZfGN4C4phHsT8plyLh22BwqXGuTg3nFLEvKLJ3pviu9oMzjFrOJ9gnhpXu6d20YSbBDdWZFy3j3XQ7+90UAoq67lpiHHir3e1JOjr5qRURERERERERERKRWMrwG2R8sBsIJtC0n4OqHwKxCT2o3T56T7G934i1040zO+2clvNcDC/4Ni3zlHI36whXTILjOKWVa8c3n7F6/BqvdwbC7H8IeGFTuWLPZRPcLGtO+fwKBodqXuqbLLHCyLMm3vPzSpAx2HMwv87jZBG3r+Ur3Xk2i6dooktAAm5/S1n6GYZA+eTLpr78BQPQtN1N3/HgV8JVAJbyIiIiIiIiIiIiI1EqFc37FmROOiSLChzWH8Pr+jiRSqQzDIOvrHXgL3djigwkd8A++5ouy4IuxsGOe736v22HQk2A5tSopZeNv/DrjQwDOvuFm6iY2Oua44gIXVrsZ6+GlxlXA10w5hS6W7Tqyp/uW/XlHjWkdH1a6vHz3xlGEB6p0rwqGYXDwuefJnDYNgLp3302dm270b6haTCW8iIiIiIiIiIiIiNQ+RVnYf3sCu+lSAhu4sXYf7+9EIpWu6Ld0ijdmgNlE5BUtMFlOcH/n/b/79n/P2g3WQLhwMnS4okIybV+5FMPw0rb/2bQ765xjjvF6DX5853eK8l0MGdeOiNjyZ8pL9ZJb7GJFUiZLD89237w/F8MoO6ZFbEhp6d6jcTSRwbrAoqoZXi/7n3qK7E9mABD78MNEXXuNn1PVbirhRURERERERERERKR2MQyYdTe2wpXUjcuA0b/4O5FIpfPkO8n+ZgcAYQMbYK8XcmJP/P0L+OZ2cBVCRCKMmA5x7Sss11nX3Uhc0xY079ar3DFrfthN6pYsrHYzXo9R7jjxv/wSNyt3Z7Ls8PLyv+/NwfuXf7KmdYMPLy9fhx5NoqgT4vBPWAHAcLtJe+QRcr75Fkwm4p9+iojLL/d3rFpPJbyIiIiIiIiIiIiI1CrG2k8wbfwKTBZMl70LgaH+jiRSqQzDILvMMvQN/v5JHjf89AQsmey73+QsuHwqBEVVaDaTyUSbvmeV+/jerVmsmLkLgP4jWxJVL7hCX19OTZHTw6o9maV7uv+WmoPnL617o+ggejWNpmcT377uMWEBfkorf2U4ney9/wHyfvwRLBbqPfcc4RcM9Xes04JKeBERERERERERERGpNYz0nRz8vBiH6UbCBsZjrt/F35FEKt8fs8f/WIbe+jfL0BdkwOejYdfPvvt97oKzHwezpULi7P5tLRvm/cA5N91BQHD5M/ILc53MmbIRw4BWveJo1Su+Ql5fTl6xy8OaPVksS/KV7utSsnH9ZXWC+pGBpcvL92oaTXx4oJ/SyvF4i4tJvfNOCn7+BZPNRsLLLxE6aJC/Y502VMKLiIiIiIiIiIiISO3gcVEw7R1c3qG4zfUJ7XqmvxOJVAmT1UzUVa1xHyzEFvs3M8n3rYMZ10BOMtiC4eLXoO0lFZYlPzOD2ZP/S1FuDhHx9eg78rpjjvN6DeZO3UhhrpPI+GD6jWhZYRnkxJW4PaxLzi7d031tSjZOt7fMmHrhAfT800z3BlFBfkorJ8pbUEDKbbdTuGwZJoeD+q++SkhffSZWJZXwIiIiIiIiIiIiIlIreOa+Qk56fwDCz66HRbMz5TRiMpn+voBf/wnMvBPcxRDVBIZ/BLFtKiyD1+Nh1sTnKcrNoW7DxvS8bES5Y9fNTS7dB37IuHbYHBUzC1+Oz+Xx8ltqduny8qv3ZFHsKlu6x4Q6Du/p7pvpnhgVhMlk8lNi+ac8eXmk3HgTRWvXYg4Kov6bbxDcvbu/Y512VMKLiIiIiIiIiIiISM23Zyk5iwoxCMEW5SL4rIorFkWqq8INhyjakE7EhU2xhNjLH+hxwZxHYfmbvvvNz4VL34HAiArN8+uMD9i7ZSP2wEAuuOshbHZHuWObdY0had0h2vVL0D7wlcjt8fL7vtzS0n3V7kwKnZ4yY+qE2OnR5Ejp3qROsEr3GsqdlUXKmLEUb9qEOSyMxHfeJrBjR3/HOi2phBcRERERERERERGRmq04h5JPnqfQcw9gEDGiKyazCiSp3Tz5TrK/3om3wIUtLpiwgYnHHph/ED67Hvb86rvf/0Ho/xCY/2bf+H8oae1KVnzzOQDn3jSeqHoJxx0fFh3Ipfd1xmyp2BynO4/XYNO+XJYmpbN0ZwYrd2eRX+IuMyYyyEaPxkf2dG8eE6LSvRZwHzpE8g03ULJ9B5aoKBKnTiGgVSt/xzptqYQXERERERERERERkRrNmHk/WdmXARDcJRpHYpifE4lUvuxv/yjggwjtV//Yg1JXw4yrIW8f2EPh0reg1dAKz5KbfpDvX30JgE6Dh9KyV99jjjO8Bvt35RLfNBxABXwF8HoNtuzPK93TfcWuDHKLy5buYQHWMjPdW8aGYtaFSrWKa98+9owejWtPMtaYGBLfm4qjaVN/xzqtqYQXERERERERERERkZrrt09xbViBx7gEcwCEnd/C34lEKl3hhnSKfksHM0Re3gKT9Rhl9pr34bt7weOEOi18+7/XrZzvj6LcXKwOB7ExsfS/Zmy541b/sIfl3ybRdWgjegxrUilZajvDMNh+MN+3vPzODJbvyiCr0FVmTIjDSvfGUaWle+v4MCwq3WstZ3Iye66/Hve+NGz16pE47T3sieWsjCFVRiW8iIiIiIiIiIiIiNRMWbvhu3uxm3OJO2sz7uY3YAm2+TuVSKXyFLjI/mYHAKH9G2CvH1p2gNsJPzwIq6b67re6AC5+AwIqb4WI2CbNuObZibidJVhtx/4e3LstixUzkwDfUvRyYgzDYOehApYl+fZ0X56UQXq+s8yYILuFro2OlO7t6oVh1SoDp4WSHTtIHn0D7kOHsDdsSOK097DFx/s7lqASXkRERERERERERERqIo8bvrwJSnKhQQ8sg8ZjsehX3lL7ZX+7E2++C2tsEGFn/2W2a24afHYdpCwHTHDWI9D33grf//0PbqcTq90OQFBYeLnjCnOdzJmyEcOAVj3jaN1bJWF5DMNgT0Zh6fLyy5IyOJhXUmZMgM1M14ZR9GwSRa+m0XSoH4FNpftpp3jzZpJvGIMnKwtH8+YkTp2CtW5df8eSw/R/JCIiIiIiIiIiIiJS8yx6kZI9+Xit/Qi8dDKogJfTgKfAhXN3Dpgh6oq/LEOfvAw+vRbyD4AjHC57F1qcW2lZcg7u55PHH+DMkdfRtv/Z5Y4zvAbz3ttIYY6TyLgg+o1sWWmZaqqUTF/pvmynb7Z7Wk5xmcftVjOdEyPo1aQOvZpG07FBOA6rxU9ppTooWreO5BtvwpubS0DbtjR49x2skZH+jiV/ov8rEREREREREREREZGaJWUFxsIXyXJNwu1MIHJHAMHd/B1KpPJZgm3E3t2Fkh3ZR5ahNwxYNQW+fwi8LohpA8M/hOimlZbD7XIx8+XnyM/KZP3c2bQ+cwBmy7FL4dU/7CFlcxZWm5nBN7bD5lB5nJZTVLqn+9KkDFKziso8brOY6NQggl5NounZNJrOiZEE2PT3Jj4Fy1eQessteAsLCezcmQZvvYklNPTvnyhVSiW8iIiIiIiIiIiIiNQcxbnwxVjy3BfjNhIwh9oJbF/H36lEqow5wEpgu8Nf865imH0vrP3Qd7/NxXDRa+AIqdQMv3w4lQNJ2wkICeWCux4st4DPPlBYug98v5Etia5Xubmqq4O5xb6Z7oeXmN+dUVjmcYvZRIf64aV7undpGEmQXRWeHC1/0SJSb78Do6SEoF49afDaa5iDgvwdS45B38EiIiIiIiIiIiIiUnN8/wDuzGJy3cMBiBjaGHOAftUttVvRlky8eU6CusZiMpl8B3NSYcY1sG8NmMww6AnoPR7+eLySbF26mLU/zATgvNvuIaxOTLljI2KDGDS6DWk7c06rfeDT80tKC/elSRkkHSoo87jZBO0TwunZNJpeTaLp2iiKEId+jsnx5c6dy9577gWXi5D+/UmYNBGzw+HvWFIOfUeLiIiIiIiIiIiISM2w4XNY/zHZ7scBO44m4QR2rOvvVCKVylvoIuuLbXjzXGBAcPc42L0YPr0OCtMhMBIunwpNB1Z6lqz9+5jz1kQAul10OU06//0+EC26x9Gie1xlR/OrrAIny3cdKd23Hcgv87jJBG3iw0pnundrHEVYgM1PaaUmypk5i30PPQQeD6FDhpDw/HOY7HZ/x5LjUAkvIiIiIiIiIiIiItVfdgrMuociT3eKvd3BYiLi4mZHZgWL1FLZM5Pw5rmw1g0kqFNdWPYm/PgwGB6Ia+/b/z2yUaXncDudzHz5WZxFRSS0asuZw68pd+z2VQdIaBFJUFjtLAlzilys2JVZWrpv2Z+LYZQd0youlJ6HS/cejaOICKqdfxdS+bI++4z9j/8fGAbhF19M/L+exmRVxVvd6V9IRERERERERERERKo3rwe+vBGjuJBsYzwAoX0TsMVoH1yp3Yo2ZVC49iCYIPLiREyzboHfZvgebH8lDJsI9qr5PjBbLTTt3I2CrEyG3nl/ufvA792WxdwpGwkMszP8ke61oojPK3axcrevdF+WlMnGfTl4/1K6N48JoVfTaHo28ZXu0SFaJlxOXeb773PgP88AEDFyBHGPPYbJbPZzKjkRKuFFREREREREREREpHpb/DIkL8HkCCHi7CbkrfMQOjDR36lEKpW30EXWVzsACOkWimPuZbD/NzBZYPC/ocfNlb7/+5+ZzRb6DL+GLhdcQkBwyDHHFOY6mTNlI4YBia2jamwBX+h0s3J3VulM99/35uD5S+vepE5w6Z7uPZtEUzdUpbtUrPQ33+LQK68AEHXDDcTcf59Wf6lBVMKLiIiIiIiIiIiISPWVuhoW+mYBcv4LBHZqS2AP/0YSqQrZs5Lw5jmxhhuEb7sSig9AUB24Yho07ltlOfIy0gkMC8dq8+1hXl4Bb3gN5k3bRGGOk8i4IPqNbFllGU9VscvD6j1HSvf1Kdm4/1K6J0YFle7p3rNJNHHhAX5KK7WdYRgcemUiGW+9BUCd22+nzm23qoCvYVTCi4iIiIiIiIiIiEj1VJIPX47F8LgxWg3H3HGkvxOJVAnXwULfMvQYRBY9gMl8AOqd4dv/Pbx+1eUoKeaL/zyOxWbjwnseJjwmttyxq3/cQ8qmTKw2M4NvbIfNcezl6quDYpeHtcnZLEvyle7rkrNxerxlxiREBJbu6d6raTQJEYF+SiunE8MwOPDMM2S9/wEAMfffR/SYMX5OJSdDJbyIiIiIiIiIiIiIVE8/PAiZSRQ5LiZr6/VErDpAcLc4f6cSqXS2CIO6LWbi3HkAh3kzdLoahr4Itqqdff3TlDfJSE0mKDwCq738peX3bc9ixbdJAPQb2ZLoeseeLe9Pe7OL+HJ1Kkt2ZrAmOYsSd9nSPS4swFe4Hy7e60cGauaxVCnD42H/E0+Q/dnnAMQ+/hhRo0b5OZWcLJXwIiIiIiIiIiIiIlL9bPwa1n6I1wgi2z0Wo9iDJ6fE36lEKl/GTphxNY6Dm3DYrXDei9B1TJXu/w7w+4K5bPx5HiaTmaHjHyA4IrLcsStm7sIwoFXPOFr3jq/ClH+vyOnhzZ938ubPO8sU73VCHGVK90bRQSrdxW8Mt5t9D00gd9YsMJuJ//e/ibjkYn/HklOgEl5EREREREREREREqpecVJh5JwC5sf/FmwyW6ABC+zfwczCRylWyaB7mXx7B5toCIbFwxf+gYa8qz5GevJufpr4JQO8rRpHYrsNxx59/awdWzd5Nt6GNqyLeCTEMg+82pPHM7C3szS4CoFujSC7sWI9eTaNpWjdEpbtUC16nk3333kve3HlgtZLwwvOEnXeev2PJKVIJLyIiIiIiIiIiIiLVh9cDX90Mxdk4o4eQn5oIQOSFTTHZzH4OJ1JJDAPv/JfJnNsYD/+mTr0ZBFz/FIRV/axyZ3ER3778LG5nCY06dqbHJVf+7XPsAVZ6X9qsCtKdmE37cnly5kaW78oEoF54AA8Pbc3Q9vEq3qVa8RYXk3rHeAoWLcJks5EwcSKhA8/ydyypACrhRURERERERERERKT6WDIZdi/CsAaTzT3gdRLYLpqAllH+TiZSOUry4Kubyd7QBA/dsAbkYR87EYKC/BLn5/enkLUvlZCoaM67/V5M5mNf/LJvexaHkvPpMLB+tSm2MwucvDhnKx+vSMZrgMNq5pYBTbmpX1MC7RZ/xxMpw5NfQOqtt1K4YgWmwEAavPYqwb17+ztWrbQibQWdYjpht9ir7DVVwouIiIiIiIiIiIhI9bBvLcx/GoDC1q/iXOnEZDcTfkFTPwcTqSTp2+GTqyg+EEyh52bAIPL6Ppj9VMADdL/4cg4l76Lf1TcQFBZ+zDGFuU7mvLuRghwnJjN0OMu/W0W4PF4+XLaHl+duI7fYDcDQDvE8fH5rEiIC/ZpN5Fg8OTmk3HgTRevXYw4OpsHbbxHUpYu/Y9U6hmHw7oZ3mbx2Mhc3u5gnez9ZZRcNqYQXEREREREREREREf9zFsAXY8HrhtYX4g7tDKYUws5OxBrh8Hc6kYq3ZTZ8dRPeYjdZHt/+6yF9EnA0OnbxXVXCY+IY+fR/yy2qDK/BvGmbKMhxEhkXROve9ao4YVmLt6fz5MyNbD+YD0Dr+DD+b1gbejaJ9msukfK4MzNJHjOWks2bsYSH0+Dddwls387fsWqdYncxjy95nO93fQ9AgDUAr+HFYqqaVTFUwouIiIiIiIiIiIiI//34MGTsgNB6MGwi4UFRBLargy3GfzOCRSqF1ws/Pws/PwdAjuNpPCVRWKIDCBvcyC+RSgoL2b9jGw07dAI47kzR1T/uIWVTJlabmcHj2mFz+GeZ9+SMQv713SbmbDoAQGSQjXvPbcnI7olYzNVjeXyRv3IdOEjyDTfg3LkTS3Q0iVOnEtCyhb9j1ToHCg5w54I72ZixEavJyoQeE7iy5ZVVmkElvIiIiIiIiIiIiIj41+aZsHoaYIJL3oQg3/7v9nohfo0lUuGKsuGrm2DbDwCUtJhAwW9ngAmiLm+B2Q/7lhuGwZy3JrFt2WIGXDuWLkMvLnfsvu1ZrPg2CYB+I1sQnVD136MFJW5eX7iDdxbtwun2YjGbuKZnQ+4e1ILwIFuV5xE5Ua69e9kz+gZcyclY4+JIfG8qjsaN/R2r1tlwaAN3LriTQ0WHiHBE8NKAl+gW163Kc6iEFxERERERERERERH/yU2Db+8AwOg9npzf6xMcUqgZ8FL7HNwMn1wFmTvBGgAXvIK9/XDC4lLxFrtxNPbPMvTrfpzFtmWLMVus1GvRutxxf+wDbxjQsmccrXrFV2FK38UC36zbxzPfb+ZAbgkAZzarw+PD2tAiNrRKs4j8U87du9kz+gbcaWnY6tcncdo07PUT/B2r1pm5cyZPLHkCp9dJs4hmTB44mfqh9f2SRSW8iIiIiIiIiIiIiPiH1wtf3wxFWRDfkYLgceTP303h+kPEP9QNk80/y1yLVLiNX8PXt4KrAMIbwPAPoN4ZmICwgYl+i7V/xzYWvj8FgP5Xjya+ectyx6btyKYwz0VkXBD9R7Y87pL1Fe231GyenLmJ1XuyAGgQFcijQ9twbpvYKs0hcjKKt20j+YYxeNLTsTdpQuJ7U7HFxvo7Vq3i8XqYtHYSU3+fCsCABgN4tu+zBNuC/ZZJJbyIiIiIiIiIiIiI+Mey1yBpIVgD8Qx5m5z3UgEIOztRBbzUDl4PzH8aFr/su9+4H1z+Hq7CIKxuLyar2W/RivPzmfnKc3g9bpp3780Z51143PFNO8dwyb0O7AGWKtsH/lBeCS/8uIXPVqdiGBBkt3DbWc0Yc2ZjAvQzQmqAot83kjJ2LJ7sbBwtW5I4dQrW6Gh/x6pV8p35PLToIX5O/RmAce3HcfsZt2M2+e/nK6iEFxERERERERERERF/SPsN5j3puz3kGXJWmDGK3djqBRPcs2qXuRapFIWZ8MUY2Dnfd7/X7TDoSbxuSJ+yBpPDQp1r22CNDqzyaIZh8MMbr5B76ADhsXEMvuXOE5pRHt+0apbMd7q9/G/Jbib9tJ28EjcAl5yRwINDWhEXHlAlGUROVeGataTceCPe/HwCOnQg8e23sERE+DtWrZKSm8Id8+9gZ85OHBYHT/V+ivObnO/vWIBKeBERERERERERERGpas5C+GIseF3Qcigl0ZdQ+PkGMEHExc0wmbW8tNRw+zf49n/P3gPWQLjoVWh/OQA5327Hk12CJSoAc4jdL/H2rF/DzlXLsFitDLvrIRxBx16yuSjPyZwpGznziuZEJ4RUSbYFWw/y9KxNJB0qAKB9QjhPXNiGLg2jquT1RSpCwbJlpNx6G0ZhIUFdu1L/zTewhFTN99DpYkXaCu75+R5ySnKICYxh4sCJtKvTzt+xSqmEFxEREREREREREZGqNedRSN8KIXEYF0wie8pOAIK7xeFIDPNzOJFTtOFz+OZ2cBdBZCMY/hHE+Yqh4h1ZFCzfD0DkZc0xV9Gy7n/VqFMXhtx6Nx63m9gmzY45xvAazHtvE6lbsvjpf5u5YkLXSt1/fVd6AU/P2sT8LQcBqBNi54HBrbi8S33MujBHapC8hQvZO/5ODKeT4D59qP/qZMyBVb/iRW02Y8sMnl3xLG7DTfs67XnlrFeICYrxd6wyVMKLiIiIiIiIiIiISNXZ+j2smuK7fckbFG5249pfiDnIStjgRn6NJnJKPG6Y93+w9FXf/aZnw2XvQpBvBre3xE3W59sBCO4ZT0DTCD8F9Wnb/+zjPr5mzh6SN2VitZk5+7rWlVbA5xW7eHX+Dqb+uguXx8BqNjG6TyPuOLs5YQG2SnlNkcqS+8OP7L3/fnC5CDn7bBJefgmz3T8rXtRGLq+LZ5c/y6fbPgVgaJOhPNHrCQKs1W+bCpXwIiIiIiIiIiIiIlI18g7AN7f5bve6HZoOJKihF2+RC3OoHUuwCjepoQrS4fPRsOsX3/0z74GBj4L5yEz3nO93+5ahj3QQfl7jKo9oeL0s+3IGHc89n6Cw4+/tvm97Nsu/SQKg74gWlbIUvddr8PmaVJ7/YSvp+SUADGhZl8cuaEPTulq2W2qe7K+/Ju3hR8DrJez886n33LOYbPpcqyhZxVnc+/O9rNy/EhMm7upyF6Pbjq7UFTpOhUp4EREREREREREREal8Xi98fQsUZkBsezj7cQBMVjOh/Rv4OZzIKdi3FmZcAzkpYAuGS96ANheVGVK8M5uCZWkARF7Wwi/L0K/49guWfPYRmxcv4Lr/vo7FeuyKqCjPyZx3f8cwoGWPOFr3jq/wLGuSs3jy242sT80BoHGdYB67oDUDW8VW+GuJVIWsT2aw/4knAAi/7FLin3oKk8U/203URjuydnD7/NvZm7+XIGsQz/d7nv4N+vs71nGphBcRERERERERERGRyrfiLdj5E1gD4LJ3ced4sYR7MVnN/k4mcvLWTYeZd4GnBKKawoiPIKb1UcOsEQ7sjcOxxQQS0CyiymOmbvqdXz/5AIBuF11ebgH/xz7wBTlOIuOC6DeyRYXOMj2QW8xz32/hy7V7AQhxWBl/djOu790Yu34WSA2VMW0aB599DoDIq68m9uEJmMz6eq4oC1MW8uAvD1LoLqR+SH0mD5xMs8hm/o71t1TCi4iIiIiIiIiIiEjl2v87zPXNfOfcf2FEtSD9lTVghuir22CLCfJvPpF/yuOCHx+GFW/77rcYApe8BYERxxxujQ6k7rj24DGqLuNhhTnZzJr0PIbhpU2/gbQbcE65Y50lHtwuL1abmcHj2mEPqJgaqcTtYcriXbw6fweFTg8AV3Spz/1DWhITWv32chY5EYZhkP7GG6RPmgxA9Lhx1L3n7mq7PHpNYxgGU36fwqQ1kzAw6B7XnRf7v0hEQIS/o50QlfAiIiIiIiIiIiIiUnlcRfDFWPA4fUVlt7HkLUjBnV6EOdSGJczu74Qi/0zeAfjsekhe4rvf/yHo/yAcY+ar1+nBbPctSW0ym8BcteWc1+vhu8n/pSArk+j6iQwac+txC0JHoJWL7upEemp+hewDbxgG8zYf5F/fbWJPRiEAZyRG8MSwtnRsEHHK5xfxF8MwOPTSS2S88y4Ade8cT/TNN6uAryDF7mL+b8n/MXvXbACGtxzOg90fxGa2+TnZiVMJLyIiIiIiIiIiIiKVZ+7/waHNEBwDF76KO6uEvAUpAEQMbYK5gmbailSJ1FUw42rISwNHmG/2e6vzjznU6/RwcOIaHC0iCT+vcWkZX5WWf/kpyRvWYXU4GHb3Q9gCjj3r3OPxYrH4LiIwW8zENAw75dfefiCPp2ZtYtH2dABiQh08dF4rLu6UgLmKL0YQqUiG18uBf/+HrI8+AiDmoQeJvv56/4aqRQ4WHuTO+Xfye8bvWE1WJvSYwJUtr/R3rH9M/3cjIiIiIiIiIiIiIpVj2xzfXvAAF78BIXXJ/t9GDJcXR5NwAjvW9W8+kX9i9f9g9n2+VR3qtPTt/16nebnDc3/YjTujGGNTJuGDG1VdzsNczhI2L14AwDnjbie6fuIxxxleg9mv/UZ43UB6X94Mq+3ULhbIKXLxyrxtvL90Dx6vgd1iZmzfxtx6VjNCHKqlpGYzPB7SHnucnC+/BJOJuCeeIHJ4zSuIq6vf03/nzvl3crDoIOGOcF7q/xLd47v7O9ZJ0U87EREREREREREREal4+Qfhm1t9t3vcDM0HUbQpg+LNmWA2EXFRUy3bKzWDuwS+fwBWT/Pdbz3Md1GJI7Tcp5Qk5ZC/ZB8AkZc198uKDza7g6v+8zJblyyiTd+zyh23+sc9JG/KxGoz025AfaLig0/q9TxegxkrU/jvnK1kFjgBOKdNLI8ObU3D6JM7p0h1Yrhc7HvwIXJnzwazmXrPPkP4hRf6O1at8V3Sdzz+6+M4vU6aRTRj0sBJNAht4O9YJ00lvIiIiIiIiIiIiIhULMOAb26DgkMQ0wYGPYnX6SF75k4AQvsmYItVKSc1QG4afHoNpK4ETHD2Y3DmPXCcC0i8Tg+ZX2wDILhbHAEtIqso7NEcQcF0GDSk3Mf3bc9mxbdJAPQb2eKkC/gVuzJ5cuZGNu7LBaBZTAj/N6wNfZtrtQupHbwlJey9+x7y588Hm42E//6XsMHn+jtWreA1vExaM4kpv08BYED9ATzT9xlC7CF+TnZqVMKLiIiIiIiIiIiISMVa+S5snwMWB1z2LtgCMHKdWKMDwQuhZx97WWx/OZC0g9gmzfwdQ6qbPUvh02uh4CAEhMNlU6H5oL99Wu6Pu/FkFGMJtxM+tHEVBC1ryWfTCQwLo9O5Q4+72kRRnpM57/6OYUDLnnG06hX/j19rX3YRz3y/hZnrfbP+QwOs3D2oBdf0aojt8B7zIjWdt6iI1Ntup2DJEkwOB/UnTSSkf39/x6oVClwFPPTLQyxMXQjAmHZjuOOMO7CYT21bjOpAJbyIiIiIiIiIiIiIVJyDm2HOo77b5zwFsW0BsITZqTOmHd5cJ2Z79fnl+rblvzLzpWfoMGgIg8bepiXyxbeSw8p34YeHwOuGmLYw4kOIavK3Ty3Z9edl6FtU+TL0u9auYunn0wGo27Ax9Vu1PeY4w2sw771NFOQ4iYwLov/Ilv/oa7/Y5eHtX5J4feEOil1eTCYY0S2R+85tQXSIo0Lei0h14MnPJ+XmmylatRpTUBANXn+N4J49/R2rVkjJS2H8/PHsyN6B3WznyT5PckGTC/wdq8KohBcRERERERERERGRiuEqhi/GgrsYmg2CHjeVedhkMmEJrz4FXW76Qea8NQkAR3CICnjxfQ1/dw+s+8h3v+2lcNGrYD+xZdq9RW5MAVYC20ZX+TL0uemHmP3aSwB0PHdouQU8wJo5R/aBHzyuHTbHiV0YYxgG3/++n39/t5m92UUAdG8UxePD2tAuIfzU34RINeLJziZ53I0Ub9iAOTSUBm+9RVDnM/wdq1ZYuX8l9yy8h+ySbOoG1mXSwEm0q9PO37EqlEp4EREREREREREREakYPz0FB36HoDpw0etgMlG4IZ2SndmEn9sQc5DN3wlLeT0eZk9+kZKCAuKataDPlVf7O5L4W3aKb//3fWvBZIZBT0LvO467//tfBbaJJu7uLpjsVbsUu8ftZtbE5yjOyyWmcVMGXDv2uOMj44JxBFnpc3kzohNObN/lzWm5PDlzI8uSMgGoFx7AhPNbc0GHeF3AIrWOOyOD5BvGULJ1K5aICBpMeZfAtuVf2CIn7tOtn/LM8mdwG27aRbdj4sCJxATF+DtWhVMJLyIiIiIiIiIiIiKnbsdPsOw13+2LXoPQWLwlbnJm7sST68QSbifsrOqzF/yyL2ewd8tG7IGBDL3jfixW/br8tLbrF/jseijMgMAouHwqND3rpE5lCbNXbLYTsPiT90nbtgVHUDDD7p6A1Xb8C16adKpLfNNwAkL+/sKYrAInL83dxkfL9+A1wGE1c1P/ptzSvymB1WhrCZGK4jpwgOTrR+PctQtL3To0nDoVR/Pm/o5V47m8Lp5b8Rwzts4A4PzG5/Nk7ycJsAb4OVnl0P9ViIiIiIiIiIiIiMipKUiHr2/x3e42DloOASB3XrKvgI8OIPTMBD8GLCt1y0aWffEJAIPG3EpEXLyfE4nfGAYsewPmPAqGB+I6wPAPIbLhiZ/C5eHQ1I2E9k0gsE10JYY9th2rlrNq5pcADL7lTiJi4445zvAaFOW7CDp8kUBg6PEvFnB7vExfkcyLc7aRU+QC4Pz2cUw4rzUNooIq8B2IVB/O1FSSrx+NKzUVa3w8Dd+bir1RI3/HqvGyi7O59+d7WbF/BSZMjO88njHtxtTqVTRUwouIiIiIiIiIiIjIyTMM+PYOyD8AdVrCuU8D4NpfQP6vewGIuLApJlv1mTG7ZfFCDMNLm34Dad335GY7Sy3gLISZ42HDZ777HUbAsFfAFviPTpMzZw/OXTlkZRThaBaBuYpnh+ceOojJbOaMIcNo3r13uePWzNnDunkpDBrdhoZtj3+xwJId6Tw5cxNbD+QB0CoulMeHtaF30zoVml2kOilJ2kXy6NG4DxzAlphIw/emYkuoPheQ1VQ7s3dy+0+3k5qfSpA1iOf6PceABgP8HavSqYQXERERERERERERkZO3aipsnQ0WO1w+BWyBGIZB1tc7wAsBbaMJbBnl75RlnD3mVmKbNqdlzzP9HUX8JWs3zLga9m8AkwWGPAPdb/xH+78DlOzJJX+x72KTyEubV3kBD9D5vGHEN29BTKMm5Y7Ztz2b5d/uwvAaFGSXlDsuJbOQf3+3mR827gcgIsjGvee0YGT3RKyWqt3nXqQqFW/dSvINY/BkZGBv1pTEqVOxxdS+fcqr2s8pP/PgogcpcBWQEJLA5IGTaR55eiztrxJeRERERERERERERE7Ooa3w4yO+24OegLj2ABSuOYhzdy4mm5mIYeUXg/5iMplof9a5JK07RGxjC8HhDn9Hkqq0cz58fgMUZUFwXbhiGjT65xdkGC4PWZ9vAwOCOscQ2KpqLzbxuN1YrL6aJ75Zy3LHFeU5mTNlI4bXoGWPOFr3Pnr7hUKnmzcW7uStX5Jwur1YzCau7pHI3ee0ICKo6ve4F6lKRRs2kDx2HN6cHBxtWpP47rtYo6rXxWM1jWEYTP19KhPXTMTAoFtcN17s/yKRAZH+jlZlVMKLiIiIiIiIiIiIyD/nLoEvxoC7CJqcBT18e8IbXoO8hSkAhJ6diDUiwJ8pS2XsTWHVzK8YcO1YHEFBZB8oZM6UjVhtZq6Y0JXwutrjutYzDPh1Ivz0JBheqNfZt/97+MktN50zNxn3oSLMoXYiLqjai022Lf+VJZ9+xLC7JxBdv0G54wyvwbxpmyjILiEyLoh+I1uU2YPZMAy+Xb+PZ7/fQlpOMQC9m0bzf8Pa0jIutNLfh4i/Fa5eTcqNN+EtKCCwUycavP0WlrAwf8eq0Uo8JTyx5AlmJc0C4MoWV/JQj4ewmW1+Tla1VMKLiIiIiIiIiIiIyD83/2nfUt6BUXDxG2D2LVVtMpuoe1MH8n/dR+iZ1WMvXbfTyXcTn+fQnl2Awbk3jmf+B5vxuLzUax5BWJ1/tge41FCLXvR93QKccTWc/yLYTu4ikZLkXPIXpQIQeUkzzEFVVy5l7d/Hj29MxFlUyObFCzhzxLXljl0zZw/JGzOx2MwMHtcOe8CRWuj3vTk88e1GVu3JAqB+ZCCPDm3N4LZxZYp6kdoq/9dfSb3tdoziYoJ69KDB669hDg72d6wa7VDhIe5ccCcb0jdgMVl4qPtDjGg1wt+x/EIlvIiIiIiIiIiIiIj8MzsXwJLJvtsXvQphZZe3toTYCR/cqOpzlWPR9Gkc2rOLwNAw+gy/ht9/2UvajhysDgsDRrVU4Xi66HI9rP0Qet8BXW/4x/u//1nx1izfMvRnxBDYJrriMv4Nt9PJzJefxVlUSEKrNvS6fFS5Y/cn5bD8210A9BvRguiEEADS80v4749bmbEqBcOAQJuFWwc0ZVy/JgTYqn5PexF/yJu/gL133onhchHcry/1J03CHFA9Vm6pqTamb2T8/PEcLDpIuCOcF/u/SI/4Hv6O5Tcq4UVERERERERERETkxBVmwte+pefpMhpaDQV8y16XJGUT0Kx67featHYla77/FoAht96N1xvI0q82ANDr4qaaBX86Ca4Dty0Hq+OUTxV+TkPsDUJxJFbtku0L33+HQ7uTCAwNY+idD5TuCX8s0fVDaNUrDo/bS+ve8bg8Xv63ZDcTf9pOXrEbgAs71mPC+a2ID9f3gZw+cmfPZu8DD4LbTeg551Dvxf9ittv9HatGm500m8eXPE6Jp4Sm4U2ZPHAyDcLK3yrjdKASXkREREREREREREROjGHAt3dAXhpEN4fB/y59qGDlfrK/2kFQp7pEjWjlx5BH5Gdl8sPrrwBwxnnDaHxGV2ZNXo+rxEN8s3Da968ey+VLFaqAAv4Pga2iKuxcJ2Lzrz+zfu73YDJx/h33ERpV57jjbXYLA69pjdfj5Zft6Tw1cyM7DxUA0C4hjP8b1pZujar2PYj4W/aXX5H26KPg9RJ24TDq/ec/mI5zMYscn9fw8uraV3lnwzsA9K/fn2f7PkuIPcTPyfxPX1UiIiIiIiIiIiIicmLWvA9bZoHZBpe9C3bf3rmefCc5P+wGwNagamcGl8fwevn+tZcoys2hbsPG9Bs1mu2rDpC8KROL1cxZV7fCZNYy9HLiDJeX7NlJhJ3VAEtYxZX5JyJjbwpz3/JtAdHzkitp1LFzuWPTduYQ1zgMk9nE7vQC/vXdJuZtPghAdLCd+we35IquDbDo619OM5nTp3PgqacBiLjySuKe+D9MZrOfU9VcBa4CJiyawIKUBQCMbjeaO8+4E4tZ21qASngRERERERERERERORHpO+CHh3y3z34M6nUqfSjn+90YRW5s8cGE9Kznn3x/kZt+kIyUPVjtDoaOfwCr3U6j9nXocFZ9giMdRMYF+zui1DC5PyVTsDSNkh3ZxN7dpUov4nAEBhHTuClmi4VeV5S/D/y+7dl8/fJa4ltEsKWZg6lLd+PyGFjNJq7r3YjxZzcnPNBWZblFqgNPfgGZU6eS/vrrAERddy0xDz2EyaQLUU5Wal4qd8y/gx3ZO7Cb7TzR+wmGNR3m71jVikp4ERERERERERERETk+txO+GAOuQmjcD3rdUfpQye4cClcfACDi4maYLNWj1AiPiePa5ydzYNdOouv79qW1B1jpO7yFn5NJTeRMySPv5xQAwoc0qvJVFEKiorny8f/gLCrCXM4s06I8J3OmbMTwGixKzuTLtGIwQb8WdXn8gtY0i6keq1SIVJWSHTvImv4xOd98g7fAtxVD9C03U3f8eBXwp2Dl/pXcs/AeskuyqRtYl1fOeoUOdTv4O1a1oxJeRERERERERERERI5v4X8gbR0ERMAlb8Hh5XsNj0H21zsBCOoai6NhmP8yHkNQeASNO3Uh51AhYdGB5RanX65JZfWeLB67oA0BNi2jK2UZbi+Zn28DAwI71iWw7fH3Yq9IeRnphEb7Xs9ssRAQcux9lg2vwZdv/EZBdgkZZi8zbSU0rBPEY0PbcHbrGBWOctowXC7yfppP1vTpFK5YUXrc3rgx0ePGEXHpJX5MV/N9tu0z/rPsP7gNN22j2zLxrInEBsf6O1a1pBJeRERERERERERERMq3axEsfsV3+8JJEHZkufn8pftw7S/AHGQl/LzG/sn3Fz9NfYN6LVrT+swBABQXuPji+dVExgVz7ti2BIeX3ct7+4E8Hvnqd4pcHlrFh3FNz4Z+SC3VWe5PybgPFGIOsRFxYdMqe9305N189Oi9dBg4mH5X34DFeuxK52BuMW++uY7opEJcGMyN8HDv4FaM7tMIh1UXlcjpwXXwINmffkb2p5/iPnjQd9BsJvTsgUSOGkVQz566GOUUuLwuXlj5Ah9v+RiA8xqdx1N9niLAGuDnZNWXSngRERERERERERERObbCTPjqJsCAM66BNheVedgWE4QlKoDQAfWxBPt/n+nNixaw7sfvWD/ne2KbNCeqXgKLP9tOUZ6LgGAnAUFlMxY63dzy0RqKXB7ObFaHUd0T/ZRcqitn6pFl6CMvblZlX+fO4iJmvvws7pISMvamHHMVhxK3h/d+3c3n3+/gomwrYCK7VQhf3NCRmDAVY1L7GYZB4cqVZH38MXlz54HbDYAlOpqIKy4ncvhwbPHxfk5Z8+WU5HDvwntZvn85AOPPGM/Y9mN1UcPfUAkvIiIiIiIiIiIiIkczDJh1F+TuhaimMOTZo4YEtIgk7u4uUA32gc/en8a8Ka8D0POyEUTVS2DPxgy2LtsPJhh4bWssNnPpeMMwePSr39lxMJ+YUAevjOiEpYr3+ZbqL3d+CnghsEMdAttVzTL0hmEw753XyNyXSkhkFOfffm+ZfeANw+CnzQf513eb2JNeyNg8B2ZM1G0Xya23dVIxJrWeJ7+A3JnfkjX9Y0q2by89HtilC5EjRxJ27jmY7HY/Jqw9krKTuH3+7aTkpRBoDeTZvs8yMHGgv2PVCCrhRURERERERERERORo66bDpm/AbIXL3gHHkb2oDcMoLfpMfyq2/cXjdvPd5BdwFhWR0KotPS8djrPYzcKPtgDQ8awGxDUJL/OcGStT+HLtXixmE5NHnkGdEMexTi2nuagRLcmbn0xI3/pV9pob5v/I5sULMZnNDL3zAYLCI0of23Ewn6dmbeKXbYcAqBvmoMnARoRuL+DcsW1VwEutVrJjB1nTPybnm2/wFhQAYAoMJHzYMCJHjSSgVSs/J6xdfkn9hQd+eYACVwEJIQlMGjiJFpEt/B2rxlAJLyIiIiIiIiIiIiJlZeyE2ff7bp/1MCR0KX3IcHs59NZvBHWqS3DPepiqwSz4JZ9+yP4d23AEB3P+HfditlhY9ulW8jNLCKsTQI+LmpQZv3FfDo9/uxGA+85tSY8m0f6ILTWA2W4hfEjjKnu9g7uTmP/eWwCcOeJa6rduB0BusYuJ87bzvyW7cXsNbBYTN5zZmDsGNifEYYXBVRZRpEoZLhd58xeQNX06hcuXlx63N25M5MiRhF98EZawMD8mrH0Mw2Daxmm8vPplDAy6xHbhpQEvERUQ5e9oNYpKeBERERERERERERE5wuOCL8eBqwAangl97irzcN7ivThT8nBnFRPUORZToH9/zZz8+3pWfPsFAOfeNJ6wOjHs257Nhp/3AjDg6lbYHEeW8s4rdnHbR2twur0MbBXDTf2aHPO8cvoy3F4K1x8i6IyYY+7FXlncLhezXnkWj8tF4zO60m3YpXi8Bp+tSuGFH7eSUeAE4OxWMdzWoQH1o4N8BbxILeQ6eJDszz4je8anuA8e9B00mwkZeBZRo0YR1KuXVn6oBCWeEp5c8iQzk2YCcEWLK5jQfQI2i83PyWoe/XQWERERERERERERkSN+fg72roaAcLj0LfjTXtTurGLyfkoGIPz8xpj9XMADpG3fCoZBh7OH0KJHHwBsARaiE0KIbRRKg1ZHZu4ZhsFDX2xgd0Yh9cIDePGKjpi1D7z8Re6CFPJ+SqZ4UwbR17Spste12mycOfI6ln42nfNuu4fVydk8MXMjv+/NBaBp3WAeu6ANPepFMOPfK1me72TorR1IbKOVHKR2MAyDolWryPr4Y3LnzAW3GwBLdDQRV1xO5PDh2OLj/Zyy9jpUeIi7FtzFb+m/YTFZeLD7g4xoOUIXO5wk//8fkoiIiIiIiIiIiIhUD3uWwKIXfbcveAXCy+6DnT0zCcPlxd44jKAzYqo+3zH0uORK4pu3JL55y9JjdRuEcsWErnjc3jJjP1i2h+82pGE1m3j1qs5EBturOq5Uc859+eQtSAEgsGPdKn/9Fj36ENKiEw/O2sa36/cBEOqwcueg5lzXuxFWk4lZr62nILuEiNgg4pqEV3lGkYrmyS8gd9ZMsqZ/TMm2baXHAzt3JnLkSEIHn4vZrp/XlWljxkbGzx/PwcKDhNnDeHHAi/SM7+nvWDWaSngRERERERERERERgaJs+PJGMLzQ6Spod2nZh7dkUrwpA8wmIi9uVq1mxiW26wiA12uUzmy3WM1YrObSMetTsnl61iYAJpzfms6JkVUfVKo1w+0l67Nt4DUIbF+HoA5VU8IfSt5NYEgo1tAI3vklidcX7qTI5cFkguFdG3Df4JbUCXEAsObHPSRvzMRiMzPkxnbYA1TzSM1VsnMnWdM/Jufrr/EWFABgCgwk/IILiBw1koDWrf2c8PTww64feOzXxyj2FNMkvAmTB04mMSzR37FqPPPfD6lcr7/+Oo0bNyYgIIAuXbqwaNGicsdef/31mEymo/60bdu2dMy0adOOOaa4uLgq3o6IiIiIiIiIiIhIzWMY8N09kJMCkY3gvOfKPuzykP3tTgBCzkzAFhvsh5BHHNqzi0+fepicgwdKj3ncXr54bhUrv9t11Az4nEIXt01fg8tjMLhtLDf0aVTFiaUmyFuYgiutAHOQlYiLmlbJaxYX5PPNC0/z7r23c/m/PuXFudsocnno2jCSb287k2cv61BawO/bkc2yb5IA6DeiBdEJIVWSUaQiGW43uT/OYc9115M09AKyPvoIb0EB9kaNiH14As1/Xkj800+pgK8CXsPL5LWTuf+X+yn2FNM3oS8fnv+hCvgK4tdLpGbMmMFdd93F66+/Tp8+fXjrrbc477zz2LRpE4mJR/8DT5w4kWeffbb0vtvtpmPHjlxxxRVlxoWFhbF169YyxwICAirnTYiIiIiIiIiIiIjUdL/NgN+/AJMFLpsCjtAyD5ck5eDJLsYSbifsbP/+ct5VUsx3k14gIzWZRR//jwvufADwzRA+uCeP3PRi2vVLIDDUt3SxYRjc+9l6UrOKSIwK4vnLO1arWfxSPTj35ZM737cMfcRFzbCEVP7S14Zh8PnL/yXn4AFyrKFsK3QQFxnAhPNbcWHHemW+Tovyncx5dyOG16BFj1ha99a+2FKzuA4eJPuzz8j+9DPcBw5fQGU2EzLwLCJHjiS4Vy9MZr/PHT5tFLoKeXjxw/yU/BMAo9uO5s7Od2IxW/ycrPbwawn/0ksvMWbMGMaOHQvAK6+8wo8//sgbb7zBM888c9T48PBwwsOP7G/y9ddfk5WVxejRo8uMM5lMxMXFVW54ERERERERERERkdogcxd8d5/v9oAJUL/rUUMCWkYRc/sZeAvdmB3+/QX9wvffJSM1meCISAaOvgmAjH35rJq9G4C+w5uXFvAA7y7axbzNB7BbzLx+VWfCA23+iC3VmGEYZH253bcMfdtoAjvUqfTXzC508trkKQRsWIUHM/Pih3DTOW25ZUBTguxHVze//7y3dB/4/iNb6kISqREMw6Bo9Wqypk8nd85ccLsBsERFEXHFFUQOvxJbvXp+Tnn62Zu/lzvm38H2rO3YzDae6P0EFza90N+xah2/lfBOp5PVq1fz0EMPlTl+7rnnsmTJkhM6x5QpUxg0aBANGzYsczw/P5+GDRvi8Xjo1KkTTz/9NGeccUa55ykpKaGkpKT0fm5u7j94JyIiIlKd6XNeRESkdtJnvIhIBfG4ffvAO/MgsRf0vafcofZ6/l/6evvyJfw27wcwmTjvtnsJCgvH6zVY8MEWvB6DRu2jad4ttnT86j2ZPPvDFgAeH9aGdgnh5Z1aqpGq/pw3mUxEXtKcnNlJRFzcrFILbrfHy8crU3j/64Wcs+t7ADLaDWHGbVfQICqo3Od1Pa8RFquZhu2itQ+8VHveggJyZs4ka/rHlGzbVno88IwziBw1itDB52K2V/5qE3K0VftXcc/Ce8gqyaJOYB1eOesVOtbt6O9YtZLfflKnp6fj8XiIjY0tczw2Npb9+/f/7fPT0tL4/vvvmT59epnjrVq1Ytq0abRv357c3FwmTpxInz59WL9+Pc2bNz/muZ555hmefPLJk38zIiIiUm3pc15ERKR20me8iEgF+eUFSF0BjjC45C34yzK0xTuzsQTbsMX5dw94gNz0Q8x5axIA3YZdSsMOnQD4bX4KB3blYg+w0H/UkRnCmQVObp++Fo/XYFjHelzVQ3vc1hT++Jy3J4RQd1yHSn2NpTszeHLmRnbvPcSIvd9jwUt0++7c88gtf1v8m8wmOg9ueNwxIv5WsnMnWR9/Qs7XX+PNzwfAFBBA+LALiBw1Svu8+9nn2z7n38v+jdtw0zqqNZMGTiIuWCuLVxa/b67w1w8WwzBO6CqzadOmERERwcUXX1zmeM+ePbn66qvp2LEjffv25dNPP6VFixZMnjy53HNNmDCBnJyc0j8pKSkn9V5ERESk+tHnvIiISO2kz3gRkQqQvBx+ed53+4KXIbJswectcZM1YysHJq2leFuWHwL+KYvXw/evvkhxQT5xTZvTZ/jVAOQcKmT5N0kA9L6sGSGRAYfHG9w9Yx1pOcU0qRPMM5e21/LdNUhVfc4bHi+uAwWVcu4/S80q5NaPVjPynWVs2Z/HmflrCPXkExFXj5H33Ffu12ZRvpPFn2/H5fRUekaRk2W43eTOmcOe60eTNPQCsj78EG9+PvaGDYmd8BDNf/mZ+KefVgHvR26vm2eWP8OTS5/EbbgZ0mgI/zvvfyrgK5nfZsLXqVMHi8Vy1Kz3gwcPHjU7/q8Mw2Dq1Klcc8012P9muQqz2Uy3bt3Yvn17uWMcDgcOh+PEw4uIiEiNoc95ERGR2kmf8SIip6g4F74cC4YXOgyH9pcfNST3p2Q8uU4sUQE4Gof5IeQRRbm5lBQVYgsIZOj4B7BYffu6H0rOxwASWkbQ5swj+wq/8fNOft52CIfVzOtXdybEoeW7a5Kq+pzP+zmV3HnJhJ/XiNC+9Sv8/EVOD2/8vJO3ft5JiduL2QSjeiQyvl9f1n02jU6DL8ARdOwl6A2vwbz3NpO8MYO89GLOu7l9hecTORXuQ4fI+uwzsmd8ivvAAd9Bs5mQs84ictRIgnv1wmT2+1zg015OSQ73/Xwfy9KWAXDHGXcwrv04XZhWBfz2fx52u50uXbowd+5cLrnkktLjc+fO5aKLLjruc3/++Wd27NjBmDFj/vZ1DMNg3bp1tG+vDygRERERERERERERAGbfB9nJEJEI579w1MOuAwXkL94HQMSFTTHZLEeNqUrBEZGM+teLHNqTRERcfOnxZl1iqFM/BLPFVFooLN2ZwYtztgLw9MXtaBXn3wsIpHpy7S8g96dk8BpYQip2b2rDMJj1WxrPzN7MvpxiAHo2ieL/hrWldbzv6/Hcm8Yf9xxr5yaTvDEDi81MtwsaV2g+kZNlGAZFa9aQ9dF0cufOBZcLAEtUFBGXX07k8CuxJST4OaX8ISk7iTvm30FyXjKB1kCeOfMZzm54tr9jnTb8evnfPffcwzXXXEPXrl3p1asXb7/9NsnJydx8882Ab8mZvXv38v7775d53pQpU+jRowft2rU76pxPPvkkPXv2pHnz5uTm5jJp0iTWrVvHa6+9ViXvSURERERERERERKRa++0z+G0GmMxw6bsQEF7mYcMwyPp6B3gNAtpEE9gqyk9By25farXZiG/W8qgxEbFHZhIfzCtm/Cdr8RpweZf6XNm1QZVllZrD8BhkfrYNPAYBraMI7FS3ws79+94cnpq5iRW7MwFIiAjkkaGt6d8ggK1LF2LEXvC3s4P37chm2eFtFvoNb0Gd+iEVlk/kZHgLCsiZOYusjz+mZOvW0uOBnToRedUoQgcPxvw3K1dL1VqUuogHfnmAfFc+9YLrMWngJFpGHf0ZKpXHryX88OHDycjI4KmnniItLY127doxe/ZsGjb07T2UlpZGcnJymefk5OTwxRdfMHHixGOeMzs7mxtvvJH9+/cTHh7OGWecwS+//EL37t0r/f2IiIiIiIiIiIiIVGtZe+C7e3y3+z0AiT2OGlK49iDOXbmYbGYihjWp4oBHGIbBd5NeIKpeAj0vHYHZYik9vviz7TTrEkt80yMXEHi8Bnd+vI5DeSW0jA3l6YuOnsQlApD3SyquvfmYAqxEXtK8QpZlzsgv4b9ztvHJymQMAwJsZm7p34yb+jfBboEvn3mCPb+tJefAfs66/sZyz1OU72TOuxsxvAYtusfSuk98uWNFKltJUhJZ0z8m5+uv8ebnA2AKCCB82AVEjhxJQJs2fk4of2UYBu9vep+XVr+E1/DSOaYzL5/1MlEB/rug7nTl941wbr31Vm699dZjPjZt2rSjjoWHh1NYWFju+V5++WVefvnlioonIiIiIiIiIiIiUjt43PDVTVCSC/W7Q7/7jxriLXKTM3sXAKEDE7FGBlR1ylK/L5jL1iW/YLZYaN69N3Ub+pbk3r7qAL/NT2Xjon1c++/eBIX5Zl9OnLeNpUkZBNktvHZVZwLt/l1CX6on14ECcuftASDiwiZYwk5t9q7L4+WDpXt4Zd42covdAFzQIZ4J57cmISIQgKVffMye39ZidTjoMGhIuef6Yx/4guwSImKD6D+qpfZtlipnuN3kLVhA1vTpFC5dVnrc3rAhkaNGEn7xxVjCw49zBvGXEk8JTy19im93fgvAZc0v45Eej2Cz2Pyc7PTk9xJeRERERERERERERKrA4pcheSnYQ+HSt8Fy9K+HTXYLof0bULj+IKF9/bevb8beFOZPewuAPsOvKS3gi/KcLJqxHYAuQxqWFvC/bDvE5AU7AHjm0vY0i9Hy3XK0MsvQt4oi6IyYUzrfou2HeGrmJrYf9M0QbhMfxhMXtqV74yMzTpN/X8+Sz6YDMGjMrUTXTyz3fLkZxRxKzsViMzN4XDvsAapwpOq409PJ/uwzsmZ8inv/ft9Bs5mQAQOIHDWK4N69/nYrBfGf9KJ07lxwJ78d+g2LycL93e5nVKtRupDHj/QTXERERERERERERKS2S10FC5/x3R76X4hqfMxhJouJ0L4JhPSph8nsn1/cu10uvpv0Au6SEhLbdaTbsEtLH1s0YxvF+S6iE0LoPMS3ren+nGLumrEOw4BRPRK5qJP/Lh6Qas4EQR1jyMtxEnlps5Mup/ZkFPCv7zYzd9MBAKKC7dx3bkuGd2uA5U/fN/lZmXw36QUwDNqddS5t+5993POG1w1k+CPdOZScp33gpUoYhkHRmjVkfTSd3LlzweUCwBIVRcTllxM5/EpsCfqZWt1tytjE+PnjOVB4gFB7KC/2f5Fe9Xr5O9ZpTyW8iIiIiIiIiIiISG1WkgdfjAHDA+0ugw7DjxpieA3wGpisvlmO/irgARZNn8ah3UkEhoZx3m33lM683LX+ENtXHcRkgoHXtsJiMePyeLnj4zVkFjhpEx/G4xdof2Ipn8l8+CKTnvGYbP98Rm9BiZvXFuzg3UW7cHq8WMwmru3VkLvObkF4UNnlnr0eD7MnvUBhTjZ1Ehsx8IabTug1giMcBEc4/nE2kX/CW1BAzsxZZH38MSVbt5YeD+zUichRIwkdMgSz/dS2apCq8cPuH3hs8WMUe4ppHN6YyQMn0zCsob9jCSrhRURERERERERERGq37x+ErN0Q3gCGvgTHmP1bsGo/+b/sJeKipgQ0j6z6jIftWruKNbO/AWDwLXcREhUNQEmhi5+n+4qiTuckEtMwDID/ztnKyt1ZhDqsvH5VZwJs2gde/t4/LeC9XoOv1+3l2e+3cDCvBIC+zevw+AVtaB4beszn7N+5nb1bN2MLCGTY3Q9hsx+7WDe8BnPf20TTM+rStPOpLY8v8ndKknaR9fHH5Hz1Fd583zYKpoAAwi4YSuTIkQS2bevnhHKivIaX19e9zlu/Hd66JaEPL/R7gVD7sX8mSdVTCS8iIiIiIiIiIiJSW/3+Jaz7CExm3z7wgRFHDfEUuMj9YTfeQjeuA4V+LeGL8nKx2h20H3guTbt0Lz2+Zel+CnKchMcE0v0C31L68zYd4K2fkwB4/vIONKoT7JfMUrutT8nmiZkbWZucDUBiVBCPDm3NOW1ij7ucfb0WrRj51PPkZ2USVa9+uePWzk1m+8oDJK07RFzTcILDNQteKpbhdpO3YAFZ06dTuHRZ6XFbw0QiR44k4pJLsISH+zGh/FOFrkIeXvwwPyX/BMB1ba7j7i53YzHrQrTqRCW8iIiIiIiIiIiISG2UnQKz7vLdPvMeaNj7mMNyvt+Ft9CNLS6YkF71qi7fMbTpN5DYps0Jrxtb5niHgfWxB1oJjwnEareQklnIvZ+tB2B0n0ac1z7eH3GlFjuYV8wLP2zls9WpAATZLdw+sBljzmyMw3piRVdcsxbHfXzfjmyWfeO7kKTf8BYq4KVCudPTyf78c7JmfIo7Lc130GwmZMAAIkeOJLhP79LtPqTm2Je/jzvm38G2rG3YzDb+r9f/cVGzi/wdS45BJbyIiIiIiIiIiIhIbeP1wFc3Q3EOJHSBAQ8dc1jJnlwKVx0AIOLippgs/tkL3uvxYLb4is3ohAZHPW4ymWjd21e0O91ebv94LTlFLjo2iGDCea2rNKvUbk63l2lLdjHppx3kl7gBuPSMBB48rxWxYQHHfa7H7WbOmxPpPPRiYhs3Pe7Yonwnc97diOE1aNE9ltZ9dCGJnDrDMChau5asj6aTO2cOuFwAWCIjibj8ciKGD8deP8HPKeVkrTmwhrsX3k1mcSbRAdG8ctYrdIrp5O9YUg6V8CIiIiIiIiIiIiK1za8TYc9isAXDpe+AxXbUEMNjkP31DgCCusTiaOSf5Yj379zO7MkvMPiWu0loWbZQ377qAIltonAEHcn/zPebWZ+STXigjVdHnoHdqpmcUjEWbDnI07M2kZReAEDH+uE8PqwtXRqe2BYNiz95n02LFrD7t7WMfXXKcfeBn/feZgqyS4iIDaL/qJbHXdpe5O94CwvJmTmLrI8/pmTLltLjgR07EnnVKEIHD8bs0EoLNdmX27/k6WVP4/a6aR3VmkkDJxEXHOfvWHIcKuFFREREREREREREapO9q2HBv323z38eoo89Izd/2T5caQWYAq2En9eo6vL9ibOokO8mPU/2/jTWzP6mTAm/PymHOVM2EhxmZ8RjPQgIsfH9hjTe+3U3AC9d2ZEGUUF+yS21S9KhfJ6etYkFWw8BUCfEwQNDWnJ55/qYzSdWju9cvZxVM78E4Owxt5RbwINvH/jkjRlYbGYGj2uHPUBVjZyckqRdZH3yMTlffY03Lw8Ak8NB2AVDiRw1isC2bf2cUE6V2+vmxVUv8uHmDwE4t+G5PN3naYJs+vyr7vSTXURERERERERERKS2KMmHL8aB1w1tLoZOV5U71LknF4DwIY2whNirKGBZ8997i+z9aYRG12XQuNtKj3tcXua/vxkMqN86ioAQG7vTC3jg898AuKl/E85uHVveaUVOSG6xi8k/bWfakt24PAY2i4kb+jTm9oHNCA04evWIcs9z6CA/vPYyAJ3Pu5AWPfocd3xhnhPw7QNfp37Iyb8BOS0Zbjf5CxeSNX06BUuWlh63JSYSOXIkEZdcjCUiwn8BpcLklORw/8/3szTN9+98W6fbuKnDTVo5o4ZQCS8iIiIiIiIiIiJSW/w4ATJ3QlgCXPAyHOcX9VEjW1HSNRtHs4iqy/cnmxcvZOPPP2EymTn/jnsJDAktfWzV97vJ2l9IYJidM69oTrHLw60frSGvxE23RpHcd25Lv2SW2sHrNfh8dSrP/7iF9HxfIT6wVQyPDm1Nk7r/rBT3uF3MfOVZigvyiWvWgn5Xj/7b55x5eXOadYkhtlHYSeWX05M7PZ3szz8na8anuNPSfAdNJkIGDCBy1EiC+/TBZNb2HLVFUk4S4+ePZ0/uHgKtgfznzP8wqOEgf8eSf0AlvIiIiIiIiIiIiEhtsOkbWPM+YIJL3oKgqOMON5lMBLQ4sb2uK1r2gf3Me/c1AHpeNpz6rduVPpaemseaH/YA0H9ECwKCbTz81QY2peUSFWxn8sjO2CwqmuTkrN6TxZMzN/Jbag4ATeoE89iwNpzVMuakzvfLh++xf8c2AoJDuODOB7FYjz2D3vAaGIaB+fDXblzj8JN7A3JaMQyDorXryJo+ndwffwSXCwBLRAQRV1xOxPAR2Osn+DmlVLTFexfzwM8PkOfKIz44nskDJ9MyShef1TQq4UVERERERERERERqupy98O143+0z74LGfY85zHB7yZ2fTEifBCzBJ77cdkXyuN18N+l5nEVF1GvZhp6Xjih9zOvxMv/9LXi9Bk3OqEvTzjF8vXYv05cnYzLBK8M7ERce4JfcUvNN+3UXT8zcBECow8r4s5tzXe9G2K0nd1GHx+0mc18qAENuu5vwmPK3SFg7N5k9v2dw7pi2BEeUv1+8CIC3sJCcWbPI+vgTSjZvLj0e0LEDUaNGETpkCGaHvo5qG8MweH/T+7y0+iW8hpfOMZ15acBLRAdG+zuanASV8CIiIiIiIiIiIiI1mdcLX98MxdkQ3wkGPFzu0LzFe8mbn0LR7xnE3tUZk7nq95V1O52EREbhCA5m6B33YbZYSh/7bUEqh5LzcARZ6TeiBTsO5vPwVxsAuOOsZvRrUbfK80rtcVarGJ75fgsXd0rgvsEtqRt6aiWmxWrl0oeeIHnjbzRs36nccWk7sln2TRKG12DPxgza9Kl3Sq8rtVfJrl1kffwxOV99jTcvDwCTw0HYBUOJHDmKwHZt/ZxQKovT4+SppU/xzc5vALi0+aU82uNRbBb/XDAnp04lvIiIiIiIiIiIiEhNtnQy7PoFbEFw2btgtR9zmDu7mLyfkgEI7V/fLwU8gCMoiAvvfYScA/sJq1t2CfCWPeM4uCePxDZRmAOt3Dp1GYVOD72aRHPnoBZ+ySu1R8PoYBY9eBYxoae2moLX68Fs9l08YjKbj1vAF+U7mTNlI4bXoHm3WFr3jj+l15bax3C7yV+4kKzpH1OwZEnpcVtiIpEjRhBx6SVYIiL8F1AqXXpROncvuJt1h9ZhNpl5oNsDjGo1CpPJP5/TUjFUwouIiIiIiIiIiIjUVPvWwU9P+24PeRbqNC93aPbMJAyXF3ujMII6n9z+16fC7XJhsVoxmUyYTCYi4o4uIwND7Jw7xjfT877P1rPtQD51Qx1MHNkJi58uGpDa5VQLeID5U9/C43Yz8IabsNnLn01veA1+mraZ/KwSImKDGHBVS5VqUsqdkUH2Z5+TNWMG7rQ030GTiZD+/Ym8ahTBffpgMp/cVglSc2zO2Mz4BePZX7CfUHso/+33X3on9PZ3LKkAKuFFREREREREREREaiJnIXwxFrwuaHUBdL623KFFWzIp3pgBZoi8uFmVF4GGYTDrlWexOQIYNPZWHEHBZR7POVREWJ2A0lyfrkrh89WpmE0wacQZFVKcilSELb/+zPq5s8Fkok3fATRo26HcsWvn+faBt9jMDB7XDnuAKpnTnWEYFK1dR9b06eT++CO4XABYIiKIuOJyIoaPwF4/wc8pparM2T2HR399lCJ3EY3CGjF54GQahTfydyypIPqJLyIiIiIiIiIiIlIT/fgwZGyH0Hi4cDKUU6wbLg/Z3+4EIKRPAra44GOOq0zr5nzHzlXLsVitdLvwMmIaNSl9LDejiE/+tYIGrSIZNLoNO7MKeezr3wG499yW9GoaXeV5RY4lc18qc95+FYAeF1953AI+bWcOy75OAqDvlc2pUz+kSjJK9eQtLCRn1iyyPv6Eks2bS48HdOxA5MiRhJ13HmZH+asqSO3iNby8uf5N3lj/BgB96vXh+f7PE2YP83MyqUgq4UVERERERERERERqmi3fwer3fLcveROCosodmrd4L57MYsxhdsIGJVZRwCMOJe/m5w+mANDvqtFlCnjDMFj40VbcJR6KC1yUGAa3fbSGEreX/i3qckv/plWeV+RYXM4SZr78LK7iIhq0aU/vK0Ydd7wj0EpEbBB16ofQ5sx6VZRSqpuSXbvI/uQTsr/8Cm9eHgAmh4OwoUOJHDWKwHZt/ZxQqlqhq5BHf32UuXvmAnBtm2u5u8vdWM2qbGsb/YuKiIiIiIiIiIiI1CR5++Gb2323e98BTQYcd3hw93g8WSU4mkVgdlTtr4RdJcV8N/F5PC4Xjc/oyhnnXVjm8a3L9pOyKROL1cxZV7fi4a9/Jym9gPjwAF4e3gmz9oGXamL+1LdIT95NUHgE54+/H7PFctzxUfWCueKhrhiGoX3gTzOGx0P+woVkfTSdgiVLSo/bGjQgcuRIwi+5GGtkpB8Tir+k5acxfsF4tmRuwWa28VjPx7ik+SX+jiWVRCW8iIiIiIiIiIiISE3h9cJXN0NRJsS1h4GP/e1TLME2Ii9tXgXhjvbzB1PISE0mOCKSIbfcVaaMLMgpYfFn2wHoPqwxs3anM3P9PqxmE6+OOoOoYLtfMov81aZf5vP7gjlgMjF0/P2ERJa/8kRBTgnB4b5lxW2O4xf1Uru4MzLI/vwLsmZ8gntfmu+gyURIv35EXjXq/9m77/CqqqyP49/b0jshJJCEFjqhF0WRItVCs4uVYsGx4ajjqONrd+xil2IvOAOIIiogiCLSey8hhJIQUkgvt5z3j4sgQ4AEcnNTfp/nycPJaXvdS5K1k3X23gReeCEms9m7QYrXrE1fy32L7iOrOIsIvwje6PcGnaI6eTss8SAV4UVERERERERERERqiuXvQtIisPrDFVPBeuo1hJ25pZiDbV4bhbtzxVLWz/8BgCF3TSQgNOyE4799tYOSQgf144OxtQ3l6ff+AODhIa3p2vjURU6RquYfEopfUDBdhg4jvn3HU56XujuH2a+vpcdlTek8KF4j4OsAwzAoWreO7C++JO/HHzHsdgAsYWGEXXkFYddei09srJejFG+btXMWTy17CofLQeuI1kzqN4mYoBhvhyUepiK8iIiIiIiIiIiISE2QthEW/J97e/CzUL/VKU91lThJf3st1qgAIq5uhSW46keV+wYEERgeQZsL+9KkQ+cTju1ek87utYcxm030uDqBm75cS6nTxcC2DRjXu2mVxypyOk07deXml98mIDT0lOcU59uZN2UTTruLjP35VRideIOrqIicOXPI/vJLSrZsPbbfr0MHwq+7jpBLhmL2PfVDUlI3OFwOXln1Cp9t/QyAgY0H8swFzxBgC/ByZFIVVIQXERERERERERERqe7sRTBjHDhLodUl0G3MaU/PXZiCM6cUzCZMXpoSO759B2568U18A04uNvgF2giu50fLHg14/o/dpGQVEhvuz8tXdtToYakWDMOgKDfn2AwOp5uC3nAZLPh4C/nZJYQ1CKDv6Fb6Oq6lSpOTyf7yK47MmoUrNxcAk68vIZdcQvj11+Of2N7LEUp1kVuay0OLH+L3g78DMKHjBG7veDtmk5YkqCtUhBcRERERERERERGp7uY9Doe3QVADGPYmnKbAZz9UQP5vBwAIG9Ycs0/VFuFLiwrx8XcX3gNCyh453KhVONc+3oNPlqfw0x+H8LGYeWd0F0IDbFUZqsgpbVw4j18/n8aQCRNJ6NbztOeuXZDC3o2ZWGxmBo9vj4+fSi+1ieF0kr94Mdmff0HB778f22+LiyP82msJHTUSa3i4FyOU6mZPzh7uWXgPybnJ+Fv9efbCZxnYeKC3w5IqVu7HLVavXk2/fv3IPfpkz1/l5OTQr18/1q9fX6nBiYiISN2jPoeIiEjtpTwvInKWtv8IKye7t0e8A4GRpzzVMAyyv9kNLgO/NhH4t6lXRUG6Hdi+lQ/uupUtvy0q87jLZRzb3pSexws/bQPgscva0CE2rCpCFA+obTk+PTmJRR++T0lBAZn7U057buruHJZ9kwRA76tbEBkbVBUhShVwZGWR8f4H7Bo4kP0T7nIX4E0mgvr0Ie7992j+04/UGztGBXg5wdIDSxn9/WiSc5OJDozmk6GfqABfR5W7CP/KK6/Qv39/QkJCTjoWGhrKwIEDeemllyo1OBEREal71OcQERGpvZTnRUTOQt4hmH2Xe/u8CZAw4LSnF607TOmeHEw2M2GXN6+CAI8rLshn7psvUVJQQPK61ScdLy12MP2ZFWz8ZT9ZeSX87fM1OFwGlybGcON5jas0VqlctSnHlxQWMuf1F3DYS2nauRs9hl1x6nOLHMybsgnDZdCiewPaXtiwCiMVTzAMg6J16zjw0EPs6tOXw6+9huNgKpbQUCLGjqH5vJ+Ie/89gvr0wWTWtOJynGEYfLrlU+78+U7y7Hl0qt+JLy/9ktYRrb0dmnhJuX9CLF++nOHDh5/y+OWXX87SpUsrJSgRERGpu9TnEBERqb2U50VEKsgwYPYEKMyABu3h4idOe7qr2MGR790jcoP7xWGN8KuKKAF38WHB5LfJPZxOaINoLh474aRz/pi1m6yDBaydn8KD09dxMKeYJvUCeOGKRK2fXcPVlhxvGAbzPniT7NSDBNerz9C7Jp620OrjZ6HzoMZENAzUOvA1nKuoiCP//S97rriC5GuvI/fb7zDsdvwSE4l5/nkSFv9CgwcfxCcuztuhSjVU6izliaVP8OLKF3EZLkYmjGTq4KlE+p965hqp/cq9MMmBAwcIDg4+5fGgoCBSU1MrJSgRERGpu9TnEBERqb2U50VEKmjFB7BrAVj94IopYDt9Ud2ZU4LZ34rZz0rwRbFVFKTbpl/ms/2P3zBbLFx694P4BgSccPzgzmw2LXavU5+fGMLP6/biYzXzzuiuBPtpHfiarrbk+PXz5rLj6NfxZfc9hH/wySP7/8pkMtGhXyztL2qI2aJR0TVRaXIy2V9+xZFZs3AdXU7B5ONDyKWXEn79dfgnJno5QqnuMooymPjLRNamr8VsMvP3bn/nhjY36KEcKX8Rvn79+mzfvp2mTZuWeXzbtm1ERuqJDhERETk36nOIiIjUXsrzIiIVcGgzzHvcvT3waYhqc8ZLbA0CaXBvF5w5JZisVVcQzDq4n4Ufvg9Ar6tvIKZFqxOOO0qdLPzUvfZ7ZIcI/rnBvcb2U8Pa0bbh6YucUjPUhhyfnpzEL59MBqD39bfQsOWpv+cyD+YTHO6Hj7+7xKICfM1iOJ3kL15M9hdfUrBkybH9tthYwq+7ltBRo7TOu5TLtqxt3L3wbtIK0gi2BfNSn5e4oNEF3g5LqolyF+EHDBjAs88+y5AhQ046ZhgGzz33HAMGnH49IhEREZEzUZ9DRESk9lKeFxEpJ3sxzBgHzhJoMQh6jC/3pSarGWs9fw8GdyKH3c73b7yEo6SE+PYdy1w/e8WcPeSkF+Ef4sOkzAycLoNRnRtxTXdN61xb1IYcH9Ewlvb9B5OflUnXS0ec8rzifDtz3lyP2Wrm8r91JKxBwCnPlerBsNtxpKdjT0ujcPUajnz1FfaDB90HTSYCL+pNxPXXE9i7t9Z5l3Kbv3c+jy55lCJHEU1CmjCp/ySahpb9IJLUTeUuwj/22GN07dqVnj178sADD9CqlXt9k61bt/LKK6+wY8cOPvzwQ0/GKiIiInWA+hwiIiK1l/K8iEg5Lfg/SN8CgfVh+NtwhiltC9am48ovJahXQ0xVPCLXZIL4xI7kZWWUuX52+t5c1s13j3xfG2XiQEYJLaKCeGZke03VW4vUhhxv9fFhwNg7cTocp/zaNFwGCz7eQn52CaFR/gSE+lRxlPK/DKcTR0YmjrRU7Klp2NNScaSmYU87vu3IyACX64TrLKGhhF55BeHXXqt13qVCXIaL99e/zzvr3wGgV8NevHjRi4T6hno5Mqluyl2Eb968OQsWLOCWW27h2muvPZaEDMOgbdu2zJ8/n4SEBI8FKiIiInWD+hwiIiK1l/K8iEg57FwAy991bw9/B4KiTnu6s8BOzne7cRU6MPtZCeweXQVBHmex2uhzwxh6jrgav6Cgk44f2pMLJhOuWD++y8jC32bhndFdCPAp95+mpQaoyTn+4I6tRCe0xGy2AGCxnvprc+2CFPZuzMRiNTPktvb4+Onr2JMMw8CZnY09NRVHWhr21LS/FNvTcKSmYk9PB4fjjPcy2WxYo6PxiYsl5LLLCblkKGY/vyp4FVKbFNoLeez3x5i/dz4AN7S5gQe6PYDVrJ8FcrIKfVV069aNTZs2sXbtWnbt2oVhGLRs2ZJOnTp5KDwRERGpi9TnEBERqb2U50VETiP/MHxzp3u7x+3QctAZL8n9KRlXoQNbdAABXU5fsK9MxQX52Hz9jhUsyyrAAyT2jSXV6uK+7zaCCZ4d2Z4WDYKrLE6pOjUxxx/csY3p//cPGrVux4iHHsfH79RLOaTuzmHZN0kA9L6mBZGx+jo+F4Zh4MrNdY9Y/7PInpZ24ij2tEMYJSVnvpnFgjUqClt0NLaYaKzRMdiio7HGRGOLjsEWE40lIkJTzcs5Sc1P5d5F97I1aytWs5V/nfcvRrYY6e2wpBo7q0czOnfuTFxcHCaTiXr16lV2TCIiIiKA+hwiIiK1mfK8iMj/MAz49m9QkA7128DAJ894SUlKLgUr0gAIG5FQZVPRGy4X37/xIiUFBVx674OERp169P2h3GIeWbSdQhNc2z2OUV1iqyRG8Z6akuOL8nKZ8/q/cTmd+AeHYPM99ajo4nw786ZswnAZtOjegLYXNqzCSGsmV0HB0QJ72immik/DKCw8841MJiyR9dzF9P8prFujo7HFxGCNjMR0mhkMRM7VuvR13LvoXrKKs4jwi+C1vq/RpUEXb4cl1VyFfiodOXKERx99lOnTp5OdnQ1AeHg41157Lc888wxhYWGeiFFERETqGPU5REREai/leRGRU1g5BXb8CBZfuGIK2E49Ihfca1Mf+WYXAAFdG+DbpOrWol39/Tckr1+D1eaDo7T0pOMul8GvX26n7UWNuHvuJjILSmkdHcz/DWtXZTFK1atJOd5wufjh7VfJyzxMWHQMg26/55TrwAP8PnPXsXXg+45uddpz6wJXScmx6eHdI9bTTiqyu3Jzy3UvS1gY1piYE0exx0QfLbjHYIuKwuTj4+FXJHJq3+z6hqf+eAq7y06r8FZM6j+JhkF6EEfOrNxF+KysLM4//3wOHDjA6NGjadOmDYZhsHXrVj766CN+/vlnli5dSnh4uCfjFRERkVpOfQ4REZHaS3leROQU0rfBvMfc2wOfhOj2Z7ykYFkq9oMFmPyshA5t4tn4/uJQ0i5++/ITAPrePJ56sfEnnbNh4T42/3aQTcvTWONfQJCflXdGd8HPZqmyOKVq1bQcv/K7mexZuwqLzcbl9z+Cb0DAac/vNbI5JQV2elzetNavA2/Y7dgPpeM4dIo12NPScGZllete5uDgk0evN4g+Poo9Ohqz/+kfOBLxFqfLyaurX+WTLe6cNyB+AM9e+CwBttP/vBD5U7mzxVNPPYWPjw+7d++mQYMGJx0bNGgQTz31FK+99lqlBykiIiJ1h/ocIiIitZfyvIhIGRwlMGMcOIqh+cXuteDPwLA7yf15LwChQ5pgCaqaUaKlxUV8P+lFXE4HLXr0osOAISedk3O4kOWz3etmz7MU4zDBC1ck0qx+2WvGS+1Qk3L8/q2bWPKVu6jW/5bbiWrS7IzX+Af7cMmdHTwdmscZTieOjIxjxfSyiuyOjAz38hhnYPL3P+0a7NboGCxBgVXwqkQqX25pLg/9+hC/H/gdgDs73skdHe/AbKqaZV+kdih3Ef6bb77h/fffPymBAkRHR/Piiy9yxx13VIskKiIiIjWX+hwiIiK1l/K8iEgZfn4KDm2EgHow4h0wn/kP/Cabhfq3dSB/WSqBPU69HntlWzjtfbJTDxJUL5KBt9990pTchmGw6LNtOOwuDvi42ODj5ObzG3NZB03bW9vVlBzvcjn56b03MFwu2lzYl8SLB5/y3OJ8O/u2ZdGi28mvqToyDANnVtZp1mBPxZF+GByOM97LZLMdG6le1hrstuhozKGhdX5afqmdknOSuXvh3STnJuNn8eOZC59hcJNT/6wQOZVyF+FTU1Np1+7Ua/a0b9+etLS0SglKRERE6i71OURERGov5XkRkf+xeyH88ZZ7e/jbEFz+grqtQSDhwxM8FNjJtv2+mM2LF2Aymbnkbw/gHxR80jlblhzkwPYjOE3wvW8pHeJC+eelbaosRvGempLjzWYLwx54lN+nf8aA8XedsohsuAwWfLyFvRszyU4toMflZx4t70mGYeDKzT06ev34GuwnjGJPS8MoLT3zzSwWrFFRpx3FbomIwFSOB4JEapulB5fy98V/J680jwYBDZjUfxJt67X1dlhSQ5W7CB8ZGUlycjKxsbFlHt+zZw/16tWrtMBERESkblKfQ0REpPZSnhcR+YuCTJh1p3u721hoNfSMlxgOF46MImzRVT/Fc1TTBKKaNqdZl+7EtU086Xh+djFLZ+wCYLFvKUaghbev74KvVevA1wU1KcfXj2/CiAcfO+05axeksHdjJharmWad63s8Jmd+QZmj1x1pf45iT8MoLDzzjUwmrJGRWI+OVj9pDfaYGKz162Oy6PtS5K8Mw+CLbV/w0sqXcBpOOtbvyOv9XifSP9LboUkNVu4i/JAhQ3j00UeZP38+Pj4nrjFUUlLC448/zpAhJ68BJCIiIlIR6nOIiIjUXsrzIiJHGQZ8ezfkp0FkKxj0TLkuy//9ADk/JhNycTwhAxp7OMgTRTRsxHVPv4z5FKNjNyzcT2mxk4MWF2t8nbx/VVfiIgKqNEbxntqU41N357DsmyQAel/TgsjYk2d9qAhXcfHxYvoppop35eWV616W8PDjI9bLWIPdFlUf0/+8/yJyenannWeWP8PMnTMBGN58OP86/1/4WPS9JOem3EX4J598km7dutGiRQvuuusuWrduDcCWLVt45513KCkp4dNPP/VYoCIiIlI3qM8hIiJSeynPi4gctfoj2P49mG1wxRTwOXOx2nGkhNwFKWCAJczP8zEelZuRTkhkFABWm+2U5zXsHcM7y/awFTvjLmrKoHZVt1a9eF9tyfHF+XbmTdmE4TJo0b0BbS9seNrzDbsd+6H0U6/BnpqGMzu7XG2bg4PLLqzHHF2bPToas1/Vfe+L1AWZRZlM/GUia9LXYDaZmdh1Ije1vemUS1WIVES5i/CxsbH88ccfTJgwgUceeQTDMAAwmUwMHDiQt956i7i4OI8FKiIiInWD+hwiIiK1l/K8iAhweAf8+Ih7e8ATENOhXJflzNmNYXfh0ySEgC5RHgzwuH2bN/DfZx+nx/Ar6XX1DacsShTbnfxt+ho2WUrpEh/GQ0NaV0l8Un3Uhhz/A19cBAABAABJREFU5zrw+dklhEb50+faBBzp6ThSU8sYxZ6GIzUVR0aGe2aLMzD5+592DXZrdAyWoKpfZkKkLtuetZ27F95NakEqQbYgXrzoRXrH9vZ2WFKLlLsID9C0aVN++OEHsrOz2blzJwAJCQlERER4JDgRERGpm9TnEBERqb2U50WkTnOUwsxx4CiCZn3hvLvKdVnx9iyKNmWCGcJHJGAye36EXlFeLnPfegWX00l+dvYpC/A7VqbxacphNh3IJTzAxlvXd8FmKXvKeqndalKON1wunFlZJ4xeP7gnn72prTAbDtqueIOkHpvA6TzjvUw227E12K3RDf5SWHevwW6LjsYcGqqRtSLVyM97f+aRJY9Q5CiicUhjJvWfRLPQZt4OS2qZChXh/xQeHk6PHj1O2v/f//6XK6+88pyDEhEREQH1OURERGoz5XkRqZMWPQOp68E/HEa8B6dYX/2vDLuL7G93AxDUqxG2aM+PljUMg5/em0R+VibhDWPpf8ttZZ63Z/1h5k/dgtXswhIMr13TiYZh/h6PT6q36pzj8xYu5NDzL+BIS8Ow2084ZgE6RrSl1BaE/6H1R3dasDaIOvUa7DHRWCIiVGAXqSEMw+D9De/z9rq3ATgv5jxe7vMyob6hXo5MaqMKFeEdDgfbt2/HZrPRsmXLY/tnz57Nv/71L7Zt2+b1JCoiIiI1n/ocIiIitZfyvIjUWUmL4fdJ7u1hb0JITLkuy1u8D2dmMeYQH0IGxnswwOPWz/+B3auWYbFaufSeB7GVsQ51SaGdnz/bBsBum5M7+jenb6uqmSZfqqeakONNFgv2ffuOfmLCGhl5bBS7LSaaqGNrsN+PNSYGa2QkJovFqzGLSOUochTx2JLHmLd3HgCj24zm793+jtV8VuOVRc6o3F9ZW7Zs4bLLLmPv3r0ADB8+nHfffZerr76a9evXM27cOObMmeOxQEVERKRuUJ9DRESk9lKeF5E6qzALZt0BGNDlZmhzebkvNYf4YPKzEHZpM8y+ni8UZKQks/iTKQD0vv5WGjRtXuZ5v/5nJyV5drLMLuytg7l/QMsyz5O6oabkeP9OnWj82afuUexR9cFqY9ns3bTr3YiQSM3iIFIbOV1O5u+dz7vr3yUpJwmr2cpjPR/jipZXeDs0qeXK3Wv7xz/+QdOmTZk0aRKff/4506dPZ9OmTdxwww3MmTOH4OBgT8YpIiIidYT6HCIiIrWX8ryI1EmGAd/dC3kHoV4CDHm+QpcH9YjBv10k5gDPF+Addjtz3ngRh72Upp260uWSYWWet29bFjv+SANgWT2DD0d3wap14Ou0mpLjLaGhBHTrduzztfNSWPNTCtv+SOPGZ87H6qNR7yK1hd1p57uk75i2aRp7c90PCEX4RfBq31fp2qCrl6OTuqDcPbcVK1Ywd+5cunTpwoUXXsj06dN58MEHGT9+vCfjExERkTpGfQ4REZHaS3leROqktZ/B1m/BbIUrpoBPxdd0twTaPBBYGe1YrXS5ZDgrZv+HIRPuL3Oda3uJk++nbgZgra+DR2/uQlTIydPVS91SE3N86u4c/vhmNwDdL2uqArxILVFoL2Tmzpl8tPkjDhUeAiDUN5TRbUZzfevrtf67VJlyF+HT09Np1KgRAGFhYQQEBNCnTx+PBSYiIiJ1k/ocIiIitZfyvIjUOZm74YeH3dv9H4OGnct1mavUSeZHmwm6KBb/1hEeDPBEJpOJDhcPpl2f/lisZRf+f5q+HWeenRyTiw5DG9MrIbLK4pPqq6bl+OJ8O/OmbMJwGbToFkW73g29HZKInKPc0ly+2vYVn235jOySbACi/KO4ud3NXNnySgJsAV6OUOqachfhTSYTZvPxKYXMZjM2W9U8gSkiIiJ1h/ocIiIitZfyvIjUKU47zBgL9gJo0ht63VvuS/MWplCSlIMjqxi/v3fDZPXsVO8FR7KxWG34BQUBnLIAX1Di4L2Dh2htdVLcLIBJg7QOvLjVpBxvuAwWfLyF/OwSQqP86Tu6dZmzPohIzZBRlMFnWz7jq+1fUWAvACA2KJaxiWMZ1nwYPhYfL0codVW5i/CGYdCyZctjySg/P5/OnTufkFgBsrKyKjdCERERqVPU5xAREam9lOdFpE755Xk4uBb8wmDke2AuXyHdnl5I3m8HAAgb1tzjBXiXy8n3b7zIkUNpDJv4CNEJZRfWDcPgn7M2sulIIRkxfnx/WzfMZhUuxa0m5fh1C/axd2MmFquZwePb4+Nf7jKJiFQjB/MP8tHmj5i5cyYlzhIAEsISGJ84nkFNBmE163tbvKvcX4EffvihJ+MQERERAdTnEBERqc2U50WkzkheAr+96t6+/A0IjS3XZYZhcGT2LnAa+LWOwL9tPQ8G6bbim/+yb8tGbL5++Aaeer36zxYmMXvdQSxmE2+O7ky9IF+PxyY1R03J8S6ni11r0gG48OoW1I8L9nJEIlJRSTlJTN04lblJc3EYDgA6RHZgfIfxXBR7EWaTZx9eEymvchfhb775Zk/GISIiIgKozyEiIlKbKc+LSJ1QlA0zbwcM6HwDtBtR/kvXH6Zkdw5YzYQNa+6xEP90cMdWlv7ncwAuHnsn4TGNyjxv2epUsv+TzCAfG51HNqN7k6pbp15qhpqS480WMyMf6MzOlYdofX6Mt8MRkQrYnLmZqRunsmDvAgwMAM6LOY/xiePpHt1dy0pItaO5GEREREREREREREQqg2HAnPshdz9ENIMh/y73pa5iB0e+TwIgpF8c1gg/T0UJQElhAd9PehnD5aL1BX1oe1H/Ms87UlDKgo+3Eo6J+CA/bu/j+YcDRDzJarPQpldDb4chIuVgGAarD61mysYp/H7w92P7+8f1Z1ziOBLrJ3oxOpHTK/ecDGazGYvFctJHeHg45513HjNnzvRknCIiIlJHqM8hIiJSeynPi0itt/5L2DwLzFYYNQV8g8p9aeGGw7jy7Fgj/QnuU77p68+WYRjMn/w2uYcPERrVgAHjJpQ5gtAwDF59cyXhpVBihrH3dNE68FIm5XgRqUyGYfDr/l+5+cebufWnW/n94O9YTBYua3YZs4bN4o3+b6gAL9VeuUfCz5o1q8z9R44cYcWKFdxwww18/PHHXHXVVZUWnIiIiNQ96nOIiIjUXsrzIlKrZSXB3Afd230fgdiuFbo8qEcMliAfzH4WTFbPrme7bckvbF/6KyazmUvufhDfgLLXgv/whx3USy4GTLS7JJ6Y6PI/VCB1i3K8iFQGp8vJ/JT5TNkwhe3Z2wGwmW2MTBjJLe1vIS44zssRipSfyTAMozJu9Pbbb/PJJ5+wfPnyyridV+Xm5hIaGkpOTg4hISHeDkdEROow5aSTnWufQ++piIhUF8pJJzuXPK/3U0S8ymmHaUPgwCqI7wW3zAGzxdtRnVJRfh7z3ptEdPMW9Bx5dZnnrE3J5j8vrqaRw4y5oT93PH6e1tstJ+Wkk1WX3+Wzi7O5c8GdXNbsMi5rdhlhfmFnfS8RqTx2p505SXOYumkqe3P3AhBgDeDqVldzU9ubqB9Q38sRihxX3pxUaY9UDho0iB07dlTW7URERETKpD6HiIhI7aU8LyI11uIX3QV431AY9UGFCvAlSTk480s9GNzJ/IOCGfbAP+kx/Moyjx8pLGXSe2tp5DDjtMDouzqpAC/npLrk+DlJc9icuZl/r/w3/f/TnwcXP8jSg0txGS5vhyZSJxU5ivh86+cMnTmUfy39F3tz9xLqG8qEThOYd+U8Huj2gArwUmOVezr6MykqKsLPz6+ybiciIiJSJvU5REREai/leRGpkfb+Ab+97N6+/DUIK/9Uuc4CO5mfbcFwQf3bEvFp6Nnp3tN27aBB8xaYTCZ3Ub2MwrrLZfDA1+s5UFxCe7MvF41sTkg9f4/GJbVfdcnxw5oPw2q2MmvnLLZmbeXH5B/5MflHGgU1YnjCcEYmjCQ6MNrbYYrUermluUzfNp1Pt3xKdkk2APX963Nzu5u5quVVBNgCvByhyLmrtCL85MmT6dy5c2XdTkRERKRM6nOIiIjUXsrzIlLjFOfAzNvAcEHH66D9FRW6PPenZFyFDqwNArA18GzBIXndamY8/wStel3EJXc/gPkUo/Un/5bEz9vS8Qkw0//OjnRqHuHRuKRuqC45PtQ3lOtaX8d1ra9ja+ZWZu6cyfdJ33Mg/wDvrHuHd9e9S6+GvRjVYhT94vphs9i8HbJIrZJZlMlnWz/jq21fkW/PByA2KJYxiWMY1nwYvhZfL0coUnnKXYSfOHFimftzcnJYtWoVu3fv5rfffqu0wERERKRuUp9DRESk9lKeF5Fa5/sHICcFwpvA0BcrdGlJSi4FK9MACB+RgMlSaSuHnqTgSDY/vPMaAH5BwacswK9KzuLFH7cD8MTlbencop7HYpLapSbm+Db12vBovUd5oNsDLEhZwKyds1iRtoLfD/7O7wd/J9w3nMuaX8aohFEkhCd4O1yRGu1g/kE+2vwRM3fOpMRZAkBCWALjEscxuMlgrOZKGzMsUm2U+6t67dq1Ze4PCQlhyJAhTJgwgcaNG1daYCIiIlI3qc8hIiJSeynPi0itsuFr2PgfMFlg1GTwCyn3pYbL4Mjs3WBAQJcofJuGeixMw+Xix3dfpzDnCJFxjelz45gyz8vML+Hvn67l5hwfSloHc1338k+rL1KTc7yf1Y/Lml3GZc0uY1/uPmbtmsXsXbNJL0rn0y2f8umWT+lQvwOjEkYxpOkQAm2B3g5ZpMZIykli2sZpfJ/0PQ7DAUBiZCLjE8fTJ64PZpPnHkAT8bZyF+EXLVrkyThEREREAPU5REREajPleRGpNbKT3aPgAfo8DHE9KnR5wfJU7AfyMflZCB3atPLj+4s1P3xL8rrVWG0+XHrvQ9h8Tp7q1+UyuG/6Ojqmu6jnslAvzwScvF68yKnUlhwfFxLHPV3uYUKnCSw9uJQZO2bw6/5f2XB4AxsOb+DfK//NkCZDGNViFB3rd8Rk0veJSFm2ZG5hysYpLNi7AAMDgJ4xPRmfOJ4e0T30vSN1QqU8YuJyufjuu+8YMWJEZdxOREREpEzqc4iIiNReyvMiUmM4He514EtyIe486P1AxS7PKyXnp2QAQgc3wRLs44Eg3Q4l7eLXzz8CoM9N44iMK3sk8tuLdnFocxYt7RZMZhMDbm6D2awCiVSOmpjjrWYrF8VexBv932D+VfOZ2HUiTUKaUOQoYtauWdz4w42MmD2Cjzd/TGZRprfDFak2Vh9azR0L7uCaOdcwf+98DAz6xfXj80s+Z8qgKfSM6akCvNQZ51SE37lzJ4888gixsbFcffXVlRWTiIiIyAnU5xAREam9lOdFpMb57RXYtxx8Q2DUB2Cp2Dq2JpuZgM5R2OKCCewZ46EgweV0MvetV3A5HSR0P4+OA4eWed7SXRm8O28HA4rcDwN0HdKYyNhgj8UldUdtyfGR/pHc2v5Wvh3xLR8P+ZhhzYfhb/UnKSeJl1e9zID/DOD+Rffz2/7fcLqc3g5XpMoZhsFv+3/j5h9u5pYfb+H3A79jNpm5tNmlzBw2k0n9J9GhfgdvhylS5SrWQwSKior4+uuvmTp1KsuWLcPpdPLaa68xZswYgoKCPBGjiIiI1EHqc4iIiNReyvMiUmPtWwGL/+3evvQVCK/4GtdmPyvhwxMwHC5MHhxtbrZYuHjMnSz58mMG3X5PmSMP03OLueerdfQttBFomAiPCaTb0CYei0lqv9qc400mE10adKFLgy480uMRfkj+gZk7ZrIpcxMLUhawIGUBDQIaMDxhOCMTRhIbHOvtkEU8yulysiBlAVM2TmFb1jYAbGYbIxJGcGv7W4kLjvNyhCLeVe6R8CtWrOC2224jOjqat956iyuuuIJ9+/ZhNpsZMGBAjU+gIiIiUj2ozyEiIlJ7Kc+LSI1WnAszxoHhhMSroEPFRvYaLgPDMI59brJWykqhpxXfvgPXPfMy/sEhJx1zOF3c89VagrPttLNbwQT9b2yNxeb5uKojwzBwHjni7TBqrLqW44N8griq5VV8edmXzBg2gxva3ECobyiHCg/xwYYPGDpzKOPmjWNu0lxKnCXeDlekUtmddmbtnMWI2SP4++K/sy1rG/5Wf25pdws/XvEj/zr/XyrAi1CBkfC9evXi7rvvZsWKFbRq1cqTMYmIiEgdpj6HiIhI7aU8LyI12g8PwZG9EBrvHgVfQflLDlC8PYuw4QnYogI8EKBb7uF0nA474TGNAE659u4bP+9kWVIW/Qz3NPQd+8cR3SzUY3FVZ4bLxaHnnid/8WIaf/YZtgZR3g6pxqnLOb5leEse7vEw93e9n4UpC5m5cybLUpexPHU5y1OXE7I8hMuaXcaoFqNoFVG33hupXYocRczcOZOPNn9EWkEaACE+IdzQ5gaua30dYX5h3g1QpJopdxG+f//+TJ06lfT0dG688UYGDx58yg6ciIiIyNlSn0NERKT2Up4XkRpr439h/ZdgMrvXgferWLHakVNC7oIUjFInpXtzPVaEdzmdzJn0Ihl7k7ns/odp1rl7mef9sj2dNxfuAmDETW3p6h9AgyYnj5avCwyHg9RHHyNn9mwAClcsJ/Tyy70cVc2jHA8+Fh+GNB3CkKZDOJB/gG92fcM3u74hrSCNL7Z9wRfbvqBdvXaMajGKoU2HEuwT7O2QRcoltzSX6dum89nWz8gqzgIg0j+SW9rdwpUtryTQFujlCEWqp3IX4efNm8e+ffv48MMPufPOOykqKuKaa64BTv00pYiIiEhFqc8hIiJSeynPi0iNdCQF5kx0b/f+OzQ+v8K3yJmThFHqxKdxCAFdG1RygMf98d8vSN2xDd+AQOo1ii/znINHirh/+joAbjgvnuGdGnksnurOVVLCgQceIH/Bz2Cx0PD551SAP0vK8SdqFNSIuzrdxR0d7mBZ6jJm7JzBon2L2Jy5mc2Zm3lp5UsMajKIkQkj6dqga518j6T6yyzK5LOtn/HVtq/It+cD7q/tMe3HMDxhOL4WXy9HKFK9mYy/LkRUAfPnz2fatGl88803xMXFceWVV3LllVfSpUuXyo6xyuXm5hIaGkpOTg4hIXXzCVAREakelJMqv8+h91RERKoL5aTKzfN6P0XEI1xO+OgySFkKsd3h1h/BUu5xTQAU78gmY9omMEHU3Z3xaeiZtbH3bd7A108/CobBpfc+ROteF510jt3p4toPlrE+OZsrzAE8eF8PIhvUzRGMroIC9v3tbxT+sQyTjw+NXn+N4P79K+Xeykn6Xb4sWcVZzNk9h5k7Z7I7Z/ex/Y1DGjMiYQTDmw+nfkB9L0Yo4paan8pHmz9i5s6ZFDuLAUgIS2Bs4liGNBmC1VyxPChS25Q3J511Ef5P2dnZfPbZZ0ybNo0NGzbgdDrP5XbVQm1I6CIiUjsoJx1XWX0OvaciIlJdKCcdVxl5Xu+niHjEry/DwqfBJwju+A0imlXocsPh4tDra3BkFBF0QUPCLm/ukTCL8nL55KG7yc/KpH2/gQy+494yz3tu7lY++DWJgaU+dCq0EB4dwHX/6onJXLdG4TqPHGHf7XdQtH49poAA4t55m8Dzzqu0+ysnHaff5U9mGAYbMjYwa+csftjzA4WOQgAsJgu9Y3szKmEUvWN7q9ApVW5Pzh6mbZrGnN1zcBgOABIjExmXOI6+cX0xm8xejlCkeqiyIvxfrVmzRiPhRUREKpFyUtnOpc+h91RERKoL5aSynW2e1/spIpVu/2qYNghcDhjxLnS6vsK3yP05hdz5ezEH+xD9QFfMfpVfVDMMg29feZZdK5cRHtOIG194A5uf30nnzducxm2fribaYeLGAj8w4JIJHWjaIbLSY6rOHIcPkzJ2HCU7dmAODSX+g/fx79ixUttQTiqbfpc/WaG9kJ+Sf2LmzpmsO7zu2P76/vUZ1nwYI1uMpHFIY+8FKHXC1sytTNk4hfl752PgLhn2jO7JuA7j6BndU8sliPyP8uakSu311YYCvIiIiFR/6nOIiIjUXsrzIlItlOTDjLHuAny7UdDxugrfwnAZFG3JBCDs0qYeKcADbP/jN3atXIbZYuXSex4sswC/L6uQv/9nPWYDrjMFgeGgRfcGda4AX7r/ACljx2Dfm4K1fn3ipk7Br2VLb4dVZyjHnyzAFsDIFiMZ2WIkSUeSmLlzJt8lfcfhosNM3TSVqZum0q1BN0a1GMWAxgPwt/p7O2SpRdYcWsPkjZNZcmDJsX194/oyLnEcHetX7sNJInWR5jMRERERERERERER+asfH4bsPRASC5e9CmcxCtBkNhE1oSNFGzPw7+i5dZ5b9Dif7sOvJDA0nAbNEk46XuJw8rcv1pBb7GCUbxDWdAd+QTZ6X93CYzFVRyW7d5MyZiyOQ4ewxcYSP20qPvHx3g5L5JhmYc34e/e/c2+Xe1m8fzEzds5g6cGlrDq0ilWHVvHc8ue4tNmljGwxkrYRbTU6Wc6KYRj8fvB3Jm+YzJr0NQCYTWaGNh3K2PZjaRFet3KDiCepCC8iIiIiIiIiIiLyp83fwNrPABOMeh/8w8/6ViaLmYBOUZUWWlksVhsXXX/LKY8/P3cb6/fn0NRmIyHThQFcdE1L/IN9PBpXdVK0eTP7xo3HmZ2NT0Jz4qdOxdaggbfDEimTzWJjQOMBDGg8gLSCNGbvms2sXbM4kH+A6dunM337dFqFt2JUi1Fc2uxSQn1DvR2y1ABOl5OfU35mysYpbM3aCoDNbGN4wnDGtBtDXEiclyMUqX1UhBcREREREREREREByNkP393j3u49EZpcWOFbuEqdFKxMI6hnDCaruZIDPG7XymU07dwNi/XUf+L9fkMqHy1NBmBMRD1yD+fQpEMkCd08+2BAdVK4ahX77rgTV34+fu3bEzf5A6zhZ/9ghUhVig6M5vaOtzO+w3hWpK1g5s6Z/Lz3Z7Znb+f5Fc/zyqpXuLjxxVzR4gq6R3fHbPLczxypmewuO98nfc/UjVNJzk0GwN/qz9Utr+amdjcRFVB38oFIVVMRXkRERERERERERMTlhFl3QHEONOwMfR85q9vkLdpH3qJ9FG/Ppv6Y9pUcpNuuVcuZ/fIzxCS04ur/ewGrzXbSOXsyCnh4xgYA7uzbnOv6t2D1j3tp17tRnZnGOn/xYvbfcy9GSQkB3bsT++47WIKCvB2WSIWZTWbOizmP82LOI6ckhzlJc5i5cyY7snfww54f+GHPDzQKasTIhJEMTxhOdGC0t0MWLytyFDFz50w+3vwxqQWpAIT4hDC6zWiub309YX5h3g1QpA6ocBG+c+fOZXbSTCYTfn5+JCQkcMstt9CvX79KCVBERETqJvU5REREai/leRGpVkryYP1XsHIqHN4KtkC4YipYTi5sn4k9vZC8X/cDENTTM0WwvKwMfnr3dQAatmpTZgG+2O5kwudryC9x0KNJBA8MbInVYqbnsGYeiak6yp07lwMPPQwOB0F9+tDojdcx+/l5O6xaTzne80J9Q48VUrdkbmHmzpnM3TOXA/kHeGvdW7yz/h0uaHgBo1qMok9sH2xn8bNMaq680jymb5/Op1s+Jas4C4BI/0hubnszV7W6ikBboJcjFKk7Kjw3yZAhQ0hKSiIwMJB+/frRt29fgoKC2L17N927dyc1NZUBAwYwe/ZsT8QrIiIidYT6HCIiIrWX8ryIVAvp2+D7v8MrbWDu348W4ANg+FtQr3mFb2cYBke+3Q1OA7/WEfi1rVfpIbtcTn5461WK8/OIatqcC6+7uczznvxuM1tTc6kX4MODbWIx15GR73/K/vprDjzwd3A4CLn0UmLfelMF+CqiHF91TCYT7SLb8fj5j7Pw6oU8e+GzdG3QFZfh4rcDv3H/L/cz4L8DeGXVKyTlJHk7XPGwzKJMJq2ZxKD/DuKNNW+QVZxFo6BGPH7e4/x4xY/c0v4WFeBFqliFR8JnZGTwwAMP8Pjjj5+w/5lnnmHv3r3MmzePJ554gqeffprhw4dXWqAiIiJSt6jPISIiUnspz4uI1zjtsO17WDkFkn87vr9eC+g+DjpdB36hZ3Xrog2HKdl1BKxmwi5v5pEp31fOnsG+zRuw+fpx6T0PlTkKftba/Xy5Yh8mEzzeLp4VX+7kwJrDDL+v7BHKtU3m1Gmkv/QSAGHXXkP0449jsli8HFXdoRzvHf5Wf4Y1H8aw5sNIzklm1q5ZfLv7WzKKMvho80d8tPkjOtXvxKgWoxjcZDABtgBvhyyVJK0gjY82f8SMHTModhYD0Dy0OWMTxzK06VCsZq1KLeItJsMwjIpcEBoayurVq0lISDhh/65du+jatSs5OTls27aN7t27k5eXd8b7vfPOO7z00kukpqbSrl07Xn/9dXr37l3mubfccgsff/zxSfvbtm3L5s2bj30+Y8YMHn/8cXbv3k3z5s159tlnGTlyZLlfY25uLqGhoeTk5BASElLu60RERCpbXc5Jld3n+FNdfk9FRKR6qcs5yRN5vi6/nyJSDnlpsPoj90eee21cTGZodQn0GA9N+8A5FKhdxQ7SXlmNK6+UkAHxhAxoXClh/9XBHdv46omHMFwuBt9xL+37DTzpnJ2H8hj21u8U2Z3ce35TAhcdxl7s5IIrE+g0IL7SY6pODMPg8BtvkPne+wDUGz+O+hMneuXBg7qck/S7fPVhd9lZsn8JM3fO5LcDv+E0nAAEWAMY2nQoI1uMpENkhzrxcE5tlJyTzLRN0/gu6TscLgcA7eu1Z1yHcfSL64fZVOGJsEWknMqbkyr8CIyfnx9Lly49KYkuXboUv6NT+rhcLnx9fc94r+nTp3PffffxzjvvcMEFF/D+++8zdOhQtmzZQnz8yZ3CN954gxdeeOHY5w6Hg44dO3LVVVcd2/fHH39wzTXX8PTTTzNy5EhmzZrF1VdfzZIlS+jZs2dFX66IiIh4SWX2OURERCrN1jmQcDHY/L0dSY2mPC8iVcIwYO/v7lHvW7+Do0UKAutDl5uh260QGlspTeUuSMGVV4q1nh/BfeIq5Z5/ZRgGCya/heFy0arXRbTrO+CkcwpLHUz4fA1FdicXNI8gYZ+dlGInDZqG0KF/5cdUnRguF4eeeZbsL74AoP7EiUTeNt7LUdVNyvHVh81so198P/rF9+Nw4WFm757NrJ2zSMlLYcbOGczYOYOEsARGJozk8uaXE+4X7u2QpRy2ZW1jysYpzEueh4F7jG2P6B6MSxzHeTHn6aEKkWqkwkX4u+++mzvuuIPVq1fTvXt3TCYTK1asYMqUKfzzn/8E4KeffqJz585nvNerr77K2LFjGTduHACvv/46P/30E++++y7PP//8SeeHhoYSGnp8OqhvvvmG7Oxsbr311mP7Xn/9dQYOHMgjjzwCwCOPPMLixYt5/fXX+fLLLyv6ckVERMRLKrPPISIiUin2/AbTR7unLL5tEfgGezuiGkt5XkQ8qiQPNkyHlVMhfcvx/XHnuUe9txkGVp9KbTKwRzT2tAKCL4rFZKv80Ycmk4nLH/gnv33xEQPH33VSkcUwDB6btYmd6flEBftyf6s4ln+xA7PVRP8b22A2196ijGG3c/DRR8n99jswmYh+4l+EX3utt8Oqs5Tjq6f6AfUZlziOse3HsurQKmbtnMX8vfPZdWQXL616idfWvEb/uP6MajGK82LOw2LWEg7Vzdr0tUzeMJnfDhxfSqVvbF/GJo6lU1Qn7wUmIqdU4enoAT7//HPeeusttm/fDkCrVq24++67uf766wEoKirCZDIde7KtLKWlpQQEBPCf//znhKni7733XtatW8fixYvPGMfll19OSUkJ8+bNO7YvPj6e+++/n/vvv//Yvtdee43XX3+dvXv3lnmfkpISSkpKjn2em5tLXFycprYRERGvq+vTrVVGn0N5XkREKkVJHrzTC3JS3KMnh00651sqz59bnleOF5GTpG9zj3pf/xWUHp3m2hYAHa52r/cenejR5g3D8NoIxOkrU3h4xkbMJvjk+q5s/2gnxQV2eg5rSrdLmnolpqrgKinhwP0TyV+4ECwWGr7wAqGXX+btsJTj9bt8jZBbmssPST8wc9dMtmQef2ApJjCGEQkjGJEwgoZBDb0YoRiGwdKDS5m8cTKrD60GwGwyM6TJEMYmjqVleEsvRyhSN3lsOnqA0aNHM3r06FMe9/c/87R8GRkZOJ1OGjRocML+Bg0akJaWdsbrU1NT+eGHH/ji6BRDf0pLS6vwPZ9//nmefPLJM7YpIiIiVasy+hzK8yIiUil++qe7AB8WD4Of9XY0tcK55nnleBEBwGmH7XNhxWRIPj46kHoJ7sJ7x+vAP8xjzbuKHZj93H9i9UQBPjv1AHmZmcS373DKc7YczOVfszcD8MCgVhStzKS4wE69RkF0Hlz5a9NXF878Avb/7W8ULluGyceHRq+/TnD/ft4OS9Dv8jVFiE8I17S+hmtaX8O2rG3M3DmTOUlzSC1I5d317/Le+vc4v+H5jGwxkv5x/fGxVO4MInJqLsPFzyk/M3nDZLZmbQXAarYyvPlwxrQfQ3zIycs5i0j1c1ZFeHCPZE9PT8flcp2wv6y13E+nrKmTytNh/eijjwgLC2PEiBHnfM9HHnmEiRMnHvv8z6fqRERExPvOtc+hPC8iIudsxzxY8wlgghHvahr6SnQueV45XqSOy0uD1R/D6g8hL9W9z2SGVpe4i+9N+4C58qeF/ytXoZ20V1fj3z6S0KFNMftW7vTNToed7ye9xKE9uxl8x720L2Md+LxiO3d9sYYSh4u+repzZ5/mZLcsIDejiN7XtMRi8ex74C3OI0dIue12ijdswBwQQOy77xLYs4e3w5K/0O/yNUvriNb8s+c/eaDbA/y892dm7pzJ8rTlLD24lKUHlxLmG8ZlzS5jZIuRGn3tQXaXnblJc5m6aSp7cvYA4G/156qWV3FT25toENjgDHcQkeqkwkX4nTt3MmbMGJYuXXrC/j8L3U6ns1z3iYyMxGKxnDRCPT09/aSR7P/LMAymTZvGjTfeiI/PiU9fRUdHV/ievr6++Pr6lituERERqRqV1edQnhcRkXNSmAXf3u3ePm8CNLnQu/HUEpWR55XjReogw4C9S91Tzm/9FlwO9/7A+u6lQrreAmFVV6TLmbcXV76dkqQcTNbKHwW/5KtPOZS0C7+gYBp36HTSccMw+MfMjezJKKBhqB+vXd0Js9lEvUZBjHqwq9emxvc0e3o6+8aOo2TnTiyhocRNmYx/omeXGpDy0+/yNZuvxZdLml3CJc0uYV/ePr7Z9Q3f7PqG9MJ0Ptv6GZ9t/YzEyERGthjJ0CZDCfIJ8nbItUKxo5iZO2fy0eaPSC1wP1gW7BPM6Dajub719YT7hXs5QhE5GxUuwt9yyy1YrVbmzJlDTEzMWXfmfHx86Nq1K/Pnzz9hTfj58+czfPjw0167ePFidu3axdixY086dv755zN//vwT1oSfN28evXr1Oqs4RURExDsqq88hIiJyTuY+CPlpENkSLn7c29HUGsrzIlIhJfmwYTqsnArpm4/vj+sJ3cdD22FgrdpiXem+PAqWuwsl4SOaY6rkEefJ69ew6ruZAAy+416CIyJPOuezZXv5fkMqVrOJN6/vgrXEBYHuY7X152rp/v2k3DoG+759WOvXJ37aVHxbtPB2WPIXyvG1R1xwHHd3vpsJHSfw+8HfmbVzFr/s+4WNGRvZmLGRl1a+xKDGgxjVYhSdozrr//os5JXmMX37dD7d8ilZxVkA1POrx83tbuaqllfpIQeRGq7CRfh169axevVqWrdufc6NT5w4kRtvvJFu3bpx/vnn88EHH5CSksIdd9wBuKecOXDgAJ988skJ102dOpWePXvSvn37k+557733ctFFF/Hvf/+b4cOHM3v2bBYsWMCSJUvOOV4RERGpOpXZ5xARETkrm2fBpv+CyQIj3gPbmdcvlfJRnheRcjm83T3qfd2XUJrn3mcLgMSr3FPOx5x6nXRPMlwG2bN3gQEBnaPwbRZWqfcvzDnCD2+/CkDHQZeS0P28k87ZsP8IT89xrxP8j6GtiSo0+Ozff9B5UDw9hzerlcWwkl27SBkzFkd6Ora4OOKnTcVH05NXO8rxtY/FbOGi2Iu4KPYiMooymLN7DjN3zWRPzh5m757N7N2zaRLShFEtRnF588uJ9D/5oSE5UVZxFp9t+Yyvtn1Fnt2d3xoFNeLWdrcyosUIfC2aBUKkNqhwEb5t27ZkZGRUSuPXXHMNmZmZPPXUU6SmptK+fXvmzp1L48aNAUhNTSUlJeWEa3JycpgxYwZvvPFGmffs1asXX331FY899hiPP/44zZs3Z/r06fTs2bNSYhYREZGqUZl9DhERkQrLOwRzjq5D2nsixHb1bjy1jPK8iJyS0wHbv3cX3/f8enx/RHN34b3T9eAf5rXwAApWpGHfn4/J10LoJU0r9d6Gy8WP77xGYc4RIuMa0+fGMSedk1NoZ8Lnayh1uhjUtgE3dYvjq2dW4nIZlBY5amUBvmjjJvaNH4/zyBF8WyQQN2UqtgZR3g5LyqAcX7tF+kdyS/tbuLndzaw/vJ4ZO2fwU/JPJOcm8+rqV5m0ZhJ94vowqsUoejXshdVc4RJUrZZWkMbHmz/mvzv+S7GzGIBmoc0YlziOIU2HYDPbvByhiFQmk2EYRkUuWLhwIY899hjPPfcciYmJ2Gwn/lAICQmp1AC9ITc3l9DQUHJycmrF6xERkZqrLuckT/U56vJ7KiIi5WQY8NX1sH0uRCfCuIVg9an0ZupyTvJEnq/L76dIrZB3CNZ8DKs+hLyD7n0mM7QcCj3GQdO+YK7cKd/PhjO/lLSXV2MUOwgb1pygXg0r9f67V6/gmxefwmrzYfRzrxIZ3+SE44ZhcNunq5m/5RBxEf7Mubs3G77bw4aF+wmK8OW6f/XEx692Fb0KVqxg/50TcBUU4JeYSNwH72MNr97rI9flnKTf5eue/NJ8fkz+kVk7Z7EhY8Ox/VH+UQxPGM7IFiOJC67bs1bszd3LtE3T+Hb3tzhcDgDa1WvH+MTx9Ivvh9nk/fwmIuVX3pxU4SK8+Whn93+fqDQMA5PJhNPpPItwqxcldBERqS7qck7yVJ+jLr+nIiJSTms/h9kTwGyD2xdDg3YeaaYu5yRP5Pm6/H6K1FiGASl/wIrJsPVbOFqYICASut4MXW+FsOpVuCnefYTMz7ZiDfcl6m+dMZkrd9S5YRhs+mU+hsugw8WDTzo+5bcknvl+Kz4WM/+983zql5iY+fJqMODyezoS37ZepcbjbXm//MKBe+/DKCkhoGdPYt9+G0tQoLfDOqO6nJP0u3zdtjN7JzN3zmRO0hyOlBw5tr9HdA9GtRjFxfEX42f1816AVWx71nambJzCvL3zcBkuALpHd2dc4jjOjzm/Vs5cIlIXlDcnVfixyEWLFp1TYCIiIiLloT6HiIh4xZF98OM/3Nv9/umxAnxdpzwvUseV5MPGr2HFFEjffHx/XE/3lPNth4O1eq6H69c8jOgHuuIqdFR6AR7chcvEfoPKPLZ6bxYv/LANgMcva0PbBsF8/exKMKD1+dG1rgCfM+d7Dv7jH+BwENSvH41efw2zr+e+LrKKs9iSuYULG13osTbqAuX4uq1FeAse7vEw93e9n0X7FjFr5yyWHlzKirQVrEhbQbBPMJc2vZRRLUbRpl4bb4frMevS1zF542R+3X98WZU+sX0YlziOTlGdvBeYiFSpChfh+/Tp44k4RERERE6gPoeIiFQ5lwtm3wUluRDbHS6419sR1VrK8yJ11OEd7rXe13/p/lkLYPWHDle5i+8xHb0bXzlZgnywBFXuMiXr5/9Ay/MvxD8ouMzjWQWl/O2LtThcBpd1iOGG8xqzfHYS2WmF+If4cMGVLSo1Hm/L/mo6aU8+CYZByOWX0/C5ZzHZPLdWcmZRJuPmjSM5J5nX+r1G37i+HmurtlOOFwAfiw+DmwxmcJPBHMw/yOxds5m1axapBal8tf0rvtr+FW0i2jCqxSguaXYJIT41f3YDwzBYenApUzZOYdWhVQCYTWYGNxnM2PZjaRXRyssRikhVK1cRfsOGDbRv3x6z2cyGDRtOe26HDh0qJTARERGpe9TnEBERr1o1FfYsdheERr4PZou3I6pVlOdF6iinA7bPdRff9yw+vj+iubvw3uk68K/e63sDFKw6hNnfil/biEqfPnj7H7+xYMrbLP/ma2555R18/PxPOO5yGUz8eh2pOcU0iwzkhSs6YDKZCIrww+Zroc91LfEL9FyBuqplTJ7M4VdeBSD8+uto8NhjmMyeWy85oyiDcT+NY3fObur716dxSGOPtVVbKcfL6TQMasidne7ktg63sTx1OTN3zWRhykK2Zm3l2eXP8vKqlxnYeCCjWoyiW4NuNW6Kdpfh4ueUn5m8YTJbs7YCYDVbGd58OGPajyE+JN7LEYqIt5SrCN+pUyfS0tKIioqiU6dOmEwmylpKvrasCS8iIiLeoT6HiIh4TeZumPe4e3vgU1CvuXfjqYWU50XqmLxDsOYTWP0h5B5w7zOZoeUQd/G9WT/wYGG1MjlzSjjy7W6MUif1bm2Hf6uISrt3Tvoh5n/wFgBte/c/qQAP8O7i3fyy/TC+VjNvj+5CkK/7T7rtL2pE88718Q+u3FH53mIYBodffY3MyZMBqHf77dS/716PFuTSC9MZ+9NYknOTiQqIYtrgaSrCnwXleCkPi9lCr0a96NWoF9nF2cxJmsPMnTPZdWQXc5LmMCdpDnHBcYxqMYphzYcRFRDl7ZBPy+6yMzdpLlM3TWVPzh4A/K3+XNnySm5qexPRgdFejlBEvK1cRfg9e/ZQv379Y9siIiIinqA+h4iIeIXLCbPuAEcRNL3IXRySSqc8L1IHGAakLIOVk2HLt+Cyu/cHREKXm6DbrRBW80YEHvk+CaPUiU98MH4tKm/UvsvpZO6bL1NSWEBMi1acf+V1J52zLCmTV+ZtB+Dp4e1pExOC4TKOrUdfawrwLhdpTz3Fka+mAxD19weoN86z+fhQwSHGzhvL3ty9RAdGM23QNOJC4jzaZm2lHC8VFe4Xzo1tb+SGNjewKWMTM3bO4Ic9P7Avbx9vrHmDN9e+Se9GvRnZYiQXxV6EzVx9ZvsodhQza9csPtz0IakFqQAE+wRzfevrGd1mNOF+1X92FxGpGuUqwjdu3LjMbREREZHKpD6HiIh4xdJJsH8F+ATD8HdqzMjMmkZ5XqQWK8mHjV/DyqlwaNPx/bE93A82tRsBVl+vhXcuindmU7QhA0wQNiLhWPG7Mvwx40sO7tiKj38Al97zIBbriX+qPZxXwt1frsVlwKgujbiqWyzZaQX88N5Gel/Tkrg2lTci35sMu52Dj/yT3DlzwGQi+v/+j/BrrvZom2kFaYz5aQz78vbRMLAhUwdPJTY41qNt1mbK8XK2TCYTifUTSayfyEPdH2Le3nnM3DmTtelrWbx/MYv3L6aeXz2GJQxjVMIomoQ28Vqs+aX5TN8+nU+2fEJWcRYA9fzqcVO7m7i65dUE+QR5LTYRqZ7KVYT/Xzt27OCXX34hPT0dl8t1wrF//etflRKYiIiIiPocIiLicYc2w6Ln3NtDX4AwjYCrKsrzIrVAxk73Wu/rvoCSXPc+qz8kXukuvjfs5NXwzpXhcHFk9m4Ags5viE/Dyiuw7N+yieUzvwZg4Pi7CI06cdpip8vg3q/WcjivhBZRQTwzoj0YsOjTbWSnFbJuQUqtKMK7ios5cP9E8hctAquVhv9+gdBLL/VomwfzDzLmpzEcyD9Ao6BGTB08lUZBjTzaZl2jHC9nI8AWwIiEEYxIGEFSThLf7PyG2btnk1mcyYebPuTDTR/SJaoLo1qMYmDjgQTYAqokruzibD7b+hlfbvuSvNI8ABoGNuTW9rcyImEEfla/KolDRGqeChfhJ0+ezJ133klkZCTR0dEnrMljMpmUREVERKRSqM8hIiIe5yh1T0PvLIWWQ6HTaG9HVGcoz4vUYE4H7PgBVkyGPYuP749o5i68d7oe/GvHVLx5v+7HkVGEOdhGyKDKG91rGAa/ffUJhuGiXd8BtL6gz0nnvPHzTpbuzsTfZuHdG7oQ4GNlw6L9pO7OweZroe/o1pUWj7c48wvYP2EChStWYPL1JXbSGwT1Ofm9qEwH8g8w9qexHMg/QGxQLNMGTyMmKMajbdY1yvFSGZqFNmNit4nc3eVuft33KzN3zWTJgSWsSV/DmvQ1vLDiBYY2HcqoFqNoV6/dCV9nlSWtII2PN3/MjJ0zKHIUAdA0tCnjEscxtOnQajVFvohUTybDMIyKXNC4cWMmTJjAww8/7KmYvC43N5fQ0FBycnIICQnxdjgiIlKH1eWc5Kk+R11+T0VE5H8sfBZ+fdFdLJqwHIIbVGnzdTkneSLP1+X3U6RK5KfDmo9h1UeQu9+9z2SGlkOg+1ho1r9WLefhzC8l7d8rMewuIq5pRUDnqEq9f3F+Pn/M+JILrrkBHz//E479uuMwN3+4AsOA167pyMjOseRmFPHl0ytwlDi56NqWJPat2VOnO7Kz2Xfb7RRv3Ig5MJC4994loHt3j7a5L28fY38aS2pBKvHB8UwdPJXowOgzX3gW6nJO0u/y4imHCg4xe/dsZu2cxf78/cf2twhvwRUtruDSppcS5hd2zu3szd3Lh5s+ZPbu2ThcDgDa1mvL+MTx9I/vj9lUe3KdiJyd8uakCo+Ez87O5qqrrjqn4ERERETORH0OERHxqAOr4bdX3NuXvlrlBfi6TnlepIYwDNi33D3qfctscNnd+wPqQZeboOutEF4713+2BPkQcUMbijZk4N+pfqXf3y8oiH43jz9pf1pOMfdPX4dhwHU94hnZORbDMPjl8204SpzEJITS/qKaPXW6/VA6KWPHULprN5awMOKmTMG/fTuPtpmSm8KYn8ZwqPAQTUKaMHXwVKICKvfBCnFTjhdPaRDYgNs63Ma4xHGsSlvFjJ0zWLB3ATuzd/LCihd4ZdUrXBx/MaNajKJnTM8KF8u3Z21n6sap/LT3J1yGexmFbg26MT5xPOc3PN8jo+1FpHarcBH+qquuYt68edxxxx2eiEdEREQEUJ9DREQ8yF7knobecEL7K6D9KG9HVOcoz4tUc6UFsOFrWDkVDm08vj+2O3QfD22Hg632r4Hr3yoC/1aVt+565v4UDmzfSmL/QWUWcxxOF3d/uYbMglLaxoTwxOVtAdj2Rxr7tmZjsZnpf2MbTOaaWwgq3bePlFvHYN+/H2tUFPHTpuKbkODRNpNzkhn701jSi9JpGtqUqYOmUj+g8h+sEDflePE0s8lMj5ge9IjpQU5JDnP3zGXmzplsy9rGj8k/8mPyjzQKasTwhOGMTBh5xhkv1qWvY/LGyfy6/9dj+/rE9mFc4jg6RXXy8KsRkdqswkX4hIQEHn/8cZYtW0ZiYiI224nrXtxzzz2VFpyIiIjUXepziIiIxyx8BjJ2QFADuORlb0dTJynPi1RTGTvdhfd1X0BJjnuf1Q8Sr3QX3xt28mp4VcFV6sQodmIJ8anU+zpKS5nzxotkpCRTnJ9Hj+FXnnTOy/N2sDI5myBfK++M7oKfzQLAwZ3ZAPS4rClhDQIqNa6qVLJzJyljxuI4fBhbfDzx06biE+vZafWTcpIY99M4Dhcdpnloc6YMnkKkf6RH26zrlOOlKoX6hnJd6+u4rvV1bMncwsydM5mbNJcD+Qd4Z907vLvuXXo16sWohFH0i+uHzeL+ejQMgz8O/sHkjZNZdWgV4C7uD248mLGJY2kV0cqbL0tEaokKrwnftGnTU9/MZCIpKemcg/I2rS8jIiLVRV3OSZ7qc9Tl91RERIDkJfDRZYAB138NLQd7LZS6nJM8kefr8vspck6cDtjxI6ycDEm/HN8f3hS6j4NO10NA5Y0Gr+5yfkomf+lBwoY1J7Br5S1V8vO091j30xwCQsO46cU3CQwLP/H41kOM/dhdCHpndBcuSYw5dswwDPZuyiS+bQRmS81ci7howwb2jb8NZ04Ovi1aEDd1CrYoz04Hv/vIbsb+NJbM4kxahLdg8sDJ1POv59E2/1SXc5J+lxdvK3IUsWDvAmbtmsXKtJXH9of7hnN588tpHdGaz7d+zubMzQBYzVaGNx/Ore1vpXFI7VxiRUQql8fWhN+zZ885BSYiIiJSHupziIhIpSvJg28mAAZ0vtGrBfi6TnlepBrIT4c1H8OqjyB3/9GdJmg5xF18b94fzDWz4FtRhsNF6cF8SpNzyft1PzgNzL6WSrv/7tXLWffTHACGTLj/pAL8/uxCJn69HoBbejU5oQAP7sJlk8SaO3q7YNly9k+YgKuwEL+OHYh//30sYWEebXNn9k7GzRtHVnEWrcJbMXnQZML9ws98oZwz5XjxNn+rP5c3v5zLm19OSm4Ks3bNYvau2RwuOswnWz45dp6fxY8rW17Jze1uPuOU9SIiZ6PCRXgRERERERGRGmneY3BkL4TGw+DnvB2NiEjVMwzYt8I96n3zN+Cyu/f7R0CXm6DbGAivO6MAC1YfomBlGqX788BxfLJQv1bh+LWrnBHTeVkZ/PjuGwB0vXQ4TTt1PeF4qcPFXV+sJafITsfYUB65pDUAxfl2ln+bRI9hTfEPqtyp8atS3sJFHLjvPozSUgLOO4+4t9/CHBjo0Ta3Z21n/LzxZJdk0yaiDR8M/IAwvzCPtiki1VN8SDz3drmXuzrdxZIDS5i5cyZ7cvYwqMkgRrcZTYRf3ZnpRUSqXrmK8BMnTuTpp58mMDCQiRMnnvbcV199tVICExERkbpHfQ4REfGYnQtg9Ufu7RFvg5+mMa1qyvMiXlRaABv/AyunQNrG4/sbdYMe46HtCLD5eS08TzJcBo70Qkr25lK6N5fQwU2whPoC4MwrpTQ5FwBzgBWfxiH4Ngkh8LyGmEymc27b5XLy49uvUpyXS1ST5lx43S0nnfP8D1tZv+8IIX5W3rq+C75W9wj8Jf/ZyfblaWSnFTBiYpdzjsUbcr77joP/eAScToIuvphGr76C2dfXo21uzdzK+PnjySnJoW29tnww8ANCfUM92qYox0v1ZzVb6RvXl75xfb0diojUIeUqwq9duxa73X5s+1Qqo3MqIiIidZf6HCIi4hFF2fDt39zbPe+Ephd5N546SnlexAsydsGqqbD2cyjJce+z+kHile4p5xt29m58HuAqcVKa4i64l6TkUbo3F6PEeey4X+sIAjrUB8C/bT0sQT74NA7GGulf6T9/Dm7fyr7Nm7D6+nLpvQ9itdlOOP7jplQ+/D0ZgFeu7kRcRAAAyRsz2L48DUxw3sjmlRpTVcn64gsOPf0MGAahw4cR8+yzmKyenZR1c+Zmbpt3G7mluSRGJvLewPcI8dFDd1VBOV5ERORk5er5LFq0qMxtERERkcqkPoeIiHjE3IcgLxXqJcDF//J2NHWW8rxIFXE6YOdPsGIyJP3ley28KXQfC51GQ0DtmH7XMAycWcWYfCxYgt1TthdvyyLry20nnGfyMeMTF4xP4xBsDQKO7bdFBWCLCsBTYtu05+p/PUf+kSwiGsaecGxvZgEP/mcDALdf1IyBbRsAUFrkYPEX2wHo2D+O6KY1bxR3xvsfcPi11wAIHz2aBo/+E5PZ7NE2N2Vs4rb5t5FXmkeH+h14b8B7BPsEe7RNOU45XkRE5GRaE15ERERERERqry2zYePXYDLDyPfBx3PFFhERr8o/DGs+di+9kbPv6E4TtBwM3cdD8/7g4UKopxkOF6UH8ind++dI91xceXZCBjchpF8cAD6NQ7CE+eLTJATfxiH4xIdgiw7EZPHOCNzYtu1P2ldsdzLh8zXklTjo2jicvw9udezYH7N2k59dQkikHz2HN6vKUM+ZYRgcfvVVMidPAaDenXdQ/557PD76ef3h9dwx/w7y7fl0qt+Jdwe8S5BPkEfbFBERETmTsyrCr1y5kv/85z+kpKRQWlp6wrGZM2dWSmAiIiIi6nOIiMg5yU+HOfe7ty+8H2K7eTceOYHyvEglMAzYt8K91vuWb8B59HvJPwK63ATdboXwJt6MsFI4c0rI/GIbpfvzwGmceNBiwlVoP/apNcyXmH/0qOIIjzMMg2UzvqJVr4uIaNiozHOenrOFzQdzCQ+w8db1nbFZ3A9HHNiRzaZfDwDQ78Y22HwsVRb3uTKcTtKeepoj06cDEPXQQ9Qbc6vH212Xvo47FtxBgb2ALlFdeGfAOwTaAj3erpyecryIiAhU+PHXr776igsuuIAtW7Ywa9Ys7HY7W7ZsYeHChYSG1rzpkURERKR6Up9DRETOiWG4C/CFmdCgPfR52NsRyV8oz4uco9JCWP0xvN8bpg1yz/jhLIVG3WDEezBxKwx8skYV4A2XQWlqAfnLUsmavp2c+XuPHTMH2ig9kA9OA3OgDb+29Qgd2pT6d3Sg0f/1IuzS6jNifMuvC1n6n8/54tGJFOfnn3R89roDfL48BZMJXrumEzGh/seOrfhuDwBtezcktlV4lcV8rgy7nYMPPuQuwJtMRD/9VJUU4NccWsPt82+nwF5A9+juvDvgXRXgqwHleBEREbcKj4R/7rnneO2117jrrrsIDg7mjTfeoGnTptx+++3ExMR4IkYRERGpg9TnEBGRc7L+K9g2B8w2GPkeWH29HZH8hfK8yFnK3O0e9b7ucyjOce+z+kH7K6HHOGjY2bvxVVDxzmxKknMpTcmlNCUPo8R57Ji1QQChAxsDYLKaqXdjG2z1/LHU8/P49OZnKzvtID9Pew+AbpeNxC/oxCnRd6Xn88jMjQD8rV8CfVtFnXD8kjsTWTk3me6XNq2agCuBq7iYA/feR/7ixWCz0ejFfxMydKjH212ZtpK7fr6LIkcRPaN78ubFb+Jv9T/zheJxyvEiIiJuFR4Jv3v3bi699FIAfH19KSgowGQycf/99/PBBx9UeoAiIiJSN6nPISIiZy1nP/xwdOR7339AdKJ345GTKM+LVIDLCdvmwqcj4c0usOwddwE+vAkMesY96n3E29W6AG8YBo6MIop3ZJ+w/8js3eT9nELJziMYJU5MPhZ8E8IIvjiesMtOHN3u3yoCa6R/tS3AOx12vn/jJezFRcS2bU+PkVedcLyo1Mldn6+hsNTJ+c3qcd+AlifdwzfAxoVXtsDX/6xWEK1yzvx89o0bT/7ixZj8/Ih7+60qKcCvSF1xrAB/fsz5KsBXM8rxIiIibhXu0UVERJCXlwdAo0aN2LRpE4mJiRw5coTCwsJKD1BERETqJvU5RETkrBgGzP4blOS4p2W+4D5vRyRlUJ4XKYeCDFjzMaz6EHL2Hd1pghaDoMd4aH4xmCs8vqZKGHYXpQfyKN2bR8neXEr35uIqsGPysdDwifMxWdyFdP/2kThzSvBpHIxPfAi26EBM5upZZD+TJV99yqGknfgFBXPJ3/6O2Xzieu7/mr2J7YfyiAzy5Y3rOmE5+jqdDhd71mfQvEv9avuAQVkc2dnsGzee4s2bMQcFEffeuwR06+bxdv84+Af3LLyHYmcxFzS6gNf7vo6f1c/j7Ur5KceLiIi4VbgI37t3b+bPn09iYiJXX3019957LwsXLmT+/PlcfPHFnohRRERE6iD1OURE5KysmgpJi8Dq756G3lIzRhPWNcrzIqdgGLB/pXvK+c2z3Ou8A/hHQJcboduYar/O+5HvdpO/LBWcxokHLCZsMYG4Cu1Ygn0ACB3SpOoD9IDkDWtZ9d1MAAbdcQ/B9SJPOP71qn38Z/V+zCaYdF0nooKPF43X/LSXFd/toWXPBgy8tV2Vxn227IcOkTJmLKW7d2MJDyduymT823k+9t8P/M69i+6lxFlC70a9ea3fa/hatNxMdaMcLyIi4lbhv0a89dZbFBcXA/DII49gs9lYsmQJo0aN4vHHH6/0AEVERKRuUp9DREQqLHM3zDuaIwb8H0S28Go4cmrK8yL/o7QQNv0XVkyGtA3H9zfqCt3HQbtRYKseo30Np4H9UAGlR0e4l6TkEXVnx2OFdbO/FZwG5iAbvo1D8Pnzo1EQJmv1HLl/rtbP+x6AjgOH0qL7+Scc25aWy79mbwLg/gEt6dX8eIE+80A+q+YmA9Ck/YmF++qqdO9eUsaMxX7gANboaOKnTcW3WbMzX3iOftv/G/ctuo9SVyl9Y/vySt9X8LH4eLxdqTjleBERETeTYRjGmU9zczgcfP755wwePJjo6GhPxuVVubm5hIaGkpOTQ0hIiLfDERGROqyu5iRP9jnq6nsqIlLruZzw4SWwbxk06Q03fVttp2n+U13NSZ7K83X1/ZQaLnM3rJwK6z5zr/MOYPWD9le4i++Nung3vqPshwooXH+Y0pQ8SlPyMEqdJxyvd0Mb/I8WkZ25pRh2J5YIvxo1vfq5cDocrP3xOzoOHIrN9/jDEvklDoa9tYSkwwVc1LI+H93SHfPRaehdLoMZL64mPTmXJh0iueTOxGr/fhVv30HKuLE4D2dgaxxP42nTsDVq5PF2F+9bzP2/3I/dZad/XH9e7vMyNovN4+2ei7qak/S7vIiI1AXlzUkVGglvtVq588472bp16zkHKCIiInIq6nOIiEiF/fG2uwDvEwzD3672Bfi6THle6jyXE3b85J5yfvfPx/eHN4FuY6HzDRAQ4ZXQDMPAkVFE6d48fJqEYIv0B6D0YAF5C/cdO8/ka8EnPvj4SPf44398tITUvdHJFquVbpeNPGGfYRg8MnMjSYcLiA7x47WrOx4rwAOs/3kf6cm5+PhZ6HNdq2pfgC9av56U227HlZODb6tWxE+ZjLV+fY+3uzBlIQ8sfgCHy8HAxgP590X/xmau3gX4ukw5XkRE5LgKT0ffs2dP1q5dS+PGjT0Rj4iIiAigPoeIiFRA+lZY+LR7e8hzEK7cUd0pz0udVJABaz6BVR9CTsrRnSZoMcg96j1hQJU/QGTYnZTuz6fk6NTypXtzcRU6AAi9pCm2i2IB8G0SQkCXKHwah+DbOARrVAAmc/UuGntaenIS25b+ygVXj8ZiPbko/PnyFL5bfxCL2cRb13emXtDxtcuPpBey4tskAC64sgVB4dV7XfOCZcvYN+EujMJC/Dt1Iu7997CEhnq83QV7F/Dg4gdxGA4GNxnM872fVwG+BlCOFxERcatwEX7ChAk88MAD7N+/n65duxIYGHjC8Q4dOlRacCIiIlJ3qc8hIiLl4rTDrNvBWQotBkPnG70dkZSD8rzUGYYB+1fBysmweZb7ZxWAf7j751W3MRDRtOrCcbowWdyF/tKD+aS/tQ5c/7NSpdWET6NgzEHHi53WcD8irm5VZXFWd/biYr5/40WyDu7HcLnoc8OYE45vOpDDU99tAeDhIa3o1uT4zAaGYfDL59tx2F00ahVOmwtiqjT2isr7+WcO3D8Ro7SUwF7nE/vmm5j/52e2J/yU/BMP//owTsPJ0KZDee7C57CaK/ynbPEC5XgRERG3cq8JP2bMGF5//XXCwsJOvonJhGEYmEwmnE7nyRfXMFpfRkREqou6mJM83eeoi++piEittuh5WPwC+IXBXcshuHLXH/WkupiTPJnn6+L7KdVYaSFsmuEuvqeuP76/YRfoMR7ajQSbv0dDMJwG9rQCSvfmHhvp7tc6gvARCe7jdhcH/m8p5gDr8WnlG4fg0zAIk1VLepzOvPcnsXHhPILCI7jxxTcJCDk+Kjy32M5lk5aQklXIgDZRTL6p20lTzR/cdYQlX+9k8Pj2hNb37NfBuciZPZuD/3wUnE6CBw6g4SuvYPbx/HIDP+z5gUd+ewSn4eSyZpfxzAXPYDFbPN5uZaqLOUm/y4uISF1R3pxU7iK8xWIhNTWVoqKi055XG6aZUUIXEZHqoi7mJE/3OerieyoiUmsdXAuTLwbDCVdMhcQrvR1RhdTFnOTJPF8X30+phjJ3w6ppsPYzKD7i3mfxhfZXQI9x0KirR5s3XAa58/e6p5bfl4dhd51w3NYwkAb3dDn2uTO3FHOwrdqvR16d7Fi2hO9eewFMJq567Fni2x8f1WsYBnd+toYfN6cRG+7P93f3JjSg7OnT/yxIVldZn3/OoaefASB0xAhinnkak9XzI9HnJM3h0SWP4jJcDGs+jKd6PVXjCvBQN3OSfpcXEZG6orw5qdw9pz9r9bWhyC4iIiLVl/ocIiJSLvZimHWHuwDfbmSNK8DXVcrzUiu5nLBzHqycArsWHN8f1hi6j3VPOx8Qcerrz4JhGDgOF7nXcC9xEnxhIwBMZhOF69JxZpe4P/ez4BMfcnyke1zwCfexhHh+VHNtkpuRzrwP3gSgx/ArTyjAA3z4ezI/bk7DZjHx9vVdTijAG4ZBwZESgsL9AKptAd4wDDLf/4DDr78OQPiNN9LgkX9gMnt+doRvd3/L478/jstwMarFKJ44/wnMJs3KUFMox4uIiJyoQo8vVtfOoYiIiNQu6nOIiMgZLXoGDm+DwCi45BVvRyMVoDwvtUZBBqz91D3y/UjK0Z0maDEQuo+DhAFQSSN4XaVO7PvzKNmb5x7lnpKLq9DhbtHPSlCvhpjM7u+t4L5xYALfxiFY6wcc2y/nxuV0MvfNlykpKCAmoRW9rhp9wvE1Kdk8N3crAI9e0oaOcWEnHN+x4hCLPtvG+SOb07F/XFWFXSGGYZD+0stkTZsGQORddxH5t7uq5Of2rJ2zeGLpExgYXNnySh4/73EV4Gsg5XgREZHjKlSEb9my5RkTaVZW1jkFJCIiIqI+h4iInNbepbD0Lff2sEkQWM+78UiFKM9LjWYYcGA1rJgMm2eB0z3iHP9w6HwDdBsDEc3OuRlnbukJo9QzP9lCya4jJ55kNeMTG4Rv4xAMhwuTj7vgH9Qz5pzbl5Nl7NtLevIefPz9ueSeB7H8ZWr27IJS7v5iLQ6XwSWJ0dzcq8kJ1xbmlrLk65047S7sxWe3HranGU4naf/3fxz5z38BiPrHw9S75ZYqaXvGjhn83x//B8A1ra7hnz3/qQJ8DaUcLyIiclyFivBPPvkkoaGhnopFREREBFCfQ0RETqMkH765EzCg0w3Qaqi3I5IKUp6XGqm0EDbNgJWTIXX98f0NO0P38dB+FNj8z+rWhtOFPbWAkr257lHue3Nx5pQS8/h5WALd05n7xAdjTy88Nq28b+MQbDGBmKwqVFaVqCbNuOnfk8hOO0hYg+hj+10ug4lfr+PAkSKa1AvghSs6nFSE/G36DooL7NSLDaLz4PiqDv2MjNJSDjz8MHk//AhmMzFPP0XYFVdUSdtfb/+ap5c9DcD1ra/nHz3+odHUNZhyvIiIyHEVKsJfe+21REVFeSoWEREREUB9DhEROY35j0N2MoTGwZDnvR2NnAXlealRMne7p5tf+xkUH3Hvs/hC+yvcU87Hdj3rWxdtyiDv94PY9+dh2F0nHjSDPa0AS/MwAEIujidkYGMVJ70sLDqGsOgTZxp4/9ckFm0/jI/VzNujuxDiZzvheNK6w+xanY7JbOLim9pgsVSvBydcRUXsv/deCn79DWw2Gr30EiFDBldJ219u+5Lnlj8HwA1tbuCh7g/pa7yGU44XERE5rtxFeHWAREREpCqozyEiIqe0a4G7GAYw/G3wC/FuPFJhyvNSI7icsHO+e9T7rgXH94fFQ7ex0PnGci+DYbgMHBlFlO7NpWRvLsEXNsIWHehupshB6Z4cAEz+Vnzjg/E5OtLdJy4Ys8/x9eRN1axwW1cYhsHP096jZc9exLfveNLxFXuyeHnedgCeHNaOdg1PHAFcUmhn8Zfu450HxlM/PtjzQVeAMy+PfXfeSdGq1Zj8/Ih9802Cel9YJW1/vvVzXljxAgC3tLuFiV0nKkfUcPr/ExEROVG5i/CGYXgyDhERERFAfQ4RETmFoiMw+273do/boVkfr4YjZ0d5XirM5QRHMThK3P/ai45uF/1lX/Ffzilr/1+O2/9y/M+P/73eXuT+HAATJAyAHuPd/5otpw+31Enpvrxj08qXpORhFDmOHbfFBB4rwvu2DCf8ihb4NA7BGumPyawCVnWz8eefWD/vezYtmse4N6cSFB5x7FhGfgl3f7kGp8tgRKeGXNs97qTrf//vLgpzSglrEED3y5pUYeRn5sjKImXcOEq2bMUcHEzc++8R0KVLlbT9yeZPeGnVSwCMaT+G+7rcpwJuLaAcLyIicqJyF+FdLteZTxIRERE5R+pziIhImX54GPIOQkRzGPB/3o5GzpLyfA1lGOAsLV8B+3SF8bKuP2F/Gde77N55zX5h0PkG6D4WIpqVeYphGDhzSgCwhvkBYN+fR8bkjSecZ7KZscUG43t0Lfc/WUN9sXaPRqqnzP0pLPp4MgAXXHPjCQV4p8vgvq/WcSi3hOb1A3l2ZOJJRWTDMAiu54fFaqbfja2x2k7/AEdVsqelkTJmLKVJSVgiIoifOgW/Nm2qpO0PN33Iq6tfBWB84nju7ny3CvC1hHK8iIjIiSq0JryIiIiIiIhIldv6HWz4CkxmGPke+AR4OyIR73A6zlDAPs1o7zMVu89ULK8OzFaw+h3/sP257QtW/6P/lmf/X47b/nL8r/tDGrr//QvD4cKeWkDJ0VHupXtzceaWEnRBQ8Iubw6ALTYYS4QfPrFB+BwtuttiAjWdfA3jKC3l+zdexFFaQuMOnel26YgTjr+1cBdLdmXgZzPz7g1dCfQ9+U+sJpOJ7pc2pV3vRgSE+FRR5GdWmpxMypix2A8exBoTQ/zUqfg2a1olbU/ZOIU31rwBwJ0d7+TOjneqAC8iIiK1lorwIiIiIiIiUn3lH4bv7nNvX3AvxPXwajgiuFzgPJfR3hUZRf4/1xtOb796wFTxAvipCt1l7T+pUO53/ByLd/6M5SpxkvHhJkr354Pjf0Z6mk24io//v5h9LMQ81L2KI5TK9uvnH3I4JRn/kFCG3jURk/n4QxS/78rg9Z93APDMiERaNjh5nXfDMI4Vl6tTAb54+3ZSxo7DmZGBT5MmxE+biq1hwypp+/317/PWurcAmNBpAnd2vLNK2hURERHxFhXhRUREREREpHoyDPj+fijMgKh20PcRb0ckdcV398KBNf9TLD9aIHeWeDs6N4tPGUXt8o70ruCo8L/ut/hALR65aj9UQP4fqWCC8OEJAJh8zDizisHhwhxgxSc+5Pgo99ggzD7VZ5pxOXe7V69g7Y/fATBkwn0EhoUfO3Yot5h7v1qLYcA13eK4smvsSden7s7h16+20++G1kT9ZfkBbytcu5Z9t9+BKzcX39atiZ8yGWtkpMfbNQyDd9e/y7vr3wXgns73ML7DeI+3KyIiIuJtKsKLiIiIiIhI9bTha/dU9Garexr6/5kaWsRjMndD2oYzn2cylzHau5KnRS/rvlY/MGt688piuAyKd2STv+QAJbuOAGAOtBI2rDkmkwmTyUT41a2whPpgjfTX9Nm1XPL6NQB0uWQ4zTofn9XA4XRx95drycgvpXV0ME8Ob3fStQ67k0WfbiU7rZCNiw9w8U3VowhfsHQp++76G0ZREf6dOxP3/ntYQjwfm2EYvLXuLT7Y8AEA93e9nzHtx3i8XREREZHqQEV4ERERERERqX5yDsDcB93bff4BMR28G4/ULRf/C4pzz1wst9i8HamcA1eJk8LVh8hfehBHRpF7pwn829UjoGsDMNyfA/glhHkrTPGg/KxMktauJCf9EL2vuxmA/rfeTny7DjTtcuKyAq8t2MGKPVkE+lh4Z3QX/Gwnz4Cwam4y2WmF+If4cMEVCVXyGs4kd/58Dk58AMNuJ/CCC4h9cxLmgACPt2sYBpPWTmLKxikA/L3b37m53c0eb1dERESkulARXkRERERERKoXw4Bv74aSHGjYBS6839sRSV0T18PbEUgVyFu8j7yF+wAw+VkI7BFN0HkNsUb4eTky8RTD5eJQ0i52r1lJ0poVpO/ZDYDJbKbb5aPwDwrGZDLRomevE65btD2dtxe5z33hig40qx900r0P78tjzU8pAPS5riV+gd5/SOfIN9+Q+uhj4HQSPGgQDV9+CbOP59eoNwyD11a/xoebPwTg4e4Pc0PbGzzeroiIiEh1oiK8iIiIiIiIVC+rP4TdP7tHGo98Hyz61VVEzo1hGJTuzcVks+DTyF1ADewZQ9GmTILOjyGgSwPMvlrbvTZb+9Mcls+cTsGR7OM7TSZiElrSrEsP9wNgZTh4pIj7p68D4MbzGnN5x4YnneN0ulj4yVYMl0HzLvVp3jnKEy+hQrI+/YxDzz4LQOioUcQ89SQmq+fzqWEYvLTqJT7d8ikAj/R4hOvbXO/xdkVERESqG/0lQ0RERERERKqPrD3w02Pu7YufgPotvRuPiNRohsNF4YbD5P9+EPuBfPxahRN5a3sArKG+NLi/i9Z4r4VyD6eze80KmnftSUhkfQAsVisFR7Kx+fnTpGNnmnftSdNOXQkIDTvlfUodLu76Yg1HCu0kNgrlscvalHneuvkpZOzLxzfASu9rvJu3DMMg4913yZj0JgARN99E1MMPYzKbq6Ttf6/8N59v/RyAx3o+xjWtr/F4uyIiIiLVkYrwIiIiIiIiUj24nPDNBLAXQOMLoecd3o5IRGooZ34pBcvTyF92EFee3b3TasYS6ovhMjCZ3YV3FeBrB5fLSdquHexevYKkNSvJSEkGwHAZdBl6OQAJ3c8ntH40sW3bYbGWb6r4F3/cxtqUIwT7WXn7+i74Wk+eLcEwDA5sd4+uv/DqFgSG+lbOizoLhmGQ/u8XyfroIwAi7/4bkRMmVMnXuctw8dzy55i+fToAT5z/BFe2vNLj7YqIiIhUVyrCi4iIiIiISPWw7F1IWQo+QTDibaiCUXsiUvvk/pxC7qIUcLinFzeH+BB0fkMCe0RjqQbrdEvlyc/K5LcvP2bP2lUU5eUe228ymWnYqg1B4eHH9gWEhNK4Q6dy3/vHTWlMWbIHgJev6kh8vYAyzzOZTFx+dyf2bMigacfIs3shlcBwOkl94gly/jsDgAb/fISIm26qkrZdhotnlj3Df3b8BxMmnuz1JCNbjKyStkVERESqKxXhRURERERExPvSt8HPT7m3Bz8L4U28Go6I1ByGywDDwGRxP7hjCfYBh4EtNojgCxvhnxh57JjUbEfSUinMzaFhy9YA+Pj7s+33X3E5HfgGBNKkU1ead+lOk87d8A8KPut2UjILefC/6wEYd2FTBreLPu35JrOJZp3qn3V758ooLeXAQw+T9+OPYDYT8+yzhI0cUSVtuwwXT/3xFDN2zsCEiacveJrhCcOrpG0RERGR6kxFeBEREREREfEupx2+uQOcJZAwELrc7O2IRKQGcBU7KFh1iPylBwm+KJag82IACOhcH2uDAHzigzXdfA3ncjo5uH0ru9esIGn1CrIO7ieqaXNufOENAHz8A+h/621ENIylYau2WKzn/qfOEoeTu75YQ16xgy7xYTw8tHWZ5+VmFLHxl/30uLwZNt+Tp6mvKq7CQvbfcy8FS5Zgstlo+MrLhAwaVCVtO11Onlj6BLN3z8ZsMvPMBc9wefPLq6RtERERkepORXgRERERERHxrt9ehYNrwS8Mhr0JKpqJyGk4MovIX3qQglWHMEqcABSuOXSsCG+yWfBtHOLNEOUc7Vz5Bzv+WELyutUUF+Qf22+2WPALDMRht2O1uZcW6Djwkkpt+9nvt7LxQA5hATbeur4LtjJmUTAMg0WfbWP/tmwKc0sZOKZdpcZQXs7cXPbdcSdFa9Zg8vcn9q03Cbrggqpp2+Xk8d8f57uk7zCbzDx/4fNc0qxy/y9EREREajIV4UVERERERMR7Dq6DX190b1/yMoTEeDUcEam+SpKOkLfkIMVbM8G93DvW+v4EXdCIgC5R3g1OzpphGGSnHiQ8puGxmQu2L/2N7Ut/BcAvKJimnbvRvGsPGnfojF9g0Dm36XIZHMwpYk9GAckZBSRlFBzbTs4sBOC1qzvRMMy/zOu3/ZHK/m3ZWGxmul/a9JzjORuOzExSxo2nZOtWzCEhxL33HgFdOldN2y4Hjy55lLl75mIxWXjhohcY0mRIlbQtIiIiUlOoCC8iIiIiIiLeYS+GWXeAywFth0Pild6O6LQMwwCHgcmmtaVFvCHvtwMUb80CwLdlOMEXNsI3IQyTWbNn1DROh539WzeTtHoFSWtWcuRQKje/9BaR8U0AaHdRf0LqR9G8Sw9iWrbCbK74dO+GYXA4v4Q9hwtIznQX2pP/LLZnFlLqcJV5nckEDwxsSb/WZT/YUZBTwu//3QVAj8ubEtYgoMKxnSt7aiopt46hNDkZS716xE+dgl/rsqfNr2wOl4NHfnuEH5N/xGqy8mKfFxnYeGCVtC0iIiJSk6gILyIiIiIiIt7xy3NweCsE1odLX63W09A780rJnrETs7+ViGtaeTsckVrPmVdK/rJUArs2wBrhB0Bw71gsob4E9WqILarqC59ybory89xF99UrSN6whtKiomPHLFYrh/ftPVaEb9q5G007dyvXfXMK7ezJLGBPRj57DhewJ7OQPRn5JGcUkl/iOOV1PhYz8fUCaBoZeMJHs/qBRAX7lXmNYRgs/mI7JYUOohoH0+niuPK/AZWkZM8eUsaOxXEwFWvDGBpPm4ZPkyZV0rbdZefhXx9m/t75WM1WXu7zMhfHX1wlbYuIiIjUNCrCi4iIiIiISNVLWQa/T3JvXz4JAiO9G89pFG3NJHvGTlz5drCaCLk4Hmtk2VMUi8i5KT2QT/7vByhcfxicBobdSdglzQDwbRaKb7NQL0co5WUYBk67HauPDwCHdu3gx3deO3Y8IDTs+DTziZ3w8T/1gxWFpQ6SMwqPjmIvIOno6PY9GQVkFZSe8jqzCWLDA2gSGUizo0X2P7cbhvljqeAsCrtWp7NnfQZms4l+N7bBXMZ68Z5UvHUrKePG48zMxKdpU+KnTcUWUzXLuNiddh789UF+TvkZm9nGq31fpW9c3yppW0RERKQmUhFeREREREREqlZpgXsaegzoeD20vsTbEZXJVeokZ+4eCpalAmCLDiDi2tYqwItUMsNlULwlk7zfD1C6J/fYfp/4YHwbq+hekzhKS9m3ZSNJa9zTzLc870L63DAGgNh2HWjYsg3x7TvQrGsPopu1wGQ+XsQudbhIySo8NmX8nswC98j2jALScotP226DEN+jI9mDaBoZcPTfQOIi/PG1Vnwq+7IYLoMV3+0BoMvQxkTGnvva9BVRuGYt+26/HVdeHr5t2hA/ZTLWevWqpO1SZykPLH6AX/b9go/Zh9f6vcZFsRdVSdsiIiIiNZWK8CIiIiIiIlK15j8B2XsgJBaGvuDtaMpUeiCfrK+24Tjsni456MJGhA5uovXgRSqZ4TJIn7QWe1qBe4fZhH+HSIIvaIRPXLB3g5NyKTiSTdKalSStWcHeDeuwlxwvmO/dsPbYttVm4+onX+TgkSJ2ZhQwb1mKu9h+dHT7vqxCXMap2wkPsJ0wkr1pZBBNIgNoUi+QQF/P/4nTZDYx4v7OrJ2XQrchTTze3l/l//47+/92N0ZREf5duxL37jtYQkKqpO1SZyn3/3I/v+7/FR+zD5P6T+KCRhdUSdsiIiIiNZmK8CIiIiIiIlJ1di+ClZPd28PfAr/qOco1b/E+HIeLMAf7EHF1S/xahHs7JJFaw5FVjCXcF5PJhMlswrd5KM7cEgJ7xhB0XgyWUF9vhyjlZBgGn/3jXvKzs47tCwyPoGFiV6xN2nEkrAnPz916rNi+N7OQUqfrlPcL9LHQ5M+12Y8W3P9cqz0swKcqXtJpBYb5cuHVLaq0zdx58zj4wN8x7HYCe/cmdtIbmP2rZkaWEmcJ9y26jyUHluBr8WVS/0n0atirStoWERERqelUhBcREREREZGqUZwDs+9yb3cfD837eTee0wgbnoDZz0rI4CZYAm3eDkekxjMMg5LdR8hfcpDi7VnUH9/h2PruIRfHEzqkCSZb5UwbLpXPXlpCysb1JK1ZQdrundzw3GvkFDvYk1GAKb4tWPaSHZnATt94NhUFUbDPBftKgO0n3cvHYqZxvYBjxfW/ftQPdj+cUZ2UFjlI3Z1D4/ZVM/X7Xx2ZOYvUxx4Dl4vgIUNo9OK/MflUzcMIxY5i7l10L0sPLsXP4sdbF79Fz5ieVdK2iIiISG2gIryIiIiIiIhUjR/+AbkHILwpDHzS29GcoHB9OiVJOYSNSMBkMmEJtBE+qmpHO4rURobdSeHaw+T9fgDHocJj+0v25hwrwpsD9KBLdZSXmcG2lcvZunwZGTs2YzhKjx0b+M/P2IW7KG0y2mEEJ0IJ7g9cmE0QF+GeKr5pZCDN6gce224Y5o/FXL0K7aezdNZuNv96gM6D4uk1KqHK2s365BMOPfc8AKFXXkHMk09islTNgypFjiLuXng3y1OX42/15+2L36Z7dPcqaVtERESktlARXkRERERERDxv2/ew/gvABCPfA59Ab0cEgKvYwZHZuylcmw6AX6sI/NtW/WhHkdrGsDvJXbiPguWpuAodAJh8zAR0bUBQr4bY6gd4OUL5U4nDyb6sQvZkFLInI589GYUUrvmZ+J0LTjgv1xJEckAT9gQ05oArFMwQHeLnHsVeP5CmR4vsTSIDiY8IwMdq9tIrqjwHdmSz+dcDAMS3q5rcYBgGGW+/Q8ZbbwEQceutRD30YJXNEFBoL+TuhXezIm0F/lZ/3h3wLl0bdK2StkVERERqExXhRURERERExLMKMuC7e93bF9wD8ed5N56jSpJzyPpqO84jJWCC4P7x+LXS2u8ilcJipmjDYVyFDixhvgT1akhg92jM/vpTlDc4XQYHjxSRlFFA8tH12ZMyCth/KBtT6g6aFOxle1AL9vvHAhBTHEQckObbgENhzSGuLVHxTegRFcTVx4rtAQT41N7/T3upk0WfbgOgbe+GxFZBfjBcLtL//W+yPv4EgPr33Uu922+v0gL8hJ8nsPrQagJtgbw74F06R3WukrZFREREapva21MWERERERER7zMMmHM/FByG+m2g7z+9HRGG00XughTyftkHBlgi/Ii4phW+jUO8HZpIjWQ4DYo2Z1C4Jp16o9tgspkxmU2EDm2KYYB/23qYLDVn+vGayjAM0vNKSDpcQHKmu9D+50dKZiGlThcAwfZcmhbtpUnhXtoXHcCCe39okD+dO/agab0AmtRLJDZgEK0axxBaR5cLWPHdHnIOFxEY5lsl09AbDgepj/+LnFmzAGjw2GNE3DDa4+3+qcBewJ0L7mRt+lqCbEG8N/A9OtbvWGXti4iIiNQ2KsKLiIiIiIiI52z8L2z9FsxW9zT0Nj9vR0Tm59so3pIJQEDXBoRd3gyzn349FqkoV6GdgpVp5C9NxZlTAkDh+sMEdmsAgH/7SG+GV2tlF5SyJ7OAPUeL7UkZx7cLS52nvC7YVMoVqbMJLso4cX/9aFp068G15/emUas2ng6/RjiUnMv6BSkA9L2+Fb4ensHBVVrKwQf+Tt78+WCxEPPsM4SNGOHRNv8qvzSfOxbcwfrD6wm2BfP+wPdJrJ9YZe2LiIiI1Eb6K4OIiIiIiIh4Rm4qzH3AvX3RQ9Cwk1fD+VNQrxhKk3MIG5lAQGJ9b4cjUuPY0wvJX3qQwtWHMOzuUdTmQBuB58VoSYdKUlDiODaK/c/p4/ccHd1+pNB+yussZhOx4f40D7XQvHQ/kVY7bS++hKaRgUSH+PHR/d+TW2KmUeu2NOvSg2ZduhPRMLbKpjuvCVxOF4s+3YphQIvuDWjSwbMPk7gKC9n/t7spWLoUk81Go9deJXjAAI+2+Ve5pbncOf9ONmRsIMQnhA8GfUC7eu2qrH0RERGR2kpFeBEREREREal8hgHf3g3FOdCwM/Se6LVQnPml2FML8GvhLg76JYQT/XB3zL76lVikohzZxRx6bTUY7s9t0YEEXdiQgI5RmGxm7wZXw5Q4nKRkFh4vtmcWkHTYvZ2eV3Laa2NC/Y6uyx5Is0j3Gu2RRh7FuzeSsm4J+9duxuV0UuofQK9xo7FY3T/vLr/vH4RENcA/KLgqXmKNZLaY6TmsGSvm7KH3NS082pYzN5d9t9/x/+zdd3xUVf7/8dedPpMy6QmppEAgoRcBUVRQrChYEHTtZdVdd7/rrm1tP9euu2vZXV1dOyqgYG+IXRSVXkINgZBCepkk0+fe3x8TBiIgJZMCfJ6PRx6ZzJx77rmXJJfM+57PwbViBYrNRsa//0XEscd26T531+xp5rcLf0tRfRF2s53/nfI/BsZLNQQhhBBCiHCQdxyEEEIIIYQQQoTf8legeCHozTD1v6DvmTWF3RsbaJi3Cc2jkvzH4RjirQASwAtxgFRvAO92B5a84E0shlgL5n6xKAYdkeNTMefYZRb1rwioGhWNLkrqWkMz2kvaA/eKRheqtu9t4yNM9G0P2Hf/6BsfgdWkD7VbseBDVjz3ISsryztsH5eaTs7IY/B7PaEQPjmn69c27+00TcPr8uN0eHE2e4OfHV6cDg/ZQxNJybGTPTSRvkMSuvR7219Xx/arr8GzYQO66Ggyn3sW67BhXba/X2r2NHPNZ9ewvmE9MeYYnp/8PPlx+d22fyGEEEKII5286yCEEEIIIYQQIrwat8GCO4KPJ90NSQO6fQiaL0DzJ9to/aESAEOSDc2vdvs4hDhc+Zs8tC2upPXnKjRvgD63jkYfbQYg4bICFL3Met9J0zSqHZ7QjPatda1srXOyta6V7Q1OfIF9J+2RZsOucH23We19EyKwW/e8ecnV2sK2n78jZ8QxmG02ANytLTRWlqPT60kfOChYZn7kaGJTUrvsmHujgE/F2bIzWPeEwvXMgniSs6MBKFvfwEf/WU1gH9cDa5SJlBw7QJcG8L7KSrZfcSXe0lL0CQlkvvA8lvzuC8Ab3Y1cu/BaNjRsIM4Sx/8m/4/+sf27bf9CCCGEEEcDCeGFEEIIIYQQQoSPqsK7vwNvK2QeC2Ov7/YheCtbaZi7EX+1E4DIY1Oxn94Xxajfz5ZCCM92B62LKnCtrYP2nFIfZ8Hf6AmF8EdrAN/Y5qXkF+u0l9S1UVrfhtMb2Od2JoOO7PgI+ibYyE6IJKc9ZM9OiCAh0vSrYa+maTRUlLNl2U+ULF9C5cb1aJrKWf93G/njjgNg4PgTiUvNoO/Q4ZhtEWE/7p6kqRruNt9us9Y9tDm8pOfHkpQVDNYrNjbyyXNr8LT599qHwaQPhfBmmyEUwJusBmzRpuCHPfg5IaPry/R7Sray/aqr8O/YgTE1lcyXXsSUldXl+92pwd3A1Z9dzebGzcRZ4nhh8gvkxUqFBCGEEEKIcJMQXgghhBBCCCFE+Pz0XyhdBMYImPo06Lo3+G75roLmT7dCQEMXaSTugv5Y8uPC0rfLG+CfCzcyNCOGs4YcXTNMjzYBhwOd1Ypi7JllFHqCr7qNxnmb8Za1hJ4z59iJHJ+GZWAciu7wLDmvqhp+VcOvqsHPAQ1/YLfHasfHvvbXa1p2n9ke/Gh2+fa5H71OISPW2j6rPZLs9sC9b4KNVLsV3UGeP0ddDUs/fIeS5Utorq7q8FpCRsfANialDzEpfQ6q/57m8wSCgXrzrpLwfXLtJGYGQ/DK4iY+e74Il8OLupea/ceemxcK4Y0WfSiA1+mV3YJ1M7ZoE/Gpu25MiE+N5JL7x2GLNmEwdf+NWe5169h+9TUEGhow5eSQ+eILGFNSum3/da46rvnsGoqbikmwJvDC5BfIicnptv0LIYQQQhxNJIQXQgghhBBCCBEetZvgi3uDj0+9H+Kyu30IaqsXAhqWgnhiz81DH2kKS78/bKnjtvlr2N7gJD7CxEn5SUTIuvJHrNonnqRl4UJiLriAmOkXdGtI1p00LRhu+lUNr1mPd0cb6BV0hfEwKgl3gpVWVcNf24ovoBFQNXyqGvwcCH72B3Y99qkagVCQvevxzu2CQXcw5A720d5G7RiM7+zfr+5q71f3HZ53aP+L7X5tzfVDkWq3kJ0YXJd993XaM+JsGDtRIcDZ3IS7rZW41PTgExqs+OQDAPQGAxmFQ8gZeQw5w0djT0oOx6GEnRpQcbUEZ623NQfLwSdlRZOQHglAVUkzn7+0DqfDi8+zZ+WAcefmhkJ4o0lPW5Mn9Jol0thh1npMii30WlxqBDPvHoPNbsJsM/xqZQG9UUd0gjVch3xQnMuXU/bb61BbWrAUFJDx/P8wxIXnJrEDUeeq46oFV1HSXEKSNYnnT32ebHv3X6eFEEIIIY4W8o6BEEIIIYQQQojOC/jhnd+C3w25k2DkFd22a9UbQNc+ozH6lCyMaZFYByeEZT3fZpePhz9Zz+yfy4BgAPfAtMESwB/BNFWl7fvv8dfWUvf009Q9+ywRJ51E1AXT0Y8+BhVlV7C8M4jePWzeLWDuGBSru57bGUb/IpDeFSDva9b27ture3nu12d572yT5tOYEjDSR1P4P5yhYx+HgQ0EaFzdDKtLevBfoWspChh1Ogx6Bb1OwajXBT/rFAx6HQadQlyEqeM67YkRZMVFYA3T7GlN06jbvo0ty36mZPnP7CjeRM7wUUy79R4AohOTGHvuhSTl5JE1eBgmS88Ex5qm4XH6Q+urOx0e4tMiiU8NBuvV2xx8NWs9TocXV6sPfnHTw7hpuaEQXm/Q0VzrCr1mMOmw2c1EtIfr9sRdxxibYuOC20dhizZjjTai/5UbHAxGPXGpvbsMf+t331F+4x/Q3G6so0aS8cwz6KO6vvT9TjXOGq5acBXbHNtIsiXx4qkvkhXdfSXwhRBCCCGORvKugRBCCCGEEEKIzlv0OFQuB4sdzvl3MOXqYqrbT9P7W/DVOEm6fiiKXodi0GEbkhiW/heuq+bOd9dQ7QjOxrxkbBa3nJZPlOXoKVF+NFJ0Ou47/250i77htC3fM7huC22ff07b559THpHAx9njWJg5mlaTbf+d9SIKMAYD0zFxzG5vB+Who7h98ffF7FpT26hXMOiCgbRBvyucNnR4fvfn2p/f+Vj/izZ7a6/XYdQp6Pe6nYJRFwzHQ/vUKxj1wfbB7X7RPhSm69Drd4XqwaBdCb12sKXhw2nbquUUL/mRkuVLaKmv7fCau60NTVVRdMHAefyFl3TZOPzewG7BupfYFBuxKcEgu3Z7C1+/sRGnIzibXfV3TNbHTcsNhfA6nUJ9RVvoNUWnYIsyhkrBR8VZQq/FpNiY9ucRodnsJsu+35Y0mPShcvOHO8enn1Jx8y3g8xEx4XjSn3wSnbX7bqqobqvmqs+uotRRSkpECi9OfpGM6Ixu278QQgghxNFKQnghhBBCCCGEEJ2zYzV883Dw8emPQXTXr5fuKXXQMHcjgQY3KOApacbSLzYsfde1evh/7xfx4eodAGQnRPDwuYMZkxMflv5F7+fRdCzuM4Qv+wwh01HFmVsXM6lsGeltdVy79gMuW/cJ32UMZ0HeeEoT+qL/RWC9MwzePbQ2/mLW9d7a72yzq33H7Qy6X8zc3q2NQfeLsLm9vVFVsW1yYF1dh77JC4CmgNI/Fv0xyczJjMKo17cH7bv6EeHhanFgjdoVJv/87luUrVsDgMFkJnPwUHJHHEP2iFFExSV0al+qquFu9QXD82Yv0YlWYpKCN4vUlbfy3dxNodDd6/J32Hbs1BxGnhYM4RUd1GxzdHjdbDOEwnObfdcyHzHJNqb8YSi26GDobo00ouzj+8do0pPaL6ZTx3i4aZo/nx133Q2qSvQZp5P68MMopvAsk3IgqtqquHLBlZS1lJEakcoLp75AelR6t+1fCCGEEOJoJiG8EEIIIYQQQohD5/cEy9Crfhg4BYZM79LdaQENx5fbaflyO2igjzETd2E+5mx75/vWNN5dWcG9H6yjyelDr1O4dkIOf5zUD4sxPCWoxeHhiRnD8AXUXbOvdZeieFy4P/mYlrlzYONGTi5dwsmlS7AMGkTszBlEn3FGt85uPVDONbU0fFsJgGLREzE6hchxqRh2m6EswkfTNGq2bmkvM7+Emq1buO7ZV7HZYwAomDCR2NQ0ckeOIaNwMEbzr/87aJqGzx0IlYKPjLWE1jSvr2zlh/lbQqG7q8WLttuk9WCw3jf0deXmpg596w26ULBujdwVDEcnWDn9usHBwL29VLxhH78DjWY9mQVyg9Le1L/8MjUPPwJAzPTppNxzN4q++64lla2VXLngSipaK0iLTOPFU18kNbLrb5ITQgghhBBBEsILIYQQQgghhDh0Xz8ENevAlgBnPdGlZej9dS4a5m7EW9YCgG14EjHn5KL7lZLGB6qiycUd76zh643B8tAFfaJ59PwhDErrfLgvDj/J0XsJRm1Goi+aQeLMC3GtXEnj7Nm0fPIp7rVr2XHHnVQ/8igx06YSM2MG5uzs7h80wcDWW+pAbfNhLQzOqrYWJGDOi8FaEI9tZBI6s7wVFG4+j5vSNasoWf4zW5cvobWxocPrlZs2kDd6LACDTjqFQSedQsCv4nR4adjh6FC2vbGqjR/fK8HZ7A2F636fGuqrQ7Cuwfai+o6DUcAaacQWbcZs3fVvHZ1gYfJVhbtms0ebMFkNKHv5nW2yGMgZFp5lPY5GmqZR969/Uff0MwDEXXUlSX/5y17PdVcpbynnqgVXUdlWSUZUBi9MfoE+kX26bf9CCCGEEEJCeCGEEEIIIYQQh6rsZ/j+yeDjKU9CROdKKe9P49ub8Za1oFj0xE7LwzY0qdN9qqrG6z+V8vAnG2jzBjAZdPxxUj+unZCDUa8Lw6jFkUZRFGzDh2MbPhz/bbfR/PbbNM6Zi6+8nIZXXqXhlVeJOHYcMTNmEDVxIoqh69960fwqzjV1tC6qwFfRij7ahGVAHIpeh6JXSLx6cJeP4WijaVooVN24eBELnnki9JrBZCajYBj9xo4hZ/hofB4zC18s2rUGe7MXd5sv1H7M2TmMOqMvAGpAo2RFx7XiAYwW/R4z0qPiLUy8dECoFHxwRrsR3V5+d5ksBvqNTg7T0Yt90VSV6gcfovG11wBI/NOfiL/2mm4N4MscZVz12VXsaNtBVnQWz09+npSIlG7bvxBCCCGECJIQXgghhBBCCCHEwfO2wTvXgabCkBkw8Kwu32XMtDyaPywhZloehpjOl9LeUtvKbfNXs2RbIwCjsmJ5+Lwh5CVFdrpvcXQwxMURf/XVxF15JW2LFtH4xmxav/mGth8W0/bDYgzJycRccAExF1yAMbnzN438UqDVS9tPVbT+WIna0h7qGhQs+XFongCKTW4kCQefN0Bbo5vGHVup3LiCLcuXkD38OPz+ITgdXlrqDOgMMegMfVEMOegM6WQO7cfgk4IVEeorWtn0c/Ue/ep0Cja7CZ1+V0AbFW9hwoz+7bPVzaFy8EbznmXMTRYDA4+V8uK9heb3s+OOO2l+7z0Aku++i7iLLurWMWx3bOfKBVdS7aymb3RfXjj1BZJs4f/dI4QQQggh9k9CeCGEEEIIIYQQB+/ze6FhC0SlwumPdMku3Jsb8e1oI2pCOgDGRBsJVwzqdL++gMr/vivhic834/WrRJj03Hr6AH4zJgudrvtmK4ojh6LTETlhApETJuAtr6DpzTdpmjcPf3U1df/+N3XPPEPUpEnEXjQT25gxYZkV27akisb3isEfXARcF2UiclwfIo5JQb/b+t7iwAUCKhUbGtmyspbGHW20NrXQUrsZn7OYgG8raM5QW73BQlP9ruofpqgrQ48tEcYOa7NHxVs49ty8YLDeXgo+ItqM2WZA+cXvHJPFwOAT07vuIEWXUL1eKm66idbPvwC9ntSHHsR+9tndOoZtzdu4asFV1LhqyLHn8Pzk50m0ybICQgghhBA9RUJ4IYQQQgghhBAHp+Rr+PnZ4ONz/g3WmLB2r/lUmhdso3VRBShgyorGnBUdlr7XVjRz6/zVFFU6ADihfyIPTBtEeqwtLP0LYUpPI+mmP5Hw+9/R8tlCGufMxrV0GS2ffUbLZ59hyskhdsaF2KdORR994N/XmqqheQPoLMG3cox9IsCvYUyPJOq4NKyDElAMMvO9M6pLmvngX6sA0LQAnub/guYJva43WsgdNZrcEaNJGzCMTUua28vA75qxbosyoTd2/HcwWQwMn5zZrcciuo/a1kb5jTfS9sNiFJOJtCceJ2rixG4dQ0lzCVctuIo6Vx15MXn8b/L/SLB27RIxQgghhBDi1/V4CP/000/z2GOPsWPHDgoLC3niiSc4/vjj99ne4/Hwt7/9jddee42qqirS09O54447uPLK4B3HL7/8MldcccUe27lcLiyWzpcrFEIIIYQQQoijmrsZ3vt98PGoKyFvUli791W10TBnA76q4IzTiDF9gmFjJ7l9AZ76YjPPfltCQNWIsRm5+6wCpg1P69a1esXRQ2cyYT/rTOxnnYl74yaa5s6h+d338JaUUP3gQ9T883GizzqT2JkzsRYW7rMf1eOnbWk1rT9UYsmJIfa8fgCY0qNI+uMIjCk2+R4+SGpApWJjE5t+LsfnqcSe0EjFhnW4HM0kZl5CUt9o0vrFsPSDgbTWV5E98hj6HTOG9AGF6A273kobfWZcDx6F6A0Czc2UXftbXKtWodhsZDz9HyLGju3WMWxp2sJVC66i3l1Pv9h+PD/5eeIs8r0phBBCCNHTejSEnzt3Lv/3f//H008/zfjx43n22Wc5/fTTWbduHZmZe79DePr06VRXV/PCCy+Ql5dHTU0Nfr+/Q5vo6Gg2btzY4TkJ4IUQQgghhBAiDD79KzSXQWxfOOW+sHWrqRqtP1TS/OlW8GvoIo3Ent8f64DOBwlLtjVw67zVlNS1AXDmkD78vymFJEaZO923EAfCkt+flLvvJvGmP+P44H0aZ8/Bs2kTzfPm0zxvPpYhQ4idOZPo009D1/7+hb/BTesPlbQtqULzBABweRuI8auhGe+mMNygcrRQAyoVm5pYseAHtq9djtdZhhaoBtQO7a57No+ImFgA+g6+E6O8nyT2wV9by/arrsazaRM6u53M557FOnRot45hc+Nmrv7sahrcDQyIG8BzpzxHrCW2W8cghBBCCCH2rkdD+H/+859cddVVXH311QA88cQTLFiwgGeeeYaHHnpoj/affvop33zzDSUlJcTFBd+I6du37x7tFEUhJSWlS8cuhBBCCCGEEEedjZ/AytcABaY+A+bIsHXd8Pp6XEX1AFgGxBF7Xj/0UZ1b17rV4+fRTzfw6uJSAJKizNw3dRCnFsrfi6Jn6CMjiJ05k5gZM3AtX07j7Dk4FizAvXo1O1avpubhh4k6+1IMCcfg2eaC9nXFDYlWIsenYRuRJCXnD4KjroaK9UU0N6RT9F0V7lYfvrYfCHhXh9pYo2PJLBxM2sAC0gcUYt1tiQAJ4MW++CoqKL3ySnyl2zEkJpLxwvNY+vfv1jFsbNjINZ9dQ6OnkYFxA/nf5P9hN9u7dQxCCCGEEGLfeiyE93q9LFu2jNtuu63D85MnT+aHH37Y6zbvv/8+o0aN4tFHH2XWrFlERERw9tlnc99992G1WkPtWltbycrKIhAIMGzYMO677z6GDx++z7F4PB48nl1rfDkcjk4enRBCCCF6C7nOCyFEmLTVw/t/CD4+9veQdWxYu7cMiMO9qRH7mdlEjOnT6fLaX22s4Y6311DZ7AZgxugMbj9jIHarMRzDFb3A4XyNVxQF28iR2EaOJPn222iaN5+muXPxVVbi/Hkr5oGDATDEq9jPLMAyIAFFJyXnf42mqtSXb6dsfRHFS1bSWLmZlvo6AAZN/CPuVj2WCCNp/Uej+eLoN2Y4GQWFRCcmSzl/cVA8JSVsv/Iq/FVVGNPTyXzxBUz7qOjZVdbXr+eahdfQ7GmmML6QZ095VgJ4ccQ5nK/zQgghBPRgCF9XV0cgECA5ObnD88nJyVRVVe11m5KSEhYtWoTFYuGdd96hrq6OG264gYaGBl588UUABgwYwMsvv8zgwYNxOBw8+eSTjB8/nlWrVtGvX7+99vvQQw9x7733hvcAhRBCCNEryHVeCCHC5OM/Q1sNJA6Ak+7sdHeqJ0Cg0Y0xJVhO2zYqGXO/GAwxnZt52tjm5b4P1/H2igoAMuKsPHzuEMbnJXR6zKJ3ORKu8YEWL23LW4k86QLir76K1m+/pXHuu3i3fo1vy5eorVW0fJRC7IXTiTn/fAyJiT095F5pww/fsfC5f+N1tXV4XtHpSM7OJXOQnYLj80jLj0Gnl0oC4tC5iooou/oaAo2NmPJyyXzhBYy/eG+zqxXVF3HtZ9fi8DoYkjCEZ055hmhT9P43FOIwcyRc54UQQhzdFE3TtJ7YcWVlJWlpafzwww+MGzcu9PwDDzzArFmz2LBhwx7bTJ48me+++46qqirs9uDdnW+//Tbnn38+bW1tHWbD76SqKiNGjGDChAk89dRTex3L3u6qy8jIoLm5meho+U+sEEKInuNwOLDb7XJN6gS5zgshRBismQfzrwJFD9d8Aan7rjR2IDzbHTTO3YjmV0n+4wh0ts7PTtc0jY/W7OCe94qob/OiU+DK8dncNLk/NlOPrsS2T3Kd75zD+RrvrWil9fsKnKtqIaBhzrGTeO2QXa+Xl9M0dy5N8+YTaGwMPmkwEHXKycTOnIlt9Oijbva21+WkctMGKjYUUb6hiGGnTiEytoDi5TVsXLyclurXAQM6QypGazpDTx7L2KnHSkl5ETbOpUspu+561NZWLIMGkfG/5zDEdu/662tq1/Dbhb+lxdfC0MShPHPyM0SZorp1DOLAyDW+8w7n67wQQogj24Fe53vsnYiEhAT0ev0es95ramr2mB2/U58+fUhLSwsF8AADBw5E0zTKy8v3OtNdp9MxevRoNm/evM+xmM1mzGbzIR6JEEIIIXozuc4LIUQntVTBR38OPp5wc6cCeC2g0fJ1GY4vSkEFvd2Mv8mDqZMhfLXDzZ3vrmXhumoA+idH8sh5Qxie2b3hiOheXXmNX1u3FofHwbjUcWELuzVVw72unpbvK/Bu3VVS15QZRcSYPmiaFtqXKT2dpD//mYQbb6RlwQIa35iNa8UKWj75lJZPPsWUl0vsjJnYzzkbfdSRGcD53G62rlpGxfoiKjauo2ZrCZqmhl6PjE1l27pgOKNp8UQkXkK/UYX0G92HtAGx6GXGuwij1m+/pfzGP6B5PNhGjyb9mafRR0Z26xhW1a7iuoXX0eprZUTSCJ4++WkijBHdOgYhupP8LS+EEOJw12MhvMlkYuTIkSxcuJBp06aFnl+4cCHnnHPOXrcZP348b731Fq2trUS2/0d306ZN6HQ60tPT97qNpmmsXLmSwYMHh/8ghBBCCCGEEOJIpmnBdeDdTdBnKEz4yyF35W9w0zB3I97SYPhoHZpI7Dm5nZoFr2kac5eU8cDH62lx+zHqFX53Uh43nJiHySABnDh0Ty1/isU7FpMfm8/lgy7n1L6nYtR17maR+tfW415XH/xCp2AdnEDk+FTMmfueOaEzmbBPmYJ9yhTcGzbQOHsOzR98gLd4C9X330/NP/+J/ayziJ05A8vAgZ0aX0/SNI2m6h34vV4SM/sC4Ha28sE/H+rQzmyLI3fkUNIGFpJeMBj3rCpiU2zkjkwiXYJ30UUcn3xCxc23gN9P5IknkvbE4+i6ucLCypqVXPf5dbT52hiZPJKnJz2NzWjr1jEIIYQQQoiD06M1+W666SYuueQSRo0axbhx43juuefYvn071113HQC33347FRUVvPrqqwBcdNFF3HfffVxxxRXce++91NXVcfPNN3PllVeGStHfe++9jB07ln79+uFwOHjqqadYuXIl//nPf3rsOIUQQgghhBDisLRiFmxeAHozTHsW9AcfQmqahnN5DU3vb0HzBFDMemKm5mEbltipGcal9W3c/vYaftgSDDWHZsTw6HlDyE85MmcFi+4TUAPkxuSysnYlGxs3cvt3t/PU8qf4zcDfcF7/8w545qmvzoU+0ojOEnzrxTo4Ae+2ZiKO6UPEuD4Y7Ac3u88yYAB97v1/JP3lzzS//z6Ns2fjLd5C05tv0vTmm1iHDSN25gyiTjsNXS+fOaiqAWpLt1GxoYiKDeuo2FBEW1Mj2cNGcu7t96KpGi0NBuzJA3E7rahqCjpDGiZrDKdcexwGkx6Ac29OPerK8ovu1fjWW1TdfQ9oGtFnnknqww+hGDu/hMrBWFa9jBs+vwGn38kxKcfwr4n/kgBeCCGEEOIw0KMh/IUXXkh9fT1/+9vf2LFjB4MGDeLjjz8mKysLgB07drB9+/ZQ+8jISBYuXMiNN97IqFGjiI+PZ/r06dx///2hNk1NTVx77bWhdeOHDx/Ot99+yzHHHNPtxyeEEEIIIYQQh63GUvj09uDjiXdC0qHPsnVvaEDzBDD1jSZuej6GuEOfQRhQNV76fit//2wjbp+KxajjL5PzuWJ8NnqdhHGi8/Q6PbcecyvXDb2ONze+yWvrX2NH2w4eW/oY/139Xy7Mv5CLB15MgjVhj201TcOzpYnW7ytxb2jAfkYOUcenAWAbkoC1MB5de4B8yOOLiiLu4ouJvegiXEuX0jh7No7PFuJauRLXypXoH3oY+3nnEjtjBqaMjE7tqyu8/88HKV29Eq/L2eF5vcEAisLKz7ezcuF22pq9wOkoBrBaDeQMTSB3ZBI6/a6fcwngRVeqf+FFah57DICYGReSctddKPrO/fwerCVVS/jdF7/D5Xcxts9Ynpr4FFaDtVvHIIQQQgghDo2iaZrW04PobRwOB3a7nebmZqKj910WTgghhOhqck0KPzmnQghxAFQVXj0btn0HGWPhio9Bd3DBg6ZqKO2huOr00basmsjxaaHnDsXGqhZumb+aVWVNABybG89D5w4mK/7wXBNXrknh1VXn0xPw8MGWD3il6BW2ObYBYNQZOTv3bC4rvIxsezaaL4BzZS0tiyrwV+8KlyPGpBA7rV/YxrIv/tpamubPp3Hum/h37Ag+qShEHH8csTNmEnnChG4ND91trVRuXE/5hiJa6+s448ZdS1m8dd9f2b52NSarldT+A4lOzKXfMcNJG5iP0WRm6cfb+On9Eky7Be8ZA+LQG6XUvOgemqZR++ST1P/3WQDir7maxJtu6vabPn7a8RO//+L3uANujk09lidPehKLoXvL4ItDJ9f48JNzKoQQorc40GuShPB7IRd0IYQQvYVck8JPzqkQQhyAH/8Ln94KRhtctwjicw94U82v0vxZKYEmN3EzB4QltPD6Vf7zVTFPf12ML6ARZTFw55kDmT4q47CeCSvXpPDq6vOpaipflX3Fy2tfZmXtSgAUTeGvvhs4trIQnSvYTjHqsI1KJvLYVIyJ3VsyWvP7af32WxrfmE3bokWh542pqcRMn07M+edhSNhzBn9ntTbUU75+LeXtpeXrykpht7ebrv/f69ii7QBUbtpAU42H+goLW1bU0dbkYfLVhfQblQxAS4Ob+vJWMgZK8C66n+p0UvOPf9L4+usAJN50EwnXXtPt4/ih8gf+8OUf8AQ8jE8bz5MnPYlZ37uXmRAdyTU+/OScCiGE6C0O9JrUo+XohRBCCCGEEEL0MnWb4fN7go8n33dQAbyvuo2GORvx7WgDwHusA3Nfe6eGs2J7I7fOX82m6lYATilI5v6pg0iOltmAonvpFB2TMicxKXMSK2pW8NLal/iq7CvUGjc6FzSaW/CNsDLklPEYbKYeGaNiMBA1cSJREyfiLS2lce6bNM+fj6+yktonnqD2P/8hevJkYmfOwDpy5CHdxKJpGg0V5cT2SUXXPrt+0dxZFH39eYd2sX1SSRtQSFp+AXqDgaqSZoqX1bBleT2tjZ5QO6NFj6vFG/o6Ks5CVCeWrBDiYAQcDpzLl+NauhTnkqW4iorA7wdFIeWeu4mdMaPbx/R9xff84cs/4FW9TEifwOMnPo5J3zO/U4QQQgghxKGTEF4IIYQQQgghRFDAD+9cB3435JwEo646oM00TaNt8Q6aPt4KfhWdzUDsef07FcA7vX7+8dkmXvx+K5oGCZEm7j17EGcMTjmsZ7+Lw5cW0HCtq6P1+0oGnZfPUxOfoqS5hA9/eJuHSl5kUcRy1CaVvgv6clnhZUzJndKjM1dNWVkk33IziX+4Ecenn9I0ew6uVatwfPQRjo8+wtyvHzEzZ2A/+2z0kZH77Cfg91OzbQsV64uo2LiOig3rcLU4+M1DT5CckwdARsFgaku3kj6gkLSBweA9IiY21Iej3sX8R5eFvjZa9GQPSSBvZBIZBXEYjN27zrY4evnr63EuXYZz6VKcS5fi2bChQ9UGCFaOSLr5L0Sffnq3j+/b8m/501d/wqt6OTHjRP5xwj8kgBdCCCGEOExJOfq9kNI2Qgghegu5JoWfnFMhhPgV3/4dvrwPzHa44Qewp+93k0CLl8Z5m3BvbATA3D+WuPP7o48+9NDg++I6bnt7NWUNwfre5w5P466zCoiN6NkgwlFXi6etlcSs7PD0J9eksOqq86k6fbQtqaZ1cSWBpuAM7ohxfYg9Jy/UptZZyxsb3mDuxrm0eFsAiLfEc/HAi5mePx27uXMVIcLFVVRE05w5NH/4EZor+POls9mIPnsKsTNnYsnPD7UtX7eWxfPfoHLzRvweT4d+DEYTp/3uT+SPO77D85qmUb3NwZZlNfg8AU68eEDotfeeWIEt2kTuiCQyCyV4F93DV1WFc0kwcHcuWYK3pGSPNqa+fbGNHoVtVPDDmJbWAyOFr8u+5qavb8Kn+piUOYnHJjyGUW/skbGIzpNrfPjJORVCCNFbyJrwnSAXdCGEEL2FXJPCT86pEELsQ9UaeO4kUH0w9b8wbOZ+N9E0jZp/r8RX0QoGhZjTs4kYl4qiO7SZ6s0uHw9+tJ65S8sASIux8sC0QZyYn3RI/YXT+u+/YcEzTxCXmskljzwRltn4ck0Kr3CfT1+tk9bvK3Euq0bzqQDoIgxEjOlD5NjUvd5o0uZrY/6m+cxaP4uqtioArAYr5/U7j0sKLiE1MrXT4wqHgMNB87vv0ThnDi2l22iMsNAYYSU9JY38iy4h6tTJVGzewJt/+ysAlohIUgcUBGe6DyggOScPvSEYDmqaRk1pS7DU/LIaWhrcAOj0Clc+dhxm2652UsVCdCVN0/Bt394euAeDd195+R7tzPn5wcB99ChsI0diSEzsgdF29OX2L/nzN3/Gr/o5JesUHpnwCEadBPCHM7nGh5+cUyGEEL2FrAkvhBBCCCGEEOLA+L3BMvSqDwacBUMPbA1cRVGIOTObpg9LiLswH2NyxCEPYUFRFXe9u5aaluCM28vGZXHzaQOINPeOP1uNllQCvgAtDX5cLS3Y5M3fI5rmV6l9ZhWq0w+AMSWCyONSsQ1NQjHq9rldhDGCSwsvZebAmXy69VNeLnqZTY2beG39a8zeMJtT+57KFYOuYEDcgH320ZU0TcNRW035+iIqXI1U5GfQELUrGNeqK4i6+Wb0Dz1E5LSpnHjeRWSNPZb49EwU3Z7HXfRdBcs+LaWl3h16zmDWkz04nryRyR1mu0sAL8JNU1U8xcU4ly4Nrenur63t2Eivx1JQsCt0HzECfUxMj4x3Xz4v/Zybv7kZv+bntL6n8dDxD2HQ9Y5rnxBCCCGEOHTyPzohhBBCCCGEONp98zBUrwVbPJz1BPxKWOYtb8Hf6MY2ODhz0JwTQ9Lvhx/y7PfaFg//7/0iPlqzA4CcxAgeOW8Io/vGHVJ/4eBzu1n+6Qc4aquZeOUNLPt4G0s/KccUfSkR8Sn4vTI78UinGHREjOmDr6qNyOPSMOfYDypENuqMTMmdwlk5Z7G4cjEvFr3ITzt+4uOtH/Px1o8Z12ccVwy6grF9xnZpOK2pKm5nG9bIKABa6mp5/sar92gXn55Jn6wckh1tGBZ+hb+6muYXXsSmKLgmTKDtopnYxo+nrsKJPdEamt0e8Ku01LsxmHT0bV/jPbMwHqNJSs2L8NP8ftwbNuJcuqQ9eF9GoKmpQxvFaMQydEh7afnRWIcNQx956DeIdbUF2xZw67e3EtACnJF9Bg8c94AE8EIIIYQQRwj5X50QQgghhBBCHM3Kl8Kix4OPz3oCIvdelldTNVq+KcexsBRFr2DsE4kxwQpwSAG8pmm8vbyCv324jmaXD71O4bcTcvjDpH5YemitaL/Px+rPP+Wnd+bibG4CwNHYn6qS4J/O+WMHcsLM/qEAUhzZoidndTogVxSFY9OO5di0Y1lXv46Xi17ms22fsXjHYhbvWMyAuAFcUXgFk/tODkvw5vf5qNqyiYoN66jYUETlxvWkFwxm6s13AhCVkIg9KRmbPYa0AYXBj/yBWKN2VXbQbruDlq++omn2HFp/+IEdy0pYWfYJtSl1uEyxTJiWweBT+wGQNzIZW7SZrMESvIvwU71e3GvXhkrLu5YvR21r69BGsVqxDR+GddQoIkaPxjJkCDqzuYdGfHA+2foJt393OwEtwJScKdw3/j70Ovk5EkIIIYQ4UkgIL4QQQgghhBBHK68T3vktaCoMng4FZ++1mb/RTcPcjXi3OQCwFMShsx76n5PljU7++s5avt0ULBtcmBrNI+cNYVCa/ZD77Aw1EKDo2y9YPG82LXXBMdmTUzj2gouxRhfyxSsbOGFmPv1GJ/fI+ETPCPcM9YL4Ah6d8Ch/HPFHZq2bxdub32ZDwwZu/e5Wnlz+JJcUXMK5/c7FZrQddN+L582mdM1KqrZsIuDzdXittnRraD12RVG48onn0Ol/JejT6/Hkj6ViSg7FSRU4mvyhl3QBDxVPPEPc5wZiZ87EOnwYeSOTDnq8QuyN6nLhWrUqGLovWYJr1So0j6dDG11UFLaRI4Ol5UeNwlJQgGI8/G6M+rDkQ+5YdAeqpnJO7jnce+y9EsALIYQQQhxhJIQXQgghhBBCiKPVF3+D+mKI6gNnPLrXJs4VNTS+W4zmCaCY9MScnYttZNIhBZSqqjHrx1Ie+XQDTm8Ak0HHn07uz9XHZ2PU73ud7a5UX76d9/7+AI07KgCIiIlj4PHncNyMc9Abgn8yX/JAHOZO3HQgxO7SItO47ZjbuG7IdczdOJc3NrxBZVsljyx5hGdWPcOF+Rdy0cCLSLAm7LFta2MDFRuKaKrawZhp00PPl65ZQcWGdQDts9wLSMsvJH1gIYlZ2R1+Xn81gAfcbT7eemgJmhb82mDUkVkQQ6pWhu2r2fi3rsCxFRwffIA5P5/YmTOxTzkLXUTvLfkteqdASwuu5ctxtq/n7lq7Fvz+Dm30cXHt67mPxjZ6FOZ+/VD28z3c271X/B53fX8XGhrn9TuPu8fdjU7pmWugEEIIIYToOoqm7fyzSuzkcDiw2+00NzcTHR29/w2EEEKILiLXpPCTcyqEEO22fguvTAk+vng+9Du5w8uaptH45iacK2oAMGVGEXdhPoZ46yHtrrimldvmr2ZpaSMAo/vG8vB5Q8hNjDz0YwgDn9vN83+4GlVV6TfmDMo2pKKqBmbcdQxRcZYu3bdck8LrcD2fbr+b97e8z6vrXqXUUQqASWfi7NwpnJtwOpQ3U7GhiIoN62iq3hHcSFH43QuzsUQEf342/fQ9nrY20gYUEtsn9YBuktE0jfqKVoqX1dDW6GHS5QWh1z56ejV6vULuyCSyBsVjsuy6CcW1Zi2Nc2bj+PCj0CxlXUQE9nPOIXbmDMz9+oXr1IgjjL+hAeeyZTiXBNd092zYCKraoY0hJSUYuI8ahW30KEzZ2WGvStGT3tn8Dvf8cA8aGhf0v4A7x94pAfwR6nC9JvVmck6FEEL0Fgd6TZJb+YUQQgghhBDiaON2wLu/Cz4eefkeATwES3Hr7WbQQfTETKJOykTRH3wQ4guoPPdtCU9+vhlvQCXCpOe20wdw8ZgsdIewlnxnlRWtZt13XzP52t+j6HQYLRbO/ONf2fSzl40/NQAQn2bG7w10+9jE0clisDA9fzrTcqbydfk3vLzuZVbXrab8na/4bPvSjo0VhcSsbNIHFHYoO99/zPgD2lcweG+jeFk1W5bX0lTtbO8Xxk7LJcIeXEv7jOsH7zP4tA4ehHXwAyTfcgvN775L4+w5eLdto/GNN2h84w1so0YRe9FMok4+GcVkOvgTIo4Yvurq9vXcg6G7t3jLHm1MWVlY20vL20aNxph2YDeRHI7mbZrHvYvvBeDC/Au5Y8wdR+yxCiGEEEIICeGFEEIIIYQQ4uiz4K/QvB1ismDy/aGnNb+K6vSjjw4GZ9EnZ2IdnIAp7dBmq6+taObmeatZvyO4lvyJ+Yk8MG0waTGHNpu+M6qKN7Fo7ixKV68AoO/Q4eSPO56qkma+ndNMc60LFBg2KYMx5+RgMB7e5Y5F7+fzuNmxeVNwlvvGdVRu2sDMvz3Ka2e8xvKa5cxreYpAeR21dg81cR6istOZOuEyJvaffEgzZzf9XMWSj7btCt4BvVFHVmE8eSOTMO225MKBBIN6u524yy4j9tJLcf74I41vzKblyy+DpcWXLkWfkEDM+ecRO306xtTUgx6vOLxomoavrKw9dA9++MrK9mhn7tcvtJ67deQojMlJPTDa7vfmxje578f7ALh44MXcOvpWCeCFEEIIIY5wEsILIYQQQgghxNFk0wJYMQtQYOozYI4CwFfrpGHORgCSbhiKotehGHSHFMC7fQGe+Hwz//uuhICqEWszcveUAqYOS+v20KFu+za+f/M1ipf8CIBOb2DwpFNJ7T+Qnz8oYeknpWiqRmSsmUmXF5CeH9ut4xNHl/ryMtZ+vZCKDUVUl2xBDXRc/7pi43oSs7IZmTySIdc8y9YLt/HapjdYXfIBfnUt3/x4M9nrn+bywss5K+csTPq9zzTXNI2GyjZs0SasUcE2akCjqdqJ3qAjszCOvFFJ9B2c0KHU/KFQFIWIceOIGDcOX3U1TW++RdObb+KvraX+v89S/9z/iDzxRGJnziBi/HgUnZTePhJomoZ3y5bQeu7OpUvxV1d3bKTTYSkoCJWWt44YgSH26PsdO3vDbB786UEALim4hJtH3SwBvBBCCCHEUUDWhN8LWV9GCCFEbyHXpPCTcyqEOKo5G+DpsdBaDeN+D6c+gKZptP1URfNHJWg+FZ3NQOK1QzCmRBzSLn7e2sBt81dTUtcGwJShqdwzpYCESHM4j2S/vG4Xnz//NOsXfQ2ahqLoKJhwEuPOn4k9KQWA7+ZuYvVX5fQbncwJM/tjthm7dYxyTQqv3nY+HXU1VKwvIj4ji6S+OQBsW7Wc+Q/eHWoTGRdP2oBC0gYUkD6gkISMrL2G1DXOGl5f/zpvbXyLFl8LAAnWBC4eeDHT86cTbQoeb31lK1uW1VC8rIbGKifHnpvH8MmZAHicPratqSd7SEKHWe9dQfP5aPnyKxpnz8b544+h542ZmcReOB37uecelWHs4UwLBHBv2IBr6c6Z7ssINDZ2bGQ0Yh08eFfoPnw4+shDq6RypHht3Ws8suQRAK4ovII/jfyTBPBHid52TToSyDkVQgjRW8ia8EIIIYQQQgghOvr4L8EAPiEfJt5JoNVL4/zNuNcH10I358UQd0H/4FrwB6nF7eORTzfw2o/bAUiONnP/1MGcUpAc1kM4UEazhYaKMtA0+o8Zz7HTf0NcWjpe96613sdNyyUtP5acYYk9MkZx5NBUlfqKMio2FFG+PlhevqWuFoBRU84NhfCp/QcweOJk0gYUkj6wkOjE5AMK5JJsSfxp5J+4ZvA1zN88n1nrZlHtrObJ5U/y5uL3OF27kPjKvrRUe0Pb6AwKrtZdX5ttRvLHpIT5yPdOMRqJPnUy0adOxlNSQuOcOTS/8y6+7dupeezv1D75FNGnn0bszJlYhg6VULIX0rxeXEVF7TPdl+BavgK1tbVDG8ViwTp8WGg9d+vQIegslh4ace/zStEr/H3p3wG4atBV/HHEH+V7XQghhBDiKCIz4fdC7qoTQgjRW8g1KfzknAohjlpr34Z5V4Cih6sX4mrJpnHeJtRWH+gV7KdlEzk+FUV38AHBVxtq+Os7a9jR7AZg5jEZ3Hb6QOzW7ptZ7nQ0s+yjdxkz9QJMVhsQXAde0elIzsnD6fDy5az1eF1+pt40At0hHGe4yTUpvHrqfLY1NfLyn2/A3drS4XlFpyM5O5eBx09kxOlTwrpPX8DHp9s+5eWVrzLh86swaMGS85pOJbG/jWFjs+k7NBFzF894Pxiq04nj449pfGM27nXrQs+bCwYSO2MG9rPOQmez9eAIj26qy4Vr1erQeu6ulSvR3O4ObXSRkVhHjiBi9Ghso0ZhKShAMe19SYSj3YtrX+TxZY8DcO2Qa/n9sN9LAH+UkWt8+Mk5FUII0VvITHghhBBCCCGEEEEt1fDRn4OPj/8zWp8RtLy7CrXVhyHZRtyMAZj6HHz5+YY2L3/7oIh3V1YCkBln4+FzB3NsXkI4R/+rPM42ln74Dss+eg+f24XBZGLceTMBSMnrD8DWVbV89doGXC0+9AYdtdtbSO4rb96KA+d1OanctIGKjeuoWF9EVEIip//uJgBs9hh0ej0Gs5nUfvnB8vL5hfTpn4/JYg3bGBqr2iheVkPDjjZOvXoQU3KncFbOWbxR+Q2ldWUsi/qKbbFr8RpcjG8ZzxVNV3CM5ZheE/zpbDZizj8f+3nn4V6zhsY3ZuP45BM869ZTdfc91Dz6GPapU4mdOQNzbm5PD/eIF2htxbV8eWg9d9fateDzdWijj40NlZa3jRqFOT8fRa/voREfPp5f8zxPLn8SgBuG3sD1w67v4REJIYQQQoieICG8EEIIIYQQQhzJNA0++AO4GiBlCEy4GUWnEHdhPq0/78B+Sl8U455rUP96lxofrN7B/3u/iIY2LzoFrjoum5tOycdq6p6Axudxs+LTD1ny3jzcbcESyUnZuaT2Gxhq43X7+X5eMesWBW8SiE+L5JQrC4hPO7rXKBYHpnjJj5QVraZi4zpqtpagaWroNZs9Bk3TUBQFRVGY8bdHiU5IQm8I79ssjVVtbFkeXOO9vqIt9PyYKU5ikm0oisJFvz8BRVEoqhvBS0UvsbB0Id9Xfs/3ld8zMG4gVw66kpOzTsag6x1vASmKgnXIEKxDhpB06y00v/MujXPn4CvdTuNrr9H42mvYxowhduYMoiZNQjF2X0WNI5m/sRHXsmWh0N29fj2oaoc2huTk9tB9NLbRozDl5PSamzgOF/9d9V/+s/I/APxu2O+4buh1PTwiIYQQQgjRU3rHX2BCCCGEEEIIIbrGytfRNi6gVb0ANfk67IZg6WBDgpWYM3IOuruqZjd3vruWz9dXA5CfHMUj5w9hWEZMOEf9q1Yt/JjF82bT1tQIQFxaBuMv/A39jjk2FBhVlTTz+UvraK51gQLDTs5k7Nk56A/yhgNx9Pr53bfYUbwx9HV0YjJpAwpIH1BI2oDCDm1jU1LDuu+SlbX8/MFW6it2rcGt0ylkFMSROyIJm31XCfCd3/OFCYX8/YS/U9ZSxqtFr/Ju8busb1jPzd/eTFpkGpcUXMK0vGnYjL2n5LshNpb4K68g7vLLaPthMY2zZ9P61Vc4f/oJ508/YUhMJOaC84mZPh1jSvesZ3+k8FXX4Fy6JDjLfelSPJuL92hjzMxsX889ONvdmJ4uofsh0jSNZ1Y9wzOrngHgjyP+yNWDr+7hUQkhhBBCiJ4kIbwQQgghhBBCHKmatuP/6FEafQ/gUYfAzy6sY1oxpR78THBV1ZizpIyHPl5Pi8ePUa/w+5P6cf2JuZgM3RtsV2xYR1tTI/akZMadfxEDjz8RnW7XDHxN0/h2ziaaa11Expo5+fIC0vJjw7LvpnnzsI0ejSkrKyz9id4r/9gJJOXkkT6ggLQBhUTFd90yC03VTowWPRF2c/AJDeorWtHpFNIHxpE3MpHsoYlYIvY/KzwjKoM7xt7BDcNuYM7GOcxeP5uK1goe/vlhnln1DDPyZzBzwEzirfFddjwHS9HpiDxuPJHHjce3YweNb75J01vz8NfWUvf0M9Q9+xyRJ51I7MyZRIwbh6KTm2l2p2kavoqK4Cz3JcHg3bd9+x7tzP3ysO4M3UeNwpic3AOjPfJomsa/V/6b51Y/B8BNI2/iikFX9PCohBBCCCFET1M0TdN6ehC9jcPhwG6309zcTHS0rBMohBCi58g1KfzknAohjhqqivM/t9JYMRGNSBSjjpgpudhGJx/0TMdtdW3c9vZqfixpAGBYRgyPnj+E/slRXTHyDjRVZfPPP5DUN5eYlD4ANFXtYNvqFQyeeAp6w95DyfqKVlYu3M5x0/thtnW+nLWmqtQ+/jj1/3seU1YWfefPQx/ZubL2ck0Kr8PtfDbVOEOl5uvKWhl1Rl/GnB2sTuH3Bti0pJqcYQcWvP8al9/F+8Xv88q6VyhrKQPArDdzTu45XFZ4GZnRmZ0+lq6geb20fPEFjbPn4Pz559DzxqxMYmfMJGbaVPQxMT03wB6kaRrekpJQaXnn0qX4q6o6NtLpsAwYgG30qFDwbogNz81IYhdN03hy+ZO8sPYFAP4y6i9cVnhZD49K9AaH2zXpcCDnVAghRG9xoNckCeH3Qi7oQgghegu5JoWfnFMhxNFAdftpeuETnGUxABhTjMT9ZijGBOtB9eMPqLz4/Vb+8dkmPH4Vq1HPX07N5/Jj+6LXdW3JYk3T2LZyGYvmzKJm2xYGHnciZ9z4l322LfquEq/bz4jJ4Z+hrnq97LjtdhwffwxAwh9uJOH66ztdtlmuSeF1OJzPXwbvOyk6hYLjUjnxovwu23dADfDF9i94ae1LrK1fG9wvCidnnczlhZczJHFIl+27szzFxTTOmUvzu++itgbPm2I2E33GGcReNBPr4ME9PMKupQUCeDZuDAbuS5biXLaMQENDx0ZGI9ZBg0Kl5a3Dh6OP6vobpY5mmqbx+LLHeanoJQBuO+Y2Lh54cQ+PSvQWh8M16XAj51QIIURvcaDXJClHL4QQQgghhBBHEE3VqP3PEny1MUCAqPxGoi89B0V/cOWbN1Q5uHXealaVNwMwPi+eh6YNITO+69eTLl+3lkVzX6ViwzoATFYrsX3S0DRtj+Db6fDy5az1lK6pR9EpZBXGE5/WuRnquws0NVH2+9/jWroMDAb63HcfMdOmhq1/cfQIBFTmPbwUj9MPBIP39PwY8kYmkz0sAWukaT89dI5ep2dy38mcknUKS6uX8nLRy3xb/i0LSxeysHQhI5NHckXhFRyffjw6pXeVezfn5ZFy5x0k/en/aP7wIxrnzMGzfj3N77xD8zvvYCksJPaimUSfcQY668HdbNQbaT4f7qKiXaH78uWoLS0d2ihmM9Zhw3aF7kOHHhHHfrjQNI3Hlj7GrHWzAPjrmL8yc8DMHh6VEEIIIYToTSSEF0IIIYQQQogjiIJKpDIPhzKWuMwvMV/2HziI9ZM9/gD/+bKYp7/egl/ViLIYuOvMAi4Yld7pmd/7U11SzKI5r7Jt1XIADEYTw047i9Fnn4ct2r5H+62ravnqtQ24WnzoDTrGTs0hrk9E2MbjLS+n7Jpr8W7dii4ykvR/PUXEuHFh618cuRx1LoqX1VBV0szp1w1GURT0eh25I5Jw1LnIG5lEzvDELg/e90ZRFEanjGZ0ymiKG4t5uehlPtr6Ecuql7Gsehk59hwuL7ycM3POxKTv/vH9Gl1EBLEXTidm+gW4Vq6kac4cHB9/gruoiB133En1I48SM20qMRfOwJyT3dPDPWCq241r1WqcS4PrubtWrkJzuTq00UVEYB05Atuo0dhGjcI6qBDF1Lv+fY4WmqbxyJJHeH396wDcNfYupudP7+FRCSGEEEKI3kbK0e+FlLYRQgjRW8g1KfzknAohjkT+OheBNh/mrGhY9Djawv+HZk5Ed8NXEJNxwP0sK23k1vmrKa4JlnueXJDMfVMHkRxt6aqhd7B4/mx+ePN1dHo9gydOZsy5FxIVl7BHO6/bz/fzilm3qBKA+LQITrmyMKwz4F1r1lB23fUE6usxpKSQ8eyzWPL7h61/kGtSuPX0+XTUuSheXsOWZTXUlO6atXzB7aNIygqOZ2/VHHqD6rZqXl//Om9teotWX/DnP9GayMUDL+aC/AuINvXe709/YyPNb79N4+w5+MrLQ8/bxo0lduZMoiZORDH0rjkogdY2XCtW4FzSHrqvWQM+X4c2+pgYrKNGEjF6NNZRo7Dk5/e64zgaqZrKgz89yNyNc1FQuGfcPZzX/7yeHpbohXr6mnQkknMqhBCit5A14TtBLuhCCCF6C7kmhZ+cUyHEkUTTNJxLqmn6cAs6i4Hki23oXp0IAS+c8zQMP7C1ads8fv7+2UZe/mEbmgYJkSb+ds4gTh+U0qWBYVN1FV6Xk6S+OQB4XU6+ff0lRk05j5jklL1uo6oabz7wM/UVbaDAsJMzGXt2Dnpj+Mpnt3z5JRV//guay4V5wAAynv0vxuTksPW/k1yTwqunzmfZugZ+fG9Lh+BdUSC1fyx5I5PIG5mEJcLYbePpjBZvC/M2zeO1da9R46oBIMIYwfn9zuc3Bb8hJWLvP5e9gaaqtC1aROPsObR+/TW0v91lSEoiZvp0Yi64AGNyUo+Mzd/YiGv58mBp+aVLca9bB6raoY0hMRHb6NHYRo/CNmoUptxclIOoYiK6nqqp3P/j/by16S0UFO499l6m9ZvW08MSvZRc48NPzqkQQojeQkL4TpALuhBCiN5CrknhJ+dUCHGkCLT5aJy/Gfe6egDM2VHE+W5HX/cD5J8BM94IJoH78d3mWm5/ew3ljcHSx+eNSOeuswYSY+u6MsetDfX8+PZc1ny5gMSsHC5+8J8HFfav/qqcFZ+VMunyAtLzY8M6tobXX6f6gQdBVYk47jjSnngCfWT4StzvTq5J4dVd59NR70JRFKLighUiyjc08N4TKzsE7znDErFFH76lwn0BHx9t/YhXil6huKkYAINi4IycM7is8DL6x4a3KkS4+SoqaHzzLZrmzSNQH/wdiV5P1KRJxM6cgW3s2C69wchXU4Nr6dLQmu6ezZv3aGNMTw+G7u1ruhszMnpllQQRpGoqf1v8N+Zvno+Cwv3H3c/ZuWf39LBELybX+PCTcyqEEKK3kBC+E+SCLoQQoreQa1L4yTkVQhwJ3JsaaXhrE2qLF/QK9sl9ifS/jPLdY2CNgxt+hKhfn7nd7PTxwMfreHNpsHxzWoyVB88dzAn9E7ts3E5HM0ven8/KTz/E7/MCkDVkOGf98VYskfsuJd9U7cTr9nco6e1zBzBZw1eaWVNVav7xDxpeeBGAmAvOJ+Xuu1GMXTeDWa5J4dWV57Olwc2W5TUUL6uhequDIRPTOX56MIhWAyrrf9hB9tDDO3jfG1VTWVSxiJfWvsTS6qWh549LO44rCq9gdMroXh0ca14vjoULaZw9G9fSZaHnTdnZxM64EPvUqejt9s7tQ9PwVVTuWs99yVK8paV7tDPl5gYD91GjsI0aibFPn07tV3SfgBrgnh/u4b0t76FTdDxw3AOclXNWTw9L9HJyjQ8/OadCCCF6iwO9JsliUkIIIYQQQghxmNBUjeaPSmj9PrgWuiHJStyFAzBpG+GFfwYbnfX4fgP4T9fu4K73iqht8aAocNm4vvzl1HwizV3zJ6LH6WTZR++w7KN38bqCM+5T8ws4bsYlZBQM3ud2mqZR9F0l38/bjC3axIV3HoPJYkBRlLAG8KrHQ+Vtt9HyyacAJP7fH4n/7W97dbgout7O4H3L8hqqShy7XlDA1bJr/W6dXkfh8Wk9MMKup1N0TEifwIT0CaytW8tLa1/i8+2fs6hiEYsqFlEYX8jlgy7n5MyTMeh631tMismE/cwzsZ95Ju5Nm2iaM4fm997Hu3Ur1Q89TM3jTxB91pnEzpiJdVDhAfWpaRrerVtDpeWdS5fi37HjFztWMA8csCt0HzkSQ3x8Fxyh6GoBNcBd39/FByUfoFf0PHT8Q5yefXpPD0sIIYQQQhwGet9fSEIIIYQQQggh9k6BQEtwBnnEuD7YT89Gp3jh2etAC8Cg86Fw6j43r2lxc897RXyytgqA3MQIHjlvCKP6xnXpsLetWs7iebMBSOqby3EzLqHvsJG/GnI7HV6+nLWe0jXBUtJR8Vb8XhWTJbxj8zc2Uv77G3EtWwZGI6n334f9nHPCuxNx2NE0jbcfW0Zroyf4hAKpeTHBUvPDE4mwm3t2gD1gUMIg/nHiPyhzlPHKuld4t/hdiuqLuPmbm0mPTOfSwkuZmjcVq8Ha00PdK0v//qTcfTeJN/0Zx4cf0PjGbDybNtE8bz7N8+ZjGTKE2BkziD7jdHSWXb9otEAAz+bNHUL3UIn7nQwGrIWF2EaPwjpqFLYRI9DLLM3Dnl/1c8eiO/h468foFT2PTHiEU/ue2tPDEkIIIYQQhwkpR78XUtpGCCFEbyHXpPCTcyqEONxoqobmV9GZ9ACoTh/e8lYs/dvXQv/0r/DjfyAyBW5YDLY9A3VN05i3rJz7P1pPs8uHQadw3Qm5/H5iHhajPuxjDvh9NFRWkJjZt/0YVD586jH6jxlP/zHHouh0v7p9ycpavnptA+5WH3qDjrFTcxg6MQNFF96Z6d6yMsquuRbvtm3ooqJI/9dTRIwdG9Z9/Bq5JoVXuM/norc2U7u9hdwRSeSOODqD91/T4G5gzoY5zN4wmyZPEwAx5hhmDpjJjAEziLN07c09naVpGq4VK2h8YzaOBQvAF6xuoLPbiZk2DUNiQjB4X74c1eHosK1iNmMdOjS0nrt16FB0NltPHIboIn7Vz+3f3c6n2z7FoBh47ITHODnr5J4eljiMyDU+/OScCiGE6C1kTfhOkAu6EEKI3kKuSeEn51QIcTgJODw0vLkJxaQn/pKBe84c37YIXj4L0OCit6D/5D36KGtw8td31vDd5joABqVF88h5QyhM7dw6yHujqgHWf/c1i+e9gc/j4eqnnsdoOfCp6wG/yrezN7Lu+2Bp5/i0SE65soD4tH2vF3+oXKtXU3bd9QQaGjD06UPmc89i7tcv7Pv5NXJNCq9wn09N1cJ+48eRyOV38W7xu7xS9AoVrRUAmPVmpuZN5bKCy8iIzujhEe6fv76epvlv0zRnDr7Kyj1e19lsWEeMCIbux4zGMmgQOpOpB0YquoNP9XHrt7eysHQhBp2Bf5zwDyZmTuzpYYnDjFzjw0/OqRBCiN5C1oQXQgghhBBCiMOYc00dTe9sRnX6UYw6/HUujIm7zbT0tMC71wMajLh0jwA+oGrMWryNRxdsxOkNYDbo+NMp/bn6uGwM+l+fiX6wNE1j888/8MObr1Nfvh0Amz2G+ooyUnIPPNjW6RWcDi8oMPzkTMacnYPeGN6xArR88QUVf/4LmtuNuWAgGc/8F2NyUtj3Iw5vEsAfGKvByswBM7mg/wV8vv1zXlr7Euvq1zF341ze2vQWkzInceWgKxmUMKinh7pPhvh4Eq69hvirrqT1u+9ofvsdtEAgtKa7ZeAAFIO8hXak8wQ8bGvexjOrnuGL7V9g1Bl5/MTHOSHjhJ4emhBCCCGEOAzJXxBCCCGEEEII0YuoHj9N75fgXFYNgDEtkrgL8zsG8AAL7oCm7RCTCac+2OGl4poWbpm3muXbmwA4JjuOh88dTE5ieGeUa5pG6arlLJo7i+qSYgAsEZGMPud8hp961gHNgg8EVFS/htGsR1EUTrpkII072kjLjw3rWHdqeO11qh94ADSNiOOPJ+3xx9FHRnTJvoQ4mhh0Bk7rexqnZp3KkqolvFT0EosqFrGwdCELSxcyKnkUVwy6guPTjt+zqkcvoej1RJ14IlEnntjTQxFdqM3XxtbmrWxp2kJJcwklTSWUNJdQ3lqOqqkAmHQmHj/pcSakT+jh0QohhBBCiMOVhPBCCCGEEEII0Ut4tjtomLuRQL0bFIg6IYPokzNRDL+YDb55ISx/Jfj4nKfBHAWAL6Dy7DdbeOqLYrwBlUizgdtOH8BFx2Si64JZvY07Kpn/0D0AGC1WRp55DiPPnIol4sDC/qZqJwtfLCImxcYpVxQCYIs2YYsOf5lnTVWpeezvNLz0EgAxF1xAyj13y+xWIcJMURSO6XMMx/Q5hk2Nm3il6BU+LvmYpdVLWVq9lLyYPC4vvJwzss/AqDf29HDFEazR3RgK2rc2b6WkuYQtTVuodlbvc5soYxR5sXn8btjvGNNnTDeOVgghhBBCHGnk3QYhhBBCCCGE6AW0gBYK4PUxZuKm52PO2cu67c4GeO/3wcdjb4Ds4wFYU97MzfNWsaGqBYCT8hN5YNpgUmOsYR1nS0MdUXEJAMSlplF4wiQskVEcM/UCbNEHts68pmkUfVfJ9/M24/eqNNe6aG10Exl74OvHHwzV7aby1ttoWbAAgMQ//Yn4a6/ptbNxhThS9I/tzwPHPcCNw2/ktXWvMW/zPIqbirnz+zt5asVT/Gbgbzi///lEmaJ6eqjiMKVpGtXO6g4z2rc0bWFr81YaPY373C7eEk9uTC7Z9mxy7DnkxuSSY88hwZog1wYhhBBCCBEWEsILIYQQQgghRC+g6BXizu9P2087iDknD511H3+ufXILtFZBfD+YdDduX4DHP9/E/74tQdUg1mbk/51dyNlDU8MaJNSXl/HDm6+xZdlPXP7P/xKTnALAqdf/30Htx+nw8uWs9ZSuqQcgLT+Wky8f2GUBvL+xkfIbfodrxQowGkl98EHsU87qkn0JIfYuJSKFv4z+C9cOvZa3Nr7F6+tfp8ZZwz+X/ZPnVj/HBf0v4OKBF5MckdzTQxW9VEANUNFasauE/G6z29t8bfvcLjUilZyYHHLsOaGwPduejd18YDeNCSGEEEIIcagkhBdCCCGEEEKIHqBpGs5lNQBEjAoGT+ZsO+bsXwkGit6FNW+BooNpz/JjmZPb5v/ItnonAGcPTeWeKQXER5rDNs7mmioWz5vNum+/QtNUUBRKV68g5pTTAQ4qgC9ZWctXr23A3epDb9AxdmoOQydmoHRBqXwA7/btlF1zLd7SUnTR0aT/619EjDmmS/YlhNi/aFM0Vw2+iksKLuGjko94uehlSppLeKnoJWatn8WZ2WdyeeHl5MXm9fRQRQ/xBryUOko7zmxv3kJpcyle1bvXbfSKnszozFDQnm3PJjcml77RfbEZbd18BEIIIYQQQgRJCC+EEEIIIYQQ3Ux1+mh8pxjXmjoUow5zdjSG+P2UjW+tgQ//BIBn3P9x7xITb/z0IwAp0RbunzqIkwvCN4u0tbGBn96Zy+rPF6AG/ADkjR7L+Om/ISGz70H35/ME+Gb2RtytPuLTIjnlygLi0w5s7fhD4Vq5krLrbyDQ2IgxNZWM557FnCfBnhC9gUlvYlq/aZyTdw7flX/Hi2tfZHnNct7b8h7vbXmPCekTuLzwckYlj5LS4Ecop8/ZYZ32nTPby1rKCGiBvW5j1pvpG903NLN9Zwn5zKhMjHpjNx+BEEIIIYQQv05CeCGEEEIIIYToRu7iJhrf3EjA4QWdQtTETPT7K8WuafDBH8HVQEvMAE5fMobylu0AXDQmk9tOH0C0JXwBRMDvY9atf8DZ3ARA1pDhjL/wN/TJyz/kPo1mPRMvHUjFhkbGnJ2D3qgL02j35Fi4kMq/3Izm8WApKCDj2f9iSEzssv0JIQ6NTtFxQsYJnJBxAqtqV/Hy2pf5YvsXfFv+Ld+Wf8vghMFcXng5kzInodfpe3q44hA0uZtCs9lLmoJB+5bmLVS1Ve1zm0hjZHBW+25l5HNickiNSJXvAyGEEEIIcdiQEF4IIYQQQgghuoHmV2lesI3W7yoAMCRYiZuRjyk9av8br5oNGz/Gj4ELqi+nXAuQFW/j4XOHMC43Pizj87ndGC3BmwH0BiNDTzmdbatXcNyFl5I5aMhB9xcIqCz9aBsxyTbyxwTXj88qjCerMDzj3ZeGV1+l+qGHQdOIPOEE0v75D3QREV26TyFE5w1NHMrjJz1OqaOUV4pe4b3i91hTt4Y/f/NnMqIyuKzgMs7JOweLYT83LYlup2kaNc6a0FrtO8vIlzSX0OBu2Od2cZa40Gz2nSXkc+w5JFoTpQKCEEIIIYQ47EkIL4QQQgghhBBdTAuo1DyzCl9FKwARY1Kwn5mDzrT/GX1aUxn+D2/GCPzTdx6byOS3E3L4v5P7Yz2A7ffH5/WwasFH/PTePM764y1kDR4GwJhpFzLu/IsOKQhprGrj85fWUVPagsmiJ7MwDmukqdNj/TWaqlLzyCM0vPIqADEzLiTlzjtRDOH9s7fOVYfNYJN1hoXoIlnRWdw97m5uGHYDszfMZs6GOZS1lHH/T/fzn5X/YebAmczIn0GsJbanh3rUCagBKlsr95jZXtJcQquvdZ/b9Yno02FW+86w3W62d+PohRBCCCGE6F4SwgshhBBCCCFEF1P0Oiz5sQSa3MSe1x9rwYHNBt/R1EbDfy+l0N/KcjWPrxNm8u4FwxmSHtPpMQX8ftZ+9Rk/zp9Da2NwpuLarxaGQnj9IYTXmqZR9G0F388rxu9TMdsMnHBRfpcH8KrbTeXNt9CycCEASX/5M3FXXRX2mZTflX/Hnd/fyfFpx3P/cfeHtW8hREcJ1gRuHH4jVw26ineK32HWullUtFbw9MqneXHNi0zNm8qlhZeSEZXR00M94vgCPkodpaGwfWtTMGjf5tiGJ+DZ6zZ6RU9GVEbHMvIxOWRHZ8tNS0IIIYQQ4qgkIbwQQgghhBBCdIFAixfNG8AQbwUgelImkeNS0UftP5BWVY3ZS7ZT8vGT3KUsx6WZKBr9CO+efgImQ+fWUlfVABsWfcMP896guTq4Jm9UQiLjzp9J4YRJh9xvW7OHr17bQOmaegDSB8Qy6bKBRO5vvftO8jc0UH7D73CtXIliNNLnoYewn3VmWPfhC/h4YvkTvLouOMt+fcN62nxtRBilzL0QXc1mtHHxwIu5MP9CFpYu5KW1L7G+YT1zNs7hzU1vckrWKVxReAWFCYU9PdTDjtPnZKtj667y8e2fy1rKCGiBvW5j0pnoa+9Lrj2X7Jjs4Mx2ey6Z0ZmY9F17w5UQQgghhBCHEwnhhRBCCCGEECLMXEX1NL69Cb3dTNINw1AMOhS97oAC+K11bdw2fzVV29bxiek1AFqOv5NLTj45LGN7/x8PsWXpjwDY7DGMmXYhQ04+DYPReMh9utt8zL3/Z1wtPvQGHeOm5TLkpHQUXdeu6estLWX7tdfiK92OLjqajP/8G9vo0WHdR6mjlFu+vYV19esAuGjARdw06ibMenNY9yOE+HUGnYHTs0/ntL6n8VPVT7y89mW+r/yeBdsWsGDbAo5JOYYrBl3B+NTxsp74LzR7mkMh+5bmLZQ0l7C1aSuVbZX73CbCGBEqH79zZnuuPZfUyFT0us4vhSKEEEIIIcSRTkJ4IYQQQgghhAgT1Rug+cMS2n4OzjDXR5tR23zo7fsPbP0BlRcWbeWfCzfh8/uZZ/4vNsWD1vd4kibeeMhj0jQNNA1FF5xBn3/s8ZSvX8Pos89nxGlTMFo6P1PdEmGk/zEplG9o5JQrC4hPi+x0n/vjXLGC8utvINDUhDEtjYznnsWcmxvWfXyw5QPu//F+nH4ndrOd+469j5MyTwrrPoQQB0dRFMb2GcvYPmPZ2LCRl4te5pOtn/Bz1c/8XPUz/WL7cUXhFZyWfRpG3aHfXHS40TSNWldthxntOx/Xu+v3uV2cJY5seza59txg+fj2x0m2JLmZQQghhBBCiE5QNE3TenoQvY3D4cBut9Pc3Ex0dHRPD0cIIcRRTK5J4SfnVAjRVbxlLTTM3Yi/zgUKRB6fhn1yX5QDKB+/rtLBrfNXs6aiGYCHkr9kZvPzYIqCG36AmMxDGlPFhnUsmvsq/ccex/BTzwJAU1U8LieWiM4F5VUlzVijTNgTg+X2Az4VAL2xc+XyD4RjwWdU3nILmseDpbCQjP8+gyExMWz9t/naePCnB3l/y/sAjEoexUPHP0RKRErY9gFyTQo3OZ9Hrx2tO5i1fhbzN83H6XcCkGxL5pKCSziv33lEmrr+xqDuomoqla2VHcL2neu2t/ha9rldSkTKHjPbc+w5xFpiu3H0Qhw95JoUfnJOhRBC9BYHek2SmfBCCCGEEEII0QmaqtHydRmOz7eDqqGPNhE7PR9LXsx+t/X4A/z7y2Ke+XoLflUj2mLgsQlGJn8fXHuc0x46pAC+ZlsJ38+dRcnyJQA4amsZesrp6HR6FJ2uUwF8IKCy9KNtLPtkGyk5dqbeNBydXtct4TtAwyuvUP3wI6BpRJ54Imn//Ac6my1s/RfVF3Hrt7dS6ihFp+i4buh1XDv4Wim/LEQv1ieyD7eMvoXfDvktb216i9fWvUa1s5q/L/07z656lgvyL+DigReTZEvq6aEeMF/Ax/aW7XvMbN/WvA13wL3XbXSKjoyojA4z23PswdntEcaIbj4CIYQQQgghjm4SwgshhBBCCCFEZ2jg3tAAqoZ1cAKx0/LQ2fZfAnlZaQO3zFvNlto2AE4rTOFvU/qTNOcMCHih/2kw/DcHNZSGynK+f/N1Ni3+DgBFp2PQSacw9twZ6MIQIjdWtfH5S+uoKQ3OtoxKsBDwa3RHPq0FAlQ//AiNs2YBEDNzBil33IFiCM+ftZqmMWvdLB5f/jh+1U9KRAoPH/8wI5NHhqV/IUTXs5vtXD34ai4puIQPt3zIy0Uvs82xjRfXvsir615lSs4ULi+8nJyYnJ4eaojL72Jb87bgWu1NJWxt3sqW5i2UOcrwa/69bmPUGelr7xtapz07Jpscew59o/ti0pu6+QiEEEIIIYQQeyMhvBBCCCGEEIdA8wVwfFkGCig6BRQFdEroa0OyDWt+XLCtqtG2pCq4tqoOUJTgNu2P9XYz5qxd5avcmxpB2dmODn3rrAaMibtm/fpqg2V3ld3aoFNQFAXFoHQIgzVfgGAn7X0qyHqvnaCpGopOQdErxF2Yj2ebA9uI/a+h2+bx89iCjbyyeBuaBgmRZu47p5DTB/eBrx6EqtVgjYUpTwb/nQ7Q8k/e5+tXnkfTVFAUBhw7gWMvuIjYPmmdPVQ0TaPo2wq+n1eM36dithk44aJ8+o1K7nTfB0J1uai4+WZaP/8CgKSb/0LclVeG7fu33lXPXd/fxXcVwZsXJmVO4t5j78VutoelfyFE9zLrzZzX/zym9ZvG12Vf83LRy6yoWcE7xe/wTvE7nJh+IpcPupwRSSO67Tro8Dp2zWjfbWZ7ZWslGntfKdJmsO1RPj43Jpe0yDSpziGEEEIIIUQvJyG8EEIIIYQQv0Lzq3jLWnAXN2GIsxAxMhg6ql6Vlq/K9rmdbXhSKIQnoNL0TvE+21oK4zFfUhD6uu6ltezj/XjM/WJIvGpw6Ouaf61E8wb22tbUN5qk64aGvt7xyBLUVl/HRu2hvSk1kqTfDQs9Xf2vFQSaPLtuGtjtBgJDgpXEKweF2ta/sR5/vbs9/Kf9poFgwK+LMhE/c0CobdMnWwnUufa4YQAFdBYDMWfnhtq2Lq5sX189eIOBsvvNA3od0ZN2lWl3FdXhbwiON3RTxG43SNhGJAUfA57tDgLN3g43OCjtY0FRMGfbUfTBtv56F6rT3+EGCwDHV2Xo7SZizgjOpjTEWzHEW/f+j7abbzfVcvvba6hocgFwwch07jhzIDE2E1Qsh2//Hmx45j8h6uDWH0/LL0DTVHJHjWX8hb8hMbPvQW2/L+42H5+/tI7StfUApA+IZdJlA4mMtYSl//3x19dTdsMNuFetRjEaSX3kYaLPOCNs/f+440du/+526lx1mHQmbhl9C9Pzp8sNKkIcAXSKjomZE5mYOZGVNSt5ae1LfFX2FV+Xf83X5V8zJHEIVxRewUkZJ4Ul1NY0jXp3PVuatuwRtte56va5Xaw5NlhCPia3w7rtybZk+V0khBBCCCHEYUpCeCGEEEIIIXajaRr+aifu4iY8xU14SprQvCoApuzoUAivGHREHpuKpmmgaqAFZ0bvfGzabWY7KFgK4ttf04LtNEDV0DQNY3LH9ayNfSJADY4FTdv1WNXQR3UsM6uz6lF1gEqw7/b2aFow5O5wcHs7YCDQPqbdqG0+1DbfXjYAxdCxY1+VE3+Nc69t9THmDl97tjThK2/da1udrWMI71pTh6ekea9tMXQM4dt+rsK9sXHvbQHbiF3rALcuqsC1et9hSOq941D0wT+VHF+W4VxWvfeGeoXIY1MxxOw/jG5yern/o/XMW1YOQHqslQenDWZC/8RgA58L3rkOtAAUnguDzv3V/lytLSx5fz4AEy66HIDknDyufOLZsMx8353RpKe1yYPeoGPctFyGnJQeuhmhq3m2bqXs2t/iKytDZ7eT8Z9/Yxs1Kix9+1QfT698mhfWvICGRq49l0dPeJT+sf3D0r8QoncZljSMJyc+ydbmrby67lXeL36f1bWr+dPXfyIrOotLCy7l7NyzsRj2/ztd1VR2tO1gS9MWtjZvpaS5JBS8t3hb9rldsi05NJs9254dCtvjLHHhPFQhhBBCCCFELyAhvBBCCCGEEO00TaP6n8vw17o6PK+LMGDOjcGSv+tNcp1Z3yEw/jWKUUfCpQX7b9gu+Q8jDrhtn9vH7PM1TesYrKfcOrrjDQO7B/a/CFUTrh4MfnXXDQO73Tywc5b4TrHT8lA9gd1uMmjvU9NQDLoObaNPzCDQ6tvV325t0Xdsax2WiCkzKtjfzvFqu8rA786cG4NiNYSOL3iDw67tdm9vSLRh6hvdsc3OsWt0aKuzGtDbzR1utkDT0MdaiDkn94AC+E/W7OCu94qoa/WgKHDZuL7cfGo+Eebd/hz78n6o2wiRyXDmP/bZl9flZPnH77Pkg7fxupzo9AaGn3YWUXEJwX+LMAXwXrcfvVGHXq9Db9Qx+apCNFUjPi0yLP0fCOfy5ZRffwOB5maM6elkPPcc5pzssPRd3lLOrd/dyura1QCc3/98bhl9C1bD/qsZCCEOb9n2bO4Zdw+/G/Y73lj/BnM2zqHUUcp9P97Hf1b+h4sGXMSMATOwm+34VB9lLWUdZrSXNJWwzbENl9+11/51io70yPQ9yshn27OJNHXf71AhhBBCCCFEz1K0X74zJ3A4HNjtdpqbm4mOjt7/BkIIIUQXkWtS+Mk5FQCqy4+npAl3cRP+OleH8u51r67Ds7kRU7YdS14M5rwYjCkR3TbzVxw5ahxu7n6viE+LqgDITYzg0fOHMDLrFzMet30PL58JaDBzLuSftkdffq+XVQs/5qd33sTV4gAgMbMv42dcQs6IY8JarriqpJmFLxaRPyaFY6bkhK3fg+H49FMqb7kVzevFMngwGc88jSEhISx9f7rtU+794V5afa1EGaO459h7OLXvqWHp+2DJNSm85HyKQ+H0OXl789u8uu5VdrTtAMBqsNInog/bW7bjV/173c6oM5IVnRWa2b4zaO9r74tZb97rNkKIo4dck8JPzqkQQoje4kCvSTITXgghhBBCHPE0v4qn1BEsL1/chLe8pUNpdn+DG0NccEZz7NQ8dDbDHjO4hThQmqbx1rJy7v9wHQ63H4NO4YYTc/ndxDzMhl+sOexphXevBzQY/pu9BvAVG9fz4ZOP0FofLKEf2yeVYy+4mPxxx6Powvd9GgioLP1oG8s+2YamwcafqhhxahYGU+fXST5QmqbR8NLL1Dz6KACREyeS9vfH0Nls+9ly/1x+F4/8/AjzNwfL+A9LHMYjEx4hNTK1030LIQ5fNqON3xT8hgsHXMhn2z7jpbUvsbFxIyXNJUAwkN99nfadj9Oj0jHo5G01IYQQQgghxN7JXwtCCCGEEOKIs3N9852z15s+KqFt8Y4ObQyJVsx5MVjyYtBFGkPP66M7rrkuxMEoa3By+9trWFQcDMwHp9l59PwhDOyzjzujF94FTaVgz4BTH9prk5jkFDytrUTFJzLu/JkUnjAJnT68wXhjVRufv7SOmtLgWsb9xyQzYUZ+9wbwgQDVDz5E4+uvAxB78cUk//V2lDAc68aGjdzy7S2UNJegoHD14Ku5YdgNEqAJIUKMOiNn5pzJGdlnsKp2FW2+NnLsOSRHJKNT5MY8IYQQQgghxMGRdxyEEEIIIcQRwd/gxlPchLu4Ec+WJuIvKcDc1w6AJTcG15q69vLysZjzYjDESKlYET4BVeOVH7bx2IKNuHwBzAYdN53Sn6uOy8ag30d4U/w5LH0x+Hjq02CJRtM0tiz7mdLVK5h05XUARMTEcv6d95HUNxeDKbw3iWiaxtpvKvhhfjF+n4rZZuCEi/LpNyo5rPvZH9XlouIvN9P6xRcAJN16K3GXX9bpMvuapjFn4xz+vuTveFUvidZEHjr+Icb0GROOYQshjkCKojAsaVhPD0MIIYQQQghxmJMQXgghhBBCHJZUtx/35sb24L2JQL27w+ue4qZdIXxBPH0K48O6brYQO22ubuGW+atZsb0JgDHZcTx83hCyEyL2vZGrEd67Mfh4zHWQPYHSNStZNOdVqoo3AdB/zLFkFA4BILX/wC4Ze0uDOxTApw+IZdJlBUTGdu8NKv76esquvwH36tUoJhOpjz5K9GmdX6O92dPM3d/fzZdlXwIwIX0C942/jzhLXKf7FkIIIYQQQgghhPg1EsILIYQQQojDguYLoHoC6CODM4H9tS4aXt+wq4EOTBnRwRLz/WIwpUeFXtpZll6IcPL6Vf77zRb+/WUx3oBKpNnA7WcMYOboTHT7+5775FZoqYT4PCozZ7Lob3+lrGg1AAazmZFnnENiVk6XH0N0vJXjpvfD71UZclJ6t/+seEq2UnbttfjKy9Hb7aQ/8zS2ESM63e/SqqXc9t1tVDurMeqM3DTyJi4eeLHciCOEEEIIIYQQQohuISG8EEIIIYTolTRVw1fZiru4CU9xE55tzUQMTyb2vH4AGNMiMWVGYcqIwpwXgznbjs4i/70V3WNVWRO3zl/NhqrgGuqTBiRx/7RB9LFb97/xuvdh9VycATMLGk6g5G93AqA3GBhyyumMmTqdiJjYLhm31+3n+7c2kz+uD6l5MQAUHp/WJfvaH+eyZZTf8DsCzc0YMzLIeO5ZzNnZnerTr/p5bvVzPLv6WVRNJSs6i0cnPEpBfEGYRi2EEEIIIYQQQgixf/IupRBCCBFumgYtVRDdp6dHIsRhR9M02n6uCobuW5pQnf4Or/tqnKHHik4h6YZh3TxCcbTxB1R2NLsprXdS2tDG9nonW2rb+HJDNaoGcREm7plSwNlDUw9slnVrLXz4JwDMx11P/UcVKIqOwhNPZtz5M4hOSOqyY6kqaWbhi0U46tyUb2zkonvHot/XevVdzPHJJ1Teehua14tl6BAynn4aQ3x8p/qsaqvi1m9vZXnNcgDOzj2bO8bcgc1oC8eQhRBCCCGEEEIIIQ6YhPBCCCFEuH37GCz+N1w8HzJG9/RohOjVAq1efNVOLLkxACiKQuuiCvy1ruDXZj3m3BgseTGY82IwJB7ALGMhDpLbF2B7gzMYtNe3sb3BybZ6J9vr2yhvdOFXtb1ud86wVO4+q4D4yANbQ91RW83KJ69nvL4efcog9JP+ymkZm7HFxBCXmh7OQ+ogEFBZ+tE2ln2yDU2DyDgzEy8d2CMBvKZpNLz4IjWP/R2AyJMnkfbYY+isnfvZ/mL7F9z9/d04vA4ijBHcOfZOzso5KxxDFkIIIYQQQgghhDhoEsILIYQQ4fTjM/DVA8HHlcslhD+S+b3w0umQcwIMPBv6DAVZa3i/VG8A7zYH7uJGPJub8O1oQzHqSL1nHIohGAhGju2D6g5g7heDKS0KRS/nVXSOpmk0OX2UNrSH7PVOShuc7Z/bqHZ4fnV7k15HepyVrDgbWfERZMbZGJoRw8isAysZ39bUyE/vvsnqzz4iEFCJ6ZPKkOv/CwYz6QWDwnGI+9RY1cbnL62jpjRYNj9/TArHz+iP2dr9fwpqfj/VDz5I4xuzAYi95BKSb7sVRa8/5D49AQ+PLXmMuRvnAlAYX8hjEx4jIzojLGMWQgghhBBCCCGEOBQSwgshhBDhsnwWfHpb8PGJf4Uxv+3Z8YiutfVbqFga/PjuHxCTGQzjB54N6aNB1zMlnnsr58qaYJn5UgcEOs4qNiRYCTi8GOIsAESO75n1qcXhTVU1qhzBsvHbG9raZ7IHQ/bSeictbv+vbh9lNpAZb6NvfASZ8Tay4mzBz/ERpERb0OsO/mYQd2srSz98m2Ufv4ffEwz6M2xNJI4/D1IGH9JxHozGqjbefGAJfp+K2WbgxIsHkDey68rd/xrV6aTipj/T+vXXoCgk33YrcZdd1qk+S5pK+Mu3f2Fz42YALi+8nD8M/wNGvTEMIxZCCCGEEEIIIYQ4dBLCCyGEEOGw9m344A/Bx+N+Dyfc0rPjEV0v4xg493lY/x5s/hyatgeXIVj8b4jqAwPOgoKzIfNY0B89/+XSNA1/nQtPcRPWwQnoI00A+Js8eEqaAdDHmDHnxWDpF4M5NybURoj98fgDlDW42N4erAcD9+Ds9rJGF16/+qvbJ0WZyYq3kRkXQVa8rf1xMGiPtRkPbE33A6CpKj+/N48lH8zH09YGQIpd4Tj7ajL75aKce09Y9rM/Mck20gfGEfAFmHhpAZGxB1Y2P9z8tbWUXX8D7rVrUcxmUh99lOhTJx9yf5qm8fbmt3n454dxB9zEWeJ44LgHOC7tuDCOWgghhBBCCCGEEOLQHT3vCAshhBBdZdNn8PY1oKkw4lKYfL+UJT8aWKJhyAXBD28bFH8B69+HjZ9Cyw5Y8r/ghy0e8s+AgnMg+wQwHHmBc6DFi6e4CXdxE57iRgLNXgB0VgO2YcFZt9bCeHQWPZa8WPTxlrCFnd1FDQRwt7bgamnB1erA3dKCx9lGdEIiGYVDQu3K169FpzegNxoxGI3oDAb0huBjg9mMySJr2u+Pw+0LzmCvd7ItVDo++HmHw4229+XZATDoFNJirWTFR7SXjt8VsmfG2bCaDr3s+cFQdDq2F63G09ZGQkYW40emkLvh7yhGC0z7b5femLN1dR2peXbM7TcVnHJlAUaTHuUQZvKHg2fLFsqu/S2+igr0MTGkP/M0tuHDD7k/h9fB3xb/jQXbFgAwrs84Hjz+QRKsCeEashBCCCGEEEIIIUSnSQgvhBBCdMa2RfDmJaD6YdB5cNYTEsAfjUwRwVnvBWeD3wMlX8O692HjR+CshxWzgh9mO+SfFixZnzcJjId3IOstb6HhrU34q50dXzAomPvaUSy7/qtpTLRhTLR18wj3TlUDtNTVtYfqDlytLbhbHLhaWnC3tZCYlc3gk4KzdD1OJ//73RV4nG177Stv9LgOIfyb9/4VTdv7bOysIcM5/477Ql8/e92l+H0+9EYjeoOx/XMwtE/JzePkq38Xavv58//B5/EEX9/Zvv1xVEJiaLwAm5csJtDeryHUb/CzyWolLjU91NbjbEPR6dAbjOj0+m65OULTNGpaPO0z2dvaZ7LvXKO9jUan71e3t5n07cH6rnA9K95GVlwEqTEWDPruXwpCDQQo+uYLckceg80eA8CEiy6noaKM/IEZ6J6dAApw8v+DxP5dMgav2893b25mww876Dc6mclXFQJgsvTcn3zOJUso+93vUR0OjFmZZD77LKa+fQ+5v5U1K7ntu9uoaK3AoBi4ccSNXF54OTpFlv8QQgghhBBCCCFE7yIhvBBCCHGoypfBGxeC3w39T4Npz4Kue2ZZil7MYIb+pwY/Ak9A6ffBQH7Dh9BaDavnBj+MNuh3SjCQ738qmKN6euT7pAVUvOWteDY3Yki0YhsanN2ujzYFA3gFjKmRWPJiMOfFYO4bjWLs+p8FTdNCobHf62XrqmW4W4LB+s5Z6+7WYLieNXgY486fCYDX5eL5G6/aZ7/9x4wPhdomiwWvyxV6zRwRgTUyGktUFGZbBMk5eaHXVDVATJ9UVL+PgM+H3+8n4As+VgN+9IaO//V2tbYQ8O09cDZZO96gsXHxItytLXttm5Lbr0MI/9XLz9FSV7vXtnFpGVzxz2dCX8++62bqy7cHv1CUUGivMxiISUrhogf+EWq74L9P0VRd2eEGgOBjI5aoKE68ZNc5XfPNF1RW1tDkUWnyqNS7VOqcAWqdfnY4VYpNGaG20T4Hes1PQNETUPRYFR32CCtpCVFkJkSRGR+5W+n4CBIiTb2mkoKmqmxc/B0/vPU6jTsqGXnmOZx46TUAJOfkkdw3G14+E3xt0Pd4OOa3XTKOHVua+fylIhx1blAgKs6Mpmo9NvsdoPnDj9hx++1oPh/WoUNJf+ZpDHFxh9SXqqm8uPZF/r3i3wS0AGmRaTw64VGGJA7Z/8ZCCCGEEEIIIYQQPUBCeCGEEOJQVBfBa+eCtzUYrFzwMuiNPT0q0dvojZBzYvDjjMeg7Odgyfr1H0BzGax7L/ihN0PuxOBM+v6nge3Qgqpw0TQNf42zvbx8E56SZjRPAABzv5jdQngz8ZcXYsqIQh9x6N//mqbhdblwtzrQGQxExQXLSntdTpZ++E57mN6yR7A+4NgJnHLt7wHw+7y8//cH9rkPm90eemy2RWC0WDFbrViiorFGRmGJigqF60l9c0NtFZ2OKx5/BnNEJJaISHT6fd9coNPpufLx/+79GFUVVe04Q/7yfzwTDOnbQ/tgcB/8bI6I6ND2uBmX4HW5CPj9HdoH/H6i4juW4U7tP5C2pORg21A7HwGfn8jYjt9bHW4C0DT8Pi9+n7f9PHWsXFBdspna0q17PT7FFs1nkceESsePKZpNH3dV6HUzkNb+UaAYKcm+mtQYK1nxNgat+RxT1ea99oui8H+z3w+F7p89+xSla1a1z/JvvxFgtwoC59x8J3pD8HtxzVefUbN1yx5VBnZuM/ikyRhMweUhaku30tpQv2dVgvavo+ITQv/2mqqColCy/Ge+nzOL2u3bALBGRROTnNpx/D8+DdsXgykSzvkP6MI7YzsQUFny4VaWf1qKpkFUnIWTrxhIar/YsO7nYGiaRv3zz1P7j38CEHXKKaQ+9ig6i+WQ+qtx1vDXRX/lpx0/AXB69uncNfYuoky998YlIYQQQgghhBBCCAnhhRBCiINVvwVenQruJkgbBTNnH/ZlxUU30Okha1zw49QHoXJFMJBf9z40bIFNnwQ/dIbgjR0FZ8OAsyAyqVuHqakaVf9YSqDe3XH4NgPmvBgs+R1DXOuAX4S6fn+ozLu7tQVXawtRsfGk5AVLcLtaHHz27FOhYD3YrhU14Adg8KRTmXztjcGxaBqL583e51hdrY7QY7Mtgj79B2CJiGwP1aN3fY6KIia5T6itoij84ZW3DvicxPZJO+C2+6LodOh/EcDGJKcc8PZDTznjgNue9cdbDrjtFY//t0P4r/r9+NtDe4C61mDZ+O0NbdQVnkZ9cgP1jjYaW1y43F70WgC9FsCv6Fn10/ZQv8nWTFpMdqKMCpEGsBnAotMwKyo2m5UNd52OyRA8H+//40vK2qo7VA3YyWAwdpj13tbUiKO2ep/Ho+x2jktXrWDj4u/22bbg+ImhEH75J++z9quF+2z722deITIuHoCvXv0fKz79kJ2L05usNkZPOZcRZ5yNybrbjQs16+GL9uUHTn0QYrP22f+hcNS5WPC/tdSUBisk5I9J4fgZ/TFbe+5PPM3vp+r++2maMxeAuMsuI+mWm1F+5eaVX/Nt+bfcuehOGj2NWA1Wbj/mdqbmTe01lRCEEEIIIYQQQggh9kVCeCGEEOJgNJcHA/i2GkgeBBe/1avLiIteSlEgbUTwY9I9ULMuGMav/wBqiqDkq+DHhzdB1rEwcErww56+/74PkOr24ylpxlPchL/JQ8KlBcGh6RQMcRYCzV6MmREoaWYC8Spus4vm1ipcNcW433KQlJ1H3qgxALQ21DP77ltwtzo6lG7fafDEyaEQXqfXU7zkx72OyWA0hYJNCIabQ085HUtkFJbIKKxR0VgiI7FEBoN1W3RMqK2iKFx039/DdXqOGioKVU6V0noPpQ1twZnsu63P3uYt+sUWccEPE2CCGJuRrDgbmfERHB9nIzPeRlacjaz4SSRFmdEdQDn0s//81w5fa6pKIBAIzeDf3YmXXcPYc2d0uHEgVBnA70e325Ig/caMJ7ZPKv72mwsCfl/wBoP2rw2mXdUbouITSeqb26Gv3SsO6I272gZ8PtA0DCYzI06fwqizz8Ma+YvrQMAH71wHAQ/0mwwjLt3veThYJouB1iYPZpuBEy8eQN7I7r1h55fUtjYqbvozrd98A4pC8u23E3fpJYfUlzfg5YnlTzBr3SwA8mPzefSER8mx54RzyEIIIYQQQgghhBBdRtG03d7pFAA4HA7sdjvNzc1ER0f39HCEEEL0Fq218NJpUF8Mcblw5addPktZrknh1+vPaV1xe8n694Oz5XeXNjK4hnzB2RB3cGGU5ldxbqmnYelWtAoPSqOGou0KSFfFLiZ9xCCGnnIG/mYPrW0NvPCna/bZ3+CJk5n82z8A4HE6+fcV03e9qCjBGelRwfA8Z8QxjD33wuA4NI1VCz8JvRYM1qOwRkVhNB9auWrx69y+ANsb2sP1+rYOIXt5owu/uu8/BxQF+kRb2sP1iODn3R7brUffMhxetwuvy4XZZtv39+zXD8PXD4ElBm74EaL77L3dQXK3+TDbDKGZ4FVbm4mMsRAZaw5L/4fKX1tL2W+vw71uHYrZTOrfHyP6lFMOqa9SRyk3f3Mz6xvWA3DRgIu4adRNmPU9e4xdpddfkw4zcj6FEEL0FnJNCj85p0IIIXqLA70myUx4IYQQ4kC4GmHWtGAAH50Ol77X7WXCxVEiIQ+Ovyn40bQ9ODt+/Qew/Ue08mV4t6+EBX/DnFoAA6fg7nsy69aV42ptDa2Vvns5+MITJnHsBRfT9P4W2n6uQgGC8Z2Cw1tPtbuUatc2qrZtxRgTDBQNdjNWY3ANdYPJ3L5eelR7cB6chZ42oDA0ZJPVysz7Hgu9Zo6I6DAjeXeKojBs8oGXVhf7p2kaTU4fpQ3BkH17KGQPrs9e7fD86vYmvY70OGv7DPYIMuPag/Z4G+mxNizGQyslfqQyWayYLL+yBEnlCvj2seDjM/8RtgC+ZEUtX722gfEX5DFgbLDPlGx7WPruDE9xMWXX/hZfZSX62Fgynnka67Bhh9TXB1s+4P4f78fpdxJjjuG+8fdxYsaJYR2vEEIIIYQQQgghRHeQEF4IIYTYH08rvD4dqtdARBJc9j7EZPT0qMRhLuD3BQPzFgeu1hYiYuKISw2uPd7aUM+iubPaw/QW3C19cbfE4m5rRVU1RsVXcIJ+DVSvwev7B18VHwOATR9FsrUvfax9SbZm8W3zPFrq6wEw59hxrq2jsmUzDlMT7kgnumgT1qgo+kaOZWDUKSRkZofGZ7Ja+cOs+RhN+599qigKqf0HdsFZEjupqkaVw822vYTspfVOWtz+X90+ymLoMIM9a2fp+PgIUqIt6A+gbLw4AD53sAy96oeCqTDovE536XX7WfTmZtb/sAOA9d/vIH9MSq9YF73t558p//2NqA4HpqwsMp57FlNW1sH342vj/h/v58OSDwEYlTyKh49/mOSI5HAPWQghhBBCCCGEEKJbSAgvhBBC/BqfG+ZcBOU/g8UOl7wD8bk9PSrRi2iqisflxN3SgqvV0f45GK4nZeeSPnAQAE1VO/jgiYdDwbrP3XHt9FFTzuWE31wJgBoIUPT15/vcp3fwb2BsMuqaT1CKW5iYMh67KQ+TvmN1hlPPvp7oScFAzDo4EeuQRNJ04w7ouBRFOaAAXoSPxx+grMHF9vZgvbTe2V5Gvo2yRhdev/qr2ydFmcmKt5EZFxGayZ4VH0FWnI0Ym7FXhLZHvK8egNoNwRu2zvxnsJ5/J+zY0sznLxXhqHODAiMmZ3LMlJxe8W/Z/MGHVP71r+DzYR0+nPSn/4MhNvag+ymqL+KWb25he8t2dIqO64dezzWDr0G/j2oaQgghhBBCCCGEEIcDCeGFEEKIfQn4YN4VsPUbMEbAb96GlEE9PSrRi9Ru38asW/+Apu49HB015dxQCK8z6KnZuqXD64qiwxIZiSUqGktEZOh5q93OcTMuDa2VHirzbo3AbLJhjgm29dmn0LxuNYmhytgBTMomzLqVWPQrMZU2oyw+HQrORsk8FnTyX7+e1uzydZjBvvPx9nonOxxutH0vz45Bp5AeayWzPVgPBu67SshbTRJa9qjtP8IP/wo+nvIkRMQfcleBgMqSD7ey/NNSNA2i4iycfMVAUvsdfMgdbpqmUf/c/6h9/HEAoiZPJvXRR9BZLAfVj6qpzFo3iyeWP4Ff9dMnog+PTHiE4UnDu2LYQgghhBBCCCGEEN1K3okVQggh9kZV4d3rYePHoDfDRXMgfVRPj0r0MmabLRTAG8xmrJHRofXTLVHRJGb2DbWNiIll2m337NYmGrPNhqLT7dGv0WRmzLTpaKqGb0cbnuJG3D814dhaScToZMzn5AFgyozCmBaJOSsac14M5nQjunIHrPfCxu3Q2gJL/hf8sMVD/hn/n707D4+qPPs4/p19kpnJZLLvCZCFXUAR2VGxLtS91bbWtQtqq+K+1BVRX22tYm2rttbW2qqtWuvSWrUKEhBcKgoESIDsC9mXmWT28/5xkpMMSSBgIAHuz3XNlcmc55zzzCQwML9z3w9MPBvGLASj+ZC8RkcbRVGo7/B1V7J7uivZe9rHe2jpDOx1/2izoc+a7Gq4nhOvVranOq0YDf1/X8Qo4HOrbehRYNpFMP6Mr3W4hvIOPn+nHBQomJXC/O/kY4ka+f+6KcEgdfctp/Xvfwcg7vLLSbr5pgH/Htubpq4mfrb2Z6ytXgvA4qzF3DvnXpyWkV/jXgghhBBCCCGEEGI4jPwnOUIIIcRooyjw9g2w6e9q5fAFz8OYBSM9KzEK2ePiWfrbP2G1OzCa9x5qG4wmxk6fuc9jKmEFz6d1+Ha04tvZSrgzcq3vQJ1Hu68z6km+Zo+q0YlnqbegD3atgqI3YPvb0NkEX/xZvVmcUHAaTDgTcheDKQoxdOGwQk1bFzsbPJQ39W0dr4bu3sDe28Yn2M0RFew9reOz4mwk2M2jotW42E/v3wMtpRCTAac99LUPlzLWyfHfHENscjR5x42OddFDbg/VN1yP56M1oNORfMcdxF38/f0+zsc1H3NH4R00djViMVi4ZeYtfDv/2/J7L4QQQgghhBBCiCOKhPBCCCFEX4oC790Nnz8H6ODcp9WwUogB6PUG7HEH3nIaIOQJEGzoxJLTXQGqg45VlYRafOq3FgOWsU4subFYc2MxJkUP7cBGC+Sfqt5CK6G8UA3kt70F7t3w1cvqzRQNeafAhLPUsRbH13o+R5JQWKGyuZOSejc76t2U1Hewo/t+pz806H56HaTFRmnBek6fkD0rPhq7Rf4JfkTZ+QF8+nv1/jm/Buv+V3N72nysebmYE84ZR2z3n/GZS8YM5yy/lsDueiqvuhJf0VZ0Vivpj/4Cx8kn798xwgF+/cWv+cPmP6CgMM45jp8v/Dl5rryDNGshhBBCCCGEEEKIkSOfAAohhBB9rfkFrHtCvX/mSpjyrZGdjzjihP0h/GXteHe04tvRQqDGg85qIO3u2ej0OnQ6HfbZaSj+EJY8F+YMO7qv24LcYISxi9TbGT+Hyk9g6xuw9U1oq4Sif6o3gwXGnaRWyBecDtFxw/GUR71AKEx5k4eS3e4+gbubnQ1u/MGBq9qNeh05CTatVXzf9dnTY6MwG6Vt/FGhqxX++VP1/vE/Vv+M7addXzTw4Qvb8HoCeD0Bzrl+xrBO8evylZRQ8eOlBGtrMcTFkfnUb4maOnW/jlHVUcWtH93KV41fAfDt/G9z88ybiTJKFw4hhBBCCCGEEEIcmSSEF0IIIXqsfwo+WKHeP/VBOPbSkZ2POKJ0flGvtpkvb4eQErHNGGsh1OHH6LQA4FiQcfAmojdA9mz1duqDUPOFGsgXvQHNO6H43+pNb4Sc+Wpr+/HfBHvSwZvTIeINhCht9KhB++4OLXAvbfQQDCsD7mMx6hmXaCc3yU5ekp28ZDu5SQ6y46Mxyfrs4p3boL0a4sbC4nv3a1e/N8iav5WwbV0tAAmZduZfmH8QJnngPOvXU3XNtYQ7OjDn5JD5u2cwZ2bu1zHeKX2H+z6+D3fAjcPs4N7Z9/KNnG8cpBkLIYQQQgghhBBCjA4SwgshhBAAX7wA79yq3l94G8z+ycjORxy2FEUh2NiFb0cr0dOS0Eep/9wKNHbh29UGgMFpxpLrwpoXi2VcLAbH3teTP2h0Okifod5Ovgfqi9QwfuubUL8Fdn2o3t66AbLnqBXyE84E50G8SGAYdPqD7Kz3UFKvBu0lu93sqO+gormTQbJ2os0G8pLUgL1v4J7hisagl7WqxQC2vgVfvgg6PZzzFJhtQ961dkcr7/+xiPZGL+hgxjeyOP7MsRhGUQeFtjfeoOZnd0IgQNSxx5Lx5K8wulxD3r8z0MnDnz7MayWvATAtcRoPL3iYNHvawZqyEEIIIYQQQgghxKgx4iH8b37zG37+859TW1vLpEmTePzxx5k/f/6g430+H8uXL+eFF16grq6OjIwMfvazn3HFFVdoY1599VXuuusudu7cybhx43jggQc499xzD8XTEUIIcTja8g944xr1/gk/gUW3jex8xGEn1OHHt7MVb0krvh2thNrU9dwNDjNRkxMAiJ6agMFuwpIbizEhCp1ulAW7Oh0kT1JvJ94OjTu6W9a/oVbLl69Vb+/cBunHqmvITzxLrQAeIW1dAXbUu9nZvV57T+Be3do16D4xViN5yY7uwL27wj3ZQWqMFb2E7WKoPI3w1jL1/pxrIWvWkHetLGrmzV9tRFHAEWdl8eUTSMsberh9sCmKQtNTT9GwUl2axXH6aaT93/+ht1iGfIztzdu5+aObKW0rRYeOH039EVcdcxVG/Yj/91MIIYQQQgghhBDikBjRT0Fefvllli1bxm9+8xvmzp3L008/zemnn05RURFZWVkD7nPBBRewe/dunn32WXJzc6mvrycYDGrbP/74Yy688ELuv/9+zj33XP7xj39wwQUXUFhYyKxZQ/9wTAghxFGi5D149UeghGHGJXDqA2oYKcQQ+CraaX2thEBdZ+QGgw5Ldgw6U29VqynZhil56JWyIy4hF+bfoN5aK9Tq+K1vQsV6qP5cvb1/DyRP7g3kE8cflD8/zR4/JX3ax+/oDt13t/sG3SfeZu4O2O3kJfWG7okOy+i7AEKMbuEQtJZDQzE0ble/Vq4HTwMkTYQT79ivw6Xlx5KQ6SAuzcb8C/OxRI2eYFoJBKhbvpzWv78CQNwPriDpxhvR6YdWoa8oCi9ue5FHP3sUf9hPUlQSD81/iONTjz+Y0xZCCCGEEEIIIYQYdXSKogzSlPPgmzVrFjNmzOC3v/2t9tiECRM455xzeOihh/qNf+edd/jOd77Drl27iIuLG/CYF154Ie3t7fz73//WHjvttNNwuVy8+OKLQ5pXe3s7TqeTtrY2YmJi9vNZCSGEOGyUFcIL50PQC5POg/N/r66XPYrIe9LwG87XNNjspe6RTwEwpdqw5MVizXVhzolBbx5dv0vDpqMOtr2ltq0vKwQl1LstPk8N4yecBanH7FcgrygKDR2+7mr2DnY09LSRd9Pk8Q+6X0qMtU9Fuxq45ybZibONUIt/cfgK+qBpJzRsg8ZiaNiufm3aob5P7MkUDVe8o/6u74WiKJR8tptxM5IwGNQw2+8NYraOnvAdIOT2UL1sGZ7CQtDrSb7zZ8R973tD3r/V28pd6+5iVeUqABZmLOT+uffjso6eKv/RSN7nh5e8nkIIIUYLeU8afvKaCiGEGC2G+p40Yp/8+P1+Pv/8c267LbLl7ze+8Q3WrVs34D5vvPEGxx13HI888gh//vOfsdlsnHXWWdx///1ERUUBaiX89ddfH7HfqaeeyuOPPz7oXHw+Hz5fbyVVe3v7AT4rIYQQh43q/8Ffv6MGK3mnwrlPj7oAXgyPg/k+b4yzEn/xBMzZMRjsR0no60iBmT9Ub53NsP1faiC/60NoKoE1j6q32Cw1jJ9wFmTMhO5KWkVRqGnzqkF7z3rtDWrw3u4NDnraDFeUVs2el+QgN1m9H2M1HapnLo4U3nZoLOmuat/eG7i3lKpdUQZisEBCHiTkQ2KB+jVrNsSk7vVUnjYfHzy/lYotzbTUdjLrLHX5htEWwAd211N55ZX4tm5FFxVF+qOP4jjpxCHv/2ndp9y25jbqO+sx6U3ceNyNfG/896TrhDjo5P/yQgghxJFL3ueFEEIc7kbs05/GxkZCoRDJyckRjycnJ1NXVzfgPrt27aKwsBCr1co//vEPGhsbufrqq2lubuYPf/gDAHV1dft1TICHHnqI++6772s+IyGEEIeN3UXwwnng74Cc+XDBn8B4lASoR6GD/T4fNSnhoB171IuOg+nfV2/eNih+F7b+E0reV1vYf/wkfPwkbnMiG23zeCc0k3+25tAxSGG7XgfZ8bbuoL03cB+XZCPaPLpCSzHKKYq6bntP0N6wvbeVfEfN4PtZnJCYDwkFkV9js/f7Qq1dXzTw4Qvb8HoCGIx6ohyj833GW1xM5dIrCdbWYoiPJ/Opp4iaMnlI+wbDQZ7+6mme+eoZwkqYnJgcHlnwCBPiJxzkWQuhkv/LCyGEEEcueZ8XQghxuBvxTzP3rI5QFGXQiolwOIxOp+Mvf/kLTqcTgF/+8pd861vf4te//rVWDb8/xwS4/fbbueGGG7Tv29vbyczMPKDnI4QQYpRr2gl/Pge6WiD9WPjui2CKGulZiYNI3ucPrkAoTHmThx31nZQ0TKMknEuF/VIymtaxmPWcrP8Ch7+Bef5/MI9/cL3OwX/Nx7HRtoCO9DmMSY4jr7uVfE68DatJOlKI/RAOQ1tln/bx23vXbu9qGXw/e3KfqvbuoD1xvPr416ze9nuDrPlbCdvW1QKQkGln8eUTiU+zf63jHgyejz+m6pprCbvdmMeMIfN3z2DOyBjSvnWeOm796Fb+V/8/AM4edzZ3zLqDaFP0wZyyEBHkPV4IIYQ4csn7vBBCiMPdiIXwCQkJGAyGfhXq9fX1/SrZe6SmppKenq4F8KCuIa8oClVVVeTl5ZGSkrJfxwSwWCxYLJav8WyEEEIcFtqq4flzwL0bkibBRa+AxTHSsxIHmbzPDw9vIERpo4eSenWd9h31HZTsdlPa6CEYVvqN38hxvGc8ngKXhTNs21gQXEduy0fE+9u4QPchF3R9CJVOiD4NMs6E+MUwygN4X1eQxooOGio7iE+zkzkxDlBD1//8bgtGs169mQwYTep9g8lAYpaDMVPVjglKWKH0q8aI7T33jSYDJqth1LUqHxVCAWjetUdV+3Z1vfZA5yA76cCVvUdVe3cr+ajYgzLN+vJ2/vO7zbQ3ekEHM76RxfFnjsVg1B+U830dra+/Tu2dd0EwSNRxx5L55JMYYmOHtO9/y//L3evupt3fjs1k464T7mLJ2CUHd8JCDEDe44UQQogjl7zPCyGEONyN2Cd8ZrOZY489lvfee49zzz1Xe/y9997j7LPPHnCfuXPn8ve//x23243drlaSFBcXo9fryeiu2Jg9ezbvvfdexLrw7777LnPmzDmIz0YIIcSo525QK+DbKiBuLFz8D7WVthAiQqc/yM56DyX1HX0CdzflTR4GyNoBiDYbutvHO7RW8nnJdjJc0Rj0OuAk4GoIBaG8UF1Dfttb6gUxX72s3kzRkHeKuoZ8/qkjfoFMKBimpqSVhooO7dbW0KVtHz8nVQvhA74QFVuaBj3W+NkpWggf8If491ObBh07bkYip/14CqB2c3rulkIMRj1GswGDSd8d2BswmvWkjHVy3Ok52r6fvLkLnV6nbu8T7BvNeqKdFpJzYrSxHc1e9AaddiyDYZSExH5Pd1V7ceSa7c27IBwceB+9CeJzI4P2xAL1sUPc6cRsNdLZ7scRZ2Xx5RNIy3Md0vMPhaIoNP7mNzT+6kkAYs44g9SHHkQ/hA84vUEvv/jsF7y8/WUAJsdP5pEFj5AZIxVJQgghhBBCCCGEEH2NaJnNDTfcwMUXX8xxxx3H7NmzeeaZZ6ioqODKK68E1JYz1dXVPP/88wB873vf4/777+fyyy/nvvvuo7GxkZtvvpkrrrhCa0V/3XXXsWDBAh5++GHOPvts/vnPf/L+++9TWFg4Ys9TCCHECOtqhRfOVYOcmAy45J/gGLxDihBHg3ZvQA3Yd7sjAveqlq5B94mxGslLdmjrtecm2clLdpAaY0WvH0ILb4MRxi5Sb2f8HCo/ga1vwNY31ZbiRf9UbwYLjDtRDeQLTj/oF8x0tvtpqOxAr9NpwXooGOaNJzbCHhceOOKsJGY5SB3X25nJbDVy0iXjCfrDBANhQoGQet8fJhgIkTK2d6yiQMrYGIKB7u3+kHo/ECbkD2Hs0w0gFAjT1REYdN59g3NFUfjs3+Uog1wpkTHexdnLpmvfv3T/J/i7ekNtnV6nBfcpY52ccdVUbdu7z24h4Aup2016DN3BvdGkxxFnZdL8dG1s+ZYmwiFFG6uF/CY9ZosRq93U/aI3d1e1b+vTSr5Y/T0YjNnep4V8n1byrhz1d2uEeN0B7XnFJkez5CfHkJjlwBI1+joaKIEAtffcS9trrwEQ/6Mfknj99ej0+74IY2frTm7+6GZKWkoAuHzS5Vwz/RpMBtNBnbMQQgghhBBCCCHE4WhEPxm68MILaWpqYvny5dTW1jJ58mT+9a9/kZ2dDUBtbS0VFRXaeLvdznvvvcc111zDcccdR3x8PBdccAErVqzQxsyZM4eXXnqJO++8k7vuuotx48bx8ssvM2vWrEP+/IQQQowCfg/89QKo2wS2RDWAj80a6VkJccg0e/zsqO8O2ne7tfu7232D7hNvM3cH7HbyknpD90SHBd3XXC9bozdA9mz1duqDUPOFGsgXvQHNO6H4HfWmN0LOfJh4Foz/JtiTvtZp3S0+Gio7IircPa3qa5Ga69RCeLPVSNaEOMxRRhKzHCRmOkjMcvSGyH2YLAYmzEkb0vktUUbOv+W4AbcpioLSJ0PXG/V85+7jCfUL7NWQ3+7qU7mswJSF6dr2kD9MwN99QUAgTFyqLeJce/4YlbBCwBci4Avh90ZWnFcWNeP1DHwxQFK2IyKEX/2X7XQ0ewccG2vr4KLJT6uBe2cjrzY9RFsoGaNuKkZdAUb8GHV+jEYFuz3MSceXaoH7VyVJdAWiu6v8DRgUPaZWPQaPAXN9G1kT47XzuFu8KAoRSwPohnKRyH5SFIXNq6tZ94+dfPMnU0nPV6veMwpGX/U7QMjtpvra6/CsWwd6PSl334XrO9/Z536KovBKySs88skjeENe4qxxPDTvIeakS6cxIYQQQgghhBBCiMHoFEUZpLHo0au9vR2n00lbWxsxMTH73kEIIcToFPDCixfCrlVgdcJlb0PKlJGe1X6R96ThdyS+poqi0NDh06rZ+wbuTR7/oPulxFj7VLSrgXtukp04m/kQzn4PigL1RWp1fNEbUL+lz0YdZM1WA/kJZ4IzYy+HUeho9uJp9UdUrT93SyGd7Xu8JjpwJUeTmhfLiReNH+YnNHopikIoqAb8oT7hvsGoJzY5WhtX8tluAt6Qtr1v9b491sKMxenQUgaN2/nXKz487SGC/iDBIITCRoKKmaBixmWs4sKEm7Tj/rnpd7QHEgacmzMxiu/fP1v7/qX7P6Gp2j3g2OgYM5c/Mk/7/rWff07tzraIMXqjDpPZgNVu4vvLe4+77rUdNFW51Vb/WoV/dzt/i4HjvzlGG1tT0kqX24/RZEBv1LHxvQoqtjQDMGFOKiddMmEIr/rICNTVUbn0Snzbt6OLiiL9l4/iOPHEfe7X7m/nvnX38W75uwDMSZvDA/MeICFq4J+b2H9H4nvSSJLXUwghxGgh70nDT15TIYQQo8VQ35NGX49EIYQQYjiEAvDKFWoAb7LBRa8edgG8EHtSFIWaNi8luzu0tdpL6t2U7O6g3TvIetlAhitKq2bPS3KQm6zej7GOwjbSOh0kT1Jvi26Dxh3dLevfUKvlK9apt3dug/RjYcJZKOO/SVs4jYaKDhq1Knc3Xk+AaKeZyx/uDWiTcmLoaOoiMdNBQpZa3Z6QYcdsPfr+WazT6boDZ8Nex+Ud1718R6ALGkv6tI/fDjuK4ZOdEFIvbDgDILr7Bmong7ixkJCPklAAic+oa7fH53FWu4GAL6i18Q/6Q91V/yEMe8wp//hk3M1OAt1t+3suAgj6Q1iiI3+PdXodeqOOcLD3WuNwUMEXDKI3RFbE7y5tp6akdcDnbTDpI0L4/71bTvmmpn5j5pw3jikLB78gZKR5t2+n8sdLCe7ejSEhgczf/paoKZP3ud/G+o3c+tGt1HhqMOqMXDvjWi6ddCl63b5b1wshhBBCCCGEEEIc7Y6+TxuFEEIc+cJheP1q2P62urb0d1+EzJkjPSshhiwUVqhq6aRkd3fIXt/Bzu7Q3eMPDbiPXgfZ8bbuoL03cB+XZCPafBj/ky8hF+bfoN5aKwhveZOOL9fgrH8Hqj+H6s95629BKvwz+u2qN+iIjjHj9wa1kP2MK6cclNbkR5Su1u6gfVvvWu0N26G1AhikiZYxChLyIHG8GrInFKit5F1jwKh2VtjzVXcmDn1KM07NHvLYc29UfxfCYUUL9XsC+3A4cv7HLcnB0+LTtvf9uud841Js+DuD2hh7nJV538ojLs3GaOVeu5bqa68j7PFgHjeOzKefxpyRvtd9QuEQz25+lt9s/A0hJUSGPYNHFjzClES5kE0IIYQQQgghhBBiqA7jT2SFEEKIASgK/OtG2PQ3tQLzgj/B2IUjPSshBhQIhSlv6mRHd/v4ku7K9l0NbnzB8ID7mAw6cuJt5CXbye1erz0v2U5OvA3rPiqaDzfhUJiWus7e9dsrO2ionEzQP4EfLX8Uc9m/oegNYttrqPZPJt5UTqJxJ4mxbhInjSP++BMxZE6PWABdAvhuigIddWo1e0Nx99fuwN29e/D9olzdAXufoD0hH5yZoB9dFdJ6vQ69xYDJMvifi8zxcUM+3pzzc4djWodM66uvUXvPPRAMEj1zJhlP/gqD07nXfeo767l9ze18UvcJAKePOZ27T7gbu9l+KKYshBBCCCGEEEIIccSQEF4IIcSRQ1Hg/Xvgsz8AOjj3aSg4faRnJQTeQIjSRo/WPr4ndC9r8hAIDVxZbDHqGZdo1yrbe0L37PhoTIbRFXYOh1AwjF6v00LyT98u5fN3ygkF+l+MYDTrafPGkDjzhzDzhxzf1MCc0v9g2P5f2PWh2hp9M7B5OcRmwYSz1FvGzFEXFB904RC0lkcG7Q3b1bbyvrbB93OkqQF7T8ieWKCG7raEiIsaxOijKAqNT/6axl//GoCYb36T1AcfQG8273W/j6o+4s7CO2nxtRBljOKOWXdw9riz0cnPWwghhBBCCCGEEGK/SQgvhBDiyLHmUVi7Ur1/5uMw5VsjOh1x9On0B9lZ76GkvqNP4O6mvMlDeJAu3tFmQ3f7eEdE4J7hisZwhFZtBwMhmqo8amV7d1dLUdgAAL+ySURBVJV7U42bb982k4QMteLWEm0kFAhjshpIzHSotyw7iVkxxKZEo+/z2ljiEyH++3Dc98HbBsXvwtZ/Qsn7agv1j59Ub/YUmPBNNZDPnguGI+ifwkEfNO2IbB/fWKyG7SHfwPvo9Gq7+D2D9oQ8sMYc2vmLYaH4/dTefQ9tr78OQPzSpSRedy26vVx84g/5eezzx3hh6wsAjI8bzyMLHmGMc8yhmLIQQgghhBBCCCHEEekI+uRRCCHEUW3D0/DB/er9b6yAYy8b0emII19Dh48Pt9VHBO5VLV2Djo+xGslLdmjrtecm2clLdpAaY40IlI9kpV81suGfu2iu9aAMcFVCY2WHFsLnHZdM1sR4nIlR+9dC3uqEqd9Wb34P7PgvbH0Dtr8D7jr49PfqLToeCs6AiWfDmIXauuWjnrddDdYbt3ev2d5d4d5SBsrASxhgsKjBekJ+5Jrt8ePAaDmk0xcHT6ijg+rrrsOz7mMwGEi5+25cF16w133K2sq45aNb2Nq8FYDvT/g+1x97PWbDYfLnQQghhBBCCCGEEGKUkhBeCCHE4W/jX+Hft6j3F94Kc64Z2fmIo0JFcye3vPpVv8fjbebugN1OXlJv6J7osBzxbZ39XUEaqzqoL+9ev73CzQlnj2XstERAXaO7qdoNgNVuIinLQUKWWuWelO3AEW/VjhXlMBPl+JpBoNkGE89Sb0Ef7FoFRW/A9rehswm++LN6szih4DSYcCaMOxnM0V/vvF+XooCnobuave+a7cXQUTP4fhZnn7Xa+3yNzQb94Ouii8NfoK6Oyh8vxVdcjC46mozHH8O+YMGg4xVF4Y2db/DAhgfoCnYRa4llxdwVLMxceAhnLYQQQgghhBBCCHHkkhBeCCHE4a3on/DPn6j3T7gaFt0+svMRR43cJDvzchMiAvfcJDtxtqOrgrSlzsMnb5XSUNFBW33/TgD15e1aCJ8yNobTr5xCYpYDu+sQX5RgtED+qeottBLKC9VAfttb4N4NX72s3kzRkHeK2rI+/1SwOA7enMJhaKvsbh+/LbKVvLd18P3syb3t4xPH9963J8t67Uch77ZtVP54KcH6egyJCWQ+9RRRkyYNOt7td7Niwwre3vU2ADNTZvLQvIdItiUfqikLIYQQQgghhBBCHPEkhBdCCHH4KnkfXvmB2oJ5+vfh1AclgBKHjDPKxAs/nDXS0zgkujr86trtlR00lHeQNSmeifPSANDpdOz4rF4ba3dZSMxyaLfknN61xS3RJi2QH1EGI4xdpN7O+DlUfqK2rN/6phqKF/1TvRksMO5ENZAvOB2i4w7sfEE/NO/ao6p9u7qGe6BzkJ104Mreo6q9e+32qNgDm4c44rgL11J93XWEPR7MuePIevppTOnpg47f3LiZWz66hcqOSgw6A1dPu5ofTP4BBumUIIQQQgghhBBCCDGsJIQXQghxeCpfBy9/H8IBmHgOnPmEBPBCDBN/V5AvP6hUg/eKDtwtvojtOoNOC+GdiVHMPnccCZl2EjMdX7+F/KGmN0D2bPV26oNQ84UayBe9Ac07ofgd9aY3Qs58tbX9+G+CPan/sfye7kr27sr2nqr2llIIBwc5vwnicyOD9sQC9TFT1MF97uKw1vrqq9TefQ+EQkQffzwZT/4KQ0zMgGPDSpjntzzPyv+tJKgESbWl8vCCh5meNP0Qz1oIIYQQQgghhBDi6CAhvBBCiMNP9f/gLxdAsAvyvgHn/W7E1ztWFIW6di9fVbWxubqNr6rauPnUAianO0d0XkIMRlEU3C0+LWiPcpiZemIGAHqjjs/eLiMcVrTxscnRanV7poPUvN7fa51ex4xTsw/5/A8KnQ7SZ6i3k++B+iK1Or7oDajfArs+VG9v3QBZsyH3ZHVt+Z428m2Vgx/bbO9tG699LQBXjlqZL8QQKYpC469+ReNvfgtAzJlnkvrACvTmgS+Aaexq5M7CO1lbsxaAU7JP4Z7Z9+C0yPuTEEIIIYQQQgghxMEin/gJIYQ4vNRvhRfOB38HZM+DC54H46GvvK3v8LKpSg3bN3WH7o3uyGrhxROTJYQXo4aiKOz6ooH67tC9oaIDrzugbU/McmghvNFkYPo3sohymEnMcpCQYcccdZT9s1Gng+RJ6m3RbdC4o7tl/RtqtXzFOvW2p+iEyKC9J2yPSZNuHeJrU/x+au+6i7Z/vgFA/JVLSbzuOnSD/G6tq1nHHWvuoMnbhMVg4ZaZt/Dt/G8POl4IIYQQQgghhBBCDI+j7NNUIYQQh7XmUnj+HOhqhrQZ8L2XDkm75ia3j6+q29jUHbhvqmqjrt3bb5xBryMvyc7UDCdTMmJZkJdw0OcmxJ6UsEJrfScNlR34u0JMXqCuD63T6Vj32g7aG3t/d/V6Ha40G0lZDpLHRLaxPuGccYd03qNeQi7Mv0G9tVbA1regcgPEpEe2kj/QdeOF2IdQeztV115H5/r1YDCQcu89uL797QHHBsIBfvXFr3hu83MA5Mbm8vMFPyfXlXsopyyEEEIIIYQQQghx1JIQXgghxOGhvQaePwvcdZA0Eb7/Klgcw36a1k6/VtneE7pXt3b1G6fTQW6inSkZTqamq6H7xNQYoswj2xZfHH1a6jzUl7VrFe6NlW4CvhAAlmgjk+anaVWvuccl4/UESMx0kJTtIC7NhtEkv7P7LTYLZl+t3oQ4BAI1NVQuXYqvZAf66GjSVz6Off78AcdWdlRy60e3sqlxEwAX5F/AzTNvxmq0HsopCyGEEEIIIYQQQhzVJIQXQggx+nka4fmz1erTuLFw8T+Gpdq0rSvAluo2tcq9u8K9orlzwLFjE21a2D41w8nE1BhsFnkbFYdOKBSmucZDS62H/ONTtMfXvFxM5daWiLFGk574DDuJWQ6CgTCm7otDZkt1uxCHHW9REZVLryTY0IAxMZHMZ57GOmHCgGP/Xfpvln+8HHfAjcPs4L4593FK9imHeMZCCCGEEEIIIYQQQtIDIYQQo1tXK/z5XGgsVts+X/JPcKTsc7c9uX1BtlT3rt++qbqN0kbPgGNz4qOZnO5U28qnxzIpPYYYq+lrPhEhhi4YCNFc46GhooP6ig4aKzporHYTDioAZE6MI8puBiAtL5ZgIExilkO9ZTpwpUSjN+hH8ikIIYaB+6OPqF52PeHOTix5uWQ+/TSmtLR+4zoDnTz0yUO8vuN1AKYnTefh+Q+Tak89xDMWQgghhBBCCCGEECAhvBBCiNHM74G/Xgh1X0F0ghrAx2btc7dOf5CimnYtbN9U3cbOBjeK0n9shitKC9unZjiZnObEGS2Buzh0Av4QTVVuEjLtWmv4tX/fweaPqvuNNUcZScyy4/MEtRD+uDPGcNwZYw7pnIUQB1/L3/5G3X3LIRQi+oQTyHhiJYaYmH7jtjVv4+bVN1PWXoYOHT+e+mOuPOZKjHr5r54QQgghhBBCCCHESJFPZoQQQoxOQR+8dBFUrgerEy55HRLy+g3zBkJsrW2PWMe9pL6D8ACBe6rTypSeCveMWKakO4mzmQ/+cxGim98bpLHSTUP3+u0NlR201HpQFDj/1mNJGeMEIDHLgdVmIjFbrWxXq9ztxCREaeu7CyGOTIqi0PD4SpqefhoA59lnk3r/cnRmc79xf932Vx797FEC4QBJUUn834L/Y2bKzJGYthBCCCGEEEIIIYToQ0J4IYQQo08oCK9cAbs+BJMNLnoFUqbgC4bYXtfBV1VtbO4O3Yt3dxAcIHFPdFg4pm+Fe7qTRIdlBJ6MOFp5PQH0Bh1mq/rPraK1NXz4wjYY4AKRqBgz3o6A9v342SlMmJsqgbsQRxnF76fmZ3fS/uabACRcfTUJ1/y0398FLd4W7l57N6uqVgGwKGMRy+cux2V1HeopCyGEEEIIIYQQQogBSAgvhBBidAmH4Z8/gW1vEdabWT39cd77LIpNrxeyra6dQKh/ghlvMzMlw8nUdLXCfWqGk+QY6whMXhytutz+3ur27lt7o5fFl0+kYFYKAM7EKFDA7rKQkOkgqU+Ve7TTHBGyyXruQhx9Qu3tVF1zLZ0bNoDRSOp99xJ7/vn9xn1a9ym3rbmN+s56THoTNx53I98b/z25aEcIIYQQQgghhBBiFJEQXgghxIgLhsLsaHDzVWUr2RvuYVbjawQVPVd6r+H9j2xAhTY2NtrU21K+u8o91WmV8EGMiN2l7bzzu024m30Dbm9r6NLup4xxcvkj84iOkSUQhBCRAtXVVCxdin/HTvQ2G+krV2KfNzdiTDAc5Kkvn+KZr55BQSEnJoefL/w54+PGj9CshRBCCCGEEEIIIcRgJIQXQghxSIXCCqWNbr6q6l7DvbqNLTVteANhbjG+xAXGNwgrOm4IXMUG8yzmpDu7q9zVwD3DJWtii9HDFmvWAnhnUlT32u3dt0x1XfceBpOeaJME8EKISF1btlB55ZWEGhoxJieT+fRTWMdHBuu17lpuXXMrX9R/AcC5uedy2/G3EW2KHokpCyGEEEIIMSqFw2H8fv9IT0OIUcdkMmEwGEZ6GkIcdSSEF0IIcdCEwwplTR42VfcJ3Kvb8PhD/cZeZ36Dq/VvALBp+r3cMO9HPB4XjV4vgbsYvWyxFs69cQYJGXbMUfLPKiHE/nGvXk3V9TegdHZiyc8n85mnMaWkRIx5v/x97l53Nx3+DmwmG3efcDdnjD1jhGYshBBCCCHE6OT3+yktLSUcDo/0VIQYlWJjY0lJSZHiJiEOIfm0WAghhlHYHyJQ6yFQ1UGgrhMl2PsPf3OmA/ucNACUsELL37YPehxTmh3Hggzt++a/F6OEBv5PhCkpmpiTsrTvW14rITxAyA1gjLPi/EZO79h/7iDcGRxwrMFpIfaMMdr3rW/tItQx8NXEBpsJ55ljqWzu4qvqVgxragg1e2nrChAIq2u4Z3bfFmLiSRNMSothSoaT01rDZDaWYWnIoolbIGUKGZ158G4FrQY9cRcWaOdp/7CCQI1nwDmgg/jvTdC+7fioCn9lx8BjgbgLC9AZ1XW33Wur8ZW2DTrW9a189Fb1LdO9oRZfccugY2PPzcVgl2rno4VOpyMtL3akpyGEOAy1vPw36pYvh1AI25zZpK9cicHh0LZ7g15+/unP+Vvx3wCYkjCFhxc8TKYjc6SmLIQQQgghxKikKAq1tbUYDAYyMzPR6/UjPSUhRg1FUejs7KS+vh6A1NTUEZ6REEcPCeGFEOIAhb1Bwt4gxlgrACG3n9oHNoAy8HglFNZCeIDOjQ2DHtvqDUWE8J1fNkBw4BA+PNYJfUL4rs2NgwbrpkwHzm/0fu8taibUNvBa1sbkaOgTwnu3NxPss751X81GuPiLnbR1BQD4PTamYGCgtxkl2siVd56AobvCvf7R9/A3xNLFAnVADVDTCIDOrAd6Q3hfafvgAfgeF3H6K9rp2tw08FiAC/J7x1a59zo29tzeH2qgxk3XlsHHOs8cO/g5hRBCHPWUcJiGx1fS9MwzADjPPZfU5fehM/UuX7GjZQc3f3QzO1p3AHD55Mu5Zvo1mPSmAY8phBBCCCHE0SwYDNLZ2UlaWhrR0bJkkxB7ioqKAqC+vp6kpCRpTS/EISIhvBBCDEHIEyBQ48Zf7SZQ4yZQ7SbY5MU6Po6EyyYBoLeZ0NtMoNNhTrdjSrOh79Oe2pgQ1XtAHTiXjNnzNL1jXdaI752n58Ag3bQMzsiq65hv5ERU4EeMdUR+eB+zOIuwb+CqeX33WtaKorC73Ud5fgy7Yw3UtHZR0+als0+1vSeo0BYMYDboGZ/qoNIahdlmITU2iiSHBUOfNkc6k0EL4Cl6A3vbU4SNLsiZBxPOgr4tkQyRybr9hFSiJsQN/ELswTYzBcu42MEH9LkqOvrYJMxZjsGHmvuMPSYJU6pt8LHSklwIIcQgwn4/tbffQfvbbwOQ8NOfkvCTq7V2gIqi8Pfiv/PIp4/gC/mIt8bz4LwHmZM+ZySnLYQQQgghxKgWCqmfUZnN0plQiMH0XKASCAQkhBfiEJGkQAgh9hD2hdBb1H+IKIrC7sf/R3B358BjPQHtvk6nI+Wm47S25Xuj0+lwzM/Y57gejrnpQx5rP2HoLYVsM1P6PVbf4WVTVRtfVbWy6Y/lbKpuo6Gjf7W8Ua+jIMXB1Awn89Nj+UmGk/xkB2bjEFt+7XgfXrmCaH0AZnwfzloaEYwPJGpi/NCODVgLhhbWA1hzXZDrGtJYy1gnlrHOIR9bCCGEAAi1tVH102vo/PRTMBpJXb6c2PPO1ba3+dq47+P7eK/8PQDmps1lxbwVJEQljNSUhRBCCCGEOKzIWtdCDE7+fAhx6EkIL4Q4aimKQqjNT6Dajb+7ut1f7UZvNZBy43GA+o+TnlDdGG/FlG7HlGbvrnS3Y7BFVpYPJYAfTZrcPjZVt6mhe/fXunZvv3EGvY68JDtT0p1MzXAyJSOW8SkOrKYDvGqy/GN46fsQDsDEc+CsJ/YZwAshhBCHK39VNZVLl+LfuRO9zUbGr57ANqe3un1j/UZu+egWaj21GHVGrptxHZdMugS9Tt4bhRBCCCGEEEIIIQ5Hh1daJIQQB0hRlIir/Vpe30HXpsaISvYeYY+OsD+E3qwGzHHfzldbzR/mbcZbO/1sqm7jq6o2Nnd/rW7tv8a7Tge5iXamZDiZmq4G7hNTY4gyD1ObopqN8NcLINgFuafAeb8DvbRAEkIIcWTq2rSZyquuItTYiDE5mcxnnsZaUABAKBzi2c3P8puNvyGkhMh0ZPLIgkeYnDB5hGcthBBCCCGEOBpddtlltLa28vrrrw86ZtWqVZx44om0tLQQGxt7yOYmhBCHm8M7URJCiAEoYYVgU1dEhXugoYvUW49H173GuOIPqQG8HkxJNkzpdsxpNkwZDkwpNi2Ahz3Wcj9MtHsDbN6jwr2ieeCW+mMTbEzJcHZXuccyKS0Gm+UgvT3Ub4M/nwu+dsieCxc8D0ZZr0sIIcSRqePDD6m+4UaUri4sBQVkPv0UphR1KZjdnt3cUXgHn9R9AsCSsUu4c9ad2M32kZyyEEIIIYQQ4hDZW+Cdk5NDeXl5xGPp6elUVVVp25ctW8ayZcuGdU4rV65EURTt+0WLFjFt2jQef/zxYT3PaFBZWcm9997Lv//9bxobG0lNTeWcc87h7rvvJj4+cknMLVu2cN999/Hhhx/S3t5OVlYW3/nOd7j99tu1tdYh8uem1+tJTk7m9NNP5xe/+AUu176Xwuy5wKFHXFwcxxxzDPfffz9z587VHr/33nu57777+u3/3nvvsXjx4v1+LYQQB4eE8EKII4bnszo8n+0mUONB8Yf6bQ82dGJKsQHgWJCBfXYaphQbOtPh3erV7Quypbotosp9V6NnwLHZ8dG9LeXTY5mUHkOM1TTg2GHXXAp/Pge6miFtOnz3JTBH73M3IYQQ4nDU8uKL1N2/AsJhbHPnkr7ycQx2NWBfXbmaO9feSauvlShjFD+b9TPOGneWrNEnhBBCCCGE0Cxfvpwf/ehH2vcGw8HvJOl0Og/6OfYUCAQwmQ7R55Pddu3axezZs8nPz+fFF19kzJgxbNmyhZtvvpl///vfrF+/nri4OADWr1/P4sWLWbx4MW+//TbJycl88skn3HjjjXzwwQd8+OGHmM29RUY9P7dQKERxcTE//vGPufbaa/nzn/885Plt376dmJgYGhoaWLFiBUuWLKG4uJikpCRtzKRJk3j//fcj9uuZsxBidJAQXghx2FCCYQK7OwnUqGu3B2rcxH1vPMZYKwChNj/+snYAdCY9ptSeCnc7pnQ7xsTeivaeMP5w0+UPUVSrhu09Ve47G9z0uUBVkx4b1b1+u5Op6bFMTo8hNnqEqs7ba+D5s6GjFhInwPdfA2vMyMxFCCGEOIiUcJiGX/6Spt8/C4Dz/PNIvfdedCYT/pCfX37+S/6y9S8ATIibwCMLHiHHmTOCMxZCCCGEEEKMRg6Hg5TuTloH6sYbb6S4uJg333wTgMcff5zrr7+et956iyVLlgBQUFDADTfcwNKlSyOq8y+77DJWr17N6tWrWblyJQClpaXasT///HNuvfVWioqKmDZtGs899xwF3Utv7c29997L66+/zrXXXsuKFSsoKysjFArxn//8hxUrVrB582YMBgOzZ89m5cqVjBs3DoDzzz+ftLQ0fvWrXwGwbNkyVq5cyebNm5k0aRLBYBCXy8Urr7zCqaeeutc5/OQnP8FsNvPuu+8SFaV+ZpyVlcX06dMZN24cP/vZz/jtb3+Loij84Ac/YMKECbz22mvo9WoxV3Z2Nvn5+UyfPp3HHnuMW2+9VTt2359beno6l1xyCS+99NK+f1h9JCUlERsbS0pKCnfeeSd/+9vf2LBhA2eeeaY2xmg0fu3fDyHEwSUhvBBiVPOVt9P52W61rXydB0KRaXOg2q2F8FGT4zG4LJjT7RgTorXW84crbyDE1tp2NnW3k99U3Ubx7g7CAwTuqU5rb4V7RixT0p3E2UZJm3dPEzx/DrSWg2sMXPI6RMtVmUIIIY48YZ+P2ttvp/1f/wYg4dprSLjqKnQ6HaVtpdzy0S1sa94GwPcnfJ/rj70es2GUvF8LIYQQQghxhFAUha5A/y6Zh0KUyTCqOlwtWrSIZ599lnA4jF6vZ/Xq1SQkJLB69WqWLFlCXV0dxcXFLFy4sN++K1eupLi4mMmTJ7N8+XIAEhMTKSsrA+BnP/sZjz76KImJiVx55ZVcccUVrF27dkjz2rFjB3/729949dVXtQp/j8fDDTfcwJQpU/B4PNx9992ce+65bNy4Eb1ez6JFi3jmmWe0Y/R9LpMmTeLTTz/F6/VGtG0fSHNzM//5z3944IEHtAC+R0pKChdddBEvv/wyv/nNb9i4cSNFRUX89a9/1QL4HscccwyLFy/mxRdfjAjh+6quruatt95i1qxZQ3pd9tTZ2clzzz0HcMi7BQghvj4J4YUQIy7sCxGo7a5ur3ZjOyEVS5ZaJR1q9eL5tE4bq7MaMafbMKU7MKfbMGf1VlObkm2Ykg/PCnd/MMz2ug6+qm5VK9yr1MA9OEDinuiwMDW9u8I9w8nkdCdJDusIzHoIvG3wwrnQuB0caXDJP8EhV2gKIYQ48oRaW6n86U/p+uxzMBpJXXE/seecg6IovL7jdR7c8CBdwS5cFhf3z72fhZn9P+QSQgghhBBCfH1dgRAT7/7PiJy7aPmpRJuHJ3a59dZbufPOO7XvH3zwQa699tr9OsaCBQvo6Ojgiy++YMaMGaxZs4abbrqJ1157DYAPP/yQ5ORkxo8f329fp9OJ2WwmOjp6wIrrBx54QAvvb7vtNpYsWYLX68Vq3ffnlH6/nz//+c8kJiZqj51//vkRY5599lmSkpIoKipi8uTJLFq0iOuuu47GxkYMBgNbtmzhnnvuYdWqVVx99dWsWrWKY489Fnv3MmCDKSkpQVEUJkyYMOD2CRMm0NLSQkNDA8XFxdpjg40tLCyMeKzn5xYKhfB6vcyaNYtf/vKX+3xN+srIyADUEF5RFI499lhOPvnkiDGbNm2KeK4TJ07kk08+2a/zCCEOLgnhhRCHXKjNR+eXDWp1e7WbYGMX9MmaTSk2LYQ3Z8fgWJSptpVPt2NwWUbV1aQHIhAKU7y7Q2snv7m6jW21HfhD4X5j42xmpmY4u0N3tcI9OeYweQ38nfDXC6H2S4hOUAN4V/ZIz0oIIYQYdv6qKip/9GP8paXo7XYyfvUEttmzcfvd3L/+fv5V+i8Ajk85nofmP0RSdNI+jiiEEEIIIYQ42t18881cdtll2vcJCQn7fQyn08m0adNYtWoVJpMJvV7P0qVLueeee+jo6GDVqlUDVsEPxdSpU7X7qampANTX15OVlbXPfbOzsyMCeICdO3dy1113sX79ehobGwmH1c9KKyoqmDx5MpMnTyY+Pp7Vq1djMpk45phjOOuss3jiiScAvtZz6UvpXvdzKJ+/KorSb1zPz01RFCorK7njjjtYsmQJH330kVb1vy9r1qzBZrPxxRdfcOutt/LHP/6xXyV8QUEBb7zxhva9xWIZ0rGFEIeOhPBCiIMm5Alo67eb0+1Y81zq4+1+2v5VGjHWEGPGlG7HlGbHMtapPW6MteI8LedQTntYBUNhdjZ4+KqqlU3VaoV7UW07/mD/wN0ZZVLbyfdpK5/mtB4egfuegj54+SKo+BgsTrj4H5CYP9KzEkIIIYZd16ZNVF55FaGmJoypqWQ+/RTW/Hw2N27m5tU3U+WuwqAz8JNpP+GKyVdg0A/tQxchhBBCCCHEgYkyGShavvc1wQ/muYdLQkICubm5X/s4ixYtYtWqVZjNZhYuXIjL5WLSpEmsXbuWVatWsWzZsgM6bt9QuOfzy57gfF9stv7dTM8880wyMzP53e9+R1paGuFwmMmTJ+P3+7VzLFiwQHsuixYtYvLkyYRCITZt2sS6deuG9Fxyc3PR6XQUFRVxzjnn9Nu+bds2XC4XCQkJ5Oern2f2rHs/0Ni8vLyIx/r+3PLy8nj88ceZPXs2H374IYsXL97n/ADGjBlDbGws+fn5eL1ezj33XDZv3hwRtJvN5mH5/RBCHDwSwgshhoUSCOPd2UqgurutfI2bUKtP226blaKF8KYUG1GT4zGl2dUK9zQ7BseRsx6qoii8v7WeZwt38WVl24BrUDksRqZkdLeUT1cr3DPjog7PwH1PoSC8+gPY+QGYouGiv0Pq1H3vJ4QQQhxmOj74gOobb0Lp6sIyYQKZTz2FISmB5zY/xxP/e4KgEiTNlsbDCx5mWtK0kZ6uEEIIIYQQRwWdTjdsLeGPBD3rwhuNRi0EXrhwIS+99NKg68H3MJvNhEL9P9scbk1NTWzdupWnn36a+fPnA/Rr8w5o68KbzWaWL1+OTqdj/vz5/OIXv6Crq2uf68EDxMfHc8opp/Cb3/yG66+/PmJd+Lq6Ov7yl79wySWXoNPpmDZtGuPHj+exxx7jO9/5TsS68F9++SXvv/8+Dz300F7P11P93tXVNaTXYk8XX3wxy5cv1+YrhDh8yDuREGK/KIpCqM1PoLoDncmANV8N1pVAiKY/buk33pgQhSnNhjmnt7pdZ9IT//2Jh2zOh4qiKHy4vZ7H3ithU3Wb9rjNbGBSurPPOu6xZMdFo9cfAYH7nsJheOOnsPVNMJjhO3+FrFkjPSshhBBi2DX/5S/sfuBBCIexzZ9P+mOP0WLo4s73r2ZtzVoATsk+hXvn3EuMOWaEZyuEEEIIIYQYjdra2ti4cWPEY3FxccN6jp514d98801WrFgBqGH2+eefT2JiIhMnDv45bU5ODhs2bKCsrAy73T7sc+vhcrmIj4/nmWeeITU1lYqKCm677bZ+43rWhTcajVpYv2jRIm688UZmzJhBTMzQ/u/15JNPMmfOHE499VRWrFjBmDFj2LJlCzfffDPp6ek88MADgHpBx+9//3u+8Y1vcP7553P77beTkpLChg0buPHGG5k9e3a/6vuOjg7q6uq0dvS33HILCQkJzJkz54BeG71ez7Jly1ixYgVLly4lOjr6gI4jhDj0JIQXQgxKURRCzV6tsr3na9gTBMCSG6uF8PpoE5a8WAx2M6Y0O+Z0G6Y0O3rrkf/XjKIorC5u4LH3S/iyshWAaLOBS+fkcN70dMYm2jEciYH7nhQF/n0LfPki6Azw7T/CuBNHelZCCCHEkCmhEKH2dsJtbYT63lr7ft9KcHc9nRs2ABD77W+RcvfdfFz/KbcX3k6ztxmrwcqtx9/K+XnnHxldboQQQgghhBAHxapVq5g+fXrEY5deeumwnsPpdDJ9+nQqKiq0wH3+/PmEw+F9rqF+0003cemllzJx4kS6urooLS3d6/gDpdfreemll7j22muZPHkyBQUFPPHEEyxatChi3OTJk0lISCA7O1sL3BcuXEgoFNqv9eDz8vL47LPPuPfee7nwwgtpamoiJSWFc845h3vuuSfiYoO5c+eyfv167rvvPs444wza29vJysri0ksv5fbbb++3Fvvdd9/N3XffDUBiYiIzZ87kvffeIz4+/gBfHbjiiiu45557ePLJJ7nlllsO+DhCiENLpyiKMtKTGG3a29txOp20tbUN+copIQ53Slgh2NRF2B3AMkatWlcUhdr71xPuDEYO1uswJUdjGesk9sxxIzDb0UFRFAp3NPLYe8X8r6IVUNd9umRONj+eP5Z4u2XvBzjS/Hc5rHkU0MF5z8DUC0Z6RkcEeU8afvKaCnHkC/v9ewnSWwm1tanbWyPHhDs69us8icuWEfPDy3ly45M8t+U5AHJjc/nFwl8wLvbo/TeSGDp5Txpe8noKIYQYLeQ9afjt7TX1er2UlpYyZswYrFbrCM1QiNFN/pwIMXyG+j5/5JeoCiH6UUIKwYZOtbK92o2/xk2gxoPiD2GItZB62/GA2m7HnBVDyO3H3LN+e7odU7INnUm/j7Mc2dbtVMP3T8taALAY9Vx8QjZLF44j0XGUhe8Aa37ZHcADSx6VAF4cFToDnVz7wbUUxBUwPm48BXEFjHGOwaQ3jfTUhDgiKIqC0tW19xB9gCA91N6O0tn5tc6tt9sxxMSgj3VicDoxOGO7v3bfYp1Y8gtozHZyzTuXsrlpMwAXFlzITcfdhNUoH2gIIYQQQgghhBBCHM0khD8EthauonLLV1hsdqw2O5ZoGxa7HWu0DYvNTmLOGEzmozC0E4eEEgwTbOrClGzTHmv43Vf4y9r7jdWZ9BhizCiBsBayx186Udqo9rFhVxOPvV/M+l3NAJiNei6alcVVC8eRFHOUfuD+ye/gv/ep909ZDjN/MLLzEeIQKW4pZkPdBjbUbdAeM+lN5MbmaqH8+LjxFLgKsJvtIzhTIUaWEg4TdruHXI2uBulthFvbUAKBAz+xXo8hJgaD04m+b4DeJ0iP3BarPuZwoDPt+2Kat3e9zf1v3Y8n4MFhdrB8znIWZy8+8PkKIYQQQgghxH76y1/+wtKlSwfclp2dzZYtWw7xjGDSpEmUl5cPuO3pp5/moosuOqjn79t2fyBFRUVkZWUd1DkM5vTTT2fNmjUDbrvjjju44447DvGMhBAHk4Twh0D1ti1s+uDdQbdfsfIZXClpAKz7+1/Z9N93sNjs3aG9rTe8t9mY9o0l2GLVNbjbGxvwuju6t9kxR0VJWHqUUwIh/LUedf32KnX99sDuTlAU0u+bg85kAMCUHE2g1tO9dnt3hXuaDWNiNLo91i6X3ynVZ2XNPPZ+MWt3NAFgNuj5zvGZXL0olxTnURq+A3z5EvzrJvX+/Jtg7nUjOx8hDqEMRwb3zbmPbc3b2N68ne0t2/EEPGxt3srW5q0RYzMdmVog3xPQJ0cny9+x4rCiBIOE2tu7Q/N9VKP33dbeDuHwgZ/YZFLD8ZiBg/SIEL1vuG63o9MPT+ceT8DDztadlLSUsKN1B0VNRfyv/n8AzEiawf/N/z9S7anDci4hhBBCCCGEGKqzzjqLWbNmDbjNNISLiw+Gf/3rXwQGuaA6OTn5oJ8/LS2NjRs37nX7SPn9739PV1fXgNv6rkMvhDgySAh/COQedwI2Vxw+jwevx43P48HncePtVL9a7Q5tbGdbK+6WZtwtzQMea+KCk7ChhvBfvvcvPnn979o2nU6PxWbTAvszrrmZuLR0ACqLNlGzfasW7PcE99r3Dgd6veEgvgpiuIV9QXQmgxaat/6rFHdhFQzwGbcuykiwxYcpKRoA5xljiT07t1/gLvr7X0ULj71XzJqSRgBMBh0XHJfJT07MJS02aoRnN8K2vgmvX63eP34pnHTnyM5nFFEUBV9xMebsbPSyxtIRKyEqgfPyztO+Dythqjuq2dayTQvmtzVvY3fnbio7KqnsqOS98ve08bGWWLVa3tVbNZ/jzJF29uKgC/t8WpAesW56vyC9lXBbe2+o7nZ/rfPqoqN7w/PuCvUBq9H7PG5wOtEdwgtNA6EApe2l7GjZQUlrifa12l3db6xep+fHU3/M0qlLMerlv1VCCCGEEEKIQ8/hcOBwOPY98BDKzs4e0fMbjUZyc3NHdA6DSU9PH+kpCCEOIfm06BDImXYsOdOOHdLY2d/6LlNO+oYa1nd68LrVrz6PG6/HQ3RMrDbWYDQS7YzF53ETCgZRlDBedwdedwcA+j6VP2Vf/i8isN/TRQ8+Rsq4PAA2r3qfzR++iyW6f1hvsdkZO/04op3qPAJeL+FwWKrwD7JwV1Bdv73GrX0NNnaRfP2xWrBusJsgDHq7Sa1u76lyT7NjcFkifj56i1xwMRhFUQgFg3xZupvfrNrFf3epf57MujDfyfBx+vg4Yoz1NHxaSY3XS8DnI+DzkpCZzcQFJwEQCgZ59cG7Cfp86I1GTBYLJosVo8WCyWwhMXsM005dop2z6KMP0On16naLFZPZgslqxWi2YImO1rpfjCo7P4BXrgAlBNMugtP+D47yvwOCLS141q7DU1iIZ+1agg0NZP7uGezz54/01MQhotfpyYzJJDMmk1OyT9Eeb/G2sL1luxbKb2veRmlbKa2+VjbUbmBDbW87e7PeTK4rN6JqPt+VL+3sRT+KohD2dBLurkgfOEhvJaxVrvfeFK/3a51b3xOg94Tpe6lG77npnU70ZvMwPfuvr+eimZLWEq26fUfrDsrayggqwQH3SYxKJDc2l1xXLnmxeUxLmsYY55hDPHMhhBBCCCGEEEIIcTiQEH6UscW6hhy4zfn2Rcz59kUoikIw4MfnjgzubX3alySPzWXSosX9qvB9Hg++Tg8WW+964S211VRvKxr0vBc9+JgWwn/xn7dY89c/9qvCt9jUNe/nXPB94jMyAWiqqqShfNcAwb4Ng1Gq/nooiqIF5p1fNtD2nzJCzQN/WB7Y7dFC+Ohjk4k+JhF9jPmIvyAiFAwS8HnVm9eHOSoKu0v9fQ94vZR8+jHB7nA84O0e5/MR8PnImDCJSQtPBqDL3cHf77tdC9J7xindLXN19gIMySdz3vR0rpqbyT+uv4R1Hw08p7zj52ghvN5goLJoEyjKgGPHTD8uIoR/73e/Juj3DTg2ffwkvnPfw9r3z173IwJerxboa+G+xUJ8ZjYLvneZNvZ//36DUCDQZ4wVk8WC0WwhyuEgMbs3OAj4vBhMpqF1xKhYDy9dBCE/TDwbznwChqnd7+FECQTo+vJL3IWFeArX4t2yJeJnrrNaCVTXjOAMxWjhsro4IfUETkg9QXvMF/Kxo3WHFsz3bWdf1FREUVPk+7C0sz9yKaEQ4Y6OQYL0npbv7f1avYfa2iA4cFg8JAbDHiF5TGSIPkiQboiJQWc4fC7mUxSFxq7GiKr2HS072Nm2k67gwC0A7SY7ea48cmNzta+5sbm4rKPwojghhBBCCCGEEEIIMSpJCH8E0Ol0ahgXZ8EeFz/gmPxZc8mfNXfAbeFwCB29H+JPXHASyWNz+1Xhq6G9WwvgAfzd65fsWYXfY+bZ39Lu7/rfJ3z0l+cGnIPRYuH82+4jY+JkQK3c37rmw35V+D1Bf2L2GKy2w78qMNTux1/dQaDajb/GQ6DaTew544iaoP4cdUa9FsAb4qyY02zd67er67gb7L0VZQbb6LmQIRwKRQbbXi9Bvw+7K56YxCQAOtvb2Fa4qnfcHmF57swTmLxoMQCtu+t4+Z5btLHhUCjifDNOP4sTL/sxAL5OD/9+8tG9zE7RQniDwUBDRdmgI7Njzfz3hoXkJNhQwmGScsZpgXdPoG2yWDFZLSRmj9X20+l0fPO6WzEYjYRDQe05BbufX2xySu9sFIXsqdO05x/0+Qj4e8b7sERHR8zJ09pKwDtwaOD1eCK+/+Sfr+AZZGmLxKwcLvn5k9r3f771OlpqqzGYTJGhvdlCbEoqZ15/mzqwZiPrH/0JXf4UTHFZGPWnYXrn7e7XwoLFbmfs9JnacdsbGwAwWdVjGUymwzo09FdV4SksxF1YSOf6Df1aM1vy87HNm4d93lyijj0WvcUyQjMVo53FYGFS/CQmxU/SHpN29oc3xe9X10vfzyA93N4+6EVbQ6EzmzHExkYG5XusmR65LVatXLfZDuu/jwfS7m/X1m3vW93e6msdcLxZb2Zc7LiI6vY8V55c4CKEEEIIIYQQQgghvjYJ4UW/ytf49Ezi0zOHtO/cC7/PrPMu6FeF7+0O7J1JydpYuyuOzIlT+lXhAwR9Pox9wqqG8lKK1nw46Hm/9bMVZE+dBsDmD99j9Qt/6FeFb7HbsdrsTFq0WHs+ntYW2hvqR7QK31/jpv0/Zfhr3IQ7Av22B6rdWghvGRNDwg8nY06zo48evnkq4bAa9PZpp94TlAd8XuLTs4hNSQWgrX43mz98NyIg7zt26uLTmTj/RADqdpbw0t03ExqkMu+E87/L3AsuAqCrvY0P//S7QecYm9z7u6M3GHAPECbr9HpMFmtERZ45KoqsKdP6hOQ9QbkVk8VKUk5vWG6yWJl19R28+tVu1uxqJ6A3EdIbOWVqJlefMoG8lNiIc1388MohvLqqgtnzhjROp9Nxzs13Dfm4Fz+8svf19/YE9mp4b91j/afxcxbQ1d5GwO/r7gzg037ezuTUiLGB7kr8UCBAKBCAPhfUhILdv6cN2+GF89janEOzPxqaQ7DjrxHHcSQk8uNf915s8+YvH6RuZ0mf56vXLmSwueK45OEntG2FLz1PS22NWq3f5+fX05b/mFPO0MY2VJRpf2/0bd9vsljQD2OFZrizE88nn+ApXItnzRr85eUR2w2xsdjmzME2bx62uXMxJScN27nF0Ufa2Y8uSiBAsLmZUFMTwaYmgo1NhJrVr8GmRkJNzer2tlbCrW2EOzu/1vn0NpsalPeE5jH9g/SIlu89j1mtw/SMDx++kI9drbvY0bojop18naduwPF6nZ4sR1a/6vZMR6as5S6EEEIIIYQQQgghDgr51OkQaF9VSdeXDf03dBfYJFw6CYNTDaDda6vxfFE/wFh1cPx3CjDGRwHg+bQOz6cDfNjYPdZ1Xi6mZLXNfOeX9bg/rh10DrHfHIc5Xf2AvmtLE+611YOOjflGDpbsGAB8O1rp+KhKG2IGzFhx6KKARPQNYejOBcdmziAxKzHikAoK4VCYcCiIwxerPZ6RNJ6zZywjHAoSCoUIh4KEgyFCoSDhYBBLS28FeGC3h2OjTwYFcIMSUZgawh1bp4XwpWs+of0/kSGazqBHbzBiMBpJWjierCXHAVC3uZi2t3ehN6rber4ajEYMJhPRE5NwHKcGmSFPgLa3d+3xeqkvWKjdR/SURGzHp3SfT4d3e4v2mhqTorXKdvVr79IAIWMYX4wfd1MNgRpvnyBVDc3Tx0/ElZoOqBcufPnev/pUoPsiWrLP/vb3GD9nAQDlmzby6oN39/8Zd1t0yQ85dsk5AHham1n/2suDjs2eMl27bzCZIgN4na43DLdaMUdFaZuiHDEUzFkwQFW5Gqb2DcttsS6+/9DjWpDeU6ltMBr7VaqZo6L59p0rBp1vjx31HTz+fglvb2pBUczorAl8c2oa152cS26SY5/7jxRXStqQxy665IdDHnvFY0/1+Z3xdYf8XgJ+HwajEVrK4PlzoLOJY3LG4ck7i0BYIeD1aRdkBHw+omOcEcfV6dU/X+GQ+nuhKGEC3i4C3q5+YXnF5i+pLdk+4Pws0baIEH71n5+l/KsvBhxrNFu49vlXtN+N1S/8gZrtWyOCejXoV3/n5nz7IvU5AtXbimgt2kKwuJjAliJC27ah9wcwhBUM4TAmg4HoadOwz5uLbd48rBMnHlZtmcXhaajt7Lc1b6Mz2Cnt7Pci3NnZHag3EmpujgzUm5p6A/emJsJtbft/Ap0OQ0xMd5Dep61797rpgwXphpgYdCbpYLCnUDhEZUdlRCv5kpYSKjoqCCvhAfdJjk4mz5VHXmyeVt0+xjkGq/Hou1hBCCGEEEIIIYQQQowcCeEPgVCbj0CtZ9DtSqi3BWmw3U+gyj342EDvB46hNh/+io5Bx4Z9oT5j/fjL2gcf6+0NTkMdPny7Bv/gOdzZW70davfjK2kddGzo2N5q5lCHvzd8HsixvfONdaUSamkGBmjlbAC7KVb7NnfqCbRtLOk/rptZ6Q21DWEjWfYJg44Nt/S+Do07S4ltsfXZqgABwgQI00Wjr10L4Ss3bsT4v4HXbQcIGYNaCL+7YReVMbvoUJppDzTia+gkUNUbrp/y45+SN3M2ADs/28DbKx8Z9LinXnmdFsK7m5v48r1/Dzq2s61Vu9+360DvWuG9lcdRjhhtuz0unmmnLokYY+wTrCdkZmtj49LS+dGv/6CN3Vvr8WhnLN+87pZB59uXwWgkeWzukMbuy84GN0/8t4Q3vqzRuv+eMSWF607OpyBl9IbvB1vPz2xA7bXw3GnQUQOJ45lx+csQHTek435vhbo0QCgYJOj397bc93lR9mi/PPPsb+Fuauxt3+/v7bqgN0a+XUXHOIlJTI64WKDnB6rT6yN+7xoryqgp3jroHE84ZQnuj9fjKSxk9db/URvVe5EPYyM7Blz95B+I6l5SYdXzv6Pk6ce1an2Ttbsq32JFZzBx8hVLiXIcvb9T4uAarJ19VUeVVi2/vUUN5us76wdsZ++yuLQ29j1t7XOcOYdVZbASDqtt3bsD9VBTI8Gm5ohgve99pWvg5TwGZTBgjIvDkJCAMS4OY0I8hvgEjPFxGOLjMcbHR7aCdzjQ6fUH58kewRRFYXfn7ogW8iUtJexq24Uv5BtwH6fFqQbt3ZXtea48xsWOI8YcM+B4IYQQQgghhBD7dtlll9Ha2srrr78+6JhVq1Zx4okn0tLSQmxs7CGbmxBCHG4On09ZD2P22Wlae3FNn/BJb++tfLIdm4xljHPQsYbY3vA06phETGnd7WW1Ib1jTQm9VcfWCXEY46x7HK7P2OTedaetuS7ivjs+ckyfrMyc1tvS1pITQ9yFBXtMoXewObM3gDKnO3B9O3/Q+Zpzep+3KdmG67y87hH959BTiQ8QneFCd05PQDvAfLN6x+afPJ+uxEYAwuEwoUBAC/uCPh+xU7K0sbHZqewu2UrQ7++++Xq/+vxMyjldG9vR0UR58yeA1jBA4w/7mJLWW8Hb0dbMui//zmD8fdrZmq1RGE1mjNY+leJ9wnJbrEsb60rLYPa3vhu5nnefsT1hPUBa3niuff4VjGbLPqsgYxKSOPmKq/Y6pofBaCImYXS24y5r9PDEf0t4fWM14e7fj1MnJbNscT4TUuUD+0F5muDP56iV8K4cuPj1IQfwffV0kdhzjfu+ei4+GYozrrkp4ntFUQgG/AR9PoIBf8S2ORdcxNSTT9Pa8vs7PXSVl9G5qxRfVSU75i/Q/t6ypbhwYUOx2wlbrYSNBgLBIEG/j1AggCW+9+9yd3Mz7Q27B53j5JO+S84UCeHFoaPX6cmKySIrJotv5HxDe7zZ28z25u529i1q1XxpWyktvhbW165nfe16baxZbybPldcbzHe3s7eZbAOd8qBQ28C39G/93tQ3ZO+uWm9uhkGWQBmMzmpVw/OEeIx9A/W4+H4hu8HplFB9mLX52tQ12/tUt+9o2UFHYOALS60GK+Nix/W2ku9etz0hKuGo6+QghBBCCCGEOLLsLfDOycmhfI9lEdPT06mqqtK2L1u2jGXLlg3rnFauXBlROLNo0SKmTZvG448/PqznGWmXXXYZf/rTnwAwGAykpaWxZMkSHnzwQVyu3s/c9/VzEEKIvZEQ/hAwJUVjSho8eDrgsYnRmBKHf6wxIQpjnwB/r2Pjo7T2+PscG2fVLgTY59hYC8buyvF9McRYsJ+Quu+BgMFuxj5naO28M6ZNJWPa1AG37VnBmzPzOGxJ8Xg9bnwed/dXD16PG0sohC0nQRubMjaXky5fOkBQrn51JPS27B87YybXvfDakOYbm5zCnG9fNKSxeoNhWNfNHs0qmjr51QclvPZFNaHu9H3xhCSWLc5ncrpzH3sf5bxt8MJ50LANHGlwyT8hZmh/1g41nU6nVqGb+3fPSM0twG+pxFNYiLtwLZ3r12PzRHYnsYwfj33eXBbPm0fUjBnozeZ+xwmHQuj1vX9ujv3m9xgz/RQc8UYCPi++zi4+eH4ToYAfCNBU7SdnyrA/VSH2W5w1jtlps5md1nuhizfoZWfrzoiq+e3N2+kMdrKlaQtbmrZEHCPLkaWF8j1t7ZOik4Ycgoa7utTgvLGRYHPz4O3gGxsJHUAbeL3TqVaqx8drVev9Qvbum9526C4oOJp1BbvY1bqL4pbiiOr2hq4BlmgCDDoDOTE5Wgv5XFcu+bH5pDvS0evkQgghhBBCCCHE0Wf58uX86Ec/0r43HILPc53OQ/95aSAQwDQCS7SddtppPPfccwSDQYqKirjiiitobW3lxRdfjBg3Ej8HIcSRQUJ4IQ7AnqGDIz4BR3zCIKMjuVLTI6rSxcFR1dLJkx/s4JXPqwh2h+8nFiSybHE+x2TGjuzkDgf+Tvjrd6B2I0THqwG8K2ekZzVkYY8Hz4ZP1OB9bSGB8oqI7QaXC9vcudjmzcU+dy7GxMRBjtRLCeuoLGmmYkszlUVNNFV7cKVE8717Z2hjujzZRNnNZE6MwzHEi46EGAlWo5VJCZOYlDC0dvYVHRVUdFT0trNXFNLDsUw1ZTOBVHLCLtJ8NmI7FcLNrf3WV1f6dHkZEoMBQ5xLDdF7AvUBKtWNCQkYXS50A1w4Iw6NQDhARXuFtl77jhY1cK/sqOztZrSHdHu61kY+NzaX3NhcxjjHYDbIz1EIIYQQQgghejgcDlJShlaoNpgbb7yR4uJi3nzzTQAef/xxrr/+et566y2WLFkCQEFBATfccANLly6NqM6/7LLLWL16NatXr2blypUAlJaWasf+/PPPufXWWykqKmLatGk899xzFBQU7HNO9957L6+//jrXXnstK1asoKysjFAoxH/+8x9WrFjB5s2bMRgMzJ49m5UrVzJu3DgAzj//fNLS0vjVr34FwLJly1i5ciWbN29m0qRJBINBXC4Xr7zyCqeeeuo+52GxWLTXNyMjgwsvvJA//vGP/cYNx89BCHF0khBeCHFEqWnt4skPd/D3zyoJhNQP/xfkJ3L94jymZ7n2sbcAIOiDl78PFevA4oSL/wGJ+SM9q71SwmF827bhLlyLp7CQzi++gECgd4DRSPS0adjmzcM2bx7WiROG3GJ6+/paSj6rp7q4haA/3LtBByaLgYAvhMmiXgF77Gk5w/ishDi0dKEwqV4rSd4s5nTaCLmzCXYch3t3Fa115XTuriHU3Iyx1YPNHcIYbgKatP3DQPPejm+xDKlS3ZCQIG3gR6GwEqbWU6u1kO9Zv720rZRAODDgPnHWOK19fG5sLrkuNXA/lMsbCCGEEEIIIY5CigKB/bwYfLiYomEULZ21aNEinn32WcLhMHq9ntWrV5OQkMDq1atZsmQJdXV1FBcXs3Dhwn77rly5kuLiYiZPnszy5csBSExMpKysDICf/exnPProoyQmJnLllVdyxRVXsHbt2iHNa8eOHfztb3/j1Vdf1SrLPR4PN9xwA1OmTMHj8XD33Xdz7rnnsnHjRvR6PYsWLeKZZ57RjtH3uUyaNIlPP/0Ur9fL3Llz9/t12rVrF++8886IVOQLIY5cEsILIY4IdW1efrNqBy99Uok/pAal83ITuP6UPI7N3v81zI9aoSC8+kPY+V/1Pw0X/Q1SjxnpWQ0o2NSEZ+1a3IWFeNauI9TUFLHdlJmpVrrPm0f0rFkY7PZ9HtPfFaS6uIXsKQno9ep/mKqLWynfrB47OsZM1sQ4sibFkzHBRZRdqjbF6Bb2egk2Nu1jfXX1sVBrq/pBxQDM3bc9hWxWOh0mWqIVdpu9NEeHaLXpaI+GVhu02XS0RUNMSiY5KeMZHz/hgNrZi0OrqaspooV8z7rtncGBP8SKNkZrbeT7VrfHR8Uf4pkLIYQQQgghBGoA/+DQliQddnfUgHl4Ljy+9dZbufPOO7XvH3zwQa699tr9OsaCBQvo6Ojgiy++YMaMGaxZs4abbrqJ115Tl0D98MMPSU5OZvz48f32dTqdmM1moqOjB6wEf+CBB7Tw/rbbbmPJkiV4vV6s1n13h/T7/fz5z38msU93yvPPPz9izLPPPktSUhJFRUVMnjyZRYsWcd1119HY2IjBYGDLli3cc889rFq1iquvvppVq1Zx7LHHYh/CZ4AAb731Fna7nVAohNfrBeCXv/xlv3HD8XMQQhydJIQXQhzW6tu9/GbVTv76SQX+oBq+nzA2jusX5zNrrHz4v1/CYXjzWtj6BhjM8J2/QNYJIz0rjeL30/nFRq3FvK9oa8R2XXQ0tlmztODdnJ2972OGFRqr3JRvaaKyqJm6nW2Ewwrfuu04knNiACg4IYXY5GiyJsURn26X0FCMKEVRCHd0qMH6HiG62vo9cn318P62gdfrMcTFqeur97R+30s7eH2fNvADtbMv725nv9tfRUlFFe9VvK+Nd1lc2jrzBXEFjHeNJ8eZg1Ev/zw9VDwBjxq2d1e393xt9g7c08CoNzLWOVZrJd+zdnuqLVXWbRdCCCGEEEKIYXbzzTdz2WWXad8nJAxtOdS+nE4n06ZNY9WqVZhMJvR6PUuXLuWee+6ho6ODVatWDVgFPxRTp07V7qempgJQX19PVlbWPvfNzs6OCOABdu7cyV133cX69etpbGwkHFY/662oqGDy5MlMnjyZ+Ph4Vq9ejclk4phjjuGss87iiSeeANjv53LiiSfy29/+ls7OTn7/+99TXFzMNddc02/ccPwchBBHJ/mUUwhxWGro8PHU6p28sL4cX3f4fnxOHMtOyWPOOPmH0H5TFHjnNtj4F9AZ4FvPwbiTRnpW+MvL1Ur3wrV0btjQL1C0TJiAvbvFfPT0aUNeF7qhooON71dQubWZro7INsrOxCi87t7H0vNdpOfLUgbi4FGCQUItLQSbmwk2NhJqbh40ZA81NaEEBm79PRid2dwbosfHD76+enw8hthYdN1t4PaXXqcnKyaLrJgsvpHzDe3xZm8z25u3s715O9tatrG9eTulbaW0+FpYX7ue9bXrtbEWg4W82DwtnB8fN548V560L/+aAqEAu9p2RVS372jdQbW7esDxOnRkOjK1FvI9gXtWTBYmvbTmE0IIIYQQQoxypmi1In2kzj1MEhISyM3N/drHWbRoEatWrcJsNrNw4UJcLheTJk1i7dq1rFq1imXLlh3Qcfu2bu8pWukJzvfFZuv///wzzzyTzMxMfve735GWlkY4HGby5Mn4/X7tHAsWLNCey6JFi5g8eTKhUIhNmzaxbt26/XouNptNe32feOIJTjzxRO677z7uv//+iHHD9XMQQhx9JIQXQhxWmtw+nvloF3/6uAxvQP1H3YysWG44pYC5ufFSpXygPlgBnzyt3j/ntzDhmyMyjZDbQ+eG9VrwHqisjNhuiIvDNncu9nlzsc2di3EIV56GQmF272rDajMTl6b+Az/gC1H8yW5AXdc9vcBF9qQ4MifG40yMGv4nJo46YZ+PUGNjb7De1DRAoK6G7KGWlkHbwA9Gb7f3X19dC9Yj11fX22wj+ndjnDWO2WmzmZ02W3vMG/Sys3VnRNX89ubtdAY72dy0mc1Nm7WxOnRkxWRR4OpTNR83nsSoRPk7fw9hJUx1RzXFrcXsaOkN3MvbywkqwQH3SYxK1FrI94TtY5xjiB7GD46EEEIIIYQQ4pDS6YatJfyRoGddeKPRyOLFiwFYuHAhL7300qDrwfcwm82EQqGDPsempia2bt3K008/zfz58wEoLCzsN65nXXiz2czy5cvR6XTMnz+fX/ziF3R1dR3QevA97rnnHk4//XSuuuoq0tJGaDkDIcQRRUJ4IcRhocXj55k1u/jTujI6/eo//I7JjOWGU/JZkJcgQczXUfg4rPmFen/Jo3DMhYfs1Eo4jLdoK57CQjyFhXRu3AjBPkGR0Uj09OnY5s3DNm8u1gkT0On33fK4vbGLiqJmKrY0UbW9hYA3xOSF6Sz8bgEAyWNjOPb0bDInxJEy1onBOHxtlDsDnZS0lrC9eTsLMhaQYuu/ZpY4MgRqamh99bXuYD0yZA+73ft3MJ0Og8u1z0p1Y7wasustloPzpA4Rq9HKpIRJTEqYpD02UDv7bd3t7MvbyylvL+fd8ne18XHWuH7BfHZM9lHRzl5RFBq7GilpLdGq2ktaStjVtouuYNeA+zhMjt712rvXb8+NzSXWGntoJy+EEEIIIYQQQtPW1sbGjRsjHouLixvWc/SsC//mm2+yYsUKQA2zzz//fBITE5k4ceKg++bk5LBhwwbKysqw2+3DPrceLpeL+Ph4nnnmGVJTU6moqOC2227rN65nXXij0aiF9YsWLeLGG29kxowZxMTEHPAcFi1axKRJk3jwwQd58sknD/g4QgjR48j/lFIIcVhr7fTz+zWlPLe2FE93+D4l3ckNp+SzqECqIL+2T5+F9+9R7y++D2b+8KCfMtjYiGftWtyFa/GsXUuoOXLtYVNWllrpPm8e0cfPwmAf2pXLoUCYta/toLKomdbdkW3rrXYTJktvi22DQc8JZ4/7Ws9DURRqPbVqm+2W7RS3FLO9eTuVHZUoqFXN/zf//1gydsnXOo8YvYItLTT++teDbteZTPuuVO8J2V2uA24Df6QYrJ19U1eTVim/rbm7nX17Kc3eZj6u/ZiPaz/Wxg7Uzj7flX9YV3W3+9vZ2bqTkpY+gXtrCW2+tgHHWwwWxjrHRlS358bmkhydLO+ZQgghhBBCCDHKrFq1iunTp0c8dumllw7rOZxOJ9OnT6eiokIL3OfPn084HN7nGuo33XQTl156KRMnTqSrq4vS0tJhnVsPvV7PSy+9xLXXXsvkyZMpKCjgiSeeYNGiRRHjJk+eTEJCAtnZ2VrgvnDhQkKh0AGvbd/XDTfcwOWXX86tt95KZmbm1z6eEOLoplOU/ex/ehRob2/H6XTS1tb2ta6cEke3kNtD09NP4yvdhTkrG3NONuacHMw5ORgTJTzel7auAH8oLOUPhaV0+NTK6ImpMVx/Sj6LJyTJ6zccvnwZ/rEUUGD+jXDy3QflNIrfT+f/vsCzthB34Vp8W7dGbNdHRxN9wgnY5s3FPm8e5qysfR9TUWiu8dDW0MXYaYnaYy/c9THtjV70eh3JY2PImhRP1sQ4EjMd6PQH/jvjDXrZ0bpDC9y3N2+npKWEjkDHgOMToxLJd+Vz0YSLmJ8x/4DPC/KedDAM12sabGmhYeVKjHF7Vq+rAbve4ZC/qw6Snj+TWtV895/NgarAD5d29r6Qj12tu7Sq9p4q992duwccr9fpyXJkaS3ke6rbMx2ZGPRH9wUdQhxO5H1+eMnrKYQQYrSQ96Tht7fX1Ov1UlpaypgxY7BarSM0QyFGN/lzIsTwGer7vFTCC3EQeNato/bOuwjU1Ay4XW+zaYG8OScH85gx3fezMdjth3i2o0uHN8Bza8v4/ZpdtHvV8H18ioNli/M5dZJU8Q2bbW/D61cBChz/YzjprmE7tKIoBMrL1Ur3wkI8n3yC0rlHZfrEiVqL+ehp09CZzfs8rtcdoHJbMxVFzVRuacLT5sdsNZD96HwMBj06nY5ZZ4/FaDKQUeDCHLX/b3GKorC7c7dW1d4TuFd0VBBWwv3GG/VGxjnHke/KpyCuQPsaZz04rbnE6GJ0uUi9996RnsZRyWq0MjlhMpMTJmuPhZUwlR2VWijf87W+a3S1sw+Gg1R2VGphe8/Xwf6eAUixpUSs2Z7nUtdttxgO72UJhBBCCCGEEEIIIYQ4UkkIL8R+CIcVQsEwoUAYg1GvtbcO+EM0VbsJtHto+uvLdBSuI6xPRjd+MrHzTsDuqcZYVYy/rIxAdTVhjwfvli14t2zpdw5DYgKWnDF9AvoczDljMGekDymoPFy5fUH+tK6MZz7aRVtXAIC8JDvXn5LPaZNS0H+NKmaxh50fwt8vAyUEx3wPTnsYvubFDSG3m87163EXFuIpXEugqipiuyEhAfvcOWrwPmcOxvj4IR9767oatqypYXdZO/Tp3WI06UkZ58TrDmBzqkFU/syhr7/uC/nY2bqT7c3dreS7W8oP1uK5J7DrCdvzXfmMdY7FZDAN+ZxCiINHr9OTHZNNdkw2p+acqj0+Uu3sey7q6alq39Gygx2tO9jZuhN/2D/gPk6LUwvZ+7aSd5gd+/+CCCGEEEIIIYQ44v3lL39h6dKlA27Lzs5mywCfPx9skyZNory8fMBtTz/9NBdddNFBPX/ftvsDKSoqImsInTiFEOLrkhBejHqK0h18BxVCgTChYBhLtBGzVf319boDNFR1aNvUkLw3LE8viCUhQ/3wuqXOw6YPqwjuOa577OQF6eTNTAagoaKDt3/9ZfdYhXAgTDjcmwDOOmsMx50xBoC2+k5effjz7i3HwJRjep/ADpi0YAaL7ikAwOfuYsu/thETasLWVoFStQt/aRn+sjJCTU2EGhrpbGik89NPI18IgwFTRjrmnBw1pB/TW0lvTD58K8Q7/UGe/7icp1fvpKVTDd/HJdq4bnE+S6akYpDwfXhVbICXvgchP0w4C876Fej1+30YJRzGu6Wou8V8IV0bv4RgsHeAyUT0jBlai3lLQQG6IZzH3eKloqiZcdMTsUSbuh/zsbu0HYC4NBuZE+PInhhPap4To2nfLZcVRaGhqyGiur24uZiy9jJCSqjfeKPOSI4zh4K4AgpcvdXtCVEJQ3x1hBCjSXxUPHOi5jAnbY722N7a2W9u2szmps3aWB06smOytWC+p3o+ISpBe+9t9baqQXuf6vYdLTsGXbIiyhjFOOc4LWTPdeWS78on3hp/2L6fCyGEEEIIIYQ49M466yxmzZo14DaTaWQKR/71r38RCAQG3JacnHzQz5+WlsbGjRv3ul0IIQ4FCeHFgBRFUau+A33D6hChgII9zqIF4O1NXTRWuiOC7L7hdu6xScQmq9VjtTvbKFpTrYbaAwTms88ZR+ZEtYXzro0NvP/HIkLBMOGg0m9+J10ygQlzUgGoK23j7V9/NehzmX9hvhbCd7b72bS6etCxWZN6W0grioKnbeBKNYBQ97xC7e00/+oJrN4C9OEAeoMea3oKplgHBqMerydAUlZvBVtrY4CPP2gB9EAOdlcB8bPtxH/LhivOQLypDXNTJf7SUvxlZfjKyvCXlaN0dhIoryBQXoFn9UcRc9FFRWnt7M05OVjG9FbSG0bpulNd/hAvrC/nqdU7afKor/OYBBvXnZzHmcekSfh+MNR+CX/5NgQ6YdzJcP7vwTD0t4FAfT2etevUFvPr1hFqaYnYbs7O1lrM244/Hr3Nts9jBgMhakpaqShqpmJLMy21HvVYViO5xyYBkHtsErZYC1kT47C79r5eUSAUYGfbzn6Be4uvZcDxsZZYNWiPUyvbC1wFjIsdh9lw5HadEELsfzv7svYyytrL+E/Zf7TxcdY4shxZVLuraehqGPA8PRf19K1qz4vNI92Rjl63/xdACSGEEEIIIYQQfTkcDhyO0dU9LTs7e0TPbzQayc3NHdE5CCEESAg/6kQG371BdbD7fkK6HaNZrfxsqnbTWOXuN7bn/tSTMrUWzTu/qKf4k90DjgsGwpz6w8kkdgfFX/63ksJXSiLaPvd11nXTyJyghtUVW5pZ/dftgz6fuDSbFsK3N3axbX3doGM7OyID74C3f4UqgN6oQ1F6J2e1mYhLs2Ew6jGa9OiNeu2+wajDmRSljXXEWznujBwM3WMM3WPUr3oSMnrXY3el2rjgjpnatt7j69SvBj0dq1ZRd/c9hOrrmaPTEXfJxSRedx366MHb1up0kDMlnsZqN+5mH+4W9Va+uQmAOefnMv3MaQB0NHsp+XQ38ek2nBYvxsYqAuXl+MvKtJDeX1WF0tWFb+tWfFu39jufIS6ue835bC2Yt4wZgykrC/0ItLf3BkL8ZUMFv121k0a3D4Ds+GiuPSmPs6elYTRIKHFQNBTDn88DXxtkzYELXwDj3tcSDvv9dH3+udZi3rc98s+63mYjevYJ2OfNwzZvHuaMjCFPp6nazbrXdlBT3Eow0LsGsk4HSTkxGIy9F2G4Umy4UvoH+o1djRQ3F2ut5Le3bKe0tZSgEuw3Vq/TkxOT0y9wT4pOkqpTIQRwYO3sm73N2rh0e3pEK/lcVy5jYsbIkhVCCCGEEEIIIYQQQhyFJIQ/BDatqqL0q8YBA/BQIMy3b5+JLVYNw9a9soMvP6gc9Fjfu3eWFkbt+Lyez/5VNujYcTOStBC+dXcnu74YuEoLwN/VG1rpDbp+Abxe3xtU92WLtZA8JqZPoB0ZgNtdvSFfYpaD2eeOG2Ccum/fADxjvIuL7juhd6xJj9GoBuB7BmYpY5189+6BW+7sKSY+illnjR3SWJPZoF2YsKdQays1Dz1E2z/fANQK4NSHHiR6xox9HjcpO4YlP1Hb1fs6AzTVeGiudtNU7aGp2h1RNV+7s5WP/7FT+95iMxKflkf8mOkkzLOTOTEOu8OAv6pKa2mv3UpLCTY0EGpupqu5ma7PP4+ciF6PKS2te9353pDekpODMTV1SK3D94c3EOKlTyr4zaqd1Heo4XuGK4prT87j3OnpmCR8P3hayuH5s6GzEVKPge+9BOb+F4ooioK/tAxPYSHutYV0fvIpSldX7wCdDuukSVqL+ahjjkE3hLZWvq4g1dtaMEcbyShwAWCOMlKxRQ2vbE4zWZPiyZwYR+aEOKy2yGMGwgFK20rZ3rydkpYSLQxr8jYNeD6H2aGt3d7TTn5c7Disxr1X0QshxED21s6+sqOSdHs6ubG5B7RuvBBCCCGEEEIIIYQQ4sgkIfwh0FLXSWVR86Dbg4Heim+DqTdg1unoF2735UyKImO8KyLI7lvhbbX3BllZE+OxRBn3qBLvHRuf3ltlWnBCCmOnJ0aM0w3SGnzM1ATGTB3aOslxqTbiUvfdnhrUVtQ9Le9Hm47//pfae+8l1NAIej1xl11G4rXXoLfuf8BniTaRlhtLWm7sgNttMRZyj0uiqcpNa30XPk+QmpJWakpaATj9yik4piViGTOGFuIo92STMG0J8el2YhKjUDo78Zf3hPKRAX3Y4yFQVUWgqgpPYWHEeXUWC+bs3sp5NajvXn/e5dqv5+gLhvjbZ1X8+oMd1LV7AUiPjeKnJ+Vy/owMzEYJ3w+qjjo1gO+ogcTx8P1/gNWpbQ51dOD5+GM8hWvxFBYSqKmJ2N2QmIB9rlrpbpszG2Nc3J5n6EcJKzRUdlCxpZmKoibqdrWjhBWyp8RrIbwjzsqiiwpIGeskLs2mXVzT4m1hY60ashe3qFXuO1t3Egj3X0eqZ53mnjXbewL3FFuKVLcLIQ6qgdrZCyGEEEIIIYQQQgghRI/RmXIeYfJnJZOc40C/R+V3Twhuj+0Nb2cuGcOxp+do7c73ZvwJqYw/IXVIc0jMcgxa1b2n0RyAj6RgSwu7VzxA+9tvA2AeO5a0Bx8gatq0g3bO9AIX6d2hZTAQoqW2k6YaN01Vbpqq3SRk9nYPqCxq5rO3y7TvjSY9cWk24tPtxKdPJffixSR2d0ZQFIVQY2OfNef7hPSVlSg+H77iYnzFxf3mZHA6+1TP9wnos7MjLkTwB8O88nkVv/5wB9WtajV1qtPKT07M5YLjMiV8PxQ6m+H5c6ClFFw5cPHrKNZYvF99pbWY7/rySwj1XgikM5mIOu5YrcW8JT9/yIG2oih88PxWyjY14XVHhuaxydHEp/f+vgbDQaxTvGxo/pLi/xVra7fXd9UPeGy7yU6+Kz8icB8XO04qT4UQQgghhBBCCCGEEEIIMepI0noIpIxxkjLGue+BoK33LkaX9v+8S93y5YSamkCvJ/4HPyDhpz9Bb9n7mtrDyWgy7PViisQsBxPmpNJU7aa5xkMwEKa+vIP68g4AMifEacsT7NrYQN2uduLTM4g/YTwJ59gwmNRQXAkGCdTUaGvOayF9WTnB2lpCbW10ffmlGt7uOce0VEzZOVRFJ/Cu28IWfSwheyIpySlcdVI+F87MxGqS3/FDwtsOL5wHDVsJ6FPxxP0Ez70/x7PuY0KtrRFDzTk52ObPxz5vLtEzZ6KP3newHQqGqdvZRmOVm2NOzgRAp9PR0eTF6w5gshrIHB9H5sQ4XLkmavTlbG/+mH+v/RPbW7azs3UnvpBvwGNnOjK1tdt72sqn2dKkul0IIYQQQgghhBBCCCGEEIcFCeGF2ItgUxN196+g4513ALDk5ZL64INETZkywjPrL2dKAjlT1KUBwmGF9oYumqrdNHaH8s7kKG1s2ZeNbFtfp32v0+uITY4mId1GXLqdqYsysGdlwcKFEecId3bir6iIaGvv666iD7e3E6ypJVhTSzzw3b47mkyY12fR0L3mfN9KekNcnISrwyzc0ULnz8/D8+VOPPUp+Fp0wGPadr3djm32Cdi628ybM9KHdNy2hs7uFvPNVG9vIeBTK+jzZiYTHWMmFA6ReaIVZWaAyqjNvNW2neL6YupK6wY8XpQxSq1s7w7a81355LnysJmGtmyFEEIIIYQQQgghhBBCCCHEaCQhvBADUBSFjn//m7r7VxBqaQGDgfgf/4iEq65CbzaP9PT2Sd8dqscmRzNuRlK/7WOmJWKyGmmqVtva+zqDtNR6aKn1wOf1WmUzwMb3K2ir7yI+XW1tH5edS8z48dr2UFjhjY1VPPuvLwmXl5HubiDX18wcayepbfUEKytQ/H78O3bi37ET955zdTgi1py39FmHfigV2UL9ffXv2oWnsBD3mjV0rl+HElSA7vbvOh3WyZOxzZuLfd48oqZORWcyDfn42z6u5bN/ldHW0BXxuMmmQ5fZyS8+/iXbgl9R0lKCN+Qd8Bjp9vSIVvIFrgLSHenodbIsgRBCCCGEEEIIIYQ4+lx22WX86U9/YunSpTz11FMR266++mp++9vfcumll/LHP/5RGwtgNBqJi4tj6tSpfPe73+Wyyy5Dr+/9jC0nJ4dly5axbNmyfc4hJyeH8vJyAKxWK9nZ2fzgBz/gpptu0gqnysrKGDNmTL99L7roIl544YUDffpCCHHEkxBeiD0EGxqoW76cjvfeB8BSUEDqgw8QNWnSCM9s+IydlsjYaYmAGuB6Wn00VXtoqnbT2e7H1GdZhF1fNFC7sy1if0eclbh0G80mhT+1t7CzsRPQ4crM56yFp3PJ7GyizepfL0ooRKC2Tquc16roy8oI1NQQ7ujAu2kT3k2b+s3TmJwcue58d0hvSk/frxD5SBRqb8fz8Xo8hWtwr11LsKY2YrsxKoxt/gJsp56Dbc4cjC7XPo+pKApN1W4qtjQzdnoisUnRhJUwTV1NtDV0oegVuuIbKXcWsTl6A03RNaBToE+hu9VgJc+VFxG457nycJgHXkZBCCGEEEIIIYQQQoijVWZmJi+99BKPPfYYUVFqJ1Ov18uLL75IVlZWxNjTTjuN5557jlAoxO7du3nnnXe47rrreOWVV3jjjTcwGg8s7lm+fDk/+tGP8Hq9vP/++1x11VXExMSwdOnSiHHvv/8+k/p8Rt4zXyGEEAOTEF6Iboqi0P7WW+xe8QChtjYwGkm48koSfvwjdIdB9fuB0ul02F1W7C4r2ZPj+20/ZnEmqblOLaR3t/joaPbS0eylXRdmp9OHM8rEjxeMpaA6gK7Ux3Z/DQnpduLSbUTHmDFnpKstz+fNjTh22Ovt096+PCKkD7W0ENy9m+Du3XRu2BA5KaMRc2Zmb0DfJ6Q3JiYeke3tlVAI7+bNuAsL8RSupeurryAU0rbrzGais2zY7GXY0sJYrnoBXd7ifR63y+2ncmtzd5v5JrraAwC8X/k+X6Z9QElLCUqXnpSCMVTHlBAw9q7jnmpLJd+VHxG4ZzoyMegNg51OCCGEEEIIIYQQQgjRbcaMGezatYvXXnuNiy66CIDXXnuNzMxMxo4dGzHWYrGQkpICQHp6OjNmzOCEE07g5JNP5o9//CM//OEPD2gODodDO+4Pf/hDfvvb3/Luu+/2C+Hj4+O1cUIIIfZNQnghgMDueuruvRf3hx8CYJk4gbQHH8Tap+360Wrc9CTGTU8iHFZ4t6iOV/5TTEttJ4khHVajgRtPyeeyuTk4rCb+cPMaujoCEftHOUzEpdlJy3Vy/JmR/3DUW61Y8/Ox5uf3O2+otRV/WZm65nzfkL68HMXrVe+XlvbbTx8d3SeYHxMR0hvs9uF9cQ6yQF0dnrVrcRcW0rnuY/XikD7MY8eqLebnziW69Q30X/wedAa44E+wlwBeURSKy0opfL4Uby1A70ULAb2PmpgdFHWso7xhMwAWqwVbisI3XWdoa7fnu/JxWpwH42kLIYQQQgghhBBCCHHAFEWhK9i174EHQZQxar8LhC6//HKee+45LYT/wx/+wBVXXMGqVav2ue9JJ53EMcccw2uvvXbAIXwPRVFYvXo1W7duJS8v72sdSwghhITw4iinKAptr/+T3Q89RLi9HUwmEq++ivgf/vCob3feQ1EU3ivazePvl1BU2w6Aw2bkW/PHcPncMTijTNq4RReN19aZb6r20FrfSVdHgOrtLaAoEcf95+NfYIkyEp9hJz7dTny6jZj4KHR69R+phthYoqZNI2ratMj5hMMEd+9WA/qI9vblBKqqCHd24i0qwltU1O+5GBITsGT3Vs1rIX1GxqjodhD2eun87HM8hYV41hbiK9kRsV3vcGCbPVtb292UlqZu+OAB+OL36v1zfgMTztT26Qx0srlsO9u+rKTOV8vmuLUUtxTj9fq5vO5BjJhpjK6mKnYbFbFbCSe7yYvPZbFrFgVxl1DgKiArJgujXt4uhBBCCCGEEEIIIcTo1xXsYtZfZ43IuTd8bwPRpuj92ufiiy/m9ttvp6ysDJ1Ox9q1a3nppZeGFMIDjB8/nq+++uoAZqu69dZbufPOO/H7/QQCAaxWK9dee22/cXPmzIlYe37NmjVMnz79gM8rhBBHOklVxFErUFdH7d134/loDQDWyZNJffCBAauyj0aKovDh9noee6+ETdVqBbbdYuTyuTn8cN5YnNGRFynodLqIteYBAv4QLbUeGqvcWKJ7/7rxdQWp2tYCwM4vGrTHjRYD8Wk2xk5LZMap2QPOS6fXY0pNxZSaim327IhtYb+fQGVlxLrzalBfTqixkVBDI50NjXR+9lnkQfV6TBkZmMeoa873raQ3JiWh6/OPy+GkKAr+nTu1FvOdn36K4utt945ej3XKZOxz52GbN4+oqVPQ7bm209qV8NEjKEDtKXdTHJfCts+fobK4CV+Zkdj6dFxdKYAdb5SNL6Z9AYDJZKJo5rskZTjJSx/DaXFnke+6CZd132vHCyGEEEIIIYQQQgghhkdCQgJLlizhT3/6E4qisGTJEhISEoa8v6IoX2t5zptvvpnLLruMhoYGfvazn3HSSScxZ86cfuNefvllJkyYoH2fmZl5wOcUQoijgYTw4qijKAptr77K7v97mLDbjc5kIuGaa4i/4vL+AedRSFEUVhc38Nj7JXxZ2QpAtNnAZXNy+NH8sbhsQ68YN5kNJGXHkJQdE/G40ajnrGun0VjtprnaTWO1m5baToK+ELtL24lPs2ljg4EQf713A64UGwkZtu6qeTuxydEYjJHhuN5sxjJuHJZx4/rNJdTRoba0LyvFX1oWEdSHOzsJVFQQqKjAs/qjiP10UVGYs7O1lvZ9Q3qDc//bsYfa2vB8/LEWvAfr6iJfm+RkrdLdNns2htjYfsfwBr3sbN3J9i+eZfvW19iekkSxLYaOHX/kxHcCjGucRpqSq41XCNMZ34wzR8eD8x5ifFwBOc4cTHrp9iCEEEIIIYQQQgghjixRxig2fG/DiJ37QFxxxRX89Kc/BeDXv/71fu27detWxowZc0DnBfUigNzcXHJzc3n11VfJzc3lhBNOYPHiyOUuMzMzyc3NHeQoQggh9iSJoziqBGpqqL3rbjxr1wJgPWYqaQ8+OGBoe7RRFIXCHY089l4x/6toBSDKZOCSOdn8eP5Y4u2WYTuXwaQnc2IcmRPjtMfCoTCt9V00VbtxxFm1x1tqO+lo8tLR5KViS5P2uN6gw5USzeQF6UxemKE9B2DAKz8NDgdRUyYTNWVyv+cdrG/oDeX7trivqkLp6sK3bRu+bdv6HzMurrdqvk9Ib8rKQm9RXy8lGKRr0yY8hWvxFBbStWkThMPaMXRmM9EzZ2KbNw/7vLmYc3O1+SuKQp2njuKWYopbitnevJ3tLdspby/HGLCQ0ZZPavulfJ7zDwj7MeqNxJgdGBUzOnuQuDwL46dmMH5qFlabBO5CCCGEEEIIIYQQ4sin0+n2uyX8SDvttNPw+/0AnHrqqUPe74MPPmDTpk1cf/31wzIPl8vFNddcw0033cQXX3zxtSrshRDiaCchvDgqKIpC68t/o/6RRwh3dqKzWEi89lriLrsUncEw0tMbcet2quH7p2Vqi3iLUc/FJ2SzdOE4Eh3DF77vjd6gJy7VRlyqLeJxV0o05900g6YaD01Vbm3Neb83RFO1B783pI1t3d3Jq498rlXLx6erlfNxaTbM1oH/utPpdJiSkzAlJ2GbdXzENiUQwF9Vpa053zeoD9bXE2pupqu5ma7//W/Pg2JKS8OUloZ3+3bC7e0Rm82547QW89Ezj0NvteIL+dTq9h2v94buLdtp86lLAegUHYnuTDLaxnNM61kkdWSjR/3dXbz4OKZMzGescyzuBj9KGFyp0fKPZCGEEEIIIYQQQgghDgMGg4GtW7dq9wfi8/moq6sjFAqxe/du3nnnHR566CG++c1vcskllwzbXH7yk5/w8MMP8+qrr/Ktb31r2I4rhBBHGwnhxRHPX1VF7Z130bl+PQBRM2aQ+sAKLF+jRc+RYsOuJn75XjEbSpsBMBv1XDQri6sWjiMpxrqPvQ8No9lAam4sqbmx2mOKotDR7KW52kNsSu9VrU3VHnydQWpKWqkpaY04TkyClVlnjyV/ZgqgVt6j06HXDx5U60wmLGPGDPi7EvZ48JeXd6853yekLy0l7HYTqK4mUF0NgN7pxDZ7NvZ5c4meM4e2WBPbW7arQfsnb1LcUkxpWykhJdTvPAadgRM832Di1pMw+COXAnDZ2sk8fgJT8jOJjVNfB1eKVLwLIYQQQgghhBBCCHG4iYmJ2ev2d955h9TUVIxGIy6Xi2OOOYYnnniCSy+9FL1ev9d990diYiIXX3wx9957L+edd96wHVcIIY42OqWnf7PQtLe343Q6aWtr2+cbnxi9lHCYlhdfpP7RX6J0dqKzWkm64XpcF1101Fe/f1bWzGPvF7N2h9re3WzQ893jM7lqUS4pztERvh+IUCBMc52ne515j1Y139mmtnI67ceTGTcjCYCyTY3855nNxKXZ/r+9+w6Potr/OP7ZTa+bhJBGIAktSIKAcEVUmlIVAUFAL15BhIuVKliQIoh69aqAvSAgcn8EpNhQsRCwoYCgKBoEQk/oKaRnd35/RFaWJBBgQ0L2/XqeeZKZOXPmnJndfHn4zjnjOHI+2l8+/hV/7/3pDMOQ9ehRFe7apbw9u3U41EPbImzalrndnng/ln+szGODPUJ0hfUaxWQlKCohUM2aNVCDoAY6sj1XK17YJE8vKdr8o+p5bFDdprUU+K+XJTeeparpiEnOxzUFAFQXxCTn4noCAKoLYpLznema5ufnKzU1VXFxcfL2vnT/bxOoTHxPAOepaJwne1PZtr4vHdgsBcf+vQTWIXFWyQr37FHaxMeUu369JMm3dWtFznhCnjExVdyyqvXTnuN64fNt+vrPI5IkDzeTBrSuq/s6NVRUkE8Vt+7CuXmYVbtugGrXDVD8KdvzThTq6P4chdbxt287diBHxUU2HdqdrUO7sx3q8Q30VOc7m6ruZSXvrD+Rk6sTxdk6YctWZmGmMgtKlqzCLIefmQWZ9v1ZBVnKLsqWsiWlOrbTbDIrJjBG8UHxauSWoNAjsTL2+OrIjlwVF5a8Lz4yNFpNOzaWJEU08NDNd1oU/tUtcis4JjW4TrptNn9HAAAAAAAAAAAAqqEqz+C88sorevbZZ5WWlqaEhATNnDlT7dq1K7NscnKyOnXqVGr777//riZNmkiS5s2bpzvvvLNUmby8vKp5uiflE+nn/3PcZnaXLHUdE/OnLj5BF7mRNYdhs+n4u+/q0PMvyMjPl8nXV2Hjxir4tttkcuKUPJean/dm6IUvtik55bAkyd1sUv/W0bqvU0NFB/ue5ehLn4+/p+o09lBuca4OnDiszIJMFSRmqF7tImUcyFNOulWFh00yjnnJPdtHuVmFmrjxIe3/daeyCrLUaF8btd3VWxk+h3XM94CO+R7QUd8DOuabpmyvY9IZXr0e4BGgxiGNFR8cr/iQeDUObqwGQQ2kfDe99/QGZR3JV5pskk5IKnkAoG7TENVrGmKvwy1jh6LWDJAKjkl1r5IGviu5e1XyVQMAAAAAAABwqVq4cKFGjBhR5r6YmBj99ttvF7lFAOBaqjQJn5SUpNGjR+uVV17RNddco9dff109evTQ1q1bVa9evXKPS0lJcRjeX7t2bYf9gYGBSklJcdhWZdNrNO4meQVIx3f9teyWrAXS8dSSpSzeQeUn6C3RkhvvfC5LQWqq0iY+pryffpIk+V51lSKfmC7P6OgqblnV+XV/pl74fJu+/OOQJMnNbFK/K+rogesaqW7IpZl8t9qsyi50HJFuH31emKWsgiyHbaduLzaKy67UQ1JUyeJu9VRIbqSOFO2TzVryjnZLXm2Z5aaQvAiF5EVIR6+wH2p4FMt08x5ZIrxl8bLIrzhQgT4BqmUJlsXLoiCPIB3dn6M9W4/KdsRQ4o0l75c3/AzZbIbMbiZFNrSoXtNaqpcQolp1/GUynZLVz9gjvdNbyj0iRTaXBi2WPP0q6eoCAAAAAAAAqAl69eqlNm3alLnPw4McAwBUtipNwj///PO66667NGzYMEnSzJkz9dlnn+nVV1/VU089Ve5xYWFhCgoKKne/yWRSRESEs5t7fhJuLllOstmkE+mnJOVPW04clPIzpLTNJcvpTG4lifhyR9EHS6YzDMutgQyrVcfmv6PDs2bJKCiQ2ddXYRMmKGjgAMdkpgvZeiBLM7/YplVbD0qSzCapT8s6GnldI8WGVo8EbqG1sFQS/axTvBdmKbsw++yVn4Gn2VMWL4ssXhYFegbaf7d4WhToFSiL51/7vAL/3u4ZKOV66PiBXB3dd0JHD5zQ0X05Op6eI1uRu4ZfPUSe3iV/Ttcu2qYfkvfJPyRPQWEZOrr/N+VlF0mSvHzd1ap7jMxuZplMJt14b3MFhnrbjy0lO12a30vK2i+Fxku3L5O8LRfUfwAAAAAAAAA1X0BAgAICAqq6GQDgsqosCV9YWKiNGzfq4YcfdtjetWtXfffdd2c8tmXLlsrPz1fTpk312GOPlZqi/sSJE4qJiZHValWLFi00ffp0tWzZstz6CgoKVFBQYF/Pyso6jx6V7WBWvqw2Q2EBXnJ3M0tmsxQYVbLEXF36gMKckpGvpyfnj6VKGbul4vySnxm7pdQ1pY/3skjBMeWMoq8ruXs6rW/VQcGOHUp7dKLyfv5ZkuR39dWKnD5NHnXqVHHLqkZKerZmfrFNn/yaLqnkeYzezaM08vpGql/b/yxHnzvDMJRbnFtuMj2rIKvMEevZhdnKK867oHP7efg5Jsw9z5BY/+t3i5dF3u7nOSuGlxQY7KOYhFr2TVarTVmH8xyS6LmZJX9LThwr0IljJb+7e7kpOj5Y9ZqG/DX6vaRsaPQZ7knuMWnBzSUzZgTFSHeskPxCz6/tgIurzDgPAACqDjEeAICaizgPALjUVVkS/siRI7JarQoPD3fYHh4ervT09DKPiYyM1BtvvKFWrVqpoKBACxYs0PXXX6/k5GS1b99ektSkSRPNmzdPzZo1U1ZWlmbNmqVrrrlGP//8sxo1alRmvU899ZQef/xx53bwLy99tV0L1u2W2STVDvBShMVHkYHeirB4K9Jy8qePIi3eCgv0kpennxR2WclyOputZKR8uaPo06WCTCn9l5LldCazFBhdkqQPiTstSR93SY2iN4qLdXTuXB158SUZhYUy+/sr/OGHZOnXzyVHv28/lK2ZX/ypj7ekyTBKbmPPy6M06vqGahh29qcdy5vi/WQS/bymeK8As8n8d9L8tIT5qYn105PrAZ4B8jBX/ZRJbm5mBUc4zizQfUQz5ecU6diBEzqenqugMF9FNLDIzd1c8YoLsqV3+0mHtkoBkdId75c8uAPgvFRmnAcAAFWHGA8AQM1FnAcAXOpMhmEYVXHiAwcOqE6dOvruu+/Utm1b+/YZM2ZowYIF+uOPPypUz0033SSTyaQPPvigzP02m01XXHGF2rdvr9mzZ5dZpqyn6urWravMzEyHd8+fj4fe+0XLNu1TkbVilznU31MRFm9FBPqckqT/O1kfEegtH0+3sg8uzC17FP3J5Wwjj70CyxlFH1etRtHnb9umtImPKX/LFkmSX/t2ipw2TR7V5RUEF9GOwyc0+8s/9cHPB2QYkkzF6pwQoFuvqqXggOJS07qfPsX7ySR7ZU3xfmqC/fQp3i1eFvl5+MlsOofktCsoypPevUXa/Y3kEyLd+YkU1qSqW4UqlJWVJYvF4pSY5KoqM84DAHAhiPMXhhgPAKiuiPEX7lzifH5+vlJTUxUXFydv7/OcBROo4fieAM5T0ThfZSPhQ0ND5ebmVmrU+6FDh0qNjj+Tq666Su+++265+81ms/7xj3/ozz//LLeMl5eXvLy8KnzOc/GfWy7XU32b6WhOodIz85WWmaf0rHylZeb/vZ5Zsl5QbNORE4U6cqJQv+4vf3qdIF8PRQSeTM6XJOsjTybpLdGKjG0ov/jTbq1hSCcOlZ+gzz4gFWRJ6VtKllJMp7yLPubv5PzJRL1vrUofRW8UFenonDk6/PIrUlGRzIGBCn/kEVn69K5Ro9/Lm+Ld/q70giztyzqin/enKe3EUcmcJ98GeXL3yJNNhfrBKv3w7fmd+3ymeA/0CpS3m3eNugdVprhQWnxHSQLeK1D61zIS8IATVGacBwAAVYcYDwBAzUWcBwBc6qosCe/p6alWrVrp888/180332zf/vnnn6t3794VrmfTpk2KjIwsd79hGNq8ebOaNWt2Qe29EGazSbUDvFQ7wEvNoi1lljEMQxm5RSXJ+aw8pWXmKy0jv9R6XpFVGblFysgt0h/p5Y9eDvB2/ztJ7zD9fZwiw5sqorG3Ar3d/06cFuVJGXtPS86n/v17Ua6Uubdk2fV16RN6+pf9HvrgWCmonuR+Yf9gyk9J0YFHHlHB1t8lSf6dOili6lR5hIddUL2VrdBaqLSctNIj0cuY4v3UJHtFp3h38/37d9tfP8ub4v30Uemnbgv0DFSgV2C1mOLdZdms0rLh0p+rJHcf6Z+LpaiWVd0qAAAAAAAAAAAAnKMqS8JL0tixY/Wvf/1LrVu3Vtu2bfXGG29oz549uvvuuyVJjzzyiPbv36933nlHkjRz5kzFxsYqISFBhYWFevfdd7V06VItXbrUXufjjz+uq666So0aNVJWVpZmz56tzZs36+WXX66SPlaUyWRSsJ+ngv081TSq7KkLDMNQVn5xqRH06Zn5SsvKV3pmSbI+O7/4r+WEth08Ue45fT3d/k7O26e/j1ekpbki6paMrA/29ZBJknIOlz+KPuuAVHhCOvhryVK6dyXvsy4vSe9Xu9xR9EZhoY688aaOvPaaVFwsN4tF4Y9NVGDPntV65HVqZqoWpyzW+zveP++p3j3MHgryCpLFyyIvs7+OZLpp/zHJVuwjw+qrRqFh6nV5QzWLjHRIuPt7+DPF+6XGZpM+HCltXSGZPaRb35Vi2p71MAAAAAAAAAAAAFQ/VZqEHzhwoI4ePapp06YpLS1NiYmJWrlypWJiYiRJaWlp2rNnj718YWGhHnzwQe3fv18+Pj5KSEjQxx9/rBtuuMFeJiMjQ//+97+Vnp4ui8Wili1bau3atbryyisvev+czWQyyeLjIYuPh+IjAsotd6KgJFHvkKzPyj8laZ+n47lFyi20aufhHO08nFNuXZ7u5r+S9CdH0l+uqKArFdHo5PT33qrlZZM5a1/ZCfpjqVJRjpS1v2TZXcY86R6+ZSbn8w/bdOA/r6pgW8mrBAK6dFbE5Mlyr137fC9hpSqyFWn1ntVanLJYP6T/YN/u4+6jYK9ghyneT53qvbwR695u3jqQma+XV2/Xkh/3qshqSJLaN66tMZ0bqWW94KrqKpzJMKTPHpU2vSuZzNItb0sNO1d1qwAAAAAAAABUkrMNMBs8eLDmzZvn9PPm5ORo2rRpWrJkiQ4cOKCAgAAlJCTowQcfVM+ePSVJHTt2VIsWLTRz5kyHY+fNm6fRo0crIyPDYXteXp6ioqJkMpnsuZtTxcbGavfu3ZIkHx8f1a9fXw888IBGjBhx1vbOmzdPd955p309LCxMV155pZ5++mklJCTYtw8ZMkTz588vdfyff/6phg0bnvU8AFAZqjQJL0n33nuv7r333jL3nR5kJkyYoAkTJpyxvhdeeEEvvPCCs5p3SfL3clfDMH81DPMvt0xeofWvd9OfNqL+r+nv0zPzdeREoQqLbdp9NFe7j+aWW5eHm0nhgd6KtPgpwtJakZZrFRHtrcgEb0UEeinKM1ehRWlyy9x9yhT3u0t+Zu4rmer+0NaSRSWzch/5LUBHf/eXDJPcvKWILrUV0LZIpt/edkzW+4dV+rvozyY9J13vbXtPy/5cpsN5hyWVTAnfvk57DYgfoGvqXHPOI9PTM/P15OrflLR+rwqtJRPNX9swVGO6NFKrmBCn9wFVKPkp6YdXS37v/YrUtFfVtgcAAAAAAABApUpLS7P/npSUpMmTJyslJcW+7fREdlFRkTw8LvxVonfffbd+/PFHvfTSS2ratKmOHj2q7777TkePHj3vOpcuXarExEQZhqFly5Zp0KBBpcpMmzZNw4cP14kTJzRv3jzdfffdCgoK0sCBA89af2BgoFJSUmQYhvbv368JEyboxhtv1LZt2+Tp6Wkv1717d82dO9fh2NrVdEAfANdQ5Ul4VA0fTzfFhfopLtSv3DIFxVYdyiooeR99OdPfH8ouUJHV0L7jedp3PE/S8TLrcjObFBYQrAhLpCIt1ymilo8i63sryt+seu5HFWFLV0jBARVu2ay0+d+p4HC+JCmgbp4iWmXK3fuA9MvPpSt29znzu+g9fUsf4wQ2w6bvDnynpJQkrd23VjajJFFey7uW+jbqq1sa36Io/6hzrvdQVr5eSd6h//24R4XFJXW2rV9LY7o01pVxJN9rnO9elNb8p+T3G/4rtbitatsDAAAAAAAAoNJFRETYf7dYLDKZTPZtu3btUmRkpJKSkvTKK69o3bp1evXVV3XnnXdq7ty5euaZZ5SamqrY2FiNHDnSYZDj/v37NXbsWK1atUpms1nXXnutZs2apdjYWEnShx9+qFmzZtlnF46NjVWrVq0uqC9z5szR7bffLsMwNGfOnDKT8AEBAfb+PfHEE1q8eLFWrFhRoST8qdcmMjJSY8aMUa9evZSSkqJmzZrZy3l5eTlcVwCoaiThUS4vdzfVDfFV3ZDyE9lFVpsOZxecMpL+tOnvM/J0MLtAVpvxVzI/X5vKqMfDWqTbUzar35/JcjNsyvUN0Kabh8v9qpaKcz+sKNtB1S5Kk3/ePrln7i4ZSZ+1TyrOkw7/XrKUxT+i/CS9f7hkPrcR6sfzj2v59uVakrJE+07ss2//R8Q/NCB+gK6ve7083M79icTD2QV6bc0Ovbtutwr+Sr5fGRui0V0a6eoGoedcHy4BG+ZKqx4r+f36ydKVw6u2PQAAAAAAAEANYBiGjLy8Kjm3ycfnrFPNV9RDDz2k5557TnPnzpWXl5fefPNNTZkyRS+99JJatmypTZs2afjw4fLz89PgwYOVm5urTp06qV27dlq7dq3c3d31xBNPqHv37vrll1/k6empiIgIrVy5Un379lVAQPmvvK2oHTt26Pvvv9eyZctkGIZGjx6tnTt3qn79+mc8ztvbW0VFRed8voyMDP3vf/+TJKfMDAAAlYkkPC6Ih5tZUUE+igryKbeM1WboyIkC+/voHaa+z8yX9/atGrRmgeplH5QkrY5uqdea9VFWjp/05cG/aqn913K5avl5KsLiregYN8X7ZKqh+xFF65DCrWmyFOyX74l9MmfskgqypBPpJcvedaUb5u4tBcWUk6SPkTxLZgkwDEObD29WUkqSVu1apSJbyT8OAjwC1KthLw1oPED1g878j4ryHD1RoNfX7tQ73+9SflFJ8r1VTLDGdG6saxrWcto/2FDNbHlP+mhMye/XjpHajava9gAAAAAAAAA1hJGXp5QrLmx09/mK/2mjTL7OmZ119OjR6tu3r319+vTpeu655+zb4uLitHXrVr3++usaPHiwFi1aJLPZrLfeesv+/8pz585VUFCQkpOT1bVrV73xxhsaNGiQatWqpebNm+vaa6/VLbfcomuuucbh3K+88oreeusth23FxcXy9vZ22Pb222+rR48eCg4OllQyJfzbb7+tJ554osw+FRcX691339WWLVt0zz33VOg6ZGZmyt/fX4ZhKDe35LW5vXr1UpMmTRzKffTRR/L3//sVvT169NCSJUsqdA4AqAwk4VHp3Mwl74wPD/SW6gbZt9vy83V49os6tnKeZLPJVKuWikdOUKNmbTT+9GR9Vr4OZOSpoNimozmFOppTqN8OSJ9JkkL+Wv4OuhZvdzUKLFai7zE19jyqGNPhkinvCw/IP3ef3E/sl6k4XzqSUrKUIcc/TB+FhCnJo1h/2nLt25sGNdLAJv9U9/o3yNfj/P5BdTynUG98vVPzv9ul3EKrJKlF3SCN6dJY7RuFknyvyVI+kZaPkGRI/xgmXT+lqlsEAAAAAAAAoJpp3bq1/ffDhw9r7969uuuuuzR8+N8zahYXF8tisUiSNm7cqO3bt5ca4Z6fn68dO3ZIktq3b6+dO3dq3bp1+vbbb/XVV19p1qxZevzxxzVp0iT7MYMGDdLEiRMd6lm2bJmefPJJ+7rVatX8+fM1a9Ys+7bbb79dY8aM0eOPPy43Nzf79oceekiPPfaYCgoK5OnpqfHjx2vEiBEVug4BAQH66aefVFxcrDVr1ujZZ5/Va6+9Vqpcp06d9Oqrr9rX/fzKfxUvAFwMJOFRJXJ/+klpj05U4a5dkiRL714Kf+QRuQUFKbGcYwzDUGZe0Wkj6fN04JSp8NMy85VbaFVmfrE25Esb7An6Rg51uatYDb0ydbnfcTXxOqo4t8OqYxxUaNEBpRWnaZmPSR/5eyrXnCXZJG+bTd1zcjUw64QSU/dIv3xT8s75kyPnQ+JOeRd9jOTlX6r9kpSRW6i3vk7V3G9TlfNX8r1ZHYvGdmmsjvG1Sb7XdDvXSIsHS7Zi6fJbpR7PStxzAAAAAAAAwGlMPj6K/2ljlZ3bWU5NIttsJbOovvnmm2rTpo1DuZPJbpvNplatWmnhwoWl6qpdu7b9dw8PD7Vr107t2rXTww8/rCeeeELTpk3TQw89JE9PT0kl76lv2LChQx1hYWEO65999pn2799f6r3uVqtVq1atUo8ePezbxo8fryFDhsjX11eRkZHn9P/gZrPZ3pYmTZooPT1dAwcO1Nq1ax3K+fn5lWozAFQlkvC4qGx5eTo8c6aOvbNAMgy5h4Up4vGpCujU6azHmkwmBfl6KsjXU5dFBpZZxjAMZRcUOyTpT5/+Pi0zT1n50h8FtfRHQS1JDSVTkdwDfpVncKHcfHPs9fkW+qtVbrh6FHqqsY4o3JQumyldZmuBdPTPkqUsfrUd3j2fLw9t3J+rH3af0IliN/WSh2qFBKrb5fWUGGPI5P6LtNtbcvOS3L1Kpsp39zpl+WvfOb7DHtXI3vXS/90mWQukJj2l3i9zPwEAAAAAAAAnM5lMTpsSvroIDw9XnTp1tHPnTg0aNKjMMldccYWSkpIUFhamwMCy//+8LE2bNlVxcbHy8/PtSfiKmDNnjm699dZSI+affvppzZkzxyEJHxoa6rQE+ZgxY/T8889r+fLluvnmm51SJwBUBpLwuGhy16/XgYmPqWjPHkmSpW9fhT/8kNzO4R8EZ2MymRTo7aFAbw81Dg8ot1xOQbHSs/K1JX2HPtmzQj8d+0z5tuySnYZZptxmyjlypbJz62ulTFp5yrFusirSdFT1TIdUz3RIcW6H1cjjiOqZDynSelB+tiwp53DJsm+9JMlb0jWSrjFJ8jh5QSSt+2upKLPHKQl6b8nd03HdzbOc/X9tO1OS377/TPXzIMB5Sd8iLewnFeVI9TtJt7wtufHnFwAAAAAAAEDFTJ06VSNHjlRgYKB69OihgoICbdiwQcePH9fYsWM1aNAgPfvss+rdu7emTZum6Oho7dmzR8uWLdP48eMVHR2tjh076rbbblPr1q1Vq1Ytbd26VY8++qg6dep0Ton7w4cP68MPP9QHH3ygxETHuW0HDx6sG2+8UYcPH3YYge8sgYGBGjZsmKZMmaI+ffowuyyAaossECqdLSdHh55/Qcf/mgbHPSJCkdOnyb9duyppT7GtWOsOrtGSlCX69sC39u0RfhG6pdEt6tuor2r71lZ+kVUHs0pG0KeVGlEfom2ZdfXdiQLJKqnw7/oDlaO6psOqazqkGNNBBZuy5aUihflKzSO8VSfATabiAqk4X7IWlvwszpeKC05Z8v/+KePvym1FUmGRVJh90a5XKQ4PApSVxC8vyX+mhwROSfKf9SEBL8nsdvZ2VhdHtksLbpbyM6W6V0m3LizpAwAAAAAAAABU0LBhw+Tr66tnn31WEyZMkJ+fn5o1a6bRo0dLknx9fbV27Vo99NBD6tu3r7Kzs1WnTh1df/319gR7t27dNH/+fD366KPKzc1VVFSUevbsqcmTJ59TW9555x35+fnp+uuvL7WvU6dOCggI0IIFCzR27NgL7ndZRo0apdmzZ2vJkiUaMGBApZwDAC6UyTAM4+zFXEtWVpYsFosyMzPP6ekvlJazbp3SHpukon37JElB/fsrbMJ4uQWUP0q9shzKPaSlfy7V0m1LdTD3oCTJJJOurnO1BjYeqHbR7eRuPrfnUgqLbTqYla/0rLKnv0/LzFOov5fu7tBANzaLlNl8jk/lGUbJ+8MdkvSnJOjtSfyT209L6ltPP6bgDMeeVvbksUV5cngQoDqwPwhQ0ZkAziXJX8GZBiryIEDGHuntHlLWPinicmnwh5JPUKVfHtQsxCTn45oCAKoLYpJzcT0BANUFMcn5znRN8/PzlZqaqri4OHl7e1dRC4Hqje8J4DwVjfOMhEelsJ7I0aH/PquMRUmSJPeoSEVOny7/a665qO0wDEM/pP+gxSmLtXrPahUbxZKkYK9g9WnUR/0b91fdgLrnXb+nu1l1Q3xVN6SS3jFkMkluHiWL18V/cEHSKQ8CnJqkP9MDACeT/AVn2FfBBwBOLWPY/m6TfUaAqrkkkv56EOAsMwEc+VPKPiCFNpb+tZwEPAAAAAAAAAAAgAsgCQ+nO/Htt0qbNEnFB9IkSUG33aqwcQ/Kzd/vorUhsyBT729/X0u2LdGurF327S3DWmpA/AB1jekqTzfPi9aeS5rDgwD+VdcOa/FpSfpyHgCwnvawwAU/AHDKumH9uz32BwFOnLndQfWkO96X/EIr9/oAAAAAAAAAwCUkISFBu3fvLnPf66+/rkGDBl3kFgGA85CEh9NYs7N16JlnlLHkPUmSR3S0Ip94Qn5Xtbko5zcMQ78e+VVJKUn6dNenKrAWSJJ83X11U4ObNCB+gBoHN74obUElcHOX3Pyr/kGAMpP05STwDUNqeL3kG1J1bQYAAAAAAACAamjlypUqKioqc194ePhFbg0AOBdJeDjFibVrlTZ5iorT0yVJwbffrrAxo2X2q/zR77lFufok9RMlpSTp92O/27c3Dm6sgfEDdWP9G+XncfFG4aMGc3MvWTz5PAEAAAAAAADAhYiJianqJgBApSEJjwtizczUwaf/o8zlyyVJHjH1FDVjhnxbt670c+/I2KHFKYv14Y4PlV2ULUnyNHuqW2w3DYgfoOa1m8tkMlV6OwAAAAAAAAAAAADgJJLwOG/ZX61W+pQpKj58WDKZFDJ4sGqPGimzj0+lnbPIWqQv9nyhpJQkbTy40b69bkBdDWg8QL0b9lawd3ClnR8AAAAAAAAAAAAAzoQkPM6ZNSND6U8+qawPPpQkecbFKXLGDPle0bLSzrn/xH69t+09LftzmY7lH5MkmU1mdYzuqIHxA3VV1FUym8yVdn4AAAAAAAAAAAAAqAiS8Dgn2V98obSpj8t65IhkNqvW0DsVev/9Mnt7O/1cVptV3x74VkkpSfp639cyZEiSavvUVr/G/dSvUT9F+EU4/bwAAAAAAAAAAAAAcL5IwqNCio8f18HpTyhr5UpJkmfDBoqaMUM+zZs7/VxH845q+fblWpKyRAdyDti3t4lso4HxA9Wxbkd5mD2cfl4AAAAAAAAAAAAAuFAk4XFWWZ9+pvRp02Q9dkxyc1OtYcMUet+9Mnt6Ou0chmFo48GNWpyyWJ/v+VzFtmJJUqBnoHo37K0BjQco1hLrtPMBAAAAAAAAAABHu3btUlxcnDZt2qQWLVpUdXNqpKlTp2rFihXavHlzVTcFQCXiJdooV/HRo9o3arT2jx4t67Fj8mrUSLFJSQobM9ppCfjswmz97/f/6eb3b9adn92pT3Z9omJbsZqFNtP0a6bry/5fasI/JpCABwAAAAAAAADUGEOGDFGfPn0ctr333nvy9vbWM888UzWNOg9Lly5VmzZtZLFYFBAQoISEBI0bN86+f968eQoKCirzWJPJpBUrVpTa/u9//1tubm5atGhRqX1Tp06VyWSSyWSSm5ub6tatq2HDhunw4cMVau/JY00mk/z9/dW8eXPNmzfPoUxycrJDuZPLY489VqFzAIDESHiUwTAMZa1cqYPTn5A1I0Nyd1fov/+t0LtHyOSk5PvWo1u1OGWxVqauVF5xniTJx91HN8TdoAHxA9S0VlOnnAcAAAAAAAAAgOrurbfe0n333aeXX35Zw4YNO+fjCwsL5enE2Wsr4osvvtCtt96qJ598Ur169ZLJZNLWrVv15Zdfnnedubm5SkpK0vjx4zVnzhzdeuutpcokJCToiy++kNVq1aZNm3TXXXdp//79+uSTTyp0jrlz56p79+7KyclRUlKS7rzzTkVGRqpbt24O5VJSUhQYGGhf9/f3P+9+AXA9jISHg+LDh7XvgQd0YNyDsmZkyKtJE8UtWazaIx+44AR8fnG+VmxfoX9+/E8N/Giglv65VHnFeWpgaaBHrnxEX/b/UlOvnkoCHgAAAAAAAADgMp555hndf//9+t///mdPwH/33Xdq3769fHx8VLduXY0cOVI5OTn2Y2JjY/XEE09oyJAhslgsGj58uH3U+WeffabLLrtM/v7+6t69u9LS0hzON3fuXF122WXy9vZWkyZN9Morr5xXuz/66CNde+21Gj9+vOLj49W4cWP16dNHL7744nlfiyVLlqhp06Z65JFH9O2332rXrl2lyri7uysiIkJ16tRRz549NXLkSK1atUp5eXkVOkdQUJAiIiLUoEEDPfroowoJCdGqVatKlQsLC1NERIR9qUgS/uQ9WLFihRo3bixvb2916dJFe/fuLfeYjh07avTo0Q7b+vTpoyFDhtjXX3nlFTVq1Eje3t4KDw/XLbfcUqG+Aqg6JOEhqWT0e+b772tHz5t04osvJQ8PhT5wv+KWLJb3ZZddUN27MnfpmfXP6Pol12vSt5O05cgWuZvd1SO2h+Z2m6vlvZfrn5f9UwGeAU7qDQAAAAAAAADAlRUVWMtdiousFS9bWLGy5+vhhx/W9OnT9dFHH6lfv36SpC1btqhbt27q27evfvnlFyUlJembb77R/fff73Dss88+q8TERG3cuFGTJk2SVDKS/L///a8WLFigtWvXas+ePXrwwQftx7z55puaOHGiZsyYod9//11PPvmkJk2apPnz559z2yMiIvTbb7/p119/Pe/+n27OnDm6/fbbZbFYdMMNN2ju3LlnPcbHx0c2m03FxcXndC6r1arFixfr2LFj8vDwON8ml5Kbm6sZM2Zo/vz5+vbbb5WVlVXmiP6K2rBhg0aOHKlp06YpJSVFn376qdq3b++09gKoHExHDxUdPKj0KVN1IjlZkuTdtKkin3pK3vGNz79OW5GS9yYrKSVJP6T9YN8e5Rel/vH91adhH4X6hF5gywEAAAAAAAAAKO2NUWvK3ReTWEs9729uX397/NcqLrSVWTaqUZBuHneFff2did8p/0RRqXL3vXbdObfxk08+0fvvv68vv/xS11339/HPPvus/vnPf9pHRzdq1EizZ89Whw4d9Oqrr8rb21uSdN111zkk2L/55hsVFRXptddeU4MGDSRJ999/v6ZNm2YvM336dD333HPq27evJCkuLk5bt27V66+/rsGDB59T+x944AF9/fXXatasmWJiYnTVVVepa9euGjRokLy8vOzlMjMzKzSK/M8//9S6deu0bNkySdLtt9+ukSNHasqUKTKbyx5T+scff+jVV1/VlVdeqYCAig30u+222+Tm5qb8/HxZrVaFhISU+QqA6Ohoh/Xdu3erVq1aZ62/qKhIL730ktq0aSNJmj9/vi677DL9+OOPuvLKKyvUxlPt2bNHfn5+6tmzpwICAhQTE6OWLVuecz0ALi6S8C7MMAxlLluug08/LVt2tkweHgq97z7VumuoTOf51Fd6TrqW/rlUS7ct1eG8w5Ikk0xqF91OA+MH6pqoa+RmdnNmNwAAAAAAAAAAuORcfvnlOnLkiCZPnqx//OMf9iTyxo0btX37di1cuNBe1jAM2Ww2paam6rK/Zq9t3bp1qTp9fX3tCXhJioyM1KFDhyRJhw8f1t69e3XXXXdp+PDh9jLFxcWyWCzn3H4/Pz99/PHH2rFjh1avXq1169Zp3LhxmjVrlr7//nv5+vpKkgICAvTTTz+VOr5Ro0YO63PmzFG3bt0UGloygO+GG27QXXfdpS+++EJdu3a1l9uyZYv8/f1ltVpVUFCgjh076o033qhwu1944QV17txZe/fu1dixYzVmzBg1bNiwVLmvv/7aIbEfHBxcofrd3d0d7k2TJk0UFBSk33///byS8F26dFFMTIzq16+v7t27q3v37rr55pvt1xdA9UQS3kUVpaUpbfIU5Xz9tSTJ+/LLFTXjCXmdFvQqwmbYtO7AOiWlJGnNvjWyGiVT74R4h6hvo766pfEtquNfx6ntBwAAAAAAAACgPP+e1aHcfabTBlUPfbZd+WVNjut3zLj6QprloE6dOlq6dKk6deqk7t2769NPP1VAQIBsNptGjBihkSNHljqmXr169t/9/PxK7T99WnWTySTDMCRJNlvJaP8333zTPkr7JDe38x8816BBAzVo0EDDhg3TxIkT1bhxYyUlJenOO++UJJnN5jKT3KeyWq165513lJ6eLnd3d4ftc+bMcUjCx8fH64MPPpCbm5uioqIcRt1XREREhBo2bKiGDRtqyZIlatmypVq3bq2mTZs6lIuLi1NQUNA51X2S6fQPTjnbpJLrc/IenVRU9PdsCycfYkhOTtaqVas0efJkTZ06VevXrz/v9gGofCThXYxhGMpYskSH/vOMbDk5Mnl6qvbIBxQyZIhM7uf2cTief1zvb39fi7ct1t7svfbtrcNba0D8AHWu11kebs57jwoAAAAAAAAAABXh4VXxpHJlla2IevXqac2aNerUqZO6du2qzz77TFdccYV+++23syauz1V4eLjq1KmjnTt3atCgQU6t+6TY2Fj5+voqJyfnnI5buXKlsrOztWnTJocHAv744w8NGjRIR48etU8F7+np6bRr07BhQ/Xr10+PPPKI3n//fafUWVxcrA0bNthHvaekpCgjI0NNmjQps3zt2rWVlpZmX7darfr111/VqVMn+zZ3d3d17txZnTt31pQpUxQUFKSvvvrK/loBANUPSXgXUrR/v9ImTVbOd99JknxatFDkkzPkVb9+heswDEM/H/5ZSSlJWrVrlQpthZIkfw9/9WrQSwPiB6hBUIOz1AIAAAAAAAAAAKSSd48nJyfbE/Gvv/662rZtq/vuu0/Dhw+Xn5+ffv/9d33++ed68cUXL+hcU6dO1ciRIxUYGKgePXqooKBAGzZs0PHjxzV27Nhzris3N1c33HCDYmJilJGRodmzZ6uoqEhdunQ5p7rmzJmjG2+8Uc2bN3fYnpCQoNGjR+vdd9/VqFGjzqnOiho3bpyaN2+uDRs2lDnF/7ny8PDQAw88oNmzZ8vDw0P333+/rrrqqnKnor/uuus0duxYffzxx2rQoIFeeOEFZWRk2Pd/9NFH2rlzp9q3b6/g4GCtXLlSNptN8fHxF9xWAJWHJLwLMGw2ZSQl6dCz/5UtN1cmLy/VHj1aIXf8S6YKTjGTU5Sjj3d+rMUpi5VyPMW+/bKQyzQwfqB6xPWQrwfvHwEAAAAAAAAA4FzVqVPHPiJ++PDhWrNmjSZOnKh27drJMAw1aNBAAwcOvODzDBs2TL6+vnr22Wc1YcIE+fn5qVmzZho9evQ519WhQwe9/PLLuuOOO3Tw4EEFBwerZcuWWrVq1TkliA8ePKiPP/5Y//vf/0rtM5lM6tu3r+bMmVNpSfhmzZqpc+fOmjx5slauXHnB9fn6+uqhhx7SP//5T+3bt0/XXnut3n777XLLDx06VD///LPuuOMOubu7a8yYMQ6j4IOCgrRs2TJNnTpV+fn5atSokf7v//5PCQkJF9xWAJXHZJz+ogkoKytLFotFmZmZCgwMrOrmXJDCvXuV9tgk5f7wgyTJp1UrRc14Qp6xsRU6ftvxbVqcslgf7fxIOUUl08d4uXmpe2x3DYwfqMTQxHLfYwIAuHA1KSZVF1xTAEB1QUxyLq4nAKC6ICY535muaX5+vlJTUxUXFydvb+8qaiFQYt68eRo9erTDSPbqgO8J4DwVjfOMhK+hDJtNxxf+T4eef15GXp5MPj4KGzNGwbcPkslsPuOxhdZCrdq9SotTFmvToU327bGBserfuL96N+wti5elsrsAAAAAAAAAAAAAAJcckvA1UOHu3Uqb+JhyN2yQJPleeaUin5guz3r1znjc3uy9WrJtiVb8uULHC45LktxMbrqu3nUaED9AbSLaMOodAAAAAAAAAAAXcPfdd+vdd98tc9/tt9+u11577SK36MyefPJJPfnkk2Xua9eunT755JMLPkePHj309ddfl7nv0UcfVVRU1AWfA0DNQBK+BjGsVh1bsECHZ86SkZ8vk6+vwh4cp+Bbby139HuxrVhr963V4pTF+vbAt/btYb5huqXxLerXqJ/CfMMuVhcAAAAAAAAAAEA1MG3aND344INl7quOr1q4++67NWDAgDL3+fj4OOUcb731lvLy8srcFxISopCQEA0ZMsQp5wJwaSMJX0MU7ExV2sSJyttUMn28b9urFDn9CXlG1ymz/OHcw1r651It/XOp0nPS7duvjrpaA+IHqEN0B7mb+XgAAAAAAAAAAOCKwsLCFBZ26QzSO5kEr0x16pSdcwGA05FlvcQZVquOzZunw7NflFFQILOfn8ImTFDQgP6lpo43DEM/pv+opJQkrd6zWsVGsSQpyCtINze8Wbc0vkX1As88ZT0AAAAAAAAAAAAAoHwk4S9hBdu368DEicr/+RdJkt+11ypy2uPyOO2dI5kFmfpgxwdanLJYu7J22be3qN1CA+IHqGtsV3m5eV3MpgMAAAAAAAAAAABAjUQS/hJkFBfr6Jy3deSll2QUFckcEKDwhx+SpW9fh9Hvvx75VUkpSfo09VPlW/MlSb7uvupZv6cGxA9QfEh8VXUBAAAAAAAAAAAAAGokkvCXmPxt25T26ETl//qrJMm/QwdFTHtcHuHhkqTcolx9uutTJaUkaevRrfbjGgU30sDGA9WzQU/5efhVSdsBAAAAAAAAAAAAoKYjCX+JMIqKdOTNN3Xk1dekoiKZAwMV/ugjsvTuLZPJpJ0ZO7V422J9sP0DZRdlS5I8zB7qGttVA+MHqkXtFqXeEQ8AAAAAAAAAAAAAcC6S8JeA/D/+0IFHH1XB1t8lSf7XX6+IKZOlWsH6bNdnWrxtsdanr7eXj/aPVv/4/urTsI9CvEOqqtkAAAAAAAAAAOASMWTIEGVkZGjFihXllklOTlanTp10/PhxBQUFXbS21TS7du1SXFycNm3apBYtWlR1cwBUAnNVNwDlMwoLdfjFl5R6S38VbP1dbkFBivrvf2V++hG9um+RurzXRePXjtf69PUym8zqVLeTXu38qj7u+7GGJg4lAQ8AAAAAAAAAQDU0ZMgQ9enTp8x9sbGxMplMDkt0dLTD/pkzZzq9TbNmzdK8efPs6x07dtTo0aOdfp6qNmTIEPt1dXd3V7169XTPPffo+PHjDuXOdh8A4EwYCV9N5f32m9IenaiClBRJkn/XLto1vKtmH/pEXy9/VDbDJkkK9QlVv0b9dEvjWxThF1GVTQYAAAAAAAAAAE4wbdo0DR8+3L7u5uZW6ee0WCyVfo7TFRUVycPD46Kft3v37po7d66Ki4u1detWDR06VBkZGfq///s/h3JVcR8A1AyMhK9mbIWFOjRzpnYNGKiClBSZgoL0x9ieGt5hm+796RGt2bdGNsOmNhFt9FyH57TqllW6v+X9JOABAAAAAAAAAKghAgICFBERYV9q1659znWMGzdON910k3195syZMplM+vjjj+3b4uPj9frrr0tyHJ0/ZMgQrVmzRrNmzbKPAt+1a5f9uI0bN6p169by9fXV1VdfrZS/BhSezdSpU9WiRQu9/fbbql+/vry8vGQYhj799FNde+21CgoKUq1atdSzZ0/t2LHDfly/fv30wAMP2NdHjx4tk8mk3377TZJUXFysgIAAffbZZxVqh5eXlyIiIhQdHa2uXbtq4MCBWrVqValy53sfTCaTXn31VfXo0UM+Pj6Ki4vTkiVLyi0/b968UtP7r1ixQiaTyb7+888/q1OnTgoICFBgYKBatWqlDRs2VKg9AC4+kvDVSN6WLdrVr5+Ovva6ZLVqZ+so/XtIniZ7far9J/YrwDNAt192uz7o84He6vaWusZ2lYf54j8hBgAAAAAAAABAdVaUn1/uUlxYWOGyRYUFFSpbHXXs2FFff/21bLaSmXXXrFmj0NBQrVmzRpKUnp6ubdu2qUOHDqWOnTVrltq2bavhw4crLS1NaWlpqlu3rn3/xIkT9dxzz2nDhg1yd3fX0KFDK9yu7du3a/HixVq6dKk2b94sScrJydHYsWO1fv16ffnllzKbzbr55pvtbe/YsaOSk5PtdZzel/Xr1ys/P1/XXHPNOV0jSdq5c6c+/fRTp4/InzRpkvr166eff/5Zt99+u2677Tb9/vvv513foEGDFB0drfXr12vjxo16+OGHq2QWAQAVw3T01YCtoEBHXnpJR+e8LdlsOuHvpte6Gvox/pAkKbFWogbED1D3uO7ycfep4tYCAAAAAAAAAFC9zR58S7n74lq2Vt+Hp9rXX/n3IBUXFJRZNrppogZOedq+/ub9Q5WXnVWq3Likj86/sWV46KGH9Nhjj9nXn3zySY0cOfKc6mjfvr2ys7O1adMmXXHFFfr666/14IMPatmyZZKk1atXKzw8XE2aNCl1rMVikaenp3x9fRURUXom3hkzZtiT9w8//LBuvPFG5efny9vb+6ztKiws1IIFCxxGlffr18+hzJw5cxQWFqatW7cqMTFRHTt21KhRo3TkyBG5ubnpt99+05QpU5ScnKx7771XycnJatWqlfz9/St0bT766CP5+/vLarUq/6+HKJ5//vlS5S7kPvTv31/Dhg2TJE2fPl2ff/65XnzxRb3yyisVOv50e/bs0fjx4+33q1GjRudVD4CLgyR8FcvdtEm7Hx4v7d4vSfo6waS5naXiAF/1rX+DBsQPUEKthCpuJQAAAAAAAAAAuFjGjx+vIUOG2NdDQ0PPuQ6LxaIWLVooOTlZHh4eMpvNGjFihKZMmaLs7GwlJyeXOQq+Ii6//HL775GRkZKkQ4cOqV69emc9NiYmptS07jt27NCkSZO0bt06HTlyxD4Cfs+ePUpMTFRiYqJq1aqlNWvWyMPDQ82bN1evXr00e/ZsSTrnvnTq1EmvvvqqcnNz9dZbb2nbtm0O092fdCH3oW3btqXWT478Px9jx47VsGHDtGDBAnXu3Fn9+/dXgwYNzrs+AJWLJHwVyT2RoU0zJih4xdcyGdIxf+nN7mYdb91Q98cP0E0NblKgZ2BVNxMAAAAAAAAAgEvOyPnvlbvPZHZ8U++9bywsvyKzyWF1+EtvX1C7Kio0NFQNGza84HpOTuPu6empDh06KDg4WAkJCfr222+VnJys0aNHn1e9p06DfvK95ScT52fj5+dXattNN92kunXr6s0331RUVJRsNpsSExNV+NerA0wmk9q3b2/vS8eOHZWYmCir1aotW7bou+++O6e++Pn52a/v7Nmz1alTJz3++OOaPn26Qzln3YeTTn3H+6nMZrMMw3DYVlRU5LA+depU/fOf/9THH3+sTz75RFOmTNGiRYt08803O619AJyHJPxFtjtrtz7/YLYavvKpwo/99R6WZmbtubOz7rvidrUOb13uH2EAAAAAAAAAAHB2HhWYFr2yy1YHHTt21Jw5c+Tu7q7OnTtLkjp06KBFixaV+z74kzw9PWW1Wiu9jUePHtXvv/+u119/Xe3atZMkffPNN6XKdezYUW+88YY8PT01bdo0mUwmtWvXTv/973+Vl5d3Xu+DP2nKlCnq0aOH7rnnHkVFRZ13Padat26d7rjjDof1li1bllm2du3ays7OVk5Ojv0hhbJGzTdu3FiNGzfWmDFjdNttt2nu3Lkk4YFqiiT8RVBsK1by3mQt/eV/apC0Tj02GDJLygh00/57b9ItA8cp1Ofcp5IBAAAAAAAAAACXpszMzFKJ1pCQEKee4+R74T/88EM98cQTkkqS2f369VPt2rXVtGnTco+NjY3VDz/8oF27dsnf39/pbTspODhYtWrV0htvvKHIyEjt2bNHDz/8cKlyJ98L7+7ubk/Wd+zYUePGjdMVV1yhwMDzn124Y8eOSkhI0JNPPqmXXnrpvOs51ZIlS9S6dWtde+21WrhwoX788UfNmTOnzLJt2rSRr6+vHn30UT3wwAP68ccfNW/ePPv+vLw8jR8/Xrfccovi4uK0b98+rV+/Xv369XNKWwE4H0n4Svb2r29r4daFqpVyUPd8bFVERsn2vO7XqNXj/1VbS1BVNg8AAAAAAAAAAFSB5OTkUiOjBw8e7NRzWCwWtWzZUnv27LEn3Nu1ayebzXbWd6g/+OCDGjx4sJo2baq8vDylpqY6tW0nmc1mLVq0SCNHjlRiYqLi4+M1e/ZsdezY0aFcYmKiQkNDFRMTY0+4d+jQQVar9bzfbX+qsWPH6s4779RDDz2kunXrXnB9jz/+uBYtWqR7771XERERWrhwYbkPPYSEhOjdd9/V+PHj9cYbb6hz586aOnWq/v3vf0uS3NzcdPToUd1xxx06ePCgQkND1bdvXz3++OMX3E4AlcNknP6SCSgrK0sWi0WZmZkX9OSUJD3x1UT5vbVc3X8qucym8NqKfuJJ+be71hlNBQDUcM6MSSjBNQUAVBfEJOfiegIAqgtikvOd6Zrm5+crNTVVcXFx8r7EpopHzWUymbR8+XL16dOnqpsiie8J4EwVjfOMhK9EhmHolle3ythSkoAPGjhQYeMflJu/fxW3DAAAAAAAAAAAAABQGcxV3YCazGQyqc6I++RRp47qzX1bkY9PJQEPAAAAAAAAAAAu2MKFC+Xv71/mkpCQUCVtSkhIKLdNCxcurPTz79mzp9zz+/v7a8+ePRd8jup43QFUP4yEr2QBnTvLr107mb28qropAAAAAAAAAACghujVq5fatGlT5j4PD4+L3JoSK1euVFFRUZn7wsPDK/38UVFR2rx58xn3X6iKXHfeBA2AJPxFQAIeAAAAAAAAAAA4U0BAgAICAqq6GQ5iYmKq9Pzu7u5q2LBhpZ6jOl53ANUP09EDAAAAAAAAAAAAAOAkJOEBAAAAAAAAAAAAAHASkvAAAAAAAAAAAAAAADgJSXgAAAAAAAAAAAAAAJyEJDwAAAAAAAAAAAAAAE5CEh4AAAAAAAAAAAAAACchCQ8AAAAAAAAAAIBqY8iQIerTp09VNwMAzhtJeAAAAAAAAAAAgIvoTEnm2NhYzZw502HdZDJp0aJFpcomJCTIZDJp3rx5pcqfvjz99NNnbdeuXbscjrFYLLrqqqv04YcfOpSbN29emed46623KtR/AKjp3Ku6AQAAAAAAAAAAAChf3bp1NXfuXN166632bevWrVN6err8/PxKlZ82bZqGDx/usC0gIKDC5/viiy+UkJCgjIwMvfLKK+rXr59++uknJSYm2ssEBgYqJSXF4TiLxVLhcwBATcZIeAAAAAAAAAAAUKPYCq3lLkaR7RzKWitUtrINGjRIa9as0d69e+3b3n77bQ0aNEju7qXHWwYEBCgiIsJhKStZX55atWopIiJCTZo00YwZM1RUVKTVq1c7lDGZTKXO4ePjc9a6p06dqhYtWuj1119X3bp15evrq/79+ysjI6PcY06fHUCSWrRooalTpzrUW69ePXl5eSkqKkojR46scH8BwNkYCQ8AAAAAAAAAAGqUA5O/K3efd3ywQu/8e0R32vR1pRLzJ3nGWRQ24nL7evp/fpQtp7hUuein211Aa88uPDxc3bp10/z58/XYY48pNzdXSUlJWrNmjd55551KO29RUZHefPNNSZKHh4fT6t2+fbsWL16sDz/8UFlZWbrrrrt03333aeHChedV33vvvacXXnhBixYtUkJCgtLT0/Xzzz87rb0AcK4YCQ8AAAAAAAAAAFDNDR06VPPmzZNhGHrvvffUoEEDtWjRosyyDz30kPz9/R2W5OTkCp/r6quvlr+/v7y9vTVu3DjFxsZqwIABDmUyMzMd6o+IiKhw/fn5+Zo/f75atGih9u3b68UXX9SiRYuUnp5e4TpOtWfPHkVERKhz586qV6+errzyylLT8QPAxcRIeAAAAAAAAAAAUKNETbu63H0mk8lhPXLSVWco67ge8dCVF9SuC3HjjTdqxIgRWrt2rd5++20NHTq03LLjx4/XkCFDHLbVqVOnwudKSkpSkyZNtG3bNo0ePVqvvfaaQkJCHMoEBATop59+sq+bzRUf91mvXj1FR0fb19u2bSubzaaUlJRzSuaf1L9/f82cOVP169dX9+7ddcMNN+imm24qc6p+ALgY+OsDAAAAAAAAAABqFLOnW5WXdTZ3d3f961//0pQpU/TDDz9o+fLl5ZYNDQ1Vw4YNz/tcdevWVaNGjdSoUSP5+/urX79+2rp1q8LCwuxlzGbzBZ3jVCcfjDj9AYlTz2UYhsO2oqIih/ampKTo888/1xdffKF7771Xzz77rNasWePUafQBoKKYjh4AAAAAAAAAAOASMHToUK1Zs0a9e/dWcHDwRTlnhw4dlJiYqBkzZjitzj179ujAgQP29e+//15ms1mNGzcus3zt2rWVlpZmX8/KylJqaqpDGR8fH/Xq1UuzZ89WcnKyvv/+e23ZssVpbQaAc8FIeAAAAAAAAAAAgIssMzNTmzdvdth2+pTvp7vssst05MgR+fr6nrFcdnZ2qfer+/r6KjAw8LzaOm7cOPXv318TJkw4p2nty+Pt7a3Bgwfrv//9r7KysjRy5EgNGDCg3Knor7vuOs2bN0833XSTgoODNWnSJLm5/T0rwbx582S1WtWmTRv5+vpqwYIF8vHxUUxMzAW3FQDOB0l4AAAAAAAAAACAiyw5OVktW7Z02DZ48OCzHlerVq2zlpk8ebImT57ssG3EiBF67bXXzq2Rf+nZs6diY2M1Y8YMvfLKK+dVx6kaNmyovn376oYbbtCxY8d0ww03nLHeRx55RDt37lTPnj1lsVg0ffp0h5HwQUFBevrppzV27FhZrVY1a9ZMH374YYWuFQBUBpNx+ks0oKysLFksFmVmZp73U2EAADgDMcn5uKYAgOqCmORcXE8AQHVBTHK+M13T/Px8paamKi4uTt7e3lXUQpyLqVOnasWKFaVmAUDl4XsCOE9F4zzvhAcAAAAAAAAAAAAAwElIwgMAAAAAAAAAALiAu+++W/7+/mUud999t1POkZCQUO45Fi5c6JRzAEB1xzvhAQAAAAAAAAAAXMC0adP04IMPlrnPWa9PWLlypYqKisrcFx4eroCAAE2dOtUp5wKA6ookPAAAAAAAAAAAgAsICwtTWFhYpZ4jJiamUusHgEsB09EDAAAAAAAAAIBLmmEYVd0EoNri+wFcfCThAQAAAAAAAADAJcnNzU2SVFhYWMUtAaqv3NxcSZKHh0cVtwRwHUxHDwAAAAAAAAAALknu7u7y9fXV4cOH5eHhIbOZsYfASYZhKDc3V4cOHVJQUJD9oRUAlY8kPAAAAAAAAAAAuCSZTCZFRkYqNTVVu3fvrurmANVSUFCQIiIiqroZgEshCQ8AAAAAAAAAAC5Znp6eatSoEVPSA2Xw8PBgBDxQBUjCAwAAAAAAAACAS5rZbJa3t3dVNwMAAEkSL0cBAAAAAAAAAAAAAMBJSMIDAAAAAAAAAAAAAOAkJOEBAAAAAAAAAAAAAHAS3glfBsMwJElZWVlV3BIAgKs7GYtOxiZcOOI8AKC6IM47FzEeAFBdEOOdjzgPAKguKhrnScKXITs7W5JUt27dKm4JAAAlsrOzZbFYqroZNQJxHgBQ3RDnnYMYDwCobojxzkOcBwBUN2eL8yaDx/FKsdlsOnDggAICAmQymS6orqysLNWtW1d79+5VYGCgk1p46aD/9J/+039X7L8z+24YhrKzsxUVFSWzmbfIOANx3nlcuf+u3HeJ/tN/+k+cr56I8c5D/+k//XfN/rty3yVifHVHnHceV+6/K/ddov/0n/5f7DjPSPgymM1mRUdHO7XOwMBAl/xQn0T/6T/9p/+uyFl956l55yLOO58r99+V+y7Rf/pP/4nz1Qsx3vnoP/2n/67Zf1fuu0SMr66I887nyv135b5L9J/+0/+LFed5DA8AAAAAAAAAAAAAACchCQ8AAAAAAAAAAAAAgJOQhK9kXl5emjJliry8vKq6KVWC/tN/+k//XbH/rtx3V+Pq99qV++/KfZfoP/2n/67cf1fh6veZ/tN/+u+a/Xflvkv035W4+r125f67ct8l+k//6f/F7r/JMAzjop0NAAAAAAAAAAAAAIAajJHwAAAAAAAAAAAAAAA4CUl4AAAAAAAAAAAAAACchCQ8AAAAAAAAAAAAAABOQhIeAAAAAAAAAAAAAAAnIQl/ntauXaubbrpJUVFRMplMWrFihcN+wzA0depURUVFycfHRx07dtRvv/3mUKagoEAPPPCAQkND5efnp169emnfvn0XsRfn52x9HzJkiEwmk8Ny1VVXOZS5VPsuSU899ZT+8Y9/KCAgQGFhYerTp49SUlIcytTk+1+R/tfUz8Crr76qyy+/XIGBgQoMDFTbtm31ySef2PfX5Psunb3/NfW+l+epp56SyWTS6NGj7dtq+mfAVbhyjJdcO84T4103xkvEeeL834jxNZsrx3lXjvGSa8d5Yjwxnhj/N+J8zeXKMV5y7TjvyjFeIs4T54nzJ1XHGE8S/jzl5OSoefPmeumll8rc/8wzz+j555/XSy+9pPXr1ysiIkJdunRRdna2vczo0aO1fPlyLVq0SN98841OnDihnj17ymq1XqxunJez9V2SunfvrrS0NPuycuVKh/2Xat8lac2aNbrvvvu0bt06ff755youLlbXrl2Vk5NjL1OT739F+i/VzM9AdHS0nn76aW3YsEEbNmzQddddp969e9v/aNfk+y6dvf9SzbzvZVm/fr3eeOMNXX755Q7ba/pnwFW4coyXXDvOE+NdN8ZLxHnifAlifM3nynHelWO85NpxnhhPjCfGlyDO12yuHOMl147zrhzjJeI8cZ44L1XjGG/ggkkyli9fbl+32WxGRESE8fTTT9u35efnGxaLxXjttdcMwzCMjIwMw8PDw1i0aJG9zP79+w2z2Wx8+umnF63tF+r0vhuGYQwePNjo3bt3ucfUlL6fdOjQIUOSsWbNGsMwXOv+G0bp/huGa30GgoODjbfeesvl7vtJJ/tvGK5z37Ozs41GjRoZn3/+udGhQwdj1KhRhmG43nffVbhyjDcM4jwx3rVjvGEQ510tzhPjXY8rx3lXj/GG4dpxnhhPjHe1GG8YxHlX48ox3jCI864c4w2DOG8YxHlXi/PVOcYzEr4SpKamKj09XV27drVv8/LyUocOHfTdd99JkjZu3KiioiKHMlFRUUpMTLSXuZQlJycrLCxMjRs31vDhw3Xo0CH7vprW98zMTElSSEiIJNe7/6f3/6Sa/hmwWq1atGiRcnJy1LZtW5e776f3/6Saft8l6b777tONN96ozp07O2x3tc+Aq+I+l3CF77pEjHfVGC8R5101zhPjwb2u+d/zU7lynCfGE+NdLcZLxHlXx30u4Qrfdcm1Y7xEnCfOu16cr84x3v2Ca0Ap6enpkqTw8HCH7eHh4dq9e7e9jKenp4KDg0uVOXn8papHjx7q37+/YmJilJqaqkmTJum6667Txo0b5eXlVaP6bhiGxo4dq2uvvVaJiYmSXOv+l9V/qWZ/BrZs2aK2bdsqPz9f/v7+Wr58uZo2bWr/g1zT73t5/Zdq9n0/adGiRfrpp5+0fv36Uvtc6bvvyrjPrvFdl4jxrhjjJeK8K8d5Yjwk7nVN/56fypXjPDGeGO9qMV4izoP7LLnGd11y7RgvEeeJ864X56t7jCcJX4lMJpPDumEYpbadriJlqruBAwfaf09MTFTr1q0VExOjjz/+WH379i33uEux7/fff79++eUXffPNN6X2ucL9L6//NfkzEB8fr82bNysjI0NLly7V4MGDtWbNGvv+mn7fy+t/06ZNa/R9l6S9e/dq1KhRWrVqlby9vcstV9M/Ayjhyve5pn/XTyLGu16Ml4jzrhrnifE4nave65r8PT+dK8d5Yjwx3pVivESchyNXvs81/bt+kivHeIk4T5x3rTh/KcR4pqOvBBEREZJU6imJQ4cO2Z+4iIiIUGFhoY4fP15umZoiMjJSMTEx+vPPPyXVnL4/8MAD+uCDD7R69WpFR0fbt7vK/S+v/2WpSZ8BT09PNWzYUK1bt9ZTTz2l5s2ba9asWS5z38vrf1lq0n2XSqamOXTokFq1aiV3d3e5u7trzZo1mj17ttzd3e19qOmfAVfnKt/1c1HTvusSMd5VY7xEnHfVOE+Mx0mu8l2vqJr0PT+VK8d5Yjwx3tVivEScRwlX+a6fi5r2XZdcO8ZLxHnivOvF+UshxpOErwRxcXGKiIjQ559/bt9WWFioNWvW6Oqrr5YktWrVSh4eHg5l0tLS9Ouvv9rL1BRHjx7V3r17FRkZKenS77thGLr//vu1bNkyffXVV4qLi3PYX9Pv/9n6X5aa9hk4lWEYKigoqPH3vTwn+1+Wmnbfr7/+em3ZskWbN2+2L61bt9agQYO0efNm1a9f3yU/A67GVb/rZ1KTvuvEeGL86YjzrhHnifE4yVW/6+WpSd9zybXjPDG+NGK8a8R4iTiPEq76XT+TmvRdd+UYLxHny0Kcd404f0nEeAPnJTs729i0aZOxadMmQ5Lx/PPPG5s2bTJ2795tGIZhPP3004bFYjGWLVtmbNmyxbjtttuMyMhIIysry17H3XffbURHRxtffPGF8dNPPxnXXXed0bx5c6O4uLiqulUhZ+p7dna2MW7cOOO7774zUlNTjdWrVxtt27Y16tSpUyP6bhiGcc899xgWi8VITk420tLS7Etubq69TE2+/2frf03+DDzyyCPG2rVrjdTUVOOXX34xHn30UcNsNhurVq0yDKNm33fDOHP/a/J9P5MOHToYo0aNsq/X9M+Aq3DlGG8Yrh3nifGuG+MNgzhPnHdEjK+5XDnOu3KMNwzXjvPEeGI8Md4Rcb5mcuUYbxiuHeddOcYbBnGeOE+cP1V1i/Ek4c/T6tWrDUmllsGDBxuGYRg2m82YMmWKERERYXh5eRnt27c3tmzZ4lBHXl6ecf/99xshISGGj4+P0bNnT2PPnj1V0Jtzc6a+5+bmGl27djVq165teHh4GPXq1TMGDx5cql+Xat8Nwyiz75KMuXPn2svU5Pt/tv7X5M/A0KFDjZiYGMPT09OoXbu2cf3119uDuWHU7PtuGGfuf02+72dyelCv6Z8BV+HKMd4wXDvOE+NdN8YbBnGeOO+IGF9zuXKcd+UYbxiuHeeJ8cR4Yrwj4nzN5Mox3jBcO867cow3DOI8cZ44f6rqFuNNhmEYZx8vDwAAAAAAAAAAAAAAzoZ3wgMAAAAAAAAAAAAA4CQk4QEAAAAAAAAAAAAAcBKS8AAAAAAAAAAAAAAAOAlJeAAAAAAAAAAAAAAAnIQkPAAAAAAAAAAAAAAATkISHgAAAAAAAAAAAAAAJyEJDwAAAAAAAAAAAACAk5CEB1ApTCaTVqxYUannmDp1qlq0aFGp5wAAAKUR5wEAqJmI8QAA1FzEeeDiIgkPXKIOHTqkESNGqF69evLy8lJERIS6deum77//vqqb5jRLly5VmzZtZLFYFBAQoISEBI0bN86+/8EHH9SXX35ZhS0EAKByEOeJ8wCAmokYT4wHANRcxHniPHAq96puAIDz069fPxUVFWn+/PmqX7++Dh48qC+//FLHjh2r6qY5xRdffKFbb71VTz75pHr16iWTyaStW7c6BHB/f3/5+/tXYSsBAKgcxHniPACgZiLGE+MBADUXcZ44DzgwAFxyjh8/bkgykpOTz1juueeeMxITEw1fX18jOjrauOeee4zs7Gz7/rlz5xoWi8X48MMPjcaNGxs+Pj5Gv379jBMnThjz5s0zYmJijKCgIOP+++83iouL7cfFxMQY06ZNM2677TbDz8/PiIyMNGbPnu1wbknG8uXL7ev79u0zBgwYYAQFBRkhISFGr169jNTU1HLbPmrUKKNjx45n7N+UKVOM5s2bO5zz9CUmJsa+/7fffjN69Ohh+Pn5GWFhYcbtt99uHD58+IznAADgYiPOlyDOAwBqGmJ8CWI8AKAmIs6XIM4Df2M6euASdPJpshUrVqigoKDccmazWbNnz9avv/6q+fPn66uvvtKECRMcyuTm5mr27NlatGiRPv30UyUnJ6tv375auXKlVq5cqQULFuiNN97Qe++953Dcs88+q8svv1w//fSTHnnkEY0ZM0aff/55me3Izc1Vp06d5O/vr7Vr1+qbb76Rv7+/unfvrsLCwjKPiYiI0G+//aZff/21wtclLS3Nvmzfvl0NGzZU+/bt7fs6dOigFi1aaMOGDfr000918OBBDRgwoML1AwBwMRDny0acBwBc6ojxZSPGAwBqAuJ82YjzcGlV/RQAgPPz3nvvGcHBwYa3t7dx9dVXG4888ojx888/n/GYxYsXG7Vq1bKvz50715BkbN++3b5txIgRhq+vr8PTd926dTNGjBhhX4+JiTG6d+/uUPfAgQONHj162Nd1ylN1c+bMMeLj4w2bzWbfX1BQYPj4+BifffZZmW09ceKEccMNN9ifjBs4cKAxZ84cIz8/317m9KfqTrLZbMbNN99stGrVysjNzTUMwzAmTZpkdO3a1aHc3r17DUlGSkpKmW0AAKCqEOeJ8wCAmokYT4wHANRcxHniPHAqRsIDl6h+/frpwIED+uCDD9StWzclJyfriiuu0Lx58+xlVq9erS5duqhOnToKCAjQHXfcoaNHjyonJ8dextfXVw0aNLCvh4eHKzY21uG9LeHh4Tp06JDD+du2bVtq/ffffy+zrRs3btT27dsVEBBgfyIwJCRE+fn52rFjR5nH+Pn56eOPP9b27dv12GOPyd/fX+PGjdOVV16p3NzcM16bRx99VN9//71WrFghHx8fextWr15tP7+/v7+aNGkiSeW2AQCAqkKcLx9xHgBwKSPGl48YDwC41BHny0echytyr+oGADh/3t7e6tKli7p06aLJkydr2LBhmjJlioYMGaLdu3frhhtu0N13363p06crJCRE33zzje666y4VFRXZ6/Dw8HCo02QylbnNZrOdtT0mk6nM7TabTa1atdLChQtL7atdu/YZ62zQoIEaNGigYcOGaeLEiWrcuLGSkpJ05513lln+3Xff1QsvvKDk5GRFR0c7tOGmm27Sf/7zn1LHREZGnrENAABUBeJ8acR5AEBNQIwvjRgPAKgpiPOlEefhqkjCAzVI06ZNtWLFCknShg0bVFxcrOeee05mc8mkF4sXL3baudatW1dq/eRTaqe74oorlJSUpLCwMAUGBp73OWNjY+Xr6+vwVOCpvv/+ew0bNkyvv/66rrrqqlJtWLp0qWJjY+Xuzp8+AMClhzhPnAcA1EzEeGI8AKDmIs4T5+G6mI4euAQdPXpU1113nd5991398ssvSk1N1ZIlS/TMM8+od+/ekkqeRisuLtaLL76onTt3asGCBXrttdec1oZvv/1WzzzzjLZt26aXX35ZS5Ys0ahRo8osO2jQIIWGhqp37976+uuvlZqaqjVr1mjUqFHat29fmcdMnTpVEyZMUHJyslJTU7Vp0yYNHTpURUVF6tKlS6ny6enpuvnmm3XrrbeqW7duSk9PV3p6ug4fPixJuu+++3Ts2DHddttt+vHHH7Vz506tWrVKQ4cOldVqddp1AQDgQhHnifMAgJqJGE+MBwDUXMR54jxwOpLwwCXI399fbdq00QsvvKD27dsrMTFRkyZN0vDhw/XSSy9Jklq0aKHnn39e//nPf5SYmKiFCxfqqaeeclobxo0bp40bN6ply5aaPn26nnvuOXXr1q3Msr6+vlq7dq3q1aunvn376rLLLtPQoUOVl5dX7lN2HTp00M6dO3XHHXeoSZMm6tGjh9LT07Vq1SrFx8eXKv/HH3/o4MGDmj9/viIjI+3LP/7xD0lSVFSUvv32W1mtVnXr1k2JiYkaNWqULBaL/alDAACqA+I8cR4AUDMR44nxAICaizhPnAdOZzIMw6jqRgC4tMTGxmr06NEaPXp0VTcFAAA4GXEeAICaiRgPAEDNRZwHqh8eJQEAAAAAAAAAAAAAwElIwgMAAAAAAAAAAAAA4CRMRw8AAAAAAAAAAAAAgJMwEh4AAAAAAAAAAAAAACchCQ8AAAAAAAAAAAAAgJOQhAcAAAAAAAAAAAAAwElIwgMAAAAAAAAAAAAA4CQk4QEAAAAAAAAAAAAAcBKS8AAAAAAAAAAAAAAAOAlJeAAAAAAAAAAAAAAAnIQkPAAAAAAAAAAAAAAATkISHgAAAAAAAAAAAAAAJ/l/vcT9o4ZOLUkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create subplots\n", + "fig, axs = plt.subplots(1, 4, figsize=(25, 10), sharey=True)\n", + "\n", + "for i in range(len(heritability)):\n", + " h = heritability[i]\n", + " for m in methods:\n", + " if \"RF_plus\" in m:\n", + " axs[i].plot(sample_row_n, agg_results[h][m][\"train_auroc\"], label=m, linestyle='dashed')\n", + " else:\n", + " axs[i].plot(sample_row_n, agg_results[h][m][\"train_auroc\"], label=m)\n", + " axs[i].set_xlabel('Sample Size')\n", + " axs[i].set_ylabel('Training AUROC')\n", + " axs[i].set_title('PVE = ' + str(h))\n", + " \n", + "# Share the label in the last plot\n", + "axs[3].legend()\n", + "\n", + "fig.suptitle(\"Training AUROC for Hierarchical Polynomial Model for Diabetes Regression Data\")\n", + "\n", + "# Show the plots\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB+EAAAOlCAYAAACyqZUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3RURRvH8d9ueq+QUEPvSO+9S1NAFAvSwa7YXsUCoihYwQKCQGgiRaUpUgULAgakSJFeQgslPSF1975/rAmEBAiwKeD3c86ew52dO/Pcm5sd4NmZMRmGYQgAAAAAAAAAAAAAANwyc0EHAAAAAAAAAAAAAADAnYIkPAAAAAAAAAAAAAAAdkISHgAAAAAAAAAAAAAAOyEJDwAAAAAAAAAAAACAnZCEBwAAAAAAAAAAAADATkjCAwAAAAAAAAAAAABgJyThAQAAAAAAAAAAAACwE5LwAAAAAAAAAAAAAADYCUl4AAAAAAAAAAAAAADshCQ8AAAACpzJZMrV65dffrmlft566y2ZTKabOveXX36xSwy3atmyZTKZTAoICFBKSkqOdUwmk55++ukc3/vuu++yXceAAQOy3GcXFxdVrlxZo0aNUnJycma9jPuX8XJyclLp0qU1dOhQRUREZOvLarVqzpw5at++vQIDA+Xk5KSiRYuqW7du+uGHH2S1Wq95rVFRUXrwwQdVtGhRmUwm9ejR4/o36Ba0bt1aNWrUyPG9CxcuyGQy6a233sosKyzPxM0aMGCAPD09c1X3ymu3tzJlymjAgAG5qnf5M+jp6alGjRpp9uzZN9zn7f7zu1Lr1q3VunXrPD23devWMplMKleunAzDyPb+b7/9lvmzmTlz5k3FkpOZM2fKZDLp2LFjN3zujXzuf/7556pQoYKcnZ1lMpkUExNzw/3lVsY1ZbxcXV0VHBysNm3aaOzYsTp37ly2c25lDLuR3/fc+uabbzRhwgS7tplbGc/i5fevWrVqGjNmjFJTUwskpoKQ289Oe8v4/Mx4OTs7q0iRImrWrJlef/11HT9+/KbbPn36tN566y3t2LHDfgEDAAAABcCxoAMAAAAANm3alOX4nXfe0fr167Vu3bos5dWqVbulfoYMGaK77777ps6tW7euNm3adMsx3Krp06dLsiWolyxZoj59+tilXTc3t8z7HR0drXnz5untt9/Wvn37tGDBgix1V65cKR8fHyUkJGj16tX6+OOPtXHjRu3YsUNOTk6SpOTkZPXo0UOrV6/Wgw8+qC+//FLBwcE6f/68Vq5cqfvvv18LFizQvffee9WY3nnnHS1evFihoaEqX768/P397XKt9lJYnon8sGnTJpUsWbKgw5AkNWvWTB999JEk6eTJk/roo4/Uv39/JSYm6oknnijg6ArOpEmT8qUfLy8vHT16VOvWrVO7du2yvBcaGipvb2/FxcXlSyz2tGPHDj377LMaMmSI+vfvL0dHR3l5eeV5vzNmzFCVKlWUlpamc+fOacOGDXr//ff10UcfacGCBWrfvn1m3VsZw/LCN998o927d2v48OEF0n+5cuU0d+5cSdL58+c1bdo0vfnmmwoPD9dXX31VIDHlt8WLF8vb27vA+n/vvffUpk0bWSwWRUZG6s8//1RoaKjGjx+vqVOn6pFHHrnhNk+fPq3Ro0erTJkyql27tv2DBgAAAPIJSXgAAAAUuMaNG2c5LlKkiMxmc7byK128eFHu7u657qdkyZI3nUj09va+bjx5LSIiQj/99JPatm2rjRs3avr06XZLwl95vzt37qxjx45p4cKF+uSTT1SiRInM9+rVq6fAwEBJUvv27XXhwgXNmDFDGzZsUJs2bSRJL7zwglatWqVZs2apX79+Wfrq1auXXn75ZSUlJV0zpt27d6t8+fI39Z/4OTEMQ8nJyXJzc7NLe/Z+JpKSkuTq6nrTM10lKS0tTSaTSY6O9v2nXkE/+5fz9fXNEk/79u0VEhKiTz755D+dhM+vL4OULl1aXl5eCg0NzZKEj4+P17fffqtHHnlEU6dOzZdY7GnPnj2SpKFDh6phw4Z2aTM3Y1SNGjVUv379zOP77rtPzz//vJo3b65evXrp4MGDCgoKknRrY9idyM3NLdu4Va1aNc2aNUufffaZXF1d8y2WvPrsvZ46derka39XqlixYpafwT333KMXX3xR7du314ABA3TXXXepZs2aBRghAAAAUHBYjh4AAAC3hYylwn/77Tc1bdpU7u7uGjRokCRpwYIF6tixo4oVKyY3NzdVrVpVr776qhITE7O0kdNSvmXKlFG3bt20cuVK1a1bV25ubqpSpYpCQ0Oz1Mtp6eqM5X0PHTqkLl26yNPTU6VKldKLL76Yban4kydPqnfv3vLy8pKvr68eeeQRbdmy5YaWbZ41a5bS09P1/PPPq1evXvr5559vacnX68n4j/Xr9ZGRQDp79qwk25cFpk2bpk6dOmVLwGeoWLGi7rrrrhzfO3bsmEwmk9auXat//vkn23YEUVFRevLJJ1WiRAk5OzurXLlyev3117Pd84xl+SdPnqyqVavKxcVFs2bNyvX1X8/VljPfunWr7rnnHvn7+8vV1VV16tTRwoULs9TJWIp69erVGjRokIoUKSJ3d3elpKTo0KFDGjhwoCpWrCh3d3eVKFFC3bt3165du3Lsf86cOXrxxRdVokQJubi46NChQ5JsKxa0a9dOPj4+cnd3V9WqVTV27Nhs15Gb5zen5ehPnTqlYcOGqVSpUnJ2dlbx4sXVu3fvzOcgOTlZL774omrXri0fHx/5+/urSZMmWrp06c3c7qvy9fVV5cqVszynGzZsULt27eTl5SV3d3c1bdpUy5cvv2Y7c+bMkclkyrYyhyS9/fbbcnJy0unTpyVd+jzasmWLWrRoIXd3d5UrV07jxo3Lts1CeHi4+vbtq6JFi8rFxUVVq1bVxx9/nKVexjP/4Ycf6v3331eZMmXk5uam1q1b68CBA0pLS9Orr76q4sWLy8fHRz179sy2XHlOS8qPHj1ajRo1kr+/v7y9vVW3bl1Nnz49x6Xkb8SgQYO0aNGiLMu1z58/X5L04IMP5nhObn8mmzdvVrNmzeTq6qrixYtrxIgRSktLy7HNBQsWqEmTJvLw8JCnp6c6deqk7du33/D1tG7dWn379pUkNWrUSCaTKcsS36GhoapVq5ZcXV3l7++vnj176p9//snSRsZ4sGvXLnXs2FFeXl7ZVgrIrdKlS+vjjz9WfHy8pkyZklme0xiW2/Evw549e9SuXTt5eHioSJEievrpp3Xx4sUsdQzD0KRJk1S7dm25ubnJz89PvXv31pEjR7Lcs+XLl+v48eNZliXPkJqaqjFjxqhKlSpycXFRkSJFNHDgQJ0/fz5LX+vWrVPr1q0VEBAgNzc3lS5dWvfdd1+2mHLD0dFRtWvXVmpqapZnMzfXk1HvvffeU0hIiFxdXVW/fn2tWbMm2+/W9T57165dq3bt2snb21vu7u5q1qyZfv755yx9nT9/PvPzM+P+NGvWTGvXrs2ss337dnXr1i3zs6N48eLq2rWrTp48mVknp+Xob+Qz56OPPtInn3yismXLytPTU02aNNHmzZtv+N5fzt/fX1OmTFF6errGjx+fWZ6bse2XX35RgwYNJEkDBw7MfK4yxp+tW7fqwQcfzPyMLFOmjB566KE8/bsQAAAAcLNIwgMAAOC2cebMGfXt21cPP/ywfvrpJz355JOSpIMHD6pLly6aPn26Vq5cqeHDh2vhwoXq3r17rtrduXOnXnzxRT3//PNaunSp7rrrLg0ePFi//fbbdc9NS0vTPffco3bt2mnp0qUaNGiQxo8fr/fffz+zTmJiotq0aaP169fr/fff18KFCxUUFHTDs9hDQ0NVrFgxde7cWYMGDZLVarXrvstXykgoFClS5Jr1jh49KkmqVKmSJGn9+vVKS0u76T3cixUrpk2bNqlOnToqV66cNm3apE2bNqlu3bpKTk5WmzZtNHv2bL3wwgtavny5+vbtqw8++EC9evXK1taSJUv05ZdfauTIkVq1apVatGhx3f7T09OzvSwWS65iX79+vZo1a6aYmBhNnjxZS5cuVe3atdWnT58cf1aDBg2Sk5OT5syZo++++y4z0RsQEKBx48Zp5cqVmjhxohwdHdWoUSPt378/WxsjRoxQeHi4Jk+erB9++EFFixbV9OnT1aVLF1mt1szyZ599NkvyRsrd85uTU6dOqUGDBlq8eLFeeOEFrVixQhMmTJCPj4+io6MlSSkpKYqKitJLL72kJUuWaN68eZmze29mD/erSUtL0/HjxzOf019//VVt27ZVbGyspk+frnnz5snLy0vdu3fPtrXC5fr06aPg4GBNnDgxS3l6erqmTJminj17qnjx4pnlEREReuSRR9S3b18tW7ZMnTt31ogRI/T1119n1jl//ryaNm2q1atX65133tGyZcvUvn17vfTSS3r66aezxTBx4kT98ccfmjhxoqZNm6Z9+/ape/fuGjx4sM6fP6/Q0FB98MEHWrt2rYYMGXLde3Ps2DE99thjWrhwoRYtWqRevXrpmWee0TvvvHPdc6/lwQcflIODg+bNm5dZNn36dPXu3TvHpbFz+zPZu3ev2rVrp5iYGM2cOVOTJ0/W9u3bNWbMmGxtvvfee3rooYdUrVo1LVy4UHPmzFF8fLxatGihvXv33tD1TJo0SW+88YYk2/LwmzZt0ptvvilJGjt2rAYPHqzq1atr0aJF+vTTT/X333+rSZMmOnjwYJZ2UlNTdc8996ht27ZaunSpRo8efUNxXK5Lly5ycHC47jh0I+NfWlqaunTponbt2mnJkiV6+umnNWXKlGxj0WOPPabhw4erffv2WrJkiSZNmqQ9e/aoadOmmV+ymTRpkpo1a6bg4ODMz+iML7BYrVbde++9GjdunB5++GEtX75c48aNy0xoZ6yCcuzYMXXt2lXOzs4KDQ3VypUrNW7cOHl4eNz0vu5Hjx6Vr69vlnErN9cjSa+//rpef/113X333Vq6dKkef/xxDRkyRAcOHMixr5w+e7/++mt17NhR3t7emjVrlhYuXCh/f3916tQpSyL+0Ucf1ZIlSzRy5EitXr1a06ZNU/v27RUZGSnJ9veGDh066OzZs5o4caLWrFmjCRMmqHTp0oqPj7/q9d/MZ05G23PnzlViYqK6dOmi2NjYG773l2vQoIGKFSuW5fnNzdhWt25dzZgxQ5L0xhtvZD5XGZ93x44dU+XKlTVhwgStWrVK77//vs6cOaMGDRrowoULtxQzAAAAYHcGAAAAUMj079/f8PDwyFLWqlUrQ5Lx888/X/Ncq9VqpKWlGb/++qshydi5c2fme6NGjTKu/CtwSEiI4erqahw/fjyzLCkpyfD39zcee+yxzLL169cbkoz169dniVOSsXDhwixtdunSxahcuXLm8cSJEw1JxooVK7LUe+yxxwxJxowZM655TYZhGL/99pshyXj11Vczr7Ns2bJGSEiIYbVas9SVZDz11FM5tvPtt9/meB0eHh5GWlqakZaWZpw/f9749NNPDZPJZDRo0CCzXsb9i4iIMNLS0ozo6Ghj4cKFhoeHh/HQQw9l1hs3bpwhyVi5cuV1r+taWrVqZVSvXj1L2eTJk3O85++//74hyVi9enVmmSTDx8fHiIqKynV/kq75GjVqVGb9nJ6JKlWqGHXq1DHS0tKytN2tWzejWLFihsViMQzDMGbMmGFIMvr163fduNLT043U1FSjYsWKxvPPP5+t/5YtW2apHx8fb3h7exvNmzfP9mxcLrfPr2EY2a590KBBhpOTk7F3797rxn/5daSlpRmDBw826tSpk+W9kJAQo3///tdtIyQkxOjSpUvms3r06NHM63j55ZcNwzCMxo0bG0WLFjXi4+Oz9F2jRg2jZMmSmfckp5/fqFGjDGdnZ+Ps2bOZZQsWLDAkGb/++mtmWcaz8ueff2aJr1q1akanTp0yj1999dUc6z3xxBOGyWQy9u/fbxiGYRw9etSQZNSqVSvzGTEMw5gwYYIhybjnnnuynD98+HBDkhEbG5slplatWl313lksFiMtLc14++23jYCAgCzPxvXOvbxexu9k//79jfr16xuGYRh79uwxJBm//PKLsWXLlmyfa7n9mfTp08dwc3MzIiIistSrUqWKIck4evSoYRiGER4ebjg6OhrPPPNMlvji4+ON4OBg44EHHsgsy+lzPycZv5NbtmzJLIuOjjbc3NyMLl26ZKkbHh5uuLi4GA8//HBmWcZzGBoaet2+rtbflYKCgoyqVavm+lquNf5lxPfpp59mOefdd981JBkbNmwwDMMwNm3aZEgyPv744yz1Tpw4Ybi5uRn/+9//Msu6du1qhISEZItj3rx5hiTj+++/z1Ke8WxMmjTJMAzD+O677wxJxo4dO656TVeT8SxmfBacOXPGGDlypCHJmDx5cma93F5PVFSU4eLiYvTp0ydLvYzzL//9uNpnb2JiouHv72907949S7nFYjFq1aplNGzYMLPM09PTGD58+FWvb+vWrYYkY8mSJde8D1d+dt7oZ07NmjWN9PT0zHphYWGGJGPevHnX7DfjHnz77bdXrdOoUSPDzc3tqu9fbWzL6TPkWm0kJCQYHh4e2Z5tAAAAoKAxEx4AAAC3DT8/P7Vt2zZb+ZEjR/Twww8rODhYDg4OcnJyUqtWrSQp25LBOaldu7ZKly6deezq6qpKlSrlanlTk8mUbcbhXXfdleXcX3/9VV5eXrr77ruz1HvooYeu236G6dOnS1LmEvwZyyUfP3482zK3NyMxMVFOTk5ycnJSkSJFNHz4cHXu3FmLFy/OVjc4OFhOTk7y8/PTAw88oHr16tl1mfdrWbdunTw8PNS7d+8s5RnL8V55L9q2bSs/P79ct1++fHlt2bIl2+vyJYKv5tChQ9q3b1/mHvaXz6Tv0qWLzpw5k20m+3333ZetnfT0dL333nuqVq2anJ2d5ejoKGdnZx08eDDH5/nKNjZu3Ki4uDg9+eST191fPjfPb05WrFihNm3aqGrVqtes9+2336pZs2by9PSUo6OjnJycNH369Fz9Xl7NTz/9lPmsli1bVgsXLtQzzzyjMWPGKDExUX/++ad69+4tT0/PzHMcHBz06KOP6uTJkzmuJpAhY0/5y/c0/+KLL1SzZk21bNkyS93g4OBse4dfee/WrVunatWqZas3YMAAGYahdevWZSnv0qWLzOZL/0zPuL9du3bNUi+jPDw8/KrXktF/+/bt5ePjk/nZOHLkSEVGRmZbzv5GDRo0SFu3btWuXbs0ffp0lS9fPts9knRDP5P169erXbt2mXugZ9S7cqb2qlWrlJ6ern79+mX5PXN1dVWrVq2ybRFxszZt2qSkpKRsy32XKlVKbdu2zfGzN6ff6Ztl5GLbgBsd/zI+nzI8/PDDkmz3XpJ+/PFHmUwm9e3bN8u9DQ4OVq1atXJ1b3/88Uf5+vqqe/fuWdqoXbu2goODM9uoXbu2nJ2dNWzYMM2aNSvb8vDXs2fPnszPgmLFiuntt9/WiBEj9Nhjj2WJJTfXs3nzZqWkpOiBBx7I0kfjxo1VpkyZHPvP6bM3KipK/fv3z9KX1WrV3XffrS1btmRuE9CwYUPNnDlTY8aM0ebNm7NtuVChQgX5+fnplVde0eTJk3O9usONfuZ07dpVDg4OmccZ28TYY3n3K5/fGx3bcpKQkKBXXnlFFSpUkKOjoxwdHeXp6anExMRbGlcAAACAvOBY0AEAAAAAuVWsWLFsZQkJCWrRooVcXV01ZswYVapUSe7u7jpx4oR69eqVuezttQQEBGQrc3FxydW57u7ucnV1zXZucnJy5nFkZGSWpFKGnMpyEh8fr2+//VYNGzZUkSJFMve67dmzp9566y1Nnz5d7du3z6zv4OBw1eXT09PTJUlOTk5Zyt3c3DKXjXVxcVFISEiOy0pLtv1ufXx8FBUVpa+++krff/+9nnnmGU2ePFmSMr/QkLFMvT1FRkYqODg4W3K5aNGicnR0zFzKN0NOz8y1ZOwDfKXcLHObsazxSy+9pJdeeinHOle2k1N8L7zwgiZOnKhXXnlFrVq1kp+fn8xms4YMGZLjM3llGxl7LpcsWfK6Mefm+c3J+fPnr9v+okWL9MADD+j+++/Xyy+/rODgYDk6OurLL79UaGjodWO7mubNm2v8+PEymUxyd3dX+fLl5ezsLEk6d+6cDMPI8b5mLCV/5TNyuYxtIqZMmaJXX31Ve/bs0e+//55lX+4MufnciIyMzDGBd7VY/P39sxxnXNfVyq/1cwoLC1PHjh3VunVrTZ06VSVLlpSzs7OWLFmid999N1efb9fSsmVLVaxYUVOmTNHChQs1fPjwHL/0ER0dneufScbv95WuLMv4XcvYO/pKl3+R4VZkxHW12NesWZOlzN3d/aqfmzcqMTFRkZGRqlmz5lXr3Oj45+jomO25zbi3Gdd69uxZGYZx1fGpXLly14397NmziomJyXxOr5TxOVi+fHmtXbtWH3zwgZ566iklJiaqXLlyevbZZ/Xcc89dt5/y5ctr/vz5MgxDx48f15gxYzR27FjdddddevDBB2/oejKu/0bG6iufi4zn8soviV0uKipKHh4eWrBggcaMGaNp06bpzTfflKenp3r27KkPPvhAwcHB8vHx0a+//qp3331Xr732mqKjo1WsWDENHTpUb7zxRrYxPMONfuZc+Ty4uLhI0i1/Pki2LwldvoXHjY5tOXn44Yf1888/680331SDBg3k7e0tk8mkLl262CVmAAAAwJ5IwgMAAOC2kVOCZ926dTp9+rR++eWXzNl/kjIT1YVBQECAwsLCspVHRETk6vx58+bp4sWLCgsLy3FW9+LFixUdHZ35XlBQkE6dOpVjWxnlVyYVzGZzjsnnnNSqVUuBgYGSpA4dOqhTp0766quvNHjwYDVo0EBt2rSRk5OTlixZoscffzxXbeZWQECA/vzzTxmGkeV5OHfunNLT0zPjynC9meD2lNH3iBEjctyfXpIqV66c5Tin+L7++mv169dP7733XpbyCxcuyNfXN1v9K9vI2Av5yv3f7alIkSLXbf/rr79W2bJltWDBgiwxpqSk3FLfPj4+V31WM5I6Z86cyfbe6dOnJSnbM3Kl5557TnPmzNHSpUu1cuVK+fr6Zps9nFsBAQG3FMutmD9/vpycnPTjjz9m+aLFkiVL7NbHwIED9cYbb8hkMql///451rmRn0lAQECOn4tXlmXU/+677xQSEnJL13AtGQnKq8Wel583y5cvl8ViUevWra9a50bHv/T0dEVGRmZJvGbc24yywMBAmUwm/f7775kJ2cvlVHalwMBABQQEaOXKlTm+7+XllfnnFi1aqEWLFrJYLNq6das+//xzDR8+XEFBQZmJ9Ku5/EtTGWNP9erVNXz4cHXr1k2enp65vp6M6798j/gMEREROSa2r/x5ZzwPn3/+uRo3bpxjzBljb2BgoCZMmKAJEyYoPDxcy5Yt06uvvqpz585l3reaNWtmfsng77//1syZM/X222/Lzc1Nr776ao7tF+RnzuXCwsIUERGhwYMHZ5bd6Nh2pdjYWP34448aNWpUlutPSUlRVFSU3WIHAAAA7IXl6AEAAHBby/hP8Cv/cz2nmasFpVWrVoqPj9eKFSuylM+fPz9X50+fPl1eXl76+eeftX79+iyvDz/8UCkpKZo7d25m/fbt22v9+vWZM6IzGIahb7/9VmXKlFGFChVu/cJku/8TJ06Ug4OD3njjDUm2mZVDhgzRqlWrNHv27BzPO3z4sP7+++8b7q9du3ZKSEjIlkjM6Kddu3Y33Ka9VK5cWRUrVtTOnTtVv379HF+XJ5+uxmQyZXuely9fftUvVlypadOm8vHx0eTJk3O1nPXN6Ny5s9avX3/Npd1NJpOcnZ2zJKoiIiK0dOnSPIlJkjw8PNSoUSMtWrQoy6xIq9Wqr7/+WiVLllSlSpWu2Ua9evXUtGlTvf/++5o7d64GDBggDw+Pm4qnXbt22rt3r7Zt25alfPbs2TKZTGrTps1NtZsbJpNJjo6OWZaaTkpK0pw5c+zWR//+/dW9e3e9/PLLKlGiRI51buRn0qZNG/38889ZEqEWi0ULFizI0manTp3k6Oiow4cPX/V3zR6aNGkiNzc3ff3111nKT548qXXr1uXZ5014eLheeukl+fj4ZFla/Uo3M/5dPlZI0jfffCNJmcn+bt26yTAMnTp1Ksf7evnM/KutGNOtWzdFRkbKYrHk2MaVX0aSbCu4NGrUSBMnTpSkbL8zuREQEKBx48bp7Nmz+vzzz2/oeho1aiQXF5dsz9rmzZtzvTR7s2bN5Ovrq7179171ucxpdYDSpUvr6aefVocOHXK8bpPJpFq1amn8+PHy9fW95r0pyM+cDFFRUXr88cfl5OSk559/PrM8t2Pb1Wbjm0wmGYaRrY1p06ZddfUfAAAAoCAxEx4AAAC3taZNm8rPz0+PP/64Ro0aJScnJ82dO1c7d+4s6NAy9e/fX+PHj1ffvn01ZswYVahQQStWrNCqVaskXXvp5N27dyssLExPPPGE2rZtm+39Zs2a6eOPP9b06dP19NNPS5JGjhypH374QY0aNdKrr76qihUrKiIiQlOnTtWWLVu0cOFCu15fxYoVNWzYME2aNEkbNmxQ8+bN9cknn+jIkSMaMGCAVq1apZ49eyooKEgXLlzQmjVrNGPGDM2fPz9z/9nc6tevnyZOnKj+/fvr2LFjqlmzpjZs2KD33ntPXbp0ybIsf0GYMmWKOnfurE6dOmnAgAEqUaKEoqKi9M8//2jbtm369ttvr9tGt27dNHPmTFWpUkV33XWX/vrrL3344Ye5Wl5ekjw9PfXxxx9ryJAhat++vYYOHaqgoCAdOnRIO3fu1BdffHGrl6m3335bK1asUMuWLfXaa6+pZs2aiomJ0cqVK/XCCy+oSpUq6tatmxYtWqQnn3xSvXv31okTJ/TOO++oWLFiOnjw4C3HcDVjx45Vhw4d1KZNG7300ktydnbWpEmTtHv3bs2bNy9Xs5Wfe+459enTRyaTSU8++eRNx/L8889r9uzZ6tq1q95++22FhIRo+fLlmjRpkp544onrfiHgVnTt2lWffPKJHn74YQ0bNkyRkZH66KOPcjWTObeKFy+eq5n1uf2ZvPHGG1q2bJnatm2rkSNHyt3dXRMnTszcRztDmTJl9Pbbb+v111/XkSNHdPfdd8vPz09nz55VWFiYPDw8NHr06Fu+Pl9fX7355pt67bXX1K9fPz300EOKjIzU6NGj5erqqlGjRt1yH7t3787cO/zcuXP6/fffNWPGDDk4OGjx4sWZK1vk5EbHP2dnZ3388cdKSEhQgwYNtHHjRo0ZM0adO3dW8+bNJdnGlGHDhmngwIHaunWrWrZsKQ8PD505c0YbNmxQzZo19cQTT0iyzdRetGiRvvzyS9WrVy9zRZUHH3xQc+fOVZcuXfTcc8+pYcOGcnJy0smTJ7V+/Xrde++96tmzpyZPnqx169apa9euKl26tJKTkzO3qrjZz/J+/frpk08+0UcffaSnnnoq19fj7++vF154QWPHjpWfn5969uypkydPavTo0SpWrFiutjjw9PTU559/rv79+ysqKkq9e/dW0aJFdf78ee3cuVPnz5/Xl19+qdjYWLVp00YPP/ywqlSpIi8vL23ZskUrV67MXEXlxx9/1KRJk9SjRw+VK1dOhmFo0aJFiomJUYcOHa4aQ35/5hw8eFCbN2+W1WpVZGSk/vzzT02fPl1xcXGaPXu2qlevnlk3t2Nb+fLl5ebmprlz56pq1ary9PRU8eLFVbx4cbVs2VIffvihAgMDVaZMGf3666+aPn16rmbSAwAAAPmNJDwAAABuawEBAVq+fLlefPFF9e3bVx4eHrr33nu1YMEC1a1bt6DDk2SbCbpu3ToNHz5c//vf/2QymdSxY0dNmjRJXbp0ueZ/Hk+fPl2Srjob0snJSQMGDNC4ceO0bds21a1bV+XLl1dYWJhGjx6tt956S+fPn5enp6caNmyoNWvW5JjMv1WjRo3S7NmzNXLkSK1bt06urq5avny55s6dq1mzZumxxx5TXFyc/Pz8VL9+fYWGhqp79+433I+rq6vWr1+v119/XR9++KHOnz+vEiVK6KWXXrJLQuxWtWnTRmFhYXr33Xc1fPhwRUdHKyAgQNWqVdMDDzyQqzY+/fRTOTk5aezYsUpISFDdunW1aNGizJUGcmPw4MEqXry43n//fQ0ZMkSGYahMmTJXXTL8RpUoUUJhYWEaNWqUxo0bp8jISBUpUkTNmzfP3L984MCBOnfunCZPnqzQ0FCVK1dOr776amZiK6+0atVK69at06hRozRgwABZrVbVqlVLy5YtU7du3XLVRo8ePeTi4qI2bdqoYsWKNx1LkSJFtHHjRo0YMUIjRoxQXFycypUrpw8++EAvvPDCTbebG23btlVoaKjef/99de/eXSVKlNDQoUNVtGjRLEtE54fc/kxq1KihtWvX6sUXX1T//v3l5+enRx99VPfdd5+GDRuWpc0RI0aoWrVq+vTTTzVv3jylpKQoODhYDRo0sOs2GCNGjFDRokX12WefacGCBXJzc1Pr1q313nvv3dKzkWHgwIGSbAlyX19fVa1aVa+88oqGDBlyzQS8dOPjX8b2BM8++6zGjBkjNzc3DR06VB9++GGWelOmTFHjxo01ZcoUTZo0SVarVcWLF1ezZs3UsGHDzHrPPfec9uzZo9dee02xsbEyDEOGYcjBwUHLli3Tp59+qjlz5mjs2LFydHRUyZIl1apVq8zZ57Vr19bq1as1atQoRUREyNPTUzVq1NCyZcvUsWPHm7qfZrNZ48aNU9euXTVhwgSNHDky19fz7rvvysPDQ5MnT9aMGTNUpUoVffnll3r99ddzneTt27evSpcurQ8++ECPPfaY4uPjVbRoUdWuXVsDBgyQZBvHGjVqpDlz5ujYsWNKS0tT6dKl9corr+h///ufJNuX23x9ffXBBx/o9OnTcnZ2VuXKlTVz5sxrfo7n92fOa6+9JklydHSUj4+PKlWqpEGDBmnYsGHZtorI7djm7u6u0NBQjR49Wh07dlRaWppGjRqlt956S998842ee+45/e9//1N6erqaNWumNWvWqGvXrna/NgAAAOBWmYy8Wp8QAAAAwDW99957euONNxQeHp7rWc4A8t4PP/yge+65R8uXL1eXLl0KOhwABeTo0aOqUqWKRo0alZlwBgAAAIDcIAkPAAAA5IOMJcCrVKmitLQ0rVu3Tp999pn69Olz1X3TAeSvvXv36vjx43ruuefk4eGhbdu25Wr5egC3v507d2revHlq2rSpvL29tX//fn3wwQeKi4vT7t27FRQUVNAhAgAAALiNsBw9AAAAkA/c3d01fvx4HTt2TCkpKZlLz97IEuMA8taTTz6pP/74Q3Xr1tWsWbNIwAP/IR4eHtq6daumT5+umJgY+fj4qHXr1nr33XdJwAMAAAC4YcyEBwAAAAAAAAAAAADATswFHQAAAAAAAAAAAAAAAHcKkvAAAAAAAAAAAAAAANgJSXgAAAAAAAAAAAAAAOyEJDwAAAAAAAAAAAAAAHZCEh4AAAAAAAAAAAAAADshCQ8AAAAAAAAAAAAAgJ2QhAcAAAAAAAAAAAAAwE5IwgMAAAAAAAAAAAAAYCck4QEAAAAAAAAAAAAAsBOS8AAAAAAAAAAAAAAA2AlJeAAAAAAAAAAAAAAA7IQkPAAAAAAAAAAAAAAAdkISHgAAAAAAAAAAAAAAOyEJDwAAAAAAAAAAAACAnZCEBwAAAAAAAAAAAADATkjCAwAAAAAAAAAAAABgJyThAQAAAAAAAAAAAACwE5LwAAAAAAAAAAAAAADYCUl4AAAAAAAAAAAAAADshCQ8AAAAAAAAAAAAAAB2QhIeAAAAAAAAAAAAAAA7IQkPAAAAAAAAAAAAAICdkIQHAAAAAAAAAAAAAMBOSMIDAAAAAAAAAAAAAGAnJOEBAAAAAAAAAAAAALATkvAAAAAAAAAAAAAAANgJSXgAAAAAAAAAAAAAAOyEJDwAAAAAAAAAAAAAAHZCEh4AAAAAAAAAAAAAADshCQ8AAAAAAAAAAAAAgJ2QhAcAAAAAAAAAAAAAwE5IwgMAAAAAAAAAAAAAYCck4QEAAAAAAAAAAAAAsBOS8AAAAAAAAAAAAAAA2AlJeAAAAAAAAAAAAAAA7IQkPAAAAAAAAAAAAAAAdkISHgAAAAAAAAAAAAAAOyEJDwAAAAAAAAAAAACAnZCEBwAAAAAAAAAAAADATkjCAwAAAAAAAAAAAABgJyThAQAAAAAAAAAAAACwE5LwAAAAAAAAAAAAAADYCUl4AAAAAAAAAAAAAADshCQ8AAAAAAAAAAAAAAB2QhIeAAAAAAAAAAAAAAA7IQkPAAAAAAAAAAAAAICdkIQHAAAAAAAAAAAAAMBOSMIDAAAAAAAAAAAAAGAnJOEBAAAAAAAAAAAAALATkvAAAAAAAAAAAAAAANgJSXgAAAAAAAAAAAAAAOyEJDwAAAAAAAAAAAAAAHZCEh4AAAAAAAAAAAAAADshCQ8AAAAAAAAAAAAAgJ2QhAcAAAAAAAAAAAAAwE5IwgMAAAAAAAAAAAAAYCck4QEAAAAAAAAAAAAAsBOS8AAAAAAAAAAAAAAA2AlJeAAAAAAAAAAAAAAA7IQkPAAAAAAAAAAAAAAAdkISHgAAAAAAAAAAAAAAOyEJDwAAAAAAAAAAAACAnZCEBwAAAAAAAAAAAADATkjCAwAAAAAAAAAAAABgJyThgdvYzJkzZTKZMl+Ojo4qWbKkBg4cqFOnTkmSnn/+eZlMJu3bt++q7bz++usymUzatm2bJKlMmTJZ2r381bp16/y4tCzmz5+v2rVry9XVVcWLF9fw4cOVkJCQq3MnTJigXr16qWzZsgUWPwAAN4Nx/toOHDigl156SfXq1ZOvr6/8/f3VrFkzfffdd/kQNQAAN48x/sbs3btXLi4uMplM2rp1ax5ECgCA/TDOX19ERISefvpplStXTm5ubgoJCdHgwYMVHh6ex1ED+cuxoAMAcOtmzJihKlWqKCkpSb/99pvGjh2rX3/9Vbt27dLgwYM1YcIEhYaG6oMPPsh2rtVq1ezZs1W7dm3VrVs3s7xZs2b66KOPstX39vbO02u50ty5c9W3b18NGTJE48eP14EDB/TKK69o7969Wr169XXPnzx5sjw8PNS2bVv98MMP+RAxAAD2xTifs9WrV2v58uV69NFH1aBBA6Wnp2vBggW6//77NXr0aI0cOTKfrgIAgJvDGH99FotFgwYNUmBgoE6fPp2HEQMAYF+M8zlLSUlRy5YtFR0drdGjR6tatWrav3+/Ro0apVWrVumff/6Rl5dXPl0JkMcMALetGTNmGJKMLVu2ZCl/8803DUnG119/bRiGYTRs2NAIDg420tLSsrWxYsUKQ5Lx+eefZ5aFhIQYXbt2zdvgcyE9Pd0oVqyY0bFjxyzlc+fONSQZP/3003XbsFgsmX+uXr260apVK3uHCQBAnmCcv/Y4f/78ecNqtWYr79q1q+Hu7m4kJyfbNV4AAOyFMf76/5bP8OGHHxolSpQwPv300xzvGQAAhQ3j/LXH+TVr1hiSjGnTpmUp/+abbwxJxqJFi+weM1BQWI4euAM1btxYknT8+HFJ0uDBgxUREaEVK1Zkqztjxgy5uLjokUceydcYc2Pz5s06c+aMBg4cmKX8/vvvl6enpxYvXnzdNsxmPuYAAHcWxnmbwMBAmUymbOUNGzbUxYsXFRUVZdd4AQDIa4zxWR08eFAjR47UpEmT8n2GHwAA9sY4b+Pk5CRJ8vHxyVLu6+srSXJ1dbVfsEABIzsF3IEOHTokSSpSpIgk6aGHHpK7u7tCQ0Oz1IuOjtbSpUvVs2dP+fn5ZXnPMAylp6dnexmGcd3+czrvZtravXu3JOmuu+7KUu7k5KQqVapkvg8AwH8J4/y1rV+/XkWKFFHRokVv6nwAAAoKY3zW6xgyZIi6deume+6557r1AQAo7BjnbZo1a6Z69erprbfe0pYtW5SQkKBt27bptddeU926ddW+ffvrXgtwuyAJD9wBLBaL0tPTlZCQoOXLl2vMmDHy8vLK/Ieql5eX7r//fi1fvlznzp3LPG/u3LlKSUnR4MGDs7X5008/ycnJKdvr3XffvW48OZ2X02vWrFnXbCcyMlKS5O/vn+09f3//zPcBALiTMc7n3rRp0/TLL7/ojTfekIODww2fDwBAfmKMv7qJEydq165d+vzzz69bFwCAwohxPmeOjo5av369ypUrp4YNG8rLy0v16tWTr6+v1qxZkzlTHrgTOBZ0AABuXcZSNhlq1qypL7/8UkFBQZllgwcP1qxZszRnzhy9+OKLkmzL2oSEhKhdu3bZ2mzevLnGjx+frbxEiRLXjWfLli25irts2bK5qpfTUrPXKgcA4E7COJ87K1as0FNPPaXevXvrmWeeuaFzAQAoCIzxOTt+/LhGjBihCRMmZLkXAADcThjnc5aWlqY+ffpo9+7dmjp1qipXrqyjR49qzJgx6tChg9atW5dtqXrgdkUSHrgDzJ49W1WrVpWjo6OCgoJUrFixbHVatGihSpUqacaMGXrxxRf1999/a9u2bXrrrbdyHBh9fHxUv379m4qndu3auap3vRlqAQEBkmzfrrvyH95RUVE5ftsOAIA7DeP89a1atUq9evVShw4dNHfuXL6oBwC4LTDG5+ypp55SjRo1dN999ykmJkaSdPHiRUlSQkKCYmNj+c95AEChxzifs+nTp2vFihXasmVL5rW0aNFCzZs3V/ny5TVhwgSNGjUqV7EChR3L0QN3gKpVq6p+/fqqXbt2joN5hkGDBmnPnj0KCwtTaGiozGazBgwYYPd47LW0Tc2aNSVJu3btylKenp6uffv2qUaNGnaPHQCAwoZx/tpWrVqlHj16qFWrVvr+++/l7Ox8cxcGAEA+Y4zP2e7du7V582b5+fllvp566ilJUps2bRQSEnILVwkAQP5gnM/Zjh075ODgoLp162YpL1eunAICAq67pzxwO2EmPPAf0r9/f73xxhuaMmWKli1bpnbt2uXJP17ttbRNo0aNVKxYMc2cOVN9+vTJLP/uu++UkJCgXr163VKcAADcSf6L4/zq1avVo0cPNW/eXEuWLJGLi0uuYgMA4HbyXxvj58+fr+Tk5CxlK1eu1Pvvv6/JkyerevXquYoTAIDbwX9tnC9evLgsFou2bNmiRo0aZZYfOHBAkZGRKlmyZK7iBG4HJOGB/5Dg4GB16dJFM2bMkGEYGjx48FXrxsTEaPPmzdnKXVxcVKdOnWv2c7NL4lzJwcFBH3zwgR599FE99thjeuihh3Tw4EH973//U4cOHXT33Xdn1v3111/Vrl07jRw5UiNHjsws37p1q44dOyZJiouLk2EY+u677yRJDRo04Bv0AIA7xn9tnN+wYYN69Oih4OBgvfbaa9qxY0eW9qtVqyZvb2+7xAoAQEH6r43xV+6hKynz3/X16tWzW5wAABQG/7VxfuDAgRo/frzuu+8+vfHGG6pcubKOHDmi9957Tx4eHnr88cftEidQGJCEB/5jBg8erGXLlsnf3189evS4ar0//vhDTZo0yVZeokQJnTx5Mg8jzKpv375ycHDQuHHjNHPmTPn7+6tfv3569913s9QzDEMWi0VWqzVL+RdffJFtCZ37779fkjRjxow8WdoHAICC8l8a59euXaukpCQdO3ZMbdu2zdb2+vXr1bp167y+BAAA8sV/aYwHAOC/5r80zpcqVUpbtmzR22+/rffff19nzpxRUFCQmjRpopEjR6py5cr5dh1AXjMZhmEUdBAAAAAAAAAAAAAAANwJzAUdAAAAAAAAAAAAAAAAdwqS8AAAAAAAAAAAAAAA2AlJeAAAAAAAAAAAAAAA7IQkPAAAAAAAAAAAAAAAdkISHgAAAAAAAAAAAAAAOyEJDwAAAAAAAAAAAACAnTgWdACFkdVq1enTp+Xl5SWTyVTQ4QAA/sMMw1B8fLyKFy8us5nvztkD4zwAoLBgnLcvxngAQGHBGG9/jPMAgMIit+M8SfgcnD59WqVKlSroMAAAyHTixAmVLFmyoMO4IzDOAwAKG8Z5+2CMBwAUNozx9sM4DwAobK43zpOEz4GXl5ck283z9vYu4GgAAP9lcXFxKlWqVObYhFvHOA8AKCwY5+2LMR4AUFgwxtsf4zwAoLDI7ThPEj4HGcvZeHt7M6ADAAoFllqzH8Z5AEBhwzhvH4zxAIDChjHefhjnAQCFzfXGeTakAQAAAAAAAAAAAADATkjCAwAAAAAAAAAAAABgJyThAQAAAAAAAAAAAACwE5LwAAAAAAAAAAAAAADYCUl4AAAAAAAAAAAAAADshCQ8AAAAAAAAAAAAAAB2QhIeAAAAAAAAAAAAAAA7IQkPAAAAAAAAAAAAAICdkIQHAAAAAAAAAAAAAMBOSMIDAAAAAAAAAAAAAGAnJOEBAAAAAAAAAAAAALATkvAAAAAAAAAAAAAAANgJSXgAAAAAAAAAAAAAAOyEJDwAAAAAAAAAAAAAAHZS4En4SZMmqWzZsnJ1dVW9evX0+++/X7P+xIkTVbVqVbm5ualy5cqaPXt2lvdnzpwpk8mU7ZWcnJyXlwEAAAAAAAAAAAAAgBwLsvMFCxZo+PDhmjRpkpo1a6YpU6aoc+fO2rt3r0qXLp2t/pdffqkRI0Zo6tSpatCggcLCwjR06FD5+fmpe/fumfW8vb21f//+LOe6urrm+fUAAAAAAAAAAAAAAP7bCjQJ/8knn2jw4MEaMmSIJGnChAlatWqVvvzyS40dOzZb/Tlz5uixxx5Tnz59JEnlypXT5s2b9f7772dJwptMJgUHB+fPRQAAAAAAAAAAAAAA8K8CW44+NTVVf/31lzp27JilvGPHjtq4cWOO56SkpGSb0e7m5qawsDClpaVlliUkJCgkJEQlS5ZUt27dtH37dvtfAAAAAAAAAAAAAAAAVyiwJPyFCxdksVgUFBSUpTwoKEgRERE5ntOpUydNmzZNf/31lwzD0NatWxUaGqq0tDRduHBBklSlShXNnDlTy5Yt07x58+Tq6qpmzZrp4MGDV40lJSVFcXFxWV4AAODOwDgPAMCdiTEeAIA7F+M8AOB2V2BJ+AwmkynLsWEY2coyvPnmm+rcubMaN24sJycn3XvvvRowYIAkycHBQZLUuHFj9e3bV7Vq1VKLFi20cOFCVapUSZ9//vlVYxg7dqx8fHwyX6VKlbLPxQEAgALHOA8AwJ2JMR4AgDsX4zwA4HZXYEn4wMBAOTg4ZJv1fu7cuWyz4zO4ubkpNDRUFy9e1LFjxxQeHq4yZcrIy8tLgYGBOZ5jNpvVoEGDa86EHzFihGJjYzNfJ06cuPkLAwAAhQrjPAAAdybGeAAA7lyM8wCA251jQXXs7OysevXqac2aNerZs2dm+Zo1a3Tvvfde81wnJyeVLFlSkjR//nx169ZNZnPO3ycwDEM7duxQzZo1r9qei4uLXFxcbuIqAABAYcc4DwDAnYkxHgCAOxfjPADgdldgSXhJeuGFF/Too4+qfv36atKkib766iuFh4fr8ccfl2T7ttupU6c0e/ZsSdKBAwcUFhamRo0aKTo6Wp988ol2796tWbNmZbY5evRoNW7cWBUrVlRcXJw+++wz7dixQxMnTiyQawQAAAAAAAAAAAAA/HcUaBK+T58+ioyM1Ntvv60zZ86oRo0a+umnnxQSEiJJOnPmjMLDwzPrWywWffzxx9q/f7+cnJzUpk0bbdy4UWXKlMmsExMTo2HDhikiIkI+Pj6qU6eOfvvtNzVs2DC/Lw8AAAAAAAAAAAAA8B9jMgzDKOggCpu4uDj5+PgoNjZW3t7eBR0OAOA/jDHJ/rinAIDCgjHJvrifAIDCgjHJ/rinAIDCIrdjUs4bqQMAAAAAAAAAAAAAgBtGEh4AAAAAAAAAAAAAADshCQ8AAAAAAAAAAAAAgJ2QhAcAAAAAAAAAAAAAwE5IwgMAAAAAAAAAAAAAYCck4QEAAAAAAAAAAAAAdx6rRdr4hRR7Ml+7JQkPAAAAAAAAAAAAALizxIRLs7pLq1+XFj8uWa351rVjvvUEAAAAAAAAAAAAAEBeMgzp7wXSTy9LKXGSk4d01wOSyZRvIZCEBwAAAAAAAAAAAADc/i5GST8+L+1dYjsu2VDqNUXyL5evYZCEBwAAAAAAAAAAAADc3g6vl5Y8IcWfkcyOUqtXpebPSw75nxInCQ8AAAAAAAAAAAAAuD2lJUlrR0t/fmk7Dqgo9fpKKlG3wEIiCQ8AAAAAAAAAAAAAuP2c+VtaNFQ6v8923GCI1OEdydm9QMMiCQ8AAAAAAAAAAAAAuH1YLdLGz6R170rWNMkzSLp3olSxQ0FHJokkPAAAAAAAAAAAAADgdhF9XFr8uBS+0XZcpZvU/TPJI6Bg47oMSXgAAAAAAAAAAAAAQOFmGNLO+dJPL0up8ZKzp9T5fan2I5LJVNDRZUESHgAAAAAAAAAAAABQeF2Mkn54Tvpnme24VGOp52TJv2zBxnUVJOEBAAAAAAAAAAAAAIXTobXSkqekhAjJ7Ci1HiE1f14yOxR0ZFdFEh4AAAAAAAAAAAAAULikJUlrRklhU2zHgZWkXl9JxesUbFy5QBIeAAAAAAAAAAAAAFB4nN4hLRomXdhvO244TGo/WnJ2L9CwcoskPAAAAAAAAAAAAACg4Fkt0h8TpPXvSdZ0yTNY6jFRqtC+oCO7ISThAQAAAAAAAAAAAAAFK/qYtPhxKXyT7bjqPVL3TyV3/wIN62aQhAcAAAAAAAAAAAAAFAzDkHZ8I614RUqNl5y9pC4fSLUekkymgo7uppCEBwAAAAAAAAAAAADkv8RI6cfnpH9+sB2XbiL1nCz5lSnQsG4VSXgAAAAAAAAAAAAAQP46uFZa+qSUcFYyO0ltXpOaPSeZHQo6sltGEh4AAAAAAAAAAAAAkD9SL0pr3pS2TLMdB1aW7psqFatVsHHZEUl4AAAAAAAAAAAAAEDeO71d+n6oFHnQdtzocan9W5KTW4GGZW8k4QEAAAAAAAAAAAAAeceSLv0xXvplnGRNl7yKST0mSeXbFnRkeYIkPAAAAAAAAAAAAAAgb0QdlRY/Jp3403ZcrYfUbbzk7p+n3RqGoaSd5+UY4CbnUl552teVSMIDAAAAAAAAAAAAAOzLMKTtX0srX5VSEyQXb6nLh9JdfSSTKU+7tsSnKnrxISXvjZRjETcFPVtXJidznvZ5OZLwAAAAAAAAAAAAAAD7Sbwg/fCctO9H23FIM6nnZMm3dJ52mzH7PWbZYVkvpksOJrnXLirlX/5dEkl4AAAAAAAAAAAAAIC9HFgtLX1KSjwnmZ2ktm9ITZ+RzA553rUlNkVR3x6QLIacinnI74HKci7mkef9XokkPAAAAAAAAAAAAADg1qQmSqvflLZOtx0XqSr1+koqdle+heDo6yqfTmVkpFrk1aaUTA75PAU+I44C6RUAAAAAAAAAAAAAcGc49Ze0aJgUech23PhJqd0oyck1T7u1JKQqZtlhebUoKedSXpIkr5Yl87TP3CAJDwAAAAAAAAAAAAC4cZZ0acMn0i/jJMMieRWXekySyrfJ864v/n1eMUsOyXoxXennk1T02ToymUx53m9ukIQHAAAAAAAAAAAAANyYqCO22e8nt9iOq/eSun4sufvnabeWhFTFLD2spF0XJMm29/v9la6agN9zOlbVinnna4KeJDwAAAAAAAAAAAAAIHcMQ9o2W1o5QkpLlFx8pK4fSTXvl/I40X3x7/OKWXpI1sR0yWySV5tS8m5TSibHnPd+X7P3rB6bs1V9G4fore7VZTbnTyKeJDwAAAAAAAAAAAAA4PoSzks/PCvt/8l2XKaF1ONLybdUnnedfCBaUd/skyQ5BdtmvzuX8Lxq/bCjUXr6m22yGtLFVEtefz8gC5LwAAAAAAAAAAAAAIBrO7BKWvqUlHhecnCW2r4pNXlaMuc8C93eXCr6yqWSn5xLeV1z9rsk7YuI0+BZW5SSblW7KkU1rldNlqMHAAAAAAAAAAAAABQCqYnSqtelv2bYjotWk3pNlYJr5Gm3loRUxf0cLp+7y8js4iiTyaTAAdVlus6S8ieiLqrf9DDFJ6erfoifvni4rhwd8ueLAhlIwgMAAAAAAAAAAAAAsjv5l7RoqBR12Hbc5GnbDHgn1zztNsve74bk16OCJF03AR+ZkKL+oWE6F5+iSkGemt6/gdycHfI01pyQhAcAAAAAAAAAAAAAXGJJl37/SPr1A8mwSN4lbHu/l2uVt90mpCpm6WEl7bogSXIKdpdHg+BcnZuQkq6BM7foyIVElfB10+xBjeTj7pSX4V4VSXgAAAAAAAAAAAAAgE3kYdvs91N/2Y5r9Ja6fiS5+eVptxd3nVfMksOyJqZJZsmrdSl5ty19zb3fM6SmW/X4nL/098lY+bk7adaghgr2ydvZ+tdCEh4AAAAAAAAAAAAA/usMQ/prprTqNSntouTiI3X7RKrZO8+7jt9wSrE/HpEkOQa5y//+SnIu6ZWrc61WQy9+u1MbDl2Qu7ODZgxsqApFPfMy3OsiCQ8AAAAAAAAAAAAA/2UJ56Rlz0gHVtqOy7SQek6WfErmS/futYoo/pcT8mgQLO92uZv9LkmGYejtH/fqh52n5Wg2aXLfeqpdyjdvg80FkvAAAAAAAAAAAAAA8F+1f4W09Gnp4gXJwVlqN0pq/KRkzl0i/GZYEtOUtPO8PJsWlyQ5eDkr+OUGMrs43FA7E9cf0syNxyRJHz9QSy0rFbF3qDeFJDwAAAAAAAAAAAAA/NekJNiWnt82y3ZctLp031QpqHqedntx1wXFLDkka2KaHLyd5VYjUJJuOAE/LyxcH60+IEka2a2a7q1dwu6x3iyS8AAAAAAAAAAAAADwX3Jii7R4mBR1RJJJavq01PZNydElz7q0JKYpZtlhJe08L8m297uD7831t3J3hF5fvEuS9GTr8hrUvKzd4rQHkvAAAAAAAAAAAAAA8F9gSZN++1D67SPJsEjeJW17v5dtkafdJu2+oOglh2RNSJPMklerUje09/vlNh+J1LPzt8tqSH3ql9LLnSrnQcS3hiQ8AAAAAAAAAAAAANzpLhySFg2VTm+zHdd8QOryoeTmm6fdxvx4RAkbTkmSHIu6y/+BSnIu6XVTbe09Haehs7YqNd2qDtWC9G7PGjKZTPYM1y5IwgMAAAAAAAAAAADAncowpK2h0uo3pLSLkquP1G28VOO+fOnepaKvEjaeklfLUvJuf3Oz3yUpPPKi+s8IU3xKuhqW8dfnD9WRo8PNtZXXSMIDAAAAAAAAAAAAwJ0o/qy07Bnp4CrbcdlWUo8vJZ8SedalJTFNaRGJci3vK0lyq+yv4JcayNHf9abbvJCQon6hf+p8fIqqBHtpav/6cnVysFPE9kcSHgAAAAAAAAAAAADuNPuW2xLwFyMlBxep/VtSo8clc97NHk/ac0HRiw/JSLMq6Pl6cvR1kaRbSsDHJ6dpwIwwHYu8qJJ+bpo1qKF83JzsFXKeIAkPAAAAAAAAAAAAAHeKlHhp5Qhp+xzbcVBNqddXUlC1POvSkpimmB8OK2nHeUmSY1E3Gcnpklxuqd2UdIsem/OXdp+Kk7+Hs2YPaqgg75tP6OcXkvAAAAAAAAAAAAAAcCc4ESYtGipFH5Nkkpo9K7V5XXK8tWT4tSTtiVT04oOyJqRJJsmrZUl5tw+RyenWZtxbrIZeWLBTGw9HysPZQTMHNlC5Ip52ijpvkYQHAAAAAAAAAAAAgNuZJU369X3p948lwyr5lJJ6TpbKNM+zLg3DUPS3B3Rx2zlJttnvfr0ryaW0t13afmvZHi3fdUZODiZNebS+7irpe8vt5heS8AAAAAAAAAAAAABwu7pw0Db7/fR22/FdD0pdPpBcffK0W5PJJLO7k11nv2f47OdDmrP5uEwm6ZMHaqt5xUC7tJtfSMIDAAAAAAAAAAAAwO3GMKQt06TVb0rpSZKrr9R9glS9Z551ab2YJmuqRY6+tn3ZfTqFyL1WETmX8rJbH19vPq7xaw9Ikt7qXl3daxW3W9v5hSQ8AAAAAAAAAAAAANxO4iOkpU9Lh9bYjsu1kXpMkrzzLmGdtDdS0YsPydHPRUUeryWT2SSTk4NdE/Ardp3Rm0t3S5KeaVtB/ZuWsVvb+YkkPAAAAAAAAAAAAADcLv75QVr2rJQUJTm6Su1HSw2HSWb7LAV/JevFNMX8cEQXt9v2fre6OsgSnypHHxe79rPx8AU9N3+HDEN6qGFpvdChkl3bz08k4QEAAAAAAAAAAACgsEuJl1a8Ku342nYcXFPqNU0qWiXPukz6J1LRiw7JGp8qmSTPFiXl06G0TE4Odu1n96lYDZv9l1ItVnWqHqQxPWrIZDLZtY/8RBIeAAAAAAAAAAAAAAqz8M3SomFSzHFJJqn5cKn1a5Kjc550Z02xKGbpIV3cZpv97ljETX69K8klxNvufR2PTNSAGVuUkJKuRmX99emDdeRgvn0T8BJJeAAAAAAAAAAAAAAonNJTpV/HSRvGS4ZV8ikt9ZoihTTN025Njialnb347+z3EvLpEGL32e+SdC4+WY9OD9OFhBRVLeatqf3ryzUP+slvJOEBAAAAAAAAAAAAoLA5v19aNFQ6s9N2XOthqfP7kqv9Z6NLtr3fTc4OMjmaZXIwy/+BSrImW/Jk9rskxSWnaUDoFoVHXVQpfzfNGthA3q5OedJXfiMJDwAAAAAAAAAAAACFhWFIYVOlNW9K6cmSm5/U/VOp2r151mXSvihFLzooj/pB8ulYRpLkFOSRZ/0lp1k0bPZW7T0Tp0BPZ80Z1EhFvV3zrL/8RhIeAAAAAAAAAAAAAAqDuDPS0qekwz/bjsu3k+6dKHkXy5PurEnpivnhcObe70l7IuXdtrRMjuY86U+SLFZDw+fv0OYjUfJ0cdTMgQ1VJjDvEv4FgSQ8AAAAAAAAAAAAABS0vUulH56TkqIlR1epwztSw6GSyZQn3WXMfrfGpdr2fm9WQj6dQvI0AW8Yht5culsr90TI2cGsrx6tpxolfPKsv4JCEh4AAAAAAAAAAAAACkpynLTiFWnnN7bj4Luk+6ZJRSrnSXfWpHTF/HhEF/86K0lyDHSTX++KcimT98nw8WsP6ps/w2UySRMerK2mFQLzvM+CQBIeAAAAAAAAAAAAAArC8Y3S4sekmHDJZJaaPy+1elVydM6zLq0X05T09/nM2e/eHUNkdnbIs/4yzNl0TJ/9fFCS9Pa9NdSlZt4ssV8YkIQHAAAAAAAAAAAAgPyUnir98p60YYIkQ/INkXp9JZVunCfdGenWzGXmHQPc5Nerohz8XPJl9rsk/fj3aY1ctkeS9Fy7inq0cUi+9FtQSMIDAAAAAAAAAAAAQH45t09aNFSK+Nt2XLuvdPdYydU7T7pL2h+lmEWH5N+nklzK+UqS3OsUzZO+cvLHoQt6fsEOGYb0SKPSGt6+Yr71XVBIwgMAAAAAAAAAAABAXrNapbCvpLWjpPRkyc1f6v6pVO2evOku+d+937fa9n6P++WkivybhM8vu07GatjsrUqzGOpSM1hv31tDJpMpX2MoCCThAQAAAAAAAAAAACAvxZ2WljwpHVlvO67QXrp3ouQVnCfdJR+IVvT3B2SJTbXt/d60uLw7lcmTvq7m6IVEDZgRpsRUi5qUC9D4PrXlYL7zE/ASSXgAAAAAAAAAAAAAyDt7Fks/DJeSYyRHN6njO1KDIVIezAi/cva7Y4Cr/HpXkkvZ/Nn7PcO5uGQ9Ov1PRSamqnpxb33Vr55cHB3yNYaCRBIeAAAAAAAAAAAAAOwtOVb66X/S3/Ntx8VqS72mSkUq5V2X+6NsCfjLZr+bnfM3+R2blKZ+oWE6GZ2kkAB3zRzYUF6uTvkaQwbDMCQp35fAJwkPAAAAAAAAAAAAAPZ07A9p8eNSbLhkMkstXpRavSI52D8ZbRhGZpLZ7a4i8jweL7eagfk++12SktMsGjp7q/ZFxCvQ00VzBjVSES+XfI9DkuLOn9PPMyYrpGYd1e3cPV/7JgkPAAAAAAAAAAAAAPaQniKtf1f64zNJhuRXRur5lVS6UZ50l3wgWnFrjitwYHWZ3Z1kMpnke0/5POnretItVj07b7vCjkbJy8VRswY1UOkA93yPw2qxaNtPS/XHt3OVnpKi0wf2qWbbDnJycc23GEjCAwAAAAAAAAAAAMCtOveP9P1Q6ewu23GdR6W7x0ouXnbvypqcrtjlR5W4JUKSFLfuhHy7lbN7P7llGIbeWLJbq/eelbOjWV/1q6/qxfN/Jv6ZQ/u1ZupEnT92RJIUXL6qWg94Il8T8BJJeAAAAAAAAAAAAAC4eVar9Odkae1bkiVFcg+Qun8mVe2WJ90lH4xW9HcHZYlNkfTv3u8dQ/Kkr9z6ePUBzd9yQmaT9NmDtdWkfEC+x7Dx27na9P18yTDk6umlqi1769D2QG1bFa/iFQyZzPm3LzxJeAAAAAAAAAAAAAC4GbGnpCVPSEd/tR1X7Cjd84XkFWT3rqzJ6Yr96agSw2yz3x38XeXfu6Jcyvnava8bMfOPo/pi/SFJ0pgeNXV3jWIFEkdAydKSYahqizZy82urvb9HS7IoNSlNKUnpcvVwyrdYSMIDAAAAAAAAAAAAwI3a/b304/NScqzk6CZ1eleqP0gy5c2M67g1xzMT8B5Nismnc1mZnR3ypK/cWrbztEb/uFeS9EKHSnq4Uel86zv23FnFnotQ6Rq1JEmVGjfXI2ODtXlJvI7+Hi1Jqt2+lBr3LC8HB3O+xSWRhAcAAAAAAAAAAACA3EuKkX56Wdq10HZcvK7Ua6oUWCFPu/VuV1qppxLk3SFEruV987Sv3Pj94Hm9uHCHDEPq1yREz7TN2+vPYElP17aflmrjd9/IycVVA8dPlpunl0wmk4LLVVSF+qd0/kSC2vWvqnK1i+RLTFciCQ8AAAAAAAAAAAAAuXH0d2nx41LcSclkllq+bHs52H+p8+SD0UrafUG+PSrIZDLJ7O6koo/Xsns/N2PniRg9NucvpVkMdb2rmEZ1ry5THq0AcLnTB/Zp7dQvdD78mCQpuHxFpSReVFqKo7wD3CRJ1VsUV7naReTu7Zzn8VwNSXgAAAAAAAAAAAAAuJb0FGndO9LGLyQZkl9Z2+z3Ug3s3pU15d+93/+0LT3vUs5H7rWK2r2fm3X4fIIGztyii6kWNasQoE8eqCUHc94m4JMTE7Rh3mztXLtCMgy5enmr9aODFXJXM62evkcJ0Sl64LUGcvVwkslkKtAEvEQSHgAAAAAAAAAAAACu7uweadEw6exu23HdflKnsZKLp927Sj4YrejvD8oSkyLJtve7a5UAu/dzs87GJavf9DBFJaaqZgkfTXm0vlwc83Zf+uTEBM188UklRkdJkqq3aq+WfQcq8qRFC9/boqT4NDm5OijqdIKKV/TL01hyiyQ8AAAAAAAAAAAAAFzJapU2T5J+Hi1ZUiX3QOmez6UqXezf1RWz3x38XOTXu1Kh2Ps9Q+zFNPWbHqZTMUkqG+ihGQMbyNMl79PNrh6eKlenvk7u26sOQ55Uiao1tWX5UW396ZhkSAElPXX30BryDXLP81hyiyQ8AAAAAAAAAAAAAFwu9qS05Anp6G+240p32xLwnnmzLHzknH+UcihGkuTRuJh8OpeV2SVvZ5jfiOQ0i4bM3qL9Z+NVxMtFswc1VKCnS570ZUlP11/Ll6hyk+byKRosSWrdb4jMjk5KTTL0w2c7dHJftCSpWovianF/RTk6F557JZGEBwAAAAAAAAAAAIBLdn0nLX9BSo6VnNylTu9J9QZIprzb99y7bWlFRSXLr1dFuVbwzbN+bka6xaqnv9mmLcei5eXqqNmDGqqUf97MOj+1/x+tnfqFLpw4rhN7d6nXq2/JZDLJ2c3W369z9+rkvmg5OpvV+pEqqtwoOE/iuFUk4QEAAAAAAAAAAAAgKVpa/pK0+zvbcYn6Uq+vpIDydu8q+XCMLLEp8qgbJElyKeej4BfryeRgtntft8IwDL22eJfW/nNOzo5mTetXX1WLedu9n+SEBP3+zUz9/fNKSZKbl7eqNmuVrV6z3hV1MT5NzXpXkH8xD7vHYS8k4QEAAAAAAAAAAAD8tx351bb8fNwpyeQgtfqf1OIlycG+6VRrikWxK44qcfMZmZzMcgnxlmOAmyQVugS8JH2war8Wbj0ps0n64qE6alQuwK7tG4ahfRt/0y+zpupibIwkqUabDmr5yEC5eXkrKSFVB/48q7valpTJZJKrp5O6P1PLrjHkBZLwAAAAAAAAAAAAAP6b0pKlde9Im76wHfuXk3pNlUrWt3tXyYdjFP3dAVmiUyRJ7nWLyuzpZPd+7GX6hqP68pfDkqT3etZUx+r2X/p972/rtHLSeEmSf/GS6jD0aZWsVkOSdOZwrFZP262E6BQ5uTqoWrPidu8/r5CEBwAAAAAAAAAAAPDfE7FbWjRMOrfHdlxvoNTpXcnZvsucXz77XZIcfF3k17uiXCv42bUfe1qy/ZTe+XGvJOnlTpX1YMPSedJP5SYt9NePi1WpcXPVv+c+OTo5yTAM7VhzQpuXHJbVasg3yF1FQ+y/BH5eIgkPAAAAAAAAAAAA4L/DarXNfF/3jmRJlTyKSPd8LlXubPeujHSrzn2+XekXkiRJHo2C5dOlrMwuhTdN+8v+c3rp252SpAFNy+jJ1uXt1vbJfXu0c/VP6vzUCzI7OMjR2Vl9x30qs4ODJCk5MU0/z/pHx/6+IEmqWL+oWvetImfXwnu/cnJ7RQsAAAAAAAAAAAAANyvmhG3v92O/244rdbYl4D2L5El3Jkez3O4K1MVt5+R3X0W5Viy8s98laXt4tJ74epvSrYbuqVVcI7tVk8lkuuV2kxLi9fvcGdq1brUkqVjFKqrbubskZSbgzx2P08qvdis+MllmR5NaPFBJ1VsUt0v/+Y0kPAAAAAAAAAAAAIA7m2FIu76Vlr8kpcRKTh7S3WOluv0kOyd5kw/HyMHDSU7BtmXtvduWllfLkjIX8tnch84laNDMLUpKs6hFxUB9dH8tmc23dm8Mw9A/G37RL7OnKSkuVpJUs10nVW3ROlvdlMR0xUclyzvQVXcPq6kipb1uqe+CVLh/0gAAAAAAAAAAAABwK5KipR9fkPYssh2XbCD1nCIF2G+ZdUmypv679/umM3Iq7qGiT9WWycEsk6PtVZidiU1Sv+l/KvpimmqV9NHkvvXkfIsxR585pbXTJil8t21p+4CSpdV+6FMqWaV6Zh3DMDJnupeq5q9OQ2qoVDV/ubjd3mns2zt6AAAAAAAAAAAAALiSYUint0s7vrHNgE+OkUwOUutXpeYvSA72TZOmHIlR1HcHZYlKliQ5l/SSYTFkcrBrN3ki5mKq+k0P0+nYZJUL9FDogAbysMOe9WunTVT47r/l6OSsxvc9qPrde8rB0Snz/fMn4vXL1/vUcUh1+RRxlyRVqFf0lvstDEjCAwAAAAAAAAAAALgzJJyX/l4g7Zgrndt7qTygom32e8l6du3OmmpR3MpjSth4WpLk4OMiv96Ff+/3DEmpFg2etVUHzyUoyNtFswc3VICny023d/nM9jb9h+m3b2aq7YDH5BtcLEudvRtO6/cFB2VJt+qP7w6pyxN33fK1FCYk4QEAAAAAAAAAAADcvixp0sHV0va50sFVkjXdVu7gIlXtJtV+RCrXWjLbd1p6ekyyzk/dJUukbfa7R8Ng+XQpW+j3fs+QZrHqqW+26a/j0fJ2ddTsQY1U0s/9ptpKio/Tr1+Hys3LW636DpIkBZYuo16vvpWlXmpyun79Zr8OhJ2VJJWpGaC2/are0nUURrfHEwAAAAAAAAAAAAAAlzu71zbj/e8FUuL5S+Ul6tkS7zV6SW55NyPdwdtFDp7OUrohv/sqyrXS7TH7XbLNRn/1+11at++cXBzNmj6ggSoHe91UO3t/W6df50xXUnyczA4OqtvlHnn5B2arG3kqQaum7lZ0xEWZzCY1vrec6nQoLZPZZI9LKlRIwgMAAAAAAAAAAAC4PSRFS7u+syXfT2+/VO5RVKrVx5Z8L5p3M6tTjsfJubiHTE4OMplN8n+oisyuDrfN7PcM41bs0/fbTsrBbNLEh+uqQRn/G24j6vRJrZ02SSf2/C1JCiwVovZDn84xAR9xJFZLx29XeppVHj7O6ji0hopX8L3Vyyi0bq+nAQAAAAAAAAAAAMB/i9UiHVlvW25+33LJkmIrNztKle6W6vSVKrSXHJzyLoSMvd83nZZnsxLy7VZOkuToe/P7pxeUqb8d0ZTfjkiSxvaqqfbVgm7o/PS0NIUt+VZhSxbKkp4uR2cXNen9kOp17SEHx5zTz0VKe8m/hKdc3B3VYWA1uXk53/J1FGYk4QEAAAAAAAAAAAAUPpGHpe1fSzvnS/GnL5UH1bDNeL/rAckj+6xre0s5Gquo7w5k7v1upFpkGIZMpttvGfXv/zqpd3/6R5L0yt1V9ED9UjfcRnJ8nP5avliW9HSVqV1P7Qc/IZ+iwdnqxZ5Pkpe/i8wOZjk4mtX96VpydneU+Q5cfv5KJOEBAAAAAAAAAAAAFA4p8dKexbZZ7yc2Xyp385Nq3m9LvherJeVDAtyaalHcqmNK2HhaMiQHH2f59aoo18o3vnR7YbB+3zn973vb0vGDm5fV463K5frc1KSLcnZzlyR5+geo7cDH5ejsrEqNm+f4ZYQDYRFaP3e/7mpTUk16lJckuXrm3UoFhQ1JeAAAAAAAAAAAAAAFx2qVjv9h2+d971Ip7aKt3GSWyreT6jwiVe4iOebf0u+ppxMUNfcfpf87+929fpB8u5W77fZ+z/DX8Wg9MfcvWayGetYpode7VM3VTH7DMLTnl7X6de4MdX36RZWpXU+SVL1Vuxzrp6dZtGHhQe353bZywdmjcbJarDI7mO13MbeB2/MpAQAAAAAAAAAAAHB7iwmXdsyzJd9jjl8qD6hoS7zf1UfyLl4goZk9nGRJTJODt7N876sot9t09rskHTwbr0Eztyg5zapWlYrog9535WpJ+MhTJ7R22kSd3LtbkrRz7YrMJHxOYs5d1Kqpu3XhRIJkkup3LqMG3cr+J5afvxJJeAAAAAAAAAAAAAD5I/WitO9H217vR3+TZNjKnb2kGr2kOn2lkg3yZbn5K6VfSJJjoJskydHHRYH9q8sp2ENmt9s3pXo6Jkn9QsMUm5Sm2qV89WXfunK6zqz09NRU/blkocKWfCerJV2OLi5qev8jqtv5nquec3jbOa2b/Y9Sky1y9XRSh4HVVLp6gL0v56YYFotMDg752uft+8QAAAAAAAAAAAAAKPwMQzq5xZZ437NYSom79F7ZllLtvlLV7pKze4GEZ021KG71cSX8cUoB/avLrYpt1rtLWZ8CicdeohNT9ej0P3UmNlnli3hoxoAGcne+dnr45N7dWv3VZ4o+Y1tOvlzdBmo36Al5Fyl61XMuxqVq7ax/lJ5iUbHyPuo4pLo8/Vztei03Ky0iQieGDlXQiBHyaNo03/olCQ8AAAAAAAAAAADA/uLOSH/Pl3Z8I104cKnct7RU+xGp1kOSX0jBxScp5Visor87qPQLSZKk1KOxmUn429nF1HQNnLlFh88nqpiPq2YPbiQ/D+frnpeUEKfoM6fl4eevtgMfU8WGTa+7d7y7t7NaP1xZkacS1OjecnIoJPu/p0dHK3zwEKUePqyzY8ep7JLF+TYjniQ8AAAAAAAAAAAAAPtIT5H2r7Dt835orWRYbeWOblK1e217vYc0l8wFm6g10iyKXWWb/S5DMns7y69XxTsiAZ9mserJudu040SMfNycNHtQQ5XwdcuxrmG1KubsGfkVKyFJqtCgidoPeUpVmrWUi7vHVfs4+vcFubg7qngFX0lS5UbBdr+OW2FJSNCJocOUeviwHIOCVGryl/m6JD1JeAAAAAAAAAAAAAC35sxOaftcaddCKSn6UnmpRrZZ79V7Sq7eBRffZVLC4xS98EDm7Hf3ekHy7VpWZnenAo7s1lmthv733d/6Zf95uTqZFTqggSoGeeVYN/JkuNZMnajIk+EaOH6y3L19ZDKZVKtD56u2b7FY9eeSI9q+JlwePs7q80ZDuXldf4Z9frKmpOjkk08pefduOfj6qnTodDmVKJGvMZCEBwAAAAAAAAAAAHDjEiNtSfftc6Wzuy6VexWzLTVf+xEpsELBxXcV1rhUpV9IuqNmv0uSYRh676d/tHj7KTmYTZr0SF3VC/HLVi8tNUV/LlqoLcu+l9WSLkcXF509ckhla9e7ZvsJ0claNXWPIo7ESpLK1ysqZ7fClW420tJ06vkXdDEsTGYPD5WaOlUu5cvnexyF664AAAAAAAAAAAAAKLws6dKhNbbl5vevlKxptnIHZ6lKV6l2X6l8G8mcf0t/54Y1OV1mV1tq1K1GoHx7VpB7zcA7YvZ7him/HdG0DUclSR/cd5faVgnKVufYzm36efqXijl7RpJUrl5DtRv4uLyLFL1m2+F7IrVmxl4lJ6TJ2dVBbftVVfm61z4nvxlWq8688YYS1q2TydlZJSdNklvNGgUSC0l4AAAAAAAAAAAA3PGsKeky0g3bgWFI//5RhiST5HDZktqWuFQZ6VZbvX/rGP+eZzKZ5Bh4aX/t9KhkGakWGdZLdTP7MJnkXMIzs27auYuyJqVf6t+wzV7O4FreN/PPqacTZI1P/bff7DG7VvWXyWyy1T0Rr/To5ByvzZDkXjNQJkfbHuwpx+OUfu7iv1WvuA8y5F6nqMwuthRiytFYpZ5KsL0ff1Y69Zd0eqeUmijJWe4OrnIoXl2q01cpnncr5YwhhUs6fjLz1mX8wbNRMTn4uNjaPRKjpP3ROVyX7c+eTYtn3uPkwzFK+vt8lnt7+b32bF5CzsU8MttNDIu4dM/+bdNIsyr1RLyCnqub+XP2bFRMd5Jvt57QuBX7JEmvdami++qVzPK+YbVqxaTx+uf39ZIkT/8AtR34mCo0aCKTyXTVdg2robAfj2rrimOSIQWW8tTdw2rIp4h7nl3LzTAMQ2ffG6vYpcskBweVmDBeHo0aFlg8JOEBAAAAAAAAAABwR0s+GK0LobsvJWav4ODnomKvXErYXZi1R2kZyecrmD2cVPzNxpnHUQv3K/VYXI51TU5mlXinWeZxzI9HlHIgOse6klRyXIvMP8f/HK6kPZFXrVv87aYyOdtmmydsPK2L289dta5rJT85/JuEv7jtrBL/jLh63cr+mUn4pL9PK2HThcverfLv69+6Dw+XQ7W7JEnJa44r/ufwq7brVi3gUhI+PF4Jv568et0aAZlJ+PSzF68Zr1vNQOnfJHx6ZLIu7jh/1bpJuy/Is0nxq75/u1q796xeXWTbDmBYy3Ia1jL78usms1nOrm4ymcyqfXdXNXvgUbm45yKRbpKiIy5KhlSjZQk1u7+CHJ0K1yoHknThi4mK/vprSVLxse/Jq23bAo2HJDwAAAAAAAAAAADuaK4V/eTbvbxilh3O+kbGBOArZgKbnMwyOZn/fd90WT3J7Jo1AWl2d5LZ0ylL3cw/XpGsdPB2lkOA66WZx5e1K5lk/DvTXpIcAlzlVMxDMl9Z1yTTFSE7FnWTc1lvSaZL5ZedlzFjXpKcgj3kWsU/+7X/G7fJwZAOr5O2z5Xzrli5mWtLMmzVvItJfmUln+KSySxziTKZ7TqX8JRHw+BLsV5xjWaPS8u+O5fykmfzEpfqXXbPJJMcfF2z1PVqV/rSdZkyArXVdSrilqWuT5ey2fo3SXIq7imXsj6602w9FqWnvtkmi9VQr7ol9Ordl74kcSH8mBxdXOUbZPu5NH+on2q06aDg8hWv227Gs2gymdT20Sqq2KCoytcpXMvPZ4iaPVsXJk6UJAW9/rp87rmngCOSTMbla1xAkhQXFycfHx/FxsbK29u7oMMBAPyHMSbZH/cUAFBYMCbZF/cTAFBYMCbZH/cU9pK5hLlJ11x++z8r6oi04xtpxzwp7rJZ6kWrSbUfke56QPIsnEnY/6r9EfG6f/JGxSWnq22VopryaD05OZiVlpKszd/P19YfF6tk1Rrq/caYXD/zhtXQXyuPKfJ0ojoOrl7of1dilizRmVdHSJICn3laRZ56Kk/7y+2YxEx4AAAAAAAAAAAA3HGsKRbFLDssn04hcvB2yTIbHP9KSZD2LpV2zJWO/3Gp3NVHqnm/LflevE62lQJQ8E5GX1S/0D8Vl5yuuqV9NfHhunJyMOvojr/08/RJij13VpLk5OqmtJRkObu6XadFKSk+VWtm7NWJvVGSpGrNiqtUVf88vY5bEf/zzzrz+huSJP/+/RT45JMFHNElJOEBAAAAAAAAAABwRzEMQ9GLDipp53mlRSSq6NO1C/2M3nxjGNLxjbbE+54lUlriv2+YpPJtpTqPSJW7Sk6u12oFBSgqMVX9QsN0Ni5FFYt6KnRAA1kvxunHL6dq/8bfJEmeAYFqO/AxVWzQJFdtnj4Uo9XT9igxJkWOTma1erhyoU7AJ27erFPDn5csFvn06KGir7xSqH7HScIDAAAAAAAAAADgjpK4+YySdp6XzCb5di9XqJJzBSb2pG2p+R1zpeijl8r9y0u1H5ZqPST5lCi4+JAriSnpGjgjTEfOJ6q4j6tmD26olIhwff3O60q5mCiTyay6Xbqr6f2PyNnN/brtGVZD29eEa/PSIzKshvyC3dVpaA0FlPDMh6u5OUl//62TTz4lIy1Nnu3bqdiYd2Qymws6rCxIwgMAAAAAAAAAAOCOkXoiXjE/HpEk+XQuK5cyPgUcUQFKS5L2LZe2fy0d+UWSYSt39pSq95Tq9JVKNWK5+dtEarpVj3/9l3aejJWvu5NmD26oYj5uSncPkYefv3yDi6vD0KcUVK5Crtv85Zv92rvhtCSpUqMgtXqospxdC28KOeXQIZ0YOkzWixfl3rixSnz8sUyOhS/ewhcRAAAAAAAAAAAAcBMsiWmKnPuPZDHkVj1Ans2LF3RI+c8wpFPbpB1fS7u+l1JiL71XpoVtn/dq90jOHgUXI26Y1WropW936veDF+TlYNXoMudU1t+2z7ujk5N6v/6OPPz8ZDY73FC7lRsH6+CWs2p+f0VVbVasUK8akXrylMIHDZYlNlauNWuq5BdfyOziUtBh5YgkPAAAAAAAAAAAAG57htVQ9ML9ssSkyDHAVX73VyrUCUW7iz8r/b3Attz8+X2Xyn1KXVpu3r9swcWHm2YYht5ZvlfLdp5WuaRw9Uz+U4cOXdBfPq5qeG9vSZJXQGCu24qOuCj/YrYvYRSv4Kt+7zWVq4dTnsVvD+nnzyt80CClnzsn5wrlVeqrKXLwLLxfJCEJDwAAAAAAAAAAgNue9WKa0qNTJEez/B+pKnMhXlLbbtJTpQMrbYn3g2skw2Ird3SVqt4j1XlEKtNSKmT7ZePGTPrlsBb+ukd3R/2hiomHlSrJK7CIAkuF3FA7KRfTtG72PoXvjdT9rzaQf3FbEruwJ+AtsbEKHzJUaeHhcipRQqWnT5ejn19Bh3VN/4FPHwAAAAAAAAAAANzpHDydVfTp2ko9ES/n4p4FHU7eitglbZ8r7VooXYy8VF6ygW25+Rq9JFefgosPdjP/z2Na+e33eiTqT7kYqTKZzarb5V41vf9hObu65bqd8+HxWvnVLsVdSJbZwaQLp+Izk/CFmfXiRZ14/Aml7N8vh8BAlQ6dLqegoIIO67pIwgMAAAAAAAAAAOC2ZVgNmcy2ZefNzg5yLe9bsAHllYtR0q5vpe1fSxF/Xyr3DJJqPWhLvhepXHDxwe5W74nQimlT1DpulyQpuEIldRj6tIqWKZfrNgzD0O5fT2nDdwdlTTfkFeCqTkNrKKiMd16FbTdGaqpOPvuckrZvl9nbW6WnT5NzyI3N/i8oJOEBAAAAAAAAAABwWzIshi6E7pJrJX95tixx5+0Bb0mXDq+Tdnwt7V8hWVJt5WYnqUoXqXZfqXxbyYGU350m7GiUnpm3Xe5e1VUj5YjaP/yoanXsLLPZIddtpCana/3X+3Ro6zlJUpm7AtWuf9VCv/y8JBkWi0797xUlbtggk5ubSk2eLNfKt8+XTPiNBAAAAAAAAAAAwG0pdvUxpRyOVerJBLnVKiJHX5eCDsk+Lhy0zXjfOV9KiLhUHnyXVKevVPN+yd2/4OJDnjn8V5j27tmn144EKSXdqha1quiZB+6Tq1vul57PsOe30zq09ZzMZpMa9yyv2u1L3RZfVDEMQxFvjVb8ypWSk5NKfvaZ3OvWKeiwbghJeAAAAAAAAAAAANx2kvZEKuHXk5Ikv96Vbv8EfHKctGeRba/3k2GXyt0DpJoPSHUekYJrFlx8yFPxURe0fuZXOvjnRhmS3IrfpyqVK+uLh+vI1Sn3s98vV6tdSZ0/Ea+arUuqWHkf+wach85//LFivv1WMptV4sMP5dmieUGHdMNIwgMAAAAAAAAAAOC2kh6ZpKhv90uSPJuXkHvNwAKO6CZZrdKx32yJ939+kNKTbOUmB6liB9s+75XulhydCzZO5Bmr1aIdq37SHwtmKzUpSVaZtN2nlgJLlNK0fg1uKAGflmLRjrXhqtsxRA5OZpkdzOo4uHoeRm9/F6ZOVeS06ZKk4NFvyfvuTgUc0c0xF3QAkyZNUtmyZeXq6qp69erp999/v2b9iRMnqmrVqnJzc1PlypU1e/bsbHW+//57VatWTS4uLqpWrZoWL16cV+EDAAAAAAAAAAAgHxlpFkV+/Y+MZIucQ7zl07lMQYd046KPSevfkz6tJc2+V9q10JaAD6wsdXhbeuEf6eEFUrV7SMDfwc4ePaxvXn9J62dOUWpSkuK8imt+ift1vFxbzRjWXD7uud+7PepMor4dt1VhPxzVH4sO5WHUeSd6/gKd//gTSVLRl1+W3/33F3BEN69AZ8IvWLBAw4cP16RJk9SsWTNNmTJFnTt31t69e1W6dOls9b/88kuNGDFCU6dOVYMGDRQWFqahQ4fKz89P3bt3lyRt2rRJffr00TvvvKOePXtq8eLFeuCBB7RhwwY1atQovy8RAAAAAAAAAAAAdhTzwxGlnUmU2cNR/g9XkcmhwOec5k5qorR3mbRjrnTsskmpLj5Szftss95L1JNugz27cevSUlP0/btvKik+Ts7uHjpUuqWWJofI39NFcwY3VJC3a67b2v9nhH6Zu0/pqVa5+zirfJ0ieRh53oj76SdFjB4tSQoYNkwBgwcVcES3xmQYhlFQnTdq1Eh169bVl19+mVlWtWpV9ejRQ2PHjs1Wv2nTpmrWrJk+/PDDzLLhw4dr69at2rBhgySpT58+iouL04oVKzLr3H333fLz89O8efNyFVdcXJx8fHwUGxsrb2/vm708AABuGWOS/XFPAQCFBWOSfXE/AQCFBWOS/XFPcTnDMJS46YxifjqiwP7V5VrRr6BDujbDkE78KW3/WtqzREqN//cNk1SutVSnr1Slq+TkVoBBoqD8vXalju/eqTXejbXsQILcnR00b2hj1Srlm6vz01Mt+n3hQe3dcFqSVLKKnzoMqi5379tr9YSE33/XiSeelNLT5ftgHwWPGiVTIf0ySm7HpAKbCZ+amqq//vpLr776apbyjh07auPGjTmek5KSIlfXrN/6cHNzU1hYmNLS0uTk5KRNmzbp+eefz1KnU6dOmjBhwlVjSUlJUUpKSuZxXFzcDV4NAAAorBjnAQC4MzHGAwBw52Kcx7WYTCZ5Ni0ut5qBcvAqxInGuNPSznnSjm+kyMuWBvcra5vxXutBybdUwcWHfBd34bzWz5yiGm06qHw92+rdNdp21HeJJbVs03E5OZg05dF6uU7Ax56/qBVTdivyZIJkkhp0KaP6XcvKbC6cyeurufjXXzr5zLNSerq8u3RR8JtvFtoE/I0osCT8hQsXZLFYFBQUlKU8KChIEREROZ7TqVMnTZs2TT169FDdunX1119/KTQ0VGlpabpw4YKKFSumiIiIG2pTksaOHavR/y5vAAAA7iyM8wAA3JkY4wEAuHMxziMn1pR0yZDMrrbUVqFMwKclS/uXS9vnSkfWS4bVVu7kIVXvYUu+hzRlufn/GKvVoh0rf9SGBV8rLTlJF8KPq2yd+jKbHfTF+sOavem4TCbp4wdqq0XFG1lG3qT4yGS5eTmpw8DqKlXNP8+uIa8k//OPTjz+hIzkZHm0bKHi48bK5OBQ0GHZRYHuCS8p2zcZDMO46rcb3nzzTUVERKhx48YyDENBQUEaMGCAPvjgAzlc9gO5kTYlacSIEXrhhRcyj+Pi4lSqFN8+AgDgTsA4DwDAnYkxHgCAOxfjPK5kGIaivzuotNMJ8u9bTc7FPAo6pEsMQzq93bbP+67vpOSYS++FNJNqPyxV6yG5eBZUhChAZ48c0uqvPte5o4clScUrVVX7oU/JbHbQ3D+P65M1ByRJo7pV0z21il+3PcNqyPTvTHefIm7q/HhN+QW5y8PXJe8uIo+kHjum8CFDZY2Pl1u9eir56acyORfCL9fcpAJLwgcGBsrBwSHbDPVz585lm8mewc3NTaGhoZoyZYrOnj2rYsWK6auvvpKXl5cCAwMlScHBwTfUpiS5uLjIxeX2ezgBAMD1Mc4DAHBnYowHAODOxTiPKyVsPK2kXRcks0lGqqWgw7FJOC/9vcCWfD+391K5d0mp9kNSrYekgPIFFx8KVGrSRf2x4GttX/mjDMMqFw8PtXx4oGq27SiT2ayVu8/ozSW7JUlPt6mgAc3KXrfNuAtJWjVtjxrdU1alqwVIkkpW9svT68graREROj5okCyRkXKpWlWlvpwks5tbQYdlVwWWhHd2dla9evW0Zs0a9ezZM7N8zZo1uvfee695rpOTk0qWLClJmj9/vrp16yaz2SxJatKkidasWZNlX/jVq1eradOmeXAVAAAAAAAAAAAAyCspx+MUu/yoJMmnS1m5hHgXXDCWNOngatty8wdXSdZ0W7mDi1S1u1TnEalsK8l8ZyynjZt3at9ebVuxTJJUpVkrte43RB6+toT5psORenbeDlkN6aGGpfRix0rXbe/IjvP6edY/Sk1K14aFB/XgSP/bbu/3DOnR0QofNFjpp8/IOSREpad+JQfvAvy9ziMFuhz9Cy+8oEcffVT169dXkyZN9NVXXyk8PFyPP/64JNuSM6dOndLs2bMlSQcOHFBYWJgaNWqk6OhoffLJJ9q9e7dmzZqV2eZzzz2nli1b6v3339e9996rpUuXau3atdqwYUOBXCMAAAAAAAAAAABunCUxTVHf/CNZDbnVDJRns+sv150nzu6Rdnxjm/meeP5SeYl6tn3ea9wnufkWTGwoNCzpaXJwdJIkla1TX/W69lCZWnVVplbdzDp7Tsdq2OytSrVY1bFakN65t8Y1t9S2WKzatPiwdq49IUkKLuetjkNq3LYJeEtCgk4MGarUI0fkGBys0qHT5fjvaud3mgJNwvfp00eRkZF6++23debMGdWoUUM//fSTQkJCJElnzpxReHh4Zn2LxaKPP/5Y+/fvl5OTk9q0aaONGzeqTJkymXWaNm2q+fPn64033tCbb76p8uXLa8GCBWrUqFF+Xx4AAAAAAAAAAABugmE1FDV/nyyxqXIMdJPffRWvmay0u4tR0u7vpe1fS2d2XCr3KCrV6mNLvhetmn/xoNCyWizatmKZ/lq+RH3HTsic8d6635As9Y5HJqp/6BbFp6SrYVl/ffZQHTk6mK/abnxUslZN3a2zR+MkSbXbl1LjnuXlcI1zCjNrcrJOPvGkkvfskYOfn0qHTpdTiRIFHVaeMRmGYRR0EIVNXFycfHx8FBsbK+87cPkDAMDtgzHJ/rinAIDCgjHJvrifAIDCgjHp/+zdd3hUZfrG8e/09N4IJKGF3rug0gNi17X7WxvF3lfXtivqWlYsa0fsu7rurl1B6YhY6SC9JyGU9D6Zdn5/DBtlAUmYJBPC/bkurz2T857nPMNOGK65533fhqc/0xNT+eJcSmftwGQzk3RDH2wp4Y1/U58Xti2EVf+AjTPB6/L/3GyDzuP9wXvHMWCxNX4vclzYu3Uzc2a8QP7O7QCc9LtLGXrBpYeMyy+v4XevfMeuwiq6pETyryknER165NdRRXEN7z/yIzWVHuyhVkZf0ZX2fRIb7Xk0NsPtJvfmW6hYuBBzeDjpb79NaI/uwW7rmNT1PSmoM+FFRERERERERERERERE/ldYvyScm4sJ65vU+AF8wVZY9S6sfh/K8375eXJP/z7vPS+A8Ja5ZLYcm5qqKpa8/w6r5swEwyAkPIJTL7+aHiPGHDK23Onmyjd/YldhFWlxobxz9aDfDOABImIdtOuVQFFeJeMm9SAqIbSxnkqjM3w+8u67j4qFCzHZ7bR5+aXjNoCvD4XwIiIiIiIiIiIiIiIi0qxYIuwkXN0DU2PtfV1TDus+hpXvQs4Pv/w8NBZ6XugP31v1bpx7y3Fty4/fseDNV6goLgKg6ykjGfF/1xAWHXPIWKfby+R3lrMur4z4cDvvXD2YpKiQw9atLKnBYjUTEuEP6Idf0hmTyYTFdnwuPw9gGAb7Hn2Mss8+B4uF1s8+S/igQcFuq0kohBcREREREREREREREZGgM7w+nJuLCe0aD9DwAbzPB7u+9c96X/8puKs4cCP/MvN9LoPOp4HV0bD3lRYlZ8NaKoqLiElpxZhrbiCjV5/DjvP6DG771yq+315IuN3CW1cNol3C4Vd1yNlQxNw31pGUEcXp1/fCZDZhtVsa8Vk0jYIXXqT4H/8AIPWxR4kcNTLIHTUdhfAiIiIiIiIiIiIiIiISdKVf7qRiyW4iTmlNzOntG66wYcDqf8Kix6Fk1y8/j8/0z3jvdTFEtWq4+0mL4vN6cVaU1850H3bh/xEeE0f/CWdjtdsPe41hGPzp05/58ue92C1mXv39AHq2iT60ts9g2cwdLJ21Ewz/XvDOSjehkYevezwpeucdCl58EYDk++8n+qyzgtxR01IILyIiIiIiIiIiIiIiIkFV/XMBFUt2A+BoG9VwhSvy4fNbYNNM/2N7JPQ4D/peDm0GgqmRlruXFmHPlk3MnfECjrBwLvzzY5hMJhxhYQw+54LfvO7ZeVt498dsTCZ45qI+DOuYcMiYqjIXc99YR+7GYgC6nZzKKRdmtogZ8CUff8K+Rx8DIOHmm4i7/LIgd9T0FMKLiIiIiIiIiIiIiIhI0LgLqin6z2YAIk5tTWj3QwPLY7JxJnx2M1QVgNkGI++BwdeBPaxh6kuLVVNVyTf/fIfVc2eBYRASEUnJvj3EpqQe9dq//7CLv83fAsBDZ3Xn9F6HrrKwe3Mxc15bR1WZC6vdzIjLutB5cEqDP49gKJ83jz333w9A3BVXkHDddUHuKDgUwouIiIiIiIiIiIiIiEhQGG4vRf/YgFHjxd42iuhxbQMv6iyDr+6BVf69qEnqDue9Cik9Aq8tLZphGGz+4VsWvv0qlcVFAHQ7dRTD/+8awqIOXU7+f81cs4c/ffozADePzuT/Tmp7yBif18fCf2ykqsxFbKtwxk/qQVzq4feKP95U/vADu2+7Hbxeos89l6S778J0gq42oRBeREREREREREREREREgqL4022491ZijrARf2kXTBZzYAV3fAOfXA+l2YAJht0CI+8Fq6NB+pWWq7q8jC9ffJodK5cBENuqNWMmXk96j951uv67rQXc9q9VGAZcOjid28ZkHnac2WIm65ru/Lx4N6dc2Amb4/hffh6ges0acq6/AcPtJnLsGFo9/BAmc4C/z8cxhfAiIiIiIiIiIiIiIiLS5Fy7K6hatg9MEHdJFyxRAQTlbicseBi+fxEwICYDzp0OGSc1WL/SstlDwygvLMBitTLonAsYdPYFWO32Ol378+5SJr2zDJfXx2k9Unj47B4HzQDfu72U0vzq2iXnkzKiGPV/UY3yPIKhZssWciZNxqiqIuykIaROm4bJemLH0Cf2sxcREREREREREREREZGgsLeOIP7K7ngKqgnpEHPshfasho8mQ/5G/+N+V8C4v4AjskH6lJZr79bNJGS0w2qzYbFaOe2G27HYbMS3TqtzjZ0FlVz55k9UurwMaR/HMxf1wWL2B/CGYbBqXg4/fLwNzBCXGk5iWst6Xbpyc8m+ZiLe0lJCevWizfMvYHZo5QmF8CIiIiIiIiIiIiIiIhIUoV3ijv1irwe+fQYWPQ4+D4QnwdkvQKdxDdegtEjOygqW/PNtVs/7imEXXMaQ8y8GIKlt+3rV2V/m5P/e+JGCChfdWkUx4/cDCLFZDtzDzYJ3NrBjdQEAmf2SiE4MbdgnEmSe/Hyyr74Gz/79ODI7kjb9FSwRLWN/+0AphBcREREREREREREREZEmYRgGZXN3ET4gBWtcyLEXKtwGH0+B3KX+x13PgjOehfD4BulTWibDMNj0/TcsfOtVqkpLAKgoLjqmWmVON1e8uZScomrS48J46+qBRIbYANi3s4zZM36mvNCJ2WrilAs70f2U1IOWqD/eeUtLyb5mIu7sbGytW5P22utYY2OD3VazoRBeREREREREREREREREmkTFkjzKF+RQuXQvKX8YiNluqV8Bw4Clr8HcP4G7ChzRMOFJ6HUhtKCAUxpeyb69zH/9JXauXgFAXGobxky6gbRuPetdy+n2MuntZWzYU0ZChIO/XzOIpEj/l0rWLsplyX+24PMaRCWEMH5yTxLTW9YS9L6qKnKmXEvN5s1YEhNIf/MNbMlJwW6rWVEILyIiIiIiIiIiIiIiIo2uZlcZpV/uACBqVHr9A/iyPPj0Rtg23/+43XA45yWIbtPAncrxwOfz4iwvx1Vdjcvp/8/tdOKqrsbtrCa+TTqtMjsDULw3j3fuvBGP24XFZmPwuRcy8KzfYbXZ6n1fr8/glvdX8uOOIiIcVt66aiAZ8b8swV5T7cHnNWjfJ5FRv++CI6z+92jOfC4XuTfdTPWqVZijokh/7XXs6enBbqvZUQgvIiIiIiIiIiIiIiIijcpb4aLo3Q3gMwjtnUj4kFb1K7D2A5h5BzhLwBoCY6bCoMlgNjdKv9KwvB43LqcTd/XBYbmrppq4Vm2Ib5MGQFlBPstnfoLbWe0f/z/heu+xE+h/+tkAFOXm8PYfbjziPfufcW5tCG+xWvG4XaT36M2YidcT26r1MT0PwzC4/5O1zF63D7vFzKu/70+P1tEYPgOT2b8SQ/9xGcQmh9G+b2KLWn4ewPB6ybvrbiq//RZTaChp018hpHOnYLfVLCmEFxERERERERERERERkUZj+AyK/rUJb5kLa2Iosed1rHs4WVXkD9/XfeR/nNoXzn0VEhX8NRafz4vbWYPLWYXb6TwQgFcRndyKqIREAEr372P9NwsOzDp3HgjKq2sf9xl/Bt1OGQnA7o3ref/Pdx3xfsMuvJz4NhcDUFNVyYpZnx5xbEVxYe2xPTQMAFtIKPaQEOyhodgcodgOHMel/hK0h0ZEcdYd99Jx4EkBBeNPz93MP3/KwWSCv13ch5Pax7Pum92sX5LHOXf0w2a3YDKb6NCv5S3NbhgGex98kPKvvgKbjTYvPE9Y377BbqvZUggvIiIiIiIiIiIiIiIijaZsfjY1W0ow2czEX94Vs6OO8dSWefDpDVCxF0wWGH4XnHIHWFrW8t6BMAwDj6vml5nlzmoi4xMIjYwC/Pugb1+x9OAZ5c5q/4z0Gif9xp9Ju74DANi5ZiWfPvkIHlfNYe818sop9DvtTADKC/P57t/vHrGv9vmDao9tISG1xxabDXtIqD84D/UH5mExsbXnw2NiGXj277A7DoTqIb+E6nZHKFFJv4TbkQmJ3P7PzzDVYTUEW0gImYOGHnXcb3nr2x08v2ArAI+c04PRmYnMe3M9m3/aB8D6JXn0HpUW0D2aK8Mw2D9tGiX/+QDMZlo/+SQRw4YFu61mTSG8iIiIiIiIiIiIiIiINArD48O5qQiA2PMysSWHH+UKwFUJcx6AZa/7H8dnwnnToXX/Ruy0aXg9ntpZ46ERUbUBden+vezeuP5/lmD3L8nuqq6m32lnkdqpCwDblv/IvBkvHhjrxDB8B91j/PW30X34aAAKc3ex8K3pR+ynfb+BtcdWq+2gAN5kNvsD89BQfyj+qzA9Mj6RXmPG/zIL/b/BekgIttCw2uXlARLSMrjh9fexhYRgsf52NBkWFc2pl155lD/FA/2ZTNBEy71/vjqPqV+sB+C2MZ0YnxbPB48vo3hvFSaziSFnt6fXiDZN0kswFM54jaLX3wCg1UNTiRo/LsgdNX8K4UVERERERERERERERKRRmKxmkqb0pnpdAWF96rBEd85P8PEUKNrufzz4WhjzINhCG7XPw/nvsuxWu702PC4r2E/+rp2HzCz/7zLsfcefWRtAb/7xW77797u4a5wHzlfj9Xhq65/9hwfoOGAw4F+y/csXnz5iL+37DawN4Q0DKoqLDhljOzB7/Nczw6MSkug05OTaWef2kLBfZpaHhNbumQ6Q3DGTic+/diBMD8Visx1x6fbopGTGTjryfuy/ZrZYCImIqNPY5uibLfnc/u9VGAb8/qQMssLC+eCxZXjcPsKj7WRN6kFqx5hgt9loit//F/lP+1+bSX/4AzG/+12QOzo+KIQXERERERERERERERGRBmUYRm2Aa7KZjx7Ae1zw9eOw5BkwfBDVGs55CdqPaJB+qsvL2PzDEpwVFbhrnPQeO4HI+AQANn77NStnzzwkWPfU+GeFX/Tnx2nTrQcA25b/xII3Xjnifdr17V8bwrudTgpzsw87zmKz4XW7ax9HJSSR0avvgRnlIbXLtdsd/uPkdh1rx7bp2p3LH/+bf9b5f5d1tzsOuyx7YkY7zrztj3X6M7LZHUQnpdRp7IliTW4JU/6+HLfX4PSerTgnNJIF72wEIK1bHGOv6kZopD3IXTae0pkz2Tt1KgDxU6YQf83VQe7o+KEQXkRERERERERERERERBpU6RfbMTksRI3JwGQ+ypLh+zfAR5Nh7xr/414XwWl/hdCYBumluryMfz7wB4r37K79Wdve/WpD+KqyUvI2rT/i9S5nde1xZFwCKR0yfwm/HSG/LNkeEkJMcmrt2Ixefbnggb8cmIEeWjvD/HDLsrfp1oPfHQj6jyYkPIKQdsfvzPLjxfb8Cq58cylVLi/DOsbz9EW9cZe7WTUvh14jWtN/fNujv7aPYxVff03e3X8EwyDmkotJvPWWYLd0XFEILyIiIiIiIiIiIiIiIg2mak0+Fd/mARCSGYujXfThB/q88MNLMP9h8NZAaByc8Qx0P6fBenG7avjkrw9TvGc3EbFxZPTuhz00lLDo2Nox7foOICIu/qB9zf3Lt/sDc6vtl5nOHQcOoePAIXW6d0RsHBGxcQ32XKTp7Ctz8n+v/0RRpYuhcZFM/78BOKwWHLEWLp86BHtoy45Yq5YvJ/eWW8HjIer000l54IEjbk0gh9eyXyEiIiIiIiIiIiIiIiLSZNz5VRR/sAWAyBFtjhzAF++CT66DXd/6H2eOg7Oeh8jkBuvF5/My67lp5G3egCM8nN/d/wjxbdIPGRebkkpsSuphKsiJqLTazRVv/MTe4mrOM0LpsN3D/g3FRPRJBGjxAbxzwwZyrr0Ow+kkfPippD7+2GG3OpDf1rJfJSIiIiIiIiIiIiIiItIkfC4vhf/YgOHyYm8XTdTYtocOMgxY9S58+UdwlYMtHMY/Cv2ugAaeabvhm0VsXfo9FquVc+584LABvMivOd1eJr69lL27K7jCGUK82//z4r2VQGJQe2sKNTt2kH3NRHzl5YQO6E+bZ5/FZLMFu63jkkJ4ERERERERERERERERCYhhGJR8shXPvirMkTbiL+2CyfI/oXpFPnx+C2ya6X+cNgTOfQXi2jVKT91OGUlBzi5SOnSiTR33W5cTl8fr48b3VlK6uZTfVztwGCZCwm2MubobGd3jg91eo3Pv3Uv2NdfgLSrC0bUraS+/jDk0NNhtHbcUwouIiIiIiIiIiIjIia2mHKwhYNFsP5FjVbV0H1Ur9oMJ4i/pgiXSfvCADV/4A/iqArDYYeR9MPQmMFsarSeT2czwy69utPrSchiGwb0frsG7vIizXQ4AWnWIJmtidyJiQ4LcXePzFBWRffU1ePL2YG/blvTXZmCJjAx2W8c1LeAvIiIiIiIiIiIiIie2r+6BV06GnKXB7kTk+GUxgdVM1Li2ONrH/PJzZyl8fB386zJ/AJ/cAyYthJNvbZQAPvvn1Xz5wlN43O4Gry0t15OzN/HTj3sY4PLPX+6blc7Zt/c9IQJ4b0UFOZMm49q+HWtKCulvvI41vuXP/G9smgkvIiIiIiIiIiIiIieunKWw8u/+Y8MX3F5EjmPh/ZNxZERhiftVaLnjG/jkOijNAUww7BYYeS9YHY3SQ/6uHXw67S+4qquIbdWaIedf3Cj3kZbljSU7eGnRNrBBaK9YRp6cRrteCcFuq0n4nE5yr7se57p1WGJjSX/jdWypqcFuq0VQCC8iIiIiIiIiIiIiJyafF2bd4T/uczmkDw5uPyLHGcMwMJxezKH+uMmacGD/aLcT5j8EP7zofxzbFs55BTJOarReygry+ejxB3FVV9Gmaw8GnHleo91LWgav18d7b67lqc25YIY7szpx9ajMYLfVZAy3m9233U7V0qWYw8NJmzEDR/v2wW6rxVAILyIiIiIiIiIiIiInpuVvwp7VEBINYx4Mdjcix52Kb3ZT8W0ecZd1wZEe5f9h3ir4eArkb/Q/7n8lZD0CjsbbX9pZWcFHj/2ZiqJC4tukc/ad92O1249+oZywKopr+M8LK6naXcUZVjuhY1txw8iOwW6ryRg+H3n33UfFwoWYHA7avPwSoT26B7utFkUhvIiIiIiIiIiIiIiceCoL/DN1AUY9ABGJwe1H5DhTs6OU0q92gA/ceRU4WofBkmfg68fB54HwJDj7Beg0rlH78LjdfDrtEQpzs4mIjeO8ex4kJCKiUe8px7fsdYV8+fo6PFUeajCwdIriT2d2x2QyBbu1JmEYBvv+8ihln30OFgutn32G8EGDgt1Wi6MQXkREREREREREREROPPMeBGcppPSEAVcHuxuR44q33EXhexvBB2F9EgnvUAlvjIPdy/wDup0Npz8D4fGN3su8GS+Qu/5n7KGhnPvHB4lKSGr0e8rxyeczWPrFDpZ9uRMM2GfxkdctnJemDMRsPjECeICC51+g+N13wWQi9fHHiBw5MtgttUgK4UVERERERERERETkxJKzFFb+3X884SkwW4Lbj8hxxPAZFL2/EV+5C2tSGDHpSzBNvx881eCIhglPQq8LoYlmFfcYMZYdq5Yz4aY7SWqr/azFz/AZeL0+rDb/3+/V5S5mv/YzuzeVALDK7iG/Yyj/mDgQu9UcxE6bVtHbb1Pw0ksAJN9/H9FnnhnkjlouhfAiIiIiIiIiIiIicuLweWHWHf7jPpdB+uDg9iNynCmbt4uabaWYbCbio17CPOcD/4l2w+GclyC6TZP206ZbDyY+9xq2kJAmve+JxDAMfF4Dn8/AZv/lS0vlRU48Li9ej4HP68PnNfB6fPg8BiYztOkSVzt255oCKkpqDh534H/NFjODzmhXO3b5VzspzK3wn/ca+Dw+vAeuAzjvzv61Yxe8s4Fd6wr9/Xl8/vFeA8PnH3vdSyMxm01YbGbKi2vwmOCrUBc1qSH85+pBRDhOnKi05KOP2ffY4wAk3nIzcZddFuSOWrYT55UlIiIiIiIiIiIiIrL8Tdiz2j9jd8zUYHcjclxxbimmfEEOALG257DlzgZrCIx9CAZOAnPTzCjetvxHohKTSUxvC3DcBfA+nz8wNuCgULtkX9Uv4bTXH2b/938dYVZS2kfXjt34/R7cNd7a8T6v70AYbhAeY6fXyLTasYvf30xVmeuQANzn9REZH0rWNd1rx340bTkl+6oOCtR9BwLt6MRQLn/4pNqxs15eQ0FOxWGfY1i0naueOLn28YrZu9izrfSwY20hloNC+N2bS8hZX3TYsf+7wEJNlYeqUtdhxwL4vD7MZgtes4k5sV7WVTuxxdr54OpBxEc4jnhdS1M+bx577r8fgLgrriD+2muD3FHLpxBeRERERERERERERE4MlQUw/2H/8aj7ISIxuP2IHGfs8R5CondhqVhLmG82pPaDc6dDYqcm6yF34zo+f+ZxrDY7lzw8jfg2aUe/CP/y5Ht3lOGu8eDzGETEhZDQJgIAt8vLpu/31IbY/uD7l1nViekRdBqYAoDH5WX+Oxv84bTXVztT+7+hdevOsQw9r2PtPd/647cHheo+rw/Dn2mT0TOeM27oXdvj+4/8hNftO2z/rTvFcM7t/Woff/vBVpyV7sOOTcqIPCiE37mmgPIi52HH1lR5DnrsrPRQXX74ul7vwb05Qq04wq2YLWYsFhNm64H/tZgJjbQdNLZVZgwhETYsVjNmqwmLxYz5wDU2+8Ff3uh+cioZ3eMxW0wHj7f6axuGgelAGn/SeR0YcHrbX9XzX2OxmHF6vfy0q5hVuSXMXreP1ftKiQq38t7Vg0iLCzvsc2yJKr//nt233Q4+H9HnnUfSH++u/fOTxqMQXkRERERERERERERODPMeBGcJpPSEAVcHuxuR48uWeZg/vYF4516w2WHEPXDKHWCxHf3aBlKYm8Onf30Yr9tN2979iU1NrdN1Pq+PmS+uIftXs6u7n9qaEZd2BsDr8vH1Pzcf8fpOg5NrQ3hMsHXZ/iOOjYj9ZVa+yWyiutxVG7of0pfn4FA7NMJWuzx7bQB94H+jkw4Ojdv2isdd4/UH4AfC6f8G4ZFxB68MMOD0tnhcvgPjDow9UNsRdnBUOH5SDwzD+NX9/9uDv/av/fpLAUdz0jkd6jy2Q7+kOo+NOfDnYhgGOwoqWbmzhBXZxazMLmHj3jJ8v/qzd1jNvH7lQLqkRNW5/vGues0acm64EcPtJnLsWFo9NFUBfBNRCC8iIiIiIiIiIiIiLV/OUlj5d//xhKfAoo/HRerEVUnNf57BvvlJTCYwJXbyz35vXfcAtiFUFBfx0eN/xllZQavMzpx+852YzZajXwh89/E2stcXYbGaiUkJw2IxERn3y1LkFruZ9n0T/WGz5eCZ1xaLmcT0yF/GWsycfGHmLwF57Qxw//jw6IOXOL/wvkEHgu+DQ/X//u+vXfHYsDr/eYy+oludx3YbVrcvKwDEpYbXeWwwlTvdrM4pPRC4F7Myp4SSqkNn8KdGh9A3PZa+6TGM6ZpM24Tj4/k1hJotW8iZNBmjqoqwk4aQ+tQ0TFa99zUV/UmLiIiIiIiIiIiISMvm88KsO/zHfS6D9MHB7UfkeJHzE1XvvkJRyVWEmX3EnlyFaeyfwRbapG24qqv46PEHKcvfT2yrVM6560/YHHXbB37Tj3tZPc+/j/2Yq7rRsf+hs6xtdgunTelZp3oms4neo+q2BD5Qu+S9HDufz2BbfkXtDPcV2cVs2V9xyAoDDquZnq2j6ZcRS9+0GPqmx5ISXbfXSUvjys0l+5qJeEtLCendi7QXXsBstwe7rROKQngRERERERERERERadmWvwl7VoMjGsZMDXY3Is2fxwVfP4578X8ornkKAEvv4ZgmDG/yVrweD589/Rj5O7cTFh3Defc8RFhUdJ2udVa6+fq9TQD0H59x2ABemp+SKhcrc0pYmV3CyuxiVmWXUF7jOWRcWlwo/dJ/Cdy7torC/j+rC5yI3Pv3k33V1Xj278eR2ZH06dMxh584KwA0FwrhRURERERERERERKTlqiyA+Q/7j0fdDxGJwe1HpLnbtx4+noxvz2YKXU9jEIqjXThRF/QNSjtetwvD58XqcHDu3X8mJjmlzteGhNs4/fpebPx+D4PPat+IXcqx8nh9bN5XwcqcYlbsKmFlTjHb8ysPGRdqs9A7Ldq/tPyB0D0x0nGYiic2b2kpORMn4c7JwdamDWmvvY4lJibYbZ2QFMKLiIiIiIiIiIiISMs170FwlkBKTxhwdbC7EWm+fF74/kVY8DCGx0WJcQ8eIwNzpJ24S3tgMpuC0pY9NIzz7plKQfYuktt3rPf1rTvH0rpzbCN0JseioKKGVQeWlF+ZXcLq3BKqXN5DxrVPCKdPeox/pnt6DJ2TI7FaNMv9t/iqqsiZci01mzdjSUwg/Y3XsSVr9YdgUQgvIiIiIiIiIiIiIi1TzlJY+Xf/8YSnwKKPxEUOq3gnfHI97PoWgMqEO6jaPQzMEH9JFyyRTb+XdH72ThLT2wJgsdrqFcAv+3In7fskEtdKS3AHk9vrY+Oe8gOBezErskvILqo6ZFyEw0qftBj6pftnuPdJiyE2XPuX14fP5SL3xpuoXrUKc3Q06a+9jj09PdhtndD0Lw4RERERERERERERaXl8Xph1h/+4z2WQPji4/Yg0R4YBK/8BX/0RXBVgj8A74nFKv2wP+Ige1w5H+7rtv96Qti3/kU+f/At9x5/BiN9PxGSu+wzodd/s5sdPt7NyTjaXPzyE0AiFuU1lX5mTlQdmuK/ILmZNbik1Ht8h4zKTImpnuPdNj6VjUgSWIK200BIYXi95f7iLyu++wxQaSvr0Vwjp3CnYbZ3wFMKLiIiIiIiIiIiISMuz/C3Ysxoc0TBmarC7EWl+KvbD57fApln+x+knwTkvY4lrR3xyCdWr84k4tXWTt7Vn6ya+ePavGIaPmuoqMNU9nN2zrZTF728GoO/YdAXwjajG42VdXllt4L4qu4TdJdWHjIsOtfnD9jR/6N47LYboUFsQOm6ZDMNgz5//TPns2ZhsNtq88DyhffoEuy1BIbyIiIiIiIiIiIiItDSVhTD/If/xqPshIjG4/Yg0Nxs+h89vhaoCsNj9vycn3QhmCwAhHWII6RDT5G0V783j48en4nHV0LZPf8ZOuhFTHUP4iuIavpq+Fp/XoEPfRPqfltHI3Z44DMMgr9Q/y33FrhJW5hSzbncZLu/Bs9zNJuicEnUgdI+hX0Ys7eLDMWuWe6MwDIP9T06j9IMPwWwm9alpRAwbFuy25ACF8CIiIiIiIiIiIiLSssx/EJwlkNITBlwd7G5Emg9nKXz5R1j9nv9xcg84dzqk9KBy2T7sGZHYEsOC0lpVWSkfPfpnqsvLSGrXgTNv+yMWa91iLI/by5fT11JV5iIuNZxRV3Stc3gvh3K6vazdXcqKXb8sLb+/vOaQcXHh9tp93Pumx9CrTQwRDkWPTaXw1RkUvfEGAK0efoiorKwgdyS/pt8EEREREREREREREWk5cpbCinf8xxOeAos+BhcBYMdi+OR6KM0BkxmG3QIj7gGrA+e2Eoo/3IzJZiH51n5Y40KatDW308nHT0ylZN8eohKTOe+PD2IPCa3TtYZh8PV7m9i/swxHmJUJ1/XEHqLf+7oyDIPsoipWZpf4Z7pnl7BhTxken3HQOKvZRNdW/lnu/93PPT0uTF92CJLi998n/5lnAEi66y5izj8/yB01X06Pk4d/eJjJvSaTEdV0K2TobyERERERERERERERaRl8Xph1h/+4z2WQPji4/Yg0B+5qmP8w/PCi/3FsW//s9/QhAHjLXBT9cyMYENojHkuso8lbzF63mr3bthASGcX5904lPCa2ztd63D7KCpyYTDBuYg+igzST/3hRWeNhdW5Jbei+MruEwkrXIeMSIx30qw3cY+nZOppQuyUIHcv/Kp05k71T/VuuxF87hfirrwpyR81XpbuSG+ffyLJ9y/i54Gc+OusjLOameR0rhBcRERERERERERGRlmH5W7BnNTiiYczUYHcjEnx5K+HjayF/o/9x/6sg6xFwRABgeA0K/7kRX4Uba3IYMed0DMrM5g79B3PWbfcQFhNLXGqbel1rs1s469Y+5G0pIa1LXCN1eHwyDIPtBZW1S8qvzC5h094y/meSOzaLie6p0bUz3PtlxJIaHaJZ7s1Qxddfk3f3H8EwiL30EhJvuSXYLTVbpTWlXDfvOtYWrCXcFs6fTvpTkwXwoBBeRERERERERERERFqCykKY758ZyKj7ISIxuP2IBJPXA0uehq+fAJ8HIpLhrBeg08F7RpfN3YlrRykmu4X4y7tibuKZzh63G6vNBkDm4KH1utbt8mI70K/FYlYAD5Q53azOKWHFrhJW5vhD99Jq9yHjUqND6JsRS980f+DerVUUITbNcm/uqpYtI/fmW8DjIeqMM0i+/359UeIICqoLmDJ3CpuLNxPtiGb6mOl0T+jepD0ohBcRERERERERERGR49/8B8FZAsk9YcDVwe5GJHgKtsLHk2H3cv/jbmfD6c9AePxBw6rXF1K+KBeA2N9lYmviZdx/XjSPZZ9/xHn3PEhUQlK9rnW7vHz05HJaZ8Yy9PwOmC3mRuqy+fL5DLbmV7BiV3HtTPet+RUY/zPL3WE106tNNH3TY+mXHkOftFhSokOC07QcM+f69eRcex1GTQ0Rw4eT+tijmMwn3uu+LvZW7mXSnEnsLNtJQmgCr459lczYzCbvQyG8iIiIiIiIiIiIiBzfcpfBinf8x6dPA4s++pYTkM8Hy16HOQ+Ap9q/LcPp06DnBXCY2bKVP+0FIGJoKmG9mnbliJ2rljP31efxeb2sX7yQIeddVOdrDcNg4TsbKMipoLKkhr5Z6YTHNP0+9k2tuNLFqhz/Pu4rsktYnVNCeY3nkHHpcWH0S4+h74Gl5bu2isJ2An5JoSWp2bGD7ImT8FVUEDqgP62ffQbTgRUk5GA5ZTlMnDORvMo8WoW34rWs10iPSg9KL/qXiIiIiIiIiIiIiIgcv3xemHmH/7j3pZA+JLj9iARD6W749AbYvtD/uP0IOPtFiD7y/urx/9eViu/3EDGkVdP0eMC+7Vv57JnH8Xm9dD15BIPPuaBe16+ck82WZfsxm02Mn9yzRQbwHq+PTfvKa2e4r8ouYXtB5SHjwuwWereJoe+vQveEiJb353Eic+/ZQ/Y11+AtKsLRrStpL7+MOTQ02G01S1uLtzJ57mTyq/PJiMpgxtgZtIpo2r/ffk0hvIiIiIiIiIiIiIgcv5a/BXtW+Wf9jp0a7G5EmpZhwNoPYNYd4CwFayiMfQgGToSjLFVtspiJPLl1EzXqV7p/Hx8/MRW3s5r0Hr0Yd90t9VpSe9e6Qr7/ZBsAp1yUSWpmTCN12rQKKmpqA/eV2cWsyS2lyuU9ZFz7xHD6pvnD9n7psXRKjsCqWe4tlqeoiOxrJuLJ24O9bVvSZ8zAEhkZ7LaapXWF67h27rWU1JSQGZvJq2NfJSE0Iag9KYQXERERERERERERkeNTZSHMf8h/POp+iKjfvtIix7WqIph5O6z72P84tR+c9yokHHnv46pV+3HlVhB9WltMTRzeVleU89Fjf6aypJiE9Lacdcd9WKx1X1K7ZF8Vc19fBwZ0G9aK7qc27RcIGorL42Pj3jL/Xu45/uA9p6j6kHGRDit90mPomxZD34xY+rSJITbcHoSOJRi8FRXkTJqMa/t2rK1akf7G61jj44PdVrO0cv9Krp93PRXuCnrE9+CVsa8Q7YgOdlsK4UVERERERERERETkODX/QXCWQHJPGHB1sLsRaTpb5sKnN0LFXjBZYPjdcModYDly7OPeV0nxh1sw3D6siaFEDG7aZZoXvPEKRXm5RMQncN4fH8QRFl7na71eH19OX0tNlYeU9lGcenFnTIfZ57452lfm/CVw31XM2t2l1Hh8B40xmSAzKYK+abH0y/AvLd8xMQKz+fh4jtKwfE4nudddj3PdOiyxsaS//jq21NRgt9UsfZf3HbcuvJVqTzX9k/vzwqgXiLBHBLstQCG8iIiIiIiIiIiIiByPcpfBinf8x6dP+83wUaTFqKmAOffD8jf9jxM6wbnToXW/37zMV+Ol8B8bMNw+HB1jCB+Y0gTNHmz45VdTWVLMqCsnExlfv2WiLRYzg85oxw+fbmf8lJ5YbM1zCXan28u6vDJWZhezMruEldnF5JU6DxkXHWqrXVK+b3oMvdNiiAqp+6oA0nIZbje7b72NqqVLMUdEkPbaDBzt2wW7rWZpQfYC7vz6Ttw+N8NaD+OZEc8Qag0Ndlu19K8SERERERERERERETm++Lww8w7/ce9LIX1IcPsRaQrZP8LHU6B4h//xkOth9J/A9tuhk2EYFH+0BU9+NZYoO3EXd8YUhBnWEXHxXPinR4/5+g79kmjXOwFzM9kD3TAMdpdUs+JA2L4yu4T1eWW4vAfPcjeboHNKFP3S/TPc+6XH0C4h/LiZyS9Nx/D5yLv3PioWLcLkcJD28kuEdu8e7LaapVnbZ3HvknvxGl7GpI/hiVOfwG5pXts1KIQXERERERERERERkePL8rdgzypwRMPYqcHuRqRxeVyw6DH49lkwfBDVBs55CdoPr9PllT/soXp1PphNxF3aBUtE0wVVy2d+SlhUFF1PGXlM1+duLCI6KYzIuBCAoAbw1S4va3JLWJnjD91XZJeQX15zyLj4cDt9D8xw75ceS6820YQ7FMfJbzMMg31/eZSyzz8Hq5XWf3uWsIEDg91Ws/TB5g946PuHMDA4s/2ZPDTsIazm5vc71vw6EhERERERERERERE5kspCmP+Q/3jUfRCRFNx+RBrTvnXw0RTYt9b/uPclMP5xCI2p0+WunHJKvtgOQPRpbXG0jW6kRg+18duvWfTODABiW7UmpWOnel1flFfJrJfXYrWbOe/O/sQkhzVGm4dlGAa7CqtYmeOf4b4iu5gNe8rx+oyDxlnNJrqlRtE3LYZ+GbH0TYslLS5Us9yl3gqef57id98Fk4nUxx4jcsSIYLfULL2z7h2eXPYkABd1voh7B9+L2dQ8Vsf4XwrhRUREREREREREROT4Mf9BcJZAck8YcE3A5Qy3j5IvthE5PA3rgdm2IkHn88L3L8CCR8DrgtA4OPNZ6HZ2vcp4y12YLGYcXWKIOLl14/R6GDnr1vDVS88A0O+0s0jukFmv652Vbma9vAZ3jZekjEgiExr3d7OixsOaHP8s9xW7ilmZU0JRpeuQcUmRDvqlx9Ivw7+0fI/UaELtlkbtTVq+wrfeouCllwFI+dMDRJ95RpA7an4Mw+CVNa/w0qqXALiqx1Xc1u+2Zv2FF4XwIiIiIiIiIiIiInJ8yF0GK/7uPz59GlgC/4jbubmIyh/3UrOtlOTb+wdlr2yRgxTvhI+vg+zv/I87jYczn4PI5HqXCu0WT9JNfbBE2pssrCrI3smn0/6C1+Mhc/BQhv/+mnrd2+czmPvGOkrzq4mMC2HcpB5YGnAZep/PYHtBJSsO7OO+MruYzfvK+Z9J7tgtZrq3jqLfgaXl+6bHkhod0qxDPzn+lHz0MfsffwKAxFtvIfaSS4LcUfNjGAZPL3+at9a9BcCNfW5kcq/Jzf53USG8iIiIiIiIiIiIiDR/Pi/MvAMwoPelkD6kQcqGdk8gcUovDLdPAbwEl2HAyr/DV/eAqwLsETD+Mej7f1DPsMlwezHZ/DO0bYlNt4x7eWEBHz7+IDVVlbTu0o0JN96J2Vy/meI/frqN7HVFWG1mTruuJ6GRge9h7/H6+GLNHj5euZtVOSWUVrsPGdM6JrQ2bO+XHkO31CgcVs1yl8ZTNncue+6/H4C4K68kfsqUIHfU/PgMH3/54S/8e/O/Abhr4F38X7f/C3JXdaMQXkRERERERERERESavxVvw55V4IiGsVMbtLSjXdPtky1yWBX74bObYfOX/sfpJ8E5L0Ncu3qXcm4toejfm4i7qDMhHWIats/f4HJW89HjD1JRWEBcahvO/sMDWO31C9C3LN3HitnZAIz6fVcS0yID6snj9fHpqjxeWLiVHQWVtT8PsZnp1TqmNnTvmx5DcpS2o5CmU/n99+Tdfgf4fESffx5Jd9/V7Gd2NzWPz8MD3z7AF9u/wISJB4c+yHmZ5wW7rTpTCC8iIiIiIiIiIiIizVtlIcw7ELyPug8ikgIu6dxagjUuRPvAS/Ct/wy+uBWqCsFih1H3w0k3Qj1nkAN4y2ooen8jvgo3VSv3N2kIb3OE0L7fQKrLSjnvnqmERtQvQDcMgzULcwDom5VO5sD6L7//X26vj49X7OaFhVvJLqoCICbMxlVD2zGqSxJdWkVia8Al7kXqo3r1anJuuBHD7SZy7FhaTZ2qAP5/uLwu7lp8F/Oz52M1WXn0lEc5rd1pwW6rXhTCi4iIiIiIiIiIiEjzNv9BcJZAck8YcE3A5XxVbor+uRHD5SVhYk8cGVEB1xSpN2cpfHk3rP6n/3FyTzhvOiR3P6ZyhtdH4Xv+AN6WEk7s2R0asNmjM5lMnHLJFQw441xCI+v/O2UymTjrlr6sXZRLn7Hpx9SDy+Pjg+W5vLRoK7nF1QDEhduZdEp7/u+kDCIcisUkuJybN5MzeQpGVRXhQ08i9alpmKx6Xf5ataeaWxfeynd532E323lqxFOMSBsR7LbqTf+vioiIiIiIiIiIiEjzlbsMVvzdf3z6NLAE/rF26eyd+CrdWJPCsLeOCLieSL1t/xo+uR7KcsFkhmG3wog/gtVxzCVLZ+/CtbMMk8NC3OVda/eEb2wbvllIx8FDsdn9vdc3gDcMo3YWsM1hod+4jHr3UOPx8u9luby8cCt5pU4AEiLsTDm1A5cNSSfMrjhMgs+Vm0vONRPxlpYS0rsXbZ5/HnM9t2xo6SpcFdww/wZW7F9BqDWU50Y9x5BWQ4Ld1jHR3zoiIiIiIiIiIiIi0jz5vDDzDsCA3pdCeuAfxNfsKqPyx70AxJ7TEZNVS1JLE3JXw/yH4IeX/I9j28K50wN+bVevK6BicS4AcRd0wpYQGmCjdbNy9hcseOMVWs/7kgseeBTLMczoXfKfLYRG2Ol/Wka9l+R2ur28/1M2r3y9nb1l/vA9MdLBtcM7cOmgdELtTfNFBJGjce/fT/ZVV+PJz8eRmUn69OmYw8OD3VazUuIs4dp517KucB2RtkheGvMSfZL6BLutY6YQXkRERERERERERESapxVvw55V4IiGsVMDLmd4fZR8vAWAsP7JONpHB1xTpM7yVsJHU6Bgk/9x/6sg6xFwBLYag6ewmqL/bAYg4uTWhPZICLTTOtny03cseHM6AG179z+mAH7Dd3msWeD/8kCbLrGk1PF3strl5b2fspn+9Tb2l9cAkBIVwnUjOnDRwDRCmmgVAJG68JaUkHPNRNw5OdjS0kh7/TUsMTHBbqtZya/KZ/LcyWwt2UqsI5ZXxr5Ct/huwW4rIArhRURERERERERERKT5qSyEeQeC91H3QURSwCUrvs3DvbcKc5iV6AntAq4nUideD3zzFCz+K/g8EJEMZ70AnbIapLw5wk5olzg8xTVEn9a2QWoeze5NG5j13DQwDHqNHs/gcy+sd429O0pZ9J7/CwkDz2hXpwC+yuXhHz/s4tXF2ymocAGQGh3CdSM7cuGANjisCt+lefFVVZEz5VpqtmzBmphI+huvY0sK/P2sJcmryGPSnElkl2eTGJrIjKwZdIjpEOy2AqYQXkRERERERERERESan/lTwVkCyT1gwDUBl/OUOCmbtwuA6NPaYQm3BVxT5KgKtsDHU2D3cv/jbufAGc9AWFyD3cLssBB7UWcMlw+TpfG3VyjKy+WTvz6Ex+2iff9BjL7munovI19ZWsNXr6zF5zFo1zuBgRPa/ub4ihoPf/9+FzO+2U5RpT98bxMbyg0jO3J+vzbYta2ENEM+l4vcG2+ievVqzNHRpL3+Gva0tGC31azsKtvFxDkT2Vu5l9YRrZmRNYO0yJbxZ6QQXkRERERERERERESal9xlsOId//GEaWAJ/KNsS7idiFPa4NpVRlj/5IDrifwmnw+WvgZz/wSeagiJhglPQc/fQT0D6yNx76vEmhSGyWTy/+do/FnglSXFfPjon3FWlJPSsRNn3HwXZkv97ut1+/hq+loqS13EtgpnzFXdMJkP/2dS7nTzzoHwvaTKDUBGfBg3jOzIuX1bY2uCLx2IHAvD6yXvzj9Q+d13mMLCSJ/+CiGdOgW7rWZlc/FmJs+ZTKGzkLZRbZmRNYOU8JRgt9VgFMKLiIiIiIiIiIiISPPh88LMOwADel8KGSc1SFmTzUz02AwMn3HEwE+kQZTuhk+vh+2L/I/bj4CzX4Lo1g12C/feSva/uApHZixxF3fGbG+aZdjLCwtwVVcRk9yKc+/6E7aQkHrXWPyvzezdXoYjzMqEa3tiDzk0qiqtdvPWtzt5fcl2ypweANolhHPjyI6c3ScVq8J3acYMw2DPn/9M+Zw5mGw20l54ntA+fYLdVrPyc8HPTJk7hTJXGZ1jOzN97HTiQ+OD3VaDUggvIiIiIiIiIiIiIs3HirdhzypwRMPYqQGXM9w+MJswWfzBuwJ4aTSGAWv/AzPvhJpSsIbC2Idg4EQwN1xo7KvxUPiPDRhuH4bHh6kJl2JP6ZDJJQ8/iclsJiw65phqJGVEsulHM2Ov6U5McthB50qqXLzx7U7e/HYH5QfC9w6J4dw8OpMzeqVi0e+vNHOGYbD/yWmUfvAhmM2kPjWN8KFDg91Ws7Js7zJuXHAjle5KeiX04qUxLxHtiA52Ww1OIbyIiIiIiIiIiIiINA+VhTDvQPA+6j6ISAq4ZOncXdRsKyH2vEzsrSMCridyWFVF8MVtsP4T/+PW/eHc6ZCQ2aC3MQyD4g+34CmoxhJtJ+6izo3+xRLDMCjL3090kn8bh7jUNgHV635Ka9r2SiA82lH7s6JKF68v2c7b3+2iosYfvndKjuCmUZlM6NlK4bscNwpfnUHRG28A0Orhh4jKygpyR83Lkt1LuG3hbTi9TgalDOK5Uc8RbgsPdluNQiG8iIiIiIiIiIiIiDQP86eCswSSe8CAawIu595bScWSXPCBt9wVeH8ih7N5Dnx2I1TsA7MVht8NJ98OloaPYCq/y6N6TQGYTcRd1hVLuK3B7/G/vvvPe6yY9Qln3n4vbXv1PaYaFcU1WG1mQiL8/f43gC+sqGHGNzt45/udVLm8AHRJieSW0ZmM656CWeG7HEeK//lP8p95BoCku+8m5vzzg9xR8zJv1zz+sPgPeHweTm1zKk8Nf4oQa/23tDheKIQXERERERERERERkeDLXQ4r3vEfT5gWcIBp+AyKP9oCPgjtEU9ol7gGaFLkV2oqYM59sPwt/+OETv7Z7637Nc7tsssombUDgOjT2+FIj2qU+/zamvmz+eHDfwJQtn/fMdXwuLzMenkNNVVuJlzfi/jUCPLLa3h18Tb+8UM21W5/+N49NYqbR2cytmuywnc57pR+MZO9Dz0MQPx11xJ/1ZXBbaiZ+Xzb5zzw7QN4DS9ZGVk8fsrj2CyN/yWiYFIILyIiIiIiIiIiIiLB5fPCrDsAA3pfAhknBVyyctleXNnlmOwWos/sEHiPIr+W/SN8PAWK/aE4Q66H0X8CW2ij3M7wGhT9axN4DUJ7JhAxNLVR7vNr21cuZd5rLwIw5LyL6DVmfL1rGIbBwnc3kp9dTkiEjVKXhxc/X8+7P+6ixuMDoFebaG4elcnorkmYTArf5fhT8fXX5P3xj2AYxF56CYk33xzslpqVf238F4/8+AgA53Q8hwdPehCL2RLkrhqfQngRERERERERERERCa4Vb0PeSnBEwdiHAi7nrXBR+uVOAKKyMrD+au/pw9meX0GIzUJqTOMEqNKCeFyw6FH49m9g+CCqDZz7MrQ7tVFva7KYiLuoM2VzdhF7fmajh9V7t23h82cex/D56D58DEMvvPyY6qyen8PmH/dhMsOebuGMf+17XAfC9z5pMdwyJpMRnRIVvstxq2rZMnJvvgU8HqLOOIPk++/X6/lX3vz5TZ5e/jQAl3a5lLsH3Y3ZZA5yV01DIbyIiIiIiIiIiIiIBE9lIcw/ELyPvA8ikgIuWTprB0a1B1urcCJO+u0Zw4ZhcO/Ha1mZXcIzF/VhQs9WAd9fWqh96+CjKbBvrf9x70vgtCcgJLpJbu9IjyJxYs9Gv0/Jvr18/MRUPDU1ZPTqy9jJNx5TqJizvohvP9wKwMIQN0s37wGgf0Yst4zO5JTMBIWVclxzrl9PzrXXYdTUEDF8OKmPPYrJfGIEzEdjGAYvrnqR6WumAzCx50Ru7nvzCfU7rxBeRERERERERERERIJn/lSoLobkHjBwYsDlDLcPT6ETTBB7XiYmy29/4L9g435+2F6E3WqmV5umCVPlOOPzwvcvwIJHwOuCsHg441nodlaj37pmewmmECv21IhGv9d/Lfv8Q6pKS0hq24Gzbr8Hi7X+UdLGrUXMfWk1ZgPW2j0stXkY1C6OW0dnclKH+BMqiJOWqWbHDrInTsJXUUHYgAG0/tuzmGwte4/zujIMg78u/Sv/2PAPAG7pdwsTewb+/n68UQgvIiIiIiIiIiIiIsGRuxxWvOM/njANLIF/ZG2ymUmc0gtXdhn2tMjfHOvx+nh01gYArh7WjjaxYQHfX1qY4p3w8XWQ/Z3/cafT4My/QWRyo9/aU1pD4bsb8NX4SLymB452TfMlkZFXTsEeFk6/087CHlq/34ldhZW8uHAr7q/309FjIc/io7x7JO+P7cSQ9vGN1LFI03Lv2UP21dfgLSoipFs32rz8EuaQkGC31Sx4fV4e/uFhPtzyIQD3DLqHS7teGuSugkMhvIiIiIiIiIiIiIg0PZ8XZt0BGP5lvTNOarDSJrMJR9ujB5b/WpbDtvxKYsNsXD+yQ4PdX1oAw4CVf4ev7gFXBdgjYPzj0PdyaIJZ3IbXR9G7G/BV+rdVsLdp3Jnwhs8HJhMmkwmL1cqpl15Zr+u351fwwsKtfLoqD6/PICQULo6MYMIl3RjWM6VxmhYJAk9REdlXX4Nnzx7s7dqR9toMLJG//YWvE4Xb5+a+Jffx5Y4vMZvMPHjSg5ybeW6w2woahfAiIiIiIiIiIiIi0vRWvA15K8ERBWMfCricp6Caip/2EjU6HbPDctTxFTUenpm7BYCbR2cSFaJlhOWA8n3w+c2w+Sv/4/ShcO7LENu2yVoo/XInruxyTCEW4i/visl29Nf0sTIMg/lvvAImE6OumozZXPd7bd1fzgsLtvLZ6jx8hv9nIzoncvPoTPqlxzZSxyLB4a2oIGfiJFw7dmBt1Yr011/DGhcX7LaahRpvDXd+fSeLchZhNVl5/NTHGdd2XLDbCiqF8CIiIiIiIiIiIiLStCoLYf6B4H3kfRCRFFA5wzAo/nQrNVtK8JW7iLuo81GveXXxdgoqamgbH8ZlgzMCur+0IOs/g89vgeoisNhh1ANw0g1Qj2A6UFVrC6hYshuAuAs6YY0PbdT7/fTJf1g9dxaYTHQZdiptunQ/6jWb9pbz/IItzFy7B+NA+H5eShxZ7RIYf3Zmo/YrEgw+p5Pca6/DuX49lrg40l9/HVtqarDbahaq3FXcvPBmftzzI3aznWdGPsOpbU4NdltBpxBeRERERERERERERJrW/KlQXQzJPWDgxIDLVa8poGZLCVhNRI5OP+r4fWVOZizeDsDd47tgt5oD7kGOc85SmHUXrHnf/zi5J5w3HZKPHkg3JHdBNcUfbAYg4tTWhHZPaNT7rV+8gCXvvwPAyCsmHzWA37CnjOcXbGHW2r21P8vqlszE3mmsfnMj2zbmsDk1kk4DtQS9tByG283uW2+jatkyzBERpM14FUf7dsFuq1koc5Vxw7wbWJW/ilBrKC+MeoFBrQYFu61mQSG8iIiIiIiIiIiIiDSd3OWwwh/6MWEaWAL7mNrn9FDyxTYAokakYUs4+qzhp+dsptrtpX9GLON7KCw84W1fBJ/cAGW5YDLDsFthxD1gtTd5K5Xf5WHUeLG3jSJ6XNtGvdeuNauY/crfABhw5nn0O+3MI479eXcpz83fwpz1+2p/NqFnCjeOzKRDbBgfPL4Ml9NLq47RdOgb2MoWIs2J4fORd8+9VCxahMnhIO3llwjt3rRfzmmuipxFXDv3WjYUbSDSHsnLY16md2LvYLfVbCiEFxEREREREREREZGm4fPCrDsAA3pfAhknBVyydPZOfOVurAmhRI5IO+r4jXvL+M/yHADundAFk8kUcA9ynHJXw7yp8OPL/sex7eDc6ZA+OGgtRZ/RHnOUnfC+SZgsjbdCw/6d2/ns6b/g83rpPPRUTr30ysOOW51TwvMLtjBvw34ATCY4vWcrbhqVSeeUSHw+g1kvr6FkXxURsQ7GT+6JRStLSAthGAb7HvkLZV98AVYrrf/2LGEDBwa7rWZhf9V+Js2ZxPbS7cSFxPHq2FfpHHf0rWBOJArhRURERERERERERKRprHgH8laCIwrGPhRwOVdOOZU/7AEg5pyOmOoQ/j02ayM+A07rkUL/jLiAe5Dj1O4V8PEUKPAv/U7/qyDrEXBEBLUtk9lEVB2+TBIIt6uGT/76MK7qatK69WT89bdhMh/8u7Miu5jn5m9h0aZ8AMwmOKt3KjeO6kjHpMjacT99vp1dawux2Mycdm1PwqKafvUAkcZS8PzzFL/3HphMpD7+OJEjRgS7pWZhd8VuJs6eSG5FLklhSczImkH76PbBbqvZUQgvIiIiIiIiIiIiIo2vstC/FzzAyPsgIvAlq0u/3AEGhPVNIqRjzFHHL9lSwNeb87GaTdw9vkvA95fjkNcN3zwNi/8KPg9EpMDZL0Dm2KC15MqroHLpXmImtMdka/xZ5Da7g1FXX8uPH/+Ls+68D6vNVntu2c4i/jZ/C99sKQDAYjZxdp9UbhjZkQ6JB39BYevy/Sz/chcAIy/vQlJGVKP3LtJUCt96i4KX/KtkpPzpAaLPOD3IHTUP20u3M2nOJPZX7adNRBtmZM2gTWSbYLfVLCmEFxEREREREREREZHGN38qVBdDcg8YOLFBSsZd1JnSObuIPq3tUcf6fAaPztoAwOVDMmibEN4gPchxpGALfDQZ8lb4H3c/F05/GsKCtyKCz+mh6N0NeAqdmCxmYs5omtmkHQcMpkO/gbUz4H/cXsjf5m/hu22FgD98P79fa64f0fGIvysVxU4wQZ/RaXQenNIkfYs0hZIPP2L/408AkHjrrcReckmQO2oeNhVtYvLcyRQ5i2gf3Z4ZWTNICgv8C3UtlUJ4EREREREREREREWlcucv9S9EDTJgGlob5aNoS7SDugk51Gvvxyt2s31NGpMPKzaMzG+T+cpzZsdgfwIdEw4SnoOfv/JucB4lhGBT/ZzOeQieWGAeRIxtvGXrD52Pxe2/RJ2sC0UkHAnOTie+2FvC3+Vv4cUcRAFaziQsGtOH6ER1Jiwv7zZp9xqST3DaK5HaaAS8tR9ncuex54AEA4q66ivgpk4PcUfOwOn811827jnJXOV3juvLK2FeIC9GWLr9FIbyIiIiIiIiIiIiINB6fF2bdARjQ+xLIOCngkq68Cuypdd+72+n2Mm3OJgCuH9mRuHDtW31CGnA1VOyDfldAdOtgd0PFkjyq1xWCxUT8ZV2xhNuOftEx+vofr7N85qds+u4brnrmFX7ILuO5+VtYurMYAJvFxIUD0rhuRAfaxB45fPd5fXg9BjaHBYBWddgGQuR4Ufndd+Tdfgf4fET/7nyS7voDpiB+Uae5+GnPT9y44EaqPdX0SezDi2NeJMquL98cjUJ4EREREREREREREWk8K96BvJXgiIKxDwVcrnpjEYVvrSOsbxKxF3aqU0Dy+pId7Cl10jomlKuGtQ24BzlOmUww8t5gdwFAzc5SSr/cAUDMGe2xp0U22r2Wz/yE5TM/BSB+5Llc+PoyVmaXAGC3mrlkYBpThncgNSb0qLW++2gbuRuLmHBdL6ISjj5e5HhRvXo1OTfehOF2E5mVRaupUxXAA4tzF3P7otup8dYwuNVgnhv5HGG2314lQ/wUwouIiIiIiIiIiIhI46gq8u8FDzDyPogIbO9Yn8tLyadbATBH2OoUkBRW1PDyom0A3DmuEyE2S0A9iATKW+Gi6L2N4DMI7Z1I+JBWjXavTd9/w6J3XgNge9sRPL/cApTgsJq5bHAGU4a3JzkqpG61ftjD6vk5ABTkVCiElxbDuXkz2ZOnYFRVET50KKnTnsRk0XvF7J2z+eM3f8Tj8zCizQimjZiGw+IIdlvHDYXwIiIiIiIiIiIiItI45k+F6mJI7gEDJwZcrnxBDt7iGizRdqLGZNTpmufmb6GixkOP1lGc3Tv4S5CLeAqd+Nw+rImhxJ7XsdFm22avW8vM558CYHVUDxbThVCbhcuHpDPp1PYkRdYtfAfYv6uMhf/wb+kwYEJb2vdNbJSeRZqaKyeHnGsm4istJbR3b9o8/xxmu7Ys+WTrJ/z5uz/jM3yc1vY0/nLKX7CZG2/LjJZIIbyIiIiIiIiIiIiINLzdy2H52/7jCU+CJbCPo937KilfnAtAzFkdMDuOPktxe34F7/6YDcC9p3XFbNbSwhJ8jowokm/qi+HxYXY0fEzj8xl8umgFm157FJvXw7awdixPOZVrh7Zn4intSIio30zWqjIXX76yFq/HR9ue8Qw6o12D9ywSDO79+8m++ho8+fk4MjNJm/4K5vDwYLcVdO9teI/HfnoMgPMzz+eBIQ9gMWtlgPpSCC8iIiIiIiIiIiIiDcvnhZl3AAb0uhgyhgZUzvAZFH+8FXwGIV3jCO2eUKfrnvhqIx6fwaguSQztWLdrRBqL4TMwHfgiiDWu7rPQ68rrM5i1dg/PL9hCTt5+zrREgd1Ku99N5pERnYkLr//sXq/Hx1evrqWiuIaY5DDGXN299jmIHM+8JSXkXDMRd04OtrQ00l5/DUtMTLDbCrrX1r7G31b8DYDLu17OXQPvarTVOlo6hfAiIiIiIiIiIiIi0rBWvAN5K8ERBWMfCrhc1Yp9uHaWYbKZiTmrQ52uWbqziNnr9mE2wT2ndQm4B5FAeEpqKHhtLdFntCe0S1yD1vb6DL5Yk8fzC7aydX8FAJHhUSRfcjuXD0glOSn+mGv/9Pl29mwtxR5iYcJ1PXGEKlaS45+vspKcKddSs2UL1sRE0t94HVtSUrDbCirDMHhu5XO8tvY1AKb0msINfW5QAB8A/W0pIiIiIiIiIiIiIg2nqsi/FzzAyPsgMjngkuZwG5YoOxHDWmONPfoMYsMw+MvMDQBcNDCNzOTIgHsQOVaGx0fRexvwFFRTNm8XIZ1iG2Q2ucfr49NVeby4cCvbCyoxG166evcwfvworhzWlujQwPdv7jmiDbs3lzBgQltiU7RMtxz/fC4XuTfdTPXq1Zijo0l7/TXsaWnBbiuofIaPJ356gvc2vgfA7f1v56oeVwW5q+OfQngRERERERERERERaTjzp0J1MST3gIETG6RkaNd4HO2jMVnNdRo/c+0eVuWUEGa3cNuYTg3Sg8ixKv1yB67sckwhVuIv7RpwAO/2+vh45W5eXLiVXYVVAMSEWrnCvRTfzmUMrUogOjSzIVonIjaE8//QX0vQS4tgeDzk3fkHKr/7DlNYGOmvTiek04n9HuH1eXnw+wf5ZOsnANw/+H4u6nJRcJtqIRTCi4iIiIiIiIiIiEjD2L0clr/tP57wJFgC+wjaMIzapXDNjrrVqvF4+etXmwCYfGp7kqIafu9tkbqqWpNPxbd5AMRd2CmgveBdHh8frsjlxYVbyS2u9tcMtzPplPZ0yl3Mqs+XYTKbSUhvG1DPFcU17N9VRvs+iQAK4KVFMAyDPX/+M+Vz5mCy2Uh74XlCe/cOdltB5fa6+eM3f2TOrjmYTWYeGfYIZ3Y4M9httRgK4UVEREREREREREQkcD4vzLwDMKDXxZAxNKByhsdH/utrCe+XTNiA5DrvS/uPH7LJLqoiMdLBpFPaB9SDSCDc+VUUf7AFgMjhbQjtdmx7s9d4vPxnWS4vL9rG7hJ/+J4QYWfyqe25fEgGmxfNYf7nHwKQNfkm2vXpf8w9e9xevnxlDft3lTP8kk70GN7mmGuJNBc127ZR+OablH74EZjNpD41jfChgb1HHe+cHid3fH0Hi3MXYzVbefLUJxmTMSbYbbUoCuFFREREREREREREJHAr3oG8leCIgrEPBVyufMluXDvK8OyvJrRHAqbQo3+cXVrl5vkF/tDz9rGdCK/j7HmRhuZzeSn8xwYMlxd7u2iistrWu4bT7eVfS3N4edE29pY5AUiMdHDt8A5cOiidULuFrUt/YMEbrwAw9ILL6DFy7DH3bBgGX7+7if27ynGEW0k7xi8NiASbYRjUbN5C+ezZlM2ZjWvrttpzrR5+mKisrCB2F3xV7ipuWnATP+39CYfFwbMjn+Xk1icHu60WR/8CEREREREREREREZHAVBX594IHGHkvRCYHVM5T5KR8fjYA0ae3w1yHAB7gxUVbKaly0yk5ggv6awavBI/JZMKREYWvyk38pV0wWeq+pLvT7eW9H7N55ett7C+vASA5ysF1wztw8aB0QmwWAPI2b2Dm3/6KYfjoOSqLIedfHFDPaxbmsvGHvZhMMG5iD6ITQwOqJ9KUDMOgZsMGymbPoXz2bFw7d/5y0mYjYuhQYi66iMhRI4PWY3NQWlPK9fOvZ03+GsJt4bww6gUGpAwIdlstkkJ4EREREREREREREQnM/KlQXQxJ3WHgpIBKGYZByadbMdw+HO2jCeubVKfrcoqqeOvbnQDcc1pXrBZzna7btvwn0rv3whaiveOl4ZhsZmLPyySqIgNLhL1O11S5PLz7QzbTF2+noMIfvqdGh3DdyI5c0L9Nbfj+X7s3rsfjdtGu7wDGTLyhzls2HE7uxiK+/WArAEPP70ha17hjriXSVAzDwLl2LWWzZ1M+Zy7unJzacya7nfBTTiFqXBYRI0ZgiYoKYqfNQ2F1IVPmTmFT8Sai7FFMHzudHgk9gt1Wi6UQXkRERERERERERESO3e7lsPxt//Hp08AS2MfOznWFODcVg8VEzDkd6xwsTpuzCZfXx9AO8YzonFina3Zv2sCnTz5CTEorLn3kKUIiIgJpXQRPaQ2WSDsms/91W5cAvrLGw99/2MWMxdsprHQB0CY2lBtGduT8fm2wWw//hZKBZ51PdHIKbXv3w2yxHHZMXZQVVDN7xjoMn0Gnwcn0Hp12zLVEGpvh81G9arV/qfm5c/Dk7ak9ZwoJIeLUU4kcl0XE8BFYIsKD2GnzsrdyL5PnTmZH6Q7iQ+J5NetVOsV2CnZbLZpCeBERERERERERERE5Nj4vzLwDMKDXxZAxNLByNR5KPvPv3Rs5vA22pLA6Xbcmt4RPV+UBcO+ErnUK7muqqvjyhWkYho/YVu0UwEvAfNUe8qevwRoXQtzFnY8awJc73bzz/S5e+2Y7xVVuANLjwrhxZEfO7dca22FWc3A7nWACm8O/ckOnwcMC7nvHmgKclW4S0yMZeVmXgGbUizQGw+ulesUK/1Lzc+bg2b+/9pw5LIyIESOIHDeOiFNOxhxWt/eNE0lOeQ6T5kxid8VuUsJTmDF2Bm2j2wa7rRZPIbyIiIiIiIiIiIiIHJsV70DeSnBEwdiHAi7n3FSMt8yFJT6EqJF1m41rGAZ/mbkBgPP6tqZH6+g6XbfgzVco3b+PsJgEdm/vzdw31jHmym61M5hF6sMwDIr+sxlvkRMM4zdfR6XVbt7+bievL9lBabU/fG+XEM6NIztydp/UI26l4PN6+fzZx3GWl3PO3X8iLKpur/Wj6T0qjdBIG606xGC1H/uMepGGZHg8VC1d6l9qfu48vIWFtefMERFEjBpJ1LhxhA8bhlnbiRzR9pLtTJozif3V+0mPTGdG1gxSI1KD3dYJQSG8iIiIiIiIiIiIiNRfVZF/L3iAkfdCZHLAJcN6JWKJcYDXwGSrWxg4f8N+ftxRhN1q5o5xnet0zcZvv2b94gWYTGYckROornBgD7EqgJdjVvHNbpzrC8FiIv6yrpjDbIeMKa1y88a3O3jj2x2UOz0AdEgM56ZRmZzRq9URw3fwh/zzXnuRHSuXYbU7KN2/N+AQ3jCM2lnvnQamBFRLpCEYbjeVP/xI+ZwDwXtJSe05c3Q0kaNGETkui/ChQzHbj77Vw4luQ+EGpsydQnFNMR1jOvLq2FdJDKvbdi0SOIXwIiIiIiIiIiIiIlJ/86dCdTEkdYeBkxqsrCM9qs5jPV4fj33pnwV/9bB2tI4JPeo1Zfn7mffaSwC06T6W/N0JhEXbGXJuh2NrWE54NTtKKf1qBwAxZ3bA3ibyoPPFlS5eX7KDt77bSUWNP3zvlBzBTaMymdCzFZY6fPnjhw/fZ+2COZhMZk6/5S5adazbF06OZNfPhayYvYtxk3oQFqUwU4LH53JR+e23lM+eQ/nChfhKS2vPWWJjiRwzhshx4wgfPAiT7dAvt8jhrdq/iuvnXU+5u5zu8d15ZcwrxITEBLutE4pCeBERERERERERERGpn93LYfnb/uPTp4ElsI+aqzcUYksMw5pw9BD9195fmsO2/Epiw2xcP7JuIfrCt1+lpqqSlI6d8fgGANWcenEnHKH6uFzqz1vuovC9jeCDsD6JhA/+ZUZ5YUUNM77Zwd+/30mlywtAl5RIbh6dyfjuKZjruPLC2oVz+O4/7wIw6upr6ThgcEA9l+yrYs7r63BVe1g9P5uTzu0YUD2R+vI5nVQuWULZ7DlULFyIr6Ki9pwlIYHIsWOIGjeOsAEDMFn1d3N9fZ/3PbcsvIVqTzX9kvrx4ugXibBHBLutE45euSIiIiIiIiIiIiJSdz4fzLwTMKDXxZAxNKBy3nIXRe9vwvD6SJrSG3ta5NEvAipqPDw7bzMAt4zOJCqkbjMkR19zPSaTmVMvu4qI+CS2rcinfR8tzyvHpvjDLfjKXViTwog5LxOTyUR+eQ0zvtnO37/fRbXbH753axXFzaMzyeqWXOfwHWDHymXMffUFAAadcwF9siYE1K+r2sOsl9fgqvaQ0j6aQWe2D6ieSF35qqqoWPyNf6n5RV9jVFXVnrMmJxM5dixR47II7dcPk6Vu25HIoRblLOL2Rbfj9rkZmjqUZ0Y8Q5gtLNhtnZAUwouIiIiIiIiIiIhI3a18B/JWgCMKxj4UcLmSL7Zj1HixtYnA1rruM/Ve/XobBRUu2saHcengjDpfFxEbx1l33Fv7uPNg7YUtxy4qKwNvWQ1xF3ehwOnmldmbeO+nXTjdPgB6tYnm5lGZjO6aVLv/el15PR7mv/Eyhs9Ht1NGcvLFvw+oV8NnMPfN9RTvrSI82s74KT2wWI+8D71IoLwVlVQsWkT5nDlULF6M4XTWnrOmtiIqaxyR47II7d0bk1mvxUB9ueNL7v3mXjyGh9Hpo/nrqX/FbtF2E8GiEF5ERERERERERERE6qaqCOY96D8eeS9EJgdUzrmlmOrV+WCC2HM6YqrjDOG9pU5e/WY7AHeP74L9KEGiy1lN7vqfad9vIJUlNWxZto9eI9tgtij0kcDYUyPw/r4Lf1m8g/d+ysbl8YfvfdJiuGV0JiM6J9Y7fP8vi9XK+fc9zNJPP2D0Ndcdc53/+mnmDnauKcBiNXPatb0Ij3YEVE/kcLxlZVQsXEjZ7DlULlmC4XLVnrOlpRE1LovIceMI6dEj4Ne0/OLDzR8y9fupGBic3v50Hhn2CFazYuBg0p++iIiIiIiIiIiIiNTN/IeguhiSusPASQGVMtw+Sj7ZCkDESanY29RtGXqAp+duwun20T8jlvE9jj6TfeFbM/h54RyGnHcR5aV92LYin6K8Skb9vusx9y8nLk+xE2+5i4IoGy8v2sq/l+bi8vrD9/4ZsdwyOpNTMhOOOWA0DKP22tiUVLKm3Bxwz9tX5bNs5k4ARlzWmeR2UQHXFPkvb0kJ5fMXUDZnNpXffQ9ud+05e9u2RI4bR9S4LBxduyp4bwR/X/93/rr0rwBc0OkC7h9yP2aTvmQWbArhRUREREREREREROTodi+H5W/5j0+fBpbAPl4uW5SDp9CJOdJOVFbdl5PfuLeM/yzPBeDeCUcPdDb/+C0/L5wDJhO20LZsW5iPyWyi16i0gPqXE5Ph8bHnnXX49lbxCNXMNfxh46C2cdwyJpOhHeIDChndrho+ffIR+k84m3Z9BzRU28SmhBGTHEZ69zi6nNSqwerKictTWEj5vPmUz55N5U8/gcdTe86R2ZHIA0vNOzIzFbw3EsMweHXNq7yw6gUAruh2BXcMuEN/3s2EQngRERERERERERER+W0+H8y8EzCg18WQMTSgcu6CasoX5QAQc2Z7zCF1/6j6sVkbMQyY0DOF/hmxvzm2vLCAudOfB6D/hPPY8L1/ZmDfsWkktKn7/vMiALsKK/n57bX03u+mEoO1eBjaIZ6bR2cypH18wPV9Pi+znpvGrjUr2b9zOxOffw17SGgDdA6xKeFc8McBWOyaHSvHzr1/P+Xz5lE+ew5VS5f63xsOcHTp4l9qPisLR4cOQezyxGAYBs+seIY3f34TgOv7XM+1va5VAN+MKIQXERERERERERERkd+28h3IWwGOKBj7UMDlrDEOokan49pdQWjPhDpf982WfL7enI/NYuKucV1+c6zh8/Hli0/jrKwguX1HTLbBVBTvJSohhAGntwv0KcgJZEdBJS8s2ErZyn382fCH4h+l2nj+rCEMbBvXIPcwDIOFb81g69LvsVitnHXbPQEH8D6fQUFOOUkZ/qXn7aGKhKT+3Hv3Uj5nLmVzZlO9fAUYRu25kB49iMzKIiprLPa2bYPX5AnGZ/h49MdH+demfwFw54A7uaL7FUHuSv6X/sYVERERERERERERkSOrKoJ5D/qPR94LkckBlzRZzUSNSj9o7+uj8foMHp21EYDLBmfQNiH8N8cv++JjctatwepwMPjc65jz5m4ARlzaBZvdEtgTkBPC1v0VvLhwK5+u2k2aYWYG/tdcRb9E7r/wt78EUl9LP/uQVbO/AOC0G++kTbceAdf84eNtrJqfwykXZtJzRJuA68mJw5W7m/I5cyifPZvq1asPOhfauzeR48YRmTUWexu9rpqax+fhz9/9mc+2fYYJEw+c9AAXdLog2G3JYSiEFxEREREREREREZEjm/8QVBdDUncYOCmgUr4aLyarCZPFvyR2fZbN/XjlbjbsKSMyxMrNozN/c2x5YQFL3v87ACOvmMSq+WVgQOfBKaR1a5iZy9Jybd5XzvMLtvLFmjwMA0KAZ+yRhLkMHB2iaf27zg16vw1LFvHNe28BMOL3E+l80skB19y8dC8r52YDEBJhC7ietHyuXbsomzOH8tlzcP788y8nTCZC+/XzLzU/diy2Vq2C1+QJzuV1cffiu5mXPQ+LycJfTv4Lp7c/PdhtyREohBcRERERERERERGRw9u9Apa/5T8+fRpYAvtIuXTWdly7yog9vxP2tMg6X+d0e3lqziYAbhjZkbhw+2+Oj4xP4Kw77mHb8p/oOWocrbtU8sMn2xj2u44B9S8t24Y9ZbywYCuzft5Tu+J2Vrdk7oyPJeybPMyRduIu7oLJ3HB7Lu/bvpWvXnoWgP6nn03/088JuGZ+djkL3/GvGtFvXAaZAwJfvUJapprt2ymfM4ey2XOo2bDhlxNmM2EDBxKZNZbIMWOxJScFr0kBoNpTzW2LbuPb3d9iM9uYNnwao9JHBbst+Q0K4UVERERERERERETkUD4fzLwDMKDXRZAxNKByNbvKqPxxLwCG21eva19fsoM9pU5ax4Ry5dC2dbqmQ//BdOg/GID41hGcfkPvet1TThzr8kp5bv4WZq/bV/uz03qkcOOojnRPjcYwDCoiHNjTI7FE/vYXQOorMaMd3UeMpqaqiuGXXxNwvepyF7NeWYPH7SO9ezyDz27fAF1KS2EYBjVbtlA+ew7lc2ZTs2XrLyctFsIHD/YvNT9mNNb4+OA1KgepcFVw44IbWb5vOaHWUJ4d+SxDUwN7T5bGpxBeRERERERERERERA618h3IWwGOKBj7cEClDK9Bycf+sCesfzKO9tF1vragooaXF20D4M5xnQixHXk/99wNPxOdlEJkfAKGYVCyr4rYlN/eO15OXGtyS3hu/lbmbfCH7yYTnN6zFTeNyqRzyi8rNZhMJiKHN87e12aLhbGTbsTn9WIymwOq5fX6+OrVn6koqiE6KZSsa7phbsBZ+3J8MgyDmo0bKZs9m/LZc3Dt2PHLSZuN8JOGEDVuHBGjRmGNjQ1eo3JYpTWlXDv3Wn4u/JkIWwQvjn6Rfsn9gt2W1IFCeBERERERERERERE5WFURzHvQfzziHogMbDnriu92495biTnMSvSEdvW69rn5W6io8dCjdRRn92595HsUF/HZU49i+Hxc8KdHKd4Xxvy31tNvfAZDzu4QUP/SsqzMLua5+VtYuCkfALMJzuydyo0jO5KZ7A/ffVVuyhbkEDU2A7PjyF/8OBbOygpWfvk5g8+9ELPFgslkwmINPK7Zumw/eVtKsDksTLi2F44w7QV/ojIMA+fPP1M+ezZlc+bizs6uPWey2Qg/+WQix2UROXIklui6fylKmlZBdQGT505mS/EWYhwxvDL2FbrHdw92W1JHCuFFRERERERERERE5GDzH4LqYkjqDoMmB1TKU+KkbO4uAKJPa4clvO7B4Pb8Ct770R8e3Tuh6xFn9Ro+H1+99AzV5WUktm1PeHQKn7+wHMMAq71hA1Q5fq3JLWHanM0s3vxL+H5O39bcMLIjHRIjascZPoOif2/GubEIT0E1CVc2XOjlcbv5dNoj5K7/mbKCfMZde3OD1e40KBlnhZvI+BDiUrUCxInG8PmoXr36wFLzc3Dn5dWeMzkcRJx6KpHjxhExYjiWiIjfqCTNwZ6KPUyaO4ldZbtICE1gxtgZdIztGOy2pB4UwouIiIiIiIiIiIjIL3avgOVv+Y9PnwaWwD5GLvlsO4bLh71tFGH96zej/omvNuLxGYzqksTQDglHHLfyq8/ZtWYlVpud02/6Az98thNnhZu41HD6jk0PqH9pObbnV7J4cz4Ws4nzDoTvbRMODavLF+fi3FgEVhNRYzMa7P6Gz8dXLz5N7vqfsYeG0nf8GQ1WG/zL5vcendagNaV5M7xeqleupOxA8O7Zt6/2nCksjIjhp/qXmj/lFMzh+mLG8SK7LJuJcyayp3IPqeGpzMiaQXqU3suONwrhRURERERERERERMTP54OZdwAG9LoIMoYGVs7lxVftBrOJ2HM7YqrH/tQ/7Shi9rp9mE1wz2ldjjguf9cOFr/7JgDDfz+R6opwNn6/BUww8vIuWKyB7bMtLceZvVPZvK+ciwemkx4fdtgxzm0llM3eCUDMWR2wt264GcOL33uLTd9/g9li4azb7yOpbfuAa1aW1vDjZ9s5+XeZ2EMV+ZwIDI+HqmXL/Hu8z5uHN7+g9pw5PJyIUaOIzBpLxMknYw4NDWKnciy2FG9h8tzJFFQX0DaqLTOyZpASnhLstuQYBP1fHy+99BLt2rUjJCSE/v3788033/zm+HfffZfevXsTFhZGq1atuOqqqygsLKw9/9Zbb2EymQ75z+l0NvZTERERERERERERETm+rXwH8laAIwrGPhxwObPdQuLkXiTd0Adbct1nYRqGwaOzNgBw0cD02n26/5fbVcPM557E6/HQvt9Aug/PYtG7mwDocWprUtprr2P5hcVs4q7xXY4YwHvLXBT9cyMYENYvifCBDRd8rfjyM5Z9/hEA4667lYxefQKu6XX7+PKVtWz4dg/z39kQcD1pvgy3m4ol37LngT+x5ZRTyb7yKkr++T7e/ALMUVFEn3MObV5+iczvvqX1k38lauxYBfDHoXUF67hq9lUUVBeQGZvJm+PfVAB/HAvq16L+9a9/ceutt/LSSy8xbNgwpk+fzmmnncb69etJTz90WYUlS5bw+9//nmeeeYYzzzyT3bt3c+211zJx4kQ+/vjj2nFRUVFs2rTpoGtDQkIa/fmIiIiIiIiIiIiIHLeqimDeVP/xiHsgsn5Lxx+JyWSq92zimWv3sCqnhDC7hdvGZh5x3PLPP6YwN5uw6BjGXXsLy7/aRWl+NeHRdoac0yHQ1uUEYngNCv+5EV+FG2tyGDHndMRkqvvKDb9l84/fsvDtGQCcfMkVdDtlZMA1DcPg6/c3sW9HGY4wKyedq9d7S+Nzuaj6/nv/UvPz5+MrLa09Z4mOJmLsGKLGjSN88GBMdnsQO5WGsHzfcm6YfwOV7kp6JvTk5TEvE+3QF8mOZ0EN4Z9++mmuueYaJk6cCMCzzz7L7Nmzefnll3nssccOGf/DDz/Qtm1bbr75ZgDatWvHlClT+Otf/3rQOJPJREqKvhkiIiIiIiIiIiIiUmfzH4LqIkjqDoMmB1TKvbeSyqV7iRqbgTmkfh9D13i8PPHVRgAmn9qepMgjT7Dqf8Y5VJQU06H/IMKiY4iMq8QeYuHUizvj0NLcUg+eYiee/CpMdgvxl3fFbLc0WG2b3YHN7qDb8NEMOvt3DVLz5693s+HbPZhMkHVNd2KSDj+7X44vPqeTym+/pWz2bCoWLsJXXl57zhIfT+TYMURlZRE2cCAmmy2InUpD+m73d9yy8BacXicDkgfwwugXCLfVffUYaZ6C9q8Ql8vF8uXL+eMf/3jQz7Oysvjuu+8Oe83QoUO57777mDVrFqeddhr79+/ngw8+4PTTTz9oXEVFBRkZGXi9Xvr06cPDDz9M3759j9hLTU0NNTU1tY/LysoCeGYiIiLSnOh9XkREpGXSe7yISAPbvQKWv+U/nvAkWI79o2PDZ1D80RZc2eUYLh+x5x95Jvvh/P37XeQUVZMU6WDyqb+9Z7bNEcKYa66rfdz9lNZ06JtESITCqeNZMN7nbQmhJN/cD/f+SmyJDRtot+s7gMsff5aYlFYNMrs+b0sxS/69BYAh53YgvXt8wDUleHzV1VQs/oby2bOpWLQIX1VV7TlrYiKRWVlEjssirH9/TJaG+3KINA/zs+fzh6//gNvn5uTWJ/P0iKcJtWorgZYgaCF8QUEBXq+X5OSDlzRKTk5m7969h71m6NChvPvuu1x00UU4nU48Hg9nnXUWzz//fO2YLl268NZbb9GzZ0/Kysr429/+xrBhw1i9ejWZmYf/x95jjz3G1KlTG+7JiYiISLOh93kREZGWSe/xIiINyOeDmXcABvS6CNoOC6hc5bK9uLLLMdktRI45dNvR31Ja5eb5BVsBuH1sJ8Lsh36EbRgGm39YQubgoZjNltqf/TfcVAB//GvK9/lfv3YsUXYsUQ2zrHdFcRHuGiexKakAxKW2aZC65UVOvnr1Z3w+g8yByfQdW7/fMWkevBWVVC7+mrLZc6hYvBijurr2nDUlhahxWUSOG0donz6YzOYgdiqN6YvtX3D/kvvxGl7GZozliVOewGbRe1hLEfTf3P/91tev3/D+1/r167n55pv505/+xPLly/nqq6/YsWMH1157be2YIUOGcPnll9O7d29OOeUU/v3vf9OpU6eDgvr/dc8991BaWlr7X05OTsM8OREREQk6vc+LiIi0THqPFxFpQCvfgbwVYI+EsQ8FVMpb4aL0y50ARI3NwBrtqNf1Ly7aSmm1m07JEVwwIO2wY1bPmcUXzz7BJ088hGEYVBTX8K+/LCV7XWFAvUvz0VTv84bbR8GMtVStyW/Quq7qKj5+fCr/vP9O9m7b0qC1a6rcWKxmEtIiGPl/XRps33ppfN7ycko/+4ycG25ky7Bh7L79Dspnz8aorsbWujVxV19N23+9T8cF80m+5x7C+vVTAN+C/Wfzf7j3m3vxGl7O6nAWfz31rwrgW5igzYRPSEjAYrEcMut9//79h8yO/6/HHnuMYcOG8Yc//AGAXr16ER4ezimnnMIjjzxCq1atDrnGbDYzcOBAtmw58hudw+HA4ajfPwZFRETk+KD3eRERkZZJ7/EiIg2kqgjmHZhxPPJeiEwJqFzprB0Y1R5srcKJGJpar2tziqp469udANxzWlcs5kPDxYKcXXz999cBaNtnACaTiW/+vZnC3Ap++mIHad3iFEq2AE31Pl/yxTZqtpfi3ltJSGYs5tDAIxOvx8NnTz/G/p3bCIuOISQisgE6/UVCm0guuGcgXo8PWwPuWy+Nw1tSQvmChZTPnk3ld99huN2152wZ6USNG0/kuCxCunXT310nkLfXvc20ZdMAuKjzRdw7+F7MJn3hoqUJWghvt9vp378/c+fO5dxzz639+dy5czn77LMPe01VVRVW68EtWyy/LDd0OIZhsGrVKnr27NlAnYuIiIiIiIiIiIi0EPMfguoiSOoOgyYHVMq5rYSqFfvBBDHndsRkqV+g9OTsTbi8PoZ1jGdE58RDznvcbmY99yQet4u2ffrTd/wZbF+Vz/aV+ZjNJkZcplnBUneVK/dT+eNeMEHcRZ0bJIA3DIM5059j15qV2BwhnHv3n4lJDuyLLf9VXeEiNMK/VH5YAy2ZL43DU1RE+bx5lM+ZS+UPP4DHU3vO3qFD7VLzjk6d9HfWCcYwDF5e/TIvr34ZgKt7XM2t/W7V66CFCloID3D77bfzf//3fwwYMICTTjqJV199lezs7Nrl5e+55x52797NO++8A8CZZ57JpEmTePnllxk3bhx79uzh1ltvZdCgQaSm+r9VOXXqVIYMGUJmZiZlZWU899xzrFq1ihdffDFoz1NERERERERERESk2dm9Apa/5T+e8CRYAvu4uOyrnQCED26FIz2qXteuyS3hs9V5mEz+WfCHCySW/PNt8rN3EhoVzfjrbsXt9LL4/c0A9BmbTkKbiID6lxOHe18lJR/5V8+NHJVOSOe4Bqn73b//wfrFCzCZzZxx292kdMhskLrZ6wv5cvrPjLi0M50HN0yoLw3Lk59P+bx5lM2eQ9VPP4HPV3vO0bkzkeOyiMrKwtGxYxC7lGAyDINpy6bxznp/5nlz35uZ1GtSkLuSxhTUEP6iiy6isLCQhx56iD179tCjRw9mzZpFRkYGAHv27CE7O7t2/JVXXkl5eTkvvPACd9xxBzExMYwaNYonnniidkxJSQmTJ09m7969REdH07dvXxYvXsygQYOa/PmJiIiIiIiIiIiINEs+H8y6EzCg10XQdljAJeN/342yebuIHte2XtcZhsFfZm4A4Nw+renROvqQMTvXrGT5zE8AGHftLYTHxLL4X5upLKkhKjGUgafX755y4vLVeCj8xwYMtw9HxxiiRqc3SN3Vc7/kh4/+BcDYSTfSvu/ABqlbml/FnNfW4anxkrupWCF8M+Let4/yOXMpnz2bquXL4VcrNod060bkuHFEZo3F0a5dELuU5sDr8/LIj4/wweYPALh74N1c3u3yIHcljS2oITzA9ddfz/XXX3/Yc2+99dYhP7vpppu46aabjljvmWee4Zlnnmmo9kRERERERERERERanpV/h93LwR4JYx9qkJKWSDux59Z/5u+8Dfv5cUcRdquZO8Z1PuS8z+tl7qsvANA763Q69B/E3h2lrF2UC8CISztj1d7YUgeGYVD80VY8+dVYouzEXdwZkznwZaB9Pi/rv1kIwEm/u4Seo7ICrgngcnqY9fJaaqo8JLeLYvglnRqkrhw79+7dlB0I3qtXrTroXEivXv6l5rOysKelBadBaXbcPjf3L7mfWTtmYcLE1KFTOTfz3KNfKMe9oIfwIiIiIiIiIiIiItKEqopg3oP+45H3QuSxz6w1DANXdjmOjPotP/9fHq+Px7/0z4K/5uR2tI4JPWSM2WLh7Dvv44cP32f45VcBsH1lPhjQeXAKaV0bZilxOQEY/i+LYDYRd2kXLBENs7e62Wzhd/c9xLpF8+mdNaFBaho+g/lvb6Aor5KwKDunTemJ1aYvmwSDKzub8jlzKJs9B+fatQedC+3Xj8issUSNHYutdesgdSjNlcvr4s6v72RhzkKsJiuPnfIY49uND3Zb0kQUwouIiIiIiIiIiIicSBY8DNVFkNQNBk0OqFT12gKK3ttIaJ9E4i7qfNi93H/L+0tz2JZfSVy4netGdDjiuKS27TnrjntrHw89ryMp7aNp1eHQpetFjsRkNhFzRnsiTmqFNf7QL3zUl8tZjT3EX8fmCKHPuNMDrvlfy77cyfaV+ZgtJk67tifhMY4Gqy1HV7NjB+Wz51A2ZzY16zf8csJkImzAAP9S82PHYEtODl6T0qxVuau4deGtfL/ne+xmO0+NeIoRaSOC3ZY0IYXwIiIiIiIiIiIiIieK3Stg2Zv+4wnTwHLsHxH7nB5KPt8GgC0htN4BfEWNh2fnbQbg5lEdiQqxHXS+KG83ruoqUjocfon79n0Sj6FrERokgK8qLeGfD/yBLiePYOgFl9b79f9b9mwr5afPdwAw/JLOpLTXl00am2EYuLZupWz2HMrnzKFm8+ZfTloshA0aSNS4cUSOHo01UX/3yG8rd5Vz4/wbWbF/BaHWUJ4b9RxDWg0JdlvSxBTCi4iIiIiIiIiIiJwIfD6YdSdgQM8Loe2wgMqVzt6Jr9yNNSGUyBH13/94+tfbKKhw0TY+jEsHZxx0zutxM/O5v1KQvZMJN91J55NOwTAMVs7JpuvQVoRGNswy4iLHwu108vETUynZt4f1ixfQf8LZhERENFj95HZR9D8tA1eVh24npzZYXTmYYRjUbNpE2ezZlM+eg2v79l9OWq2En3QSkVlj/cF7nLa9kLopdhZz7bxrWV+4nkhbJC+NeYk+SX2C3ZYEgUJ4ERERERERERERkRPByr/D7uVgj4SshwMq5cotp/KHPQDEnNMBk9Vcr+v3ljqZ8Y0/8PrjaV2w/8/13/77Xfbv2EZIZBStO3cDYPOPe/n+422sWZjL5Q8P0f7YEhQ+r5cv/vYEe7dtISQikvPvndqgATyA2WxiyNkdMAyjQeuKP3h3rltP+ezZlM2ZjXtXdu05k81G+LBh/qXmR43EEq0VCKR+8qvymTx3MltLthLriGX62Ol0je8a7LYkSBTCi4iIiIiIiIiIiLR0VUUw70H/8ch7ITLlmEsZXoPij7eCAWF9EgnpGFvvGk/P3YTT7WNARizjuh/cS/bPa1j62YcAZE25iYi4eKorXCz5YCsAPUe0VgAvQWEYBvNff5ntK5Zitdk5564/EZfapkFq+3wGaxfm0v3U1NrXd0Mucd/SGR4P3tJSvMXFeIuL8RQX4y0uqX3sLSnGU1KCa8tW3Hl5tdeZHA7CTzmZqHHjiBgxAktkZBCfhRzP8irymDhnIjnlOSSFJjEjawbtY9oHuy0JIoXwIiIiIiIiIiIiIi3dgoehugiSusGgyQGVqvghD/fuCkwhVqJPr3/AsGFPGf9ZngvAPRO6HhQ0VleU8+WLT4Fh0Gv0eDIHngTAdx9sxVnhJr51OH3GpgfUv8ix+vGjf7Fm/ldgMjHh5jtp3bnhZrj+9Nl2ln+1i+2r8jnn9r4ndABv+HwHAvUSvCXFRw7Wi4vxlpTgKSnBV1pa5/qm0FAihg8nalwWEaeeijk8vBGfjZwIdpbuZOKcieyr2kfriNbMyJpBWmT9t2mRlkUhvIiIiIiIiIiIiEhLtnsFLHvTfzxhGlgC+1jYmhCKJcZB5Mg0LMewN/tjX27EMGBCzxT6Z/wyi94wDOa++jwVRYXEtmrNiN9PBCBnYxEbf9gLJhhxWRcslvotfS/SEPKzd/Ltv/8BwKgrJ5M5aGiD1d66fD/Lv9oFQLeTU1tUAG8YBr7y8sMH6SWHm7Fegre0FHy+Y7qfOToaa0wMltjYX/0Xg/XAsTUpibABAzCHhjbwM5UT1aaiTUyZO4VCZyHtotsxY+wMksOTg92WNAMK4UVERERERERERERaKp8PZt0JGNDzQmg7LOCSoZ3jcNzev977wAN8syWfxZvzsVlM3DWuy0HndqxaxpYfv8NssXD6zX/AFhKCx+Vl0bubAOg5vA0p7bVHswRHYnpbxl9/G8V7dtN3/JkNVrcgt4L5b68HoM+YNDoPPvatIhqbYRj4Kiv9QXnxb89Q95Qc+FlJCXi9x3Q/c2SkP0SPifEH6TEHB+uW2NjacN0SG4slKgqTVbGXNJ21+Wu5dt61lLnK6BLXhVfGvEJ8aHyw25JmQn8biYiIiIiIiIiIiLRUK/8Ou5eDPRKyHg6olGEYtTN0zfb678nu9Rk8OmsjAJcPyaBtwsFLQLfr3Z+RV0zC5/OR3L4jAKvmZVOWX014jIMhZ2tvXQmu7sNHN2g9Z4WbL19Zg8flI61rLCed26FB6/8WwzAwqqsPBOYlh+6ffthgvQTc7mO6nzks7JDZ6ZaYX2aoW2L+Z9Z6dDQme/1X2hBpKkv3LuXG+TdS5amiV2IvXh7zMlH2qGC3Jc2IQngRERERERERERGRlqiqCOY96D8eeQ9EHvsMW5/LS/70NYQPSiF8YAomc/2Xy/545W427CkjMsTKzaMyDzlvMpvpN+Hsg37Wc2QalSUu0rrFYQ/Vx9nStEr372PBm6+QNeVmwmNij35BPfi8Pma/9jNlBU6iEkLImtgDcwBbLfhqag5e0v1wM9RLivH86rFRU3NM9zI5HFji4o48O/1/l4OPicHscBzzcxNpbpbsXsKtC2+lxlvD4JTBPDfqOcJsYcFuS5oZ/atFREREREREREREpCVa8DBUF0FSNxg0OaBS5QtzcO+uoHxBNmF9kjA56jcTvtrlZdps/7LyN4zsSGz4LzNctyz9noyefbCHHLpHsyPUyvBLOwfUu8ixqK4o56PH/kxRXi5zZ7zAOX94oEHrl+yvJj+7HKvDwoTrehESbqs9Z7hcB89OLynBW/JbS7+XYFRVHVMfJpvt8Pun/2+4/qtZ69pPXU5kc3fN5a7Fd+HxeRjeZjhPjXgKh0VfMpFDKYQXERERERERERERaWl2r4Blb/qPJ0wDi+23x/8G975KyhfnAhBzVgfM9QzgAd74dgd7y5y0jgnlyqFta3+eu/5nPnvqUWKSU7js0WcICY8AoGRfFdFJobXL34s0JY/LxadPPkxRXi4R8QmMvvq6Y65leDx4S0sP2T/dV1LCyNgqyordVD70HmW/CtZ9FRXHdjOr9ZfZ6QfNRo85eO/0AwG7NTYGU1iYfs9E6uizbf/P3n2HR1VtfRz/zkwmvZKQRofQi/Tee1ExWNCLiq96rx0b9t4L2L3qvVbsFbAhCgKCdKRJT+ikEEjvmcyc94/xBiOoyWSGSfl9nmceDqfss2aUWTtZZ+/9FfetvA+H4WBcy3E8MeQJrGbX86vUbyrCi4iIiIiIiIiIiNQnDgcsmAkY0PUCaDnI5aYMwyB7fjLYDfw7NsK/U2S12zheUMqry/YCcNu49vhbnUX8ksICFvz7GTAMmrTvXFGAL8gu4dMn1hPTMpRx/+xSaYSwiKc5HHYWvDyblF078AsM4tw7HyQkMgoAw+H4raB+YmR6RWH9j+uq/zZC3ZGbW6l9AxMmjIq/+wOFpwrEbP5dIf13o9P/orhuDg5WQV3EQz7e9TGPrX0MgMSERB4Y8AAWc/UfSpOGQ0V4ERERERERERERkfpk03uQ8gv4hsDYR2rUVNEvGZTtz8NkNRN+dhuXCnwvLE6ioLScLk1COfuMeMBZ3F/8xivkHz9GWEwsI//vxHT5yz/eg63Ejq3Ujp/WgRcPMQwDR35+pUJ6eVY2q9f8RNKhvZhNJgZYgym4615y/1dYz811PuTiAktYGOWRTdjQ5CI6+ewgvlHpiQL6/wrr4ScK6+bQUExm19eIFxH3eWvbWzz3y3MATOs4jdv73I7ZpH+f8tfUgxERERERERERERGpL4qyYPGDzu0Rd0FIrMtN2Qtt5C7YB0Do6Bb4RPhXu429xwr4cN0hAO6e2BGz2VnE3/nzMnavWo7JbGbi9TPxDQgEYN+mY+zfchyz2cSIiztgMmtUr7hPwfLlZMyaRXl2DvacHCgvr3T8QGQoO5s2BqDbgXQCc5IpPkU75pCQEyPRK62d/ofR6f8rroeG4sDMl89tIn9vLntix9Hz3j6YLSriidRmhmHw8uaX+e/W/wLwz67/5IYeN2jGCakSFeFFRERERERERERE6oslj0BxFkR3gr7/+vvz/0JpcjaO4nKssYEED453qY2nvtuF3WEwqkM0A9s4p/TOzUjnxzdfAWDAeRcR364DAGXF5Sz/eDcAPcY2J7JJcI3iF/kjw26nNCm50j5zUFBFwbxlWAiHS3JoGx1P1xFnVqydXqmwHhaGyVr9JRJWfLibtL25+PpbmHBVFxXgRWo5wzB4ev3TvL/zfQBu7HkjV3a90stRSV2iIryIiIiIiIiIiIhIfZC6CTa87dyeOBssNVtLPfCMaHwiAwAwuVAwXLc/ix92HMVsgjsndKjYv3TO65QVF9OkQyf6JV5QsX/N/L0U5pYR1jiA3hNb1ih2kVMJ6N6d5u+8XWnqd7Ovb6VzEkpK8PHzc+tI1+0rUti+PAVMMOaKzkTEBrmtbRFxP7vDzsNrHmZu0lwA7u53Nxd1uMjLUUldoyK8iIiIiIiIiIiISF3ncMC3MwEDul4ALQe5pVnfpiEuXWcYBo8t2AnA1D7NaRtzop0x/7wei4+VodP+D7PZAkD6vlx+XZ4CwLBp7fHxtdQwcpGT+URE4NO/f6V9xw8dIPfYUdr06geA1b/6yy78lbTkHJZ/vAeA/pNb07JrlFvbFxH3sjls3L3ibhYeWIjZZObhgQ8zOWGyt8OSOkhFeBEREREREREREZG6bvP7kLIBfENg7CM1aqpo6zGssUFYowNdbuObrWlsOZxDoK+Fm8e0rXQsKDyCs26+s9I+k9lEREwgMS1Dadahkcv3FamO/KzjfPHkgxRmZXHWLXfStu9At7ZfmFPKd//dhsNu0KZnND3HtXBr+yLiXqX2UmYum8myI8vwMfvw1JCnGNtyrLfDkjpKRXgRERERERERERGRuqwoCxY94NwecReExLrcVHlWCdmf7cFwGERf1x3f+Oqvy15abufp73cBcNXQNkSH+FNaVMTh7VtJ6NP/lNfEtAxl6r19sdscLscuUh2lRYXMfeJBCjKP0yi+KU07dXX7PfyDrbQ6I4qj+3IZNb2jW6e4FxH3KrIVMWPpDNamrcXP4sezw59laNOh3g5L6jAV4UVERERERERERETqsiWPQHEWNO4Iff/lcjOGYZDz1V4MmwO/1mFY41xbt/q91Qc5nFVMdIgf/xzayhniW6+yY8VS+iVOZfCFl1S65/8KkxYfMxaf6q89L1Jd9nIbXz3zGMcPHSAoPIIpdz1EQLBrSy/8FYuPmRHTOlBWXI7VT0ssiNRWeWV5XLv4WrYc20KgTyAvj3qZPrF9vB2W1HHq0YiIiIiIiIiIiIjUVambYMPbzu1Js8Fidbmpku2ZlOzKAouJ8HMSXBq1m1tk46UlyQDcMqYdgb4+7Fz5EztWLMVkMtOqe6+Kcw3DYMGrv7Lx+4PY7RoBL6eH4XDw/asvcGjbVqz+ASTe+SBh0TFuvUdqUg6O3/0/7Rug8ZAitVVWSRZXfH8FW45tIcQ3hNfHvq4CvLiFivAiIiIiIiIiIiIidZHDAd/OBAzoegG0HOx6U6Xl5Hy1F4CQYU1dXg/+5aVJ5BbbaB8Twvm9m5F3LIMf33gFgH5TptKkQ6eKc/esTefA1uOs+2Y/hdmlLscuUh0rPn6XnT8vw2yxcPYtdxHTqo1b2z+8K4v5z23im5e3UF5md2vbIuJeRwuP8n8L/49dWbto5N+It8e9TbfG3bwdltQTevxKREREREREREREpC7a/D6kbADfEBj7SI2aylt0CHteGZZIf0JHNHOpjcNZRcxZdRCAOyd2wISDBS8/Q2lRIXFt2zPg3Asrzi0uKOPnz5wj5vue2YrQqIAaxS9SFYZhYCspBmDsVTNoeUZPt7afd7yYH17fjuEwCAz1w2LVOEiR2upI/hGu/OFKUgpSiAmM4fWxr9MqrJW3w5J6pMoZICkpiYsuuoi8vLyTjuXm5vKPf/yDffv2uTU4ERERaXjU5xAREam/lOdFRNyoKAsWPeDcHnEXhMS63JQtvZCClSkARExOwGR1be3qWd/vpszuYFBCJMPbNWb9l1+Qsms7Vv8AJl4/E7PlRLsrP0+mpNBGZJNgzhjtWtFfao+6kuNNJhMj/+9qLnx4Fp2HjXJr27ZSOwte/ZWSQhvRLUIYPq29S0s6iIjn7cvdx/SF00kpSKFpcFPmTJijAry4XZWL8LNmzaJZs2aEhoaedCwsLIxmzZoxa9YstwYnIiIiDY/6HCIiIvWX8ryIiBsteRSKs6BxR+j7rxo15dM4gLDxrQjsHYN/uwiX2thyOIevtqRiMsFdEzqSn3mMVZ99AMCoy68mPDau4tzDO7PYvSYdTDDi4g5YLBotXNfVpRxvMplo0r6jW9s0DIMl7+4kM6WAgBAr46/qio+vaw+ziIhn7craxf8t/D8yijJoE9aGORPm0CS4ibfDknqoyr2b5cuXc/755//p8QsuuIAlS5a4JSgRERFpuNTnEBERqb+U50VE3CR1E2x4y7k9aTZYrDVqzmQxEzKsKY3Oa+fS9YZh8NiCnQAk9mhClyZhhEZFM3nmvZwxdhKdho6sONdWZmfZB7sA6Dq8KTGtTi7aSt3T0HP8xu8PkvxLBmazifFXdSWkkb+3QxKRU9icsZnLv7+crJIsOjbqyNvj3yY6MNrbYUk9VeU14Q8ePEh09J//jxgVFcXhw4fdEpSIiIg0XOpziIiI1F/K8yIibuBwwLczAQO6ng8tB7veVHE5JqsZk0/NRqIv3pnBuv1Z+PmYmTm2fcX+1j370Lpnn0rnpu/LpSCnlOAIP/pPbl2j+0rt0ZBzfHF+Gb8sPAjAkAvbEZ8Q7t2AROSUVqeu5salN1JcXkyP6B78e9S/CfEN8XZYUo9VuQgfFhbG3r17adGixSmPJycnn3KqGREREZHqUJ9DRESk/lKeFxFxg83vQ8oG8A2BMY/UqKns+cnY0gpodH57fJu5Voiw2R088Z1zFPzlg1tRfiSJvPI4QqMan/L8Zh0aceG9fSnOL8PXv8q/npZariHn+IAQX6bM7MXeTRl0GaoprUVqE8MwWJ22mjnb57AqdRUA/eP688KIFwi0Bno5OqnvqvyI49ChQ3nppZf+9PiLL77IkCFD3BKUiIiINFzqc4iIiNRfyvMiIjVUlAWLHnBuD78TQuP++vy/UJKUTfGWY5QfKwaT6yF9vP4w+44V0ijIl0u6hfH1s4/z7u3Xk3Fg359eExEbRHxb19ael9qpoef4qKbB9DtLMzuI1BY2u42v937NeV+fx1WLrmJV6irMJjPnJJzDy6NeVgFeTosqP2p41113MWDAAM477zxuv/122rd3Tiu0a9cunn76ab7//ntWrVrlsUBFRESkYVCfQ0REpP5SnhcRqaElj0JxFjTuCP2ucrkZw+YgZ34yAMED4vFt6too+ILScl5YvAeAGSPb8PMbL1FSWEBM67ZENm1e6dzkXzIIifQnpmX9HA3d0DW0HG84DJZ9uJuOA+OIbR3m7XBE5Dd5ZXl8vudzPtjxARnFGQAE+AQwpe0ULu54MU1Dmno5QmlIqlyE79GjB59//jmXX3458+bNq3QsMjKSTz/9lJ49e7o9QBEREWlY1OcQERGpv5TnRURqIHUTbHjLuT1pNlisLjeVt+ww5ZklmEN8CR176unDq+I/P+3leEEZraKC6HDsF1Zu34qPnx+TZszE4nPiV88F2SUseW8ntlI7ibf0JL5tuMv3lNqpoeX4dd/uZ8fPqSRvOMoljw3EP8j1f48iUnOpBam8v/N9vtjzBUXlRQBEBUQxreM0zm93PmF+elhGTr9qLbpz5plncvDgQRYuXEhycjKGYdCuXTvGjh1LYKCmbhARERH3UJ9DRESk/lKeFxFxgcMB384EDOh6PrQc7HJTtmNF5C87DED4Wa0xu7gue3puCa+vcE45P+MMf1a//QEAIy+7ioi4yutiL/94D7YSO7GtQ4lrUzsLIWVHjuAoLMT/txHcUn0NJcfv3ZTBhm8PADBkajsV4EW8aHvmduZsm8MPB3/AbtgBaBPWhumdpzOp9SR8Lb5ejlAasmr3sAICAkhMTDxp/9y5c3nwwQfZunWrWwITERGRhk19DhERkfpLeV5EpJo2vw8pG8A3BMY84nIzhmE4p6G3G/i1iyCga5TLbT3zw25KbA76Ng0ie8HbOOzltO07kC4jxlQ6b9+mY+zfchyz2cTwaR0wmWuwAL2HGOXlpM68jZLt24mfNYvQ8eO8HVKdVd9zfGZKAYvf2QlAt5FN6TAgzssRiTQ8DsPBzyk/8872d1ifvr5if7+4flzW+TIGxQ/CZKp9uUYaHnN1Tn799dc5//zzmTZtGmvXrgVgyZIl9OjRg4svvpgBAwZ4JEgRERFpWNTnEBERqb+U50VEqqkoCxY/6NwefieEul70M0rtYDKBj5mIyW1cLlLsTMvj841HAJjqv5fs1BSCIxox5l/XV2qzrLic5R/vBqDH2OZENgl2OXZPOv7afyjevBmTnx/+Xbp4O5w6q77n+JJCGwte3Up5qZ0m7SMYdG6Ct0MSaVBK7aXMTZpL4peJXPfjdaxPX4/FZGFS60l8euanvDH2DQY3GawCvNQaVR4JP3v2bO6++266devGzp07mT9/Pvfccw/PPvssN9xwA9dddx1RUa4/OSkiIiIC6nOIiIjUZ8rzIiIuWPIoFGVC447Q76oaNWX29yHqii6UZxThExngcjtPfLcLw4BJXeM4+/zRrLCU06Z3PwJCQiudt2b+XgpzywhrHEDviS1rFLunFG3cxPFXXgEg9sEH8W3a5G+ukFOpSzneMIxqF+kcdgc/vLGNvOMlhET6M+6fnTFbqjXGUURclFOSwye7P+GjXR+RWZIJQJA1iPPbnc+0jtOIDYr1coQip1blIvybb77Ja6+9xuWXX86yZcsYOXIkS5YsITk5mfDwcA+GKCIiIg2J+hwiIiL1l/K8iEg1pW6CDW85tyfNBkvN1542mUxYY4Jcvn75nmMs33MMq8XE7ePbY/X1Y+T/nfxwwPEj+fy6PAWA4dPa4+NrcfmenmIvKCD1ttvA4SD07LMIO3OSt0Oqs+pKjj9WdIxLv7uUM9ucyeQ2k2ka0rRK19ntBr7+Pvj4mpl4TVcCgrXOtIinHc47zLs73mV+8nxK7CUAxATGcEmnS5jSdgohviFejlDkr1W5CH/w4EFGjx4NwPDhw7FarTz22GO1KoGKiIhI3ac+h4iISP2lPC8iUg0OB3w7EzCg6/nQcrDLTZUeyqNoYwZh41piDqjyr4RPYncYPL5gJxgGl8Vk0yzC/0/PjYwPZvg/2pOVWkjTDo1cvqcnHX3kEWwpKVibNCH2vvu8HU6dVldy/IL9CzhScITXtrzGa1teo19cPxITEhndYjR+Fr8/vc7qa2Hcv7qQlVZIZHztXFZBpL7YnLGZd3e8y+KDizEwAOjQqAPTO09nXMtxWM01fyBN5HSoco+rpKQEf/8TnSpfX18aN27skaBERESk4VKfQ0REpP5SnhcRqYbN70PKBvANhjGPuNyMYTfImZuMLb0Qk9lE+NltXG5r7sYj7ErPp1/xdvxXrmBeYRJT7nzwlFN7m8wmOg+pvVO7537zLblffgVmM/GznsYSohGVNVFXcvyFHS4kOjCauUlzWZO2hrVpa1mbtpaQtSFMajWJhWvc2AABAABJREFUxLaJdIrsVHF+YW4pgaG+mEwmTCaTCvAiHmJ32Fl2eBnvbH+Hzcc2V+wf3GQwl3W+jL6xfbXWu9Q51Xrs8Y033iA42JlkysvLeeedd05ax2XGjBnui05EREQaJPU5RERE6i/leRGRKijKgsUPOreH3wWhcS43VbAqBVt6IeZAH0JGNnO5neIyO8/8sIfIskz6HlsFQELvficVRQpzSrH6W/D1d33EvafZUlJIf+ghAKKuvprAnj29HFH9UBdyvJ/FjwmtJjCh1QRSClL4MvlL5ifPJ60wjY93f8zHuz+mQ6MOJCYkMqrxWBY+s5vYNmGMvKQjVr/at6SCSF1XXF7MV8lf8e6OdzmUfwgAH7MPZ7Y+k0s7XUrbiLZejlDEdSbDMIyqnNiyZcu/fcrEZDKxb98+twTmTXl5eYSFhZGbm0toaKi3wxERkQasIeYkT/c5GuJnKiIitVNDzEmezPMN8fMUkXrsm1tgw5vQuCNcvcLlteDLc0o5+uwGjDIHEee2JahPrMshvbwkiecW7mDa0bmElWTSuldfzrntvkrf64Zh8OXzm8nNKGLslV2IaxPm8v08xbDbOXjpdIp/+YWAM86gxQfvY/Jx7wMDDTEn1eWf5e0OO2vT1zIvaR4/HvoRm8OG2WHmrJ3XE5fXBr9IE9PuHkhA0J9PVy8i1XO8+Dgf7/qYT3Z/Qk5pDgChvqFMbT+VizpcROPA2jeThsj/VDUnVbl3ceDAAXfEJSIiIvKX1OcQERGpv5TnRUSqIHUTbHjLuT1ptssFeICcr/ZilDnwbRlKYK8Yl9s5XlDKaz/tY1D2GsJKMgkKj2Dc1TeeVHTdvSadlN3Z+FjNBIb6unw/T8p8/XWKf/kFc2Ag8bNnub0A31DV5RxvMVsYGD+QgfEDySnJ4dv937Jt/nHi8tpQZinh46bP8tl3Fs5JOIfJCZOJD473dsgidda+3H28u/1dvt77NWWOMgCaBDfhkk6XkJiQSKA10MsRirhPtXoYhmGQnJyMzWajXbt2+KiDIiIiIh6gPoeIiEj9pTwvIvIXHA74diZgQNfzoeVgl5sq3pFJyY5MMJuIOCcBk9n1tXRfWJxEZPZezsj7FYDx19xEYGjlUe7F+WX8/HkSAH3ObEVY4wCX7+cpxVu3cuyllwGIuf8+fJu5Pj2/nKw+5Phw/3B6ZI0g5+AuAMqG7cdeXkRqYT6vbHmFV7e8Sv+4/kxpO4URzUfgZ9HoeJG/YxgGG45u4N3t77LsyLKK/V2jujK983RGNR+Fj7nufV+I/J1qjYSfPHky27ZtA6BZs2Z88cUX9OrVy2PBiYiISMOjPoeIiEj9pTwvIvI3Nn8AKRvANxjGPOJyM4ZhkLf4IAAhQ5pgjQ1yua29xwr4eO1+/nF8OQA9J06mZfeTv7d//jyJ0sJyIpsEc8bo2lfcdhQWkjLzNrDbCZ04gbDJk70dUr1SX3J8+r5cfvpoNwB9z2pFn0kjubH8Cn489CPzkuaxNn0tq9NWszptNWF+YUxqNYkpbafQvlF7L0cuUvuUO8pZfHAx72x/h+2Z2wEwYWJ4s+Fc1vkyekT3+NtlLETqsioX4e+44w5KSkp477338Pf3Z9asWVxzzTWsW7fOk/GJiIhIA6M+h4iISP2lPC8i8heKsmDxA87t4XdBaJzLTZlMJqIu70L+siOEjGpeo7Ce/G4XNsPMsQEX08exgyEXTT/pnMM7stiz9iiYYMTFHbBYzDW6pyekP/Y4tkOH8ImPI/bBB1X4cbP6kOPt5Q6+f2MbjnKD1t0b03tCSwD8ffyZ1HoSk1pP4nD+Yb5M/pL5yfM5WnSUD3d9yIe7PqRjo45MaTuFia0nEurr3jXrReqaQlsh85Lm8d6O90gtTAXAz+LH2W3O5pJOl9AqrJWXIxQ5PUyGYRhVOTE+Pp6PPvqIYcOGAXDkyBFatGhBQUEBAQG1b2qhmsjLyyMsLIzc3FxCQ5UwRUTEexpiTvJ0n6MhfqYiIlI7NcSc5Mk83xA/TxGpZ765BTa8CY07wtUrarQWvLus25/FBf9ZjcVs4vubhpAQHXLSObYyOx8/vJa84yV0G9GUIVPbeSHSv5a3cCEpN90MJhMt3p1DYJ8+nr1fA8xJ9eVn+dSkHNZ9s5+J13TF1//PxzDaHXZWp61mXtI8lhxeQrmjHHAWGkc1H8WUtlPoE9sHs6n2PZAi4ikZRRl8sPMDPtv9Gfm2fAAi/CK4qMNFTO0wlUb+jbwcoYh7VDUnVXkkfHp6Oh06dKj4e9OmTQkICODo0aO0bNmyRsGKiIiI/I/6HCIiIvWX8ryIyJ9I3QQb3nJuT5zlcgHecBiU7svBr014jUd6G4bBc5+tIKY0k1FD+5yyAA9gtzmIbhGKw27Qb3LrGt3TE2xpaaTd75xhIPJf//J4Ab6hqi85Pr5tOOfc3ONvz7OYLQxuMpjBTQaTXZLNN/u+YW7SXJJzklmwfwEL9i+gSXATzkk4h3MSziE2KPY0RC/iHXuy9zBn+xwW7F9Q8UBKi9AWXNrpUs5uczb+Pv5ejlDEO6pchDeZTJjNlZ/aMpvNVHEgvYiIiEiVqM8hIiJSfynPi4icgsMB384EDOhyHrQa4nJTRRuOkj03iYDujYm8sMPfX/AXvtp4iJa/zqVnWRbDwlr+6Xn+QVbG/bMLxQVlfzly2BsMu53UO+7EkZeHf5cuNL7+Om+HVG/V5Ry/e206Uc2CiYwPdun6CP8ILul0CRd3vJjtmduZlzSPBfsXkFKQwr83/5tXNr/CwPiBJLZNZESzEfhafN38DkROP8MwWJO2hjnb57AydWXF/p7RPZneeTrDmw3XTBDS4FW5V2QYBu3atav0BGVBQQE9evSolFyzsrLcG6GIiIg0KOpziIiI1F/K8yIip7D5A0jZAL7BMPZRl5uxF5SR891+AHybnHrUelWVlttZ+M6bJJRlgn8wnXuePDLYMIxK3+cBwbWvsJj19tsUrVuHKTCQJrNnYbJ6f4r/+qqu5viUPdksmbMTi9XMBXf3ITwm0OW2TCYTXaK60CWqCzP7zGTxwcXMS57H+vT1rExdycrUlYT7hXNm6zNJbJtIu4jat3SDyN+x2W0sPLCQd7a/w57sPQCYTWZGNx/N9M7T6da4m5cjFKk9qlyEf/vttz0Zh4iIiAigPoeIiEh9pjwvIvIHRVmw2DlVOsPvgtA4l5vKXbAfo7gca1wQwQPjaxTWW58sJCFjIwATr7uJoPCIk875ddkR0vbmMvj8tgSF+dXofp5QvG07Gc+/AEDsPXfjW4emRK+L6mKOz88qYeF/t+FwGLTpFkVYdM3Xrv+fAJ8AzmpzFme1OYtDeYeYnzyfL5O/JKM4g/d3vs/7O9+nS2QXEtsmMqHVBEJ8a/bgjIin5Zfl8/mez3l/5/tkFGUAzv/PExMSubjTxTQLaeblCEVqnyoX4adPn+7JOEREREQA9TlERETqM+V5EZE/WPoYFGVC447Q7yqXmynZm0PRxgwwQXhiAiaL6+vBHz2ayfEFcwgEgroPo2Pf/iedk59Vwpr5+7CV2mnSLoIuQ5u4fD9PcBQVkTpzJpSXEzJ2LGFTpng7pHqvruV4W5mdBa9upaTARlSzYEZc0qHSKH53ah7anBk9Z3Bd9+tYmbqSeUnzWHZ4Gdsyt7EtcxtPr3+aMS3GMKXtFHrH9PZYHCKuSC1I5f2d7/PFni8oKi8CICogimkdp3F+u/MJ8wvzcoQitVftWqRHREREREREREREpCFI3Qzr33RuT5wFFtemSjfKHeTMTwYgqF8cfs1DXQ7JMAzmzHqawPIiCgIiuf7mG055zvKP92ArtRPbOozOg2s26t4Tjj75FGUHDuATE0Pcww+pqCmVGIbB0vd2cfxwAf7BViZc3RWrr8Xj97WYLQxtOpShTYeSVZLF13u/Zl7SPPbm7uWbfd/wzb5vaBbSjHMSzmFym8nEBMV4PCaRP7MjcwfvbH+HHw78gN2wA9AmrA3TO09nUutJ+Fpq3xIkIrWN+e9P+e1EsxmLxXLSKyIigv79+zN37lxPxikiIiINhPocIiIi9ZfyvIjIbxwOWDATMKDLedBqiMtN5S8/QvmxYszBVsLGtaxRWOuW/4zl8HbsmOl92Q34+fufdM6+zcc4sPU4ZouJ4Re3x2SuXQXu/MWLyfn0UzCZiH/qSSzh4d4OqUGoSzl+86LDJK0/islsYvy/uhAa6b5p6KuqkX8jpneezrzJ8/hg4gec2/ZcgqxBHM4/zEubXmLsF2O5dvG1LDq4CJvddtrjk4bJYThYfmQ5V3x/BVO/mcp3+7/DbtjpF9ePV0e/yrzJ80hsm6gCvEgVVXkk/Lx58065Pycnh3Xr1nHxxRczZ84czj//fLcFJyIiIg2P+hwiIiL1l/K8iMhvNn8AR9aDbzCMfbRGTfk2DcHSyJ+wsS0wB9Rs4tP3U4I4GDmY1lFB3Das10nHS4vLWf7xHgB6jmtBZHxwje7nbrajGaTdex8AkVdcTlD/k6fSF8+oKznecBgc2pEJwODz29KkXYRX4zGZTHRr3I1ujbtxe5/bWXRwEXOT5rIxYyMrUlawImUFEX4RnNnmTKYkTCEhIsGr8Ur9VGov5dt93zJn+xz25e4DwGKyML7VeKZ3mk7HyI5ejlCkbjIZhmG4o6F///vfvPvuu6xdu9YdzXlVXl4eYWFh5ObmEhrq+vRNIiIiNaWcdLKa9jn0mYqISG2hnHSymuR5fZ4iUmcUZcHLvZ1rwY99FAaePOV7dRk2B/iYajTt+ubDOZzz75WYTPDNDYPpHH/yOr8/fbibbctTCIsO4ML7+uJj9fwU3lVlOBwcvvJKCletxr9TJ1p+/BEmX++M1lROOllt+lnebnewb+MxEnpH19qlCg7kHmB+8ny+2vsVx4qPVezvFtWNc9qew4SWEwj2rV0PwUjdk1OSw6d7PuXDnR+SWeJ8OCXIGsR5bc9jWsdpxAXHeTlCkdqpqjmpytPR/52xY8eyZ88edzUnIiIickrqc4iIiNRfyvMi0iAsfcxZgG/cAfpd7XIzhuPE2CqT1VyjYuLu1T/z5JebAUjs0eSUBfiyknIObDsOwPBpHWpVAR4ga867FK5ajcnfn/jZs7xWgJdTq0053mIx07ZPTK0twAO0DGvJTb1u4ofzfuDlkS8zstlIfEw+bD2+lYdXP8zIz0Zyz8/3sCF9A24aZykNyOG8wzy25jHGfjGWlza9RGZJJjGBMczsPZNF5y1iZp+ZKsCLuEHN5if6neLiYvxPsUaQiIiIiDupzyEiIlJ/Kc+LSL2XuhnWv+ncnjgbLFaXmnGUlJPx780E948jaEB8jdZlP7RtC988/xRtfULY1vwCZo5tf8rzfP19uOj+fhzYepym7b07hfcflezcybFnnwUg5s478Wvd2ssRyR8px7vGx+zDsGbDGNZsGMeLj/PN3m+YmzyX/bn7+WrvV3y19ytahLbgnIRzOLvN2UQHRns7ZKnFthzbwpztc1h8cDEGzoc3OjTqwPTO0xnXchxWs2s5SUROzW1F+Ndff50ePXq4qzkRERGRU1KfQ0REpP5SnheRes3hgAUzAQO6nAethrjcVO73Byg/VkzB6jSC+saBi0X44vw8Fvz7WcDgSEBTLh3WgfjwgD8939ffh3Z9Y12M2jMcxcWkzLwNw2YjeNQowqde4O2Q5BSU42suKiCKy7pcxvTO09lybAvzkuexcP9CDuYd5IWNL/DSppcY0mQIiQmJDG02VAVVAcDusLPsyDLmbJ/DpoxNFfsHNxnM9M7T6Rfbr1bPCiFSl1W5CH/LLbeccn9ubi4bNmxg7969rFixwm2BiYiISMOkPoeIiEj9pTwvIg3a5g/gyHrwDXauBe+isiP5FK5JAyD8nDaYrK6tOGoYBotef5nCrEyyrWFsazacF4a3Oem8nKNFpCbn0HFgXK0s1GTMmkXZ3r1YGkcR9+gjtTLGhkA5/vQxmUx0j+5O9+ju3NHnDr4/8D3zkuexKWMTPx35iZ+O/EQj/0ac3eZsEhMSaR2umSEaouLyYr5K/or3dr7HwbyDgHNmhTNbn8mlnS6lbURbL0coUv9VuQi/adOmU+4PDQ1l/PjxXHvttbRo0cJtgYmIiEjDpD6HiIhI/aU8LyINVnE2LH7AuT38Tgh1ba1dw2GQPS8ZDAjs3hj/BNenhd+2bBFJa1dhN5n5vvEYrh/TiVD/yiNnDcNg2Ye7SNmdQ25GMQMSTy7Se1P+0qVkf/gRAPFPPIlPRO2aJr8hUY73jkBrIIltE0lsm8j+3P3MS57HV8lfkVmSyTvb3+Gd7e9wRuMzSExIZHyr8QRZg7wdsnhYZnEmH+/+mI93fUxOaQ4Aob6hTG0/lYs6XETjwMbeDVCkAalyEX7p0qWejENEREQEUJ9DRESkPlOeF5EGa8mjUJQJjTtAv6tdbqZgdSq2lAJM/j6ETXJ9dGt2WgpL3/4vAGvC+xLcpCX/6Nf8pPN2rU4nZXcOPlYznYfEu3w/Tyg/doy0e+4FoNH06QQPHuTliBo25XjvaxXWilt63cINPW5gxZEVzEuex4ojK9hybAtbjm3hqfVPMa7lOKa0nUL3xt01a0Q9sz93P+/ueJevkr+izFEGQJPgJlzS6RISExIJtAZ6OUKRhse1uYr+wOFw8PXXX3POOee4ozkRERGRU1KfQ0REpP5SnheReit1M2x4y7k9cTZYXFun2Z5bSt4PzimFwya0xBLi63JIy959A1tpCakBTdgY1p07xnfAaqn8q+KivDJWfpEEQJ+zWhEa9edrxZ9uhmGQevc92LOy8Gvfnsa33OztkOQvKMefXlazlZHNR/LSyJdYdN4ibu51My1DW1JcXsz85Plc+t2lnD3/bN7a9hbHi497O1ypAcMw2JC+gRt+vIGz55/N53s+p8xRRpfILsweNptvEr9hWsdpKsCLeEmNivBJSUncddddNG3alAsuuMBdMYmIiIhUoj6HiIhI/aU8LyL1msMBC2aC4YAu50GrIS43VbIvF8Nmx7d5CEF9YmsU1rirb6S42Rl8HzWS3i0bMa5zzEnnrPw8idLCcqKaBdN9VLMa3c/dst97n8IVKzD5+dFk9izMfn7eDklOQTne+xoHNubyLpfz1TlfMWf8HM5JOIcAnwAO5B3guV+eY/Rno7lhyQ0sPbQUm8Pm7XClisod5Szcv5B/fPsP/u/7/2PZkWWYMDGi2QjeGf8OH076kHEtx+FjrvJk2CLiAdX+F1hcXMynn37Km2++yZo1a7Db7Tz33HNcfvnlBAcHeyJGERERaYDU5xAREam/lOdFpMHY/AEcWQ++wTD20Ro1FdQjGmtMICaLCZO5ZtNIHyg086Z1IIYBd0/qeNK01Id2ZLJn3VFMJhg+rQNmi1smVHWLkt17yJg9G4Do22/Dr21bL0ckv6ccXzuZTCZ6xvSkZ0xP7ux7J98f+J65SXPZcmwLyw4vY9nhZUQFRHFWm7NITEikVVgrb4csp1BkK2Ju0lze2/EeqYWpAPhZ/Di7zdlc0ukS/XcTqWWq3Htat24d//rXv4iNjeXll1/m3HPP5fDhw5jNZkaPHq0EKiIiIm6hPoeIiEj9pTwvIg1KcTYsfsC5PfxOCI2rcZO+8cFYY4JcuraksICktasAeOK7nRgGTOoaR8/mEZXOc9gdLP9oDwBdRzQlpmVozYJ2I0dpKakzZ2KUlRE0bCgR//iHt0OS3yjH1x1B1iCmtJ3C+xPfZ/7k+VzW+TIa+TfiePFx3t72NmfPP5tLv7uUeUnzKLIVeTtcATKKMnj+l+cZ/flonlr/FKmFqUT4RXDNGdfw/bnfc/+A+1WAF6mFqjwSfuDAgdxwww2sW7eO9u3bezImERERacDU5xAREam/lOdFpEFZ8igUZULjDtDvapebKVyfjm+zEKyxrhXfwblu8OI3XmH3quXEDT2TFYebYbWYuH38yd/FZouZ0f/XiQ0LDtDv7NYu39MTMp55htKkJCyRkcQ/9thJI/jFe5Tj66Y24W24tfetzOg5g+WHlzMveR4rUlawKWMTmzI28eS6JxnfajyJCYmc0fgM/Zs7zZKyk5izfQ7f7v+Wckc5AC1CW3Bpp0s5u83Z+Pv4ezlCEfkrVS7Cjxw5kjfffJOMjAwuueQSxo0bpy9cERERcTv1OUREpFYrLwUfrTvrKuV5EWkwUjfDhrec2xNngcXqUjO2o4Vkz08GA2Ju7OHyKPidK5aye9VyTGYz87PCAbikf0taRJ66vdjWYZx5/Rku3ctTClasIPvd9wCIf/wxfKKivByR/J5yfN1mNVsZ1WIUo1qMIqMog6/2fsW8pHkcyj/E3KS5zE2aS+uw1iQmJHJmmzOJCtC/P08xDIM1aWuYs30OK1NXVuzvGd2T6Z2nM7zZcMym2rNEiIj8uSoX4X/44QcOHz7M22+/zTXXXENxcTFTp04FUDIVERERt1GfQ0REaq2iLHh1EPSYBkNmglUjT6pLeV5EGgSHAxbMBMMBXc6DVkNdasYwDGcB3m7g37ERPtGBLrWTczSdH996FYCQgZNYlxJCiL8PN4xM+EPYBvmZJYQ1DnDpPp5UnplJ6l13AxBx8cUEDxvm5Yjkj5Tj64/owGiu7HolV3S5gl+O/sK85Hn8cOAH9uXu45lfnuGFjS8wtOlQprSdwqAmg/AxV7nMJH/B5rCxcP9C5myfw+7s3QCYTWZGNx/N9M7T6da4m5cjFJHqMhmGYbhy4aJFi3jrrbeYP38+zZo147zzzuO8886jZ8+e7o7xtMvLyyMsLIzc3FxCQ2vPmkciItLwKCe5v8+hz1RERFy24DZY91+I7gxXLQdLzX7hqJzk3jyvz1NEao1N78OX14FvMFy/weW14As3HCX78z2YrGZibumFT0T1H/5y2O18/OAdpO3ZRVy7TrzoP5r0fBt3TejAVcPaVDp3y4+HWT1vL/3PaU330c1ditkTDMPgyDXXUrBsGX5tE2j52WeY/Wv3g3DKSfpZvr4pKCvguwPfMT9pPluPb63Y3zigMWe3OZvEtom0CG3hxQjrrvyyfD7f8znv73yfjKIMAAJ8AkhMSOTiThfTLKSZlyMUkT+qak5yuQj/P9nZ2bz//vu89dZbbN26FbvdXpPmagUldBERqS2Uk05wV59Dn6mIiLjk6A54bTAYdrj0K2hd8xF4ykknuCPP6/MUkVqhOBte6uVcC37sozDwBpeasRfaOPrMBhxF5YRNaEXIsKYutbPqsw9Y/flH+AYEQuKtPLP6OE3CA/jx1mH4Wy0V5+VnlfDhQ2spL7Uz7B/t6TK0iUv384Tsjz4i/aGHMVmttPz8M/zrwHrjykkn6Gf5+icpO4l5yfP4Zu83ZJdmV+zvGd2TKW2nMKbFGAKtrs3c0ZCkFaTx/s73+SLpCwpthQBE+kcyreM0Lmh/AWF+YV6OUET+zGkrwv/exo0bNRJeRETEjZSTTq0mfQ59piIiUm2GAe9Ohv0/QcezYOr7bmlWOenUXM3z+jxFpFb4diasfx0ad4Crf3Z5Lfisz/dQtOEoPjGBxMzogclS/fV/845l8MaMKzEcDgb/8yYuX15OYZmdFy7szuTuJ4rshmGw4JWtHPg1k7g2YSTe2hOTuXZMH166dy/7p5yLUVpKzF130mj6dG+HVCXKSaemn+XrF5vdxrIjy5iXNI+VqStxGA4AgqxBjG85niltp9A1qquWI/iDHZk7mLN9Dt8f+B674XwopU1YG6Z3ns6k1pPwtfh6OUIR+TtVzUluXayjPhTgRUREpPZTn0NERE6r3QucBXiLH4x5xNvR1HvK8yJSZ6Vuhg1vOrcnznK5AF92OJ+iDUcBiEhMcKkADxDaOJrEOx7gwJaNfF0QQ2HZIbo2CeOsbvGVztu78RgHfs3EbDExfFqHWlOAd5SVkTLzNozSUoIGDybikku8HZLUkHJ8/WK1WBnTYgxjWowhvTCdr/Z+xbykeRwpOMIXSV/wRdIXJIQncE7COZzV5iwa+Tfydshe4zAc/JzyM3O2z2Fd+rqK/f1i+zG983QGNxmshxVE6iG3FuFFRERERERE6pXyUvj+Huf2wOuhUSvvxiMiIrWTwwELZoLhgC7nQquhLjdljQ8m7MzW2LNL8GtZs+mIW3XvhT2+PR89vxyAuyd2xPy7IntpkY0Vn+wBoOe4FjSKD6rR/dzp2HPPU7pzJ5aICOIefwyT2bWHEap8v6JjZBRl0Dmqs0fvI1IfxQbF8q9u/+LKrlfyy9FfmJs0l0UHF5Gck8zsDbN5fuPzjGg2gnMSzmFQ/CAsZsvfN1oPlNnL+Hbft8zZPoe9uXsBsJgsjG81numdptMxsqOXIxQRT1IRXkREREREROTPrHkVsvdDcCwMvsXb0YiISG215UM4sh58g51rwdeAyWIiZLDra7If3LqZiLh4QhtHA/DUwl3YHQajO0YzoE1kpXNXz99HUV4Z4TGB9JrQokZxu1PhqlVkvf02AHGPPYo1Otqj9yuzl3HTspvYlbmLWcNmMbL5SI/eT6S+MpvM9IntQ5/YPtzd726+2/8dc5Pmsj1zO4sOLmLRwUVEB0Yzuc1kEhMSaRbazNshe0ROSQ6f7vmUD3d+SGZJJuCcpv+8tucxreM04oLjvByhiJwOKsKLiIiIiIiInEr+UVg+y7k9+kHwC/ZqOCIiUksVZ8Oi+53bw+6A0Pi/Pv9P2AttmH0tmKyuj/jOO5bB1889AcDUB59knz2URTuOYjGbuHNCh0rnGoZBSCM/fKxmhk9rj4+1doxMLc/OJvWOOwEIv3AqISM9WxA3DINH1jzC1mNbCfENoU14G4/eT6ShCPEN4YL2F3BB+wvYnbWb+cnz+Xrf12QUZfD6r6/z+q+v0ye2D4kJiYxuMZoAnwBvh1xjh/MO897O95ifPJ/i8mIAYgJjuKTTJUxpO4UQ3xAvRygip5OK8CIiIiIiIiKn8uPDUFYATXpBt6nejkZERGqrJY9BUSY07gD9r3GpCcMwyP5sD+XHi4m4oB1+zUOr3YbDYWfBy89QWlRIXNv2RMQ34/H/rAFgap9mJERXLv6YTCZ6jW9Jp0HxBIT4uhS3uxmGQfr991N+7Bi+rVsTc8cdHr/nBzs/YH7yfMwmM7OHzqZFaO2ZEUCkvmjfqD139L2Dm3vdzNLDS5mXNI9VqatYn76e9enreXzt40xoNYEpbafQObJznVsffeuxrbyz/R1+PPQjDsMBQIdGHZjeeTrjWo7DarZ6OUIR8YZqF+F79Ohxyi9Ak8mEv78/CQkJXHbZZYwYMcItAYqIiEjDpD6HiIh4VcovsPl95/b4p8DD69A2NMrzIlJvpG2BDW86tyfOAotrhZaS7ZmU7MoCiwmzv2vjptbN/5yUXdux+gcw8fqZLNiRwZYjuQT5WrhpdNtK5xqGUfE9XFsK8AA5n31G/qLFYLXSZPYszAGeHRm7OnU1szfMBuCWXrcwsMlAj96vIVCOl7/ia/FlXMtxjGs5jvTCdOYnz2d+8nxSClL4bM9nfLbnM9pGtCUxIZEzW59JhH+Et0P+U3aHnWVHljFn+xw2ZWyq2D+oySAu63wZ/WL71bmHCUTEvar9W4Tx48ezb98+goKCGDFiBMOHDyc4OJi9e/fSp08f0tLSGD16NF9++aUn4hUREZEGQn0OERHxGsOA75zT4NLtQmjWx7vx1EPK8yJSLzgc8O1MMBzQ5VxoNdS1ZkrLyfl6LwAhw5pijQ6sdhtpybtZ9dkHAIy6/GoCoqJ5euEuAK4a1oboEP+Kc3OOFvH5kxtI35frUryeUrpvP0efeBKA6Jtuwr9TJ4/e73DeYWb+NBO7YefsNmdzaadLPXq/hkI5XqoqNiiWq8+4mgVTFvDG2DeY2GoivmZfkrKTeHr904z8bCS3LruVn1N+xu6wezvcCsXlxXy6+1MmfzmZm5bexKaMTfiYfTgn4Rzmnj2X10a/Rv+4/irAi0j1R8IfP36cW2+9lfvuu6/S/kcffZSDBw/yww8/8MADD/DII48wefJktwUqIiIiDYv6HCIi4jW/fg5H1oE1CEY/4O1o6iXleRGpF7Z86MwXvsEw9lGXm8lbdAh7bhmWRv6EjmhW7evLSopZ8OJsDIeD9gOG0GnoSN5YsZ8j2cVEh/hx5ZBWFecahsGyD3aRcTCfDQsOcOb1Z7gctzsZZWWk3nYbRnExgf370+j/LvPo/QpthcxYOoO8sjy6RnXl/gH3q2DmJsrxUl1mk5l+cf3oF9eP3NJcvtv/HXOT5rIzayc/HPyBHw7+QGxQLJPbTOachHNoGtLUK3FmFmfy8e6P+WTXJ2SXZgPOde+ntp/KRR0uIjow2itxiUjtZTIMw6jOBWFhYfzyyy8kJCRU2p+cnEyvXr3Izc1l165d9OnTh/z8fLcGe7rk5eURFhZGbm4uoaHVX39JRETEXRpyTvJUn6Mhf6YiIlIFZYXwUm/IT4WR98HQmR67VUPOSZ7I8w358xQRLyjOhpd6OdeCH/MIDJrhUjNlKQVkvLwJDIj6v874t29U7TZWfvoBa774iJDIxlz69EuUmH0Z+vRS8krKeercrkzt07zi3J2rUlny7i58rGYueqAfoVGene69qjKeeZbM11/HEhZGq6++xBoT47F7OQwHNy29iaWHl9I4oDEfn/mx24tnDTkn6Wd5cZddWbuYlzSPb/Z9Q15ZXsX+frH9SGybyKjmo/D38f+LFtxjf+5+3t3xLl8lf0WZowyAJsFNuKTTJSQmJBJorf7sJSJSt1U1J1V7JLy/vz+rVq06KYmuWrUKf3/nF57D4cDPz6+6TYuIiIhUUJ9DRES8YuULzgJ8eHMYcL23o6m3lOdFpM5b8pizAN+4A/S/xqUmDIdB9vxkMCCgW5RLBXiAfuecT1lxEQl9+uMfHMzsb3aQV1JO+5gQzut1YmR9UV4ZKz9PBqDvWa1rTQG+cO06Mt94A4DYRx/xaAEe4NUtr7L08FKsZivPjXhOo1fdTDle3KVDow7c1e8ubul9C0sPLWVu0lzWpK1hbfpa1qavJcQ3hImtJpLYNpFOjTq5dTYLwzD45egvzNkxh2WHl1Xs7xLZhcu6XMao5qPwMVe7vCYiDUy1vyVuuOEGrr76an755Rf69OmDyWRi3bp1vPHGG9x9990AfP/99/To0cPtwYqIiEjDoT6HiIicdjmHnEV4cE4rbPX8yJqGSnleROq0tC2w4U3n9sRZYLG61IxRascS6EO5n4XwM1u7HI6Pry8jpv8TgEOZRby7+iAAd03sgMV8oii18vMkSovKiWoWzBmjvDOd8x/Zc3JIveMOMAzCzz+P0DFjPHq/RQcX8dqW1wB4YMADnNG4dkzHX58ox4u7+Vn8GN9qPONbjSe1IJUvk79kfvJ8UgtT+WT3J3yy+xPaR7QnsW0ik1pNItw/3OV7lTvKWXxoMXO2zWFb5raK/cObDeeyzpfRM7qnlq4QkSqr9nT0AB988AEvv/wyu3fvBqB9+/bccMMN/OMf/wCguLgYk8lU8WRbXaOpbUREpLZo6DnJE32Ohv6ZiojIX/jsMtg+D1oOgelfg4d/wdbQc5K783xD/zxF5DRxOOCtcc614LucC+e9VaPmDMPAnlWCT2T1RqU7HHZ2rlhGxyHDMZstFfuv/3Aj32xNY3BCFO9d0beiWHRoeyZfv7QFkwnOu7M30S28/z1pGAYpN91M/vff49uiBa3mfoE5KMhj99udtZtLvruE4vJiLu54MXf0vcNj92roOUk/y4unOQwHa9LWMD9pPosPLcbmsAFgNVsZ1XwUiW0T6R/XH7PJXKX2imxFzEuex3s73iOlIAUAX7MvkxMmc0mnS2gV1spj70VE6p6q5iSXivD1nRK6iIjUFspJ7qfPVERETunASnhnIpjMcNVyiO3q8VsqJ7mXPk8ROS02vQ9fXge+wXD9egiN90oY6778nBUfvkPL7r2YcueDmEwmNh/O4Zx/r8Rkgm9uGEzn+LCK83+cs4Ndq9M5Y1QzBp/f1isx/1HO3Hmk3X03+PjQ8qMPCejqudybXZLNRd9eREpBCv3j+vPq6Fc9OpW0cpL76TOVP5Nbmss3+75hXtI8dmfvrtgfFxTHOQnnMDlhMk2Cm5zy2mNFx/hw14d8svsT8svyAYjwi+DCDhcytf1UIgMiT8t7EJG6xWNrwv9PWVkZGRkZOByOSvubN2/uapMiIiIiJ1GfQ0REPM5hh4W/jYbrddlpKcCLk/K8iNQpxdmw6AHn9rA7XC7AlyRlU7TlGGETWmEJqv5U9kf3JbPyk/cBaNdvECaTCcMwePzbnQBM6dG0UgEeYOSlHWnaoRGtzohyKWZ3Kzt4kKOPPgpA4xtu8GgB3uawcetPt5JSkEKzkGbMHjZbazmfBsrxcrqE+YUxreM0pnWcxo7MHcxLmse3+78lrTCNV7e8ymtbXqNfXD+mtJ3CyOYj8bP4kZSdxJztc/h2/7eUO8oBaBHagks7XcpZbc4iwKd6s5OIiJxKtXsbSUlJXH755axatarSfsMwMJlM2O12twUnIiIiDZf6HCIictpseg/SfwX/MBhxj7ejaRCU50WkTlryGBQdh8YdoP81LjVh2BzkzE+mPLMEc5CV8AnVm+LYVlLCty/NxmEvp23fgXQZ4VxDfdGOo6w7kIWfj5mZ49qddJ3JZKJ9v1iXYnY3w2Yj5bbbcRQVEdinD5FXXuHR+z297mnWp68n0CeQF0e8SJhf2N9fJC5Tjhdv6hTZiU6Rnbi19638eOhH5iXPY23aWtakrWFN2hpCfUNJCE9gY8bGimt6RvdkeufpDG82vMrT14uIVEW1i/CXXXYZPj4+fPPNN8TFxVWsKyQiIiLiTupziIjIaVGcAz8+4twefhcE1Y4RgvWd8ryI1DlpW2DDm87tibPAUv0R7AB5yw47C/AhvoSOaFbt65e99wbZqUcIjmjEmH9dj8lkwmZ38OR3uwC4YnAr4sKcIzgdDoPNiw7RZWgTfANqz8jvY6+8QsnWrZhDQ4l/+ilMFsvfX+Siz/d8zse7PwbgySFPkhCR4LF7iZNyvNQG/j7+TGo9iUmtJ3Ek/wjzk+fz5d4vSS9MZ2PGRswmM6Oaj2J65+mc0fgMb4crIvVUtXtfmzdv5pdffqFDhw6eiEdEREQEUJ9DREROk+WznKMao9pBnyu9HU2DoTwvInWKwwHfzgTDAV3OhVZDXWrGdqyI/GWHAQg/qzVm/+r9ajZ5/Rq2Ll4IJhPjr7uFgBDnGqQfrzvEvuOFNAry5erhbSrO/3XpEVbP28vutelceG9fTGbvF0OLNmwg8z//BSDuoQexxsV57F4bj27ksbWPAXB99+sZ0XyEx+4lJyjHS23TNKQp1/e4nmvOuIY1aWvYm7OXEc1H0Cyk+g9CiYhUR7WL8J06deL48eOeiEVERESkgvocIiLicceTYO1rzu3xT7g8qlGqT3leROqULR/CkXXgGwxjH3WpCcMwyPlyL9gN/NpFENC1ejOv2Mtt/Pi2M2f1PjORFl27A5BfYuP5xUkA3DS6LaH+zlyWn1XCmq/2AdBtRNNaUYC35+WRcvvt4HAQds45hE6Y4LF7pRWkcfOymyl3lDO2xVj+1e1fHruXVKYcL7WVxWxhUJNBDGoyyNuhiEgDUe0FLp566iluv/12li1bRmZmJnl5eZVeIiIiIu6gPoeIiHjc9/eAoxzajoOE0d6OpkFRnheROqM4GxY94NwedgeExrvWzJZjlCbngI+ZiMltqj1Ft8XHyrl3PUTHISMYNPWSiv3/+WkfmYVltI4K4qK+zQFnwX/5R7spL7UT1yaMToNci9nd0h9+hPLUNKzNmhFz770eu09xeTE3Lr2RrJIs2ke055FBj2hK9NNIOV5ERMSp2iPhR492/mJi1KhRlfYbhoHJZMJut7snMhEREWnQ1OcQERGPSloESd+D2QfGPe7taBoc5XkRqTOWPPbbsiXtof81LjVhGAZ5S53T0IeOaoZPZIBL7UQ1a8HE62+t+HtabjGvr3COdr99fAesFud4q70bj3Hg10zMFhPDp3WoFaPgc7/6irxvvgGLhSaznsYSHOSR+xiGwQMrH2Bn1k4i/CJ4YeQLBFoDPXIvOTXleBEREadqF+GXLl3qiThEREREKlGfQ0REPMZug4V3Obf7XQ1RCd6NpwFSnheROiFtC2x407k9cZbLy5aYTCair+pG/s8phAxpWq1rjx06gK2kmPh2HU869swPeygtd9C7RQTjOscAUFpkY8UnewDoOb4FjeI9U+yujrIjR0h/6GEAoq67loDu3T12r7e2vcV3B77Dx+TDM8OfoUlwE4/dS05NOV5ERMSp2kX4YcOGeSIOERERkUrU5xAREY9Z9zpkJkFgFAy73dvRNEjK8yJS6zkc8O1MMBzQeQq0rtn3ljnQStjYltW6xlZWyrcvPE1W6hEmzbiN9gOGVBzbkZrHFxuPAHDPpI4V062v/+YARXllhMcE0mt8ixrF7A5GeTmpt92Oo7CQgJ49ifqX59ZmX35kOS9sfAGAO/veSZ/YPh67l/w55XgRERGnKhXht27dSpcuXTCbzWzduvUvz+3WrZtbAhMREZGGR30OERHxuMLjsOxJ5/ao+8E/zLvxNCDK8yJSp2z5CI6sA2sQjHvMpSYMu0HJniz8OzRyaU3y5e+/TeaRQwSFR9Csc+XvxSe+24lhwKRucfRoHlGxv+f4FhTll9F5cDw+VotLcbvT8f/8h+JNmzAHBxP/9NOYfKo9JqxK9uXu447ld2BgcF6787ig/QUeuY+cmnK8iIjIyarU6+nevTvp6elER0fTvXt3TCYThmGcdJ7WdBEREZGaUJ9DREQ8bsmjUJoLsd2gx8XejqZBUZ4XkTqjOBsW3e/cHn4nhMa71EzBqhRyv91PQPfGRF7YoVrX7tu0ns3ffwPA+GtuIjD0xENjP+05xoqk41gtJu4YV7ndwFBfxl7R2aV43a1o0yaOv/IqALEPPIBvU89MDZ9XlseNS26kwFZAz+ie3N33bpceehDXKceLiIicrEpF+P3799O4ceOKbRERERFPUJ9DREQ8Kv1X2DjHuT3hKTB7f4RgQ6I8LyJ1xtLHoeg4RLWH/te41ER5Til5iw4C4N8mvFrXFuZk8/2rzmnVe06cTMvuvSqO2R0GTyzYCcAl/VvSPDIQgJyMIsKjA12K1RPsBQWk3nY72O2EnnUWYWed6Zn7OOzcvvx2DuQdIDYolmeHP4vVYvXIveTPKceLiIicrEpF+BYtWpxyW0RERMSd1OcQERGPMQxYeNeJtX1bDPR2RA2O8ryI1AlpW2D9G87tibPAxYJuztd7Mcoc+LYIJbBXTJWvMwyD7197gaLcHKKat2TIRdMrHf9i4xF2pecT6u/DDSMTAMhOL+TjR9fRsmsUo/+vE1Zf7z9kdvSRR7EdOYI1Pp7Y++/z2H1e2PgCK1NW4m/x58URLxIZEOmxe8mfU44XERE5mUuL8OzZs4dly5aRkZGBw+GodOz+++93S2AiIiIi6nOIiIjb7PwKDqwAH38Y87C3oxGU50WkFnI44NuZJx7Yaj3MpWaKd2RSsj0TzCYiEhMwmas+NfreX9axf9MGLFYrk26YiY+vb8WxorJynvlhNwDXj0wgIsgXw2Gw7IPdOMoNysvs+FjNLsXsTrnffkvul1+C2Uz87FlYQkI8cp+v937N29vfBuCRQY/QMbKjR+4j1accLyIi4kIR/vXXX+eaa64hKiqK2NjYSuvrmEwmJVERERFxC/U5RETEbWzF8MO9zu1BN0J4M+/GI8rzIlK7GAYcWg0/PwdH1oE1CMY95lJTjjI7OV/tBSB4SBOssUHVur5Nr76MuuJaTCaIat6y0rE3V+znaF4pTcIDuHSA89jO1WmkJuXg42tm2EXtvb4Wui01lfQHHwIg6uqrCezZ0yP32X58Ow+uehCAK7teyfhW4z1yH6k+5XgRERGnahfhH330UR577DHuuOMOT8QjIiIiAqjPISIibrT6Zcg5BKFNnEV48TrleRGpFRx22PUtrHoRjqz/bafJWYAPjXepybzFh7DnlGIJ9yN0VPNqX28ymeg+duJJ+4/ll/LaT87i/u3j2+NvtVCUV8aqL5IB6HtWa0KjAlyK2V0Mu52U22/HkZ9PwBlnEHXtNR65z7GiY8xYOoMyRxnDmg7jhh43eOQ+4hrleBEREadqF+Gzs7M5//zzPRGLiIiISAX1OURExC3yUmHFs87tMQ+Db/VGJIpnKM+LiFfZimHLR7DqZchyFrax+EH3f8CA6yEqweWm/dtFULIjk7BJrTBXY232nSt/onWPPvgFBp7y+As/7qGwzE63pmGc1c35gMDPnyVRWlROVLNgzhjZ1OWY3SXz9Tco3vAL5sBA4mc9jcnHpZVQ/1KZvYybl91MRlEGrcJa8cSQJzCbvD8Fv5ygHC8iIuJU7R7K+eefzw8//OCJWEREREQqqM8hIiJusfhBsBVBs/7Q5VxvRyO/UZ4XEa8oyoLls+D5rvDNzc4CvH84DJkJN2+Ds56vUQEewD8hnJibexLQMbLK1xzYspEFL87ivTtuoLSo6KTjyRkFfLTuMAB3T+yI2Wzi4LZMktYfxWSCERd3wGzxbiG6eOtWjr38MgAx992Hb/PqzwLwdwzD4NE1j7Ll2BZCfEN4aeRLhPh6Zr15cZ1yvIiIiFO1H0dMSEjgvvvuY82aNXTt2hWr1Vrp+IwZM9wWnIiIiDRc6nOIiEiNHV4HWz8BTDDhSfDyOrlygvK8iJxWOYdg9Suw8V2wFTr3hTWDAddBj0vAL7jGtzDKHZh8nIVwUzUK4kV5uSx85TkAWvXofcqR8E9+twu7w2B0x2j6t3YW9y0+JkIa+dO6R2OiW4TWOP6acBQWknLbbVBeTsiE8YSdM9kj9/lw14fMS56H2WRm1tBZtAht4ZH7SM0ox4uIiDiZDMMwqnNBq1at/rwxk4l9+/bVOChvy8vLIywsjNzcXEJDvduJFRGRhq0h5yRP9Tka8mcqItKgOBzwxihI3Qg9LobJ//Z2RCdpyDnJE3m+IX+eIvIn0rY613vfNhcMu3NfbFcYeCN0Pgcs1r+8vKrsBWVkvLyZ4EHxBA9sgslStYe+DMPgy9mPsnfDWiKbNmfaE89h9fWrdM7afZlM/e8aLGYT3980hIToEyO/baXO92T1q/q0956Qeu+95H7+BT5xcbSePw9LWJjb77EmbQ1XL7oau2FnZu+ZTO883e33cKeGnJP0s7yIiNR3Vc1J1R4Jv3///hoFJiIiIlIV6nOIiEiNbP3EWYD3DYGR93s7GvkD5XkR8RjDgH1LYeWLzj//p/VwGHQjtB7h9plRchfsx55TStHGDIIHNqnydVsXL2TvhrVYfHyYeMPMkwrwDofB4wt2AnBhn2YkRIdgGAam3+L3dvEdIO/7H8j9/AswmYh/6kmPFOAP5x9m5k8zsRt2zmx9Jpd2utTt9xD3UY4XERFxqnYRXkRERERERKRWK813rgUPMHQmhMR4NRwRETkN7OWwYz6sfB7Sf3XuM1mgcyIMmgFxZ3jktiV7cyjamAEmCE9MqPIo+MyUwyx79w0AhvzjMqJbtj7pnK+3prLlSC5BvhZuGt0Oh93B1y9toU3PaDoPjsdk9u4yK7b0dNLudz7oFvnPfxLUt6/b71FoK2TGkhnklubSJbILDwx4oOIhBBEREZHarEpF+FtuuYVHHnmEoKAgbrnllr8899lnn3VLYCIiItLwqM8hIiJuseJZKEiHiFbQ/xpvRyO/UZ4XEY8oLYBN78Pqf0PuIec+ayD0vBT6XwsRnls33Ch3kDM/GYCgfnH4Na/6FNk/vfcm5WWltOjWg54Tzj7peGm5nVnf7wbgqmFtaBzix5YfD3NkVzYZB/Np3b0xgaG+7nkjLjAcDlLvuBNHbi7+XbrQ+Prr3H4Ph+Hgnp/vITknmaiAKJ4f8Tz+Pv5uv4/UnHK8iIjIyapUhN+0aRM2m61i+8/oKUQRERGpCfU5RESkxrL2w+qXndvjHgcfv78+X04b5XkRcauCY7DuP7DudSjJce4LjIJ+V0OfKyCwkcdDyF9+hPJjxZiDrYSNa1mta8dfezM/vfsGQ/5xGSaz+aTj7646yJHsYmJC/bhySCvyMotZ85VzLe2BU9p4tQAPkPX22xStXYspIIAms2dh8nV/PK9teY0fD/2I1Wzl+RHPExOkmW1qK+V4ERGRk1WpCL906dJTbouIiIi4k/ocIiJSYz/cC/Yy55q/7Sd4Oxr5HeV5EXGLzL2w6iXY/CHYS537GrWBgdfDGReBNeC0hFGeWUzeksMAhJ/ZGnNA9Vb9DAwNY8L1t57yWE5RGS8tSQLg1jHtCbBa+Pbj7ZSX2olLCKPToPiaBV9Dxdu3k/H8CwDE3nM3vi1buv0eiw4u4tUtrwJwX//7OKOxZ5YTEPdQjhcRETmZ1oQXERERERGR+mHfMtj1jXMN4PFPgEZbiYjUH0c2ONd73/kNYDj3NekNg26EDpPAbDmt4ZQeyAOHgV9COAFnNK7SNcX5eRzatoX2A4b85XkvLUkmr6ScDrEhnNurKcm/ZHDw10zMFhPDp3Xw6lrwjqIiUmfeBjYbIWPGEHbuuW6/x+6s3dzz8z0AXNzxYhLbJrr9HiIiIiKe5lIRfv369Xz22WccOnSIsrKySsfmzp3rlsBERERE1OcQEZEqs5fDwruc232uhOiO3o1H/pbyvIj8LYcDkn6AlS/AoVUn9rcb7yy+Nx/gtQeugnrF4Ns0GJOPuUpTbBuGwaLXXyZp7SqOHTzA4AsvOeV5hzKLeHf1AQDunNABW3E5Kz51jorvNb4FjeKC3PYeXHH0qacp278fn+hoYh9+yO3Ti2eXZHPj0hspLi+mX1w/bu196tkCpHZTjhcREYGTFxz6Gx9//DGDBg1ix44dzJs3D5vNxo4dO1iyZAlhYWGeiFFEREQaIPU5RESkWn55GzJ2QEAEDL/T29HI31CeF5G/VF4Km96HV/rDR1OdBXizFbpfDNeuhX98Ai0Gen3GE2tMED6RVZv+ftuyRSStXYXZ4kPbvgP+9Lynv9+FzW4wpG0Uw9o15siubEryywiPCaTX+JZuitw1+T/+SM4nn4DJRPxTT+ITEeHW9m0OGzN/mklKQQpNg5sye+hsfMyayLWuUY4XERFxqnYv5vHHH+e5557juuuuIyQkhBdeeIFWrVpx1VVXERcX54kYRUREpAFSn0NERKqsKAuWPubcHnEPBDbybjzyt5TnReSUSnJhw9uw5lUoSHfu8wuF3v8H/a6GUO+uhQ6QvzIFv1Zh+MYHV/ma7LQUlr79XwAGTb2YmNYJpzxv06FsvtmahskEd03oiMlkIqFXNKFRvTEcYLFWezyV29gyMki7514AGl3+fwQN+PMHCVw1a/0s1qWvI9AnkJdGvkS4f7jb7yGepxwvIiLiVO2e2969e5k0aRIAfn5+FBYWYjKZuPnmm/nvf//r9gBFRESkYVKfQ0REquynp6A4G6I7Qa//83Y0UgXK8yJSSW4K/HAvPNsZFj/gLMCHxMGYR+DmbTDm4VpRgC87kk/uN/vIeHkT5ceLq3SNvbycBS/NxlZaQrPO3ehz1pRTnmcYBo8v2AnAlB5N6RQfWnEsukUoMa1CT3nd6WA4HKTdeRf2nBz8OnWk8Y03uv0eX+z5go92fQTAE0OeICHi1A8qSO2nHC8iIuJU7SJ8o0aNyM/PB6BJkyZs27YNgJycHIqKitwbnYiIiDRY6nOIiEiVZOyCda87t8c/ARZNW1sXKM+LCABHd8C8a+CFM2DVS1CWD407wjmvwo1bYdAM8K8d01cbDoPseclgQEC3xvhEVW0a+tWff0j63iT8g4KZcN0tmMyn/nXsDzuOsv5ANn4+ZmaOa8fuNWlkpRW68y24LOvddylctQqTvz9NZs3C7Ovr1vY3ZWzi0bWPAnBd9+sY2XykW9uX00s5XkRExKnav50YMmQIixYtomvXrlxwwQXceOONLFmyhEWLFjFq1ChPxCgiIiINkPocIiLytwwDFt4Jhh06nAmth3s7Iqki5XmRBsww4OBKWPkCJP1wYn+Lwc6ie8IY+JNCtTcVrk7FllKAyd9C+KTWVbomNyOddV9+DsCYq24gJDLqlOfZ7A6e+m4XAFcOaYV/sYP57+8CAy64pw+R1Zj63t1Kdu3i2DPPAhBz5x34tWnj1vbTC9O5eenNlDvKGdNiDP/q9i+3ti+nn3K8iIiIU7WL8C+//DIlJSUA3HXXXVitVn7++WemTJnCfffd5/YARUREpGFSn0NERP7WnoWwbylYfGHsI96ORqpBeV6kAXLYYefXzuJ76sbfdpqg09kw8EZo2sur4f0Ve14puT8cBCBsfCssIVUbCR4WHcuUOx/k0PattOs36E/P+2jdIfYdLyQyyJerhrRm8Su/4ig3aNElkkZxQW55D65wlJSQMnMmhs1G8MiRhE+d6tb2S8pLuHHpjWSWZNIuoh2PDnoUs6n2PYAh1aMcLyIi4mQyDMOo6snl5eV88MEHjBs3jtjYWE/G5VV5eXmEhYWRm5tLaKj31lsSERFpqDnJk32OhvqZiojUO+Wl8Ep/yNoHg2+G0Q96O6Jqa6g5yVN5vqF+niK1nq0YNn8Aq16G7P3OfT7+0H0aDLgOIt07stoTMj/cSfHW4/g2C6HxNWdgMpvc1nZ+iY3hs5aRWVjGw5M709vuy9L3d+Hja+aiB/oRGlm1ae89If3hR8j+8EMsjaNo/eWX+DRq5La2DcPgzhV3smD/AsL9wvlo0kc0DWnqtva9raHmJP0sLyIiDUFVc1K1Hi308fHhmmuuobS0tMYBioiIiPwZ9TlERORvrX3NWYAPjoEht3o7GqkG5XmRBqIoC5Y9Bc91gW9vdRbgAyJg2B1w0zY489k6UYAv3ZdL8dbjYIbwxIQqFeD3b9pAbkZ6ldp/7ae9ZBaW0ToqiMkdYlk1NxmAfme39moBPn/pUrI//BCA+MefcGsBHuDt7W+zYP8CfEw+PDv82XpVgG/IlONFREROqPZ09P369WPTpk20aNHCE/GIiIiIAOpziIjIX8g/Cj/Ncm6PfhD8QrwajlSf8rxIPZZ9AFb/Gza9D7Yi577w5jDgeuhxMfh6b3p1V/i2DCV8chvsBTZ8q7A2e056Gl8//xQmE1z40NM0btHqT89Nyy3mjRXO2QHumNCBtV8kU1pUTuPmIXQb4b2idPnx46Tdcy8AjaZfSvCQwW5tf/mR5Tz/y/MA3NH3DvrE9nFr++JdyvEiIiJO1S7CX3vttdx6660cOXKEXr16ERRUuePcrVs3twUnIiIiDZf6HCIi8qeWPAxl+RDfE7pd6O1oxAXK8yL1UOomWPki7JgPhsO5L+4MGHQjdJwMlmr/GrJWMJlNBA+Ir9K5DrudBS/PxlZSTJMOnYhs1vwvz5/9/R5Kyx30aRlBZ4svX27IwGSCERd3wGzxztrohmGQevfd2LOy8Gvfnsa33OLW9vfn7ueO5XdgYHBu23OZ2t6968yL9ynHi4iIOFV5TfjLL7+c559/nvDw8JMbMZkwDAOTyYTdbnd3jKed1pcREZHaoiHmJE/3ORriZyoiUq+kboL/jgAMuGIRNOvr7Yhc1hBzkifzfEP8PEW8zjBg74/O4vv+n07sbzMKBs2AVsPA5L71008ne14pJn8fzL6WKl+z6rMPWP35R/gGBDJ91suENo7+03N3pOYx6aUVGAbMu3Yg3ZqEseXHw5QVl9N/svem6c96/wOOPvooJj8/Wn3+GX5t27qt7byyPKZ9O40DeQfoEd2DN8e+idVidVv7tUlDzEn6WV5ERBqKquakKhfhLRYLaWlpFBcX/+V59WGaGSV0ERGpLRpiTvJ0n6MhfqYiIvWGYcBb4+HwGuh6AZz7urcjqpGGmJM8mecb4ucp4jV2G2ybC6tehKPbnPtMFuhyrrP4HtvVu/HVkGEYHPvvr9hzS2l0YXv8mv/9d0rK7p188sAdGIaDiTNuo+OgYX95/iVvrmVF0nEmdYvj3//o6a7Qa6Rkzx4OnHc+RlkZMffeS6OLp7mtbbvDzvVLrufnlJ+JDYrlo0kfERUQ5bb2a5uGmJP0s7yIiDQUVc1JVZ4H6n+1+vpQZBcREZHaS30OERH5U9u+cBbgrYHOteClzlGeF6njSvNh47uw+hXIO+LcZw2CXtOh/zXOtd/rgaKNGZTtz8VkNWMJ8f3b80uLiljw0mwMw0HHISP+tgD/055jrEg6jtViYka/VthtDixW70w//z+O0lJSZ96GUVZG0LChREz7h1vbf2HTC/yc8jN+Fj9eGPFCvS7AN1TK8SIiIpVVazEmUx2dPkpERETqFvU5RETkJGVFsOh+5/bgWyCsiXfjEZcpz4vUQflHYd1/YP0bUJLr3BcUDf2ugj5XQECEd+NzI3uhjdwF+wAIHd0cnwj/v71mw9dfkHfsKKGNYxh1+dV/3b7D4PFvdwJwab8WbPkkmV/K7Iz7ZxcimwTX/A246Nizz1K6Zw+WyEjiH3vMrd/V3+77lre3vQ3AwwMfplNkJ7e1LbWLcryIiMgJ1SrCt2vX7m8TaVZWVo0CEhEREVGfQ0RETrLyBchLgbDmMPB6b0cjNaA8L1KHHE+CVS/Blo/AXubcF5kAA2+AbheC9e8L1HVN3sIDOArL8YkJJHhw1R746jflQsptNhJ698cvMOgvz/3ilyPsPppPqL8Po30C2XjoKH6BPgRUYcS9pxSs+JmsOe8CEP/4Y/hEuW+U+vbj23lg1QMAXNHlCia2nui2tqX2UY4XERE5oVpF+IceeoiwsDBPxSIiIiICqM8hIiJ/kHMYVj7v3B77CFgDvBqO1IzyvEgdcGitc733Xd8CzimmadoXBt0I7SeC2btTp3tCWUoB+T8dpnjrcQAiEhMwWar2Pn2sVoZdfPnfnldUVs4zi3YDcH3flmxdeBCAgecmEBjqnSJ8eVYWqXffBUDEtGkED/vrqfSr43jxcW5ceiOl9lKGNh3KDT1ucFvbUjspx4uIiJxQrSL8hRdeSHR0tFsDeOWVV5g1axZpaWl07tyZ559/niFDhvzp+R988AFPP/00SUlJhIWFMX78eGbPnk1kZGTFOV988QX33Xcfe/fupU2bNjz22GMkJia6NW4RERHxHE/0OUREpA5bdD+Ul0CLwdBpsrejkRpSnheppRwO2PMdrHwRDq85sb/9RGfxvXl/78XmBoZhYM8qwZZWSFlqAbbUQgJ7xRDY1Tnq27DZKwrwQf3j8Gv514VEh8POtqWL6TJ8NGaLpUoxvLliP0fzSmkaHkBMcjFHyhzEtw2n48C4mr05FxmGQdo992I/dhzfhDZE3zbTbW2X2cu4eenNHC06SquwVjw55Eks5qp9TlJ3KceLiIicUOUivCfWc/nkk0+46aabeOWVVxg0aBD/+c9/mDBhAjt27KB58+Ynnf/zzz9z6aWX8txzz3HWWWeRkpLC1VdfzZVXXsm8efMAWL16NVOnTuWRRx4hMTGRefPmccEFF/Dzzz/Tr18/t78HERERcS+tISciIpUcXAXb5wImGP8EKE/UacrzIrVQeSls/cRZfM9Mcu6z+EK3qc5p5xu39258NWDPKyX/pyMVRXej1F7puE+kf0UR3hoXROi4lvg2DcYvIfxv2143/3NWfvIeSWtXMuWuh/72++1Yfimv/bQXgOsS4jiyOA2zj4nh09p77bsx55NPKFi6FJPVSpPZszH7u2d5AcMweGztY2w+tpkQawgvjniREN8Qt7QttZdyvIiISGVVLsIbhuH2mz/77LNcccUVXHnllQA8//zzfP/997z66qs88cQTJ52/Zs0aWrZsyYwZMwBo1aoVV111FU8//XTFOc8//zxjxozhrruc0yjddddd/PTTTzz//PN89NFHbn8PIiIi4l6e6HOIiEgd5bDDd3c4t3tNh7hu3o1Hakx5XqQWKc6GDW/B2v9AwVHnPr8w6HM59LsaQmK9G18VOUrLsaUVYkspoCytEN+mIQT3/21kuclEwcrUEydbTFhjg7DGBeEbH4xvqxOj3c1+PoSOaFale6Yl7WbVZx8A0HHw8CoVH59fvIfCMjs940IpXusccd97QksiYv96DXlPKd27l6NPPgVA41tvwb9DB7e1/dGuj5ibNBezyczTw56mZVhLt7UttZdyvIiISGVVLsI7HA633risrIxffvmFO++8s9L+sWPHsmrVqlNeM3DgQO655x4WLFjAhAkTyMjI4PPPP2fSpEkV56xevZqbb7650nXjxo3j+eefd2v8IiIi4hnu7nOIiEgdtvkDSN/qLAqNvM/b0YgbKM+L1AK5R2DNq/DLO1BW4NwX2gT6X+t84Mmvdo9YNmwO8n8+gi21EFtqAeWZJZWOOwpsFUV4S4gvISOa4RMVgDU+GGvjAEw+NVvPvqy4iAUvzcZwOGg/cCgdh4z422uSMwr4eP1hAG4a3pacZWkUZJfSc2yLGsXiKkdZGSkzb8MoKSFo0CAaXXqp29pem7aWp9c7B0zd3PNmBjcZ7La2pXZTjhcREamsWmvCu9Px48ex2+3ExMRU2h8TE0N6evoprxk4cCAffPABU6dOpaSkhPLycs4++2xeeumlinPS09Or1SZAaWkppaWlFX/Py8tz5S2JiIhILaQ8LyJSR5Xkwo8PO7eH3wFBUd6NR2od5XiRakrfBqtegm2fg6PcuS+6k3O99y7ngsXq3fh+x3AYlGeVYEstwJZagMnfh9Dhv41St5jIX3ak0tTyllBfZ5E9PuiktdzDxrV0a2xL3vkvOUfTCIlqzOgrr63SKPgnv9uF3WEwumMMQ8+IxegWQ3G+DYu1Zg8EuOrY8y9QunMnlvBw4p54HJPZPXEcyT/CrT/dit2wc2brM5neebpb2pWGSXleRETqOq8V4f/njx1VwzD+tPO6Y8cOZsyYwf3338+4ceNIS0vjtttu4+qrr+bNN990qU2AJ554goceeqgG70JERERqK+V5EZE6avksKDwGkW2hzz+9HU2FjPwSokPcs2au1IxyvEgVGAYcWAErX4DkxSf2txwCg26ChFFQS9ZxLtx4lLLD+c4R7mmFGGUniuw+jQMqivAms4mQIU0wWS1Y451Ty1uCfU9LjLtX/8z2ZYvBZGLidbfiHxT8t9es2ZfJ4p1HsZhM3DnBOeW7yWQiMPT0xPxHhatWkfXWWwDEPfYo1uhot7RbZCtixtIZ5Jbm0jmyMw8MeEBrhEuNKM+LiEhd553HLYGoqCgsFstJI9QzMjJOGsn+P0888QSDBg3itttuo1u3bowbN45XXnmFt956i7S0NABiY2Or1SY4143Pzc2teB0+fLiG705ERERqC+V5EZE66HgyrHnNuT3+CfDxTqHij45kFzHm2eXcM+9XSmz2v79APEo5XuQv2Mth21z473CYc5azAG8yQ+dE+OdSuOwbaDv6tBfgHSXllO7LIf/nFHIXHax0rGBFCoWr0yg7mOcswPuYsTYNJqhvLMGDm1Q6N3R0C0KGNcW/bcRpK8CX22wse/d1APqdcz5NO3X522scDoPHF+wE4MpGjTiy6AilRTaPxvlXyrOzSb3zLgDCp04lZNQot7TrMBzc/fPdJGUnEekfyfMjnsffRw+sSc0oz4uISF3ntZHwvr6+9OrVi0WLFpGYmFixf9GiRUyePPmU1xQVFeHjUzlki8UCOEe7AwwYMIBFixZVWhf+hx9+YODAgX8ai5+fH35+fi6/FxEREam9lOdFROqgH+4Bhw3ajoW2Y7wdDQBl5Q6u/3ATucU2tqXkYtboPq9Tjhc5hbIi2PyBc9r5nN+K3D4B0ONiGHAdNGp1WsMp2ZtD2YE8bKkFlKUVYs/63frtPiZCRzbDZHGOEQrsHo29TRnWJsH4xgfhExWIyVJ7vmt9rFbOu+dR1n/9BQPO+0eVrvl6aypbj+TS1Gwh/EAx2/cW0bRDIxJ6uWf0eXUYhkH6/fdTnpGBb6tWxNx5h9va/s+W//DjoR+xmq08P+J5YoNi3da2NFzK8yIiUtd5dTr6W265hUsuuYTevXszYMAA/vvf/3Lo0CGuvvpqwPm0W0pKCu+++y4AZ511Fv/85z959dVXK6ajv+mmm+jbty/x8fEA3HjjjQwdOpSnnnqKyZMn8+WXX7J48WJ+/vlnr71PERERERERqaKkxbBnIZh9YNzj3o6mwlMLd7H5cA6h/j68/I+e+Pp4bWI5EZGTFR6Hda/Duv9CcZZzX0Aj6HeVc0mPoEiP3dpwGJQfL3au3360iNCxLSqmIS9cnUrxtsxK51vC/bDGOwvtRrmByTm+hpBhTT0Wo7tENm3G+GtuqtK5JTY7Ty/cDQZcaA7BYS+lRddI2vRs7Nkg/0TuF1+Qv2gxWK3Ez56FOSDALe3+ePBHXtnyCgD39b+P7tHd3dKuiIiISF3n1SL81KlTyczM5OGHHyYtLY0uXbqwYMECWrRoAUBaWhqHDh2qOP+yyy4jPz+fl19+mVtvvZXw8HBGjhzJU089VXHOwIED+fjjj7n33nu57777aNOmDZ988gn9+vU77e9PREREREREqsFug++d0+TS9yqIauvdeH6zcFs6b/68H4DZ559Bs0aBXo5IPG7fMrAVQ1Q7CG8BFq/++kTkz2Xtg9X/hk0fQHmxc19ESxhwPXSfBr7u/76yZRRRuj/XWXRP+239dpuj4nhQn1h8GjmnIvdv38i5dntcUEXh3RxodXtMnnR0/17KS0tp0qFTta57d/UBUnKKGWTxw3S8FB8/C0MvbOeVddJL9+8n/THng23RN91IQOfObml3T/Ye7vrZmbendZxGYtvEv7lCREREpOEwGf+bx10q5OXlERYWRm5uLqGhod4OR0REGjDlJPfTZyoiUouteQ0W3gGBkXDDRggI93ZEHMosYtJLK8gvKeefQ1pxz6TqFWH+inKSe7n183x3srMQD2C2QmQb50MhUe0g8rc/oxLAP6zGcYu4JOUXWPki7PwKjN8K4PE9YOAM6Hi2Wx4ccRTZKEstxJZaQFDvmIriee53+8n/6Uilc01Wc0WhPWRo04oifF1nKynhvTtvJCc9jUk33k77AYOrdF1OURlDn16Kvaic60qCMMocDD6/LWeMaubhiE9mlJVx4KJ/ULJ9O4H9+9P8rTcxmWs+m0tOSQ4XfnshKQUp9Ivtx6tjXsVqrlsPWHiScrz76TMVEZHaoqo5SY9yi4iIiIiIiPcVZsKy36afH3lfrSjAl5bbue7DjeSXlNOzeTi3j+/g7ZDkdIlqD0WZcDzZObr42C7n64+CY38rzv+vMP/bn6FNwQ1FLpFKDAOSF8PKF+DAihP7E8bAoBuh5WBwcZS1vaCMsoP5lP1vdHtqAfac0orj1rgg/NtGAODbIhS/tuEVI9utccH4RAVgMtee9dvdZdm7b5CdlkJwo0iadz2jyte9tCSZvJJy/mEEYpQ5iG4RQtcR3plu/9jL/6Zk+3bMYWHEP/mEWwrwNoeNmT/NJKUghabBTZk9bLYK8CIiIiJ/oCK8iIiIiIiIeN/Sx6AkF2K6Qs9LvR0NAI9/u5NfU3IJD7Ty8j96YrWoqNpgTHza+afDAXlH4PgeOJ702+u37YL0E6/fF0QBfAKcI+Uj/1Ccj0zwyPTgUs+Vl8G2L2DVi5Cxw7nP7ANdz4eBN0BM1acWN+wG5ceLKEstxK9FaMWI9ZIdWWTPTTrpfEsjf3zjgzD5Wir2BXSKJKCT59aYry2S1q9m648LwWRiwnW3EBAcUqXrDmYW8u7qAwQ5oLnNjMPsYPi0Dpi98JBC4bp1ZL7+OgBxDz+MNTbWLe0+s+EZ1qavJcAngBdHvki4f7hb2hURERGpT1SEFxEREREREe9K3wa/vO3cnvAkmC1/ff5p8O3WNOasPgjAcxd0Jz48wMsRiVeYzRDe3PlKGF35WEmuc6T88T2Q+bvifOZe5+j59F+drz8Ka3byyPmodhAc4/IoZqmnSvJg4xxY8yrkpTj3+QZDr8ug/zUQ9tcjqw2bnbLfRrXbUgudo9zTi6DcOX19+DltCO4fD4C1STDW2CCs8SfWbrfGB2P2b5i/OizIyuSH/7wEQO8zE2nepeqj4J/+fjc2u0H/9lFMn9qDI7uyady8agV8d7Ln5pJ6+x1gGISddy6h48a6pd15SfP4YOcHADwx+AnaRrR1S7siIiIi9U3D7EmLiIiIiIhI7WAYsPBO55rGnc5xTqfsZQeOF3LHF1sBuHpYG0Z0iPZyRFIr+YdB017O1+/ZyyHn4O9Gze85sV2cBbmHna+9Sypf5xtyiuJ8W2jUGnz8Tt/7Eu/LT3cW3je8DaW5zn3BMdDvauh9+SmX67AXlGFLK8QS6os1JgiA0kP5HH/95AdBTL4WrHFBmANO/FrQt0kwMTf19MjbqWsMh4PvXnmOkvw8olu2YfCFl1T52k2Hsvl2axomE9w1oSMBwb607R3jwWhPzTAM0h54kPL0dKwtmhN7111uaXdzxmYeXvMwANd2v5ZRLUa5pV0RERGR+khFeBEREREREfGenV87p/L28YcxD3s7Gkpsdq79YCMFpeX0bdmImWPbeTskqWssPhDZxvlqP77yscLM342a/11xPvsAlOVD6kbn6/dMZohoeaIoH/m70fNB9X9K8Abl2G7nlPNbPwV7mXNfVDsYOAO6XQA+fhiGgT2zGFvabyPbU39bvz3PeX7w4CaEn9kaAN/4YMwhVqxxwfjGB1eMcvdp5F8v1293l+QNazj062Z8fP2YOGMmFp+qrXVuGAaPL9hJdLmJ8S2j6Bh3+ke//0/u/C/JX7gQfHxoMns25qCgGreZXpjOTUtvotxRzpgWY7iq21VuiFRERESk/lIRXkRERERERLzDVgI/3OPcHjgDIlp4Nx7g4W92sCMtj8ggX168qAc+Wgde3Cko0vlq3r/y/vJSyNpfuTif+dsa9KV5kLXP+dqzsPJ1AY1+N3L+d8X58BbOhwGk9jMMOLQGVr4Ae747sb/5AIz+M7CFDQGTCd/fZkOw55WRPmvDKZvyiQqoNLrdHOBD/D39T3muVGYYBobDgdliIaHPAMb883pMFjORTZpVuY3vtx9lw/5sLi3xI3pbAVt+PEz30c09GPWplR06xNFHHgGg8Q03ENC1a43bLCkv4calN5JZkknbiLY8OuhRzCblRxEREZG/op/IRERERERExDtWvww5hyAkHgbf5O1o+HJzCh+uPYTJBM9N7U5smL+3Q5KGwscPojs4X79nGFBw9A8j53975R5yTm9/eI3z9Xtmq3Mk/h9HzkclOKfRF+9z2GH3Amfx/ch6HEYANqMTtsZnURYyDFt+ILYPCsG+Gf+OjYia3hkAS6gvllBfzCG+WOOCToxwjwvC7Kdf81WHw2Enbc9ukjesYe+GNXQePoZ+55yPyWSi2+jxf9/A79jsDp5auItepT5El5vxC/ShXd9YD0X+5wybjZTbbsNRVERg795EXnlFzds0DB5c/SA7MncQ7hfOiyNeJNAa6IZoRUREROo39c5FRERERETk9MtLgxXPOrfHPAS+NZ8qtyb2Hivg7rnOtZOvH5HA0HaNvRqPCAAmE4TEOl+thlY+VlYEmcnO4vz//jy+B44nQ3kxHNvlfP1RcOwfRs7/9mdoUzBrZKvH2Uqwr/0U+7pP8c1bAYBh9iet5EMMhxVSABxAAQAmfwsmX0vF5SaTidg7+2o6eRfZyko59OsWktevYd/GdRTl5lQc279pPf3OOd+ldj9ad4jMo0VMLnXOWDDw3AQCQ33dEXK1HH/1VUq2bMUcEkL8009hslj+/qK/8c72d/h237dYTBaeGfYMTUOauiFSERERkfpPRXgRERERERE5/X58CGyF0LQvdHWt6OEuxWV2rvtgI4Vldvq3bsRNo7UOvNQBvoEQ1835+j2HA/KOnCjI/34UfUH6ideBFZWv8wmAyISTi/ORCc57SbUZDoPyrBJsqQXYDh7HtieJsuMmHEYrfEwXEhu2FfpcianvVVjfS8OeW4o1zjmy3TnCPRhLhB8mU+WCuwrwrnE47Lxx/RWVCu9+gUG06tGbhD4DaNW9p0vt5pXYeH5REmOKrVgNE/Ftw+k4MM5NUVdd0S+/cPy1/wAQ99CDWOPja9zmzyk/89wvzwFwe5/b6RvXt8ZtioiIiDQUKsKLiIiIiIjI6XVkA2z5yLk94UnnaF8veuCrbexKzycq2I8XL+yBRQUuqcvMZghv7nwljK58rCT3t1HzSX9Yf36vc/T80V+drz8Ka3aK4nxb5wh9L//7rS2Mcgfl2SVYG594YCHj1S3YDuf/7qyI3/50QHAMxoxtmAJDAWj8zyhM1pqPWhan3Iyj7N2whowD+xh/7c0AmM0WmrTvRNrePST07k9C7/407dQFi0/Nfj362rK9ROfYaV3ui9nHxPBp7U96cMLT7Pn5pN52OzgchE2eTOjEiTVuc3/ufm7/6XYMDM5tey4XdbjIDZGKiIiINBwqwouIiIiIiMjp43DAd3c4t7tPgya9vBrOF78c4dMNRzCb4MULuxMdqnXgpR7zD3P+m/vjvzt7OeQcPEVxPgmKMiH3sPO1d0nl63xD/lCc/227UWvnOvf1lKOkHFtqAWWphc5R7qmF2DKKMFlMxD800DlSPf1XrEWbsdEUq+kgvuZ9WMOKsfYegnXABMwBlb9rVICvGcMwyDiwj70b1pC8fg3HDu6vONb3nAtoFN8EgLFXz8AvMMhtRfLUnGLmrNjP9GLn1PO9J7QkIvb0L6+S/vAj2FJTsTZrRsx999a4vfyyfGYsmUG+LZ/ujbtzd7+7T/uDBSIiIiJ1nYrwIiIiIiIicvr8+imkbADfYBh1v1dDSTqaz73ztwFw46h2DEyI8mo8Il5j8YHINs5X+/GVjxVmOovxvy/OH0+C7P1Qlg+pG52v3zOZIaLlieJ85P8K9e0gKPK0va2aMgwDR14Z5lDfigJk9twkCteln/oCPwv2rcvw+fVF2LuEcCOICL9iTK2HwKAboc1IzRzgATtX/sSKD98h//ixin0mk5kmHTuR0Ls//sHBFfv9g4JP1YTLnvlhD4V2B8mtfTk7IJSeY1u4tf2qyP36a/K+/hosFuKffgpLcM3eo91h547ld3Ag7wAxgTE8N+I5fC2nf317ERERkbpORXgRERERERE5PUoLYNEDzu2hM51TWXtJUVk5136wkWKbncEJUVw/MsFrsUjtYxiGRn3+T1Ck89W8f+X95aWQtf9EcT4z+USRvjQPsvY5X3sWVr4uoNFvBfmEE4X5qHYQ3sL5MICXlWeVULTxKKUH87ClFuAoLCf2zr74hDtH9ltCncVIS7gf1vhgfOODsMYEYC38Gcum5zDN3+psyGTG3GU8DJwB8d299G7qn7KSYg5s2Ujj5i2JiHOObrf6+ZN//Bg+vn60PKOHc333Hr0JDA3zaCzbU3OZu+kIANdM7UKP5hF/c4X7lR05QvpDDwMQde01BPboUeM2X9z0IitSVuBn8eOFkS8QFaAH1ERERERc4f2fbkRERERERKRh+PlZKEiHiFbQ/1qvhWEYBvfO20ZSRgHRIX48f2F3rQMvleR88in5S5cQc+ed+LVq5e1waicfP4ju4Hz9nmFAwdHfjZz/XXE+9xAUZ8HhNc7X75mtv43G/0NxPirBOY2+Bxk2B8U7jlO4/iilyTl/iAvKjxdVFOGDBsQTPDAec6AVygph43vw478h55DzfGsg9LgEBlzrnA1AaqwwJ5u9v6xl74a1HPx1M3abjX6JUxl84SUAtOjWncm33UeLrmdg9Ts9S4oYhsGT3+wkyA7Du8d5pQBvlJeTevsdOAoKCOjZk6irrqpxmwv2LeCtbW8B8PDAh+kc2bnGbYqIiIg0VCrCi4iIiIiIiOdl7YdVLzu3xz7q1fWiP91wmLmbUjCb4KWLehAVXH/XrpbqM8rKOP7vf1N+7Bj7Vq0mcvqlRF59DZbg07/Oc51kMjlnuQiJhVZDKx8rK3KOmM9M+sP688lQXgzHdjlffxQcW3nN+f/9GdoUzOYah1y0JYPsz5Mq/u6XEE5A1yh844OxxgZWWq/dEmSFgmOw5L+w/nUoznYeCIyEfldDnyshsFGNY2robKUlbFr4Dckb1pCWtNv5cMdvwmPiCAgJrfi71dePhN79Tmt8P+05hmN7LpeX+dOvsXeWWDj+3/9SvHEj5uBg4p9+GpNPzX7Nuz1zO/evci4Tc3mXy5nYeqI7whQRERFpsFSEFxEREREREc9bdB/YS6HVMOgwyWth7EzL4/4vtwNw69j29Gtdd9anltPD5OtLi/feJf2JJyj8aTmZb7xJ7pdfEX3bTELPOkvT1NeEbyDEdXO+fs/hgLwjJ9ab//368wXpJ14HVlS+zifgt5HzfyjORyY473UKjpJyijYfwxzkQ2DXxgAEdI0if3kKAV2jCOoVg0+jPxlNnbkXVr8Mmz+E8hLnvohWMPAG6P4PsAbU5NNp0AyHg/ys44RGRQNg8bGy/qsvKCnIByC2TVsS+gygTe9+RDZt7tV/h3aHwUvzdjKs1AcLJmIanf7/7sWbN3P8368AEPvA/fg2bVKj9o4XH+fGJTdSai9lSJMhzOgxwx1hioiIiDRoKsKLiIiIiIiIZ+1fDju/BpMZxj/pHCnrBQWl5Vz3wUZKyx0Mb9+Ya4a18UocUvv5tmxJ8//8h/xlyzj6xBPYDh4i9fY7yP7oY2LuvYeAzpqi2a3MZghv7nwljKp8rCTvFCPnk5wF8fJiOPqr8/VHYc0qivJGZFvKbG0pPBBG8a5CDJsDa2wQAV2iMJlMmP18iLm5558Xdo9sgJUvOL/H+G1EdnxPGHwTdDgTzJZTXyd/qbysjEPbt7B3/Vr2/rIWs8WHf/77Led/E4uFfokX4OPrR5vefQlpVHvWJf98w2HaHS7DgoUmnSJo07Pxab2/vaCAlNtuB7ud0DPPJOyss2rUXpm9jFuW3cLRoqO0DG3JU0OfwqL/p0VERERqTEV4ERERERER8Rx7OSy8y7nd+wqI6eSVMAzD4O65v7LveCFxYf48e0F3zFoHXv5GyPDhBA0cSNacORx/9TWKN23iwHnnE37++TS+6UZ8GmnacY/zD4UmvZyv37OXQ87BysX5zN/Wny/KhNzD2HMKKNzdiCJ7D8oNM+AcVe1jzSDQehh++hGinWvPmxq1rrxMhsMBST/Aqhfh4MoT+9uOg0EzoMUgrz1QVJeVFBSwf9N6ktevYf+WjdhKiiuO+QYEkncsg7DoGAB6n5norTD/VFFZOV/N28NAuwV8TIy6uONpH5V/9NHHsB0+jDU+ntj776tRW4Zh8Pjax9mUsYkQawgvjnyREN8QN0UqIiIi0rCpCC8iIiIiIiKes3EOHN0G/uEw4m6vhfHhukN8tSUVi9nESxf1oFGQr9dikbrF7OtL1D//SdjZZ5Mx+xnyvv6anE8/JW/hQhrfcAMRF11Y47WYxQUWH4hs43y1H1/5WGEmZCaR82UOxSlBAJhMpQSYfyLI8j2+pt2YjgHLfneNyQwRLZ3T2Ue0gn1LT6xPb7ZCtwuc085HdzwNb67+WvX5B2z67uuKvwdHNKJN7/4k9OlPs85dsfhYvRjd33vjh2R6ZjuL7v0ntybkz5Yu8JC8BQvInT8fzGbiZz2NJTS0Ru19vPtjvkj6AhMmnhr6FK3CWrknUBERERFREV5EREREREQ8pDgbljzq3B5xDwR6Z9TwtpRcHvp6BwB3jG9P75YavSzVZ42Jocmsp4m4cCrpjz5G6c6dHH3sMXI+/ZSYe+4hqH8/b4fYoNmOF1O0IZ2g3rH4REVCUCSBY7KwLzlEUJ9YAro1xmwZAlnTfhs1//sp7pOgNA+y9jlf/+MbAr3/D/pfA6Hx3ntzdYxhGBw/dIDk9WtIXr+GYZdcQfMu3QBI6N2fQ79uIaFPfxJ69yemdQIms9nLEVdNRn4J+xcdJgEL1sb+9BjV/LTe35aaStqDDwEQdfVVBPbq9TdX/LX1/8/efYdHVW19HP+eaSmT3iukETqB0FFEighS7Ni72LALiiAKilIERcSKvV2xIiBVpEpvoUMqJb33TKac94/BIC8tCWnA+jwPl8PMOXuvGSFzk9/Za2dsZdqWaQA82/lZeof0vuAahRBCCCHESRLCCyGEEEIIIYSoH6unQXke+LaGLg82SglFFWZG/bCDSouNAa39GNk7olHqEJcO586dCf/lZwp+/oXsWbMwxcdz9P77cR00CP8Xx6APkrC2odgqrZTvzaF0ayaVyYVVj7sPsq/mdWzpiVOr/950owW/VvZf/6WqUJJ5MpTPTbDvKd/pLnB0b4BXcvGzWa2kHtxHwrbNJGzdRFF2ZtVzCds2VoXwoW07cP/MDxurzAsya8VhcrERrmi5dWS7Bt3SRLVaSXtpLLaiIhxjOuDz+OMXNN7x4uM8v/p5rKqV68Kv44G2D9RRpUIIIYQQ4l8SwgshhBBCCCGEqHtZB2HLp/bjQW/ZW0c3MFVVGfvrbo7klhHs4cSMW2MuaO9eW7kF1aaiNTbtdsmi/ilaLZ6334bboGvJnv0++T/+SPHSpZSsXo33IyPxfvBBNI4N26b6clKZWkLp1gzKdmWhVljtDyrgGO2JQ/jJ0Lza/94VBVwD7L/CZTVwTRXlZPPtS09TUVJc9ZhOb6B5TCciu3QnMrZb1eMNvX96XUnIKmbetuNYnVQeeTgGv2YX1ga+pnI/+5yyrVvRODsT/PbbKPrafw6Vmct4ZtUzFJgKaOPdhkm9Jl20/12EEEIIIZoyCeGFEEIIIYQQQtQtVYVlL4NqhZbXQWS/Rinjm41HWLwnA71WYc6dnfBwrv0+8LYKC9lf7EWttOL7cHu0rrKnvACthwcBr07A47YRZE5+k7KtW8mZ/T6Fv/6G39iXcB0wQMKtOqaabWTP3V0Vvms9HTB2CcC5iz86d4dGru7SV1ZYQOKOLZgrKogdPBwAV28f9A6OoChExnYlsmsPwtp3Qn8J3YgydfEBrDaVAa39ubJ9QIPOXb5nD9nvvw+A/yuvYGhW+zb4NtXGK/+8wuH8w3g7evNe3/dw1F06/52EEEIIIZoSCeGFEEIIIYQQQtStw8sg8W/Q6GHg5EYpIe5YAZP/tO8DP3Zwazo186z1WDaTlZwv92E+VozGWYet1CwhvDiFY8uWNPvma4qXLCFz+tuYU1NJfeppjL164T9+HA6RkY1d4kVJtamYkgqoOJiP+5BwFEVB0WswdgnAWlyJsas/DhEeKA3YFvxylJ+RRuLWTSRs20TqoQOgqji6uNJx4BA0Wi2KojDi1bdw8/VDo9U2drl17q9/juG7tRA/o4axg1ud/4I6ZCstJW30GLBYcB08CPcbb7ig8T7Z/QkrjqxAp9Exq+8sAowNe0OBEEIIIcTlREJ4IYQQQgghhBB1x1IJy8bZj3s+Ad4NHz4Wltn3gTdbVa5t68+DV4TVeixbpZXcr/dReaQIxVGHz0Pt0QcY665YcclQFAW3667D5eqryZk7l7zPv6B0wwaSrr8Br7vuwufJUWhdXRu7zIuCpdBE2bZMSrdnYs2rAMCpnTcOYfZW8x5DIxqzvMvGrmV/smv5n+QeP3rK4/4RUUR26Y7VbK4K3T0CAhujxHpnMVvZ+nMCIVYtt7o4E+Xn0qDzZ06dSuWRI+gCAgicOPGCOmusPLqSD3d9CMCEHhPo6NexjqoUQgghhBBnIiG8EEIIIYQQQoi6s+UTyEsEox/0Ht3g06uqyuhf4jieX06olxPTb6n9PvCq2UbuN/sxJRWiOGjxfagdhuCGDWDExUfj7IzfM8/gcdNNZE6dRsnKleR9/TWFixbh9/xzuN94I4pG09hlNjmqxUbFwTxKt2ZQcTgfVPvjioMW546+aFyk+0R9slrMHNu7m+DWbe2t5YGS/Fxyjx9Fo9US0qY9UV17ENm5O24+vo1cbcP58fv9uFWoVCgqt4/s0KBzFy1bTsHPv4CiEDRtGlp391qPFZ8fz7h19hvk7mx1Jze1uKmuyhRCCCGEEGchIbwQQgghhBBCiLpRkgVrptuPB7wGjm4NXsLn65NZsT8Tg1bDh3d2xt1JX6txVIuN3O/2Y0ooQDFo8HmwHYZQWcUsqs8QGkroB3MoWbeezLfeojI5mfTxr5D/4zwCXhmPU0xMY5fYpJhSisj97kDVnw3hbhi7BODU3geN4dJrcd4UmMpKSd65jYStm0jetZ3K8jKuHzOBqC7dAWhzVT+8Q5oR3qkLjsbL7wak7PQScjdnowMMnb0IDWy4zwBzRgbpr74KgPfDD2Ps3q3WYxVUFPDU309RZimjW0A3Rndt+BvkhBBCCCEuRxLCCyGEEEIIIYSoG3+/AaYiCOwIMXc2+PQ7juYzdclBAF4Z2pr2IbVfNahWWrGWmFH0Gnzub4dD84a/oUBcGlx6X4nxj/nkffc9OR98QMWePaTcdjvuN96I3wvPo/PxaewSG5zNZKV8TzaqxYZLjyAAHCLcMTR3wyHcDecuAeh9nBq5yktTeUkxh/5ZS8K2TRzbtweb1VL1nNHDE1NpSdWfvYJC8AoKaYwyG52qqvz86W50KmQ4qLx8T/uGm9tmI23sy9gKC3Fs2xbfp56s9VgWm4XRa0eTWpJKsEswM/vMRK+p3c1pQgghhBCiZiSEF0IIIYQQQghx4dJ2wY5v7ceDp0MDt9vOL63kqR92YrGpDGkfyD09ml/QeBpnPb4Pt8ecVSYBvLhgisGA94MP4D5sKFnvvEvh779T+PvvFK9Ygc+oUXjdfReK/tIOxlRVpfJYMWVbMymLy0attKIx6jB2CUDRaVA0Cn6PS3eAuqaqKmZTBQZH+00NFcVFrPzio6rnvYJC7G3mu/QgMCpatko4Ydf6NNT0CiyotB4ehrNDw/0INe/LryjbtAnFyYmgGW+jGGq/FcPMbTPZnL4ZJ50Ts/vNxsPRo+4KFUIIIYQQ5yQhvBBCCCGEEEKIC6OqsHQsoEK7W6BZ9wad3mZTeeHnOFILygnzdmbqze1rtQ+8alMxJRbg2MITAI2TTgJ4Uad0vr4ETXkLz9tGkDH5TSr27iVr2jQKfv4Z//HjcLniisYusc5ZS82U7ciidFsGlsyyqsd13o44dw1AtanU/F+rOBebzUraoQMkbN1E4rbN+DYPZ/gL9v3APQODaXVFH3ybhxPVtcdlu9L9fFYvT8EAJPhoebJvRIPNW7F/P1mzZgHgP+5lHMLDaz3W7/G/892B7wB468q3iPaMrosShRBCCCFENUkIL4QQQgghhBDiwuz7DY5uBJ0TXDOpwaf/dF0Sfx/MwqDT8MFdsbg61nxFsWpTyf81nrLtmbgPjcD1yuB6qFQIO6eOHQn7aR6Fv/9O1sx3qExK4thDD+MyoD/+L72EITS0sUusM8WrjlGyPhUARa/BqZ0Pxq7+GMLda3WzjDgzs6mCI3viSNi6kaTtWygvLqp6rqK0BJvVikarBWDI02Maq8yLwpHcUj6yFtLSScPzd3VCq2mYv6e28nJSR48BsxnXawbgccsttR5rV9Yu3tj0BgCPxzzOgOYD6qpMIYQQQghRTRLCCyGEEEIIIYSovcoyWP6q/fjK58C9YVdVbk3J4+1lhwCYOKwtbYNqvg+8qqoUzE+gbHsmaEDrXvvWv0JUl6LR4HHzzbhecw05H3xI3nffUfLXSkrXrsP74YfwHjkSjdPFtS+6Jb+C0m2ZOLbwwCHM/m/R2NUfU3Ihxq4BOHf0ReMoP4qqD79Nncjx/Xur/uxodCE8titRXXsQFhNbFcBf7lRVpTi3grKiypO/Ck2UFZspKzThFWTk29JCKm0qHu086dvav8Fqy5w2jcqkJHR+fgS8/nqtb1LJLM3kudXPYbaZ6d+sP4/FPFbHlQohhBBCiOqQ73yEEEIIIYQQQtTehveh6Di4h0Kvpxp06twSE0/9sBOrTeX6jkHc0a3mq4dVVaVgQSKlWzJAAa8RLXFu71sP1YqLSaGpkCJTEaFu9b8iXevmhv/LY/G49RYy3nyTso2byPnwIwp+n4//i2NwHTSoSa8YVy02yvfnUro1A1NCAahgySmvCuH1/kb8n+rUuEVeQgoyM0jcZm8zP+yFcTi5uAIQ3rELRdlZRHbpTlSXHgS3aotWd3n82E9VVUryTZQVVlJWbA/Vy4sr7X8uqsQz0Ej34Sdayqvw/aubsNnUM46VmFrEn5ZCFAXGXde6wV5D8d9/U/DjPACCpk1F5+lZq3EqLBU8s+oZcspziPKI4q0r30KjaOqyVCGEEEIIUU2Xx/8bF0IIIYQQQghR9wqPw/p37cfXvA4G5wab2mZTee6nODKKKojwNfLWjTXfB15VVQr/TKZ0Yzoo4HlLNM4d/eqpYnExeXvr2yxLWcbjHR/n3jb3otPU/49PHKKiaPbFFxT/9RdZU6dhTk0l9bnncf7fj/iPH49jy6a1n7M5o5TSrRmU7czCVmapetwhygOndt6NWNmlRVVVspITSdi2iYStm8g5mlL1XPLObbTp3ReAzkOup+vwm5v0DRs1oaoqpQWmU1esF1VSfuJ3jwBnug87uVf7dxM2YrOeOVgPLK6sOlY0Cq7ejthsKs5uBjROOjIrK4kvLCOppIKCchPo4bYuobQOdKv31wlgzsoiffwrAHg9+CDGnj1rNY6qqkzaOIl9uftwd3Bndr/ZOOsb7nNZCCGEEEKcSkJ4IYQQQgghhBC1s+I1sJRDs17Q9sYGnfrD1QmsPZyNo17Dh3fFYnSo+be3RcuOVO1V7XFjFMbODdd2WDRdZquZjLIMKqwVvLv9XZYmL2Vir4m08W5T73MrioLbNdfg0rs3uZ9/Tu6ncynbsoXkG2/E84478H3qSbQeHvVex/moqkru9wewZJcDoHUz4NzFH2Nnf3TeF1cL/abs+MF9LJ49g+Lc7KrHFI2GkNbtiOrag9C27ase1+r0jVFijaiqesZA/d9fHn5OdPtPsP7thI3YLGcJ1iPdYZj9WFEUXDwdsFntwfq/v5zcDDi7OeDud+rfyevGdmbxnnR+jktjS0om6okpNI5wRZQPT8QEcVOn4Hp5D/4/1WYj/eVxWPPzcWjdGt9nn6n1WF/v+5pFSYvQKlpm9plJqGv9d/IQQgghhBBnJyG8EEIIIYQQQoiaO7IR9v4CKDB4KjTg6suNibm8s+IwAK9f345WAbVbrajo7S16Pa6PxKVbYJ3VJy5ueq2eudfMZX7CfGZsm8GBvAPc8ecd3NP6Hp7o+ESDrCzVODriO2oUHjfcQOb0tyletoz877+n6M8/8X3uOTxuuRmlgfb4VlWVyiNFlO3MwmNoBIpei6IoGLsHUplciHPXAByjPVE0l8YK7MZiKisjJW47DkYXwjrY2/d7+AVQnJuN3sGRsI6xRHXpQXhs16oW9E2BqqqUF5v/0/7dRFmR2f57cSXuvs50Gxpedf434zecNVgPiHCn23+DdQ8HrGZbVZju7KY/8bvhtGD97jd6nrMLQHGFmeX7Mlm4O4318TlY/tOOvktzT4Z3DGJwu0B8XR0u4N2oufxvv6X0n39QHBwInvE2GoOhVuOsT13PuzvsnWnGdB1D98DudVmmEEIIIYSoBQnhhRBCCCGEEELUjM0GS1+yH8feC4ExDTZ1drGJp3/ciU2Fm2NDGNGl9iv93Po3w7GlJ4aQphNoiaZBURRubHEjvUN6M33LdJakLOHr/V/z19G/eLXHq/QK7tUgdeiDgwl5bxalmzaR+eabmOITyHjtNfLn/UjAK6/gHBtbb3Nbiysp25FF6baMqhXvDmHuOHeyb9ngemUwXNkwq4UvVSX5eSRu20zCtk0c2xuH1WKheYdOVSG8i5c3t702lYCoaHS1DGdrQ1VVTKWWEyvUTaetXnfzdaLrkP8E6+M2YLXYzjhWQIRbVQj/b7BurrSdsmLd2dWAs7sBd9+aBev/dabzKsxW/j6YxcK4NP4+mIXpPzW2DXJjeEwQQ2OCCPZonO4NFYcOkTVjJgD+Y1/CITKyVuOkFKbw4poXsak2bmpxE3e2urMuyxRCCCGEELUkIbwQQgghhBBCiJrZ9T2kx4GDG/Sb0GDTWm0qz87bSXaxiRZ+LrxxQ9saj1G2OxvHlp5oTrSvlwBenIuPkw/T+0xnaORQ3tj0BqklqTz616MMixjGmK5j8HT0bJA6jD16EP777+T/70ey338f0/4DHLnzLtyGD8PvhdHo/f3qZB7VqlIRn0/p1gwqDuTBidXCikGDUwdfdAHGOpnncrdt4W8c3vQP6QmHTnncMzCYgMjoUx4LadOuTuZUVRVTmcW+Yv0M+6y7ejueEqx/9fI/WM1nDtb9w92qzlUUBaOHAbPJipOr4bR28B5+p3aOuPv1ntXumlCb/e3NVhvr43NYEJfG8n0ZlFZaq56L8DUyPCaIYTFBRPq61HjsumSrqCBt9GhUsxmXvn3xuP32Wo1TXFnM06uepthcTEffjozvPr5W75sQQgghhKh7EsILIYQQQgghhKi+iiJYOcl+3OdFcPFtsKnf/zuefxJycdJr+fCuWJwNNfuWtmRjGgV/JGJo7obvw+2r2tELcT5XhVzF/Ovn8/7O9/nhwA8sTFrI+tT1vNjtRYaED2mQ0EvR6fC6527chlxH9ruzKPjlF4oWLKT4r5X4PP4YXvfdV+tW1v+y5leQ+9W+qj8bmrli7BKAU4xP1Y0romZsNis5R4/gF3Zyr/OU3TurAvjAFi2J7NKDqK498A6ueWePygrLiTbw/wnViyspKzTh6u1Il+tOButfj/0HSzWDdWc3A5XlFnug7n5itbqbA05u+tOC9bte74mmusF6PWxbYLWpbEnOY0FcGkv2plNQZq56LtjDiaExgQyPCaJNoFuTCaizZszEFJ+A1seHwDcn16ouq83K2HVjSS5Mxs/Zj3f7votB23AdE4QQQgghxLnJd1BCCCGEEEIIIapv7dtQmg1ekdDt0Qabdn18Du+tjAfgzRvb0cK/ZivYSzanU/BHIgAOEe6gaxpBjLh4GPVGxnYby3Xh1zFx40Ti8+N5ed3LLEpcxISeEwh2aZjW7DovLwLfeB2P224jc/JkynftInvmOxT+8iv+417GpU+fao2jmq2U783FkluO24Dm9rF9nHBq74PW3QFjV3/0/rLyvTbMlSaO7okjYesmknZsoaywgEc/+hoXL28AYgcPJ7r7FUR07oaLp9fp15usp6xS/29LeBcvR7oMDqs698sX12OpPHOw7hfmVhXCK4qCk5sBU5nl5Ep115MB+2l7rL/eA422ejcqVTeAr0uqqhJ3vJAFu9L4c08amUWmqud8XAwMaR/I8I5BdAr1bJT6zqVkzRryv/sOgKApb6HzOv3vQHXM2TWHtcfX4qB1YHbf2fg4+dRlmUIIIYQQ4gJJCC+EEEIIIYQQonpyE2HTR/bjQVNA1zAr7rKKKnh23k5UFW7vGspNsSE1ur50WyYF8xMAcOkdjNvA5k1mNaS4+HTw7cC8ofP4au9XfBz3Mf+k/cONf9zIqI6juKv1Xeg0DfOjFqd2bWn+w/cULVxI5owZVB45wrFHH8OlTx/8x72MoXnzM15XmVpC6dYMynZlo1ZYQKNg7B6I1tX+79n7rtYNUv+lpqKkhKQdW0jYuomUuB2YTRVVzzk4G8lKScFmc6asuBI0YWgdgjiwoZCyomxcPB3oPCis6vwvXlyPxWQ9wyzg19z1lBDe2c1AebH5tDbwzmdoBX/X6z3QVjdYr+Z5De1QRjEL4lJZGJfO0byyqsddHXUMbhfA8JhgekR4oWui9VtyckgbNx4Az3vvwaV371qNsyR5CZ/t+QyAib0m0tan5tuzCCGEEEKI+iUhvBBCCCGEEEKI6ln+CtjMEDUAWgxskCktVhtP/W8nOSWVtApwZeLwmgUNZbuyyP/1MKjg0isI9+vCJYAXF0yv0TOyw0iuaX4NkzZOYlvmNmZsm8Hi5MVM6jWJVl6tGqQORaPB/frrcek/gJyPPiTvm28pWbOG0g0b8Lr/fnweexSN0YitzExZXDalWzMwp5VWXa/1cMDYxR+a2Erhi4Wl0kJ5iX2f9YP/rGbrH59WPedg9KD1lVcQ1aUnIW3a8vkLGzCbNp5xHL/mrqeE8M5uBsoKTDi7G07bZ939/wXrd77WA201t9aobgDf1BzJLWVhXBoL49I5lFlc9biTXsuANv4MjwniqmgfHHTaRqzy/FRVJW38eKy5uThER+P3wgu1Gmd/7n5e/edVAB5o+wBDI4bWZZlCCCGEEKKOSAgvhBBCCCGEEOL8ElbCocWg0cG1b0EDBdmz/opnc3IeRoN9H3hHffVDlvK9OeT9dAhUMHYPwH1YhATwok6FuYfx+bWf83v878zcNpP9ufu5fdHt3Nf2Ph6PeRxHnWOD1KF1MeI/ZgweN99C5pQplK5bR+7cuRT+8Qd+Y8ag8exE4aKkEycrOLX1xtg1AIdIj3rZo/tiZyq3UJRdfqIF/MlW8M5uBkJaWknctomErZsozAtFo+sCgGrToWj90OjD0eqj8IuIpP+D3arGdHIzYM2vsIfprgac3R1wdtXj7O5wWiv4OyZ0Q6vXVOvrVXUD+ItNRmEFi3ansXB3OnHHCqoe12sV+kT7MbxjEANa++FsuHh+tJn/ww+UrlmLYjAQNONtNA4ONR4jpzyHZ1Y9Q4W1giuDr+SZ2GfqoVIhhBBCCFEXLp7/pyqEEEIIIYQQonFYzbBsnP242yPg27JBpl19KIs5q+xt5Kfc3IEIX5caXa/1dkLjpMOxlTce10fVSQBvKy9H4+R0/hPFRW1hXBq5JSZ6RvoQ7e9yzr87GkXDzdE3c1XIVUzZMoUVR1bwxd4vWHFkBa/2fJUegT0arG6HiHCCZswm/+dNFC/7DdOeFaSNGYNTl544xjyMsWdznDv5oTXqG6ymi4nFbGXJR3s4fjAfm00FQFWt2Cyp2MwJYEvGai6sOl/vWInG0PVE+3dXnN2e+U8r+FO/Ttw2vit6B221vg7pDE17RXd9yS+tZPHedBbsSmNLSh6q/T8BGgV6RfowPCaIa9sG4O588f39NcXHkzX9bQD8xozBMTq6xmOYrWZeWP0CGaUZhLmFMe2qaWg1l+ffFSGEEEKIi4GE8EIIIYQQQgghzm3bF5B9EJy9oc+LDTJlemE5z83bBcBd3ZsxPCaoxmMYAo34PdkJrbtDnaz2teTnkzLiNjxG3Ir3ww/LqvpL2DcbU9iakg+Aj4uBHhHe9Ir0oVekN829nc/4397X2Zd3rn6HVUdXMXnzZI4VH2Pk8pHcEHUDo7uMxt3Bvd7qVa02Kg7mUbo1k4pDeaBqMV79AG4D2pHz8ceUb9tI+fZNqCUjcGr7DBg9662Wi0lpoYnso8WEtfcBQKfXUl5ixmZTT+ytrifz8GwsppPBu87gQFhMJ6K69iSkdSfcfDyr9fXF4Cg/gjuTEpOF5fsyWBCXxvr4HCwnbn4A6NLck2ExQVzXPhBf15qvGm8qbCYTqaPHoJpMGHv3xvPuu2o8hqqqvLXlLXZk7cBF78LsfrNxM7jVQ7VCCCGEEKKuyHcAQgghhBBCCCHOrjQXVr1pP+47HpzqP7wzW2089cNO8svMtA1yY8LQNtW+tiI+H0WnwSHcHnjqPOumHbhqNpP6zLOYjx2j4Jdf8LzjTrQuxjoZWzQ917YNwFGvZWtKHjkllSzanc6i3ekABLk70vNEIN8z0psgj1NXPPdt1peuAV15b8d7zDs0j/kJ81l7fC1ju41lUNigOr15w5xdRunWTMp2ZGIrMVc9bghzw9glAOfOI3G/fjhZb8+g6M8/KZg3j6IlS/B9+mk8b78NRXf5/VioJN9E0q4sEndkk5ZQgEYxc+3DfuSlpZCVnEhFQRp3TnwDzwD7v+8FM9ty/MBeIrt0J7JLD5q3j0Hv0DDbDFyqKsxWVh3MYkFcGn8fzMJksVU91zbIjWExQQztEEiIp3MjVll3st95F9OhQ2i9vAia8latvgbMOzSPXw7/goLCtKumEe4eXg+VCiGEEEKIuqSoqqqe/7TLS1FREe7u7hQWFuLmJneVCiGEaDzymVT35D0VQoga+vMF2PoZ+LeDR9dCA7S+nbLkAJ+sScLVQceip6+kuXf1wm5TUgE5X+4DwPexGAzBNWtffy4Zk98k/7vv0Dg7EzbvRxxatLjgMeUzqW7Vx/tpsliJO1bIhsQcNiTmsutoAZVW2ynnhPsY6RnpTc8Ieyjv43Jyxe6urF1M3DCRxMJEAHoH92ZCjwkEugTWSX3ZX+zFdNi+Yl/josc51h9jF3/0fqeHl2XbtpEx+U1MBw8C4BAdjf/48Ri7dzvt3EtNcV4FiTuySNyRRUZSEdbKQ1gr41GtWai2gtPOf+Sjr3D1sq+OLysqxNHFBY20/b4gZquN9Qk5LNyVxvL9mZSYLFXPRfgYGRYTxLCYIKL86u7rdlNQsv4fjj38MAAhH3+E69VX13iMrRlbeWT5I1hUC8/GPstD7R+q4ypFfZDP+Lon76kQQoimorqfSZffLc9CCCGEEEIIIaonc5+9FT3AoCkNEsCvPJDJJ2uSAJh+S4fqB/ApheR8tQ/VbMOxpSd6/7pbQVnw62/kf/cdAEFvT6+TAF5cHBx0WrqFe9Et3ItnB0B5pZXtR/KrQvndxwtIziklOaeUHzYfBaClvys9I73pFelN94i2/DTsJz7f+zlzd89lXeo6rv/jep7u9DR3tLqj2vs5q6qK+XgJpVszcO3fDJ27Peh36RaAolEwdvHHsbUXilZz1jGcu3Qh/NdfKPjpJ7JnvYfp8GGO3ncfroMH4f/ii+gD6+bGgKaitCCfrJQkspITObx5D4X5vVAU+/vm5JJHUebhqnPdfP3wC4vEPzwSv4hIHI0ng2Bnt/rbRuBSZ7OpbEnJY0FcGkv2pJNfdrJbQ7CHE0NjAhnWIYi2QW6X5PYelvx80l4eC4DnnXfWKoBPLUnlhdUvYFEtDA4fzIPtHqzjKoUQQgghRH2REF4IIYQQQgghxOlUFZaOBdUGrYdD+FX1PuXx/DKe/ykOgPt7hTG4ffVCwcpjxeR8uQ+10oZDCw+8726Dojt7GFkT5bt2kTFxIgA+Tz6Ja//+dTKuuDg5GbRc2cKHK1vYV0kXVZjZmpzHhsRcNiTmciC9iEOZxRzKLOarDSloFGgX7E7PyKt5qX1XFqbNJi57J9O2TmNx8mIm9ppItGf0Weezlpop25lF2bYMzBllAGg9HHDr18xeTzsfnNr5VLt+RavF8447cB00iJz33yf/x3kUL1lKyarV+Dz6CF4PPojG4eLcezsrJYm9q9dxdO9BCjJSsJqLT3k+sFVH2l3dnoiOvhRk+JF2uCV+4fbg3clVVlTWFVVV2X28kAVxaSzanUZmkanqOR8XA0PaBzIsJojYZp5oNJde8P4vVVVJH/8K1uwcDJGR+L04psZjlJnLePrvp8k35dPaqzWTek26JG9WEEIIIYS4VEkIL4QQQgghhBDidAf/hOS1oHWAgW/U+3SVFhtP/rCTwnIzMSHuvHxdq+pdl1pC9ud7UE1WHCLc8b6nDYq+bgJ4c2YWx596GtVsxvWaAfg88XidjCsuHW6Oevq39qd/a38A8kor2ZyUeyKUzyExu5TdxwvZfbwQAJ1mBGHhrclzmM+enD2MWHgbD7Z7gEdjHsVBaw+/VZuKKbGA0q0ZlO/LBeuJXQR1GpzbeeMQ5XHBdes8PQl49VU8br2VjDffpHzbdrLfm03Br7/h//JYXPr1a5Jhn6qqFOdkk5mcQFZyIm2u6oeqepC4M4u4FUsoTF/yn7MVvIKCq4L26B5X4ubrB4CLZztCWrdrnBdxiTqcWcyCXWks3J3GkdyyqsddHXUMbhfAsJggekZ4oztHt4ZLScG8nyj5+28UvZ7gmTPQODrW6HpVVXnln1c4nH8YL0cvZvebjZPOqZ6qFUIIIYQQ9UFCeCGEEEIIIYQQpzJXwPLx9uNeT4FnWL1POW3pQXYdK8DNUcecO2Nx0J2/Tbc5p5ycz/egVlgxNHfD+762aAx10zLfZjJx/OmnsGRn49AiisApU9m/bhVWi5kO/QfVyRzi0uNlNDC4fWBVF4fMogo2ngjk/0nIJbWgnITEDii65jj4LwC3fczdM5efDiziiXYvM6JdHzRmG7nf7Ec12/ee1wcZMXYNwLmjHxqnuv0xjmPr1jT/9luKFi8ma/rbmI8f5/ioJzFecQX+48fhEBFRp/PVVFlRIcf27SYzOZGs5EQykxOpKC6qev7AplJM5fZOAjaLD1qHtngFhRER24YOfTvi5iut5OvT0dwyFu5OY8GuNA5lnuw84KTXMqCNP8M6BNKnpW+1vp5fSkxJSWROnQqA7wvP49iqejeV/denuz9lxZEV6DQ6ZvWdRYAxoK7LFEIIIYQQ9UxCeCGEEEIIIYQQp9r0IeSngGsgXPlcvU+3bF8Gn69PBmDGrTGEelVvP3edhwOGMHdsxZX4PNAWjUPdBD2qqpIx6XUq4najcXcneM4cNi+Zz8Zf/oei0eAfHoV/RFSdzCUubf5ujtzQKZgbOgUDcCyvjA2JOSeCeT+KC3fQxyWRDqYQplie5q213enkchePBrsT6OpISJ9QHEJc67VGRVFwHzIE16uvJufTueR98QWl//xD0vDr8brnHnxGPYHWxeX8A10A1WYjLz2VrOREvEOa4RdmD/+zkhNZNGvaKedqtDp8QpvjFx5JXoYvZrNCs9ZeRHRqTXjMTTga9fVa6+Uus6iCRbvTWRCXRtyxgqrH9VqFPtF+DIsJ5Jo2/jgbLs8fOaqVlaSOHo1aUYGxVy+87r23xmP8ffRv5uyaA8D47uPp5NeprssUQgghhBAN4PL8f8RCCCGEEEIIIc6sKB3WzrAfD5gEDvUbvh3LK2P0z/Z94B++MpyBbau/2k/RafC+qxWq2YbGse6+vc3/7nsKf/sNNBoC3p7O3wt/Yf+6VQB0HX5zVUAoRE2Fejlzm1czbmrmTYkxg5IdRpSMngAs99hAottmdlj2cX/u9VhS2uGReJwe4d70ivKmV6Q3kb4u9dYmXmM04vfcs3jcfBOZU6ZSsmoVeV9+SeHChfg9/zzuN1yPornwVuI2q5Xc1GMnVrbb28pnpSRjrigHoOv1t+AXFoGqqmi0/hi9mmGzemM2e6PR+XP/1OG4ehsBKMgsw8nNgEMddwgQp8ovrWTJ3gwWxKWyOTkP9cQOCRoFekX6MDwmiGvbBuDuLDdAZM+ejWn/AbQeHgROmVLjfzMJ+Qm8vO5lAG5veTu3RN9SH2UKIYQQQogGIN+lCCGEEEIIIYQ4aeXrYC6F4C7Q/tZ6ncpksTLqhx0UV1jo1MyDlwafv2WvJbec0h1ZuA1ohqIoKFoNSh3uMVy6afN/2gi/wIp1KziyeyeKRkP/h54gZoC0ohe1YzNZKI/LoXRbBpVH7a27FUDjZsDY2Z9XI17n5bhJpJUewSnke9TSthSmDWfpPjNL92UA4OvqQK9I7xO/fKrdNaImDM2aEfrRh5SsXUvmW1OoTEkhfdw48uf9SMArr+DUvn21x7JazOQcO4qiKFU3rxTlZPPNmCdPO1dncMA3LBytzo31P8eTuCOLknwTcAtowNFFQ/N23lgtJ29C8PCv+9cv7EpMFlbsz2DBrjTWxedgsalVz3Vu7snwmCAGtw/Az7Vme51fyko3bSL38y8ACJz8Bnp/vxpdX2gq5OlVT1NmKaNbQDde7PZifZQphBBCCCEaiITwQgghhBBCCCHsjm+HuB/sx4OnQR2sej2Xt/48wO7jhXg465lzZyz684TplvwKsufuwVpgQtEouPVvVqf1VB5PJfXZZ8FqxW34MLwffIAWfy0hPf4g3W8cRfJuN1pdYZFVt6JWTImF5P8Wb/+DRsGxlRfGbgE4tvBE0SrEEsbCiN+Yu2cun+35DItxHz6tkunidhdFWV3ZllJAdrGJP3al8ceuNACCPZzsgXyUNz0jfAhwr7tA1OWqqzD26EHet9+S88GHVMTtJuXWEbjffBN+zz2HzsfnlPMtlZXkHE0hMzmhag/3nKMpWC0WortfwbDn7at73f38cfX2xc3XD/+IKHzDIvBtHoFvs2ZoNFr2/5PGqm8PAqBz0BLe3pvIWD+atfVGX0dbTogzqzBbWX0oiwVxaaw8kIXJYqt6rk2gG8M7BjG0QyAhnnLzw/9nyc8n7aWxoKp4jBiB64ABNbveZmH0mtEcKz5GsEswM/rMQK+RzgJCCCGEEBcz+cmBEEIIIYQQQghQVVj6kv045g4I6VKv0/25O52vNx4B4J0RMQR7OJ3zfEuhqSqA1/k4YexW/bb11WErK+P4qFFYCwpwaNeWwNdfR1EUYq65DmePVqz85ihWcwE7lx+hx/WRdTq3uPRYSyop25GFYtDg0iMIAMeWXhjC3XFq5YVzrB9aV8Np1xm0BkZ1HMW1za9l4saJxGXHsT5/LjFBW/j9hgkUFfmwITGXjYk57DxaQGpBOT9vP87P248DEOFrrFol3yPCGy/j6XPUhGIw4P3QQ7gNG0b2zHco/OMPCn/9jfzly3F58H6aPfwIil6PzWblw4fvxGyqOG0MB6MRnYPDyTEVhYdmf0ZaQiGJO7LZsiiL2Gu1+IfZA/aIGF9SD+cT2cmPZm280BkkeK9PZquN9Qk5LIxLY/m+TEpMlqrnInyMDIsJYlhMEFF+9bs1ycVMVVUyXpuIJTMTQ3g4/mNfqvEYM7fNZFP6Jpx0TrzX9z08HT3roVIhhBBCCNGQJIQXQgghhBBCCAF7fobjW0FvhP6v1etUKTmlvPTrbgAe6xNJv1b+5zzfWlRJztw9WPMq0Ho74juy/RkDzNpSVZW0ceMxHTpEdrA/Kc39CDRX4uToSFp8AX9/exSr2UZYBx+6Dgmvs3nFpUW1qVQczqdsawblB/LApqJ1N2DsFoiiUVC0Cn6PdqjWWFGeUXwz+BvmHZrHrO2ziMuO464lt/Nw+4d5st9Inr8mmrJKC1tT8tmQmMOmxFz2pBaSlF1KUnYp3206CkDrQDd6Rtjb13eL8MLNseYra01lZWTnZJF5VQ/SjFrS9+6mGBtuS+bTb9ESAsaPw9irF17BoRRmZ+IfHol/RFTV726+/iiKgtVqI/VgPok7skjalUNFqblqjqP78+g4wN7ZwtFFzzUPtK1xnaL6bDaVLSl5LIxLY8neDPJKK6ueC3J3rAre2wa5oSjKOUYSAIW//Ubx8uWg1xM04200zjXrFDA/YT7fHfgOgDevfJOWXi3ro0whhBBCCNHAJIQXQgghhBBCiMudqQRWvGo/vuoFcAust6kqzFae+H4HJSYLXcM8GT0w+pznW0sqyf5sN5accrQeDvYA3t3hnNfUVO6ncyleupQUP08O+LqiHj/KtoW/0aLHjSyaE4el0kaztl4MGtkOra5+W/SLi48lr4LSbRmUbc/EWngyzNSHumLs4g82FTQ1DzI1ioY7Wt1B39C+vLnpTVYfX83HcR+zLGUZE3tOJNY/lj7RvvSJ9gWgsNzMluQ8NiTmsDExl4MZxRxIL+JAehFf/JOMRoH2IR5Ve8p3ae6F0/9bZW6uqEDveLKl/a9vvUpK3I5TC1Ps/2PW6zAdTuTogw/hes01XP/007hERZ4xtLVabXwzbgNl/3l/HI16Ijr6EBnrR3BLWfVb31RVZffxQhbGpbFodzoZRSe7FngbDQzpEMjwmCBim3miqcXf18tVZUoKGW++BYDfM0/j1LZmN5DEZcfx+sbXAXgs5jGuaX5NndcohBBCCCEah4TwQgghhBBCCHG5+2cWFKeDR3PoMapep3pj0X72pxfhZTTw/h2x6M6xD7xqVcn5Yi+WrHK07gZ8R7ZH51F3e14DFK9eTdasWRwM9CbZzwNUlfb9BhLVfTgLZ+/CbLIS0sqTwY+2R6uXAF6crnjNMUo3ZwCgcdbh3MkPY9cA9AHGOhk/wBjA7H6zWX5kOVM2TyG5MJn7lt7HiOgRPNv5WVwNrgC4O+m5po0/17Sxd5bIKTGxKSn3RPv6XJJzSok7VkDcsQI+Wp2IKxX0cCuntb4Ir4oszJnHqCgp5skvfkTR2P+uOzjbX4Orty/+EZH4hUfiHx6FX3gkThot2XM+IP+HHyhesYKStWvxfugh3O97gOPJ5WSlFNHjBvvWDVqtBv8wNzKSCono5EdkrC/BLTzQnOPfv6gbhzOLWRiXxsK4NFJyy6oed3XUMahtAMM7BtEzwvucX4vFmalmM6ljXkQtK8O5e3e8HnywRtdnlmby7KpnMdvM9Avtx+Mxj9dTpUIIIYQQojEoqqqqjV1EU1NUVIS7uzuFhYW4ubk1djlCCCEuY/KZVPfkPRVCiP8n/wjM6QpWE9z2HbQeVm9T/bErlWd+3IWiwFcPdKtawXsuZXHZFC5Oxmdke/Q+5943vqZMSckk3jaCHV5GMj3s+x1fecd9dBl2Mz++voWCzDKCWngw9KkY9PWwL7V8JtWthng/K9NKKNuWiXOsH4YQe/hdebyYwmUpGLsG4NTGG6UeuyUUmgp5d/u7/Br/KwB+Tn6M6z6O/s37n/fa9MJyNibmsnvhz2jjN+NsLjnjeQ53vcKVnVrRLsiNsrwcdA4OOLu5n3XcisOHSXtzGscSy8jy7USub3usGnu3irvf6IG7r701d3lxJQ5GvayybgBHc8tYuNsevB/MKK563FGvYUBrf4bHBNGnpS8Ourr/unY5yXp3FrmffILG3Z2IP+ajDwio9rUmq4n7l9zP3ty9RHlE8d1132HU182NO6JpkM/4uifvqRBCiKaiup9JshJeCCGEEEIIIS5nKybYA/jwq6DV0HqbJjG7hHG/7QHgyb5R1QrgAZxjfHFq44Wir9uwyFpcTOKTo9jo706B0RGtTsegJ56j1RV9ABj8WHu2LEii332t6yWAFxcPW7mFsrgsSrdmYk61B9eq2VYVwhtCXPF9qH2D1OLu4M7EXhMZEjGESRsncaToCM+ufpb+zfozrvs4fJ18Kc7NJjM5kazkRDKTEshKTuSeabMJ9PDkptgQ/A77sHm//XVoPf0oNPoTb3EnBU+yDb6YNuQyY8M/uDro6B7hRc9IH3pFKrT0dz0tQE9PLCRutYkj7vdgaWeretyhIo8gXQbmIwHg2wYAJ1dDg7xHl6vMogoW7U5nYVwau44VVD2u1yr0ifZlWEwQA1r7Y3SQHwXWhbKtW8n99FMAAl9/vUYBvKqqTNowib25e3F3cGd2v9kSwAshhBBCXILk/3kLIYQQQgghxOUqeR3s/wMUDQyaCmfYy7kulFdaGfX9DkorrfSI8OLZAWffB95mslIwPwG3a8PQedhX09Z1AK9araSNHkPl0aNUtmyGg7ORG16cQGB0m6pzvAKNDHq0YYJV0fSoqkplciGlWzMp25MDlhMBs1bBqY03TjHVu4mkvnQN6Movw37h092f8uXeLzm0dQMzfr2bwFJXbGWm087PSk4kvFMXANr26UdYh074hkXg4Gxfpa6qKvFZJWxMzK3aU76owsJfB7L460AWAF5GA72aedItzIsr2vgR4WOkrNBE4o5sANx8HIlo74V3ynrUH+aAyUT2xo+x3Hknvk+OQut+9tX0onbySytZsjeDhXFpbErO5d9elxoFekZ6MzwmiEFtA3F31jduoZcYa1ERqS++BKqK+8034XbtwBpd/83+b1iYtBCtomVGnxmEuobWU6VCCCGEEKIxSQgvhBBCCCGEEJcjmxWWjrUfd34A/NvW21QTF+zjYEYxPi4OzL69E9qztKO2VVrJ+WoflcmFmLPK8HuyI0o93BiQPft9StaswdHBgeufehHH6Cg0Wi9+mLiZq+9qSWgrrzqfU1xkVMibdxhroT3Q1vk7Y+wSgHMnX7QuDb+iW7XZyM9IJzPZvrI9KzmBK++4j6djn+basGuZ8+14/LMrsGFCVcAjOJjQFm1O7OEeiW9YRNVYnoHBeAYGnzK+oihE+7sS7e/Kfb3CsNpUDqQXsSExh82Hcsg/XEhYJoSlFrJ0Zy6vLjmAv5sDV4R50z7Gk669Q2jb1ufEv9dWVN41mKxp0yhesYL8b7+laNEifJ9/Do+bbkLRSmeJC1FisrBifwYL49JZezgbi+3kLpOxzTwYHhPEdR0C8XN1bMQqL12qqpIxcSKW9HT0zZsRMG5cja7/J/Uf3tn+DgBjuo6hR2CP+ihTCCGEEEI0ARLCCyGEEEIIIcTlaMfXkLkXHN2h7/h6m+bX7ceZt+0YigLv3d4RP7czB0Oq2UbuN/upTC5EcdDieUNUvQTwOz6cTe5PPxACBE5+A/err6Ywu4zfZ+6ktMDE5j+SCGnpWS9zi4uHolFw6RWEJacc567+GEJdG/zvRO7xY+xeudTeUj4lCXNF+SnPp8cfJjCqJS29WvL6HXP42fNjfitaToZzMRp9GiM7dKRfu2vRa2u+Crqy1IySVELgrmK6HCzDZjv546NWDo5s05WRWWTit91p/AZwJI1mXs70ivSmZ6Q3PSO8CXl/NqUbNpDx5ltUJiaSMeFVCn6ch/8r43Hu1OkC353LS4XZyupDWSyIS2PlgSxMlpOt/9sEujEsJoihHQIJ9XJuxCovD4V//EHR4iWg0xH89ttojNVvI3+k6Ahj1o7Bptq4IeoG7mx1Zz1WKoQQQgghGpuE8EIIIYQQQghxuSkvgL8n24+vHgdG73qZJj6zmFfm7wXgmf4tuCLK54znqRYbud/tx5RQgGLQ4PNgOwyhrnVai6qqbJj7IZvWLEcJ9SXk2kG4DxtGUW4589+1B/CegUaue7yDBPACANc+IfU+h9ViIff40aoV7hGdula1jS8vKWLH4j+qztUZHPBtHoZ/RBR+4ZE0a9uh6jlPvwAeuXciQ0seYfKmyaxLXceHuz5kecpyXuv5Gh39Ola7JptN5YeJm6koNVc95h3sQmSsL5Gd/PAKMvKi2cqOo/kn2tfnEnesgKN5ZRzNK+PHrccAiPJzoVekN73e/Ij2W1dQ8slHVOzbx5E77sT9+uH4vvACej+/C3wHL11mq41/EnJYEJfG8n2ZlJgsVc+F+xgZFhPE8JhAovzq9mulOLvKo0fJfP0NAHyffBKnDh3Oc8VJJZUlPP330xRXFhPjG8OEHhPks0YIIYQQ4hInIbwQQgghhBBCXG7WTIeyXPBpCV0fqpcpyiotPPH9DsrNVq6M8uGpfi3OeJ5qsZH7/QEqDuWj6DX43N8Oh+ZudVqL1WJhxYez2PfPagBaGIy0HD+BkvwK/nh3JyV5Jjz8nbn+2Y44uzV8q3Fx+agoLeHwxvVkJieQmZRIztFkrJaT4aqi0VSF8H5hEcQOHm5vKR8RhVdQCJrztHIPcgnig/4fsCR5CdO2TiOhIIF7l9zLbS1v45nYZ3AxuJxyfmmBicSd2WQkFXLNg21QFAWNRqF5O2/y0kurgncP/1NXWDvqtfSK9KFXpA8vYG+RvjUlr2pP+X1pRSRklZCQVcI3G0FR/Ol2y0Tu37+E5lv/pvCPBRSv+AufUU/gdc89KAb5dwf2GyC2puSxIC6NJXszyCutrHou0N3xRPAeRNsgNwlwG5hqsZA25kVsZWU4demM98iHq32tTbUxdt1YkgqT8HP2492r38Wglb/zQgghhBCXOgnhhRBCCCGEEOJykn0YtnxiPx70FtSiVfX5qKrKK/P3Ep9Vgp+rA7Nu73jWfeALl6ZQcSAPdBq872uDQ4R7ndZiKitj4TtTOLJnJ6gq7ctt9P9uLuWlNua/u5OinArcfJ24/tlOGN0d6nRucfkymyrIPpJMZnIiLl7etOjaEwCr2cyKuXNOOdfB2VgVtId1iK163ODoRN/7H6nx3IqicF3EdfQK6sWMbTP4I/EPfjz0I38f+5tXur9CF5eeJO3MJnFHFumJhVXXdRrYDN8THSj63tMKrU5T7TldHHT0belH35b2le0FZZVsSspjU5I9lD+cWcLmAtgcNJjoq9ry+O75tMo/StbbM0j/YR5B48fh1e/qGr/WS4GqquxJLWTBrjQW7U4no6ii6jlvo4Hr2gcyvGMQnZt5ojnL11FR/3I++pjyuDg0rq4ET5uGcp4bYv5rzs45rDm+BoPGwHt938PX2bceKxVCCCGEEE2FhPBCCCGEEEIIcTlZNg5sFogeDFED6mWKn7cd57cdqWgUmH1HJ3xczh5uu14VgimpAPdrw3CM8qzTOopzc/h96kSyj6agtdqIzSyg+xdfo3V3Z+cv8RRmlePq7cgNz3XCxVMCeFE7NpuVtEMHyEpOJDM5kcykBPJSj6Oq9n27I2K7VoXwRg9PWvbsjbufP37hUfiHR+LuH1Avq5o9HD2YfOVkhkYO5fWNr6Mec2bV7GT2l6innBcQ4U5krC8uHif/DdQkgD/j3M4GBrULYFC7AACyiivYlJTHxsQcNiQ687zHk/Q/tp0H9i3GK/UYmU88ztqIGLLveZxOPdvTIcQDwwXW0NTFZxazIC6NhXFppOSWVT3u6qhjUNsAhsUE0SvSG5320n4fLgZlO3aQ89FHAARMfA19cHC1r12avJS5e+YCMLHXRNr5tKuXGoUQQgghRNMjIbwQQgghhBBCXC4OL4eEFaDRw7Vv1ssUB9KLmPCHfR/4Fwa2pEfEufeb17oZ8HuyE0o9rPA8tGEt2UdTcDBb6JKcTtu3Z+LQwt4Wv+eNkahWlZj+obh6Odb53OLSVFFaQlZyEmZTBZGduwGgoPDb1EmYK8pPOdfZ3QP/iChC27Q/5fGhz77UILUWZJah1WvoEdiDX4f/yid/fof+QBgqNrLcjxAV68+NAwfg6ln/f//9XB0ZfqKVOsDx/DI2JnZkwb6BBPzxPQMOrKZlUhwRb4zi16g+PNJ2IO1bBNIr0puekd60DXI/azeNi8mxvLKq4P1gRnHV4456DQNa+zMsJog+0b446qu/ylrUL2txMWljXgSbDffrr8d9yJBqX3sg9wAT/pkAwP1t72dY5LD6KlMIIYQQQjRBEsILIYQQQgghxOXAUgnLXrYf93gMvCPrfIoSk4VR3+/AZLHRJ9qXx/ucPodqUyn4IwFDczeMsf4A9RLAA7QJjSAtu5CQ7AJCH30MhyuvRrWpKBoFrVZD79ui62VecWkoKyqsWt2elZRAZkoihZkZAHgGBp8M4U/s4241V+IfHmVvLR8eidHTq8H37c5LLyVxRxaJO7LJTS0hZkAoV97SAiedE08NfYhVhh18VTqHuNLtUAGrNv/Kaz1fI8w9rEHrDPF05tYuztzaJRT13p4k7dhPzpS3cNu7g9sP/82Ao9v57NhQphzqCIqCm6OO7hHe9Ir0plekD9H+LhfNnuhZRRUs2p3Ogrg0dh0rqHpcr1XoE+3LsJggBrT2x+ggP6JrijLeeANzair6kBD8J7xS7etyy3N5etXTVFgruCL4Cp6Nfbb+ihRCCCGEEE2S/D98IYQQQgghhLgcbPkUchPA6AtXjanz4VVVZdxve0jKKSXAzZF3b+t42v7FqqpSsCCR0s0ZlG7NxCHMHV0dr0I/vPkfwjt2hoIiUp96mhbZObgM6I/rAyP5492d+IS6cvWdLest+BeXjl/eGE/20ZTTHnfz9ce3WRg2mxWNxr5ieVgDrW7//1RVJS+tlIQTwXt+emnVc4pGwVRmqfqzVqthwOAuXG37jO8PfM8Huz5gW+Y2bl5wM4/FPMb97e5Hr9E3+GtQFIXIzm2J+Pk7Sv7+m8wpU/E5fpyx277n7oytvNdmOHsJYMX+TFbszwTAx8VAjwh7IN8r0pvm3s5NKpQvKKtkyd4MFuxKY1NyLuqJHQA0CvSM9GZYhyAGtQvAw9nQuIWKcypcuIiiBQtBqyXo7eloXVyqdZ3Zaub51c+TUZpBc7fmTOs9Da1GuhsIIYQQQlxuJIQXQgghhBBCiEtdSTasmWY/7v8qOLrX+RQ/bDnKgrg0tBqFOXd2wst4arikqiqFfyZTuikdFPC8pUWdBvCqzcb6H79hyx+/EBnbjZgd+7BkZ+PQIgqfiW+xaM5uso4UU5RTQZfrwmrdgr7SWolBK8HZ5cA/sgUWcyV+YZH21e0R9lXuTi6ujV3aSSosmL2LssJKADRahdDWXkTG+hLewRdHl9NDdZ1Gx31t76N/s/68sekNNqRtYPbO2SxJWcLEnhPp4NuhoV8FYA/jXfv3x3jlleR98QU5n3xKyPHDvJ32DtYhN7Dp6ltYm2lma3IeOSWVLNqdzqLd6QAEuTvSI/JkKB/k4dTg9ZeYLPy1P5MFcWmsPZyNxaZWPRfbzIPhMUFc1yEQP1fZ/uJiUHk8lYxJkwDwefxxnDt1qva1U7ZMYUfWDlz0LszuNxt3h7r/zBVCCCGEEE2foqqqev7TLi9FRUW4u7tTWFiIm5tbY5cjhBDiMiafSXVP3lMhxGVpwdOw42sIjIGRq6COV+TtTS3kpo82UGmx8fLgVjz6/9rQq6pK0bIUilcfB8Dz5hYYuwbU2fyWykqWfjSLQxvWAtDOy5/QVRvQurkR8v2PLPsjj/SEQhycdVz/XCd8Q2sXouaW5/Loike5scWN3NX6rguuWz6T6lZdv5+qzYai0dRBZRdOVVWyjhSTuCOL9IQCbhzduarTxD+/xFOQVU5UrC9hHXxwcK7+anZVVVmUtIjpW6dTYCpAQeGu1nfxVKencNY719fLqRZzejpZb79N0eIlAGjc3fF95mmMN9/K7vRiNiTksiExh51HC6i02k65NszbmZ4nAvkeEd74ujrUS40VZiurD2WzMC6NlQczqTCfrKN1oBvDY4IY2iGQUK/GfS9FzagWC0fuvY/yHTtw6tSJ5t9+g6Kr3jqmnw79xBub3kBBYU7/OVwVclU9VyuaKvmMr3vyngohhGgqqvuZJCH8GcgHuhBCiKZCPpPqnrynQojLTvpu+OQqQIUHlkLznnU6fFGFmeHvryclt4z+rfyYe2+X09rQF644QvHKowB4XB+JS8+gOpu/vLiIP2ZMJvXgfjRaLb3ad8Ht6x9AoyHww09YvdOZ1EMFGBy1XP9cJ/ya1+5rf2ZpJiNXjCS5MBlfJ1/+uOEPXA0XtiJaPpPq1qX2fqo2lcyUohOt5rMoyTNVPXfjC50IauFZZ3PlV+Tz9ta3WZi0EIBAYyCv9HilSQSIpVu2kDn5TUyHDwPg0KoVAePH4dy1KwDllVa2H8lnQ2IOG5Ny2X28EKvt1B91tfR3pWekNz0jvekR7o17DW5U+P8sVhv/JOayYFcay/dlUGw62fI/3MfIsJgghscEEuXXhDomiBrJ+egjst+bjcZoJPyP+RhCQqp13daMrTyy/BEsqoVnYp/h4fYP13Oloim71D6TmgJ5T4UQQjQV1f1Mknb0QgghhBBCCHGpUlVYOhZQod3NdR7Aq6rK2F93k5JbRrCHEzNHxJwWwFfE51cF8O5DI+o0gC/ISOe3qRPJT0/FwdnIwOtuwjrxDQC8nx/N2t0upB7KQ++gZdjTHWsdwB8vPs7Dyx8mtSSVAGMAnw387IIDeCHOJWlXNmt/PExpwcngXeegJay9N5Gd/PBtVrfhg6ejJ2/1fouhEUN5fdPrpJakMmrlKAaHDealbi/h7eRdp/PVhLFbN8J/+5X8efPInv0+poMHOXLPvbhddx1+L47BKSCAK1v4cGULHwCKK8xsTck7sVI+l/3pRRzKLOZQZjFfbUhBUaBdkDu9ToTyXcO8MDqc+8djNpvKtiP5LIhLZfGeDPJKK6ueC3R3ZFhMEMM6BNEu2K1J7U0vzs5WXo45IwNLZqb994xMzBnpWDIyKVm3DoCA116tdgCfVpLGC6tfwKJaGBw2mIfaPVSf5QshhBBCiIuAhPBCCCGEEEIIcanaPx+O/AM6Jxgwqc6H/2bjERbvyUCnUXj/zk54OJ++V7pDlAcufULQOOlwvTK4zuZWbTbmv/0G+empuPr4MuyBJyh+8mmwWnEbPozK3teT+l4cOoOGoU/FEBBRuz15kwuTGbl8JJllmYS6hvLZwM8Icqm7GwmEsFltpCUU4uSixzvYBQBndwOlBSYMjlrCOvgQGetHszZe6Ax1u5XE/9cruBe/Df+ND3d9yLcHvmVJyhL+SfuH0V1Gc0PUDY0WMCs6HV533YXbddeRPes9Cn76iaLFiyletQqfRx/F64H70TjYW867Ourp18qffq38AcgrrWRzkj2Q35CYQ2J2KXtSC9mTWsgna5PQaRQ6hnqcCOV96NTMA0e9FlVV2ZtaxIK4VBbtTie9sKKqHm+jgevaBzK8YxCdm3medvORaFy20lLMmZlYMjIwZ2RiyczAnJ6BOdMetlsyMrAWFp5zDLfhw3AbNqxa85WZy3j676fJN+XT2qs1k66YJDdjCCGEEEIIaUd/JtLaRgghRFMhn0l1T95TIcRlw1wOc7pC4THoMxb6vlynw+8+XsDNH23AbFWZMLQND10Zfsrzqk1FqedgKj3+EGu++4Ihjz1D9uOjMB08iGPbtjT//js0jo4k7crG4KQjpGXt2nYfzj/MyOUjyavII9I9krkD5+Lr7Ftn9ctnUt26mN5Pq9VG6qF8Endkk7Qrm4oSM22uCKTvPa0Be5eJo/vzCIn2RKtvnH3p9+XuY+KGiRzMOwhA98DuvNbjNULdQhulnv+q2L+fjMlvUr5jBwD60FD8Xx6LS9++5w0/M4sq2JSUa18pn5TDsbzyU5530GmIbeZJRlEFyTmlVY+7Oui4tl0Aw2OC6BXpjU7bOP9dLnfWklIsGeknw/WqVewZ9tA9MxNbUVG1xlKcndEHBKAPCEAXEIA+wB+dfwCG0BCce/RA0Zz/v7GqqoxeM5rlR5bj5ejFj0N+JNAl8EJfprgEXEyfSRcLeU+FEEI0FbIn/AWQD3QhhBBNhXwm1T15T4UQl40102HVm+AWDE9uA4NznQ1dWG5m6PvrOJZXzrVt/fn47s6nBF8lm9OpOJCH912tUeowQFRVlcKsTDz8A6oes9lspI8eTdHiJSjevgR+9T3uLS48JNyXs49H/3qUQlMhrbxa8ck1n+Dl6HXB4/6XfCbVrab+fqqqypG9uSTuzCZ5VzamspN7iTsa9bTuFUivm6MascLTmW1mvt3/LR/u+hCT1YSD1oHHYx7n3rb3otfUfl/1uqCqKkWLFpE1/W0s2dkAGHv3xv/ll3GICD/P1Scdyytj44lV8hsSc8kqPrkFgKNeQ//W/gyPCaJPtC+O+vrtRHA5U1UVW0nJidXr/wnXMzOw/GcVu62kpFrjaVxc0AX4o/cPQBcYYP89wP+U0F3j4nLBK9Y/3f0p7+98H51Gx+cDPyfWP/aCxhOXjqb+mXQxkvdUCCFEUyF7wgshhBBCCCHE5arwOKx7x358zet1GsCrqsqYn+M4lldOqJcT02+JOSXEKN2WQcHvCQCU7czC2C3gbEPViM1qZdXXn7Jv9UpumzgV/wh7WJn32ecULV6CqjeQcuObbPnqGDc854Obj1Ot59qRuYMnVj5BqbmUDr4d+GjAR7gZ5Ie9ouZsNvWUVuXrf46nMMu+8trJVU9EJz8iY30JbuGBpgmurNZr9DzY7kGuaXYNkzZNYnP6ZmbtmMXSlKVM7DWRtt5tG602RVFwHzYMl779yP3kE3K/+orSdetI2rgRr3vvxeeJx9G6uJx3nFAvZ0K9nBnRNRRVVUnMLmVLch4ujjr6t/I7737x4vxUVcVWVGRfvX7KKvb//DkjA1tZWbXG07i5off3P7F6/WS4rvM/sZo9IKBa/+0v1Kqjq3h/5/sAjO8+XgJ4IYQQQghxCvlOQgghhBBCCCEuNX9NBEs5hPaAdjfX6dCfr09m+f5MDFoNH9wZi7vTydWwZTuzyP81HgCXK4Jw7upfJ3NWVpTz53vTSdqxFRSFjMR4/COiKF69mux330VF4cjNU0hKMKPRWMhLL611CL8xbSPPrHqGcks5XQO68n6/9zHqjXXyOsTlwVxp5ejeXBJ3ZJGWUMg9b/REq9egKAptewdTnFtBZKwvgVEeF81e4qFuocy9Zi5/JP7B21vf5mDeQe78807ubn03ozqOwllfdzf61JTWxYjfC8/jcfNNZE6ZSsmaNeR98QWFCxfg98ILuA8fXq224mAP9qP8XIjyq/8A91KhqirWggIsmZmY09Ptv5+2ij0Ttbz8/IMBWnd3dP8G6/4B6ANPDdf1/v5ojI3/NTkhP4Gx68YCcFvL27gl+pZGrkgIIYQQQjQ1EsILIYQQQgghxKXk6GbY8zOgwOCpcIGtdv9rx9F8pi6x7w89fkhrOoR4VD1XtjubvJ8OgQrGHoG4D4244Da/ACX5efw+bRJZyYno9AYGP/UC0d2vwJSUTNroMaiqSvLgV0jJcETRKAx8uC1h7X1qNdeaY2t4fvXzVNoquTL4St69+l0cdY4X/BrEpa+ywmJvNb8jiyN7c7FU2qqeO34on+btvAHodE2zxirxgimKwg1RN9A7uDfTtk5jSfISvtn/DSuPrmRCjwlcEXxFo9ZnCAsj9JOPKV69mswpUzAfOUr62Jcp+HEe/uPH49S+XaPWdzFSVRVrfv6JFvGZmDPSsfxnFfu/f1ZNpvMPBmg9PNAFBp5Yxe7/n73YA9D5+9sDdufGu6GjugpNhTy96mnKLGV08e/CS91eauyShBBCCCFEEyQhvBBCCCGEEEJcKmw2WHoiDOh0NwR1qrOhC8oqeeqHnVhsKkPaB3Jvz+ZVz5XvyyHvx4OggnMXfzyGR9ZJAJ9z7Ai/TZ1IcU42Tq5u3PDiBIKiW2MtLub4qFFYS0pI6jWKI+WBKAoMeKA1kbF+tZprWcoyxq4di0W10L9Zf6ZfNR2D1nDBr0Fc+uK3ZbLy6wNYzSeDd1dvRyJj7a3m/ZtfWlsZeDt5M/2q6QyNGMrkTZNJLUnlsb8eY2jEUMZ0HYOXo1ej1ud69dUYe/Ui7+uvyfnoY8p37SJlxAg8brkZ32efReft3aj1NRWqzYY1L+8/reEzqsJ2S4Z99bolIwO1srJa42m9vP4TqvvbV6//dxW7vz8ax4v/piaLzcKYNWM4VnyMIGMQM6+eiV6jP/+FQgghhBDisiMhvBBCCCGEEEJcKuL+B2k7weAK/V+ts2FtNpUXfoojtaCcMG9npt7cvipkt5ks9hb0NnDu5IfnTS1Q6qDFds6xI/xvwhgqy8vwDAziprGT8AgIRLXZSBvzIqbkZJI63MMRQxtQoN+9rYnuWrv95/9I+INXN7yKTbUxJGIIk6+YjE4j3y6L01WUmknZnYObjxNBLTwA8A52wWq24e7rVBW8+zZzrZMbUZqyq0KuYv7183l/5/t8f+B7FiUtYn3qel7s+iJDI4Y26uvXGAz4jByJ+/DryZo5g6IFCyn4+ReKli7D96mn8LzjdhT9pRucqjYblpycU1vDn1i1bs7MOLGaPRPVbK7WeFofH/vq9cAA9P4n92D/N3TX+fmhcXCo51fVNLyz/R02pm/ESefE7H6zG/2mEyGEEEII0XTJTxWEEEIIIYQQ4lJQUWTfCx6gz4vgUrsV4Wcyd10SKw9mYdBp+OCuWFwdT4ZXGgcd3ve3pWxbJh7XR9VJAA/gFRRCcKs2VJaXcf3oV3Byta8mzp49m5LVq7E5u1EYeQXkW+l7Vyta9Qys1Tw/HvyRNze/CcDNLW5mQo8JaDXaOnkN4tJQXlJJclwOiTuyOH4gH5tNJaqzX1UI7xVo5I5Xu+MZ6HzJB+//n7PemZe6vcR14dfx2sbXiM+PZ9z6cSxKWsSEHhMIcQ1p1Pr0/n4ET5+O5+23kzF5Mqb9B8h86y0Kfv4J//HjMfbo0aj11YZqtdoD9n9XrWf+u3o9/eQq9qwssFjOP5iioPPxOdkS/r+r2AP80QUEovfzRTFIVxCw37D17f5vAZh8xWRaerVs5IqEEEIIIURTJiG8EEIIIYQQQlwK1s2E0izwioDuj9XZsNtS8pi+7BAArw1rQ9sgdwBUiw1FpwHAoZkbDs0uvOW2qqqoNhsarRaNVsvQZ19Co9GiOxEAFS1dSu7HnwAQOukVIq/uyfGD+bTo6l+r+b7a+xUzt88E4O7Wd/Ni1xcvuxBVnJmqquxbl0bijixSDxeg2tSq57yDjfg2dz3lfK8gY0OX2KS0923PvKHz+GrvV3wc9zEb0jZw04KbGNVxFHe1vqvRO0s4x8YS/vPPFPzyK9nvvospPoGj9z+A68CB+L/0Ivrg4Eat71+qxYIlJwdzevr/W8WecbJFfFYWWK3nH0yjQefra1+1/v9bw/8buvv6XtIdAerS7uzdvL7xdQAe7fAoA8MGNnJFQgghhBCiqZMQXgghhKhrRemQuBI63gXyg3whhBANITcRNn1oP772LdDVzarF3BITT/6wE6tNZXhMEHd2awaAKbmQvB8P4X1PawwhrucZpXqsFjPLP56NVq/nmkeeQlEUDI5OVc9XHDxI2svjKDEG0mzEINyHDQOoVQCvqiofx33Mh3H292xk+5E81ekpCeBFFUVR2L8+jeyjxQD4hLrYW8138sUz4PIO3M9Gr9EzssNIrml+Da9vep2tGVuZsW0Gi5MXM7HnRFp7t27U+hStFs/bRuB27UCy359D/v/+R/Hy5ZSsWYP3yJF4P/xQve5ZrprNWLKzT917/cQq9n9bxVuys8FmO/9gWi06Pz97i/iqVez2FvE6f/+TAbtOfuxXF7LKsnh21bNU2irpG9qXJzo+0dglCSGEEEKIi4D8v3EhhBCiLlkt8OvDcGQ9FByDvi83dkVCCCEuB8sngLUSIvtB9KA6GdJmU3nupzgyiiqI8DXy1k32feBNR4vI+XIfaqWV4rXH8b7zwoO1ipISFrzzFsf27UbRaIgZOAT/8Miq5y35+Rwf9SRHfHqREHEjzj2jqd3ad3sA/+72d/ly35cAPBP7DA+3f/iCX4O49MT0D6W0wERkrC/uvs6NXc5FI8w9jM8Hfs7vCb8zY9sM9ufu544/7+DetvfyeMzjOOmczj9IPdJ6eBAw4RU8RtxK5uQ3Kdu6lZw5cyj87Tf8XnoJ14HX1PiGHLWyEnNWtj1UT8/4T4v4jKrQ3ZKTA6p6/sF0OvR+fqe2hv9/q9h1Pj4oWtk2oyGYrCaeXfUs2eXZRHlEMaX3FDSKprHLEkIIIYQQFwEJ4YUQQoi6tGaqPYA3uECHEY1djRBCiMtB4t9w6E9QtHDtlDrrwvLRmkTWHs7GUa/hw7ticXHQUXm8mJwv9qJWWnGIdMfr1ugLnqcwK5Pfpk4kL/UYekcnhj039pQAXrVYSH3ueZJoQULkTQCUFVdjr+MzsKk23tr8FvMOzQPgpa4vcXebuy/4NYhLU8vuAY1dwkVLURRuanETV4VcxZTNU1h+ZDlf7v2SFSkreLXnq/QM6tnYJeLYsiXNvvma4qVLyZw2HXNaGqnPPINzzx4EjBuHQ4sWANgqK7FkngzUq1rEZ55sFW/NyanepHr9idXr9hbx9tXrgaesYtd5e0vA3kSoqsrrG19nT84e3AxuzO47G6NeOmEIIYQQQojqkRBeCCGEqCsJK2HtDPvxsPfAO/Lc5wshhBAXymqBpePsx91Ggl+rOhl2U1IuM5fb94F/fXg7WgW4UZlWQvbne1ErrBjC3PC+ry2K/sKCoozEeH6fNomywgJcvLy58aXX8AuLOOWczOnTiT+qIz76VgC6XBdG1yHhNZ7LYrPw2obXWJC4AAWF13q+xs3RN19Q/UKIc/Nx8mHm1TNZfWw1kzdN5njJcR5Z8QjDI4czpssYPBw9GrU+RVFwGzwYlz59yP3sM3I/+5yyjZtIuuFGHKKjsWRmYs3Lq95Yev1/WsOfeRW71ssLRSOrqC8W3+7/lgWJC9AqWmb0mUGoW2hjlySEEEIIIS4iEsILIYQQdaEoHX57BFChy4PQ/pbGrkgIIcTlYPuXkH0AnLzg6rF1MmR2sYmn/7cTmwo3xQZza5cQzBml5Hy+B7XcgqGZKz4PtEVjuLAAPnH7Fha9Nw2LyYRvszBuHDsRV2+fU84p+PU39i1P4FAr+2r1TgOb0W1YzQN4s9XM2HVjWX5kOVpFy5tXvsmQiCEXVL8QovquDr2aLv5dmL1zNj8e/JEFiQtYn7qeF7u+yHXh19W4/Xtd0zg74/v007jfdBOZU6dS8tdKTAcOVD2vODhUrVr/N1w/5c8BAWg9PRv9dYi6syF1AzO3zwRgdJfRTaJ7gxBCCCGEuLhICC+EEEJcqH/3gS/LAf/29lbAQgghRH0ry4O/J9uP+40HJ88LHtJqU3l23k6yik208HNh8g3tUBSFor+PYiu1oA92weeBdmgcLvxbSY1Wi9VsJiwmlqHPjsXB+dQ9t8vj4tj5wSIOtrwTgA79Quh5Y2SNQy6T1cQLq19gzfE16DV63u7zNv2b9b/g+oUQNeNicGFc93FcF34dkzZOIqEggbHrxrIoaRETekwgyCWosUvEEBJC6Jw5lO/ZiyUnG31gIDp/f7QeHhKwX0aOFh1l9NrR2FQb10dez12t72rskoQQQgghxEVIQnghhBDiQq2ZdnIf+BFfg96xsSsSQghxOVg9BSoKwK8txN5fJ0O+/3c8/yTk4qTX8uFdsTgb7N8yet4SjdbFgNuAZmic6ubbyPCOnbl1wpsERbdGqzt1THNWFsefeppSYw9QNLTtHcSVt7aocQhWZi7jmVXPsCl9Ew5aB97r+x5XBF9RJ/ULIWqno19Hfhr6E5/v/ZxPd3/K+tT13PDHDTzV6SnubHUnWk3j74fu1L5dY5cgGkFOeQ6H8w8zfct0iiuL6eDbgVd7vio3YAghhBBCiFqREF4IIYS4EIl/w9q37ceyD7wQQoiGkrkftn5uPx40BbQX/q3dPwk5vLcyHoA3b2xHpJtT1XMagxaP4Rf2GWc2VfD3l5/S7YZb8Aywr3gNbdP+tPNslZWkPvU0lqwsWkXto9X9TxLZLaTGIUhxZTGjVo5iZ9ZOnHXOzOk/h64BXS/oNQgh6oZeq+exmMcYGDaQSRsmsSNrB9O3Tmdx0mIm9ppIS6+WjV2iuIRVWCpILEwkPj+ew/mHOZx/mPj8ePIq8qrO8XPyY9bVszBoDY1YqRBCCCGEuJhJCC+EEELUVlE6/DoSUKHzA7IPvBBCiIahqrB0LKhWaDUUIvpc8JBZRRU88+NOVBVu6xLK8AhfMmfvwLmjH24Dm1/wKsCywgLmT3+D9IRDZCQc4p7ps9GcYbWrqqrsm/Aeyp796N3caPbBBxiah9Z4voKKAh776zH25e7D1eDKRwM+IsY35oJegxCi7kW4R/DloC/55fAvvLv9Xfbm7uX2Rbdzf7v7ebTDozjqpMOUqD1VVUkrTeNw3uGTYXtBPEeKjmBTbaedr6DQzK0Zrbxa8ViHx/B19m2EqoUQQgghxKVCQnghhBCiNv7/PvCDZB94IYQQDeTQYkheA1oDDJx8wcNZrDae+t9OckoqaRXgyqt9W5AzdzfWfBPlu7Nx7ROC4lj7bx3z0o7z29SJFGZm4Gh0of9Dj58xgAfYN+dX1uV3wKP9Y1z3eAcMzZvXeL6c8hxGLh9JQkECng6efDrwU1p5tap1/UKI+qVRNIxoOYKrQ69myuYp/HX0Lz7b8xnLU5bzWs/X6BbYrbFLFBeB4sriqpXtVb8XxFNqLj3j+R4OHkR7RhPtGU0LzxZEe0YT6RGJk87pjOcLIYQQQghRUxLCCyGEELXx333gb/0K9PLDGiGEEA3AYoJl4+zHPZ8Er/ALHnLWX/FsTs7DaNDywQ3tKf5qH5bcCrSeDviM7IDmAgL44wf28sfbk6koLcHdP4Cbxk7EKyjkjOfG/76BdXtcUTV6jBGhuPXuVeP5MkozGLl8JClFKfg6+fLZwM+I8Iiodf1CiIbj5+zHu33fZeWRlby5+U2OFh/loeUPcVOLm3i+8/O4O7g3domiCbDYLBwpOnJKK/nD+YdJL00/4/k6jY5I98hTwvZoz2h8nHxkr3chhBBCCFGvJIQXQgghaur/7wPvE9W49QghhLh8bPoQ8lPAJQB6P3/Bw605nM0HqxMAmDakDcbfk7Bkl6N1d8B3ZAd0Hg61HvvAP2tY9uG7WC0WAqNacsOLE3B29zjjuUc2xPPXkiJsGgMBukyGvDECjVZTo/mOFR9j5PKRpJakEmQM4rOBnxHqVvNW9kKIxtW/eX+6BXZj1vZZ/HT4J36L/401x9YwtvtYrm1+rQSnl5Gc8pxTV7bnx5NYkEilrfKM5wcYA2jh0eKUFe5h7mHoNfoGrlwIIYQQQggJ4YUQQoiakX3ghRBCNJbiTFg7w348YCI4uF7QcOmF5Tw3bxeqCg92DqHrphzMmWVo3Az4jmyPzqv2ezHbbFZ2LV2E1WKhRbdeDH7qBfSGMwf6qfsyWfJVIjaNAV/TEYbPuA2d7szt6s8mqTCJkctGklWeRXO35sy9Zi6BLoG1rl8I0bhcDa5M6DmBIRFDmLhxIsmFyYxZM4ZFIYt4pccrBBgDGrtEUYcqLBUkFiZyOM/eQv7fwD2vIu+M5zvpnE5Z1d7CowUtPFtItwQhhBBCCNGkSAgvhBBCVJfNCr+NPLEPfDvZB14IIUTDWvk6VJZAcGfocNsFDWWx2nj6fzvJK62kbZAbz0QFULz9MBoXPb4Pt0fnc2HbrGg0Wq4f8wp7Vi6j2/W3oGjOvKo9I7mQRe/vwqox4FWcwLAp16F3ca7RXIfyDvHIikfIq8gjyiOKuQPn4uPkc0H1CyGahlj/WH4Z9gtz98zlsz2fseb4GrbO38ozsc9wW8vb0GpqdsOOaFyqqpJaknpKK/n4gniOFB3BptpOO19Boblbc1p4tjgldA92CUaj1KxbihBCCCGEEA1NQnghhBCiutZMg5R1sg+8EEKIhpe6HXZ9Zz8eNA3OEmpX14zlh9mako+Lg44P7ozF3ceIzgaGYBf0fjULwf9lKisjYetG2vbpD4CzmzvdbxxxzmsK5/8BZi88SlMY8mwsTs3OvF/82ezJ3sOjfz1KcWUxbbzb8MmAT/Bw9KhV/UKIpsmgNTCq4yiubX4tEzdOJC47jilbpvBn8p9M7DmRFp4tGrtEcQbFlcWntJH/N3AvNZee8XwPB4+qkP3fXxEeETjp5HsuIYQQQghxcZIQXgghhKiOxFWwZrr9eNh74CM/7BNCCNFAVBWWjLUfd7gNQrte0HArD2Ty8ZpEHIGZw9oS5mMEwNjZv9ZjFufm8PvUiWQfTcFms9K+78DzXlOyZg22T6cS6xxA8+cexa1HzV7XtoxtPPn3k5SaS+no25EPB3yIq+HCWvQLIZquKM8ovhn8DT8d+olZO2axO3s3IxaN4KF2DzGyw0gctGfe8kLUL4vNwpGiI6eE7YfzD5Nemn7G83UaHZHukafs2x7tGY2Pkw+KojRw9UIIIYQQQtQfCeGFEEKI8ynOsLehR4XO98s+8EIIIRrWnl/g+BbQO9v3gr8AqQXlvPBzHAbga3cvwtZnYm3lh9bFUOsxs1KS+H3qREry8zB6eOLXPOKc5+ellVKWcozS0WNAVQkZ0hu/u2vWXn9D6gaeWfUMFdYKugd0Z3a/2Tjra7eCXwhx8dAoGm5vdTtXh17Nm5vfZPWx1Xyy+xOWpSxjYq+JdPbv3NglXrJUVSW3IvfUle358SQWJFJpqzzjNQHGgKo92/8N3Zu7N0ev0Tdw9UIIIYQQQjQ8CeGFEEKIc7FZ4deHoTT7xD7wUxu7IiGEEJeTylJY8ar9uPfz4BZU+6EsNp78YQdlZWbmOLgRXGjBUq5izTfVOoRP3rWdhe9OxVxRjndIM24aOxE3X7+znp+fUcr8d3dgLiyho+qBf2wLAl4ZX6M5/z76N6PXjMZsM3NVyFXM7DMTR51jreoXQlycAowBzO47mxVHVjBlyxRSilK4f+n93BJ9C891fg43g1tjl3hRq7BUkFiYyOG8k/u2x+fHk1eRd8bznXXORHlGndJKPsojCncH9wauXAghhBBCiKZDQnghhBDiXGQfeCGEEI1p/SwoTgOPZtDzyQsaavrSg+w5WsA0jZE2JlD0GnwebIshtHYt3HevXMpfn32IarMR2rYDw18Yh6PR5aznF2SV8ce7OykvNuNSlo2rm5aQ2e+hGKp/A8DipMWMWz8Oq2rlmubXMK33NPRaWVEpxOVIURQGhg2ke2B33t3+Lr/G/8ovh39hzbE1jOs+jgHNBzR2iU2eTbWRVpJ2Wiv5o8VHsam2085XUGju1ryqhfy/vwe7BKNRNI3wCoQQQgghhGi6JIQXQgghzkb2gRdCCNGYCo7Chtn244GTL+hGsOX7MvhyfTKTcKK7TQs6Dd73tcUhrHarFLNSkljx6RwA2lzVj4GPPoVWd/YwvCinnD/e3UlpYSXG0nQ6HfiE8K8+QefjU+05f4//ndc2vIaKyrCIYbx+xevoNPItrRCXO3cHdyb2msiQiCG8vvF1UopSeG71c/QL7ce47uPwN/o3dolNQnFl8SlB++H8wyQUJFBqLj3j+R4OHrT0bFkVtEd7RhPhEYGTTm5KFkIIIYQQojrkJxZCCCHEmfx3H/jY+2QfeCGEEA1vxatgqYCw3tB6eK2HOZZXxpif4piAE1ejB62Cz71tcIzyqPWYfmER9BpxF6rNRs9b7kRRlLOeW5xXwfx3d1KSb8K5LIOOcbNpPnk8Tu3bVXu+Hw78wJQtUwAYET2C8T3Gy6pLIcQpugZ05Zfhv/BJ3Cd8ufdL/j72N1sytvBs7LPc2vLWy+ZrhsVm4UjRkaqg/d/gPb00/Yzn6zV6Ij0iT9m3vYVnC3ycfM75tV0IIYQQQghxbhLCCyGEEP/ff/eB92sLg6c1dkVCCCEuNyn/wL7fQdHAoClQyyDEZLEy6ocd6ExWYrXOgIL33a1xjPas8VjlxUXYrFaMHvZre958x3mvKS008ce7OynOrcCpIptOu2YTeOdNuA+v/k0Fn+/5nFk7ZgFwb5t7Gd1ltARDQogzctA68HTs0wwKH8SkDZPYnbObyZsn82fyn0zsOZEIj4jGLrHOqKpKbkUuh/Pse7b/G7onFSRRaas84zUBxoCTQfuJ0L25e3P0GtnWQwghhBBCiLomIbwQQgjx/62Zbt8HXm+EEV/LPvBCCCEals0KS1+yH3e+HwLa13qoKYsPsvt4IR7Oerzua493uQ2nVl41HqcgI53fpr6GwcmZ216bit7RsVrXGZx0uHroqEzLp9POWXh1aYvf6Beqda2qqszZNYdPd38KwGMxj/FEzBMSwAshzivaM5pvBn/Dj4d+5L0d77Ezaye3LLyFke1H8lD7hzBoDY1dYo1UWCpILEzkcN6J1e0F8cTnx5NXkXfG8511zqft2x7lEYW7Q+22IBFCCCGEEELUnITwQgghxH8lrYY1J1a+D5sl+8ALIYRoeDu/hYw94OAOfcfXepjFu9NYt+EoAO+MiCGkuUetxkk7fID509+gvLgIVx9fSgvy8QgIrNa1Oo1K+z0fU7hzP65+rgS/MxNFd/5vQ1VV5e1tb/Pt/m8BeK7zczzY7sFa1S+EuDxpNVruan0X/UL7MXnzZNYeX8uHcR+yNGUpk3pNoqNfx8Yu8TQ21UZaSdppreSPFh/FptpOO1+jaGjm2uyUfdtbeLYg2CX4smm/L4QQQgghRFMlIbwQQgjxr+JM+PU/+8B3GNHYFQkhhLjclBfAyjfsx1ePBaNPrYZJyS4had5BPsPIP23d6NfKv1bjHN78D0ven4nFXIl/RBQ3vvRaVTv6s6koNXN4Sybtrw4mc/p0TJs24OTsTMgHc9B6eJx3TptqY/Kmyfx8+GcAxnUfxx2tzt/6XgghziTQJZA5/eawLGUZU7ZMIakwiXuX3MuIliN4NvZZXAwujVJXUWUR8fnxVUH74fzDJBQkUGouPeP5ng6ep6xsj/aMJsIjAieddO0SQgghhBCiKZIQXgghhIAT+8A/BKVZsg+8EEKIxrP2bSjLAZ9o6DayVkOUV1r46+Od3GC17/E7PLrmAbyqqmz/cz5rvvsCVJWI2K4MeeZFDI7nDntMZWYWvLeL7KPFFG7fjc839pXsQdOm4hgdfd55LTYLr/7zKguTFqJRNEzsOZEbW9xY4/qFEOK/FEVhUPggegb1ZMa2GcxPmM+8Q/NYdWwV47uPp1+zfvU2t8Vm4UjRkaqg/d8V7uml6Wc8X6/RE+kRecq+7dFe0Xg7est2HEIIIYQQQlxEJIQXQgghQPaBF0II0fhy4mHzx/bja6eAVl+rYZZ9soNBJxZSKtc2w6179VrH/9eWP35h/f++BqDjtUPoe/8jaDTac15TWW5h4ftxZB8txtFJwennWQD4PPEEbtdcc945zVYzL617iRVHVqBTdEzpPYVB4YNqXLsQQpyNu4M7b1zxBkMjhjJp4ySOFR/jmVXPcE3za3i528v4OvvWemxVVcmtyD1l3/bD+YdJLEjEbDOf8ZpAY+Bpq9ubuTVDr6nd138hhBBCCCFE0yEhvBBCCCH7wAshhGgKlo0DmwVaXAstBtRqiM3f76VLqgmAnO5+dOzbvFbjtOrVm51LF9J12E3EXnf9eVdfVlZYWPRBHJnJRTg4aem0dw5Ohcdw6d8fnydHnXe+CksFz69+nnWp69Br9MzsM5O+zfrWqnYhhDif7oHd+W34b3wU9xFf7/uaFUdWsCltE893eZ6bWtx03v3UKywVJBYknrZ3e74p/4znO+ucT9u3vYVnC9wMbvXx8oQQQgghhBBNgITwQgghLm+n7AN/r+wDL4QQonHEr4D45aDRwbVv1WqIlMWJBO+xB0A7I10YdmPLGl1vMZvR6e2rL939AnjgnY9xcHY+73XmSiuLP9pNekIhBictXbN+xnBsL4aoSIKmTUPRnDvMKjOX8dTfT7ElYwuOWkfe6/cevYJ61ah2IYSoKUedI891fo7B4YOZuGEi+3L3MWnjJBYlLeK1nq8R7h6OTbWRVpJ2Wiv5o8VHsam208bUKBqauTY7JWyP9owmyCXovMG+EEIIIYQQ4tIiIbwQQojLl80Kvz38n33gpzd2RUIIIS5HVjMsfdl+3P0x8Imq8RDllRY2bk2lNwqLPTU8+GBMja7POXaE+dNf5+r7HiGqS3eAagXwqqqy9OM9pB4qQO+opadhE9rtK9G4uRH6wQdoXYznvL6osohRf41iV/YujHojH/T/gM7+nWtUuxBCXIhWXq347rrv+OHAD8zZNYftmdu5ZcEttPJqRUJBAmWWsjNe5+ngSbTXqfu2R7pH4qhzbOBXIIQQQgghhGiKJIQXQghx+Vr7NiSvte8Df+tXsg+8EEKIxrFlLuTGg7MP9HmxVkNMXLCfn8qLGeToyKTHr0Cnrf6Ky6N741gw8y1MZaVs+Pl7ImO7nnf1+r8URSGqix8ZSYVc1TIT23tfgUZD8MyZGJqfuxV+fkU+j654lAN5B3AzuPHxgI9p79u+2nULIURd0Wl03Nv2Xvo3788bG9/gn7R/2J2zGwC9Rk+kR+Rpq9u9Hb3Pu1WHEEIIIYQQ4vIlIbwQQojLU9IaWD3VfjxsFvhGN2o5QgghLlOlOSc/j/pPAEf3Gl1ekVjA4vxi5m07hqLA3XfH4OdW/VWY+9asZPkns7FZrQS3asP1o1+pdgD/r9a9gvCzHCPriTcA8HvheVx6X3nOa7LLsnlkxSMkFCTg5ejFp9d8SkuvmrXPF0KIuhbsEsxHAz5iU/omCkwFRHtG08ytGXqNvrFLE0IIIYQQQlxkJIQXQghx+SnOhF8fRvaBF0II0ej+ngymQghoD53uqdGlpTsyyfvpMBWKBS3wVP8WXBHlU61rVVVl4y8/sPGX/wHQstdVDHr8WXQGw3mvtVltbF6QREz/Zji7GTCnppL70nNgseA2dCheDz54zuvTS9J5ePnDHC0+ip+zH3MHziXCPaJadQshRH1TFIWeQT0buwwhhBBCCCHERU5CeCGEEJcX2QdeCCFEU5G+G7Z/ZT8eNA002mpfWhaXTf7Ph1GAHNVGz0hvnurXolrX2mxWln30HvvX/g1Atxtu5crb7qnWCnibTeWvrw4QvzWTI/vyuOW5dhx78ims+fk4tmlD4OQ3ztme+WjRUR5e/jDppekEuwTz2cDPCHENqVbdQgghhBBCCCGEEBcLCeGFEEJcXmQfeCGEEE2BqsLSlwEV2t4IYVdU+9LyvTnkzTsIKiygku9cVP68vRNaTfX2JlYUDQYnJxSNhgEPPUGHAYOqV7JNZdU39gBeo1HoNjSczAmvYDpwAK2XFyFz3kfjePZW+IkFiYxcPpLs8mzC3MKYO3AuAcaAas0thBBCCCGEEEIIcTGREF4IIcTl47/7wA99V/aBF0II0Xj2/wFH1oPOEa55vdqXlR/IJfd/B8EGS6hkJhV8f2cPfF0dqj2Goij0ve8R2lzVj8Co6u3DrtpUVv9wiIObMlA0CgMfbovb1vlkL14COh0hs99DHxR01usP5B7g0RWPkm/Kp4VnCz695lN8nKrXOl8IIYQQQgghhBDiYnP+foNCCCHEpeC/+8B3ugdibmvsioQQQlyuzOWwfIL9+IpnwKNZtS6rOJxP7ncHwKryt2JmChU8NzCaHhHe5702IzGexXNmYrVYANBotdUP4FWVdfMOs399GooC1zzQBv+Sg2S/8y4AAePH4dyly1mv35W1i4eWPUS+KZ923u348tovJYAXQgghhBBCCCHEJU1WwgshhLj02azw28gT+8C3kX3ghRBCNK6Nc6DwKLgF20P4mlBgi0FlUmU5V0b78sTVUee9JHH7Zha9Nx2LyYSHfyC9br2zRlNuX3KEPWtSQYF+97WmmU8ZKSNGg6riMWIEHrffftZrt2ZsZdTKUZRbyon1i+WD/h/gYnCp0fxCCCGEEEIIIYQQFxsJ4YUQQlz61s6A5DUn9oH/GgzOjV2REEKIy1VRGqx7x348YBIYjNW+1KGFB19HOPLl4Ux83RyZdVtHNOfZB37nskWs+vJTVNVGWEwsnYfcUOOSo7v7c2BjOp0HNadFO1dSRjyMrbgYp9hYAl4Zj6KcuYb1qet5dtWzmKwmegb2ZFbfWTjr5TNYCCGEEEIIIYQQlz4J4YUQQlzaktbA6in2Y9kHXgghRGP7ayKYyyC0O7S/5bynm44WoXHUofdz5n9bjjH3cCZajcKcOzvhZTSc9TrVZmPNd1+w/c/5ALTvN5D+Dz2BVlfzbwHdvJ24Y0I3tDqF46OepDIpCZ2/PyHvzUIxnLmGlUdWMnrtaCw2C1eHXM2Mq2fgoK3+vvVCCCGEEEIIIYQQFzMJ4YUQQly6ZB94IYQQTcmxLbB7nv140FQ4ywryf1UeLybn870oeg0FN0QwceE+AMZc25IuYV5nvc5sqmDJnHeI37IBgCtvv5duN9x61hXrZ7J9aQoe/s5EdvIDQGfQkvXee5SsWoViMBAyZw46X98zXrsoaRGvrH8Fq2plUNgg3ur9FnqNvtpzCyGEEEIIIYQQQlzsJIQXQghxaZJ94IUQQjQlNhssecl+3PFuCI495+mVaSVkf7YX1WRFE+DMc4v3UWmx0a+VH4/0jjjntUXZ2RzZsxOtTse1TzxH6yv61KjUHcuOsGl+EopG4Y5XjXgGGClatpzcjz4GIPCN13Fq3+6M1/5y+Bde3/g6KirXR17PpF6T0Gq0NZpfCCGEEEIIIYQQ4mInIbwQQohLU9U+8M5w61eyD7yoe6oKKyZAi2sh7MrzrmgVQlzmdv8IaTvA4AL9Xz3nqeaMUnI+24NaYcHQzJUpRiuHjpQR7OHEzFtjzrsPvHdIKMOeH4dOpyekzZnD8rOJW3mMjb8nAtBtaDieAUYqDh0i7eWXAfC6/37cr7/+jNd+t/87pm2dBsDtLW/n5e4vo1E0NZpfCCGEEEIIIYQQ4lIgIbwQQohLT/JaWDPVfjzkHfBt2bj1iEvTsc2w4X37L7+20P0RaD9CbvgQQpzOVGzfCx7gqjHg6n/WU81ZZWR/tgdbmQV9iAsr2rnx++ID6DQK79/ZCc+z7AN//MBeFEVDcKs2AIR16FTjMvesPs76n+MB6DIkjC7XhWHJz+f4qCdRy8ow9uqF3+gXznjt3N1zmb1zNgAPtH2A5zo/V6P290IIIYQQQgghhBCXkkZflvDhhx8SHh6Oo6MjnTt3Zt26dWc99/7770dRlNN+tW3btuqcr7766oznVFRUNMTLEUII0dhKsuz7wKs26HQ3dLyjsSsSlyoXf+jyoL3bQtY+WPgMvNMalk+A/CONXZ0QoilZNxNKMsEzHHo8ftbTLLnlZM/dg63EjD7QSNagZkxadgiAsYNbEdvM84zXHfhnDb9MfoX5b79BQUZ6rUrcvz6NtT8eBiD22mZ0GxqOarGQ+tzzmI8fRx8aSvA7M1F0p97Hraoq7+14ryqAf6LjExLACyGEEEIIIYQQ4rLXqCH8vHnzePbZZxk/fjw7d+6kd+/eDB48mKNHj57x/Pfee4/09PSqX8eOHcPLy4tbb731lPPc3NxOOS89PR1HR8eGeElCCCEa07/7wJdkgm9rGPx2o5WSVSQ3f13yvMJh6Lvw/H4Y+CZ4hkFFAWyYDbM7wv/uhKTV9rb1QojLV14ybPzAfnztW6BzOOupGmc9Wg8H9AHOGO5uxRO/xVFptTGwjT8PXRl+2vmqqrL5959YPPttrBYLoW3aY/TyqnGJ6QkFrPr+IAAx/UPpcUMkiqKQ9fbblG3ahOLsTMgHc9B6eJw2/7St0/hsz2cAjO4ymsdjHpcAXgghhBBCCCGEEJe9Rm1H/8477/DQQw/x8MMPAzBr1iyWLVvGRx99xJQpU047393dHXd396o/z58/n/z8fB544IFTzlMUhYCAgPotXgghRNOzbqY99NQ7w4ivG6UtuKqqvPtXPF+sT2beoz1oG+R+/ovExc3JE3o9aV/dGr8CtnwCiX/DoT/tv3xbQ7eREHM7GIyNXa0QoqEtfwWslRBxNbQcfM5TNU46fB9qh81sZdT8PRzLKyfE04m3b4k5Ldi2Wiys/OIj9qxcBkDnITdw1d0PoNFoa1xiQIQ77XoHoyhwxS1RKIpCwfz55H39DQBBU6fgGB196vw2K29seoNf438FYEKPCYxoOaLGcwshhBBCCCGEEEJcihothK+srGT79u2MHTv2lMcHDhzIhg0bqjXG559/zoABA2jevPkpj5eUlNC8eXOsVisdO3bkjTfeoFOns++JaDKZMJlMVX8uKiqqwSsRQgjRJCSvhdUnbuBqpH3gKy02Xv5tD7/uOA7A+vgcCeGbgAb7nNdooeUg+6/sw7DlU9j1A2QfgD+fh78mQew90PVh+yp6IcSlL2k1HFwEihaunQJnWCFuLTRRcTgfY1f7TcQaRx1fbjvGsn2ZGLQaPrwrFndn/SnXmMrKWDRrKilxO1AUDX3vH0mnQcNqXaaiUbjqjmhQ7Tc0l+/eTcarrwHg88QTuA0ceMr5ZpuZV9a/wuLkxWgUDW9c8QbDI4fXen4haku+lxdCCCEuXfI5L4QQ4mLXaO3oc3JysFqt+Pv7n/K4v78/GRkZ570+PT2dJUuWVK2i/1erVq346quvWLBgAf/73/9wdHTkiiuuID4+/qxjTZkypWqVvbu7O6GhobV7UUIIIRpHE9gHvrjCzINfbeXXHcfRahTeurE9j/aJbPA6xOka5XPeNxqGzIAXDsCgqeAVAaZC2DgHZneCH26DhJXSql6IS5nVAktfth93fQj825x+SnEl2Z/tIf/XeEo22fdy33k0nymLDwAwfkhrOoR4nHbdlvk/kRK3A52DA9ePGV+rAD45Lpvln+/DarUB9vBd0SiYs7I4/uRTqJWVuPTvj8+To065rtJayZg1Y1icvBidomP6VdMlgBeNRr6XF0IIIS5d8jkvhBDiYqeoauP89DctLY3g4GA2bNhAz549qx5/8803+fbbbzl48OA5r58yZQozZ84kLS0Ng8Fw1vNsNhuxsbFcddVVzP4/9u47PKoy/f/4e/pMyqT3ngABEnoTFQEFFRB0dde6ClbUVcS2urp2dH/fXXUFscuCuiq66rqgoqICSi9SpIY0QknvmUyf8/tjwiQDCQQIJMD98pqLyZnnnPPMxGSSfM5z37NmtTqmtavqkpKSqK2txWw2H+MzE0IIcUp53PDvK72rDaN6we0/nfIy9CW1NqbMXcvOknoC9Bpeu34go3tGd8ix6+rqCAkJkfekE9Al3uc9Hsj7Eda8Cbk/NG+P7AFD7/CWqjcEn5q5CCFOjbXvwDcPeVtW3PsrBPj3anc3OCh/5zdcpY1oQg1E3dGXBqOaCbOWs7/GyoQ+ccy+fkCr/dWdDjuLXn2JoVf8gdiM7sc8tcLfKlj05m943Arn/6E7/S7y/kHT43BQdNNkrJs2oc/IIPWT+WiCgnz7WV1W7l96Pyv2r0Cv1vPyqJcZmTTymM8vmsn7/InpEu/xQgghRCvkPf7Eyfu8EEKIrqq97/OdVo4+MjISjUZz2Kr3srKyw1bHH0pRFP71r39x4403HjGAB1Cr1QwZMuSIK+ENBgMGg6H9kxdCCNF1/PJycx/4P8w75QH8zpI6bp67juJaG5FBBuZOGUKfRClB35V0ifd5tRq6j/XeKnJh3Tuw8UOoyPGGdD8+C/2v9wbyEVJBQYjTXmMVLHnee3/044cF8J5GJxVztuIqbURt1hN1ex/UoQYefH89+2uspEQE8Ler+vgF8KX5uUSnpqNSq9HpDUx68LHjmtre7VV8+9ZWPG6FjIFR9BmVAHh/xyp97jmsmzahNptJem22XwBvcVq458d7WF+6HpPWxKwLZ3FO3DnHNQchOkqXeI8XQgghxEkh7/NCCCFOd51Wjl6v1zNo0CAWL17st33x4sWce+65R9x32bJl5Obmcuuttx71PIqisGnTJuLi4k5ovkIIIbqggl9g6Qve+xNehuiep/T0K3Ir+MMbqyiutZERFch/7z5XAnhxdJHdYNz/eUvVj38RIrqDvc67Sv7VgfDv38Puxd7V80KI09PS/wfWam+FlkE3+z3ksboon7MVZ7EFdZCOqNv7oI0w8c4v+fy4swy9Vs1r1w/EbGzuA7/lh2/58PEHWP7JByc0rf27qvn6jS24XR7S+kUy9tYs1Brvr4TVH39MzX8+A7WahJdeRJ+a6tuv1l7LHd/fwfrS9QTpgnhr7FsSwAshhBBCCCGEEEIcQaethAd44IEHuPHGGxk8eDDDhw/n7bffpqioiDvvvBOAv/zlL+zfv5/333/fb785c+YwbNgwsrOzDzvmM888wznnnEP37t2pq6tj1qxZbNq0iddee+2UPCchhBCnSEMZfH6rtw98/1PfB/6LX/fxyOdbcLoVhqaG8/ZNgwgNOHJ1FiH8GIJh6O0w+FbIXwJr34ac7yB3sfcWnuFdGd//ejBKqT0hThtlO2Ddu9774/4faJp/5VJcHirmbsW5vwF1oJao2/ugiwpgfWEVf/9uFwBPTexNdoL3gi7F42H5/PdZ+7/PAGioqkTxeFCpj/1a6gO5NXz1+hbcTg8pfSK45LZsNE0BvGXtWkpf+BsA0Q8+QNCIEb79qmxVTF08lZ1VOwkxhPDWmLfIisw69tdFCCGEEEIIIYQQ4izSqSH8NddcQ2VlJc8++yzFxcVkZ2fzzTffkJKSAkBxcTFFRUV++9TW1vL5558zc+bMVo9ZU1PDHXfcQUlJCSEhIQwYMICff/6ZoUOHnvTnI4QQ4hTxuOGL26Gh1LvKcPw/TtmpFUXhtSW5vPh9DgCX9Y3jxT/0w6jTnLI5iDOMWg3dLvLeqvJh7buw8d9QlQffPgI/PQf9rvMG8lE9Onu2QogjURT49i+guKHnZZA+yu9hlVaNKSsSV4WVyFv7oIsJpMri4J6PNuL2KEzqF8/1Q5MBcDkcfPvGK+xa+TMAw39/PcN/f12rPeKPxulw8+3bW3HZ3ST1DufSO7LR6LwBvHP/fvbfNx1cLswTJhB+yy2+/coay7j9+9vJr80nwhjB2xe/TY8w+T4khBBCCCGEEEIIcTQqRVGUzp5EV1NXV0dISAi1tbWYzbLyTAghupxl/4AlM7x94G9fcsrK0LvcHp7431Y+XrsXgKkXpPPIpT1Rq489EGkveU/qeKfFa2pvgC2feFfHl+9s3p5xIQydCt0v9ob3QoiuZdci+Pha0OjhT2sgPL3VYe4GB5ogPR6Pws3z1rEsp5z0yEAW3Hs+QQYt1vo6/vfiDPbv3I5ao+HiqdPIGnnRCU1t/65qNv24l0tuy0Kr91445rFaKbzhBuzbd2Do3YvUDz9EbTJ5xzfs57bvbmNfwz5iAmJ49+J3SQ1JPaE5iMOdFu9JpxF5PYUQQnQV8p7U8eQ1FUII0VW09z2pU1fCCyGEEMesk/rAW+wu/vTRryzdVY5aBU9PyuKm4amn5NziLGQIgiG3wuBboGAZrHkbdn0DeT95b2GpMOR2GPBHMIV29myFEAAuO3z3mPf+OXf7AnjF6aH2hz2YRyehNnp//dIEeduXvLEsj2U55Ri0al67YSBBBi0et5tPn32MiqJCDAGBTHrwMZKz+x3XlBSPgqrpQrGEzDASMsOaH1MUih//K/btO9CEh5M0e7YvgC+sLeT2xbdTYikhMSiRdy95l4SghOOagxBCCCGEEEIIIcTZSJZQCSGEOH00lMPntzX1gb/hlPWBL6u3cc3bq1i6qxyjTs2bfxwkAbwAwO1yUr6ngNqyEhrranG7nB17ApXKW876uo/gvk1w7r1gDIHqQvj+cXi5F3x1P5TtPMqBhBAn3Zo3vS0lgmLggocAbw/4yg930LBsH5UfbKdlEbLV+ZW89L23D/yzl2fRK8575bRao2Ho5b/HHBXNtc/+/bgD+MoDDcyfsZbK/Q2tPl41Zw5133wDWi2JM19BFx8PwO7q3Uz5dgollhLSQtKYd+k8CeCFEEIIIYQQQgghjpGshBdCCHF68Hia+sCXQFTPU9YHPresnsn/Wsf+GisRgXrenTyYAclhR99RnBUaqip5/8/3+m3TaLXoTAHojSayR49h+FXei0Uc1kaWvv8uepMJnTEAvcmEwRSAzmRCbzQRGhNHRGIS4F2h6nLY0eoNzf2fw1Lh4hkw6jH47VNY8xaUbYf1//Le0kbCsKnQ41JQa07lyyCEqC/1tkoBuOgpMASjuD1UfrQT284qVDo1wRcm+76ey+vtTPt4Ix4FrhyYwNWDk3DabOiMRgB6nT+KbkPOQWcwHtd0qkss/O+VTVjrHKz8Io+J9/oH+Q2//ELZSy8DEPv4YwQMGQLAtspt3Ln4TmrsNWSGZfLW2LeIMEUc1xyEEEIIIYQQQgghzmYSwgshhDg9LH8J8pd4+8D/4T3QB570U67Jr+T299dTZ3ORFhnIvJuHkBJx8s8rTh8up5OAkFAcVisuhx0At8uFu74OW30dDqvVN9ZaX89vP33f5rH6XnQpY++4BwC7xcJrt16LSq1GbzKhbwrtvbcA0voPYtBdK6FwOZ41b7J+xWb0VTnoN01HHxyGvvc49NkT0YXFYAo2E2AOObkvhBBnu5+eBUc9xA+AftehuBWqPtmFbXslaFVE3NQbY0YoAG6Pwv2fbKKs3k736CCeuzyLDV9/ycZvF3Lds/8gKNwbeh9vAF9T1sj//rkRa52DyKQgxt7S2+9xe0EB+x94EBSF0D/8gdBrrwVgY9lG7v7hbhqcDfSN7MvrY14nxCDfO4QQQgghhBBCCCGOh4TwQgghur7C5bDkYB/4l05JH/gFmw/w0Kebcbg9DEwO5d3JQwgP1J/084rTS0RCEne9/W8APG43DqsVh63R+6+1kYCQ5qoJepOJ8665EYfNiqOx0ftv0ziH1UpobJxvrMPaCIDi8WC3WLBbLH7nNUdFe0vVp43AET2AX/57rf/Edm2A/24AoMeAvkx81Pv14/G4eedPt6A3mnyhvs4YgMFkQmcKIDa9G9mjx/oOs3vdKnQGY4vxzRcDqGW1vRBe+3+FjR9674/7Owoqqj/LwbqlAjQqIv7YG2P35u8Fs3/KZXluBSadhtnX9mP1h++y6buvAdixYhlDJl553FOpq7Dyv39uxFLrIDw+kEn39ccYqPM97m5oYN899+Kpr8c0YACxT/wVlUrF6uLVTPtpGlaXlUExg3jtotcI1MlFZ0IIIYQQQgghhBDHS0J4IYQQXVtDOXx2a4s+8Nef1NMpisLbP+fzt0XeHtuXZMUw89oBGHUSOIojU2s0GIOCMAYFtfq4KdjMOVde065jBUdGce+8T7E3BfROqxWHzYrd2ojTaiUkOtZvfNbIi3BYrdgb63FW7sdRW47D4cTh0WIs+A7mbYGhd+BMGklDVWWb57Wec74vhFc8Hha8+HybYzMGD+OKh5/wffzF355qWrkf0BzYN4X3obFxZAwa5htbuW8vWr0OndGEISAAjVbX2imE6PoUBb79C6BAn6shaSi1X+XTuLEM1Coiru+FqWe4b/iK3Ape+TEHgGfHd2P7BzPJ/3UdqFSMuvFWBo6//LinUl9l48t/bqSh2k5YbACXTx+AKaj54jHF4+HAw3/GkZeHNiaGxFkzUen1/LzvZ+5fcj8Oj4Nz48/lldGvYNKajnseQgghhBBCCCGEEEJCeCGEEF3ZKe4D7/YoPL1gGx+s3gPAzeel8tcJvdGoVSf1vEIcSqVSNYXZAUcdawwM4tK77/ffqChQtMrbN37HWijMhcJf0JmT+OM1f8CROhaHoj1sVf7BnvQALpeT+MzevpX6B8d63C4ANBpti9MpFGz+1XveVqT0HeAXwn/01wd9q/0BNFotOpN3RX58Zm/G3/Og77Fl//4XHre7OdxvsSo/MDSM2IzuzXN2OtFotb6+20KcdFs/h72rva1SxjwNQOCQGKxbygm5LB1TVnM/9bI6G/fN34iiwLVZZmz/e5Wygjy0Oj3j7n2QHsPOO6GprPpvHvWVNkKiTFw+fQABZv/qLRWzZ9OwZAkqvZ7E2a+ijYri+8LveeTnR3ApLkYnjebFkS+i10jVFyGEEEIIIYQQQogTJSG8EEKIrusU9oG3Otzc+/FGfthRikoFj4/vxW0j0k/a+YQ4qVQqSDnXe6vdD+vnwIZ5qOv2ErPlZdj+OvT5PQydCnEjWz2ETm/gumf/fth2l9PpF6ADKIqHy+77s195/ZYBf2RSSouxCjqjEY/bjcthB8DtcuGur8NWX0dobLzfsX/78Tvsjf7l+A+K7daDG55/2ffxv6bfQUNVZVNY31w6X28KIDwhkQunTG0+7k/f43Y6/cvsG03oAwIwBAQSGBrW2imFaOZohMVPeu+ffz+EJACgiwkk5qHBqPXNFVRcbg/T5m+kosHBwBAnaav+RVllOaZgM1f8+Unie5x4m5VR12eiUsE5V2QQGGrwe6zuu++peP0NAOKeexZTnz4syFvAEyuewKN4GJc2jufPfx6dWqpSCCGEEEIIIYQQQnQECeGFEEJ0TS37wI9/8aT2ga9osHPre+vZvLcGvVbNK9f0Z3yfuKPvKM56ikcBtwIqvMG3ClDRtVZihyTARU/CBX+GbV94V8cXb4KN//bekofDsKnQ8zLQHD2A0+p0aHUhftvUag2Zw0e0azoqlYo733wfAI/b3bQKvym4t1rR6v1X4Q65/PfYGy1+K/YPjo9ITPYb67RaUTwe7BYLdot/cG+3NPh9vPqL+dSVl7U6x7C4BG555S3fx589/wR1FeUYWoT6BwN7c2Q0QyZd5RtrbajHYApArZEWFme8FTOhbj+KOYm6xisx5NVgzAgF8AvgAWb+uJvV+VUE6jU8f/1g1sz6Hl1cAlc++jShscf/fuNyutE2tUvRm7SMvSXrsDG2XTkc+MtfAAifPJmQyy/n012f8tzq5wC4svuVPHnOk2jU8v+sEEIIIYQQQgghREeREF4IIUTX01AOn9/m7QPf73oYcMNJO1V+eQNT5q6jqKqR0AAd7940mMGp4UffUQjAXWWj5MX1rT+ogqBz4wmdmOEdW++g5B/r/QJ7VYv7Af2jCb3MW33BY3dROnOj9zB+Ab/3X2PPcELHpQGguBXK3tjkDf4PGatSgT7VTMjFqaAzQv/rqdjSD2JroKYQ6g+gynVD7k7QFaBLicF8zSUQGAlA9Ze5KE6Pd64H2zI0HVsbbiT4gkTf0637sQiPw9083xZjNcF6gs5pDhota0vw2Fzex/HO06jSYlSbURu1kNr8MvbtcSEeq8vvOfnu69R+L/nkR2bhrGvE6bDjcjpwOR04HTZcDgdao//K4J5Z52OvbcDpsOO0W3HYbDjtNhx2KyEBMX5jLSXVOKrqsVOHoiiA4v1PUTBHRzN44pW+Cy8+m/FXygrzCTCHEBgSSmBYOIGh4QSGhRESFUPfMZc2///jcqLRysrj01LNXljxCooCddEvUb+smIaVpcQ+PBiN2f//tWU55cxekgvAC1f2oVdKDAl/eQadwYAp2HzcU7A1OPnylY10HxzNoEtTWx3jqq5m35/+hNLYSOC5w4l++CHe2/YeL65/EYAbet3An4f8GbVK3er+QgghhBBCCCGEEOL4SAgvhBCia/F44L93QH0xRGbChBdP2qk27KnitvfWU93oJCncxLybh5IRFXTSzifOPK13QG/jQY+C4nC3OcTvMY834G+LO65FawZFwbmvoc2xKqP/j3u2ndXgUYDkplsTO3hyf4WXe0P2VTDsDho3WVFs/nM+SJ9i9gvhG1YX46l3tDpWFxfoF8LX/7wPV4W11bHaCCMBA6J9H9ct3oOzuPVy9OpgPabHm3tuN/5UjGNPXfPjgAEwoEVlBMY179tTNwR7TU2LSTbdgqDp6gCfsVmT8RS2/fnArYDWu093R38uSPkdiuLGg4JS7cZT5cGDB5Xag+c8F2qT93Oy/PF3CHFGoNaoUek0qHVaNDotGr0OrclA8i3D0QR6Q/rGreU4CutBo0KlVqHSqJruq0GjInBgNOoA71jHgQZc5VbvmFbG6uICfSu1PY1OPDZ3K8dVgVoN6i5W2aEzeTxQutVbqWXLfHDZqA/6M/VbAwAIGZd2WABfXGvl/vkbGVK1juy0WC7vPwEAc2TUCU3F3uhkwaxNVO5rwFrnIOv8BIxB/hd0KC4X+x94AOe+fegSE4l/8SXe3PYOr296HYDb+tzGtAHT5PMrhBBCCCGEEEIIcRJICC+EEKJrWf4y5P0EWhNcffL6wH+7tZj75m/C7vLQLzGEdycPISrYcPQdhWhBG24k/unh3jRdUVCa/vV+DCp98+pSdZCe2IcHHzLG+6+i4AtmAVR6DVF392seA+Dx9lNHAU3LsE2tImJyb985D52Hxuxf3j3squ7eEF5pPh5uJxzYjGb/Lqixw+aPYPNHmIPuQel5HkT3BtR+x9eE+B836Jw47+p2v+fV+hyMWRHewL7lHJr+VR8SJOpTzWjM+lZft5avGYA2yoTi9njHeJpet6b5HloeXBOsRxNqaLoS4pDP3SGhpMEchE3naPpUtJiDp/lzcFC3QcOw/VYJqjZKe7c4tM6hJ9IQ7/3AA9ibbge5my/T2PLh1yQqGa0fEzD1DPeF8NYt5dQv3dfm2OhpA9DHey84alhVTN3iPW2OjbqzL4ZUb/uBhtUHqFtc1BzS+wX3akIvz8CQ7F3Zbd1ZhWV18SEXAahQaZouGhgWh77pYhJHsQXbtgrQqFu9cMCQHoI23Oh9Seod3osyDr1goGlfjVnvraYAKC6P9+KWlsdVH0Pg7HE3h+6Fy2HPCrDV+h6uc19DXeUFAISMTyPo3Hi/3V1uD/d9uJ5Be76lZ0MObFJRuW/8YW0UjpXD6mLBrM2UF9VjCtZx+fQBhwXwAGX/eJHGVatRBQSQ8NpsZhXMZe7WuQDcO+Be7uh7xwnNQwghhBBCCCGEEEK0TUJ4IYQQXUfhCljyvPf+hJcgutdJOc2/lhfw3NfbURQY0yuaWdcNIEAvb4ni2KnUqsNWmrc5VqNCG2Fq99iDYWZ75mDqFXH0gU0CB8W08UgyMBH23eLtG7/tvwQ3zIads2FfLAy+BQbfDEHRre5tvqj9weLBUvrtEXZ5t3aPDf99j/aPvSaz3WMjrm/7e5HiUfyC3fAre+C5zA1uxXtBgEdBcSu+f1UtLgbod+8VNO6rxF5vwdbQgMNiwW5pxGGxYjAGEG9sHnugfjf1rnLUKjUq1KhVGt99Y0AwccZhvrGbVn5LmCcKrVaPVqNDo9GiVmtRqzRo1Br/Mv5qUOnUvjkeSqVpHqvY3XgszrZfC6fHd99dbcO2s6rNscbMMGgK4Z0HGqj7oajNseHX9fSF8PbCWqo+3Nnm2LCruhM4JBYAW14NlXO3HfKE8AX4IRPSCRrmrdDg2FtP1fydoDhQuSzgrEflqAWPHZVKIVBTT4CmFvTBuGIvpqb2d9hKQwEwX5LiVxXioBcXbiZ+zQck2Q6gUqsZc+vdJx7A21x8NXszZYV1GAK1TLpvAOHxh1+sVvPll1S99x4AcX97gX/WfM7HOz8G4M9D/syNvW88oXkIIYQQQgghhBBCiCOTxEEIIUTX0FAOn996UvvAezwKM77ewb9WFADwx3OSeXpiFlqN9MIVwidxsPd28QzYMA/W/wsaSmDpC/DzPyD7Shg6FRIHdfZMu4RDV1arTdrDVui3JTA9ksD0yHaNHfvM/Viqq2ioqaaxppqG6iosNVVYaioJCgNNUHO1ge0lK2isrWn1OOHxidwcdZ7v4x/XzcOmaiAwMpTAkHACQ8IIDA0jKDiMwNBwdC0C3oDBsRgzw1tcVNB8kYHiUdDFNo81ZIQSdlV3FI/SdEGCAh6Pd6xbQRsV4BurjTQROCzWO6bpWLg9vvO0rLqgNmjRxQU2H/eQsS2rT7SsJOCj0DwftweKN0Phcjy/FeCqvLxpkKnpFu3bx9gzAi56BmL74d7fiO31zQAEX5SMefThwfqiVduo++xlkpzVqPUGrnjwMdL6n9jXjNPh5uvXtlCcV4shQMvl9w0gMvHwFirWLVsoefIpAMLvupMXg5bz5c4vUaHiieFP8IcefziheQghhBBCCCGEEEKIo5MQXgghROc7BX3gbU4393+yiUVbSwB4dFxPpl6QLr1whWhLcAyMegTOvx92LPCujt+3FrZ84r0lDIJhd0LvK0CrP+rhxIkJjogkOKJ9gf3VT75AQ5U3pG+orqKxtpqG6mosNVWYI/0rGZTk5rQd2CckcfPLb/g+XvTuP3FYGwkM9Qb0gWFhvvvB4RGYAptLouuiA9BFB7R22MMYUswYUtpX+cHYIwxjj7D2je0VTsLz5zVfNOB0Qcl2lD3rYO8G1Et/hu+LAdArgUTpV6BogyG6D0p0NkT1RjGngqJCFz8Imp6PNtRAyIQ0tFEB3hX9h/ht01Y2zH6WCFcjHpOZG5+eQXRqervmfCSFWyo4sLsGvVHDxGn9iUoOPmyMq7ycffdOQ3E4CBw9ihf77uXb3HAsikUAAO4cSURBVO/QqDQ8d95zTMyYeMLzEEIIIYQQQgghhBBHJyG8EEKIzneS+8BXWRzc/v56NuypRq9R848/9OXy/gkdeg4hzlhaPfT5vfe2/1dY+zZs/Rz2b4AvbofvHveWqR98CwTHdvZsBRCRmNzusueTHnzcu6K+ugpL0wr7xppqGmqqCYv173G+d9uWNgP7iMRkprz0uu/j796chcthbwrpwwgMC/fdDwqLwBh0+ArujqZSPFD6GypfT/eVYK/1H6QPhpRzUaeejyH1fIjtC5oj/4qkMRsIHnF4+XkAh8vDG//5kQxXIw2BUdzzt/9HRExbLSCOTffBMdganEQmBROTevhFCx6Hg33T7sNVWoouPZ1XLoPFRd+hVWv5xwX/YEzKmA6ZhxBCCCGEEEIIIYQ4OgnhhRBCdC6/PvAvdngf+KLKRibPXUtBhQWzUcvbNw3mnPT2988WQrSQMBB+9yaMfQ5+nQfr/gX1B2DZ/8EvL3lXxQ+bColDQKpMnBYSMtv/PffSu6Z7y+C3LItf4w3tQ6L9g+a89aux1te1epxDA/uf5r2Fx+U6bHV9YGgYASGhaLTt/JXF44aSLd7AvXBF66G7wQzJwyH1fO+tHaH7sfj7tzv5xt2NQbEu/vHnyUTEtK96QVvcLg9upwd9U4uDPqNaD/8VRaH0uRlYN25EbQ7m7evDWVyxHIPGwMujXuaCxAtOaB5CCCGEEEIIIYQQ4thICC+EEKLzWCpa9IG/Dvp3bB/4TXtruHXeOiotDhJCTcy7eQjdYw4v3yuEOEZBUXDBw3DedNix0Ls6vmgVbP3Me4vr7w3js64EnbGzZys6SNqAwe0eO/rmqViqKrHU1vhW2VtqqrFUVxEY6l/CfcfyZdjaCOwjk1KY/OJrvo+Xz38fj8dDUGgYgSGhBHqqCKzbRWDlr+j3r249dE85F1LOOymhO4Di8bD+q/9SkTCAd5cXAHDHHTeQnnBiAbzH7WHxnG3UV9mYOK0/xhbl/g9VM38+Nf/5D6jVfHxtHIvcmzBpTcy+cDZD44ae0DyEEEIIIYQQQgghxLGTEF4IIUTn8Hjgi5Z94F/q0JWzi7eXcu/Hv2JzesiKNzN3yhCizRIGCtGhNDrIvtJ7K97sDeO3/AeKN8GXd8H3T8CgKTDkVjDHH+1o4gzS67yRbT7m8bj9Pj7/mj96V9g3hfS+wL6mmoCWgb3Hzebvv8JmaWz1uLHGVG7oWeAN3VPPZ02uG4LjCAyLICgwjEBXGIENDZiCzajU6g55nk67jUWzX2b32pUcCFgM0Zdx64h0Lsk6sdYMHo/CD3O3k7exHLVWReX+BhJ6HN5/HqBx3TpKnn8BgB/GxfB5RD7BumBeH/M6/aP7n9A8hBBCCCGEEEIIIcTxkRBeCCFE51jxT8j70dsH/g/zOrQP/AerCnlqwTY8CozsEcVrNwwkyCBveUKcVHH94PLXYMyz8Ot7sG4O1O2DX16E5f+E3pNg6FRIPkdK1Z/l1GqN38f9xo5vdZzidODcuwFWzILC5Sh7VjEkwEyDXo/F1XRzG7G4DTjdYEgeAI8sgabjr3/3WmyWhsOOq1KrSerdhz888bxv26+LFqLWaLzl8EPCCAoLJyA0DK2u7dXnjbU1fPn35yjO3YVHpWFLYE/6J4fxyKU9j+dl8fF4FH56bwe715eh1qgYd0efNgN454ED7LtvOrhcbO5v5u0+ZYQawnhr7Fv0juh9QvMQQgghhBBCCCGEEMdPEgkhhBCn3p6V8NMM7/0JL0JMxwQFHo/C/323k7eW5QNwzeAkZvwuG52mY1Y8CiHaITACRjwA506DXV/Dmrdhz3LY9l/vLbaPN4zv83vQmTp7tqIrcbta9HRfjqpoFXp7c5l6FTA0QeVb6e4tL98H1BocNisuu90XwCuKQt8xl2KpqW5eZV9TjbWuFsXjOWwl/Kr/fNhqYG8MDCKxdx8uf+hx37atSxaDSsXqL+ZTW1qCojfx34iLsYSl8PX1A9Brj/89R/EoLP1wJ7vWlKBSq7jktmxS+7Ze1t5jtbL3nntwV1WxP97AP8ZYiAyI4p2x79AtrNtxz0EIIYQQQgghhBBCnDgJ4YUQQpxalgr47JYO7wNvd7l56D9bWLj5AAAPju3BPRd2QyUrboXoHBot9L7ceyvZ2lSq/lMo+Q0W3AOLn4RBk2HwrRCa1NmzFZ3B7YKSzU2h+wooWgX2Q3rDG0JaDd0PpTea0BubL+pQqVSMuH5KK6d00VhXg8fVXBJf8XjIPPcCLDVVWKqraaiporGmGrfLhc3SgMth9zvG0g/exW6xAKALjeRfgWOo0Ycx5+p+JIYFHPfLoSgKP8/PYceKYlQqGHtLb9IHRLU5tvivT2DfvoP6QDUzrnARERrPuxe/S7I5+bjnIIQQQgghhBBCCCE6hoTwQgghTh2/PvA9YPyLHVKWurbRye0frGdtQRVatYr/u6ovVw1K7IAJCyE6RGw2TJoFY56GjR/A2nehtshbpn7FTOg5AYbdCSnnSan6M5lf6L4c9qwCR73/mHaG7sdLo9USHO6/slylVjPmtrv9timKgs3SgKW6yu9iLo/HTVr/wd7tQaH8vaoHNW49U0emc1GvmBOaW2Odg/xN5aCCi6b0pvvgto9X9a9/Uff117jV8OIVKgITU3jn4neID4o/oTkIIYQQQgghhBBCiI4hIbwQQohTx68P/HtgCDrhQ+6rbmTK3HXkljUQZNDy5h8HcX731kv3CiE6WUA4nHcfDL8Hdi2CtW9Bwc+wY6H3Fp0Fw+6APleD/vhXFIsuoj2huzHEe/HFwdA9JrtDQ/fjpVKpMAUFYwoK9tuuVmuYMO1hbE43V72xknJ3HYNTwnjo4swTPmdgiIHfPTiQ0sI6MofFtjmu4ZdfKHvxJQDmjlHj6NONeRe/Q1RA66vmhRBCCCGEOFt4PB4cDkdnT0OILken06HRdP7v2kKcbSSEF0IIcWrsWQk/Pe+9P/4fHdIHfuv+Wm6et47yejuxZiNzbx5CrzjzCR9XCHGSqTXQ6zLvrWyHt1T95vlQtg0W3geLn4KBN8GQ2yAspbNnK9rL7YLizVD4izd0L1p92oTuR+PxKOytbmRnST27SupZnlvBtgN1hAfqefX6Aeg0x98HvrbcSkiUt5R+aEwAoTFtX4DiKCyk6P7pqBSFH/up2DumN3MvfpswY9hxn18IIYQQQogzgcPhoKCgAI/H09lTEaJLCg0NJTY2Vlp3CnEKSQgvhBDi5LNUwGe3guKGvtfCgD+e8CGX7CrjTx/+SqPDTc/YYObePIS4ENPRdxRCdC3RveCyf8JFT8LGD2HdO1BdCCtnwarZ0GOcd3V82kgpVd/VHBa6rwJHg/8YYwiknN8idM/q8qF7lcXBzpI6dpXUs7O4np2l9ewurafR4fYbp1LBy1f3O6H3nnVfF7Dh2z2Mv7MPyVkRRxzrbmhg99RbUTc0sisB1t3Qn3cvfROzXi4+E0IIIYQQZzdFUSguLkaj0ZCUlIRaffwXyQpxplEUhcbGRsrKygCIi4vr5BkJcfaQEF4IIcTJ5fHAf6dC/QFvH/gJL51wkDZ/bRGPf7kVt0fhvG4RvPHHQZiNug6acMdQPB5U8kvfGc/lcaFVy49THcIUBufeA+fcBbsXw5o3IX8J7Prae4vqBUNvh37Xgj6wU6eqKApulweXw4MhQHv2XEXudkHxpqbQfcVpH7rbnG52lzb4AvddpfXsLKmnvN7e6ni9Vk23qCB6xgXTMzaY87pFkhUfctzn3/BtIWsXFgBQVWw5YgiveDxsnXY7+j0HqAyGn6YO5o1xbxGgk7YNQgghhBBCuFwuGhsbiY+PJyBAfkYW4lAmk/fi8bKyMqKjo6U0vRCniPzVWAghxMm14hXI/aFD+sArisLLi3N49adcAK4cmMD/u7Ivem3XCbs9Dgc1n31G1bz3SPngfXQxMZ09JXGSWF1WJnwxgeHxw5mYMZEhMUPQdNGw8bSi1kDmpd5beY63VP2mj6B8B3z9APz4DAy40VuqPjztuE9TU9qI3erCYXPhtLpx2Lz3HVY3xiAd2Rck+MZ+88YW6iptOJsed9hceNwKAOZIIzfOONc3Nu/XMtQaFeZIE+ZIEzrDafz/hNvZSnn5Q0P30EPKy3e90N3jUSiqai4lfzB0L6y04FFa3yc5PIDMWG/YfvDf1IhAtCdQdr6lTT8UsfrLfADOuSKd/mOSjzh+/QsPE7RyEw4N/HDnIP5+5TsYtcYOmYsQQgghhBCnO7fbW7VKr9d38kyE6LoOXqDidDolhBfiFJEQXgghxMmzZyX8NMN7/wT7wDtcHh79fAtfbNwPwLQLu3H/2B5dZgWq4nRS8+WXVLzxBq4DxQBU//tDoh98oJNnJk6WFftXUG4tZ0HeAhbkLSAmIIbL0i9jUsYk0kPTO3t6Z4aoHjDhRZTRf8W5YT6OtR/jqK7Asew7nEuXo0vpR+yYyyHjQlCpWPVlHjaLE4fVG5Y7WwTrEYlBTLi7r+/Qn/9jA7YGZ+unTQ72C+ErD1ioK7e2OjbAbPD7eOUXudRV2Hwfm8x6QiKNmCNNRCYGM+Di5rBVUZQu8z0MaH/ontpipXt0FnShqh8VDfamoL2eXU1he05pA1anu9XxYQE6esaa/QL3HjHBBBpO3q9Jvy3dx4rPvBeTDbksjUGXph5x/LJ//53of38DwIo/9uHxKXPRabpW9RchhBBCCCG6gi71+5UQXYx8fQhx6kkIL4QQ4uTw6wN/zQn1ga+zObnr3xtYkVuJRq3i+SuyuXbokVcNniqKy0XtV19R8drrOPfuBUAbFUXE1KmEXv2HTp6dOJkuSr6ID8Z9wMK8hSwqXERpYylzts5hztY5ZEVkMSljEuPSxhFmDOvsqXYaxaPgtLvxeBSMgTrftryN5U3huAuHzd30b1NYnhDIkAnNK9znPPgLtkYnKD2Ap/yOn2D5jStKrvS2uhh6B9t/ycRmcbU6F2OQf2gZFGZAq1OjN2nRG7XoTRrvv0YN5ij/Ht+jrstEQWl6vHmsWqvCYW0OdxVFISbVjCFAR225FYfVhbXOgbXOQUl+HXUVVr8Q/uNn1qAo3tX05kgT5ggT5ijv/ZBIE3rTSf5R3e2EA5v8Q3enxX9MFw3drQ43u8u8YfvO4np2lXoD94oGR6vjDVo13WOCyIwx+61ujwo2nNI/RGz7ZT8/z88BYOClKQyZkHrE8d/88CZx/zcXgO1jMrjjkY+kBYYQQgghhBBCCCHEaUD+giOEEKLjtewDH9EdJrx83H3gi2ut3Dx3HTtL6gnUa3jthoGMyozu4AkfO8Xjoe6bRVS89hqOAm9PX01EBBG330bYtdeiNkqZ4DOdSqWif3R/+kf355Ghj7Bs3zIW5C1g+b7lbKvcxrbKbfxj3T8YkTiCSRmTuCDxAvSa06c0nuJRqK+24fSF5O7m4NzqJiTKRPqAKADcLg9fv7a5RaDuHeu0eQPq9P5RjLuzj/fAKlg8ZxueNuqA2yxhDJnQYh4o0DRUpVY1h+U6N2Z9GBAMFTnwzUP0112P0rM/uoyh6CNiWwTrWoxB/j/2XvP40Ha/Fkm9w9t8TKtrLuGmUqm4+LbsFs/FSV2FlboKG3UVVr8LATxuDzVlVhSPQk1p42HHjUkz8/tHBvs+/vW7PRgCtJijvGF9ULgBzbGWRm9P6G4K8y8v38mhu9ujsKfS0mJ1u7d3e2GlBaWV/4VUKm8peW/Q3hy4p0YEolF37lX/iqKwf1c1AP3HJHHO5elHvADgP+vmEvnXmRidUNo7hiv++QUaCeCFEEIIIYQQJ9GUKVOoqanhyy+/bHPM0qVLGT16NNXV1YSGhp6yuQkhxOlG/oojhBCi462c2dQH3ghXH38f+B3Fddw8dx0ldTaigg3MnTKE7ISQDp7ssVE8HuoX/0DF7Fex7/aWE9aEhBB+262E33AD6qb+SuLsotfoGZsylrEpY6myVbGoYBEL8xayrXIbS/YuYcneJZj1ZsaljWNixkT6RvY9Katv3W7P4f3NA3WExwcC4LC5+PW7PThsbpyHBus2NynZEZz/h+4AuJwePnh8VZvnSh8Q5Qvh1RoV+3bVoLQRrDsdzavFVSoVSVnhqACdUdu0El3jW2FujvRfhf6HR4eg1XtXrGt16kNetxFg/x1s+hjWvs2gyo+g5iPYAHQbC8OmQsZFnRYiGwN1GAN1RKeYD3tMpVbxx+fO8QX0LcP6ugqr3+vgcXtY8798vwsXVGoVweEGzJEmEnuG+ZU0tzc60Zu0qDwuOLCxKXRfcZTQfURT6N67016v8nq7r2f7wcB9d1k9Nqen1fERgXoyW6xqz4w10yMmiAB91/wVR6VSMebm3qT0iaTH0Jgjfg+Yu3kOAU+8RGwNWKKCOP/d/6LRnT4X8QghhBBCCCGO7kiBd2pqKnv27PHblpCQwL59+3yPT58+nenTp3fonGbOnInS4ornUaNG0b9/f1555ZUOPU9XsHfvXp5++mkWLVpERUUFcXFxXHHFFTz55JNERET4jd22bRvPPPMMS5Ysoa6ujuTkZK699lr+8pe/+Hqtg//nTa1WExMTw7hx43jxxRcJCzt6pcSDFzgcFB4eTr9+/Xjuuec477zzfNuffvppnnnmmcP2X7x4MWPGjDnm10IIcXJ0zb9QCSGEOH3tWQU/Pue9P/4fEJN1XIdZvruCO/+9gQa7i27RQcy7eQiJYZ0XcCuKQsOSJZS/Ohv7jh0AqIODCb95CuE33YQm6PguNBBnnnBjODf0uoEbet1AXk0eC/MWsjB/IWWNZXyy6xM+2fUJKeYUJqZP5LKMy0gISsDt9OBRFHR676pqp8PNvh1V/qXaWwTn8T1C6X1ePACNdQ7mz1iLw+rC3UpY2evcOC68qZfv4w2L9hw25qCIprAeQKtXozVo0OnVTQG5NyzXNYXlManNwbJKpWLszb29YXnTWF1TsG4wadHo/EPdy/7Ur92vZ8ghpeEPYwiGYXfAkNsgfwmseQt2fw+5i7238AwYegf0vx6Mh4fhnUWlUnnLz0eYIPPwX8Q97ubPpcvpIWtEPHWVNl9Y73Z5mkJ7W/MKe7cTz75f+df/1aNVOTGri703TSlmrQ6zpgdhgfWYu/Xs1NC90eEip7SBXS3C9l0l9VRa2i4lnxkbTGbMwcDd28M9KthwSud9vEoL64hODkalVqHWqMkcFtvmWEVReH3z6zS+9BqXFSq4DFqy3v032vCzt62FEEIIIYQQZ6tnn32W22+/3fexRqM5wuiOERJy6he/OJ1OdDrd0Qd2oPz8fIYPH06PHj34+OOPSUtLY9u2bTz88MMsWrSI1atXEx7urYq3evVqxowZw5gxY/j666+JiYlh7dq1PPjgg/z0008sWbIEvb75oumDnze3201OTg533HEH06ZN44MPPmj3/Hbt2oXZbKa8vJwZM2YwYcIEcnJyiI5urg6alZXFDz/84LffwTkLIboGCeGFEEJ0HEslfHZLiz7wNx7XYT7bsI9HP9+Cy6MwLC2ct28cTEjAqf1h/CBFUbAsX075rFex/fYbAOrAQMIn30T4lClozF0n1BOnnsejYGtw+gXlLfubRyZFMH3QdO4dcC8rdq9h3ad7qWmoR+PSUbnUxMfuDRg821F7NPQeFcPoa70XrdgtTr5547c2z6vWqnwhvFavxlrnH162DMNblkDXGTT0GZXoXXluOnwVekBIc6ipUqmYOnNku1+L7kNi2j32pFCrodtF3ltVPqx9Fzb+G6ry4NtH4KfnoN913kA+qkfnzrUd1C1KzeuNWi64LtP3seJRsNQ6qCurpy53F4GWlfDBE1C0hkabEY/nXRwYqHCnUkGq33G7pUVxybXe1gAej8LSf+8kOKKpD32UieAIIwFmfYdUanB7FApblJLfWVzHrtJ6iqoa2ywlnxoR2CJs9/6b0gVKyR+v/E3lfPf2VnoMjWH0Tb1QH+F5KIrCS+tfouCTudyzzvsCpfz9JUyZmW3uI4QQQgghhDhzBQcHExvb9kW87fHggw+Sk5PDwoULAXjllVe4//77+eqrr5gwwdsLLjMzkwceeICpU6f6rc6fMmUKy5YtY9myZcycOROAgqaWjAAbNmzgkUceYfv27fTv35+5c+eS2Y7fX55++mm+/PJLpk2bxowZMygsLMTtdvPdd98xY8YMtm7dikajYfjw4cycOZOMjAwArrrqKuLj43n11VcBmD59OjNnzmTr1q1kZWXhcrkICwvjs88+45JLLjniHP70pz+h1+v5/vvvMZm8F/8nJyczYMAAMjIyePzxx3njjTdQFIVbb72VXr168cUXX6Buuog9JSWFHj16MGDAAP75z3/yyCOP+I7d8vOWkJDATTfdxPz584/+yWohOjqa0NBQYmNj+etf/8qnn37KmjVrmDhxom+MVqs94f8/hBAnl4TwQgghOkYH9IFXFIVXf8rl5cU5AEzqF88//tAXg/bkX+nbGsvq1ZTPnIV140YAVCYT4X+8gfBbbkHbjhJS4sxXXWxh/nNr23y835gk4ruFolFrGBA1kN/224glqtWxX+5YyKKf32NSxiQGhg0mOtXcHJb7/vXeIpOaKy/oDBqufWKob+W53qjxC3BbUqlUXHBt1w+gT1h4Olz6Aox+DLZ8AmvfhvKdsO4d7y3jQhg6Fbpf3Kn9zo+ZywEHNqIq/IWgwuUE7V1DvNO/n3xQkIGpvd6jLmIkdQH9qXNEUldl95W5D09o/n/HUmNnx8riw06j1asxR5rIHBbLwEtSAG/wX13SSHCk0Vex4SBFUSivt/tWte8sqWdXaR27Sxuwu1ovJR8ZpPetaD8YuHePDsak75zv9ydD4W8VfPfOVjwexa+VQGs8iofnVz/PhqWf8Mwi72sWcdedmC+5+FRMVQghhBBCiDOKoihYne6jDzwJTDrNSWk/d7xGjRrFnDlz8Hg8qNVqli1bRmRkJMuWLWPChAmUlJSQk5PDyJGHX4Q/c+ZMcnJyyM7O5tlnnwUgKiqKwsJCAB5//HFeeukloqKiuPPOO7nllltYsWJFu+aVm5vLp59+yueff+5b4W+xWHjggQfo06cPFouFJ598kt/97nds2rQJtVrNqFGjePvtt33HaPlcsrKyWLduHTabza9se2uqqqr47rvveP75530B/EGxsbHccMMNfPLJJ7z++uts2rSJ7du389FHH/kC+IP69evHmDFj+Pjjj/1C+Jb279/PV199xbBhw9r1uhyqsbGRuXPnApzyagFCiBMnIbwQQoiOsXKmt/TzcfaBd7o9PPHlVuav2wvAnSMz+PMlmUdcNXiyNK5fT/msV2lc6w1XVQYDYdddR8Rtt6KNjDzl8xFdl96kBRXoDZqmEuzeENzQdD+yReBpCtYx+o89vWF5U6Bep1Tzc9kSvt3/Dbstu1AKFBYVLCLSFMmEiyYwMWMimeFHvopcpVIRkSDtEFplCIIht8LgW6BgGax5G3Z9A3k/eW9hqU2l6m8AU2hnz/ZwTaG7t6f7cti7Bg4J3TGFe8vKH7xF9UKrVhMOHK0InVanZtikdF9AX1thpaHajsvhoeqABXuj0zfWUuvg42fXAKAL1KIEamnQQpnHRYHNTp7bSaXm8KDZpNPQIyaoKWw3+1a3RwadHqXkj1fR9kq+fWsrHrdCt0HRXDS57VXwLo+Lp1Y+xbLN/+P/feFG74ag0aOJuvfeUzxrIYQQQgghzgxWp5veT37XKefe/uwlBOg7JnZ55JFH+Otf/+r7+IUXXmDatGnHdIwLLriA+vp6Nm7cyMCBA/nll1946KGH+OKLLwBYsmQJMTEx9OzZ87B9Q0JC0Ov1BAQEtLri+vnnn/eF948++igTJkzAZrNhNBqPOi+Hw8EHH3xAVFTzQoWrrrrKb8ycOXOIjo5m+/btZGdnM2rUKO677z4qKirQaDRs27aNp556iqVLl3L33XezdOlSBg0aRNBRWkbu3r0bRVHo1atXq4/36tWL6upqysvLycnJ8W1ra+zy5cv9th38vLndbmw2G8OGDePll18+6mvSUmJiIuAN4RVFYdCgQVx00UV+Y3777Te/59q7d2/Wrm17oYgQ4tSTEF4IIcSJa9kHftzfj7kPfIPdxZ8+/JVlOeWoVfDM5dnceE7KSZjokVk3b6Z85iwsK1cCoNLpCL36aiLuuANdTPRR9hZno6AwA3e/NhpVOy4W0eo09D4/3m9bHCFkdruZ25QpbK/czoK8BSwqWESFtYL3tr/He9vfIzMsk4kZE5mQPoFIk1wEclxUKkgf5b1VF8K6d+HX9733v3sMfnoe+l3jXR0fffgfHk4ZlwMO/NoUuq84Suje1NM9qudxr+Y3BesZPD7Vb5vb5aG+0kZ1WSO1Kg9fbTnArpJ69uTWkKYGvQecFhdYXBiBZCAZDQEGD0VJBnrGBZMZEkjwllqi4wKJTwgmNCoAc5QRc4TJe+HKGW7frmq+eeM33C4P6f2jGHNL7zarUzjdTh795VF+yvuOp/7rIaIe9BkZxP/j76hOpyoNQgghhBBCiA738MMPM2XKFN/HkcexMCQkJIT+/fuzdOlSdDodarWaqVOn8tRTT1FfX8/SpUtbXQXfHn379vXdj4uLA6CsrIzk5OSj7puSkuIXwAPk5eXxxBNPsHr1aioqKvB4vFXCioqKyM7OJjs7m4iICJYtW4ZOp6Nfv35MmjSJWbNmAZzQc2lJaeqf1p6KBoqiHDbu4OdNURT27t3LY489xoQJE/j55599q/6P5pdffiEwMJCNGzfyyCOPMG/evMNWwmdmZrJgwQLfxwbDmX2xuxCnozP/r2BCCCFOrpZ94PtcDQNvOqbdy+ps3DxvHdsO1GHSaXj1ugGM6X1qe0tbt22jYtarNCxb5t2g1RJ65ZVE3jkVXXz8kXcWZzWVSgUdUKxBpVKRFZlFVmQWDw1+iOX7l7MwfyFL9y5lV/Uudq3fxcsbXubc+HOZlDGJ0UmjMWqPfmW5aEVYKlw8A0Y9Br99CmvegrLtsP5f3lvaSBg2FXpcCuqTXBrdL3RfDkVrwGX1HxMQASnndUjo3hpFUSjzlZKvY2ext5x8bnkDjkNLyZvB4IE0k4HMIBOJOh3hqDHaFR4emUjWOd4/uhTn1vDFVwfYU2RhD2V+hzAG6Rg8LpV+FyUB4LC5KC2sIyTSRFCYoc2w+nRxYHcNX7+2GbfTQ0qfCC6+LQtNG8/J7rbzwNIH+HnvMu5cDJn7FNTBwSTOfhXNUVZuCCGEEEIIIdpm0mnY/uyRe4KfzHN3lMjISLp163bCxxk1ahRLly5Fr9czcuRIwsLCyMrKYsWKFSxdupTp06cf13FbhsIHg+iDwfnRBAYGHrZt4sSJJCUl8c477xAfH4/H4yE7OxuHw+E7xwUXXOB7LqNGjSI7Oxu3281vv/3GypUr2/VcunXrhkqlYvv27VxxxRWHPb5z507CwsKIjIykRw9vS7+Dfe9bG9u9e3e/bS0/b927d+eVV15h+PDhLFmyhDFjxhx1fgBpaWmEhobSo0cPbDYbv/vd79i6datf0K7X6zvk/w8hxMkjIbwQQojj5/HAl3c294G/7J/H1Ad+d2k9U+auY3+NlcggPXMmD6FfUujJm+8hbLtyqJj9KvWLf/Bu0GgIufxyIu++C31T2Sch2nKgxsp98zcSYtJhNukIOcrNbNJhbMcv4zqNjtHJoxmdPJpaey3fFX7HgrwFbC7fzPL9y1m+fzlBuiAuTr2YiekTGRgzELXq9A4uO4U+AAZNgYGTvQH42rdg59fesvUFyyA0GYbcBgNuhICjFXZvp/aG7i1Xukdmdljo3mB3saupb/uukrqm3u311LQoO+83Fb2G7jHB9GoqIe/t3W4mPFB/xPOYo0yM/mNPaius1FdYqa2wUVdhxdbgxNbgRKNtfp+o3G9hwSubAFCpVQSHGzBHmjBHmQiJNJHUO5yopOAOef6ngs3ixONWSO4dzqV3ZKPRtv65a3Q2Mu2naawpWcP4zRou3OQAlYqEl1/CkJZ2imcthBBCCCHEmUWlUnVYSfgzwcG+8Fqt1hcCjxw5kvnz57fZD/4gvV6P2+0+6XOsrKxkx44dvPXWW4wYMQLgsDLvgK8vvF6v59lnn0WlUjFixAhefPFFrFbrUfvBA0RERDB27Fhef/117r//fr++8CUlJXz44YfcdNNNqFQq+vfvT8+ePfnnP//Jtdde69cXfvPmzfzwww/87W9/O+L5Dq5+t1qtRxzXlhtvvJFnn33WN18hxOlD3omEEEIcv5WzYPf33j7wf5h3TH3gV+VVcscH66m3uUiPDGTezUNJjgg4eXNtwZ6XR/ns2dQv+ta7QaXCfNllRP3pbvSpqSd8fI/NhcqgaVfZKnH6qmiws66w+pj2MWjVbQb0bW27IHYSE9OuotS6l6/yv2Jh3kIOWA7wxe4v+GL3FyQEJTAxYyIT0yeSbD56yTdxCJUK0kZ4bzVFsG4O/Pqe9/7iJ2HJ36Dv1d7V8cfYagOXA/Zv8Abuhb/A3rWnJHR3uT0UVFiaVrfXs7MpcN9X3fov/GoVpEUG0jPW3CJsDyYpLKDNPuZHEhhiOKz1AnhXvddV2AgwN4f4bqeb0JgA6iqteFwKdRU26ipssNP7taUzaHwhfNmeOpb8eychkSZvUB9pbPrXRHCEsc3A+1RK7x/F5fcPIDo5GG0bF93UO+q5+4e72VS+if779Uz+3g5A1AP3E9T0xyYhhBBCCCHE2aG2tpZNmzb5bQsP76ALwZsc7Au/cOFCZsyYAXjD7KuuuoqoqCh69+7d5r6pqamsWbOGwsJCgoKCOnxuB4WFhREREcHbb79NXFwcRUVFPProo4eNO9gXXqvV+sL6UaNG8eCDDzJw4EDMZnO7zjd79mzOPfdcLrnkEmbMmEFaWhrbtm3j4YcfJiEhgeeffx7wXtDx7rvvcvHFF3PVVVfxl7/8hdjYWNasWcODDz7I8OHDD1t9X19fT0lJia8c/Z///GciIyM599xzj+u1UavVTJ8+nRkzZjB16lQCAk7N30+FECdOQnghhBDHp2g1/Pis9/64v0Nsdrt3/d+m/Tz8ny043B4GpYTx7k2DCTvKysqO4Nizh/LXXqPuq6+9q/iB4EsvJeqeP2HowPJNzrJGUMCQ0r4f/MXpKTk8gNeuH0it1el3q7M6qbMdvs2jgN3loazeTlm9/ZjPp9eoMZt6Yjb1JjGwCJtxLdWqdexv2M+bm9/kzc1vkmjqxTnRFzMibgzxIeG+QN+kk4tC2iU0GcY+A6Mehd8+85aqL/3NG8r/+p43KB96B2SOB00rP0a77LD/16OE7pFNofv5zeXlj/NzoygKJXU2X9juDdzryStrwOFuvQRgdLCBnnFmesYGkxnjDdy7RQe1q0rDidIbtUQm+l+sldgznBueOQfFo2CpdVBXYaWuwkpt079Ryc2r4KtLGqnY20DF3obDD66C0X/sSe/zvOF/Q7WNA7trfCG9KVh30r4GKvbVozdqMUd6V0/Edwttc2yNrYapP0xle+V2UqyB/GWBgsrdiHn8eCJuu+2kzE8IIYQQQgjRdS1dupQBAwb4bZs8eXKHniMkJIQBAwZQVFTkC9xHjBiBx+M5ag/1hx56iMmTJ9O7d2+sVisFBQUdOreD1Go18+fPZ9q0aWRnZ5OZmcmsWbMYNWqU37js7GwiIyNJSUnxBe4jR47E7XYfUz/47t27s379ep5++mmuueYaKisriY2N5YorruCpp57yu9jgvPPOY/Xq1TzzzDOMHz+euro6kpOTmTx5Mn/5y18O68X+5JNP8uSTTwIQFRXFkCFDWLx4MREREcf56sAtt9zCU089xezZs/nzn/983McRQpxaKkVRlM6eRFdTV1dHSEgItbW17b5ySgghziqWSnhrBNTt9/aBv/LtdoVIiqLw5rJ8/u/bnQCM7xPLy1f3P+nhj2PffireeJ3aL/8HTSW0gsZcRNS992LMzDyhY7tq7TSuL0XxKISMTQG8z7NxYxmBA0+8t728J3W8znhNPR6FBoeL2sbmUP7Q8P7Q0N533+bC7WnjxzWVA23wDnQhv6IJzEGl8o5TPBpcDb1x1g7A3ZCJTqM9bMW92XiUFfkB3n8D9WdxgK8oULTKG8bvWAhKUwm+kCQYfAv0uw6qC48hdB8BUZnHFbrX25zklHpD9p3FTaF7aT211tZLyQfqNfRoWtHuDdu9wfupuODpZGmsc1C2p84b1JfbfEF9XYUVl8PDhD/1JbVPJAA560pYPGe7b1+tXu0L5M2RRnoOj+uQMveV+xv48uWNaA1qfvfAQF8Q35oKawW3f387uTW5xKjDePWzYNiVj6F3L1I//BC1qe19xZlL3uc7lryeQgghugp5T+p4R3pNbTYbBQUFpKWlYTQaO2mGQnRt8nUiRMdp7/u8rIQXQghxbA72ga/bf0x94F1uD08v3Ma/VxcBcOv5aTw+vtdxlTpuL2dxMRVvvkXN55+DywVA4MgLiLp3GqbsYywr3YLi9mDbUYVlfSm2XVWggEqvIWhEArmNeXxT8A2LChbxZsabpIekd9TTEacxtVqF2egNvpOOcV9FUWiwu1oE9K5Dgvre1FonUdZYzh77csqVFTg0+9GZf0Nn/g2PKxBXXT+qagdSUZ4AHNvXnFat8oXz/mXztUctqx9k0J7eAb5KBSnnem+1+2H9HNgwD2r3wo/PeG+HOsHQ3en2kF9uYWdJnd/q9v01rZeS16hVTaXkmwL3prA9IdR0Ur+/doYAs94XsrekKArWeic6Y/MFXXqDlvjuodRVWGmoseNyeKg6YKHqgAWApJ7NveZ3ry9l+X92ExJpIripxH1zyXsTgSF6VK28ltUlFv73ykZsFifRkcEYAnVtzr3EUsJt39/Gnro9RBujeG1FDzy7lqEJCyPp1VclgBdCCCGEEEIIIYQ4w0gIL4QQ4tgcRx/4RoeLaR9v5IcdZahU8MSE3txyftpJm6KzrIzKt9+h5pNPUJzeVaKB555L5L33EHBIia9jOm6FFcu6Eho3lOJpaF59qiQb2JSQz7xvXmJXfY5v+7cF33J3/7uP/4kIgbf/WLBRR7BRR2LY0UaPBmBX1S4W5C3g6/yvqbRVog9fiT58JXEBqQwIu4jugSPBFXKEFfgu6qxOHG4PLo9ClcVBlcVxzHNXqzgsmD/049ZuZpOOYIO2a4XIIQlw0ZNwwZ9h2xew5k0o3gyBUf6he2SPdlcGKa61+UL2g6F7XnkDTnfrlQ9izUZfv/aDvdu7RQdh0J78UvJdmUql8uszD5DaN5LUvt7A3u30UF9la1Hq3kZ4QqBvbF2FlcZaB421Dorzag87/vi7+pDWLwrw9qU/sLuGALOeFZ/nYq13EpkUxMRp/TGYWv/Vam/dXm77/jYOWA4QHxjP66UX4/j+XdBqSZj5CrqEhI56KYQQQgghhBBnmQ8//JCpU6e2+lhKSgrbtm07xTOCrKws9uzZ0+pjb731FjfccMNJPX/Lsvut2b59O8nJySd1Dm0ZN24cv/zyS6uPPfbYYzz22GOneEZCiJNJQnghhBDt59cH/v/a1Qe+vN7Obe+tY/O+WgxaNTOv7c+l2XEnZXquykoq351D9Ucfodi9PbcDhgwhatq9BAwZcsLHb9xYRsOyfd4PAjUUpVXxifEbfrL8AjXezXq1ngsSL2B8+nhGJIw44XOKrktRFNxVVWjCw7vcau/M8EweDn+Y+wfdz6oDq1iYt5Cf9v5EcWMhxY1zUPEvhsUNY1LGJC5KvogAXcBhx1AUBZvT0+6y+YfeHC4PHgVqGp3UNLZeMv1I1CoIPkLJfHMrK/EP3oKNOjQnK8DXGaH/9d5S9NZqMIUdNXSvszl9YfuuprB9Z0k99TZXq+ODDFp6xASRGWumV1xz7/bQgNO3lHxn0ujUhMYEEBpz+P/nANkjE0nqFU5teVN5+0obdU3366vsmKOaV6nv3VHF6i/zfR9HJAQy6b7+GNtYBZ9fk8/t399OmbWMFHMKbwTdQcOTfwEg5i+PEjh0aAc+UyGEEEIIIcTZZtKkSQwbNqzVx3S6tqt1nUzffPMNTmfrfweIiTnx1o1HEx8fz6ZNm474eGd59913sVpbr3TXsg+9EOLMICG8EEKI9mmsgs9u8fZE7vMHGDj5qLvklTcwZe5a9lZZCQvQ8e7kwQxK6fgfKF3V1VT9ay5VH36I0tgIgKl/f6Lum0bAOeccc0CqKArO/Q1Y1pdi7BWOKbNpzn0Dqclx8F3oSj50fYHT7QILqFVqhsUOY3z6eC5Kvohg/Yn3GRZdn6ukhNzRF6IJCUHfrRuG9HT0GekYMrphyEhHGxfX6eG8Vq1lROIIRiSOoN5Rz+I9i1mQt4ANpRtYXbya1cWrMWlNjE0Zy8SMiQyJGYJG7V1VrVKpMOk1mPQaYkOOvVeYzen2D+YbD/a4P3qQb3N6A/yDHx8rlcobZB9ppf2RHmtXgK9SQYD/9zOHy0N+RUPz6vZib+B+oNbW6iG0ahXpUYG+EvIHw/bEMFOn/79zNjGYtESnmIlOObyHl8ft8ftchMUE0m1wNHXlVoLCjYy8LhNTUOsXR+ys2snUxVOpslXRLbQbb/Z8ipobp4LHQ+gffk/Y9deftOckhBBCCCGEODsEBwcTHNy1/g6VkpLSqefXarV069atU+fQlgSphCbEWUVCeCGEEEfn8cB/D/aB79auPvDrC6u47f311DQ6SYkIYN7NQ0mLDDziPsfKXVdH1bz3qHrvPTwWb59fY3Y2UfdNI/D88485xPI0OmncXI5lbQnOYu/xnNVWlhs38E3+N/y872ccQQ5oWrzaN7Iv49PHc0nqJUSaDu9TLM5sjr17QaXCXVuLdcMGrBs2+D2uCgjAkJ6OISMdfXoGhm4Z6NPT0SclodKe+h/BgvXBXNn9Sq7sfiX76vfxVf5XLMxbSFF9EQvyFrAgbwExATFcln4ZkzImkR6afkLnM+o0GHUaYszHHuDbXe7WA/pGb6n81kL8g+F+o8ONokC9zUW9zcW+6tavMD+SYIMWsy+sbz3MN5t0GLRq8sotvt7teeUNuDytl5KPCzlYSt7sKyefHhV41peS7+rUGrXfx+kDokgfEHXU/baUb+HOH+6k3lFP74jevHHOy1RPnoqnrg5T//7EPPGEXGghhBBCCCGEEEIIcQaTEF4IIcTRrXoVdn/X1Af+PTAc+Qrbb34rZvonm3C4PPRLCmXO5MFEBhk6bDruBgvVH7xP5dx5eOrqADD07EnUtHsJGj36mIINRVGw59fSuK6Exq2V4PJ4t6shN7aYD51vsWbpZt/49JB0JqRPYFzqOJLMSR32nMTpJ3DoUDI3/oqjoAB7Xj6O/DzsuXnY8/NwFO5BaWzEtnUrtq1b/fZT6XToU1PRZ2R4Q/puGegzMtCnpqI2dNzXyZEkBidyZ787mdp3KpvLN7MwbyGLChdR2ljKnK1zmLN1DlkRWUzMmMi4tHGEG09tSTSDVkN0sIbo4GMP8B0uT9ur7RuPXFbf4nADUG93UW93sb/m+AL8g/3avWG7mcyYYEICOqcMoDj11pWs454f76HR1ciA6AHMHv0qtQ88hiMvD210NAmzZqLWS2sBIYQQQgghhBBCiDOZhPBCCCGOrGgN/PCM9347+sC/+0s+z3+zA0WBsb1jmHXtAEz6jlnp6WlspPqjj6h8dw7umhoA9N0yiLrnXoIvHotKrT7yAVqhUqmo/aYA5/4GAKrNFhaYl/BVwFIaNN7S9nGBcYxLG8f4tPH0COshqxeFj9poxNirF8Zevfy2K04njr17sefl4cjL84b0eXnY8/NRbDbsu3dj372ber+DqdElJWJIz/Cunm8qa69Pz0AT1LFVJA5SqVT0j+5P/+j+PDL0EZbtW8aCvAUs37ecbZXb2Fa5jRfXvcj5ieczKWMSIxNHotd07fBQr1UTGWQ4rgt/nG5Pq+Xx62yuVoP8RqeblPAAesY1B+7xIUb5HnEWW7F/BfctuQ+7286wuGHMGj0LyxtzaPjpJ1R6PYmzX0UXHd3Z0xRCCCGEEEIIIYQQJ5mE8EIIIdrWWAWf3dyuPvBuj8KMr7czd0UhADcNT+GpiVnt6618FB6bjZpPPqHi7XdwV1YCoE9NJfKeezCPuxSVpn0hv+JWsO2qovHXUsJ+3wO1UUtudS5bE7bR4Kjkv4GLyTHuARWEGcK4JnUi49PG0z+6P2rVsQf84uyl0um8q9zT02HsWN92xePBeaDYf9V8Xj72vDw8dXU49xTh3FNEw5IlfsfTxsY29ZzPwJBxMKTPQBvecSvU9Ro9Y1PGMjZlLFW2KhYVLGJh3kK2VW5j6d6lLN27FLPezKWplzIxYyL9ovqdcWGzTqMmIshARAdW7hBnjx+LfuThZQ/j9Di5IPECXh71MvYfl1Hx+usAxD7zDKa+fTt5lkIIIYQQQgghhBDiVJAQXgghROuOoQ+8zenmvvkb+W5bKQCPje/J7SPSTzig8zgc1PznP1S+9TausjIAdElJRN59NyETL2t3X21XhRXL+lIsG0rx1DsAWG/6krd1H5NTneMdFAkmrYnLki9jfNp4zok/B51aykeLjqVSq9EnJqBPTCDoggt82xVFwV1RgT0vH3terjeYz/fed5dX4CopwVVSgmXlSr/jacLC0Geke1fPd8vw9p7PSEcbG3tCX3/hxnBu6HUDN/S6gbyaPBbmLWRh/kLKGsv4NOdTPs35lOTgZCZmTGRixkQSghKO+1xCnAm+yf+Gx5Y/hltxc3HKxfy/Ef8Pd14BBx79CwDhk28i9HdXdO4khRBCCCGEEEIIIcQpIyG8EEKI1h3sA68xwB/mtdkHvsri4Lb31vFrUQ16jZqXru7HxH7xJ3Rqxemk5r//peLNN3EdKAZAGxdH5F13Evq736HSHT0cV5werFsrsKwrwZ5f69veoLPybfByFlUt54C+HK1ay4iEEYxPG8/IpJGYtKYTmrsQx0OlUqGNikIbFUXgOcP8HnPX1mLPz/eVtbfn5+HIzcO5fz/u6mqs6zdgXb/Bbx91YCD6ppX4+m5Nq+fT09ElJbW7csRBGaEZTB80nXsH3Mu60nUszFvI4j2LKaov4rVNr/HaptcYFDOISRmTGJsylmB9698rhDhTfbH7C55e+TQKCpMyJvHMuc+gqmtgz5/uQWlsJGD4OUQ//HBnT1MIIYQQQgghjmrKlCnU1NTw5Zdftjlm6dKljB49murqakJDQ0/Z3IQQ4nQjIbwQQojDHdYHvk+rwworLEyZu5bCykbMRi3v3DSYYekRx31axeWiduFXVLz+Os69ewHQRkcTcedUQn//e9T69vei9jQ6qfp0FyigoLAhaDvfhqxgTfBvuFUehsQO4Y60PzEmZQwhhpDjnrMQJ5smJISAAQMIGDDAb7vHasVRUIA9L6+p97y3rL2jqAiPxYLtt9+w/fab3z4qvR59aqp39XyLnvP6tNSjfn1p1BrOiTuHc+LO4fFhj/ND0Q8syFvA2uK1bCjdwIbSDbyw5gUuTLqQiRkTGR4/HK1aftQUZ7YPd3zI/1v7/wC4usfVPH7O46jcHvY+8ADOvXvRJSaS8PLL7a7cIoQQQgghhDh7HCnwTk1NZc+ePX7bEhIS2Ldvn+/x6dOnM3369A6d08yZM1EUxffxqFGj6N+/P6+88kqHnqezTZkyhffeew8AjUZDfHw8EyZM4IUXXiAsLMw37mifByGEOBL5a5AQQgh/jVXw2S3ePvDZv4dBU1odtrGomlvfW0+VxUFCqIn3bhlCt+jjWwGruN3UfbOIitdew1FYCIAmIoLIO24n9JprUBuNR9zfY3XRuLkMV5mVgAlJ/LL/F77J/4aeYVFUqKv4PnQ1FbpqsiKyuD/tAS5JvYSYwJjjmqsQXYXaZMLYuzfG3r39tisOB469e7Hn5nl7zx8M5/PzUex27Dk52HNyqPc7mBp9UpKv57w3pM9An5aOJijwsHMH6AKYlDGJSRmTKLGU8FX+VyzMW0h+bT6LChexqHARkaZIJqRNYGLGRDLDM0/uiyFEJ3j3t3eZ+etMACb3nsyDgx9EpVJR+uI/sKxchcpkIvG12Whb/AFHCCGEEEIIIdrr2Wef5fbbb/d9rDnGynbHIyTk1C9UcTqd6NpR9bKjXXrppcydOxeXy8X27du55ZZbqKmp4eOPP/Yb1xmfByHEmUFCeCGEEM18feD3QXgGTHyl1T7w328rYdr8jdicHrITzPxryhCig48clLdG8Xio/34x5bNfxZGbB4AmNJSI228j7LrrUAcEtL2vouAoqMOyroTGrRXg9AAwuWoa+aoi7zxjINWcytVp1zEubRypIanHPEchTjcqvd5bfj4jw2+74vHgPHAAe+7BnvPesvb2/Hw89fU49uzBsWcPDT/95LefNi4OQ3q6X895fUaGL1iMDYzltj63cWv2rWyv3M6CvAUsKlhEhbWC97a/x3vb3yMzLJOJGROZkD6BSFPkKXsthOgoTreTovoiCmoLKKwrZGvFVn4s+hGAu/rdxV397kKlUlH7v/9RNW8eAPF/+xvGTLkARQghhBBCCHF8goODiY2NPaFjPPjgg+Tk5LBw4UIAXnnlFe6//36++uorJkyYAEBmZiYPPPAAU6dO9VudP2XKFJYtW8ayZcuYOdN7AXJBQYHv2Bs2bOCRRx5h+/bt9O/fn7lz55LZjt+Bnn76ab788kumTZvGjBkzKCwsxO1289133zFjxgy2bt2KRqNh+PDhzJw5k4ymv29cddVVxMfH8+qrrwIwffp0Zs6cydatW8nKysLlchEWFsZnn33GJZdcctR5GAwG3+ubmJjINddcw7ym3+da6ojPgxDi7CQh/ClQdWAf1vp6otPS0ekNnT0dIYRo26rZzX3gr36v1T7w768q5KkF21AUGJ0ZxezrBxJoOLa3E0VRaPjpJ8pfnY19504A1GYzEbfcTNgfb2x15e1B7noHjb+WYllXiqvC6tteaDjAd6ErKPWUEx0czbjUcYxPH0+v8F6oWrmQQIizjUqtRp+YiD4xEUaN8m1XFAVXWXmLVfMHQ/p83BUVuIqLcRUXY1mxwu94mvDw5p7z6d7V8z26dePRoY/y0OCHWL5/OQvzF7J071J2Ve9i1/pdvLzhZc6NP5dJGZMYnTQao/bYL94R4mSqtlX7gvaC2gLf/X31+3Ar7sPGPzDoAW7OvhkA629bKX7iSQAi7roT86VH/6OPEEIIIYQQ4iRQFHA2ds65dQGtLmjpLKNGjWLOnDl4PB7UajXLli0jMjKSZcuWMWHCBEpKSsjJyWHkyJGH7Ttz5kxycnLIzs7m2WefBSAqKorCpiqWjz/+OC+99BJRUVHceeed3HLLLaw45G8HbcnNzeXTTz/l888/960st1gsPPDAA/Tp0weLxcKTTz7J7373OzZt2oRarWbUqFG8/fbbvmO0fC5ZWVmsW7cOm83Geeedd8yvU35+Pt9++22nrMgXQpy5JIQ/Bbb8sIgNX/8PtUZDZHIqcd16ENstk7huPQiPT0SlVnf2FIUQoqkP/NPe+630gfd4FP7v25289XM+ANcNTeK5y7PRatr/PUxRFCy//EL5rFexbd0KgDowkPDJkwmfMhmN2XzUY+zduAvtohoArCobS0PW813oSorNVVycdjGvpr3GoJhBqFXyvVWI9lCpVOhiotHFRBM4fLjfY+6aGuz5TeXsm1bNO/LycB44gLuqisaqKhrXr/fbRx0UhD49ncyMDPpm9OaRpAtZZdjH5w2/sKlyC8v3L2f5/uUE6YK4OPViJqZPZGDMQPmaFaeMy+NiX/2+w4L2gtoCauw1be4XqAskzZxGakgqaSFpDIoZxKCYQd5jlpez7957URwOgkaPJuree0/RsxFCCCGEEEIcxtkIL8R3zrkfOwD6theXHItHHnmEv/71r76PX3jhBaZNm3ZMx7jggguor69n48aNDBw4kF9++YWHHnqIL774AoAlS5YQExNDz549D9s3JCQEvV5PQEBAqyvBn3/+eV94/+ijjzJhwgRsNhvGo7SVBHA4HHzwwQdERUX5tl111VV+Y+bMmUN0dDTbt28nOzubUaNGcd9991FRUYFGo2Hbtm089dRTLF26lLvvvpulS5cyaNAggoKC2vXafPXVVwQFBeF2u7HZbAC8/PLLh43riM+DEOLsJCH8KaDR6ggICaWxtoaygjzKCvLYvHgRAHqTiVtnvUuA2dtrxemwy2p5IcSp59cH/qrD+sDbnG4e+s9mvtpSDMDDl2Ry96iMdq8wVxSFxtWrKZ85C+umTQCoAgII/+MfibjlZjShoa3u56q0YllfiiXYwffmlXxT8A0FFfk8GTCVpSHrWRe2nXNShnNP+oOcF38eOo1crSpER9KEhhIwcCABAwf6bfdYLNgLCr2r53PzvKXt8/JxFBXhaWjAtmULti1bfOMzgccNBkhKojhKy0ZTGTvMdaw98Dn/2/k5sSGJXJZ+GRMzJpJiTjnFz1KcqeocdRTWHh60F9UX4fK42twvPjDeF7SnmdNIC/EG71GmqFbf9xSHg333TcdVUoI+PZ34f/xdLrIVQgghhBBCnLCHH36YKVOm+D6OjDz29m4hISH079+fpUuXotPpUKvVTJ06laeeeor6+nqWLl3a6ir49ujbt6/vflxcHABlZWUkJycfdd+UlBS/AB4gLy+PJ554gtWrV1NRUYHH4209WVRURHZ2NtnZ2URERLBs2TJ0Oh39+vVj0qRJzJo1C+CYn8vo0aN54403aGxs5N133yUnJ4d7W7mguiM+D0KIs5OE8KfAiOuncP51k6mvLKckN4fi3BxKcnMoyd+NzmDEFNy88vPrmX+nND+X2IwexHbrQVy3TGLSu2E4Ql9kIYQ4IYf2gb/sFb+yWTWNDu54fwNrC6vQaVT8/fd9+d2AxHYfvnHdOspnzvKtllUZDIRdfz0Rt92KNiLisPGK04N1WwW1a/bhLrAAUGDYz0tpL4EKtBot3563ifFpk3gu6Z8E6LrW90dLTTVOm43Q2LjOnooQJ406MBBTdham7Cy/7YrDgWPPnsPK2jvy81HsdsgtIDYXxuG9AbhVUBq2h32Rr/NhxOuo01LoPegSRpx7LWFh0nNNHJnb46bYUuwL2gvqCnzBe6Wtss39TFoTKeYUX8h+MGhPMadg0pqOaQ4lM57H+uuvqIODSXxtNpp2rroQQgghhBBCnCS6AO+K9M46dweJjIykW7duJ3ycUaNGsXTpUvR6PSNHjiQsLIysrCxWrFjB0qVLmT59+nEdt2Xp9oMXLB8Mzo8mMPDwagETJ04kKSmJd955h/j4eDweD9nZ2TgcDt85LrjgAt9zGTVqFNnZ2bjdbn777TdWrlx5TM8lMDDQ9/rOmjWL0aNH88wzz/Dcc8/5jeuoz4MQ4uwjIfwpolKpMEdGY46Mpsc55wPgcbtpqKr0W1FTmp9LQ1UluVWryF236uDORCQkkdi7D2Nuvaszpi+EOJO17AP/h3lgbL4waG9VI1PmriWv3EKwQctbNw7i3G7tu9rTumkT5bNmYVnp/V6m0ukIveYaIu64HV109GHjHcUWatfsxbKxDK296Qd3PPwauIPvQlcyOGYQ49LHMzZlLGHGsBN/3h3IZmkgd+0qdq78maLfNtNt6HAmPfCXzp6WEKecSq/H0L07hu7dgeZ+2IrbjXP/fm9Z+7ym3vP53hL3WCzEV0F8leIdvKoQPnqLEt5id7gRfXo60VmDMGV0w9CtG4b09DarZ4gzV6OzkYK6guZV7bWFFNQVsKd2Dw6Po839ok3RvoC95cr2mMCYDmmBUD1/PjWffgoqFQkv/gNDWtoJH1MIIYQQQghxglSqDisJfyY42Bdeq9UyZswYAEaOHMn8+fPb7Ad/kF6vx+12n/Q5VlZWsmPHDt566y1GjBgBwPLlyw8bd7AvvF6v59lnn0WlUjFixAhefPFFrFbrcfWDP+ipp55i3Lhx3HXXXcTHd1I7AyHEGUVC+E6k1mgwR/kHUbf88y1KC3KbV8zn5VBXXkblviKMh6yq+Wb2S5iCzb4V8yHRMe0uDS2EEADsXQs/PuO9P+7/QVxzGanf9tVy87x1VDTYiQsxMu/moWTGBh/1kNat2yh/dRaWZT97N+h0hF51JZF33omulf5RTreTlQdWonxeQreSeLSoKNVW8n3oKgpSyhneawRPpf2d2MCutSLWabeR/+s6dq5YRsHG9bhdzaWNCzfvpWJfPZGJR3+9hDgbqDQa9MnJ6JOTYfRo33ZFUXCVlXmD+dw8anO2UbbjV9SFBwiyuAmuskHVdmrXb6e2xfE0EREYMjLQZ6RjSM/A0C0DfXoG2ujWy4WL04OiKJQ2lpJfm+8XtBfUFlDWWNbmfjq1zruqPSSNVLM3bE8PSSfFnEKQ/uStSm9cv56SGc8DEPXA/QQdZwlHIYQQQgghxNmrtraWTU2tGw8KDw/v0HMc7Au/cOFCZsyYAXjD7KuuuoqoqCh69+7d5r6pqamsWbOGwsJCgoKCOnxuB4WFhREREcHbb79NXFwcRUVFPProo4eNO9gXXqvV+sL6UaNG8eCDDzJw4EDMZvNh+7TXqFGjyMrK4oUXXmD27NnHfRwhhDhIQvguRmc0ktgrm8Re2b5tlppqSvJyUKs1vm32xkZ2LF8KiuLbZgw2E5fRndhumST36UdiT/8SsUII4aexCv5zM3hcTX3gb/Y9tGRnGX/66FcaHW56xgYz7+ahxIYYj3g4265dlM96lYYff/Ru0GgIueJyIu+6G31igm+coijYCmvZ+8t2vo5bzueVC6i11zJA15NxweezIS6H1H69uCZjKumh6SflqXeEz194kv07t/s+DotLRGvsRW1lEmpNKL9+u4eLb8s+whGEECqVCl1MDLqYGALPPZdw4OA64p0F61i+Yj6Fm38htKSBhApIrFSIrAN3ZSWNlZU0rl3rdzx1cDCG9HT0GRkYMg7+m4EuIUF6dHchNpeNPXV7fOXjDwbuhXWFWF3WNvcLN4Y3l45vCtvTQtKID4xH0+Ln5JNJURQUhwNXcTH77psOLhfm8eOJuO22U3J+IYQQQgghxJll6dKlDBgwwG/b5MmTO/QcISEhDBgwgKKiIl/gPmLECDwez1F7qD/00ENMnjyZ3r17Y7VaKSgo6NC5HaRWq5k/fz7Tpk0jOzubzMxMZs2axahRo/zGZWdnExkZSUpKii9wHzlyJG63+7h727f0wAMPcPPNN/PII4+QlJR0wscTQpzdVIrSIsUVANTV1RESEkJtbe0JXTl1MjltNnavW0Xx7l2U5OVQXpjvtwqz9wUXMu5PDwDg8bjZ9O1XxHbrQVRqOjq9obOmLYToKhQFPr4Wcr719oG/Y6mvDP1Ha4p44n9bcXsURnSP5PUbBhJs1LV5KHtuLuWzX6P+22+9G9RqQiZeRuTdd6NPSfGNc9XbKVy+FcevlZjrvf12P434jrnR/yPSFMmlqZcyPm082ZHZXWolq+LxsG/nNnat/IUR10/BEODt7bVuweds+v4bep53AT3PG4lWH8UnM9aheBT6X5zMkPGpaPUnHgqdDu9Jpxt5TU8vLo+LVQdWsTBvIT/t/QmsNhIqIakChtji6F1vJrSkAdfefdBG7zmVwYA+Pb0poE/HkNHNG9InJ6PS60/xMzo7KIpChbXCG7DXFTaXka8r5EDDARRa/xVEq9KSZE4izdyyhHwqKQGJBGNCcdhRHA7vzW7H43Cg2Js+dnq3KQ6H/3aHA8XRNLbldrsdxdnK2CNud/rN19CrF6kffYjadGx95IU4SN6TOpa8nkIIIboKeU/qeEd6TW02GwUFBaSlpWE0HnkRiRBnK/k6EaLjtPd9XlbCn6Z0RiO9R4ym9whvSVeX00n5nnxKcnMoyc0hrf8g39jKvUUsee8dwFsCPzI5lbhumb4y9uHxsjpMiLPOqtneAL5FH3hFUXjx+128tiQPgN8PSuRvV/ZBp2n9+4O9oICK19+g7quvfFU5zOPHEfmnP2HIyABA8SgUbd5F2YpcovcHYVQ0GDFhU9lZFboFXe9Q3hn4DkNihpyyVYztoSgKpfm57FyxjF0rf6ahugqAuO6ZZI28CICB4yfR64IJBIU2/9A6+saeRCYGEZFw8sofC3G20aq1jEgcwYjEEdQ76lm8ZzEL8hawrHQDyygBSjBpTVwSP5GJ+kH0qAnAWVCIPS8XR14+joICFLsd+44d2HfsOOTgWvTJyd5A3lfW3hvWS6gKisvVHHQ7Dgmjm4Jup9VCWe0BymoPUFF7gKq6Uqrry6hvqMTjcKBzKejcoHVBbzf0dYHODQEeLWZVAEEYCFB0mDwa9G4VWhcozgYU+wYUxyrf+YqB4s5+QQ6h75ZB0uxX5f8VIYQQQgghhBBCCHEYCeFPAUexBXe1DUO3UNQdsCqyNVqdjrhumcR1yzzsMY/HQ/qgoZTk5tBYW0NZQR5lBXlsXvwNAOddcyPnXHkN4F1hb2+0EBQecVLmebZx7N2Lq6QEQ6/eaIICO3s6QnjtXQs/PO29f+nfIK4vDpeHRz7fwn837gfgvou6M31M91ZXpDv27aPitdepXbAA3G4AgseOIfKeezFm9gCgrLGMbwu+5fvc73h8zU3EeUIA2GUqpCi9mtThWVyTdg96TddagWqpqWbT91+zc8Uyakqa4x5DQCDdh51HZJJ3Zb/T4WbdV3vY/ONefvfgQGLTvc8vc1jX6lsvxJkmWB/Mld2v5MruV7Kvfh9f5X/FwryFFNUX8WXR13zJ18QExHDZ8MuY+Md7yAjNQHG7ce7bhz0vD3teHo7cPOz5+Tjy8vA0NuLIz8eRnw/84HcuXULCYT3nDRnpaEJCTupzVNxu/1XeDme7Vn8ftsr7OFZ/e5xN52sK2duqLNCaiKZb+zmBWv/n3rT1qHQ61Ho9qoM3gwGVXodKr0etN7TYpkel1zVvazFWffBx3SFjDS3GNu2nNhx6rqb7Ol2XqtwihBBCCCGEOPt8+OGHTJ06tdXHUlJS2LZt2ymeEWRlZbFnz55WH3vrrbe44YYbTur5W5bdb8327dtJTk4+qXMQQgiQEP6UsKwpxrK6GDQqDOkhGDPDMWaGoY00nZI/3MWkZfC7Pz+JoijUV5RTnJtDSZ53xXxJ/m5i07v5xhZu+ZUFL71AUHiEb7V8bEYPYjO6oTcFnPS5nincNTWUz3qV6vnzvX/AVqsxdO+OqW9fTP37YerXD316ulQgEKdeyz7wWVfC4FuotTq584MNrMqvRKtW8cKVfbh68OE9j5zFxVS88SY1X3wBTe0vgkaOJHLavZiysqixVLPq269o2FnG46GvoKi8q+O/Dv+ZNFMqwUPjOLff77hI37VWibtdTjRab7l9j9vN6i8+AUVBqzeQMWgoPc8bSWr/QWh13jFF2ypZ9vEu6ipsABRsLveF8EKIUycxOJE7+93J1L5T2Vy+mYV5C1lUuIjSxlLmbJ3DnK1zyIrIYmLGRMaljSM85UKCL7zQt7+iKLhKSrDn5ePIz8Oem4c93xvSu2tqcO7fj3P/fiw//+J3Xk1UpDeYz0j3tdw4PABvIxRvJehu3u7ddvDipq7GpQaXBpwacGqbbk33PVoNWoMRnTEQgykIU4CZwMBQggLD0BpMLQJsfVNQ3hRm6w4J0A8LwHXNY3376OTnJyGEEEIIIYRoMmnSJIYNG9bqYzpd2+0lT6ZvvvkGp7P1S6xjYmJO+vnj4+PZtGnTER8XQohTQXrCt6Kje/bU/ViEZX0J7mq733ZNuBFjZhihE9JRaTvnj4mepj/0qjXeFfobvv6SZR/8C0U5ZOWTSkVEQhIXT51GfI+ep3qapw3F7abm888pf/mfuGtqAO8f693lFYeNVQcF+UJ5Y9++mPr1QxsWdopnLM4qfn3g0+GOZRyw6Zgydy05pQ0E6jW88cdBXNAjym83Z1kZlW+9Tc2nn/p64Qaedx5R994D2Zms3vIztav30WN/PGa3N2B/KOUldCnBjE8fz8UpFxNh6lrVNSw11eSsXs7OFT+jDwjgqr8843vsl4/mEZmcSsbgYeiNzSWGG+scLP/PbnavKwUgKMzABddlktY38qTOVfrIdTx5Tc9cdredn/f9zIK8BSzftxyX4r1gSKvScn7i+UzKmMTIxJFHrcLhqqrCkZeHPS/fu3o+z7t63lVSciqeRjOVyhs8H1y9rTtkJbahKdBuub1l0K03tBqAW9Vuyl01lLqqKHZUcMBeRpGjlP22Umwad3PQ3uJfRa0iPjDe26M9JI1Uc6rvfqQpUlaEC3Gc5D2pY8nrKYQQoquQ96SOJz3hhTgx8nUiRMeRnvBdiPmiZIIvTMJVbsW2qwrbrmrsBbW4q2zYdlXDpOY/Wlp3VKKNCkAXeWp6Sx4M3w8aNOEK+l50KaUFud4V802r5uvKy6jcV4Spxf9MG79dyM4VPzf1lu9BbLdMQqJjzto/wlo3baLkuRnYmkr8GLp3I+bxxwk85xycZWXYtmzBunkz1k2bsW7diqehAcvKlVhWrvQdQ5eSjKlfv6Zbf4yZPVB10hWL4gx0SB/47VVw87wVlNbZiQ42MPfmIWTFN6/odlVWUvnOu1R//LF3dSYQMHQoYffcxZZIJ0tXrSDhf7+RaU0FvGXoa/T1VPSw8+KFM0mMT+mEJ9k2e6OF3WtWsnPlzxT9ttl3sZFao8XeaMEQ4G0ZMeL6KYftm7O2hJ/n52BvdKFSQZ/RiQyblI7eKG+jQnQlBo2BsSljGZsylipbFYsKFrEwbyHbKrexdO9Slu5dillv5tLUS5mYMZF+Uf1a/blFGx6ONjycgCFD/La7Gxpw5Od7V8/n5eLYtx+VWu0XjDeXLm8lLG+5ArzlWL8V4M1j0WqP++cqt8fNAcsBCmoLKKgtoLCu0He/ylLVPFAFGJtuZjBpA0g1p5IakkqaOc0XtCebkzFppfe5EEIIIYQQQgghhBDtIenBKaJSqdBFB6CLDiB4RCIeuxt7Xg2K0+P746ri9lA1fxeK3Y0mwogpMxxDZhjG9BBUupPTS741OqORxF7ZJPbK9m2z1FRTkreb0Jg437Z9O7ZxIGcHB3J2+LaZgs2+EvaDJlzuC7XOZK7ycspeepnaL78EvCvco6bdS9h11/kCdF10NLoxYwgeMwYAxeXCvns31s1NwfzmzTjy83HuKcK5p4i6BQsBUBkMGLOymoP5/v3QxUrPaXEc9q7z6wP/S0M8d/17FQ12Fz1igph781ASQr3hiqu6mqp//Yuqf3+IYrUCYBzQn9qbxvN52B6+z/8zyeuj+H9F073jVW5K4+uJHJ5G1sDzUam73oU4K//zIWu//A/upjL6ALEZ3el53igyh59/1O9VLqcHe6OLyKQgRv+xJ9EpchW7EF1duDGcG3rdwA29biCvJo+FeQtZmL+QssYyPs35lE9zPiU5OJmJGRO5LP0yEoMTj3pMzcEqNn37noJn0D4Wp4XC2kLya/P9gvaiuiIcHkeb+0UHRB+2oj09JJ3ogGjUKin3LoQQQgghhBBCCCHEiZBy9K3orHJB7jo7VZ/mYC+oBXeLT4tWjTEjhMAhsZiyT27Z42NRU1LMgZwdTSvmd1FWWIDH7Q241Bot9877FK3eW+5165LFOKyNxHbrQVRqOjq9oTOn3iEUp5OqDz+kYvZreBoaAAi58kqiH7gfbeSxf57ctbVYt/zmC+WtW7bgqa09bJw2JqYplPeWsDdmZaE2yco0cQSNVfDWBVC7F7Ku5D+pz/CX/27F5VE4Jz2ct24cTIhJh7uujqp586h67308Fot3317d2Ty+N/vsOuod9XwR8SMAEYYI/q/4fkJ7xJExoh9ac9f5mna7XOz5bSOxGT0IMHtX9m9evIgf3n2NiMRkep57AZnnXUBYbNv9n9xOD7XlVsLjveG8oijsXldKt0HRqDWnNpySEnYdT17Ts5fb42Zd6ToW5i1k8Z7FWF1W32ODYgYxKWMSY1PGEqwP7sRZHs6jeCi1lHoD9rqmle213sC9zFrW5n56tZ6UkBS/oP1g8B6oO/MvlBTidCDvSR1LXk8hhBBdhbwndTwpRy/EiZGvEyE6Tnvf5yWEb0Vn/5Dksbuw59Ziy6nCtrMad623DLR5bArmi5K9Y2wuHHvqMJziVfJH4nI6Kd+TT/HuHKx1NZx3zY2+xz549D7KCvIAbwn8qJQ0YjN6NJWyzyQiMamzpn1cLKtWUfL88zhyvc/J2KcPsX99HFO/fh12DkVRcBQWNofymzdj35UDbrf/QI0GY2Ympv79fCvmdSkpZ21bAHEIRYGPr4OcRSjh6bzRYw5/X1oMwBX94/m/3/dFa7NS9f77VM2dh6e+HoCG1GjWnptJmKY3w+v7oUNLvcbCRxcvZ1y38QyNG4pW3XWKqSgeD/t2bmPnimXkrFmJrb6OC2+eyoBLJwJgszRQX1FOZHLqUb82DuyuZumHu3DY3Fz/1DD0ps59np39nnQmktdUADQ6G/mh6AcW5C1gbfFaFLw/Ehs0Bi5MupCJGRMZHj/8lH6vs7qs7Knb4wvYD4bue+r2+F0wcKgIY4S3fHxImq+EfGpIKvGB8WjUXePnRCFE6+Q9qWPJ6ymEEKKrkPekjichvBAnRr5OhOg40hP+NKY2aDFlRWDKikBRFFxljdh2VWPsGe4bY8uppuqjnah0agzpIRgzwzFmhqGN6LwV0VqdjrhumcR1yzzssczhIwgKj6AkN4fG2hpK83Mpzc9l8+JvMEfFcPvsOb6x+3duJyQ6hqDwiFM5/XZxHjhA6f/9nfrvvgNAExZG9IMPEHLllajUHbs6VqVSYUhLw5CWRugVVwDgaWzEtm0b1i1bvL3lN23CVV6Obft2bNu3U/3Rx955hYRgbFopb+rXH1PfPmjkB/6z06rXvAG8Rs8roY8xsymAv3tUBg+OSKJ67r+oencO7qaqC1XJceQPHEyW9lwub2z+GrRGeYgd3ptnh1yMStc1yhQrikJpfi47Vyxj16pfaKiq9D0WEBJKy0vMjIFBGAODjng8m8XJyi9y2bHC+xqZzHpqyhql9LwQZ6gAXQCTMiYxKWMSJZYSvsr/ioV5C8mvzWdR4SIWFS4iwhjBhPQJTMqYRGb44T/fHA9FUSi3ljcH7S1Wth+wHGhzP61KS5I5yS9kP7iqPcQQ0iFzE0IIIYQQQgghhBBCdAwJ4bs4lUqFLiYQXYx/yVDF6UETosdd68C2qxrbrmoAtJEmjJlhBI1IRBvadcpDD73894D3D8/1FeXeEvZ5OZTk5hAa29xnXvF4+O/fn8FusRAUEUlc02r52IwexGZ0Q28K6JT5e+x2KufMofLtd1BsNlCrCbv+eqLuvQdNyKn7w7c6IICAIUMIGDIE8L6erpIS70r5Td7V8rZt23DX1mL5+RcsP//i21efkeEN5fv2xdS/H4Zu3VBp5VvAGW3vOvjhKQDeM09l5vYA1CqYMb47l+StJHfsrXiqqgDYHw7/GaGmd8T5XFU1Flzg0nsIGBBN6LAk9PFHDrA7g91i4eMnHsLTVB3CEBBIt6HD6XneSJKz+qLWtG/158FS88v/sxtrvROA3iPiGX5FBsZA3UmbvxCi64gNjOW2Prdxa/atbK/czoK8BSwqWESlrZL3t7/P+9vfp0dYDyZlTGJ82niiAqKOekyH20FRXZEvZPeVkK8rwOK0tLlfiCHEF7S37NmeEJyATi3fk4QQQgghhBBCCCGEOB1IAneaChwUQ8DAaFyljdh2VWHdWY1jTx2uCisNFVaCRiT6xjpLLKj0GrThnV9iRKVSYY6KxhwVTebw8w973NpQjzkiiopGKw2VFeyurGD32pUHdyZ71FguuXOab7zH7W530HY8FEWhYckSSl/4G859+wAIGDKEmL/+FWNmj5N23vZSqVTo4uLQxcVhvvRSABSHA9uuHL8y9s6iIhx5eTjy8qj94gvvvgEBmLKzvcF8f284r406eqggThONVfDZzeBxsUw3gqeLzyFYrfBmeCEhjzxLWVUd6uA4XIN+z9dxW/g4K4/s6H4kh2eh3hxA6DlJmLIiuky7i7ryMnau/Jnq4v1ccud9ABiDgug2ZDioVPQ87wLS+g9Gqzu2gMrt9PDNG1so2u69GCEsNoBRf+xJfLfQjn4KQojTgEqlIisyi6zILB4a/BDL9y9nYf5Clu5dSk51Di+uf5GXN7zM8PjhTEqfxOjk0TQ6Gymsay4ff/D+/ob9eBRPq+dRq9QkBiUeFrSnhaQRZgw7tU9aCCGEEEIIIUSnmDJlCu+99x5Tp07lzTff9Hvs7rvv5o033mDy5MnMmzfPNxZAq9USHh5O3759ue6665gyZQrqFlVaU1NTmT59OtOnTz/qHFJTU9mzZw8ARqORlJQUbr31Vh566CFfS8fCwkLS0tIO2/eGG27g3//+9/E+fSGEOONJCH8aU6lU6GID0cUGEjwyCY/NhT23Bsf+Br9V8LWLCrDtqkYbZfKVrTekhaDSdo2S0i0FmEO46R+zcdpslObnUpyXQ8nuXRTn5VBfUU5gaKhvbGNdLe/86RaiU9OJ6960Wr5bJiHRMR3SD91eUEDpC3/D8ot3Nbk2JoaYR/5M8LhxXbrfukqvx9QnG1OfbPjjDQC4qqp8gbxtyxasm7fgsVhoXLuWxrVrffvq4uP9essbevdGrdd31lMRx0tR4H9/gtq97COWabXXc1Xl11yzfTXBdQrahMGo+p2PMSSDQODC5GHccFU/ksxJ3v2Hd+rsfRpra9i1ejk7V/zMgV3bfdvPufJaQqJjALhs+iMn9PWo0akxBGhRa1UMHpfKwItT0HSRcvtCiM6l0+gYnTya0cmjqbXX8l3hdyzIW8Dm8s2s2L+CFftXoFFpcCvuNo8RpAtqNWhPCk5Cr5H3VyGEEEIIIYQ42yUlJTF//nz++c9/YjJ5W83abDY+/vhjkpOT/cZeeumlzJ07F7fbTWlpKd9++y333Xcfn332GQsWLEB7nFVPn332WW6//XZsNhs//PADd911F2azmalTp/qN++GHH8jKyvJ9fHC+QgghWich/BlEbdRiyo7ElB3p26Yoircvshpc5VYayvfTsHw/Kr0aQ0Yopt4RBA6J7bxJt0FnNJLYO5vE3tm+bZaaar8xpXm7cTnsHMjZwYGcHb7tpmAzsd160P/iCaQPHHLM53Y3WKh88w0q33sfnE5UOh3hN99M5NQ7UAcGHv0AXZA2PJzg0aMJHj0aAMXtxpGf37xaftNm7Lm5OA8cwHngAHXfLAJApdNh6N0LU99+vhXzuoSELn0RggBWv46y6xt+1Zn4eG8KMzc+T5w6BV3K79EmDkWt9VbFUFRg6hVOn2FZmMzhnTzpZnt+28S6BZ9TtHUziqdpFalKRVKvbHqeNxJjULBv7PH8v1haUEdQmIHApouVzr+6B0MuSyMs9vT8+hZCnHwhhhCuzryaqzOvZk/dHhbmLWRh3kIOWA6gQkV8ULy3R/shZeQjTZHynimEEEIIIYQQok0DBw4kPz+fL774ghtu8C6o+uKLL0hKSiI9Pd1vrMFgIDbW+7f8hIQEBg4cyDnnnMNFF13EvHnzuO22245rDsHBwb7j3nbbbbzxxht8//33h4XwERERvnFCCCGOTkL4M5xKpSLqlmw8Vhe23Gpf/3hPvQPbjioUh9svhLcX1aGPD+qSq+QDQ/3Ls6b2G8jN/3yTktwcinN3UZKbQ1lhAdb6Ogo2rqf7sHN9Y8v3FLD2f58R183bYz46NQPtISu8FUWh7quv+f/s3Xd4VFX6wPHv1Ex67x0SCCQkNKU3RbqoYEcF2+rPwiKKvWB3V91V17UjQRYXFkEUBMVGFwVCDySEhJDeezLJlPv7Y2Ag0gJMSCDv53nuY+bec889584MJ+a95z3Fb76JubgYALdhwwh86kn0UVGt3r8LSaXR4BQbi1NsLF7XXw+ApbYW45499rXlG3buxFJejnHnLow7d1Exfz4AGl9f+0x556REDAk90LhJ8LK9yNj/Dd9tfpOi6hCu/A3ursgBQD9yKjq3EAA0vgZcLwvCtXcgGo+2n4lpamrEarbg5OIC2LJcZO/aDkBgp1i6DR5GlwGDcffxO101Z9TUYGbzN5nsXptL557+jLmvBwAuHnpc2sF9EEJcHCI9Inmo10M80PMB8mvz8XX2xVkrT/8LIYQQQgghRHuhKAoN5oY2ubaz1vmsH8a+8847mTt3rj0I//nnn3PXXXexZs2aM557xRVXkJSUxNKlS885CH+UoiisXbuWffv2ERsbe151CSGEkCB8h6F21uLSwx+XHv4oioKpoA5jWjlan2N/NLbUNFHywU77LHlDnC11vdar7deSPxmVWo1PSBg+IWF0H3oFAGaTiZJDmRRkpBOZ0NNeNnffHvZvXMv+jWsBUGs0+EdGExTTleCYLgS7elD9zrs0bN0GgC4igsCnnrTPHO8ING5uuPbvj2v//oDtly5Tbq4tKL9rly2V/b59WMrKqP3lF2p/+cV2olqNU0zMsbXlk5LQd+qESt3+HuS4VOXX5rMqaxWrDnyL9x8Hmba7NyGe/TBWf4nRDcy3Xk1wn8uwFppwvSwQfbRnm8/MtJjNZO/ezv6N68jYspl+195Av+tuBCCmTz8G3XgbXQcOwTs41CHXy9xewrpF6dRVNgKg1WuwWKxoNPI5FUKcG7VKTZh7WFs3QwghhBBCCCHEnzSYG+j3Zb82ufbvt/6Oi87lrM65/fbbeeqppzh06BAqlYqNGzeycOHCFgXhAeLi4ti1a9c5tNbmiSee4Nlnn6WpqQmTyYTBYGD69OknlBs4cGCztefXr19Pr169zvm6QghxqZMgfAekUqnQh7ihD3Frtt9c1oDaTYe11oRxXznGfeUAaANdMHT1xrV3ILp2nq5Zq9MRHNuV4NiuzfaHdUtg0I23UZCRRkFGOg3VVRRlZlCUmcHO1d/RL7MA35p6VM7OqKfcjHVgf1TdEk5xlY5BpVKhDw9HHx6O59UTALA2NmJMTT2Wxn7nTsz5BTSmp9OYnk7l4sUAqN3ccE7sgSHp2PryWm/v011OnKVyYzmrD61mZdZKthelcGW6J08dGoC/7zTUPWwzxvU9w+jywLXtJlOBYrWStz+V/ZvWkrZ5I8aaavux3P17Ofq/RjqDgf6Tb3bINWsrjKxbmE7WzlIAPPydGX5rV8K7tZ/0+0IIIYQQQgghhBCi4/Lz82P8+PHMmzcPRVEYP348fn4tzwipKMp5TbiZNWsW06ZNo6SkhGeeeYYrrriCgQMHnlBu0aJFdOvWzf46PDz8nK8phBAdgQThhZ1TlCfBT/ezz5I3plXQdLgac1E9tUX16AJd7UF4S50JxWxF6+nUxq1uGf/IaPwjo4EjaeeLCjm4YD7ZP/5ApQY86xpwHzuGwMcfZ8MPy0l59+8AuPn6EdzZlsI+OKYLgZ1i0Duf3ZOMlxK1kxMuvXrhctwTjqbiYoxHZso37NhJw549WGtrqdv0G3WbfrOX00VGHEtjn5iEIa4rKp2uLbpx0aoz1fHL4V/4Lus7NudvBouVWzJ68ETpA3h4xaOKsD2JalWacOsbgvvQ3u0qAJ/86AOU5+fa97l4etGl/2DiBg0jpEucw6+Zn1HJivd3YjJaUKtV9BoVQd9xUWj1GodfSwghhBBCCCGEEEK0D85aZ36/9fc2u/a5uOuuu3jooYcA+Pe//31W5+7bt4/o6Ohzui7YHgKIiYkhJiaGJUuWEBMTQ//+/Rk5cmSzcuHh4cTExJzzdYQQoqORILxoRqVWoQ91Qx/qhscVEVjrTRgP2NaRN3Q5NpO5flsRVSuz0AW54NTVB0MXb5yiPFBdBKmdG3bsoPyVV3Heu5c4wCk2lsDP5+La3zYP19XbB/+IKEpzDlNbVsqBslIO/LHJdrJKxf0ffWFfn76+qhInVzc02o77VdIFBKAbORL3I7+UKWYzjQcOHJkpbwvON2VmYso+jCn7MNXfLgdA5eSEIT7+WGC+ZxK6oKC27Eq71GRpYn3eelZlrWJNzhoaLY2gKPQ4pHDvtlBi4++HI19NVX0q9XFqOt9zF+o2DjSX5eWQvTOF3uOusbVNrSYgujO1FeXEXj6QuEFDiUhIQq1pvXb6hbnh5KLFJ9iVEbfF4RvqduaThBBCCCGEEEIIIcRFTaVSnXVK+LY2ZswYmpqaABg9enSLz/vll1/YvXs3jzzyiEPa4e3tzcMPP8xjjz3G9u3b23xJSyGEuJh13MihaBG1iw6XpABckgKa7TdXGEEFpsJ6TIX11K7NReWkwRDjhaGrD849/ds8CPhn5pISit/+B1XLlgGgdnfH/+GH8b71FlTHBdEvv+Z6Lr/mepqMDRRnHqQgI43CjHQKDqajWCz2ADzADx+9y+E9uwiI7kxwTCxBnbsQHNsVD//ADvsLikqrxdCtG4Zu3fC+2ZZS3FJVRcOu3cfS2O/ahbWqioaUFBpSUuznagMDcU5MtK8tb4iPR+18bk+PXswsVgtbi7ayMmslP2b/SE1TDU5WPUOqezGgKorw7b/itS8fyKHRcwsaQwlBft/S0DuJ0KkLoI0+e9WlxezfuI79m9ZRcigTgPCEJPwjogAYfsc9jL7/r2j1+la5vqnJwv5NBSQMDbU9UGTQct3M3rj7GFCpO+b3UQghhBBCCCGEEEK0fxqNhn379tl/PpnGxkYKCwuxWCwUFRXx/fff8/rrrzNhwgTuuOMOh7XlwQcf5G9/+xtLlizh+uuvd1i9QgjR0UgQXpwT72ti8BgZSeORWfLG9HKsdWYa9pZhTK/ApZe/vay53IjGU99ms+QVk4ny/yyg9P33sdbVAeA5eRIBM2ei9fU95Xl6gzNh3RMI635sbfjG+vpmZSoK8jE3NZKflkp+Wqp9v7OHJ+HxiVw944lj7TjPtXkuZhpPT9yGDMZtyGDAdi+aDh1qtrZ8Y1o65qIian78kZoffzxyogZD164490zCkJiIc1IS+qioS/I+KorC3rK9fJf5HT8c+oGShhJQINYYwf211zOkvCc6qw7FaqEuczlWnZ7vo/uTGPwNI113YPKMwvvmDy94AL6hppq0TevZv2ktefuPfQfUGg2Rib2wWiz2fcc/wOJoh/eWsfa/aVSXGlFrVMQPCQXAw6/jPcQhhBBCCCGEEEIIIS4+Hh4epz3+/fffExwcjFarxdvbm6SkJN577z2mTp2KWu24v737+/tz++23M3v2bCZNmuSweoUQoqNRKYqitHUj2pvq6mo8PT2pqqo648AnbBSrgimvFmNaOdYmC17jOtmPFf5zG5aqRgyx3hi6eGPo6o3G48KsJV+3aROFr75G08GDABh69CDouWdxTkx0SP2K1UpFYT4FB9IoPJhOYUY6xYeysFrMhMbFc/OLf7OXTX70AVRqNT4hYfiEhuMTGmb7OSQUnZPBIe25mFnr6zHu3Xssjf2OHZhLSk4op/H0xJCUeCSNfU+cE3uguYi/p5lVmazKWsXKzJUcrjkMgJvFmbF1Q7mm5gp8q93tZa11JZhyfqM0wokZ2njGOm/ked18FI0e1d0/QkjPC97+g9v+YNnfX7K9UKkI6xZP3MBhxPYbiIuHZ6tfv766iQ2LD3BgSxEAbt5ODJ8SR2TCqR+wudjImOR4ck+FEEK0FzImOZbcTyGEEO2FjEmOd7p7ajQaycrKIjo6GoNB/s4qxMnI90QIx2npOC8z4YVDqNQq9OHu6MPdm+23Npix1jShGC007C6lYXcpALpgV1va+njfE85xBFNeHkV/+zs1q1cDoPHxIWDmI3hOmoTKgU8F2oPqIWHED7sSAHNTEyXZWVgs5mPtaWqkLC8HFIXSw4dOqCfmsv5c89iz9tcFB9LwDAjE2cPzkpz1fTJqFxdcLrsMl8suA2wzw82Fhbag/A7bbHnj3r1YqqqoW7eeunXr7efqO3Vqtra8U0xMsyUG2pvCukK+z/qelVkr2Ve+z77foDEwInwEt9SOx3+97XOqWEyY81Mw5WzCdXB31twxief/KCdJlcHTuv8CoBr9WqsH4E1NjWSlbGH/xnX4RUQx8IZbAYhK6kVEQhLRvfrSdeAQ3H38WrUdRylWhX2bCti0NIPGejMqFSSOCOfyidHoDe33vRdCCCGEEEIIIYQQQgghxKVPIhWiVamdtQQ/25+m3Bpb2vq0cky5tZgK6jAV1GGpacLnSBBesSpY60xo3M99vWir0UjZnDmUffoZitEIGg3et96K/8MPXbDZ0lq9nuDYrs33aXXc896nlOXlUJ6XS3leDuX5uZTl5WKsqcbJxc1e1mI28d/nZ6FYrRhc3fAODcM3NPzIDPow/COi8fAPuCB9aUsqlQpdcDC64GA8xowBQGlqwpiW3iyNvenwYZoyM2nKzKTq669t57q44JyQcCQwb5s1r/X3P93lWl2lsZLV2atZlbWKbUXbULAlIQkw+3CnciNRUTH0HjYEzaE8St7/BEtDD0y5mzHlbcFzzJUEvfIP/ra7juRNh/CglnnuH6BtMkP3a+Cye1qlzRazmcO7d7B/41oytm6mqaEBgKKsgwy4/hZUKhUarY4bnnu1Va5/OusWprNnXR4AfuFujLgtjoBIebJcCCGEEEIIIYQQQgiABQsWcN999530WGRkJHv37r3ALRJCiI5FgvCi1anUKpwiPHCK8MDzqkgstU0Y021ryTsflzLalF9L8fs70IW62dLWx/mgD3dHpT7zTHBFUaj95ReKXn8DU24uAC6XXUbgs89i6Nql1frWUiq1Gs+AIDwDgujU67Jmx+qrq7CYTcdeV1Xh4R9AVXERxrpaCtL3U5C+3348btAwxk+fBYDVauG3r/6LT3CoLcV9SBi6SziVjEqvx7lHAs49EuC2KQCYy8vtAXnjrl007NyFta6O+j/+oP6PP+zn6kJCcO6ZZJ8x79S9O2r9uT/w0RL1pnrW5KxhZdZKNuZtxKzYsiNoFDU3a65hXPVQfHINoIC2Wk/F9y9Q/d13oCig+g6PsWMJf38R1rBI/rpwO6tTiwCFb8O+xKu0ELyjYOK/WmUd+A0L57Prp1U01FTb97n7+RM3cChxg4Y5/Hpnq9ugYNL+KOSy8dEkXRGGWuO4DBdCCCGEEEIIIYQQQlzsJk6cSL9+/U56TKfTXeDWCCFExyNBeHHBadz0uPYOxLV3YLP9TXm1AJjyajHl1VLzaw4qZ60tIN/FG+duPqhdTvzloDEzi6LXXqNuwwYAtEFBBD4+C/exYy+KVO5/Xjfb3dePe977DFNTI5UF+bYZ87m2mfPleTn4RkRispiwKBYqCvPZvGRhs/NdfX3xCArCIziIkB49CEzohtVqxYoVq3KSDav9uKIoWBQLVuXYz4qiNDvXvu/PdRz5+fg67PtQsFgtKCgnr+NUbftzHcedd/Rni2JBUStYe1mx9vRCsQzCo6CGgKxKArMqCcyqxrewDlN+Pqb8fKpXrgLAolFRGOpMboQLhyOcyYl0ptxLgxXl1PdJObGfp7s/R2e7HzXYuR+3Nk4kOtsPai3HHSmn5vtvMB/+zfYZuOoq/B5+CEOXLpTVNnLPZ5vZfrgSvVbN1713ErVrDWj0cEMyGM5/3XVFUSjJzsI/Mtr+nWmoqaKhphpnD0+6DhhM3MBhhHSJc+hyDmcj/0AF5QX1JAwNBSAg0oOprw/CyVmGMSGEEEIIIYQQQggh/szd3R13d8cvBSuEEKJlJHoh2g23fsE4d/c9Mku+HOOBSpQGMw07S2jYWYL2Lz1w6uQFgNVoxtpkpPyTjyib9wWYTKh0Onzuugu/+/6C2sWlbTsD7CzZyfzU+WRUZJwQ4D4hkHuq4PTxAWAvK3gBVWvgPy8D4FavpUe4B551OjxrdTg3aagrK6OurIyCvXtZdGgJO9KqAHBp0DB8uz9Vriaq3I5sriZqXMwol+Ik4ogj2zBwbtTQqUChSz7E5inE5it41iuEHq4n9HA9R58HrXSBA6EqMkJUpIfAwWAVRqfze5Aj3D2ccdHjGBc9Dvel9TSmVwAW1M4alMaD1PycjFKVD4DbiBH4P/wQhu7dAcgqrWPa3D/ILqvHy0XHl2O1dF/1lq3i0a9BSK/zalt5fi77N65l/8Z1VBTkcfNLbxLatRsAvcdOJPbygUQkJKHWaM7rOufDWGdi09IM9m0sQK1VERLrhU+wK4AE4IUQQgghhBBCCCGEEEII0S5JBEO0Kxp3Pa59AnHtE4hiUWjKqcaYVkFjVhX6I+s9K4pCycdraDpswVwI2qA+GDp7EPjUTPSRkW3afqtiZW3OWpL3JpNSnNLq16t1MfNbj3L7a6cmNR51Orxr9XjV6Sj1t2DQGFCr1AQbnQiotG3N2qxSqHeHrG5WiqNUaFQa1FbQWNXgpEGNGrXqxE2FCo3adlylsp13/H/VqNGoNahQnfR8+3bc+WqV+oQ6jpaz7/vTufb2HFfHn9t4tA1H66hBhbGoAqd92ej3H0K3PwttRg5e9RYuO6Bw2QHbDHZFpUKJDoP4LhDfBVVCV9RREag1mub9tKhRNVhR1R3Z6q2oaq1QacJ3RCw6b9sSAQ2Xl6KYmjDnbaZqyafQZATAdfBg/Kc/jHNiov19STlcwT3ztlJe10S4jzNf3NKF6CVjwWo6r3Xgq0tLSNu0jv0b11F86KB9v1anpzwvxx6E9w2LwDcs4pyu4QiKonBgSxEbFh+goca2XEO3AcG4erbuEgJCCCGEEEIIIYQQQgghhBDnS4Lwot1SaVQ4RXniFHUs3bZx3z4KX3kVlfsYNF6R6ML7oQvvByqoWF6OoSsYunrb1pK/gKnomyxNrMhcQfLeZLKqsgDQqrVM6DSBMVFj0Gv0ZwwynypAfbIgs72OUwTCT6a+uorc/rspy8uhPC/XtuXnYm5qxK0aZvV5jPhhVwJweM9OFr/8DG6+3viEhOF7ZL15n9AwfELDcfXyvihS/Z9WFHDckkjWxkaMqan29eUbdu3BUl6HqlyN6o9i1LuMqJwOoXbzQ+NWjSE+GOekJFSu0VQuyQZAObIdr8GvGN2VEZhLS6le/ikV/12I0tQEgEv//vhPfxiX3r2bnfP9nkL+unA7jWYriWGezLmjL/4r74bKw+e1DnzxoUzmPzHd/lqt0RDZoydxg4YRc1l/9M5tn0ECoKqkgbX/TSMn1faAiXewK8OndCUkxqttGyaEEEIIIYQQQgghhBBCCNECEoS/AKpKGmisN+HkosPgqkVv0KJSX+QBzAvMUllJyXvvUbFwEVitqFz243PHdPSxA2nMqMZUUIcptxZTbi3124oIeuIy+7nWJgtqfeuk065qrGJx+mIW7FtAaUMpAG46N27oegNT4qYQ6Bp4hhouHBcPT7r0H9xsn2K1UlNWSnleDn4RUfb9lUWFANSWlVJbVsrh3TuanTfq/un0GDEKgOrSYoqyDuIbGo5nQBAabfv9Z0UxW7HUNmGtMdn+W2uyv3ZO9MOlVy9cevWiYV8ZZfNST1mPcddC6tZ9A4DauxOuw54ExYpKZ0Xt4YTW1x2NhxMadz3aADXFb71F+YIvURoaAHDu0wf/6dNx7Xf5CXUnb8zixRWpKApcGRfAv27thUvKp7B/xVmtA99YX0/Glt8wNTbSc9Q4APwjonD388fTP5C4QUOJ7TcIF4/zX1PekUyNFr56YyvGOhMarZq+4yLpNSoSjfZSXDNBCCGEEEIIIYQQQgghhBCXovYbLbtUbJ3L7pWV7MxPsu9SqcDJRYeTixYnVx1j/pKAu48tXXVeegWlObUYXG3HDK5HyrnocHLVotF0rECUYrFQufgrSt55B0tlJQAe48YSMGsWuuBgezlLdRPG9HKMaRVofQz2WdqKRaHwjT/Q+jpj6OqNoasPulC3834IoqC2gPn75rMkfQn15noAAl0Cub377UyOnYyb3u286r9QVGo1Hv4BePgHNNufeOVouvQbRHm+bdZ8WV4O5fm5lOflUFVUhE9wmL3soZ0p/PjJ+4BtZrVXYDA+oeG2WfMhYUQl9cbVy7vV+nCmwPrRTAoN+8spS957yno0PgZ7WbWLzrZTrULjpkPtrrf911WL0lSLIeZKmjI8aNi1i6asbGq+mwGmentdKicnDPHx6CMjqfnhB6z1tmOGxERb8H3QwBMyCVitCq+v2sen622ZFKb0i+DFifFoC7bD6udshc6wDrypqZGs7VvZv3EtmSlbsJhMOHt4knjlaNQaDSq1mjvf/hCdwXBW9/hC0jlp6DUqgsOpZQy/NQ6vwPYxO18IIYQQQgghhBBCCCGEEKKlJAjf2tJ/QFvlg5s6FKPihlkxoChgrDNhrDNBSQNqzbFgXNaOUnb+knPK6m55oR8+wa4ApG0uIGtXqS1YfyRQb3C1BesNLjoCojzQObXODPALoX77dopefgVjqm1GslNsLIHPPnvS2cMaDz2ufYNw7RvUbL+poBZrvZmm+hqacmqo/ukwalcdhi7eGLp64xTrjcZV1+I2pZWnMXfvXL7P+h6LYgEg1juWO+PvZEzUGHSaltfV3hnc3Ajp0o2QLt2a7TebTKjVxx4G0emdCOwUQ3leLqZGoy1Yn58LW2zHb3juNXsQ/tDOFA5u+90WpD+S3t7N2/eEgLTDAuvexwfWj/xz9+fAupsejbsOfdixByf0oW6EPN8flbP2FGn3+wKTALBUVdGwa/dxaex3Ya2qoiElhYaUFACcunfD/+GHcRs+/KT1GU0WHv3fTr7bXQDA42O68n/DOqMyVsJX0864Dnxu6h52/7qajC2/0XRktj2AT0gYcYOGYTY1odc4A7S7AHxTg5nN32QS0yeAkFgvAHpeFUGvUREX/5IHQgghhBBCCCGEEEIIIYTokCQI39qufI7+0Wvon7UEsjdhNjbQaHWjUXHFaHWnUR+K4fv50HkIRA/DL8yVmL4BNNaZaKw3Yzzy38Z6MwBOLsfesuLsGg6mlJzy0rc83w+fEFvAfuuqQ+z+NRcnF+2RQP2RwP2RmfbdB4fg6ukEQH11E6ZGs232vfOFT51vLimh+K23qfrmSLpvd3f8H34Y71tvQXWWqc71Ye4EP3U5xvQKjPvLMWZUYq0zUb+9mPrtxbhfGYHnVZGAbdY8Kk7or6Io/FbwG8l7kvmt4Df7/n5B/ZiWMI1BIYM6VLBQq2v+oEG3ISPoNmSELbV9eZl9xrxt3fkcfMPCAVtgPW97Kod/3UaRZj/OGlecNK64OnlQ7VaFNtSZgTdOQV+hp2xuywLr9gcoNKpjAfXjA+vhxwXWQ9wIfq4/6hZ8plVaNaoWpj/XeHriNmQwbkNsqf4VRaHp0CEadu6k8cABXHr1wu3KK0/5Gamsb+LeL7ay5VAFOo2Kt25I4pqeoaAo8M1DJ10HXrFabe088jDEwZQ/SF33CwDufv7EDRxK3KBh+EdGt+vPZuaOEtYtTKeuspHc/eXc/Hw/1GoValmuQwghhBBCCCGEEEJcws70N7upU6eSnJzs8OvW1dXx0ksvsXjxYvLz83F3dyc+Pp7HHnuMCRMmADB8+HB69uzJO++80+zc5ORkZsyYQeWRjLVHNTQ0EBISgkqlIi8vD2dn52bHo6KiyM7OBsDZ2ZlOnTrx8MMPc999952xvcnJydx555321wEBAVx++eW88cYbxMfH2/dPmzaNefPmnXD+gQMHiImJOeN1hBCiNUgQvrUFxtu2AQ+CxYy2YCfaQ+twzVoH2b+BeR/sA/YtBSDOPYS46KHQZwhEDwWvCMCWqrqp3twsCB/TNxDPABca60001pkx1ptorDNhrDPTWG/C4HYsWNpQ3UT9ke1kOvcKsAfh96zLY8sKW0psVLbAv+FI+nyDq47BN8biHWQL7pfk1FCWW9tsNv7Rmfga3dmlzldMJsr/s4DS99/HWlcHKhWekycR8MgjaH19z6qu42k8nXC9LAjXy4JQLFaasqtpSKugMa0c5zgfe7mG1DIqv8k4MkveB02MGz8V/ULy3mT2l+8HQK1SMzpyNFMTphLvG3+qS3YYf56xrqm14FPji5fJg/grh+EUbQuWG9PKKZ27l0giiQydekI920t/ITXzVwbdfDuaI6ngFZVCo7Uei9aKykWN1sOAk687Kv9j3wFdiOsZZqwfo9KqL8i64iqVCqfoaJyio89YNqe8nqlz/yCzpA53g5ZPbu/LgM5HPuu/f9RsHXjFyYPizAz2b1pH2qb1XPWXh4ju2QeA7kNGYG5qJG7gMEK6xNmD8+1VbYWRdQvTydpZCoCHvzNDbuoiwXchhBBCCCGEEEII0SEUFBTYf160aBHPP/88aWlp9n1/DmSbTCZ0uvPPwnr//ffzxx9/8P7779O9e3fKysrYtGkTZWVl51znkiVLSEhIQFEUli5dypQpU04o89JLL3HvvfdSW1tLcnIy999/P15eXtx0001nrN/Dw4O0tDQURSEvL4/HH3+c8ePHk56ejl6vt5cbM2YMc+fObXauv7//OfdLCCHOlwThLySNFsL62LbBj4C5CfK2QdY6OLQecn6HmnzYtdC2gW0GbNQQ1NHDMEQPAfWxdOvBnT0J7uzZokv3HR9Ft0HBtgD9kVT4thn2tqC9i+exwUqxKmidNJgbLaBAY52ZxjrzcceP1Zu1s/RYwP5PtE4arp3Ri8BoDwAO7S4la0eJffa9bb17HQZXLdaMVIwfvYUlw/aLhqFHD4KeexbnxMQW9a+lVBo1Tp28cOrkBWObB0kbMyqw1pqoTymmPqUYK1a0zsX0dItC42kmKeFybo+/nTD3sJNXfomwBdZNWGuajqWCr7H91znBD6dORwLr6RWUfr7nlPVovJzsQXj18TPWXY+lgle5ajHRSHfXkQQ0dcPdxw8UCHm+P999+Bbpf2w8seJvwNXbh9te+yduPr6oXNRUFRei1mhtr9vxzO/j7cqt5K7kLZTWNhHiaSD5rsvpEuhuO5i3zb4OfHnfp9i/MZX9mz6mIj/Xfn765o32ILx/ZDRX3vV/F7wPZ8tqVdizNpfN32RiMlpQq1X0GhVB33FRaPUX79IZQgghhBBCCCGEEEKcjaCgY3/n9/T0RKVS2fcdOnSI4OBgFi1axAcffMDmzZv58MMPufPOO5k7dy5///vfycrKIioqiunTp/PAAw/Y68rLy2PmzJmsXr0atVrN4MGDeffdd4mKigJg+fLlvPvuu4wbNw6wzVLv06fPefVlzpw53HbbbSiKwpw5c04ahHd3d7f375VXXuF///sfy5Yta1EQ/vh7ExwczCOPPMLEiRNJS0ujR48e9nJOTk7N7qsQQrQ1CcK3Ja0eIgfYNp4AU4MtEJ+13haYz9sGFYds2/b5tnP8uthmyEcNsW2uLZsh7uymx9lNf+aCQL+Jneg3sRMWk9U2u77+SOD+yH/dfJzsZT18DUR097EH9Y+WRwFzo6XZmvTF2TWkbiw42SUB6FPchI+PDwGPziQ/sD9fL83B6fttGFy1R2ba22bZO7no6NTTHzdvWzuajGasZgW9i/a8ZtKar/JivWE9Fan5JFbHEtUYQnxDDPENMVACQZMuQ+tuW09bsSoXPE3/+XBoYL3Tn9ZY/3MqeHc9Gjc9+gh3+3m64DPPWO983M8qFzUj7rqPxFFjbantj0txX1tRjrG2BhcvL3v5DQvns3/jWnQGZ3xCQputOe975Of2NDv8531FPPTldhpMFroHezD3zssI9DiyVntDJSyeRoNJ4aui4RQn/2I/T6vT06n3ZcQNGkZ0r75t0/jzkL27lPWLDgAQ1MmD4VPi8A11O8NZQgghhBBCCCGEEEK0nKIoKA0NbXJtlbOzwyYJPfHEE7z99tvMnTsXJycnPv30U1544QXef/99evXqxfbt27n33ntxdXVl6tSp1NfXM2LECIYMGcK6devQarW88sorjBkzhl27dqHX6wkKCmLlypVMmjQJd3f3MzfiDA4ePMhvv/3G0qVLURSFGTNmkJmZSadOnU57nsFgwGQynfX1Kisr+fLLLwEckhlACCFakwTh2xOdM3QabtsAGmvg8GbIWmsLzBfshNJ027blM1uZwARbUD56KEQOBEPLZsa3hEanxtXTyZ6m/mTiBgQTNyC42T7FqtDYYJtl7+ZtsO8Pi/NGrVZhrDdhrDZSsy+TurwSzBpnTFoXfMeNpNPMe9B4eJC+IouKwvpTXtc/wt0ehN+3qYAN/7MF9pxctEc2nT1433dslD3QV1lcT3l+nW0W/pG0+QXmXP6TPp9vD36LyWoCP4jsFMk9EdMY1ng5loxaLNWNaH2O9aXsP/uw1pswdLWlrtcFu17wGdh/TgVv/2+tCecEX9tsf8B4oILSOacJrHseF1g/1RrrRwPr4WcXWD9KpVGjcjm7ILibtw9u3j5E9ujZbH9jfR3VJcWo1cce8LCYTKg1GkzGBooyMyjKzLAfU2s0TP9iCZojQfi039ZjMhptgfrQMAyuFzYIvOD3bJ5btgerAkO7+PPBlN64OWmpr66i5FAWkalvQuVhDL5RmGsCUdUUEpXYi7hBw+jctz9OLi4XtL2OFJXoR+de/oTFeRM/JPSiepBFCCGEEEIIIYQQQlwclIYG0nqf3+zuc9U1ZRsqB/39bsaMGUyaNMn++uWXX+btt9+274uOjiY1NZWPP/6YqVOnsnDhQtRqNZ999pn977Vz587Fy8uLNWvWMGrUKD755BOmTJmCr68vSUlJDB48mOuvv55BgwY1u/YHH3zAZ5991myf2WzGYDA02/f5558zduxYvL29AVtK+M8//5xXXnnlpH0ym8385z//Yffu3fzf/7Uss2dVVRVubm4oikJ9vS1mMHHiROLi4pqVW7FiBW5ux/7WO3bsWBYvXtyiawghRGuQIHwr+yOrnN8zy7iudyhh3mc5+Dq5Q+xVtg2goQKyN9lmyWetg+JUKNpj2zZ/ACo1BPeE6CPryUcMAL2rw/t0Jiq1CoOrDoNr8yfRQmK8CO7sSe3PP1P04RuY8vIAcLn8cgKfegZDl+vsZbsPCiY01uvIOvfm5jPt60y4eh2b1W8yWuw/21LsmwGjfV/iiHD7z9m7y9iw+MAJbfZS9+cmbSLZfTcxedhYhocPp+RQLanbSzAEuOAU6UHNtmLbTHwnDU3pFWC20nSomuofslG7621rycd5Y4jxRu18bl8txwXW9fayapczBNaPn7Ee5NKqgXVHcHJxxT+y+VICEx99GovZTGVRgW3WfO6x2fMAGu2x92Priq8pzEi3v3bx9LLNlg8Nwzcsgl5jrm6VdlutCm+uTuPDNQcBuLFvGM+P7kz25rXs37SO7F3b0WpU/F+ndeh0elQ3JjPO6I67nz8uHo57uOZCOry3jC3fHWLCQ4k4uehQqVSMua/HmU8UQgghhBBCCCGEEKKD69v3WCbMkpIScnJyuPvuu7n33nvt+81mM56etr8dbtu2jYyMjBNmuBuNRg4etP1NcujQoWRmZrJ582Y2btzIL7/8wrvvvsuLL77Ic889Zz9nypQpPPPMM83qWbp0Ka+99pr9tcViYd68ebz77rv2fbfddhuPPPIIL774IhrNsUlUTzzxBM8++yyNjY3o9XpmzZrFfffd16L74O7uTkpKCmazmbVr1/Lmm2/y0UcfnVBuxIgRfPjhh/bXrq4XPjYihBDHkyB8K5u/OZvlO/N5+8d0+nfyYXLvMMb2CMbN6RxuvbM3xI23bQC1Jba15A8dSV9flgH5KbZt47ug1kFonyMz5YdA2OWgM5z+Gq2oMTOLoldfpW6jbZ1vbVAQgU88jvuYMScEfN28Dc1m0Z9O33FR9BodYVu7/kg6fGOdLVhvrDPj6e9sL6t30WAIUaioqoZGDU5mF9So0Vn16Jr0PDfoOYIjbb+0FGVVs+PHwye9prMKrhwZjmttE40ZlVhrmqjfVkT9tiLqXLQUd/W1zch31eHp40RwiBuqRsuxVPBHAuyGeF8Mnb2AMwfW1R7HBdZPsca62k2Pxl2PPtzDft7FEFh3BI1Wi29oOL6h4XDZgFOWi4hPRO/sQnleDrXlZdRXVVJfVUlO6m68AoObBeF/+Og9zE2N9iC9T0gYXsGhaM8y1VGj2cLjX+3imx35aKxmHoo10Tn7O+b831bMpiZ7OW99LTUmJ3zGvwghvQg8+9vQLtRXN7Fh8QEObCkCIOWHbAZcF9PGrRJCCCGEEEIIIYQQHYHK2ZmuKdva7NqOcnwQ2Wq1AvDpp5/Sr1+/ZuWOBrutVit9+vRhwYIFJ9Tl7+9v/1mn0zFkyBCGDBnCk08+ySuvvMJLL73EE088gV5vm/zm6elJTEzzv+cFBAQ0e/3DDz+Ql5d3wrruFouF1atXM3bsWPu+WbNmMW3aNFxcXAgODj6rrLJqtdrelri4OAoLC7nppptYt25ds3Kurq4ntFkIIdqSBOFb2VXdAymrbeS3zDI2Z5azObOc57/Zy5iEICb1DmVgZz8055qS2c0fEibZNoDq/GPryWetg6rDkLPZtq37O2icIKIfRB1JXx/aGzStv26KpbaO0g8/oPyL+WAyodLp8LnrLvzu+wtqB6Xm0WjUuHjocfE4+br3RrORbw9+yxeFX5AdmQ2ATq1jYqeJ3NL5NoK1oRjrTHgFHmuPf4QbPUeGY6w3Hwno2wL8R4P7+p4B+HX2RDFb2bc0g+JN+QTq1BwuayTj11wA9CoY66mj5BTtVnvo7UH4M6WCd4o4LrAe2DEC661hyK3T7D83NdRTnp9nX3deqz+29IKiKGRs+Q1jbU2z81UqNZ6BgYR168Ho+6fb95uMRnSGEx8cqWowcd/8rWzOLEerVvFUWDGVP33D0XwM3iFhxF1+OXGH/oVPYyZ0uxou/4tD+3yhKIrCvk0FbFqSQWO9GZXKlomiz9iotm6aEEIIIYQQQgghhOggVCqVw1LCtxeBgYGEhoaSmZnJlClTTlqmd+/eLFq0iICAADw8PE5a5mS6d++O2WzGaDTag/AtMWfOHG6++eYTZsy/8cYbzJkzp1kQ3s/Pz2EB8kceeYR//OMffP3111x33XVnPkEIIdqIBOFb2cSkECYmhZBX2cCy7Xks2ZZLZmkdX2/P4+vteQR5GLi2VyjX9wklJsD9zBWejkcIJN1k2wAqDh0JyB8JzNcWHgvQ/wroXCFygC0gHzUEgpPguHW2z5eiKFQvX07xm29hLrGFod2GDyfwqSfRR0Y67DqnU9VYxcL9C/ly/5eUG8sBcNe7c1PXm7g17lb8XY49Aejh1/wpxZBYb0JivU9Zt6IoAKi0asKuCMfQxRtjnYmAWhOeDWaM9WacCmqhpB7UKjTutsB6XaOFqloTrkEuOB/30IAusHXXWBcn0ju7ENQ5lqDOsSceVBRG/98MW4A+z5baviwvh6aGeioLC/AMCGpWfM5f70VRFHxCbDPmfULDMDl78uXXP1OoCsbNO4YPb+tNgntPFu/bRNcBQ4gbNIyAyGhU/7sdGjPBKxImvg9n8SRoe1FRWMeaBWnkH6gEwC/cjRG3xREQ2fJf+IUQQgghhBBCCCGEECc3e/Zspk+fjoeHB2PHjqWxsZGtW7dSUVHBzJkzmTJlCm+++SbXXHMNL730EmFhYRw+fJilS5cya9YswsLCGD58OLfccgt9+/bF19eX1NRUnn76aUaMGHFWgfuSkhKWL1/Ot99+S0JCQrNjU6dOZfz48ZSUlDSbge8oHh4e3HPPPbzwwgtce+21ZzWrXgghLiQJwl8goV7OPDgihgeGd2ZHTiVLU/L4dmc+hdVGPlp7kI/WHiQxzJPJvcO4OikEH9eWP3F2St5Rtq33HaAotnT1WWttQfhDG6C+DDJ+sm0ATp4QNfjYmvL+3UB9boFe4759FL78Cg0pKQDoIiMIfOop3IcPP/9+tUBebR5f7P2CrzO+psHcAECwazC3d7+dSbGTcNWd/3owxw/uHn7OJwTxwbbGu7XRjPrIetgAy/6RQl5hAxQ2wI4yfEIOEZ3kR3SSPwER7vJLQzuhUquJ6dsP+h5L76QoCnWVFZTn5aLWHPtuNNbXU1dZAUB9VSW5+44tKxAJaDxquPfJ2+keYvtF9t73Pz/2Pm/+CPavsC0fcUMyOHu1dtdaRcoP2eQfqESrV9NvYicSR4Q1u0dCCCGEEEIIIYQQQohzd8899+Di4sKbb77J448/jqurKz169GDGjBkAuLi4sG7dOp544gkmTZpETU0NoaGhXHnllfYA++jRo5k3bx5PP/009fX1hISEMGHCBJ5//vmzassXX3yBq6srV1555QnHRowYgbu7O/Pnz2fmzJnn3e+T+etf/8p7773H4sWLufHGG1vlGkIIcb5UytHpvMKuuroaT09Pqqqqzurpr7PVaLbw6/5ivtqWx5q0YsxW21uh06gY0TWASb3DuCIuAL22FQJZVisUpx5bT/7QRmisal7Gxdc2Qz76SPp635gzztC1VFZS/O67VC76H1itqJyd8bv/fnzunIb6LFLZnKvUslSS9ySzOns1FsUCQFfvrkxLmMboqNHo1K2ffv9MqksbyNpZStauEvIPVKFYj30FPfydmTK7nwQvL0KZ+eWs2riLrTv301Ccj7epEg9zNWaPQKbcNoneA/qdeFJeCswZBVYTjP079Lvvwjf8PFgtVvtntaGmifX/O0D/azqd9IEUce4u1JjUkcg9FUII0V7ImORYcj+FEEK0FzImOd7p7qnRaCQrK4vo6GgMJ1kuUggh3xMhHKml47zMhG9DTloNYxKCGZMQTFltI9/uzGdpSh6786pYnVrE6tQivF10XJ0UwuTeYSSGeTpulrRaDUEJtq3//4HVAgU7jwTk10P2b7aZ8qnLbBuAe3DzoLz3sZTyisVC5eLFlPzzHSxVtmC+x7hxBDw+C11Q0InXdyBFUdiUv4m5e+bye+Hv9v0DggcwLWEaA4IHtKvZ5R5+ziRdGU7SleEY60xk7ykja2cJh/eW4x3o0iwAv2lJBn7hbkQm+OLk0vYPEIjmCqoa+G5XAct3FbAzp/LI3nC0fhEMjvXjysQQxvcIxll/kmUeGiph8TRbAP4iWwfeWGdi05IMjHUmxt7fA5VKhbO7nlF3x7d104QQQgghhBBCCCGEEEIIIdqcBOHbCV83J+4cFM2dg6JJK6xh6fZclm3Po6i6kS9+y+aL37KJCXBjUu9QrusVSrCng2eaqjUQ2tu2DZ4B5ibITzmynvxayPkDagpg9/9sG4BXBEQPpb4xisIF62hMywDAKTaWwGefxbXf5Y5t45+YrCa+z/qe5L3JpFekA6BRaRgTPYZp8dOI84lr1es7gsFVR9d+QXTtF4TZZMFYa7Ifqy5rYPuPhwFQq1WEdPGyp61395En1dpKcY2RVbsLWbErny2HKuz71SoY0NmXCYkhjIkPwvt0S0ooCnz7EFRmX1TrwCuKwoEtRWxYfICGGttntTSnFv8I9zZumRBCCCGEEEIIIYQQ4mITHx9Pdnb2SY99/PHHTJky5QK3SAghHEeC8O1Q1yB3nhrbjcdHx7Exo5QlKbn8sLeQjOJa/v59Gm/+kMagzn5M6h3KmIQgXPSt8DZq9RDR37YNmwUmI+T+YZspn7Ue8rZiKsil5PsVVB1yAUDtBP5ju+F9662oOndyfJuOqG2qZcmBJcxPnU9RfREAzlpnJsdO5vbutxPiFtJq125NWp0GN+9jM6Y1GjW9x0SStbOUioI6cvdXkLu/gvWLDuAX7kbfcVF07hXQhi3uOMrrmvh+jy3wvjmzjKMrCKhUcFmkDxOSghmbEIy/u1PLKvzjE9i3/KJaB76qpIF1/03jcGo5AN7Brgyf0lUC8EIIIYQQQgghhBBCiHOycuVKTCbTSY8FBgZe4NYIIYRjSRC+HdOoVQzt4s/QLv7UGE2s2l3IkpRcfs8qZ0NGKRsySnl22R7GJgQzuU8o/aN9UatbaTatzmBPQ680NVGe/DmlH36MtcEIgFfnevx7VKM15MPSn23nBMRD9JH09ZGDzjvQWFxfzIJ9C1ictpgaUw0AvgZfbut+Gzd0uQFPJ8/zqr+9cfVyYsC1nRlwbWcqi+rt68gXHKyiNKcWq+XYWvI15UYqi+sJifVCI+vJO0RVg4nVewtZvquAjRmlWKzH7nfPcC+uTrKlmg/yPMusBHkp8MMztp9HvWLLPtGOWSxWdv6Uw5YVWZhNVjRaNX3HRdJrVCQarXzWhBBCCCGEEEIIIYQQ5yYyMvLMhYQQ4iIlQfiLhLtBx42XhXPjZeHklNfz9fY8lqTkkl1Wz5KUXJak5BLq5cx1vUKZ1DuUTv5urdKO2o0bKXr1NZoyMwEwJCYS9NyzOMeEQ/Ym23ryWeugaA8U77Vtv38EqCA46dh68hEDwKllbTxYeZDkvcmsyFyB2WoGIMojimnx05jQeQJOmhbOPr6IeQW60GtUBL1GRdBQ08Sh3aVExvvaj+//rYA/lmfh5KIlMsGX6CR/IuJ90BvkK342ahvN/JRaxIpd+axLL6XJYrUfSwj1YMKRNd7DfVzO7QLHrwMfNwH63eeQdrcmq0Vh7/o8zCYroV29GH5rHF6B59h/IYQQQgghhBBCCCGEEEKIDkAidBehcB8Xpl8Zy8NXxLAtu4IlKXms2JVPXmUD7/+awfu/ZtArwovJvcOYkBiMl8tp1qZuoabcPIr/9jdqfvwRAI2vLwEzZ+J53bWo1Edmw8aNs20AdaVwaIMtIH9oPZSmQ8EO27bpPVBrIaT3saB8+OWgO7bOvaIobCvaRvLeZNbmrrXv7x3Qm2nx0xgWPgy1qmPOwnV219NtYPOU+yq1CoObDmOtifQ/ikj/owi1VkVYVx+ik/yI6x+EVq85RY0dW0OThV/2F7NiVz6/7C+m0Xws8N410J0JicFMSAoh2s/1/C7UbB34CLjm3+12HfgmoxmtXoNarUKn1zD8tjhqyxuJGxCEqp22WQghhBBCCCGEEEIIIYQQor2QIPxFTKVS0TfKh75RPrxwdXd+2lfE0pQ81qaXsP1wJdsPV/LS8lRGdg9gUq8whnX1R3eWqcqtRiNln82h7NNPURobQaPB57Yp+D34IBoPj1Of6OoH8dfaNoDqgiNB+bW2wHxltm2N+dw/YP1boHGC8MuxRA3mZ1c3kos2sLtsr62fqLgi4gqmxU+jZ0DPc7pXl7q+Y6PoPTqSwswqW9r6HSVUlTRweG8ZhQcr6TYw2F7WWGvCyVXboYOpjWYLa9NKWLGrgJ/2FVHfZLEf6+Tnag+8dwl04Hrnf3x6UawDn7m9hHWL0ukzJpIew8MACI/zaeNWCSGEEEIIIYQQQgghhBBCXDwkCH+JMOg0TEgMYUJiCMU1Rr7dkc+SlDz2FVSzcnchK3cX4uuqZ2LPECb3DiM+xOO0QVhFUaj56SeK3/gbprw8AFz69SPwmacxdOly9g30CIbEG2wbQEX2kdT1tvT1xtoCvinbzjxzBjk6HQB6VFzj0YU74u8kqvNo0MjH9XTUahUhMV6ExHgxcFJnKgrqydpVguXIOt5ge18X/20rKiA6yY/oJH+COnuiVl/6AXmTxcqGjFJW7Cxg9d5CahrN9mNh3s5MSAzh6qRgugef/rtxTvJSYPXx68D3cWz9DlBbYWTdwnSydpYCkLoxn4Shoag6wGdDCCGEEEIIIYQQQgghhBDCkSSqeQkKcDdwz5BO3DOkE6n51SxNyWXZjnxKaxuZu/EQczceomugO5P7hHJtz1ACPAzNzm/MzKTo1deo27gRAG1QEIFPPI77mDGOC056R4J3JBXdxrNw/3/5774FVDRVA+BpVbi5qppbqmvwtWbDzh/ByQMiB0H0EFv6+oB4UHfMdPQtoVKp8AlxxSekeQr12opGaiuMWM0KO37KYcdPOTi764js4Ud0oh/h3X3QXUJp6y1Whc2ZZazYlc+qPYVU1pvsx4I8DPYZ70lhnq2XGeDoOvCWpna5DrzVqrBnbS6bv8nEZLSgVqvoNSqCvuOiJAAvhBBCCCGEEEIIIYQQQghxDiQIf4nrHuJB95DuPDk2jvUHSvkqJZcfU4tIK6rhtZX7eWPVfobE+jOpdyhXRbpR8+knlH/xBZjNqHQ6fO6+C7+//AW1i4tD25VTk8MXe79gWcYyjBYjAKFuodze/Xau63wtLhXZx9aTP7QejFWQvsq2ATj7QNTgY2vK+3Vpt+trtyfuPgbufmsIh/eWk7WrhOzdZTTUmNi/qYD9mwqIHxrK8Fu7tnUzz4vVqrA1u4IVu/JZubuA0tom+zE/NyfG9whiQlIIfSK8Wz8DgKLAtw+323Xgy/Pr+PmLfRQfsj0AE9TJg+FT4vANdWvjlgkhhBBCCCGEEEIIIdrCoUOHiI6OZvv27fTs2bOtm3NJmj17NsuWLWPHjh1t3RQhRCuSIHwHodWoGREXwIi4AKoaTHy3q4ClKblsza5gbVox6p+/x3/vd3gbbcE4txEjCHzqSfQREQ5tx57SPczdM5efDv+EVbEC0M2nG3cl3MXIyJFo1Uc+koHdbVv/+8FqgcLdtqB81jo4/Bs0lMO+b20bgFugLRgfdWSmvHdUuwp2tid6g5aYPgHE9AnAYrFSkFFF1s4SsnaWEp3oZy9XmFnFpqUZRCf6E53kh1egYx/EcCRFUdiRU8nynQWs3F1AYbXRfszLRcfYhGCuTgymXydfNBdydvcfn9o+o2odXJ/c7taBt5itlByuQW/QMOC6zsQPkfTzQgghhBBCCCGEEEJcCNOmTaOyspJly5bZ93311VfcdtttvPTSSzz++ONt17izsGTJEv7+97+zf/9+rFYrERERjBkzhrfffhuA5ORkZsyYQWVl5QnnqlQqvv76a6699tpm+//yl78wZ84cFixYwM0339zs2OzZs3nxxRcBUKvVhISEMHr0aF5//XX8/f3P2N7jM6K6urrSuXNnHnnkEaZNm2bfv2bNGkaMGHHCuc888wyvvPLKGa8hhBAgQfgOydNZx639Iri1XwSZm7ZR8Mqr+GTuAyDP1Y+Pe1xDYXRvJqUZmeRaR6Sv6xlqPD2rYmVD3gbm7pnL1qKt9v2DQgdxZ/ydXB50+elTgas1ENLTtg2aDhYT5G8/FpTP+R1qi2D3YtsG4Bl+bJZ81BDwDD2vPlyqNBo1YV29CevqzeAbYkE5dixzRwkFGVUUZNiC8d5BLkQn+RPd04/ASI82D9YqisLe/GqW78rnu10F5FY02I+5G7SMjg9iQmIwg2L80GkcsHSByQgNFWexVUJ1ru3cUS9DWPtYB76qpB5Pf9sDFf4R7lw5tRthXb1x9XJq45YJIYQQQgghhBBCCNFxffbZZzz44IP8+9//5p577jnr85uamtDr9a3QslP76aefuPnmm3nttdeYOHEiKpWK1NRUfv7553Ous76+nkWLFjFr1izmzJlzQhAeID4+np9++gmLxcL27du5++67ycvLY9WqVS26xty5cxkzZgx1dXUsWrSIO++8k+DgYEaPHt2sXFpaGh4eHvbXbm6SQVQI0XIShO+gzBUVlLz7Lo3/W4yP1YrK2ZmGm+7gp6jB7NtXRm15A+/+fIB3fz7AZVHeTOodxvjEYDwMuhZfw2Qx8V3Wd8zbO4+MygwAtCotY6PHMjV+Kl19zjHtuUYH4ZfbtqGP2YKjeVuPBOXXQ+4WqMqBHQtsG4BP52PryUcNAbeAc7v2JUylUsFxcfXEEWG4+xjI3FFCfnolFYX1VBRmk/JDNi6eeibP6oOHn/MFb2daYQ0rduWzYlcBWaV19v2ueg0juwcyITGEoV38cNKeZG17RYGmupYH0Y9/bW44sb6WSLwJ+t1/buc6UH11ExsWH+BgSjE3Pn2ZPeV8135BbdwyIYQQQgghhBBCCCE6tr///e88//zzfPnll0yePBmATZs28eSTT7Jlyxb8/Py47rrreP3113F1tU2ai4qK4p577iEjI8M+m3zEiBHMmDGDRYsWMWPGDHJychg8eDBz584lODjYfr25c+fy97//naysLKKiopg+fToPPPDAWbd7xYoVDB48mFmzZtn3denS5YSZ7Wdj8eLFdO/enaeeeorg4GAOHTpEVFRUszJarZagINvfNUNDQ5k+fTrPP/88DQ0NODuf+W/WXl5e9vOffvpp3n77bVavXn1CED4gIAAvL6+zav/Rmf/Jyck8/vjjHD58mCFDhvD5558THh5+0nOGDx9Oz549eeedd+z7rr32Wry8vEhOTgbggw8+4J///Cc5OTl4enoyZMgQvvrqq7NqmxDiwpIgfAejWCxULl5MyT/fwVJVBYDHuHEEPD4LXVAQvYAXmiysTi1kSUoeGw6UsOVQBVsOVTD7271c1T2QyX3CGBLjh/YUs4trmmpYnL6YBakLKG4oBsBV58r1sddzW/fbCHJ1cNBPZ7CtDx81GEZgC7Ie3mxbSz5rnW3WfPlB27Yt2XaOf7cjM+WHQOQgcPFxbJsuAW7eBnoMD6PH8DAa601k7y0ja2cp2XvKUBRw8zHYy+5dn4dWpyayhx8G15Y/qNFSmSW1rNhVwPKd+RworkWFFXfqidXVc2WUE1dG6kjyU9A35UBJJRw+TXDdajr3hqg04Ozd8s3FB3yiHXYfzoViVdi3qYBNSzNorDejUkH+gUpZ910IIYQQQgghhBBCXNJMjZZTHlOpQavTtKysCrT6M5fVOZ1kUlALPPnkk/z73/9mxYoVjBw5EoDdu3czevRoXn75ZebMmUNJSQkPPfQQDz30EHPnzrWf++abb/Lcc8/x7LPPArBhwwbq6+t56623mD9/Pmq1mttuu43HHnuMBQtsE9Y+/fRTXnjhBd5//3169erF9u3buffee3F1dWXq1Kln1fagoCC+/PJL9uzZQ0JCwjn1/8/mzJnDbbfdhqenJ+PGjWPu3Ln29POn4uzsjNVqxWw2n9W1LBYLS5Ysoby8HJ3OcX/Xrq+v59VXX2XevHno9XoeeOABbr75ZjZu3HhO9W3dupXp06czf/58Bg4cSHl5OevXr3dYe4UQrUOC8B1IfUoKha+8QmOqLfW8U5cuBD77DK6XX96snLNewzU9Q7mmZyiFVUa+2ZHHkpRc0otsgdAVuwrwd3fi2p4hTO4TRlyQLR1LYV0hC/YtYHH6YupMthnKAc4BTOk+hRu63IC73v3CdFTvCjFX2jYAYxVk/2YLyB9aZ1tfvmSfbfvjY0AFwYlH1pMfBpEDwOkCtfUi4eSio8tlQXS5LAiL2UpVcQPqI+noFavCH8uzqK9uQqVWERLraV9H/owz5S1mMFaeNFheVV7M4bw8SksKUTVUMlRVy9XU4uVUh6eqHjVWWx05R7azodGDs89JAudepw+qO7nbfuu+SFQU1rFmQRr5ByoB8At3Y8RtcQREepz+RCGEEEIIIYQQQgghLnKf/HXtKY9FJvgy4aEk++vPZ63H3GQ9admQWC+ue7S3/fUXz2zCWHviRJ8HP7rirNu4atUqvvnmG37++WeuuOLY+W+++Sa33norM2bMACA2Npb33nuPYcOG8eGHH2Iw2CZIXXHFFTz22GP28zZs2IDJZOKjjz6ic+fOADz00EO89NJL9jIvv/wyb7/9NpMmTQIgOjqa1NRUPv7447MOwj/88MOsX7+eHj16EBkZSf/+/Rk1ahRTpkzByenY8pdVVVUtSuV+4MABNm/ezNKlSwG47bbbmD59Oi+88AJq9cknBe7fv58PP/yQyy+/HHf3lv1d/5ZbbkGj0WA0GrFYLPj4+Jx0CYCwsLBmr7Ozs/H19T1j/SaTiffff59+/foBMG/ePLp168Yff/zB5X+Kx7TE4cOHcXV1ZcKECbi7uxMZGUmvXr3Ouh4hxIUlQfgOwFRcTPFbb1H97XIA1B4e+D/8MN633IxKe/qPQJCngfuGdeYvQzuxN7+ar7bl8u3OfEpqGvl0fRafrs8iJrQGn5BNpNetw6LYngLs7NmZqfFTGd9pPHrNhV2H5gQGT+g6xrYB1JfDoQ3H1pQvTYOCnbbtt/dts51Dex9LXR/eD/QubduHdkSjVeMT4mp/bTZb6TYggKydJZQXNpKXVkleWiUbFh/A19tIfFQuPUL3nTzde2P1Ka/jCfSwX/QUhXSuLQ+gH7/pnC+qYPq5SPkhm9+XZ2I1K2j1avpN7ETiiDDUp8hgIYQQQgghhBBCCCGEuLASExMpLS3l+eef57LLLrMHkbdt20ZGRoZ99jqAoihYrVaysrLo1q0bAH379j2hThcXF3sAHiA4OJjiYlvG2pKSEnJycrj77ru599577WXMZjOenp5n3X5XV1e+++47Dh48yK+//srmzZt59NFHeffdd/ntt99wcbH9Xd3d3Z2UlJQTzo+NjW32es6cOYwePRo/Pz8Axo0bx913381PP/3EqFGj7OV2796Nm5sbFouFxsZGhg8fzieffNLidv/zn/9k5MiR5OTkMHPmTB555BFiYmJOKLd+/fpmgX1vb+8W1a/Vapu9N3FxcXh5ebFv375zCsJfddVVREZG0qlTJ8aMGcOYMWO47rrr7PdXCNE+SRD+EqY0NVE+/z+U/vvfWOvrQaXC6/rJ+D/yCFqfs0u/rlKpSAj1JCHUk2fGd+PX/cXMTfmJnTXLKHJNo6jWVs5d6crkzrfxf/3G46J3fFpyh3Dxge4TbRtATWHzoHxFlm1d+dwtsP5t26zpsMuOpK8fCqF9QdvGDxa0BkUBU/1Zr5eua6igv6me/kCVXyBZjZeTZbycAlM3yioMVDfugYJ5AFgULflN8YTo89GojqUGatK6U6G4UmRyplJxowpXqnDDzcufiNBQukZH4Orpf+Ksda3TSbsiQK1RYTUrRCb4MvTmLmfOSiCEEEIIIYQQQgghxCXkL+8OO+Ux1Z/mqdz15pBTl/3TXJ47Xh14Ps1qJjQ0lCVLljBixAjGjBnD999/j7u7O1arlfvuu4/p06efcE5ERIT956Prwx/vz2nVVSoViqIAYLXaZvt/+umn9lnaR2k055ZOH6Bz58507tyZe+65h2eeeYYuXbqwaNEi7rzzTgDUavVJg9zHs1gsfPHFFxQWFqI9bvKgxWJhzpw5zYLwXbt25dtvv0Wj0RASEtJs1n1LBAUFERMTQ0xMDIsXL6ZXr1707duX7t27NysXHR191mvCH6U6ySSwk+0D2/05+h4dZTIdy7Zw9CGGNWvWsHr1ap5//nlmz57Nli1bzrl9QojWJ0H4S1Ttho0UvfoqTVlZABiSEgl69lmce/Q4w5mnZ7aa+fnwT8zNmkuqNRWNK6hQ42LuSXHOAGqM4fxrP8z7+RcmJIUwuXcYvSO8Tjm4tAvuQdDjetsGUJlzbD35rHVQnQfZG23bmtdB6wwR/W3ryUcPg+CeoGlHXyVFsc0wb0EA/YTN0nTu11Wp8fQw09OQSk/nAhq0f5Bd2x1/fz8IfBKcvckrCWD5d17onEAXoGKf2sR3VUbqjpvqfnmUDxOSghmbEIy/uwTZW8pYZ6KustG+1nviiDC8Al2ITPBt398/IYQQQgghhBBCCCFawdms0d5aZVsiIiKCtWvXMmLECEaNGsUPP/xA79692bt37xkD12crMDCQ0NBQMjMzmTJlikPrPioqKgoXFxfq6urO6ryVK1dSU1PD9u3bmz0QsH//fqZMmUJZWZk9Fbxer3fYvYmJiWHy5Mk89dRTfPPNNw6p02w2s3XrVvus97S0NCorK4mLiztpeX9/fwoKCuyvLRYLe/bsYcSIEfZ9Wq2WkSNHMnLkSF544QW8vLz45Zdf7MsKCCHan3YUORSO0JSbR/Hf3qDmx58A0Pj6EjBzJp7XXYvqFGumtES9qZ6vM75mfup88mrzADBoDFwTcw1Tu08l3COcjOJavt6ey9cpeeRXGfny98N8+fthov1cmdQrlGt7hRLucxGkR/EKh5632jZFgfLMI+vJHwnM15VA5q+2DUDvDpEDj8yUHwKBPeA87rWdxWxbz/7PgfJTrKHeLMh+ZFmAc6LW2bIFnDSVu9epU7zr3Zv12xk4/leKqgYTa79Jx6QthkYFU45CJFruw5UKNzVB3bwZPbYTUSGyXvnZUBSFA1uK2LD4AHpnLTc/dzlanQa1Rk1UD7+2bp4QQgghhBBCCCGEEOIMwsLCWLNmjT0Q//HHHzNgwAAefPBB7r33XlxdXdm3bx8//vgj//rXv87rWrNnz2b69Ol4eHgwduxYGhsb2bp1KxUVFcycOfOs66qvr2fcuHFERkZSWVnJe++9h8lk4qqrrjqruubMmcP48eNJSkpqtj8+Pp4ZM2bwn//8h7/+9a9nVWdLPfrooyQlJbF169aTpvg/Wzqdjocffpj33nsPnU7HQw89RP/+/U+Ziv6KK65g5syZfPfdd3Tu3Jl//vOfVFZW2o+vWLGCzMxMhg4dire3NytXrsRqtdK1a9fzbqsQovVIEP4SYTUaKfv0M8o++wylsRE0Gnxum4LfQw+hOW7NkrNV1lDGf/f/l4VpC6lqrALAy8mLW+Ju4ea4m/ExHEtrHxPgxqzRcTx6VVc2Z5bxVUou3+8pJKu0jrd/TOftH9Pp38mHSb3DGNcjGDeni+Djp1KBb2fb1vdOW1C+JO3ILPm1tjT2xko48INtA1tAOnKQbZZ89FDwiT797PNTBdKP3O9zpnNpeQC92XrpLg5bL7220czP+4pYvrOAdeklNFmsqFwh2KKmv5MznZvUaGrM+NUqmLeU4z7m2NOLpkYLWr1aZnGfRlVJA2v/m0ZOajkABjc9dZVNePpL6nkhhBBCCCGEEEIIIS4moaGh9hnx9957L2vXruWZZ55hyJAhKIpC586duemmm877Ovfccw8uLi68+eabPP7447i6utKjRw9mzJhx1nUNGzaMf//739xxxx0UFRXh7e1Nr169WL169VkFiIuKivjuu+/48ssvTzimUqmYNGkSc+bMabUgfI8ePRg5ciTPP/88K1euPO/6XFxceOKJJ7j11lvJzc1l8ODBfP7556csf9ddd7Fz507uuOMOtFotjzzySLNZ8F5eXixdupTZs2djNBqJjY3lv//9L/Hx8efdViFE61Epf15oQlBdXY2npydVVVV4eLTvWbmKolDz008Uv/4Gpvx8AFz69SPo2Wdwio0953qzq7OZt3ce3x78lkZLIwBhbmFMjZ/KNTHX4KxtWZCvrtHM93sKWbo9l00Hyzj6aTPo1IyJD2JynzAGdvZDo75IA61WKxTtPhKUXw/Zm6CpxrHXcPJoeQD96GbwAp3Bse1ooYYmC7+mFbN8Zz6/7C+m0Wy1H+sS6MbViSGMTwymk78tbXpFYR1ZO0spzq5m9L0J9qD76jl7KcqqIjrRn+iefgR39kStcUCGgUuAxWJl5085bFmRhdlkRaNV03dcJL1GRaLRyj261FxMY9LFQu6pEEKI9kLGJMeS+ymEEKK9kDHJ8U53T41GI1lZWURHR2MwtM3fRIU4Kjk5mRkzZjSbyd4eyPdECMdp6Th/EUxFFqfSmJlJ0SuvUrdpEwDa4GACn3gc99Gjz3n28M6SnSTvSebnwz+jYIuYJ/gmcGfCnVwZcSUa9dmtd+PqpGVynzAm9wkjr7KBZdvzWJKSS2ZJHct25LNsRz5BHgau7RXK5N6hxAae+6z9NqFWQ3CSbRv4sC2FfMEO2yz5rHVw+HcwNwCqsw+kO3uDwRM0ujbu5Jk1mi2sTSthxa4CftpXRH3TsXT4nfxcmZAYzISkELqc5P31DnLFO8i12T7FqpCXVkF9dRM7f8lh5y85OLlqierhR6ckf8K7+zh87aWLhbHOxLJ/bKcsrxaA0K5eDL81Dq/Ai2CpByGEEEIIIYQQQgghhBBCiA5AgvAXIUttLaX//oDy+fPBbEal1+Nz91343XsvapezD8RZFSvrctcxd89cUopT7PuHhg1lWvw0+gb2dUhK8FAvZx4cEcMDwzuzM7eKJdty+XZnPoXVRj5ae5CP1h4kMcyTSb1CmdgzFB9X/Xlf84LTaCGsr20b8iiYm8BUB06ejlknvh0xWaxsyChlxc4CVqcWUmM024+FeTszITGECYnBxId4nPXnR6VWcdvLA8hJLSdrZwlZu0tprDOTtrmQtM2FBEZ7cP0T5782z8XIyUWLq5ee2kotgybHEjcgSFL2CyGEEEIIIYQQQgghHO7+++/nP//5z0mP3XbbbXz00UcXuEWn99prr/Haa6+d9NiQIUNYtWrVeV9j7NixrF+//qTHnn76aUJCQs77GkKIS4Okoz+J9pouSFEUqr/9lqK33sJSUgqA24gRBD71JPqIiLOur8nSxIrMFSTvTSarKgsArVrLhE4TmNp9KjHeMWeo4fw1mi38ur+YJSl5/Lq/GLNVOdIOFSPiApjcO4wr4gLQS4rtdsFiVdicWcaKXfms2lNIZb3JfizIw8D4xGAmJAbTM9zLoYFhq8VKwcEqsnaWkrWzhK79g7l8QjQATUYz3/17F5EJvkQn+Z0wq/5SkLmjhJBYLwyutqwItRWNaLQqnN0vwgdVxFlrr2PSxUzuqRBCiPZCxiTHkvsphBCivZAxyfEkHX3bKC4uprq6+qTHPDw8CAgIuMAtOr3y8nLKy8tPeszZ2ZnQ0NDzvkZeXh4NDQ0nPebj44OPj895X6M1yPdECMe5aNLRf/DBB7z55psUFBQQHx/PO++8w5AhQ05adtq0acybN++E/d27d2fv3r3210uWLOG5557j4MGDdO7cmVdffZXrrruu1fpwITTs3UvRK6/SsH07APrISAKfeRq3oUPPuq6qxioWpy9mwb4FlDYcCebr3Lih6w1MiZtCoGugQ9t+Ok5aDWMSghmTEExZbSPLd+azJCWP3XlV/JhaxI+pRXi56JiYFMKk3mEkhXnKrN8LzGpV2JpdwYpd+azcXUBpbZP9mJ+bnnE9gpmQGELfSG/U6tZ5b9QaNaFdvAnt4s2g62OwWo49O5STWk7+gUryD1Ty29cH8Qp0ITrJj+gkf4KiPVC1UpsuhNoKI+sWppO1s5Rug4K54vZuALh5O7Vxy4QQQgghhBBCCCGEEJe6gICAdhdoP50LEQR3RCBfCNExtGkQftGiRcyYMYMPPviAQYMG8fHHHzN27FhSU1OJOMnM7nfffZc33njD/tpsNpOUlMQNN9xg3/fbb79x00038fLLL3Pdddfx9ddfc+ONN7Jhwwb69et3QfrlSOaKCkreeZfK//0PFAWViwt+/3c/PlOnotaf3SzYgtoC5u+bz5L0JdSb6wEIcAngju53MDl2Mm56t9boQov5ujkxbVA00wZFk15Uw5KUXJZtz6OoupEvfsvmi9+y6ezvyqTeYVzXK5QQL+c2be+lTFEUduRUsnxnASt3F1BYbbQf83LRMTYhiKsTQ+jXyRfNBQ5yq1QqNNpj1wyO8WLYLV3I2llKbloFlUX1bF99mO2rD+PsruOqO+MJ794+nz48FatVYc/aXDZ/k4nJaEGtVuHioUdRFHkIRQghhBBCCCGEEEIIIYQQop1r03T0/fr1o3fv3nz44Yf2fd26dePaa6/l9ddfP+P5y5YtY9KkSWRlZREZGQnATTfdRHV1dbO1PcaMGYO3tzf//e9/W9Su9pAuSLFYqPzf/yh5510sVVUAeIwfT8Djs9AFnt1M9bTyNObuncv3Wd9jUSwAxHjFcGfCnYyNGotOo3N4+x3FYlXYmFHKkpRcfthbiNFkBUClgoGdfZncO4wxCUG46Ns8qcNFT1EU9uZXs3xXPt/tKiC34lhKHXeDltHxQUxIDGZQjB86TftcHqCpwUz23jKydpaSvaeMpgYzt78yAA8/2wMbOfvLqatoJKqHHwa39vm5L82t4df/pFF8yJbmKaiTB8OnxOEb2rYPyYi20x7GpEuN3FMhhBDthYxJjiX3UwghRHshY5LjSTp6Ic6PfE+EcJx2n46+qamJbdu28eSTTzbbP2rUKDZt2tSiOubMmcPIkSPtAXiwzYR/5JFHmpUbPXo077zzzinraWxspLGx0f76VGucXCj127ZR+MqrNO7bB4BT164EPfsMLpdd1uI6FEVhc8Fmkvcmsyn/2P3sF9SPaQnTGBQy6KKYUatRqxjaxZ+hXfypMZpYtaeQJdty+T2rnI0ZZWzMKOPZZXsYmxDM5D6h9I/2bbWU6Jeq9KIalu/MZ8WuArJK6+z7XfQaruoeyITEEIZ28cNJq2nDVraM3llLbN9AYvsGYjFbKT5UbQ/AA+z6JZdDu0pRqWwz6I+mrff0bx9ZFQ6mFPPDZ3tRrAp6g4YB13UmfkjoRZ1SX4j2oL2N80IIIYRwDBnjhRBCiEuXjPNCCCEudm0WhC8tLcVisRD4p1ndgYGBFBYWnvH8goICVq1axZdfftlsf2Fh4VnX+frrr/Piiy+eRetbh6m4mOK33qL62+UAqD088P/rdLxvugmVtmVvldlq5odDP5C8N5n95ftt9ajUjI4czdSEqcT7xrda+1ubu0HHjX3DubFvODnl9Xy9PY+lKbkcKqtnSUouS1JyCfVy5rpeoVzXO5TO/jJz+FQyS2pZsauAFbvySS+qte930qq5slsAExJDGNE1AGd9+w+8n4pGqyY4xqvZvqBOHtSUGynLrbWvI7/xqwx8Qlzp1MufyydEt+nDKaFdvTG4agmJ9WLIjV1w9ZK134VwhPYyzgshhBDCsWSMF0IIIS5dMs4LIYS42LV5Du8/B7xauuZxcnIyXl5eXHvttedd51NPPcXMmTPtr6urqwkPDz9jGxxFaWqifP58Sv/9Adb6elCp8Lr+evwfmYHWp2VrWdeb6ll6YCnzU+eTX5cPgLPWmetiruP27rcT5h7Wml244MJ9XJh+ZSwPXxFDyuEKlqTksXxnPnmVDbz/awbv/5pBz3AvJvcJ4+rEYLxc9G3d5DaXU15vD7zvzT/25Kheo2ZoF3+uTgrmym6BuDm1+T8LrabPmCj6jImiurSBrF2lZO0sJf9AJeX5dTi5aFFd3cletjCzCv9wdzS61ku9X1/dxP7NBfS6KgKVSoXBVcdNz16Oq6cE34VwpLYe54UQQgjROmSMF0IIIS5dMs4LIYS42LVZtM3Pzw+NRnPCDPXi4uITZrL/maIofP7559x+++3o9c2Dq0FBQWddp5OTE05ObRP0ql2/gaLXXqMpKwsAQ1IiQc8+h3OPhBadX9pQypf7vmRR2iKqm2yBVR+DD7fG3cpNXW/Cy+DVWk1vF1QqFX0ifegT6cPzE7rz875ilqTksja9hB05lezIqeTl5alc2S2Ayb3DGNbVv92uZ94aCqoa+G5XAct3FbAzp9K+X6tWMSjGjwmJwYyKD8LTuX2uj95aPPycSboinKQrwjHWmcjeU4aT87F/Dhtqm1j65ja0Thoi432JTvIjMsEXJxfH3CfFqrBvUwGblmbQWG/G3cdAbF/bv1ESgBfC8dpynBdCCCFE65ExXgghhLh0yTjfNqZNm0ZlZSXLli07ZZk1a9YwYsQIKioq8PLyumBtu9QcOnSI6Ohotm/fTs+ePdu6OUKIVtBmQXi9Xk+fPn348ccfue666+z7f/zxR6655prTnrt27VoyMjK4++67Tzg2YMAAfvzxx2brwq9evZqBAwc6rvEO0JSbS9Ebb1D7088AaHx9CXj0UTyvvQaV+sxB4qyqLObtncfyg8tpsjYBEOkRyR3d72Bi54kYtIZWbX97ZNBpGJ8YzPjEYIprjHy7I58lKXnsK6hm1Z5CVu0pxNdVz8SeIUzuHUZ8iEebph5vLcU1RlbtLmTFrny2HKqw71eroH8nX65OCmFMfBDerpIdAMDgqqNrv6Bm+6qKG3B211Nf3UTGtmIythWjVqsI6WJbR75zr4BzThVfUVjHmgVp5B+oBMAv3K3drEkvhBBCCCGEEEIIIYS4ME4X8I6KiiI7O7vZvtDQUHJzc+3HZ8yYwYwZMxzapnfffRdFUeyvhw8fTs+ePXnnnXccep22Nm3aNObNmweARqMhJCSE8ePH89prr+Ht7W0vd6b3QQghTqdN807PnDmT22+/nb59+zJgwAA++eQTDh8+zP333w/YUs7k5eXxxRdfNDtvzpw59OvXj4SEE2eL//Wvf2Xo0KH87W9/45prruGbb77hp59+YsOGDRekT2dibWig7NPPKJszB6WxETQafG67Db+HHkTj7n7G87cXb2funrn8mvOrfV+ifyJ3xd/F8PDhaNQX7xrejhTgbuCeIZ24Z0gnUvOrWZqSy7Id+ZTWNjJ34yHmbjxE10B3JvUO5dpeoQR6XNwPLZTXNfH9HlvgfXNmGdZjvydxWZS3LfCeEESA+8XdzwslqJMn094YRFF2NVk7S8naUUJFYT25+yvI3V+BVq+h+6AQACwWK2q16owPdFhMVrZ9f4htP2RjNSto9Wr6TexE4ogw1B0oO4MQQgghhBBCCCGEEOLMXnrpJe699177a42m9f/27+np2erX+DOTyYROd+EztY4ZM4a5c+diNptJTU3lrrvuorKykv/+97/NyrXF+yCEuDS0aeTnpptu4p133uGll16iZ8+erFu3jpUrVxIZGQlAQUEBhw8fbnZOVVUVS5YsOekseICBAweycOFC5s6dS2JiIsnJySxatIh+/fq1en9OR1EUqlevJnP8BEo/+AClsRGX/v3ptOxrAp968rQBeKti5efsn7lt5W3cseoOewB+ePhw5o2Zx3/G/ocrI6+UAPwpdA/x4NkJ3dn81BXMnXYZExKD0WvVpBXV8Pqq/Qx4/Wfu+PwPvtmRR0OTpa2b22JVDSYWb81h6ud/cNmrP/H017vZdNAWgO8Z7sWz47vx21NXsPj+gdwxIEoC8GdJpVYRFO3JgGs7c+vs/kx5sT8DJ8UQHONJVA8/e7k9a/KY/8xvrF+UTu7+ciwW60nr+/7TPWz57hBWs0Jkgi+3PN+PniMjJAAvhBBCCCGEEEIIIYQ4gbu7O0FBQfbN39//rOt49NFHufrqq+2v33nnHVQqFd999519X9euXfn4448B2wzxa6+91v7z2rVreffdd1GpbJOQDh06ZD9v27Zt9O3bFxcXFwYOHEhaWlqL2jR79mx69uzJ559/TqdOnXByckJRFL7//nsGDx6Ml5cXvr6+TJgwgYMHD9rPmzx5Mg8//LD99YwZM1CpVOzduxcAs9mMu7s7P/zwQ4va4eTkRFBQEGFhYYwaNYqbbrqJ1atXn1DuXN8HlUrFhx9+yNixY3F2diY6OprFixefsnxycvIJ6f2XLVvWbPLXzp07GTFiBO7u7nh4eNCnTx+2bt3aovYIIS68Np0JD/DAAw/wwAMPnPRYcnLyCfs8PT2pr68/bZ3XX389119/vSOa5xCNBw9S9Oqr1G36DQBtcDCBTzyB++hRp50922hp5NuD3/LF3i84VH0IAJ1ax8TOE7kj/g46eXa6EM2/ZGg1akbEBTAiLoCqBhMrdxewZFsuW7MrWJdewrr0EtyctIzvEcyk3qFcFuWDWt2+0tXXNpr5eV8Ry3cWsC69hKbjAr7xIR5MSAxhQmIw4T4ubdjKS5NXoAu9RkXQa1REs/3Ze8uoKTey69dcdv2ai5OLlsgEX6KT/ImI90FvsP0zm3RFGMWHqhl8YywxfQIuyaUQhBBCCCGEEEIIIYRoL0xG4ymPqdRqtHp9i8qiVqHTO52xrM7Q/iZBDR8+nDlz5mC1WlGr1axduxY/Pz/Wrl3L+PHjKSwsJD09nWHDhp1w7rvvvkt6ejoJCQm89NJLAPj7+9sD8c888wxvv/02/v7+3H///dx1111s3LixRe3KyMjgf//7H0uWLLHPLK+rq2PmzJn06NGDuro6nn/+ea677jp27NiBWq1m+PDhfPLJJ/Y6ju9LfHw8W7ZswWg0MmjQoLO+T5mZmXz//fcOn5H/3HPP8cYbb/Duu+8yf/58brnlFhISEujWrds51TdlyhR69erFhx9+iEajYceOHW2SRUAI0TJtHoS/lCmKQsk//kHZ3GQwm1Hp9fjecze+996L2vnUa0BXNVaxcP9Cvtz/JeXGcgDc9e7c1PUmbo27FX+Xs3/iTTTn6azjlssjuOXyCLLL6liSksfSlFxyKxpYtDWHRVtzCPdx5rpeYUzuHUqkr2ubtbWhycKvacUs35nPL/uLaTQfC7x3CXSzB947+bu1WRs7srH39yAntZysXaUc2lWKsdZE+h9FpP9RROIVYQy5sQsAYXE+3P7KALR6yVghhBBCCCGEEEIIIURre2/qqSfqRffqy6QnZ9tff/CXKZgbG09aNqx7Aje98Ib99acP3UVDTfUJ5R5dtOLcG3sSTzzxBM8++6z99Wuvvcb06dPPqo6hQ4dSU1PD9u3b6d27N+vXr+exxx5j6dKlAPz6668EBgYSFxd3wrmenp7o9XpcXFwICgo64firr75qD94/+eSTjB8/HqPRiKEFDyM0NTUxf/78ZrPKJ0+e3KzMnDlzCAgIIDU1lYSEBIYPH85f//pXSktL0Wg07N27lxdeeIE1a9bwwAMPsGbNGvr06YObW8v+Tr5ixQrc3NywWCwYjzxY8Y9//OOEcufzPtxwww3cc889ALz88sv8+OOP/Otf/+KDDz5o0fl/dvjwYWbNmmV/v2JjY8+pHiHEhSFB+FakUqmwGhvBbMbtiisIfOpJ9OHhpyyfV5vH/NT5LD2wlAZzAwDBrsHc3v12JsVOwlXXdoHgS1mkryszr+rCjCtj2XKonKUpeXy3u4Cc8gbe+/kA7/18gL6R3kzuE8a4HsF4Orf+k2WNZgvr0ktZvjOfn/YVUX9cmvxoP1cmJAYzITGErkGnXsZAXBg6vYZOPf3p1NMfq1Wh8GAVWTtLyNpZSurGAnqOjMDdx/aLpwTghRBCCCGEEEIIIYQQLTFr1iymTZtmf+3n53fqwqfg6elJz549WbNmDTqdDrVazX333ccLL7xATU0Na9asOeks+JZITEy0/xwcHAxAcXExERERpzrFLjIy8oS07gcPHuS5555j8+bNlJaWYrXaJqMdPnyYhIQEEhIS8PX1Ze3ateh0OpKSkpg4cSLvvfcewFn3ZcSIEXz44YfU19fz2WefkZ6e3izd/VHn8z4MGDDghNc7duxo8fl/NnPmTO655x7mz5/PyJEjueGGG+jcufM51yeEaF0ShG9l/g8/hNvQIbgNGXLKMqllqSTvSWZ19mosii3Y2tW7K9MSpjE6ajQ6taQTuRDUahX9OvnSr5MvsyfGszq1kCUpeWw4UMLW7Aq2Zlfwwrd7GdU9kMm9wxgS64fWget5myxWNmaUsnxnAatTC6kxmu3HQr2cmZAUzNWJIcSHeEgq83ZKrVYREutFSKwXAyfHYKw14eQq318hhBBCCCGEEEIIIS606fO+OuUxlbr533Uf+GTBqSv605Kl977/+Xm1q6X8/PyIiYk573qGDx/OmjVr0Ov1DBs2DG9vb+Lj49m4cSNr1qxhxowZ51Tv8WnQj/69+mjg/ExcXU+ccHj11VcTHh7Op59+SkhICFarlYSEBJqamuzXGDp0qL0vw4cPJyEhAYvFwu7du9m0adNZ9cXV1dV+f9977z1GjBjBiy++yMsvv9ysnKPeh6NO9bd9tVqNoijN9plMpmavZ8+eza233sp3333HqlWreOGFF1i4cCHXXXedw9onhHAcCcK3Mo2Hx0kD8IqisCl/E3P3zuX3gt/t+wcED2BawjQGBA+QQGsbctZruKZnKNf0DKWo2siy7XksScklvaiWFbsKWLGrAD83J67tGcLkPmF0C/Y4p+tYrAqbM8tYsSuf7/cUUlF/bFAN8jAwPjGYCYnB9Az3ks/DRUalUuHsrj9zQSGEEEIIIYQQQgghhMOdzRrtrVW2PTi6LrxWq2XkyJEADBs2jIULF55yPfij9Ho9FovllMcdpaysjH379vHxxx8z5Eg8ZcOGDSeUO7ouvF6v56WXXkKlUjFkyBDeeustGhoazmk9+KNeeOEFxo4dy//93/8REhJyzvUcb/Pmzdxxxx3NXvfq1eukZf39/ampqaGurs7+kMLJZs136dKFLl268Mgjj3DLLbcwd+5cCcIL0U5JEP4CM1lNfJ/1Pcl7k0mvSAdAo9IwOmo00+Kn0c23Wxu3UPxZoIeB+4Z15i9DO7E3v5olKbl8uyOf0tpGPtuQxWcbsugW7MHk3ragvb+702nrs1oVtmZXsGJXPit3F1Jae2ytIT83PeN62FLN9430Rq2WwLsQQgghhBBCCCGEEEJciqqqqk4ItPr4+Dj0GkfXhV++fDmvvPIKYAtmT548GX9/f7p3737Kc6Oiovj99985dOgQbm5uDm/bUd7e3vj6+vLJJ58QHBzM4cOHefLJJ08od3RdeK1Waw/WDx8+nEcffZTevXvj4XFuk+WO1hMfH89rr73G+++/f871HG/x4sX07duXwYMHs2DBAv744w/mzJlz0rL9+vXDxcWFp59+mocffpg//viD5ORk+/GGhgZmzZrF9ddfT3R0NLm5uWzZsoXJkyc7pK1CCMeTIPwFUmeq46v0r5ifOp+i+iIAnLXOTI6dzO3dbyfEzTFPVonWo1KpSAj1JCHUk6fHdWNtWglLUnL5eV8x+wqqeeW7al5ftZ9hXfyZ1DuUkd0CMehsa4ArisKOnEpW7Crgu10FFFYb7fV6uegYmxDEhMQQ+kX7ODTFvRBCCCGEEEIIIYQQQoj2ac2aNSfMjJ46dapDr+Hp6UmvXr04fPiwPeA+ZMgQrFbrGddQf+yxx5g6dSrdu3enoaGBrKwsh7btKLVazcKFC5k+fToJCQl07dqV9957j+HDhzcrl5CQgJ+fH5GRkfaA+7Bhw7BYLOe8tv3xZs6cyZ133skTTzxBeHj4edf34osvsnDhQh544AGCgoJYsGDBKR968PHx4T//+Q+zZs3ik08+YeTIkcyePZu//OUvAGg0GsrKyrjjjjsoKirCz8+PSZMm8eKLL553O4UQrUOl/HmRCUF1dTWenp5UVVWd15NTAMX1xSzYt4DFaYupMdUA4GvwZUq3KdzY9UY8nTwd0WTRhirrm1i+q4Al23LZkVNp3+9u0DIhMQQPZy3f7Sogt6Lh2DEnLaPig7g6KZhBMX7oJPAuhDgFR45JwkbuqRBCiPZCxiTHkvsphBCivZAxyfFOd0+NRiNZWVlER0djuMhSxYtLl0ql4uuvv+baa69t66YA8j0RwpFaOs7LTPhW9uiaR9lRsgOAKI8opsVPY0LnCThpTp+yXFw8vFz03N4/ktv7R3KwpJalKbl8nZJHfpWR//5x2F7ORa9hZLdArk4KYWgXP5y0mjZstRBCCCGEEEIIIYQQQgghhBCiNUgQvpVN6TYFtUrNtPhpDAsfhlolM54vZZ393Zg1Oo5Hr+rK5qwyvtmej9FsYXR8ECO6BuCsl8C7EEIIIYQQQgghhBBCiPO3YMEC7rvvvpMei4yMZO/evRe4RRAfH092dvZJj3388cdMmTKlVa9/fNr9k0lNTSUiIuK8rtEe77sQov2RIHwrGx01mjHRY9q6GeICU6tVDOzsx8DOfm3dFCGEEEIIIYQQQgghhBCXoIkTJ9KvX7+THtPpdBe4NTYrV67EZDKd9FhgYGCrXz8kJIQdO3ac9vj5asl9l5WghRAShG9lKpWqrZsghBBCCCGEEEIIIYQQQohLjLu7O+7u7m3djGYiIyPb9PparZaYmJhWvUZ7vO9CiPZHcqMLIYQQQgghhBBCCCGEEEIIIYQQDiJBeCGEEEIIIYQQQgghhBBCCCGEEMJBJAgvhBBCCCGEEEIIIYQQQgghhBBCOIgE4YUQQgghhBBCCCGEEEIIIYQQQggHkSC8EEIIIYQQQgghhBBCCCGEEEII4SAShBdCCCGEEEIIIYQQQgghhBBCCCEcRILwQgghhBBCCCGEEEIIIYQQot2YNm0a1157bVs3QwghzpkE4YUQQgghhBBCCCGEEEIIIS6g0wWZo6KieOedd5q9VqlULFy48ISy8fHxqFQqkpOTTyj/5+2NN944Y7sOHTrU7BxPT0/69+/P8uXLm5VLTk4+6TU+++yzFvVfCCEuddq2boAQQgghhBBCCCGEEEIIIYQ4tfDwcObOncvNN99s37d582YKCwtxdXU9ofxLL73Evffe22yfu7t7i6/3008/ER8fT2VlJR988AGTJ08mJSWFhIQEexkPDw/S0tKanefp6dniawghxKVMZsILIYQQQgghhBBCCCGEEOKSYm2ynHJTTNazKGtpUdnWNmXKFNauXUtOTo593+eff86UKVPQak+cb+nu7k5QUFCz7WTB+lPx9fUlKCiIuLg4Xn31VUwmE7/++muzMiqV6oRrODs7n7Hu2bNn07NnTz7++GPCw8NxcXHhhhtuoLKy8pTn/Dk7AEDPnj2ZPXt2s3ojIiJwcnIiJCSE6dOnt7i/QgjhaDITXgghhBBCCCGEEEIIIYQQl5T85zed8pihqzd+dx6b0V3w8uYTAvNH6aM9Cbgv0f668G9/YK0zn1Au7I0h59HaMwsMDGT06NHMmzePZ599lvr6ehYtWsTatWv54osvWu26JpOJTz/9FACdTuewejMyMvjf//7H8uXLqa6u5u677+bBBx9kwYIF51TfV199xT//+U8WLlxIfHw8hYWF7Ny502HtFUKIsyUz4YUQQgghhBBCCCGEEEIIIdq5u+66i+TkZBRF4auvvqJz58707NnzpGWfeOIJ3Nzcmm1r1qxp8bUGDhyIm5sbBoOBRx99lKioKG688cZmZaqqqprVHxQU1OL6jUYj8+bNo2fPngwdOpR//etfLFy4kMLCwhbXcbzDhw8TFBTEyJEjiYiI4PLLLz8hHb8QQlxIMhNeCCGEEEIIIYQQQgghhBCXlJCXBp7ymEqlavY6+Ln+pynb/HXQE5efV7vOx/jx47nvvvtYt24dn3/+OXfdddcpy86aNYtp06Y12xcaGtriay1atIi4uDjS09OZMWMGH330ET4+Ps3KuLu7k5KSYn+tVrd83mdERARhYWH21wMGDMBqtZKWlnZWwfyjbrjhBt555x06derEmDFjGDduHFdfffVJU/ULIcSFIP/6CCGEEEIIIYQQQgghhBDikqLWa9q8rKNptVpuv/12XnjhBX7//Xe+/vrrU5b18/MjJibmnK8VHh5ObGwssbGxuLm5MXnyZFJTUwkICLCXUavV53WN4x19MOLPD0gcfy1FUZrtM5lMzdqblpbGjz/+yE8//cQDDzzAm2++ydq1ax2aRl8IIVpK0tELIYQQQgghhBBCCCGEEEJcBO666y7Wrl3LNddcg7e39wW55rBhw0hISODVV191WJ2HDx8mPz/f/vq3335DrVbTpUuXk5b39/enoKDA/rq6upqsrKxmZZydnZk4cSLvvfcea9as4bfffmP37t0Oa7MQQpwNmQkvhBBCCCGEEEIIIYQQQghxgVVVVbFjx45m+/6c8v3PunXrRmlpKS4uLqctV1NTc8L66i4uLnh4eJxTWx999FFuuOEGHn/88bNKa38qBoOBqVOn8tZbb1FdXc306dO58cYbT5mK/oorriA5OZmrr74ab29vnnvuOTSaY1kJkpOTsVgs9OvXDxcXF+bPn4+zszORkZHn3VYhhDgXEoQXQgghhBBCCCGEEEIIIYS4wNasWUOvXr2a7Zs6deoZz/P19T1jmeeff57nn3++2b777ruPjz766OwaecSECROIiori1Vdf5YMPPjinOo4XExPDpEmTGDduHOXl5YwbN+609T711FNkZmYyYcIEPD09efnll5vNhPfy8uKNN95g5syZWCwWevTowfLly1t0r4QQojWolD8voiGorq7G09OTqqqqc34qTAghhHAEGZMcT+6pEEKI9kLGJMeS+ymEEKK9kDHJ8U53T41GI1lZWURHR2MwGNqoheJszJ49m2XLlp2QBUC0HvmeCOE4LR3nZU14IYQQQgghhBBCCCGEEEIIIYQQwkEkCC+EEEIIIYQQQgghhBBCCNEB3H///bi5uZ10u//++x1yjfj4+FNeY8GCBQ65hhBCtHeyJrwQQgghhBBCCCGEEEIIIUQH8NJLL/HYY4+d9Jijlk9YuXIlJpPppMcCAwNxd3dn9uzZDrmWEEK0VxKEF0IIIYQQQgghhBBCCCGE6AACAgIICAho1WtERka2av1CCHExkHT0QgghhBBCCCGEEEIIIYS4qCmK0tZNEKLdku+HEBeeBOGFEEIIIYQQQgghhBBCCHFR0mg0ADQ1NbVxS4Rov+rr6wHQ6XRt3BIhOg5JRy+EEEIIIYQQQgghhBBCiIuSVqvFxcWFkpISdDodarXMPRTiKEVRqK+vp7i4GC8vL/tDK0KI1idBeCGEEEIIIYQQQgghhBBCXJRUKhXBwcFkZWWRnZ3d1s0Rol3y8vIiKCiorZshRIciQXghhBBCCCGEEEIIIYQQQly09Ho9sbGxkpJeiJPQ6XQyA16INiBBeCGEEEIIIYQQQgghhBBCXNTUajUGg6GtmyGEEEIAIIujCCGEEEIIIYQQQgghhBBCCCGEEA4iQXghhBBCCCGEEEIIIYQQQgghhBDCQSQIL4QQQgghhBBCCCGEEEIIIYQQQjiIrAl/EoqiAFBdXd3GLRFCCNHRHR2Ljo5N4vzJOC+EEKK9kHHesWSMF0II0V7IGO94Ms4LIYRoL1o6zksQ/iRqamoACA8Pb+OWCCGEEDY1NTV4enq2dTMuCTLOCyGEaG9knHcMGeOFEEK0NzLGO46M80IIIdqbM43zKkUexzuB1WolPz8fd3d3VCrVedVVXV1NeHg4OTk5eHh4OKiFFw/pv/Rf+i/974j9d2TfFUWhpqaGkJAQ1GpZRcYRZJx3nI7c/47cd5D+S/+l/zLOt08yxjuO9F/6L/3vmP3vyH0HGePbOxnnHacj978j9x2k/9J/6f+FHudlJvxJqNVqwsLCHFqnh4dHh/xQHyX9l/5L/6X/HZGj+i5PzTuWjPOO15H735H7DtJ/6b/0X8b59kXGeMeT/kv/pf8ds/8due8gY3x7JeO843Xk/nfkvoP0X/ov/b9Q47w8hieEEEIIIYQQQgghhBBCCCGEEEI4iAThhRBCCCGEEEIIIYQQQgghhBBCCAeRIHwrc3Jy4oUXXsDJyamtm9ImpP/Sf+m/9L8j9r8j972j6ejvdUfuf0fuO0j/pf/S/47c/46io7/P0n/pv/S/Y/a/I/cdpP8dSUd/rzty/zty30H6L/2X/l/o/qsURVEu2NWEEEIIIYQQQgghhBBCCCGEEEKIS5jMhBdCCCGEEEIIIYQQQgghhBBCCCEcRILwQgghhBBCCCGEEEIIIYQQQgghhINIEF4IIYQQQgghhBBCCCGEEEIIIYRwEAnCCyGEEEIIIYQQQgghhBBCCCGEEA4iQfhztG7dOq6++mpCQkJQqVQsW7as2XFFUZg9ezYhISE4OzszfPhw9u7d26xMY2MjDz/8MH5+fri6ujJx4kRyc3MvYC/OzZn6Pm3aNFQqVbOtf//+zcpcrH0HeP3117nssstwd3cnICCAa6+9lrS0tGZlLuX3vyX9v1Q/Ax9++CGJiYl4eHjg4eHBgAEDWLVqlf34pfy+w5n7f6m+76fy+uuvo1KpmDFjhn3fpf4Z6Cg68hgPHXuclzG+447xIOO8jPPHyBh/aevI43xHHuOhY4/zMsbLGC9j/DEyzl+6OvIYDx17nO/IYzzIOC/jvIzzR7XHMV6C8Oeorq6OpKQk3n///ZMe//vf/84//vEP3n//fbZs2UJQUBBXXXUVNTU19jIzZszg66+/ZuHChWzYsIHa2lomTJiAxWK5UN04J2fqO8CYMWMoKCiwbytXrmx2/GLtO8DatWt58MEH2bx5Mz/++CNms5lRo0ZRV1dnL3Mpv/8t6T9cmp+BsLAw3njjDbZu3crWrVu54ooruOaaa+z/aF/K7zucuf9wab7vJ7NlyxY++eQTEhMTm+2/1D8DHUVHHuOhY4/zMsZ33DEeZJyXcd5GxvhLX0ce5zvyGA8de5yXMV7GeBnjbWScv7R15DEeOvY435HHeJBxXsZ5GeehHY/xijhvgPL111/bX1utViUoKEh544037PuMRqPi6empfPTRR4qiKEplZaWi0+mUhQsX2svk5eUparVa+f777y9Y28/Xn/uuKIoydepU5ZprrjnlOZdK348qLi5WAGXt2rWKonSs919RTuy/onSsz4C3t7fy2Wefdbj3/aij/VeUjvO+19TUKLGxscqPP/6oDBs2TPnrX/+qKErH++53FB15jFcUGedljO/YY7yiyDjf0cZ5GeM7no48znf0MV5ROvY4L2O8jPEdbYxXFBnnO5qOPMYriozzHXmMVxQZ5xVFxvmONs635zFeZsK3gqysLAoLCxk1apR9n5OTE8OGDWPTpk0AbNu2DZPJ1KxMSEgICQkJ9jIXszVr1hAQEECXLl249957KS4uth+71PpeVVUFgI+PD9Dx3v8/9/+oS/0zYLFYWLhwIXV1dQwYMKDDve9/7v9Rl/r7DvDggw8yfvx4Ro4c2Wx/R/sMdFTyPtt0hO86yBjfUcd4kHG+o47zMsYLea8v/e/58TryOC9jvIzxHW2MBxnnOzp5n206wncdOvYYDzLOyzjf8cb59jzGa8+7BnGCwsJCAAIDA5vtDwwMJDs7215Gr9fj7e19Qpmj51+sxo4dyw033EBkZCRZWVk899xzXHHFFWzbtg0nJ6dLqu+KojBz5kwGDx5MQkIC0LHe/5P1Hy7tz8Du3bsZMGAARqMRNzc3vv76a7p3727/B/lSf99P1X+4tN/3oxYuXEhKSgpbtmw54VhH+u53ZPI+d4zvOsgY3xHHeJBxviOP8zLGC5D3+lL/nh+vI4/zMsbLGN/RxniQcV7I+wwd47sOHXuMBxnnZZzveON8ex/jJQjfilQqVbPXiqKcsO/PWlKmvbvpppvsPyf8f3t3H1Nl/f9x/IUDFTyEUSgk8+DN1IwliWX6B5QOUVc6dVOZTYts6qJho7lpmS63TJu6qLZqc+jULW9jNp3hDTdhtqZC3nRLMMMl4tSWdhRF3t8/nOfngQOav2PEdT0f2/njcK5zrs+H67p8/vG5OCYna9iwYfJ6vdq1a5cmT57c6vs64txzcnJ07NgxlZeXt3jNDce/tfk7+RwYOHCgKisr9eeff2r79u2aNWuWSktL/a87/bi3Nv/Bgwc7+rhLUm1trXJzc1VUVKSuXbu2up3TzwHc5Obj7PRr/RYa777GS3TerZ2n8WjOrcfaydd5c27uPI2n8W5qvETnEcjNx9np1/otbm68ROfpvLs63xEaz9fR3wfx8fGS1OIuifr6ev8dF/Hx8bp27ZouXrzY6jZOkZCQIK/Xq19//VWSc+b+2muvaefOnSouLlZiYqL/5245/q3NPxgnnQOdO3dW//79NWzYMC1fvlxDhgzRBx984Jrj3tr8g3HScZdufjVNfX29UlNTFR4ervDwcJWWlio/P1/h4eH+OTj9HHA7t1zr/4TTrnWJxru18RKdd2vnaTxuccu1frecdJ3fzs2dp/E03m2Nl+g8bnLLtf5POO1al9zdeInO03n3db4jNJ5F+PugT58+io+P1969e/0/u3btmkpLSzVy5EhJUmpqqiIiIgK2OXPmjE6cOOHfxinOnz+v2tpaJSQkSOr4czcz5eTkaMeOHTpw4ID69OkT8LrTj/+d5h+M086B25mZGhoaHH/cW3Nr/sE47biPHj1ax48fV2Vlpf8xbNgwzZgxQ5WVlerbt68rzwG3ceu13hYnXes0nsY3R+fd0Xkaj1vceq23xknXueTuztP4lmi8Oxov0Xnc5NZrvS1Outbd3HiJzgdD593R+Q7ReMM9uXTpklVUVFhFRYVJstWrV1tFRYWdOnXKzMzee+89i4mJsR07dtjx48ctKyvLEhIS7K+//vJ/xty5cy0xMdH27dtnR48etVGjRtmQIUOssbGxvaZ1V9qa+6VLlywvL8+++eYbq6mpseLiYhsxYoT16tXLEXM3M5s3b57FxMRYSUmJnTlzxv/w+Xz+bZx8/O80fyefAwsXLrSysjKrqamxY8eO2aJFi6xTp05WVFRkZs4+7mZtz9/Jx70t6enplpub63/u9HPALdzceDN3d57Gu7fxZnSezgei8c7l5s67ufFm7u48jafxND4QnXcmNzfezN2dd3Pjzeg8nafzt/uvNZ5F+HtUXFxsklo8Zs2aZWZmTU1NtmTJEouPj7cuXbpYWlqaHT9+POAzrly5Yjk5ORYbG2uRkZH23HPP2e+//94Os/ln2pq7z+ezMWPGWFxcnEVERFjv3r1t1qxZLebVUeduZkHnLskKCgr82zj5+N9p/k4+B7Kzs83r9Vrnzp0tLi7ORo8e7Y+5mbOPu1nb83fycW9L86g7/RxwCzc33szdnafx7m28GZ2n84FovHO5ufNubryZuztP42k8jQ9E553JzY03c3fn3dx4MzpP5+n87f5rjQ8zM7vz38sDAAAAAAAAAAAAAIA74f+EBwAAAAAAAAAAAAAgRFiEBwAAAAAAAAAAAAAgRFiEBwAAAAAAAAAAAAAgRFiEBwAAAAAAAAAAAAAgRFiEBwAAAAAAAAAAAAAgRFiEBwAAAAAAAAAAAAAgRFiEBwAAAAAAAAAAAAAgRFiEB3BfhIWFqbCw8L7uY+nSpUpJSbmv+wAAAC3ReQAAnInGAwDgXHQe+HexCA90UPX19ZozZ4569+6tLl26KD4+XpmZmTp06FB7Dy1ktm/fruHDhysmJkbR0dF67LHHlJeX53/9jTfe0P79+9txhAAA3B90ns4DAJyJxtN4AIBz0Xk6D9wuvL0HAODeTJkyRdevX9f69evVt29fnT17Vvv379eFCxfae2ghsW/fPk2fPl3vvvuuJkyYoLCwMP3www8BAfd4PPJ4PO04SgAA7g86T+cBAM5E42k8AMC56DydBwIYgA7n4sWLJslKSkra3G7VqlWWnJxsUVFRlpiYaPPmzbNLly75Xy8oKLCYmBj78ssvbcCAARYZGWlTpkyxy5cv27p168zr9Vr37t0tJyfHGhsb/e/zer32zjvvWFZWlnXr1s0SEhIsPz8/YN+S7IsvvvA/P336tE2dOtW6d+9usbGxNmHCBKupqWl17Lm5ufbMM8+0Ob8lS5bYkCFDAvbZ/OH1ev2vnzx50saNG2fdunWzHj162AsvvGDnzp1rcx8AAPzb6PxNdB4A4DQ0/iYaDwBwIjp/E50H/g9fRw90QLfuJissLFRDQ0Or23Xq1En5+fk6ceKE1q9frwMHDmjBggUB2/h8PuXn5+vzzz/Xnj17VFJSosmTJ2v37t3avXu3NmzYoM8++0zbtm0LeN/777+vxx9/XEePHtXChQv1+uuva+/evUHH4fP59Oyzz8rj8aisrEzl5eXyeDwaO3asrl27FvQ98fHxOnnypE6cOHHXv5czZ874H1VVVerfv7/S0tL8r6WnpyslJUWHDx/Wnj17dPbsWU2dOvWuPx8AgH8DnQ+OzgMAOjoaHxyNBwA4AZ0Pjs7D1dr7LgAA92bbtm324IMPWteuXW3kyJG2cOFC+/7779t8z5YtW+yhhx7yPy8oKDBJVlVV5f/ZnDlzLCoqKuDuu8zMTJszZ47/udfrtbFjxwZ89rRp02zcuHH+57rtrrq1a9fawIEDrampyf96Q0ODRUZG2ldffRV0rJcvX7bx48f774ybNm2arV271q5everfpvlddbc0NTXZpEmTLDU11Xw+n5mZLV682MaMGROwXW1trUmyn3/+OegYAABoL3SezgMAnInG03gAgHPReToP3I6/hAc6qClTpuiPP/7Qzp07lZmZqZKSEg0dOlTr1q3zb1NcXKyMjAz16tVL0dHRmjlzps6fP6+///7bv01UVJT69evnf96zZ08lJSUF/L8tPXv2VH19fcD+R4wY0eL5jz/+GHSsR44cUVVVlaKjo/13BMbGxurq1av67bffgr6nW7du2rVrl6qqqvTWW2/J4/EoLy9PTz31lHw+X5u/m0WLFunQoUMqLCxUZGSkfwzFxcX+/Xs8Hg0aNEiSWh0DAADthc63js4DADoyGt86Gg8A6OjofOvoPNwovL0HAODede3aVRkZGcrIyNDbb7+t2bNna8mSJXrxxRd16tQpjR8/XnPnztWyZcsUGxur8vJyvfzyy7p+/br/MyIiIgI+MywsLOjPmpqa7jiesLCwoD9vampSamqqNm3a1OK1uLi4Nj+zX79+6tevn2bPnq0333xTAwYM0ObNm/XSSy8F3X7jxo1as2aNSkpKlJiYGDCG559/XitWrGjxnoSEhDbHAABAe6DzLdF5AIAT0PiWaDwAwCnofEt0Hm7FIjzgIIMHD1ZhYaEk6fDhw2psbNSqVavUqdPNL73YsmVLyPb17bfftnh+6y615oYOHarNmzerR48eeuCBB+55n0lJSYqKigq4K/B2hw4d0uzZs/Xpp5/q6aefbjGG7du3KykpSeHh/NMHAOh46DydBwA4E42n8QAA56LzdB7uxdfRAx3Q+fPnNWrUKG3cuFHHjh1TTU2Ntm7dqpUrV2rixImSbt6N1tjYqA8//FDV1dXasGGDPvnkk5CN4eDBg1q5cqV++eUXffzxx9q6datyc3ODbjtjxgw9/PDDmjhxor7++mvV1NSotLRUubm5On36dND3LF26VAsWLFBJSYlqampUUVGh7OxsXb9+XRkZGS22r6ur06RJkzR9+nRlZmaqrq5OdXV1OnfunCTp1Vdf1YULF5SVlaXvvvtO1dXVKioqUnZ2tm7cuBGy3wsAAP9fdJ7OAwCcicbTeACAc9F5Og80xyI80AF5PB4NHz5ca9asUVpampKTk7V48WK98sor+uijjyRJKSkpWr16tVasWKHk5GRt2rRJy5cvD9kY8vLydOTIET3xxBNatmyZVq1apczMzKDbRkVFqaysTL1799bkyZP16KOPKjs7W1euXGn1Lrv09HRVV1dr5syZGjRokMaNG6e6ujoVFRVp4MCBLbb/6aefdPbsWa1fv14JCQn+x5NPPilJeuSRR3Tw4EHduHFDmZmZSk5OVm5urmJiYvx3HQIA8F9A5+k8AMCZaDyNBwA4F52n80BzYWZm7T0IAB1LUlKS5s+fr/nz57f3UAAAQIjReQAAnInGAwDgXHQe+O/hVhIAAAAAAAAAAAAAAEKERXgAAAAAAAAAAAAAAEKEr6MHAAAAAAAAAAAAACBE+Et4AAAAAAAAAAAAAABChEV4AAAAAAAAAAAAAABChEV4AAAAAAAAAAAAAABChEV4AAAAAAAAAAAAAABChEV4AAAAAAAAAAAAAABChEV4AAAAAAAAAAAAAABChEV4AAAAAAAAAAAAAABChEV4AAAAAAAAAAAAAABChEV4AAAAAAAAAAAAAABC5H/LtqAj2Z8FdwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create subplots\n", + "fig, axs = plt.subplots(1, 4, figsize=(25, 10), sharey=True)\n", + "\n", + "for i in range(len(heritability)):\n", + " h = heritability[i]\n", + " for m in methods:\n", + " if \"RF_plus\" in m:\n", + " axs[i].plot(sample_row_n, agg_results[h][m][\"train_auprc\"], label=m, linestyle='dashed')\n", + " else:\n", + " axs[i].plot(sample_row_n, agg_results[h][m][\"train_auprc\"], label=m)\n", + " axs[i].set_xlabel('Sample Size')\n", + " axs[i].set_ylabel('Training AUPRC')\n", + " axs[i].set_title('PVE = ' + str(h))\n", + " \n", + "# Share the label in the last plot\n", + "axs[3].legend()\n", + "\n", + "fig.suptitle(\"Training AUPRC for Hierarchical Polynomial Model for Diabetes Regression Data\")\n", + "\n", + "# Show the plots\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.0" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/feature_importance/run_importance_local_sims.py b/feature_importance/ranking_importance_local_sims.py similarity index 90% rename from feature_importance/run_importance_local_sims.py rename to feature_importance/ranking_importance_local_sims.py index 3d4bd0f..9ddf19e 100644 --- a/feature_importance/run_importance_local_sims.py +++ b/feature_importance/ranking_importance_local_sims.py @@ -17,8 +17,7 @@ from typing import Callable, List, Tuple import itertools from sklearn import preprocessing -from sklearn.metrics import roc_auc_score, f1_score, recall_score, precision_score - +from sklearn.metrics import roc_auc_score, f1_score, recall_score, precision_score, average_precision_score sys.path.append(".") sys.path.append("..") sys.path.append("../../") @@ -142,6 +141,39 @@ def compare_estimators(estimators: List[ModelConfig], feature_importance_list.append(local_fi_score_test) feature_importance_list.append(local_fi_score_test_subset) + # print("support:") + # print(support) + # print("support shape:") + # print(support.shape) + # print("local_fi_score_train_subset") + # print(local_fi_score_train_subset) + # print(type(local_fi_score_train_subset)) + + auroc = [] + auprc = [] + f1 = [] + for rownum in range(local_fi_score_train_subset.shape[0]): + auroc.append(roc_auc_score(support, local_fi_score_train_subset.iloc[rownum,:])) + auprc.append(average_precision_score(support, local_fi_score_train_subset.iloc[rownum,:])) + f1.append(f1_score(support, local_fi_score_train_subset.iloc[rownum,:] > 0.5)) + + metric_results['train_AUROC'] = np.array(auroc).mean() + metric_results['train_AUPRC'] = np.array(auprc).mean() + metric_results['train_F1'] = np.array(f1).mean() + + auroc = [] + auprc = [] + f1 = [] + for rownum in range(local_fi_score_test_subset.shape[0]): + auroc.append(roc_auc_score(support, local_fi_score_test_subset.iloc[rownum,:])) + auprc.append(average_precision_score(support, local_fi_score_test_subset.iloc[rownum,:])) + f1.append(f1_score(support, local_fi_score_test_subset.iloc[rownum,:] > 0.5)) + + metric_results['test_AUROC'] = np.array(auroc).mean() + metric_results['test_AUPRC'] = np.array(auprc).mean() + metric_results['test_F1'] = np.array(f1).mean() + # print("done with metrics") + # initialize results with metadata and metric results kwargs: dict = model.kwargs # dict for k in kwargs: @@ -235,10 +267,11 @@ def get_metrics(): def reformat_results(results): results = results.reset_index().drop(columns=['index']) - fi_scores = pd.concat(results.pop('fi_scores').to_dict()). \ - reset_index(level=0).rename(columns={'level_0': 'index'}) - results_df = pd.merge(results, fi_scores, left_index=True, right_on="index") - return results_df + # results = results.reset_index().drop(columns=['index']) + # fi_scores = pd.concat(results.pop('fi_scores').to_dict()). \ + # reset_index(level=0).rename(columns={'level_0': 'index'}) + # results_df = pd.merge(results, fi_scores, left_index=True, right_on="index") + return results def run_simulation(i, path, val_name, X_params_dict, X_dgp, y_params_dict, y_dgp, ests, fi_ests, metrics, args): @@ -384,6 +417,9 @@ def run_simulation(i, path, val_name, X_params_dict, X_dgp, y_params_dict, y_dgp range(args.nreps)] results = dask.compute(*futures) else: + print("line 387") + # results = [run_simulation(i, path, val_name, X_params_dict, X_dgp, y_params_dict, y_dgp, ests, fi_ests, + # metrics, args) for i in range(args.nreps)] results = [ run_simulation(i, path, "_".join(vary_param_dict.values()), X_params_dict, X_dgp, y_params_dict, y_dgp, ests, fi_ests, metrics, args) for i in range(args.nreps)] @@ -490,6 +526,8 @@ def run_simulation(i, path, val_name, X_params_dict, X_dgp, y_params_dict, y_dgp results.insert(1, 'rep', i) results_list.append(results) results_merged = pd.concat(results_list, axis=0) + print("line 496") + print("results_merged") pkl.dump(results_merged, open(oj(path, 'results.pkl'), 'wb')) results_df = reformat_results(results_merged) results_df.to_csv(oj(path, 'results.csv'), index=False) diff --git a/feature_importance/real_data_ablation_visulization_version3.ipynb b/feature_importance/real_data_ablation_visulization_version3.ipynb index fb0bac7..da78fd9 100644 --- a/feature_importance/real_data_ablation_visulization_version3.ipynb +++ b/feature_importance/real_data_ablation_visulization_version3.ipynb @@ -15,19 +15,30 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['seed9', 'seed3', 'seed10', 'seed4', 'seed7', 'seed5', 'seed2', 'seed8', 'seed6', 'seed1']\n" + ] + } + ], "source": [ "# directory = './results/mdi_local.real_data_regression/diabetes_regression_parallel/varying_sample_row_n/'\n", - "directory = './results/mdi_local.real_data_regression/diabetes_regression/varying_sample_row_n/'\n", + "directory = \"./results/mdi_local.real_x_sim_y.diabetes-regression.lss-model/diabetes-reg-lss/varying_heritability/\"\n", "# directory = './results/mdi_local.real_data_regression/diabetes_regression_new/varying_sample_row_n'\n", "folder_names = [folder for folder in os.listdir(directory) if os.path.isdir(os.path.join(directory, folder))]\n", + "print(folder_names)\n", "experiments_seeds = []\n", "for folder_name in folder_names:\n", " experiments_seeds.append(int(folder_name[4:]))\n", "combined_df = pd.DataFrame()\n", "for seed in experiments_seeds:\n", + " if \"lss-model\" in directory and seed == 1:\n", + " continue\n", " df = pd.read_csv(os.path.join(directory, f\"seed{seed}/results.csv\"))\n", " combined_df = pd.concat([combined_df, df], ignore_index=True)" ] @@ -48,7 +59,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -72,9 +83,9 @@ " \n", " \n", " \n", - " sample_row_n\n", - " sample_row_n_name\n", " rep\n", + " heritability\n", + " heritability_name\n", " n_estimators\n", " min_samples_leaf\n", " max_features\n", @@ -90,566 +101,124 @@ " test_size\n", " num_features\n", " data_split_seed\n", - " test_all_mse\n", - " test_all_r2\n", " sample_train_0\n", - " sample_test_0\n", " sample_train_1\n", - " sample_test_1\n", " sample_train_2\n", - " sample_test_2\n", " sample_train_3\n", - " sample_test_3\n", " sample_train_4\n", - " sample_test_4\n", " sample_train_5\n", - " sample_test_5\n", " sample_train_6\n", - " sample_test_6\n", " sample_train_7\n", - " sample_test_7\n", " sample_train_8\n", - " sample_test_8\n", " sample_train_9\n", - " sample_test_9\n", " sample_train_10\n", - " sample_test_10\n", " sample_train_11\n", - " sample_test_11\n", " sample_train_12\n", - " sample_test_12\n", " sample_train_13\n", - " sample_test_13\n", " sample_train_14\n", - " sample_test_14\n", " sample_train_15\n", - " sample_test_15\n", " sample_train_16\n", - " sample_test_16\n", " sample_train_17\n", - " sample_test_17\n", " sample_train_18\n", - " sample_test_18\n", " sample_train_19\n", - " sample_test_19\n", " sample_train_20\n", - " sample_test_20\n", " sample_train_21\n", - " sample_test_21\n", " sample_train_22\n", - " sample_test_22\n", " sample_train_23\n", - " sample_test_23\n", " sample_train_24\n", - " sample_test_24\n", " sample_train_25\n", - " sample_test_25\n", " sample_train_26\n", - " sample_test_26\n", " sample_train_27\n", - " sample_test_27\n", " sample_train_28\n", - " sample_test_28\n", " sample_train_29\n", - " sample_test_29\n", " sample_train_30\n", - " sample_test_30\n", " sample_train_31\n", - " sample_test_31\n", " sample_train_32\n", - " sample_test_32\n", " sample_train_33\n", - " sample_test_33\n", " sample_train_34\n", - " sample_test_34\n", " sample_train_35\n", - " sample_test_35\n", " sample_train_36\n", - " sample_test_36\n", " sample_train_37\n", - " sample_test_37\n", " sample_train_38\n", - " sample_test_38\n", " sample_train_39\n", - " sample_test_39\n", " sample_train_40\n", - " sample_test_40\n", " sample_train_41\n", - " sample_test_41\n", " sample_train_42\n", - " sample_test_42\n", " sample_train_43\n", - " sample_test_43\n", " sample_train_44\n", - " sample_test_44\n", " sample_train_45\n", - " sample_test_45\n", " sample_train_46\n", - " sample_test_46\n", " sample_train_47\n", - " sample_test_47\n", " sample_train_48\n", - " sample_test_48\n", " sample_train_49\n", - " sample_test_49\n", " sample_train_50\n", - " sample_test_50\n", " sample_train_51\n", - " sample_test_51\n", " sample_train_52\n", - " sample_test_52\n", " sample_train_53\n", - " sample_test_53\n", " sample_train_54\n", - " sample_test_54\n", " sample_train_55\n", - " sample_test_55\n", " sample_train_56\n", - " sample_test_56\n", " sample_train_57\n", - " sample_test_57\n", " sample_train_58\n", - " sample_test_58\n", " sample_train_59\n", - " sample_test_59\n", " sample_train_60\n", - " sample_test_60\n", " sample_train_61\n", - " sample_test_61\n", " sample_train_62\n", - " sample_test_62\n", " sample_train_63\n", - " sample_test_63\n", " sample_train_64\n", - " sample_test_64\n", " sample_train_65\n", - " sample_test_65\n", " sample_train_66\n", - " sample_test_66\n", " sample_train_67\n", - " sample_test_67\n", " sample_train_68\n", - " sample_test_68\n", " sample_train_69\n", - " sample_test_69\n", " sample_train_70\n", - " sample_test_70\n", " sample_train_71\n", - " sample_test_71\n", " sample_train_72\n", - " sample_test_72\n", " sample_train_73\n", - " sample_test_73\n", - " sample_train_74\n", - " sample_test_74\n", - " sample_train_75\n", - " sample_test_75\n", - " sample_train_76\n", - " sample_test_76\n", - " sample_train_77\n", - " sample_test_77\n", - " sample_train_78\n", - " sample_test_78\n", - " sample_train_79\n", - " sample_test_79\n", - " sample_train_80\n", - " sample_test_80\n", - " sample_train_81\n", - " sample_test_81\n", - " sample_train_82\n", - " sample_test_82\n", - " sample_train_83\n", - " sample_test_83\n", - " sample_train_84\n", - " sample_test_84\n", - " sample_train_85\n", - " sample_test_85\n", - " sample_train_86\n", - " sample_test_86\n", - " sample_train_87\n", - " sample_test_87\n", - " sample_train_88\n", - " sample_test_88\n", - " sample_train_89\n", - " sample_test_89\n", - " sample_train_90\n", - " sample_test_90\n", - " sample_train_91\n", - " sample_test_91\n", - " sample_train_92\n", - " sample_test_92\n", - " sample_train_93\n", - " sample_test_93\n", - " sample_train_94\n", - " sample_test_94\n", - " sample_train_95\n", - " sample_test_95\n", - " sample_train_96\n", - " sample_test_96\n", - " sample_train_97\n", - " sample_test_97\n", - " sample_train_98\n", - " sample_test_98\n", - " sample_train_99\n", - " sample_test_99\n", + " sample_test_0\n", + " sample_test_1\n", + " sample_test_2\n", + " sample_test_3\n", + " sample_test_4\n", + " sample_test_5\n", + " sample_test_6\n", + " sample_test_7\n", + " sample_test_8\n", + " sample_test_9\n", + " sample_test_10\n", + " sample_test_11\n", + " sample_test_12\n", + " sample_test_13\n", + " sample_test_14\n", + " sample_test_15\n", + " sample_test_16\n", + " sample_test_17\n", + " sample_test_18\n", + " sample_test_19\n", + " sample_test_20\n", + " sample_test_21\n", + " sample_test_22\n", + " sample_test_23\n", + " sample_test_24\n", + " sample_test_25\n", + " sample_test_26\n", + " sample_test_27\n", + " sample_test_28\n", + " sample_test_29\n", + " sample_test_30\n", + " sample_test_31\n", + " sample_test_32\n", + " sample_test_33\n", + " sample_test_34\n", + " sample_test_35\n", " ablation_seed_0\n", " fi_time\n", - " RF_Regressor_train_subset_MSE_before_ablation\n", - " RF_Regressor_train_subset_R_2_before_ablation\n", - " RF_Regressor_train_subset_MSE_after_ablation_1\n", - " RF_Regressor_train_subset_R_2_after_ablation_1\n", - " RF_Regressor_train_subset_MSE_after_ablation_2\n", - " RF_Regressor_train_subset_R_2_after_ablation_2\n", - " RF_Regressor_train_subset_MSE_after_ablation_3\n", - " RF_Regressor_train_subset_R_2_after_ablation_3\n", - " RF_Regressor_train_subset_MSE_after_ablation_4\n", - " RF_Regressor_train_subset_R_2_after_ablation_4\n", - " RF_Regressor_train_subset_MSE_after_ablation_5\n", - " RF_Regressor_train_subset_R_2_after_ablation_5\n", - " RF_Regressor_train_subset_MSE_after_ablation_6\n", - " RF_Regressor_train_subset_R_2_after_ablation_6\n", - " RF_Regressor_train_subset_MSE_after_ablation_7\n", - " RF_Regressor_train_subset_R_2_after_ablation_7\n", - " RF_Regressor_train_subset_MSE_after_ablation_8\n", - " RF_Regressor_train_subset_R_2_after_ablation_8\n", - " RF_Regressor_train_subset_MSE_after_ablation_9\n", - " RF_Regressor_train_subset_R_2_after_ablation_9\n", - " RF_Regressor_train_subset_MSE_after_ablation_10\n", - " RF_Regressor_train_subset_R_2_after_ablation_10\n", - " Linear_train_subset_MSE_before_ablation\n", - " Linear_train_subset_R_2_before_ablation\n", - " Linear_train_subset_MSE_after_ablation_1\n", - " Linear_train_subset_R_2_after_ablation_1\n", - " Linear_train_subset_MSE_after_ablation_2\n", - " Linear_train_subset_R_2_after_ablation_2\n", - " Linear_train_subset_MSE_after_ablation_3\n", - " Linear_train_subset_R_2_after_ablation_3\n", - " Linear_train_subset_MSE_after_ablation_4\n", - " Linear_train_subset_R_2_after_ablation_4\n", - " Linear_train_subset_MSE_after_ablation_5\n", - " Linear_train_subset_R_2_after_ablation_5\n", - " Linear_train_subset_MSE_after_ablation_6\n", - " Linear_train_subset_R_2_after_ablation_6\n", - " Linear_train_subset_MSE_after_ablation_7\n", - " Linear_train_subset_R_2_after_ablation_7\n", - " Linear_train_subset_MSE_after_ablation_8\n", - " Linear_train_subset_R_2_after_ablation_8\n", - " Linear_train_subset_MSE_after_ablation_9\n", - " Linear_train_subset_R_2_after_ablation_9\n", - " Linear_train_subset_MSE_after_ablation_10\n", - " Linear_train_subset_R_2_after_ablation_10\n", - " XGB_Regressor_train_subset_MSE_before_ablation\n", - " XGB_Regressor_train_subset_R_2_before_ablation\n", - " XGB_Regressor_train_subset_MSE_after_ablation_1\n", - " XGB_Regressor_train_subset_R_2_after_ablation_1\n", - " XGB_Regressor_train_subset_MSE_after_ablation_2\n", - " XGB_Regressor_train_subset_R_2_after_ablation_2\n", - " XGB_Regressor_train_subset_MSE_after_ablation_3\n", - " XGB_Regressor_train_subset_R_2_after_ablation_3\n", - " XGB_Regressor_train_subset_MSE_after_ablation_4\n", - " XGB_Regressor_train_subset_R_2_after_ablation_4\n", - " XGB_Regressor_train_subset_MSE_after_ablation_5\n", - " XGB_Regressor_train_subset_R_2_after_ablation_5\n", - " XGB_Regressor_train_subset_MSE_after_ablation_6\n", - " XGB_Regressor_train_subset_R_2_after_ablation_6\n", - " XGB_Regressor_train_subset_MSE_after_ablation_7\n", - " XGB_Regressor_train_subset_R_2_after_ablation_7\n", - " XGB_Regressor_train_subset_MSE_after_ablation_8\n", - " XGB_Regressor_train_subset_R_2_after_ablation_8\n", - " XGB_Regressor_train_subset_MSE_after_ablation_9\n", - " XGB_Regressor_train_subset_R_2_after_ablation_9\n", - " XGB_Regressor_train_subset_MSE_after_ablation_10\n", - " XGB_Regressor_train_subset_R_2_after_ablation_10\n", - " RF_Plus_Regressor_train_subset_MSE_before_ablation\n", - " RF_Plus_Regressor_train_subset_R_2_before_ablation\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_1\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_1\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_2\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_2\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_3\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_3\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_4\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_4\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_5\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_5\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_6\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_6\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_7\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_7\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_8\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_8\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_9\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_9\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_10\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_10\n", - " train_subset_ablation_time\n", - " RF_Regressor_test_subset_MSE_before_ablation\n", - " RF_Regressor_test_subset_R_2_before_ablation\n", - " RF_Regressor_test_subset_MSE_after_ablation_1\n", - " RF_Regressor_test_subset_R_2_after_ablation_1\n", - " RF_Regressor_test_subset_MSE_after_ablation_2\n", - " RF_Regressor_test_subset_R_2_after_ablation_2\n", - " RF_Regressor_test_subset_MSE_after_ablation_3\n", - " RF_Regressor_test_subset_R_2_after_ablation_3\n", - " RF_Regressor_test_subset_MSE_after_ablation_4\n", - " RF_Regressor_test_subset_R_2_after_ablation_4\n", - " RF_Regressor_test_subset_MSE_after_ablation_5\n", - " RF_Regressor_test_subset_R_2_after_ablation_5\n", - " RF_Regressor_test_subset_MSE_after_ablation_6\n", - " RF_Regressor_test_subset_R_2_after_ablation_6\n", - " RF_Regressor_test_subset_MSE_after_ablation_7\n", - " RF_Regressor_test_subset_R_2_after_ablation_7\n", - " RF_Regressor_test_subset_MSE_after_ablation_8\n", - " RF_Regressor_test_subset_R_2_after_ablation_8\n", - " RF_Regressor_test_subset_MSE_after_ablation_9\n", - " RF_Regressor_test_subset_R_2_after_ablation_9\n", - " RF_Regressor_test_subset_MSE_after_ablation_10\n", - " RF_Regressor_test_subset_R_2_after_ablation_10\n", - " Linear_test_subset_MSE_before_ablation\n", - " Linear_test_subset_R_2_before_ablation\n", - " Linear_test_subset_MSE_after_ablation_1\n", - " Linear_test_subset_R_2_after_ablation_1\n", - " Linear_test_subset_MSE_after_ablation_2\n", - " Linear_test_subset_R_2_after_ablation_2\n", - " Linear_test_subset_MSE_after_ablation_3\n", - " Linear_test_subset_R_2_after_ablation_3\n", - " Linear_test_subset_MSE_after_ablation_4\n", - " Linear_test_subset_R_2_after_ablation_4\n", - " Linear_test_subset_MSE_after_ablation_5\n", - " Linear_test_subset_R_2_after_ablation_5\n", - " Linear_test_subset_MSE_after_ablation_6\n", - " Linear_test_subset_R_2_after_ablation_6\n", - " Linear_test_subset_MSE_after_ablation_7\n", - " Linear_test_subset_R_2_after_ablation_7\n", - " Linear_test_subset_MSE_after_ablation_8\n", - " Linear_test_subset_R_2_after_ablation_8\n", - " Linear_test_subset_MSE_after_ablation_9\n", - " Linear_test_subset_R_2_after_ablation_9\n", - " Linear_test_subset_MSE_after_ablation_10\n", - " Linear_test_subset_R_2_after_ablation_10\n", - " XGB_Regressor_test_subset_MSE_before_ablation\n", - " XGB_Regressor_test_subset_R_2_before_ablation\n", - " XGB_Regressor_test_subset_MSE_after_ablation_1\n", - " XGB_Regressor_test_subset_R_2_after_ablation_1\n", - " XGB_Regressor_test_subset_MSE_after_ablation_2\n", - " XGB_Regressor_test_subset_R_2_after_ablation_2\n", - " XGB_Regressor_test_subset_MSE_after_ablation_3\n", - " XGB_Regressor_test_subset_R_2_after_ablation_3\n", - " XGB_Regressor_test_subset_MSE_after_ablation_4\n", - " XGB_Regressor_test_subset_R_2_after_ablation_4\n", - " XGB_Regressor_test_subset_MSE_after_ablation_5\n", - " XGB_Regressor_test_subset_R_2_after_ablation_5\n", - " XGB_Regressor_test_subset_MSE_after_ablation_6\n", - " XGB_Regressor_test_subset_R_2_after_ablation_6\n", - " XGB_Regressor_test_subset_MSE_after_ablation_7\n", - " XGB_Regressor_test_subset_R_2_after_ablation_7\n", - " XGB_Regressor_test_subset_MSE_after_ablation_8\n", - " XGB_Regressor_test_subset_R_2_after_ablation_8\n", - " XGB_Regressor_test_subset_MSE_after_ablation_9\n", - " XGB_Regressor_test_subset_R_2_after_ablation_9\n", - " XGB_Regressor_test_subset_MSE_after_ablation_10\n", - " XGB_Regressor_test_subset_R_2_after_ablation_10\n", - " RF_Plus_Regressor_test_subset_MSE_before_ablation\n", - " RF_Plus_Regressor_test_subset_R_2_before_ablation\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_1\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_1\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_2\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_2\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_3\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_3\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_4\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_4\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_5\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_5\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_6\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_6\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_7\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_7\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_8\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_8\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_9\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_9\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_10\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_10\n", - " test_subset_ablation_time\n", - " RF_Regressor_test_subset_MSE_before_ablation_blank\n", - " RF_Regressor_test_subset_R_2_before_ablation_blank\n", - " RF_Regressor_test_subset_MSE_after_ablation_1_blank\n", - " RF_Regressor_test_subset_R_2_after_ablation_1_blank\n", - " RF_Regressor_test_subset_MSE_after_ablation_2_blank\n", - " RF_Regressor_test_subset_R_2_after_ablation_2_blank\n", - " RF_Regressor_test_subset_MSE_after_ablation_3_blank\n", - " RF_Regressor_test_subset_R_2_after_ablation_3_blank\n", - " RF_Regressor_test_subset_MSE_after_ablation_4_blank\n", - " RF_Regressor_test_subset_R_2_after_ablation_4_blank\n", - " RF_Regressor_test_subset_MSE_after_ablation_5_blank\n", - " RF_Regressor_test_subset_R_2_after_ablation_5_blank\n", - " RF_Regressor_test_subset_MSE_after_ablation_6_blank\n", - " RF_Regressor_test_subset_R_2_after_ablation_6_blank\n", - " RF_Regressor_test_subset_MSE_after_ablation_7_blank\n", - " RF_Regressor_test_subset_R_2_after_ablation_7_blank\n", - " RF_Regressor_test_subset_MSE_after_ablation_8_blank\n", - " RF_Regressor_test_subset_R_2_after_ablation_8_blank\n", - " RF_Regressor_test_subset_MSE_after_ablation_9_blank\n", - " RF_Regressor_test_subset_R_2_after_ablation_9_blank\n", - " RF_Regressor_test_subset_MSE_after_ablation_10_blank\n", - " RF_Regressor_test_subset_R_2_after_ablation_10_blank\n", - " Linear_test_subset_MSE_before_ablation_blank\n", - " Linear_test_subset_R_2_before_ablation_blank\n", - " Linear_test_subset_MSE_after_ablation_1_blank\n", - " Linear_test_subset_R_2_after_ablation_1_blank\n", - " Linear_test_subset_MSE_after_ablation_2_blank\n", - " Linear_test_subset_R_2_after_ablation_2_blank\n", - " Linear_test_subset_MSE_after_ablation_3_blank\n", - " Linear_test_subset_R_2_after_ablation_3_blank\n", - " Linear_test_subset_MSE_after_ablation_4_blank\n", - " Linear_test_subset_R_2_after_ablation_4_blank\n", - " Linear_test_subset_MSE_after_ablation_5_blank\n", - " Linear_test_subset_R_2_after_ablation_5_blank\n", - " Linear_test_subset_MSE_after_ablation_6_blank\n", - " Linear_test_subset_R_2_after_ablation_6_blank\n", - " Linear_test_subset_MSE_after_ablation_7_blank\n", - " Linear_test_subset_R_2_after_ablation_7_blank\n", - " Linear_test_subset_MSE_after_ablation_8_blank\n", - " Linear_test_subset_R_2_after_ablation_8_blank\n", - " Linear_test_subset_MSE_after_ablation_9_blank\n", - " Linear_test_subset_R_2_after_ablation_9_blank\n", - " Linear_test_subset_MSE_after_ablation_10_blank\n", - " Linear_test_subset_R_2_after_ablation_10_blank\n", - " XGB_Regressor_test_subset_MSE_before_ablation_blank\n", - " XGB_Regressor_test_subset_R_2_before_ablation_blank\n", - " XGB_Regressor_test_subset_MSE_after_ablation_1_blank\n", - " XGB_Regressor_test_subset_R_2_after_ablation_1_blank\n", - " XGB_Regressor_test_subset_MSE_after_ablation_2_blank\n", - " XGB_Regressor_test_subset_R_2_after_ablation_2_blank\n", - " XGB_Regressor_test_subset_MSE_after_ablation_3_blank\n", - " XGB_Regressor_test_subset_R_2_after_ablation_3_blank\n", - " XGB_Regressor_test_subset_MSE_after_ablation_4_blank\n", - " XGB_Regressor_test_subset_R_2_after_ablation_4_blank\n", - " XGB_Regressor_test_subset_MSE_after_ablation_5_blank\n", - " XGB_Regressor_test_subset_R_2_after_ablation_5_blank\n", - " XGB_Regressor_test_subset_MSE_after_ablation_6_blank\n", - " XGB_Regressor_test_subset_R_2_after_ablation_6_blank\n", - " XGB_Regressor_test_subset_MSE_after_ablation_7_blank\n", - " XGB_Regressor_test_subset_R_2_after_ablation_7_blank\n", - " XGB_Regressor_test_subset_MSE_after_ablation_8_blank\n", - " XGB_Regressor_test_subset_R_2_after_ablation_8_blank\n", - " XGB_Regressor_test_subset_MSE_after_ablation_9_blank\n", - " XGB_Regressor_test_subset_R_2_after_ablation_9_blank\n", - " XGB_Regressor_test_subset_MSE_after_ablation_10_blank\n", - " XGB_Regressor_test_subset_R_2_after_ablation_10_blank\n", - " RF_Plus_Regressor_test_subset_MSE_before_ablation_blank\n", - " RF_Plus_Regressor_test_subset_R_2_before_ablation_blank\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_1_blank\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_1_blank\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_2_blank\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_2_blank\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_3_blank\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_3_blank\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_4_blank\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_4_blank\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_5_blank\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_5_blank\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_6_blank\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_6_blank\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_7_blank\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_7_blank\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_8_blank\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_8_blank\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_9_blank\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_9_blank\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_10_blank\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_10_blank\n", - " test_subset_blank_ablation_time\n", - " RF_Regressor_test_MSE_before_ablation\n", - " RF_Regressor_test_R_2_before_ablation\n", - " RF_Regressor_test_MSE_after_ablation_1\n", - " RF_Regressor_test_R_2_after_ablation_1\n", - " RF_Regressor_test_MSE_after_ablation_2\n", - " RF_Regressor_test_R_2_after_ablation_2\n", - " RF_Regressor_test_MSE_after_ablation_3\n", - " RF_Regressor_test_R_2_after_ablation_3\n", - " RF_Regressor_test_MSE_after_ablation_4\n", - " RF_Regressor_test_R_2_after_ablation_4\n", - " RF_Regressor_test_MSE_after_ablation_5\n", - " RF_Regressor_test_R_2_after_ablation_5\n", - " RF_Regressor_test_MSE_after_ablation_6\n", - " RF_Regressor_test_R_2_after_ablation_6\n", - " RF_Regressor_test_MSE_after_ablation_7\n", - " RF_Regressor_test_R_2_after_ablation_7\n", - " RF_Regressor_test_MSE_after_ablation_8\n", - " RF_Regressor_test_R_2_after_ablation_8\n", - " RF_Regressor_test_MSE_after_ablation_9\n", - " RF_Regressor_test_R_2_after_ablation_9\n", - " RF_Regressor_test_MSE_after_ablation_10\n", - " RF_Regressor_test_R_2_after_ablation_10\n", - " Linear_test_MSE_before_ablation\n", - " Linear_test_R_2_before_ablation\n", - " Linear_test_MSE_after_ablation_1\n", - " Linear_test_R_2_after_ablation_1\n", - " Linear_test_MSE_after_ablation_2\n", - " Linear_test_R_2_after_ablation_2\n", - " Linear_test_MSE_after_ablation_3\n", - " Linear_test_R_2_after_ablation_3\n", - " Linear_test_MSE_after_ablation_4\n", - " Linear_test_R_2_after_ablation_4\n", - " Linear_test_MSE_after_ablation_5\n", - " Linear_test_R_2_after_ablation_5\n", - " Linear_test_MSE_after_ablation_6\n", - " Linear_test_R_2_after_ablation_6\n", - " Linear_test_MSE_after_ablation_7\n", - " Linear_test_R_2_after_ablation_7\n", - " Linear_test_MSE_after_ablation_8\n", - " Linear_test_R_2_after_ablation_8\n", - " Linear_test_MSE_after_ablation_9\n", - " Linear_test_R_2_after_ablation_9\n", - " Linear_test_MSE_after_ablation_10\n", - " Linear_test_R_2_after_ablation_10\n", - " XGB_Regressor_test_MSE_before_ablation\n", - " XGB_Regressor_test_R_2_before_ablation\n", - " XGB_Regressor_test_MSE_after_ablation_1\n", - " XGB_Regressor_test_R_2_after_ablation_1\n", - " XGB_Regressor_test_MSE_after_ablation_2\n", - " XGB_Regressor_test_R_2_after_ablation_2\n", - " XGB_Regressor_test_MSE_after_ablation_3\n", - " XGB_Regressor_test_R_2_after_ablation_3\n", - " XGB_Regressor_test_MSE_after_ablation_4\n", - " XGB_Regressor_test_R_2_after_ablation_4\n", - " XGB_Regressor_test_MSE_after_ablation_5\n", - " XGB_Regressor_test_R_2_after_ablation_5\n", - " XGB_Regressor_test_MSE_after_ablation_6\n", - " XGB_Regressor_test_R_2_after_ablation_6\n", - " XGB_Regressor_test_MSE_after_ablation_7\n", - " XGB_Regressor_test_R_2_after_ablation_7\n", - " XGB_Regressor_test_MSE_after_ablation_8\n", - " XGB_Regressor_test_R_2_after_ablation_8\n", - " XGB_Regressor_test_MSE_after_ablation_9\n", - " XGB_Regressor_test_R_2_after_ablation_9\n", - " XGB_Regressor_test_MSE_after_ablation_10\n", - " XGB_Regressor_test_R_2_after_ablation_10\n", - " RF_Plus_Regressor_test_MSE_before_ablation\n", - " RF_Plus_Regressor_test_R_2_before_ablation\n", - " RF_Plus_Regressor_test_MSE_after_ablation_1\n", - " RF_Plus_Regressor_test_R_2_after_ablation_1\n", - " RF_Plus_Regressor_test_MSE_after_ablation_2\n", - " RF_Plus_Regressor_test_R_2_after_ablation_2\n", - " RF_Plus_Regressor_test_MSE_after_ablation_3\n", - " RF_Plus_Regressor_test_R_2_after_ablation_3\n", - " RF_Plus_Regressor_test_MSE_after_ablation_4\n", - " RF_Plus_Regressor_test_R_2_after_ablation_4\n", - " RF_Plus_Regressor_test_MSE_after_ablation_5\n", - " RF_Plus_Regressor_test_R_2_after_ablation_5\n", - " RF_Plus_Regressor_test_MSE_after_ablation_6\n", - " RF_Plus_Regressor_test_R_2_after_ablation_6\n", - " RF_Plus_Regressor_test_MSE_after_ablation_7\n", - " RF_Plus_Regressor_test_R_2_after_ablation_7\n", - " RF_Plus_Regressor_test_MSE_after_ablation_8\n", - " RF_Plus_Regressor_test_R_2_after_ablation_8\n", - " RF_Plus_Regressor_test_MSE_after_ablation_9\n", - " RF_Plus_Regressor_test_R_2_after_ablation_9\n", - " RF_Plus_Regressor_test_MSE_after_ablation_10\n", - " RF_Plus_Regressor_test_R_2_after_ablation_10\n", - " test_data_ablation_time\n", + " train_AUROC\n", + " train_AUPRC\n", + " train_F1\n", + " test_AUROC\n", + " test_AUPRC\n", + " test_F1\n", " split_seed\n", " rf_model\n", " \n", @@ -657,12 +226,12 @@ " \n", " \n", " 0\n", - " NaN\n", - " keep_all_rows\n", " 0\n", + " 0.1\n", + " 0.1\n", " 100.0\n", - " 5.0\n", - " 0.33\n", + " 1.0\n", + " sqrt\n", " 42.0\n", " NaN\n", " NaN\n", @@ -675,577 +244,135 @@ " 146\n", " 10\n", " 9\n", - " 2640.499813\n", - " 0.535380\n", " 274\n", - " 69\n", " 155\n", - " 30\n", " 84\n", - " 39\n", " 82\n", - " 2\n", " 261\n", - " 124\n", " 9\n", - " 10\n", " 42\n", - " 68\n", " 277\n", - " 51\n", " 282\n", - " 71\n", " 92\n", - " 77\n", " 148\n", - " 102\n", " 211\n", - " 80\n", " 60\n", - " 76\n", " 218\n", - " 142\n", " 262\n", - " 127\n", " 46\n", - " 95\n", " 45\n", - " 70\n", " 236\n", - " 93\n", " 228\n", - " 67\n", " 132\n", - " 0\n", " 143\n", - " 105\n", " 167\n", - " 82\n", " 152\n", - " 136\n", " 93\n", - " 40\n", " 113\n", - " 54\n", " 5\n", - " 28\n", " 238\n", - " 74\n", " 251\n", - " 119\n", " 170\n", - " 18\n", " 186\n", - " 9\n", " 193\n", - " 58\n", " 33\n", - " 99\n", " 222\n", - " 73\n", " 216\n", - " 97\n", " 197\n", - " 128\n", " 73\n", - " 122\n", " 182\n", - " 55\n", " 119\n", - " 90\n", " 285\n", - " 129\n", " 202\n", - " 79\n", " 204\n", - " 4\n", " 179\n", - " 87\n", " 177\n", - " 83\n", " 111\n", - " 115\n", " 59\n", - " 81\n", " 226\n", - " 72\n", " 25\n", - " 144\n", " 77\n", - " 78\n", " 6\n", - " 126\n", " 175\n", - " 132\n", " 164\n", - " 106\n", " 140\n", - " 75\n", " 30\n", - " 61\n", " 22\n", - " 143\n", " 245\n", - " 131\n", " 24\n", - " 123\n", " 56\n", - " 89\n", " 144\n", - " 33\n", " 124\n", - " 133\n", " 97\n", - " 14\n", " 63\n", - " 88\n", " 17\n", - " 140\n", " 215\n", - " 11\n", " 219\n", - " 13\n", " 183\n", - " 15\n", " 114\n", - " 139\n", " 76\n", - " 64\n", " 284\n", - " 19\n", " 66\n", - " 44\n", " 178\n", - " 35\n", " 154\n", - " 56\n", " 75\n", - " 6\n", " 19\n", - " 107\n", " 108\n", - " 12\n", - " 79\n", - " 113\n", - " 118\n", - " 141\n", - " 72\n", - " 49\n", - " 15\n", - " 25\n", + " 69\n", + " 30\n", + " 39\n", + " 2\n", + " 124\n", " 10\n", - " 41\n", - " 101\n", - " 38\n", " 68\n", - " 130\n", - " 125\n", - " 42\n", - " 37\n", - " 8\n", - " 16\n", - " 101\n", - " 293\n", - " 125\n", - " 139\n", - " 1\n", - " 266\n", - " 137\n", + " 51\n", + " 71\n", + " 77\n", + " 102\n", + " 80\n", + " 76\n", + " 142\n", + " 127\n", + " 95\n", + " 70\n", + " 93\n", " 67\n", - " 65\n", - " 90\n", - " 22\n", - " 69\n", - " 85\n", - " 288\n", - " 46\n", - " 165\n", - " 103\n", - " 126\n", - " 145\n", - " 221\n", - " 111\n", - " 173\n", - " 100\n", + " 0\n", + " 105\n", + " 82\n", + " 136\n", + " 40\n", + " 54\n", + " 28\n", + " 74\n", + " 119\n", " 18\n", - " 57\n", - " 172\n", - " 53\n", - " 96\n", - " 109\n", - " 146\n", - " 24\n", - " 86\n", - " 17\n", - " 545\n", - " 8.739464\n", - " 1437.058926\n", - " 0.740320\n", - " 2450.453723\n", - " 0.557198\n", - " 3708.135984\n", - " 0.329932\n", - " 4626.637491\n", - " 0.163956\n", - " 4988.459417\n", - " 0.098574\n", - " 5232.901749\n", - " 0.054403\n", - " 5437.430361\n", - " 0.017444\n", - " 5421.293849\n", - " 0.020360\n", - " 5443.743634\n", - " 0.016303\n", - " 5494.702450\n", - " 0.007095\n", - " 5539.523521\n", - " -0.001004\n", - " 2751.227274\n", - " 0.502847\n", - " 4010.135272\n", - " 0.275360\n", - " 5532.061236\n", - " 0.000344\n", - " 6235.149787\n", - " -0.126705\n", - " 6665.951971\n", - " -0.204552\n", - " 6788.027586\n", - " -0.226612\n", - " 7155.239308\n", - " -0.292968\n", - " 6938.669534\n", - " -0.253833\n", - " 6945.021356\n", - " -0.254981\n", - " 6428.621982\n", - " -0.161666\n", - " 5537.963738\n", - " -0.000722\n", - " 0.018187\n", - " 0.999997\n", - " 1625.010655\n", - " 0.706357\n", - " 3727.227862\n", - " 0.326482\n", - " 4758.802828\n", - " 0.140074\n", - " 5438.045521\n", - " 0.017333\n", - " 6086.223432\n", - " -0.099794\n", - " 6003.810755\n", - " -0.084902\n", - " 5914.676886\n", - " -0.068795\n", - " 5957.839900\n", - " -0.076595\n", - " 6074.783783\n", - " -0.097727\n", - " 6105.231363\n", - " -0.103229\n", - " 2144.267875\n", - " 0.612526\n", - " 3060.549288\n", - " 0.446952\n", - " 4420.021303\n", - " 0.201292\n", - " 5162.192629\n", - " 0.067180\n", - " 5474.959682\n", - " 0.010663\n", - " 5641.270595\n", - " -0.019390\n", - " 5661.113577\n", - " -0.022976\n", - " 5588.716961\n", - " -0.009894\n", - " 5570.355417\n", - " -0.006576\n", - " 5583.728055\n", - " -0.008992\n", - " 5566.322332\n", - " -0.005847\n", - " 8.492494\n", - " 2679.064560\n", - " 0.542605\n", - " 3558.027039\n", - " 0.392540\n", - " 4541.111469\n", - " 0.224698\n", - " 5108.780808\n", - " 0.127781\n", - " 5549.938512\n", - " 0.052462\n", - " 5575.079768\n", - " 0.048170\n", - " 5670.569231\n", - " 0.031867\n", - " 5714.830950\n", - " 0.024310\n", - " 5776.424753\n", - " 0.013794\n", - " 5872.761365\n", - " -0.002653\n", - " 5889.339711\n", - " -0.005484\n", - " 2565.576138\n", - " 0.561981\n", - " 4121.029876\n", - " 0.296419\n", - " 5581.975377\n", - " 0.046992\n", - " 6449.756912\n", - " -0.101164\n", - " 6842.982437\n", - " -0.168299\n", - " 7065.868591\n", - " -0.206352\n", - " 7600.334465\n", - " -0.297601\n", - " 7801.583405\n", - " -0.331960\n", - " 7891.538915\n", - " -0.347318\n", - " 6808.265390\n", - " -0.162372\n", - " 5858.937117\n", - " -0.000293\n", - " 3557.841426\n", - " 0.392572\n", - " 3667.804311\n", - " 0.373798\n", - " 5488.665183\n", - " 0.062923\n", - " 5822.513161\n", - " 0.005925\n", - " 6037.023411\n", - " -0.030698\n", - " 5949.756252\n", - " -0.015799\n", - " 6223.517883\n", - " -0.062538\n", - " 6210.989156\n", - " -0.060399\n", - " 6244.319537\n", - " -0.066089\n", - " 6324.119549\n", - " -0.079714\n", - " 6281.215482\n", - " -0.072389\n", - " 2541.457199\n", - " 0.566098\n", - " 3573.380509\n", - " 0.389919\n", - " 4710.979622\n", - " 0.195697\n", - " 5465.488800\n", - " 0.066880\n", - " 5856.644776\n", - " 0.000098\n", - " 5847.537802\n", - " 0.001653\n", - " 5890.341430\n", - " -0.005655\n", - " 5891.401596\n", - " -0.005836\n", - " 5870.056142\n", - " -0.002192\n", - " 5882.308542\n", - " -0.004283\n", - " 5862.875775\n", - " -0.000966\n", - " 8.213507\n", - " 5880.887238\n", - " -0.004041\n", - " 3912.099558\n", - " 0.332089\n", - " 3260.557037\n", - " 0.443327\n", - " 2963.289802\n", - " 0.494079\n", - " 2835.532455\n", - " 0.515891\n", - " 2839.168591\n", - " 0.515270\n", - " 2809.721585\n", - " 0.520298\n", - " 2729.778409\n", - " 0.533946\n", - " 2692.894402\n", - " 0.540244\n", - " 2680.209497\n", - " 0.542409\n", - " 2679.064560\n", - " 0.542605\n", - " 5857.395491\n", - " -0.000030\n", - " 3434.906829\n", - " 0.413560\n", - " 2906.874850\n", - " 0.503711\n", - " 2776.668307\n", - " 0.525941\n", - " 3004.535201\n", - " 0.487037\n", - " 3040.159140\n", - " 0.480955\n", - " 3226.471955\n", - " 0.449146\n", - " 3279.136428\n", - " 0.440155\n", - " 3209.250097\n", - " 0.452086\n", - " 2989.483161\n", - " 0.489607\n", - " 2565.576138\n", - " 0.561981\n", - " 6281.215482\n", - " -0.072389\n", - " 4078.941418\n", - " 0.303604\n", - " 4141.802429\n", - " 0.292872\n", - " 4171.239813\n", - " 0.287846\n", - " 4144.247041\n", - " 0.292455\n", - " 4009.638211\n", - " 0.315437\n", - " 3955.399010\n", - " 0.324697\n", - " 3978.358871\n", - " 0.320777\n", - " 3902.886409\n", - " 0.333662\n", - " 3661.068636\n", - " 0.374948\n", - " 3557.841426\n", - " 0.392572\n", - " 5862.016707\n", - " -0.000819\n", - " 3776.067195\n", - " 0.355314\n", - " 3002.695954\n", - " 0.487351\n", - " 2704.167022\n", - " 0.538319\n", - " 2643.172114\n", - " 0.548733\n", - " 2667.464939\n", - " 0.544585\n", - " 2642.388141\n", - " 0.548866\n", - " 2565.443158\n", - " 0.562003\n", - " 2541.553235\n", - " 0.566082\n", - " 2544.841992\n", - " 0.565520\n", - " 2541.457199\n", - " 0.566098\n", - " 8.630264\n", - " 2640.499813\n", - " 0.535380\n", - " 3524.835070\n", - " 0.379773\n", - " 4339.761162\n", - " 0.236380\n", - " 5044.129946\n", - " 0.112440\n", - " 5423.189116\n", - " 0.045741\n", - " 5559.160140\n", - " 0.021816\n", - " 5558.547528\n", - " 0.021923\n", - " 5620.116672\n", - " 0.011090\n", - " 5710.918759\n", - " -0.004888\n", - " 5776.883880\n", - " -0.016495\n", - " 5801.671997\n", - " -0.020857\n", - " 2496.785106\n", - " 0.560668\n", - " 3933.440887\n", - " 0.307876\n", - " 5378.186635\n", - " 0.053660\n", - " 6372.090383\n", - " -0.121227\n", - " 6771.155629\n", - " -0.191446\n", - " 7068.389560\n", - " -0.243747\n", - " 7447.880628\n", - " -0.310522\n", - " 7634.217290\n", - " -0.343309\n", - " 7542.656034\n", - " -0.327198\n", - " 6778.699347\n", - " -0.192773\n", - " 5725.785543\n", - " -0.007504\n", - " 3494.999877\n", - " 0.385023\n", - " 4013.099838\n", - " 0.293859\n", - " 5025.053741\n", - " 0.115796\n", - " 5501.079765\n", - " 0.032035\n", - " 5797.321121\n", - " -0.020091\n", - " 5843.247374\n", - " -0.028172\n", - " 5892.623117\n", - " -0.036860\n", - " 5822.535066\n", - " -0.024528\n", - " 5913.358559\n", - " -0.040509\n", - " 5945.208529\n", - " -0.046113\n", - " 5919.422152\n", - " -0.041576\n", - " 2466.857536\n", - " 0.565934\n", - " 3486.670871\n", - " 0.386489\n", - " 4501.848106\n", - " 0.207859\n", - " 5291.148962\n", - " 0.068975\n", - " 5664.603936\n", - " 0.003262\n", - " 5755.469084\n", - " -0.012727\n", - " 5712.231598\n", - " -0.005119\n", - " 5715.404233\n", - " -0.005677\n", - " 5698.990643\n", - " -0.002789\n", - " 5717.216380\n", - " -0.005996\n", - " 5691.215026\n", - " -0.001421\n", - " 8.682843\n", + " 9\n", + " 58\n", + " 99\n", + " 73\n", + " 97\n", + " 128\n", + " 122\n", + " 3760\n", + " 35.811752\n", + " 0.708896\n", + " 0.838653\n", + " 0.000000\n", + " 0.725694\n", + " 0.836341\n", + " 0.000000\n", " 9\n", " NaN\n", " \n", " \n", " 1\n", - " NaN\n", - " keep_all_rows\n", " 0\n", + " 0.1\n", + " 0.1\n", " 100.0\n", - " 5.0\n", - " 0.33\n", + " 1.0\n", + " sqrt\n", " 42.0\n", " NaN\n", " NaN\n", @@ -1258,1160 +385,276 @@ " 146\n", " 10\n", " 9\n", - " 2640.499813\n", - " 0.535380\n", " 274\n", - " 69\n", " 155\n", - " 30\n", " 84\n", - " 39\n", " 82\n", - " 2\n", " 261\n", - " 124\n", " 9\n", - " 10\n", " 42\n", - " 68\n", " 277\n", - " 51\n", " 282\n", - " 71\n", " 92\n", - " 77\n", " 148\n", - " 102\n", " 211\n", - " 80\n", " 60\n", - " 76\n", " 218\n", - " 142\n", " 262\n", - " 127\n", " 46\n", - " 95\n", " 45\n", - " 70\n", " 236\n", - " 93\n", " 228\n", - " 67\n", " 132\n", - " 0\n", " 143\n", - " 105\n", " 167\n", - " 82\n", " 152\n", - " 136\n", " 93\n", - " 40\n", " 113\n", - " 54\n", " 5\n", - " 28\n", " 238\n", - " 74\n", " 251\n", - " 119\n", " 170\n", - " 18\n", " 186\n", - " 9\n", " 193\n", - " 58\n", " 33\n", - " 99\n", " 222\n", - " 73\n", " 216\n", - " 97\n", " 197\n", - " 128\n", " 73\n", - " 122\n", " 182\n", - " 55\n", " 119\n", - " 90\n", " 285\n", - " 129\n", " 202\n", - " 79\n", " 204\n", - " 4\n", " 179\n", - " 87\n", " 177\n", - " 83\n", " 111\n", - " 115\n", " 59\n", - " 81\n", " 226\n", - " 72\n", " 25\n", - " 144\n", " 77\n", - " 78\n", " 6\n", - " 126\n", " 175\n", - " 132\n", " 164\n", - " 106\n", " 140\n", - " 75\n", " 30\n", - " 61\n", " 22\n", - " 143\n", " 245\n", - " 131\n", " 24\n", - " 123\n", " 56\n", - " 89\n", " 144\n", - " 33\n", " 124\n", - " 133\n", " 97\n", - " 14\n", " 63\n", - " 88\n", " 17\n", - " 140\n", " 215\n", - " 11\n", " 219\n", - " 13\n", " 183\n", - " 15\n", " 114\n", - " 139\n", " 76\n", - " 64\n", " 284\n", - " 19\n", " 66\n", - " 44\n", " 178\n", - " 35\n", " 154\n", - " 56\n", " 75\n", - " 6\n", " 19\n", - " 107\n", " 108\n", - " 12\n", - " 79\n", - " 113\n", - " 118\n", - " 141\n", - " 72\n", - " 49\n", - " 15\n", - " 25\n", - " 10\n", - " 41\n", - " 101\n", - " 38\n", - " 68\n", - " 130\n", - " 125\n", - " 42\n", - " 37\n", - " 8\n", - " 16\n", - " 101\n", - " 293\n", - " 125\n", - " 139\n", - " 1\n", - " 266\n", - " 137\n", - " 67\n", - " 65\n", - " 90\n", - " 22\n", - " 69\n", - " 85\n", - " 288\n", - " 46\n", - " 165\n", - " 103\n", - " 126\n", - " 145\n", - " 221\n", - " 111\n", - " 173\n", - " 100\n", - " 18\n", - " 57\n", - " 172\n", - " 53\n", - " 96\n", - " 109\n", - " 146\n", - " 24\n", - " 86\n", - " 17\n", - " 545\n", - " 9.849160\n", - " 1437.058926\n", - " 0.740320\n", - " 2554.479820\n", - " 0.538400\n", - " 3776.859055\n", - " 0.317513\n", - " 4555.990329\n", - " 0.176722\n", - " 5094.477192\n", - " 0.079417\n", - " 5291.593590\n", - " 0.043797\n", - " 5426.338268\n", - " 0.019449\n", - " 5451.723835\n", - " 0.014861\n", - " 5477.274281\n", - " 0.010244\n", - " 5514.501633\n", - " 0.003517\n", - " 5539.523521\n", - " -0.001004\n", - " 2751.227274\n", - " 0.502847\n", - " 4077.155488\n", - " 0.263249\n", - " 5679.643882\n", - " -0.026324\n", - " 6227.670680\n", - " -0.125354\n", - " 6600.313727\n", - " -0.192691\n", - " 6851.937171\n", - " -0.238160\n", - " 6859.504452\n", - " -0.239528\n", - " 6402.080061\n", - " -0.156870\n", - " 6190.738584\n", - " -0.118680\n", - " 6055.316091\n", - " -0.094209\n", - " 5537.963738\n", - " -0.000722\n", - " 0.018187\n", - " 0.999997\n", - " 1811.187362\n", - " 0.672714\n", - " 3768.911516\n", - " 0.318949\n", - " 4799.059708\n", - " 0.132799\n", - " 5389.715225\n", - " 0.026066\n", - " 5710.096369\n", - " -0.031827\n", - " 5721.904769\n", - " -0.033961\n", - " 5982.301528\n", - " -0.081015\n", - " 6049.655530\n", - " -0.093186\n", - " 6140.066210\n", - " -0.109524\n", - " 6105.231363\n", - " -0.103229\n", - " 2144.267875\n", - " 0.612526\n", - " 3176.445261\n", - " 0.426009\n", - " 4460.833780\n", - " 0.193917\n", - " 5097.059761\n", - " 0.078950\n", - " 5485.856853\n", - " 0.008693\n", - " 5608.567209\n", - " -0.013481\n", - " 5606.850647\n", - " -0.013170\n", - " 5631.777151\n", - " -0.017675\n", - " 5627.949257\n", - " -0.016983\n", - " 5616.876738\n", - " -0.014982\n", - " 5566.322332\n", - " -0.005847\n", - " 8.477902\n", - " 2679.064560\n", - " 0.542605\n", - " 3580.553278\n", - " 0.388694\n", - " 4515.904516\n", - " 0.229002\n", - " 5136.563348\n", - " 0.123037\n", - " 5524.671544\n", - " 0.056776\n", - " 5632.072864\n", - " 0.038439\n", - " 5732.292023\n", - " 0.021329\n", - " 5748.309155\n", - " 0.018594\n", - " 5834.804713\n", - " 0.003827\n", - " 5893.413600\n", - " -0.006179\n", - " 5889.339711\n", - " -0.005484\n", - " 2565.576138\n", - " 0.561981\n", - " 4124.763026\n", - " 0.295781\n", - " 5536.778873\n", - " 0.054709\n", - " 6523.833742\n", - " -0.113811\n", - " 7003.490348\n", - " -0.195702\n", - " 7133.726667\n", - " -0.217937\n", - " 7427.707370\n", - " -0.268129\n", - " 7647.662285\n", - " -0.305681\n", - " 6644.842594\n", - " -0.134470\n", - " 6017.978299\n", - " -0.027446\n", - " 5858.937117\n", - " -0.000293\n", - " 3557.841426\n", - " 0.392572\n", - " 3683.765603\n", - " 0.371073\n", - " 5290.726366\n", - " 0.096717\n", - " 5859.991940\n", - " -0.000473\n", - " 5977.632024\n", - " -0.020558\n", - " 5873.903853\n", - " -0.002848\n", - " 6192.089129\n", - " -0.057172\n", - " 6217.811390\n", - " -0.061564\n", - " 6247.683148\n", - " -0.066664\n", - " 6292.015930\n", - " -0.074233\n", - " 6281.215482\n", - " -0.072389\n", - " 2541.457199\n", - " 0.566098\n", - " 3598.856442\n", - " 0.385569\n", - " 4652.267727\n", - " 0.205721\n", - " 5453.579322\n", - " 0.068913\n", - " 5852.723797\n", - " 0.000768\n", - " 5860.980468\n", - " -0.000642\n", - " 5901.633728\n", - " -0.007583\n", - " 5867.400592\n", - " -0.001738\n", - " 5842.365202\n", - " 0.002536\n", - " 5865.341473\n", - " -0.001387\n", - " 5862.875775\n", - " -0.000966\n", - " 8.211402\n", - " 5880.887238\n", - " -0.004041\n", - " 3959.334316\n", - " 0.324025\n", - " 3306.352322\n", - " 0.435508\n", - " 2983.716930\n", - " 0.490592\n", - " 2762.578581\n", - " 0.528346\n", - " 2770.645622\n", - " 0.526969\n", - " 2691.311010\n", - " 0.540514\n", - " 2688.691704\n", - " 0.540961\n", - " 2693.598901\n", - " 0.540123\n", - " 2679.829203\n", - " 0.542474\n", - " 2679.064560\n", - " 0.542605\n", - " 5857.395491\n", - " -0.000030\n", - " 3478.443305\n", - " 0.406127\n", - " 3016.622857\n", - " 0.484974\n", - " 2817.417330\n", - " 0.518984\n", - " 2949.727822\n", - " 0.496395\n", - " 3027.717688\n", - " 0.483079\n", - " 3171.852993\n", - " 0.458471\n", - " 2960.568561\n", - " 0.494544\n", - " 2674.323512\n", - " 0.543414\n", - " 2693.430849\n", - " 0.540152\n", - " 2565.576138\n", - " 0.561981\n", - " 6281.215482\n", - " -0.072389\n", - " 4219.124838\n", - " 0.279671\n", - " 4408.094032\n", - " 0.247408\n", - " 4260.803524\n", - " 0.272555\n", - " 4036.757481\n", - " 0.310807\n", - " 4051.713547\n", - " 0.308253\n", - " 3997.748531\n", - " 0.317467\n", - " 4059.233572\n", - " 0.306969\n", - " 3948.713206\n", - " 0.325838\n", - " 3744.098461\n", - " 0.360772\n", - " 3557.841426\n", - " 0.392572\n", - " 5862.016707\n", - " -0.000819\n", - " 3792.229582\n", - " 0.352555\n", - " 3092.988693\n", - " 0.471936\n", - " 2733.015815\n", - " 0.533394\n", - " 2564.054141\n", - " 0.562240\n", - " 2610.994432\n", - " 0.554226\n", - " 2564.381955\n", - " 0.562184\n", - " 2551.563643\n", - " 0.564373\n", - " 2545.713079\n", - " 0.565372\n", - " 2541.588137\n", - " 0.566076\n", - " 2541.457199\n", - " 0.566098\n", - " 8.487405\n", - " 2640.499813\n", - " 0.535380\n", - " 3571.052791\n", - " 0.371641\n", - " 4318.344175\n", - " 0.240148\n", - " 5017.600255\n", - " 0.117108\n", - " 5441.462496\n", - " 0.042526\n", - " 5578.882603\n", - " 0.018345\n", - " 5657.157261\n", - " 0.004572\n", - " 5614.647017\n", - " 0.012052\n", - " 5705.335037\n", - " -0.003905\n", - " 5783.179625\n", - " -0.017603\n", - " 5801.671997\n", - " -0.020857\n", - " 2496.785106\n", - " 0.560668\n", - " 3940.612956\n", - " 0.306614\n", - " 5335.869899\n", - " 0.061106\n", - " 6327.986356\n", - " -0.113466\n", - " 6817.218702\n", - " -0.199551\n", - " 6960.960204\n", - " -0.224844\n", - " 7284.148792\n", - " -0.281712\n", - " 7264.408403\n", - " -0.278238\n", - " 6351.745669\n", - " -0.117647\n", - " 5868.856530\n", - " -0.032678\n", - " 5725.785543\n", - " -0.007504\n", - " 3494.999877\n", - " 0.385023\n", - " 4069.124107\n", - " 0.284001\n", - " 4989.273260\n", - " 0.122092\n", - " 5539.634971\n", - " 0.025251\n", - " 5753.544647\n", - " -0.012388\n", - " 5721.953538\n", - " -0.006829\n", - " 6011.466936\n", - " -0.057772\n", - " 5901.583727\n", - " -0.038437\n", - " 5897.320816\n", - " -0.037687\n", - " 5938.553679\n", - " -0.044942\n", - " 5919.422152\n", - " -0.041576\n", - " 2466.857536\n", - " 0.565934\n", - " 3512.809915\n", - " 0.381889\n", - " 4466.543184\n", - " 0.214071\n", - " 5265.613075\n", - " 0.073468\n", - " 5697.985065\n", - " -0.002612\n", - " 5747.874691\n", - " -0.011390\n", - " 5760.576056\n", - " -0.013625\n", - " 5691.234177\n", - " -0.001424\n", - " 5656.583805\n", - " 0.004673\n", - " 5670.693792\n", - " 0.002190\n", - " 5691.215026\n", - " -0.001421\n", - " 8.740817\n", - " 9\n", - " NaN\n", - " \n", - " \n", - " 2\n", - " NaN\n", - " keep_all_rows\n", - " 0\n", - " 100.0\n", - " 5.0\n", - " 0.33\n", - " 42.0\n", - " False\n", - " 0.0\n", - " False\n", - " inbag\n", - " NaN\n", - " RF\n", - " MDI_RF\n", - " 296\n", - " 146\n", - " 10\n", - " 9\n", - " 2640.499813\n", - " 0.535380\n", - " 274\n", " 69\n", - " 155\n", " 30\n", - " 84\n", " 39\n", - " 82\n", " 2\n", - " 261\n", " 124\n", - " 9\n", " 10\n", - " 42\n", " 68\n", - " 277\n", " 51\n", - " 282\n", " 71\n", - " 92\n", " 77\n", - " 148\n", " 102\n", - " 211\n", " 80\n", - " 60\n", " 76\n", - " 218\n", " 142\n", - " 262\n", " 127\n", - " 46\n", " 95\n", - " 45\n", " 70\n", - " 236\n", " 93\n", - " 228\n", " 67\n", - " 132\n", " 0\n", - " 143\n", " 105\n", - " 167\n", " 82\n", - " 152\n", " 136\n", - " 93\n", " 40\n", - " 113\n", " 54\n", - " 5\n", " 28\n", - " 238\n", " 74\n", - " 251\n", " 119\n", - " 170\n", " 18\n", - " 186\n", " 9\n", - " 193\n", " 58\n", - " 33\n", " 99\n", - " 222\n", " 73\n", - " 216\n", " 97\n", - " 197\n", " 128\n", - " 73\n", " 122\n", + " 3760\n", + " 60.791198\n", + " 0.707207\n", + " 0.831625\n", + " 0.003861\n", + " 0.752315\n", + " 0.850549\n", + " 0.007937\n", + " 9\n", + " NaN\n", + " \n", + " \n", + " 2\n", + " 0\n", + " 0.1\n", + " 0.1\n", + " 100.0\n", + " 1.0\n", + " sqrt\n", + " 42.0\n", + " False\n", + " 0.0\n", + " False\n", + " inbag\n", + " NaN\n", + " RF\n", + " MDI_RF\n", + " 296\n", + " 146\n", + " 10\n", + " 9\n", + " 274\n", + " 155\n", + " 84\n", + " 82\n", + " 261\n", + " 9\n", + " 42\n", + " 277\n", + " 282\n", + " 92\n", + " 148\n", + " 211\n", + " 60\n", + " 218\n", + " 262\n", + " 46\n", + " 45\n", + " 236\n", + " 228\n", + " 132\n", + " 143\n", + " 167\n", + " 152\n", + " 93\n", + " 113\n", + " 5\n", + " 238\n", + " 251\n", + " 170\n", + " 186\n", + " 193\n", + " 33\n", + " 222\n", + " 216\n", + " 197\n", + " 73\n", " 182\n", - " 55\n", " 119\n", - " 90\n", " 285\n", - " 129\n", " 202\n", - " 79\n", " 204\n", - " 4\n", " 179\n", - " 87\n", " 177\n", - " 83\n", " 111\n", - " 115\n", " 59\n", - " 81\n", " 226\n", - " 72\n", " 25\n", - " 144\n", " 77\n", - " 78\n", " 6\n", - " 126\n", " 175\n", - " 132\n", " 164\n", - " 106\n", " 140\n", - " 75\n", " 30\n", - " 61\n", " 22\n", - " 143\n", " 245\n", - " 131\n", " 24\n", - " 123\n", " 56\n", - " 89\n", " 144\n", - " 33\n", " 124\n", - " 133\n", " 97\n", - " 14\n", " 63\n", - " 88\n", " 17\n", - " 140\n", " 215\n", - " 11\n", " 219\n", - " 13\n", " 183\n", - " 15\n", " 114\n", - " 139\n", " 76\n", - " 64\n", " 284\n", - " 19\n", " 66\n", - " 44\n", " 178\n", - " 35\n", " 154\n", - " 56\n", " 75\n", - " 6\n", " 19\n", - " 107\n", " 108\n", - " 12\n", - " 79\n", - " 113\n", - " 118\n", - " 141\n", - " 72\n", - " 49\n", - " 15\n", - " 25\n", + " 69\n", + " 30\n", + " 39\n", + " 2\n", + " 124\n", " 10\n", - " 41\n", - " 101\n", - " 38\n", " 68\n", - " 130\n", - " 125\n", - " 42\n", - " 37\n", - " 8\n", - " 16\n", - " 101\n", - " 293\n", - " 125\n", - " 139\n", - " 1\n", - " 266\n", - " 137\n", + " 51\n", + " 71\n", + " 77\n", + " 102\n", + " 80\n", + " 76\n", + " 142\n", + " 127\n", + " 95\n", + " 70\n", + " 93\n", " 67\n", - " 65\n", - " 90\n", - " 22\n", - " 69\n", - " 85\n", - " 288\n", - " 46\n", - " 165\n", - " 103\n", - " 126\n", - " 145\n", - " 221\n", - " 111\n", - " 173\n", - " 100\n", + " 0\n", + " 105\n", + " 82\n", + " 136\n", + " 40\n", + " 54\n", + " 28\n", + " 74\n", + " 119\n", " 18\n", - " 57\n", - " 172\n", - " 53\n", - " 96\n", - " 109\n", - " 146\n", - " 24\n", - " 86\n", - " 17\n", - " 545\n", - " 3.896490\n", - " 1437.058926\n", - " 0.740320\n", - " 2900.469581\n", - " 0.475879\n", - " 4039.948602\n", - " 0.269972\n", - " 4745.392296\n", - " 0.142497\n", - " 5121.591713\n", - " 0.074517\n", - " 5396.791508\n", - " 0.024788\n", - " 5433.771000\n", - " 0.018105\n", - " 5483.243120\n", - " 0.009166\n", - " 5426.787503\n", - " 0.019367\n", - " 5506.799767\n", - " 0.004909\n", - " 5539.523521\n", - " -0.001004\n", - " 2751.227274\n", - " 0.502847\n", - " 4417.646065\n", - " 0.201721\n", - " 5725.073334\n", - " -0.034534\n", - " 6223.132210\n", - " -0.124534\n", - " 6394.045442\n", - " -0.155418\n", - " 6903.742081\n", - " -0.247522\n", - " 6898.005455\n", - " -0.246485\n", - " 6906.134630\n", - " -0.247954\n", - " 6621.684956\n", - " -0.196553\n", - " 6174.979003\n", - " -0.115832\n", - " 5537.963738\n", - " -0.000722\n", - " 0.018187\n", - " 0.999997\n", - " 2237.078371\n", - " 0.595755\n", - " 3839.017846\n", - " 0.306281\n", - " 4761.200794\n", - " 0.139640\n", - " 5044.732487\n", - " 0.088406\n", - " 5393.980964\n", - " 0.025296\n", - " 5405.528810\n", - " 0.023209\n", - " 5693.370483\n", - " -0.028805\n", - " 5814.666743\n", - " -0.050723\n", - " 5905.232497\n", - " -0.067089\n", - " 6105.231363\n", - " -0.103229\n", - " 2144.267875\n", - " 0.612526\n", - " 3504.405453\n", - " 0.366746\n", - " 4469.713519\n", - " 0.192313\n", - " 5063.344675\n", - " 0.085042\n", - " 5430.198772\n", - " 0.018751\n", - " 5629.508352\n", - " -0.017265\n", - " 5623.779888\n", - " -0.016230\n", - " 5604.950211\n", - " -0.012827\n", - " 5580.016962\n", - " -0.008322\n", - " 5602.884260\n", - " -0.012454\n", - " 5566.322332\n", - " -0.005847\n", - " 8.412474\n", - " 2679.064560\n", - " 0.542605\n", - " 3480.440454\n", - " 0.405786\n", - " 4428.797618\n", - " 0.243874\n", - " 5106.507299\n", - " 0.128169\n", - " 5529.201248\n", - " 0.056002\n", - " 5617.274206\n", - " 0.040966\n", - " 5691.562223\n", - " 0.028283\n", - " 5752.950476\n", - " 0.017802\n", - " 5833.262844\n", - " 0.004090\n", - " 5842.980649\n", - " 0.002431\n", - " 5889.339711\n", - " -0.005484\n", - " 2565.576138\n", - " 0.561981\n", - " 3756.267014\n", - " 0.358695\n", - " 5052.597617\n", - " 0.137373\n", - " 5888.265223\n", - " -0.005300\n", - " 6474.285892\n", - " -0.105351\n", - " 6949.460302\n", - " -0.186478\n", - " 7443.807580\n", - " -0.270877\n", - " 7688.902103\n", - " -0.312722\n", - " 7609.910506\n", - " -0.299236\n", - " 6630.493971\n", - " -0.132021\n", - " 5858.937117\n", - " -0.000293\n", - " 3557.841426\n", - " 0.392572\n", - " 3778.080730\n", - " 0.354970\n", - " 4892.289472\n", - " 0.164742\n", - " 5315.238570\n", - " 0.092532\n", - " 6000.091002\n", - " -0.024392\n", - " 5852.535489\n", - " 0.000800\n", - " 6006.108852\n", - " -0.025420\n", - " 6047.176807\n", - " -0.032431\n", - " 6096.222651\n", - " -0.040805\n", - " 6272.343509\n", - " -0.070874\n", - " 6281.215482\n", - " -0.072389\n", - " 2541.457199\n", - " 0.566098\n", - " 3376.239077\n", - " 0.423576\n", - " 4407.170549\n", - " 0.247566\n", - " 5038.273900\n", - " 0.139818\n", - " 5544.234938\n", - " 0.053436\n", - " 5694.140361\n", - " 0.027842\n", - " 5835.593571\n", - " 0.003692\n", - " 5840.966477\n", - " 0.002775\n", - " 5844.553785\n", - " 0.002162\n", - " 5840.897143\n", - " 0.002787\n", - " 5862.875775\n", - " -0.000966\n", - " 8.454271\n", - " 5880.887238\n", - " -0.004041\n", - " 4289.789706\n", - " 0.267606\n", - " 3279.532842\n", - " 0.440087\n", - " 2939.586906\n", - " 0.498126\n", - " 2790.880643\n", - " 0.523514\n", - " 2724.115230\n", - " 0.534913\n", - " 2742.063657\n", - " 0.531849\n", - " 2696.681777\n", - " 0.539597\n", - " 2691.911501\n", - " 0.540411\n", - " 2709.266684\n", - " 0.537448\n", - " 2679.064560\n", - " 0.542605\n", - " 5857.395491\n", - " -0.000030\n", - " 3929.424199\n", - " 0.329131\n", - " 3133.165545\n", - " 0.465076\n", - " 3011.997732\n", - " 0.485763\n", - " 3112.891948\n", - " 0.468538\n", - " 3124.456898\n", - " 0.466563\n", - " 3230.897294\n", - " 0.448391\n", - " 3196.423926\n", - " 0.454276\n", - " 3327.729085\n", - " 0.431859\n", - " 3111.069912\n", - " 0.468849\n", - " 2565.576138\n", - " 0.561981\n", - " 6281.215482\n", - " -0.072389\n", - " 4787.370582\n", - " 0.182655\n", - " 4180.157570\n", - " 0.286324\n", - " 4145.383113\n", - " 0.292261\n", - " 3919.094473\n", - " 0.330895\n", - " 3995.242224\n", - " 0.317894\n", - " 3941.916833\n", - " 0.326999\n", - " 3799.305580\n", - " 0.351347\n", - " 3577.147009\n", - " 0.389276\n", - " 3465.659544\n", - " 0.408310\n", - " 3557.841426\n", - " 0.392572\n", - " 5862.016707\n", - " -0.000819\n", - " 4157.290029\n", - " 0.290228\n", - " 3194.473744\n", - " 0.454609\n", - " 2930.804827\n", - " 0.499625\n", - " 2757.229952\n", - " 0.529260\n", - " 2661.353767\n", - " 0.545628\n", - " 2640.533322\n", - " 0.549183\n", - " 2592.707466\n", - " 0.557348\n", - " 2560.398985\n", - " 0.562864\n", - " 2567.722606\n", - " 0.561614\n", - " 2541.457199\n", - " 0.566098\n", - " 8.591958\n", - " 2640.499813\n", - " 0.535380\n", - " 3519.122896\n", - " 0.380779\n", - " 4341.295617\n", - " 0.236110\n", - " 5080.619597\n", - " 0.106019\n", - " 5361.659892\n", - " 0.056568\n", - " 5543.610178\n", - " 0.024552\n", - " 5603.054347\n", - " 0.014092\n", - " 5646.812614\n", - " 0.006392\n", - " 5742.659997\n", - " -0.010473\n", - " 5778.819764\n", - " -0.016836\n", - " 5801.671997\n", - " -0.020857\n", - " 2496.785106\n", - " 0.560668\n", - " 3747.641792\n", - " 0.340569\n", - " 4896.166926\n", - " 0.138475\n", - " 5638.775425\n", - " 0.007807\n", - " 6298.362961\n", - " -0.108254\n", - " 6810.017866\n", - " -0.198284\n", - " 7304.802884\n", - " -0.285346\n", - " 7688.411155\n", - " -0.352845\n", - " 7574.919172\n", - " -0.332875\n", - " 6629.814159\n", - " -0.166576\n", - " 5725.785543\n", - " -0.007504\n", - " 3494.999877\n", - " 0.385023\n", - " 4139.604458\n", - " 0.271599\n", - " 4808.018366\n", - " 0.153986\n", - " 5459.784944\n", - " 0.039302\n", - " 5813.890743\n", - " -0.023007\n", - " 5752.146408\n", - " -0.012142\n", - " 5743.704769\n", - " -0.010657\n", - " 5795.713241\n", - " -0.019808\n", - " 5876.811017\n", - " -0.034078\n", - " 5907.525792\n", - " -0.039483\n", - " 5919.422152\n", - " -0.041576\n", - " 2466.857536\n", - " 0.565934\n", - " 3387.295959\n", - " 0.403975\n", - " 4267.977699\n", - " 0.249011\n", - " 4967.246258\n", - " 0.125968\n", - " 5421.823682\n", - " 0.045981\n", - " 5654.847385\n", - " 0.004979\n", - " 5686.740295\n", - " -0.000633\n", - " 5670.736069\n", - " 0.002183\n", - " 5696.299307\n", - " -0.002315\n", - " 5690.972357\n", - " -0.001378\n", - " 5691.215026\n", - " -0.001421\n", - " 8.665586\n", + " 9\n", + " 58\n", + " 99\n", + " 73\n", + " 97\n", + " 128\n", + " 122\n", + " 3760\n", + " 26.856047\n", + " 0.504505\n", + " 0.696167\n", + " 0.067407\n", + " 0.582176\n", + " 0.753878\n", + " 0.039683\n", " 9\n", " NaN\n", " \n", " \n", " 3\n", - " NaN\n", - " keep_all_rows\n", " 0\n", + " 0.1\n", + " 0.1\n", " 100.0\n", - " 5.0\n", - " 0.33\n", + " 1.0\n", + " sqrt\n", " 42.0\n", " NaN\n", " NaN\n", @@ -2424,574 +667,132 @@ " 146\n", " 10\n", " 9\n", - " 2640.499813\n", - " 0.535380\n", " 274\n", - " 69\n", " 155\n", - " 30\n", " 84\n", - " 39\n", " 82\n", - " 2\n", " 261\n", - " 124\n", " 9\n", - " 10\n", " 42\n", - " 68\n", " 277\n", - " 51\n", " 282\n", - " 71\n", " 92\n", - " 77\n", " 148\n", - " 102\n", " 211\n", - " 80\n", " 60\n", - " 76\n", " 218\n", - " 142\n", " 262\n", - " 127\n", " 46\n", - " 95\n", " 45\n", - " 70\n", " 236\n", - " 93\n", " 228\n", - " 67\n", " 132\n", - " 0\n", " 143\n", - " 105\n", " 167\n", - " 82\n", " 152\n", - " 136\n", " 93\n", - " 40\n", " 113\n", - " 54\n", " 5\n", - " 28\n", " 238\n", - " 74\n", " 251\n", - " 119\n", " 170\n", - " 18\n", " 186\n", - " 9\n", " 193\n", - " 58\n", " 33\n", - " 99\n", " 222\n", - " 73\n", " 216\n", - " 97\n", " 197\n", - " 128\n", " 73\n", - " 122\n", " 182\n", - " 55\n", " 119\n", - " 90\n", " 285\n", - " 129\n", " 202\n", - " 79\n", " 204\n", - " 4\n", " 179\n", - " 87\n", " 177\n", - " 83\n", " 111\n", - " 115\n", " 59\n", - " 81\n", " 226\n", - " 72\n", " 25\n", - " 144\n", " 77\n", - " 78\n", " 6\n", - " 126\n", " 175\n", - " 132\n", " 164\n", - " 106\n", " 140\n", - " 75\n", " 30\n", - " 61\n", " 22\n", - " 143\n", " 245\n", - " 131\n", " 24\n", - " 123\n", " 56\n", - " 89\n", " 144\n", - " 33\n", " 124\n", - " 133\n", " 97\n", - " 14\n", " 63\n", - " 88\n", " 17\n", - " 140\n", " 215\n", - " 11\n", " 219\n", - " 13\n", " 183\n", - " 15\n", " 114\n", - " 139\n", " 76\n", - " 64\n", " 284\n", - " 19\n", " 66\n", - " 44\n", " 178\n", - " 35\n", " 154\n", - " 56\n", " 75\n", - " 6\n", " 19\n", - " 107\n", " 108\n", - " 12\n", - " 79\n", - " 113\n", - " 118\n", - " 141\n", - " 72\n", - " 49\n", - " 15\n", - " 25\n", + " 69\n", + " 30\n", + " 39\n", + " 2\n", + " 124\n", " 10\n", - " 41\n", - " 101\n", - " 38\n", " 68\n", - " 130\n", - " 125\n", - " 42\n", - " 37\n", - " 8\n", - " 16\n", - " 101\n", - " 293\n", - " 125\n", - " 139\n", - " 1\n", - " 266\n", - " 137\n", + " 51\n", + " 71\n", + " 77\n", + " 102\n", + " 80\n", + " 76\n", + " 142\n", + " 127\n", + " 95\n", + " 70\n", + " 93\n", " 67\n", - " 65\n", - " 90\n", - " 22\n", - " 69\n", - " 85\n", - " 288\n", - " 46\n", - " 165\n", - " 103\n", - " 126\n", - " 145\n", - " 221\n", - " 111\n", - " 173\n", - " 100\n", + " 0\n", + " 105\n", + " 82\n", + " 136\n", + " 40\n", + " 54\n", + " 28\n", + " 74\n", + " 119\n", " 18\n", - " 57\n", - " 172\n", - " 53\n", - " 96\n", - " 109\n", - " 146\n", - " 24\n", - " 86\n", - " 17\n", - " 545\n", - " 0.353197\n", - " 1437.058926\n", - " 0.740320\n", - " 2993.318633\n", - " 0.459101\n", - " 4185.208775\n", - " 0.243723\n", - " 4928.490103\n", - " 0.109411\n", - " 5342.614052\n", - " 0.034578\n", - " 5522.340805\n", - " 0.002101\n", - " 5482.240393\n", - " 0.009347\n", - " 5577.046415\n", - " -0.007785\n", - " 5602.663206\n", - " -0.012414\n", - " 5644.869200\n", - " -0.020040\n", - " 5539.523521\n", - " -0.001004\n", - " 2751.227274\n", - " 0.502847\n", - " 4702.534726\n", - " 0.150241\n", - " 5876.798769\n", - " -0.061951\n", - " 6321.094122\n", - " -0.142236\n", - " 6672.065323\n", - " -0.205657\n", - " 6942.552888\n", - " -0.254535\n", - " 7087.736531\n", - " -0.280770\n", - " 6931.213356\n", - " -0.252486\n", - " 6571.907892\n", - " -0.187558\n", - " 6150.154721\n", - " -0.111347\n", - " 5537.963738\n", - " -0.000722\n", - " 0.018187\n", - " 0.999997\n", - " 2406.505913\n", - " 0.565139\n", - " 3694.557248\n", - " 0.332385\n", - " 4731.899147\n", - " 0.144935\n", - " 5392.714460\n", - " 0.025524\n", - " 5774.949568\n", - " -0.043546\n", - " 5789.624542\n", - " -0.046198\n", - " 5932.103010\n", - " -0.071944\n", - " 6000.631989\n", - " -0.084328\n", - " 6064.504349\n", - " -0.095869\n", - " 6105.231363\n", - " -0.103229\n", - " 2144.267875\n", - " 0.612526\n", - " 3646.878671\n", - " 0.341001\n", - " 4609.859327\n", - " 0.166988\n", - " 5163.674782\n", - " 0.066912\n", - " 5654.780863\n", - " -0.021832\n", - " 5761.998372\n", - " -0.041206\n", - " 5689.750699\n", - " -0.028151\n", - " 5675.115137\n", - " -0.025506\n", - " 5635.679423\n", - " -0.018380\n", - " 5607.887542\n", - " -0.013358\n", - " 5566.322332\n", - " -0.005847\n", - " 8.385556\n", - " 2679.064560\n", - " 0.542605\n", - " 3476.115995\n", - " 0.406525\n", - " 4606.954160\n", - " 0.213457\n", - " 5308.753320\n", - " 0.093639\n", - " 5626.772122\n", - " 0.039344\n", - " 5688.953069\n", - " 0.028728\n", - " 5665.064149\n", - " 0.032807\n", - " 5725.081827\n", - " 0.022560\n", - " 5843.531281\n", - " 0.002337\n", - " 5897.607209\n", - " -0.006895\n", - " 5889.339711\n", - " -0.005484\n", - " 2565.576138\n", - " 0.561981\n", - " 3915.996792\n", - " 0.331424\n", - " 5378.766021\n", - " 0.081686\n", - " 6371.788379\n", - " -0.087852\n", - " 6745.355899\n", - " -0.151631\n", - " 7002.600058\n", - " -0.195550\n", - " 7370.100410\n", - " -0.258293\n", - " 7607.256541\n", - " -0.298783\n", - " 7853.630412\n", - " -0.340846\n", - " 6995.518004\n", - " -0.194341\n", - " 5858.937117\n", - " -0.000293\n", - " 3557.841426\n", - " 0.392572\n", - " 3801.245390\n", - " 0.351015\n", - " 5113.264624\n", - " 0.127015\n", - " 5682.000712\n", - " 0.029915\n", - " 5921.012439\n", - " -0.010891\n", - " 5937.907776\n", - " -0.013776\n", - " 6191.459971\n", - " -0.057065\n", - " 6368.673963\n", - " -0.087320\n", - " 6357.922031\n", - " -0.085485\n", - " 6331.814400\n", - " -0.081027\n", - " 6281.215482\n", - " -0.072389\n", - " 2541.457199\n", - " 0.566098\n", - " 3427.442019\n", - " 0.414835\n", - " 4648.150206\n", - " 0.206424\n", - " 5345.929388\n", - " 0.087292\n", - " 5749.058984\n", - " 0.018466\n", - " 5839.309886\n", - " 0.003058\n", - " 5852.236219\n", - " 0.000851\n", - " 5894.663360\n", - " -0.006393\n", - " 5897.950642\n", - " -0.006954\n", - " 5878.752420\n", - " -0.003676\n", - " 5862.875775\n", - " -0.000966\n", - " 8.288917\n", - " 5880.887238\n", - " -0.004041\n", - " 4146.074898\n", - " 0.292143\n", - " 3196.169721\n", - " 0.454320\n", - " 2932.924809\n", - " 0.499263\n", - " 2779.980132\n", - " 0.525375\n", - " 2787.119764\n", - " 0.524157\n", - " 2798.497189\n", - " 0.522214\n", - " 2728.217519\n", - " 0.534213\n", - " 2703.871094\n", - " 0.538370\n", - " 2668.112464\n", - " 0.544475\n", - " 2679.064560\n", - " 0.542605\n", - " 5857.395491\n", - " -0.000030\n", - " 3717.936495\n", - " 0.365239\n", - " 2915.505150\n", - " 0.502237\n", - " 2825.997755\n", - " 0.517519\n", - " 3190.456890\n", - " 0.455295\n", - " 3183.917848\n", - " 0.456411\n", - " 3062.527867\n", - " 0.477136\n", - " 3114.178465\n", - " 0.468318\n", - " 3011.890001\n", - " 0.485782\n", - " 2927.143396\n", - " 0.500250\n", - " 2565.576138\n", - " 0.561981\n", - " 6281.215482\n", - " -0.072389\n", - " 5063.398973\n", - " 0.135529\n", - " 4167.734211\n", - " 0.288445\n", - " 4096.191310\n", - " 0.300659\n", - " 4113.813000\n", - " 0.297651\n", - " 4134.660106\n", - " 0.294092\n", - " 4094.226010\n", - " 0.300995\n", - " 4027.831573\n", - " 0.312330\n", - " 3914.307020\n", - " 0.331712\n", - " 3728.641417\n", - " 0.363411\n", - " 3557.841426\n", - " 0.392572\n", - " 5862.016707\n", - " -0.000819\n", - " 4012.823317\n", - " 0.314893\n", - " 3056.976176\n", - " 0.478084\n", - " 2770.118982\n", - " 0.527059\n", - " 2700.222694\n", - " 0.538992\n", - " 2668.229263\n", - " 0.544455\n", - " 2641.775898\n", - " 0.548971\n", - " 2591.837752\n", - " 0.557497\n", - " 2564.562730\n", - " 0.562154\n", - " 2554.271693\n", - " 0.563911\n", - " 2541.457199\n", - " 0.566098\n", - " 8.565224\n", - " 2640.499813\n", - " 0.535380\n", - " 3522.753563\n", - " 0.380140\n", - " 4492.754726\n", - " 0.209459\n", - " 5250.687945\n", - " 0.076094\n", - " 5540.180309\n", - " 0.025155\n", - " 5643.169395\n", - " 0.007033\n", - " 5570.930650\n", - " 0.019744\n", - " 5662.431118\n", - " 0.003644\n", - " 5773.100746\n", - " -0.015829\n", - " 5796.952295\n", - " -0.020026\n", - " 5801.671997\n", - " -0.020857\n", - " 2496.785106\n", - " 0.560668\n", - " 3874.602772\n", - " 0.318229\n", - " 5195.998249\n", - " 0.085717\n", - " 6136.557906\n", - " -0.079783\n", - " 6674.583225\n", - " -0.174453\n", - " 6842.073247\n", - " -0.203925\n", - " 7189.118672\n", - " -0.264990\n", - " 7566.606181\n", - " -0.331413\n", - " 7716.289158\n", - " -0.357751\n", - " 6944.478731\n", - " -0.221944\n", - " 5725.785543\n", - " -0.007504\n", - " 3494.999877\n", - " 0.385023\n", - " 4033.682012\n", - " 0.290237\n", - " 5034.332553\n", - " 0.114164\n", - " 5587.280407\n", - " 0.016868\n", - " 5743.479849\n", - " -0.010617\n", - " 5912.545974\n", - " -0.040366\n", - " 5896.718386\n", - " -0.037581\n", - " 6061.503398\n", - " -0.066576\n", - " 6057.537598\n", - " -0.065878\n", - " 5972.670797\n", - " -0.050945\n", - " 5919.422152\n", - " -0.041576\n", - " 2466.857536\n", - " 0.565934\n", - " 3413.979947\n", - " 0.399279\n", - " 4484.335122\n", - " 0.210941\n", - " 5200.283806\n", - " 0.084963\n", - " 5660.252160\n", - " 0.004028\n", - " 5774.580841\n", - " -0.016090\n", - " 5706.121381\n", - " -0.004044\n", - " 5733.989985\n", - " -0.008947\n", - " 5727.995769\n", - " -0.007893\n", - " 5704.121340\n", - " -0.003692\n", - " 5691.215026\n", - " -0.001421\n", - " 8.887087\n", + " 9\n", + " 58\n", + " 99\n", + " 73\n", + " 97\n", + " 128\n", + " 122\n", + " 3760\n", + " 4.118729\n", + " 0.527027\n", + " 0.712064\n", + " 0.059202\n", + " 0.579861\n", + " 0.756349\n", + " 0.015873\n", " 9\n", " NaN\n", " \n", " \n", " 4\n", - " NaN\n", - " keep_all_rows\n", " 0\n", + " 0.1\n", + " 0.1\n", " NaN\n", " NaN\n", " NaN\n", @@ -3007,568 +808,126 @@ " 146\n", " 10\n", " 9\n", - " 2466.857536\n", - " 0.565934\n", " 274\n", - " 69\n", " 155\n", - " 30\n", " 84\n", - " 39\n", " 82\n", - " 2\n", " 261\n", - " 124\n", " 9\n", - " 10\n", " 42\n", - " 68\n", " 277\n", - " 51\n", " 282\n", - " 71\n", " 92\n", - " 77\n", " 148\n", - " 102\n", " 211\n", - " 80\n", " 60\n", - " 76\n", " 218\n", - " 142\n", " 262\n", - " 127\n", " 46\n", - " 95\n", " 45\n", - " 70\n", " 236\n", - " 93\n", " 228\n", - " 67\n", " 132\n", - " 0\n", " 143\n", - " 105\n", " 167\n", - " 82\n", " 152\n", - " 136\n", " 93\n", - " 40\n", " 113\n", - " 54\n", " 5\n", - " 28\n", " 238\n", - " 74\n", " 251\n", - " 119\n", " 170\n", - " 18\n", " 186\n", - " 9\n", " 193\n", - " 58\n", " 33\n", - " 99\n", " 222\n", - " 73\n", " 216\n", - " 97\n", " 197\n", - " 128\n", " 73\n", - " 122\n", " 182\n", - " 55\n", " 119\n", - " 90\n", " 285\n", - " 129\n", " 202\n", - " 79\n", " 204\n", - " 4\n", " 179\n", - " 87\n", " 177\n", - " 83\n", " 111\n", - " 115\n", " 59\n", - " 81\n", " 226\n", - " 72\n", " 25\n", - " 144\n", " 77\n", - " 78\n", " 6\n", - " 126\n", " 175\n", - " 132\n", " 164\n", - " 106\n", " 140\n", - " 75\n", " 30\n", - " 61\n", " 22\n", - " 143\n", " 245\n", - " 131\n", " 24\n", - " 123\n", " 56\n", - " 89\n", " 144\n", - " 33\n", " 124\n", - " 133\n", " 97\n", - " 14\n", " 63\n", - " 88\n", " 17\n", - " 140\n", " 215\n", - " 11\n", " 219\n", - " 13\n", " 183\n", - " 15\n", " 114\n", - " 139\n", " 76\n", - " 64\n", " 284\n", - " 19\n", " 66\n", - " 44\n", " 178\n", - " 35\n", " 154\n", - " 56\n", " 75\n", - " 6\n", " 19\n", - " 107\n", " 108\n", - " 12\n", - " 79\n", - " 113\n", - " 118\n", - " 141\n", - " 72\n", - " 49\n", - " 15\n", - " 25\n", + " 69\n", + " 30\n", + " 39\n", + " 2\n", + " 124\n", " 10\n", - " 41\n", - " 101\n", - " 38\n", " 68\n", - " 130\n", - " 125\n", - " 42\n", - " 37\n", - " 8\n", - " 16\n", - " 101\n", - " 293\n", - " 125\n", - " 139\n", - " 1\n", - " 266\n", - " 137\n", + " 51\n", + " 71\n", + " 77\n", + " 102\n", + " 80\n", + " 76\n", + " 142\n", + " 127\n", + " 95\n", + " 70\n", + " 93\n", " 67\n", - " 65\n", - " 90\n", - " 22\n", - " 69\n", - " 85\n", - " 288\n", - " 46\n", - " 165\n", - " 103\n", - " 126\n", - " 145\n", - " 221\n", - " 111\n", - " 173\n", - " 100\n", + " 0\n", + " 105\n", + " 82\n", + " 136\n", + " 40\n", + " 54\n", + " 28\n", + " 74\n", + " 119\n", " 18\n", - " 57\n", - " 172\n", - " 53\n", - " 96\n", - " 109\n", - " 146\n", - " 24\n", - " 86\n", - " 17\n", - " 8534\n", - " 134.209250\n", - " 1437.058926\n", - " 0.740320\n", - " 2593.668426\n", - " 0.531318\n", - " 3915.160119\n", - " 0.292522\n", - " 4678.388000\n", - " 0.154605\n", - " 5028.409569\n", - " 0.091355\n", - " 5173.721429\n", - " 0.065097\n", - " 5309.990518\n", - " 0.040473\n", - " 5380.005758\n", - " 0.027821\n", - " 5537.554053\n", - " -0.000648\n", - " 5547.269238\n", - " -0.002404\n", - " 5539.523521\n", - " -0.001004\n", - " 2751.227274\n", - " 0.502847\n", - " 4131.487251\n", - " 0.253431\n", - " 5661.884034\n", - " -0.023115\n", - " 6228.786395\n", - " -0.125556\n", - " 6611.718967\n", - " -0.194752\n", - " 6898.813662\n", - " -0.246631\n", - " 6725.819832\n", - " -0.215371\n", - " 6251.340134\n", - " -0.129631\n", - " 5694.265877\n", - " -0.028967\n", - " 5427.512325\n", - " 0.019236\n", - " 5537.963738\n", - " -0.000722\n", - " 0.018187\n", - " 0.999997\n", - " 1760.246456\n", - " 0.681920\n", - " 3902.301179\n", - " 0.294845\n", - " 4786.063094\n", - " 0.135148\n", - " 5248.502766\n", - " 0.051584\n", - " 5562.326281\n", - " -0.005125\n", - " 5666.256209\n", - " -0.023905\n", - " 5825.740431\n", - " -0.052724\n", - " 5924.347912\n", - " -0.070543\n", - " 6003.463504\n", - " -0.084839\n", - " 6105.231363\n", - " -0.103229\n", - " 2144.267875\n", - " 0.612526\n", - " 3208.000445\n", - " 0.420307\n", - " 4583.943975\n", - " 0.171671\n", - " 5270.742639\n", - " 0.047565\n", - " 5593.220279\n", - " -0.010707\n", - " 5575.129386\n", - " -0.007438\n", - " 5534.621890\n", - " -0.000119\n", - " 5561.347439\n", - " -0.004948\n", - " 5576.001782\n", - " -0.007596\n", - " 5575.467267\n", - " -0.007499\n", - " 5566.322332\n", - " -0.005847\n", - " 8.385494\n", - " 2679.064560\n", - " 0.542605\n", - " 3467.889825\n", - " 0.407929\n", - " 4522.247977\n", - " 0.227919\n", - " 5062.186749\n", - " 0.135736\n", - " 5125.361953\n", - " 0.124950\n", - " 5403.866778\n", - " 0.077401\n", - " 5605.699200\n", - " 0.042942\n", - " 5672.867376\n", - " 0.031474\n", - " 5812.376227\n", - " 0.007656\n", - " 5867.281714\n", - " -0.001718\n", - " 5889.339711\n", - " -0.005484\n", - " 2565.576138\n", - " 0.561981\n", - " 4094.432088\n", - " 0.300960\n", - " 5533.852742\n", - " 0.055208\n", - " 6551.561645\n", - " -0.118545\n", - " 6861.311919\n", - " -0.171428\n", - " 7429.580019\n", - " -0.268448\n", - " 6950.073027\n", - " -0.186582\n", - " 6638.554918\n", - " -0.133397\n", - " 6173.376633\n", - " -0.053977\n", - " 5914.424323\n", - " -0.009767\n", - " 5858.937117\n", - " -0.000293\n", - " 3557.841426\n", - " 0.392572\n", - " 3734.806153\n", - " 0.362359\n", - " 5403.526760\n", - " 0.077459\n", - " 5772.297106\n", - " 0.014499\n", - " 5861.365272\n", - " -0.000708\n", - " 5670.640633\n", - " 0.031855\n", - " 5949.960467\n", - " -0.015834\n", - " 6188.619490\n", - " -0.056580\n", - " 6274.798143\n", - " -0.071293\n", - " 6275.738620\n", - " -0.071454\n", - " 6281.215482\n", - " -0.072389\n", - " 2541.457199\n", - " 0.566098\n", - " 3503.461554\n", - " 0.401856\n", - " 4715.650971\n", - " 0.194899\n", - " 5419.732700\n", - " 0.074692\n", - " 5622.243735\n", - " 0.040117\n", - " 5756.416526\n", - " 0.017210\n", - " 5820.147416\n", - " 0.006329\n", - " 5828.767393\n", - " 0.004858\n", - " 5829.349967\n", - " 0.004758\n", - " 5860.065543\n", - " -0.000486\n", - " 5862.875775\n", - " -0.000966\n", - " 8.337007\n", - " 5880.887238\n", - " -0.004041\n", - " 4016.926503\n", - " 0.314192\n", - " 3239.020925\n", - " 0.447004\n", - " 3018.744971\n", - " 0.484611\n", - " 2833.885025\n", - " 0.516172\n", - " 2762.022798\n", - " 0.528441\n", - " 2744.015733\n", - " 0.531516\n", - " 2727.651489\n", - " 0.534310\n", - " 2708.425989\n", - " 0.537592\n", - " 2670.802856\n", - " 0.544015\n", - " 2679.064560\n", - " 0.542605\n", - " 5857.395491\n", - " -0.000030\n", - " 3492.276791\n", - " 0.403765\n", - " 2955.758856\n", - " 0.495365\n", - " 2686.976279\n", - " 0.541254\n", - " 2958.235627\n", - " 0.494942\n", - " 3127.977014\n", - " 0.465962\n", - " 3240.538911\n", - " 0.446745\n", - " 2845.779006\n", - " 0.514142\n", - " 2691.562055\n", - " 0.540471\n", - " 2656.686546\n", - " 0.546425\n", - " 2565.576138\n", - " 0.561981\n", - " 6281.215482\n", - " -0.072389\n", - " 4525.469962\n", - " 0.227369\n", - " 4331.440232\n", - " 0.260496\n", - " 4152.517996\n", - " 0.291043\n", - " 3953.368818\n", - " 0.325043\n", - " 4132.817470\n", - " 0.294406\n", - " 4087.757952\n", - " 0.302099\n", - " 4091.054772\n", - " 0.301536\n", - " 3889.639927\n", - " 0.335924\n", - " 3682.165264\n", - " 0.371346\n", - " 3557.841426\n", - " 0.392572\n", - " 5862.016707\n", - " -0.000819\n", - " 3840.160816\n", - " 0.344371\n", - " 3031.188396\n", - " 0.482487\n", - " 2722.696131\n", - " 0.535156\n", - " 2616.745973\n", - " 0.553244\n", - " 2595.289374\n", - " 0.556908\n", - " 2591.050321\n", - " 0.557631\n", - " 2568.578591\n", - " 0.561468\n", - " 2566.086550\n", - " 0.561893\n", - " 2533.869882\n", - " 0.567394\n", - " 2541.457199\n", - " 0.566098\n", - " 8.649657\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", " 9\n", - " RandomForestRegressor(max_features=0.33, min_s...\n", + " 58\n", + " 99\n", + " 73\n", + " 97\n", + " 128\n", + " 122\n", + " 7298\n", + " 709.444741\n", + " 0.684122\n", + " 0.798879\n", + " 0.000000\n", + " 0.651620\n", + " 0.766891\n", + " 0.000000\n", + " 9\n", + " RandomForestRegressor(max_features='sqrt', ran...\n", " \n", " \n", " ...\n", @@ -3710,8522 +1069,1164 @@ " ...\n", " ...\n", " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " \n", - " \n", - " 65\n", - " NaN\n", - " keep_all_rows\n", - " 0\n", - " 100.0\n", - " 5.0\n", - " 0.33\n", - " 42.0\n", - " False\n", - " 0.0\n", - " False\n", - " inbag\n", - " NaN\n", - " RF\n", - " MDI_RF\n", - " 296\n", - " 146\n", - " 10\n", - " 10\n", - " 3317.655397\n", - " 0.470632\n", - " 274\n", - " 69\n", - " 155\n", - " 30\n", - " 84\n", - " 39\n", - " 82\n", - " 2\n", - " 261\n", - " 124\n", - " 9\n", - " 10\n", - " 42\n", - " 68\n", - " 277\n", - " 51\n", - " 282\n", - " 71\n", - " 92\n", - " 77\n", - " 148\n", - " 102\n", - " 211\n", - " 80\n", - " 60\n", - " 76\n", - " 218\n", - " 142\n", - " 262\n", - " 127\n", - " 46\n", - " 95\n", - " 45\n", - " 70\n", - " 236\n", - " 93\n", - " 228\n", - " 67\n", - " 132\n", - " 0\n", - " 143\n", - " 105\n", - " 167\n", - " 82\n", - " 152\n", - " 136\n", - " 93\n", - " 40\n", - " 113\n", - " 54\n", - " 5\n", - " 28\n", - " 238\n", - " 74\n", - " 251\n", - " 119\n", - " 170\n", - " 18\n", - " 186\n", - " 9\n", - " 193\n", - " 58\n", - " 33\n", - " 99\n", - " 222\n", - " 73\n", - " 216\n", - " 97\n", - " 197\n", - " 128\n", - " 73\n", - " 122\n", - " 182\n", - " 55\n", - " 119\n", - " 90\n", - " 285\n", - " 129\n", - " 202\n", - " 79\n", - " 204\n", - " 4\n", - " 179\n", - " 87\n", - " 177\n", - " 83\n", - " 111\n", - " 115\n", - " 59\n", - " 81\n", - " 226\n", - " 72\n", - " 25\n", - " 144\n", - " 77\n", - " 78\n", - " 6\n", - " 126\n", - " 175\n", - " 132\n", - " 164\n", - " 106\n", - " 140\n", - " 75\n", - " 30\n", - " 61\n", - " 22\n", - " 143\n", - " 245\n", - " 131\n", - " 24\n", - " 123\n", - " 56\n", - " 89\n", - " 144\n", - " 33\n", - " 124\n", - " 133\n", - " 97\n", - " 14\n", - " 63\n", - " 88\n", - " 17\n", - " 140\n", - " 215\n", - " 11\n", - " 219\n", - " 13\n", - " 183\n", - " 15\n", - " 114\n", - " 139\n", - " 76\n", - " 64\n", - " 284\n", - " 19\n", - " 66\n", - " 44\n", - " 178\n", - " 35\n", - " 154\n", - " 56\n", - " 75\n", - " 6\n", - " 19\n", - " 107\n", - " 108\n", - " 12\n", - " 79\n", - " 113\n", - " 118\n", - " 141\n", - " 72\n", - " 49\n", - " 15\n", - " 25\n", - " 10\n", - " 41\n", - " 101\n", - " 38\n", - " 68\n", - " 130\n", - " 125\n", - " 42\n", - " 37\n", - " 8\n", - " 16\n", - " 101\n", - " 293\n", - " 125\n", - " 139\n", - " 1\n", - " 266\n", - " 137\n", - " 67\n", - " 65\n", - " 90\n", - " 22\n", - " 69\n", - " 85\n", - " 288\n", - " 46\n", - " 165\n", - " 103\n", - " 126\n", - " 145\n", - " 221\n", - " 111\n", - " 173\n", - " 100\n", - " 18\n", - " 57\n", - " 172\n", - " 53\n", - " 96\n", - " 109\n", - " 146\n", - " 24\n", - " 86\n", - " 17\n", - " 3650\n", - " 4.258376\n", - " 1438.855135\n", - " 0.742201\n", - " 2678.898633\n", - " 0.520023\n", - " 4165.208912\n", - " 0.253722\n", - " 4813.668323\n", - " 0.137538\n", - " 5176.160990\n", - " 0.072590\n", - " 5445.473321\n", - " 0.024338\n", - " 5445.779737\n", - " 0.024283\n", - " 5590.734303\n", - " -0.001689\n", - " 5562.477277\n", - " 0.003374\n", - " 5710.567724\n", - " -0.023159\n", - " 5687.565590\n", - " -0.019038\n", - " 2738.215621\n", - " 0.509396\n", - " 3827.443185\n", - " 0.314239\n", - " 5227.500681\n", - " 0.063392\n", - " 5931.959208\n", - " -0.062826\n", - " 6180.587308\n", - " -0.107372\n", - " 6571.688377\n", - " -0.177446\n", - " 6367.528123\n", - " -0.140866\n", - " 6390.940437\n", - " -0.145061\n", - " 6051.307223\n", - " -0.084209\n", - " 5933.424152\n", - " -0.063088\n", - " 5589.440875\n", - " -0.001457\n", - " 0.097250\n", - " 0.999983\n", - " 1409.122866\n", - " 0.747528\n", - " 3062.737215\n", - " 0.451251\n", - " 4143.180980\n", - " 0.257669\n", - " 4973.750342\n", - " 0.108856\n", - " 5579.904958\n", - " 0.000252\n", - " 5919.620840\n", - " -0.060615\n", - " 5991.195842\n", - " -0.073439\n", - " 5815.187326\n", - " -0.041904\n", - " 5869.966012\n", - " -0.051718\n", - " 5611.310265\n", - " -0.005375\n", - " 2193.167972\n", - " 0.607051\n", - " 3333.951885\n", - " 0.402658\n", - " 4568.961153\n", - " 0.181382\n", - " 5193.217918\n", - " 0.069534\n", - " 5516.575047\n", - " 0.011599\n", - " 5795.097195\n", - " -0.038304\n", - " 5708.668205\n", - " -0.022819\n", - " 5806.308659\n", - " -0.040313\n", - " 5724.849106\n", - " -0.025718\n", - " 5763.980812\n", - " -0.032729\n", - " 5624.090066\n", - " -0.007665\n", - " 9.516454\n", - " 3509.831927\n", - " 0.426241\n", - " 4213.771834\n", - " 0.311166\n", - " 4825.940412\n", - " 0.211094\n", - " 5681.011294\n", - " 0.071313\n", - " 6040.236320\n", - " 0.012590\n", - " 6010.251621\n", - " 0.017492\n", - " 6040.809248\n", - " 0.012497\n", - " 6072.462142\n", - " 0.007322\n", - " 6219.755407\n", - " -0.016756\n", - " 6225.621623\n", - " -0.017715\n", - " 6148.928735\n", - " -0.005178\n", - " 3546.190517\n", - " 0.420297\n", - " 4317.195582\n", - " 0.294259\n", - " 5220.529078\n", - " 0.146589\n", - " 6400.227369\n", - " -0.046258\n", - " 6949.837827\n", - " -0.136104\n", - " 7213.551738\n", - " -0.179214\n", - " 7144.965343\n", - " -0.168002\n", - " 7042.816321\n", - " -0.151304\n", - " 6800.197216\n", - " -0.111642\n", - " 6382.959926\n", - " -0.043436\n", - " 6120.597362\n", - " -0.000547\n", - " 4204.805826\n", - " 0.312632\n", - " 4532.535944\n", - " 0.259057\n", - " 4782.177425\n", - " 0.218248\n", - " 5765.002999\n", - " 0.057583\n", - " 6616.765442\n", - " -0.081656\n", - " 6540.407431\n", - " -0.069174\n", - " 6560.380937\n", - " -0.072439\n", - " 6541.498076\n", - " -0.069352\n", - " 6445.427868\n", - " -0.053647\n", - " 6279.188476\n", - " -0.026472\n", - " 6117.889522\n", - " -0.000104\n", - " 3474.597817\n", - " 0.432000\n", - " 4204.940450\n", - " 0.312610\n", - " 4812.357611\n", - " 0.213314\n", - " 5643.187091\n", - " 0.077497\n", - " 6067.666325\n", - " 0.008106\n", - " 6125.743285\n", - " -0.001388\n", - " 6196.138333\n", - " -0.012895\n", - " 6238.070629\n", - " -0.019750\n", - " 6324.483467\n", - " -0.033876\n", - " 6261.602595\n", - " -0.023597\n", - " 6120.715936\n", - " -0.000566\n", - " 9.552238\n", - " 6121.822228\n", - " -0.000747\n", - " 4565.198469\n", - " 0.253718\n", - " 4202.993784\n", - " 0.312928\n", - " 3791.454016\n", - " 0.380203\n", - " 3482.538323\n", - " 0.430702\n", - " 3517.779677\n", - " 0.424941\n", - " 3511.064884\n", - " 0.426039\n", - " 3523.610302\n", - " 0.423988\n", - " 3475.624613\n", - " 0.431833\n", - " 3504.931544\n", - " 0.427042\n", - " 3509.831927\n", - " 0.426241\n", - " 6124.876390\n", - " -0.001246\n", - " 4533.065114\n", - " 0.258971\n", - " 4036.250074\n", - " 0.340186\n", - " 3657.157989\n", - " 0.402157\n", - " 3432.644180\n", - " 0.438859\n", - " 3416.521741\n", - " 0.441494\n", - " 3338.099275\n", - " 0.454314\n", - " 3401.714814\n", - " 0.443915\n", - " 3414.243011\n", - " 0.441867\n", - " 3549.325521\n", - " 0.419785\n", - " 3546.190517\n", - " 0.420297\n", - " 6117.889522\n", - " -0.000104\n", - " 4630.301104\n", - " 0.243075\n", - " 4461.578467\n", - " 0.270657\n", - " 4086.940877\n", - " 0.331899\n", - " 3867.554025\n", - " 0.367763\n", - " 4124.247124\n", - " 0.325801\n", - " 4247.664086\n", - " 0.305626\n", - " 4175.739512\n", - " 0.317383\n", - " 4071.541941\n", - " 0.334417\n", - " 4087.077584\n", - " 0.331877\n", - " 4204.805826\n", - " 0.312632\n", - " 6118.188308\n", - " -0.000153\n", - " 4554.336197\n", - " 0.255493\n", - " 4087.341630\n", - " 0.331834\n", - " 3669.516753\n", - " 0.400137\n", - " 3467.364448\n", - " 0.433183\n", - " 3470.756627\n", - " 0.432628\n", - " 3426.308046\n", - " 0.439894\n", - " 3422.427748\n", - " 0.440529\n", - " 3367.681185\n", - " 0.449478\n", - " 3398.510612\n", - " 0.444439\n", - " 3474.597817\n", - " 0.432000\n", - " 9.641644\n", - " 3317.655397\n", - " 0.470632\n", - " 4252.098901\n", - " 0.321531\n", - " 4965.848450\n", - " 0.207644\n", - " 5733.329545\n", - " 0.085184\n", - " 6078.686174\n", - " 0.030079\n", - " 6173.750086\n", - " 0.014910\n", - " 6142.718017\n", - " 0.019862\n", - " 6271.061133\n", - " -0.000617\n", - " 6362.782912\n", - " -0.015252\n", - " 6344.548400\n", - " -0.012342\n", - " 6286.679067\n", - " -0.003109\n", - " 3332.826395\n", - " 0.468211\n", - " 4372.466149\n", - " 0.302325\n", - " 5200.909978\n", - " 0.170138\n", - " 6249.120862\n", - " 0.002884\n", - " 6895.247992\n", - " -0.100213\n", - " 7031.352831\n", - " -0.121930\n", - " 6866.904602\n", - " -0.095690\n", - " 6825.980328\n", - " -0.089160\n", - " 6716.099781\n", - " -0.071627\n", - " 6500.228772\n", - " -0.037183\n", - " 6276.453840\n", - " -0.001477\n", - " 4245.435413\n", - " 0.322594\n", - " 4744.258516\n", - " 0.243001\n", - " 5134.835355\n", - " 0.180681\n", - " 5989.696026\n", - " 0.044278\n", - " 6600.850248\n", - " -0.053238\n", - " 6439.163654\n", - " -0.027439\n", - " 6425.883090\n", - " -0.025320\n", - " 6511.903490\n", - " -0.039046\n", - " 6526.163669\n", - " -0.041321\n", - " 6501.302701\n", - " -0.037354\n", - " 6267.370049\n", - " -0.000028\n", - " 3251.341447\n", - " 0.481213\n", - " 4245.552249\n", - " 0.322576\n", - " 4889.454447\n", - " 0.219834\n", - " 5673.355569\n", - " 0.094754\n", - " 6124.177802\n", - " 0.022820\n", - " 6225.744929\n", - " 0.006614\n", - " 6230.183531\n", - " 0.005906\n", - " 6331.818864\n", - " -0.010311\n", - " 6421.566444\n", - " -0.024631\n", - " 6365.125200\n", - " -0.015626\n", - " 6267.614305\n", - " -0.000067\n", - " 9.768127\n", - " 10\n", - " NaN\n", - " \n", - " \n", - " 66\n", - " NaN\n", - " keep_all_rows\n", - " 0\n", - " 100.0\n", - " 5.0\n", - " 0.33\n", - " 42.0\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " RF\n", - " TreeSHAP_RF\n", - " 296\n", - " 146\n", - " 10\n", - " 10\n", - " 3317.655397\n", - " 0.470632\n", - " 274\n", - " 69\n", - " 155\n", - " 30\n", - " 84\n", - " 39\n", - " 82\n", - " 2\n", - " 261\n", - " 124\n", - " 9\n", - " 10\n", - " 42\n", - " 68\n", - " 277\n", - " 51\n", - " 282\n", - " 71\n", - " 92\n", - " 77\n", - " 148\n", - " 102\n", - " 211\n", - " 80\n", - " 60\n", - " 76\n", - " 218\n", - " 142\n", - " 262\n", - " 127\n", - " 46\n", - " 95\n", - " 45\n", - " 70\n", - " 236\n", - " 93\n", - " 228\n", - " 67\n", - " 132\n", - " 0\n", - " 143\n", - " 105\n", - " 167\n", - " 82\n", - " 152\n", - " 136\n", - " 93\n", - " 40\n", - " 113\n", - " 54\n", - " 5\n", - " 28\n", - " 238\n", - " 74\n", - " 251\n", - " 119\n", - " 170\n", - " 18\n", - " 186\n", - " 9\n", - " 193\n", - " 58\n", - " 33\n", - " 99\n", - " 222\n", - " 73\n", - " 216\n", - " 97\n", - " 197\n", - " 128\n", - " 73\n", - " 122\n", - " 182\n", - " 55\n", - " 119\n", - " 90\n", - " 285\n", - " 129\n", - " 202\n", - " 79\n", - " 204\n", - " 4\n", - " 179\n", - " 87\n", - " 177\n", - " 83\n", - " 111\n", - " 115\n", - " 59\n", - " 81\n", - " 226\n", - " 72\n", - " 25\n", - " 144\n", - " 77\n", - " 78\n", - " 6\n", - " 126\n", - " 175\n", - " 132\n", - " 164\n", - " 106\n", - " 140\n", - " 75\n", - " 30\n", - " 61\n", - " 22\n", - " 143\n", - " 245\n", - " 131\n", - " 24\n", - " 123\n", - " 56\n", - " 89\n", - " 144\n", - " 33\n", - " 124\n", - " 133\n", - " 97\n", - " 14\n", - " 63\n", - " 88\n", - " 17\n", - " 140\n", - " 215\n", - " 11\n", - " 219\n", - " 13\n", - " 183\n", - " 15\n", - " 114\n", - " 139\n", - " 76\n", - " 64\n", - " 284\n", - " 19\n", - " 66\n", - " 44\n", - " 178\n", - " 35\n", - " 154\n", - " 56\n", - " 75\n", - " 6\n", - " 19\n", - " 107\n", - " 108\n", - " 12\n", - " 79\n", - " 113\n", - " 118\n", - " 141\n", - " 72\n", - " 49\n", - " 15\n", - " 25\n", - " 10\n", - " 41\n", - " 101\n", - " 38\n", - " 68\n", - " 130\n", - " 125\n", - " 42\n", - " 37\n", - " 8\n", - " 16\n", - " 101\n", - " 293\n", - " 125\n", - " 139\n", - " 1\n", - " 266\n", - " 137\n", - " 67\n", - " 65\n", - " 90\n", - " 22\n", - " 69\n", - " 85\n", - " 288\n", - " 46\n", - " 165\n", - " 103\n", - " 126\n", - " 145\n", - " 221\n", - " 111\n", - " 173\n", - " 100\n", - " 18\n", - " 57\n", - " 172\n", - " 53\n", - " 96\n", - " 109\n", - " 146\n", - " 24\n", - " 86\n", - " 17\n", - " 3650\n", - " 0.352780\n", - " 1438.855135\n", - " 0.742201\n", - " 2782.889805\n", - " 0.501391\n", - " 4366.241529\n", - " 0.217703\n", - " 5070.550880\n", - " 0.091512\n", - " 5466.312513\n", - " 0.020604\n", - " 5611.598042\n", - " -0.005427\n", - " 5618.506871\n", - " -0.006665\n", - " 5654.910570\n", - " -0.013187\n", - " 5619.409496\n", - " -0.006826\n", - " 5634.681385\n", - " -0.009563\n", - " 5687.565590\n", - " -0.019038\n", - " 2738.215621\n", - " 0.509396\n", - " 3923.613699\n", - " 0.297008\n", - " 5540.710071\n", - " 0.007274\n", - " 6201.689908\n", - " -0.111153\n", - " 6467.662659\n", - " -0.158807\n", - " 6656.869877\n", - " -0.192707\n", - " 6731.266600\n", - " -0.206037\n", - " 6580.335137\n", - " -0.178995\n", - " 6519.573170\n", - " -0.168108\n", - " 6191.864619\n", - " -0.109393\n", - " 5589.440875\n", - " -0.001457\n", - " 0.097250\n", - " 0.999983\n", - " 1548.709747\n", - " 0.722519\n", - " 3239.161380\n", - " 0.419641\n", - " 4348.167990\n", - " 0.220941\n", - " 5168.590233\n", - " 0.073947\n", - " 5650.278499\n", - " -0.012357\n", - " 6010.622799\n", - " -0.076920\n", - " 6015.874192\n", - " -0.077861\n", - " 5992.264780\n", - " -0.073631\n", - " 5818.049908\n", - " -0.042417\n", - " 5611.310265\n", - " -0.005375\n", - " 2193.167972\n", - " 0.607051\n", - " 3464.273155\n", - " 0.379308\n", - " 4770.751640\n", - " 0.145227\n", - " 5395.283077\n", - " 0.033330\n", - " 5795.554139\n", - " -0.038386\n", - " 5967.401983\n", - " -0.069176\n", - " 5938.818272\n", - " -0.064055\n", - " 5911.916236\n", - " -0.059235\n", - " 5826.379101\n", - " -0.043909\n", - " 5723.786894\n", - " -0.025528\n", - " 5624.090066\n", - " -0.007665\n", - " 9.597552\n", - " 3509.831927\n", - " 0.426241\n", - " 4244.202125\n", - " 0.306192\n", - " 5180.216168\n", - " 0.153179\n", - " 5853.344850\n", - " 0.043142\n", - " 6059.064892\n", - " 0.009512\n", - " 6033.072523\n", - " 0.013761\n", - " 6076.452794\n", - " 0.006670\n", - " 6163.188391\n", - " -0.007509\n", - " 6167.744088\n", - " -0.008254\n", - " 6163.381267\n", - " -0.007541\n", - " 6148.928735\n", - " -0.005178\n", - " 3546.190517\n", - " 0.420297\n", - " 4298.706761\n", - " 0.297282\n", - " 5543.796750\n", - " 0.093744\n", - " 6597.919515\n", - " -0.078575\n", - " 7200.544735\n", - " -0.177088\n", - " 7180.863666\n", - " -0.173870\n", - " 7178.534520\n", - " -0.173490\n", - " 7282.307820\n", - " -0.190454\n", - " 7045.106442\n", - " -0.151678\n", - " 6518.753085\n", - " -0.065634\n", - " 6120.597362\n", - " -0.000547\n", - " 4204.805826\n", - " 0.312632\n", - " 4539.464977\n", - " 0.257924\n", - " 5165.616795\n", - " 0.155566\n", - " 5612.968644\n", - " 0.082437\n", - " 6545.861568\n", - " -0.070065\n", - " 6227.923582\n", - " -0.018091\n", - " 6319.939748\n", - " -0.033133\n", - " 6328.347984\n", - " -0.034508\n", - " 6309.849532\n", - " -0.031484\n", - " 6210.926311\n", - " -0.015313\n", - " 6117.889522\n", - " -0.000104\n", - " 3474.597817\n", - " 0.432000\n", - " 4200.995461\n", - " 0.313255\n", - " 5148.796361\n", - " 0.158316\n", - " 5749.118505\n", - " 0.060180\n", - " 6190.579480\n", - " -0.011987\n", - " 6151.965930\n", - " -0.005674\n", - " 6235.536408\n", - " -0.019336\n", - " 6349.831588\n", - " -0.038020\n", - " 6324.912346\n", - " -0.033946\n", - " 6213.181953\n", - " -0.015682\n", - " 6120.715936\n", - " -0.000566\n", - " 9.366884\n", - " 6121.822228\n", - " -0.000747\n", - " 4574.417632\n", - " 0.252211\n", - " 3941.660325\n", - " 0.355649\n", - " 3882.135957\n", - " 0.365379\n", - " 3490.555982\n", - " 0.429392\n", - " 3537.260652\n", - " 0.421757\n", - " 3553.312832\n", - " 0.419133\n", - " 3495.945755\n", - " 0.428511\n", - " 3496.831801\n", - " 0.428366\n", - " 3529.774799\n", - " 0.422980\n", - " 3509.831927\n", - " 0.426241\n", - " 6124.876390\n", - " -0.001246\n", - " 4525.897079\n", - " 0.260142\n", - " 3735.627267\n", - " 0.389329\n", - " 3706.773647\n", - " 0.394046\n", - " 3391.760003\n", - " 0.445542\n", - " 3532.284395\n", - " 0.422570\n", - " 3430.875697\n", - " 0.439148\n", - " 3452.640648\n", - " 0.435590\n", - " 3565.410982\n", - " 0.417155\n", - " 3591.843876\n", - " 0.412834\n", - " 3546.190517\n", - " 0.420297\n", - " 6117.889522\n", - " -0.000104\n", - " 4725.567058\n", - " 0.227502\n", - " 3831.850861\n", - " 0.373600\n", - " 4110.292001\n", - " 0.328082\n", - " 3979.834737\n", - " 0.349408\n", - " 4293.630985\n", - " 0.298111\n", - " 4481.075995\n", - " 0.267469\n", - " 4270.511124\n", - " 0.301891\n", - " 4195.289596\n", - " 0.314187\n", - " 4229.613224\n", - " 0.308576\n", - " 4204.805826\n", - " 0.312632\n", - " 6118.188308\n", - " -0.000153\n", - " 4570.576428\n", - " 0.252839\n", - " 3806.828252\n", - " 0.377690\n", - " 3759.608774\n", - " 0.385409\n", - " 3408.515859\n", - " 0.442803\n", - " 3486.048868\n", - " 0.430128\n", - " 3447.239195\n", - " 0.436473\n", - " 3399.367759\n", - " 0.444298\n", - " 3438.643309\n", - " 0.437878\n", - " 3461.606999\n", - " 0.434124\n", - " 3474.597817\n", - " 0.432000\n", - " 9.647025\n", - " 3317.655397\n", - " 0.470632\n", - " 4151.837191\n", - " 0.337529\n", - " 5163.578466\n", - " 0.176094\n", - " 5923.044278\n", - " 0.054913\n", - " 6195.837162\n", - " 0.011386\n", - " 6172.416916\n", - " 0.015123\n", - " 6267.709333\n", - " -0.000082\n", - " 6357.712212\n", - " -0.014443\n", - " 6342.834816\n", - " -0.012069\n", - " 6322.005677\n", - " -0.008745\n", - " 6286.679067\n", - " -0.003109\n", - " 3332.826395\n", - " 0.468211\n", - " 4252.332749\n", - " 0.321494\n", - " 5500.769377\n", - " 0.122292\n", - " 6499.331943\n", - " -0.037040\n", - " 7017.833958\n", - " -0.119772\n", - " 6999.075380\n", - " -0.116779\n", - " 7064.166452\n", - " -0.127165\n", - " 7161.699581\n", - " -0.142728\n", - " 7016.127259\n", - " -0.119500\n", - " 6654.176147\n", - " -0.061747\n", - " 6276.453840\n", - " -0.001477\n", - " 4245.435413\n", - " 0.322594\n", - " 4651.418299\n", - " 0.257815\n", - " 5434.706040\n", - " 0.132833\n", - " 5996.028512\n", - " 0.043268\n", - " 6553.462829\n", - " -0.045677\n", - " 6346.476672\n", - " -0.012650\n", - " 6452.011697\n", - " -0.029489\n", - " 6466.410333\n", - " -0.031787\n", - " 6456.925559\n", - " -0.030273\n", - " 6384.095136\n", - " -0.018652\n", - " 6267.370049\n", - " -0.000028\n", - " 3251.341447\n", - " 0.481213\n", - " 4151.615634\n", - " 0.337564\n", - " 5150.085657\n", - " 0.178247\n", - " 5841.931213\n", - " 0.067856\n", - " 6257.791966\n", - " 0.001501\n", - " 6220.642475\n", - " 0.007428\n", - " 6374.114987\n", - " -0.017060\n", - " 6474.285866\n", - " -0.033043\n", - " 6449.857168\n", - " -0.029146\n", - " 6360.266687\n", - " -0.014850\n", - " 6267.614305\n", - " -0.000067\n", - " 9.973668\n", - " 10\n", - " NaN\n", - " \n", - " \n", - " 67\n", - " NaN\n", - " keep_all_rows\n", - " 0\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " RF_plus\n", - " Kernel_SHAP_RF_plus\n", - " 296\n", - " 146\n", - " 10\n", - " 10\n", - " 3251.341447\n", - " 0.481213\n", - " 274\n", - " 69\n", - " 155\n", - " 30\n", - " 84\n", - " 39\n", - " 82\n", - " 2\n", - " 261\n", - " 124\n", - " 9\n", - " 10\n", - " 42\n", - " 68\n", - " 277\n", - " 51\n", - " 282\n", - " 71\n", - " 92\n", - " 77\n", - " 148\n", - " 102\n", - " 211\n", - " 80\n", - " 60\n", - " 76\n", - " 218\n", - " 142\n", - " 262\n", - " 127\n", - " 46\n", - " 95\n", - " 45\n", - " 70\n", - " 236\n", - " 93\n", - " 228\n", - " 67\n", - " 132\n", - " 0\n", - " 143\n", - " 105\n", - " 167\n", - " 82\n", - " 152\n", - " 136\n", - " 93\n", - " 40\n", - " 113\n", - " 54\n", - " 5\n", - " 28\n", - " 238\n", - " 74\n", - " 251\n", - " 119\n", - " 170\n", - " 18\n", - " 186\n", - " 9\n", - " 193\n", - " 58\n", - " 33\n", - " 99\n", - " 222\n", - " 73\n", - " 216\n", - " 97\n", - " 197\n", - " 128\n", - " 73\n", - " 122\n", - " 182\n", - " 55\n", - " 119\n", - " 90\n", - " 285\n", - " 129\n", - " 202\n", - " 79\n", - " 204\n", - " 4\n", - " 179\n", - " 87\n", - " 177\n", - " 83\n", - " 111\n", - " 115\n", - " 59\n", - " 81\n", - " 226\n", - " 72\n", - " 25\n", - " 144\n", - " 77\n", - " 78\n", - " 6\n", - " 126\n", - " 175\n", - " 132\n", - " 164\n", - " 106\n", - " 140\n", - " 75\n", - " 30\n", - " 61\n", - " 22\n", - " 143\n", - " 245\n", - " 131\n", - " 24\n", - " 123\n", - " 56\n", - " 89\n", - " 144\n", - " 33\n", - " 124\n", - " 133\n", - " 97\n", - " 14\n", - " 63\n", - " 88\n", - " 17\n", - " 140\n", - " 215\n", - " 11\n", - " 219\n", - " 13\n", - " 183\n", - " 15\n", - " 114\n", - " 139\n", - " 76\n", - " 64\n", - " 284\n", - " 19\n", - " 66\n", - " 44\n", - " 178\n", - " 35\n", - " 154\n", - " 56\n", - " 75\n", - " 6\n", - " 19\n", - " 107\n", - " 108\n", - " 12\n", - " 79\n", - " 113\n", - " 118\n", - " 141\n", - " 72\n", - " 49\n", - " 15\n", - " 25\n", - " 10\n", - " 41\n", - " 101\n", - " 38\n", - " 68\n", - " 130\n", - " 125\n", - " 42\n", - " 37\n", - " 8\n", - " 16\n", - " 101\n", - " 293\n", - " 125\n", - " 139\n", - " 1\n", - " 266\n", - " 137\n", - " 67\n", - " 65\n", - " 90\n", - " 22\n", - " 69\n", - " 85\n", - " 288\n", - " 46\n", - " 165\n", - " 103\n", - " 126\n", - " 145\n", - " 221\n", - " 111\n", - " 173\n", - " 100\n", - " 18\n", - " 57\n", - " 172\n", - " 53\n", - " 96\n", - " 109\n", - " 146\n", - " 24\n", - " 86\n", - " 17\n", - " 8563\n", - " 151.621587\n", - " 1438.855135\n", - " 0.742201\n", - " 2749.901178\n", - " 0.507302\n", - " 4346.155760\n", - " 0.221302\n", - " 5105.225598\n", - " 0.085300\n", - " 5126.939895\n", - " 0.081409\n", - " 5288.691321\n", - " 0.052428\n", - " 5392.616386\n", - " 0.033808\n", - " 5490.010870\n", - " 0.016358\n", - " 5642.366051\n", - " -0.010939\n", - " 5642.172216\n", - " -0.010905\n", - " 5687.565590\n", - " -0.019038\n", - " 2738.215621\n", - " 0.509396\n", - " 3659.801644\n", - " 0.344275\n", - " 5496.490785\n", - " 0.015197\n", - " 5950.452784\n", - " -0.066139\n", - " 6108.604691\n", - " -0.094475\n", - " 6296.639581\n", - " -0.128165\n", - " 6046.285075\n", - " -0.083309\n", - " 5975.717171\n", - " -0.070666\n", - " 5749.590114\n", - " -0.030151\n", - " 5741.037438\n", - " -0.028618\n", - " 5589.440875\n", - " -0.001457\n", - " 0.097250\n", - " 0.999983\n", - " 1377.246667\n", - " 0.753240\n", - " 3380.234480\n", - " 0.394365\n", - " 4584.976546\n", - " 0.178512\n", - " 5219.394868\n", - " 0.064844\n", - " 5552.852007\n", - " 0.005099\n", - " 5657.061402\n", - " -0.013572\n", - " 5778.266563\n", - " -0.035289\n", - " 5632.206444\n", - " -0.009119\n", - " 5673.012560\n", - " -0.016430\n", - " 5611.310265\n", - " -0.005375\n", - " 2193.167972\n", - " 0.607051\n", - " 3313.295136\n", - " 0.406359\n", - " 4771.879930\n", - " 0.145025\n", - " 5267.557812\n", - " 0.056215\n", - " 5407.976223\n", - " 0.031056\n", - " 5588.330353\n", - " -0.001258\n", - " 5597.096985\n", - " -0.002829\n", - " 5599.602808\n", - " -0.003278\n", - " 5660.876322\n", - " -0.014256\n", - " 5635.083783\n", - " -0.009635\n", - " 5624.090066\n", - " -0.007665\n", - " 9.634410\n", - " 3509.831927\n", - " 0.426241\n", - " 4405.069590\n", - " 0.279894\n", - " 5324.958907\n", - " 0.129518\n", - " 5969.752485\n", - " 0.024112\n", - " 6107.021507\n", - " 0.001673\n", - " 6094.252440\n", - " 0.003760\n", - " 6125.304668\n", - " -0.001316\n", - " 6099.205558\n", - " 0.002950\n", - " 6128.170963\n", - " -0.001785\n", - " 6156.521984\n", - " -0.006419\n", - " 6148.928735\n", - " -0.005178\n", - " 3546.190517\n", - " 0.420297\n", - " 4666.607280\n", - " 0.237140\n", - " 5609.077406\n", - " 0.083073\n", - " 6687.347282\n", - " -0.093194\n", - " 7219.572194\n", - " -0.180198\n", - " 7191.487748\n", - " -0.175607\n", - " 7079.444666\n", - " -0.157291\n", - " 6516.825963\n", - " -0.065319\n", - " 6264.367986\n", - " -0.024049\n", - " 6157.597738\n", - " -0.006595\n", - " 6120.597362\n", - " -0.000547\n", - " 4204.805826\n", - " 0.312632\n", - " 4889.411544\n", - " 0.200718\n", - " 5347.951315\n", - " 0.125759\n", - " 5936.846928\n", - " 0.029491\n", - " 6838.552159\n", - " -0.117912\n", - " 6813.001549\n", - " -0.113735\n", - " 6800.556926\n", - " -0.111701\n", - " 6317.283208\n", - " -0.032699\n", - " 6103.421818\n", - " 0.002261\n", - " 6183.841461\n", - " -0.010885\n", - " 6117.889522\n", - " -0.000104\n", - " 3474.597817\n", - " 0.432000\n", - " 4407.621208\n", - " 0.279477\n", - " 5176.857967\n", - " 0.153728\n", - " 5889.167837\n", - " 0.037286\n", - " 6159.425021\n", - " -0.006894\n", - " 6183.331053\n", - " -0.010802\n", - " 6178.665567\n", - " -0.010039\n", - " 6132.201088\n", - " -0.002443\n", - " 6152.552330\n", - " -0.005770\n", - " 6137.879384\n", - " -0.003372\n", - " 6120.715936\n", - " -0.000566\n", - " 9.595195\n", - " 6121.822228\n", - " -0.000747\n", - " 4277.329012\n", - " 0.300776\n", - " 3914.729195\n", - " 0.360051\n", - " 3751.300613\n", - " 0.386767\n", - " 3529.894033\n", - " 0.422961\n", - " 3488.042689\n", - " 0.429803\n", - " 3548.661541\n", - " 0.419893\n", - " 3601.120556\n", - " 0.411317\n", - " 3560.828284\n", - " 0.417904\n", - " 3545.626442\n", - " 0.420389\n", - " 3509.831927\n", - " 0.426241\n", - " 6124.876390\n", - " -0.001246\n", - " 4181.487573\n", - " 0.316444\n", - " 3802.852124\n", - " 0.378340\n", - " 3592.998939\n", - " 0.412645\n", - " 3269.047589\n", - " 0.465602\n", - " 3400.390530\n", - " 0.444131\n", - " 3462.299783\n", - " 0.434011\n", - " 3561.227406\n", - " 0.417839\n", - " 3545.027373\n", - " 0.420487\n", - " 3560.528646\n", - " 0.417953\n", - " 3546.190517\n", - " 0.420297\n", - " 6117.889522\n", - " -0.000104\n", - " 4273.624084\n", - " 0.301382\n", - " 4303.050144\n", - " 0.296572\n", - " 3672.449170\n", - " 0.399657\n", - " 3776.282103\n", - " 0.382683\n", - " 4002.617602\n", - " 0.345684\n", - " 4119.722671\n", - " 0.326541\n", - " 4339.266432\n", - " 0.290651\n", - " 4422.473066\n", - " 0.277049\n", - " 4409.495930\n", - " 0.279171\n", - " 4204.805826\n", - " 0.312632\n", - " 6118.188308\n", - " -0.000153\n", - " 4312.856796\n", - " 0.294968\n", - " 3869.397091\n", - " 0.367462\n", - " 3620.284900\n", - " 0.408185\n", - " 3385.419843\n", - " 0.446578\n", - " 3373.235561\n", - " 0.448570\n", - " 3434.690834\n", - " 0.438524\n", - " 3497.877026\n", - " 0.428195\n", - " 3478.243780\n", - " 0.431404\n", - " 3488.432591\n", - " 0.429739\n", - " 3474.597817\n", - " 0.432000\n", - " 10.038960\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " 10\n", - " RandomForestRegressor(max_features=0.33, min_s...\n", - " \n", - " \n", - " 68\n", - " NaN\n", - " keep_all_rows\n", - " 0\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " RF_plus\n", - " LFI_with_raw_RF_plus\n", - " 296\n", - " 146\n", - " 10\n", - " 10\n", - " 3251.341447\n", - " 0.481213\n", - " 274\n", - " 69\n", - " 155\n", - " 30\n", - " 84\n", - " 39\n", - " 82\n", - " 2\n", - " 261\n", - " 124\n", - " 9\n", - " 10\n", - " 42\n", - " 68\n", - " 277\n", - " 51\n", - " 282\n", - " 71\n", - " 92\n", - " 77\n", - " 148\n", - " 102\n", - " 211\n", - " 80\n", - " 60\n", - " 76\n", - " 218\n", - " 142\n", - " 262\n", - " 127\n", - " 46\n", - " 95\n", - " 45\n", - " 70\n", - " 236\n", - " 93\n", - " 228\n", - " 67\n", - " 132\n", - " 0\n", - " 143\n", - " 105\n", - " 167\n", - " 82\n", - " 152\n", - " 136\n", - " 93\n", - " 40\n", - " 113\n", - " 54\n", - " 5\n", - " 28\n", - " 238\n", - " 74\n", - " 251\n", - " 119\n", - " 170\n", - " 18\n", - " 186\n", - " 9\n", - " 193\n", - " 58\n", - " 33\n", - " 99\n", - " 222\n", - " 73\n", - " 216\n", - " 97\n", - " 197\n", - " 128\n", - " 73\n", - " 122\n", - " 182\n", - " 55\n", - " 119\n", - " 90\n", - " 285\n", - " 129\n", - " 202\n", - " 79\n", - " 204\n", - " 4\n", - " 179\n", - " 87\n", - " 177\n", - " 83\n", - " 111\n", - " 115\n", - " 59\n", - " 81\n", - " 226\n", - " 72\n", - " 25\n", - " 144\n", - " 77\n", - " 78\n", - " 6\n", - " 126\n", - " 175\n", - " 132\n", - " 164\n", - " 106\n", - " 140\n", - " 75\n", - " 30\n", - " 61\n", - " 22\n", - " 143\n", - " 245\n", - " 131\n", - " 24\n", - " 123\n", - " 56\n", - " 89\n", - " 144\n", - " 33\n", - " 124\n", - " 133\n", - " 97\n", - " 14\n", - " 63\n", - " 88\n", - " 17\n", - " 140\n", - " 215\n", - " 11\n", - " 219\n", - " 13\n", - " 183\n", - " 15\n", - " 114\n", - " 139\n", - " 76\n", - " 64\n", - " 284\n", - " 19\n", - " 66\n", - " 44\n", - " 178\n", - " 35\n", - " 154\n", - " 56\n", - " 75\n", - " 6\n", - " 19\n", - " 107\n", - " 108\n", - " 12\n", - " 79\n", - " 113\n", - " 118\n", - " 141\n", - " 72\n", - " 49\n", - " 15\n", - " 25\n", - " 10\n", - " 41\n", - " 101\n", - " 38\n", - " 68\n", - " 130\n", - " 125\n", - " 42\n", - " 37\n", - " 8\n", - " 16\n", - " 101\n", - " 293\n", - " 125\n", - " 139\n", - " 1\n", - " 266\n", - " 137\n", - " 67\n", - " 65\n", - " 90\n", - " 22\n", - " 69\n", - " 85\n", - " 288\n", - " 46\n", - " 165\n", - " 103\n", - " 126\n", - " 145\n", - " 221\n", - " 111\n", - " 173\n", - " 100\n", - " 18\n", - " 57\n", - " 172\n", - " 53\n", - " 96\n", - " 109\n", - " 146\n", - " 24\n", - " 86\n", - " 17\n", - " 8563\n", - " 2.607143\n", - " 1438.855135\n", - " 0.742201\n", - " 2572.532707\n", - " 0.539081\n", - " 4175.221232\n", - " 0.251928\n", - " 4881.927373\n", - " 0.125308\n", - " 5173.172791\n", - " 0.073126\n", - " 5217.655724\n", - " 0.065156\n", - " 5405.903732\n", - " 0.031427\n", - " 5481.723324\n", - " 0.017843\n", - " 5538.033353\n", - " 0.007754\n", - " 5649.927048\n", - " -0.012294\n", - " 5687.565590\n", - " -0.019038\n", - " 2738.215621\n", - " 0.509396\n", - " 3827.975616\n", - " 0.314144\n", - " 5456.335042\n", - " 0.022392\n", - " 6101.608395\n", - " -0.093222\n", - " 6497.883717\n", - " -0.164222\n", - " 6312.108631\n", - " -0.130937\n", - " 6522.814156\n", - " -0.168689\n", - " 6243.676990\n", - " -0.118676\n", - " 6056.418996\n", - " -0.085125\n", - " 5886.908055\n", - " -0.054754\n", - " 5589.440875\n", - " -0.001457\n", - " 0.097250\n", - " 0.999983\n", - " 1401.369064\n", - " 0.748918\n", - " 3294.968987\n", - " 0.409642\n", - " 4350.842152\n", - " 0.220462\n", - " 5097.939455\n", - " 0.086605\n", - " 5404.702722\n", - " 0.031643\n", - " 5415.757183\n", - " 0.029662\n", - " 5649.120636\n", - " -0.012150\n", - " 5755.516127\n", - " -0.031212\n", - " 5785.642537\n", - " -0.036610\n", - " 5611.310265\n", - " -0.005375\n", - " 2193.167972\n", - " 0.607051\n", - " 3289.911059\n", - " 0.410549\n", - " 4688.223178\n", - " 0.160014\n", - " 5262.297817\n", - " 0.057157\n", - " 5572.520393\n", - " 0.001575\n", - " 5626.114993\n", - " -0.008028\n", - " 5720.182130\n", - " -0.024882\n", - " 5708.412501\n", - " -0.022773\n", - " 5673.183423\n", - " -0.016461\n", - " 5664.500329\n", - " -0.014905\n", - " 5624.090066\n", - " -0.007665\n", - " 9.592882\n", - " 3509.831927\n", - " 0.426241\n", - " 4364.788724\n", - " 0.286479\n", - " 5096.309073\n", - " 0.166896\n", - " 5689.664778\n", - " 0.069899\n", - " 6158.371502\n", - " -0.006722\n", - " 6203.838469\n", - " -0.014154\n", - " 6310.867104\n", - " -0.031650\n", - " 6234.113582\n", - " -0.019103\n", - " 6146.976283\n", - " -0.004859\n", - " 6087.385960\n", - " 0.004883\n", - " 6148.928735\n", - " -0.005178\n", - " 3546.190517\n", - " 0.420297\n", - " 4665.190648\n", - " 0.237372\n", - " 5658.394843\n", - " 0.075011\n", - " 6659.387508\n", - " -0.088624\n", - " 7340.405511\n", - " -0.199951\n", - " 7230.734184\n", - " -0.182023\n", - " 7129.372180\n", - " -0.165453\n", - " 6842.169559\n", - " -0.118503\n", - " 6660.330947\n", - " -0.088778\n", - " 6404.891031\n", - " -0.047021\n", - " 6120.597362\n", - " -0.000547\n", - " 4204.805826\n", - " 0.312632\n", - " 4832.984280\n", - " 0.209942\n", - " 5039.114767\n", - " 0.176246\n", - " 5945.292532\n", - " 0.028111\n", - " 7070.221311\n", - " -0.155784\n", - " 7064.584402\n", - " -0.154862\n", - " 6776.496533\n", - " -0.107768\n", - " 6499.619097\n", - " -0.062506\n", - " 6431.116718\n", - " -0.051308\n", - " 6231.886900\n", - " -0.018739\n", - " 6117.889522\n", - " -0.000104\n", - " 3474.597817\n", - " 0.432000\n", - " 4375.022227\n", - " 0.284806\n", - " 5125.537268\n", - " 0.162118\n", - " 5746.818059\n", - " 0.060556\n", - " 6268.233739\n", - " -0.024681\n", - " 6296.207000\n", - " -0.029254\n", - " 6385.842720\n", - " -0.043907\n", - " 6292.629363\n", - " -0.028669\n", - " 6221.064362\n", - " -0.016970\n", - " 6135.388651\n", - " -0.002965\n", - " 6120.715936\n", - " -0.000566\n", - " 9.291578\n", - " 6121.822228\n", - " -0.000747\n", - " 4323.754030\n", - " 0.293187\n", - " 4059.848931\n", - " 0.336328\n", - " 3856.213349\n", - " 0.369617\n", - " 3459.946577\n", - " 0.434395\n", - " 3542.798313\n", - " 0.420852\n", - " 3499.935693\n", - " 0.427858\n", - " 3587.957177\n", - " 0.413469\n", - " 3584.258787\n", - " 0.414074\n", - " 3516.033741\n", - " 0.425227\n", - " 3509.831927\n", - " 0.426241\n", - " 6124.876390\n", - " -0.001246\n", - " 4178.413687\n", - " 0.316946\n", - " 3780.783134\n", - " 0.381948\n", - " 3531.958353\n", - " 0.422624\n", - " 3439.178531\n", - " 0.437790\n", - " 3468.716167\n", - " 0.432962\n", - " 3543.240528\n", - " 0.420779\n", - " 3573.537624\n", - " 0.415826\n", - " 3493.357573\n", - " 0.428934\n", - " 3446.529715\n", - " 0.436589\n", - " 3546.190517\n", - " 0.420297\n", - " 6117.889522\n", - " -0.000104\n", - " 4444.060554\n", - " 0.273520\n", - " 4504.391659\n", - " 0.263658\n", - " 3900.837880\n", - " 0.362322\n", - " 3990.586257\n", - " 0.347651\n", - " 4186.632856\n", - " 0.315603\n", - " 4288.927715\n", - " 0.298880\n", - " 4495.201911\n", - " 0.265160\n", - " 4377.737177\n", - " 0.284362\n", - " 4291.562443\n", - " 0.298450\n", - " 4204.805826\n", - " 0.312632\n", - " 6118.188308\n", - " -0.000153\n", - " 4347.438699\n", - " 0.289315\n", - " 3913.814050\n", - " 0.360201\n", - " 3635.666334\n", - " 0.405670\n", - " 3362.368505\n", - " 0.450347\n", - " 3401.274428\n", - " 0.443987\n", - " 3406.397571\n", - " 0.443149\n", - " 3497.782692\n", - " 0.428210\n", - " 3490.790081\n", - " 0.429353\n", - " 3473.687224\n", - " 0.432149\n", - " 3474.597817\n", - " 0.432000\n", - " 9.786609\n", - " 3317.655397\n", - " 0.470632\n", - " 4147.385047\n", - " 0.338239\n", - " 4987.539777\n", - " 0.204183\n", - " 5932.927451\n", - " 0.053336\n", - " 6292.487953\n", - " -0.004036\n", - " 6302.699742\n", - " -0.005665\n", - " 6448.386612\n", - " -0.028911\n", - " 6412.611071\n", - " -0.023203\n", - " 6337.685910\n", - " -0.011247\n", - " 6278.027761\n", - " -0.001728\n", - " 6286.679067\n", - " -0.003109\n", - " 3332.826395\n", - " 0.468211\n", - " 4359.423484\n", - " 0.304406\n", - " 5585.910286\n", - " 0.108707\n", - " 6615.984755\n", - " -0.055653\n", - " 7217.577286\n", - " -0.151644\n", - " 7214.779536\n", - " -0.151197\n", - " 7129.172211\n", - " -0.137538\n", - " 6905.484625\n", - " -0.101846\n", - " 6732.551850\n", - " -0.074253\n", - " 6519.281447\n", - " -0.040223\n", - " 6276.453840\n", - " -0.001477\n", - " 4245.435413\n", - " 0.322594\n", - " 4453.127851\n", - " 0.289455\n", - " 5212.469751\n", - " 0.168293\n", - " 6288.165970\n", - " -0.003346\n", - " 6851.244552\n", - " -0.093191\n", - " 6812.276313\n", - " -0.086974\n", - " 6928.881119\n", - " -0.105579\n", - " 6522.271203\n", - " -0.040700\n", - " 6489.344892\n", - " -0.035446\n", - " 6399.173120\n", - " -0.021058\n", - " 6267.370049\n", - " -0.000028\n", - " 3251.341447\n", - " 0.481213\n", - " 4185.950870\n", - " 0.332086\n", - " 5088.527932\n", - " 0.188069\n", - " 5921.367059\n", - " 0.055181\n", - " 6385.221264\n", - " -0.018832\n", - " 6420.552407\n", - " -0.024470\n", - " 6519.528273\n", - " -0.040262\n", - " 6451.424694\n", - " -0.029396\n", - " 6391.825749\n", - " -0.019886\n", - " 6293.769573\n", - " -0.004240\n", - " 6267.614305\n", - " -0.000067\n", - " 9.742957\n", - " 10\n", - " RandomForestRegressor(max_features=0.33, min_s...\n", - " \n", - " \n", - " 69\n", - " NaN\n", - " keep_all_rows\n", - " 0\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " RF_plus\n", - " LIME_RF_plus\n", - " 296\n", - " 146\n", - " 10\n", - " 10\n", - " 3251.341447\n", - " 0.481213\n", - " 274\n", - " 69\n", - " 155\n", - " 30\n", - " 84\n", - " 39\n", - " 82\n", - " 2\n", - " 261\n", - " 124\n", - " 9\n", - " 10\n", - " 42\n", - " 68\n", - " 277\n", - " 51\n", - " 282\n", - " 71\n", - " 92\n", - " 77\n", - " 148\n", - " 102\n", - " 211\n", - " 80\n", - " 60\n", - " 76\n", - " 218\n", - " 142\n", - " 262\n", - " 127\n", - " 46\n", - " 95\n", - " 45\n", - " 70\n", - " 236\n", - " 93\n", - " 228\n", - " 67\n", - " 132\n", - " 0\n", - " 143\n", - " 105\n", - " 167\n", - " 82\n", - " 152\n", - " 136\n", - " 93\n", - " 40\n", - " 113\n", - " 54\n", - " 5\n", - " 28\n", - " 238\n", - " 74\n", - " 251\n", - " 119\n", - " 170\n", - " 18\n", - " 186\n", - " 9\n", - " 193\n", - " 58\n", - " 33\n", - " 99\n", - " 222\n", - " 73\n", - " 216\n", - " 97\n", - " 197\n", - " 128\n", - " 73\n", - " 122\n", - " 182\n", - " 55\n", - " 119\n", - " 90\n", - " 285\n", - " 129\n", - " 202\n", - " 79\n", - " 204\n", - " 4\n", - " 179\n", - " 87\n", - " 177\n", - " 83\n", - " 111\n", - " 115\n", - " 59\n", - " 81\n", - " 226\n", - " 72\n", - " 25\n", - " 144\n", - " 77\n", - " 78\n", - " 6\n", - " 126\n", - " 175\n", - " 132\n", - " 164\n", - " 106\n", - " 140\n", - " 75\n", - " 30\n", - " 61\n", - " 22\n", - " 143\n", - " 245\n", - " 131\n", - " 24\n", - " 123\n", - " 56\n", - " 89\n", - " 144\n", - " 33\n", - " 124\n", - " 133\n", - " 97\n", - " 14\n", - " 63\n", - " 88\n", - " 17\n", - " 140\n", - " 215\n", - " 11\n", - " 219\n", - " 13\n", - " 183\n", - " 15\n", - " 114\n", - " 139\n", - " 76\n", - " 64\n", - " 284\n", - " 19\n", - " 66\n", - " 44\n", - " 178\n", - " 35\n", - " 154\n", - " 56\n", - " 75\n", - " 6\n", - " 19\n", - " 107\n", - " 108\n", - " 12\n", - " 79\n", - " 113\n", - " 118\n", - " 141\n", - " 72\n", - " 49\n", - " 15\n", - " 25\n", - " 10\n", - " 41\n", - " 101\n", - " 38\n", - " 68\n", - " 130\n", - " 125\n", - " 42\n", - " 37\n", - " 8\n", - " 16\n", - " 101\n", - " 293\n", - " 125\n", - " 139\n", - " 1\n", - " 266\n", - " 137\n", - " 67\n", - " 65\n", - " 90\n", - " 22\n", - " 69\n", - " 85\n", - " 288\n", - " 46\n", - " 165\n", - " 103\n", - " 126\n", - " 145\n", - " 221\n", - " 111\n", - " 173\n", - " 100\n", - " 18\n", - " 57\n", - " 172\n", - " 53\n", - " 96\n", - " 109\n", - " 146\n", - " 24\n", - " 86\n", - " 17\n", - " 8563\n", - " 315.562780\n", - " 1438.855135\n", - " 0.742201\n", - " 2720.135924\n", - " 0.512635\n", - " 3782.575791\n", - " 0.322278\n", - " 4604.837368\n", - " 0.174954\n", - " 5200.792476\n", - " 0.068177\n", - " 5225.942001\n", - " 0.063671\n", - " 5344.152735\n", - " 0.042491\n", - " 5359.167068\n", - " 0.039801\n", - " 5475.811021\n", - " 0.018902\n", - " 5618.005145\n", - " -0.006575\n", - " 5687.565590\n", - " -0.019038\n", - " 2738.215621\n", - " 0.509396\n", - " 3798.702668\n", - " 0.319389\n", - " 5106.724049\n", - " 0.085031\n", - " 5924.946844\n", - " -0.061569\n", - " 6350.410974\n", - " -0.137799\n", - " 6250.138777\n", - " -0.119834\n", - " 6173.995273\n", - " -0.106191\n", - " 6007.253773\n", - " -0.076316\n", - " 5874.695827\n", - " -0.052566\n", - " 5559.283516\n", - " 0.003946\n", - " 5589.440875\n", - " -0.001457\n", - " 0.097250\n", - " 0.999983\n", - " 1615.258137\n", - " 0.710595\n", - " 2988.046101\n", - " 0.464634\n", - " 3961.078843\n", - " 0.290296\n", - " 4916.360392\n", - " 0.119139\n", - " 5129.675910\n", - " 0.080919\n", - " 5402.084447\n", - " 0.032112\n", - " 5347.120892\n", - " 0.041960\n", - " 5635.222335\n", - " -0.009659\n", - " 5650.083279\n", - " -0.012322\n", - " 5611.310265\n", - " -0.005375\n", - " 2193.167972\n", - " 0.607051\n", - " 3380.287738\n", - " 0.394356\n", - " 4332.850804\n", - " 0.223686\n", - " 5002.140836\n", - " 0.103769\n", - " 5500.719456\n", - " 0.014439\n", - " 5462.943959\n", - " 0.021208\n", - " 5509.389569\n", - " 0.012886\n", - " 5502.215052\n", - " 0.014171\n", - " 5581.847580\n", - " -0.000096\n", - " 5593.342518\n", - " -0.002156\n", - " 5624.090066\n", - " -0.007665\n", - " 9.586439\n", - " 3509.831927\n", - " 0.426241\n", - " 4198.773435\n", - " 0.313618\n", - " 5217.671821\n", - " 0.147057\n", - " 5693.938662\n", - " 0.069200\n", - " 6112.809648\n", - " 0.000727\n", - " 6071.081040\n", - " 0.007548\n", - " 6126.095327\n", - " -0.001445\n", - " 6212.118697\n", - " -0.015508\n", - " 6156.865589\n", - " -0.006475\n", - " 6109.418689\n", - " 0.001281\n", - " 6148.928735\n", - " -0.005178\n", - " 3546.190517\n", - " 0.420297\n", - " 4451.421766\n", - " 0.272317\n", - " 5624.555118\n", - " 0.080542\n", - " 6568.669569\n", - " -0.073794\n", - " 7205.254833\n", - " -0.177858\n", - " 7368.282965\n", - " -0.204508\n", - " 7365.857893\n", - " -0.204112\n", - " 7235.050354\n", - " -0.182728\n", - " 6319.121485\n", - " -0.033000\n", - " 6286.420406\n", - " -0.027654\n", - " 6120.597362\n", - " -0.000547\n", - " 4204.805826\n", - " 0.312632\n", - " 4729.606612\n", - " 0.226842\n", - " 5215.482242\n", - " 0.147414\n", - " 5564.663910\n", - " 0.090333\n", - " 6160.474136\n", - " -0.007065\n", - " 6270.020011\n", - " -0.024973\n", - " 6650.748667\n", - " -0.087211\n", - " 6412.670943\n", - " -0.048292\n", - " 6193.253786\n", - " -0.012424\n", - " 6116.982147\n", - " 0.000044\n", - " 6117.889522\n", - " -0.000104\n", - " 3474.597817\n", - " 0.432000\n", - " 4248.412261\n", - " 0.305503\n", - " 5171.726569\n", - " 0.154567\n", - " 5755.292147\n", - " 0.059171\n", - " 6204.660479\n", - " -0.014289\n", - " 6181.820292\n", - " -0.010555\n", - " 6215.849342\n", - " -0.016118\n", - " 6231.571125\n", - " -0.018688\n", - " 6159.118213\n", - " -0.006844\n", - " 6128.387250\n", - " -0.001820\n", - " 6120.715936\n", - " -0.000566\n", - " 9.422463\n", - " 6121.822228\n", - " -0.000747\n", - " 4489.403810\n", - " 0.266108\n", - " 3884.769653\n", - " 0.364949\n", - " 3566.339313\n", - " 0.417003\n", - " 3573.502718\n", - " 0.415832\n", - " 3729.050354\n", - " 0.390405\n", - " 3612.189687\n", - " 0.409508\n", - " 3554.957763\n", - " 0.418864\n", - " 3565.914084\n", - " 0.417073\n", - " 3533.556383\n", - " 0.422362\n", - " 3509.831927\n", - " 0.426241\n", - " 6124.876390\n", - " -0.001246\n", - " 4415.673403\n", - " 0.278161\n", - " 3927.760143\n", - " 0.357921\n", - " 3539.162252\n", - " 0.421446\n", - " 3418.743202\n", - " 0.441131\n", - " 3358.897459\n", - " 0.450914\n", - " 3510.708076\n", - " 0.426097\n", - " 3617.307137\n", - " 0.408671\n", - " 3740.467102\n", - " 0.388538\n", - " 3526.414124\n", - " 0.423530\n", - " 3546.190517\n", - " 0.420297\n", - " 6117.889522\n", - " -0.000104\n", - " 4699.814977\n", - " 0.231712\n", - " 4347.479047\n", - " 0.289309\n", - " 3463.455559\n", - " 0.433822\n", - " 3758.003038\n", - " 0.385672\n", - " 4026.467096\n", - " 0.341785\n", - " 4151.956487\n", - " 0.321271\n", - " 4270.034114\n", - " 0.301969\n", - " 4474.321171\n", - " 0.268574\n", - " 4369.924399\n", - " 0.285640\n", - " 4204.805826\n", - " 0.312632\n", - " 6118.188308\n", - " -0.000153\n", - " 4473.629476\n", - " 0.268687\n", - " 3891.952087\n", - " 0.363775\n", - " 3520.269715\n", - " 0.424534\n", - " 3479.444407\n", - " 0.431208\n", - " 3549.656569\n", - " 0.419730\n", - " 3526.783158\n", - " 0.423470\n", - " 3512.839878\n", - " 0.425749\n", - " 3524.189811\n", - " 0.423893\n", - " 3486.336515\n", - " 0.430081\n", - " 3474.597817\n", - " 0.432000\n", - " 9.847889\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " 10\n", - " RandomForestRegressor(max_features=0.33, min_s...\n", - " \n", - " \n", - "\n", - "

70 rows × 580 columns

\n", - "" - ], - "text/plain": [ - " sample_row_n sample_row_n_name rep n_estimators min_samples_leaf \\\n", - "0 NaN keep_all_rows 0 100.0 5.0 \n", - "1 NaN keep_all_rows 0 100.0 5.0 \n", - "2 NaN keep_all_rows 0 100.0 5.0 \n", - "3 NaN keep_all_rows 0 100.0 5.0 \n", - "4 NaN keep_all_rows 0 NaN NaN \n", - ".. ... ... ... ... ... \n", - "65 NaN keep_all_rows 0 100.0 5.0 \n", - "66 NaN keep_all_rows 0 100.0 5.0 \n", - "67 NaN keep_all_rows 0 NaN NaN \n", - "68 NaN keep_all_rows 0 NaN NaN \n", - "69 NaN keep_all_rows 0 NaN NaN \n", - "\n", - " max_features random_state include_raw cv_ridge calc_loo_coef \\\n", - "0 0.33 42.0 NaN NaN False \n", - "1 0.33 42.0 NaN NaN NaN \n", - "2 0.33 42.0 False 0.0 False \n", - "3 0.33 42.0 NaN NaN NaN \n", - "4 NaN NaN NaN NaN NaN \n", - ".. ... ... ... ... ... \n", - "65 0.33 42.0 False 0.0 False \n", - "66 0.33 42.0 NaN NaN NaN \n", - "67 NaN NaN NaN NaN NaN \n", - "68 NaN NaN NaN NaN NaN \n", - "69 NaN NaN NaN NaN NaN \n", - "\n", - " sample_split fit_on model fi train_size test_size \\\n", - "0 oob test RF LFI_with_raw_OOB_RF 296 146 \n", - "1 NaN NaN RF LFI_with_raw_RF 296 146 \n", - "2 inbag NaN RF MDI_RF 296 146 \n", - "3 NaN NaN RF TreeSHAP_RF 296 146 \n", - "4 NaN NaN RF_plus Kernel_SHAP_RF_plus 296 146 \n", - ".. ... ... ... ... ... ... \n", - "65 inbag NaN RF MDI_RF 296 146 \n", - "66 NaN NaN RF TreeSHAP_RF 296 146 \n", - "67 NaN NaN RF_plus Kernel_SHAP_RF_plus 296 146 \n", - "68 NaN NaN RF_plus LFI_with_raw_RF_plus 296 146 \n", - "69 NaN NaN RF_plus LIME_RF_plus 296 146 \n", - "\n", - " num_features data_split_seed test_all_mse test_all_r2 sample_train_0 \\\n", - "0 10 9 2640.499813 0.535380 274 \n", - "1 10 9 2640.499813 0.535380 274 \n", - "2 10 9 2640.499813 0.535380 274 \n", - "3 10 9 2640.499813 0.535380 274 \n", - "4 10 9 2466.857536 0.565934 274 \n", - ".. ... ... ... ... ... \n", - "65 10 10 3317.655397 0.470632 274 \n", - "66 10 10 3317.655397 0.470632 274 \n", - "67 10 10 3251.341447 0.481213 274 \n", - "68 10 10 3251.341447 0.481213 274 \n", - "69 10 10 3251.341447 0.481213 274 \n", - "\n", - " sample_test_0 sample_train_1 sample_test_1 sample_train_2 \\\n", - "0 69 155 30 84 \n", - "1 69 155 30 84 \n", - "2 69 155 30 84 \n", - "3 69 155 30 84 \n", - "4 69 155 30 84 \n", - ".. ... ... ... ... \n", - "65 69 155 30 84 \n", - "66 69 155 30 84 \n", - "67 69 155 30 84 \n", - "68 69 155 30 84 \n", - "69 69 155 30 84 \n", - "\n", - " sample_test_2 sample_train_3 sample_test_3 sample_train_4 \\\n", - "0 39 82 2 261 \n", - "1 39 82 2 261 \n", - "2 39 82 2 261 \n", - "3 39 82 2 261 \n", - "4 39 82 2 261 \n", - ".. ... ... ... ... \n", - "65 39 82 2 261 \n", - "66 39 82 2 261 \n", - "67 39 82 2 261 \n", - "68 39 82 2 261 \n", - "69 39 82 2 261 \n", - "\n", - " sample_test_4 sample_train_5 sample_test_5 sample_train_6 \\\n", - "0 124 9 10 42 \n", - "1 124 9 10 42 \n", - "2 124 9 10 42 \n", - "3 124 9 10 42 \n", - "4 124 9 10 42 \n", - ".. ... ... ... ... \n", - "65 124 9 10 42 \n", - "66 124 9 10 42 \n", - "67 124 9 10 42 \n", - "68 124 9 10 42 \n", - "69 124 9 10 42 \n", - "\n", - " sample_test_6 sample_train_7 sample_test_7 sample_train_8 \\\n", - "0 68 277 51 282 \n", - "1 68 277 51 282 \n", - "2 68 277 51 282 \n", - "3 68 277 51 282 \n", - "4 68 277 51 282 \n", - ".. ... ... ... ... \n", - "65 68 277 51 282 \n", - "66 68 277 51 282 \n", - "67 68 277 51 282 \n", - "68 68 277 51 282 \n", - "69 68 277 51 282 \n", - "\n", - " sample_test_8 sample_train_9 sample_test_9 sample_train_10 \\\n", - "0 71 92 77 148 \n", - "1 71 92 77 148 \n", - "2 71 92 77 148 \n", - "3 71 92 77 148 \n", - "4 71 92 77 148 \n", - ".. ... ... ... ... \n", - "65 71 92 77 148 \n", - "66 71 92 77 148 \n", - "67 71 92 77 148 \n", - "68 71 92 77 148 \n", - "69 71 92 77 148 \n", - "\n", - " sample_test_10 sample_train_11 sample_test_11 sample_train_12 \\\n", - "0 102 211 80 60 \n", - "1 102 211 80 60 \n", - "2 102 211 80 60 \n", - "3 102 211 80 60 \n", - "4 102 211 80 60 \n", - ".. ... ... ... ... \n", - "65 102 211 80 60 \n", - "66 102 211 80 60 \n", - "67 102 211 80 60 \n", - "68 102 211 80 60 \n", - "69 102 211 80 60 \n", - "\n", - " sample_test_12 sample_train_13 sample_test_13 sample_train_14 \\\n", - "0 76 218 142 262 \n", - "1 76 218 142 262 \n", - "2 76 218 142 262 \n", - "3 76 218 142 262 \n", - "4 76 218 142 262 \n", - ".. ... ... ... ... \n", - "65 76 218 142 262 \n", - "66 76 218 142 262 \n", - "67 76 218 142 262 \n", - "68 76 218 142 262 \n", - "69 76 218 142 262 \n", - "\n", - " sample_test_14 sample_train_15 sample_test_15 sample_train_16 \\\n", - "0 127 46 95 45 \n", - "1 127 46 95 45 \n", - "2 127 46 95 45 \n", - "3 127 46 95 45 \n", - "4 127 46 95 45 \n", - ".. ... ... ... ... \n", - "65 127 46 95 45 \n", - "66 127 46 95 45 \n", - "67 127 46 95 45 \n", - "68 127 46 95 45 \n", - "69 127 46 95 45 \n", - "\n", - " sample_test_16 sample_train_17 sample_test_17 sample_train_18 \\\n", - "0 70 236 93 228 \n", - "1 70 236 93 228 \n", - "2 70 236 93 228 \n", - "3 70 236 93 228 \n", - "4 70 236 93 228 \n", - ".. ... ... ... ... \n", - "65 70 236 93 228 \n", - "66 70 236 93 228 \n", - "67 70 236 93 228 \n", - "68 70 236 93 228 \n", - "69 70 236 93 228 \n", - "\n", - " sample_test_18 sample_train_19 sample_test_19 sample_train_20 \\\n", - "0 67 132 0 143 \n", - "1 67 132 0 143 \n", - "2 67 132 0 143 \n", - "3 67 132 0 143 \n", - "4 67 132 0 143 \n", - ".. ... ... ... ... \n", - "65 67 132 0 143 \n", - "66 67 132 0 143 \n", - "67 67 132 0 143 \n", - "68 67 132 0 143 \n", - "69 67 132 0 143 \n", - "\n", - " sample_test_20 sample_train_21 sample_test_21 sample_train_22 \\\n", - "0 105 167 82 152 \n", - "1 105 167 82 152 \n", - "2 105 167 82 152 \n", - "3 105 167 82 152 \n", - "4 105 167 82 152 \n", - ".. ... ... ... ... \n", - "65 105 167 82 152 \n", - "66 105 167 82 152 \n", - "67 105 167 82 152 \n", - "68 105 167 82 152 \n", - "69 105 167 82 152 \n", - "\n", - " sample_test_22 sample_train_23 sample_test_23 sample_train_24 \\\n", - "0 136 93 40 113 \n", - "1 136 93 40 113 \n", - "2 136 93 40 113 \n", - "3 136 93 40 113 \n", - "4 136 93 40 113 \n", - ".. ... ... ... ... \n", - "65 136 93 40 113 \n", - "66 136 93 40 113 \n", - "67 136 93 40 113 \n", - "68 136 93 40 113 \n", - "69 136 93 40 113 \n", - "\n", - " sample_test_24 sample_train_25 sample_test_25 sample_train_26 \\\n", - "0 54 5 28 238 \n", - "1 54 5 28 238 \n", - "2 54 5 28 238 \n", - "3 54 5 28 238 \n", - "4 54 5 28 238 \n", - ".. ... ... ... ... \n", - "65 54 5 28 238 \n", - "66 54 5 28 238 \n", - "67 54 5 28 238 \n", - "68 54 5 28 238 \n", - "69 54 5 28 238 \n", - "\n", - " sample_test_26 sample_train_27 sample_test_27 sample_train_28 \\\n", - "0 74 251 119 170 \n", - "1 74 251 119 170 \n", - "2 74 251 119 170 \n", - "3 74 251 119 170 \n", - "4 74 251 119 170 \n", - ".. ... ... ... ... \n", - "65 74 251 119 170 \n", - "66 74 251 119 170 \n", - "67 74 251 119 170 \n", - "68 74 251 119 170 \n", - "69 74 251 119 170 \n", - "\n", - " sample_test_28 sample_train_29 sample_test_29 sample_train_30 \\\n", - "0 18 186 9 193 \n", - "1 18 186 9 193 \n", - "2 18 186 9 193 \n", - "3 18 186 9 193 \n", - "4 18 186 9 193 \n", - ".. ... ... ... ... \n", - "65 18 186 9 193 \n", - "66 18 186 9 193 \n", - "67 18 186 9 193 \n", - "68 18 186 9 193 \n", - "69 18 186 9 193 \n", - "\n", - " sample_test_30 sample_train_31 sample_test_31 sample_train_32 \\\n", - "0 58 33 99 222 \n", - "1 58 33 99 222 \n", - "2 58 33 99 222 \n", - "3 58 33 99 222 \n", - "4 58 33 99 222 \n", - ".. ... ... ... ... \n", - "65 58 33 99 222 \n", - "66 58 33 99 222 \n", - "67 58 33 99 222 \n", - "68 58 33 99 222 \n", - "69 58 33 99 222 \n", - "\n", - " sample_test_32 sample_train_33 sample_test_33 sample_train_34 \\\n", - "0 73 216 97 197 \n", - "1 73 216 97 197 \n", - "2 73 216 97 197 \n", - "3 73 216 97 197 \n", - "4 73 216 97 197 \n", - ".. ... ... ... ... \n", - "65 73 216 97 197 \n", - "66 73 216 97 197 \n", - "67 73 216 97 197 \n", - "68 73 216 97 197 \n", - "69 73 216 97 197 \n", - "\n", - " sample_test_34 sample_train_35 sample_test_35 sample_train_36 \\\n", - "0 128 73 122 182 \n", - "1 128 73 122 182 \n", - "2 128 73 122 182 \n", - "3 128 73 122 182 \n", - "4 128 73 122 182 \n", - ".. ... ... ... ... \n", - "65 128 73 122 182 \n", - "66 128 73 122 182 \n", - "67 128 73 122 182 \n", - "68 128 73 122 182 \n", - "69 128 73 122 182 \n", - "\n", - " sample_test_36 sample_train_37 sample_test_37 sample_train_38 \\\n", - "0 55 119 90 285 \n", - "1 55 119 90 285 \n", - "2 55 119 90 285 \n", - "3 55 119 90 285 \n", - "4 55 119 90 285 \n", - ".. ... ... ... ... \n", - "65 55 119 90 285 \n", - "66 55 119 90 285 \n", - "67 55 119 90 285 \n", - "68 55 119 90 285 \n", - "69 55 119 90 285 \n", - "\n", - " sample_test_38 sample_train_39 sample_test_39 sample_train_40 \\\n", - "0 129 202 79 204 \n", - "1 129 202 79 204 \n", - "2 129 202 79 204 \n", - "3 129 202 79 204 \n", - "4 129 202 79 204 \n", - ".. ... ... ... ... \n", - "65 129 202 79 204 \n", - "66 129 202 79 204 \n", - "67 129 202 79 204 \n", - "68 129 202 79 204 \n", - "69 129 202 79 204 \n", - "\n", - " sample_test_40 sample_train_41 sample_test_41 sample_train_42 \\\n", - "0 4 179 87 177 \n", - "1 4 179 87 177 \n", - "2 4 179 87 177 \n", - "3 4 179 87 177 \n", - "4 4 179 87 177 \n", - ".. ... ... ... ... \n", - "65 4 179 87 177 \n", - "66 4 179 87 177 \n", - "67 4 179 87 177 \n", - "68 4 179 87 177 \n", - "69 4 179 87 177 \n", - "\n", - " sample_test_42 sample_train_43 sample_test_43 sample_train_44 \\\n", - "0 83 111 115 59 \n", - "1 83 111 115 59 \n", - "2 83 111 115 59 \n", - "3 83 111 115 59 \n", - "4 83 111 115 59 \n", - ".. ... ... ... ... \n", - "65 83 111 115 59 \n", - "66 83 111 115 59 \n", - "67 83 111 115 59 \n", - "68 83 111 115 59 \n", - "69 83 111 115 59 \n", - "\n", - " sample_test_44 sample_train_45 sample_test_45 sample_train_46 \\\n", - "0 81 226 72 25 \n", - "1 81 226 72 25 \n", - "2 81 226 72 25 \n", - "3 81 226 72 25 \n", - "4 81 226 72 25 \n", - ".. ... ... ... ... \n", - "65 81 226 72 25 \n", - "66 81 226 72 25 \n", - "67 81 226 72 25 \n", - "68 81 226 72 25 \n", - "69 81 226 72 25 \n", - "\n", - " sample_test_46 sample_train_47 sample_test_47 sample_train_48 \\\n", - "0 144 77 78 6 \n", - "1 144 77 78 6 \n", - "2 144 77 78 6 \n", - "3 144 77 78 6 \n", - "4 144 77 78 6 \n", - ".. ... ... ... ... \n", - "65 144 77 78 6 \n", - "66 144 77 78 6 \n", - "67 144 77 78 6 \n", - "68 144 77 78 6 \n", - "69 144 77 78 6 \n", - "\n", - " sample_test_48 sample_train_49 sample_test_49 sample_train_50 \\\n", - "0 126 175 132 164 \n", - "1 126 175 132 164 \n", - "2 126 175 132 164 \n", - "3 126 175 132 164 \n", - "4 126 175 132 164 \n", - ".. ... ... ... ... \n", - "65 126 175 132 164 \n", - "66 126 175 132 164 \n", - "67 126 175 132 164 \n", - "68 126 175 132 164 \n", - "69 126 175 132 164 \n", - "\n", - " sample_test_50 sample_train_51 sample_test_51 sample_train_52 \\\n", - "0 106 140 75 30 \n", - "1 106 140 75 30 \n", - "2 106 140 75 30 \n", - "3 106 140 75 30 \n", - "4 106 140 75 30 \n", - ".. ... ... ... ... \n", - "65 106 140 75 30 \n", - "66 106 140 75 30 \n", - "67 106 140 75 30 \n", - "68 106 140 75 30 \n", - "69 106 140 75 30 \n", - "\n", - " sample_test_52 sample_train_53 sample_test_53 sample_train_54 \\\n", - "0 61 22 143 245 \n", - "1 61 22 143 245 \n", - "2 61 22 143 245 \n", - "3 61 22 143 245 \n", - "4 61 22 143 245 \n", - ".. ... ... ... ... \n", - "65 61 22 143 245 \n", - "66 61 22 143 245 \n", - "67 61 22 143 245 \n", - "68 61 22 143 245 \n", - "69 61 22 143 245 \n", - "\n", - " sample_test_54 sample_train_55 sample_test_55 sample_train_56 \\\n", - "0 131 24 123 56 \n", - "1 131 24 123 56 \n", - "2 131 24 123 56 \n", - "3 131 24 123 56 \n", - "4 131 24 123 56 \n", - ".. ... ... ... ... \n", - "65 131 24 123 56 \n", - "66 131 24 123 56 \n", - "67 131 24 123 56 \n", - "68 131 24 123 56 \n", - "69 131 24 123 56 \n", - "\n", - " sample_test_56 sample_train_57 sample_test_57 sample_train_58 \\\n", - "0 89 144 33 124 \n", - "1 89 144 33 124 \n", - "2 89 144 33 124 \n", - "3 89 144 33 124 \n", - "4 89 144 33 124 \n", - ".. ... ... ... ... \n", - "65 89 144 33 124 \n", - "66 89 144 33 124 \n", - "67 89 144 33 124 \n", - "68 89 144 33 124 \n", - "69 89 144 33 124 \n", - "\n", - " sample_test_58 sample_train_59 sample_test_59 sample_train_60 \\\n", - "0 133 97 14 63 \n", - "1 133 97 14 63 \n", - "2 133 97 14 63 \n", - "3 133 97 14 63 \n", - "4 133 97 14 63 \n", - ".. ... ... ... ... \n", - "65 133 97 14 63 \n", - "66 133 97 14 63 \n", - "67 133 97 14 63 \n", - "68 133 97 14 63 \n", - "69 133 97 14 63 \n", - "\n", - " sample_test_60 sample_train_61 sample_test_61 sample_train_62 \\\n", - "0 88 17 140 215 \n", - "1 88 17 140 215 \n", - "2 88 17 140 215 \n", - "3 88 17 140 215 \n", - "4 88 17 140 215 \n", - ".. ... ... ... ... \n", - "65 88 17 140 215 \n", - "66 88 17 140 215 \n", - "67 88 17 140 215 \n", - "68 88 17 140 215 \n", - "69 88 17 140 215 \n", - "\n", - " sample_test_62 sample_train_63 sample_test_63 sample_train_64 \\\n", - "0 11 219 13 183 \n", - "1 11 219 13 183 \n", - "2 11 219 13 183 \n", - "3 11 219 13 183 \n", - "4 11 219 13 183 \n", - ".. ... ... ... ... \n", - "65 11 219 13 183 \n", - "66 11 219 13 183 \n", - "67 11 219 13 183 \n", - "68 11 219 13 183 \n", - "69 11 219 13 183 \n", - "\n", - " sample_test_64 sample_train_65 sample_test_65 sample_train_66 \\\n", - "0 15 114 139 76 \n", - "1 15 114 139 76 \n", - "2 15 114 139 76 \n", - "3 15 114 139 76 \n", - "4 15 114 139 76 \n", - ".. ... ... ... ... \n", - "65 15 114 139 76 \n", - "66 15 114 139 76 \n", - "67 15 114 139 76 \n", - "68 15 114 139 76 \n", - "69 15 114 139 76 \n", - "\n", - " sample_test_66 sample_train_67 sample_test_67 sample_train_68 \\\n", - "0 64 284 19 66 \n", - "1 64 284 19 66 \n", - "2 64 284 19 66 \n", - "3 64 284 19 66 \n", - "4 64 284 19 66 \n", - ".. ... ... ... ... \n", - "65 64 284 19 66 \n", - "66 64 284 19 66 \n", - "67 64 284 19 66 \n", - "68 64 284 19 66 \n", - "69 64 284 19 66 \n", - "\n", - " sample_test_68 sample_train_69 sample_test_69 sample_train_70 \\\n", - "0 44 178 35 154 \n", - "1 44 178 35 154 \n", - "2 44 178 35 154 \n", - "3 44 178 35 154 \n", - "4 44 178 35 154 \n", - ".. ... ... ... ... \n", - "65 44 178 35 154 \n", - "66 44 178 35 154 \n", - "67 44 178 35 154 \n", - "68 44 178 35 154 \n", - "69 44 178 35 154 \n", - "\n", - " sample_test_70 sample_train_71 sample_test_71 sample_train_72 \\\n", - "0 56 75 6 19 \n", - "1 56 75 6 19 \n", - "2 56 75 6 19 \n", - "3 56 75 6 19 \n", - "4 56 75 6 19 \n", - ".. ... ... ... ... \n", - "65 56 75 6 19 \n", - "66 56 75 6 19 \n", - "67 56 75 6 19 \n", - "68 56 75 6 19 \n", - "69 56 75 6 19 \n", - "\n", - " sample_test_72 sample_train_73 sample_test_73 sample_train_74 \\\n", - "0 107 108 12 79 \n", - "1 107 108 12 79 \n", - "2 107 108 12 79 \n", - "3 107 108 12 79 \n", - "4 107 108 12 79 \n", - ".. ... ... ... ... \n", - "65 107 108 12 79 \n", - "66 107 108 12 79 \n", - "67 107 108 12 79 \n", - "68 107 108 12 79 \n", - "69 107 108 12 79 \n", - "\n", - " sample_test_74 sample_train_75 sample_test_75 sample_train_76 \\\n", - "0 113 118 141 72 \n", - "1 113 118 141 72 \n", - "2 113 118 141 72 \n", - "3 113 118 141 72 \n", - "4 113 118 141 72 \n", - ".. ... ... ... ... \n", - "65 113 118 141 72 \n", - "66 113 118 141 72 \n", - "67 113 118 141 72 \n", - "68 113 118 141 72 \n", - "69 113 118 141 72 \n", - "\n", - " sample_test_76 sample_train_77 sample_test_77 sample_train_78 \\\n", - "0 49 15 25 10 \n", - "1 49 15 25 10 \n", - "2 49 15 25 10 \n", - "3 49 15 25 10 \n", - "4 49 15 25 10 \n", - ".. ... ... ... ... \n", - "65 49 15 25 10 \n", - "66 49 15 25 10 \n", - "67 49 15 25 10 \n", - "68 49 15 25 10 \n", - "69 49 15 25 10 \n", - "\n", - " sample_test_78 sample_train_79 sample_test_79 sample_train_80 \\\n", - "0 41 101 38 68 \n", - "1 41 101 38 68 \n", - "2 41 101 38 68 \n", - "3 41 101 38 68 \n", - "4 41 101 38 68 \n", - ".. ... ... ... ... \n", - "65 41 101 38 68 \n", - "66 41 101 38 68 \n", - "67 41 101 38 68 \n", - "68 41 101 38 68 \n", - "69 41 101 38 68 \n", - "\n", - " sample_test_80 sample_train_81 sample_test_81 sample_train_82 \\\n", - "0 130 125 42 37 \n", - "1 130 125 42 37 \n", - "2 130 125 42 37 \n", - "3 130 125 42 37 \n", - "4 130 125 42 37 \n", - ".. ... ... ... ... \n", - "65 130 125 42 37 \n", - "66 130 125 42 37 \n", - "67 130 125 42 37 \n", - "68 130 125 42 37 \n", - "69 130 125 42 37 \n", - "\n", - " sample_test_82 sample_train_83 sample_test_83 sample_train_84 \\\n", - "0 8 16 101 293 \n", - "1 8 16 101 293 \n", - "2 8 16 101 293 \n", - "3 8 16 101 293 \n", - "4 8 16 101 293 \n", - ".. ... ... ... ... \n", - "65 8 16 101 293 \n", - "66 8 16 101 293 \n", - "67 8 16 101 293 \n", - "68 8 16 101 293 \n", - "69 8 16 101 293 \n", - "\n", - " sample_test_84 sample_train_85 sample_test_85 sample_train_86 \\\n", - "0 125 139 1 266 \n", - "1 125 139 1 266 \n", - "2 125 139 1 266 \n", - "3 125 139 1 266 \n", - "4 125 139 1 266 \n", - ".. ... ... ... ... \n", - "65 125 139 1 266 \n", - "66 125 139 1 266 \n", - "67 125 139 1 266 \n", - "68 125 139 1 266 \n", - "69 125 139 1 266 \n", - "\n", - " sample_test_86 sample_train_87 sample_test_87 sample_train_88 \\\n", - "0 137 67 65 90 \n", - "1 137 67 65 90 \n", - "2 137 67 65 90 \n", - "3 137 67 65 90 \n", - "4 137 67 65 90 \n", - ".. ... ... ... ... \n", - "65 137 67 65 90 \n", - "66 137 67 65 90 \n", - "67 137 67 65 90 \n", - "68 137 67 65 90 \n", - "69 137 67 65 90 \n", - "\n", - " sample_test_88 sample_train_89 sample_test_89 sample_train_90 \\\n", - "0 22 69 85 288 \n", - "1 22 69 85 288 \n", - "2 22 69 85 288 \n", - "3 22 69 85 288 \n", - "4 22 69 85 288 \n", - ".. ... ... ... ... \n", - "65 22 69 85 288 \n", - "66 22 69 85 288 \n", - "67 22 69 85 288 \n", - "68 22 69 85 288 \n", - "69 22 69 85 288 \n", - "\n", - " sample_test_90 sample_train_91 sample_test_91 sample_train_92 \\\n", - "0 46 165 103 126 \n", - "1 46 165 103 126 \n", - "2 46 165 103 126 \n", - "3 46 165 103 126 \n", - "4 46 165 103 126 \n", - ".. ... ... ... ... \n", - "65 46 165 103 126 \n", - "66 46 165 103 126 \n", - "67 46 165 103 126 \n", - "68 46 165 103 126 \n", - "69 46 165 103 126 \n", - "\n", - " sample_test_92 sample_train_93 sample_test_93 sample_train_94 \\\n", - "0 145 221 111 173 \n", - "1 145 221 111 173 \n", - "2 145 221 111 173 \n", - "3 145 221 111 173 \n", - "4 145 221 111 173 \n", - ".. ... ... ... ... \n", - "65 145 221 111 173 \n", - "66 145 221 111 173 \n", - "67 145 221 111 173 \n", - "68 145 221 111 173 \n", - "69 145 221 111 173 \n", - "\n", - " sample_test_94 sample_train_95 sample_test_95 sample_train_96 \\\n", - "0 100 18 57 172 \n", - "1 100 18 57 172 \n", - "2 100 18 57 172 \n", - "3 100 18 57 172 \n", - "4 100 18 57 172 \n", - ".. ... ... ... ... \n", - "65 100 18 57 172 \n", - "66 100 18 57 172 \n", - "67 100 18 57 172 \n", - "68 100 18 57 172 \n", - "69 100 18 57 172 \n", - "\n", - " sample_test_96 sample_train_97 sample_test_97 sample_train_98 \\\n", - "0 53 96 109 146 \n", - "1 53 96 109 146 \n", - "2 53 96 109 146 \n", - "3 53 96 109 146 \n", - "4 53 96 109 146 \n", - ".. ... ... ... ... \n", - "65 53 96 109 146 \n", - "66 53 96 109 146 \n", - "67 53 96 109 146 \n", - "68 53 96 109 146 \n", - "69 53 96 109 146 \n", - "\n", - " sample_test_98 sample_train_99 sample_test_99 ablation_seed_0 \\\n", - "0 24 86 17 545 \n", - "1 24 86 17 545 \n", - "2 24 86 17 545 \n", - "3 24 86 17 545 \n", - "4 24 86 17 8534 \n", - ".. ... ... ... ... \n", - "65 24 86 17 3650 \n", - "66 24 86 17 3650 \n", - "67 24 86 17 8563 \n", - "68 24 86 17 8563 \n", - "69 24 86 17 8563 \n", - "\n", - " fi_time RF_Regressor_train_subset_MSE_before_ablation \\\n", - "0 8.739464 1437.058926 \n", - "1 9.849160 1437.058926 \n", - "2 3.896490 1437.058926 \n", - "3 0.353197 1437.058926 \n", - "4 134.209250 1437.058926 \n", - ".. ... ... \n", - "65 4.258376 1438.855135 \n", - "66 0.352780 1438.855135 \n", - "67 151.621587 1438.855135 \n", - "68 2.607143 1438.855135 \n", - "69 315.562780 1438.855135 \n", - "\n", - " RF_Regressor_train_subset_R_2_before_ablation \\\n", - "0 0.740320 \n", - "1 0.740320 \n", - "2 0.740320 \n", - "3 0.740320 \n", - "4 0.740320 \n", - ".. ... \n", - "65 0.742201 \n", - "66 0.742201 \n", - "67 0.742201 \n", - "68 0.742201 \n", - "69 0.742201 \n", - "\n", - " RF_Regressor_train_subset_MSE_after_ablation_1 \\\n", - "0 2450.453723 \n", - "1 2554.479820 \n", - "2 2900.469581 \n", - "3 2993.318633 \n", - "4 2593.668426 \n", - ".. ... \n", - "65 2678.898633 \n", - "66 2782.889805 \n", - "67 2749.901178 \n", - "68 2572.532707 \n", - "69 2720.135924 \n", - "\n", - " RF_Regressor_train_subset_R_2_after_ablation_1 \\\n", - "0 0.557198 \n", - "1 0.538400 \n", - "2 0.475879 \n", - "3 0.459101 \n", - "4 0.531318 \n", - ".. ... \n", - "65 0.520023 \n", - "66 0.501391 \n", - "67 0.507302 \n", - "68 0.539081 \n", - "69 0.512635 \n", - "\n", - " RF_Regressor_train_subset_MSE_after_ablation_2 \\\n", - "0 3708.135984 \n", - "1 3776.859055 \n", - "2 4039.948602 \n", - "3 4185.208775 \n", - "4 3915.160119 \n", - ".. ... \n", - "65 4165.208912 \n", - "66 4366.241529 \n", - "67 4346.155760 \n", - "68 4175.221232 \n", - "69 3782.575791 \n", - "\n", - " RF_Regressor_train_subset_R_2_after_ablation_2 \\\n", - "0 0.329932 \n", - "1 0.317513 \n", - "2 0.269972 \n", - "3 0.243723 \n", - "4 0.292522 \n", - ".. ... \n", - "65 0.253722 \n", - "66 0.217703 \n", - "67 0.221302 \n", - "68 0.251928 \n", - "69 0.322278 \n", - "\n", - " RF_Regressor_train_subset_MSE_after_ablation_3 \\\n", - "0 4626.637491 \n", - "1 4555.990329 \n", - "2 4745.392296 \n", - "3 4928.490103 \n", - "4 4678.388000 \n", - ".. ... \n", - "65 4813.668323 \n", - "66 5070.550880 \n", - "67 5105.225598 \n", - "68 4881.927373 \n", - "69 4604.837368 \n", - "\n", - " RF_Regressor_train_subset_R_2_after_ablation_3 \\\n", - "0 0.163956 \n", - "1 0.176722 \n", - "2 0.142497 \n", - "3 0.109411 \n", - "4 0.154605 \n", - ".. ... \n", - "65 0.137538 \n", - "66 0.091512 \n", - "67 0.085300 \n", - "68 0.125308 \n", - "69 0.174954 \n", - "\n", - " RF_Regressor_train_subset_MSE_after_ablation_4 \\\n", - "0 4988.459417 \n", - "1 5094.477192 \n", - "2 5121.591713 \n", - "3 5342.614052 \n", - "4 5028.409569 \n", - ".. ... \n", - "65 5176.160990 \n", - "66 5466.312513 \n", - "67 5126.939895 \n", - "68 5173.172791 \n", - "69 5200.792476 \n", - "\n", - " RF_Regressor_train_subset_R_2_after_ablation_4 \\\n", - "0 0.098574 \n", - "1 0.079417 \n", - "2 0.074517 \n", - "3 0.034578 \n", - "4 0.091355 \n", - ".. ... \n", - "65 0.072590 \n", - "66 0.020604 \n", - "67 0.081409 \n", - "68 0.073126 \n", - "69 0.068177 \n", - "\n", - " RF_Regressor_train_subset_MSE_after_ablation_5 \\\n", - "0 5232.901749 \n", - "1 5291.593590 \n", - "2 5396.791508 \n", - "3 5522.340805 \n", - "4 5173.721429 \n", - ".. ... \n", - "65 5445.473321 \n", - "66 5611.598042 \n", - "67 5288.691321 \n", - "68 5217.655724 \n", - "69 5225.942001 \n", - "\n", - " RF_Regressor_train_subset_R_2_after_ablation_5 \\\n", - "0 0.054403 \n", - "1 0.043797 \n", - "2 0.024788 \n", - "3 0.002101 \n", - "4 0.065097 \n", - ".. ... \n", - "65 0.024338 \n", - "66 -0.005427 \n", - "67 0.052428 \n", - "68 0.065156 \n", - "69 0.063671 \n", - "\n", - " RF_Regressor_train_subset_MSE_after_ablation_6 \\\n", - "0 5437.430361 \n", - "1 5426.338268 \n", - "2 5433.771000 \n", - "3 5482.240393 \n", - "4 5309.990518 \n", - ".. ... \n", - "65 5445.779737 \n", - "66 5618.506871 \n", - "67 5392.616386 \n", - "68 5405.903732 \n", - "69 5344.152735 \n", - "\n", - " RF_Regressor_train_subset_R_2_after_ablation_6 \\\n", - "0 0.017444 \n", - "1 0.019449 \n", - "2 0.018105 \n", - "3 0.009347 \n", - "4 0.040473 \n", - ".. ... \n", - "65 0.024283 \n", - "66 -0.006665 \n", - "67 0.033808 \n", - "68 0.031427 \n", - "69 0.042491 \n", - "\n", - " RF_Regressor_train_subset_MSE_after_ablation_7 \\\n", - "0 5421.293849 \n", - "1 5451.723835 \n", - "2 5483.243120 \n", - "3 5577.046415 \n", - "4 5380.005758 \n", - ".. ... \n", - "65 5590.734303 \n", - "66 5654.910570 \n", - "67 5490.010870 \n", - "68 5481.723324 \n", - "69 5359.167068 \n", - "\n", - " RF_Regressor_train_subset_R_2_after_ablation_7 \\\n", - "0 0.020360 \n", - "1 0.014861 \n", - "2 0.009166 \n", - "3 -0.007785 \n", - "4 0.027821 \n", - ".. ... \n", - "65 -0.001689 \n", - "66 -0.013187 \n", - "67 0.016358 \n", - "68 0.017843 \n", - "69 0.039801 \n", - "\n", - " RF_Regressor_train_subset_MSE_after_ablation_8 \\\n", - "0 5443.743634 \n", - "1 5477.274281 \n", - "2 5426.787503 \n", - "3 5602.663206 \n", - "4 5537.554053 \n", - ".. ... \n", - "65 5562.477277 \n", - "66 5619.409496 \n", - "67 5642.366051 \n", - "68 5538.033353 \n", - "69 5475.811021 \n", - "\n", - " RF_Regressor_train_subset_R_2_after_ablation_8 \\\n", - "0 0.016303 \n", - "1 0.010244 \n", - "2 0.019367 \n", - "3 -0.012414 \n", - "4 -0.000648 \n", - ".. ... \n", - "65 0.003374 \n", - "66 -0.006826 \n", - "67 -0.010939 \n", - "68 0.007754 \n", - "69 0.018902 \n", - "\n", - " RF_Regressor_train_subset_MSE_after_ablation_9 \\\n", - "0 5494.702450 \n", - "1 5514.501633 \n", - "2 5506.799767 \n", - "3 5644.869200 \n", - "4 5547.269238 \n", - ".. ... \n", - "65 5710.567724 \n", - "66 5634.681385 \n", - "67 5642.172216 \n", - "68 5649.927048 \n", - "69 5618.005145 \n", - "\n", - " RF_Regressor_train_subset_R_2_after_ablation_9 \\\n", - "0 0.007095 \n", - "1 0.003517 \n", - "2 0.004909 \n", - "3 -0.020040 \n", - "4 -0.002404 \n", - ".. ... \n", - "65 -0.023159 \n", - "66 -0.009563 \n", - "67 -0.010905 \n", - "68 -0.012294 \n", - "69 -0.006575 \n", - "\n", - " RF_Regressor_train_subset_MSE_after_ablation_10 \\\n", - "0 5539.523521 \n", - "1 5539.523521 \n", - "2 5539.523521 \n", - "3 5539.523521 \n", - "4 5539.523521 \n", - ".. ... \n", - "65 5687.565590 \n", - "66 5687.565590 \n", - "67 5687.565590 \n", - "68 5687.565590 \n", - "69 5687.565590 \n", - "\n", - " RF_Regressor_train_subset_R_2_after_ablation_10 \\\n", - "0 -0.001004 \n", - "1 -0.001004 \n", - "2 -0.001004 \n", - "3 -0.001004 \n", - "4 -0.001004 \n", - ".. ... \n", - "65 -0.019038 \n", - "66 -0.019038 \n", - "67 -0.019038 \n", - "68 -0.019038 \n", - "69 -0.019038 \n", - "\n", - " Linear_train_subset_MSE_before_ablation \\\n", - "0 2751.227274 \n", - "1 2751.227274 \n", - "2 2751.227274 \n", - "3 2751.227274 \n", - "4 2751.227274 \n", - ".. ... \n", - "65 2738.215621 \n", - "66 2738.215621 \n", - "67 2738.215621 \n", - "68 2738.215621 \n", - "69 2738.215621 \n", - "\n", - " Linear_train_subset_R_2_before_ablation \\\n", - "0 0.502847 \n", - "1 0.502847 \n", - "2 0.502847 \n", - "3 0.502847 \n", - "4 0.502847 \n", - ".. ... \n", - "65 0.509396 \n", - "66 0.509396 \n", - "67 0.509396 \n", - "68 0.509396 \n", - "69 0.509396 \n", - "\n", - " Linear_train_subset_MSE_after_ablation_1 \\\n", - "0 4010.135272 \n", - "1 4077.155488 \n", - "2 4417.646065 \n", - "3 4702.534726 \n", - "4 4131.487251 \n", - ".. ... \n", - "65 3827.443185 \n", - "66 3923.613699 \n", - "67 3659.801644 \n", - "68 3827.975616 \n", - "69 3798.702668 \n", - "\n", - " Linear_train_subset_R_2_after_ablation_1 \\\n", - "0 0.275360 \n", - "1 0.263249 \n", - "2 0.201721 \n", - "3 0.150241 \n", - "4 0.253431 \n", - ".. ... \n", - "65 0.314239 \n", - "66 0.297008 \n", - "67 0.344275 \n", - "68 0.314144 \n", - "69 0.319389 \n", - "\n", - " Linear_train_subset_MSE_after_ablation_2 \\\n", - "0 5532.061236 \n", - "1 5679.643882 \n", - "2 5725.073334 \n", - "3 5876.798769 \n", - "4 5661.884034 \n", - ".. ... \n", - "65 5227.500681 \n", - "66 5540.710071 \n", - "67 5496.490785 \n", - "68 5456.335042 \n", - "69 5106.724049 \n", - "\n", - " Linear_train_subset_R_2_after_ablation_2 \\\n", - "0 0.000344 \n", - "1 -0.026324 \n", - "2 -0.034534 \n", - "3 -0.061951 \n", - "4 -0.023115 \n", - ".. ... \n", - "65 0.063392 \n", - "66 0.007274 \n", - "67 0.015197 \n", - "68 0.022392 \n", - "69 0.085031 \n", - "\n", - " Linear_train_subset_MSE_after_ablation_3 \\\n", - "0 6235.149787 \n", - "1 6227.670680 \n", - "2 6223.132210 \n", - "3 6321.094122 \n", - "4 6228.786395 \n", - ".. ... \n", - "65 5931.959208 \n", - "66 6201.689908 \n", - "67 5950.452784 \n", - "68 6101.608395 \n", - "69 5924.946844 \n", - "\n", - " Linear_train_subset_R_2_after_ablation_3 \\\n", - "0 -0.126705 \n", - "1 -0.125354 \n", - "2 -0.124534 \n", - "3 -0.142236 \n", - "4 -0.125556 \n", - ".. ... \n", - "65 -0.062826 \n", - "66 -0.111153 \n", - "67 -0.066139 \n", - "68 -0.093222 \n", - "69 -0.061569 \n", - "\n", - " Linear_train_subset_MSE_after_ablation_4 \\\n", - "0 6665.951971 \n", - "1 6600.313727 \n", - "2 6394.045442 \n", - "3 6672.065323 \n", - "4 6611.718967 \n", - ".. ... \n", - "65 6180.587308 \n", - "66 6467.662659 \n", - "67 6108.604691 \n", - "68 6497.883717 \n", - "69 6350.410974 \n", - "\n", - " Linear_train_subset_R_2_after_ablation_4 \\\n", - "0 -0.204552 \n", - "1 -0.192691 \n", - "2 -0.155418 \n", - "3 -0.205657 \n", - "4 -0.194752 \n", - ".. ... \n", - "65 -0.107372 \n", - "66 -0.158807 \n", - "67 -0.094475 \n", - "68 -0.164222 \n", - "69 -0.137799 \n", - "\n", - " Linear_train_subset_MSE_after_ablation_5 \\\n", - "0 6788.027586 \n", - "1 6851.937171 \n", - "2 6903.742081 \n", - "3 6942.552888 \n", - "4 6898.813662 \n", - ".. ... \n", - "65 6571.688377 \n", - "66 6656.869877 \n", - "67 6296.639581 \n", - "68 6312.108631 \n", - "69 6250.138777 \n", - "\n", - " Linear_train_subset_R_2_after_ablation_5 \\\n", - "0 -0.226612 \n", - "1 -0.238160 \n", - "2 -0.247522 \n", - "3 -0.254535 \n", - "4 -0.246631 \n", - ".. ... \n", - "65 -0.177446 \n", - "66 -0.192707 \n", - "67 -0.128165 \n", - "68 -0.130937 \n", - "69 -0.119834 \n", - "\n", - " Linear_train_subset_MSE_after_ablation_6 \\\n", - "0 7155.239308 \n", - "1 6859.504452 \n", - "2 6898.005455 \n", - "3 7087.736531 \n", - "4 6725.819832 \n", - ".. ... \n", - "65 6367.528123 \n", - "66 6731.266600 \n", - "67 6046.285075 \n", - "68 6522.814156 \n", - "69 6173.995273 \n", - "\n", - " Linear_train_subset_R_2_after_ablation_6 \\\n", - "0 -0.292968 \n", - "1 -0.239528 \n", - "2 -0.246485 \n", - "3 -0.280770 \n", - "4 -0.215371 \n", - ".. ... \n", - "65 -0.140866 \n", - "66 -0.206037 \n", - "67 -0.083309 \n", - "68 -0.168689 \n", - "69 -0.106191 \n", - "\n", - " Linear_train_subset_MSE_after_ablation_7 \\\n", - "0 6938.669534 \n", - "1 6402.080061 \n", - "2 6906.134630 \n", - "3 6931.213356 \n", - "4 6251.340134 \n", - ".. ... \n", - "65 6390.940437 \n", - "66 6580.335137 \n", - "67 5975.717171 \n", - "68 6243.676990 \n", - "69 6007.253773 \n", - "\n", - " Linear_train_subset_R_2_after_ablation_7 \\\n", - "0 -0.253833 \n", - "1 -0.156870 \n", - "2 -0.247954 \n", - "3 -0.252486 \n", - "4 -0.129631 \n", - ".. ... \n", - "65 -0.145061 \n", - "66 -0.178995 \n", - "67 -0.070666 \n", - "68 -0.118676 \n", - "69 -0.076316 \n", - "\n", - " Linear_train_subset_MSE_after_ablation_8 \\\n", - "0 6945.021356 \n", - "1 6190.738584 \n", - "2 6621.684956 \n", - "3 6571.907892 \n", - "4 5694.265877 \n", - ".. ... \n", - "65 6051.307223 \n", - "66 6519.573170 \n", - "67 5749.590114 \n", - "68 6056.418996 \n", - "69 5874.695827 \n", - "\n", - " Linear_train_subset_R_2_after_ablation_8 \\\n", - "0 -0.254981 \n", - "1 -0.118680 \n", - "2 -0.196553 \n", - "3 -0.187558 \n", - "4 -0.028967 \n", - ".. ... \n", - "65 -0.084209 \n", - "66 -0.168108 \n", - "67 -0.030151 \n", - "68 -0.085125 \n", - "69 -0.052566 \n", - "\n", - " Linear_train_subset_MSE_after_ablation_9 \\\n", - "0 6428.621982 \n", - "1 6055.316091 \n", - "2 6174.979003 \n", - "3 6150.154721 \n", - "4 5427.512325 \n", - ".. ... \n", - "65 5933.424152 \n", - "66 6191.864619 \n", - "67 5741.037438 \n", - "68 5886.908055 \n", - "69 5559.283516 \n", - "\n", - " Linear_train_subset_R_2_after_ablation_9 \\\n", - "0 -0.161666 \n", - "1 -0.094209 \n", - "2 -0.115832 \n", - "3 -0.111347 \n", - "4 0.019236 \n", - ".. ... \n", - "65 -0.063088 \n", - "66 -0.109393 \n", - "67 -0.028618 \n", - "68 -0.054754 \n", - "69 0.003946 \n", - "\n", - " Linear_train_subset_MSE_after_ablation_10 \\\n", - "0 5537.963738 \n", - "1 5537.963738 \n", - "2 5537.963738 \n", - "3 5537.963738 \n", - "4 5537.963738 \n", - ".. ... \n", - "65 5589.440875 \n", - "66 5589.440875 \n", - "67 5589.440875 \n", - "68 5589.440875 \n", - "69 5589.440875 \n", - "\n", - " Linear_train_subset_R_2_after_ablation_10 \\\n", - "0 -0.000722 \n", - "1 -0.000722 \n", - "2 -0.000722 \n", - "3 -0.000722 \n", - "4 -0.000722 \n", - ".. ... \n", - "65 -0.001457 \n", - "66 -0.001457 \n", - "67 -0.001457 \n", - "68 -0.001457 \n", - "69 -0.001457 \n", - "\n", - " XGB_Regressor_train_subset_MSE_before_ablation \\\n", - "0 0.018187 \n", - "1 0.018187 \n", - "2 0.018187 \n", - "3 0.018187 \n", - "4 0.018187 \n", - ".. ... \n", - "65 0.097250 \n", - "66 0.097250 \n", - "67 0.097250 \n", - "68 0.097250 \n", - "69 0.097250 \n", - "\n", - " XGB_Regressor_train_subset_R_2_before_ablation \\\n", - "0 0.999997 \n", - "1 0.999997 \n", - "2 0.999997 \n", - "3 0.999997 \n", - "4 0.999997 \n", - ".. ... \n", - "65 0.999983 \n", - "66 0.999983 \n", - "67 0.999983 \n", - "68 0.999983 \n", - "69 0.999983 \n", - "\n", - " XGB_Regressor_train_subset_MSE_after_ablation_1 \\\n", - "0 1625.010655 \n", - "1 1811.187362 \n", - "2 2237.078371 \n", - "3 2406.505913 \n", - "4 1760.246456 \n", - ".. ... \n", - "65 1409.122866 \n", - "66 1548.709747 \n", - "67 1377.246667 \n", - "68 1401.369064 \n", - "69 1615.258137 \n", - "\n", - " XGB_Regressor_train_subset_R_2_after_ablation_1 \\\n", - "0 0.706357 \n", - "1 0.672714 \n", - "2 0.595755 \n", - "3 0.565139 \n", - "4 0.681920 \n", - ".. ... \n", - "65 0.747528 \n", - "66 0.722519 \n", - "67 0.753240 \n", - "68 0.748918 \n", - "69 0.710595 \n", - "\n", - " XGB_Regressor_train_subset_MSE_after_ablation_2 \\\n", - "0 3727.227862 \n", - "1 3768.911516 \n", - "2 3839.017846 \n", - "3 3694.557248 \n", - "4 3902.301179 \n", - ".. ... \n", - "65 3062.737215 \n", - "66 3239.161380 \n", - "67 3380.234480 \n", - "68 3294.968987 \n", - "69 2988.046101 \n", - "\n", - " XGB_Regressor_train_subset_R_2_after_ablation_2 \\\n", - "0 0.326482 \n", - "1 0.318949 \n", - "2 0.306281 \n", - "3 0.332385 \n", - "4 0.294845 \n", - ".. ... \n", - "65 0.451251 \n", - "66 0.419641 \n", - "67 0.394365 \n", - "68 0.409642 \n", - "69 0.464634 \n", - "\n", - " XGB_Regressor_train_subset_MSE_after_ablation_3 \\\n", - "0 4758.802828 \n", - "1 4799.059708 \n", - "2 4761.200794 \n", - "3 4731.899147 \n", - "4 4786.063094 \n", - ".. ... \n", - "65 4143.180980 \n", - "66 4348.167990 \n", - "67 4584.976546 \n", - "68 4350.842152 \n", - "69 3961.078843 \n", - "\n", - " XGB_Regressor_train_subset_R_2_after_ablation_3 \\\n", - "0 0.140074 \n", - "1 0.132799 \n", - "2 0.139640 \n", - "3 0.144935 \n", - "4 0.135148 \n", - ".. ... \n", - "65 0.257669 \n", - "66 0.220941 \n", - "67 0.178512 \n", - "68 0.220462 \n", - "69 0.290296 \n", - "\n", - " XGB_Regressor_train_subset_MSE_after_ablation_4 \\\n", - "0 5438.045521 \n", - "1 5389.715225 \n", - "2 5044.732487 \n", - "3 5392.714460 \n", - "4 5248.502766 \n", - ".. ... \n", - "65 4973.750342 \n", - "66 5168.590233 \n", - "67 5219.394868 \n", - "68 5097.939455 \n", - "69 4916.360392 \n", - "\n", - " XGB_Regressor_train_subset_R_2_after_ablation_4 \\\n", - "0 0.017333 \n", - "1 0.026066 \n", - "2 0.088406 \n", - "3 0.025524 \n", - "4 0.051584 \n", - ".. ... \n", - "65 0.108856 \n", - "66 0.073947 \n", - "67 0.064844 \n", - "68 0.086605 \n", - "69 0.119139 \n", - "\n", - " XGB_Regressor_train_subset_MSE_after_ablation_5 \\\n", - "0 6086.223432 \n", - "1 5710.096369 \n", - "2 5393.980964 \n", - "3 5774.949568 \n", - "4 5562.326281 \n", - ".. ... \n", - "65 5579.904958 \n", - "66 5650.278499 \n", - "67 5552.852007 \n", - "68 5404.702722 \n", - "69 5129.675910 \n", - "\n", - " XGB_Regressor_train_subset_R_2_after_ablation_5 \\\n", - "0 -0.099794 \n", - "1 -0.031827 \n", - "2 0.025296 \n", - "3 -0.043546 \n", - "4 -0.005125 \n", - ".. ... \n", - "65 0.000252 \n", - "66 -0.012357 \n", - "67 0.005099 \n", - "68 0.031643 \n", - "69 0.080919 \n", - "\n", - " XGB_Regressor_train_subset_MSE_after_ablation_6 \\\n", - "0 6003.810755 \n", - "1 5721.904769 \n", - "2 5405.528810 \n", - "3 5789.624542 \n", - "4 5666.256209 \n", - ".. ... \n", - "65 5919.620840 \n", - "66 6010.622799 \n", - "67 5657.061402 \n", - "68 5415.757183 \n", - "69 5402.084447 \n", - "\n", - " XGB_Regressor_train_subset_R_2_after_ablation_6 \\\n", - "0 -0.084902 \n", - "1 -0.033961 \n", - "2 0.023209 \n", - "3 -0.046198 \n", - "4 -0.023905 \n", - ".. ... \n", - "65 -0.060615 \n", - "66 -0.076920 \n", - "67 -0.013572 \n", - "68 0.029662 \n", - "69 0.032112 \n", - "\n", - " XGB_Regressor_train_subset_MSE_after_ablation_7 \\\n", - "0 5914.676886 \n", - "1 5982.301528 \n", - "2 5693.370483 \n", - "3 5932.103010 \n", - "4 5825.740431 \n", - ".. ... \n", - "65 5991.195842 \n", - "66 6015.874192 \n", - "67 5778.266563 \n", - "68 5649.120636 \n", - "69 5347.120892 \n", - "\n", - " XGB_Regressor_train_subset_R_2_after_ablation_7 \\\n", - "0 -0.068795 \n", - "1 -0.081015 \n", - "2 -0.028805 \n", - "3 -0.071944 \n", - "4 -0.052724 \n", - ".. ... \n", - "65 -0.073439 \n", - "66 -0.077861 \n", - "67 -0.035289 \n", - "68 -0.012150 \n", - "69 0.041960 \n", - "\n", - " XGB_Regressor_train_subset_MSE_after_ablation_8 \\\n", - "0 5957.839900 \n", - "1 6049.655530 \n", - "2 5814.666743 \n", - "3 6000.631989 \n", - "4 5924.347912 \n", - ".. ... \n", - "65 5815.187326 \n", - "66 5992.264780 \n", - "67 5632.206444 \n", - "68 5755.516127 \n", - "69 5635.222335 \n", - "\n", - " XGB_Regressor_train_subset_R_2_after_ablation_8 \\\n", - "0 -0.076595 \n", - "1 -0.093186 \n", - "2 -0.050723 \n", - "3 -0.084328 \n", - "4 -0.070543 \n", - ".. ... \n", - "65 -0.041904 \n", - "66 -0.073631 \n", - "67 -0.009119 \n", - "68 -0.031212 \n", - "69 -0.009659 \n", - "\n", - " XGB_Regressor_train_subset_MSE_after_ablation_9 \\\n", - "0 6074.783783 \n", - "1 6140.066210 \n", - "2 5905.232497 \n", - "3 6064.504349 \n", - "4 6003.463504 \n", - ".. ... \n", - "65 5869.966012 \n", - "66 5818.049908 \n", - "67 5673.012560 \n", - "68 5785.642537 \n", - "69 5650.083279 \n", - "\n", - " XGB_Regressor_train_subset_R_2_after_ablation_9 \\\n", - "0 -0.097727 \n", - "1 -0.109524 \n", - "2 -0.067089 \n", - "3 -0.095869 \n", - "4 -0.084839 \n", - ".. ... \n", - "65 -0.051718 \n", - "66 -0.042417 \n", - "67 -0.016430 \n", - "68 -0.036610 \n", - "69 -0.012322 \n", - "\n", - " XGB_Regressor_train_subset_MSE_after_ablation_10 \\\n", - "0 6105.231363 \n", - "1 6105.231363 \n", - "2 6105.231363 \n", - "3 6105.231363 \n", - "4 6105.231363 \n", - ".. ... \n", - "65 5611.310265 \n", - "66 5611.310265 \n", - "67 5611.310265 \n", - "68 5611.310265 \n", - "69 5611.310265 \n", - "\n", - " XGB_Regressor_train_subset_R_2_after_ablation_10 \\\n", - "0 -0.103229 \n", - "1 -0.103229 \n", - "2 -0.103229 \n", - "3 -0.103229 \n", - "4 -0.103229 \n", - ".. ... \n", - "65 -0.005375 \n", - "66 -0.005375 \n", - "67 -0.005375 \n", - "68 -0.005375 \n", - "69 -0.005375 \n", - "\n", - " RF_Plus_Regressor_train_subset_MSE_before_ablation \\\n", - "0 2144.267875 \n", - "1 2144.267875 \n", - "2 2144.267875 \n", - "3 2144.267875 \n", - "4 2144.267875 \n", - ".. ... \n", - "65 2193.167972 \n", - "66 2193.167972 \n", - "67 2193.167972 \n", - "68 2193.167972 \n", - "69 2193.167972 \n", - "\n", - " RF_Plus_Regressor_train_subset_R_2_before_ablation \\\n", - "0 0.612526 \n", - "1 0.612526 \n", - "2 0.612526 \n", - "3 0.612526 \n", - "4 0.612526 \n", - ".. ... \n", - "65 0.607051 \n", - "66 0.607051 \n", - "67 0.607051 \n", - "68 0.607051 \n", - "69 0.607051 \n", - "\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_1 \\\n", - "0 3060.549288 \n", - "1 3176.445261 \n", - "2 3504.405453 \n", - "3 3646.878671 \n", - "4 3208.000445 \n", - ".. ... \n", - "65 3333.951885 \n", - "66 3464.273155 \n", - "67 3313.295136 \n", - "68 3289.911059 \n", - "69 3380.287738 \n", - "\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_1 \\\n", - "0 0.446952 \n", - "1 0.426009 \n", - "2 0.366746 \n", - "3 0.341001 \n", - "4 0.420307 \n", - ".. ... \n", - "65 0.402658 \n", - "66 0.379308 \n", - "67 0.406359 \n", - "68 0.410549 \n", - "69 0.394356 \n", - "\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_2 \\\n", - "0 4420.021303 \n", - "1 4460.833780 \n", - "2 4469.713519 \n", - "3 4609.859327 \n", - "4 4583.943975 \n", - ".. ... \n", - "65 4568.961153 \n", - "66 4770.751640 \n", - "67 4771.879930 \n", - "68 4688.223178 \n", - "69 4332.850804 \n", - "\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_2 \\\n", - "0 0.201292 \n", - "1 0.193917 \n", - "2 0.192313 \n", - "3 0.166988 \n", - "4 0.171671 \n", - ".. ... \n", - "65 0.181382 \n", - "66 0.145227 \n", - "67 0.145025 \n", - "68 0.160014 \n", - "69 0.223686 \n", - "\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_3 \\\n", - "0 5162.192629 \n", - "1 5097.059761 \n", - "2 5063.344675 \n", - "3 5163.674782 \n", - "4 5270.742639 \n", - ".. ... \n", - "65 5193.217918 \n", - "66 5395.283077 \n", - "67 5267.557812 \n", - "68 5262.297817 \n", - "69 5002.140836 \n", - "\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_3 \\\n", - "0 0.067180 \n", - "1 0.078950 \n", - "2 0.085042 \n", - "3 0.066912 \n", - "4 0.047565 \n", - ".. ... \n", - "65 0.069534 \n", - "66 0.033330 \n", - "67 0.056215 \n", - "68 0.057157 \n", - "69 0.103769 \n", - "\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_4 \\\n", - "0 5474.959682 \n", - "1 5485.856853 \n", - "2 5430.198772 \n", - "3 5654.780863 \n", - "4 5593.220279 \n", - ".. ... \n", - "65 5516.575047 \n", - "66 5795.554139 \n", - "67 5407.976223 \n", - "68 5572.520393 \n", - "69 5500.719456 \n", - "\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_4 \\\n", - "0 0.010663 \n", - "1 0.008693 \n", - "2 0.018751 \n", - "3 -0.021832 \n", - "4 -0.010707 \n", - ".. ... \n", - "65 0.011599 \n", - "66 -0.038386 \n", - "67 0.031056 \n", - "68 0.001575 \n", - "69 0.014439 \n", - "\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_5 \\\n", - "0 5641.270595 \n", - "1 5608.567209 \n", - "2 5629.508352 \n", - "3 5761.998372 \n", - "4 5575.129386 \n", - ".. ... \n", - "65 5795.097195 \n", - "66 5967.401983 \n", - "67 5588.330353 \n", - "68 5626.114993 \n", - "69 5462.943959 \n", - "\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_5 \\\n", - "0 -0.019390 \n", - "1 -0.013481 \n", - "2 -0.017265 \n", - "3 -0.041206 \n", - "4 -0.007438 \n", - ".. ... \n", - "65 -0.038304 \n", - "66 -0.069176 \n", - "67 -0.001258 \n", - "68 -0.008028 \n", - "69 0.021208 \n", - "\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_6 \\\n", - "0 5661.113577 \n", - "1 5606.850647 \n", - "2 5623.779888 \n", - "3 5689.750699 \n", - "4 5534.621890 \n", - ".. ... \n", - "65 5708.668205 \n", - "66 5938.818272 \n", - "67 5597.096985 \n", - "68 5720.182130 \n", - "69 5509.389569 \n", - "\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_6 \\\n", - "0 -0.022976 \n", - "1 -0.013170 \n", - "2 -0.016230 \n", - "3 -0.028151 \n", - "4 -0.000119 \n", - ".. ... \n", - "65 -0.022819 \n", - "66 -0.064055 \n", - "67 -0.002829 \n", - "68 -0.024882 \n", - "69 0.012886 \n", - "\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_7 \\\n", - "0 5588.716961 \n", - "1 5631.777151 \n", - "2 5604.950211 \n", - "3 5675.115137 \n", - "4 5561.347439 \n", - ".. ... \n", - "65 5806.308659 \n", - "66 5911.916236 \n", - "67 5599.602808 \n", - "68 5708.412501 \n", - "69 5502.215052 \n", - "\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_7 \\\n", - "0 -0.009894 \n", - "1 -0.017675 \n", - "2 -0.012827 \n", - "3 -0.025506 \n", - "4 -0.004948 \n", - ".. ... \n", - "65 -0.040313 \n", - "66 -0.059235 \n", - "67 -0.003278 \n", - "68 -0.022773 \n", - "69 0.014171 \n", - "\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_8 \\\n", - "0 5570.355417 \n", - "1 5627.949257 \n", - "2 5580.016962 \n", - "3 5635.679423 \n", - "4 5576.001782 \n", - ".. ... \n", - "65 5724.849106 \n", - "66 5826.379101 \n", - "67 5660.876322 \n", - "68 5673.183423 \n", - "69 5581.847580 \n", - "\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_8 \\\n", - "0 -0.006576 \n", - "1 -0.016983 \n", - "2 -0.008322 \n", - "3 -0.018380 \n", - "4 -0.007596 \n", - ".. ... \n", - "65 -0.025718 \n", - "66 -0.043909 \n", - "67 -0.014256 \n", - "68 -0.016461 \n", - "69 -0.000096 \n", - "\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_9 \\\n", - "0 5583.728055 \n", - "1 5616.876738 \n", - "2 5602.884260 \n", - "3 5607.887542 \n", - "4 5575.467267 \n", - ".. ... \n", - "65 5763.980812 \n", - "66 5723.786894 \n", - "67 5635.083783 \n", - "68 5664.500329 \n", - "69 5593.342518 \n", - "\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_9 \\\n", - "0 -0.008992 \n", - "1 -0.014982 \n", - "2 -0.012454 \n", - "3 -0.013358 \n", - "4 -0.007499 \n", - ".. ... \n", - "65 -0.032729 \n", - "66 -0.025528 \n", - "67 -0.009635 \n", - "68 -0.014905 \n", - "69 -0.002156 \n", - "\n", - " RF_Plus_Regressor_train_subset_MSE_after_ablation_10 \\\n", - "0 5566.322332 \n", - "1 5566.322332 \n", - "2 5566.322332 \n", - "3 5566.322332 \n", - "4 5566.322332 \n", - ".. ... \n", - "65 5624.090066 \n", - "66 5624.090066 \n", - "67 5624.090066 \n", - "68 5624.090066 \n", - "69 5624.090066 \n", - "\n", - " RF_Plus_Regressor_train_subset_R_2_after_ablation_10 \\\n", - "0 -0.005847 \n", - "1 -0.005847 \n", - "2 -0.005847 \n", - "3 -0.005847 \n", - "4 -0.005847 \n", - ".. ... \n", - "65 -0.007665 \n", - "66 -0.007665 \n", - "67 -0.007665 \n", - "68 -0.007665 \n", - "69 -0.007665 \n", - "\n", - " train_subset_ablation_time RF_Regressor_test_subset_MSE_before_ablation \\\n", - "0 8.492494 2679.064560 \n", - "1 8.477902 2679.064560 \n", - "2 8.412474 2679.064560 \n", - "3 8.385556 2679.064560 \n", - "4 8.385494 2679.064560 \n", - ".. ... ... \n", - "65 9.516454 3509.831927 \n", - "66 9.597552 3509.831927 \n", - "67 9.634410 3509.831927 \n", - "68 9.592882 3509.831927 \n", - "69 9.586439 3509.831927 \n", - "\n", - " RF_Regressor_test_subset_R_2_before_ablation \\\n", - "0 0.542605 \n", - "1 0.542605 \n", - "2 0.542605 \n", - "3 0.542605 \n", - "4 0.542605 \n", - ".. ... \n", - "65 0.426241 \n", - "66 0.426241 \n", - "67 0.426241 \n", - "68 0.426241 \n", - "69 0.426241 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_1 \\\n", - "0 3558.027039 \n", - "1 3580.553278 \n", - "2 3480.440454 \n", - "3 3476.115995 \n", - "4 3467.889825 \n", - ".. ... \n", - "65 4213.771834 \n", - "66 4244.202125 \n", - "67 4405.069590 \n", - "68 4364.788724 \n", - "69 4198.773435 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_1 \\\n", - "0 0.392540 \n", - "1 0.388694 \n", - "2 0.405786 \n", - "3 0.406525 \n", - "4 0.407929 \n", - ".. ... \n", - "65 0.311166 \n", - "66 0.306192 \n", - "67 0.279894 \n", - "68 0.286479 \n", - "69 0.313618 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_2 \\\n", - "0 4541.111469 \n", - "1 4515.904516 \n", - "2 4428.797618 \n", - "3 4606.954160 \n", - "4 4522.247977 \n", - ".. ... \n", - "65 4825.940412 \n", - "66 5180.216168 \n", - "67 5324.958907 \n", - "68 5096.309073 \n", - "69 5217.671821 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_2 \\\n", - "0 0.224698 \n", - "1 0.229002 \n", - "2 0.243874 \n", - "3 0.213457 \n", - "4 0.227919 \n", - ".. ... \n", - "65 0.211094 \n", - "66 0.153179 \n", - "67 0.129518 \n", - "68 0.166896 \n", - "69 0.147057 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_3 \\\n", - "0 5108.780808 \n", - "1 5136.563348 \n", - "2 5106.507299 \n", - "3 5308.753320 \n", - "4 5062.186749 \n", - ".. ... \n", - "65 5681.011294 \n", - "66 5853.344850 \n", - "67 5969.752485 \n", - "68 5689.664778 \n", - "69 5693.938662 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_3 \\\n", - "0 0.127781 \n", - "1 0.123037 \n", - "2 0.128169 \n", - "3 0.093639 \n", - "4 0.135736 \n", - ".. ... \n", - "65 0.071313 \n", - "66 0.043142 \n", - "67 0.024112 \n", - "68 0.069899 \n", - "69 0.069200 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_4 \\\n", - "0 5549.938512 \n", - "1 5524.671544 \n", - "2 5529.201248 \n", - "3 5626.772122 \n", - "4 5125.361953 \n", - ".. ... \n", - "65 6040.236320 \n", - "66 6059.064892 \n", - "67 6107.021507 \n", - "68 6158.371502 \n", - "69 6112.809648 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_4 \\\n", - "0 0.052462 \n", - "1 0.056776 \n", - "2 0.056002 \n", - "3 0.039344 \n", - "4 0.124950 \n", - ".. ... \n", - "65 0.012590 \n", - "66 0.009512 \n", - "67 0.001673 \n", - "68 -0.006722 \n", - "69 0.000727 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_5 \\\n", - "0 5575.079768 \n", - "1 5632.072864 \n", - "2 5617.274206 \n", - "3 5688.953069 \n", - "4 5403.866778 \n", - ".. ... \n", - "65 6010.251621 \n", - "66 6033.072523 \n", - "67 6094.252440 \n", - "68 6203.838469 \n", - "69 6071.081040 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_5 \\\n", - "0 0.048170 \n", - "1 0.038439 \n", - "2 0.040966 \n", - "3 0.028728 \n", - "4 0.077401 \n", - ".. ... \n", - "65 0.017492 \n", - "66 0.013761 \n", - "67 0.003760 \n", - "68 -0.014154 \n", - "69 0.007548 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_6 \\\n", - "0 5670.569231 \n", - "1 5732.292023 \n", - "2 5691.562223 \n", - "3 5665.064149 \n", - "4 5605.699200 \n", - ".. ... \n", - "65 6040.809248 \n", - "66 6076.452794 \n", - "67 6125.304668 \n", - "68 6310.867104 \n", - "69 6126.095327 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_6 \\\n", - "0 0.031867 \n", - "1 0.021329 \n", - "2 0.028283 \n", - "3 0.032807 \n", - "4 0.042942 \n", - ".. ... \n", - "65 0.012497 \n", - "66 0.006670 \n", - "67 -0.001316 \n", - "68 -0.031650 \n", - "69 -0.001445 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_7 \\\n", - "0 5714.830950 \n", - "1 5748.309155 \n", - "2 5752.950476 \n", - "3 5725.081827 \n", - "4 5672.867376 \n", - ".. ... \n", - "65 6072.462142 \n", - "66 6163.188391 \n", - "67 6099.205558 \n", - "68 6234.113582 \n", - "69 6212.118697 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_7 \\\n", - "0 0.024310 \n", - "1 0.018594 \n", - "2 0.017802 \n", - "3 0.022560 \n", - "4 0.031474 \n", - ".. ... \n", - "65 0.007322 \n", - "66 -0.007509 \n", - "67 0.002950 \n", - "68 -0.019103 \n", - "69 -0.015508 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_8 \\\n", - "0 5776.424753 \n", - "1 5834.804713 \n", - "2 5833.262844 \n", - "3 5843.531281 \n", - "4 5812.376227 \n", - ".. ... \n", - "65 6219.755407 \n", - "66 6167.744088 \n", - "67 6128.170963 \n", - "68 6146.976283 \n", - "69 6156.865589 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_8 \\\n", - "0 0.013794 \n", - "1 0.003827 \n", - "2 0.004090 \n", - "3 0.002337 \n", - "4 0.007656 \n", - ".. ... \n", - "65 -0.016756 \n", - "66 -0.008254 \n", - "67 -0.001785 \n", - "68 -0.004859 \n", - "69 -0.006475 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_9 \\\n", - "0 5872.761365 \n", - "1 5893.413600 \n", - "2 5842.980649 \n", - "3 5897.607209 \n", - "4 5867.281714 \n", - ".. ... \n", - "65 6225.621623 \n", - "66 6163.381267 \n", - "67 6156.521984 \n", - "68 6087.385960 \n", - "69 6109.418689 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_9 \\\n", - "0 -0.002653 \n", - "1 -0.006179 \n", - "2 0.002431 \n", - "3 -0.006895 \n", - "4 -0.001718 \n", - ".. ... \n", - "65 -0.017715 \n", - "66 -0.007541 \n", - "67 -0.006419 \n", - "68 0.004883 \n", - "69 0.001281 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_10 \\\n", - "0 5889.339711 \n", - "1 5889.339711 \n", - "2 5889.339711 \n", - "3 5889.339711 \n", - "4 5889.339711 \n", - ".. ... \n", - "65 6148.928735 \n", - "66 6148.928735 \n", - "67 6148.928735 \n", - "68 6148.928735 \n", - "69 6148.928735 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_10 \\\n", - "0 -0.005484 \n", - "1 -0.005484 \n", - "2 -0.005484 \n", - "3 -0.005484 \n", - "4 -0.005484 \n", - ".. ... \n", - "65 -0.005178 \n", - "66 -0.005178 \n", - "67 -0.005178 \n", - "68 -0.005178 \n", - "69 -0.005178 \n", - "\n", - " Linear_test_subset_MSE_before_ablation \\\n", - "0 2565.576138 \n", - "1 2565.576138 \n", - "2 2565.576138 \n", - "3 2565.576138 \n", - "4 2565.576138 \n", - ".. ... \n", - "65 3546.190517 \n", - "66 3546.190517 \n", - "67 3546.190517 \n", - "68 3546.190517 \n", - "69 3546.190517 \n", - "\n", - " Linear_test_subset_R_2_before_ablation \\\n", - "0 0.561981 \n", - "1 0.561981 \n", - "2 0.561981 \n", - "3 0.561981 \n", - "4 0.561981 \n", - ".. ... \n", - "65 0.420297 \n", - "66 0.420297 \n", - "67 0.420297 \n", - "68 0.420297 \n", - "69 0.420297 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_1 \\\n", - "0 4121.029876 \n", - "1 4124.763026 \n", - "2 3756.267014 \n", - "3 3915.996792 \n", - "4 4094.432088 \n", - ".. ... \n", - "65 4317.195582 \n", - "66 4298.706761 \n", - "67 4666.607280 \n", - "68 4665.190648 \n", - "69 4451.421766 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_1 \\\n", - "0 0.296419 \n", - "1 0.295781 \n", - "2 0.358695 \n", - "3 0.331424 \n", - "4 0.300960 \n", - ".. ... \n", - "65 0.294259 \n", - "66 0.297282 \n", - "67 0.237140 \n", - "68 0.237372 \n", - "69 0.272317 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_2 \\\n", - "0 5581.975377 \n", - "1 5536.778873 \n", - "2 5052.597617 \n", - "3 5378.766021 \n", - "4 5533.852742 \n", - ".. ... \n", - "65 5220.529078 \n", - "66 5543.796750 \n", - "67 5609.077406 \n", - "68 5658.394843 \n", - "69 5624.555118 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_2 \\\n", - "0 0.046992 \n", - "1 0.054709 \n", - "2 0.137373 \n", - "3 0.081686 \n", - "4 0.055208 \n", - ".. ... \n", - "65 0.146589 \n", - "66 0.093744 \n", - "67 0.083073 \n", - "68 0.075011 \n", - "69 0.080542 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_3 \\\n", - "0 6449.756912 \n", - "1 6523.833742 \n", - "2 5888.265223 \n", - "3 6371.788379 \n", - "4 6551.561645 \n", - ".. ... \n", - "65 6400.227369 \n", - "66 6597.919515 \n", - "67 6687.347282 \n", - "68 6659.387508 \n", - "69 6568.669569 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_3 \\\n", - "0 -0.101164 \n", - "1 -0.113811 \n", - "2 -0.005300 \n", - "3 -0.087852 \n", - "4 -0.118545 \n", - ".. ... \n", - "65 -0.046258 \n", - "66 -0.078575 \n", - "67 -0.093194 \n", - "68 -0.088624 \n", - "69 -0.073794 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_4 \\\n", - "0 6842.982437 \n", - "1 7003.490348 \n", - "2 6474.285892 \n", - "3 6745.355899 \n", - "4 6861.311919 \n", - ".. ... \n", - "65 6949.837827 \n", - "66 7200.544735 \n", - "67 7219.572194 \n", - "68 7340.405511 \n", - "69 7205.254833 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_4 \\\n", - "0 -0.168299 \n", - "1 -0.195702 \n", - "2 -0.105351 \n", - "3 -0.151631 \n", - "4 -0.171428 \n", - ".. ... \n", - "65 -0.136104 \n", - "66 -0.177088 \n", - "67 -0.180198 \n", - "68 -0.199951 \n", - "69 -0.177858 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_5 \\\n", - "0 7065.868591 \n", - "1 7133.726667 \n", - "2 6949.460302 \n", - "3 7002.600058 \n", - "4 7429.580019 \n", - ".. ... \n", - "65 7213.551738 \n", - "66 7180.863666 \n", - "67 7191.487748 \n", - "68 7230.734184 \n", - "69 7368.282965 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_5 \\\n", - "0 -0.206352 \n", - "1 -0.217937 \n", - "2 -0.186478 \n", - "3 -0.195550 \n", - "4 -0.268448 \n", - ".. ... \n", - "65 -0.179214 \n", - "66 -0.173870 \n", - "67 -0.175607 \n", - "68 -0.182023 \n", - "69 -0.204508 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_6 \\\n", - "0 7600.334465 \n", - "1 7427.707370 \n", - "2 7443.807580 \n", - "3 7370.100410 \n", - "4 6950.073027 \n", - ".. ... \n", - "65 7144.965343 \n", - "66 7178.534520 \n", - "67 7079.444666 \n", - "68 7129.372180 \n", - "69 7365.857893 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_6 \\\n", - "0 -0.297601 \n", - "1 -0.268129 \n", - "2 -0.270877 \n", - "3 -0.258293 \n", - "4 -0.186582 \n", - ".. ... \n", - "65 -0.168002 \n", - "66 -0.173490 \n", - "67 -0.157291 \n", - "68 -0.165453 \n", - "69 -0.204112 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_7 \\\n", - "0 7801.583405 \n", - "1 7647.662285 \n", - "2 7688.902103 \n", - "3 7607.256541 \n", - "4 6638.554918 \n", - ".. ... \n", - "65 7042.816321 \n", - "66 7282.307820 \n", - "67 6516.825963 \n", - "68 6842.169559 \n", - "69 7235.050354 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_7 \\\n", - "0 -0.331960 \n", - "1 -0.305681 \n", - "2 -0.312722 \n", - "3 -0.298783 \n", - "4 -0.133397 \n", - ".. ... \n", - "65 -0.151304 \n", - "66 -0.190454 \n", - "67 -0.065319 \n", - "68 -0.118503 \n", - "69 -0.182728 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_8 \\\n", - "0 7891.538915 \n", - "1 6644.842594 \n", - "2 7609.910506 \n", - "3 7853.630412 \n", - "4 6173.376633 \n", - ".. ... \n", - "65 6800.197216 \n", - "66 7045.106442 \n", - "67 6264.367986 \n", - "68 6660.330947 \n", - "69 6319.121485 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_8 \\\n", - "0 -0.347318 \n", - "1 -0.134470 \n", - "2 -0.299236 \n", - "3 -0.340846 \n", - "4 -0.053977 \n", - ".. ... \n", - "65 -0.111642 \n", - "66 -0.151678 \n", - "67 -0.024049 \n", - "68 -0.088778 \n", - "69 -0.033000 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_9 \\\n", - "0 6808.265390 \n", - "1 6017.978299 \n", - "2 6630.493971 \n", - "3 6995.518004 \n", - "4 5914.424323 \n", - ".. ... \n", - "65 6382.959926 \n", - "66 6518.753085 \n", - "67 6157.597738 \n", - "68 6404.891031 \n", - "69 6286.420406 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_9 \\\n", - "0 -0.162372 \n", - "1 -0.027446 \n", - "2 -0.132021 \n", - "3 -0.194341 \n", - "4 -0.009767 \n", - ".. ... \n", - "65 -0.043436 \n", - "66 -0.065634 \n", - "67 -0.006595 \n", - "68 -0.047021 \n", - "69 -0.027654 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_10 \\\n", - "0 5858.937117 \n", - "1 5858.937117 \n", - "2 5858.937117 \n", - "3 5858.937117 \n", - "4 5858.937117 \n", - ".. ... \n", - "65 6120.597362 \n", - "66 6120.597362 \n", - "67 6120.597362 \n", - "68 6120.597362 \n", - "69 6120.597362 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_10 \\\n", - "0 -0.000293 \n", - "1 -0.000293 \n", - "2 -0.000293 \n", - "3 -0.000293 \n", - "4 -0.000293 \n", - ".. ... \n", - "65 -0.000547 \n", - "66 -0.000547 \n", - "67 -0.000547 \n", - "68 -0.000547 \n", - "69 -0.000547 \n", - "\n", - " XGB_Regressor_test_subset_MSE_before_ablation \\\n", - "0 3557.841426 \n", - "1 3557.841426 \n", - "2 3557.841426 \n", - "3 3557.841426 \n", - "4 3557.841426 \n", - ".. ... \n", - "65 4204.805826 \n", - "66 4204.805826 \n", - "67 4204.805826 \n", - "68 4204.805826 \n", - "69 4204.805826 \n", - "\n", - " XGB_Regressor_test_subset_R_2_before_ablation \\\n", - "0 0.392572 \n", - "1 0.392572 \n", - "2 0.392572 \n", - "3 0.392572 \n", - "4 0.392572 \n", - ".. ... \n", - "65 0.312632 \n", - "66 0.312632 \n", - "67 0.312632 \n", - "68 0.312632 \n", - "69 0.312632 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_1 \\\n", - "0 3667.804311 \n", - "1 3683.765603 \n", - "2 3778.080730 \n", - "3 3801.245390 \n", - "4 3734.806153 \n", - ".. ... \n", - "65 4532.535944 \n", - "66 4539.464977 \n", - "67 4889.411544 \n", - "68 4832.984280 \n", - "69 4729.606612 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_1 \\\n", - "0 0.373798 \n", - "1 0.371073 \n", - "2 0.354970 \n", - "3 0.351015 \n", - "4 0.362359 \n", - ".. ... \n", - "65 0.259057 \n", - "66 0.257924 \n", - "67 0.200718 \n", - "68 0.209942 \n", - "69 0.226842 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_2 \\\n", - "0 5488.665183 \n", - "1 5290.726366 \n", - "2 4892.289472 \n", - "3 5113.264624 \n", - "4 5403.526760 \n", - ".. ... \n", - "65 4782.177425 \n", - "66 5165.616795 \n", - "67 5347.951315 \n", - "68 5039.114767 \n", - "69 5215.482242 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_2 \\\n", - "0 0.062923 \n", - "1 0.096717 \n", - "2 0.164742 \n", - "3 0.127015 \n", - "4 0.077459 \n", - ".. ... \n", - "65 0.218248 \n", - "66 0.155566 \n", - "67 0.125759 \n", - "68 0.176246 \n", - "69 0.147414 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_3 \\\n", - "0 5822.513161 \n", - "1 5859.991940 \n", - "2 5315.238570 \n", - "3 5682.000712 \n", - "4 5772.297106 \n", - ".. ... \n", - "65 5765.002999 \n", - "66 5612.968644 \n", - "67 5936.846928 \n", - "68 5945.292532 \n", - "69 5564.663910 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_3 \\\n", - "0 0.005925 \n", - "1 -0.000473 \n", - "2 0.092532 \n", - "3 0.029915 \n", - "4 0.014499 \n", - ".. ... \n", - "65 0.057583 \n", - "66 0.082437 \n", - "67 0.029491 \n", - "68 0.028111 \n", - "69 0.090333 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_4 \\\n", - "0 6037.023411 \n", - "1 5977.632024 \n", - "2 6000.091002 \n", - "3 5921.012439 \n", - "4 5861.365272 \n", - ".. ... \n", - "65 6616.765442 \n", - "66 6545.861568 \n", - "67 6838.552159 \n", - "68 7070.221311 \n", - "69 6160.474136 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_4 \\\n", - "0 -0.030698 \n", - "1 -0.020558 \n", - "2 -0.024392 \n", - "3 -0.010891 \n", - "4 -0.000708 \n", - ".. ... \n", - "65 -0.081656 \n", - "66 -0.070065 \n", - "67 -0.117912 \n", - "68 -0.155784 \n", - "69 -0.007065 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_5 \\\n", - "0 5949.756252 \n", - "1 5873.903853 \n", - "2 5852.535489 \n", - "3 5937.907776 \n", - "4 5670.640633 \n", - ".. ... \n", - "65 6540.407431 \n", - "66 6227.923582 \n", - "67 6813.001549 \n", - "68 7064.584402 \n", - "69 6270.020011 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_5 \\\n", - "0 -0.015799 \n", - "1 -0.002848 \n", - "2 0.000800 \n", - "3 -0.013776 \n", - "4 0.031855 \n", - ".. ... \n", - "65 -0.069174 \n", - "66 -0.018091 \n", - "67 -0.113735 \n", - "68 -0.154862 \n", - "69 -0.024973 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_6 \\\n", - "0 6223.517883 \n", - "1 6192.089129 \n", - "2 6006.108852 \n", - "3 6191.459971 \n", - "4 5949.960467 \n", - ".. ... \n", - "65 6560.380937 \n", - "66 6319.939748 \n", - "67 6800.556926 \n", - "68 6776.496533 \n", - "69 6650.748667 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_6 \\\n", - "0 -0.062538 \n", - "1 -0.057172 \n", - "2 -0.025420 \n", - "3 -0.057065 \n", - "4 -0.015834 \n", - ".. ... \n", - "65 -0.072439 \n", - "66 -0.033133 \n", - "67 -0.111701 \n", - "68 -0.107768 \n", - "69 -0.087211 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_7 \\\n", - "0 6210.989156 \n", - "1 6217.811390 \n", - "2 6047.176807 \n", - "3 6368.673963 \n", - "4 6188.619490 \n", - ".. ... \n", - "65 6541.498076 \n", - "66 6328.347984 \n", - "67 6317.283208 \n", - "68 6499.619097 \n", - "69 6412.670943 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_7 \\\n", - "0 -0.060399 \n", - "1 -0.061564 \n", - "2 -0.032431 \n", - "3 -0.087320 \n", - "4 -0.056580 \n", - ".. ... \n", - "65 -0.069352 \n", - "66 -0.034508 \n", - "67 -0.032699 \n", - "68 -0.062506 \n", - "69 -0.048292 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_8 \\\n", - "0 6244.319537 \n", - "1 6247.683148 \n", - "2 6096.222651 \n", - "3 6357.922031 \n", - "4 6274.798143 \n", - ".. ... \n", - "65 6445.427868 \n", - "66 6309.849532 \n", - "67 6103.421818 \n", - "68 6431.116718 \n", - "69 6193.253786 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_8 \\\n", - "0 -0.066089 \n", - "1 -0.066664 \n", - "2 -0.040805 \n", - "3 -0.085485 \n", - "4 -0.071293 \n", - ".. ... \n", - "65 -0.053647 \n", - "66 -0.031484 \n", - "67 0.002261 \n", - "68 -0.051308 \n", - "69 -0.012424 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_9 \\\n", - "0 6324.119549 \n", - "1 6292.015930 \n", - "2 6272.343509 \n", - "3 6331.814400 \n", - "4 6275.738620 \n", - ".. ... \n", - "65 6279.188476 \n", - "66 6210.926311 \n", - "67 6183.841461 \n", - "68 6231.886900 \n", - "69 6116.982147 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_9 \\\n", - "0 -0.079714 \n", - "1 -0.074233 \n", - "2 -0.070874 \n", - "3 -0.081027 \n", - "4 -0.071454 \n", - ".. ... \n", - "65 -0.026472 \n", - "66 -0.015313 \n", - "67 -0.010885 \n", - "68 -0.018739 \n", - "69 0.000044 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_10 \\\n", - "0 6281.215482 \n", - "1 6281.215482 \n", - "2 6281.215482 \n", - "3 6281.215482 \n", - "4 6281.215482 \n", - ".. ... \n", - "65 6117.889522 \n", - "66 6117.889522 \n", - "67 6117.889522 \n", - "68 6117.889522 \n", - "69 6117.889522 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_10 \\\n", - "0 -0.072389 \n", - "1 -0.072389 \n", - "2 -0.072389 \n", - "3 -0.072389 \n", - "4 -0.072389 \n", - ".. ... \n", - "65 -0.000104 \n", - "66 -0.000104 \n", - "67 -0.000104 \n", - "68 -0.000104 \n", - "69 -0.000104 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_before_ablation \\\n", - "0 2541.457199 \n", - "1 2541.457199 \n", - "2 2541.457199 \n", - "3 2541.457199 \n", - "4 2541.457199 \n", - ".. ... \n", - "65 3474.597817 \n", - "66 3474.597817 \n", - "67 3474.597817 \n", - "68 3474.597817 \n", - "69 3474.597817 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_before_ablation \\\n", - "0 0.566098 \n", - "1 0.566098 \n", - "2 0.566098 \n", - "3 0.566098 \n", - "4 0.566098 \n", - ".. ... \n", - "65 0.432000 \n", - "66 0.432000 \n", - "67 0.432000 \n", - "68 0.432000 \n", - "69 0.432000 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_1 \\\n", - "0 3573.380509 \n", - "1 3598.856442 \n", - "2 3376.239077 \n", - "3 3427.442019 \n", - "4 3503.461554 \n", - ".. ... \n", - "65 4204.940450 \n", - "66 4200.995461 \n", - "67 4407.621208 \n", - "68 4375.022227 \n", - "69 4248.412261 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_1 \\\n", - "0 0.389919 \n", - "1 0.385569 \n", - "2 0.423576 \n", - "3 0.414835 \n", - "4 0.401856 \n", - ".. ... \n", - "65 0.312610 \n", - "66 0.313255 \n", - "67 0.279477 \n", - "68 0.284806 \n", - "69 0.305503 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_2 \\\n", - "0 4710.979622 \n", - "1 4652.267727 \n", - "2 4407.170549 \n", - "3 4648.150206 \n", - "4 4715.650971 \n", - ".. ... \n", - "65 4812.357611 \n", - "66 5148.796361 \n", - "67 5176.857967 \n", - "68 5125.537268 \n", - "69 5171.726569 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_2 \\\n", - "0 0.195697 \n", - "1 0.205721 \n", - "2 0.247566 \n", - "3 0.206424 \n", - "4 0.194899 \n", - ".. ... \n", - "65 0.213314 \n", - "66 0.158316 \n", - "67 0.153728 \n", - "68 0.162118 \n", - "69 0.154567 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_3 \\\n", - "0 5465.488800 \n", - "1 5453.579322 \n", - "2 5038.273900 \n", - "3 5345.929388 \n", - "4 5419.732700 \n", - ".. ... \n", - "65 5643.187091 \n", - "66 5749.118505 \n", - "67 5889.167837 \n", - "68 5746.818059 \n", - "69 5755.292147 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_3 \\\n", - "0 0.066880 \n", - "1 0.068913 \n", - "2 0.139818 \n", - "3 0.087292 \n", - "4 0.074692 \n", - ".. ... \n", - "65 0.077497 \n", - "66 0.060180 \n", - "67 0.037286 \n", - "68 0.060556 \n", - "69 0.059171 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_4 \\\n", - "0 5856.644776 \n", - "1 5852.723797 \n", - "2 5544.234938 \n", - "3 5749.058984 \n", - "4 5622.243735 \n", - ".. ... \n", - "65 6067.666325 \n", - "66 6190.579480 \n", - "67 6159.425021 \n", - "68 6268.233739 \n", - "69 6204.660479 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_4 \\\n", - "0 0.000098 \n", - "1 0.000768 \n", - "2 0.053436 \n", - "3 0.018466 \n", - "4 0.040117 \n", - ".. ... \n", - "65 0.008106 \n", - "66 -0.011987 \n", - "67 -0.006894 \n", - "68 -0.024681 \n", - "69 -0.014289 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_5 \\\n", - "0 5847.537802 \n", - "1 5860.980468 \n", - "2 5694.140361 \n", - "3 5839.309886 \n", - "4 5756.416526 \n", - ".. ... \n", - "65 6125.743285 \n", - "66 6151.965930 \n", - "67 6183.331053 \n", - "68 6296.207000 \n", - "69 6181.820292 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_5 \\\n", - "0 0.001653 \n", - "1 -0.000642 \n", - "2 0.027842 \n", - "3 0.003058 \n", - "4 0.017210 \n", - ".. ... \n", - "65 -0.001388 \n", - "66 -0.005674 \n", - "67 -0.010802 \n", - "68 -0.029254 \n", - "69 -0.010555 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_6 \\\n", - "0 5890.341430 \n", - "1 5901.633728 \n", - "2 5835.593571 \n", - "3 5852.236219 \n", - "4 5820.147416 \n", - ".. ... \n", - "65 6196.138333 \n", - "66 6235.536408 \n", - "67 6178.665567 \n", - "68 6385.842720 \n", - "69 6215.849342 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_6 \\\n", - "0 -0.005655 \n", - "1 -0.007583 \n", - "2 0.003692 \n", - "3 0.000851 \n", - "4 0.006329 \n", - ".. ... \n", - "65 -0.012895 \n", - "66 -0.019336 \n", - "67 -0.010039 \n", - "68 -0.043907 \n", - "69 -0.016118 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_7 \\\n", - "0 5891.401596 \n", - "1 5867.400592 \n", - "2 5840.966477 \n", - "3 5894.663360 \n", - "4 5828.767393 \n", - ".. ... \n", - "65 6238.070629 \n", - "66 6349.831588 \n", - "67 6132.201088 \n", - "68 6292.629363 \n", - "69 6231.571125 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_7 \\\n", - "0 -0.005836 \n", - "1 -0.001738 \n", - "2 0.002775 \n", - "3 -0.006393 \n", - "4 0.004858 \n", - ".. ... \n", - "65 -0.019750 \n", - "66 -0.038020 \n", - "67 -0.002443 \n", - "68 -0.028669 \n", - "69 -0.018688 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_8 \\\n", - "0 5870.056142 \n", - "1 5842.365202 \n", - "2 5844.553785 \n", - "3 5897.950642 \n", - "4 5829.349967 \n", - ".. ... \n", - "65 6324.483467 \n", - "66 6324.912346 \n", - "67 6152.552330 \n", - "68 6221.064362 \n", - "69 6159.118213 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_8 \\\n", - "0 -0.002192 \n", - "1 0.002536 \n", - "2 0.002162 \n", - "3 -0.006954 \n", - "4 0.004758 \n", - ".. ... \n", - "65 -0.033876 \n", - "66 -0.033946 \n", - "67 -0.005770 \n", - "68 -0.016970 \n", - "69 -0.006844 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_9 \\\n", - "0 5882.308542 \n", - "1 5865.341473 \n", - "2 5840.897143 \n", - "3 5878.752420 \n", - "4 5860.065543 \n", - ".. ... \n", - "65 6261.602595 \n", - "66 6213.181953 \n", - "67 6137.879384 \n", - "68 6135.388651 \n", - "69 6128.387250 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_9 \\\n", - "0 -0.004283 \n", - "1 -0.001387 \n", - "2 0.002787 \n", - "3 -0.003676 \n", - "4 -0.000486 \n", - ".. ... \n", - "65 -0.023597 \n", - "66 -0.015682 \n", - "67 -0.003372 \n", - "68 -0.002965 \n", - "69 -0.001820 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_10 \\\n", - "0 5862.875775 \n", - "1 5862.875775 \n", - "2 5862.875775 \n", - "3 5862.875775 \n", - "4 5862.875775 \n", - ".. ... \n", - "65 6120.715936 \n", - "66 6120.715936 \n", - "67 6120.715936 \n", - "68 6120.715936 \n", - "69 6120.715936 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_10 \\\n", - "0 -0.000966 \n", - "1 -0.000966 \n", - "2 -0.000966 \n", - "3 -0.000966 \n", - "4 -0.000966 \n", - ".. ... \n", - "65 -0.000566 \n", - "66 -0.000566 \n", - "67 -0.000566 \n", - "68 -0.000566 \n", - "69 -0.000566 \n", - "\n", - " test_subset_ablation_time \\\n", - "0 8.213507 \n", - "1 8.211402 \n", - "2 8.454271 \n", - "3 8.288917 \n", - "4 8.337007 \n", - ".. ... \n", - "65 9.552238 \n", - "66 9.366884 \n", - "67 9.595195 \n", - "68 9.291578 \n", - "69 9.422463 \n", - "\n", - " RF_Regressor_test_subset_MSE_before_ablation_blank \\\n", - "0 5880.887238 \n", - "1 5880.887238 \n", - "2 5880.887238 \n", - "3 5880.887238 \n", - "4 5880.887238 \n", - ".. ... \n", - "65 6121.822228 \n", - "66 6121.822228 \n", - "67 6121.822228 \n", - "68 6121.822228 \n", - "69 6121.822228 \n", - "\n", - " RF_Regressor_test_subset_R_2_before_ablation_blank \\\n", - "0 -0.004041 \n", - "1 -0.004041 \n", - "2 -0.004041 \n", - "3 -0.004041 \n", - "4 -0.004041 \n", - ".. ... \n", - "65 -0.000747 \n", - "66 -0.000747 \n", - "67 -0.000747 \n", - "68 -0.000747 \n", - "69 -0.000747 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_1_blank \\\n", - "0 3912.099558 \n", - "1 3959.334316 \n", - "2 4289.789706 \n", - "3 4146.074898 \n", - "4 4016.926503 \n", - ".. ... \n", - "65 4565.198469 \n", - "66 4574.417632 \n", - "67 4277.329012 \n", - "68 4323.754030 \n", - "69 4489.403810 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_1_blank \\\n", - "0 0.332089 \n", - "1 0.324025 \n", - "2 0.267606 \n", - "3 0.292143 \n", - "4 0.314192 \n", - ".. ... \n", - "65 0.253718 \n", - "66 0.252211 \n", - "67 0.300776 \n", - "68 0.293187 \n", - "69 0.266108 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_2_blank \\\n", - "0 3260.557037 \n", - "1 3306.352322 \n", - "2 3279.532842 \n", - "3 3196.169721 \n", - "4 3239.020925 \n", - ".. ... \n", - "65 4202.993784 \n", - "66 3941.660325 \n", - "67 3914.729195 \n", - "68 4059.848931 \n", - "69 3884.769653 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_2_blank \\\n", - "0 0.443327 \n", - "1 0.435508 \n", - "2 0.440087 \n", - "3 0.454320 \n", - "4 0.447004 \n", - ".. ... \n", - "65 0.312928 \n", - "66 0.355649 \n", - "67 0.360051 \n", - "68 0.336328 \n", - "69 0.364949 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_3_blank \\\n", - "0 2963.289802 \n", - "1 2983.716930 \n", - "2 2939.586906 \n", - "3 2932.924809 \n", - "4 3018.744971 \n", - ".. ... \n", - "65 3791.454016 \n", - "66 3882.135957 \n", - "67 3751.300613 \n", - "68 3856.213349 \n", - "69 3566.339313 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_3_blank \\\n", - "0 0.494079 \n", - "1 0.490592 \n", - "2 0.498126 \n", - "3 0.499263 \n", - "4 0.484611 \n", - ".. ... \n", - "65 0.380203 \n", - "66 0.365379 \n", - "67 0.386767 \n", - "68 0.369617 \n", - "69 0.417003 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_4_blank \\\n", - "0 2835.532455 \n", - "1 2762.578581 \n", - "2 2790.880643 \n", - "3 2779.980132 \n", - "4 2833.885025 \n", - ".. ... \n", - "65 3482.538323 \n", - "66 3490.555982 \n", - "67 3529.894033 \n", - "68 3459.946577 \n", - "69 3573.502718 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_4_blank \\\n", - "0 0.515891 \n", - "1 0.528346 \n", - "2 0.523514 \n", - "3 0.525375 \n", - "4 0.516172 \n", - ".. ... \n", - "65 0.430702 \n", - "66 0.429392 \n", - "67 0.422961 \n", - "68 0.434395 \n", - "69 0.415832 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_5_blank \\\n", - "0 2839.168591 \n", - "1 2770.645622 \n", - "2 2724.115230 \n", - "3 2787.119764 \n", - "4 2762.022798 \n", - ".. ... \n", - "65 3517.779677 \n", - "66 3537.260652 \n", - "67 3488.042689 \n", - "68 3542.798313 \n", - "69 3729.050354 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_5_blank \\\n", - "0 0.515270 \n", - "1 0.526969 \n", - "2 0.534913 \n", - "3 0.524157 \n", - "4 0.528441 \n", - ".. ... \n", - "65 0.424941 \n", - "66 0.421757 \n", - "67 0.429803 \n", - "68 0.420852 \n", - "69 0.390405 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_6_blank \\\n", - "0 2809.721585 \n", - "1 2691.311010 \n", - "2 2742.063657 \n", - "3 2798.497189 \n", - "4 2744.015733 \n", - ".. ... \n", - "65 3511.064884 \n", - "66 3553.312832 \n", - "67 3548.661541 \n", - "68 3499.935693 \n", - "69 3612.189687 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_6_blank \\\n", - "0 0.520298 \n", - "1 0.540514 \n", - "2 0.531849 \n", - "3 0.522214 \n", - "4 0.531516 \n", - ".. ... \n", - "65 0.426039 \n", - "66 0.419133 \n", - "67 0.419893 \n", - "68 0.427858 \n", - "69 0.409508 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_7_blank \\\n", - "0 2729.778409 \n", - "1 2688.691704 \n", - "2 2696.681777 \n", - "3 2728.217519 \n", - "4 2727.651489 \n", - ".. ... \n", - "65 3523.610302 \n", - "66 3495.945755 \n", - "67 3601.120556 \n", - "68 3587.957177 \n", - "69 3554.957763 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_7_blank \\\n", - "0 0.533946 \n", - "1 0.540961 \n", - "2 0.539597 \n", - "3 0.534213 \n", - "4 0.534310 \n", - ".. ... \n", - "65 0.423988 \n", - "66 0.428511 \n", - "67 0.411317 \n", - "68 0.413469 \n", - "69 0.418864 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_8_blank \\\n", - "0 2692.894402 \n", - "1 2693.598901 \n", - "2 2691.911501 \n", - "3 2703.871094 \n", - "4 2708.425989 \n", - ".. ... \n", - "65 3475.624613 \n", - "66 3496.831801 \n", - "67 3560.828284 \n", - "68 3584.258787 \n", - "69 3565.914084 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_8_blank \\\n", - "0 0.540244 \n", - "1 0.540123 \n", - "2 0.540411 \n", - "3 0.538370 \n", - "4 0.537592 \n", - ".. ... \n", - "65 0.431833 \n", - "66 0.428366 \n", - "67 0.417904 \n", - "68 0.414074 \n", - "69 0.417073 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_9_blank \\\n", - "0 2680.209497 \n", - "1 2679.829203 \n", - "2 2709.266684 \n", - "3 2668.112464 \n", - "4 2670.802856 \n", - ".. ... \n", - "65 3504.931544 \n", - "66 3529.774799 \n", - "67 3545.626442 \n", - "68 3516.033741 \n", - "69 3533.556383 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_9_blank \\\n", - "0 0.542409 \n", - "1 0.542474 \n", - "2 0.537448 \n", - "3 0.544475 \n", - "4 0.544015 \n", - ".. ... \n", - "65 0.427042 \n", - "66 0.422980 \n", - "67 0.420389 \n", - "68 0.425227 \n", - "69 0.422362 \n", - "\n", - " RF_Regressor_test_subset_MSE_after_ablation_10_blank \\\n", - "0 2679.064560 \n", - "1 2679.064560 \n", - "2 2679.064560 \n", - "3 2679.064560 \n", - "4 2679.064560 \n", - ".. ... \n", - "65 3509.831927 \n", - "66 3509.831927 \n", - "67 3509.831927 \n", - "68 3509.831927 \n", - "69 3509.831927 \n", - "\n", - " RF_Regressor_test_subset_R_2_after_ablation_10_blank \\\n", - "0 0.542605 \n", - "1 0.542605 \n", - "2 0.542605 \n", - "3 0.542605 \n", - "4 0.542605 \n", - ".. ... \n", - "65 0.426241 \n", - "66 0.426241 \n", - "67 0.426241 \n", - "68 0.426241 \n", - "69 0.426241 \n", - "\n", - " Linear_test_subset_MSE_before_ablation_blank \\\n", - "0 5857.395491 \n", - "1 5857.395491 \n", - "2 5857.395491 \n", - "3 5857.395491 \n", - "4 5857.395491 \n", - ".. ... \n", - "65 6124.876390 \n", - "66 6124.876390 \n", - "67 6124.876390 \n", - "68 6124.876390 \n", - "69 6124.876390 \n", - "\n", - " Linear_test_subset_R_2_before_ablation_blank \\\n", - "0 -0.000030 \n", - "1 -0.000030 \n", - "2 -0.000030 \n", - "3 -0.000030 \n", - "4 -0.000030 \n", - ".. ... \n", - "65 -0.001246 \n", - "66 -0.001246 \n", - "67 -0.001246 \n", - "68 -0.001246 \n", - "69 -0.001246 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_1_blank \\\n", - "0 3434.906829 \n", - "1 3478.443305 \n", - "2 3929.424199 \n", - "3 3717.936495 \n", - "4 3492.276791 \n", - ".. ... \n", - "65 4533.065114 \n", - "66 4525.897079 \n", - "67 4181.487573 \n", - "68 4178.413687 \n", - "69 4415.673403 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_1_blank \\\n", - "0 0.413560 \n", - "1 0.406127 \n", - "2 0.329131 \n", - "3 0.365239 \n", - "4 0.403765 \n", - ".. ... \n", - "65 0.258971 \n", - "66 0.260142 \n", - "67 0.316444 \n", - "68 0.316946 \n", - "69 0.278161 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_2_blank \\\n", - "0 2906.874850 \n", - "1 3016.622857 \n", - "2 3133.165545 \n", - "3 2915.505150 \n", - "4 2955.758856 \n", - ".. ... \n", - "65 4036.250074 \n", - "66 3735.627267 \n", - "67 3802.852124 \n", - "68 3780.783134 \n", - "69 3927.760143 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_2_blank \\\n", - "0 0.503711 \n", - "1 0.484974 \n", - "2 0.465076 \n", - "3 0.502237 \n", - "4 0.495365 \n", - ".. ... \n", - "65 0.340186 \n", - "66 0.389329 \n", - "67 0.378340 \n", - "68 0.381948 \n", - "69 0.357921 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_3_blank \\\n", - "0 2776.668307 \n", - "1 2817.417330 \n", - "2 3011.997732 \n", - "3 2825.997755 \n", - "4 2686.976279 \n", - ".. ... \n", - "65 3657.157989 \n", - "66 3706.773647 \n", - "67 3592.998939 \n", - "68 3531.958353 \n", - "69 3539.162252 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_3_blank \\\n", - "0 0.525941 \n", - "1 0.518984 \n", - "2 0.485763 \n", - "3 0.517519 \n", - "4 0.541254 \n", - ".. ... \n", - "65 0.402157 \n", - "66 0.394046 \n", - "67 0.412645 \n", - "68 0.422624 \n", - "69 0.421446 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_4_blank \\\n", - "0 3004.535201 \n", - "1 2949.727822 \n", - "2 3112.891948 \n", - "3 3190.456890 \n", - "4 2958.235627 \n", - ".. ... \n", - "65 3432.644180 \n", - "66 3391.760003 \n", - "67 3269.047589 \n", - "68 3439.178531 \n", - "69 3418.743202 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_4_blank \\\n", - "0 0.487037 \n", - "1 0.496395 \n", - "2 0.468538 \n", - "3 0.455295 \n", - "4 0.494942 \n", - ".. ... \n", - "65 0.438859 \n", - "66 0.445542 \n", - "67 0.465602 \n", - "68 0.437790 \n", - "69 0.441131 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_5_blank \\\n", - "0 3040.159140 \n", - "1 3027.717688 \n", - "2 3124.456898 \n", - "3 3183.917848 \n", - "4 3127.977014 \n", - ".. ... \n", - "65 3416.521741 \n", - "66 3532.284395 \n", - "67 3400.390530 \n", - "68 3468.716167 \n", - "69 3358.897459 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_5_blank \\\n", - "0 0.480955 \n", - "1 0.483079 \n", - "2 0.466563 \n", - "3 0.456411 \n", - "4 0.465962 \n", - ".. ... \n", - "65 0.441494 \n", - "66 0.422570 \n", - "67 0.444131 \n", - "68 0.432962 \n", - "69 0.450914 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_6_blank \\\n", - "0 3226.471955 \n", - "1 3171.852993 \n", - "2 3230.897294 \n", - "3 3062.527867 \n", - "4 3240.538911 \n", - ".. ... \n", - "65 3338.099275 \n", - "66 3430.875697 \n", - "67 3462.299783 \n", - "68 3543.240528 \n", - "69 3510.708076 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_6_blank \\\n", - "0 0.449146 \n", - "1 0.458471 \n", - "2 0.448391 \n", - "3 0.477136 \n", - "4 0.446745 \n", - ".. ... \n", - "65 0.454314 \n", - "66 0.439148 \n", - "67 0.434011 \n", - "68 0.420779 \n", - "69 0.426097 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_7_blank \\\n", - "0 3279.136428 \n", - "1 2960.568561 \n", - "2 3196.423926 \n", - "3 3114.178465 \n", - "4 2845.779006 \n", - ".. ... \n", - "65 3401.714814 \n", - "66 3452.640648 \n", - "67 3561.227406 \n", - "68 3573.537624 \n", - "69 3617.307137 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_7_blank \\\n", - "0 0.440155 \n", - "1 0.494544 \n", - "2 0.454276 \n", - "3 0.468318 \n", - "4 0.514142 \n", - ".. ... \n", - "65 0.443915 \n", - "66 0.435590 \n", - "67 0.417839 \n", - "68 0.415826 \n", - "69 0.408671 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_8_blank \\\n", - "0 3209.250097 \n", - "1 2674.323512 \n", - "2 3327.729085 \n", - "3 3011.890001 \n", - "4 2691.562055 \n", - ".. ... \n", - "65 3414.243011 \n", - "66 3565.410982 \n", - "67 3545.027373 \n", - "68 3493.357573 \n", - "69 3740.467102 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_8_blank \\\n", - "0 0.452086 \n", - "1 0.543414 \n", - "2 0.431859 \n", - "3 0.485782 \n", - "4 0.540471 \n", - ".. ... \n", - "65 0.441867 \n", - "66 0.417155 \n", - "67 0.420487 \n", - "68 0.428934 \n", - "69 0.388538 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_9_blank \\\n", - "0 2989.483161 \n", - "1 2693.430849 \n", - "2 3111.069912 \n", - "3 2927.143396 \n", - "4 2656.686546 \n", - ".. ... \n", - "65 3549.325521 \n", - "66 3591.843876 \n", - "67 3560.528646 \n", - "68 3446.529715 \n", - "69 3526.414124 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_9_blank \\\n", - "0 0.489607 \n", - "1 0.540152 \n", - "2 0.468849 \n", - "3 0.500250 \n", - "4 0.546425 \n", - ".. ... \n", - "65 0.419785 \n", - "66 0.412834 \n", - "67 0.417953 \n", - "68 0.436589 \n", - "69 0.423530 \n", - "\n", - " Linear_test_subset_MSE_after_ablation_10_blank \\\n", - "0 2565.576138 \n", - "1 2565.576138 \n", - "2 2565.576138 \n", - "3 2565.576138 \n", - "4 2565.576138 \n", - ".. ... \n", - "65 3546.190517 \n", - "66 3546.190517 \n", - "67 3546.190517 \n", - "68 3546.190517 \n", - "69 3546.190517 \n", - "\n", - " Linear_test_subset_R_2_after_ablation_10_blank \\\n", - "0 0.561981 \n", - "1 0.561981 \n", - "2 0.561981 \n", - "3 0.561981 \n", - "4 0.561981 \n", - ".. ... \n", - "65 0.420297 \n", - "66 0.420297 \n", - "67 0.420297 \n", - "68 0.420297 \n", - "69 0.420297 \n", - "\n", - " XGB_Regressor_test_subset_MSE_before_ablation_blank \\\n", - "0 6281.215482 \n", - "1 6281.215482 \n", - "2 6281.215482 \n", - "3 6281.215482 \n", - "4 6281.215482 \n", - ".. ... \n", - "65 6117.889522 \n", - "66 6117.889522 \n", - "67 6117.889522 \n", - "68 6117.889522 \n", - "69 6117.889522 \n", - "\n", - " XGB_Regressor_test_subset_R_2_before_ablation_blank \\\n", - "0 -0.072389 \n", - "1 -0.072389 \n", - "2 -0.072389 \n", - "3 -0.072389 \n", - "4 -0.072389 \n", - ".. ... \n", - "65 -0.000104 \n", - "66 -0.000104 \n", - "67 -0.000104 \n", - "68 -0.000104 \n", - "69 -0.000104 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_1_blank \\\n", - "0 4078.941418 \n", - "1 4219.124838 \n", - "2 4787.370582 \n", - "3 5063.398973 \n", - "4 4525.469962 \n", - ".. ... \n", - "65 4630.301104 \n", - "66 4725.567058 \n", - "67 4273.624084 \n", - "68 4444.060554 \n", - "69 4699.814977 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_1_blank \\\n", - "0 0.303604 \n", - "1 0.279671 \n", - "2 0.182655 \n", - "3 0.135529 \n", - "4 0.227369 \n", - ".. ... \n", - "65 0.243075 \n", - "66 0.227502 \n", - "67 0.301382 \n", - "68 0.273520 \n", - "69 0.231712 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_2_blank \\\n", - "0 4141.802429 \n", - "1 4408.094032 \n", - "2 4180.157570 \n", - "3 4167.734211 \n", - "4 4331.440232 \n", - ".. ... \n", - "65 4461.578467 \n", - "66 3831.850861 \n", - "67 4303.050144 \n", - "68 4504.391659 \n", - "69 4347.479047 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_2_blank \\\n", - "0 0.292872 \n", - "1 0.247408 \n", - "2 0.286324 \n", - "3 0.288445 \n", - "4 0.260496 \n", - ".. ... \n", - "65 0.270657 \n", - "66 0.373600 \n", - "67 0.296572 \n", - "68 0.263658 \n", - "69 0.289309 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_3_blank \\\n", - "0 4171.239813 \n", - "1 4260.803524 \n", - "2 4145.383113 \n", - "3 4096.191310 \n", - "4 4152.517996 \n", - ".. ... \n", - "65 4086.940877 \n", - "66 4110.292001 \n", - "67 3672.449170 \n", - "68 3900.837880 \n", - "69 3463.455559 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_3_blank \\\n", - "0 0.287846 \n", - "1 0.272555 \n", - "2 0.292261 \n", - "3 0.300659 \n", - "4 0.291043 \n", - ".. ... \n", - "65 0.331899 \n", - "66 0.328082 \n", - "67 0.399657 \n", - "68 0.362322 \n", - "69 0.433822 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_4_blank \\\n", - "0 4144.247041 \n", - "1 4036.757481 \n", - "2 3919.094473 \n", - "3 4113.813000 \n", - "4 3953.368818 \n", - ".. ... \n", - "65 3867.554025 \n", - "66 3979.834737 \n", - "67 3776.282103 \n", - "68 3990.586257 \n", - "69 3758.003038 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_4_blank \\\n", - "0 0.292455 \n", - "1 0.310807 \n", - "2 0.330895 \n", - "3 0.297651 \n", - "4 0.325043 \n", - ".. ... \n", - "65 0.367763 \n", - "66 0.349408 \n", - "67 0.382683 \n", - "68 0.347651 \n", - "69 0.385672 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_5_blank \\\n", - "0 4009.638211 \n", - "1 4051.713547 \n", - "2 3995.242224 \n", - "3 4134.660106 \n", - "4 4132.817470 \n", - ".. ... \n", - "65 4124.247124 \n", - "66 4293.630985 \n", - "67 4002.617602 \n", - "68 4186.632856 \n", - "69 4026.467096 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_5_blank \\\n", - "0 0.315437 \n", - "1 0.308253 \n", - "2 0.317894 \n", - "3 0.294092 \n", - "4 0.294406 \n", - ".. ... \n", - "65 0.325801 \n", - "66 0.298111 \n", - "67 0.345684 \n", - "68 0.315603 \n", - "69 0.341785 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_6_blank \\\n", - "0 3955.399010 \n", - "1 3997.748531 \n", - "2 3941.916833 \n", - "3 4094.226010 \n", - "4 4087.757952 \n", - ".. ... \n", - "65 4247.664086 \n", - "66 4481.075995 \n", - "67 4119.722671 \n", - "68 4288.927715 \n", - "69 4151.956487 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_6_blank \\\n", - "0 0.324697 \n", - "1 0.317467 \n", - "2 0.326999 \n", - "3 0.300995 \n", - "4 0.302099 \n", - ".. ... \n", - "65 0.305626 \n", - "66 0.267469 \n", - "67 0.326541 \n", - "68 0.298880 \n", - "69 0.321271 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_7_blank \\\n", - "0 3978.358871 \n", - "1 4059.233572 \n", - "2 3799.305580 \n", - "3 4027.831573 \n", - "4 4091.054772 \n", - ".. ... \n", - "65 4175.739512 \n", - "66 4270.511124 \n", - "67 4339.266432 \n", - "68 4495.201911 \n", - "69 4270.034114 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_7_blank \\\n", - "0 0.320777 \n", - "1 0.306969 \n", - "2 0.351347 \n", - "3 0.312330 \n", - "4 0.301536 \n", - ".. ... \n", - "65 0.317383 \n", - "66 0.301891 \n", - "67 0.290651 \n", - "68 0.265160 \n", - "69 0.301969 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_8_blank \\\n", - "0 3902.886409 \n", - "1 3948.713206 \n", - "2 3577.147009 \n", - "3 3914.307020 \n", - "4 3889.639927 \n", - ".. ... \n", - "65 4071.541941 \n", - "66 4195.289596 \n", - "67 4422.473066 \n", - "68 4377.737177 \n", - "69 4474.321171 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_8_blank \\\n", - "0 0.333662 \n", - "1 0.325838 \n", - "2 0.389276 \n", - "3 0.331712 \n", - "4 0.335924 \n", - ".. ... \n", - "65 0.334417 \n", - "66 0.314187 \n", - "67 0.277049 \n", - "68 0.284362 \n", - "69 0.268574 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_9_blank \\\n", - "0 3661.068636 \n", - "1 3744.098461 \n", - "2 3465.659544 \n", - "3 3728.641417 \n", - "4 3682.165264 \n", - ".. ... \n", - "65 4087.077584 \n", - "66 4229.613224 \n", - "67 4409.495930 \n", - "68 4291.562443 \n", - "69 4369.924399 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_9_blank \\\n", - "0 0.374948 \n", - "1 0.360772 \n", - "2 0.408310 \n", - "3 0.363411 \n", - "4 0.371346 \n", - ".. ... \n", - "65 0.331877 \n", - "66 0.308576 \n", - "67 0.279171 \n", - "68 0.298450 \n", - "69 0.285640 \n", - "\n", - " XGB_Regressor_test_subset_MSE_after_ablation_10_blank \\\n", - "0 3557.841426 \n", - "1 3557.841426 \n", - "2 3557.841426 \n", - "3 3557.841426 \n", - "4 3557.841426 \n", - ".. ... \n", - "65 4204.805826 \n", - "66 4204.805826 \n", - "67 4204.805826 \n", - "68 4204.805826 \n", - "69 4204.805826 \n", - "\n", - " XGB_Regressor_test_subset_R_2_after_ablation_10_blank \\\n", - "0 0.392572 \n", - "1 0.392572 \n", - "2 0.392572 \n", - "3 0.392572 \n", - "4 0.392572 \n", - ".. ... \n", - "65 0.312632 \n", - "66 0.312632 \n", - "67 0.312632 \n", - "68 0.312632 \n", - "69 0.312632 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_before_ablation_blank \\\n", - "0 5862.016707 \n", - "1 5862.016707 \n", - "2 5862.016707 \n", - "3 5862.016707 \n", - "4 5862.016707 \n", - ".. ... \n", - "65 6118.188308 \n", - "66 6118.188308 \n", - "67 6118.188308 \n", - "68 6118.188308 \n", - "69 6118.188308 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_before_ablation_blank \\\n", - "0 -0.000819 \n", - "1 -0.000819 \n", - "2 -0.000819 \n", - "3 -0.000819 \n", - "4 -0.000819 \n", - ".. ... \n", - "65 -0.000153 \n", - "66 -0.000153 \n", - "67 -0.000153 \n", - "68 -0.000153 \n", - "69 -0.000153 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_1_blank \\\n", - "0 3776.067195 \n", - "1 3792.229582 \n", - "2 4157.290029 \n", - "3 4012.823317 \n", - "4 3840.160816 \n", - ".. ... \n", - "65 4554.336197 \n", - "66 4570.576428 \n", - "67 4312.856796 \n", - "68 4347.438699 \n", - "69 4473.629476 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_1_blank \\\n", - "0 0.355314 \n", - "1 0.352555 \n", - "2 0.290228 \n", - "3 0.314893 \n", - "4 0.344371 \n", - ".. ... \n", - "65 0.255493 \n", - "66 0.252839 \n", - "67 0.294968 \n", - "68 0.289315 \n", - "69 0.268687 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_2_blank \\\n", - "0 3002.695954 \n", - "1 3092.988693 \n", - "2 3194.473744 \n", - "3 3056.976176 \n", - "4 3031.188396 \n", - ".. ... \n", - "65 4087.341630 \n", - "66 3806.828252 \n", - "67 3869.397091 \n", - "68 3913.814050 \n", - "69 3891.952087 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_2_blank \\\n", - "0 0.487351 \n", - "1 0.471936 \n", - "2 0.454609 \n", - "3 0.478084 \n", - "4 0.482487 \n", - ".. ... \n", - "65 0.331834 \n", - "66 0.377690 \n", - "67 0.367462 \n", - "68 0.360201 \n", - "69 0.363775 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_3_blank \\\n", - "0 2704.167022 \n", - "1 2733.015815 \n", - "2 2930.804827 \n", - "3 2770.118982 \n", - "4 2722.696131 \n", - ".. ... \n", - "65 3669.516753 \n", - "66 3759.608774 \n", - "67 3620.284900 \n", - "68 3635.666334 \n", - "69 3520.269715 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_3_blank \\\n", - "0 0.538319 \n", - "1 0.533394 \n", - "2 0.499625 \n", - "3 0.527059 \n", - "4 0.535156 \n", - ".. ... \n", - "65 0.400137 \n", - "66 0.385409 \n", - "67 0.408185 \n", - "68 0.405670 \n", - "69 0.424534 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_4_blank \\\n", - "0 2643.172114 \n", - "1 2564.054141 \n", - "2 2757.229952 \n", - "3 2700.222694 \n", - "4 2616.745973 \n", - ".. ... \n", - "65 3467.364448 \n", - "66 3408.515859 \n", - "67 3385.419843 \n", - "68 3362.368505 \n", - "69 3479.444407 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_4_blank \\\n", - "0 0.548733 \n", - "1 0.562240 \n", - "2 0.529260 \n", - "3 0.538992 \n", - "4 0.553244 \n", - ".. ... \n", - "65 0.433183 \n", - "66 0.442803 \n", - "67 0.446578 \n", - "68 0.450347 \n", - "69 0.431208 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_5_blank \\\n", - "0 2667.464939 \n", - "1 2610.994432 \n", - "2 2661.353767 \n", - "3 2668.229263 \n", - "4 2595.289374 \n", - ".. ... \n", - "65 3470.756627 \n", - "66 3486.048868 \n", - "67 3373.235561 \n", - "68 3401.274428 \n", - "69 3549.656569 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_5_blank \\\n", - "0 0.544585 \n", - "1 0.554226 \n", - "2 0.545628 \n", - "3 0.544455 \n", - "4 0.556908 \n", - ".. ... \n", - "65 0.432628 \n", - "66 0.430128 \n", - "67 0.448570 \n", - "68 0.443987 \n", - "69 0.419730 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_6_blank \\\n", - "0 2642.388141 \n", - "1 2564.381955 \n", - "2 2640.533322 \n", - "3 2641.775898 \n", - "4 2591.050321 \n", - ".. ... \n", - "65 3426.308046 \n", - "66 3447.239195 \n", - "67 3434.690834 \n", - "68 3406.397571 \n", - "69 3526.783158 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_6_blank \\\n", - "0 0.548866 \n", - "1 0.562184 \n", - "2 0.549183 \n", - "3 0.548971 \n", - "4 0.557631 \n", - ".. ... \n", - "65 0.439894 \n", - "66 0.436473 \n", - "67 0.438524 \n", - "68 0.443149 \n", - "69 0.423470 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_7_blank \\\n", - "0 2565.443158 \n", - "1 2551.563643 \n", - "2 2592.707466 \n", - "3 2591.837752 \n", - "4 2568.578591 \n", - ".. ... \n", - "65 3422.427748 \n", - "66 3399.367759 \n", - "67 3497.877026 \n", - "68 3497.782692 \n", - "69 3512.839878 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_7_blank \\\n", - "0 0.562003 \n", - "1 0.564373 \n", - "2 0.557348 \n", - "3 0.557497 \n", - "4 0.561468 \n", - ".. ... \n", - "65 0.440529 \n", - "66 0.444298 \n", - "67 0.428195 \n", - "68 0.428210 \n", - "69 0.425749 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_8_blank \\\n", - "0 2541.553235 \n", - "1 2545.713079 \n", - "2 2560.398985 \n", - "3 2564.562730 \n", - "4 2566.086550 \n", - ".. ... \n", - "65 3367.681185 \n", - "66 3438.643309 \n", - "67 3478.243780 \n", - "68 3490.790081 \n", - "69 3524.189811 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_8_blank \\\n", - "0 0.566082 \n", - "1 0.565372 \n", - "2 0.562864 \n", - "3 0.562154 \n", - "4 0.561893 \n", - ".. ... \n", - "65 0.449478 \n", - "66 0.437878 \n", - "67 0.431404 \n", - "68 0.429353 \n", - "69 0.423893 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_9_blank \\\n", - "0 2544.841992 \n", - "1 2541.588137 \n", - "2 2567.722606 \n", - "3 2554.271693 \n", - "4 2533.869882 \n", - ".. ... \n", - "65 3398.510612 \n", - "66 3461.606999 \n", - "67 3488.432591 \n", - "68 3473.687224 \n", - "69 3486.336515 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_9_blank \\\n", - "0 0.565520 \n", - "1 0.566076 \n", - "2 0.561614 \n", - "3 0.563911 \n", - "4 0.567394 \n", - ".. ... \n", - "65 0.444439 \n", - "66 0.434124 \n", - "67 0.429739 \n", - "68 0.432149 \n", - "69 0.430081 \n", - "\n", - " RF_Plus_Regressor_test_subset_MSE_after_ablation_10_blank \\\n", - "0 2541.457199 \n", - "1 2541.457199 \n", - "2 2541.457199 \n", - "3 2541.457199 \n", - "4 2541.457199 \n", - ".. ... \n", - "65 3474.597817 \n", - "66 3474.597817 \n", - "67 3474.597817 \n", - "68 3474.597817 \n", - "69 3474.597817 \n", - "\n", - " RF_Plus_Regressor_test_subset_R_2_after_ablation_10_blank \\\n", - "0 0.566098 \n", - "1 0.566098 \n", - "2 0.566098 \n", - "3 0.566098 \n", - "4 0.566098 \n", - ".. ... \n", - "65 0.432000 \n", - "66 0.432000 \n", - "67 0.432000 \n", - "68 0.432000 \n", - "69 0.432000 \n", - "\n", - " test_subset_blank_ablation_time RF_Regressor_test_MSE_before_ablation \\\n", - "0 8.630264 2640.499813 \n", - "1 8.487405 2640.499813 \n", - "2 8.591958 2640.499813 \n", - "3 8.565224 2640.499813 \n", - "4 8.649657 NaN \n", - ".. ... ... \n", - "65 9.641644 3317.655397 \n", - "66 9.647025 3317.655397 \n", - "67 10.038960 NaN \n", - "68 9.786609 3317.655397 \n", - "69 9.847889 NaN \n", - "\n", - " RF_Regressor_test_R_2_before_ablation \\\n", - "0 0.535380 \n", - "1 0.535380 \n", - "2 0.535380 \n", - "3 0.535380 \n", - "4 NaN \n", - ".. ... \n", - "65 0.470632 \n", - "66 0.470632 \n", - "67 NaN \n", - "68 0.470632 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_MSE_after_ablation_1 \\\n", - "0 3524.835070 \n", - "1 3571.052791 \n", - "2 3519.122896 \n", - "3 3522.753563 \n", - "4 NaN \n", - ".. ... \n", - "65 4252.098901 \n", - "66 4151.837191 \n", - "67 NaN \n", - "68 4147.385047 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_R_2_after_ablation_1 \\\n", - "0 0.379773 \n", - "1 0.371641 \n", - "2 0.380779 \n", - "3 0.380140 \n", - "4 NaN \n", - ".. ... \n", - "65 0.321531 \n", - "66 0.337529 \n", - "67 NaN \n", - "68 0.338239 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_MSE_after_ablation_2 \\\n", - "0 4339.761162 \n", - "1 4318.344175 \n", - "2 4341.295617 \n", - "3 4492.754726 \n", - "4 NaN \n", - ".. ... \n", - "65 4965.848450 \n", - "66 5163.578466 \n", - "67 NaN \n", - "68 4987.539777 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_R_2_after_ablation_2 \\\n", - "0 0.236380 \n", - "1 0.240148 \n", - "2 0.236110 \n", - "3 0.209459 \n", - "4 NaN \n", - ".. ... \n", - "65 0.207644 \n", - "66 0.176094 \n", - "67 NaN \n", - "68 0.204183 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_MSE_after_ablation_3 \\\n", - "0 5044.129946 \n", - "1 5017.600255 \n", - "2 5080.619597 \n", - "3 5250.687945 \n", - "4 NaN \n", - ".. ... \n", - "65 5733.329545 \n", - "66 5923.044278 \n", - "67 NaN \n", - "68 5932.927451 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_R_2_after_ablation_3 \\\n", - "0 0.112440 \n", - "1 0.117108 \n", - "2 0.106019 \n", - "3 0.076094 \n", - "4 NaN \n", - ".. ... \n", - "65 0.085184 \n", - "66 0.054913 \n", - "67 NaN \n", - "68 0.053336 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_MSE_after_ablation_4 \\\n", - "0 5423.189116 \n", - "1 5441.462496 \n", - "2 5361.659892 \n", - "3 5540.180309 \n", - "4 NaN \n", - ".. ... \n", - "65 6078.686174 \n", - "66 6195.837162 \n", - "67 NaN \n", - "68 6292.487953 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_R_2_after_ablation_4 \\\n", - "0 0.045741 \n", - "1 0.042526 \n", - "2 0.056568 \n", - "3 0.025155 \n", - "4 NaN \n", - ".. ... \n", - "65 0.030079 \n", - "66 0.011386 \n", - "67 NaN \n", - "68 -0.004036 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_MSE_after_ablation_5 \\\n", - "0 5559.160140 \n", - "1 5578.882603 \n", - "2 5543.610178 \n", - "3 5643.169395 \n", - "4 NaN \n", - ".. ... \n", - "65 6173.750086 \n", - "66 6172.416916 \n", - "67 NaN \n", - "68 6302.699742 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_R_2_after_ablation_5 \\\n", - "0 0.021816 \n", - "1 0.018345 \n", - "2 0.024552 \n", - "3 0.007033 \n", - "4 NaN \n", - ".. ... \n", - "65 0.014910 \n", - "66 0.015123 \n", - "67 NaN \n", - "68 -0.005665 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_MSE_after_ablation_6 \\\n", - "0 5558.547528 \n", - "1 5657.157261 \n", - "2 5603.054347 \n", - "3 5570.930650 \n", - "4 NaN \n", - ".. ... \n", - "65 6142.718017 \n", - "66 6267.709333 \n", - "67 NaN \n", - "68 6448.386612 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_R_2_after_ablation_6 \\\n", - "0 0.021923 \n", - "1 0.004572 \n", - "2 0.014092 \n", - "3 0.019744 \n", - "4 NaN \n", - ".. ... \n", - "65 0.019862 \n", - "66 -0.000082 \n", - "67 NaN \n", - "68 -0.028911 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_MSE_after_ablation_7 \\\n", - "0 5620.116672 \n", - "1 5614.647017 \n", - "2 5646.812614 \n", - "3 5662.431118 \n", - "4 NaN \n", - ".. ... \n", - "65 6271.061133 \n", - "66 6357.712212 \n", - "67 NaN \n", - "68 6412.611071 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_R_2_after_ablation_7 \\\n", - "0 0.011090 \n", - "1 0.012052 \n", - "2 0.006392 \n", - "3 0.003644 \n", - "4 NaN \n", - ".. ... \n", - "65 -0.000617 \n", - "66 -0.014443 \n", - "67 NaN \n", - "68 -0.023203 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_MSE_after_ablation_8 \\\n", - "0 5710.918759 \n", - "1 5705.335037 \n", - "2 5742.659997 \n", - "3 5773.100746 \n", - "4 NaN \n", - ".. ... \n", - "65 6362.782912 \n", - "66 6342.834816 \n", - "67 NaN \n", - "68 6337.685910 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_R_2_after_ablation_8 \\\n", - "0 -0.004888 \n", - "1 -0.003905 \n", - "2 -0.010473 \n", - "3 -0.015829 \n", - "4 NaN \n", - ".. ... \n", - "65 -0.015252 \n", - "66 -0.012069 \n", - "67 NaN \n", - "68 -0.011247 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_MSE_after_ablation_9 \\\n", - "0 5776.883880 \n", - "1 5783.179625 \n", - "2 5778.819764 \n", - "3 5796.952295 \n", - "4 NaN \n", - ".. ... \n", - "65 6344.548400 \n", - "66 6322.005677 \n", - "67 NaN \n", - "68 6278.027761 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_R_2_after_ablation_9 \\\n", - "0 -0.016495 \n", - "1 -0.017603 \n", - "2 -0.016836 \n", - "3 -0.020026 \n", - "4 NaN \n", - ".. ... \n", - "65 -0.012342 \n", - "66 -0.008745 \n", - "67 NaN \n", - "68 -0.001728 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_MSE_after_ablation_10 \\\n", - "0 5801.671997 \n", - "1 5801.671997 \n", - "2 5801.671997 \n", - "3 5801.671997 \n", - "4 NaN \n", - ".. ... \n", - "65 6286.679067 \n", - "66 6286.679067 \n", - "67 NaN \n", - "68 6286.679067 \n", - "69 NaN \n", - "\n", - " RF_Regressor_test_R_2_after_ablation_10 Linear_test_MSE_before_ablation \\\n", - "0 -0.020857 2496.785106 \n", - "1 -0.020857 2496.785106 \n", - "2 -0.020857 2496.785106 \n", - "3 -0.020857 2496.785106 \n", - "4 NaN NaN \n", - ".. ... ... \n", - "65 -0.003109 3332.826395 \n", - "66 -0.003109 3332.826395 \n", - "67 NaN NaN \n", - "68 -0.003109 3332.826395 \n", - "69 NaN NaN \n", - "\n", - " Linear_test_R_2_before_ablation Linear_test_MSE_after_ablation_1 \\\n", - "0 0.560668 3933.440887 \n", - "1 0.560668 3940.612956 \n", - "2 0.560668 3747.641792 \n", - "3 0.560668 3874.602772 \n", - "4 NaN NaN \n", - ".. ... ... \n", - "65 0.468211 4372.466149 \n", - "66 0.468211 4252.332749 \n", - "67 NaN NaN \n", - "68 0.468211 4359.423484 \n", - "69 NaN NaN \n", - "\n", - " Linear_test_R_2_after_ablation_1 Linear_test_MSE_after_ablation_2 \\\n", - "0 0.307876 5378.186635 \n", - "1 0.306614 5335.869899 \n", - "2 0.340569 4896.166926 \n", - "3 0.318229 5195.998249 \n", - "4 NaN NaN \n", - ".. ... ... \n", - "65 0.302325 5200.909978 \n", - "66 0.321494 5500.769377 \n", - "67 NaN NaN \n", - "68 0.304406 5585.910286 \n", - "69 NaN NaN \n", - "\n", - " Linear_test_R_2_after_ablation_2 Linear_test_MSE_after_ablation_3 \\\n", - "0 0.053660 6372.090383 \n", - "1 0.061106 6327.986356 \n", - "2 0.138475 5638.775425 \n", - "3 0.085717 6136.557906 \n", - "4 NaN NaN \n", - ".. ... ... \n", - "65 0.170138 6249.120862 \n", - "66 0.122292 6499.331943 \n", - "67 NaN NaN \n", - "68 0.108707 6615.984755 \n", - "69 NaN NaN \n", - "\n", - " Linear_test_R_2_after_ablation_3 Linear_test_MSE_after_ablation_4 \\\n", - "0 -0.121227 6771.155629 \n", - "1 -0.113466 6817.218702 \n", - "2 0.007807 6298.362961 \n", - "3 -0.079783 6674.583225 \n", - "4 NaN NaN \n", - ".. ... ... \n", - "65 0.002884 6895.247992 \n", - "66 -0.037040 7017.833958 \n", - "67 NaN NaN \n", - "68 -0.055653 7217.577286 \n", - "69 NaN NaN \n", - "\n", - " Linear_test_R_2_after_ablation_4 Linear_test_MSE_after_ablation_5 \\\n", - "0 -0.191446 7068.389560 \n", - "1 -0.199551 6960.960204 \n", - "2 -0.108254 6810.017866 \n", - "3 -0.174453 6842.073247 \n", - "4 NaN NaN \n", - ".. ... ... \n", - "65 -0.100213 7031.352831 \n", - "66 -0.119772 6999.075380 \n", - "67 NaN NaN \n", - "68 -0.151644 7214.779536 \n", - "69 NaN NaN \n", - "\n", - " Linear_test_R_2_after_ablation_5 Linear_test_MSE_after_ablation_6 \\\n", - "0 -0.243747 7447.880628 \n", - "1 -0.224844 7284.148792 \n", - "2 -0.198284 7304.802884 \n", - "3 -0.203925 7189.118672 \n", - "4 NaN NaN \n", - ".. ... ... \n", - "65 -0.121930 6866.904602 \n", - "66 -0.116779 7064.166452 \n", - "67 NaN NaN \n", - "68 -0.151197 7129.172211 \n", - "69 NaN NaN \n", - "\n", - " Linear_test_R_2_after_ablation_6 Linear_test_MSE_after_ablation_7 \\\n", - "0 -0.310522 7634.217290 \n", - "1 -0.281712 7264.408403 \n", - "2 -0.285346 7688.411155 \n", - "3 -0.264990 7566.606181 \n", - "4 NaN NaN \n", - ".. ... ... \n", - "65 -0.095690 6825.980328 \n", - "66 -0.127165 7161.699581 \n", - "67 NaN NaN \n", - "68 -0.137538 6905.484625 \n", - "69 NaN NaN \n", - "\n", - " Linear_test_R_2_after_ablation_7 Linear_test_MSE_after_ablation_8 \\\n", - "0 -0.343309 7542.656034 \n", - "1 -0.278238 6351.745669 \n", - "2 -0.352845 7574.919172 \n", - "3 -0.331413 7716.289158 \n", - "4 NaN NaN \n", - ".. ... ... \n", - "65 -0.089160 6716.099781 \n", - "66 -0.142728 7016.127259 \n", - "67 NaN NaN \n", - "68 -0.101846 6732.551850 \n", - "69 NaN NaN \n", - "\n", - " Linear_test_R_2_after_ablation_8 Linear_test_MSE_after_ablation_9 \\\n", - "0 -0.327198 6778.699347 \n", - "1 -0.117647 5868.856530 \n", - "2 -0.332875 6629.814159 \n", - "3 -0.357751 6944.478731 \n", - "4 NaN NaN \n", - ".. ... ... \n", - "65 -0.071627 6500.228772 \n", - "66 -0.119500 6654.176147 \n", - "67 NaN NaN \n", - "68 -0.074253 6519.281447 \n", - "69 NaN NaN \n", - "\n", - " Linear_test_R_2_after_ablation_9 Linear_test_MSE_after_ablation_10 \\\n", - "0 -0.192773 5725.785543 \n", - "1 -0.032678 5725.785543 \n", - "2 -0.166576 5725.785543 \n", - "3 -0.221944 5725.785543 \n", - "4 NaN NaN \n", - ".. ... ... \n", - "65 -0.037183 6276.453840 \n", - "66 -0.061747 6276.453840 \n", - "67 NaN NaN \n", - "68 -0.040223 6276.453840 \n", - "69 NaN NaN \n", - "\n", - " Linear_test_R_2_after_ablation_10 XGB_Regressor_test_MSE_before_ablation \\\n", - "0 -0.007504 3494.999877 \n", - "1 -0.007504 3494.999877 \n", - "2 -0.007504 3494.999877 \n", - "3 -0.007504 3494.999877 \n", - "4 NaN NaN \n", - ".. ... ... \n", - "65 -0.001477 4245.435413 \n", - "66 -0.001477 4245.435413 \n", - "67 NaN NaN \n", - "68 -0.001477 4245.435413 \n", - "69 NaN NaN \n", - "\n", - " XGB_Regressor_test_R_2_before_ablation \\\n", - "0 0.385023 \n", - "1 0.385023 \n", - "2 0.385023 \n", - "3 0.385023 \n", - "4 NaN \n", - ".. ... \n", - "65 0.322594 \n", - "66 0.322594 \n", - "67 NaN \n", - "68 0.322594 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_MSE_after_ablation_1 \\\n", - "0 4013.099838 \n", - "1 4069.124107 \n", - "2 4139.604458 \n", - "3 4033.682012 \n", - "4 NaN \n", - ".. ... \n", - "65 4744.258516 \n", - "66 4651.418299 \n", - "67 NaN \n", - "68 4453.127851 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_R_2_after_ablation_1 \\\n", - "0 0.293859 \n", - "1 0.284001 \n", - "2 0.271599 \n", - "3 0.290237 \n", - "4 NaN \n", - ".. ... \n", - "65 0.243001 \n", - "66 0.257815 \n", - "67 NaN \n", - "68 0.289455 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_MSE_after_ablation_2 \\\n", - "0 5025.053741 \n", - "1 4989.273260 \n", - "2 4808.018366 \n", - "3 5034.332553 \n", - "4 NaN \n", - ".. ... \n", - "65 5134.835355 \n", - "66 5434.706040 \n", - "67 NaN \n", - "68 5212.469751 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_R_2_after_ablation_2 \\\n", - "0 0.115796 \n", - "1 0.122092 \n", - "2 0.153986 \n", - "3 0.114164 \n", - "4 NaN \n", - ".. ... \n", - "65 0.180681 \n", - "66 0.132833 \n", - "67 NaN \n", - "68 0.168293 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_MSE_after_ablation_3 \\\n", - "0 5501.079765 \n", - "1 5539.634971 \n", - "2 5459.784944 \n", - "3 5587.280407 \n", - "4 NaN \n", - ".. ... \n", - "65 5989.696026 \n", - "66 5996.028512 \n", - "67 NaN \n", - "68 6288.165970 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_R_2_after_ablation_3 \\\n", - "0 0.032035 \n", - "1 0.025251 \n", - "2 0.039302 \n", - "3 0.016868 \n", - "4 NaN \n", - ".. ... \n", - "65 0.044278 \n", - "66 0.043268 \n", - "67 NaN \n", - "68 -0.003346 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_MSE_after_ablation_4 \\\n", - "0 5797.321121 \n", - "1 5753.544647 \n", - "2 5813.890743 \n", - "3 5743.479849 \n", - "4 NaN \n", - ".. ... \n", - "65 6600.850248 \n", - "66 6553.462829 \n", - "67 NaN \n", - "68 6851.244552 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_R_2_after_ablation_4 \\\n", - "0 -0.020091 \n", - "1 -0.012388 \n", - "2 -0.023007 \n", - "3 -0.010617 \n", - "4 NaN \n", - ".. ... \n", - "65 -0.053238 \n", - "66 -0.045677 \n", - "67 NaN \n", - "68 -0.093191 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_MSE_after_ablation_5 \\\n", - "0 5843.247374 \n", - "1 5721.953538 \n", - "2 5752.146408 \n", - "3 5912.545974 \n", - "4 NaN \n", - ".. ... \n", - "65 6439.163654 \n", - "66 6346.476672 \n", - "67 NaN \n", - "68 6812.276313 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_R_2_after_ablation_5 \\\n", - "0 -0.028172 \n", - "1 -0.006829 \n", - "2 -0.012142 \n", - "3 -0.040366 \n", - "4 NaN \n", - ".. ... \n", - "65 -0.027439 \n", - "66 -0.012650 \n", - "67 NaN \n", - "68 -0.086974 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_MSE_after_ablation_6 \\\n", - "0 5892.623117 \n", - "1 6011.466936 \n", - "2 5743.704769 \n", - "3 5896.718386 \n", - "4 NaN \n", - ".. ... \n", - "65 6425.883090 \n", - "66 6452.011697 \n", - "67 NaN \n", - "68 6928.881119 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_R_2_after_ablation_6 \\\n", - "0 -0.036860 \n", - "1 -0.057772 \n", - "2 -0.010657 \n", - "3 -0.037581 \n", - "4 NaN \n", - ".. ... \n", - "65 -0.025320 \n", - "66 -0.029489 \n", - "67 NaN \n", - "68 -0.105579 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_MSE_after_ablation_7 \\\n", - "0 5822.535066 \n", - "1 5901.583727 \n", - "2 5795.713241 \n", - "3 6061.503398 \n", - "4 NaN \n", - ".. ... \n", - "65 6511.903490 \n", - "66 6466.410333 \n", - "67 NaN \n", - "68 6522.271203 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_R_2_after_ablation_7 \\\n", - "0 -0.024528 \n", - "1 -0.038437 \n", - "2 -0.019808 \n", - "3 -0.066576 \n", - "4 NaN \n", - ".. ... \n", - "65 -0.039046 \n", - "66 -0.031787 \n", - "67 NaN \n", - "68 -0.040700 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_MSE_after_ablation_8 \\\n", - "0 5913.358559 \n", - "1 5897.320816 \n", - "2 5876.811017 \n", - "3 6057.537598 \n", - "4 NaN \n", - ".. ... \n", - "65 6526.163669 \n", - "66 6456.925559 \n", - "67 NaN \n", - "68 6489.344892 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_R_2_after_ablation_8 \\\n", - "0 -0.040509 \n", - "1 -0.037687 \n", - "2 -0.034078 \n", - "3 -0.065878 \n", - "4 NaN \n", - ".. ... \n", - "65 -0.041321 \n", - "66 -0.030273 \n", - "67 NaN \n", - "68 -0.035446 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_MSE_after_ablation_9 \\\n", - "0 5945.208529 \n", - "1 5938.553679 \n", - "2 5907.525792 \n", - "3 5972.670797 \n", - "4 NaN \n", - ".. ... \n", - "65 6501.302701 \n", - "66 6384.095136 \n", - "67 NaN \n", - "68 6399.173120 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_R_2_after_ablation_9 \\\n", - "0 -0.046113 \n", - "1 -0.044942 \n", - "2 -0.039483 \n", - "3 -0.050945 \n", - "4 NaN \n", - ".. ... \n", - "65 -0.037354 \n", - "66 -0.018652 \n", - "67 NaN \n", - "68 -0.021058 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_MSE_after_ablation_10 \\\n", - "0 5919.422152 \n", - "1 5919.422152 \n", - "2 5919.422152 \n", - "3 5919.422152 \n", - "4 NaN \n", - ".. ... \n", - "65 6267.370049 \n", - "66 6267.370049 \n", - "67 NaN \n", - "68 6267.370049 \n", - "69 NaN \n", - "\n", - " XGB_Regressor_test_R_2_after_ablation_10 \\\n", - "0 -0.041576 \n", - "1 -0.041576 \n", - "2 -0.041576 \n", - "3 -0.041576 \n", - "4 NaN \n", - ".. ... \n", - "65 -0.000028 \n", - "66 -0.000028 \n", - "67 NaN \n", - "68 -0.000028 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_MSE_before_ablation \\\n", - "0 2466.857536 \n", - "1 2466.857536 \n", - "2 2466.857536 \n", - "3 2466.857536 \n", - "4 NaN \n", - ".. ... \n", - "65 3251.341447 \n", - "66 3251.341447 \n", - "67 NaN \n", - "68 3251.341447 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_R_2_before_ablation \\\n", - "0 0.565934 \n", - "1 0.565934 \n", - "2 0.565934 \n", - "3 0.565934 \n", - "4 NaN \n", - ".. ... \n", - "65 0.481213 \n", - "66 0.481213 \n", - "67 NaN \n", - "68 0.481213 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_MSE_after_ablation_1 \\\n", - "0 3486.670871 \n", - "1 3512.809915 \n", - "2 3387.295959 \n", - "3 3413.979947 \n", - "4 NaN \n", - ".. ... \n", - "65 4245.552249 \n", - "66 4151.615634 \n", - "67 NaN \n", - "68 4185.950870 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_R_2_after_ablation_1 \\\n", - "0 0.386489 \n", - "1 0.381889 \n", - "2 0.403975 \n", - "3 0.399279 \n", - "4 NaN \n", - ".. ... \n", - "65 0.322576 \n", - "66 0.337564 \n", - "67 NaN \n", - "68 0.332086 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_MSE_after_ablation_2 \\\n", - "0 4501.848106 \n", - "1 4466.543184 \n", - "2 4267.977699 \n", - "3 4484.335122 \n", - "4 NaN \n", - ".. ... \n", - "65 4889.454447 \n", - "66 5150.085657 \n", - "67 NaN \n", - "68 5088.527932 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_R_2_after_ablation_2 \\\n", - "0 0.207859 \n", - "1 0.214071 \n", - "2 0.249011 \n", - "3 0.210941 \n", - "4 NaN \n", - ".. ... \n", - "65 0.219834 \n", - "66 0.178247 \n", - "67 NaN \n", - "68 0.188069 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_MSE_after_ablation_3 \\\n", - "0 5291.148962 \n", - "1 5265.613075 \n", - "2 4967.246258 \n", - "3 5200.283806 \n", - "4 NaN \n", - ".. ... \n", - "65 5673.355569 \n", - "66 5841.931213 \n", - "67 NaN \n", - "68 5921.367059 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_R_2_after_ablation_3 \\\n", - "0 0.068975 \n", - "1 0.073468 \n", - "2 0.125968 \n", - "3 0.084963 \n", - "4 NaN \n", - ".. ... \n", - "65 0.094754 \n", - "66 0.067856 \n", - "67 NaN \n", - "68 0.055181 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_MSE_after_ablation_4 \\\n", - "0 5664.603936 \n", - "1 5697.985065 \n", - "2 5421.823682 \n", - "3 5660.252160 \n", - "4 NaN \n", - ".. ... \n", - "65 6124.177802 \n", - "66 6257.791966 \n", - "67 NaN \n", - "68 6385.221264 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_R_2_after_ablation_4 \\\n", - "0 0.003262 \n", - "1 -0.002612 \n", - "2 0.045981 \n", - "3 0.004028 \n", - "4 NaN \n", - ".. ... \n", - "65 0.022820 \n", - "66 0.001501 \n", - "67 NaN \n", - "68 -0.018832 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_MSE_after_ablation_5 \\\n", - "0 5755.469084 \n", - "1 5747.874691 \n", - "2 5654.847385 \n", - "3 5774.580841 \n", - "4 NaN \n", - ".. ... \n", - "65 6225.744929 \n", - "66 6220.642475 \n", - "67 NaN \n", - "68 6420.552407 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_R_2_after_ablation_5 \\\n", - "0 -0.012727 \n", - "1 -0.011390 \n", - "2 0.004979 \n", - "3 -0.016090 \n", - "4 NaN \n", - ".. ... \n", - "65 0.006614 \n", - "66 0.007428 \n", - "67 NaN \n", - "68 -0.024470 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_MSE_after_ablation_6 \\\n", - "0 5712.231598 \n", - "1 5760.576056 \n", - "2 5686.740295 \n", - "3 5706.121381 \n", - "4 NaN \n", - ".. ... \n", - "65 6230.183531 \n", - "66 6374.114987 \n", - "67 NaN \n", - "68 6519.528273 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_R_2_after_ablation_6 \\\n", - "0 -0.005119 \n", - "1 -0.013625 \n", - "2 -0.000633 \n", - "3 -0.004044 \n", - "4 NaN \n", - ".. ... \n", - "65 0.005906 \n", - "66 -0.017060 \n", - "67 NaN \n", - "68 -0.040262 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_MSE_after_ablation_7 \\\n", - "0 5715.404233 \n", - "1 5691.234177 \n", - "2 5670.736069 \n", - "3 5733.989985 \n", - "4 NaN \n", - ".. ... \n", - "65 6331.818864 \n", - "66 6474.285866 \n", - "67 NaN \n", - "68 6451.424694 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_R_2_after_ablation_7 \\\n", - "0 -0.005677 \n", - "1 -0.001424 \n", - "2 0.002183 \n", - "3 -0.008947 \n", - "4 NaN \n", - ".. ... \n", - "65 -0.010311 \n", - "66 -0.033043 \n", - "67 NaN \n", - "68 -0.029396 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_MSE_after_ablation_8 \\\n", - "0 5698.990643 \n", - "1 5656.583805 \n", - "2 5696.299307 \n", - "3 5727.995769 \n", - "4 NaN \n", - ".. ... \n", - "65 6421.566444 \n", - "66 6449.857168 \n", - "67 NaN \n", - "68 6391.825749 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_R_2_after_ablation_8 \\\n", - "0 -0.002789 \n", - "1 0.004673 \n", - "2 -0.002315 \n", - "3 -0.007893 \n", - "4 NaN \n", - ".. ... \n", - "65 -0.024631 \n", - "66 -0.029146 \n", - "67 NaN \n", - "68 -0.019886 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_MSE_after_ablation_9 \\\n", - "0 5717.216380 \n", - "1 5670.693792 \n", - "2 5690.972357 \n", - "3 5704.121340 \n", - "4 NaN \n", - ".. ... \n", - "65 6365.125200 \n", - "66 6360.266687 \n", - "67 NaN \n", - "68 6293.769573 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_R_2_after_ablation_9 \\\n", - "0 -0.005996 \n", - "1 0.002190 \n", - "2 -0.001378 \n", - "3 -0.003692 \n", - "4 NaN \n", - ".. ... \n", - "65 -0.015626 \n", - "66 -0.014850 \n", - "67 NaN \n", - "68 -0.004240 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_MSE_after_ablation_10 \\\n", - "0 5691.215026 \n", - "1 5691.215026 \n", - "2 5691.215026 \n", - "3 5691.215026 \n", - "4 NaN \n", - ".. ... \n", - "65 6267.614305 \n", - "66 6267.614305 \n", - "67 NaN \n", - "68 6267.614305 \n", - "69 NaN \n", - "\n", - " RF_Plus_Regressor_test_R_2_after_ablation_10 test_data_ablation_time \\\n", - "0 -0.001421 8.682843 \n", - "1 -0.001421 8.740817 \n", - "2 -0.001421 8.665586 \n", - "3 -0.001421 8.887087 \n", - "4 NaN NaN \n", - ".. ... ... \n", - "65 -0.000067 9.768127 \n", - "66 -0.000067 9.973668 \n", - "67 NaN NaN \n", - "68 -0.000067 9.742957 \n", - "69 NaN NaN \n", - "\n", - " split_seed rf_model \n", - "0 9 NaN \n", - "1 9 NaN \n", - "2 9 NaN \n", - "3 9 NaN \n", - "4 9 RandomForestRegressor(max_features=0.33, min_s... \n", - ".. ... ... \n", - "65 10 NaN \n", - "66 10 NaN \n", - "67 10 RandomForestRegressor(max_features=0.33, min_s... \n", - "68 10 RandomForestRegressor(max_features=0.33, min_s... \n", - "69 10 RandomForestRegressor(max_features=0.33, min_s... \n", + " \n", + " \n", + " 247\n", + " 0\n", + " 0.8\n", + " 0.8\n", + " 100.0\n", + " 1.0\n", + " sqrt\n", + " 42.0\n", + " False\n", + " 0.0\n", + " False\n", + " inbag\n", + " NaN\n", + " RF\n", + " MDI_RF\n", + " 296\n", + " 146\n", + " 10\n", + " 6\n", + " 274\n", + " 155\n", + " 84\n", + " 82\n", + " 261\n", + " 9\n", + " 42\n", + " 277\n", + " 282\n", + " 92\n", + " 148\n", + " 211\n", + " 60\n", + " 218\n", + " 262\n", + " 46\n", + " 45\n", + " 236\n", + " 228\n", + " 132\n", + " 143\n", + " 167\n", + " 152\n", + " 93\n", + " 113\n", + " 5\n", + " 238\n", + " 251\n", + " 170\n", + " 186\n", + " 193\n", + " 33\n", + " 222\n", + " 216\n", + " 197\n", + " 73\n", + " 182\n", + " 119\n", + " 285\n", + " 202\n", + " 204\n", + " 179\n", + " 177\n", + " 111\n", + " 59\n", + " 226\n", + " 25\n", + " 77\n", + " 6\n", + " 175\n", + " 164\n", + " 140\n", + " 30\n", + " 22\n", + " 245\n", + " 24\n", + " 56\n", + " 144\n", + " 124\n", + " 97\n", + " 63\n", + " 17\n", + " 215\n", + " 219\n", + " 183\n", + " 114\n", + " 76\n", + " 284\n", + " 66\n", + " 178\n", + " 154\n", + " 75\n", + " 19\n", + " 108\n", + " 69\n", + " 30\n", + " 39\n", + " 2\n", + " 124\n", + " 10\n", + " 68\n", + " 51\n", + " 71\n", + " 77\n", + " 102\n", + " 80\n", + " 76\n", + " 142\n", + " 127\n", + " 95\n", + " 70\n", + " 93\n", + " 67\n", + " 0\n", + " 105\n", + " 82\n", + " 136\n", + " 40\n", + " 54\n", + " 28\n", + " 74\n", + " 119\n", + " 18\n", + " 9\n", + " 58\n", + " 99\n", + " 73\n", + " 97\n", + " 128\n", + " 122\n", + " 9192\n", + " 30.405378\n", + " 0.858108\n", + " 0.929369\n", + " 0.000000\n", + " 0.858796\n", + " 0.930172\n", + " 0.007937\n", + " 6\n", + " NaN\n", + " \n", + " \n", + " 248\n", + " 0\n", + " 0.8\n", + " 0.8\n", + " 100.0\n", + " 1.0\n", + " sqrt\n", + " 42.0\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " RF\n", + " TreeSHAP_RF\n", + " 296\n", + " 146\n", + " 10\n", + " 6\n", + " 274\n", + " 155\n", + " 84\n", + " 82\n", + " 261\n", + " 9\n", + " 42\n", + " 277\n", + " 282\n", + " 92\n", + " 148\n", + " 211\n", + " 60\n", + " 218\n", + " 262\n", + " 46\n", + " 45\n", + " 236\n", + " 228\n", + " 132\n", + " 143\n", + " 167\n", + " 152\n", + " 93\n", + " 113\n", + " 5\n", + " 238\n", + " 251\n", + " 170\n", + " 186\n", + " 193\n", + " 33\n", + " 222\n", + " 216\n", + " 197\n", + " 73\n", + " 182\n", + " 119\n", + " 285\n", + " 202\n", + " 204\n", + " 179\n", + " 177\n", + " 111\n", + " 59\n", + " 226\n", + " 25\n", + " 77\n", + " 6\n", + " 175\n", + " 164\n", + " 140\n", + " 30\n", + " 22\n", + " 245\n", + " 24\n", + " 56\n", + " 144\n", + " 124\n", + " 97\n", + " 63\n", + " 17\n", + " 215\n", + " 219\n", + " 183\n", + " 114\n", + " 76\n", + " 284\n", + " 66\n", + " 178\n", + " 154\n", + " 75\n", + " 19\n", + " 108\n", + " 69\n", + " 30\n", + " 39\n", + " 2\n", + " 124\n", + " 10\n", + " 68\n", + " 51\n", + " 71\n", + " 77\n", + " 102\n", + " 80\n", + " 76\n", + " 142\n", + " 127\n", + " 95\n", + " 70\n", + " 93\n", + " 67\n", + " 0\n", + " 105\n", + " 82\n", + " 136\n", + " 40\n", + " 54\n", + " 28\n", + " 74\n", + " 119\n", + " 18\n", + " 9\n", + " 58\n", + " 99\n", + " 73\n", + " 97\n", + " 128\n", + " 122\n", + " 9192\n", + " 4.197638\n", + " 0.899775\n", + " 0.950408\n", + " 0.000000\n", + " 0.908565\n", + " 0.955074\n", + " 0.007937\n", + " 6\n", + " NaN\n", + " \n", + " \n", + " 249\n", + " 0\n", + " 0.8\n", + " 0.8\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " RF_plus\n", + " Kernel_SHAP_RF_plus\n", + " 296\n", + " 146\n", + " 10\n", + " 6\n", + " 274\n", + " 155\n", + " 84\n", + " 82\n", + " 261\n", + " 9\n", + " 42\n", + " 277\n", + " 282\n", + " 92\n", + " 148\n", + " 211\n", + " 60\n", + " 218\n", + " 262\n", + " 46\n", + " 45\n", + " 236\n", + " 228\n", + " 132\n", + " 143\n", + " 167\n", + " 152\n", + " 93\n", + " 113\n", + " 5\n", + " 238\n", + " 251\n", + " 170\n", + " 186\n", + " 193\n", + " 33\n", + " 222\n", + " 216\n", + " 197\n", + " 73\n", + " 182\n", + " 119\n", + " 285\n", + " 202\n", + " 204\n", + " 179\n", + " 177\n", + " 111\n", + " 59\n", + " 226\n", + " 25\n", + " 77\n", + " 6\n", + " 175\n", + " 164\n", + " 140\n", + " 30\n", + " 22\n", + " 245\n", + " 24\n", + " 56\n", + " 144\n", + " 124\n", + " 97\n", + " 63\n", + " 17\n", + " 215\n", + " 219\n", + " 183\n", + " 114\n", + " 76\n", + " 284\n", + " 66\n", + " 178\n", + " 154\n", + " 75\n", + " 19\n", + " 108\n", + " 69\n", + " 30\n", + " 39\n", + " 2\n", + " 124\n", + " 10\n", + " 68\n", + " 51\n", + " 71\n", + " 77\n", + " 102\n", + " 80\n", + " 76\n", + " 142\n", + " 127\n", + " 95\n", + " 70\n", + " 93\n", + " 67\n", + " 0\n", + " 105\n", + " 82\n", + " 136\n", + " 40\n", + " 54\n", + " 28\n", + " 74\n", + " 119\n", + " 18\n", + " 9\n", + " 58\n", + " 99\n", + " 73\n", + " 97\n", + " 128\n", + " 122\n", + " 9852\n", + " 761.948728\n", + " 0.908221\n", + " 0.948986\n", + " 0.003861\n", + " 0.915509\n", + " 0.957694\n", + " 0.007937\n", + " 6\n", + " RandomForestRegressor(max_features='sqrt', ran...\n", + " \n", + " \n", + " 250\n", + " 0\n", + " 0.8\n", + " 0.8\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " RF_plus\n", + " LFI_with_raw_RF_plus\n", + " 296\n", + " 146\n", + " 10\n", + " 6\n", + " 274\n", + " 155\n", + " 84\n", + " 82\n", + " 261\n", + " 9\n", + " 42\n", + " 277\n", + " 282\n", + " 92\n", + " 148\n", + " 211\n", + " 60\n", + " 218\n", + " 262\n", + " 46\n", + " 45\n", + " 236\n", + " 228\n", + " 132\n", + " 143\n", + " 167\n", + " 152\n", + " 93\n", + " 113\n", + " 5\n", + " 238\n", + " 251\n", + " 170\n", + " 186\n", + " 193\n", + " 33\n", + " 222\n", + " 216\n", + " 197\n", + " 73\n", + " 182\n", + " 119\n", + " 285\n", + " 202\n", + " 204\n", + " 179\n", + " 177\n", + " 111\n", + " 59\n", + " 226\n", + " 25\n", + " 77\n", + " 6\n", + " 175\n", + " 164\n", + " 140\n", + " 30\n", + " 22\n", + " 245\n", + " 24\n", + " 56\n", + " 144\n", + " 124\n", + " 97\n", + " 63\n", + " 17\n", + " 215\n", + " 219\n", + " 183\n", + " 114\n", + " 76\n", + " 284\n", + " 66\n", + " 178\n", + " 154\n", + " 75\n", + " 19\n", + " 108\n", + " 69\n", + " 30\n", + " 39\n", + " 2\n", + " 124\n", + " 10\n", + " 68\n", + " 51\n", + " 71\n", + " 77\n", + " 102\n", + " 80\n", + " 76\n", + " 142\n", + " 127\n", + " 95\n", + " 70\n", + " 93\n", + " 67\n", + " 0\n", + " 105\n", + " 82\n", + " 136\n", + " 40\n", + " 54\n", + " 28\n", + " 74\n", + " 119\n", + " 18\n", + " 9\n", + " 58\n", + " 99\n", + " 73\n", + " 97\n", + " 128\n", + " 122\n", + " 9852\n", + " 16.139353\n", + " 0.921171\n", + " 0.956716\n", + " 0.003861\n", + " 0.937500\n", + " 0.965972\n", + " 0.007937\n", + " 6\n", + " RandomForestRegressor(max_features='sqrt', ran...\n", + " \n", + " \n", + " 251\n", + " 0\n", + " 0.8\n", + " 0.8\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " RF_plus\n", + " LIME_RF_plus\n", + " 296\n", + " 146\n", + " 10\n", + " 6\n", + " 274\n", + " 155\n", + " 84\n", + " 82\n", + " 261\n", + " 9\n", + " 42\n", + " 277\n", + " 282\n", + " 92\n", + " 148\n", + " 211\n", + " 60\n", + " 218\n", + " 262\n", + " 46\n", + " 45\n", + " 236\n", + " 228\n", + " 132\n", + " 143\n", + " 167\n", + " 152\n", + " 93\n", + " 113\n", + " 5\n", + " 238\n", + " 251\n", + " 170\n", + " 186\n", + " 193\n", + " 33\n", + " 222\n", + " 216\n", + " 197\n", + " 73\n", + " 182\n", + " 119\n", + " 285\n", + " 202\n", + " 204\n", + " 179\n", + " 177\n", + " 111\n", + " 59\n", + " 226\n", + " 25\n", + " 77\n", + " 6\n", + " 175\n", + " 164\n", + " 140\n", + " 30\n", + " 22\n", + " 245\n", + " 24\n", + " 56\n", + " 144\n", + " 124\n", + " 97\n", + " 63\n", + " 17\n", + " 215\n", + " 219\n", + " 183\n", + " 114\n", + " 76\n", + " 284\n", + " 66\n", + " 178\n", + " 154\n", + " 75\n", + " 19\n", + " 108\n", + " 69\n", + " 30\n", + " 39\n", + " 2\n", + " 124\n", + " 10\n", + " 68\n", + " 51\n", + " 71\n", + " 77\n", + " 102\n", + " 80\n", + " 76\n", + " 142\n", + " 127\n", + " 95\n", + " 70\n", + " 93\n", + " 67\n", + " 0\n", + " 105\n", + " 82\n", + " 136\n", + " 40\n", + " 54\n", + " 28\n", + " 74\n", + " 119\n", + " 18\n", + " 9\n", + " 58\n", + " 99\n", + " 73\n", + " 97\n", + " 128\n", + " 122\n", + " 9852\n", + " 1937.864373\n", + " 0.975225\n", + " 0.985242\n", + " 0.000000\n", + " 0.978009\n", + " 0.986938\n", + " 0.000000\n", + " 6\n", + " RandomForestRegressor(max_features='sqrt', ran...\n", + " \n", + " \n", + "\n", + "

252 rows × 138 columns

\n", + "" + ], + "text/plain": [ + " rep heritability heritability_name n_estimators min_samples_leaf \\\n", + "0 0 0.1 0.1 100.0 1.0 \n", + "1 0 0.1 0.1 100.0 1.0 \n", + "2 0 0.1 0.1 100.0 1.0 \n", + "3 0 0.1 0.1 100.0 1.0 \n", + "4 0 0.1 0.1 NaN NaN \n", + ".. ... ... ... ... ... \n", + "247 0 0.8 0.8 100.0 1.0 \n", + "248 0 0.8 0.8 100.0 1.0 \n", + "249 0 0.8 0.8 NaN NaN \n", + "250 0 0.8 0.8 NaN NaN \n", + "251 0 0.8 0.8 NaN NaN \n", "\n", - "[70 rows x 580 columns]" + " max_features random_state include_raw cv_ridge calc_loo_coef \\\n", + "0 sqrt 42.0 NaN NaN False \n", + "1 sqrt 42.0 NaN NaN NaN \n", + "2 sqrt 42.0 False 0.0 False \n", + "3 sqrt 42.0 NaN NaN NaN \n", + "4 NaN NaN NaN NaN NaN \n", + ".. ... ... ... ... ... \n", + "247 sqrt 42.0 False 0.0 False \n", + "248 sqrt 42.0 NaN NaN NaN \n", + "249 NaN NaN NaN NaN NaN \n", + "250 NaN NaN NaN NaN NaN \n", + "251 NaN NaN NaN NaN NaN \n", + "\n", + " sample_split fit_on model fi train_size test_size \\\n", + "0 oob test RF LFI_with_raw_OOB_RF 296 146 \n", + "1 NaN NaN RF LFI_with_raw_RF 296 146 \n", + "2 inbag NaN RF MDI_RF 296 146 \n", + "3 NaN NaN RF TreeSHAP_RF 296 146 \n", + "4 NaN NaN RF_plus Kernel_SHAP_RF_plus 296 146 \n", + ".. ... ... ... ... ... ... \n", + "247 inbag NaN RF MDI_RF 296 146 \n", + "248 NaN NaN RF TreeSHAP_RF 296 146 \n", + "249 NaN NaN RF_plus Kernel_SHAP_RF_plus 296 146 \n", + "250 NaN NaN RF_plus LFI_with_raw_RF_plus 296 146 \n", + "251 NaN NaN RF_plus LIME_RF_plus 296 146 \n", + "\n", + " num_features data_split_seed sample_train_0 sample_train_1 \\\n", + "0 10 9 274 155 \n", + "1 10 9 274 155 \n", + "2 10 9 274 155 \n", + "3 10 9 274 155 \n", + "4 10 9 274 155 \n", + ".. ... ... ... ... \n", + "247 10 6 274 155 \n", + "248 10 6 274 155 \n", + "249 10 6 274 155 \n", + "250 10 6 274 155 \n", + "251 10 6 274 155 \n", + "\n", + " sample_train_2 sample_train_3 sample_train_4 sample_train_5 \\\n", + "0 84 82 261 9 \n", + "1 84 82 261 9 \n", + "2 84 82 261 9 \n", + "3 84 82 261 9 \n", + "4 84 82 261 9 \n", + ".. ... ... ... ... \n", + "247 84 82 261 9 \n", + "248 84 82 261 9 \n", + "249 84 82 261 9 \n", + "250 84 82 261 9 \n", + "251 84 82 261 9 \n", + "\n", + " sample_train_6 sample_train_7 sample_train_8 sample_train_9 \\\n", + "0 42 277 282 92 \n", + "1 42 277 282 92 \n", + "2 42 277 282 92 \n", + "3 42 277 282 92 \n", + "4 42 277 282 92 \n", + ".. ... ... ... ... \n", + "247 42 277 282 92 \n", + "248 42 277 282 92 \n", + "249 42 277 282 92 \n", + "250 42 277 282 92 \n", + "251 42 277 282 92 \n", + "\n", + " sample_train_10 sample_train_11 sample_train_12 sample_train_13 \\\n", + "0 148 211 60 218 \n", + "1 148 211 60 218 \n", + "2 148 211 60 218 \n", + "3 148 211 60 218 \n", + "4 148 211 60 218 \n", + ".. ... ... ... ... \n", + "247 148 211 60 218 \n", + "248 148 211 60 218 \n", + "249 148 211 60 218 \n", + "250 148 211 60 218 \n", + "251 148 211 60 218 \n", + "\n", + " sample_train_14 sample_train_15 sample_train_16 sample_train_17 \\\n", + "0 262 46 45 236 \n", + "1 262 46 45 236 \n", + "2 262 46 45 236 \n", + "3 262 46 45 236 \n", + "4 262 46 45 236 \n", + ".. ... ... ... ... \n", + "247 262 46 45 236 \n", + "248 262 46 45 236 \n", + "249 262 46 45 236 \n", + "250 262 46 45 236 \n", + "251 262 46 45 236 \n", + "\n", + " sample_train_18 sample_train_19 sample_train_20 sample_train_21 \\\n", + "0 228 132 143 167 \n", + "1 228 132 143 167 \n", + "2 228 132 143 167 \n", + "3 228 132 143 167 \n", + "4 228 132 143 167 \n", + ".. ... ... ... ... \n", + "247 228 132 143 167 \n", + "248 228 132 143 167 \n", + "249 228 132 143 167 \n", + "250 228 132 143 167 \n", + "251 228 132 143 167 \n", + "\n", + " sample_train_22 sample_train_23 sample_train_24 sample_train_25 \\\n", + "0 152 93 113 5 \n", + "1 152 93 113 5 \n", + "2 152 93 113 5 \n", + "3 152 93 113 5 \n", + "4 152 93 113 5 \n", + ".. ... ... ... ... \n", + "247 152 93 113 5 \n", + "248 152 93 113 5 \n", + "249 152 93 113 5 \n", + "250 152 93 113 5 \n", + "251 152 93 113 5 \n", + "\n", + " sample_train_26 sample_train_27 sample_train_28 sample_train_29 \\\n", + "0 238 251 170 186 \n", + "1 238 251 170 186 \n", + "2 238 251 170 186 \n", + "3 238 251 170 186 \n", + "4 238 251 170 186 \n", + ".. ... ... ... ... \n", + "247 238 251 170 186 \n", + "248 238 251 170 186 \n", + "249 238 251 170 186 \n", + "250 238 251 170 186 \n", + "251 238 251 170 186 \n", + "\n", + " sample_train_30 sample_train_31 sample_train_32 sample_train_33 \\\n", + "0 193 33 222 216 \n", + "1 193 33 222 216 \n", + "2 193 33 222 216 \n", + "3 193 33 222 216 \n", + "4 193 33 222 216 \n", + ".. ... ... ... ... \n", + "247 193 33 222 216 \n", + "248 193 33 222 216 \n", + "249 193 33 222 216 \n", + "250 193 33 222 216 \n", + "251 193 33 222 216 \n", + "\n", + " sample_train_34 sample_train_35 sample_train_36 sample_train_37 \\\n", + "0 197 73 182 119 \n", + "1 197 73 182 119 \n", + "2 197 73 182 119 \n", + "3 197 73 182 119 \n", + "4 197 73 182 119 \n", + ".. ... ... ... ... \n", + "247 197 73 182 119 \n", + "248 197 73 182 119 \n", + "249 197 73 182 119 \n", + "250 197 73 182 119 \n", + "251 197 73 182 119 \n", + "\n", + " sample_train_38 sample_train_39 sample_train_40 sample_train_41 \\\n", + "0 285 202 204 179 \n", + "1 285 202 204 179 \n", + "2 285 202 204 179 \n", + "3 285 202 204 179 \n", + "4 285 202 204 179 \n", + ".. ... ... ... ... \n", + "247 285 202 204 179 \n", + "248 285 202 204 179 \n", + "249 285 202 204 179 \n", + "250 285 202 204 179 \n", + "251 285 202 204 179 \n", + "\n", + " sample_train_42 sample_train_43 sample_train_44 sample_train_45 \\\n", + "0 177 111 59 226 \n", + "1 177 111 59 226 \n", + "2 177 111 59 226 \n", + "3 177 111 59 226 \n", + "4 177 111 59 226 \n", + ".. ... ... ... ... \n", + "247 177 111 59 226 \n", + "248 177 111 59 226 \n", + "249 177 111 59 226 \n", + "250 177 111 59 226 \n", + "251 177 111 59 226 \n", + "\n", + " sample_train_46 sample_train_47 sample_train_48 sample_train_49 \\\n", + "0 25 77 6 175 \n", + "1 25 77 6 175 \n", + "2 25 77 6 175 \n", + "3 25 77 6 175 \n", + "4 25 77 6 175 \n", + ".. ... ... ... ... \n", + "247 25 77 6 175 \n", + "248 25 77 6 175 \n", + "249 25 77 6 175 \n", + "250 25 77 6 175 \n", + "251 25 77 6 175 \n", + "\n", + " sample_train_50 sample_train_51 sample_train_52 sample_train_53 \\\n", + "0 164 140 30 22 \n", + "1 164 140 30 22 \n", + "2 164 140 30 22 \n", + "3 164 140 30 22 \n", + "4 164 140 30 22 \n", + ".. ... ... ... ... \n", + "247 164 140 30 22 \n", + "248 164 140 30 22 \n", + "249 164 140 30 22 \n", + "250 164 140 30 22 \n", + "251 164 140 30 22 \n", + "\n", + " sample_train_54 sample_train_55 sample_train_56 sample_train_57 \\\n", + "0 245 24 56 144 \n", + "1 245 24 56 144 \n", + "2 245 24 56 144 \n", + "3 245 24 56 144 \n", + "4 245 24 56 144 \n", + ".. ... ... ... ... \n", + "247 245 24 56 144 \n", + "248 245 24 56 144 \n", + "249 245 24 56 144 \n", + "250 245 24 56 144 \n", + "251 245 24 56 144 \n", + "\n", + " sample_train_58 sample_train_59 sample_train_60 sample_train_61 \\\n", + "0 124 97 63 17 \n", + "1 124 97 63 17 \n", + "2 124 97 63 17 \n", + "3 124 97 63 17 \n", + "4 124 97 63 17 \n", + ".. ... ... ... ... \n", + "247 124 97 63 17 \n", + "248 124 97 63 17 \n", + "249 124 97 63 17 \n", + "250 124 97 63 17 \n", + "251 124 97 63 17 \n", + "\n", + " sample_train_62 sample_train_63 sample_train_64 sample_train_65 \\\n", + "0 215 219 183 114 \n", + "1 215 219 183 114 \n", + "2 215 219 183 114 \n", + "3 215 219 183 114 \n", + "4 215 219 183 114 \n", + ".. ... ... ... ... \n", + "247 215 219 183 114 \n", + "248 215 219 183 114 \n", + "249 215 219 183 114 \n", + "250 215 219 183 114 \n", + "251 215 219 183 114 \n", + "\n", + " sample_train_66 sample_train_67 sample_train_68 sample_train_69 \\\n", + "0 76 284 66 178 \n", + "1 76 284 66 178 \n", + "2 76 284 66 178 \n", + "3 76 284 66 178 \n", + "4 76 284 66 178 \n", + ".. ... ... ... ... \n", + "247 76 284 66 178 \n", + "248 76 284 66 178 \n", + "249 76 284 66 178 \n", + "250 76 284 66 178 \n", + "251 76 284 66 178 \n", + "\n", + " sample_train_70 sample_train_71 sample_train_72 sample_train_73 \\\n", + "0 154 75 19 108 \n", + "1 154 75 19 108 \n", + "2 154 75 19 108 \n", + "3 154 75 19 108 \n", + "4 154 75 19 108 \n", + ".. ... ... ... ... \n", + "247 154 75 19 108 \n", + "248 154 75 19 108 \n", + "249 154 75 19 108 \n", + "250 154 75 19 108 \n", + "251 154 75 19 108 \n", + "\n", + " sample_test_0 sample_test_1 sample_test_2 sample_test_3 \\\n", + "0 69 30 39 2 \n", + "1 69 30 39 2 \n", + "2 69 30 39 2 \n", + "3 69 30 39 2 \n", + "4 69 30 39 2 \n", + ".. ... ... ... ... \n", + "247 69 30 39 2 \n", + "248 69 30 39 2 \n", + "249 69 30 39 2 \n", + "250 69 30 39 2 \n", + "251 69 30 39 2 \n", + "\n", + " sample_test_4 sample_test_5 sample_test_6 sample_test_7 \\\n", + "0 124 10 68 51 \n", + "1 124 10 68 51 \n", + "2 124 10 68 51 \n", + "3 124 10 68 51 \n", + "4 124 10 68 51 \n", + ".. ... ... ... ... \n", + "247 124 10 68 51 \n", + "248 124 10 68 51 \n", + "249 124 10 68 51 \n", + "250 124 10 68 51 \n", + "251 124 10 68 51 \n", + "\n", + " sample_test_8 sample_test_9 sample_test_10 sample_test_11 \\\n", + "0 71 77 102 80 \n", + "1 71 77 102 80 \n", + "2 71 77 102 80 \n", + "3 71 77 102 80 \n", + "4 71 77 102 80 \n", + ".. ... ... ... ... \n", + "247 71 77 102 80 \n", + "248 71 77 102 80 \n", + "249 71 77 102 80 \n", + "250 71 77 102 80 \n", + "251 71 77 102 80 \n", + "\n", + " sample_test_12 sample_test_13 sample_test_14 sample_test_15 \\\n", + "0 76 142 127 95 \n", + "1 76 142 127 95 \n", + "2 76 142 127 95 \n", + "3 76 142 127 95 \n", + "4 76 142 127 95 \n", + ".. ... ... ... ... \n", + "247 76 142 127 95 \n", + "248 76 142 127 95 \n", + "249 76 142 127 95 \n", + "250 76 142 127 95 \n", + "251 76 142 127 95 \n", + "\n", + " sample_test_16 sample_test_17 sample_test_18 sample_test_19 \\\n", + "0 70 93 67 0 \n", + "1 70 93 67 0 \n", + "2 70 93 67 0 \n", + "3 70 93 67 0 \n", + "4 70 93 67 0 \n", + ".. ... ... ... ... \n", + "247 70 93 67 0 \n", + "248 70 93 67 0 \n", + "249 70 93 67 0 \n", + "250 70 93 67 0 \n", + "251 70 93 67 0 \n", + "\n", + " sample_test_20 sample_test_21 sample_test_22 sample_test_23 \\\n", + "0 105 82 136 40 \n", + "1 105 82 136 40 \n", + "2 105 82 136 40 \n", + "3 105 82 136 40 \n", + "4 105 82 136 40 \n", + ".. ... ... ... ... \n", + "247 105 82 136 40 \n", + "248 105 82 136 40 \n", + "249 105 82 136 40 \n", + "250 105 82 136 40 \n", + "251 105 82 136 40 \n", + "\n", + " sample_test_24 sample_test_25 sample_test_26 sample_test_27 \\\n", + "0 54 28 74 119 \n", + "1 54 28 74 119 \n", + "2 54 28 74 119 \n", + "3 54 28 74 119 \n", + "4 54 28 74 119 \n", + ".. ... ... ... ... \n", + "247 54 28 74 119 \n", + "248 54 28 74 119 \n", + "249 54 28 74 119 \n", + "250 54 28 74 119 \n", + "251 54 28 74 119 \n", + "\n", + " sample_test_28 sample_test_29 sample_test_30 sample_test_31 \\\n", + "0 18 9 58 99 \n", + "1 18 9 58 99 \n", + "2 18 9 58 99 \n", + "3 18 9 58 99 \n", + "4 18 9 58 99 \n", + ".. ... ... ... ... \n", + "247 18 9 58 99 \n", + "248 18 9 58 99 \n", + "249 18 9 58 99 \n", + "250 18 9 58 99 \n", + "251 18 9 58 99 \n", + "\n", + " sample_test_32 sample_test_33 sample_test_34 sample_test_35 \\\n", + "0 73 97 128 122 \n", + "1 73 97 128 122 \n", + "2 73 97 128 122 \n", + "3 73 97 128 122 \n", + "4 73 97 128 122 \n", + ".. ... ... ... ... \n", + "247 73 97 128 122 \n", + "248 73 97 128 122 \n", + "249 73 97 128 122 \n", + "250 73 97 128 122 \n", + "251 73 97 128 122 \n", + "\n", + " ablation_seed_0 fi_time train_AUROC train_AUPRC train_F1 \\\n", + "0 3760 35.811752 0.708896 0.838653 0.000000 \n", + "1 3760 60.791198 0.707207 0.831625 0.003861 \n", + "2 3760 26.856047 0.504505 0.696167 0.067407 \n", + "3 3760 4.118729 0.527027 0.712064 0.059202 \n", + "4 7298 709.444741 0.684122 0.798879 0.000000 \n", + ".. ... ... ... ... ... \n", + "247 9192 30.405378 0.858108 0.929369 0.000000 \n", + "248 9192 4.197638 0.899775 0.950408 0.000000 \n", + "249 9852 761.948728 0.908221 0.948986 0.003861 \n", + "250 9852 16.139353 0.921171 0.956716 0.003861 \n", + "251 9852 1937.864373 0.975225 0.985242 0.000000 \n", + "\n", + " test_AUROC test_AUPRC test_F1 split_seed \\\n", + "0 0.725694 0.836341 0.000000 9 \n", + "1 0.752315 0.850549 0.007937 9 \n", + "2 0.582176 0.753878 0.039683 9 \n", + "3 0.579861 0.756349 0.015873 9 \n", + "4 0.651620 0.766891 0.000000 9 \n", + ".. ... ... ... ... \n", + "247 0.858796 0.930172 0.007937 6 \n", + "248 0.908565 0.955074 0.007937 6 \n", + "249 0.915509 0.957694 0.007937 6 \n", + "250 0.937500 0.965972 0.007937 6 \n", + "251 0.978009 0.986938 0.000000 6 \n", + "\n", + " rf_model \n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 RandomForestRegressor(max_features='sqrt', ran... \n", + ".. ... \n", + "247 NaN \n", + "248 NaN \n", + "249 RandomForestRegressor(max_features='sqrt', ran... \n", + "250 RandomForestRegressor(max_features='sqrt', ran... \n", + "251 RandomForestRegressor(max_features='sqrt', ran... \n", + "\n", + "[252 rows x 138 columns]" ] }, - "execution_count": 4, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -12237,21 +2238,21 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " fi fi_time\n", - "0 Kernel_SHAP_RF_plus 112.383354\n", - "1 LFI_with_raw_OOB_RF 7.247704\n", - "2 LFI_with_raw_RF 8.086560\n", - "3 LFI_with_raw_RF_plus 1.960254\n", - "4 LIME_RF_plus 246.317087\n", - "5 MDI_RF 3.232473\n", - "6 TreeSHAP_RF 0.283622\n" + " fi fi_time\n", + "0 Kernel_SHAP_RF_plus 712.338098\n", + "1 LFI_with_raw_OOB_RF 37.645961\n", + "2 LFI_with_raw_RF 61.391532\n", + "3 LFI_with_raw_RF_plus 15.300676\n", + "4 LIME_RF_plus 1731.041556\n", + "5 MDI_RF 27.809609\n", + "6 TreeSHAP_RF 4.174213\n" ] } ], @@ -12263,7 +2264,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -12280,7 +2281,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -12288,28 +2289,23 @@ "output_type": "stream", "text": [ "Model: RF\n", - "MSE: 3160.159277609703\n", - "R2: 0.4474091923958154\n", + "AUROC: 0.7672566229423867\n", + "AUPRC: 0.8654258983686067\n", + "F1: 0.015111362188908462\n", "Model: RF_plus\n", - "MSE: 3058.4929665413924\n", - "R2: 0.4653868933792266\n" + "AUROC: 0.788966049382716\n", + "AUPRC: 0.8744462679905067\n", + "F1: 0.013980746619635494\n" ] } ], "source": [ - "if task == \"classification\":\n", - " grouped = combined_df.groupby(\"model\")\n", - " for model, group_df in grouped:\n", - " print(\"Model:\", model)\n", - " print(\"AUROC:\", group_df[\"test_all_auc\"].mean())\n", - " print(\"AUPRC:\", group_df[\"test_all_auprc\"].mean())\n", - " print(\"F1:\", group_df[\"test_all_f1\"].mean())\n", - "elif task == \"regression\":\n", - " grouped = combined_df.groupby(\"model\")\n", - " for model, group_df in grouped:\n", - " print(\"Model:\", model)\n", - " print(\"MSE:\", group_df[\"test_all_mse\"].mean())\n", - " print(\"R2:\", group_df[\"test_all_r2\"].mean())" + "grouped = combined_df.groupby(\"model\")\n", + "for model, group_df in grouped:\n", + " print(\"Model:\", model)\n", + " print(\"AUROC:\", group_df[\"test_AUROC\"].mean())\n", + " print(\"AUPRC:\", group_df[\"test_AUPRC\"].mean())\n", + " print(\"F1:\", group_df[\"test_F1\"].mean())" ] }, { diff --git a/feature_importance/run_importance_local_sims.ipynb b/feature_importance/run_importance_local_sims.ipynb deleted file mode 100644 index 6b6df25..0000000 --- a/feature_importance/run_importance_local_sims.ipynb +++ /dev/null @@ -1,703 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "lfi_raw_oob = pd.read_pickle(\"./results/mdi_local.real_x_sim_y/feature_ranking/varying_heritability/seed1/0.8/rep0/RF_LFI_with_raw_OOB_RF_feature_importance.pkl\")\n", - "lfi_raw = pd.read_pickle(\"./results/mdi_local.real_x_sim_y/feature_ranking/varying_heritability/seed1/0.8/rep0/RF_LFI_with_raw_RF_feature_importance.pkl\")\n", - "mdi = pd.read_pickle(\"./results/mdi_local.real_x_sim_y/feature_ranking/varying_heritability/seed1/0.8/rep0/RF_MDI_RF_feature_importance.pkl\")\n", - "treeshap = pd.read_pickle(\"./results/mdi_local.real_x_sim_y/feature_ranking/varying_heritability/seed1/0.8/rep0/RF_TreeSHAP_RF_feature_importance.pkl\")" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "lfi_raw_oob = pd.read_pickle(\"./results/mdi_local.real_x_sim_y/feature_ranking/varying_sample_row_n/seed1/442/rep0/RF_LFI_with_raw_OOB_RF_feature_importance.pkl\")\n", - "lfi_raw = pd.read_pickle(\"./results/mdi_local.real_x_sim_y/feature_ranking/varying_sample_row_n/seed1/442/rep0/RF_LFI_with_raw_RF_feature_importance.pkl\")\n", - "mdi = pd.read_pickle(\"./results/mdi_local.real_x_sim_y/feature_ranking/varying_sample_row_n/seed1/442/rep0/RF_MDI_RF_feature_importance.pkl\")\n", - "treeshap = pd.read_pickle(\"./results/mdi_local.real_x_sim_y/feature_ranking/varying_sample_row_n/seed1/442/rep0/RF_TreeSHAP_RF_feature_importance.pkl\")" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAHZCAYAAAArGimiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8PElEQVR4nO3deVhV1f4/8PdhHmQQEBCVQUWccAIHwLEUQ1NySMtCMzW9WKaWJVlXtJS0UhxSs8whr8O3FENzwuucM4iZEw4oiiAqCDLIuH5/+PPcjufsDcg+Zy3g83qe8zyx92bvNySwzpo+KsYYAyGEEEKIwox4ByCEEEJIzUSNDEIIIYToBTUyCCGEEKIX1MgghBBCiF5QI4MQQgghekGNDEIIIYToBTUyCCGEEKIX1MgghBBCiF5QI4MQQgghekGNDEIIIYToBddGxrJly+Dl5QULCwv4+fnhyJEjPOMQQgghREHcGhmbN2/G5MmTMWPGDJw9exbdunVDSEgIUlJSeEUihBBCiIJUvAqkde7cGR06dMDy5cvVx1q0aIHXXnsNUVFRPCIRQgghREFcejKKiooQHx+P4OBgjePBwcE4duwYj0iEEEIIUZgJj4c+ePAApaWlcHFx0Tju4uKC9PR0resLCwtRWFiocWzi/EcwNjHXa86q8GjswDuCrNzcIt4RJM3sfJR3BHkqsedLz43vxjuCpOO7EnhHkDV0TADvCLJUKt4JpO387W/eEWTt/NlX78/4w9RHkfv0L76iyH1EwPW3peq5nxjGmNYxAIiKioKdnZ3G6/zRxYaKSQghhJAXwKWR4eTkBGNjY61ei4yMDK3eDQCIiIhAdna2xsu36yRDxSWEEELKpTJVKfKqSbgMl5iZmcHPzw9xcXEYNGiQ+nhcXBxCQ0O1rjc3N4e5uebQyL1b1/WesyqyH+TwjiCrW5+mvCNIyrZtxDuCrHpJh3lHkGVj8xLvCJJaB7bkHUFWUTHvBPKMBR6pq+si9hCxIRiZ1KwGghK4NDIAYOrUqQgLC4O/vz8CAgKwcuVKpKSkYMKECbwiEUIIIURB3BoZw4cPx8OHDzF79mykpaWhdevW2LlzJzw8PCr0+SojsVuMXXo24R1B1rH9ybwjSHrTR9xJqQDwV5M3eUeQlbEnn3cESX8dOc87gqweQUG8I8j676FHvCNIsnWw5h2BO5WpwF1NnHBrZABAeHg4wsPDeUYghBBCFEHDJdq4NjIIIYSQmqKmTdpUQrVtZNjXq8s7giwPN7H/sVn09uIdQdIfqWJ/70JdT/KOIOvlIH/eESQlnbXjHUHW8Xhxh5oAwKqOGe8IkrIe5PGOQARUbRsZhBBCiEhouERbtW1k5D8W+x3HpvVXeUeQlf9Y3HcdW9+/wzuCrMsmXXlHkLXyB3F3C+z5amveEWQ9eVLKO4KsBvVNeUeQtHfnA94RuKPhEm3cpsKmpqbi7bffhqOjI6ysrNCuXTvEx8fzikMIIYRUW8uWLYOXlxcsLCzg5+eHI0eOSF579OhRBAUFwdHREZaWlmjevDkWLlyodd2WLVvQsmVLmJubo2XLloiJial0Li49GVlZWQgKCkKvXr2wa9cuODs74/r167C3t+cRhxBCCKkyXsMlmzdvxuTJk7Fs2TIEBQXhhx9+QEhICC5evAh3d3et662trfH++++jTZs2sLa2xtGjRzF+/HhYW1vjvffeAwAcP34cw4cPx5dffolBgwYhJiYGw4YNw9GjR9G5c+cKZ+NS6n369On4888/ZVta5Zn47SPlAulBt0CxJ7idOVfAO4Kkr9zX8Y4ga2bqKN4RZJ3cm8g7giRWZvBfN5XSoJn2L2SR+Ac04B1B0onDt3hHkPV/33nq/RmHW7dX5D7d/z5bqes7d+6MDh06YPny5epjLVq0wGuvvYaoqKgK3WPw4MGwtrbGL7/8AuDpXlY5OTnYtWuX+ppXXnkFdevWxcaNGyucjctwSWxsLPz9/fH666/D2dkZ7du3x48//sgjCiGEECKUwsJC5OTkaLyer0T+TFFREeLj4xEcHKxxPDg4GMeOHavQ886ePYtjx46hR48e6mPHjx/Xumffvn0rfM9nuAyX3LhxA8uXL8fUqVPx2Wef4dSpU5g0aRLMzc0xcuTICt0j6azYtUus64hdoyE7S9yejPygVrwjyHq96RPeEWSl3qrYrrk83PxL7AnRk9+x4R1B1tL/pJd/ESdZ6Q95RyiHp96fYGSszHBJVFQUZs2apXFs5syZiIyM1Lr2wYMHKC0t1Sou6uLiolWE9HkNGzbE/fv3UVJSgsjISIwdO1Z9Lj09/YXu+TwujYyysjL4+/tj7ty5AID27dvjwoULWL58uc5GRmFhoVYrrqy0CEbG4q4ZJ4QQUrsoVe4iIiICU6dO1Tj2fJFQrWerNJ/NGNM69rwjR44gNzcXJ06cwPTp09G0aVO8+eb/yia8yD2fx2W4pH79+mjZUvOdfosWLZCSkqLz+qioKNjZ2Wm8ki+sNkRUQgghxKDMzc1ha2ur8ZJqZDg5OcHY2FirhyEjI0OrJ+J5Xl5e8PX1xbhx4zBlyhSNnhJXV9cXuufzuPRkBAUF4coVzbX8SUlJksXRdLXq+r19BoX54nb5F5eIvd7+yulLvCNImmHqyzuCrDf6id2D1qGTPe8Iku7fyeAdQdaWw2L/vy3IzeQdQZK5lSXvCNypjA3/vt3MzAx+fn6Ii4vDoEGD1Mfj4uIQGhpa4fswxjRGDAICAhAXF4cpU6aoj+3duxeBgYGVyselkTFlyhQEBgZi7ty5GDZsGE6dOoWVK1di5cqVOq83NzfXasXRUAkhhBCRKDUno7KmTp2KsLAw+Pv7IyAgACtXrkRKSgomTJgA4Okb9dTUVKxb93Tl3vfffw93d3c0b94cwNN9M7799lt88MEH6nt++OGH6N69O+bNm4fQ0FD8/vvv2LdvH44ePVqpbFwaGR07dkRMTAwiIiIwe/ZseHl5ITo6Gm+99VaF7+HdwUePCavupQAL3hFkNXCrXGvUkN43Wso7gqxLZiN4R5BlZiruO0pjY2PeEWR1bCs/7s1bSYkz7wiSbl+/zzsCd0rNyais4cOH4+HDh5g9ezbS0tLQunVr7Ny5Uz06kJaWpjEdoaysDBEREUhOToaJiQmaNGmCr7/+GuPHj1dfExgYiE2bNuHzzz/HF198gSZNmmDz5s2V2iMD4LRPhhLGfCn2P+jX+oldwO3KLW6bvZZL+EZGK7EbGX9edeQdQdLO3/7mHUHWu+PFXtl0PF7cIWLRGxmG2CfjZEDl/gBL6Xxc7CKMlVFta5cQQgghIuE1XCKyatvI4NUtVVEPcsT+1paWlfGOIOntQ6/yjiDrHXd73hFk3X9QwjuCJJEnawPAvoPZvCPIKsjTvSGTCEqKxf13ZygqamRoEbfPnBBCCCHVmthvt2WkXr3LO4KsdefE3pF0yDudeEeQNCf9X7wjyFq8fzPvCLJE3g3XzELsCdHNmtvzjlBtxcWIvTzZEFRG9L79eYp/Rw4fPowBAwbAzc0NKpUK27ZtU58rLi7Gp59+Cl9fX1hbW8PNzQ0jR47E3btiNxgIIYSQ8qiMVIq8ahLFGxl5eXlo27Ytli7VXiGQn5+PhIQEfPHFF0hISMDWrVuRlJSEgQMHKh2DEEIIIZwpPlwSEhKCkJAQnefs7OwQFxencWzJkiXo1KkTUlJSdNa9l2JuJXa3q+j5rl7N5R1BUn9rsfcq6CLwjpoAkPWgctv+GpLokwMzs4p5R5BVXCTuTsKPH2bxjsAdrS7Rxn1ORnZ2NlQqFezt7XlHIYQQQl5YTRvqUALXRsaTJ08wffp0jBgxAra2tjyjEEIIIVVCEz+1cWtkFBcX44033kBZWRmWLVsme62uUu/1Pe1hbCJut3pOVj7vCLIunLhS/kWcuPRuxzuCLBNjsTfJretUh3cESRdOiFuYDwA+m2DNO4Ks2FPi7iRsYk71pIg2Ls2u4uJiDBs2DMnJyYiLiyu3F0NXqff4/y4wUFpCCCGkfLS6RJvBezKeNTCuXr2KAwcOwNGx/DoLukq9z/qlDCam4racWZnY73ZNBX7XkRsg9mqjE3HiTpoFgMyMHN4RJIn87w4A/oh34B1BlrW1uN3xxiZiF78zBJr4qU3xRkZubi6uXbum/jg5ORmJiYlwcHCAm5sbhg4dioSEBOzYsQOlpaVIT08HADg4OMDMTPcvIF2l3k1Mxd6emBBCCKntFG9knDlzBr169VJ//KwHYtSoUYiMjERsbCwAoF27dhqfd+DAAfTs2VPpOIQQQohB1LShDiUo3sjo2bMn5KrHK1VZ/s/tpxS5j768/l533hFkNXQXt6T1v7eL290PAJGh18q/iKPTeb68I0ha/r3YBcjS0/N4R5BlpBL3j1jLLs15R+COVpdoo+8IIYQQQvSC+2ZcL8q3e1veEWQd3CP2u93cLHF7C34Pv8k7gqyjhQN4R5C1YF487wiSmnXw5h1BVqNG4i7/BQDbOuK+L9z043HeEeRNDtD7I2i4RFu1bWQQQgghIqFGhjZxm8WEEEIIqdaqbU9G0ROxCxl5Nq/PO4Ks0X3teEeQFJ3QjncEWSPbi71rZf3GDXhHkJR6PZ13BFktW4m7oyYAJN8Sd+l+k7ZNeUfgjnoytCnek3H48GEMGDAAbm5uUKlU2LZtm8b53NxcvP/++2jYsCEsLS3RokULLF++XOkYhBBCiEGpjIwUedUkivdk5OXloW3bthg9ejSGDBmidX7KlCk4cOAA1q9fD09PT+zduxfh4eFwc3NDaGhohZ+TcjlFydiK69xH3GWEAPDjH2W8I0ia32YD7wiy9j1+k3cEWWk3xJ34aWIqdudpibiV1AEA5ubi7qp57exV3hHKUU/vT6AdP7Up/hMfEhKCkJAQyfPHjx/HqFGj1Btvvffee/jhhx9w5syZSjUyCCGEECI2g/fLdO3aFbGxsUhNTQVjDAcOHEBSUhL69u1r6CiEEEKIYqhAmjaD910uXrwY48aNQ8OGDWFiYgIjIyP89NNP6Nq1q+Tn6Cr13qW3D0xMxS31npVVWP5FHP19TNzJi7cH9OAdQVZLldhDdR1fasM7gqRjf4i9U+/t22Lv+OnmZsU7gqRGLTx5R+Cups2nUILBvyOLFy/GiRMnEBsbi/j4eHz33XcIDw/Hvn37JD9HV6n3I9vnGTA1IYQQQipLxZQqJqLr5ioVYmJi8NprrwEACgoKYGdnh5iYGPTv31993dixY3Hnzh3s3r1b53109WT0D0uAkbG4ZaPb9RB74mevQHHfEa37JZl3BFkPbou9DNO7gw/vCJKyHzzmHUFW/9ca844g6+9L4va0JF9O4x1B1tbF+l9ie3OsMvMKPX/6XZH7iMCgwyXFxcUoLi6G0XNdSsbGxigrk17toKvUu8gNDEIIIbVPTZtPoQTFGxm5ubm4du1/dTuSk5ORmJgIBwcHuLu7o0ePHpg2bRosLS3h4eGBQ4cOYd26dViwYIHSUQghhBDCkeKNjDNnzqBXr17qj6dOnQoAGDVqFNasWYNNmzYhIiICb731FjIzM+Hh4YE5c+ZgwoQJlXqOla3YhYzq2Ijd03L2krj7ZHTpIXaX9Z5fM3lHkJV05jLvCJKYTI+lCPKfiP1vz9ralHcESTb2Yv9ONgSa+KlN8UZGz549ITfNw9XVFatXr1b6sYQQQghXNFyiTezt92TkZmXzjiDLwlLcnfkAwErgfG/9GcY7gqyG7//CO4KsHxeLu0zU1tGedwRZv284yzuCrNAR7XlHkHRw27XyL+LKlXeAWqnaNjIIIYQQkdBwiTZqZBBCCCFKUNFwyfOqbSOjcVtv3hFkXf7rHu8IstKTU3lHkJQ3YA3vCLLecRF3YiUAPB7bmXcESeu/P8I7gqxB70rvPCyCu2ni7iTs2rgh7wjc0ZwMbYr37URFRaFjx46wsbGBs7MzXnvtNVy5ckXy+vHjx0OlUiE6OlrpKIQQQgjhSPGejEOHDmHixIno2LEjSkpKMGPGDAQHB+PixYuwtrbWuHbbtm04efIk3NzcKv2cm3/fUCqyXtRxsOUdQVb/NzvyjiDp5eVi1y7J7vwr7wiyrt8o4B1BUv2mjXhHkPXgQRHvCLKKisStRV9SXMI7Anc0J0Ob4o2M57cGX716NZydnREfH4/u3burj6empuL999/Hnj17NLYYJ4QQQqojGi7RpvdmV3b206WmDg4O6mNlZWUICwvDtGnT0KpVK31HIIQQQggHep34yRjD1KlT0bVrV7Ru3Vp9fN68eTAxMcGkSZMqdB9dBdLs69vB2FjcUu9WNuIWIAOAwkJxd150bevBO4Ks0zmOvCPIun3jLu8Iku4li5sNADJuiV3k6833AnhHkBR/4CHvCOXQf4E0Gi7RptfvyPvvv4+//voLGzduVB+Lj4/HokWLsGbNGqgquNxHV6n3pDM/6Cs2IYQQUmkqI5Uir5pEb6XeP/jgA2zbtg2HDx+Gl5eX+nh0dDSmTp2qUYm1tLQURkZGaNSoEW7evKl1L109Ga+8cVLoSqy29RzKv4gjG4EnplrWseAdQdbigX/xjiBr/l/iTpw9uiOedwRZYyaJ21MAACXizvvEr7+c5x1B1s6fffX+jHufKrNbscs8sXcVrgzFh0sYY/jggw8QExODgwcPajQwACAsLAy9e/fWONa3b1+EhYVh9OjROu9Jpd4JIYSIrqb1QihB8UbGxIkTsWHDBvz++++wsbFBeno6AMDOzg6WlpZwdHSEo6PmmLapqSlcXV3h4+OjdBxCCCHEMGhOhhbFGxnLly8H8LQa6z+tXr0a77zzjmLPcWpUX7F76UPbLl7lX8TRgZiTvCNI+q35St4RZJnd9OMdQZatzcu8I0iqU9eOdwRZu3be4R1B1quvNuAdQZJTAyfeEYiA9DJcUlm65mEQQggh1UlFFzPUJtW2dgkhhBAiElrCqq3aNjL0tChGMZf/Ens/gPc/CeQdQZI1y+AdQV6m2MXvnOuI+4su50Em7wiyXnq1Be8IsrIei/tOOSvjEe8I5dD/EDtN/NQm7m8jQgghhFTIsmXL4OXlBQsLC/j5+eHIEemKx1u3bkWfPn1Qr1492NraIiAgAHv27NG45tleVs+/njx5Uqlc1bYnw8lN7H0oSkvF3VETAH6PFXdnw65PxC5Adi98Ce8IsvauEnfyokol9vuaWzdzeUeQ1burJe8IkoxoqIDb6pLNmzdj8uTJWLZsGYKCgvDDDz8gJCQEFy9ehLu7u9b1hw8fRp8+fTB37lzY29tj9erVGDBgAE6ePIn27durr7O1tdWqom5hUbl9jBT/jixfvhxt2rSBra2tuoW0a9cu9XnGGCIjI+Hm5gZLS0v07NkTFy5cUDoGIYQQYlC8dvxcsGABxowZg7Fjx6JFixaIjo5Go0aN1Ks9nxcdHY1PPvkEHTt2hLe3N+bOnQtvb29s375d8+tRqeDq6qrxqizFGxkNGzbE119/jTNnzuDMmTN46aWXEBoaqm5IzJ8/HwsWLMDSpUtx+vRpuLq6ok+fPnj8+LHSUQghhJBqp7CwEDk5ORqv53e9fqaoqAjx8fEIDg7WOB4cHIxjx45V6HllZWV4/PixRiFTAMjNzYWHhwcaNmyIV199FWfPnq3016L4cMmAAQM0Pp4zZw6WL1+OEydOoGXLloiOjsaMGTMwePBgAMDatWvh4uKCDRs2YPz48RV+zvVz1xTNrbR2PfS/hW1VdGhTh3cESXNO6259i+Kvj8XePtm9ZWPeESSJPjHO2UXswoZ/X+edQFoj78q/y61plBoOjIqKwqxZszSOzZw5E5GRkVrXPnjwAKWlpXBxcdE47uLiot4Mszzfffcd8vLyMGzYMPWx5s2bY82aNfD19UVOTg4WLVqEoKAgnDt3Dt7e3hX+WvQ6J6O0tBS//vor8vLyEBAQgOTkZKSnp2u0uMzNzdGjRw8cO3asUo0MQgghRCgKNaIjIiIwdepUjWPPl9Z43vN7dDDGKrRvx8aNGxEZGYnff/8dzs7O6uNdunRBly5d1B8HBQWhQ4cOWLJkCRYvXlyRLwOAnhoZ58+fR0BAAJ48eYI6deogJiYGLVu2VHfd6Gpx3bp1S/J+ugqkmVuaCl2/xM5O3DL0ALDrjxTeEST9ODiRdwRZ2zoPKP8ijs5fqtzsb0O6f0fs5cm92ubzjiDr+BVxeyAvnbpS/kVcdeIdoMJ01euS4uTkBGNjY61ei4yMDK2/tc/bvHkzxowZg19//VWrptjzjIyM0LFjR1y9erVCudSfV6mrK8jHxweJiYk4ceIE/vWvf2HUqFG4ePGi+nxlW1y6Sr1fP79KH9EJIYSQF6IyMlLkVRlmZmbw8/NDXFycxvG4uDgEBkrvh7Rx40a888472LBhA/r371/ucxhjSExMRP36ldtvRC89GWZmZmjatCkAwN/fH6dPn8aiRYvw6aefAgDS09M1gpbX4tLVdfT6xCQ9JCeEEEJeDK85R1OnTkVYWBj8/f0REBCAlStXIiUlBRMmTADw9G9oamoq1q1bB+BpA2PkyJFYtGgRunTpou4FsbS0hJ3d0/pCs2bNQpcuXeDt7Y2cnBwsXrwYiYmJ+P777yuVzSD7ZDDGUFhYCC8vL7i6uiIuLk69FreoqAiHDh3CvHnzJD9fV9eRjYPY+2Tk5RXzjiCreRtxC8ztQkPeEWQ1sBd3OAIA9t3N4R1BUuPWnrwjyDp2yZp3BFlODuJOnG3u34x3hFpr+PDhePjwIWbPno20tDS0bt0aO3fuhIeHBwAgLS0NKSn/GyL/4YcfUFJSgokTJ2LixInq46NGjcKaNWsAAI8ePcJ7772H9PR02NnZoX379jh8+DA6darcsJPijYzPPvsMISEhaNSoER4/foxNmzbh4MGD2L17N1QqFSZPnqxek/tsfa6VlRVGjBihdBRCCCHEcDhuNhceHo7w8HCd5541HJ45ePBgufdbuHAhFi5cWOVcijcy7t27h7CwMKSlpcHOzg5t2rTB7t270adPHwDAJ598goKCAoSHhyMrKwudO3fG3r17YWNjU6nn2DqIOwEKANq0FHspXCOHAt4RJC37WdwdKwFg3vti7+b69mBxe4Lmf3Ox/Is4qt+gNe8IsvILxP23l3zxNu8I5bDX+xNEX6LNg+KNjFWr5CdkqlQqREZG6lzvSwghhFRbtLW6FvqOEEIIIUQvqm2BtNQbYpdST23hyDuCrFPxRbwjSFoVJvZurnvuv8w7gqwN68XdFrK+l7gTjgHAxkbsX4llpYx3BEk59zN5R+CuIptf1TZi/0QRQggh1QUNl2ipto0Mx/pOvCPIunRe7J0NTUyMeUeQ9HCp2KXUu08Te/n09+ni9lI9yRV3wjEAmHaW3yGRtxu3xd6RlJDnGbzUOwBcunQJAwcOhJ2dHWxsbNClSxeNNbyEEEJIdcOr1LvIFO/JeFbq/dmOn2vXrkVoaCjOnj2LVq1a4fr16+jatSvGjBmDWbNmwc7ODpcuXYKFhYXSUQghhBDD4bhPhqgMWuq9VatWmDFjBvr164f58+err2ncuPKlqQsE73bt91rFS+HyYCFubTm4XG3HO4Kso0W+vCPI6vWauO+Eju76i3cEWUaCv4ts1EjcHUlP8w5AhKTXZldpaSk2bdqkLvVeVlaGP/74A82aNUPfvn3h7OyMzp07Y9u2bfqMQQghhOifkUqZVw1i0FLv6enpyM3Nxddff42vvvoK8+bNw+7duzF48GAcOHAAPXr0qPAzWJm4S7kA4O8Lj3lHkCXyO6KH8Rd4R5DVspvYxfn2FzTlHUFSnbq2vCPIupch7qRZAGjsIW4XpF/vDrwjcKei4RItemlkPCv1/ujRI2zZsgWjRo3CoUOHYG9vDwAIDQ3FlClTAADt2rXDsWPHsGLFCslGRmFhIQoLCzWOlZYWwdhY3B84QgghpLbTS7PrWal3f39/REVFoW3btli0aBGcnJxgYmKCli1balzfokUL2dUlUVFRsLOz03hdTfhBH9EJIYSQF0PDJVoMWurdzMwMHTt2xJUrVzTOJyUlqUvS6hIREYGpU6dqHHv33+kwNjGX+Az+/vpT7EJQub6Vn2xrKGUlpbwjyLpWKO5wBAAc35XAO4IkI4H3ZwGADi3F/bkAgF3/FXdXzRvnk3lHKIef3p+gos24tBi01DsATJs2DcOHD0f37t3Rq1cv7N69G9u3b5ctPWtubg5zc80GhbFJltLRCSGEkBdH24prMXip90GDBmHFihWIiorCpEmT4OPjgy1btqBr166Vek5m2gOloyuqXiOxdw5s4G7HO4Kk/wZt4x1BVqCV2KXom7YXd/n0jfM3eEeQ9SBH7J6Wlq3q8o4gKTdb7G0FCB8GL/UOAO+++y7effddpR9NCCGE8EPDJVqqbe0SQgghRCg0XKKl2jYyTExNeUeQ5ehqzzuCrK7teCeQI/ZeBY5PUnlHkNWxU2feESSlJafzjiDL3Unsf3uH4sXdH6ggj4ZLiLZq28gghBBCREKrS7RV20ZGz1db844gKzu7mHcEWftPlfGOIGnsS2m8I8ga+6097wiyggfyTiDN1FzsDfSWLLvOO4KsLr2a8Y4gydFV3EmpBkM7fmrR+3ckKioKKpUKkydPBgAUFxfj008/ha+vL6ytreHm5oaRI0fi7t27+o5CCCGEEAPSayPj9OnTWLlyJdq0aaM+lp+fj4SEBHzxxRdISEjA1q1bkZSUhIEDBX77RQghhJSHdvzUorfhktzcXLz11lv48ccf8dVXX6mP29nZIS4uTuPaJUuWoFOnTkhJSYG7u3uF7p+Wlq9oXqWZm4u93r65tyXvCJKcty/hHUGWu08k7wiyHmWLu2OqSvDZ901aN+IdQZZfc3H/3545Ku5upE856v0JVCBNm96+IxMnTkT//v3Ru3fvcq/Nzs6GSqVSF1AjhBBCSPWnl56MTZs2ISEhAadPny732idPnmD69OkYMWIEbG3FLgNNCCGESKphQx1KULyRcfv2bXz44YfYu3cvLCwsZK8tLi7GG2+8gbKyMixbtkzyOl2l3u/fzRS6QFqb9mJvK379lsD7AXTryzuBrHdtBf7eATh7W9zG+uPMR7wjyGrbWtzVGwCw/4S4e1G4etTjHYE/Gi7Rovh3JD4+HhkZGfDz84OJiQlMTExw6NAhLF68GCYmJigtfTqmWFxcjGHDhiE5ORlxcXGyvRi6Sr3//afY4/aEEEJqGZVKmVcNomKMKbqF3OPHj3Hr1i2NY6NHj0bz5s3x6aefonXr1uoGxtWrV3HgwAHUqyffAtbVkzF4wiUYGYu75r7/sHa8I8g6uOca7wiSfrD5kncEWSNuTuIdQZZtPXveESSZmIq9NY+VjbgTogGg/yvi9hb83+Zb5V/E0a8LvfT+jCe/fqfIfSxe/0iR+4hA8Z94GxsbtG6tuVGWtbU1HB0d0bp1a5SUlGDo0KFISEjAjh07UFpaivT0p1sNOzg4wMxMu+Ggq9S7yA0MQgghtRDt+KnF4G8r7ty5g9jYWABAu3btNM4dOHAAPXv2NHQkQgghpOpoToYWgzQyDh48qP5vT09PKDFCU5CTW+V76FNmVgnvCLLadPLkHUHSUvYT7wiyvnk3h3cEWWt3y0+45unM3njeEWT1GR7IO4IskYfr790Uu3AgoP/hEqJN7AFSQgghpLqgJaxaqm0jo5l/c94RZF3+S+xaLBkp4pbc/uPDO7wjyFoY/xrvCLJuXbnBO4IkU0txe1kAwL2BKe8IskpKxS317uLZgHcE/mi4RAt9RwghhBCiF9W2J4MQQggRisiTZjipto0MKxtxd/sEgAbudrwjyArsUbFCdDwY3T3KO4Ksmzce8Y4gq1mbhrwjSLqZJPbS8z+2iTvUBAATx9bnHUHSowzRC6QZYOInLWHVovfvSFRUFFQqFSZPnqw+lpubi/fffx8NGzaEpaUlWrRogeXLl+s7CiGEEEIMSK89GadPn8bKlSvRpk0bjeNTpkzBgQMHsH79enh6emLv3r0IDw+Hm5sbQkNDK3TvSyeT9BFZMaFv+/GOIEvkJbb5bTrxjiBrkct/eUeQtQXDeEeQdOyPFN4RZL0xoRvvCLLir5bxjiDJoo4V7wj80XCJFr31ZOTm5uKtt97Cjz/+iLp162qcO378OEaNGoWePXvC09MT7733Htq2bYszZ87oKw4hhBCiXyojZV41iN6+mokTJ6J///7o3bu31rmuXbsiNjYWqampYIzhwIEDSEpKQt++YlffJIQQQiQZGSnzqkH0MlyyadMmJCQk4PTp0zrPL168GOPGjUPDhg1hYmICIyMj/PTTT+jatavO63UVSCsrLRK6fsmN5DzeEWTF/zeRdwRJaamty7+II3uHjrwjyEpPvcc7giTRu9TT7hXxjiDLv5Ux7wiSdmU/5h2BCEjxJtPt27fx4YcfYv369bCw0L3xzuLFi3HixAnExsYiPj4e3333HcLDw7Fv3z6d1+sq9X7z4hqloxNCCCEvjkq9a1G81Pu2bdswaNAgGBv/r8VdWloKlUoFIyMjZGdno27duoiJiUH//v3V14wdOxZ37tzB7t27te6pqydjyR+mMDEVdxmrX7Ni3hFk/bzhPu8IkuaNEbs2yBMja94RZO2+LO7y5J2/nucdQdarw9uUfxFHl6+I+7PxJF/s33k/fuao92c82btakftYBI9W5D4iUHy45OWXX8b585q/SEaPHo3mzZvj008/RWlpKYqLi2H03LiTsbExysp0z5zWVerdxFTcWdaEEEII0UMjw8bGBq1ba46pW1tbw9HRUX28R48emDZtGiwtLeHh4YFDhw5h3bp1WLBggdJxCCGEEMOoYUMdSuCy4+emTZsQERGBt956C5mZmfDw8MCcOXMwYcKECt/jwjlxJ7cBgLmZK+8IsjoFilvMaPavlrwjyPp0uLhd1gDg6VrKO4IkleBVKouLxS1ABgBWVuIWcPv72CXeEcqh/+GSmrYyRAkGaWQcPHhQ42NXV1esXq3M2BUhhBBCxFRta5c8SH3AO4KsmAvJvCPI8mrThHcESa/P6c47gqyGbSbzjiBrl6riPYKGZuNgyzuCrDupBbwjyLK2Frcno66rAXoKBMdouEQL9e0QQgghSuC44+eyZcvg5eUFCwsL+Pn54ciRI5LXbt26FX369EG9evVga2uLgIAA7NmzR+u6LVu2oGXLljA3N0fLli0RExNT6VzUyCCEEEKqsc2bN2Py5MmYMWMGzp49i27duiEkJAQpKbprBR0+fBh9+vTBzp07ER8fj169emHAgAE4e/as+prjx49j+PDhCAsLw7lz5xAWFoZhw4bh5MmTlcqm+D4ZhvLmJ2IXWiorE/vbWs/NnncESV9bRPGOIGt/pzm8I8iK3ZPFO4KkWxdv8Y4ga3CY2IUNk67l8o4g6fKZG7wjyNq1Rv97oBQc3KjIfSx7vlmp6zt37owOHTpoVDNv0aIFXnvtNURFVez3aatWrTB8+HD8+9//BgAMHz4cOTk52LVrl/qaV155BXXr1sXGjRX/OhXvyYiMjIRKpdJ4ubrqXmkxfvx4qFQqREdHKx2DEEIIMSimUinyKiwsRE5Ojsbr+Q0pnykqKkJ8fDyCg4M1jgcHB+PYsWMVyl1WVobHjx/DwcFBfez48eNa9+zbt2+F7/mMXiZ+tmrVSmOL8H/u/vnMtm3bcPLkSbi5ub3QM1SCLxXKzXzEO4KsR/fFfbdrMtCFdwRZJWViT+4a+Zq4S4BnnMrnHUFWw3olvCPIMjWtwzuCpLs37XhH4E+hCqpRUVGYNWuWxrGZM2ciMjJS69oHDx6gtLQULi6avzddXFyQnp5eoed99913yMvLw7Bhw9TH0tPTq3TPZ/TSyDAxMZHsvQCA1NRUvP/++9izZ4/G1uKEEEJIbRcREYGpU6dqHHt+1+vnqZ5b2cIY0zqmy8aNGxEZGYnff/8dzs7Oitzzn/TSyLh69Src3Nxgbm6Ozp07Y+7cuWjcuDGAp90yYWFhmDZtGlq1aqWPxxNCCCGGp9ASVl2lNKQ4OTnB2NhYq4chIyNDqyfieZs3b8aYMWPw66+/onfv3hrnXF1dX+iez1O8kdG5c2esW7cOzZo1w7179/DVV18hMDAQFy5cgKOjI+bNmwcTExNMmjSpwvfUVSAt7fpNoUu9+wa15B1BVuuW4na7MqMLvCPIMjESe1Lv7hPibn9j5yz2Xgo308UtpQ4AFuLWhMS9m3d5RyiHh/4fwWEY38zMDH5+foiLi8OgQYPUx+Pi4hAaGir5eRs3bsS7776LjRs36hxRCAgIQFxcHKZMmaI+tnfvXgQGBlYqn+K/jUJCQtT/7evri4CAADRp0gRr165Fjx49sGjRIiQkJFSqy0XX+JRnq7Fo3HqcYrkJIYSQ6mjq1KkICwuDv78/AgICsHLlSqSkpKhLdURERCA1NRXr1q0D8LSBMXLkSCxatAhdunRR91hYWlrCzu7p3JoPP/wQ3bt3x7x58xAaGorff/8d+/btw9GjRyuVzSBLWPv06YOmTZvCx8cHU6dO1ajAWlpaCiMjIzRq1Ag3b97U+fm6ejLCIm7D2FjcZn3IwKa8I8iSKHgrhKHHxvKOICvlra95R5C1M74u7wiS4n47xTuCrH5vduYdQVZGxhPeESRl3M3mHUHWui/r6/0Zece2KnIf68DBlf6cZcuWYf78+UhLS0Pr1q2xcOFCdO/+dPfkd955Bzdv3lSX+OjZsycOHTqkdY9Ro0ZhzZo16o9/++03fP7557hx4waaNGmCOXPmYPDgymXTe79qYWEhLl26hG7duiEsLExr3Kdv374ICwvD6NGjJe+ha3xK5AYGIYSQWkih1SUvIjw8HOHh4TrP/bPhAGjXE5MydOhQDB06tEq5FG9kfPzxxxgwYADc3d2RkZGBr776Cjk5ORg1ahQcHR3h6Kg5JmtqagpXV1f4+PgoHYUQQgghHCneyLhz5w7efPNNPHjwAPXq1UOXLl1w4sQJeHgoO+nm4Z0MRe+ntHN/1eMdQVYdG3F7gsJzv+AdQdbrmQ7lX8RRaam4Y2ElhUW8I8jKeSz2PhkODuL+3P51rHL7Jxie/odLGMeeDFEp3sjYtGlTpa6XmodBCCGEVCtUhVWLuGvdyqEyEvt/pp29Be8IskxMxG1x/+y9kncEWeNi/sU7gqygHg15R5Bk4yjupFQASLst9uTFbt3E7SGt76X/ngJS/VTbRgYhhBAiEhou0UaNDEIIIUQJNFyipdo2MurUFbsYT+bDAt4RZI0ZKO6ulcbnxO5SHxPoxDuCrP9sFXdStJHAw3QA0NJX7P+3BeJuk0EArktYRaWX70hqairefvttODo6wsrKCu3atUN8fLz6PGMMkZGRcHNzg6WlJXr27IkLF8TeSpoQQgghlaN4IyMrKwtBQUEwNTXFrl27cPHiRXz33Xewt7dXXzN//nwsWLAAS5cuxenTp+Hq6oo+ffrg8ePHSschhBBCDIKpVIq8ahLFh0vmzZuHRo0aYfXq1epjnp6e6v9mjCE6OhozZsxQb0+6du1auLi4YMOGDRg/frzSkbi4dPIS7wiy/mPpyzuCpE+e2xVWNMVPxO4Sffwoj3cESa4elavgaGj37xeWfxFH/m3ELQpJQMMlOij+HYmNjYW/vz9ef/11ODs7o3379vjxxx/V55OTk5Geno7g4GD1MXNzc/To0QPHjh1TOg4hhBBCOFG8J+PGjRtYvnw5pk6dis8++wynTp3CpEmTYG5ujpEjR6qrvT1fk97FxQW3bt3SeU9dBdJMzVQwNhF397tWHb14R5Dl09SSdwRJVvkPeEeQ5W8WX/5FHKWHBvCOIOnX9X/zjiCrWQuxS9Fv2nCTdwRJdepa847AHUPNGupQguI9GWVlZejQoQPmzp2L9u3bY/z48Rg3bhyWL1+ucd3zpd4ZY5Ll36OiomBnZ6fxunJmhdLRCSGEkBfGVEaKvGoSxb+a+vXro2XLlhrHWrRogZSUFACAq6srAKh7NJ7JyMjQ6t14JiIiAtnZ2RovH/8JSkcnhBBCiIIUHy4JCgrClStXNI4lJSWpC6R5eXnB1dUVcXFxaN++PQCgqKgIhw4dwrx583TeU1ep9yd5NwEUKx1fMXeSM3lHkJV+x5h3BEkjAm/yjiDr31eG844g69FDcQtVmVmIO8QJAPUcxH4X+crAxrwjSFq//DjvCOUwwKTjGtYLoQTFGxlTpkxBYGAg5s6di2HDhuHUqVNYuXIlVq58Wo9CpVJh8uTJmDt3Lry9veHt7Y25c+fCysoKI0aMUDoOIYQQYhA1bfmpEhRvZHTs2BExMTGIiIjA7Nmz4eXlhejoaLz11lvqaz755BMUFBQgPDwcWVlZ6Ny5M/bu3QsbG5sKP6e0tFTp6IoqyBN7x89hbzThHUFSqUrsXRdNTMV+t8KYuLu5ZqWLPan31h1P3hFkmZmJ+29PZSRuNsKPXrYVf/XVV/Hqq69KnlepVIiMjERkZKQ+Hk8IIYQYXE2btKmEalu7hBBCCBEKDZdoqbaNjEbNGvKOIKtXT7G7/AXuUcdlp+68I8h6q7fYVaqOX6/PO4Kk+7fv844gqyC/hHcEWY+yxM3nWL8e7wjcUU+GNvqOEEIIIUQvqm1PhmsDW94RZN1OK+MdQdadFHGL0bUflM87QrX2313XeEeQlJedwzuCrDo2prwjyHJxteAdQVJGahbvCNzRjp/auJR6B4BLly5h4MCBsLOzg42NDbp06aLesIsQQgipbmjHT22K92Q8K/Xeq1cv7Nq1C87Ozrh+/bpGqffr16+ja9euGDNmDGbNmgU7OztcunQJFhbittIJIYQQUjkGL/UOADNmzEC/fv0wf/589bHGjSu3k92lxNtVyqlvGcmpvCPIahUkbqn3H3bZ844gK6rxBt4RZL0c8h7vCJL2xoq9v03uY3F3EQYAO1txd+pNv5nGO0I53PX/CFpdosXgpd7Lysrwxx9/oFmzZujbty+cnZ3RuXNnbNu2TekohBBCiMEwGCnyqkkMXuo9IyMDubm5+Prrr/HVV19h3rx52L17NwYPHowDBw6gR48eFXpObpa4ExcBsXsKAOB2krg9LVvfFLuU+lbLcbwjyMq8Le4yx5yHj3hHkGVh6cU7gqzcPHEnlLs1EXtbAcKH4o2MsrIy+Pv7Y+7cuQCA9u3b48KFC1i+fDlGjhyJsrKnPyShoaGYMmUKAKBdu3Y4duwYVqxYobORUVhYiMLCQs3nlBbByNhM6fiEEELIC6HaJdoMXurdyckJJiYmstc8LyoqCnZ2dhqv5L9/Vjo6IYQQ8sJodYk2g5d6NzMzQ8eOHWWveV5ERASmTp2qceybLUYwMRW3bHRGeh7vCLI6dPfhHUHS+CNi7xzYpw/vBPIunr3LO4IkIyOx3+mZmIj9C97SUtx8WfcyeUcoRwPeAWolg5d6B4Bp06Zh+PDh6N69O3r16oXdu3dj+/btOHjwoM57mpubw9xcs0FhYir2LHBCCCG1C23GpY1LqfdBgwZhxYoViIqKwqRJk+Dj44MtW7aga9euFX7O0V1/KR1dURZ1rHhHkBXaR9xS7+2ufMI7gqydpet4R5D1JL+w/Is4aeDdiHcEWbY24i4RBYBSced9Iu+R2JPxDaGmDXUogUupdwB499138e677+rj8YQQQojB0cRPbdTsIoQQQoheVNsCaQ28xV6Tff+O2CWtjybyTiAt+t403hFkfe4idrdw3Xp2vCNIunXpJu8Isvw6ufKOIOvuXXGLB740uCPvCNzRnAxt1baRQQghhIiE5mRoq7aNDEfnOrwjyHqUkc07gqyX/MStITHlzjLeEWT9ePF73hFk3b97h3cEScamYpdSr1eXdwJ55/8q4B1B0rXz4v67AwC8Le6y/ZpM8WaXp6cnVCqV1mvixIkoLi7Gp59+Cl9fX1hbW8PNzQ0jR47E3bvirusnhBBCKoJBpcirJlG8kXH69GmkpaWpX3FxcQCA119/Hfn5+UhISMAXX3yBhIQEbN26FUlJSRg4cKDSMQghhBCDoh0/tSk+XFKvnuZujV9//TWaNGmCHj16QKVSqRsdzyxZsgSdOnVCSkoK3N0rXoo3+bLYZYXNLMWuq7LjCOMdQVKXTp15R5D1hueV8i/iKOexuHugXL+YzjuCrMvXxd7kz9/fiXcESf85dYl3hHLQcAkPem0yFRUVYf369Xj33Xehklg/nJ2dDZVKBXt7e31GIYQQQvSKhku06XXi57Zt2/Do0SO88847Os8/efIE06dPx4gRI2Bra1upe9s7Vu56Q3v0MId3BFl29uL2tIzZL3ZxkNnjxN1REwBcncWdXBl/8BHvCLJahIq9I+nJhFzeESQFhPjzjsBdTRvqUIJeGxmrVq1CSEgI3NzctM4VFxfjjTfeQFlZGZYtk19NoKvUe2lJIYxNxC2QRgghhNR2emt23bp1C/v27cPYsWO1zhUXF2PYsGFITk5GXFxcub0Yukq9/3Vksb6iE0IIIZVGwyXa9NaTsXr1ajg7O6N///4ax581MK5evYoDBw7A0dGx3HvpKvUe/nUWSgWuFpR5V+wdP/2be/COICk5SdzufgC4mVf+v1merl4Vt0vdRvBhzkvXxJ74GegvbuHFX9aIPSEaaKH3J1DtEm16aWSUlZVh9erVGDVqFExM/veIkpISDB06FAkJCdixYwdKS0uRnv50trmDgwPMzHTPE9BV6t3YRNztdQkhhNQ+jFEj43l6aWTs27cPKSkpWlVW79y5g9jYWABAu3btNM4dOHAAPXv21EccQgghhHCgl0ZGcHAwGNPeh8HT01Pn8RchegEyK1uxtz2/lSHukMSywJ28I8g6UvYm7wiyrp2/xTuCpKICsVfmeId68o4g6++kIt4RJJUUij3UZAiMCptroe8IIYQQogCeEz+XLVsGLy8vWFhYwM/PD0eOHJG8Ni0tDSNGjICPjw+MjIwwefJkrWvWrFmjs0TIkydPKpWr2hZI69q3Je8IsnJzS3hHkPWkUNwdP4uuJfKOIKv+wFd4R5BVLPA7SjNLsZedr/shnncEWQNHdOAdQVJdVwfeEWqtzZs3Y/LkyVi2bBmCgoLwww8/ICQkBBcvXtS5k3ZhYSHq1auHGTNmYOHChZL3tbW1xZUrmhN6LSwsKpWNejIIIYQQBfDqyViwYAHGjBmDsWPHokWLFoiOjkajRo2wfPlyndd7enpi0aJFGDlyJOzs7CTvq1Kp4OrqqvGqLGpkEEIIIQpQqpFRWFiInJwcjdfzG1I+U1RUhPj4eAQHB2scDw4OxrFjx6r09eTm5sLDwwMNGzbEq6++irNnz1b6HooPl3h6euLWLe2JZ+Hh4fj++++Rm5uL6dOnY9u2bXj48CE8PT0xadIk/Otf/6rUcw7EJiqUWD86vdyadwRZf59/yDuCpK8co3hHkHX+q6u8I8jq0rsV7wiSzhwSey+FKR+14R1B1t4/83hHkJR2I5V3hHI05B2gwqKiojBr1iyNYzNnzkRkZKTWtQ8ePEBpaSlcXFw0jru4uKi3iHgRzZs3x5o1a+Dr64ucnBwsWrQIQUFBOHfuHLy9vSt8H8UbGadPn0Zpaan647///ht9+vTB66+/DgCYMmUKDhw4gPXr18PT0xN79+5FeHg43NzcEBoaqnQcQgghxCCU2q1T1waUz+8V9bzni5AyxiQLk1ZEly5d0KVLF/XHQUFB6NChA5YsWYLFiyu+47ZBS70DwPHjxzFq1Cj1nhjvvfcefvjhB5w5c6ZSjYwG3mK3Sr08xJ7gVtde3CWso5qf4R1B1pxisScdN28i7v/bv+MteUeQdTi+tPyLOHJ2Fvf75+pZn3cE7pTajEvXBpRSnJycYGxsrNVrkZGRodW7URVGRkbo2LEjrl6tXE+uwUu9d+3aFbGxsUhNTQVjDAcOHEBSUhL69u2rzyiEEEJIjWNmZgY/Pz/ExcVpHI+Li0NgYKBiz2GMITExEfXrV64xafBS74sXL8a4cePQsGFDmJiYwMjICD/99BO6du2qzyiEEEKIXvEqbjZ16lSEhYXB398fAQEBWLlyJVJSUjBhwgQAT4dfUlNTsW7dOvXnJCYmAng6ufP+/ftITEyEmZkZWrZ82lM7a9YsdOnSBd7e3sjJycHixYuRmJiI77//vlLZDF7qffHixThx4gRiY2Ph4eGBw4cPIzw8HPXr10fv3r113kdXqff8nByhS72fPp3JO4IsVzcb3hEkPTBvwDuCrJcCxO2yBoBv5/zJO4IkY1Nxh3IAoN0bTXhHkJV8R9yikLcvJfOOUA7t/SKUxquRMXz4cDx8+BCzZ89GWloaWrdujZ07d8LD42khzLS0NKSkpGh8Tvv27dX/HR8fjw0bNsDDwwM3b94EADx69Ajvvfce0tPTYWdnh/bt2+Pw4cPo1KlTpbKpmFL7fD/n1q1baNy4MbZu3aqea1FQUAA7OzvExMRoVGcdO3Ys7ty5g927d+u8V2RkpNZM21aBk+EbNEUf0RVh6yD2tuIiNzLeCMrgHUHW1azKrxU3pG/nHOcdQZLojYzxkyv3C9TQRG5k/PHLUd4RZB3d3kPvzzh/7Z4i9/FtqtxcCt4MWuq9uLgYxcXFMDLSnApibGyMsjLpHx5dM23f+/IBjIyNlQ2toIdpj3hHkOXkbM07gqRv1ov9h+jfb13nHUHWuCniDj2uXS72pN6H2WJX0bx3r4B3BEnOXmL3QBI+DFrq3dbWFj169MC0adNgaWkJDw8PHDp0COvWrcOCBQsk76e71PtjfUQnhBBCXgiVetdm0FLvALBp0yZERETgrbfeQmZmJjw8PDBnzhz1BBVCCCGkOirjNCdDZAYt9Q4Arq6uWL16dZWfcfuy2JOMLOqIOxwBAI6OXrwjSCotteUdQVapUS7vCLLOnBW3l8+tqdhd6hn3xS0uBwCd2ov7e+XSGbF/Lggf1bYKKyGEECISXqtLRFZtGxk+HVvwjiArJ1PsVr2vZxHvCJK6GVe9p0uf7jCxS703aybuyqFfj/zNO4Ksnr3E3rVy7z5lVi/og4lptf1zohiak6GNqrASQgghRC+o6UkIIYQogIZLtFXbRobowxF17Kx4R5CVni3ubqm9fxC7ANmXc8XejGvr2lO8I0hq0rYp7wiy8gr0sjehYoJ7O/OOIOm3/xN3wrGh0HCJNsWHS0pKSvD555/Dy8sLlpaWaNy4MWbPni252db48eOhUqkQHR2tdBRCCCGEcKR4T8a8efOwYsUKrF27Fq1atcKZM2cwevRo2NnZ4cMPP9S4dtu2bTh58qRGbZOKykx7oFRkvahjp/998qvC3FTc7Yk7h/jzjiArLduCdwRZXr6NeUeQdO1s5cpEG5prA7GXT9vbiNsDaaSiKX40XKJN8UbG8ePHERoaqt5O3NPTExs3bsSZM5rbCaempuL999/Hnj17NLYeJ4QQQqojGi7RpnjTs2vXrvjvf/+LpKQkAMC5c+dw9OhR9OvXT31NWVkZwsLCMG3aNLRq1UrpCIQQQojBlSn0qkkU78n49NNPkZ2djebNm8PY2BilpaWYM2cO3nzzTfU18+bNg4mJCSZNmlShe+oq9V5aXAgjYzNFsyvJs2ld3hFkWZmL+095eg+x91I4XdiBdwRZrEzcyYtmlmIPNeXlib3jZ/4TcYdLnuQ/4R2BCEjxnozNmzdj/fr12LBhAxISErB27Vp8++23WLt2LYCndesXLVqENWvWQKWqWNdSVFQU7OzsNF43L65ROjohhBDywhhTKfKqSVRMqsjIC2rUqBGmT5+OiRMnqo999dVXWL9+PS5fvozo6GhMnTpVo9x7aWkpjIyM0KhRI9y8eVPrnrp6MsIibsPYWNxWffO2jXhHkNXYU9zv3VvGG3lHkFVs68Q7gqy1ab15R5C0N/Yy7wiyevVrzjuCrHv3xO0tMDc35h1B1uxR+u/5PnZJmWW8gS3E3bW3shQfLsnPz9doQACAsbGxeglrWFgYevfW/CXYt29fhIWFYfTo0TrvqbPUu8ANDEIIIYTooZExYMAAzJkzB+7u7mjVqhXOnj2LBQsWqMu+Ozo6wtHRUeNzTE1N4erqCh8fH6XjEEIIIQZR04Y6lKB4I2PJkiX44osvEB4ejoyMDLi5uWH8+PH497//rehzrGzE3lGzqZfYPS11LMWd+HnIcgjvCLIePDblHUGWkz3vBNKy7mbwjiBr+39yeEeQNXR0Z94RJJ0+KW7xtqdc9P4E2idDm+KNDBsbG0RHR1dqB09d8zAIIYQQUr1V29oljzIe8Y4g6+gRsb+1bTvU4x1B0rY/xX63+3Pb//COIGufz0e8I0hq4OPJO4Kszt3E3qn3SaG4y5Ovn03iHaEc+u/JEHj1ODdi/yUkhBBCqgkaLtFGm80TQgghRC+qbU9G24AmvCPIepCRxzuCrPaN83lHkHT1qthrxKfcGc87gqxHZ+/yjiDpcabYEyufPBF3QjQAtPEWtz++ZQCViKDVJdr00pPx+PFjTJ48GR4eHrC0tERgYCBOnz6tPs8YQ2RkJNzc3GBpaYmePXviwoUL+ohCCCGEGARjyrxqEr30ZIwdOxZ///03fvnlF7i5uWH9+vXo3bs3Ll68iAYNGmD+/PlYsGAB1qxZg2bNmuGrr75Cnz59cOXKFdjYVOxdbEZ6rj6iK6Z5SwfeEWRl5Ir7L9m/g9ijeH8ee8g7gixrO3GXd9+5cot3BFkZGQW8I8g6WyZu7ZfiwhLeEbgrozkZWhT/bV5QUIAtW7Zg/vz56N69O5o2bYrIyEh4eXlh+fLlYIwhOjoaM2bMwODBg9G6dWusXbsW+fn52LBhg9JxCCGEEMKJ4o2MkpISlJaWwsJCs8VtaWmJo0ePIjk5Genp6QgODlafMzc3R48ePXDs2DGl4xBCCCEGQQXStOllM66AgAB8+eWXaNGiBVxcXLBx40acPHkS3t7eSE9PBwC4uGiuWXZxccGtW7q7UnUVSMtITRe6fsmZR2JP/Mxu5co7gqQuvmL/kL01UNzhCAC4mm7JO4Kku9fteUeQJXqRr4x74k7YTr0h7oTjp5z1/oSaNp9CCXoZ/P7ll1/AGEODBg1gbm6OxYsXY8SIETA2/t8P8PNl3hljkqXfdZV6Tzrzgz6iE0IIIUQhemlkNGnSBIcOHUJubi5u376NU6dOobi4GF5eXnB1ffoO+lmPxjMZGRlavRvPREREIDs7W+PVzF/sZYSEEEJqFwaVIq+aRK/7ZFhbW8Pa2hpZWVnYs2cP5s+fr25oxMXFoX379gCAoqIiHDp0CPPmzdN5H12l3s0trPUZvcoaNRZ3224A+OvkTd4RJH2ctYJ3BFkPBkzkHUHWlTJx95Cxd67LO4IsY2OxVzbVrSvu6pLCPLFX5hgCbSuuTS+NjD179oAxBh8fH1y7dg3Tpk2Dj48PRo8eDZVKhcmTJ2Pu3Lnw9vaGt7c35s6dCysrK4wYMUIfcQghhBDCgV4aGdnZ2YiIiMCdO3fg4OCAIUOGYM6cOTA1fVoi+5NPPkFBQQHCw8ORlZWFzp07Y+/evRXeIwMA7iWLPcnIy0f/xXiqIvtBFu8I0prxDiDv3ENP3hFk7dombqGq/MdiT4h2aWjPO4Kshg3F7cEtKSziHYG7mrYyRAl6aWQMGzYMw4YNkzyvUqkQGRmJyMhIfTyeEEIIMThaXaJN7AFIQgghhFRb1bZAWlB/P94RZDX2FHcPDwBIu+3OO4KkcXc+5B1B1tq05bwjyMp9433eESStX5XIO4KsnCyxJy/mO4o78dPIROw9RgyBthXXVm0bGYQQQohIaLhEW7VtZDy8L/YEsu5+Yrdoe/euzzuCpH370nhHkHWy6bu8I8g6uj2TdwRJTPA1fh6NxV5im54qbmFI18YNeUfgjiZ+auNS6h0ALl26hIEDB8LOzg42Njbo0qULUlJS9BGHEEIIIRzopZExduxYxMXF4ZdffsH58+cRHByM3r17IzU1FQBw/fp1dO3aFc2bN8fBgwdx7tw5fPHFF1pF1QghhJDqoowp86pJVIwpO4pUUFAAGxsb/P777+jfv7/6eLt27fDqq6/iq6++whtvvAFTU1P88ssvL/ycwZOuKRFXb9p28uAdQdafe/7mHUFS7MhzvCPI+tX8Hd4RZP19WdzJi2ePXOYdQda4iW15R5B19KS4w8Tx+xJ4R5B1dHsPvT8j5lSpIvcZ1KnmTKI1eKn3srIy/PHHH2jWrBn69u0LZ2dndO7cGdu2bVM6CiGEEEI4Mnip94yMDOTm5uLrr7/GV199hXnz5mH37t0YPHgwDhw4gB49tFubukq9u7rbwdhE3GWipw5e4R1BVpferXhHkHTdS9wy9ADw3/X3eEeQVVZaxjuCpGLBd4VMTuWdQF7LFhXfFdnQsh4IvlWvAdS04mZKMHip97Kyp78AQ0NDMWXKFLRr1w7Tp0/Hq6++ihUrdBfG0lXq/cy+BfqITgghhLwQmpOhzeCl3p2cnGBiYoKWLVtqfE6LFi0kV5foKvXu33uqPqITQgghRCEGL/VuZmaGjh074soVzeGEpKQkeHjoniypq9R7xu0bAB7rK3qV5dwXuAAZgISj4k6cvZFkzzuCrKW2X/KOIOtMyHe8I0has1nst2nmZmJ3dyffesI7gqT7t+/zjlAO/e8NRJtxaTN4qXcAmDZtGoYPH47u3bujV69e2L17N7Zv346DBw/qIw4hhBCid9TI0Mal1PugQYOwYsUKREVFYdKkSfDx8cGWLVvQtWvXCj/D3tlWH9EVU1xUzDuCLJEn4JlbmPKOIOvB0I94R5CVeE7c79/jTHF7HwHAto4b7wiy7gr8V8zHrzHvCLXasmXL8M033yAtLQ2tWrVCdHQ0unXrpvPatLQ0fPTRR4iPj8fVq1cxadIkREdHa123ZcsWfPHFF7h+/TqaNGmCOXPmYNCgQZXKpZc5GcOGDcP169dRWFiItLQ0LF26FHZ2dhrXvPvuu7h69SoKCgqQmJiI0NBQfUQhhBBCDKKMqRR5VdbmzZsxefJkzJgxA2fPnkW3bt0QEhIiOc+xsLAQ9erVw4wZM9C2re69YY4fP47hw4cjLCwM586dQ1hYGIYNG4aTJ09WKhuVeieEEEIUwJgyr8pasGABxowZg7Fjx6JFixaIjo5Go0aNsHy57orRnp6eWLRoEUaOHKnVAfBMdHQ0+vTpg4iICDRv3hwRERF4+eWXdfZ4yKm2BdKunLrEO4IsK3tx17MDgJ2TPe8Ikr4zm8U7gqxd6Ut4R5C1f4e4u7kaGYu9k+G15MLyL+Kovqu4pRf+2Cz2jp/4wE/vj1BqNEvX3lC6FkAAQFFREeLj4zF9+nSN48HBwTh27NgLZzh+/DimTJmicaxv376VbmRQTwYhhBAiEF17Q0VFRem89sGDBygtLYWLi4vGcRcXF6Snp79whvT0dEXuWW17Mrw7+PCOIMvZTeyJqX268E4gzfx+Z94RZG3fLva2kPUa1uMdQVLyeXGXTgOAg0ML3hFk5ReIu5tro2aNeEfgTqmNtCIiIjB1quZeULp6Mf5JpdKcy8EY0zpWWUrcs9I9GYcPH8aAAQPg5uYGlUqlVXOEMYbIyEi4ubnB0tISPXv2xIULF9TnMzMz8cEHH8DHxwdWVlZwd3fHpEmTkJ2dXdkohBBCiDAYUynyMjc3h62trcZLqpHh5OQEY2NjrR6GjIwMrZ6IynB1dVXknpVuZOTl5aFt27ZYunSpzvPz58/HggULsHTpUpw+fRqurq7o06cPHj9+unTt7t27uHv3Lr799lucP38ea9aswe7duzFmzJjKRiGEEEJqNTMzM/j5+SEuLk7jeFxcHAIDA1/4vgEBAVr33Lt3b6XvWenhkpCQEISEhOg8xxhDdHQ0ZsyYgcGDBwMA1q5dCxcXF2zYsAHjx49H69atsWXLFvXnPFt7+/bbb6OkpAQmJhWL5OBcp7LRDcrEVOzpLnEnxO12rdujH+8IsqJHJvOOIGvcEnEnHRubiruHBwBcvpjJO4Ks1r4OvCNISjoj9mR8wFnvT+C1jcnUqVMRFhYGf39/BAQEYOXKlUhJScGECRMAPB1+SU1Nxbp169Sfk5iYCADIzc3F/fv3kZiYCDMzM3XJjw8//BDdu3fHvHnzEBoait9//x379u3D0aNHK5VN0TkZycnJSE9PR3BwsPqYubk5evTogWPHjmH8+PE6Py87Oxu2trYVbmAQQgghouFV3Gz48OF4+PAhZs+ejbS0NLRu3Ro7d+5Ul+pIS0vT2jOjffv26v+Oj4/Hhg0b4OHhgZs3bwIAAgMDsWnTJnz++ef44osv0KRJE2zevBmdO1duzpyif9Wfjd/ompF669YtnZ/z8OFDfPnll5INEClnD4m7TA8AvHzF3v0u+4G4Oy+2bBBX/kUcxbm8yzuCLCubu7wjSMq8m8E7gqypw8WtDQIA834R9/snei9VTRceHo7w8HCd59asWaN1jFWg22Xo0KEYOnRolXLppeugojNSc3Jy0L9/f7Rs2RIzZ86UvJ+uNcNlpUUwMjZTJjAhhBBSRQLv+s6NohMHXF1dAaBCM1IfP36MV155BXXq1EFMTIy6rokuutYM37y0VsnohBBCSJXw2vFTZIr2ZHh5ecHV1RVxcXHq8Z6ioiIcOnQI8+bNU1+Xk5ODvn37wtzcHLGxsbCwkN/FTtea4Y+/L4Cxify6YZ6srMXuOnyQKu4Et/yGYu9V0KPkAO8Isv701l0USQQlxaW8I8g6eLUB7wiy2nUQ9y9Q8l/XeUfgjtecDJFVupGRm5uLa9f+t6FOcnIyEhMT4eDgAHd3d0yePBlz586Ft7c3vL29MXfuXFhZWWHEiBEAnvZgBAcHIz8/H+vXr0dOTg5ycnIAAPXq1YOxjm2HdW2namwi7uoIQgghhLxAI+PMmTPo1auX+uNnPQyjRo3CmjVr8Mknn6CgoADh4eHIyspC586dsXfvXtjYPF1WFx8fr67i1rRpU417Jycnw9PT80W/FqF09Re3xgAAJBzM4h1B0rqbXXlHkPVW09O8I8h6eD+PdwRJ2Q8e8Y4gK+1eEe8IsiwsxK394tla7MnuhlDThjqUUOlGRs+ePWVnpapUKkRGRiIyMvKFPp8QQgipjsqog12L2DtGEUIIIaTaqra7X929cY93BFnuoWI3afsM8ecdQdKEgm94R5BVnN+GdwRZ1jYteUeQZGVjzTuCrCN/nOUdQVbYBHGLB2bUE3sXZkOgTnpt1baRQQghhIiEGhnaaLiEEEIIIXpR6Z6Mw4cP45tvvkF8fDzS0tIQExOD1157TX2eMYZZs2Zh5cqV6tUl33//PVq1aqW+Jj09HdOmTUNcXBweP34MHx8ffPbZZ5XavtTUTOx9KGKOid11mHT+Nu8Ikvqn9uQdQdb4D8UdagIAOztx96IoLhJ79YbIw4gAYGUh7lvlW1fSeEcoh7fen0D7ZGgzeKl3AAgLC8OVK1cQGxuL8+fPY/DgwRg+fDjOnhV7PJQQQgiRwhhT5FWTGLzUOwAcP34cy5cvR6dOnQAAn3/+ORYuXIiEhASNynByHOvbVza6QR3ccpx3BFkzZgfyjiCpx+NTvCPIWnjLj3cEWel3xS1+l5uZwzuCrHvp+bwjyLK1EbeH1LKOJe8IRECKzskor9T7M127dsXmzZuRmZmJsrIybNq0CYWFhejZs6eScQghhBCDodol2riUet+8eTOGDx8OR0dHmJiYwMrKCjExMWjSpImScQghhBCDoc24tHEp9f75558jKysL+/btg5OTE7Zt24bXX38dR44cga+vr9b9dJV6NzNnMDEVt0CaeyuxG0xLllzmHUFSYIsjvCPICg92Kf8ijsITvHhHkGRqbsY7gixvb3GHIwDg2nVxt4wnNa8XQgkGL/V+/fp1LF26FD///DNefvlltG3bFjNnzoS/vz++//57nffVVer9dNx3SkYnhBBCiMIMXuo9P//pxCojI832jbGxMcok+pp0lXof/UUaUpMfKBlfUb7+DXlHkPUoqy7vCJLMmnfiHUHWH0/ELaUOABkpZ3hHkGRuJfbkwJzHYvd3m5uLWyDt3s27vCOUQ/+/k2kJqzaDl3pv3rw5mjZtivHjx+Pbb7+Fo6Mjtm3bhri4OOzYsUPnM3WXes+sbHRCCCFEb2i4RJvBS72bmppi586dmD59OgYMGIDc3Fw0bdoUa9euRb9+/RT6sgghhBDCm4pV050/xs19yDuCrLs3xN79rsvLzXlHkHT9itj/byPfzuYdQdbh1Ga8I0hat0LcoRwACH1b7D1QbiSLO/EzN6ew/Is4+vEzR70/49utygy3fTy45lT8oAJphBBCiAJoToa2atvIMDYWu6X38oBW5V/EkZGq/Gt4mf2W2PNt3vpI3AnHADBgZFPeESSJvoS1uIR3Anmurla8I0iKF3gi/lP678kg2qptI4MQQggRSfWcfKBf1MgghBBCFFBG4yVaqm0j48HdLN4RZN27LXbXYVa6uPlGd97AO4KsoWMX844ga//OJN4RJDVt58k7gqzMrGLeEWTVtTflHUFSiehjTYSLSk9sOHz4MAYMGAA3NzeoVCps27ZN4/zWrVvRt29fODk5QaVSITExUfJejDGEhITovA8hhBBSnVCBNG2V7snIy8tD27ZtMXr0aAwZMkTn+aCgILz++usYN26c7L2io6O16pxUVP5jcZdyAUDLjmLXLmk3XNzJgRN3e/COIOt9b7HLlV/0qMc7gqTLp6/yjiCrcx/t2kkiSbosbg+ujb3YdV8MoaY1EJRQ6UZGSEgIQkJCJM+HhYUBAG7evCl7n3PnzmHBggU4ffo06tevX9kYhBBCiFDKqJWhhcs60Pz8fLz55ptYunSpuqgaIYQQQmoWLhM/p0yZgsDAQISGhlboel2l3nMe3IeRsbhr7m9fv887gqzTcam8I0gaPSmQdwRZZhO78o4gq83HR3lHkFSQJ/aukE4O4k6sBIB6juIWNty+IZ53hHLo/w0tE7u+HhcG78mIjY3F/v37ER0dXeHP0VXq/XbSev2FJIQQQiqJMabIqyYxeE/G/v37cf36ddjb22scHzJkCLp164aDBw9qfY6uUu+vf3AVxgL3ZNjUteYdQVav8eL2Fvg1vMc7gqyb8w/yjiDr0dVS3hEkNfJy4B1BluhLWG9eE7euT11X2lGTaDN4I2P69OkYO3asxjFfX18sXLgQAwYM0Pk5Oku9C9zAIIQQUvuU0XCJlko3MnJzc3Ht2jX1x8nJyUhMTISDgwPc3d2RmZmJlJQU3L17FwBw5coVAICrq6vG63nu7u7w8vJ60a+DEEII4aqmDXUoodKNjDNnzqBXr17qj58NY4waNQpr1qxBbGwsRo8erT7/xhtvAABmzpyJyMjIKsb9H9ELLeVk5vKOIMvY2Il3BElfLi/gHUHWz95f8I4g64FPFO8Ikn77zyXeEWS1DfDmHUFWQ09xh5uys8T+uSV8VLqR0bNnT9nW2jvvvIN33nmnUvek1h8hhJDqjkqXaKu2tUvcGrvwjiArL0fsVv3Rw+m8I0haYiJ2T8ECm9W8I8g6u0XcXTUfP3zEO4KsU/vO844g6+3x/rwjSNq4WuxeKqCd3p/AqJWhhctmXIQQQgip+aptTwYhhBAiEhr511ZtGxmP7otdpKpz10a8I8jKuF/EO4Kkz+4u4B1B1r/8H/OOIMvZSdzJi5t+fMA7gqyQ4X68I8hKui7ujqlNfT15R+CujIZLtCha6r24uBiffvopfH19YW1tDTc3N4wcOVK9nPWZwsJCfPDBB3BycoK1tTUGDhyIO3fuVPmLIYQQQnihHT+1KVrqPT8/HwkJCfjiiy/Qtm1bZGVlYfLkyRg4cCDOnDmjvm7y5MnYvn07Nm3aBEdHR3z00Ud49dVXER8fD2Nj4wrlKCkWd1dDAMh6VMI7gqzHj8V9R7T45SO8I8jamfUa7wiyDh8Qt8FeUihuDxoACL4yHg51xa2tEn+YJn4SbYqWerezs0NcXJzGsSVLlqBTp05ISUmBu7s7srOzsWrVKvzyyy/o3bs3AGD9+vVo1KgR9u3bh759+77Al0EIIYTwRQXStOl9dUl2djZUKpW6Vkl8fDyKi4sRHBysvsbNzQ2tW7fGsWPH9B2HEEII0YsyxhR51SR6nfj55MkTTJ8+HSNGjICtrS0AID09HWZmZqhbV7NksYuLC9LTde/doKvU+6P7Ypd6z7gnbklmAGjkbsM7gqRHmzfzjiDrfIdXeUeQlf3gEe8I1da163m8I8jy8hS38KKJabVdR0D0SG89GcXFxXjjjTdQVlaGZcuWlXs9YwwqlUrnOV2l3m+c/1npyIQQQsgLo4mf2vTS9CwuLsawYcOQnJyM/fv3q3sxgKeF0oqKipCVlaXRm5GRkYHAQN3lx3WVeo9cWwYTU3Od14vAzc2CdwRZIq+0er/0K94RZI1uVbHJybx0aNmCdwRJS76L5x1BVhc/cXsKAODiVXFL0ZtZiPv72FBoCas2xXsynjUwrl69in379sHR0VHjvJ+fH0xNTTUmiKalpeHvv/+WbGSYm5vD1tZW4yVyA4MQQggxpGXLlsHLywsWFhbw8/PDkSPyq/QOHToEPz8/WFhYoHHjxlixYoXG+TVr1kClUmm9njx5UqlcipZ6d3Nzw9ChQ5GQkIAdO3agtLRUPc/CwcEBZmZmsLOzw5gxY/DRRx/B0dERDg4O+Pjjj+Hr66tebUIIIYRUN7xGOjZv3ozJkydj2bJlCAoKwg8//ICQkBBcvHgR7u7uWtcnJyejX79+GDduHNavX48///wT4eHhqFevnsbWFLa2trhy5YrG51pYVK6XXtFS75GRkYiNjQUAtGvXTuPzDhw4gJ49ewIAFi5cCBMTEwwbNgwFBQV4+eWXsWbNmgrvkQEACYcuVDa6QZn28eUdQdbkzom8I0g6/Wd93hFklQq+TC1mewbvCJIc6tfjHUHW3fu8E8hrUF/cye5ni8XeG8gQeBVIW7BgAcaMGYOxY8cCAKKjo7Fnzx4sX74cUVFRWtevWLEC7u7uiI6OBgC0aNECZ86cwbfffqvRyFCpVHB1da1SNsVLvVdk0oqFhQWWLFmCJUuWVPbxhBBCSI2ma0Wlubk5zM21pwkUFRUhPj4e06dP1zgeHBwsuS3E8ePHNbaRAIC+ffti1apVKC4uhqnp003fcnNz4eHhgdLSUrRr1w5ffvkl2rdvX6mvhaqwEkIIIQpQap8MXSsqdfVIAMCDBw9QWloKFxcXjeNy20Kkp6frvL6kpAQPHjytL9S8eXOsWbMGsbGx2LhxIywsLBAUFISrV69W6ntSbRc2OzYQu9v1xuV7vCPI+tHan3cESYE9xG77tnW8wTuCrOJ+XrwjSFq14i/eEWRZmuteRi+Kv/56xDuCpJJCcVe+GIpSwyW6VlTq6sX4p+e3gJDbFkLq+n8e79KlC7p06aI+HxQUhA4dOmDJkiVYvHhx+V/E/1dtGxmEEEKISJRqZEgNjeji5OQEY2NjrV6LjIwMrd6KZ1xdXXVeb2JiorUi9BkjIyN07Nix9vRkGBmJ/Y6jZXs33hFk7dog7hbuP3zXhHcEWelFzrwjyLp0XdzigdZ2dXhHkCXzxk8Ipubi/sp2dhf756KmMjMzg5+fH+Li4jBo0CD18bi4OISGhur8nICAAGzfvl3j2N69e+Hv76+ej/E8xhgSExPh61u5RQ1cSr0DTyeevPTSS7C2toa9vT169uyJgoKCysYhhBBChFDGlHlV1tSpU/HTTz/h559/xqVLlzBlyhSkpKRgwoQJAJ4Ov4wcOVJ9/YQJE3Dr1i1MnToVly5dws8//4xVq1bh448/Vl8za9Ys7NmzBzdu3EBiYiLGjBmDxMRE9T0rikup9+PHj+OVV15BREQElixZAjMzM5w7dw5GRmKPxRNCCCFSeC1hHT58OB4+fIjZs2cjLS0NrVu3xs6dO+Hh4QHg6YaXKSkp6uu9vLywc+dOTJkyBd9//z3c3NywePFijb/pjx49wnvvvYf09HTY2dmhffv2OHz4MDp16lSpbCpWhY3SVSoVYmJi8Nprr0lec/r0aXTq1Am3bt1SbwrSpUsX9OnTB19++eWLPhqD3q/cuJChNWyqeyxMFMbG4jbo/j52mXcEWQtma29uI5L9l8SdFL1ryzneEWS9NKAN7wiyrCzFHc85l/iQdwRZP81w0vszJszLUuQ+Kz4Vu8BmZRi81HtGRgZOnjwJZ2dnBAYGwsXFBT169MDRo0f1HYUQQgjRGyqQps3gpd5v3Hi6/C8yMhLffvst2rVrh3Xr1uHll1/G33//DW9vb6376NqYpF4DWxibiFu/5Er8dd4RZH0wWdwdSe/dFnsCmY1RDu8Isho46/8d24sqKSziHUFWPQdxe/gAICtH3D9AT/LF/n9rCFQgTZvBS72XlT3dk3n8+PEYPXo02rdvj4ULF8LHxwc//6y7fLuujUkS9i/UV3RCCCGEKEAvjYx/lnqPi4vTKPVev/7TuhQtW7bU+JwWLVpoTEz5p4iICGRnZ2u8Orw0RR/RCSGEkBdCwyXaFB8u+Wep9wMHDmht7OHp6Qk3Nzetym5JSUkICQnReU9dG5Nkpj8AkKdodiWFjqjc/u6Gtnmr9rJiUazusZN3BFk38SrvCLJWRJ8p/yJOnBqKPSH60WOxf8G76N4nSQjmFrr3V6hNeK0uEZnBS72rVCpMmzYNM2fORNu2bdGuXTusXbsWly9fxm+//abcV0YIIYQQrriUep88eTKePHmCKVOmIDMzE23btkVcXByaNBF7p8fKEL3Lq0Mnccuph58ZzDuCrM+bP+YdQZatk7jL38wtxS1VDgBlpWL/3DIm7sTU20l3eEcoh/6XdlNPhjYupd4BYPr06VqlaQkhhJDqqkzwN5c8iLsRPiGEEFKNUE+GtmrbyBC5UBAA3EktLP8ijo7vSuAdQdIv88Tt7geAX8835x1BlonpTd4RJN26kMw7giwbO0veEWRZW9nzjiCJ/f/tCQj5J7H/UhNCCCHVhOhz8Xioto2MO1du8Y4gq469Ne8I1VbG2Hd5R5A1ccZ7vCPIsu0/mncESTEbcnlHkGXvIHhPhsDxGjVrxDsCd7TjpzZFS70DT7cLb968OaytrVG3bl307t0bJ0+eVJ/PzMzEBx98AB8fH1hZWcHd3R2TJk1CdnZ2lb8YQgghhIij0o2MZ6Xely5dqvN8s2bNsHTpUpw/fx5Hjx6Fp6cngoODcf/+fQDA3bt3cffuXXz77bc4f/481qxZg927d2PMmDFV+0oIIYQQjlgZU+RVk+i91HtOTg7s7Oywb98+vPzyyzqv+fXXX/H2228jLy8PJiYVG8H5ZEXBi0Q2mJzsJ7wjyLKra8E7gqT8/GLeEWSN6y/2/9uIeRm8I0gqKS7hHUFWv6FteUeQJXKp912x18q/iKOti5vq/RkjpiuzV8iGrxsqch8R6HVnl6KiIqxcuRJ2dnZo21b6hzc7Oxu2trYVbmAQQgghRHx6+au+Y8cOvPHGG8jPz0f9+vURFxcHJyfd5acfPnyIL7/8EuPHj6/UM25dE/fdGiD+zoZt24q7THS0agPvCLI+3/cm7wiyPJuL+2/vryPneUeQde262Lu5mgu8dL9z98a8I3BHy3i16eVfbK9evZCYmIgHDx7gxx9/xLBhw3Dy5Ek4OztrXJeTk4P+/fujZcuWmDlzpuT9CgsLUVioue9EaUkhjE3MJT6DEEIIMSxaXaJNL8Ml1tbWaNq0Kbp06YJVq1bBxMQEq1at0rjm8ePHeOWVV1CnTh3ExMTA1FS6gl9UVBTs7Ow0XpdOLdNHdEIIIYQoxCB9b4wxjZ6InJwc9O3bF+bm5oiNjYWFhfwkxIiICHUhtmcmzn8kdE9GTqbY3a7/9/PJ8i/iZGOxD+8IshwbpPKOIKtFe3feESSZmIs7lAMATZvY8I4gKzdP3O74o3FXeEeQ9enQFnp/Bm3GpU3RUu+Ojo6YM2cOBg4ciPr16+Phw4dYtmwZ7ty5g9dffx3A0x6M4OBg5OfnY/369cjJyUFOTg4AoF69ejA2NtZ6prm5OczNNRsUxiZiry4hhBBSu9S05adKULTU+4oVK3D58mWsXbsWDx48gKOjIzp27IgjR46gVatWAID4+Hj15lxNm2ouKUpOToanp+eLfi1CyUgW+91u8BtBvCNIunBW7O+dc0NxJ80CwK1rD3hHkFSnri3vCLJ0vMcRipG4ld5Rx452OaZGhjbFS71v3bq1Sp9PCCGEkJpB3PVQhBBCSDVSxsSdM8NLtW1k2NgLXCkIQNgHPXhHkNXASdydFy0sxC609Gaby7wjyDr/2Jt3BEnffK3Mjoj6kl8gdi9rXn4p7wiS8h/TPDkaLtEm8AgfIYQQQqqzatuTcfOS2JMDTUzEbr9lPhK3J6jfzz15R5DlOKxX+RdxdMkhkncESQ28xe6lSr6RwzuCLE8vcSfOWtPET+rJ0MHgpd4BID09HWFhYXB1dYW1tTU6dOiA3377rUpfCCGEEMITY0yRV01i8FLvABAWFoYrV64gNjYW58+fx+DBgzF8+HCcPXv2xb8SQgghhAil0sMlISEhCAkJkTw/YsQIjY8XLFiAVatW4a+//lKXej9+/DiWL1+OTp06AQA+//xzLFy4EAkJCWjfvn2FcmTdFbtAWmodcYcjAKDoiT3vCJIadmnGO4KsHS2k6+yI4OyONN4RJKVevc07gqzAV9rxjiCrpETcd7kP08Tdn+Up/ZdPL6MCaVq4lHrv2rUrNm/ejMzMTJSVlWHTpk0oLCxEz5499RmHEEII0RtWxhR51SRcSr1v3rwZw4cPh6OjI0xMTGBlZYWYmBg0adJEH3EIIYQQwgGXUu+ff/45srKysG/fPjg5OWHbtm14/fXXceTIEfj6+mrdT1ep97LSIhgZi1tsyc5R7EJLvr72vCNIutRoEe8Isu4lq3hHkNXAQ9xtz83MxF7Q1r6VdDVoEcTuuMc7giQ7J3veEbhjtBmXFoOXer9+/TqWLl2Kn3/+GS+//DLatm2LmTNnwt/fH99//73O++kq9X7n2n/0EZ0QQgh5ITRcos3gpd7z8/MBAEbPVfoxNjaWnDSjq9T7gNHnhO7JMDEVu9LSsaPiTg684Cj2evtvmq7gHUHWRu9/8Y4gKf7ABd4RZN30dSr/Io4eZ+XyjiCppFjcXYQNpaY1EJRg8FLvzZs3R9OmTTF+/Hh8++23cHR0xLZt2xAXF4cdO3bofKauUu8iNzAIIYQQwqHUu6mpKXbu3Inp06djwIAByM3NRdOmTbF27Vr069dPoS+LEEIIMSwqkKbN4KXeAcDb2xtbtmyp7KM1vDTIr0qfr2/H4y7xjiCrrosD7wiSmvuIu3UyAJzxGMk7gqyEveJujW1qLnYPpIuT2OUAXBqJO5yTmZHNOwJ3NFyiTeyfKEIIIYRUW2KvJ5Nx8PcE3hFk+Qa15B1BVtqth7wjSEq+mc87gqx+v77JO4Ism6BfeUeQ5FDfkXcEWVduFPGOIKt5C3veESRtO32Zd4RyeOr9CYx2/NRSbRsZhBBCiEhouEQbDZcQQgghRC+qbU+GSkXto6p4cEfcnQNfCvbgHUFWPVUr3hFkpd8RdwJe7iNx93kAAGsrV94RZLnVE/edspVtHd4RuKMdP7VV+i/14cOHMWDAALi5uUGlUmHbtm2S144fPx4qlQrR0dE6zzPGEBISUu59CCGEENGVlTFFXjVJpXsy8vLy0LZtW4wePRpDhgyRvG7btm04efIk3NzcJK+Jjo6GSvVidSAcG9R7oc8zlJSr6bwjyPrXFH/eEST1uyB2KfUnQf15R5DV9qa4Pxt7YsTtQQMA0eft/Z0k7q6a7j76L6VOqp9KNzJCQkIQEhIie01qairef/997NmzB/376/6FfO7cOSxYsACnT59G/fr1KxuDEEIIEQqtLtGm+JyMsrIyhIWFYdq0aepdPp+Xn5+PN998E0uXLoWrq9hjoIQQQkhF0OoSbYo3MubNmwcTExNMmjRJ8popU6YgMDAQoaGhFbqnrlLvty8mCV2/pHOIuMMRAGBlWso7giSVZ1PeEWTdNG/BO4IsG2txS9GLvuPn/fsFvCPIKsgTdx+P4kJxh3IMhSZ+alN0iUZ8fDwWLVqENWvWSM61iI2Nxf79+yUng+pCpd4JIYSQ6kfRnowjR44gIyMD7u7u6mOlpaX46KOPEB0djZs3b2L//v24fv067O3tNT53yJAh6NatGw4ePKh1X12l3l//4CqMBe7JuJcq7jJCAEjNlJ6Qy9vvVm/zjiCrtZHYkxf//PM+7wiSzK3My7+II7+2Yi/DfPhI3O74nb8m8o5QDme9P4GGS7Qp2sgICwtD7969NY717dsXYWFhGD16NABg+vTpGDt2rMY1vr6+WLhwIQYMGKDzvrpKvYvcwCCEEFL70MRPbZVuZOTm5uLatWvqj5OTk5GYmAgHBwe4u7vD0VGzNoGpqSlcXV3h4+MDAHB1ddU52dPd3R1eXl6VjUMIIYQQUbFKOnDgAAOg9Ro1apTO6z08PNjChQtl7wmAxcTEVDaKYp48ecJmzpzJnjx5wi2DHMr34kTOxhjlqwqRszFG+apC5GykclSMsVo/iJSTkwM7OztkZ2fD1taWdxwtlO/FiZwNoHxVIXI2gPJVhcjZSOVQARBCCCGE6AU1MgghhBCiF9TIIIQQQoheUCMDT5fIzpw5U2uZrCgo34sTORtA+apC5GwA5asKkbORyqGJn4QQQgjRC+rJIIQQQoheUCODEEIIIXpBjQxCCCGE6AU1MgghhBCiF9TIIIQQQoheUCODEEIIIXpBjQxCCCGE6EWlS73XJFevXsWxY8eQnp4OlUoFFxcXBAYGwtvbm3c0SXl5eYiPj0f37t15RxFaaWkpjI2N1R+fPHkShYWFCAgIgKmpKcdk2kaPHo05c+bAzc2NdxQtWVlZuHbtGurXr4+GDRvyjqPh0aNH+PXXX5GSkgIPDw+8/vrrsLOz45IlPj4efn5+XJ5dURkZGbhw4QL8/Pxga2uLe/fuYe3atSgrK0P//v3h6+vLOyJu3LiBo0ePIi0tDcbGxvDy8kKfPn2oSFp1xrcILB+PHj1iAwcOZCqVitnb27NmzZoxb29vZm9vz4yMjFhoaCjLzs7mHVOnxMREZmRkxO35RUVFbNq0aaxJkyasY8eO7Oeff9Y4n56ezjXf3bt3WVBQEDM2Nmbdu3dnmZmZrH///kylUjGVSsWaNWvG7t69yyXbuXPndL5MTU1ZTEyM+mNeIiIiWF5eHmPs6f/ncePGMSMjI6ZSqZiRkREbNGgQKygo4JZvyJAhbMuWLYwxxi5cuMCcnJxYvXr1WOfOnZmLiwtzdXVlFy9e5JJNpVKxxo0bszlz5rA7d+5wySDnwIEDzNramqlUKla/fn127tw51rBhQ+bt7c18fHyYubk527NnD7d8ubm5bOjQoeqfUyMjI+bq6sqMjY1ZnTp12NKlS7llI1VTKxsZYWFhzNfXl504cULr3IkTJ1ibNm3YyJEjOSQrH+9GxsyZM5mLiwv75ptv2IwZM5idnR1777331OfT09OZSqXili8sLIwFBgay2NhYNnz4cBYYGMi6devG7ty5w1JSUli3bt3YxIkTuWR79svz2S/Sf77++cecFyMjI3bv3j3GGGNz5sxh9erVY1u2bGGpqals+/btrEGDBmz27Nnc8jk5ObGkpCTGGGMhISFsxIgRrLCwkDH2tFE0ZswYFhwczCWbSqVi48aNYy4uLszExIT179+fxcTEsJKSEi55nhcUFMQmTpzIHj9+zL755hvWsGFDjZ+Djz/+mAUGBnLL995777GgoCCWmJjILl++zIYMGcI++eQTlpeXx1atWsWsrKzYf/7zH275yIurlY0MOzs7nQ2MZ44fP87s7OwMF+gf6tatK/uytbXl+oeoadOmbPv27eqPr127xry9vdk777zDysrKuPdk1K9fnx0/fpwxxtjDhw+ZSqVi+/btU5/fv38/a9y4MZdsbdu2Zf3792eXLl1iN2/eZDdv3mTJycnMxMSExcXFqY/xolKp1I2Mdu3asVWrVmmc37x5M2vRogWPaIwxxiwtLdm1a9cYY0//PyckJGicv3LlCref22ffu+LiYvbbb7+xfv36MWNjY+bi4sI++eQTdvnyZS65nrG1tVV/74qLi5mJiQk7e/as+nxSUhK37x1jTxuQZ86cUX+cmZnJLCws1D1rS5cuZe3ateMVj1RBrZ2ToVKpXuicvhUWFuJf//qX5PjorVu3MGvWLAOn+p/U1FS0bt1a/XGTJk1w8OBBvPTSSwgLC8P8+fO5ZQOeziFo0KABAMDBwQFWVlbw8PBQn2/SpAnS0tK4ZDt16hQ++eQTDBkyBOvXr0f79u3V59zc3DRy8vLs3/7t27fRqVMnjXOdOnXCrVu3eMQCALRp0wb79+9HkyZN4Orqilu3bml8D2/dugVLS0tu+QDAxMQEQ4YMwZAhQ5Camoqff/4Za9aswbfffougoCAcPnyYSy4zMzM8efIEAFBUVISysjL1xwBQUFDAda5SSUmJxryLOnXqoKSkBHl5ebCyskJwcDA+/vhjbvlIFfBu5fDw9ttvszZt2rDTp09rnTt9+jRr164dCwsL45CMscDAQBYdHS15nvdwiZeXl0bPwDOpqamsWbNmrHfv3lzzubu7s5MnT6o//vTTT9nDhw/VHycmJjInJyce0dR27tzJGjZsyObOnctKS0uZiYkJu3DhAtdMjD19Nz5nzhy2aNEi5ubmxg4fPqxxPjExkdWtW5dTOsZ27NjBHBwc2OrVq9nq1auZp6cn++mnn9iff/7Jfv75Z9aoUSM2bdo0Ltn+OdSky759+9iIESMMmEhTaGgoe/XVV9nRo0fZe++9x/z9/Vn//v1Zbm4uy8vLY0OHDmWvvPIKt3x9+vTRGL755ptvWP369dUfJyQkcP+5JS+mVjYysrKy2CuvvMJUKhWrW7cu8/HxYc2bN2d169ZlRkZGLCQkhGVlZXHJNmfOHBYZGSl5PiUlhb3zzjsGTKRpzJgx7N1339V57s6dO6xp06ZcGxkDBw6UbaQtXbqUvfTSSwZMpFt6ejoLCQlhXbt2FaaR4eHhwTw9PdWv57+PCxcuZF26dOGU7qnffvuNNWzYUGtui4WFBZs8eTK3ORD/HGoSUVJSEmvatClTqVSsVatWLDU1lQ0cOJCZmJgwExMTVq9ePRYfH88tX3x8PHNwcGCurq7M3d2dmZmZsY0bN6rPL126VNh5ckRerS71fvnyZRw/fhzp6ekAAFdXVwQEBKB58+ack4nr1q1buHz5Mvr27avzfFpaGvbu3YtRo0YZOFnFnD59GpaWlhpDPjwtXrwYBw4cwJIlS4RbIvq8EydOwNzcXGOIgofS0lIkJCTgxo0bKCsrQ/369eHn5wcbGxtumQ4dOoSgoCCYmIg9Av3w4UM4OjqqP/7vf/+LgoICBAQEaBznIS0tDTt27EBhYSFeeukltGzZkmseohDerZzqoF+/ftyWPZZH5GyMUb6qEDkbY5SvKkTOxhjlI8qhHT8r4PDhwygoKOAdQyeRswGUrypEzgZQvqoQORtA+YhyqJFBCCGEEL2gRgYhhBBC9IIaGYQQQgjRC2pkEEIIIUQvqJFBCCGEEL2gRkYFfPbZZ3BwcOAdQyeRswGUrypEzgZQvqoQORtA+YiCeK+h5W3dunUsMDCQ1a9fX12cauHChWzbtm2ck4mdjTHKVxUiZ2OM8lWFyNkYo3zEsGp1T8by5csxdepU9OvXD48ePUJpaSkAwN7eHtHR0ZRNBuWrmdkAyldTswGUj3DAu5XDU4sWLVhMTAxjjLE6deqw69evM8YYO3/+PHN0dOSYTOxsjFG+qhA5G2OUrypEzsYY5SOGV6t7MpKTk3XWYTA3N0deXh6HRP8jcjaA8lWFyNkAylcVImcDKB8xvFrdyPDy8kJiYqLW8V27dnEvziNyNoDyVYXI2QDKVxUiZwMoHzE8sUsG6tm0adMwceJEPHnyBIwxnDp1Chs3bkRUVBR++uknykb5al02yldzs1E+wgWvcRpRrFy5krm7uzOVSsVUKhVr2LAh++mnn3jHYoyJnY0xylcVImdjjPJVhcjZGKN8xLBUjDHGu6HDQ0lJCf7zn/+gb9++cHV1xYMHD1BWVgZnZ2fe0YTOBlC+mpoNoHw1NRtA+QgftbaRAQBWVla4dOkSPDw8eEfRInI2gPJVhcjZAMpXFSJnAygfMbxaPfGzc+fOOHv2LO8YOomcDaB8VSFyNoDyVYXI2QDKRwyvVk/8DA8Px0cffYQ7d+7Az88P1tbWGufbtGnDKZnY2QDKVxUiZwMoX1WInA2gfMTwavVwiZGRdkeOSqUCYwwqlUq92xwPImcDKF9ViJwNoHxVIXI2gPIRw6vVPRnJycm8I0gSORtA+apC5GwA5asKkbMBlI8YXq3uySCEEEKI/tTqnox169bJnh85cqSBkmgTORtA+apC5GwA5asKkbMBlI8YXq3uyahbt67Gx8XFxcjPz4eZmRmsrKyQmZnJKZnY2QDKVxUiZwMoX1WInA2gfIQDw+79Jb6kpCT28ssvs927d/OOokXkbIxRvqoQORtjlK8qRM7GGOUj+kWNDB1Onz7NfHx8eMfQSeRsjFG+qhA5G2OUrypEzsYY5SP6U6s345JibGyMu3fv8o6hk8jZAMpXFSJnAyhfVYicDaB8RH9q9cTP2NhYjY8ZY0hLS8PSpUsRFBTEKdVTImcDKF9ViJwNoHxVIXI2gPIRDnh1oYjgWZW/Zy8jIyPm4uLC3nzzTXb37l3KRvlqXTbKV3OzUT7CQ61eXUIIIYQQ/anVczJmz56N/Px8reMFBQWYPXs2h0T/I3I2gPJVhcjZAMpXFSJnAygfMbxa3ZNhbGyMtLQ0ODs7axx/+PAhnJ2due6TL3I2gPJVhcjZAMpXFSJnAygfMbxa3ZPB/n/RneedO3cODg4OHBL9j8jZAMpXFSJnAyhfVYicDaB8xPBq5eqSunXrQqVSQaVSoVmzZhr/qEtLS5Gbm4sJEyZQNspXa7JRvpqbjfIRnmrlcMnatWvBGMO7776L6Oho2NnZqc+ZmZnB09MTAQEBlI3y1ZpslK/mZqN8hKda2ch45tChQwgMDISpqSnvKFpEzgZQvqoQORtA+apC5GwA5SOGV6sbGf9UUFCA4uJijWO2trac0mgSORtA+apC5GwA5asKkbMBlI8YiCE24xBVXl4emzhxIqtXrx4zMjLSelE2ylfbslG+mpuN8hEeavXqkmnTpmH//v1YtmwZzM3N8dNPP2HWrFlwc3PDunXrKBvlq3XZKF/NzUb5CBe8Wzk8NWrUiB04cIAxxpiNjQ27evUqY4yxdevWsZCQEI7JxM7GGOWrCpGzMUb5qkLkbIxRPmJ4tbonIzMzE15eXgCejvVlZmYCALp27YrDhw/zjCZ0NoDyVYXI2QDKVxUiZwMoHzG8Wt3IaNy4MW7evAkAaNmyJf7v//4PALB9+3bY29vzCwaxswGUrypEzgZQvqoQORtA+QgHvLtSeFqwYAFbtGgRY4yx/fv3M0tLS2ZmZsaMjIxYdHQ0ZZNB+WpmNsYoX03NxhjlI4ZHS1j/ISUlBWfOnEGTJk3Qtm1b3nE0iJwNoHxVIXI2gPJVhcjZAMpH9I8aGf/fkydPYGFhwTuGTiJnAyhfVYicDaB8VSFyNoDyEcOo1XMySktL8eWXX6JBgwaoU6cObty4AQD44osvsGrVKsomg/LVzGwA5aup2QDKRwyvVjcy5syZgzVr1mD+/PkwMzNTH/f19cVPP/3EMZnY2QDKVxUiZwMoX1WInA2gfIQDvlNC+GrSpAnbt28fY4yxOnXqsOvXrzPGGLt06RKzt7fnGU3obIxRvqoQORtjlK8qRM7GGOUjhlerezJSU1PRtGlTreNlZWVae+YbmsjZAMpXFSJnAyhfVYicDaB8xPBqdSOjVatWOHLkiNbxX3/9Fe3bt+eQ6H9EzgZQvqoQORtA+apC5GwA5SOGZ8I7AE8zZ85EWFgYUlNTUVZWhq1bt+LKlStYt24dduzYQdkoX63LRvlqbjbKR7jgPV7Dw/Xr11lZWRljjLHdu3ez7t27M2tra2ZpacmCgoLYnj17KBvlq1XZKF/NzUb5CE+1spFhZGTE7t27p/542LBhLC0tjWOi/xE5G2OUrypEzsYY5asKkbMxRvkIP7VyTgZ7bv+xXbt2IT8/n1MaTSJnAyhfVYicDaB8VSFyNoDyEX5qZSPjec//AxeJyNkAylcVImcDKF9ViJwNoHzEcGplI0OlUkGlUmkdE4HI2QDKVxUiZwMoX1WInA2gfISfWrm6hDGGd955B+bm5gCe7pE/YcIEWFtba1y3detWyvYcylczswGUr6ZmAygf4adWNjJGjRql8fHbb7/NKYk2kbMBlK8qRM4GUL6qEDkbQPkIP1SFlRBCCCF6USvnZBBCCCFE/6iRQQghhBC9oEYGIYQQQvSCGhmEEEII0QtqZBBCCCFEL6iRQQghhBC9oEYGIYQQQvTi/wE7/FC4Kxj8AgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import seaborn as sns\n", - "# plot the heatmap of df\n", - "sns.heatmap(lfi_raw_oob, cmap='coolwarm')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Feature_0Feature_1Feature_2Feature_3Feature_4Feature_5Feature_6Feature_7
017.90013514.5742848.42385316.24813823.9527350.75380614.41097168.425018
124.23494311.7793261.99253428.87213120.6268840.5363932.81080420.880892
223.36319618.39782517.84290033.07279021.26400322.4654308.44847634.564412
321.48084115.83839315.89808013.74220824.02951624.8769192.32220834.237971
40.42776919.656975138.50720032.26182419.80049111.4241093.08488933.582659
...........................
24920.0342545.2822055.69006912.40359832.95699144.2212787.46000539.891085
2500.6860041.08269617.89569621.88306522.40476910.0350843.89655812.722965
25110.3928989.91055417.52411818.0097775.46606649.97243911.42427323.315691
25231.58012019.04075026.18067829.81892226.09823425.5291515.80671712.563029
25313.2499440.53036817.03226217.77232425.06440750.84457711.27009912.471952
\n", - "

254 rows × 8 columns

\n", - "
" - ], - "text/plain": [ - " Feature_0 Feature_1 Feature_2 Feature_3 Feature_4 Feature_5 \\\n", - "0 17.900135 14.574284 8.423853 16.248138 23.952735 0.753806 \n", - "1 24.234943 11.779326 1.992534 28.872131 20.626884 0.536393 \n", - "2 23.363196 18.397825 17.842900 33.072790 21.264003 22.465430 \n", - "3 21.480841 15.838393 15.898080 13.742208 24.029516 24.876919 \n", - "4 0.427769 19.656975 138.507200 32.261824 19.800491 11.424109 \n", - ".. ... ... ... ... ... ... \n", - "249 20.034254 5.282205 5.690069 12.403598 32.956991 44.221278 \n", - "250 0.686004 1.082696 17.895696 21.883065 22.404769 10.035084 \n", - "251 10.392898 9.910554 17.524118 18.009777 5.466066 49.972439 \n", - "252 31.580120 19.040750 26.180678 29.818922 26.098234 25.529151 \n", - "253 13.249944 0.530368 17.032262 17.772324 25.064407 50.844577 \n", - "\n", - " Feature_6 Feature_7 \n", - "0 14.410971 68.425018 \n", - "1 2.810804 20.880892 \n", - "2 8.448476 34.564412 \n", - "3 2.322208 34.237971 \n", - "4 3.084889 33.582659 \n", - ".. ... ... \n", - "249 7.460005 39.891085 \n", - "250 3.896558 12.722965 \n", - "251 11.424273 23.315691 \n", - "252 5.806717 12.563029 \n", - "253 11.270099 12.471952 \n", - "\n", - "[254 rows x 8 columns]" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lfi_raw" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# methods = [\"MDI_all_stumps\", \"MDI_sub_stumps\", \"MDI_all_stumps_without_raw\", \"MDI_sub_stumps_without_raw\", \"LFI_sum_absolute_all_stumps\",\n", - "# \"LFI_absolute_sum_all_stumps\", \"LFI_sum_absolute_sub_stumps\", \"LFI_absolute_sum_sub_stumps\", \n", - "# \"LFI_sum_absolute_all_stumps_without_raw\", \"LFI_absolute_sum_all_stumps_without_raw\",\n", - "# \"LFI_sum_absolute_sub_stumps_without_raw\", \"LFI_absolute_sum_sub_stumps_without_raw\", \"TreeSHAP\", \"LIME\"]\n", - "\n", - "methods = [\"lfi_raw_oob\", \"lfi_raw\", \"mdi\", \"treeshap\"]\n", - "sample_row_n = df[\"n\"].unique().tolist()\n", - "sample_row_n.sort()\n", - "heritability = df[\"heritability\"].unique().tolist()\n", - "heritability.sort()\n", - "nreps = df[\"rep\"].max()\n", - "results = {}\n", - "for r in range(nreps+1):\n", - " results[r] = {}\n", - " for h in heritability:\n", - " results[r][h] = {}\n", - " for m in methods:\n", - " results[r][h][m] = {}\n", - " results[r][h][m][\"auroc_group1_avg_metric\"] = []\n", - " results[r][h][m][\"auroc_group2_avg_metric\"] = []\n", - " # results[r][h][m][\"auroc_group1_avg_prediction\"] = []\n", - " # results[r][h][m][\"auroc_group2_avg_prediction\"] = []" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "for r in range(nreps+1):\n", - " for h in heritability:\n", - " for m in methods:\n", - " for s in sample_row_n:\n", - " df_sub = df[(df[\"fi\"] == m) & (df[\"n\"] == s) & (df[\"heritability\"] == h) & (df[\"rep\"] == r)]\n", - " assert len(df_sub[\"rocauc_group1_avg_metric\"].unique()) == 1\n", - " assert len(df_sub[\"rocauc_group2_avg_metric\"].unique()) == 1\n", - " # assert len(df_sub[\"rocauc_group1_avg_prediction\"].unique()) == 1\n", - " # assert len(df_sub[\"rocauc_group2_avg_prediction\"].unique()) == 1\n", - " results[r][h][m][\"auroc_group1_avg_metric\"].append(df_sub[\"rocauc_group1_avg_metric\"].unique()[0])\n", - " results[r][h][m][\"auroc_group2_avg_metric\"].append(df_sub[\"rocauc_group2_avg_metric\"].unique()[0])\n", - " # results[r][h][m][\"auroc_group1_avg_prediction\"].append(df_sub[\"rocauc_group1_avg_prediction\"].unique()[0])\n", - " # results[r][h][m][\"auroc_group2_avg_prediction\"].append(df_sub[\"rocauc_group2_avg_prediction\"].unique()[0])" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "agg_results = {} \n", - "for h in heritability:\n", - " agg_results[h] = {}\n", - " for m in methods:\n", - " agg_results[h][m] = {}\n", - " agg_results[h][m][\"auroc_group1_avg_metric\"] = []\n", - " agg_results[h][m][\"auroc_group2_avg_metric\"] = []\n", - " # agg_results[h][m][\"auroc_group1_avg_prediction\"] = []\n", - " # agg_results[h][m][\"auroc_group2_avg_prediction\"] = []" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "for h in heritability:\n", - " for m in methods:\n", - " for s in sample_row_n:\n", - " agg_group1_avg_metric = 0\n", - " agg_group2_avg_metric = 0\n", - " # agg_group1_avg_prediction = 0\n", - " # agg_group2_avg_prediction = 0\n", - " for r in range(nreps+1):\n", - " df_sub = df[(df[\"fi\"] == m) & (df[\"n\"] == s) & (df[\"heritability\"] == h) & (df[\"rep\"] == r)]\n", - " assert len(df_sub[\"rocauc_group1_avg_metric\"].unique()) == 1\n", - " assert len(df_sub[\"rocauc_group2_avg_metric\"].unique()) == 1\n", - " # assert len(df_sub[\"rocauc_group1_avg_prediction\"].unique()) == 1\n", - " # assert len(df_sub[\"rocauc_group2_avg_prediction\"].unique()) == 1\n", - " agg_group1_avg_metric += df_sub[\"rocauc_group1_avg_metric\"].unique()[0]\n", - " agg_group2_avg_metric += df_sub[\"rocauc_group2_avg_metric\"].unique()[0]\n", - " # agg_group1_avg_prediction += df_sub[\"rocauc_group1_avg_prediction\"].unique()[0]\n", - " # agg_group2_avg_prediction += df_sub[\"rocauc_group2_avg_prediction\"].unique()[0]\n", - " agg_group1_avg_metric /= (nreps+1)\n", - " agg_group2_avg_metric /= (nreps+1)\n", - " # agg_group1_avg_prediction /= (nreps+1)\n", - " # agg_group2_avg_prediction /= (nreps+1)\n", - " agg_results[h][m][\"auroc_group1_avg_metric\"].append(agg_group1_avg_metric)\n", - " agg_results[h][m][\"auroc_group2_avg_metric\"].append(agg_group2_avg_metric)\n", - " # agg_results[h][m][\"auroc_group1_avg_prediction\"].append(agg_group1_avg_prediction)\n", - " # agg_results[h][m][\"auroc_group2_avg_prediction\"].append(agg_group2_avg_prediction)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB+EAAANVCAYAAACnO4wHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zV1f3H8ddd2TshmxVG2CuBJCDujbu1VqttFdva4aiKg+EegItWrW1/rdpWq9aBWgQV1IqQQRL2DoSRvfe+935/f1y8eAUVNeQm4f18PPLQe77ne+/nhMBR3t9zjskwDAMRERERERERERERERERERH53szeLkBERERERERERERERERERKS/UAgvIiIiIiIiIiIiIiIiIiLSTRTCi4iIiIiIiIiIiIiIiIiIdBOF8CIiIiIiIiIiIiIiIiIiIt1EIbyIiIiIiIiIiIiIiIiIiEg3UQgvIiIiIiIiIiIiIiIiIiLSTRTCi4iIiIiIiIiIiIiIiIiIdBOF8CIiIiIiIiIiIiIiIiIiIt1EIbyIiIiIiIiIiIiIiIiIiEg3UQgv0oe9+OKLmEwm95fVaiUxMZFrr72WkpISAH7/+99jMpnYuXPnV77PvHnzMJlMrF+/HoAhQ4Z4vO8Xv0499dSeGJqHV199lUmTJuHn50d8fDy33HILzc3Nx3TvkiVLuOyyyxg6dKjX6hcREfkuNM9/vd27d3P77beTkpJCWFgYERERzJgxgzfeeKMHqhYREfnuNMd/O9u3b8fX1xeTyUReXt5xqFRERKT7aJ7/ZuXl5fzud78jKSkJf39/Bg8ezOzZszl48OBxrlqkZ1m9XYCIfH8vvPACo0aNoq2tjdWrV/Poo4/y6aefsmXLFmbPns2SJUt4/vnnWbx48RH3Op1O/vnPfzJp0iSmTJnibp8xYwaPP/74Ef1DQkKO61i+7OWXX+bqq6/m+uuv56mnnmL37t3ceeedbN++nQ8//PAb7//zn/9MYGAgp59+Ov/97397oGIREZHupXn+6D788EPee+89rrnmGqZOnYrdbue1117j8ssv5/777+eee+7poVGIiIh8N5rjv5nD4eC6664jKiqK0tLS41ixiIhI99I8f3QdHR2cfPLJ1NXVcf/99zNmzBh27drFvffeywcffMCOHTsIDg7uoZGIHGeGiPRZL7zwggEYubm5Hu0LFiwwAOOll14yDMMwpk2bZsTGxhpdXV1HvMeKFSsMwHj66afdbYMHDzZmzZp1fIs/Bna73YiLizPOPvtsj/aXX37ZAIzly5d/43s4HA73v48dO9Y45ZRTurtMERGR40Lz/NfP81VVVYbT6TyifdasWUZAQIDR3t7erfWKiIh0F83x3/z/8p977LHHjISEBOMPf/jDUb9nIiIivY3m+a+f51euXGkAxt/+9jeP9n//+98GYLz11lvdXrOIt2g7epF+KD09HYADBw4AMHv2bMrLy1mxYsURfV944QV8fX35yU9+0qM1Hovs7GzKysq49tprPdovv/xygoKCWLp06Te+h9msP+ZERKR/0TzvEhUVhclkOqJ92rRptLa2Ultb2631ioiIHG+a4z0VFBRwzz338Kc//anHV/iJiIh0N83zLjabDYDQ0FCP9rCwMAD8/Py6r1gRL1M6JdIP7dmzB4ABAwYAcOWVVxIQEMDzzz/v0a+uro533nmHSy+9lPDwcI9rhmFgt9uP+DIM4xs//2j3fZf32rp1KwATJkzwaLfZbIwaNcp9XURE5ESief7rffLJJwwYMIDo6OjvdL+IiIi3aI73HMf111/PBRdcwEUXXfSN/UVERHo7zfMuM2bMICUlhfvuu4/c3Fyam5tZv349c+fOZcqUKZx55pnfOBaRvkIhvEg/4HA4sNvtNDc389577/HQQw8RHBzs/h/V4OBgLr/8ct577z0qKyvd97388st0dHQwe/bsI95z+fLl2Gy2I74efvjhb6znaPcd7esf//jH175PTU0NABEREUdci4iIcF8XERHpzzTPH7u//e1v/O9//2P+/PlYLJZvfb+IiEhP0hz/1Z599lm2bNnC008//Y19RUREeiPN80dntVr55JNPSEpKYtq0aQQHB5OSkkJYWBgrV650r5QX6Q+s3i5ARL6/z7ey+dz48eN57rnniImJcbfNnj2bf/zjH/zrX//itttuA1zb2gwePJgzzjjjiPc86aSTeOqpp45oT0hI+MZ6cnNzj6nuoUOHHlO/o201+3XtIiIi/Ynm+WOzYsUKfvvb3/LDH/6QG2+88VvdKyIi4g2a44/uwIED3H333SxZssTjeyEiItKXaJ4/uq6uLq644gq2bt3K//3f/5GcnMy+fft46KGHOOuss/j444+P2KpepK9SCC/SD/zzn/9k9OjRWK1WYmJiiIuLO6LPzJkzGTlyJC+88AK33XYbmzdvZv369dx3331HnRhDQ0NJTU39TvVMmjTpmPp90wq1yMhIwPV03Zf/x7u2tvaoT9uJiIj0N5rnv9kHH3zAZZddxllnncXLL7+sB/VERKRP0Bx/dL/97W8ZN24cP/jBD6ivrwegtbUVgObmZhoaGvSX8yIi0utpnj+6v//976xYsYLc3Fz3WGbOnMlJJ53EsGHDWLJkCffee+8x1SrS22k7epF+YPTo0aSmpjJp0qSjTuafu+6669i2bRvr1q3j+eefx2w28/Of/7zb6+murW3Gjx8PwJYtWzza7XY7O3fuZNy4cd1eu4iISG+jef7rffDBB1xyySWccsopvPnmm/j4+Hy3gYmIiPQwzfFHt3XrVrKzswkPD3d//fa3vwXgtNNOY/Dgwd9jlCIiIj1D8/zRbdy4EYvFwpQpUzzak5KSiIyM/MYz5UX6Eq2EFzmB/OxnP2P+/Pn85S9/4d133+WMM844Lv/z2l1b26SlpREXF8eLL77IFVdc4W5/4403aG5u5rLLLvtedYqIiPQnJ+I8/+GHH3LJJZdw0kkn8fbbb+Pr63tMtYmIiPQlJ9oc/+qrr9Le3u7R9v7777No0SL+/Oc/M3bs2GOqU0REpC840eb5+Ph4HA4Hubm5pKWludt3795NTU0NiYmJx1SnSF+gEF7kBBIbG8v555/PCy+8gGEYzJ49+yv71tfXk52dfUS7r68vkydP/trP+a5b4nyZxWJh8eLFXHPNNfzqV7/iyiuvpKCggDvuuIOzzjqLc8891933008/5YwzzuCee+7hnnvucbfn5eWxf/9+ABobGzEMgzfeeAOAqVOn6gl6ERHpN060eX7NmjVccsklxMbGMnfuXDZu3Ojx/mPGjCEkJKRbahUREfGmE22O//IZuoD7/+tTUlK6rU4REZHe4ESb56+99lqeeuopfvCDHzB//nySk5MpLCzkkUceITAwkBtuuKFb6hTpDRTCi5xgZs+ezbvvvktERASXXHLJV/Zbu3YtGRkZR7QnJCRQXFx8HCv0dPXVV2OxWFi4cCEvvvgiERER/PSnP+Xhhx/26GcYBg6HA6fT6dH+zDPPHLGFzuWXXw7ACy+8cFy29hEREfGWE2meX7VqFW1tbezfv5/TTz/9iPf+5JNPOPXUU4/3EERERHrEiTTHi4iInGhOpHl+4MCB5Obm8sADD7Bo0SLKysqIiYkhIyODe+65h+Tk5B4bh8jxZjIMw/B2ESIiIiIiIiIiIiIiIiIiIv2B2dsFiIiIiIiIiIiIiIiIiIiI9BcK4UVERERERERERERERERERLqJQngREREREREREREREREREZFuohBeRERERERERERERERERESkmyiEFxERERERERERERERERER6SYK4UVERERERERERERERERERLqJ1dsF9EZOp5PS0lKCg4MxmUzeLkdERE5ghmHQ1NREfHw8ZrOenesOmudFRKS30DzfvTTHi4hIb6E5vvtpnhcRkd7iWOd5hfBHUVpaysCBA71dhoiIiFtRURGJiYneLqNf0DwvIiK9jeb57qE5XkREehvN8d1H87yIiPQ23zTPK4Q/iuDgYMD1zQsJCfFyNSIiciJrbGxk4MCB7rlJvj/N8yIi0ltonu9emuNFRKS30Bzf/TTPi4hIb3Gs87xC+KP4fDubkJAQTegiItIraKu17qN5XkREehvN891Dc7yIiPQ2muO7j+Z5ERHpbb5pnteBNCIiIiIiIiIiIiIiIiIiIt1EIbyIiIiIiIiIiIiIiIiIiEg3UQgvIiIiIiIiIiIiIiIiIiLSTRTCi4iIiIiIiIiIiIiIiIiIdBOF8CIiIiIiIiIiIiIiIiIiIt1EIbyIiIiIiIiIiIiIiIiIiEg3UQgvIiIiIiIiIiIiIiIiIiLSTRTCi4iIiIiIiIiIiIiIiIiIdBOF8CIiIiIiIiIiIiIiIiIiIt1EIbyIiIiIiIiIiIiIiIiIiEg38XoI/6c//YmhQ4fi5+dHSkoKn3322df2f/nll5k4cSIBAQHExcVx7bXXUlNT477+4osvYjKZjvhqb28/3kMREREREREREREREREREZETnFdD+Ndee41bbrmFefPmsWHDBmbOnMl5553HwYMHj9p/zZo1/PSnP2X27Nls27aN119/ndzcXK6//nqPfiEhIZSVlXl8+fn59cSQRERERERERERERERERETkBObVEP7JJ59k9uzZXH/99YwePZolS5YwcOBAnnvuuaP2z87OZsiQIdx0000MHTqUk046iV/96lfk5eV59DOZTMTGxnp8iYiIiIiIiIiIiIiIiIiIHG9eC+E7OzvJz8/n7LPP9mg/++yzyczMPOo906dPp7i4mOXLl2MYBhUVFbzxxhvMmjXLo19zczODBw8mMTGRCy64gA0bNnxtLR0dHTQ2Nnp8iYiISP+geV5ERKR/0hwvIiLSf2meFxGRvs5rIXx1dTUOh4OYmBiP9piYGMrLy496z/Tp03n55Ze54oor8PHxITY2lrCwMJ5++ml3n1GjRvHiiy/y7rvv8sorr+Dn58eMGTMoKCj4yloeffRRQkND3V8DBw7snkGKiIiI12meFxER6Z80x4uIiPRfmudFRKSv8+p29ODaOv6LDMM4ou1z27dv56abbuKee+4hPz+f999/n3379nHDDTe4+6Snp3P11VczceJEZs6cyX/+8x9GjhzpEdR/2d13301DQ4P7q6ioqHsGJyIiIl6neV5ERKR/0hwvIiLSf2meFxGRvs7qrQ+OiorCYrEcseq9srLyiNXxn3v00UeZMWMGc+bMAWDChAkEBgYyc+ZMHnroIeLi4o64x2w2M3Xq1K9dCe/r64uvr+/3GI2IiIj0VprnRURE+ifN8SIiIv2X5nkREenrvLYS3sfHh5SUFFauXOnRvnLlSqZPn37Ue1pbWzGbPUu2WCyAawX90RiGwcaNG48a0IuIiIiIiIiIiIiIiIiIiHQnr62EB7j11lu55pprSE1NJSMjg7/+9a8cPHjQvb383XffTUlJCf/85z8BuPDCC/nFL37Bc889xznnnENZWRm33HIL06ZNIz4+HoD777+f9PR0RowYQWNjI3/84x/ZuHEjzz77rNfGKSIiIiIiIiIiIiIiIiIiJwavhvBXXHEFNTU1PPDAA5SVlTFu3DiWL1/O4MGDASgrK+PgwYPu/j//+c9pamrimWee4bbbbiMsLIzTTz+dRYsWufvU19fzy1/+kvLyckJDQ5k8eTKrV69m2rRpPT4+ERERERERERERERERERE5sZiMr9rH/QTW2NhIaGgoDQ0NhISEeLscERE5gWlO6n76noqISG+hOal76fspIiK9heak7qfvqYiI9BbHOid57Ux4ERERERERERERERERERGR/kYhvIiIiIiIiIiIiIiIiIiISDdRCC8iIiIiIiIiIiIiIiIiItJNFMKLiIiIiIiIiIiIiIiIiIh0E4XwIiIiIiIiIiIiIiIiIiIi3UQhvIiIiIiIiIiIiIiIiIiISDdRCC8iIiIiIiIiIiIiIiIiItJNFMKLiIiIiIiIiIiIiIiIiIh0E4XwIiIiIiIiIiIiIiIiIiIi3UQhvIiIiIiIiIiIiIiIiIiI9DsNHQ2sPLCSDZUbevRzrT36aSIiIiIiIiIiIiIiIiIiIsdBp6OTjZUbySrLIrs0m2012zAwOG/oeUyOntxjdSiEFxERERERERERERERERGRPsdpONldt5vs0myyyrJYX7Gedke7R5+k0CSGhAzp0boUwouIiIiIiIiIiIiIiIiISJ9Q1lzmXumeU55DbXutx/Uo/yjS49JJj0snLTaN8Ko2TOaePaVdIbyIiIiIiIiIiIiIiIiIiPRKjZ2N5JbluoL3smwONB7wuO5v9Sc1JpWM+AzS49IZ4oygNTublvczacr8A3VlZYRd/kPiHnywx2pWCC8iIiIiIiIiIiIiIiIiIr1Cl6OLjVUbyS7LJrs0m601W3EaTvd1s8nMuKhxZMS5Qvfxwcl0bdxMy3uZtGTeyZ4dOzzez2SzYXR29ugYFMKLiIiIiIiIiIiIiIiIiIhXGIZBQX0BWaWule75Ffm02ds8+gwJGUJ6XDoZ8RmkRqdg21tMS2YmLZnPsi9//REhu29yMoHTpxM4PYOAlBTMAQE9OSSF8CIiIiIiIiIiIiIiIiIi0nPKW8pdK90PrXavaa/xuB7hF0FaXJp7tXtUg5PmzExaXvsv5VnzcNTXe/S3xsS4Q/fAjAysUVE9OJojKYQXEREREREREREREREREZHjprmzmdzyw+e672vY53Hdz+JHSmyKO3RPssTQti6X1leyaFn7F/Yc8DwH3hwQQMC0aa7gfcZ0fJKSMJlMPTmkr6UQXkREREREREREREREREREuk2Xs4stVVtcoXtpNluqt+AwHO7rZpOZsZFj3VvMTwgdg2Prdlo+yqJl7b3s2bIFnIfPgcdiwX/8eHfo7j9hAiabzQsjOzYK4UVERERERERERERERERE5DszDIO99XvdW8znlufSam/16DMoeBAZ8a6V7qkxqfgXVdGSlUXLX/7OvtxcjFbP/j5DhxKYkUHgjOkETJuGJTi4J4f0vSiEFxERERERERERERERERGRb6WytZKcshyySl1bzFe1VXlcD/cNJy0ujfS4dNLj04lp83GF7ktXUZX1IPbKSo/+lvBwd+gemJGBLT6+J4fTrRTCi4iIiIiIiIiIiIiIiIjI12rpaiGvPI/ssmyySrPY27DX47qvxZcp0VPcq91H+A2kPX89LW9m0pL5DwoKCjz6m3x9CUhJcYXu06fjm5yMyWzuySEdNwrhRURERERERERERERERETEg91pZ2v1Vve57purNmM37O7rJkyMjhxNRlwG6fHpTIqcgLFzDy1rMmnJXMieDRswuroOv6HJhN/o0e7Q3X/KFMy+vl4Y2fGnEF5ERERERERERERERERE5ARnGAb7Gve5t5fPLc+lpavFo09iUCLp8elkxGUwLXYaAZWNtGRm0fKPVziQcwvOhgaP/rb4eHfoHpCejjU8vCeH5DUK4UVERERERERERERERERETkDVbdVkl2WTXZpNdlk2Fa0VHtdDfUNJi00jPT6d9Lh04h3BtGTn0LJiLdWZj9FVXOzR3xwcTGB6GoHTD53rPngwJpOpJ4fUKyiEFxERERERERERERERERE5AbR2tZJfke/aYr4sm4I6z3Pafcw+TI6ZTHpcOhnxGYwMTKJz42ZalmXSknkru7dtA8M4fIPVSsCkSQRMzyBo+nT8xo3DZFUEre+AiIiIiIiIiIiIiIiIiEg/ZHfa2V6z3b3F/Maqjdiddo8+oyNGkx6X7jrXfcAkzIVFtKzNpCVzCXvz8jDa2z36+44YTkBGhmu1+9SpmAMDe3JIfYJCeBERERERERERERERERGRfsAwDA40HnBtMV+WzbqydTR1NXn0iQ+MJyM+g/S4dKbFTSO4ocsVur+6lOKsO3DU1Hj0twyIIvDz0D1jOraY6J4cUp+kEF5EREREREREREREREREpI+qaathXfk692r3spYyj+vBPsGuc90PbTEfb46gbV0uLS9nUpf1DBV793r0N/n7EzA11RW6T5+O74gRJ+S57t+HQngRERERERERERERERERkT6izd7G+or1ZJdlk1Waxa66XR7XrWYrk6MnkxHnWu0+OnQknVu307Iqk5asuRRs2gT2L2xJbzbjN24cgdNdq939J03C7OPTw6PqXxTCi4iIiIiIiIiIiIiIiIj0Ug6ngx21O9yh+4bKDXQ5uzz6JIcnu891nzxgMtbiSloyM2n5y1/Ym5ODs7nZo79t0CB36B6YloYlNLQnh9TvKYQXEREREREREREREREREeklDMOguKmYrDLX9vI5ZTk0djZ69IkJiCEjPoOMuAymxU0jrM1MS1YWLW+voDTzHuxlnlvSW0JDCcjIcAfvPomJPTmkE45CeBERERERERERERERERERL6pvrye7PJvs0myyy7IpaS7xuB5kC2Jq7FQy4l1bzA/yiaVt/Xpa3sykMfNvVO3Y4dHfZLPhn5LiWumekYHfmNGYLJaeHNIJTSG8iIiIiIiIiIiIiIiIiEgPare3s6Fyg3uL+Z21OzEw3NetZisTB0wkPS6djPgMxoSPxr6rgJbPMmnJfICC/PUYnZ0e7+k7ahSBGa6V7gGpKZj9/Xt6WHKIQngRERERERERERERERERkePIaTjZWbuTrFLXFvMbKjfQ4ejw6DM8bLg7dE+NScVWWUdzZiYtL77IvqxsHPX1Hv2tMTGule7TpxOYkY41KqoHRyRfRyG8iIiIiIiIiIiIiIiIiEg3K24qdq90X1e+jvqOeo/r0f7RpMenkx7n+oqw+9KSk0PLik8oy3yEzgMHPPqbAwMJmDbNFbrPmI7P0KGYTKYeHJEcK4XwIiIiIiIiIiIiIiIiIiLfU0NHA+vK17lXuxc1FXlcD7QFMjVmKunx6WTEZTDEP4H2zZtpXpZJS+bLVG/ZAk7n4RssFvwnTHCH7v7jx2Oy2Xp4VPJdKIQXEREREREREREREREREfmWOh2dbKzcSFZZFtml2Wyr2eZxrrvFZGHCgAlkxGWQHp/O2MixGIUHaMnMpCVzMbtzczFaWz3e02foUHfoHjB1Kpbg4J4elnQDhfAiIiIiIiIiIiIiIiIiIt/AaTjZXbeb7NJsssqyWF+xnnZHu0efYaHD3FvMp8ak4lvfSmt2Ni2vvMaBrCzslZUe/S0REQRmZBw62z0DW1xcTw5JjhOF8CIiIiIiIiIiIiIiIiIiR1HWXOZe6Z5TnkNte63H9Sj/KNLj0smIzyAtNo0BpmBa8/JoeSmTyswn6Sgo8Ohv8vUlIDXVHbr7JidjMpt7ckjSAxTCi4iIiIiIiIiIiIiIiIgAjZ2N5JbluoL3smwONB7wuO5v9Sc1JpWM+AzS49IZFjyUju3baVmZScvaOezauBG6ug7fYDLhN2YMgdNdq939p0zB7Ovbs4OSHqcQXkREREREREREREREREROSF2OLjZWbSS7LJvs0my21mzFaTjd1y0mC+OixrlXu0+ImoBRUuY61/25pynIycHZ2Ojxnrb4eAJnTCdw+nQC0tOxhof39LDkC+wOJ21dDoL9bD32mQrhRUREREREREREREREROSEYBgGBfUFZJW6VrrnV+TTZm/z6DMkZIh7pfvU2Kn4t9hpzcmh5a13OJB1F13FxR79zcHBBKanHdpifjq2QYMwmUw9OSz5AofTYHtpI1mF1WTtrSF3fx0/Sh3IPReO6bEaFMKLiIiIiIiIiIiIiIiISL9V3lLuWul+aLV7TXuNx/UIvwjS49Ldq92jbRG0rV9Py+uZVGc9R/u2bWAYh2+w2QiYONG92t1v7FhMVsWu3uJ0GuwsbyKrsIasvTWs21dDY7vdo8/WkoYerUk/DSIiIiIiIiIiIiIiIiLSbzR3NpNbfvhc930N+zyu+1n8SIlNISPOtdp9eOgwugr20LI6k5asBezOy8Nob/e4x3fEcPdK94DUVMyBgT05JPkCwzDYXdFM9qHQPWdfDXWtXR59gn2tTBsaQXpSJBnDIhkdF9KjNSqEFxEREREREREREREREZE+q8vZxZaqLa7QvTSbLdVbcBgO93WzyczYyLHule4TB0zEVFVLy9pMWl74G3uzsnDUeK6OtwyIIujz0D09A1tMdE8PSw4xDIO9VS1kFdaQvbeG7MIaalo6PfoE+FiYOiSCjGGRZCRFMjY+BKvF7KWKFcKLiIiIiIiIiIiIiIiISB9iGAZ76/e6t5jPLc+l1d7q0WdQ8CCPc92Duiy0rsulZfmHFGXeR2dhoUd/U0AAAVNTCZo+nYCMDHxHjNC57l5iGAYHalrd28tnF9ZQ2dTh0cfPZiZ1sCt0T0+KZEJiKDYvhu5fphBeRERERERERERERERERHq1ytZKcspyyCp1bTFf1VblcT3cN5y0uDQy4jNIi0sj3jeati1baflvJnWZL1C6eTPYv3BOuNmM3/hxBGZkuFa7T5qEycenh0clnyuqbXWvdM8qrKGswfM4AB+rmSmDwshIiiJjWCQTB4bia7V4qdpvphBeRERERERERERERERERHqVlq4W8srzyC7LJqs0i70Nez2u+1p8SYlJIT0unfS4dEaGj8S+/yAtmZm0ZD7C7pwcnC0tHvfYBg9yh+6BaWlYQkN7ckjyBaX1bWQdCtyzC2sormvzuG6zmJg8MJz0Q9vLTx4Uhp+t94buX6YQXkRERERERERERERERES8yu60s7V6q/tc981Vm7Ebh1eumzAxJnKM+1z3SdGTsNQ305KVTcu/X6IwKwt7WZnHe1pCQwnIyCBwegaB02fgk5jQ08OSQyob293by2cV1nCgxvP4AKvZxITE0ENnukeRMjgcf5++E7p/mUJ4EREREREREREREREREelRhmGwr3Gfe3v53PJcWro8V64nBiWSHp9ORlwG02KnEYIfrXn5tPxrNSVZi+jYscOjv8lmwz8lxbXSffp0/MaMxmTuPeeEn0iqmzvI/kLoXljl+WtrNsH4xDAykiJJT4pg6pAIAn37T3Tdf0YiIiIiIiIiIiIiIiIiIr1WdVs12WXZZJdmk12WTUVrhcf1UN9Q0mLTSI93bTGfGJhA+/YdtHyYSUPWK5Tnr8fo7PS4x3fUKHfoHpAyBbO/f08OSQ6pa+l0he6HgveCymaP6yYTjI0PISMpkoxhkUwdEkGwn81L1R5/CuFFREREREREREREREREpNu1drWSX5Hv2mK+LJuCugKP6z5mHybHTHZvMT8qfBSO0nJaMtfS8tyTFGRl46iv97jHGhvrDt0D09OwRkX14Ijkcw2tXeTsOxy67yxvOqLPqNjgQ9vLR5I2NJLQgP4bun+ZQngRERERERERERERERER+d7sTjvba7a7t5jfWLURu9Pu0Wd0xGj3Svcp0VOwtXbSkpNDy1tvsC8zk64DBz36mwMDCUhLOxS8Z+AzdCgmk6knhyVAU3sXuftr3dvLbyttxDA8+4yMCTq0vXwkaUmRRAT6eKfYXkAhvIiIiIiIiIiIiIiIiIh8a4ZhcKDxANll2WSVZpFbnktTl+eK6PjAeDLiM0iPS2da3DTCzUG0bdpE8+uZlGX+gfYtW8HpPHyDxYL/xInu0N1//HhMthNnBXVv0dJhd4XuhTVkF9aytaQBh9MzdU8aEOjeXj49KZKoIF8vVdv7KIQXERERERERERERERERkWNS01bDuvJ17tXuZS1lHteDfYJJi01zB++JQYl07d1Ly+pMmjPvpjI3D6O11eMen6QkAjMyCJwxnYBp07AEBfXkkARo63SQf6COrMJqsvbWsLm4AfuXQvfBkQEeoXtMiJ+Xqu39FMKLiIiIiIiIiIiIiIiIyFG12dtYX7Hevdp9V90uj+s2s41J0ZPIiHOF7mMix+CsrqE1K4uW559lb2YW9qoqj3ssERGu0P3QandbXFxPDkmA9i4HGw7Wu1a6761hY1E9nQ6nR5+EMH/3me4ZwyKJD/P3UrV9j0J4EREREREREREREREREQHA4XSwo3aHO3TfULmBLmeXR5/k8GTS49LJiM9gcvRk/LqgNTeXlveWcSBzHh0FBR79Tb6+BKSmukL3GdPxHTkSk9nck8M64XXanWwsqj90pns16w/W02n3DN3jQv1cZ7ofCt4HRgR4qdq+TyG8iIiIiIiIiIiIiIiIyAnKMAyKm4rJKnNtL59TlkNjZ6NHn5iAGDLiM8iIy2Ba3DQifcJp37qVlnczqcr8C60bN0LXF4J6kwm/MWPcobv/5MmYfXVeeE/qcjjZXNxAdmENWXtryDtQS3uXZ+g+INjXvco9IymSwZEBmEwmL1XczZor4WA2FOXAwSwYfiacNrfHPl4hvIiIiIiIiIiIiIic0CpbK/nk4CdcMeoKb5ciItIj6tvryS7PJrs0m+yybEqaSzyuB9mCmBY7jfT4dDLiMhgUPAh7UREtmZm0ZD7A7pwcnI2eQb0tIcEdugekpWEND+/JIZ3w7A4n20obyfo8dN9fS0unw6NPZKAP6YfOc89IimTYgMD+EbobBlQXuML2z0P32kLPPhZfOK3nSlIILyIiIiIiIiIiIiInrPf3vc+D2Q/S2NlIfFA8MxNnerskEZFu125vZ0PlBvcW8ztrd2JguK9bzVYmDpjoOtc9Pp2xkWOhoYnW7GxaXn6ewsxMuko8g3pzSAiBaWkEzphOYEYGtkGD+keg20c4nAY7yhoPbS9fQ+6+Wpo67B59wgJspA89tNJ9WCQjooP6x6+RvQNKN0JRtmu1+8FsaKv9UicTRI+GQekwMN31zx6kEF5ERERERERERERETjgNHQ08nP0wK/avILnY4IaCUOIvivd2WSIi3cJpONlZu5OsUtcW8xsqN9Dh6PDoMzxsOBnxGaTHpZMak4qf00Lbhg20/PMjijIfpH37dtcK48/ZbARMmuQO3f3GjcNksfTwyE5cTqfBroomd+i+bl8tDW1dHn2C/aykDT28vfyo2GDM5n4QurfWQtG6w6F7yXr40s8zVj9ISDkcug+cCv7e241BIbyIiIiIiIiIiIiInFA+K/6MezPvpba5kqvWwMVZTkxGLRGr1sPlw7xdnojId1LcVOxe6b6ufB31HfUe16P9o0mPTyc9zvUV5RdJx+7dtHyQSXXmP2nNz8dob/e4x3fECAKnZxA4fToBqamYAwN7cEQnNsMw2FPZ7N5ePruwhrpWz9A9yNfKtKERpCdFkJEUxZj4ECx9PXQ3DKjbf+g890Ohe9XOI/sFRMKgDBiY5vpn3ESw+vR4uV9FIbyIiIiIiIiIiIiInBBau1p5PO9xXt/9OolVBo+/ZyWhzLWSLvSSSwg591wvVygicuwaOhpYV77Ovdq9qKnI43qgLZCpMVPd57oPDR2KvaKClrWZtPxpEQXZ2ThqajzusQ4YcDh0z8jAFh3dk0M6oRmGQWF1iztwzy6spbrZc7V3gI+F1CERZCS5VruPiw/BajF7qeJu4rBD+WbP0L254sh+kcO/sLV8BkQOg168tb5CeBERERERERERERHp9zZUbmDuZ3MpaSpiVq7B1avB0tWBJSyM2AfuJ+Tss71doojI1+p0dLKxciNZZVlkl2azrWabx7nuFpOFCQMmuM91Hxc1DnNrB63r1tHyxr8pzMykc98+j/c0BQQQMDWVoOnTCZw+HZ/hw/vHmeF9gGEYHKxtdW8vn11YQ0WjZ+juazWTOiTcHbpPSAzD1tdD9/ZGKM49HLoX50FXq2cfsw3iJ31ha/k0CBrglXK/K4XwIiIiIiIiIiIiItJvdTo6eWbjM7y49UUiGpw8uMLKyH2ukCPwlJOJf+ghrAP61l/si8iJwWk42V23m+zSbLLKslhfsZ52h+d28cNCh7lXuqfEpBBo8qVtyxZaXltLSdbjtG3aBA7H4RvMZvzGjyNw+nSCpk/Hf+JETD69Zwvv/q647guh+94aShs8fz19LGYmDwpzn+k+aVAYvlaLl6rtJg0lcDALinJc/6zYBobTs49f6KFt5Q+F7glTwObvnXq7iUJ4EREREREREREREemXdtbuZO6auRTU7mbmVoNffWTGp60Dk78/MXfdRdiPLteKTxHpVQzDYOWBlaw6sIqc8hxq22s9rkf5R7lXuqfFphEdEE3nvn20/C+Tuqz/UJKTg7OlxeMe2+BBBB5a6R44bRqW0NCeHNIJrayhzRW6760he18NRbVtHtdtFhOTBoaRkRRJ+rBIpgwKx8/Wh0N3pwMqd3whdM+GhqIj+4UNdgXun4fuA0aBuY+v8P8ShfAiIiIiIiIiIiIi0q/YnXZe3PYiz258Fr/mLu5caSVlewfgxH/SJOIXLcRn8GBvlyki4qGxs5H7Mu9j5YGV7jZ/qz9TY6eSHuda7T4sbBiO2lpaMrNo+fsf2ZOZib283ON9LGFhBGSku0L3jOn4JCb09FBOWJVN7e4z3bP21rC/xnObdYvZxITEUPf28imDwwnw6cNxbWcrlOQf3lq+aB10NHr2MZkhdrzrHPfPV7uHxHun3h7Uh39VRUREREREREREREQ8HWg8wLw189hUtYlJe53c/L6VwMYOsFoZ8LvfEXn9bExW/dW4iPQuW6q2MGf1HEqaS7CarVwz+hpOGXgKE6ImYOm005q/npZlS9mXmUnHzp0e95p8fPBPmeIO3f3GjMbUz1YV91Y1zR1kF9aSVVhN1t4a9lZ57kJgNsH4hFDSh0WSnhTJ1CERBPn24TmoudIVuH8eupdtAqfds49PECSmHg7dE1PBN9g79XpRH/5VFhERERERERERERFxMQyD13a9xpP5T+JsbeXX/7NwWr4d6MRn2DDiFy/Cf+xYb5cpIuLBaTj51/Z/sSR/CXbDTkJQAo/PXMywSgst72RSmvkMbevXY3R2etznO3o0gdMzCMyYTkDKFMz+ffv87L6irqWTnH01ruB9bw27Kpo8rptMMCYuxL3SferQCEL8bF6q9nsyDKgu8DzPvbbwyH7BcYe2lj8UuseMA4v3I+ja0mK2fPwhJ/34p1i88PCd978DIiIiIiIiIiIiIiLfQ0VLBfdk3kNmaSYjSgxuX24jvLodgIif/ZQBv/89Zj8/L1cpIuKprr2OeWvm8VnJZwCcM+Qc7rJdSP2Vt7K/pMSjrzU29vC57hnpWCMjvVHyCaehrYt1+1yBe1ZhDTvLGzEMzz6jYoNJPxS6pw2NICzAxzvFfl/2Dijd6Hmee1vtlzqZIHoMDEo7HLqHDXI9fdALGIZByY5t5L23lL15OQBED0li9Emn9ngtCuFFREREREREREREpE8yDIPl+5bzcM7DtLY1cmWmmUsyHZic7VhjY4l/9BECMzK8XaaIyBFyy3O5a/VdVLZV4mP24c4pt3PqhxVU/fXXYBiYAwMJSEtzB+8+Q4dg6iVBZ3/W3GEnd18tWYfOdN9W2oDzS6H7iOggMg5tL582NILIIF/vFPt9tda6znD/PHQvWQ+ODs8+Vj9ISD0cuidOBf8wr5T7dZwOB7tz1pL336VUFBa4Gk0mhqVMIzwuwSs1KYQXERERERERERERkT6nrr2Oh7If4sMDH5JQbfDgCh/ii9sACLnwQmIXzMcSEuLlKkVEPDmcDv665a/8edOfcRpOhoYOZfGw2/B74DlqNm0CIPSyy4idNxdzYKCXq+3/Wjvt5O2vc4fuW0oacHwpdU+KCiR9WCQZSa7gfUBwHwzdDQPq9h86z/1Q6F6188h+AVGHtpZPh4HpEDcRrL17ZX9bcxMv3XUzjVWVAFhtPow55XRSZl1CRHyi1+pSCC8iIiIiIiIiIiIifcrq4tXcm3kvNa1VzMo3cfX/wNLVhjk0lLj77iXkvPO8XaKIyBGqWqu467O7WFe+DoCLhl3EzVWTqfv5bbS1tGAODibu/vsIOf98L1faf7V3Ocg/UOfeXn5TUT32L4XugyIC3Ge6pydFEhvaB48zcXRB+RZX6F6U7fpnc8WR/SJHfGFr+XSIHNZrtpb/Op1trfj4BwDgHxRMSFQ0XR0dTD7nAiaefT4BIaFerlAhvIiIiIiIiIiIiIj0ES1dLTyW+xhvFrxJRKPBQx/4MmJPKwCBJ51E3MMPY4uJ9nKVIiJHWluylrlr5lLbXou/1Z97Jsxhykt51LyzAAD/KVNIeGwxtgTvbJ3dX3XYHWw4WO8O3TcerKfT4fTokxDm7z7TPWNYJAlh/l6q9ntob4Ti3MOhe3EedLV69jHbIH6y53nugVHeqfc7qti3l/xlS9mbn8PsP/7NHbaf99tb8Q8NxebTe3YpUAgvIiIiIiIiIiIiIr1eXnke89fOp6S5hBnbDH6zyoKttRWTnx/Rd8wh/MordV6yiPQ6Xc4untnwDM9vfR6AkeEjWRz1C4xbn6ShqAjMZqJ+8xuibvgVJqtiu++r0+5kU7ErdM8urCH/QB0dds/QPTbEzxW4HwreE8P9+9780VB8aGv5Q6F7xTYwPMeJX6hrdfvnoXv8ZLD1vQcMDMNg/8Z88pa9xcGtm93te/NzGH/a2QCEDOh9D+Dpd7OIiIiIiIiIiIiI9Fodjg6e2fAM/9j2DwLanNz1kS9TtrQCDvzGjyd+0SJ8k4Z6u0wRkSOUNpdyx+o72FTlOuv9ihGXc/3mKOrmzgG7HWt8HAmPP07AlClerrTvsjucbC5pcIfuefvraOtyePSJCvL1CN2HRAb0rdDd6YDK7V8I3XOgoejIfmGDXWH756F7VDKYzT1fbzexd3WxY80n5C97m5rigwCYzGaSM2aSesGlxCQN93KFX08hvIiIiIiIiIiIiIj0SjtqdjB3zVz21O9hQqGTWz/wJaC+FSwWon79a6J+9UtMNpu3yxQROcJHBz9iwdoFNHU2EWwL5qGRtzDs6eXU5bwCQPB55xJ3//1YQkK8XGnf4nAabCttcG8vn7uvlpZOz9A9MtCH9KRI0pMiyBgWybABQX0rdO9shZL8w6vci9ZBR6NnH5MFYscfDt0HpkNInHfqPU46Wpr56G9/wmG34+Pvz/gzzmXKeRcSEtX7Vr0fjUJ4EREREREREREREelV7E47f9/yd/686c+YO7v49WofTlvXBrThM3Qo8YsX4T9+vLfLFBE5QqejkyfynuDfO/8NwPio8TzsvJiu3z5Ja0MDpoAAYufPJ/TSS/pWMOwlTqfB9rJGsgtdK91z9tXS1G736BMWYCNtaMShle5RjIgOwmzuQ9/b5krPreXLNoHTc4z4BEHi1MOhe0Iq+AZ5p97jpK68lH3rc5ly/sUABIaFk3rhD/ALDGT8GefgGxDo5Qq/HYXwIiIiIiIiIiIiItJr7G/Yz7w189hcvZlhpQZ3vu9HWEULAOE/+QnRt9+G2b/vnWkrIv3fgcYDzPl0DjtqdwBw3fCr+dEHLTT+5z4A/MaOJf7xx/AdqiM0vorTabC7ssm10n2vK3RvaOvy6BPsZyVtaATph7aXHx0b0ndCd8OA6t2eoXtt4ZH9guNhUPrhr+ixYOl/sa5hGJTu2kHesqXsycsGwyBxzHiihyQBcNKPr/Fyhd9d//vVEhEREREREREREZE+x2k4eXXnqzyV/xRdnW38JMfGRZ91YnK2YI2OJu6RRwg6aYa3yxQROar3Ct/jgawHaLW3EuYbxsK4G4h95BUa9+4FIGL2dUTffDMmHx8vV9q7GIbB3qpm9/by2YW11LZ0evQJ9LEw7Quh+9j4UCx9JXS3d0DpBs/z3Ntqv9TJBNFjPEP30IHQj3dKcDocFKzLIn/ZUsr27HK3D52c2m92iFAILyIiIiIiIiIiIiJeVd5SzoK1C8guyyauxuCuD/yJO9AMQMj55xF7zz1YwsK8W6SIyFG02dtYuG4hbxW8BUBK9BTuL55G28OL6OzqwjpgAPGLFhI4fbqXK+0dDMNgX3UL2YW1h0L3GqqaOjz6+NsspA4JJ2NYJBlJkYxPCMVqMXup4m+ptdYVtH8eupduAIfn+LD6Q0LK4cA9cSr4h3mlXG+oLS3mrUfvpaGyAgCL1cqYk08nZdYlRCYO8nJ13UchvIiIiIiIiIiIiIh4hWEYLCtcxqM5j9LU2cisjVau+diBubMZc0gIsffcQ+gFs7xdpojIUe2p28Ptn97O3oa9mDDxuyHXcM5Lu2n97BkAgk47jbiHH8IaEeHlSr3HMAyKatvIKqwma69rpXt5Y7tHH1+rmZTB4YfOdI9kQmIYPtY+ELobBtTtg4M5cDDLFb5X7TyyX+AAGJh26Dz3dIidANYTa0cEh92OxeqKpUOjY3B0deEXFMyks89n0jkXEBgW7uUKu59CeBERERERERERERHpcbXttTyU/RArD6wkvMng0ZWBDNvVCEDg9AziHnkEW2ysl6sUETmSYRi8VfAWC9ctpN3RzgD/ATzm+xOC571Ia3U1Jh8fou+8g/Crruo3W2t/GyX1be4z3bMLayipb/O47mMxM3lQGBnDIklPimTyoDB8rRYvVfstOLqgfLNn6N5ccWS/yBGHVrkfCt0jkvr11vJfp+rgfteW8wW7+NkTz2I2W7BYbVxy571ExCdg8/XzdonHjUJ4EREREREREREREelRnxz8hPuy7qO2vZYZO0z8ZqUFW0sjJl9fom+/nfCfXIXJ3AdWQYrICae5s5kHsh5gxf4VAJw8IIM56+Npe+lxHIDviOHEP/EEfiNHerfQHlTe0E52YY37XPeDta0e161mE5MGhrm3l58yOBw/Wx8I3dsboXjd4dC9JB+6PMeG2Qbxkw9vLT8wDQKjvFNvL2EYBgc2byBv2VIObN7gbi/auoXBEyYBEDN0mJeq6zkK4UVERERERERERESkRzR3NrM4dzFL9ywloN3g7v8FMnmDa/W739ixxC9ehO+w/v8X8yLSN22r2cacT+dQ1FSExWThjpifkP7nTNp2fAZA+FVXEX3HHMx+/Xd1L0BVUwdZhYdXuu+rbvG4bjGbGJ8Q6g7dU4eEE+DTByLJhuLDZ7kfzIbKbWA4Pfv4hR3aWv5Q6B4/GWz+Xim3t3HYu9i5djV5y5ZSfXA/ACaTmRHpM0i94BLihid7t8Ae1gd+4kVERERERERERESkr8stz2X+mvmUtpQyfr/B7R/44V/bCGYzUTf8iqhf/xqTzebtMkVEjmAYBv/e+W8ez3scu9NOXEAsjzedh89dL9HR1oYlLIy4Rx4h+PTTvF3qcVHb0umx0n1PZbPHdbMJxiWEkp7kCt2nDo0gyLeXR5BOB1Ru9wzdG4uP7Bc+BAamHw7do5JBO7UcVUXhHt7/01MA2Hz9GH/62Uw5/yJCo0/Mo2V6+e8AEREREREREREREenLOhwd/HH9H/nX9n9h7XLy28wATslsAlqwDR5EwqJF+E+a5O0yRUSOqqGjgQVrF/BJ0ScAnB85kxveh/ZV/4cBBGSkE79wEbaYaO8W2o3qWzvJLqwlu9C10n1neZPHdZMJRseGuFe6Tx0aQah/L3+IqrPFtZ3851vLF+dCR6NnH5MF4iZ4hu7BJ2aAfCzqK8qp3L+XkWkzAIgfOZoRadOJHTaSCWeci19QkJcr9C6F8CIiIiIiIiIiIiJyXGyr2cbcz+ZS2FDI0HKDue8HElrmCj3CrvwxMXPmYA4I8HKVIiJHt7FyI3NWz6G8pRyb2ca9/pcz5vEPaS8vB6uV6N/fQsS112Lq4yujG9u7WFdY695ifkd5I4bh2Sc5JpiMYZGkJ0WSnhRBWICPd4o9Vk0VUJR9OHQv3wxOu2cfn2AYOPVw6J6QAr4ndnB8LEp37yR/2VIK1mVh8bExcOwE/IOCAbjo1rlerq73UAgvIiIiIiIiIiIiIt2qy9nF37b8jb9u+itORxdX5/lz4f9aMTkasQyIIv7hhwk6+WRvlykiclROw8nzW5/nmQ3P4DAcDAkYyOI9KfCvl7A7na5dPB5/Av/x47xd6nfS3GEnd38t2Ye2l99a0oDzS6H78OggMpIOh+6RQb7eKfZYGAZU73aF7Z+H7nX7juwXkuAK2z8P3WPGgtnS8/X2QU6ng715OeQte5vSXdvd7YmjxtLR3OwO4b3NYXdyYGsNu3LKiRsWyqQzB3mtFoXwIiIiIiIiIiIiItJtChsKmffZPLbWbCWm1mD+h8HE7KsHIPjss4m9/z6s4eHeLVJE5CtUt1Uzb808MkszAbgi+FSufLWCzs1vABB62WXEzpuLOTDQm2V+K62ddvIP1LnPdN9c3IDjS6n70KhA15nuw1yhe3Swn5eqPQb2DijdcDh0L8qGtrovdTK5QvYvhu5hA71Sbl9XunsHK559kvryMgDMFiujTzqVlAsuYcCgId4tDjAMg8oDTezKLqcgt4L2li4A6spamHjGQEwmk1fqUggvIiIiIiIiIiIiIt+b03Dyys5XeCr/KTrs7VywxZerV9kxd9RjDgoidsF8Qi66yGt/GS4i8k2yy7K5+7O7qW6rxs/ix8K280l8ZDmdzc2Yg4OJve9eQmfN8naZ36i9y8H6A3Xu7eU3FdfT5fAM3QdG+JPhDt0jiQv191K1x6C1FopyDofupevB0enZx+oPiakwMA0GZbj+3T/MK+X2B4ZhuOfr4KgBNFZV4hcYxMSzz2fSORcQFB7h5QpdNn1UxLbPSqgrb3W3BYT4MHJaDMnpsV79bw6F8CIiIiIiIiIiIiLyvZQ1l7Fg7QJyynMIbTZ44KNQhm6vBSAgLY34Rx/BFh/v5SpFRI7O7rTz3Kbn+L/N/4eBwRj/oTyQlYhzxX9wAv6TJxP/2GP4JCZ4u9Sj6rA72Hiw3h26byiqp9Pu9OiTEObv3lo+Y1gkieEBXqr2GxiGayv5g9mHv6p3HdkvcMAXVrlnQNwEsNh6vt5+pqb4IHnL3qa9uZGLb58PQHBEFJfedR8JI0dj8/PuDgldHQ5svoePEKg80EhdeStWm5mhkwYwKj2WxFHhmC1mL1bpohBeRERERERERERERL4TwzB4d++7LFy3kOauZmYWWPn1ByasTbWYfHwYcOvvifjpTzGZvf+X4SIiR1PeUs6dq+9kfeV6AH5hOZXz/m8n9qJPwGwm6te/JurXN2Cy9p5IrdPuZEtJvXt7+fwDdbR3eYbuMSG+7pXuGUlRDIzw7507kTi6oHyzZ+jeUnlkv6iRnlvLRyRBbxxPH2QYBkXbNpP337fYtzHf3V5XXkp4rOsBuiETJnurPJxOg+IdtezMLmffxip+cGcqUYlBAEw4bSCJo8IZNjkaH//e83sUFMKLiIiIiIiIiIiIyHdQ01bDA1kP8HHRx/i3G8z/LJQJea7V776jR5OweBG+I0Z4uUoRka/2adGnzF87n/qOeoIsATxRfBLhL32I3W7HGh9HwmOPEZCS4u0ysTucbClpcK90z9tfR1uXw6NPVJCve5V7RlIkQ6MCe2fo3t4AxbmHA/eSfOhq9exj8YH4yYdD94FpEBjpnXr7MYfdzu6sz8hdtpSq/YWuRpOJEVMzSLngUncA7y3Vxc3syi5jd24FrQ2Hjx/Yv6XaHcLHDA0hZmiIt0r8Wl4P4f/0pz/x2GOPUVZWxtixY1myZAkzZ878yv4vv/wyixcvpqCggNDQUM4991wef/xxIiMP/+Z78803WbBgAXv37mXYsGE8/PDDXHrppT0xHBEREREREREREZF+7+ODH3N/1v3UttcyvsjEnPf98auuBbOZyOuvZ8DvfovJx8fbZYqIHFWXo4sl65fwz+3/BCDNOoI5y31w5i8HIPi8c4m7/34sId4J9xxOg+2ljWQVVpO1t4bc/XU0d9g9+kQE+pCeFEF6kit0Hx4d1DtD94Ziz1XuFVsBz/Pp8QtzBe6fh+7xk8Hm3W3PTwQ7137K+396CgCrry/jTj2TKedf7PXwvbG6jeV/3kJNcbO7zS/QxoiprnPeowcHe7G6Y+fVEP61117jlltu4U9/+hMzZszgL3/5C+eddx7bt29n0KBBR/Rfs2YNP/3pT3nqqae48MILKSkp4YYbbuD6669n6dKlAGRlZXHFFVfw4IMPcumll7J06VJ+9KMfsWbNGtLS0np6iCIiIiIiIiIiIiL9RlNnE4vWLeKdve9gsxvcmBPKzM/qwGjCNnAg8YsWEjBlirfLFBH5SkVNRdzx6R1srdkKwO2tM0l/cT3OhgZMAQHEzptH6GWXei3Qztpbw+2vb6Kkvs2jPdTfRtrQQyvdh0UyMjoYs7mXhe5OB1Ru9wzdG4uP7Bc+xHWO+8A01z+jRoKOLTnuGqsqaaqtISF5NADJGTPJX7aUkRkzmXjWefgHe+ehE3ung4aqNiITXKvbA8N9aanvwGw1MXR8FCPTYhk8LhKLtW/9jJgMwzC+udvxkZaWxpQpU3juuefcbaNHj+aSSy7h0UcfPaL/448/znPPPcfevXvdbU8//TSLFy+mqKgIgCuuuILGxkZWrFjh7nPuuecSHh7OK6+8ckx1NTY2EhoaSkNDAyFeespJREQENCcdD/qeiohIb6E5qXvp+ykicvytK1vH/LXzKWspY2glzP8gmODiOgDCLr+c6DvvxBIU6OUqvU9zUvfT91S6y/v73+f+zPtp7momyhTM45vHEbDsMwD8xo4l/vHH8B061Cu12R1O/vBRAc98sgfDgGBfK9MOhe7pSZGMjgvB0ttC984W13bynwfuxbnQ0ejZx2SBuAlfCN3TITjWO/WeoMr3FpD337fYnbOWsJg4rn3yOUyHHnowDMMrD5wYToPSgnp25ZSzZ30lvgFWfvrQdEyHfsZL99QTEReIX6Ctx2v7Jsc6J3ltJXxnZyf5+fncddddHu1nn302mZmZR71n+vTpzJs3j+XLl3PeeedRWVnJG2+8waxZs9x9srKy+P3vf+9x3znnnMOSJUu+spaOjg46OjrcrxsbG7+yr4iIiPQtmudFRET6J83xIiI9p93ezh/W/4GXdryEyWnw0w3BzPq4CZO9DktkJHEPPUjwaad5u0zpRzTPS3drt7ezOHcxr+9+HYCzukbyq7dacBa6AviI2dcRffPNXjtGo7iulZtf3Uj+AdeDTT9KTeS+i8YS4OP1U6U9NVVA0RdWuZdvBqfnNvn4BMPAqYdD98RU8NEDWj3NcDop3JBL3n+XUrxjq7s9OGoAbc1NBISEAvR4AF9X3sKunHJ25ZTTXHv4z3n/IBvN9R0ER7iOIYgfHtajdR0PXvvdW11djcPhICYmxqM9JiaG8vLyo94zffp0Xn75Za644gra29ux2+1cdNFFPP300+4+5eXl3+o9AR599FHuv//+7zEaERER6a00z4uIiPRPmuNFRHrG1uqtzF0zl30N+4iuM7jvowiiCqoACDrzDOIeeABrRISXq5T+RvO8dKfChkJu//R2CuoKMBlwf2kao1/NxdnZiWVAFPELFxI0Y4bX6lu+pYy73txMY7udYF8rD182nosmevdMbgCcTqgpgINZcDDH9c+6fUf2C0k4dJ77odA9ZiyYLT1fr7jt35jPx//4P+pKXUcBmC0WRk0/mZQLLiV6SJLX6spbsZ+cdwrdr338LAxPdZ3zHjcs1GtHQBwvXn+E5svf0K/b9mD79u3cdNNN3HPPPZxzzjmUlZUxZ84cbrjhBv7+979/p/cEuPvuu7n11lvdrxsbGxk4cOB3GY6IiIj0MprnRURE+ifN8SIix1eXs4v/2/x//HXzX3E47Vy0I4irPmzH3FaFOTCQmHnzCL30kn73F+bSO2iel+7yzp53eDjnYdrsbQy2h/HI6jhsOWsxgKBTTyXukYe99iBRW6eDB5Zt55V1BwGYNDCMp6+czMCIAK/UQ1c7lG08HLoXZUNb3Zc6mVwh+xdD9zD93uxtLDYbdaXF+AYEMuHMc5l87oUER0b1aA2OLicHttYQGuNPZLzrrPeEEWGYzCYGjY0gOS2WoROisPr03wc2vBbCR0VFYbFYjlihXllZecRK9s89+uijzJgxgzlz5gAwYcIEAgMDmTlzJg899BBxcXHExsZ+q/cE8PX1xdfX93uOSERERHojzfMiIiL9k+Z4EZHjZ2/9Xuaumcv2mu2Ethgs+F8UgzZXAOCfmkL8wkX4JCZ4uUrpzzTPy/fV2tXKwzkP8+7edwH4Uf1ILv9POUbNFkw+PkTfeQfhV13ltQeJdpY3cuO/N1BQ2YzJBL8+ZRi/P2skNou554porYWinMOhe+l6cHR69rH6u7aTH5QOA9Nd28z7hfZcjfKNakuLyV/2NgGhocy44hoAEseM59zf/J4R0zLw8e+5hzoMw6BiXyO7ssspyKugo9XO2JMTOPWqZABih4Xy84UzCAjxzrEPPc1rIbyPjw8pKSmsXLmSSy+91N2+cuVKLr744qPe09raitXqWbLF4npCwjAMADIyMli5cqXHufAffvgh06dP7+4hiIiIiIiIiIiIiPQbTsPJS9tf4g/r/0Cns5OTC/349ftgaajAZLMx4Jabifj5zzFZ+u+qNRHp+3bV7uL2T29nf+N+fBwmFm4fT+Ky9RiA74jhxD/+BH7JI71Sm2EYvJR9gAff20Gn3cmAYF+WXDGJGcOP8yplw4DaQs/QvXrXkf0Co2FQ2qFV7ukQNwEstuNbm3xrhmFQvGMrecuWUpi/DgAff3+mXvQDfPwDMJlMjD3ljB6rp7G6zX3Oe0Nlm7s9MNSHoLDDD1SZTKYTJoAHL29Hf+utt3LNNdeQmppKRkYGf/3rXzl48CA33HAD4NpypqSkhH/+858AXHjhhfziF7/gueeec29Hf8sttzBt2jTi413nY9x8882cfPLJLFq0iIsvvph33nmHVatWsWbNGq+NU0RERERERERERKQ3K2kuYcHaBeSW5+LfYXBv1gDGZrl2HPVNTiZ+8SL8kpO9XKWIyFczDIP/7PoPi3MX0+nsZFxLBPNX+GMuWA9A+FVXEX3HHMx+fl6pr761kzve2MyH2107i5yWPIDHL59IZNBx2PXB0QVlm11byn8eurdUHtkvKvkLoXsaRCSBjhnptZwOB7uz15C3bCkVhXtcjSYTw1KmkTrrUmx+/j1ek2EYvP3kBppq2wGw+pgZNjma5PRYEpLDMZtP3J8nr4bwV1xxBTU1NTzwwAOUlZUxbtw4li9fzuDBgwEoKyvj4MGD7v4///nPaWpq4plnnuG2224jLCyM008/nUWLFrn7TJ8+nVdffZX58+ezYMEChg0bxmuvvUZaWlqPj09ERERERERERESkNzMMg7f3vM2i3EW0dLUwsdTGnBW++FSWg8lE5OzriLrpJsw+J87KNRHpexo7G7kv8z5WHlgJhsENB0dwxlv7MdorsYSFEffIwwSffrrX6ssprOGW1zZS1tCOzWLirvNGc92MId23HX57AxTnwsFs11dJPnS1evax+ED8FM/QPSCiez5fekTWm6+Q/earAFhtPow55XRSZl1CRHxij3y+0+Hk4PZaCjdWccpVyVgsZkwmE8npsZQXNpCcHkvSpAH4+Hk1fu41TMbn+7iLW2NjI6GhoTQ0NBASEuLtckRE5ASmOan76XsqIiK9heak7qXvp4jIt1fdVs39Wffzv6L/YbUb3Jg/gIxPKsAwsCUkEL/wUQKmTvV2mX2O5qTup++pfJ0tVVuYs3oOJc0lhHZYWJQ1lIisnQAEZKQTv3ARtphor9Rmdzh5+uM9PP1xAU4DhkYF8vSVkxmX8D3PVa8v8txavmIr8KW4zz/ctaX856F73CSweWcXAPlummqqsXd2EB6XAEBDZQWv3DOHiWeex8Szzycg5Hv+HB0DwzCoLmpmV045u9eV09bUBcCs305gyPgod59ue6CkDzjWOUmPIoiIiIiIiIiIiIicYFYdWMUDWQ9Q11FHUrWFBR+GEHjAtf186GWXETP3bixBQV6uUkTkqzkNJ//a/i+W5C/BbtiZWR3J796xY6rcCVYr0bfcTMR112Eym71SX2l9G7e8upF1+2sB+MGURB64eCyBvt8ymnM6oGKbZ+jeWHxkv/ChrrD989A9cgR4aezy/VTs20v+sqXsyvqMoZNTuWTOAgBCo2P45bMvYLZYjnsNbU2d7MgqY1d2ObWlLe52/2AbI1JjCIsOcLedSAH8t6EQXkREREREREREROQE0djZyMKchfy38L+YnAbXbY3i3A9roKsKS3g4cQ8+QPCZZ3q7TBGRr1XXXse8NfP4rOQzzE6Du7cOZfKKQnA6sQ0eRMLjj+M/frzX6nt/azl3vrmZhrYugnytPHTJOC6ZnHDsb1CSD3s+coXuRbnQ2eR53WSBuIkwKN31NTAdgmO6dxDSowzDYP/GfPKWvcXBrZvd7V3tbTjsXVisNoAeCeABWho6yHprLwAWq5khE6IYlR7LwLERWCx6uONYKIQXEREREREREREROQFklWaxYO0CKloriGkw8cDHAwjfWQZA0GmnEffgA1ijorxcpYjI18stz+Wu1XdR2VZJYqONB1dFEbhrDwChl15KzLx5WIICvVJbe5eDh97bzkvZBwGYmBjKH6+czODIY6ynqQI+nAdbXvds9wmGgdMOh+4JKeDjnTFK9ytYl8na116iptj1c2Mym0nOmEnqBZcSkzT8uH6202lQsruOXdnl2HwsnHJVMgBRicGMmh5H7NAQhqdE4xtgO6519EcK4UVERERERERERET6sTZ7G0vyl/Dvnf8Gw+CyggiuWNGMqbUMU0AAMXffRdgPf6jtZEWkV3M4Hfx1y1/586Y/4zScXLIviqv+2wgtRZiDgoi9/z5CZ83yWn27K5q48d8b2FXhWrX+q5OTuO3sZHysx7Bq2OmAvOfhowehowEwwZiLYMhMV+gePQbMPbMCWnpeS10dNcUH8fH3Z/wZ5zLlvAsJiYo+rp9ZW9riPue9ua4DAKuPmYzLhuHj54qPz/jp6ONaQ3+nEF5ERERERERERESkn9pctZl5a+axv3E/wa0GD6yJJyG/CAD/yZOJX7QQn0GDvFyliMjXq2qt4q7P7mJd+Tr8Ogzuy0ogKcu1ath/8mTiH3sMn8Rvsd17NzIMg1fWFfHAsm20dzmJCvLlyR9N5OSRA47tDUrWw3u3QukG1+u4SXDBU5Aw5bjVLN5TV1ZC/nvvkJA8mtEzTwNg7Kln4LDbGXfamfgGHN8dDnbnlrNpVRGVBw4fceAbYGV4agzJabHYfPWwR3dRCC8iIiIiIiIiIiLSz3Q5uvjz5j/zty1/w2k4Of1gCL9cbsdcVwQ2GwNuvJHI2ddh6qGzZXszh9PgvS1lvLOhhL9ck4JVZ92K9CprS9Yyd81cattrGVPpw9zl/viUHQSzmagbbiDqN7/GZPVO3NXQ2sVdb21mxdZyAE4eOYAnLp/IgGDfb765vcG18j33b4ABviFwxj2Qep1WvfczhmFQsms7+cuWsicvBwyD4h1bGXXSqZhMJmy+fqTMuvi4fLa9y4HJZMJyaEeGxup2Kg80YTabGDQuklHpsQwZH4XFprmvuymEFxEREREREREREelH9tTtYe6aueyo3YFvp8H83ESSVx8AwHfEcOIXL8ZvtLaYdToNlm8t4w+rCiiobAbg7Y2l/DAl0cuViQhAl7OLZzY8w/Nbn8dkGFy/KZKzP6wBRyvWuDgSHltMQGqq1+rL21/Lza9upKS+DZvFxB3njGL2SUMxm7/haA/DgK1vwgdzobnC1Tb+cjj7YQiOOf6FS49xOhwUrMsif9lSyvbscrcnTZlKyqxLj9vnGoZB2d4GduWUsyevklN/ksyIVNfPVnJaLD5+VkakRuMf7HPcahCF8CIiIiIiIiIiIiL9gsPp4KUdL/HH9X+k09nJlIpAblthw1Z2AEwmIn72Mwb8/hbMvsewQrMfczoNVmwt5w8f7WZ3hSt8D/Gzcv3MJM4eqwBMpDcobS7ljtV3sKlqE+FNBg9+FEX0DldgHXzuucTdfx+W0FCv1OZwGjz7yR6WrNqN04DBkQE8feVkJiSGffPN1QXw3m2w71PX68jhMOsJSDr1eJYsXvLhX/7Itk8/AsBiszFm5mmkzLqUyMSBx+XzGqpa2ZVdzq6cchqr293tB7bUuEP44Ag/Jpymh816gkJ4ERERERERERERkT6uuKmY+Wvnk1+Rj8VhcMemRFJXFoHTiTUujvhHHyUwPc3bZXqV02nwwbZy/vBRATvLXWfhBvtZmX3SUK6dMZRQf5uXKxQRgI8OfsSCtQto6mxiZqEvv1kBlsYKTP7+xM6fR+hll2EyfcNq8+OkrKGNW17dSM6+WgAunZzAg5eMI8j3G+K2rjb47ElYuwQcnWD1g5m3w4ybwHpiPxjVnzTX1mCx2fAPDgFg1IxT2Ls+l0lnz2LS2ecTGBZ+XD7X3ung3T9spGxvg7vN5mth2JQBJKfHkTAi7Lh8rnw9hfAiIiIiIiIiIiIifZRhGCzds5RF6xbRam9leK0vC1aG4F/o2n4+9OKLiZk/D0twsJcr9R6n0+DD7eUsWfWF8N3XynUnDeW6kxS+i/QWHY4Onsh7gld2voKty+COzHBSM6sB8BszhvjHH8c3aajX6lu5vYI5b2yivrWLAB8LD10yjsumHMOK4oJVsPw2qNvvej38LDj/MYjw3like1Ud2Ef+e2+zY82npF54KTOv/BkAgydM5pfPPo/N169bP8/hcFJ9sJmYoa6w3+pjwTAMTCYYODqCkWmxJE0agM3X0q2fK9+OQngRERERERERERGRPqi6rZp7M+9ldfFqTIbBL3cmcObyMugswxIaSuz99xNy7jneLtNrDMPgw+0VLFlVwI6yRgCCfK1cN2MIs09KIjRA4btIb3Gg8QBzPp3DjtodDKo0uPf9YIJLXAF8xHXXMeCWmzH7eOf86vYuB48u38E/slwPN41LCOHpK6cwNCrw629sLIX374Lt77heB8fDeQth9EXgpZX80n0Mw+DApvXkvfc2BzZvcLfXFB90/7vJZOq2AN4wDKoONrEzu5yC3Ao62+xcu+gk/IJcc9nJVyYTEOxDYJh2VugtFMKLiIiIiIiIiIiI9DEf7v+QB7MfpL6jntgmCw9+GkvoFldAFHjyTOIeeghbdLSXq/QOwzBYeSh83/6F8P3aGUOYfdJQwgK8E+SJyNG9V/geD2Q9QGtXC5dt8ueKVe2YuuqxREURv3AhQSfN8Fpteyqb+N2/N7h30bj+pKHcce4ofKzmr77JYYd1f4FPHoHOZjBZIP3XcOpd4Hvi7krSn+xY+ynr3n6d6oP7ATCZzIxIn0HqBZcQNzy5Wz+rqbad3evK2ZVdTl15q7vdP8SHuvIW4oaHATBgoH62ehuF8CIiIiIiIiIiIiJ9RENHA4+ue5T3Ct8Dw+CK/XH8YFkdNB/A5O9PzJ13EnbFj7x2XrI3GYbBRzsqWfLRbraWuML3QB8LP58xhOtPSiI8UOG7SG/S2tXKwnULWbpnKcGtBo+uDGbY9noAgk45hbhHHsYaGemV2gzD4D95Rdz37nbauhxEBvrw+I8mclryNzzcVLQOlt0KFVtcrxOnwQVPQuz441+09JiSndupPrgfm68f408/mynnX0RodGy3f86e/Eo++NtWMFyvLTYzSZMGkJwWy8DR4ZgtX/MwiHidQngRERERERERERGRPiCzJJMFmQuobK0ktM3MQ1kDicnZC4D/xInEL1qIz5Ah3i3SCwzD4JNdlSxZVcDm4gYAAnws/Hz6EH4xU+G7SG9UUFfAnE/nsLdhLxMLDW7/wBff+npMPj5Ez5lD+NU/8drDRA1tXcxduoX3NpcBcNLwKJ68YiLRwV+zrXhrLay6D9b/w/XaPxzOvB8mXwNmBaV9WX1FOeuXv8Pomae6V7mnzLqYkKgBTDjjXPyCgrrlc5xOg+IdtVisZhKSwwGIHxGG2WwiNimU5PRYhk+Jxsdf0W5foV8pERERERERERERkV6stauVJ/Of5LVdrwFwdtkAZv+3HVPNXrBaGfDb3xD5i19gsp5Yf91rGAb/21XFklW72fSF8P2nGUP45clJRCh8F+l1DMPgrYK3eHTdo9g72/nlWj/OXNsCtOIzfBgJTzyBX3L3buf9beQfqOPmVzdQXNeG1Wzi9nOS+eXMJMzmr3ggwDBg479h5QJorXG1TboazrofAqN6rnDpdqW7d5K/bCkF67IwDCctdbVceOvdAITHxjPt4h92y+fUlDSzM7uc3evKaW3oJH5EGJceCuEDQnz4+cIZ+AdrPuuLTqz/KhMRERERERERERHpQzZWbmTemnkcbDqIb6fB/RuGkfTxbgB8kpKIX7wY/3FjvVxlzzIMg093V7FkVQEbi+oB8LdZ+On0wfxyZhKRQb7eLVBEjqq5s5kHsh5gxf4VxNUYzF3hT0xRMwBhV/6YmDvvxOz3NavNjyOH0+DPn+7lyZW7cTgNBkb488cfT2byoPCvvqlyh2vr+YOZrtcDRru2nh88vWeKlm7ndDrYm5dD3rK3Kd213d0+ZFIKE846r9s+p6Whg4LcCnbllFN96PcAgG+glciEIJxOw/3ghwL4vkshvIiIiIiIiIiIiEgv0+Xo4rlNz/H3rX/HaTiZVhPO75ebsRS7Avjwa64h+rZbvRZYeYNhGKwuqGbJqt1sOFgPgJ/N7F75HqXwXaTX2lazjTmfzqGo8SBnbDFx/Sozlo5mLKGhxD3yMMFnnOG12ioa2/n9axvJ3OtayX7RxHgeunQcIX62o9/Q2QKfLoKsZ8FpB1sAnHoXpP8GLF9xj/QJbz5yLwe3bATAYrUy6qRTSZ11CVGDhnTr53z8jx0c3F4LgNliYsj4KJLTYxk8LhKLVccX9BcK4UVERERERERERER6kd11u5n72Vx21e3C4jCYv304E1bsAYcDa2ws8Y88TOD0E2elpWEYrNlTzVMrd7P+C+H7NemD+eXJwxgQrPBdpLcyDIN/7/w3j+c9jm9LF3ev8mHy1jYAAtLTiV+0EFtMjNfq+2hHBbe/vom61i78bRYeuHgsP0xJ/Orz6He+ByvuhIYi1+tRF8C5CyFsYM8VLd2mpb4Ov6AgLFbXwxNJk6dSWbiHiWefz6RzLiAoPOJ7vb/hNCjdU8+u7HKmXZhEULhrvhqZFktHm51R6bEMT4nBL0gPb/RHCuFFREREREREREREegGH08E/tv+DZzY8Q5ezi1GNQcz/MBifgl0AhFxwAbEL5mMJDfVypT3DMAzW7qlhyard5B2oA8DXaubq9MH86pQkooNPnF0ARPqiho4GFqxdwCdFnzCqyGDOchvBtW1gtTLg5puIvO46TBaLV2rrsDtYuGInL6zdD8CYuBCevmoywwYEHf2G+oOw/A7YvcL1OnQQnL8Ykrtvi3LpOdVFB8hbtpSda/7H2TfczJiZpwEw4cxzmHDGOdi+5y4z9RWt7MopZ1d2OU217QCExQYw5ezBAIycFkNyWuz3G4T0egrhRURERERERERERLysqLGI+Wvns75yPSbD4Ma9w5j57n7oqMccGkrcvfcQcv753i6zRxiGQdbeGp5atZvc/YfD95+kDeaGUxW+i/QFGys3Mmf1HCqbyvjxWhOXZjoxOduxDRpEwhOP4z9+vNdq21vVzI3/3sD2skYArp0xhLvOG4Wv9SgPBNg7IftZ+N8isLeB2QrTb4ST54BPYA9XLt+HYRgc3LqJvGVL2b8x391etG2LO4S3+X73+aWrw8HOrDJ25ZRTsa/R3e7jZ2F4SjSJyeHutq/caUH6FYXwIiIiIiIiIiIiIl5iGAZvFLzBY7mP0WZvI6HNn4f+F0PgRtfZ74EzZhD3yMNe3a65J2XurWbJqgLW7XOdletjNXPVtEH85tRhRIcofBfp7ZyGk+e3Ps8zG54hos7Oo+9ZGXqwA4DQSy4hZv58LEHeCa8Nw+D1/GLufWcbbV0OIgJ9eOyHEzhj9Ff8+bp/Dbx3G1TtdL0efBLMegKiR/Vc0fK9GYbBjjX/I2/ZUqr2F7oaTSZGTM0g5YJLSUge3S2f43QarH1zD44uJyaziUFjIkhOj2XohCisPt7Z8UG8SyG8iIiIiIiIiIiIiBdUtVZxT+Y9rClZA8A1xUO48O1yaNqDyc+P6Dm3E37VVSfEirnswhqeWrmbnC+F778+dRgxCt9F+oTqtmrmrZlHZmkm07c7+c2HZnzaOjAHBRF7332EXjDLa7U1tncxf+lW3t1UCsD0YZE8dcWko//50lwFKxfApldcrwOi4OyHYOKP4QT487i/MZlMbP34Q6r2F2L19WXcqWeRcv7FhMXGfaf3MwyDiv2N7Moup6GqjYtumgSAr7+VyWcNwjfAyoipMQSG+nbjKKQvUggvIiIiIiIiIiIi0sPe3/8+D2U/RENHA+EdNh7JGULk2h0A+I0fT/yiRfgmDfVylcdfTmENS1YVkFVYA4CPxcyPpw3kN6cOJzZU4btIX5Fdls3dn91Nc30Vv1tl4uTNTsCJ/6RJxD/+GD6JiV6rbcPBOm56dQNFtW1YzCZuPWskN5wyDIv5S4G60wnr/wGr7oP2esAEKT+HM+6BgIieL1y+k4bKCja8/1+mXfxDAkLDAEi77AoGT5jMhLPOwz8o+Du9b2N1G7vXlbMrp4L6ilZ3e21pCxHxrt0d0i5K+t71S/+hEF5ERERERERERESkhzR0NPBw9sOs2L8CgFnVifzs7Uao2gEWC1G//jVRv/olJpvNy5UeX7n7a3lq5W4y9x4O36+YOpDfnDaMuFB/L1cnIsfK7rTz3Kbn+L/N/0dSqZMHlpmJqukCs5moG35F1G9+g8nqnSjK6TT4y+pCnvhwF3anQUKYP3+8cjIpg8OP7Fy2Gd67FYpzXa9jx8MFSyAxtUdrlu+ufM9u8pYtZXfOWgynEx9/f6Zf/hMABo+fxODxk77T+xbtrCXvvf2UFtS726w+ZpImD2BUWhxhsQHdUL30RwrhRURERERERERERHrAmpI13LP2HqraqvC3m3loyygGvr8ZAJ8hQ4hfvAj/CRO8XOXxlbe/liWrClizpxoAm8XEj1IH8tvThhMfpvBdpC8pbynnztV3sqEinwtzDK5abWB2OLDGxZGweBEBU6d6rbbKxnZu/c8m9581sybE8cil4wn1/9IDTh1N8MkjkPNnMJzgEwynz4OpvwCLIrTeznA62bs+l/xlSynesdXdPmj8JBJHj/9O7+l0OLF3OfHxc/36d7U7XAG8CRKTw0lOjyVp0gD3dZGvop8QERERERERERERkeOotauVJ/Ke4D+7/wPASY2x3PhfJ6aDrgA+/KqriJ5zO2b//htC5x+oY8mq3XxWcDh8vzx1IL85dRiJ4VpFKNLXfFr0KfPXzsdUXce9y2DMficAweecQ9wD92MJDfVabZ/squT2/2yipqUTP5uZ+y8ay49SB2L64nnuhgHb34b374amMlfb2EvhnEcgJN4rdcu343Q6eOmuW6g6sA8As8XCqOknk3LBpUQP+XbbwhuGQXVxM7tyytm9roKxM+NJu9D1HoPHRZJx2TBGpMYQHKFjUuTYKYQXEREREREREREROU42VG5g3pp5FDUVYXYa3FcwnlHvbgW7HeuAAcQ98ghBM0/ydpnHzfqDdSxZVcDq3VUAWM0mLk9N5LenDVf4LtIHdTm6WLJ+Cf/c/k9SCpzcuNxEQKsDk78/sfPmEvqDH3iG3T2ow+7gsfd38bc1rlB2VGwwz1w1meHRXzoDvGYvLJ8Dez9yvQ4fCrOegOFn9HDF8m21tzTjFxgEgNlsIXbYCBqrKplw1nlMPvcCgiOivtX7tdR3sGtdObtzyqkpaXG3H9xa4w7hLVYzU84e3H2DkBOGQngRERERERERERGRbtbp6ORPG//EC9tewGk4Gd8Wydz3A7Hs3AhA8HnnEnfvvVjCwrxa5/Gysaiep1bu5tMvhO8/THGF7wMjemn43lwFQQO8XYVIr1XUVMQdn97BrvItzP7YyTnrDQB8x4wm4fEn8E0a6rXa9lW3cOMr69la0gjAz6cP4a7zRuFnsxzuZO+ANUvgsyfA0QEWHzjpVjjp92DTCuferKakiPz33mbH6k/48QOLiUkaDsBJP/4pp/70enz8v/288v5ft1K4oRLD9WOM2Wpi6IQoktPjGDQ2ojvLlxOUQngRERERERERERGRbrSrdhdz18xld91uMAxuKxpP+ps7MNorMAcHE3vPPYRcMMtrq0WPp01F9SxZtZtPdrnCd4vZxA+mJPC700YwKLIXhu+GAfs/g8ynYd9quGULBEV7uyqRXuf9/e9zf+b9hJc0sfhdSKhyJZcR117LgN/fgtnHx2u1vZlfzIJ3ttLa6SAswMZjP5zIWWNiPDvt/QTeuw1q97peJ53mWv0eOaznC5ZjYhgGxdu3kLdsKYXrc93te3Kz3CF8QGjYsb2X06BsbwNxw0Pdc6+vvwXDgLhhoSSnxzJsSjR+gbZuH4ecuBTCi4iIiIiIiIiIiHQDh9PBC9te4NmNz2J32hnaGcr9n8bgl7cRAwjISCf+kUewxcV5u9Rut7m4niWrCvh4ZyXgCt8vnZzAjacPZ3BkoJerOwpHF2x7GzL/COWbDzWaoPBTmHC5NysT6VXa7e0szl3M67v+wzn5Bj/7xMBqN7BERRG/cCFBJ83wWm3NHXYWvL2VpRtKAEgbGsEffjyZ2NAvrGpvKocP5sLWN12vg2Lh3Edg7GXQDx+E6g+cDge7steQv2wpFYV7XI0mE8NS0ki98FISkscc83vVlrW4znnPKae5roMf3plKzNAQAKacO4Qp5w4mdEAvfEBM+gWF8CIiIiIiIiIiIiLf08HGg8xbM4+NVRsBmF01hnNf34/RsB2Try/Rt91K+NVXYzKbvVtoN9tS3MAfPtrNqh2u8N1sgksnJ3Lj6cMZEtULw/f2Rlj/D8j+MzQWu9qs/jD5akj/tVbFinxBYUMht396O+Ulu7nzPScpe1yr3wNPOZn4Rx7BGhnptdo2F9dz4ysbOFDTisVs4pYzRvCb04ZjMR8K1p0OyP0bfPwQdDSCyQzTfgmnzQW/UK/VLd/MMJys/tffaa6rxWrzYeypZzLl/IuJiE84pvvbmjopyKtgV3Y5lQea3O0+/lYaqlvdIXzoAP/jUr/I5xTCi4iIiIiIiIiIiHxHhmHw+u7XeTzvcdrsbQxwBPDouiRC/uda/e43ZgzxixfhO3y4t0vtVltLGliyqoBVOyoAV/h+yaQEbjxjBEN7Y/jeUAzZz8H6f7oCOYDAaEj7JaTOhgCd/yvyRe/seYeHcx5meEELTy6D0GYDk48P0XPmEH71T7x2nIbTafC3NYUsfn8XdqdBQpg/f/jxJFKHfOH3cEk+LPs9lG1yvU5IgVlPQvwkr9QsX6+xuoptn64i7ZIfYbZYsFhtpP/gSlob65l41vkEhBz7QxNVRU288WgeTqfrgRGz2cSgcZEkp8UyZEIkVpvleA1D5AgK4UVERERERERERES+g4qWCu7NvJe1pWsB+GFjMle8UYlRsRHMZiJ/9UsG/PrXmLx4VnJ321bawB9WFfDh9sPh+8WTEvjd6cMZNiDIy9UdRelGyHoGti0Fp93VFpUM038H438ENr+vvV3kRNPa1cpD2Q+xvOBdrvzUyUU5rjDTZ/gwEp54Ar/kZK/VVtXUwW2vb2L17ioAzhsXy8LLJhAacOgc77Z6+OgByHseMFwr3s+4F1J+DmaFr71NReEe8pYtZXf2GpwOBxHxA0nOOAmAiWed9433G4ZBeWEjrQ0dDJsSDUBkQhD+IT4EhvqQnB7LiNQY/IP7zxwsfYtCeBEREREREREREZFvwTAMVuxbwUM5D9HU2USQ04dHt48j5r/rMADb4EHEL1xIwOTJ3i612+woa2TJqt18sM0VvptMcNHEeG48fQTDo3tZ+O50wp5VkPU07Ft9uH3oyZBxIww/E/rZsQAi3WFn7U7mfDqHjn37ePhdJ0nlrgA+7MdXEHPnnZj9vbd99+rdVdz6n41UN3fiazVz74VjuXLaQNeKfMOAzf+BD+dBiyugZ8IVcPZDEBTttZrlSIbTyb6N+eQtW0rRts3u9oFjxhMYHn5M79FQ1caunHJ25ZTTWNVGQIgPQydGYbaYMZtN/HjBNPwCbcdrCCLHTCG8iIiIiIiIiIiIyDGqb6/noZyH+GD/BwCc0T6UG97uwNi3DoCwK64g5o45mAN74Zbs38HO8kb+sKqAFVvLAVf4fuGEeG46YzjDo4O9XN2XdLXDlv9A1rNQtdPVZrLAuMsg43failrkKxiGwWu7XuOxdYuZsbGD61Ya+HYZWEJDiXv4IYLPPNNrtXXanTzx4S7+sroQgOSYYJ6+ajIjYw79+VO1G967FfZ/5nodNRJmPeF66EZ6lbbmJl5dMIfa0mIATGYzyRkzSb3gUmKSvv7Ilo7WLvbkV7Irp5yyPQ3udquvhUFjIuhsd+AX6Hq4SgG89BYK4UVERERERERERESOweri1dybeS/VbdX4GBYe2D+FpDdyMex2LFFRxD30IMGnnurtMrvFrvIm/vDRbpZvORy+zxofx81njGBETC8L31trIffvsO6v0FLpavMJhpSfQdoNEDbQu/WJ9GKNnY3cl3kfa3d9yG/edzJ9h2v1e0BaGvGLF2GLifFabQdqWrjplQ1sKnaFrtekD2berNH42SzQ2QqfPQ5r/wjOLrD6wclzYPpNYNX2472FvasLq80VivsHBeMbFISPvz/jzziXKeddSEjUse1UkPvefjZ9VAS45qPE0REkp8WSNGkANl8dNSC9k0J4ERERERERERERka/R0tXCY7mP8WbBmwBM7Urk9vd9MG3NAiD47LOJvf8+rMe4lW5vtruiiT98VMDyLWUYriyOWRNc4fvI3ha+1xZC1p9gw0tgb3O1hSRC+g0w5aeu86BF5CttrtrMHavvIGhHMY+962BAI2C1MuCmm4icfR0mi/fCzbc3lDD/7a00d9gJ9bex6AcTOHdcrOvi7g9g+e1Qf9D1esQ5cP5iCB/itXrFU11ZCfnvvcPu7DVcu+Qv+Ae55o9zf/17AsPC8A04+m4xhmFQdbCJXdnlDEuJJn54GADJabEU7ahlVHocI6fFEBjm21NDEfnOFMKLiIiIiIiIiIiIfIX8inzmrZlHSXMJJgPmVkxj0qsbMNraMAcFEbtgPiEXXeQ6l7gPKzgUvr/3hfD9/PGx3HzGSJJje1n4fjDHdd77jmXAoWJjJ7hWwI69BCzailjk6zgNJ//a/i/+mPsUF6/p5AdrDcwG2AYNIuHxx/CfMMFrtbV02FnwzlbeWl8CwLQhETz140kkhPlDQzG8fxfs+K+rc0gCnLcIRl3gWh4tXmUYBiW7tpP336Xszc/h88mkIHstE848F4CI+ISj3ttU287udeXsyqmgrqwFgM52uzuEjxoYxI8XTOvzc62cWBTCi4iIiIiIiIiIiHxJh6ODZzc8y4vbXsTAINkZw72fRmHNzsQAAqZNI/7RR7AlHD1Q6Cv2VDbxx4/28N/Npe7w/bxxsdx0xghGx4V4t7gvcjpg53uQ+TQUrzvcPuJsmH4jDJmpEE7kGNS11zFvzTx2blvN/HcdjHJl3YRefDExCxZgCTr6CuWesLWkgRtf2cC+6hbMJrjpjBH87rThWHG4fu9/8ih0tYDJAhm/gVPuAt8gr9UrLk6Hg4J1meQtW0r5nt3u9qQpU0m94FISx4w/+n1OwxW8Z5dTvKvO/UyVxWYmaWIUI6fFuvsqfJe+SCG8iIiIiIiIiIiIyBfsrN3J3Z/dzZ76PQDc2DCVU/69HWd9CSabjQG33krEz36KyWz2cqXf3d6qZv74UQHvbjocvp8zNoabzxjJmPheFL53tsDGf0PWs1C3z9Vm8YEJV0DG7yB6lHfrE+lD9jfsZ/YHsxmWX87i950EduDa0ePeewm98AKv1WUYBn9fs49F7++ky2EQF+rHkismkZYUCQezYdmtULnN1XlgOlzwJMSM9Vq94qmloY7lTz+O0+HAYrMx5uTTSTn/EiITBx7R1zAMd6BuMkHee/tpqHIdJxI/Iozk9FiGTYnG11/xpfR9+ikWERERERERERERAexOOy9sfYE/bfoTdqedeMJ4NG84/iuzcAK+o0YRv3gRfiNHervU76ywqpmnP97DOxtLcB4K388eE8PNZ45gbHwvOkO9qQLW/RXy/g5tda42/3BInQ3TfgnBMd36cXvzc0iaoq2OpX/758a/84PXyzhti+s3v//EicQ/8Tg+iYleq6m6uYM5r2/ik11VgOvPo8U/nEAYzfDO72DDv1wd/SPgrAdg0k+gDz8A1R801Vazf+N6xp9+NgDBEVFMOucCfPwDmHzOLAJCw464p6akmV3Z5RzYVsPld6ditVkwmUxMPnsQbU2djJwWS0iUfw+PROT4UggvIiIiIiIiIiIiJ7wDjQeYu2Yum6s2A3BN+xQufvUgzrJsMJuJnD2bqBt/h9nHx8uVfjf7qlt4+qMC3v5C+H7m6BhuOXME4xJ6UfheuQOynoHN/wFHp6stfChk/BYmXQU+x2er7MDQcHas+R9jZp52XN5fxNsMw8D39Q84bYuBYTYx4IYbiPrNbzBZvRcTrSmo5vf/2UhVUwc+VjMLLhjD1dMSMW38N6y8B9pqXR0nXwNn3g+BkV6rVaByfyH5y5ayM3M1ToeDuBHJRA0cDMBpP/vFEf1bGzspyK1gZ3YZ1UXN7vb9m2sYnhINwNiZfftIF5GvoxBeRERERERERERETlhOw8lru17jybwnaXe0E24KYuHOCYQv/QynYWAbOJD4RQsJmDLF26V+JwdqWvjjR3t4e2MJjkPp+5mjo7n5jJGMT+wl4bthwL7VrjOf96w83D4wzbXl/KhZYLZ060c21VZTumsnyRknARA7fCT+Ib1oG36RbrarbhejtjcBEHXnHAb87Fqv1dLlcPLkyt38+dO9GAaMiA7i6asmM8pUBC+cD0XZro7RY11bzw9K91qtJzrDMNi/aT15y5ZycMtGd3vCqLE4urqOek91cTPZ7+zl4LZajEPzjtliYvC4SEalxzF4nB6mkBODQngRERERERERERE5IZW3lHPP2nvIKssC4ALnOH7+RgPOvasBCLv8h0TfeReWoOOz+vp4OljTytMfF/DWhsPh++mjornlzBFMSAzzbnGfc3TBtqWQ+Uco33Ko0QSjL4CMG2FQWrd/pNPpYNPKFax55R84urqIGjSYyATXucWh0bHd/nkivUXmzg9JK3P9e/hZ53itjqLaVm58ZQMbi+oBuCptEAvOGoR/5mLI+hMYDrAFwml3Q9oNYLF5rdYTXV1ZCe8+8QjVRQcAMJnNjEybQeoFlxI7/PCxLIbToLPdjm+A69fKYjVxYEsNADFDQ0hOi2VEagx+Qfq1lBOLQngRERERERERERE5oRiGwXv73uOR7Edo6mrC3+TLI0VpJLy6GmeXHUtkJHEPPkDw6ad7u9RvrajWFb6/uf5w+H5a8gBuPnMkkwaGebe4z7U3QP4/IOfP0FjiarMFuM56Tv81RA47Lh9bdXA/K//6NGUFuwCIG558XD5HpDcq/fRDzAa0J0Zhi4/3Sg3vbipl3ltbaOqwE+JnZeFl4znflg9//TE0Frs6jb4Qzl0Iod47p/5EZjidmMxmAIIjB9Da2IDNz5/xp5/NlPMuIjQ6xt23vqKVXTnl7MopJ3pwMOf+cjwA4bGBnPzjkSSOCic8tu89xCbSXRTCi4iIiIiIiIiIyAmjrr2OB7MfZOUB17bnJ5uSuek9cG76GICgM84g7oH7sUb2re1yi2pbefaTPbyRX4z9UPh+ysgB3HLmCCYPCvdydYfUF7mC9/x/QKdrW2wCoyHtl5A6GwIijsvHdnV2kPPWa+S++yZOhwMff39OuvJnTDzrPMzdvM29SG9U315P6KZ9AISedHKPf35rp5373t3Gf/JcQXvq4HCePi+CuLW3QMEHrk5hg+H8x2Hk2T1en0B9eRn5y9+hdNcOrn70KUxmM1YfHy66bR6RiQPxCwwCoL2liz15FezMLqdiX6P7/q4OB44uJxabK8Aff6oeohBRCC8iIiIiIiIiIiInhE+LPuXezHupaa/BioX76k4m+Z9rcba2Yg4IIGbePEIvuxSTyeTtUo9ZcZ0rfH8973D4fvLIAdx8xghSBveS8L10o+u8921LXVtNAwwY5TrvffzlYPM7bh/tdDp4Zd5tVB3cD8DwqRmcfu2vCI6MOm6fKdLbrCn5jAn7nABEn9azIfe20gZufGUDhVUtmExw8ymDudF/BZaXngB7G5htMOMmmHk7+AT0aG0Cpbt3kPffpRTkZoHhmkMObN3EkAmTAUhIHu3um7V0DxtXFeF0uPqZTDBwTCSj0mMZMjHKHcCLiItCeBEREREREREREenXmjubeSzvMd4qeAuAidYhzP0kHNOalRiAf2oK8QsX4pPYd1buldS3HQrfi+g6FIjMHBHFLWeOIGXw8VlR/q04nbBnpSt83//Z4fahJ8P0m2DYGWA+/oGN2Wxh1Emn0rbiXU6/7gZGTJt+3D9TpLfZtP59LmsAp8VMwNSpPfKZhmHwYuZ+Hl2+k06Hk5gQX54/pZ2xG66F6t2uTkNmwqwnYICOhuhJTqeDPbnZ5C1bStnune72oZNSSLngUgaNm4hhGFTsbyQiLhAfP1eU6B/sg9NhEJkYxKj0WEZMjSEw1NdbwxDp9RTCi4iIiIiIiIiISL+VW57LgrULKGkuwYSJOe2nMu0feThr94DNRvTNNxFx7bWYLH1jW/LSQ+H7f74Qvp803BW+pw7pBeF7Vztsfg2ynoVq19nrmCww7gcw/XcQN/G4frxhGOxY8z9Co2PdKzhTZl3CxLPOxzdAq2zlxOP4f/buOzyqOm3j+HdqegLpkAYp9N6rooKKDeuqKHaxYl1fXeu69rJrLyAodl17L4BAQkLvLZAQSCAkIb2XKef9YxCM4CpKMgncn+vygjlz5pznKMzEuc/vedwuGjKWAGD064G5Ff4elNU2ccdHa5mXuQeAs7vZeCzwA3zmfOTZISACTnrU0wmjHXUeOVLs3prJV/95DACL1UrPsccx+NQzCY9LoKq0npXf5bJlaSEVRXUcf0lPeo7qBECPEZ2I7RFKeGygN8sXaTcUwouIiIiIiIiIiMgRp9HVyPOrnuftTW9jYJBo68RDKxKxfTsHN+DTrRudn3wC3x49vF3qH1JQWc/L87fx4fKdNLk8baVHJYVxy/huDOvaBsL3ujJYPguWTYfaYs82exAMuQyGXwshLd9loKKwgLmzXiZ33WpCY+KY8sTzWG02LFYrFqu+Cpej0/qS9XTLqgcgctyEFj9fxrYSbv1wDUVVjfhaYXbfjQzf/iKmvErABEOugBPuA782Mi7jKFBTXkbxjhy6DhwCQEz3XiT0G0h0UjcGnnwaNp8gslftIe2/q9idVbHvdVabmbqqxn2PfQNt+AbaWrt8kXZLP3mIiIiIiIiIiIjIEWVT6SbuTrubbZXbALjGOIYTZ23Blb8QTCZCr7iciJtvxmy3e7nS31dY2cDLC7L5YNn+8H1kYhi3jE9heGKYl6sDSrfBkpdh9bue+c4AwbEw4joYdAn4Brd4CS6nk5XffM7ij97D6WjCYrPRa+xxmLTCVoS0HfMZnefpmhE0ZmyLncfpcvPs3CxeWpCNYcDJoYU8E/AWfpvXeHbo1B9OfQZiB7dYDdJcSd4OVnzzOZmLFmCx2Zj68mx8/AMwmUyce89DADTWOXjjrnScjS7Pi0wQ060j3YdHkzQoYl8rehE5dPrbIyIiIiIiIiIiIkcEp9vJzPUzmb52Ok7DSZQ1lCe2DsT/vz/iMgxsnTvT+YnHW20m8l9RVNXAKwu28d6yPJqcnvB9eNdQbhnfjZFJbSB8z1sKGc9D5jeAJ+CjU38YOQ16nwmW1lktWZC1hTkzXqA4bwcA8X36M/7qG+gY3blVzi/S1u3I+JHxTeAMCcC3Z88WOcfOsjpu/mA1q/IqCKKOV2O+Y1TZZ5jq3OATDMffC0OvAnP7GPvRnhmGQd76taz45jN2rFm5b3tUYgq1FRVUl7kp2l5F77ExAPj424juGkxtRSPdR0TTbVg0QaG+3ipf5IiiEF5ERERERERERETave2V27ln0T2sL1kPwN+sI7jgwyKcW38AIOSss4i6524sgW17lu2eqgZe/lX4PqxLKLdMSGFUUrh3i3O7IPNryHgBdi3fvz3lJM+89y5jW3W+c0H2Ft677+9gGPgGBTNuypX0OuZ4rYAX2auotojQdbkABI4ahclsPuzn+GZdAXd9uo7qBgfn+iznYb938S3dO5Kizzme2e9B0Yf9vHKgwuyt/DjjBYpztwNgMplJGTaS3uNOo7IkhB9n5VOavwWTCbr0CycgxAeAk6f2we5n1XunyGGmEF5ERERERERERETaLbfh5v3M93lm5TM0uhoJtgXyxO4xhL/5A06HA0vHjkT/60GCJ7T8LOS/Yk91A68uyOHdpbk07g3fh3bpyK17V757NRxpqvW0m1/yEpTv8Gyz2KH/BTDiBojs4ZWyopO6Ed+nP4EdQzl2ypX4B4d4pQ6RtiotP41+OZ5OFR2POf6wHru+ycW/vt7I+8t20sVUwNtB7zDAsRoagNAkOPVpSDq855T/zS84hJKdudh8fOl1zAmExY9hV6aL718rxjA8N0aYrSa69gvH8XP7eTyr4UXk8FMILyIiIiIiIiIiIu1SYW0h96bfy9KCpQCc6DOQa79qwrnyawwgcNw4Oj30L6wREd4t9H8orm7k1YXbeGfJ/vB9cIInfB+d7OXwvboQls2A5bOgocKzza+jp6300KshKKpVy6kpKyXj4/c45qLL8Q0IxGQycdadD2C1KUASOZhlmXO5tNDz+4BRow7bcTcXVDHt/dXs3FPGrdYvucH2FVaHAyw+MPZ2GH0z2NTSvCVV7ili1bdfUF9dxSnT/g5ASGQUp996F7G9+pKzuooF727Zt3+npBC6DY8meXAkvgF6zxRpDQrhRUREREREREREpF0xDIOvcr7isaWPUeOowdfsw8PV4+nywjycNTWY/P2JuutOOpx3Xpttr1tS08j0hdt4e0kuDQ5P+D4ovgO3TujGmORw79a9ZzMsfhHW/RdcTZ5toYkw4noYMBnsAa1ajuF2s3bu96S9N5um+jrMZgvjr7oeQAG8yG9ocjVRt2QpZsBIjMcWFfmXj2kYBm8vyeXhbzYz3L2G131nE08hGEDSCXDKUxCW9JfPI7+tIHsLK77+nKwl6RiGG0wmeo87i4Jt0LFTAN2He262SBrky9p5O0keHEm34dF0iPT3cuUiRx+F8CIiIiIiIiIiItJulDWU8a/F/2Je3jwAhvv14v/mB+Ga/wVuwG/gQDo/8Tj2+HjvFvobSmoamZGaw9uLc6l3eNoBD4jzhO/HpHgxfDcM2L4QMl6E7Dn7t8cNh1HToPspYLa0elkleTv48bUXKdiaCUCn5O70nzCx1esQaW9WFK2gZ3YjAGHH/vW28OW1TfzfJ+tYt2kz/7G9w2n2JZ4ngjrByY9BrzOhjd701N4ZbjfbVi5jxdefkp+5ad/20NieWOyD+OrFHZhMJiK7BNN9eDQAvgE2Jv9zhLdKFhEUwouIiIiIiIiIiEg78VPeTzy4+EHKGsqwmq3c65pI3+dScZWWgtVKxLRphF11JSZL64fFv6e0ppEZaTm8lbE/fO8fG8ItE7oxrluE98J3lwM2fgYZz0Ph+r0bTdDzdE/4HjfMK2U5mhpZ+umHLP/yE9wuF3Y/P8ZccAn9TzwFsxduBhBpb9J2pjJ6u2cefMDoMX/pWEtySvn7ByuZUPslz/h8TKCpHsNkxjT8Whj3D/ANPhwly2/YmPoTP7zyLAAms4WgiH40NfShrjYCasFsMZHQO5Ruw6MxDKPNdoAROdoohBcREREREREREZE2rbqpmieWPcEX274AoJdfIv9c2QW++AwXYE9OIubJJ/Ht1curdR5MWW0TM1JzeGvxDuqaPOF7v9gQbh3fjXHdvRi+N1TCyjdh6atQle/ZZvOHgRfDiOs87ee9KOO/77Liq08BSB46guMvv5agsHCv1iTSnmxZ/RNnVINhs+I/ZPCfOobT5eb5n7JJm/8d062z6G3L9TwRMwTTac9Ap36HsWL5WemundRVlhPXux+GYdB95BiWfvYh3YaPprQomfwtTWCGiPggug+PJmVoFP7Bdm+XLSK/ohBeRERERERERERE2qxlBcu4N/1eCmoLMGHiFp+JjH1tNc6dPwIQeumlRNx2K2YfHy9X2lx5bROvpeXwZsYOaveG731jQrhlfArH94j0XvhesdMTvK98E5qqPdsCImH4VBhyJfiHeqeuXxl6xjnkrl3FyPMmkzJslLfLEWlXcqtyiVjvubnGd8hgzL6+h3yM/Ip67nkvlQm7p/OJ7SfMJgPDNwTT+Adh0KVgNh/uso9qlXsKycxIY0v6QorzdtAhOoa+E+5k67IiTp82gCuemY7JbCZ3YylRXcrpNjyasM6B3i5bRP4HhfAiIiIiIiIiIiLS5jQ4G3hu1XO8s/kdABJ8Y3g0ewC2d7/C6XZj7dSJzo89SsCItjXztqLOE77PTt8fvvfuHMyt47txQk8vhu+7V3vmvW/8DAxPXUT0gJE3Qr+/gdV7NzEYhsHmRQvYuXE9J14zDZPJhH9wCFOefEFtlUX+hLRdafTb24o+ZMwxh/z679fvJu2TF3naeJtwa5VnY//JmCb8CwIjDmepR7Wa8jK2Lk4jMyOVgqwt+58wmakq9WHZV1sxmexsXVbI0FO7ApDQO4yE3mFeqlhEDoVCeBEREREREREREWlTNpZs5B+L/sH2yu0AXBFwIme8u42mzZ529CGTziDqnnuwBLedOcSVdQ5mLsrhjfQd1DQ6AejVKZhbxqcwoVeUd8Jktxuy50DGC7Ajbf/2rsd65r0njwcvh9wVhQXMnfUyuetWA5AyfCSJA4cCKIAX+ZPSty/gmry98+DH/PF58A0OF69+/A0jNj/KI+bNYIKm0G7Yz3gWuoxuoWqPXmnvvsGmtPl7H5kwW+Mw27tjsSVjtvgR070jPUZE03WAbnwQaY8UwouIiIiIiIiIiEib4HA7mLluJtPXTcdluIj0CefxorEE/fsLmpqasISEEP3ggwSffJK3S92nss7BrL3he/Xe8L3n3vD9RG+F744GWPchLH4RSrZ6tpmt0PtsGHUjdOrf+jX9isvpZOU3n7P4o/dwOpqw2GyMPOdCEvoO8HZpIu1anaOO6lXL8XECYR3x6Zbyh163deceVr1zFzc0fI7N7MJh9sE87k7so6aBVfPG/4qm+jqyVyxlS0Yqo8+fQofoeKpLG+gx+ljKiwpIGTaGlT/YcDn9iE4MJmVoFEmDIgkIaVtjVkTk0CiEFxEREREREREREa/Lqcjh7kV3s7F0IwDnBB/LlM8qaFr2EQYQMHYsnR55GFtkpHcL3auy3sHri7bzevp2qhs84XuP6KC94Xs0ZrMXwvfaUlgxC5bNgNpizzafYBh8KQy/FkJiW7+mgyjI3sKc6S9QnLcDgPg+/Rh/1Q107BTj3cJEjgBLCpbQZ5sDgOAxx/zujUCGYbDgq7dIWfkvLjCVgAlKY44n7NxnoWNCK1R8ZHI2NbF99Qoy0xeSs2o5TkcTAJWl/jTWDyUozJcLHxhO14FDAAhPKCGscwDB4X7eLFtEDiOF8CIiIiIiIiIiIuI1bsPNu5vf5blVz9HoaiTYFsRj9acQ9eiXNFVXY/LzI+rO/6PD+ee3ifbkVQ2e8H3Wov3he/coT/h+Um8vhe+l22DxS7DmPXDWe7YFx8KI62DQJeDbdtr2u90uvn3haSoKC/ANCmbclCvpdczxbeK/rciRIHVXKsP2zoMPHPO/W8hXFuaw/a0bOa4uHUxQYonEfvpThA04sxUqPTLVV1ex4K2ZZC9fTFN9/b7tJktHzLbuVJcnYra4cbsNGmod+AV6ugx07RfurZJFpIUohBcRERERERERERGv2F2zm3vT72V54XIATggZxrS5dprmvosb8O3fj5gnnsDepYtX6wSobnDwRvoOZqblULU3fO8WFcjNJ3RjYh8vhO+GATuXeua9Z34DeEI3OvWHUTdBr0lgsbVuTf+DYRiYTCbMZgsnXHEdm9LmM+6Sq/APDvF2aSJHDMMwWLNlAecXeR4HjBp18B1dDvK+fYqIlc8ygEYchoVNXabQ98JHMPsGtl7BRwDD7aaqpJiQyCgA7H7+5KxeQVN9PTa/DrjdSVjsPTBZIgkK9SVlSBQpQ6MIjwvUzUciRziF8CIiIiIiIiIiItKqDMPgi21f8Piyx6l11OJn9eOf5kmk/PsHmoqLwWol/PrrCJ86FZPVu19hVjc4mJ2+g5mLtlNZ72nxnBIZyM3jUzilT6fWD9/dLtj8lWfe+67l+7ennASjpkGXMdCGgp2aslJ+emM68X36M+CkUwHo0n8QXfoP8nJlIkeereVb6bTJM4rC3rMH1rCwA/ZxbU+n/KMbia/LAWCtuRe+Zz5L/37DW7XW9swwDIq2ZZGZsZAtixdhMpk44+/Pkr2qmJ4jO3HCFdcSGBqG0xHJT29lkjwokpShUUQnhmDyRrcUEfEKhfAiIiIiIiIiIiLSakrrS3lw8YPM3zkfgKHBffnHylicH7+DE7AnJtL5iSfw69vHq3XWNDp5M2MHr6XlUFHnCd+TIgK4eXw3Tu3bCUtrBymNNbDmXVjyMpTv8Gyz2KH/BTDyRojo3rr1/A7D7Wbt3O9Je282TfV17Ny0nt7HnoDN19fbpYkcsVJ3pdJ/byv6oDFjDni+du2XBHw2hXCg1Ajix843cPqlfyfQt+10zWjLSnbmkpmeypaMVCqKCvZtN5l9+OixeZgtHTGbTIw65xgA3G6Dyx4fjdli9lbJIuJFCuFFRERERERERESkVczLnceDix+kvLEcq9nKXQHnMPjVRThyVwPQccoUIm+/DbMXg9qDhe+JEQHcfEIKp/Xr3Prhe3UhLJsBy2dBQ4Vnm19HGHo1DLsaAiNbt54/oGRnLnNmvMjurZsBiE7uxoSrb1QAL9LC0nalcu3eED5g9IHz4Avnv0wSMMcYSuPEZ7lwhHdvdmpPFn/yPhn/fXffY5PJhsmaiMXeHbOtCza7nS79w4nrFbpvH0+nFK18FzlaKYQXERERERERERGRFlXdVM3jyx7ny21fAtAjOIV/ZfWDNz/A4XJhjYqi06OPEHiQ0Ki11DY6eWtxLjNSt1H+c/geHsBNJ6Rwen8vhO9Fm2DxS7D+v+Bq8mwLTYSRN0D/yWD3b916/gBnUxNLP/uQZV98gtvlxObrx5gLLmHASadgNlu8XZ7IEa2ioYLyTWvoWAv4+OA36FcjHxpriKtYAYBx3L2cpgD+N9WUlbJl8SJie/YmKjEZZ5OLuN79MFs+pMuAQRTtiMLp6oLFaie+dxgpQyPp0jccu68iNxHZT+8IIiIiIiIiIiIi0mKWFCzhvvT7KKwtxGwyc2PHszhh9gYaN34IQPCppxJ9/31YQkK8Ul9d08/hew5ltZ6wu2t4ADedkMzp/Tpjbc02woYBOQs8896z5+7fHjcCRt0I3U+BNhxml+3exdLPP8Jwu0kaMpzjL7+W4PAIb5clclRI351O3xw3AAHDh2G225s9X7t5DgE4yHVHMmCg5r//Wn11FVuXpLMlI5WdmzeAYRDX51jsgSdQVdzAxf8aznUz3sE3MJD1C3ZhsZlJHBCBb4Ba+YvIwSmEFxERERERERERkcOu3lnPc6ue493Nnva98QGxPFY8Dvu/36exsRFzcDDRD9xPyKmneqe+JhdvL9nB9IU5lO4N37uE+TPt+BQmDWjl8N3lgA2fQsYLULTes81khp6nw8hpEDe09Wo5RC6nA4vVE0JFdklk9PlTCO0UQ/KwkZhMasMs0lrS8tMYkONpRX+wriLla74kAFjpO5yzQ/xaubq2ye1ykZm+kMz0heSuX4Pb5dr3nNnamcIcXyw+FQCU7q4jIj4IgL7jYr1Rroi0MwrhRURERERERERE5LBaX7yeuxfdzY6qHQBcGnk65/x3Nw2LZ2MAAaNG0emxR7FFRbV6bfVNLt5dmsurC7dRUuMJ3xP2hu9ntnb43lAJK2fDkleherdnm80fBk6BEddBaNfWq+UQGYZBZvpCUt99g3P+8SDh8V0AGH7med4tTOQo5HK7WLZjERfu3DsPfsyY5ju4XXTY9RMA1QkTWru8NsVwuzGZPe/zJrOZ9P++Q1XxHgDM1kjMtu5YbN0xWYIJiw2k29AokgdHEhyuGxdE5NAohBcREREREREREZHDwuF2MH3tdGaun4nLcBHpF8njTacR/M8PaaisxOTjQ+Qdd9Bx8oX7QpDW0uBw8c6SXF5dmENJTSMAcaF+TDs+hbMGxmBrzfC9Is8TvK96E5pqPNsCImH4NTDkCvAPbb1a/oSKokLmznyJ3HWrAVjx9WecfP2tXq7qryndXUNY50BvlyHyp6wvWU/n7HLsLrBGR2FPTGy+Q/5KAp0VVBn+dO53vHeK9CKX00nu+tVkpqeSn7mJS//9CgXZ1QR29GHwqWfSUFNDWOwA5r5ZSEikHylDo0gZEkVopwBvly4i7ZhCeBEREREREREREfnLssuzuXvR3Wwu2wzAmZHjufJHN/XfzcAN+PbpQ+cnn8Dn1+FQC2twuHhvaR6vLNxGcbUnfI/t6MdNx6dw1qBWDt/zV3nmvW/8HIy9bY8jesCoadD3PLD6tF4tf4LL6WTlN5+z+OP3cTY1YrHZGHH2BQw942xvl/aXFWRV4HK4iUwI9nYpIocsdVcq/bbvXQU/evQBoyBq1n1JILDQ3Z9jkqO9UGHrc7td5G/eSGZ6KluXptNQU73vuddvex+XK47eYzsz7qIzADDcBqExcYTHBWqUhogcFgrhRURERERERERE5E9zG27e3vQ2z696niZ3EyE+ITxsP4+Yxz+jvqgILBbCr7mG8OuuxWSztVpdDQ4X7y/L45UF29izN3yP6eDHtOOTOWdwbOuF7243ZP3omfeeu2j/9q7HwqibIPkEaAeBT2H2Vn6c8QLFudsBiOvdj/FX3UBo5xgvV/bn1FY2UlvRuC907zWmMzvWlRKZ4OXCRP6EtPw0rtr+2/PgXZnfAbClw1hO92u992FvyVm1nB9nvEBtedm+bSZLAGZrChZ7D5zOTvgH2/AN3P/vwmQ27Zv5LiJyOCiEFxERERERERERkT8lvyafexfdy4qiFQAcFzGKW5dF0PDBqzgBe0ICnZ96Er9+/VqtpgaHiw+X7+TlBdkUVe0P3288PplzBsVit7ZS+O5ogHUfwOKXoGSrZ5vZCn3OgZE3QqfW+3dyOOzavIHi3O34BgZx7JQr6X3sCe1ytaizycWaeTtZ9X0ufkE2Jj8wAovNjNliJnFghLfLEzlkRbVFFOVuJr4YMJnwHzmy+Q5l2wmpzsZpmLF1PzLnwRfn7cBsNhMWGw9AUFg4teVl+AQEYDIn4zKSMVvj8PG3kzgwgpQhkcR274i5NTuhiMhRRyG8iIiIiIiIiIiIHBLDMPgs+zOeWPYEdc46/Kx+3N/hInq++CMNOakAdJx8IZF//ztmf/9WqanR6eK/y3fy0vxtFFY1ANA5xJcbjk/mvMFxrRe+15bC8pmw/DWoLfZs8wmGwZfB8GshpP2sHG+oqcE30DMnfdApk2iorWXQKWfgHxzi5coOnWEYZK/Yw+LPtlFd5vnz0THan7rqJoJCfb1cnciftyh/0b5W9L59+mDt2LHZ88aW7zABy9w9GNqjdceBtKTywt1sSU8lMyOV0l15JA0dS2zv88nbWMoZNw/gnHseIrZnH1b/uIuyglpShkSR0DsMi03Bu4i0DoXwIiIiIiIiIiIi8oeV1Jfwz4x/snDXQgAGhw3kvqyeND02kyanE2tEBJ0efYTAsWNbpZ5Gp4v/rtjFy/OzKaj0hKudQny54bhkzhsSi4/V0ip1UJINS16CNe+Ds96zLSQORlwHA6eAb/uZNV5TVspPs6dTkreDS558EavdjtliYcwFU7xd2p9SuL2S9I+yKMypAiCwow8jzkyi29AoTOb2t5pf5JdSd6XSf988+FEHPF+/4Wv8gQUM5raEjgc8355Ul5awZXEamempFOVk7X/CZGH72hLys3MA2JVZTpd+AwEYempXb5QqIqIQXkRERERERERERP6YOblz+Nfif1HRWIHNbOOO6IsZ8dpSGta9BUDQyScT/cD9B6zEbAlNTjcfrdzJSz9ls3tv+B4d7MsNxyXxt6FxrRO+GwbkLYHFL0LmN4AnCKNTf8+8916TwNJ+5i8bbjfr5n1P6ruzaaqvw2Q2s2vzBrr0H+Tt0v600vwaPnliJQBWu5lBJyUwYEI8Nnsr3Zwh0oKaXE0s3b2Yyb81D76+At/dSwEojjkeX1v7/nP/6eP/pCRvx95HZszWOMz2HlhsSZgtvsR070jK0Cg6JbW/bh0icuRRCC8iIiIiIiIiIiL/U1VTFY8tfYyvc74GoEfH7jxcPBbj/96kob4ec1AQ0fffR/Bpp7X4nPAmp5uPV+7ipfnZ5Fd4VpxHBftw/bhkzh8a1zohk8sJmV9BxouQv2L/9m4ne+a9dxkD7WxeesnOXObMeJHdWzcDEJ2UwoSp04js0v7aVxtuY98K97CYQLr0DcM30MaISUkEdPDxcnUih8/KopVE5tcRXA8mf3/8+vdvvkP2XMyGkyx3DMnd+3mnyD+hsa6W7OVLyFqWwanT7sDASlO9kx6jjmG7vz9xvUeweq4dk9mf6MRgUoZGkTQokoAQ/f0WkbZDIbyIiIiIiIiIiIj8pozdGdyXfh976vZgNpm5LuYCJn6QQ13aqwD4jxhB58cexdapU4vW4XC5+WTlLl74aX/4Hhnkw/XjkrhgWHzrhO+NNbD6HVjyMlTkerZZfKD/+Z7wPaJ7y9dwmLldLhZ//B7LvvgEt8uJzdePMRdMYcBJp2I2t69Vs4bbIHNJIat/zOXM2wbhH2wHYOK1fTFbNAdajjxp+Wn75sEHDB+OyW5v9rx7y3eYgbnuQYxODvdChX+co7GBnFUryExfyPY1K3A5HAB8+tQnlO+JIXFABBOuOI/hZ/0NgJDofOJ7hRIc7ufNskVEfpNCeBERERERERERETlAnaOOZ1Y+wwdbPgAgITiBRx2n43v3G9RVVmKy24n8++10vPhiTOaWCzgdLjefrvKE77vKPeF7RJAP1x2bxOThrRS+VxfC0umwYhY0VHq2+YXC0Ktg2NUQGNnyNbQQk9lMYU42bpeTpCHDOf7yawkOj/B2WYdsd1Y5iz7KpjivGoC183Yy8qwkAAXwcsRK25XGJT+H8GN+1Yre5cC99UfMQIZ1KFNj2maL9vKCfBZ//D7ZK5biaKjft91sDcNs7U5xXgAmi5uKorpmr+tzTExrlyoickgUwouIiIiIiIiIiEgza4vXcs+ie8it8qz2vjjubC78rpbar57FBfj06knMk0/ik5zcYjU4XG4+W53Piz9lk1fmCV/CA324blwSF7VW+F60yTPvfd1/we1ZlUloIoy8AfpPBrt/y9fQAuqrqzCZzfgGBGIymRh/5fUUbc8mZdioFh8ncLhVFteR8ek2clYXA2D3tTD4lC70Py7Oy5WJtKy8qjwKSrbTY+dvzIPPW4y1qYpSIwi/xBFYzG3j77bb7aKhpgb/YM9NAWaLhc2LFgBg9emAYUrBYuuByRJOUKgvKUOiSBkaRXhcYLt7fxKRo5tCeBEREREREREREQHA4XLwytpXmLVhFm7DTaR/JI/5X0THh96htqAAzGbCpl5NxPXXH9D2+HBx/hy+z88mt/Tn8N3OtccmcdHwBPzsLRy+GwbkLICMF2DbvP3b40bAqGnQfSK0szbtPzMMg8z0hcx/8zWShwznxGtuAiAkMoqQyCgvV3folny+jdVz83A7DUwm6DU2hmGndd3Xhl7kSJaWn0avPAOrG2wxMdgSEprvsOV7AOa7BzI6xbt/vw3DoCBrC5kZC9m6eBFRSSmMPv8WslbsYeipXTj24ivo3L0X+dk+rJ+/i+RBkSQPjaJTYgimNnLzgIjIoVIILyIiIiIiIiIiImSVZ3H3orvJLMsE4Iy4iVyTEUDtO0/hBGzx8XR+/HH8Bw1skfM7XW6+WLObF37KYsfe8D0swBO+XzyiFcJ3ZxNs/BQyXoSi9Z5tJjP0PB1GToO4oS17/hZWUVTI3JkvkbtuNQC7t2biaGzA5uPr5cr+PEejC7fTIK5XKKPPSSYsJtDbJYm0mtRdqfT/uRX96NHNV4kbBu4t32IG5rgGcUdyWKvXZxgGxbnb2ZKRSmZGGlXFRfue27FmI/nblmAyWYmMD2LI6WcDEJHgYvBJCRohISJHBIXwIiIiIiIiIiIiRzGX28Vbm97ihdUv4HA76ODTgYciLifuP59Sm70NgA7nn0/U/92BOSDgsJ/f6XLz5drdvPBTNttLagEIDbBzzTGJTBmZgL+9hb/CrK+AlbM9M9+rd3u22fxh4BQYcR2Edm3Z87cwt8vFym8+J+Oj93A2NWKx2Rhx9gUMPeNsLFabt8s7JHkbSwno4LMvbB96WlfieoWS0CdMbarlqFLnqGN54XLO/UUI30zJVszl22k0rGT6DyEpovVvUPnuxX/vazMPYDLbMFmTsNh7YLYmYLPb6NI/nKCw/TcC2XzaZ5cREZGDUQgvIiIiIiIiIiJylNpZvZN7F93Lqj2rABjX+Rju2JJM7SPP0uRwYAkPp9PDDxE0btxhP7fLbfDV2t08Py+LnL3he0d/G1OPSeKSkQkE+LTwV5cVebDkVVj1JjTVeLYFRsHwa2Dw5eAf2rLnbwVlu/P5+rknKN6RA0Bcr76Mv/pGQjvHeLmyQ1NWUEv6x9nkbSwlpntHJt0yAJPJhG+AjS59w71dnkirW1qwlODyJmJLAbOZgJEjmu+w5VsAFrt7MyglrsVvUqkqKWbL4jT6jBuPX1Awbpeb6OTubF2aTlzvQeRnRWC2dcVitRPfO4yUoZF06RuO3VcRlYgcufQOJyIiIiIiIiIicpQxDINPsj7hyeVPUu+sx9/qz31xV9PnlZ+oXT0DgKAJ44l+8EGsoYc3jHa5Db5et5vn5mWRU+wJ3zv425h6TCKXjuzS8uF7/ipY/CJs/BwMl2dbRE/PvPe+54LVp2XP34r8goKoKSvFNzCIY6dcSe9jT2hXK8bra5pY/tV2NqTtxnAbmC0mwmMDcbsMLNb2cx0ih1tqfir9dnhWwfv164clOLj5Dnvnwc91D2JUUsu0oq+rrGDrknQyMxaSn7kJgNL8JhrqumH3szL+shPofezx+PgHkPbhVsJiA0kcEIFvQPvqwCEi8mcphBcRERERERERETmKFNcV80DGA6TlpwEwOHIQ9xePpumWV6ivq8McEEDUvfcScuakwxrYutwG36wv4Pl5WWTv8aw87+Bv4+qxiVw6qguBLRm+u92Q9YNn3nvuov3bE8d5wvekE6AdhdP/y+6tm+mU0gOTyYRfUDBn3H43oZ1i8A/p4O3S/jCX0836BbtY/s0OmuqdAHTtH86os5PpEOXv5epEvMswDNJ2pTE55zda0deWYOxcigmY5xrE9cmHr1uEo6GBLYvTyMxIJW/DWgy3e+8zJszWGLYuq8Fir8BsNQG98PH3vK+PPb/bYatBRKS9UAgvIiIiIiIiIiJylPh+x/c8vORhKhsrsZvt3N71Csa8s57aBc8A4D90KJ0eewx77OFrV+7+RfietTd8D/GzcfXYrlw6qgtBvi24KtLRAOs+8ITvpVmebWYr9DkXRt4Anfq13LlbWU15GfNnz2DrkkWcdsuddB85FoDYHr29XNmh27K0kPSPswEIiw1kzHkpxHbv6OWqRNqGreVb2VNTSN8dvxHCZ/2ICYMN7i74hsfTuYPfXzqfYRj7bshyNDbw4/QXMAxP+G62RmG29cBi74bJHER4XCApQ6JIHhyJ3U/xk4gc3fQuKCIiIiIiIiIicoSrbKzkkaWP8N327wDoGdqTh52nwx2vUFtejslmI+LWWwm97FJMZvNhOafbbfDdhkKem7eVrUWe8D3Y18pVYxO5bHQXglsyfK8theUzYdkMqCvxbPMJhsGXwfBrIaR9zUT/Xwy3m3XzfiDtvdk01tViMpupKCr0dlmHzNnkwmq3ANB9RDRblxbSbXg0PUZ2wmw+MroUiBwOaflpJBZCYAOYg4Lw69e3+Q5758HPcw9idPKfa0XvdDjYsXYVWzJSaaqv44y/38euzHKiugTTb/zJBHYMBUs3Vn5fQUikHylDo0gZEkVop4C/enkiIkcMhfAiIiIiIiIiIiJHsPT8dO5Pv5899XuwmCxcm3wpp31ZRPXnjwLg06MHnZ94At/uh6ddsNtt8P3GQp6bm8WWomoAgnytXDUmkcvHtHD4XpINS16CNe+Bs8GzLSQORlwHA6eAb/D/fn07U7orjx9nvMjuLZ55zFGJKZx4zTQiuyR6ubI/rraykaVf5lCQXckF9w7DYjNjsZg587ZB3i5NpE1K25VG/+17V8GPGIHJ+ouYx9EA2T8BMMc1iBuS/ngrerfbxc4N68nMSCVrWTqNtbV7nzHx+t+/p6nel3EXdWf8VdcD0FDrIGlQA+FxgYd1dImIyJFCIbyIiIiIiIiIiMgRqM5Rx39W/ocPt3wIQJfgLjwaeDF+986gevduMJkIu+pKwqdNw2y3/+Xzud0GP24q5Nm5WWQW7g3ffaxcMaYrV4zpSohfC4XvhgF5SyDjhb0rQD3hFJ0GeOa99zoTLEfe16BrfviG+W++htvlxObjy5gLL2HASadiNlu8Xdof4mxysWbeTlZ9n4uj0QVA3uYyuvY7fPOrRY40lY2VrClewxnbPe3gD2hFv2MROGopNDqyka6MTPpjK+HXzvmOjI/epa6yYt82syUQk7UbFnt3Gut88A+24XK69z3vG2DDN6AFb6oSEWnnjryfPkVERERERERERI5ya/as4e5Fd7OzeicAU5Iv4KI0E1VvPojDMLDFxND5icfxHzLkL5/LMAx+2FjEc/Oy2FxQBXjC98vHdOXK0V0J8W+hkMblhMyvPOF7/sr927ud7AnfE0bDEbw6s2PnGNwuJ4mDhnLCldcRHB7p7ZL+EMMwyFpRxOLPtlFT1ghAZJdgxpyXQqekEC9XJ9K2peen49Pgonu+53HAmF+F8D+3oncNonfnEDr4H3iDlWEYFOduJzA0DP9gz985q91OXWUFvoFBOBxdMdu6Y7bG4ONvJ3FgBClDIont3hGz5fCMKxERORp4PYR/+eWXeeqppygoKKB37948++yzjB079qD7XnbZZbz55psHbO/VqxcbN24EYPbs2Vx++eUH7FNfX4+vr+/hLV5ERERERERERKQNaXI18craV3h9w+u4DTfRAdE8Ej2V8CfeoWrrVgBCzj2HqLv+gSXwr83uNQyDOZuKeHZuFpv2hu+BPlYuH92FK8d0PWj4c1g01sDqdzxt5yvyPNssPtD/Ahh5A0R0b5nzell9TTV7craR0G8AAAl9BzD5kX8TndSt3bSCbmpw8uVzayjavvfPS0cfRpyZRLehUZg0913kd6Xlp9E718DiBltCPPbY2P1PGgZs/R6Aue5BjD5IK/rivB18/ewTlOXvZPhZl+DXYRhVJQ2MOnskZ90VTELfgfzw2iYsVjMpQ6OI7x2K1dY+umuIiLQ1Xg3hP/zwQ2655RZefvllRo8ezfTp05k4cSKbNm0iPj7+gP2fe+45Hn/88X2PnU4n/fv357zzzmu2X3BwMFu2bGm2TQG8iIiIiIiIiIgcybaUbeHuRXeztdwTtk/qejrXb4qh8sGHaHQ4sISG0unhhwg6/vi/dB7DMJi7eQ/Pzt3Kxt2eMDXAbuHy0V25amwLhu9VBbBsOqx4HRoqPdv8QmHY1TD0KghsHyvBD5VhGGzJSGX+m6/haGjgsv+8vG/Ve6fk9nXDgd3Xio+/FauPhcEnxdN/fDw2uwI+kT/C5XaxKH8R5+ydBx/461b0heugKp96fMhw9+ay5AND+FXffklZ/k4wWVjxXSY2v3AwwdBTu5A4cCgAE6/t225u7BERacu8GsL/5z//4corr+Sqq64C4Nlnn+WHH37glVde4bHHHjtg/5CQEEJC9rck+vzzzykvLz9g5bvJZCI6OrplixcREREREZGjTsbuDPqE9yHYHuztUkRE9nG5XczeOJsX17yI0+2ko09H/tX1Brq88BWVKz4DIPD44+n00L+whv2x+cAHYxgGP2Xu4dm5WazP94TgAXYLl47qwtVjE+kY0ELhe9FGyHgR1n8EbodnW2iSZ9V7/wvB7t8y520DKvcUMXfWy+xY42m3HxoTR0NNTbtpPd/U4GTN3J30PTYGvyDPn49jL+yOxWomoIOPl6sTaV/Wl6ynorGCATtMgEHAmDHNd9jiWQWf5uqD2+LD0C4dDzhG9nLPe4nN/3SsPonEdO9IypAo7H77oyIF8CIih4fXQvimpiZWrlzJXXfd1Wz7iSeeSEZGxh86xqxZsxg/fjwJCQnNttfU1JCQkIDL5WLAgAE89NBDDBw48DeP09jYSGNj477HVVVVh3AlIiIi0pbpc15ERA6Xb3K+4Z5F99A7vDevTXgNf9uRG/q0B/qMF/HYWbWTe9LvYfWe1QAcFzuO/yseQu11T1JfV4fZ35+oe+4m5Oyz/3SwYhgG87d4wvd1uzzhu/8vwvfQlgjfDQNy5nvC923z9m+PHwkjb4TuE8F85K6gdrtcrPr2C9I/ehdnYyMWq5XhZ5/P0DPOxWqzebu832W4DTKXFLDkixzqKpuor2ri2MmeVfvB4X5erk7aA33OHygtP43IcoOoMjdYrfgPG9Z8h73z4Oe4BzMwviP+9ubxT0VRIQ01pYCZvicMZ9hp3QgI0c0wIiItxWshfElJCS6Xi6ioqGbbo6KiKCws/N3XFxQU8N133/Hee+81296jRw9mz55N3759qaqq4rnnnmP06NGsXbuWlJSUgx7rscce48EHH/zzFyMiIiJtlj7nRUTkcPh468f8a/G/MDDoEtwFu6WFVnvKH6bPeDnaGYbBR1s/4ukVT1PvrCfAFsA93W5kwBuLqZ7nGefoN3gwnR9/DHtc3J8+x4KtxTw7N4u1Oys8x7RZuGRUAlPHJhIW2ALhjbMJNnwCi1+Eog2ebSYz9DwDRk2D2CGH/5xtjNvl4oP7/4+CbM+4zbhefRl/9Y2Edo7xcmV/TP7WchZ9lEXJzhoAgsN9iesV6uWqpL3R5/yB0nal0X9vK3q/Af2xBAbuf7JqNxSswY2J+a6BXHKQVvRZS5cDYLJ2Yvjp3fEP1s+zIiItyavt6OHA1iaGYfyhu3Jnz55Nhw4dOPPMM5ttHzFiBCNGjNj3ePTo0QwaNIgXXniB559//qDH+sc//sFtt92273FVVRVxf/J/TkRERKRt0ee8iIj8VW9vepsnlz8JwCVRZ3DbiH9iMXv9f6ePevqMl6OZYRg8svQRPtzyIQBDo4fygPMUGm9+lprSUrDZiLhpGmFXXIHJcuirxQ3DYOHe8H3NL8P3kQlMPaaFwvf6Clj5BiydDtUFnm22ABh4MYy4DkK7Hv5ztlFmi4W43n0pL8jn2ClX0nvc+HbRHrqyuI6MT7aRs6YYALuvhSGndKXfcbFYbGYvVyftjT7nm9tTt4fNZZs59bfmwW/1tKLfQDIlhDA6+cDRI/mZ6wGISuytAF5EpBV47VuD8PBwLBbLAave9+zZc8Dq+F8zDIPXX3+dKVOmYLf/7w8Ls9nM0KFDycrK+s19fHx88PFR2xUREZEjkT7nRUTkzzIMg9fWv8YLq18AYFrwJI57NI3i5U8Qde897SIQOZLpM16OZi+vfZkPt3yICRN39L6REz7Po/Lj+wDwSUmh81NP4tujxyEf1zAM0rJKeGbuVlbnVQDgazMzZUQC1xybRHhLhO/lubD0VVj1FjR5Vk4TGA3Dp8Lgy8H/6FhBvW3lMoLDI4hI8NxsMOLcCxl86pn4h3TwbmGHYN1Pu8hZU4zJBL3HxjDs9K775sCLHCp9zje3KH8RZrdBv7y98+B/HcLvnQf/vWMQAXYL/WI7HHCMyK4JVBTtYtzFE1q+YBER8V4Ib7fbGTx4MHPmzOGss87at33OnDlMmjTpf7524cKFZGdnc+WVV/7ueQzDYM2aNfTt2/cv1ywiIiIiIiJHB8MweHbVs7y+4XUA7rZNYtAjP+CsqaF26RLctbXNW4CKiLSSDzI/4NW1rwLwaMgl9LjrIyp37QKTidDLLyfi5pswH2JwZRgG6dmlPDN3KytzywHwse4P3yOCWiAIy1/pmfe+6XMw3J5tkb088977ngvWoyN8qykvY/7sGWxdsojopBQufPhpzGYLNrsPNnvb/nfgdrlpqHXuW1E79NSu1FY2MvS0roR11mekyOGUuiuV5N3g2+DGEhKCb+/e+59sqoWcBQDMdQ9ieEoYNsuB3SdGnXcRo867qJUqFhERr/bPu+2225gyZQpDhgxh5MiRzJgxg7y8PK699lrA03ImPz+ft956q9nrZs2axfDhw+nTp88Bx3zwwQcZMWIEKSkpVFVV8fzzz7NmzRpeeumlVrkmERERERERad/chpvHlz3O+5nvA/BI02l0e/pL3A4HfkMGE/fSSwrgRcQrvt/xPY8ufRSAh/eMIemJN3C43Vg7d6Lz448TMGzYIR3PMAwytpXy7NytLN+xP3y/aHgC145LJDLI9/BegNsNWT9AxguQm75/e+I4z7z3pBPgKOkyYrjdrP/pR1LffYPGulpMZjOxvfridrkxmw99hEBry91YSvrH2QSE2Dnj5gGYTCZ8A22cPFULoUQON4fLweLdizl1u+eGJf9RI5uPGslZAK5G9lii2WrE8rekA1vRl+yqprK4nrieodh9NVZJRKQ1ePXd9vzzz6e0tJR//etfFBQU0KdPH7799lsSEhIAKCgoIC8vr9lrKisr+eSTT3juuecOesyKigqmTp1KYWEhISEhDBw4kNTUVIYd4v+EiIiIiIiIyNHH5XbxQMYDfLHtC0yYeKZ4PJ1nfYFhGARNmEDnp5865BWmIiKHw+Ldi/lH2j8wMLi9ciTdXl8IhkHIpDOIuvdeLEFBh3S8jG0lPDsni2U7ygCwW81cNDye645NIjL4MIfvjnpY+wEsfglK946MNFuhz7kw6kaIPrqC29Jdefw440V2b9kEQFRiMhOmTiOqa5KXK/t9ZbtrSf8ki7yNnj839VVN1JQ3EhR6mP/MiMg+K/espM5Zx6BcK+A4cB78lm8B+N4xEDAxOjn8gGOs+Go52Wuc9DkmnnEXHfq4EhEROXRev+Xp+uuv5/rrrz/oc7Nnzz5gW0hICHV1db95vGeeeYZnnnnmcJUnIiIiIiIiRwmH28E/0v7BDzt+wIKJl7eOpuMn3wHQcfJkou65u/mqIxGRVrKxZCO3zL8Fp9vJZfWDGD5jMRgGHSdfSNR992E6hNXji/eufF+6fX/4PnlYPNeNSyLqcIfvtSWwfCYsew3qSjzbfEJgyGUw7BoIiTm852sHCrK28MEDd+J2ObH5+DLmgikMOPm0Nr/6vb6miWVfbWdj2m4Mt4HZYqLfcbEMOaULPv42b5cnckRL3ZVKQL1B111OAAJGjdr/pNsNW38A4HvnQMIC7HSPan5TlqOxkY0LnwcDIuOfaLW6RUSOdl4P4UVERERERES8rdHVyN8X/J0FuxbgY1iYvrwf/vMWABBx662ETb36kEIuEZHDZUflDq6fdz11zjpOd/bm1Nc2YjidBJ10ElH33POH35uW5nhmvi/J2Ru+W8xcOCyO68YlEx1ymMP3kizPqve174OzwbMtJA5GXA+DpoDPoa3aP5JEJSUT2TUR/+AQTrjyOoLDI71d0u8qzqvm82dW01TvCQC79g9n1DnJdIj093JlIkeHtF1p9Mk1MBtgT0zE1rnz/ifzV0JtMY2WAJa7e3Bycjhmc/PPhS2LV4PhxGQOIHlY2++4ISJypFAILyIiIiIiIke1OkcdN82/iaUFSwlx2nlpfhfsK5aDxUKnhx+mw1lnertEETlK7anbwzVzrqGsoYzRRhKXztqJu7YW/2HD6PzkE3+oO8ey7WU8O3crGdtKAU/4fv7QOK4/LolOIX6Hr1jDgLzFnnnvW74DDM/2zgM98957TgLL0fdVZH1NNcu//ISR516Ize6D2Wzh3Hsewu7n325u7gqNCcA/2E5wuC+jz00htntHb5ckctTYWbWTHVU7OGm75/0i4Dda0a+wDcaBldEHmQe/OX0ZAEHhKdh9jr73YRERb9E7roiIiIiIiBy1qpuquWHeDazes5roBl+e+SYcy9ZNmPz9iX3uWQLHjvV2iSJylKpqquLaudeyu3Y3vU0x3PZODa6yMnx69CD2pRcx+/j8z9ev2FHGM3O3kp7tCd9tFpMnfB+XTOcOhzF8dzlh85ee8H33qv3bu030hO8Jo6CdhM2Hk2EYbMlIZf6br1FXWYHJZGLshZcC4OMf4OXq/rfindWsm7eTcRf3wGI1Y7GYOePmAQR08Dlgha2ItKzU/FQwDIbkWQEXgWN+FcJv/R6AT2r6Ahx0Hnxh9kYA4vsOaMlSRUTkVxTCi4iIiIiIyFGpvKGca+Zcw+ayzSRV+/Pop36Ydu/AEhpK3PRX8evb19slishRqsHZwLR508gqzyLWFMqDn9hw7czFFhtL3IzpWIJ+u537ytwynp2bRVqWZwa7zWLivCFx3HBcMjGHM3xvrIbV78CSl6Eiz7PN4gP9L4CRN0JEt8N3rnamck8Rc2e9zI41KwEIjYmj68AhXq7q99VWNrL0ixw2Ly4AA8JiAxkwPh6AoNDDPLJARP6QtF1pRJdDSFkj2Gz4Dx26/8nyHbBnE26ThXnO/sSF+hEX2nxMRHlRGU11+QAMGD+yFSsXERGF8CIiIiIiInLUKa4rZuqcqWRXZDOoJIi7PnJBRRG2uDjiZ76GPSHB2yWKyFHK6XZyx8I7WLVnFR1Ngfznx2jcW9ZhCQ0lfuZr2CIPPkN8VV45z8zZui98t5p/Dt+TiO14GGd3V+2GpdNh5RvQUOnZ5hcKw66GoVdDYMThO1c743a5WPXtF6R/9C7OxkYsVivDzz6foWeci9Vm83Z5v8nZ5GLN3J2s/CEXZ6MLgJQhkSQOPHr/W4q0BXWOOpYXLue4HM94D/9BgzD7/+L9fItnFfzOgH5U1gcyMenAVfAb5i8FwOoTTlRiTMsXLSIi+yiEFxERERERkaPK7prdXP3j1eRV5zFuZzDXf1wLDY349u5N3PRXsYYf+AWmiEhrMAyDfy3+Fwt2LcDXbOeljO6wYikmf3/ipk/H3qXLAa9ZnVfOs3OzWLi1GPCE7+cOjuWG45IPWBH5lxRthIwXYf1H4HZ4toUmwcgboP+FYD+M52qnUt99g5XffA5AbK8+TLj6RkI7x3q3qP/BMAyyVhSx+LNt1JQ1AhDVNZgx56UQnRji5epEZFnhMprcTQzf6QPU/+Y8+B9cgwAYdZBW9I012wFIGjy4RWsVEZEDKYQXERERERGRo0ZuVS5X/XgVhbWFnLUlhAu/KAeXm4AxY4h97lnMAW17Tq+IHNmeW/Ucn2V/hhkTr2wYhnX+ArDZiH3hefz69mm2786yOu77YgMLtnjCd4vZxLmDYrnx+MMYvhsG5Mz3zHvf9tP+7fEjPfPeu00Es/nwnOsIMOiUM9i6JJ2R511In3ETMJna/vz0zMWF1JQ1EtjRh5FnJZEyJAqT5r6LtAmpu1KxuAy67/Dc+BQwetT+JxsqITcdgPcqegEwKinsgGMMOOlUQiKjiOnRq+ULFhGRZhTCi4iIiIiIyFEhqzyLqXOmUlJXzBUrQzh5TikAIZMm0enhhzC14VbBInLke2vjW8zaMAuA5/OPI+CLHwHo/NhjBP5q9ePOsjrOn76Y3ZUNWMwmzh4Yw7TjU4gPO0zhu7MJNnwCi1+Eog2ebSYz9DzDE77Htv355q0hZ/Vy8jdvZOzkywAIDo/kyudfw2Jtu1+5Vpc1YLNb8A20YTKZGH1OMtuTi+k/Ph6b3eLt8kRkL8MwSN2VSrd8sDU4sYSG4tuz5/4dsueC20l1UCI7GjrRIzqI8ECfA44THpdAeJzGLImIeEPb/YlQRERERERE5DDZWLqRa+dcS2V9ObenBjN8cRkAYVdfTcRtt7aL1YoicuT6attXPLXiKQAeKT+eyLc8AXzU3f8g5LRTm+1bWNnARTOXsruygaSIAGZeOpSu4Yepi0d9hWfW+9LpUF3g2WYLgEFTYMR10LHL4TlPO1dbUc5Ps2ewdXEaAAn9BhHfpx9Amw3gmxqcrPohlzVzd9JzVCeOvbA7AGExgYTFBHq5OhH5tayKLIrqihi/wwy4CBg1CtMvO4/snQe/yncEAKMP0op+yRfbKM2vZcAJccR079gaZYuIyC+0zZ8KRURERERERA6T1XtWc/3c62msq+bBHwLpsb4cTCai7rmH0Isv8nZ5InKUS9uVxv3p9wNwe8OxpMyYC0DY1VcResklzfYtrm5k8swl5JXVER/qz7tXjSA6xPevF1GeC0tegdVvQ1ONZ1tgNAy/BoZcDn4KbwAMt5v1838k9d03aKytxWQyM/i0M+mU3M3bpf0mt9sgc3EBS7/Ioa6qCYCKojrcbgOz2s6LtFmpu1IBGLHTF3A0nwfvckKW52at/1Z5RpWMTj6wFf26ed/RUA2JA04hBr2Pi4i0NoXwIiIiIiIicsRavHsxN8+/GXN1HU984Ufs9kpMNhudn3qK4JNP8nZ5InKUW1u8ltsX3o7TcHKZeyQjXl6E4XYTcuaZRNx2W7N9y2ubmDJrKTnFtcR08OO9q4f/9QA+f6Vn3vumL8Bwe7ZF9vK0nO9zDlgPbG18tCrdtZM5r71IfuZGAKISk5lw9Y1EJSZ7ubLflr+lnEUfZ1Gy03NjRXCEH6PPSaZr/3B1gBFp49J2pRFUZxC5sxqAgFG/mAe/cwk0VODy7ch3FfFYzSaGdW0ewpcX1FC9ZyEY9fj6j23N0kVEZC+F8CIiIiIiInJEWrBzAbcvuJ2g8kYe/tSHsMIazEFBxL70IgHDhnm7PBE5yuVU5HDDvBuod9ZzunkAp720FndjI4HHHkunh/7VLCStrHcw5fWlZBZWExnkw7tXDSe245+c/+52w9bvPfPec9P3b088DkbdCEkngALaZtwuF588dj/VJcXYfHwZff7FDDz5dMyWtjtDfWNaPgve3QKA3c/KkFO60G9cLBab+XdeKSLeVtlYydritQzbYWAywCclBVtU5P4dtnwHQF7YWNwVZgbGdSDQp3nUs2HhOjDqMZltxPfp1Zrli4jIXgrhRURERERE5Ijz/fbv+UfaP+hU5ODBT6wEVtRhjYoibsYMfLu33bbBInJ0KKwtZOqcqVQ2VjLG0oPLXtuJq6oKv/79iXn2GUw22759axqdXPbGMjbkVxEWYOe9q4fT5c/MgHfUw9r3YfFLUJrt2Wa2Qt/zYOQNEN33MF3dkcdssXDsxVewKfUnTrjiOoIjIn//RV6WODCCJZ/nkDwkkmGndcUvyO7tkkTkD8rYnYHLcDE2PwioJGDMmP1PGgZs+RaAn4zBAIxOOrAV/baVKwEIjemGxWo74HkREWl5CuFFRERERETkiPJZ1mf8c/E/6Z7r4p5PTdjrG7EnJxH/2mvYOnXydnkicpSraKjgmjnXUFRXRC9bPLe9U4OzqAh7UhKxr76C2c9v3771TS6unL2c1XkVhPjZePvK4SRHBh3aCWtLYNlrsPw1qCv1bPMJgSGXwbBrICTm8F3cEaKhpobU994grmcfeo49DoBuI8bQbcSYNtnG3e1yszFtNwXbKplwRS9MJhN+gXamPDwSu5++/hVpb9J2pYFh0DvHCdB8HnxJFpTlYFjsvFmUBMCo5PBmr2+sc1BesBWA5CGDW6doERE5gH4KExERERERkSPGe5vf47FljzFis5ubvwaL04Xf4MHEvfQilg4dvF2eiBzl6hx13DDvBnIqc4i1RvDQ5744czZhjYoifuZrWDt23Ldvg8PF1LdXsHR7GUE+Vt6+chi9Ogf/8ZOVZHlWva99H5wNnm0h8TDiOhg0BXwOMcw/ChiGwZbFacyfPYO6ygq2rVhK8rCR2Hx822T4DpC7oZT0j7MoL6wDoOfITsT1CgVQAC/SDrncLhblLyKmFPzKajHZ7fj/Mkjf6mlFX9d5JHlZZnxtZgbGd2h2jB3r9+B27ASg+8ihrVW6iIj8in4SExERERERkSPCzPUzeW7Vc5y8ws3lc92YDAiaMIHOTz+F2cfH2+WJyFHO4XZw+8LbWVeyjlBrMM/8FItr3XLMwcHEz2zeqaPJ6ebG91aRllWCv93C7CuG0i+2w++fxDAgN8Mz731vu2IAOg+EUdOg5ySw6OvAg6kq3sPcWS+zffUKAEJj4pgw9UZsPr5eruzgSnfXkPFxNnmbygDwDbAx7PSuxHTv4N3CROQv2VC6gfLGcsbl2oF6/IcMwez7i/ehvfPg1/mPBGBY1zB8rJZmx6gq3gE4sfkEEh6X0DqFi4jIAfRTt4iIiIiIiLRrhmHwwuoXeG3dDCYvcHPmEgOAjpMvJOqeezBZLL9zBBGRluU23Nyffj+L8hfha/bhpRV9MdIXYvLxIe7VV/BJSdm3r9Pl5pYPVzN38x58rGZmXjqEwQmh//sELids/hIyXoDdq/Zv7zbRE74njII2upLb29wuF6u++5L0/76Ds7ERi9XK8LPPZ+gZ52K1tb05yk0NThZ/uo2Ni3ZjuA3MFhP9jotlyCld8PFve/WKyKFJ25UGwJj8QKC+eSv62lLYuRSAT2v7AgefB2+xeEaPJA4ehMlsbtmCRUTkNymEFxERERERkXbLMAyeXP4k7294mxu+dXPsBk8AH3HLLYRdM7XNtg8WkaOHYRg8veJpvs75GqvJyqvbxmL57nuwWIh55hn8Bw3at6/LbXDHx+v4dn0hdouZ6VMGMyop/LcP3lgNq9+BxS9DZZ5nm8UHBlwII26AiG4tfHXtX1FONgvfngVAbM8+TJh6I6GdY71c1W+zWM3szCzDcBskDohg5NlJdIj093ZZInKYpO5Kxeo0iMmuACBgzJj9T2b9CIYbI6oP3+20AU5GJx/4GTFo4hl0HzkWR2Nj6xQtIiIHpRBeRERERERE2iWX28VDSx7imw0fc+dnbgZsN8BiodNDD9Hh7LO8XZ6ICACvb3idtze9DcBzJSfi/8GXAHR68J8EHX/cvv0Mw+Cez9bz2ep8rGYTL04eyLjukb994PUfwze3QUOl57F/GAy9GoZeBYERLXY9RwLD7d63OrRTSneGnH42oZ1j6TNufJtbNWoYBrkbSonrGYrFasZiNXPcRT0AiOne0cvVicjhVFxXzOayzfTeZWBudGCJCMen2/5OKT+PGSmIPp6aXCcd/G306hTc/Bh51QSG+hDQQe8PIiLephBeRERERERE2h2H28G9i+4lfcM3PPBfN0mFBiY/P2Kfe5bAY47xdnkiIgB8lvUZz656FoBHG04hYoYngI+45RY6nHvuvv0Mw+DBrzbxwfKdmE3wzPkDOLF39G8feMUb8PWtgAGhSTDqRuh/Idj8WvBqjgw5q5ez8O3XOfuuBwiJ9Pw7PvbiK7xc1cEV51WT/nEW+VsrGHNeCv1PiAMUvoscqRblLwJgfGE4sIfAUaP3d3VyNsK2nwBIMw0GYGRiGGZz865Pc2dvorygltNu7E987wNb1YuISOtRCC8iIiIiIiLtSpOriTsW3sGmtfN4+EM3URUGltBQ4qa/il/fvt4uT0QEgPl583lw8YMA/N2YQPKL3wHQ8eKLCbtm6r79DMPg8e8zmZ2xA4Anz+3P6f07//aB05+HOfd5fj/kSjjlKTBbWuQajiS1FeXMnz2DLYs985YXf/IBJ193i3eL+g21lY0s+SKHzMUFYIDFZsblcnu7LBFpYam7UgHot93z9z1gzC/mwe9Ig6YaCIzm86IIoIJRv2pFX1VST1H2dxjuPTTUBAIK4UVEvEkhvIiIiIiIiLQb9c56bpl/C0Ur0nn4IxfBdWCLiyN+5mvYExK8XZ6ICAAri1ZyR+oduAwXl1uPZcS/F+J2OAiaeDJRd/9j/8pG4Nm5WUxfmAPAI2f14dzBvzGP3DBg/qOQ+qTn8Zhb4YQHwGQ6+P4CeFrPr58/h9R3X6exthaTycygUycx+ryLvF3aAZxNLtbMzWPlD3k4G10ApAyNYuRZSQSF+nq5OhFpSQ6Xg8UFiwmpNQjaUQJAwKhR+3fY8j0AzuSTWLm8CoDRSc1D9h3rS3E7cjDcZZhwtk7hIiLymxTCi4iIiIiISLtQ01TDDfNuwL14Bf/8zI2PA3x79SJuxnSs4eG/fwARkVawtXwr0+ZNo9HVyCT7ME57YTWuujr8R46g8xNPNJs5/sqCbTw3LwuA+0/rxUXDf+NmIrcbfrgblr7ieXzC/TD29pa+lHavNH8nc2a8SH7mRgCiEpOZcPWNRCUme7myg1vw7ha2LC0EIKprMGPOSyE6McTLVYlIa1i1ZxW1jlpOzg8AqvDp1RNr2N6Q3TBgi6ebypaQ0TS53HQO8aVreECzY2Sv8ATwYCKud7/WvQARETmAQngRERERERFp8yobK7l2zrWEzV/Htd+6sRgQMHo0Mc89hyUw4PcPICLSCvJr8rl2zrVUO6oZ49uHS1/LxVlWhk+vnsS+8AJmu33fvm+kb+eJ7zMB+L+Tu3PFmK4HP6jbBV/dBKvf8Tw+5WkYdnVLX8oRITM9lfzMjVh9fBhz/hQGnnw6Zkvbat1vuA1Me2c6DzwxnoJtFQyflEjKkKhmHRNE5Mj2cyv6Y3d3AKoIHP2LVvRFG6BqF1j9+LauG7CbUcnhzd4jmhqc5G9ZB0B4fCK+gYGtV7yIiByUQngRERERERFp00rqS5j649X0+WYrF6Z6ZmSGTDqDTg89hOkXgZaIiDeV1pdyzZxrKK4vprdPV257rxbnrnxs8fHEz5iB5ReByHtL83jwq00A3HR8MteP+42V2c4m+PRq2PQ5mMww6SUYMLkVrqb9cjY1Yd372TD8zPOor6pg2KTzCI6I9HJlzVWV1rP4s234Bdk55vxuAITFBHLRv0ZiNit8FznapOWngWHQJbMC8Nxsus/eVfAkHUdqTi0Ao5Obt6LflVmOszEXgMSBg1q8XhER+X0K4UVERERERKTNKqwtZOr3V3H8JzmctMoAIOzqq4i47TatEBSRNqPWUcv1864ntyqXOJ9OPPR1AM4ta7CEhRE/87VmIzM+XbWLez5fD8DUYxK5dUK3gx+0qQ7+ewlkzwGzDc6dBb0mtcbltEsNNTWkvvcGe7ZvY/LD/8ZssWC12xl/1Q3eLq2ZpgYnK7/PZe3cnbicbsxWE0MmdsE/2HPjgAJ4kaPPzuqdbK/cTtcSM5byKky+vvgN+kWQvjeEr+s6gQ3rKgEYldR8FNP2dcW4HXkAJPQb0Cp1i4jI/6YQXkRERERERNqknVU7uf7bKznn/V0M32KAyUTU3XcTOuVib5cmIrJPk6uJm+ffzKbSTYTaOvBMagLOFYsw+/sTN2M69vj4fft+s66Av3+0FsOAS0cm8I+JPQ5+Q1FDFbx/AeSmg9UPLngHkse34lW1H4ZhsGVxGvNnz6CusgKAvA1r6dK/ba0EdbsNMhcXsOSLHOqrmgCI6daB0eel7AvgReTolLYrDYCT93QC8vAfNnT/+JKqAti9CoAl1iEYxk6SIwOJCvZtdoxuQ22s+aYWi9VG5249W7N8ERH5DQrhRUREREREpM3Jqcjhpi+u5Iq3C+m5C7DZiHnqSYJPPtnbpYmI7ONyu7h70d0sLViKn8WXlzcMxv3TD2CzEfvSi/j17r1v3zmbirj5g9W4DTh/SBwPnN774AF8XRm8czbsXg0+wTD5Q0gY1YpX1X5UFe9h7qyX2b56BQChnWOZMPVGYnv28XJlzZXtrmXOGxsp2VkDQEiEH6POSaZr/3B1dRERUvM98+AH7jADEDhmzP4ns37w/BozhPm7PM+PTmreih7A7mOi64DBWGy2fSM5RETEuxTCi4iIiIiISJuSWZbJnR9dyU1vlxFXAqbAQOJeeomA4cO8XZqIyD6GYfD4ssf5YccPWM1WXs0fj/nTz8FkIubJJwgYOXLfvgu3FnPDu6twug0mDejMo2f3PXjb8epCeOtMKN4MfqEw5VPoPLDVrqm9cLtdrP7uKxZ9+DbOxkYsVivDzvwbw848D6vN5u3yDuAXZKOquB67n5Whp3ah77hYLFazt8sSkTagzlHH8oLl2BwGHTLzgd+YB9/9ZNKXlwAwKjn814chKjGZs//xIIZhtHjNIiLyxyiEFxERERERkTZjbfFaHn5vKne8U0VYNZgjwkmYOQvf7r8xM1lExEumr5vOB1s+wISJF6rPwO+N/wIQdffdBE+cuG+/xdtKmfrWCppcbib2iebf5/XHcrAAvjwX3poE5dshMBou+QIie7TW5bQrJkxsXZKOs7GRmB69mTD1RsJi4rxd1j6NdQ6yVuyhzzExAPgF2Tn5mr6ExwXiF6gVqiKy3/LC5TS5mziuOBSairFGR2NPTPQ82VQHOQsAKIk5gZxvCzCbYERi85XwC97bQscof7qPiMY3oO3diCQicrRSCC8iIiIiIiJtwvLC5Tz/+jXc+WE9AY1gTepKl9dmYuvc2dul7fP9hkKSIgJIiQrydiki4kX/3fJfXlrzEgCPGWcR9uLHAIRdcw2hUy7et9/K3HKufHM5jU43J/SI5LkLBmK1HGQFdEmWJ4CvyocO8XDJlxDatVWupb1wNDSACWw+vpjMZiZMvZHdWzPpe9wETOa2sarc7XKzMW03y77aTkOtg6BQXxL6eMKyuJ6hXq5ORNqi1F2eVvQnFIYBxQSMHrV/TEXOAnA2QEg8C8sjgAL6xnYgxG9/0F5T3siGBVvB5CZl6MQDji8iIt6jEF5ERERERES8LnVXKu+/chN3fN6IzQU+gwaQ8PIrWDp08HZpANQ1OXno6028v2wnPaKD+PyG0fjaLN4uS0S8YE7uHB5e8jAAd9pPJ+nxLzDcbkLOOZuIW27et9/6XZVc9voy6ppcjEkO56WLBmE/WAvygnXw9llQVwLh3Twr4IPbzs1HbcH21SuYO+tluo0Yw7EXXwFAeFwC4XEJXq5sv9wNpaR/nEV5YR0AHTsFYPNpGzcHiEjbZBjGvnnwiVuqAAhs1or+W8+v3SeSvq0UOHAefO6GElyN63A2LGbJp4Ucf9k1LV+4iIj8IQrhRURERERExKvm5M5h7r9v48YfnZgB//HHE/f0vzH7+nq7NAA25Fdy0werySmuxWSCcd0jMZsO0kpaRI54ywqWcWfqnRgYXOk3nqFPz8Pd2EjgccfR6cEH961e3FxQxZTXl1Ld6GRYl1BmXDL44Dfu7FwG75wLjZUQ3Q+mfAYBB876PVrVVpQz/83X2JLhCamylmUw6m8XYbP7eLmy/Urza8j4JJu8TWUA+AbaGH56V3qN6Yz5YF0PRET2yq7IprC2kKg6G9Ydu8Fkwn/kSM+Tbjds/QEAo/tE0j/0zIMf/at58DvWl+Jy5gEQHtt2bkwSERGF8CIiIiIiIuJFX2V/yYZH/sFli90AhFx4Pp3uvQ+TxfurzN1ug5mLcnjqhy04XAbRwb785/z+jEpSQCZyNNpcupmb5t+Ew+3gzIDRnPL8KlxVVfgNGkTMf/6Nyer5mi17Tw0Xz1xKRZ2DAXEdeP3yofjbD/IVXM4CeH8yOGohbgRM/hD8OrTqNbVVhmGwYf4cFr4zi8baWkwmM4NOOaPNBfCG2+CH1zZQXliH2WKi3/FxDJmYgI+/ZjKLyO/7uRX9GaUJQCa+ffpg7djR8+TuVVC7B3yC2ebfn6KqxditZgYndNz3emeTi52bCjGcBQDE9x3QylcgIiL/i0J4ERERERER8Yr/bnyfsgce4swNBgBhN00j4rrr9s/B9KKiqgZu/+9aFmWX0LtqI/0i7PzfzdfTMcDu7dJExAvyqvK4du611DpqOSZwAJfOzMWxZw/25CTiXn4Js58fALmltVw0cwmltU307hzMm1cMI9DnIF+/ZX4LH10KriZIPA4ueBfsAa18VW1T5Z5Cvn/lWXZt2gBAZJckTrxmGlGJyV6uzMPlcIMZLBYzJrOJEWcmsWVpIaPOTiIkwt/b5YlIO5KWnwbA4DzP50TA6FH7n9zynefX5BPI2OFpVT8koWOzrir5Wytoqs8D3IRERtEhKrpV6hYRkT9GIbyIiIiIiIi0urdXzMB637Mcu93AbTbR+aGH6HjOOd4uC4AfNxZy5yfrKK9t4tjKpfQrXw2lULfrJDp27+nt8kSklZXUl3DNnGsoayijb2A3bvuggabtO7B26kT8zJlYOnQAIL+insmvLaWoqpFuUYG8feVwQvwOsiJ63Ufw2TVguKDHaXDu62BtO6u7vc1stbJn+zasPj6M/tvFDJp4BuY20B3FMAxyVheT8Wk2/U+Io99xcQAkDoggcUCEl6sTkfamsrGSNXvWYDIMwtbtxODX8+D3hvDdJpK+7rda0Zfgdnha0WsVvIhI26MQXkRERERERFqNYRjMWvgfov85k6RCcPlYSXjuBYLGjfN2adQ3uXjom028tzQPi9vJ+TWpRJZvAWDU3y6ic7ceXq5QRFpbdVM11865ll01u4j3i+Ghb4NpWr8ES0gI8TNfwxbtWXVYVNXA5NeWkF9RT2J4AO9cNZzQg3XOWPEGfH0rYEC/C2DSS2DR13Nlu3cR2jkWgKDQcE6ZdgfhcQmEREZ5uTKPPblVpH+cze6sCgA2pu2m77GxmMze79wiIu3T4t2LcRkuxtbGYlTkYvb3x69/f8+T5bmwZyOYLLiSJ7D4s+UAjEoKa3YMl9ONe+88+ASF8CIibY5+yhcREREREZFWYRgGr37zAD0e/ojoCnAE+ZEyazZ+/fp5uzQ25Fdy8wer2VZci6+rnivrf8JcmofZYuWk626m19jjvF2iiLSyRlcjN/10E1vKtxDmE8qzS1JoSp+LydeX2FdfwScpCYCSmkYmv7aE3NI64kL9ePfq4UQG+R54wPTnYc59nt8PvQomPgVmcyteUdvTUFtD2ruzWffTD5xz1z/pMmAwAEmDh3m5Mo/aikaWfLGNzCWFYIDFZmbghHgGnhivAF5E/pKfW9FPKIoEcvEfPhyTfe/NW1u/9/waP4KN5WaqGpwE+VrpGxPS7BjDT49m9dclYDIR19v7P0+LiEhzCuFFRERERESkxbkNNy+/dxtD/v0DIXXQGNWBXm++j71LF+/W5TZ4PX07T3yficNlkGyv5czi72gsK8Y3IJAz/n4Pcb36erVGEWl9LreLO1PvZEXRCgJtgbySNQrnt5+DxULMs8/gP3AgABV1TVw8cynbimvpFOLLe1eNoFOIX/ODGQbMfxRSn/Q8HnMrnPAAmI7eENcwDLYuSWf+7OnUVpQDkL81c18I3xZsXV7I/He24Gx0AdBtWBQjzkwiKPQgN1iIiBwCt+FmUf4iAJKzagAIGHOQVvTdJ7Io29OKfkRiGFZL8xu37L5+nHrz/1GWvwv/4OYBvYiIeJ9CeBEREREREWlRTreTV1+dyuhXFuPrgPqkzvR780Os4eG//+IWtKeqgds/WktalufLzRN7RXFlZDGL3igmJCqas+58gLCYOK/WKCKtzzAMHlryEPPy5mE323mlZCK8+z4AnR56aN/4jKoGB5e8vozMwmoignx496rhxIX6Nz+Y2w0/3A1LX/E8PuF+GHt7K15N21NVvId5r79CzipPe+WOnWM58eobie3Vx8uVNRfaKQBnk4voxGBGn5dCdFcFXCJyeGwo2UBZQxmhRgDW9VnAL+bBN1TBDk9AT7eJZHxeCsDoX7Wir69uwi/Ilx6jjmm1ukVE5NAohBcREREREZEW43A5mPnERYx7ez0WA+oHdqP/a+9hCQzwal1zNxXxf5+so6y2CV+bmftP682Fw+IwmUz4WiBl2Ej8Qzp4tUYR8Y4XVr/AJ1mfYDaZed55Lj4vvwVAxO230eHsswCobXRy+RvLWberktAAO+9eNZzEiMDmB3K74KubYPU7nsenPA3Drm7NS2lzNsyfw09vTMfR2IDFamXYmX9j2JnnYbXZvF0aBdsq2ZNbRf/jPTdfhccGce7/DSGySxCmo7hrgYgcfj+3oj+zOhmcK7HFxGBLSPA8uW0euB0QlkJDSFeW7/CE9KOT99+8Wl/dxBv/t4iw2EDOvmMwNrul1a9BRER+n0J4ERERERERaRH1jnrev/scxn21HYC6E4Yy6JmZ++ddeqOmJhePfLuJd5bkAdArOohbYvYwpmfIvpCl/4SJXqtPRLzr3c3v8tr61wB43H4+oQ+/B0DopZcQdtVVADQ4XFz15gpW5pYT7Gvl7SuH0S0qqPmBnE3w6dWw6XMwmWHSSzBgcmteSpvkExCAo7GBmB69mXD1jYTFer/bSFVpPYs/20b2ij2YzCbie4XSMdpzo1hU12AvVyciR6LUXakADM/zASBg9Oj9N/vsa0V/Mqvyyml0uokM8iE5cv+NXrkbS3E5K6nas5rSnR2JTkpp1fpFROSPUQgvIiIiIiIih11NQxVf3jiJkYsKAWg4/2QGPfBvTGbz77yy5WzaXcVNH6wme49n9ubVo+IYsHMu6z/+idJ1Szn/n49jtmglkcjR6rvt3/HEsicAuCvwXLo+8gmG00nwqacSeeedmEwmGp0urnl7JYtzSgn0sfLWlcPp3flXbcod9fDhFMieA2YbnDsLek3ywhV5n6OhgdJdeUQndwMgZdgozv7Hg3TpN9CrnwcATQ1OVn6fy9q5O3E53WCCHiOj8fH3/qp8ETlyldSXsKl0EwDhG/Jx4QnhAXA5YesPnt93P4WMTE8r+lFJYc06cuxYV4rbsZ2qwvmkvlvK3+5/tDUvQURE/iCF8CIiIiIiInJYVVTt4acrJzFwfQVuwDltCgNvuNtr9bjdBm9k7OCJ7zJpcnlWEz1xegolX0wnc8M6TGYzvY45XgG8yFEsIz+DuxfdjYHB1R1OZejjP+CqqyNg1Cg6P/YoJrMZh8vNje+tZuHWYvxsFl6/bCgD4jo0P1BDFbx/IeQuAqsfXPAOJI/3yjV52/bVK5g762Wa6uu5/JlX8Q/23KzQdcBgr9bldhtkZhSw5Msc6quaAIjp3oHR56YQERf0O68WEflr0nZ5WtGPNKfg2r4ZzGYCRo7wPLlzKTRUgF9HiB1G+jdLARj1i1b0LqebnZtKcTs9XZ0S+g5ozfJFROQQKIQXERERERGRw6Zkzw6WX3oOPbfX4bCA5f5b6X/+VK/Vs6e6gb9/tI7UrcUAjO8ZxX3jopn//KOU7srD5uvH6bfcSdeBQ7xWo4h41/ri9dyy4BacbidndRjHxOeW4ywvx7d3b2Kefx6T3Y7LbXDrh2uYs6kIu9XMzEuHMKxraPMD1ZXBO+fA7lXgEwyTP4SEUd65KC+qrShnwVszyUxfCEBQeATVJcX7Qnhva6x1kP5xFk0NLkIi/Bh1TjJd+4dr7ruItIqf58FPLO4EbMavXz8swXtHX2z51vNryklUOQzW7aoEms+D351dQWO9A8O5E4D4vv1brXYRETk0CuFFRERERETksNi9bT1brriYLkVN1PmaCHj6X/QYf67X6vkps4g7PlpHaW0TvjYz957aixPCG/j8kbuoq6wgMDSMs+58gMguiX/sgG43rJgFEd2h6zEtW7yItIrtldu5ft711DvrObbDUC6dlUfT7t3YEuKJmzEdS2AAbrfBHR+v5et1BdgsJqZfPLhZIAJAdSG8fRbs2QR+oTDlU+g80DsX5SWGYbBh/hxS33mdhtoaTCYzg045g1F/uwi7r59Xa6spbyCwoy8AfkF2RpyZhMvppu+4WCxW77bFF5Gjh8PtIGN3BgDdsuuBX7SiB9j6vefX7hNZmlOGy23QNTyAmA7730Nz15ViuIowjEZ8/AOISkxutfpFROTQKIQXERERERGRvyxvzSLyp15LdJWLiiAzUa++SOLg47xSS4PDxaPfbuatxbkA9OwUzPMXDCA5IoC377yJusoKIhK6ctadDxAUFv47R9urJBu+nAZ5GdAhAa5fAnb/FrwKEWlpRbVFXDPnGioaK+gX3JPbPmqkcetWLBHhxM+ahTUsDMMwuPeLDXy6Kh+L2cQLFw7kuB6RzQ9UkQdvTYKyHAiMhku+gMge3rkoL3E5nXzy6P3s3LgOgMguSZx4zTSvh0MNtQ5WfLOD9Qt2ceoN/YjvHQZA33GxXq1LRI5Oq4tWU+uoJczeEevKjbj5RQhfkgWl2WC2QdLxpP/oWek+Kils3+sNw2D7+hLcDk8r+rje/TCbNU5JRKStUggvIiIiIiIif8m2BV9ScctddGgwKIywkfzGbOKSB3mllszCKm56fzVbi2oAuHJMV/7v5O74WD1fUJ526z9Y/PF7TLj6Bux+fyBEdzlh8Yuw4DFwNoA9EEZNA6tvS16GiLSwysZKrp17LQW1BXQNTOChuaE0rliIOSCA+BkzsMfGYhgGD329mfeW5mEywX/+1p+T+3RqfqCSLE8AX5UPHeLhki8htKt3LsqLLFYroZ1jKcjewujzLmLQKZMwW7wXDLlcbjam5rPs6+001joByN1Yui+EFxHxhtRdqQCc4eiNu3IB5qAg/Pr19Ty55TvPr13Hgm8wGdtKgOat6DFgxKREfpr1ATUNmgcvItLWKYQXERERERGRPy3zkzdoeuBJ/J2wI8GXgbM/IrpT6698NAyD2Rk7eOy7TJqcbsIDffj33/ozNjmUgq1biOnRC4DQzjGcetMdf+ygRRvhixtg92rP46Tj4fTnPEGbiLRb9c56bpx3I9kV2UT6RvCflT1pnPc1JpuN2JdewrdnTwzD4KkftvB6+nYAnjinH5MGxDQ/UOF6eOtMqCuB8G6eFfDBnVv/grwkP3MTAR060iHac2PC2MmXMvSMswmJjPZaTYZhkLuhlIxPsikvrAMgtHMAo89NJr6XAngR8a6f58GP3OVpLx8wYgQm696I5ucQvttE9lQ3sLWoBpMJRibuf+8ymU0kDgjjR0cxAPEK4UVE2jSF8CIiIiIiIvKnbJz+FDzzOjZgU+8gxs36grAOnX73dYdbcXUjd3y8lgVbPF9IntAjkifP7UeQ1c0XTz3M9jUrOfuuf9Kl/x9cne9sgrR/e/5xO8A3BE56DAZMBpOpBa9ERFqaw+3g7wv/zpriNQTZg3h55zgcn74PJhOdn3qKgBHDAXjhp2xeXrANgIcm9eZvQ+KaH2jnMnj3XGiohOh+MOUzCPiD4y3auYbaGtLem826ud8T36c/5977MCaTCR//AHz8A7xa24L3trApbTcAvoE2hp+RSK/RnTBbNPddRLxrV/UucipzsJgsRG4ooIlftKKvK4OdSzy/734yi7eVAtCrUzAdA+zNjmOxWrn21Tcp3JZNx05Hz41fIiLtkUJ4EREREREROSSGYbDu4Tuxv/sVACtGhXPGS18S4tex1WuZn7mHOz5eS0lNEz5WM/ec2pMpIxKorSjnw4cfZM/2bVhsNpoa6v/YAfNXwhfTYM9Gz+Mep8Gp/4Yg763sFJHDwzAM/pnxT1J3peJj8eGVmrNwz3wdgOj77yP45JMAmJG6jf/M2QrAvaf2ZMrILs0PlLMA3p8MjlqIGwGTPwS/Dq13IV5iGAZbl6Qzf/Z0aivKAQiOiMLlcGC123/n1a0joVcYmYsL6H9cHINP6YKPn776FJG24edV8MOC+9C0bi0AAWP2hvBZP4Lhhqg+0CGe9GzP879sRd9Y52D9gny69AsjPDaImO49W/cCRETkkOknUREREREREfnDDIeDtbddi8+cDADSTo3nosc+JcDeuqsfGxwuHv8uk9kZOwDoER3E8xcOpFtUEMV5O/js8QepLi3GLyiYM//vPjp3+50vKh31MP9Rz/x3ww3+4XDKU9D7LK1+FzlCPLPyGb7c9iUWk4UXzBdhf2YmAOHXX0fHCy8E4K3FO3j020wAbp/QjavGJjY/SOa38NGl4GqCxOPggnehld//vKGqZA/zZr1CzqrlAHTsHMuEq28grldfr9XkcrhZO38nvgE2eo32rAbtOiCci/81kqBQX6/VJSJyMD/Pg59YFgfOldgS4rHHxnqe/LkVffeJGIZBerZnJfwvQ/i8jWUs/TKHrcuLmPzA8FatXURE/hyF8CIiIiIiIvKHuGtrWXvNFHxXbMZlgvmTe3D1P97H19q6YceWwmpu/mA1mYXVAFw+ugt3ntwDX5uFHetW89V/HqOpvo6OnWM5+84H9s0r/k25GfDFjVDmaT1N37/ByY9DgOYHixwp3tz4Jm9sfAOAJ4IuoeMDszHcbjqcdx7h06YB8OHyPO7/wtMF44bjkph2Qkrzg6z7CD67BgyXp0vGua+D1adVr8MbCrK28NFD9+BobMBssTLszPMYfuZ5Xlv9bhgGOauLyfg0m6qSBnwDbCQNjMDH34bJZFIALyJtTr2znuWFnpuYemU34QYCf25F72yC7Hme33ebSG5pHfkV9dgsJoZ22d9lasf6Egx3PeU732He66s47rKpmM2WVr4SERE5FArhRURERERE5Hc5S0rYcNmF+GbvosEGC6YO5sbr38BmsbVaDYZh8NbiXB75djNNTjfhgXaeOq8/x3WPBGDPjhw+e/yfuF0uYnv24Yy/34NfYNBvH7CxGuY+CMtf8zwO6gSnPQvdT275ixGRVvPlti95esXTANwTdhFd/vk+7qYmAsefQPQD92Mymfh8dT53fboegCvHdOXvJ3ZvfpAVb8DXtwIG9LsAJr0ElqPja7WILokEhUfgFxTEhKtvJCw23mu17MmtIv3jbHZnVQDgH2Jn5JlJ2H2Pjv8WItI+LS9cTqOrkU4BnbCs2IAbCBgzxvNk7iJoqobAKOg8kPTlOwEYGN8Rf7vnvc3tcpO7sRS3Mw9H7R52bd6oAF5EpB3QT6giIiIiIiLyPzXl5rL50sn4FJZR5Qfpt47jpotfwGpuvf+lLKlp5M6P1zEvcw8Ax3WP4Mlz+xMRtH8VakRCV3qOPQ6308mJ196M1fY/bhDIngdf3QyVni86GXQJTHjoqJjrLHI0Sd2Vyv3p9wNwTcRZDH7sW5w1NfgNGUzM009jslr5bn0Bt3+0FsOAi4bHc++pPTH9cgxF+vMw5z7P74deBROfArPZC1fTOhyNDaz58VsGTTwDi9WK1WbjvPseISCkAyYvXXdtZSNLPttG5tJCMMBqMzNgQjwDT4xXAC8ibd6+VvT2gTjyvgSrFf9hwzxP/tyKvttJYDaT8XMr+qT9regLt1fRWOsEPD+3JvTt32q1i4jIn6efUkVEREREROQ31a/fQNaVl2KvqqOoA6y563RumfQ4ZlPrBTELtxZz+3/XUlLTiN1q5u6JPbh0VBdMJhPOpiYMtxubry8mk4kTp07DZDY3D9CaXVA5/HAvrHnH87hDApzxPCSOa7XrEZHWsWbPGm5fcDsuw8W5ESdy8vPLcRQX45OSQtzLL2P29eWnzCKmvb8al9vg3MGxPDSpz/73D8OA+Y9C6pOex2NuhRMegN96fzkC7FizkrmzXqZyTxGG282wSecCENgx1Kt11VU17Qvguw2LYsSZSWo7LyLtgmEY+0L4UfmBAPgN6I8lMNDzObNvHvwpuN0GGdtKABidvH8s0o51nm0m9y4A4vsOaKXqRUTkr1AILyIiIiIiIgdVk5bGjhtvwNboICcKcu6bzM0n3PvbAfdh1uBw8eT3W3g9fTsA3aOCeO7CAfSIDgagrqqSL55+BN/AQCb9/R7MZgtmy/9ozZn5jaeddE0RYILh18IJ94E9oBWuRkRaU3Z5NjfMu4EGVwPHh49kyht5NO7YgbVzJ+JmvoYlOJhFWSVc+84qnG6D0/t35olz+mE2731/c7vhh7th6SuexyfcD2Nv994FtbC6ygrmv/kamekLAQgKiyA8PsFr9Rhug+Kd1UQmeN7vI+KCGHVWMp1TOhDVNdhrdYmIHKptFdsoqC3Ax+JD9IYC6vjFPPiijZ6uTFZf6HosmwurKK9zEGC30D+uw75j7FhfittVQVN9GWaLhdiefbxyLSIicmgUwouIiIiIiMgBKj77jPx778XicrO2i4mqf17DjcNvarUAPquommnvryazsBqAS0cm8I9TeuJr84Ts5QX5fPr4P6koLMDHP4Dy3bsJi407+MFqS+DbO2Djp57HYSmeec7xw1vjUkSklRXUFHDN3GuoaqpiQMc+3PKpk4b1G7B06ED8zJnYoqJYmlPKVW8tp8np5sReUfznb/2x7AvgXfDVTbB6b8eMU56GYVd774JakGEYbFwwl4Vvz6KhtgaTyczAiacz+vyLsfv6eaWmguwKFn2URcnOGi64fxgdoz03Sg080Xuz6EVE/qzUfM8q+GERg2lYuhyAgJ9D+J9XwSceB3Z/MrJzPPt2DcVm8XSdqq9poqa8AcPlaUXfKaWH196fRUTk0CiEFxERERERkX0Mw6BkxgxKnnkWM5DW24TvfX9n6oArWu387yzN4+GvN9HodBMWYOep8/pxfI+offvsytzIF08/QkN1FcERkZx91z8PHsAbBqz/GL77P6gvA5MFRt8Mx94JNrUxFjkSlTeUM3XOVPbU7SE5KJGHFkZTn/49Jj8/4qa/ik9iIqvyyrli9nIaHG6O7RbBC5MH7gs7cDbBp1fDps/BZPbcsDNgslevqSWlvvsGK77y3KAU0SWRE6dOIzopxSu1VJXUs/izbWSv3AOAzcdC2e7afSG8iEh7lLYrDYCT6hJx16RiCQnBt3dvz5Nbf25FPxGA9H2t6PfPg/cLtHPl02P59PGF5K2HBLWiFxFpNxTCi4iIiIiICACGy0XBI49Q+d77AHw53EzXu+7jbz0vaJXzl9Y0cucn65m7uQiAY7tF8NR5/YgM2h+YZ6Yv5PuXn8HldBKdlMKZ/3c/AR06Hniwqt2e1vNbv/c8juoLk16EzgNa4UpExBvqHHXcMO8GdlTtIDogmn9vGkD9N/8Fq5XY55/Dr39/NuRXcunry6htcjEqKYzpUwbjY907xsJRDx9Ogew5YLbBubOg1yTvXlQL63PcBNb/9APDzzqfwadM+t8jPVpIU72Tld/nsnbeTlxON5ig16hODDsjkYAQn1avR0TkcKlqqmL1ntUA9Mlx0QT4jxqJyWKB6kLIX+nZsdtJNDndLM0pA5qH8AAWq5moxHiq9uzUPHgRkXZEIbyIiIiIiIjgbmxk1x1/p/bHubiBt8dbGH3rY5yedHqrnD8tq5jb/ruW4upG7BYzd03swWWjuuyfzwys/v4rfnpjOgDJQ0dyyrTbsfn8akW7YcCqt+DHe6GxCix2OOb/YMwtYLG1yrWISOtzuBzcuuBW1pesJ8QnhJeKTqTxndcB6PzIwwSOHcuWwmqmzFpKdYOTIQkdmXnpkH0jLmiogvcvhNxFYPWDC96B5PFevKKWkZ+5iYKsTIacfjYAYTFxTH15ttdaG7vdBv99bDmVe+oBiOnekTHnJRMeG+SVekREDqeM3Rm4DBeJIYlYvlsP/GIe/NYfPL/GDIagaNZsL6Pe4SIswE73KM97oOE2wAQmk4ljJl/GMZMvwzAMb1yKiIj8CQrhRUREREREjnKuykrybriBhhUrcVjg5TNsnHPtv5mQMKHFz93odPHU91uYuWg7ACmRgTx/4UB6dgo+YN9OKT2w+vjQf/zJHHPxFZjNv1qxWb4DvroZchZ4HscM9rSSjuzZshchIl7lNtzck34PGbsz8LP68YrjAlwvvARA5B13EDJpEjnFNVw0cynldQ76x4bwxuVD8bfv/VqsrgzeOQd2rwKfYJj8ISSM8uIVHX4NtTWkvTebdXO/B5OJmJ696ZTcHcCrs4XNZhM9R3Vic0YBo89Jpku/cEwm0++/UESkHfi5Ff1xHYZRv+49AAJG7f18+XkefLe9reizPa3oRyaF7bsJdfvaEjI+zabXmM4MOikBQO+RIiLtiEJ4ERERERGRo5ijsJDcq67Ckb2NOh945jxfrrnsecbGjm3xc2fvqeam99ewqaAKgCkjErjn1J77V6bimRH/85eN0UkpXPb0y4RERjU/kNsNy2bAvAfBUedZxXr8vTDiOvh1UC8iRxTDMHhq+VN8t/07rCYrL/hdjvX+lwEIvfxywq68grzSOia/tpSSmkZ6dgrmzSuGEeS7tzNGdSG8fRbs2QR+oTDlU+g80ItXdHgZhkHW0nR+emM6tRXlAPQZN4EO0Z29Uk9FUR3pn2TTb1wscb1CARgwPp4B4+OxWM1eqUlEpCW4DTeL8hcBcExhB3C7sScmYuvcGZrq9t80uncefMZB5sHvWF9CZXE9JTvzcLtivTIyRERE/jyF8CIiIiIiIkepxqwscq+6ClfRHsoC4T+T/blr8qsMjR7aouc1DIP3luXx0NebaHC4CQ2w8+Q5/Rjfq3m4XlWyh6+feYLjL7+G6ORuAAcG8MVb4csbYedSz+OEMXDG8xCW1KLXICJtw6wNs3hn8zsAPBl+NSH3vIbhdBJ8xulE3vF3dlfUM3nmEgqrGkiODOSdK4fRwd/ueXFFHrw1CcpyIDAaLvkCInt48WoOr6qSYua9/go5K5cB0LFTDBOm3khcr76tXktDrYPl32xnw4J83G6DmvIG/tZzKCaTSeG7iByRNpZspKyhjABbAFEbC6kCAsbsbUW/fSE46yEkDqJ6/z97dx1mVdU9cPx7c7qT6SFmhphh6Bi6BAxQKVFsERFF7O4OBAOl7EIFBCwE6e7OAaa7++Z5/zgwygso6iSzPs/j83jvPfuctd/fz9nn3nX2WpSbrOxOKQIgoYWahFfsCkkH8lEUK4dWv8vRDe9y81uzcPPxPf8FhRBCNDiShBdCCCGEEEKIJqhixw5S7pqMUlpKmg/MnODBS9fOpr1f+1q9bkG5mUcW7mPFoWwAerfy5a3R7fF3P7u3e/bJRBa/9hzlRYX8Nvc9Jrw68+zymzYrbHoH1rwKNhMY3WDwc9DpFtBKQkeIpmDhsYXM3DUTgKeb3Ur4059jq6zEpVcvgl56idwyM9fP20paYSURPs58dXs3fFwd1MF5x9UEfEk6eIbBjUvBO7IeZ1OzbFYr3zz9MKX5uWh1erqOHE23kaPRG411G4fNzoG16Wz/8RSmCisA4bE+JFzbUkoqCyEuaevT1VL0PZv1oHLeJuBP/eDPlKKPHgYaDduSCrDaFUK8nAjzcQYgJ7mUyhIzWm0WNqsFRzc3XL196nweQggh/j1JwgshhBBCCCFEE1Oy/DfSH3oIzGaOBMPs632YMXIeMd61uwN0w/E87v92DzmlJow6LQ8PjebWhMjqvpdnnNi5lR9nvo7VZMI3NJyRDz15drImaz8suRsy96qvWw6GK2eAR0itxi+EaDh+T/md57c8D8DdweOIf3kZ1qIiHGNjCZk5gwKTnevnbeVUXjnBnk58eUf3Px72ydoPn42EijzwjVJ3wLvXT3n22qLT6+l+7VgOrl3FkIlT8AkJq/MYUo8UsO7rYxRlVwDgHeRCr1GtqsvQCyHEpWxd2joABmjbYMn4FQwGnLt0UdsoHftVPShqKACbTveDP7MLHtRS9AAubjlUFkB4u/by8JIQQjQykoQXQgghhBBCiCak4IsvyX7pJVAUtkVp+HpsILMun0dzz+a1dk2z1c6bvx1lzrqTALT0d2XmuHjaBnmcc+zuX5ex+pO5KIqd8LgOXDntURycXdQPrSZY9yZsmA52Kzh6wtBXof04kB8lhWgydmTt4OG1D2NX7IwNvoIhM7diysjEGBFB6OwPKdUYmTBvC8dzyghwd+CrO7oR7OmkDk7dBl+OgqpiCIyDCYvBpfGX9rWYqtj03VeEto2leQe1pUhs/yHE9h+Cpp6qg5jKrRRlV+DkZqDrlc1pk9AMrU4qlQghLn15lXkczD8IQPtTCmWAc8eOaJ2dIX0nlGWrVZwiegGwMTEfgIRW5ybhLVVJAITFxtdZ/EIIIWqGJOGFEEIIIYQQoglQFIXct2eQP2cOAL910PDrNaHMHTqPULfQWrtuYk4ZU7/ZzcGMEgCu7xbGk5e3wcmoO+s4u93G2s8/YtfPSwCIHTCEgbdNRqc//bU1bYe6+z33iPq69VUw/E1w+78e8UKIS9rRgqPcs+oezHYzgwL6cP3HKVQdP47ez4/QefOodHbjxvnbOJRZgq+rkS9v7064z+kHeU6uga/Hg6UcQrvD+AXg5Fmf06kRSXt2snL+LIpzsjm6eT23vj0bvdFY58n3ihIzhVnlBEd5AdCiox99xkUR1S0QByf5CVII0XRsSN8AQBufNvDTHgBc/r8UfcsBoHcgv8zEoUz1PrlnC7XcfFmhibzUMhSliuKcZADCYmu3ZZQQQoiaJ3fAQgghhBBCCHGJUywWMp96muIffgDgmz5adg2N5OPL5hHoElg711QUvtmeynPLDlJlsePlbOC1a+MY0vbC1yvKzgSg17gb6TpytFpy01wBq1+CLbNAsYOLn5p8bzuyVuIWQjRcqaWpTFo5iTJLGZ18OnDfUoWKnbvQurkROm8uVv8Abv1oG3tTi/B0NvDF7d1o6e+qDj76C3x7E9hM0Lw/jPsSjC71O6H/qLyokDWfzePIxrUAuPn4MfDWSXXf991iZ++qVHb+koRWp+WGF7rj4GxAo9EQ20/ahAghmp4zpej7BiZQsfVTAFx7/X8/+OEAbD6p7oKPCXTD19UBALvNTtveQWSf3E1akYJ3cChu3o2/aosQQjQ1koQXQgghhBBCiEuYvbyctPumUb5+PTYNzBmmJb1fDB8Pno2vU+38mFdYbubRRftYfjAbgF4tfXlrTHsCzvRjPg+tVscV9z5M6qH9NO+ollImaQMsvQcK1DL2xI1Vy887Sz9hIZqavMo8Jq2YRF5lHlGerXhucxAVq5agMRoJef89aN6SOz7dzvakQtwc9XxxWzdiAt3Vwfu/h0UTQbFBzBUw6iPQO9TvhP4Du83Gnt9+ZtO3X2CqKAeNho5DryRh7A0YnZzrLA5FUTixK5fNixMpyasCwC/MmcpSCw7OhjqLQwghGhKL3cLmjM0A9C70x15Rgc7bG4eYGChKgewDoNFCqyHAH6Xoe/6pH7y7rxP9ro9h5bxVpB2AcClFL4QQjZIk4YUQQgghhBDiEmXNzyf1zklUHTiASQ/Tr9Zi6RbHR4M/xMPh3H7sNWFTYh73f7uXrJIqDDoND18Ww229ItFqz+3ZnpeazOH1q+l13U1oNBoMjo5qAr6qBFY+Czvmqwe6B8MVMyBqSK3ELIRo2MrMZUxeOZmU0hSCXYN5K7EbFQs/Aa2WoDffwNCxM3d+voONifk4G3V8cktX2gWf/hu342P4cRqgQNw4GPE+6Br3z2HpRw+x+pPZAPhHtmDQ7ZNp1jK6TmPISS5hw3fHyUwsBsDFw0j3kS2I7haI5jx/74UQoqnYk7OHMksZ3o7e+B/IpABw6dlTbRFy9Ff1oNDu1Q+Vbjqh9n5PaOlzzrliB16Gi5cXYW2lFL0QQjRGjftbhxBCCCGEEEKI8zKnpJBy+x1YUlIoddLwymgtHh07M3fAe7gaXWv+elY7b604ypx1J1EUaO7nwjvjOvyRCPs/yfv3sGz6K5gqynHx8qHjsCvVD46vhGVToSRNfd3pFhj8PDi613jMQoiGz2wzc9/q+zhccBhvR2/eK76CyrnvAxD49NM4DxzE3V/tYvXRXBwNWj66uQudwtWe5Gx6F357Uv33LrfDsDegjvuk1xSb1YpOr/6MF9omlnb9hxDQvCVxgy5Dq9XVaSylBVV8/9pOFLuC3qAlfkgYHYeEY3Co2ziEEKIhOlOKPiEogYrv1R3x1f3gj50pRT8MgLTCCpLzK9BpNXSNVJPyBZnlmCqsBES6ExDZgoDIFnU7ASGEEDVGkvBCCCGEEEIIcYmp3H+A1DvvxFZQQI6HhpfGaomMTWBG/xk46Z1q/Honc8uY+s0e9qerOyKv6xrGU1e0xtl4/q+cB9asZMWcd7HbbARFtyEmoQ9UFMDyJ2DvV+pBXhFw1bsQ2afG4xVCNA42u41H1z/K1qytOOudmaWbgOWN6QD4TpmC+5gxTFuwh+UHszHqtMyZ0JnuzX1AUWDNK7D2NfVEvabBwGdA0/h2aKul539ix4+LGf/iW7h6qUmayybdW7dx2JXqiiZu3o7EdA/EZrPTY2QLXL0u3GpECCGamvVp6wHo59aRqgM/AOpOeKpK4JT62Zkk/KbTpejbh3jg5qi28di3Oo2D69JpPzCUXqNb1W3wQgghapQk4YUQQgghhBDiElK2fgNpU6eiVFRwKkDDy2O0dGo9kDf6voFRZ6zRaymKwrc7Unl26SEqLTY8nQ28ek0cQ9sFXvD4Td9+wZZFCwCI7tmHoXfdhz7xV/jpASjPATTQfTIMeAKMLjUarxCi8VAUhZe3vsyK5BUYtAbe85qE7pG3URQFz3Fj8b7rLh5duI+lezPQazXMur4jfaL81AT88sdhyyz1RAOfht4P1O9k/qW0IwdZNf8DclOSANi74mcSxtxQpzEodoVj27LY9uMprrwnHs8Ated8vxtizttmRAghmrL0snROFJ9Ap9ERlwyFioJDq1YYAvzh4A9gt4BPS/BVk+sbT5ei79VS7QevKArJ+9X3LJX7OLo5m4j2HXBwlntiIYRojCQJL4QQQgghhBCXiKIffiDzyafAamVfhIa3rtHSP+ZyXuz1IgatoWavVWHmsUX7+eVAFgA9W/gwfUw8gR7n3xFptVj47cOZHN6wBoBuV48hYfgQND/cDoeWqAf5RsOI9yC0a43GKoRofD7Y+wHfHvsWDRreDLob90dmYbdYcBs8mIAnn+TpZQf5bmcaWg3MHNeBQW0CwG6DZffC7i/Ukwx/E7reUb8T+RfKiwpZ98VHHFq/GgBHVzd6jbuR2IFD6jSOjMQiNn53nJzkUgB2r0ih/w0xAJKAF0KI8zizC769X3vsG3YD4NKrl/rh0dOl6KOGAmrCfePpnfA9Tyfh89PLKCs0oTNoOLx+Ebt+KmbsM68S0qZdHc5CCCFETZEkvBBCCCGEEEI0coqikD93HrnT1TLN69tomHWFlpExo3iq+1Poarhf8OYT+dz/7R4yi6sw6DQ8OCSaO3o3/8ukTM6pRI5uXo9Wp2PQbZOJ9S2CD7pDZSFodGq56L4Pg96hRmMVQjQ+C44s4IO9HwDwXPhdhDz1CbayMpy7dKHZG6/z8q/H+GJLChoNvDWmPZfHNQOrGRbdAYd+AI0WRrwP8ePrdyL/wu7lP7Lh688wV1aARkPsgCH0Gncjzu4edRZDSV4lmxad4MSuHAAMjjo6DQ2n/cDQOotBCCEaozP94PsE96Z845fA6X7wNisc/009KHo4AMeyy8grM+Fo0NIhzBOApH1qUt4v1EzSzmL0Dg40i4qu20kIIYSoMZKEF0IIIYQQQohGTLHZyH75FQq/VH/oW9pNw5f9tVzfZgIPd3kYTQ32QLbY7ExfcYwP155AUaC5rwszx3UgNuTvk0NBUa0Zcue9uBjtRJycC+uXqx8ExqrJsmbtayxOIUTjtTxpOS9tfQmAeyNuIvblH7Dk5uEQHU3IrPeZsS6ZeRtOAfDK1bFc3SEELJWwYAIkrgCtAUbNhzYj6nMa/1pRVibmygoCmrdi4G2TaNaybpMvO34+xY6fk7FZ7Wg00DohiG5XNcfZvWbbmQghxKWm0lrJtqxtAPS2NcealYXGaMS5cydI2waVBeDoCaHdANiYqJad7xLhjYNefWA26XQpegfHTABCW7dDp6/ZalZCCCHqjiThhRBCCCGEEKKRsptMZDz8CKXLl6No4NMBWn7uqmVi3ESmxE+p0QT8qbxypn6zm31pxQCM6xLK01e2wdl44a+VGceO4OjqindQCCgKbV1SYMXTYCoBnRH6PgIJU0EnPy4KIWBL5hYeXf8oCgrjQ69m0DtbqEpOwRAcTOicOXy4I5t3VyUC8OyVbRjXNQyqSuDr6yB5A+idYNwX0HJQPc/k4pUXFWKpqsIzsBkAPUePxzc0nLb9BqKt4SomF0Oj1WCz2gmJ8SJhVCt8Q1zrPAYhhGiMtmdtx2QzEegSiM++NHIA586d0To6/qkU/WWgU++dN53uB59wuhR9RYmZ7KQS9d+LTgAQFhtfp3MQQghRsyQJL4QQQgghhBCNkK2khLTJd1OxYwc2vZZ3roDNrbXc1/E+bou9rcauoygK3+1M49mlB6kw2/BwMvDqNbEMi232l+OObdnAL+9Nx9Xbh+semILz6icgSe2TSUhXtfe7n5TXFEKoDuYfZOqqqVjtVi4LHsj4L9KoOHgQnZcXofPm8umxMt5YfhSAR4fFcHNCJFQUwBfXQsYucHCH8QsgvGc9z+Ti2G02dv/6I5u++xK/8EjGPvsqGo0GB2cXYgfUXe/31MMF6I06mrVQK5q0HxiKT7Ar4e18avRBLiGEuNT9UYq+D+UfbwBOl6KHc/rBW212tp4sACChhZqETz2UDwr4hjiTeewQAOGShBdCiEZNkvBCCCGEEEII0chYsrJIvWMipuPHMTsZeOVqGwfDtTzW9THGt665HsjFFRYeX7yfn/arJTF7NPdh+tj2NPNwuuAYRVHYsWwR6778GABvFxuGT4eBvRwMzjDgKeh2J9TDDk8hRMOUXJLM5JWTqbBW0M2/K1N/1lK2aTMaZ2dC58zm22wtL/50AID7BrViUt8WUJoFn18NOYfAyRsmLIKgDvU8k4uTdugAv3/8IXkpSQDYLGaqykpxcnOvsxgKs8rZtDCRpP35+AS7MuaJLmi1GvQGHRGxvnUWhxBCXAoURWF9mvqwaR//HlRsWwSAS69ekJcI+cfVdiktBwKwL72YUpMVDycDbYLUv/2tugbi4e9MxtGDpO034ezhiW9oeP1MSAghRI2QJLwQQgghhBBCNCKm48dJuWMi1qwsKjwceHqUlbQAPc/3eJarW11dY9fZejKfaQv2kFFchV6r4YEh0Uzs0xyd9sI7I+02G79/9AH7Vv4KQIdQK/2MC9HagYjecNW74B1ZYzEKIRq/nIoc7lxxJwVVBbT2iuGZHWGU/fwN6PWEvPMOP5o8eeqHfQBM6tuCqQNbQVEKfDYCCk6CayDcuAT8Y+p5Jn+vrLCAdV98xOENawBwdHWj9/ibiO0/BI1WWycxVJVb2P7jKQ6sTcduV9BoNQRFeWKz2tEa5eEoIYT4N04WnySjPAOj1ki7TD05VVXo/HxxiGoFm99TD4pIAEe16sim0/3gezT3qb631mo1BDb3IO1gFgBh7drX2doghBCidkgSXgghhBBCCCEaiYodO0idfDf2khIKA1144poqijwNvNbnFYZGDK2Ra1hsdmasPMasNSdQFIjwcWbmuA60D/X8y3HmygqWzXiNpD07AegfmERH11QwusGQF6DTzSCljYUQf1JiLmHSykmkl6UT6hbKm2m9KPvyQwCCXnmZVW6RPPLNbgBu7hnBI0Oj0eQnqgn4knTwDIMblzaKh3uyT53g2+cexVxZil+zjAABAABJREFUCRoNcQMvo9e4G+ts97vNZufAmnS2/3QKU4UVgPBYHxKubYlXoEudxCCEEJeqM6XouzTrgm2rei/s2jNBbetxVH04lejh1cdvOJ2ET2h1buWRzldeQ1T3XlgtllqOWgghRG2TJLwQQgghhBBCNAIlv/1GxoMPoZjNZES68+RV5ZhdHZjRbzp9Q/vWyDWS88u595s97E0tAmBM5xCeubItLg5//9Vx7ecfkbRnJ3qtwuVBh2jpVgCtLoMr3gaP4BqJTwhx6aiyVnHP7/dwvPA4vk6+vFd1LeXvvAmA/6OPsDmyC9O+2oVdgeu6hvLMlW3QZB+Az0ZCRR74Rqk74N2D6nciF8kvLAJ3vwD0BgMDb5tMYItWdXr95P35bPjuOADeQS70GtWK0DbedRqDEEJcqtanq6Xoewf3pmzWQgBceiVARQGkbFYPOt0PvtJsY1dyEQAJLXwA2PFzEqWFVbTrHYxfmBvufv51OwEhhBC1QpLwQgghhBBCCNHAFXz5JdkvvgSKwrF2Xjw3tAS9kzPvD3iH7s26/+fzK4rCwl3pPLPkAOVmG+6Oel65Jo7L45pd3AmsJhKCc8h3KqFfwAkCvQ0wbC7Ejpbd70KIc1jtVh5a9xC7cnbhanDlA6fbMT36CgA+t9/Gvh7DueezHdjsCtd0COalkbFo0rbDl6OgqhgC42DCYnBpuL3LywoL2LFsEb2uuwm9wYBWp+Pax57DxdOrzsoLm6usGB3Vn/4i2/vSPN6P0DbetElohlYnJY6FEKImlJpL2Z2tVm3p5RRLxaEXAXDp2ROOrwDFBv5twUvt774juQCzzU4zD0cifV1QFIXDmzIoyasivK0PfmFu9TYXIYQQNUuS8EIIIYQQQgjRQCmKQu6MmeTPng3Azh4+vNGnCGcHN2YNmkUH/w7/+RrFlRaeWLyfH/dlAtAt0pu3x8YT5On0t2MLMtLxtmXAkrtxzjvK2HDQtB0Jw98AV9nBI4Q4l6IoPL/5edakrsGoNfJ+wL3wwOtgs+ExciSJI25i0qc7sNgULo9txuuj4tAmrYWvx4OlHEK7w/gF4ORZ31M5L5vVyu5fl7H5+68wV1bi6OpG92vGAuDq7VMnMVSUmNm67CRJe/MY/1x3HJz0aDQahk2KrZPrCyFEU7IpYxNWxUqkRySe+5OpABzatEbv4wOrflEPih5WffzGxHwAerbwRaPRUJBZTkleFVq9hpT9P7J3eQqdLh9JWLv29TAbIYQQNUmS8EIIIYQQQgjRACkWC5lPP0Px4sUArBzix5yOBXg6evHh4A9p69P2P19j26kCpi3YQ3pRJTqthvsHRzGpbwt02r/fvb7n58Ws+mw+gwKOE+eVBS7+aC5/C9pc9Z/jEkJcut7Z/Q6LExej1WiZHnk/rg/MxFZVhUvfPqTfPo3bPt2JyWpnUGt/ZoyLR5+4HL69CWwmaN4fxn0JxobZwzz14D5+/+hD8tNSAGjWMprI+E51dn2rxca+VWns+CUJS5UNgKS9uUR3v8iqJkIIIf6x9Wl/lKIv/34jAK4JCWA1w/GV6kF/SsJvOnG6H3xL9cGspP3q65AoL07t/paC9FTa9R9cV+ELIYSoRZKEF0IIIYQQQogGxl5eTtq0aZSvWw86Ld+P8OHb6EJ8nfyYM3gOrbz+Wy9hq83OO78f573VidgVCPdxZua4DsSHev7tWMVuZ90HL7Bj3XYAsqpciWs/Hi57CZylv7AQ4sI+P/Q58/bPA+D5llMJemI+1uJiHNvHUfDAs9zy+W4qLTZ6t/LlvfEdMRxaBIsmqqV8Y66AUR+B3qGeZ3GusoJ81n7xEUc2rgXAyc2d3uNvpl2/QXVSel5RFE7symXTokRK86sA8A93I2F0K4Jaetb69YUQoqmyK/bqfvB9gntTtukhAFwSEiB5I5hLwcUfgjoCUFxhYX96MQAJLdWWKsn71Z3xAZE6jm1MRaPREtomrq6nIoQQohZIEl4IIYQQQgghGhBrfj6pd06i6sABcHBg7hh3VoQUEugSyLwh8wh3D/9P50/Jr2Dqgt3sTikCYFSnEJ69qi2uDn//9dBSkssvL0zheEo5AAkhhXS781WIkt06Qoi/9uPJH3l9++sA3N/qDtq9vAhzZibG5s2pePYNbvxqH2UmK92bezNnQmcc934GP04DFIgbByPeB13D/Blr1SezOb51E2g0tB80jIRxE3ByrZuevjarnaUz95BxvAgAFw8j3a9uQXTXQDQXUdVECCHEv3co/xAFVQW4GFxoW+xGam4eGkdHnDp2hJVPqgdFXQanH8jafDIfRYEWfi4EuDtSVW4h84SalNdq0wEIaNESR1fXepmPEEKImtUwv70IIYQQQgghRBNkTkkh5Y47sCSngIc7b44xss23kDC3MOYNmUcz1/9WUnjx7jSe+uEgZSYrbo56Xr46livbB13U2IpdP/DD+++RWeaITmPnsp5BtJ74FTi6/6eYhBCXvg3pG3hqw1MA3Nh8LP3f20pl4gn0AQHYXp3BhO+PUlJlpWOYJ/Nu6oLTjlnw2+nkRZfbYdgb1QmMhsJut6HV6gDoPf5mKktL6DfhdgKat6zTOHR6Le4+juQkaekwJIwOQ8IxOOjqNAYhhGiqzpSi79GsB6ZNWwFw7toFrcEAx870gx9effzGRLX0fK/Tu+BTDuWj2BW8g1zIPbUbgPDY+DqKXgghRG2TJLwQQgghhBBCNACVBw6Seued2PLzoZk/z4yycti1iJaeLZkzeA5+zn7/+twlVRae+uEAS/ZkANA1wpvpY9sT4uX894MrCrD8+DBfLz1FkcUJR72dEbfdQMiA8f86HiFE07Evdx/3r7kfq2JleNhljP0qnfJdu9C6u6N9YybjliVTUG6mXbA7H9/cBddNr8Pa19TBvabBwGdA03B2dJcW5LH2848wOjkxZOI9AHgFBjH2mVfrLIak/Xn4hrji6uUIQI9rWtJtRPPq10IIIerGurR1APQJ6UP55z8C4NqrF+QcgqIU0DtC837Vx2883Q++5+kkPAp4+DsR3s6bfb/tBSCsXXydxS+EEKJ2SRJeCCGEEEIIIepZ2foNpE2dilJRgb1VBA9eWUiaQzmtvVsze/BsvBy9/vW5dyQVcN+CPaQVVqLTarhvYCsm92+J7mLKFB/8AX5+EEN5Lu28QtlfGcU1T72Od3jd7vQUQjROJ4tOMvn3yVRaK0lo1pN7VxopWf0TGgcHHF6dzvjf88gtNRET6Mbnt3TFY90zsGWWOnjg09D7gfqdwJ/YrFZ2/bKUzd9/jaWqEo1WS/drxuLu619nMVSVWVj/3TGObc0mvJ0Pl98dh0ajwdndWGcxCCGEUOVV5nEg/wAACT5dKNjxLHC6H/zRxepBzfuBUX3oNau4ipO55Wg10L25DwBRXQOJ6hpITlISmxcUoDcYCYqKqeupCCGEqCWShBdCCCGEEEKIelS8ZAkZTzwJVivWjm2YMiiVAl0l8X7xzBo0Czfjv+srbLXZeXdVIu+uOo5dgVBvJ2aO60DHsItI6Jdmw88PYD34I3qtAn6t6Xrbe8T7tMHB+SJ2zwshmrys8izuXHknxaZiYn1jeWp/K0oWzgetFucXXuH6HSYyiqto4efC57d0xuv3B2D35+rg4W9C1zvqdwJ/knJgH6s+/pD8tBQAmrWKZuCtd9VpAj5xZw7rvjlKZakFjQa8Ap2x2xV0uoZTJUAIIZqSjekbAWjt3RrnQ8nkm83oAwMxNm8Oq06Xoo8a+sfxp0vRxwZ74OFkOOtcdquZ0DaxGBwd0RvlwSohhLhUSBJeCCGEEEIIIeqBoijkz5tH7lvTAaga0JVJ3Q5QgZluzbrxTv93cDb8u4R3akEF9y3Yw87kQgCu6RDMcyPa4uZo+OuBigJ7v0H55VG2pLmRWBbP2PEDMA58BI3eAYd/FY0QoqkpqirizhV3klWeRYR7BK/n9KNk7tsAuD72JDcddyK1oJwwb2e+vKUjfr9NhoOLQaOFEe9DfMNod1FRXMSqT+ZwdJNabtjJ3YM+42+mbd+BaOqoR315sYl13xzj5O5cALyauTDgxhgCIz3q5PpCCCHO76xS9L+pCXmXhJ5oynIgfad60J+T8P9Xir4opwI3L0d0Bi2BLaMY88wrKIpShzMQQghR2yQJL4QQQgghhBB1TLHZyH7lVQq/+AKA0lEDmRS1AYtio19IP97s9yYOun+X8l6yJ50nFx+g1GTFzUHPi1e3Y0R88N8PLEqFH+/Ddvx3VmS24mBxAADHHRNoq5f0uxDi4lRYKrh71d2cLD6Jv7M/7zGe0tdfAMDlrru5PS+Yk7mlBHk48tUtcQT+chsc/w20Bhg1H9qMqOcZ/EGj05G8fw8ajZb2Q4aRMGYCjq6udXb97KQSlr2zB1OFFa1WQ8eh4XQeFoHOUDcPAAghhDg/i93C5ozNAPQO6U35hqcAcE1IgOPLAQWCOoB7M0B9+HZTYj4ACS3UJPzPs/ZRVmjiinvaE9TSEwCNRqqbCCHEpaTe79pnzZpFZGQkjo6OdOrUifXr11/w2JtvvhmNRnPOP23btj3ruIULF9KmTRscHBxo06YNixcvru1pCCGEEEIIIcRFsZtMpN//QHUCPveOK5l4OgE/NGIo0/tP/1cJ+NIqC9MW7GHqN3soNVnpHO7Fz1N7/30C3m6H7fNgVneqjq5mYWocB4sD0Gi1DL5jCm37Dvw30xRCNEEWu4UH1j7Avtx9uBvd+cBjMhVPvwKKgvPYcdxFHEezS/F3c+Drm9oR8uONagJe7wTjv2kQCfisE8erdyI6ubox9K77uOHVGQy89a46TcADeAe54OhiwC/MjdGPd6bbVc0lAS+EEA3Anpw9lFpK8XLwIsbmj+n4cdBocO7RA47+qh4UPbz6+JN55WSVVGHUa+kc4UVxbgWFWRVYLXacXa1UlBTX00yEEELUpnq9c1+wYAH33XcfTzzxBLt376Z3794MGzaMlJSU8x4/c+ZMMjMzq/9JTU3F29ub0aNHVx+zefNmxo4dy4QJE9i7dy8TJkxgzJgxbN26ta6mJYQQQgghhBDnZSspIfX2OyhdvhyNwUDKg6OZ4vsrNsXGyJYjebX3qxi0f1My/jx2Jhcy/J31LN6djk6rYdqgKL6Z2J1Q778pZ59/Aj69En56gOIyC1+n9yC13B2jkxNXP/IMcYOG/vV4IYQ4za7YeWbjM2xI34CjzpFZIQ+iPPYKWCw4DRnCNL8BHMwsxcfFyDcTogj/6TpI3gAO7jBhEbQcVK/xl+bnsWzGa3z5+DSOb91Y/X6LTl3xj2heJzEodoXjO7Kx29WHAAxGHVdNjWfUI53wDXGrkxiEEEL8vfVp6kbCXsG9qNys5h0c27VD7+oIJ1apB52nH3zncC8cDTqS9qu74oNaenBo/W98cMf1rP3iozqcgRBCiLpQr+Xop0+fzm233cbtt98OwIwZM1i+fDkffPABr7zyyjnHe3h44OHxR8+rH374gcLCQm655Zbq92bMmMHgwYN57LHHAHjsscdYu3YtM2bM4Ouvv67lGQkhhBBCCCHE+Vmyski9YyKm48fRurpy8MErecb0HQDXxVzHo10fRav5Z89JW2123l99gndWHcdmVwjxcmLmuHg6hXv/9UC7DbbMglUvgbWSbIsPizLjqagw4+rjyzWPPINfeOS/naoQoolRFIW3drzFspPL0Gl0vB31KE7T3sJWXo5j1248Fn0tu1JL8HAy8NV1kTT/cSzkHAInbzUBH9Sh3mK3WS3s/GkJWxZ+g8VUhUajpSA9rc7jKMqpYPXnR8g4XkSv0WbaDwwFwN3Xqc5jEUII8dfWp6tJ+N4hvSlfoibdXRJ6wsm1YK0E9xAIjK0+/kwSPuF0P/jk/err8Fhfjm7YC4BXYFCdxS+EEKJu1FsS3mw2s3PnTh599NGz3h8yZAibNm26qHPMnz+fQYMGER4eXv3e5s2bmTZt2lnHXXbZZcyYMeOC5zGZTJhMpurXJSUlF3V9IYQQQjR8ss4LIRoC0/HjpNwxEWtWFno/PzY/OIg3itQE/G3tbmNqx6n/uAdkakEF0xbsYUdyIQAj44N4fmQ73B3/Zid9zmFYMgXSd6ivI/vi1OtZNK+/jZ9/CFc/8jRu3r7/eI5C1DVZ4xuOjw9+zGeHPgPgpTYPEfjYbCz5+RhjYnix+81sTinFzUHP16ODiP55NBScBNdAuHEJ+MfUW9zJ+/aw6uMPKchQk+5BUa0ZeNtddbbzHcBuV9j7eyrblp7EarGjN2ql5LwQQtBw1/mMsgwSixLRarT0COxOzqYXgdP94I+p7aaIHgan7+1tdoXNJ9Sd7z1b+GCuspJ+rAiAkGhX1nx8BICw2Pg6nYcQQojaV29J+Ly8PGw2GwEBAWe9HxAQQFZW1t+Oz8zM5JdffuGrr7466/2srKx/fM5XXnmF55577h9EL4QQQojGQtZ5IUR9q9i5k9S7JmMvKcEYGcnyqd34IFtNwN/T4R4mxk38x+dcsiedJxcfoNRkxdVBz4sj2zGyw9/0frdZYMPbsPZ1sFvUEtCXvQQdJuCu0TD6qZdx8/HB6PQ3JeyFaCBkjW8Yfkj8gbd3vg3Aw62n0PrlhZhSU9GHhDBj0GR+TynH2ajjq2u8afPrWChJA88wuHEpeNdfxY11X33C9iXfA+Ds4Umf62+hTe/+aLR1lwDPzyhj1WdHyElSE0shMV70vyFGdr8LIQQNd50/U4o+3i8ex1OZ2AoK0Do74xQbC2vP9IP/oxT9wYxiSqqsuDnoiQ32IHlfHnabgoe/E6X5J7DbbHj4B+AZEFgf0xFCCFGL6v3R2v/f7aEoykXtAPnkk0/w9PRk5MiR//mcjz32GMXFxdX/pKamXlzwQgghhGjwZJ0XQtSnkt9+I+WWW7GXlOAYH8/CBzrxQbaa9Hm4y8P/OAFfZrJy/7d7mPrNHkpNVjqGefLL1N5/n4DP2ANz+sPql8Buwd5yKKu8p3Hc2rJ6l45PSKgk4EWjImt8/VuTuoZnNz0LwG1RN9Lngy2YDh1G5+3N/KvuY1maGQe9lq+udCF2+Tg1Ae8bBbcur9cEPEB4u3g0Wi0dhl3JLW9/SNu+A+s0AX94UybfvrSdnKQSjI46+t8Qw1VT4yUBL4QQpzXUdX5d+jpALUVftmEjAM7du6PJPwRlWWB0hYje1cdvTFR3wXdr7oNep63uBx8R60vK/j2A7IIXQohLVb3thPf19UWn052zQz0nJ+ecnez/T1EUPvroIyZMmIDRaDzrs8DAwH98TgcHBxwcHP7hDIQQQgjRGMg6L4SoLwVffUX2Cy+CouDSvx/zRrmzOO0HNGh4psczXBt17T863+6UQqZ+s4eUggq0GrhnQCvuGdASve4vkkaWKlj7Kmx8BxQbOHljHvQyP604ysndqziwcRPB77bB2cPzP81ViPoga3z92pW9iwfXPohNsXFV5JWMWpBB6eYtaJyd+XbU/XyTAQadhq+HaYn//XqoKobAOJiwGFzqvuVF0r7dlBcW0LbvQADC4+K5beZcPPz/+jeo2uIX5goKRMT60Hd8DK5e8v/LQgjxZw1xna+yVrEtcxsAfUL6UL7xZeB0P/ijv6gHtRgA+j/i3nTiTD94HwDiB4Xi4edEWBtvfnlP7QcfHtuhrqYghBCiDtVbEt5oNNKpUydWrFjB1VdfXf3+ihUrGDFixF+OXbt2LYmJidx2223nfNajRw9WrFhxVl/43377jZ49e9Zc8EIIIYQQQghxAYqikDtjJvmzZwPgPnoU0/uV8lvaz+g0Ol7q9RKXN7/8os9nsyvMWp3IjN+PY7MrBHs6MWNcPF0ivP96YMoWtfd7/nH1ddtrKOv+GIvfe5+cpBPoDUaG3j1NEvBCiH/sWOExpqyagslmok9wb+5e60Txr4tBr2f52GnMy3FEp9Xw1UATHdfcDZZyCO0O4xeAk2edxlqSl8vaz+ZxbOtGDI5OhMfG4+qtJkLqMgFvNdvITCwmtI36t9s3xI0xT3TBO8jloipCCiGEqH/bs7ZTZasiwDmAFsZgju3aBZzuB//rB+pB0cOrjzdZbWxPKgAgoaX6AJpPkCs+Qa6UFxWSl5IEGg2hbWPrdB5CCCHqRr0l4QHuv/9+JkyYQOfOnenRowdz5swhJSWFSZMmAWrJmfT0dD777LOzxs2fP59u3brRrl27c845depU+vTpw2uvvcaIESNYsmQJK1euZMOGDXUyJyGEEEIIIUTTpVgsZD7zLMWLFgHgefckXog5wvq0DRi0Bt7o+wYDwwZe9PnSiyqZ9s0etp3+8e6q9kG8MLIdHk6GCw8ylcGqF2DrbEAB1wC4fDq5Lu1Y9MqzlOXn4eTuwciHniIoKua/TFcI0QSll6Vz14q7KDWXEu8Xz5PH21L05XsAbBo9hbcLvdBq4Os+hXTZOA1sJmjeH8Z9CUaXOovTarGw88fFbFm8AKvJhEajpV3/QRgcHesshjMyEotY/fkRSnIrGfVYZ/xC3QDwCXat81iEEEL8e+vS1FL0fUL6ULljB1gsGIKDMXhoIWs/aLTQakj18buSi6iy2PFzc6CV/9l/8w0ODgydPI3CzHSc3T3qdB5CCCHqRr0m4ceOHUt+fj7PP/88mZmZtGvXjp9//pnw8HAAMjMzSUlJOWtMcXExCxcuZObMmec9Z8+ePfnmm2948skneeqpp2jRogULFiygW7dutT4fIYQQQgghRNNlr6gg7b77KF+3HrRavJ9+nMe9VrEtYxuOOkdm9J9BQnDCRZ9v2d4MHl+8n9IqK64Oep4f0ZarOwT/9Y7Jk2tg6T1QdPp7VPwNcNmLJB09ybLXHsJcWYlXUAjXPPosngGB/23CQogmp6CqgEkrJpFTmUNLz5a8VjyEoplqKd59I2/jhcoQAL7ukUbXrY+pbTBiroBRH51Vmre2Je3dxaqPZ1OYmQ5AcEwbBt56F37hdduH3lxlZcsPJ9m/Ng0UcPYwYiq31GkMQgghaoaiKKxPXw+oSfiyz9V+8C4JCWiOL1cPCu0GLj7VYzYmni5F38IHjUbD5h9O4BvsSkR7X4xOztUtUoQQQlya6jUJDzB58mQmT5583s8++eSTc97z8PCgoqLiL885atQoRo0aVRPhCSGEEEIIIcTfshYUkHrnJKr270fj6IjX6y/ygPVr9mbtxcXgwnsD3qNzYOeLOleZycqzSw/y/c40ADqEeTJzbAfCfJwvPKiqGH57EnadriLmEQZXzoCW6g97Sft2Y66sJKRNO6564AmcXN3+y3SFEE1QuaWcySsnk1SSRDOXZrxjmEDxC08BcGLwKB6hNQDfdDpCt10vAArEjYMR74Ou7n5+Ks3PY/Frz2G32XD28KTvDbfSunf/Oi/5nnqogNVfHqE0vwqA1j2b0fPalji6/EUlEyGEEA3WqeJTpJelY9Qa6RrYlcwNbwDg0isBjn6oHhQ19KwxG0/3g+/Z0peywip2/ZoMGrj19V4YjLo6jV8IIUTdq/ckvBBCCCGEEEI0ZubUVFJuvx1Lcgo6T0/c33mNKdnvcqTgCO5Gdz4c9CGxfhfX53FPahFTv9lNcn4FWg1M6d+Sewa2wqDTXnjQ0V/gx2lQmqm+7nIHDHoGHP5ItPe54Rbc/fyJGzQMvUESQEKIf8ZsM3Pf6vs4mH8QTwdPZvnfS/k9T4LdTmbPwUxxVqsPLojdQbeD09VBXW6HYW+A9i/+ftUQxW5Hc/o6bj6+dL7iaqwWCz1Hj8fBue5K4J+xfsEx9q1WH6Ry83ak3w3RhLXx+ZtRQgghGrIzpei7BHbBkFuE+eRJ0Gpx6dAOPlR3yP+5H3xplYV9acWA2g8+aV8+AIGRHliqiji4ZgPh7TviFxZRp/MQQghRdyQJL4QQQgghhBD/UuWBg6TeeSe2/HwMQUG4vPcadx57gZPFJ/F29GbO4DlEe0f/7XlsdoUP157g7RXHsNoVgj2deHtsPF0jvS88qDwffn0E9n+nvvZuASPeg/CeWM1mdi7+ls5XXo1Ob0Cr1dFx2FU1NGshRFNiV+w8seEJtmRuwUnvxKzmj2G753kUk4mCuK7c7jsINPBd9Gq6HJ+rDuo1DQY+A3Ww+zxpz05WfzaPy+99CP+I5urlr7upzne+/5m7rxMAsf1C6D6yOUZH+flNCCEauzOl6HuH9KZ80yYAnOLi0OVuB5sZvJuDb6vq47eeLMBmV4jwcSbY04k9+9Vd8RFxPpzctZ21X3xE2J4djH7q5bqfjBBCiDoh3wKEEEIIIYQQ4l8o27CR9HvvxV5RgUNMDIYZz3HrzkdIK0sjwDmAuUPmEunx9/2HM4oqmbZgD1tPFQBwRVwzXro6Fg+nC+xYVxQ4uBh+fggq8kCjhR5ToP/jYHCioqSYJW+8SMaxwxTnZDHkzntrctpCiCZEURRe3fYqvyb9il6rZ2abp3Gc9gbW4mLKWrbm1rCR2LVaFkYuo1PyN+qggU9D7wdqPbaSvBzWfDqP49vURMjm779ixINPAtR5Ar6y1Ex5sRnfEFcAYvuH0KylB/7h7nUahxBCiNpRai5lV/YuAPoE96Fsjlr1xSUhAY7+qh4UPfysh8/+XIreYraReqQQgIhYXzZ8vQeAsHbxdTMBIYQQ9UKS8EIIIYQQQgjxDxUvXUrG40+A1Ypzj+7YX3yQWzZNJbsimxDXEOZdNo9g1+C/Pc9P+zJ5bNE+SqqsuBh1PDeiHdd2DL5wAqk0C356AI78qL72b6Pufg/uBEBBRjqLX32WouxMHFxciEnoV0MzFkI0RXP2zeHrI18D8Ers4/g/8SHmrCxMQWHcGn0dFr2eH0K+IT5zmTpg+JvQ9Y5ajclqsbDzx8VsWbQAq9mERqul47Ar6THq+lq97vkoikLijhzWLTiG0UnPuKe6YjDq0Go1koAXQohLyOaMzVgVKxHuEYS4BHF802YAXHp2h5VvqQf9Xz/4TYlq+fmEFr6kHynEZrHj6u2AZ6AjqQf3ARAeG19ncxBCCFH3JAkvhBBCCCGEEBdJURQK5s8n5031xzb3K66g7OGbuXP13eRX5RPpEcncwXMJcAn4y/OUm6w8t+wg3+5Qewa3D/Vk5th4Inwv0LtYUWDPl7D8cagqBq0e+jwEve4HvRGAtMMHWPLmS1SVleLuF8A1jz6LT0hozU1eCNGkfHfsO97b8x4Aj7V/gJhXFlJ54gRWHz8mxt5IlcHIksCPiM1bpVbkGPE+xI+v1ZiS9+3h949mUZiZAUBI63YMuHVSvfTTLS8ysearoyTtU3c6ungYqSg24+HnVOexCCGEqF1/LkVfdfAgtuJitG5uOHlVQWUBOHpCWPfq43NKqziaXQpAjxY+7PvhJACRsb7knDqBqaIcBxcX/Ju3qPO5CCGEqDuShBdCCCGEEEKIi6DY7WS/8iqFn38OgPctt5B7y1Du/H0iJeYSYrxjmD14Nt6Of9HHHdiXVsTUb/ZwKq8cjQbu7teSqYNaYdBpzz+gKAWWTYUTq9TXQR3UZFdA2+pDDm9Yw/IPZmCzWglsGcXIh57CxdOrRuYthGh6Viav5MUtLwIwsfWt9P5gC2V792JzdePeDjdT7OTMUt9ZtC7aAloDjJoPbUbUelwFmWkUZmbg4ulF3xtuJaZXvzovPa8oCoc3ZbLx+0TMlVa0Og2dhkXQaWg4Ov0F/o4LIYRotOyKnfVpahK+T0gfyn/YCIBL9+5oTvymHtRqCOj+aCW1+YS6C75tkDveLkbKikwAhMf5krL/dwDC2rZHq9XV1TSEEELUA0nCCyGEEEIIIcTfsJtMZDzyKKW/qj0f/R99hKRhsdy9ciLllnLi/OKYNXAWHg4eFzyHza4we90Jpv92DKtdoZmHI2+Pjad7c58LXNQOO+bDymfBXAZ6R7Xve/e7QffHV7nKslJ+n/8BNquVll16MPyeBzA4ONbk9MVpVosNS5UNJzdjfYciRK2x2q08t/k57Iqda1tew7WLcyheuxbF6MDjnW8mx9WdH73eplXZXtA7wbgvoOWg2onFYqEkNxvvoBAA2g8ehqWqivaDh+Pg7Fwr1/wr5iorv87eT+phta+vf7gbA25sjU+wa53HIoQQom4czj9MflU+znpnOvl3In2jWiVG7Qf/pnpQ9Nml6DcmqlVSElr6AnDF3e0pK6zCydXI1oV7AAiTUvRCCHHJkyS8EEIIIYQQQvwFW0kJaXdPoWL7djAYCHr1FQ528GLqiklU2aroEtiFdwe8i4vhAqXkgcziSqYt2MOWkwUAXB7bjJevjsXD2XD+AXmJsPQeSNmkvg7rAVe9B74tzznUydWNK6c9RtK+XfQef5PsqKkluSmlrPzkEM7uRq66Nx6Ntm533wpRV/bl7qPIVISHgweTNrtRuHg+ilbHy51vINnThx893iCy8gg4uMP4BRDes1biOLV7B6s+mY1it3PTW7MwGB3QanV0HTGqVq53MQwOOnR6LTqDlq5XRhI/MBTthaqYCCGEuCSsS18HQI+gHmgrTVTu2QuAS9sQWHhMbRP1p4fRFEVh4+l+8D1b/PGwrauXIzarlZxTJwAIj21fV1MQQghRTyQJL4QQQgghhBAXYMnOJvX2OzAdP47WxYWQ999ja1AFD/4+BYvdQq/gXrzd720c9Rfeef7L/kweXbSf4koLzkYdz17VltGdQs5fQtlmhS3vw+qXwVoFBhcY/Bx0vg20fyR6TBXlFGVlEtBcTcqHx8UTHhdf09MXgN1mZ9fyFLb/eAq7XaGy1ExpQRXuvtL3WVyazvS9vf1wMwoXzAfg/U6jOerfjJ/cXibElARO3jBhkdoeo4YV52Sz5rO5JG7fAoCLlzdFmRn4hUfW+LUuRlF2BY6uBhxdDGg0GvpdH4PFZMMzoO534gshhKh7fy5FX7FtG1itGMLDMJbuVg8ITwDHP6phpRRUkF5UiUGnoWukN1aLDb1BfUhWp9dz5+zPyDp+FM/AoDqfixBCiLolSXghhBBCCCGEOA9TYiIpd0zEmpmJ3s+P0LlzWGU8yeNrHsem2BgcPpjXer+GQXf+3ewVZivPLzvEN9tTAYgL8WDmuA5E+l5gx3z2QVhyN2Sc/kGveX+4ciZ4hZ91WEluDotefZbywgLGvfAGPsGhNTZncbbi3EpWfHSQ7FMlADTv4Ee/8dFSjl5c0jakb6DHITvdlhwA4KvYy9kTHM4y1xcJtGSAayDcuAT8Y2r0ulazmR3LFrF18bdYLWY0Wi0dh4+gx7XX1UvpebvNzp6VqWxbdoqWnf0ZdHMbAFw8Heo8FiGEEPUjvzKfA3nqetgruBflX38IgGtCAhxT21QRPfysMWd2wXcI9YIqO/Of2ERQlCfD74pDp9diMDoQ2jau7iYhhBCi3kgSXgghhBBCCCH+T8XOnaROvht7cTHGyEhC587lx8qtPLv+WRQUrmx+Jc8nPI9ee/6vVPvTipn6zW5O5pWj0cCkvi2YNigKo/48ZYutZtgwHda9CXaLupPmspch/nr4v93y2ScTWfzac5QXFeLi5Y3NYqmN6YvTtDoNhZnlGJ309BkXRVTXgPNXMBDiEpFTkcOxvMPMXW4H4JeoPmxoEc0S5xfxteaCZxjcuBS8a3ZXemVpCV898QBF2ZkAhLaJZcCtk/ANDf+bkbUjL62MVZ8dJjelVI2vxIzNYkdnkNLzQgjRlGzM2IiCQmvv1vg7+5O4cSMALl3iYdsM9aD/7wd/Qu0H37OlD8kH8rBa7FSWWtCd73uAEEKIS5ok4YUQQgghhBDiT0pWrCDjwYdQTCac2rcn5MMP+CbzJ17b/hoAY6LG8ET3J9Bqzv0hzW5XmLP+JG/9dhSLTSHQ3ZHpY9vTs4Xv+S+WvguWTIGcg+rr6Mvh8rfAvdk5h57YuZUfZ76O1WTCNyyCqx95Bndfvxqbt1CZKq04OKlfld28HblsYju8Al1w875wywEhLhUb0zcSmQVuVVBudGJlm1gWO72Ip70IfKPUHfDuNV8+18nNHe+QUCxmE/0m3EZ0zz718sCLzWpnxy9J7PolGbtdwcFZT6/RrYjuHigP4AghRBO0Lk3tB987pDfm1FQsySmg1+PsVQyKDfzbgFdE9fF2u8LmE+pO+ISWviQtTwcgItaHipJivn/hCcJi4+l7w61otJKUF0KIS50k4YUQQgghhBDitMKvvybrhRfBbse1f3+Cp7/F/ONf8M7udwC4qc1NPND5gfMmY7KKq3jguz3VJSiHtQvklWti8XQ+T+lySyWseQU2vQuKHZx9YPgb0Paac3a/A+z6ZRlrPp2LotiJaN+RK+57tF7KM1/KFEXh+PZs1n1zjMG3tSW8rQ8AYW186jkyIerO+vT1tEtWAEj2CWCB08u4KeUQGAcTFoPLBR4o+oesZjM7f/qBdv0H4+LpBcCQifdgcHDA6FQ/f9uKsiv4ZfZ+CjLKAWge70ef66Jw8ZDy80II0RRZ7VY2pW8CoHdwb8pXqf/uFN8eXeoq9aCos3fBH84qoaDcjItRR2ygO58d2g9ARJwvqQf3kpuSBCAJeCGEaCIkCS+EEEIIIYRo8hRFIXfmTPI/nA2A5+jRBDz9FO/un8W8/fMAmNx+MpPaTzpvAn75wSweWbiPogoLTgYdz17VhjGdQ8+/czJ5k7r7veCE+rrdKBj22gWTW4fWr2b1J2pcsQMvY+Ctd6HTy1e5mlRVZmHNV0c5sSsHgIPr0quT8EI0FRa7hc0Zm7n3dBK+Z+BBNQEf2h3GLwAnzxq5zsld21n9yRyKsjMpzMxg6OT7AKqT8fXF0dVAVZkFJzcDfcZF06Kjn+x+F0KIJmxPzh5KLaV4OXgR6xtL5saPAHDt0R0SX1cP+r9+8JtOP4zbNdKb3JMlWEw2nD2M+IW6sWf5HgDCYuPragpCCCHqmfxyI4QQQgghhGjSFIuFzGefpXjhIgB8p0zBe/IkXt/xBl8e/hKABzs/yE1tbzpnbIXZygs/HubrbSkAtAt2Z+a4DrTwcz33QqYy+P052DZHfe3WDK54G6KH/WV8Ud17sf/35UR26EyXq66VpFANS9qfx+rPj1BRYkar1dD58gg6Da2fPtRC1Ke9OXuprCqldZqahPcKKIfm/WHcl2B0+c/nL87JYvWnczmxYysArl7eRMR3/M/n/S/y0krxCXZFo9Hg6GJg2F2xePg54eR6ngomQgghmpR16Wop+oTgBLR2hfItWwBwae4KW4vBxQ+CO5015kw/+ISWviTtV/89op0PGq2GlP17AAiXJLwQQjQZkoQXQgghhBBCNFn2igrSpk2jfO060GoJfPYZ3Eddy3Obn2Nx4mIAnur+FGOix5wz9kB6Mfd+s5uTueVoNDCxT3MeGByNUX+e8pInVsHSqVCsJuvpeCMMfuGCO0srS0twdHFFo9WiNxgY/dRLaHW6mpq2AMxVVjZ+n8ihDRkAeAU6M+iWNviHu9dzZELUj/Xp62mZCQ4W0DnYsPu6qTvg9f+tHLvFbGL7koVsX/I9VosZrU5Hx+Ej6HHtuHorPW+usrJ50QkOrEtn0C1tiO4WCEBgpEe9xCOEEKLhWZ+2HlBL0Vfu24+9tBSdhweO9sPqAVGXwZ/KyputdradKgCgR3Mfdi0/CEB4rC9FWZkU52Sj1ekJbt22bicihBCi3kgSXgghhBBCCNEkWQsKSJ10F1X79qFxdCR4+nQc+/XisfWP8UvSL2g1Wl5IeIGrWlx11ji7XWH+hlO8vvwIFptCgLsDb4+Jp2fL85STryyE5U/Cni/U155hcOU70KL/BePKS01m0avPEt2jN31vuBVAEvC1IO1IYXUCvv3AULqPaI7eKP87i6ZrQ/qG6n7wzv5mrFHD/nMCHmDbD9+zZeHXAIS1i2PALZPwCQn7z+f9t5IP5rPmiyOUFZoAyE8vq7dYhBBCNEyZZZkkFiWi1WhJCE6g/KfPAXDu0QPN8V/Ug6LOrma1N62ICrMNbxcj0f6uWPuHknIwn5AYLw6vXwFAs1bRGB2d6nQuQggh6o8k4YUQQgghhBBNjjk1ldTb78CcnIzOw4OQDz9AF9eG+9fcz5rUNei1el7v8zqDwwefNS67pIoHv9vL+uNqecnL2gbw6jVxeLmcp3TxkZ/gx/uhLAvQQNeJMPBpcDhPqfrTkvftYen0lzFXVnBixxa6XzMOB+f62Sl6qWse70eHwWGEtfMhJLp+e1ELUd+yyrM4VniMcaeT8C7+Jtzir/7X51MUpbp1RqfLR3By1za6XHUt0T1611tLjapyCxu/O86RLVkAuPs60v+GGEJivOslHiGEEA3XujS1FH17v/Z4OHiQtHEjAK5xkZCSDDqHcx6q3Ziofj/o0cIHvUFH+4GhtB8YCiCl6IUQoomSJLwQQgghhBCiSak8eJDUOydhy8vDEBRE6Ly52EIDmfL7FLZkbsFB58D0ftPpE9LnrHErDmXz8Pd7Kayw4GjQ8vQVbbmua+i5CaXyPPjlYTiwUH3t0wpGvAdh3f8yrv2rf2Pl3Pex22wEx7RhxINPSgK+BuWmlrLx+0SG3NYWZ3f1oYme17as56iEaBg2pm/EYFWIPt0PXtdMh6Z53398njOl57NOHOPqR5453WvdlRtemVFvyXeAlIP5rPz0MJUlZtBAXP8Quo9ogcFBql8IIYQ41/p0tRR9n5A+2EpKqNy3DwAX70JIAZr3A6PLWWM2JeYDkNDi3OpYrt4+uHp5EyZJeCGEaFIkCS+EEEIIIYRoMso2biT9nnuxV1TgEBND6OzZVHk5cffKSezO2Y2T3on3BrxH12Zdq8dUmm28+NMhvtyq9nNvG+TOzHEdaOn/fzvaFUVNvP/yMFTkg0YHCfdC30fB4HjBmBRFYeOCL9i6eAEAMQl9uWzSVPTG8+yuF/+Y3WZn94oUti07hd2msHlRIgNvblPfYQnRoKxPX09UuoLBBnpHG2Wt++L+D0vRn9i5ldWfzKE4JxuA5P17iIjrAFCvCXgAvVFLZYkZr0Bn+k9oTbMW0vtdCCHE+VVZq9iauRVQ+8GXb9kCdjvG5s0x5KnJeaKHnjWm3GRlV0ohAF2CPTi0MYPwdj64eKhraf+bJ9LvpjvqbhJCCCEaBEnCCyGEEEIIIZqE4qVLyXj8CbBace7RnZB336VUb+XO327nUP4h3AxuzBo0i3j/+OoxhzJKuPeb3STmqD2DJ/ZpzgNDonDQ/9/uyZIMtfT8sdM9IgPaqbvfgzr8bVy/zX6HA6vVPpHdrh5Lwpjr0Wi1NTLnpq4op4LfPzlE1skSACLb+9LjGtn9LsSfWWwWtmRu4fIz/eADTHh3vvaixxdlZ7H6k9mc3LUdAFcfX/pNuL1eS+4qikJxTiWeAWo1kaBWXgybFEtYW2/0Btn9LoQQ4sJ2ZO+gylZFgHMAUV5RZG34CgCXbh0h7V31oKizk/Dbkgqw2hVCvJywp1ey+vMj+AS7MO6pbtXH1PcDaUIIIereRf+yU1lZydKlSyktLT3ns5KSEpYuXYrJZKrR4IQQQgjR9Mg9hxCipimKQv78+WQ8/AhYrbhffjlhs2dTqKviluW3cCj/EF4OXsy/bH51At5uV5i3/iQj399IYk4Z/m4OfH5bVx4f3vrsBLyiwK7P4P3uagJea4D+T8Adqy8qAQ8Q0b4jWp2eIZPupde4CZKArwGKonBgXToLXtxG1skSjI46Bt7UmmGTYqtL0Yv6Iet8w7M7ZzfllnLiktW/PQ7+NhxbX/a346wWC5u++5JPHriLk7u2o9Xp6TJiFLdM/4DoHr3qLdlQVljFT7P2seClbRTnVla/3zzeTxLwQghRiy6VNf5MP/jeIb0BKN+wAQDXEC2gQLN4cA86a8ym0/3gE1r4knxALUsfHquWpS/MykCx2+sgciGEEA3NRe+EnzNnDkuXLuWqq6465zN3d3feeecdUlNTufvuu2s0QCGEEEI0LXLPIYSoSYrdTvarr1L42ecAeN9yC/4PPUhWRTZ3rLiD5JJk/Jz8mDdkHs09mwOQU1LFA9/tZf1x9ce0Qa0DeH1UHN4u/5e8LUyCZVPh5Br1dXAnuOo9CPj7UueKolQnqKJ79KZZq2jcff1rZM4C9q1KY8N3xwEIjvZkwI2tcfdxqueoBMg63xBtSN+Ag1mhRYYNgOKYOHz/r8/t+Wg0Go5t2YjNYiEsNp4Bt9yJT3BobYd7QYqicGhDBpsWJmKusqHVa8hJKsHDT/7bF0KIunAprPGKolQn4fsE98GSnIwlIwMMBpwNR9WDooefM27j6X7wPSK9SfnyJAARsb5YzWY+e3AKekdHbnr9XVy9fepmIkIIIRqEi95i8eWXX3Lfffdd8PP77ruPTz/9tCZiEkIIIUQTJvccQoiaYjeZSL//geoEvP8jjxDwyMOklqVx0683kVySTJBLEJ8O/bQ6Af/74WyGzlzP+uN5OBq0vDiyHXNv7HR2At5uh62zYVZPNQGvd4QhL8JtKy4qAZ9+9DCfPzqV0vy86vckAV+zWic0w6uZC71Gt2LE1A6SgG9AZJ1veNanryc6TUFnB4OzFadeoy54bFF2FjarBQCdXs/gO6Zw5bRHGfXEC/WagC/OrWTJjD2s+fIo5iobAZHujH28K626BNRbTEII0dRcCmv8qZJTpJelY9Aa6NasG2UbNwLg3CEebepa9aD/6wdfUG7mUKba+qiVzoipwoqji4GASHcyjh3GajGj0+tx8fKu07kIIYSofxe9E/748eO0b9/+gp/HxcVx/PjxGglKCCGEEE2X3HMIIWqCraSEtLunULF9OxgMBL3yCh5XXM6JohPc8dsd5FbmEuEewdwhcwl0CaTKYuPlnw/z2eZkAFo3c+fd6+Jp6e929onzjsOSKZC6RX0dngBXvQs+LS4qrqObN/DL+29hs1jYuOALhk6+rwZn3XRVlVk4uCGdjpeFo9FoMDrqGfdkF7Q6Ke3f0Mg637BklmWSWJTIePVPH44BFpp1ufqc4yymKrYt+Z7tSxfSc/T1dB2hJuqDY/7+waPatn9NGpsWJWI129EbtHQf2YLY/iFotdJ7Vwgh6tKlsMavT1sPQJfALjgbnMnfuAkAl5gAMFeAezAExp01ZvMJdRd8dIAbRSfUZHx4Ox+0Wg3J+/ecft1eesILIUQTdNFJeKvVSm5uLmFhYef9PDc3F6vVWmOBCSGEEKJpknsOIcR/ZcnOJvWOiZiOHUPr4kLIe+/i0qMHh/IPceeKOykyFdHKqxVzBs/B18mXw5klTP1mN8eyywC4rVckDw+NPrv3u80Km9+F1a+AzQRGVxj8HHS6FS6ih7uiKGxfupD1X30CQIvO3Rh466TamH6Tk3wgn1WfH6ai2IzRUU9svxAAScA3ULLONyzr09VkQ8dkLWCnLCwIjbNX9eeKonBix1ZWfzqXktxsADKPHzmrpUZ9qygxYzXbCY72pP8NMXj4Odd3SEII0SRdCmt8dT/44N4oZjMVW9QHb1298yELiBoK/7f+bTyhVrfq2dKH5J3qv4fHqmXnU04n4cNi42s/eCGEEA3ORSfh27Zty8qVK+nUqdN5P1+xYgVt27atscCEEEII0TTJPYcQ4r8wnThByu13YM3MROfnS9icOTi2bs2enD3ctfIuyixltPNpx4eDP8Td6M5HG07x6q9HMFvt+Lk58Nbo9vSJ8jv7pFkHYMndkLlHfd1yEFwxAzwvrvSy3Wbj9/kfsO/3XwHoOOwq+t54G1qt7m9Gir9irrKyaWEiB9dnAOAZ4Ix/hHs9RyX+jqzzDcuG9A04VSmEZqn94G0Jw6o/K8zKYPXHszm1ZycAbj5+9LvxNlp1S6jXBLzNZqeq1IKLpwMAnYdF4BngTFSXADSy+10IIepNY1/jy8xl7MreBUCfkD5U7t2LvaICnbc3DmXqjvjz94NXE+9dAzw4lZ2NVqshrI03VWVlZJ1MBCAs9sIVAoQQQly6LjoJf+utt3L//ffTtm1brrjiirM+W7ZsGS+++CLTp0+v8QCFEEII0bTIPYcQ4t+q2LWL1LsmYy8uxhgZSejcuRhDgtmauZV7Vt1DpbWSjv4deX/g+1SaDNz85XbWHssFYGCMP6+PisPH1eGPE1pNsO5N2DAd7FZw9IChr0L7687ZAXMh5soKls14jaQ9O0Gjof9Nd9Bx2FW1Mf0mJfNEMSs/OURJbiUAcQNC6DGyBXqjPNjQ0Mk633CYbWa2Zm6ldaqCRgGDq5WA4bcAsHfFz6z+ZA42qxWtTk/nK6+m+9VjMTg61mvMuSmlrPr8MACjHu2MTqdFZ9AS3S2wXuMSQgjR+Nf4zZmbsSpWItwjCHMPI2fjIgBcOsSgKfseDC4Q0eusMWmFFSTnV6DTaugVF0C/N/zJTS7FwdnA8a3bQVHwDg7Fzdu3PqYkhBCinl10En7ixImsW7eOq666ipiYGKKjo9FoNBw+fJhjx44xZswYJk6cWJuxCiGEEKIJkHsOIcS/UbpyJekPPIhiMuHUvj0hH36A3suLdWnrmLZ6Gma7mZ5BPZnRfwabE0t46Lt95JebcdBrefLy1tzQPfzsnZ1pO9Xd77lqsoeYK+Dyt8DtnyV6FAXKCvLROzhw+b0P07JztxqcddO0b3UqG749jqKAq5cDA29qTUiMd32HJS6SrPMNx66cXVRYK+iUrAPsWJo54+artnOwms0EtoxCpzcw8LbJeAcF12usVouNHT8lseu3FBS7goOLnqKsCnyCXes1LiGEEH9o7Gv8mX7wvYLVRHv5mX7wwRowAy0HgOHsh9E2Jar94NuHeODmaAAgrK1air66H3xcfC1HLoQQoqG66CQ8wBdffMFVV13FV199xbFjx1AUhejoaJ577jnGjBlTWzEKIYQQoomRew4hxD9R+M03ZD3/AtjtuPbrR/Db09E6ObE8aTmPrnsUq2Klf2h/Xuz5Gq/9fJJPNiUBEBPoxjvXdSAqwO2Pk5krYM3LsPl9UOzg4gfD34A2Iy969/ufOTg7c/Ujz1BRXERgi1Y1M+EmLiDCAzQaYroF0GtsFA5O/+hrrWgAZJ1vGDakbQAgPkntz1va9o/ywZ0uH0n7IZej0+vrvfd71sliVn12mMKsCgBadPSnz7gonN2N9RqXEEKIczXWNd6u2Fmfribh+4T0wVpYSNWBAwC4GA+pSfjzlaI/3Q8+oeW5O93b9h2Io6srEe071l7gQgghGrR//GvFmDFjGvSCKYQQQohLg9xzCCH+jqIo5L7zDvkffAiA5+hRBD7zDBq9niWJS3h609PYFTvDI4dzY8tHGf3Bdo5mlwJwS0IEjwyNwdHwp/LlSRth6RQoOKm+jhurlp93/me7rE/u3k5RVmZ12Xl3Xz/cff3+ZpS4ELtdITe5lIBItd97QKQ71z3dFa9Al3qOTPwXss7Xv/Xp63GtUPDNtQMaPK6+9azP9QZD/QR2ms1iZ/PiE+xdnQoKOLkb6XtdFC06+NdrXEIIIf5aY1zjDxccJq8yD2e9M50COlGxfCUoCg4tIzGUbQQ00GrIWWMURWHTCXUnfBubgUVv7qR1zyBa92wGQLNW0TRrFV3XUxFCCNGA/OMkfHp6OgsXLuTYsWNoNBqioqK45pprCA6u39JkQgghhLi0yD2HEOKvKFYrmc88Q/FCtVej79134zvlbjQaDd8c+YaXtr4EwDUtryFcmcDVs7ZgttrxdXXgzdFx9Iv+UxLHVAornoEd89XXbkFw5QyIuuwfx7Vn+U+s+ng2imLHNzSCsHZx/3WqTVpxbgW/f3KY7OQSxjzWpbr0tCTgGz9Z5+tXelk6J4tP0i0VNGjAXUNU1wQAErdvoVmraFw8veo1Ro1OQ3ZSCSgQ3T2QXqNb4ehSvw8GCCGE+HuNcY0/U4q+e7PuGHVG8jZuBMCl1emHcUO7gcvZu92P55SRW2rC0aBFl1VJZmIx/hHudRq3EEKIhu0fJeFnzZrF/fffj9lsxsPDA0VRKCkp4aGHHmL69OlMnjy5tuIUQgghRBMi9xxCiL9ir6ggfdr9lK1dC1otgc88g9dYdbfNRwc+4u2dbwNwbcvrSDo2kE+PHgWgf7Qfb4xuj6+rwx8nO74Slk2FkjT1daebYfDz4Ojxj2JS7HbWfvERO3/6AYB2/QcTHNPmP82zKVMUhUMbMtjwfSJWkw2Do47i3Erp/3yJkHW+/p0pRd/rlFpqviQiDI1GQ2l+HkvefBGNVsvd87/GwbluH3gxVVrR6jQYjDq0Wg0DboyhJK+K8HY+dRqHEEKIf6exrvFnkvB9QvqgKMof/eA9c0EBooeeM2ZjolqKvku4F2mHCgCIjFUT9QfX/o6jqxuhbWMxOjrVwQyEEEI0RNqLPfCnn37i3nvvZcqUKaSnp1NYWEhRURHp6elMnjyZqVOn8vPPP9dmrEIIIYRoAuSeQwjxV6wFBSTffAtla9eicXAg5L138Ro7BkVReG/3e9UJ+CHB17NsdWfWHM3DqNfy3FVt+ejmLn8k4CsKYPFd8OW1agLeMxxuXApXzvzHCXiLqYplb79anYBPGDuBIXfei04vvcr/jfJiEz++t481Xx7FarIR1MqTcU92pXm8lPS/FMg63zBsSFeT8O2SzADYE4YBkLx/DwABzVvWeQI+aX8eXz+3la1LT1a/5xXoIgl4IYRoJBrrGl9QVcD+vP0A9AruhfnkSaxZWWiMRpztu9SDztcPPlEtRd/D053KUgtGJz2BLT2qH8794fXnyTl5os7mIYQQouG56F+FXn/9dR599FFefPHFs95v1qwZ06dPx9nZmddee43hw89dkIQQQgghLpbccwghLsSclkbqbbdjTk5G5+FByAcf4NyxA4qi8MaON/j80OcAtHO6joUrYwEL0QFuvHNdB6ID3f440eFl8NMDUJYNaKD7XTDgSTD+84RTeVEhP7zxAlmJx9Dp9Vw2eRqtE/rWzISboMSdOaz56gimcis6vZbuI5vTfkAoGq2mvkMTNUTW+fpnspnYmrUVj3IFl0J1b0b06OsASN63G4Dw2A51Fk9VmYX13x7j2LZsNYb9+XS/qjl6o67OYhBCCPHfNdY1fmP6RhQUYrxjCHAJoGDjcgCcW4ej1SSBVyT4Rp01xmqzs/WkmoQPqYRUIKytNzqdltzkU1SWFGNwcKRZlPSEF0KIpuyid8Lv3r2bCRMmXPDzCRMmsGvXrhoJSgghhBBNl9xzCCHOp+rQIZLGXYc5ORlDUBDhX3+Fc8cO2BU7z295vjoB71Exms272gNwc88IlkxJ+CMBX5YD394EC25QE/C+UXDrchj6yr9KwAOc2r2DrMRjOLq6MerJFyUB/x+V5FViKrfiF+bGmMe7ED8oTBLwlxhZ5+vfzuydVFor6Zas/iRU6e2Cd5A/it1evRM+Iq72k/CKopC4M4evntvCsW3ZaDQQPyiUMU90kQS8EEI0Qo11jV+Xtg6A3sG9ASg70w8+2K4eED0cNGffj+5LL6bUZMXDyUBFchkAEadL0Z9ZS0PatEOnN9R2+EIIIRqwi94Jb7fbMRguvGgYDAYURamRoIQQQgjRdMk9hxDi/5Vt3Ej6Pfdir6jAISaG0NmzMQT4Y7VbeWrjU/x48kc0aLFkX0taQSd8XY28Mao9/WP81RMoCuz7Fn59BCoLQaODXvdBn4fB4PifYmvXfzAVJcW07NID76Dg/z7ZJshismFwUBNu8YPDcHDWE9OzGTrdRT8zLhoRWefr35m+t30TqwAdpW3UhHvOmZ17jk61vnOvosTM2q+OcnJPLgBezVwYcGMMgZH/rB2IEEKIhqMxrvFWu5WNGWrSvU9IH+xmMxXbtgPgYjysHnSefvCbTveD7xPsRf6OUjQadSc8QMrpJHx4bHztBi+EEKLBu+hfNdq2bcuSJUsu+PkPP/xA27ZtayQoIYQQQjRdcs8hhPiz4mXLSL1zEvaKCpy7dyf8888wBPhjtpl5cO2DagJe0VGRNpbKgk70i/bjl6l9/kjAF6fDV2Nh8UQ1AR8YCxNXw8Cn/3UC/tjWjVSVlVW/7jpilCTg/wWLycbar4/y3as7sJptAGi1Gtr2DpYE/CVM1vn6d6YffESq+tr7shHAH6XoQ+tg557dppB2pACtVkPn4RGMfbyLJOCFEKKRa4xr/N7cvZSaS/F08CTWN5bKXbtQKivReXvg4JAHjh4Q1uOccWf6wXcK9iCyvS8hrb1xcjVis1pIPXwAgDBJwgshRJN30TvhJ0+ezF133YWDgwMTJ05Er1eHWq1WZs+ezZNPPsmsWbNqLVAhhBBCNA1yzyGEALVMccFHH5HzxpsAuA8fTrNXX0FrNFJprWTammlsTN8Iio7ytOvRVbXjmStjuLlnBBqNRt39vutT+O0pMJWAzgh9H4aE+0D375JLiqKw+fuv2fz9V4S2ieXaJ56XEpP/UtbJYlZ+fIji3EoAUg4W0LyDXz1HJeqCrPP1K7U0laSSJPxKwFCiQ9FAzJA+wJ/6wcd1rJVrV5VbcHRR/2a6ejkw8OY2uPs64hviVivXE0IIUbca4xp/phR9QnACOq2O8tOl6F1beqoV6FsOPue7Q5XFxs6UQgB6dw6ixTDX6h3+mceOYjWZcPbwxDc0vO4mIoQQokG66CT8TTfdxP79+5kyZQqPPfYYLVq0AODEiROUlZVx7733cvPNN9dWnEIIIYRoIuSeQwih2O1kv/oqhZ+pfd69b74Z/4cfQqPVUm4pZ/LKu9mVsxPFbqAy9Uaau3bgnds60LqZu3qCglOw7F44pf6oRnBnGPE++Mf865hsVgu/zX6XQ+tWAdCsVTRarfQs/qdsVjvbfzzFruXJKIqaiBtwY2tCW3vXd2iijsg6X7/O7IIfmmgBNJQENsPgof7tHDblAVL27yGkTbsavaZiVzi4Pp1Ni09w2R3tCG/rA0DzeHnwRgghLiWNcY1fn662aDmnH7xnjnpA9LBzxuxIKsRstRPo7khzXxcA9SFgIP2YWsI+rF376veEEEI0XRedhAd48803GTVqFF9//TXHjx8HoE+fPowbN47u3bvXSoBCCCGEaHrknkOIpstuNpPxyCOU/vIrAP4PP4zPrbcAUGwq5pZfJnK8+BCKzYHK1Fu4Pr4vjw9vjaNBB3YbbJ0Nq14ASwXonWDgU9BtEvyHhHlVWRlL33qJ1EP70Wi1DLp9MnEDz+0NKf5afnoZKz4+RH6aWso/qlsAfcZG4eAs1QSaGlnn68+ZJHy3U1bAgK1L7+rPXL28adNnQI1eryi7gtVfHCHjeBEARzZnVifhhRBCXHoa0xqfWZbJ8cLjaDVaEoISsObnYzqkJtFdnE+BVg8tB50zbuOJM/3gPSnJq8LDz6n6s64jRtGqa08Uu71uJiGEEKJB+0dJeIDu3bs3uAVTCCGEEJceuecQoumxlZaSdvcUKrZtA4OBoJdfxuPKKwDIq8hj7NJbyTGdQrE6Y8i9k5ljLmdg6wB1cO5RWDIF0rapryN6w1XvgHfz/xRTcU4Wi155loKMNIxOTlx536NExHf6T+dsqjYvPkF+WhmOLgb6jo+mZSf/+g5J1CNZ5+ueyWZiW6b6N9I/XQtA88H9auVadrvC3pWpbF12EpvFjt5BR4+RzYntG1Ir1xNCCNFwNJY1/swu+DjfODwdPSlesQwAhzA/9I4ZEN4LnDzPGbcxUU3CxxTCF09tpuuVkXS5PBJQd8R7BwXXzQSEEEI0eNqaOtGiRYuIi4urqdMJIYQQQpyX3HMIcWmyZGeTfP0NVGzbhtbFhbA5s6sT8Efz0hj23XXkmE5ht7rRWvMIy+8erybgbRZY9yZ82EtNwBvd4IoZcOPS/5yAVxSFH2e+TkFGGq4+vox77nVJwP8HfcdH06qzP+Oe7ioJeHFBss7Xnh1ZO6iyVdE63wblOuxaLQEJ3QBYMec9ti9bRGVZ6X++Tn56GQtf28GmRYnYLHZCYry47qmuxPUPRaOV0rxCCNFUNbQ1fn2amoTvE9IHgPINp/vBB1nUA6KHnzOmuMLC/vRiUEDJqAQgIMK9DqIVQgjRGP2jJPzcuXMZPXo048ePZ+vWrQCsWrWKDh06cMMNN9CjR49aCVIIIYQQTYvccwjRtJhOnCDpuuswHTuGzs+X8C8+x+X0f+eL9+9j9JLrqSILxeLJLZFvsODmq/F3c4TMfTB3gFp+3maGVkPg7i3Q+RbQ/vfnjTUaDUPvuo/QtnFc/+Jb+IVH/udzNhWKonBoQwYbvz9e/Z6btyNDbm+Hi4dDPUYmGgJZ5+vHmR1/lx83A1AcHoXW2ZmywgL2/f4r6778uEbK5xbnVJKTXIrRSU//CTFcNTUed1+nvx8ohBCi0Wssa7zJZmJrlhpfn5A+KIpC2abT/eCdTqoHRZ3bfmrzyXwUBTq6O1NVYkbvoCMoyhOAjd9+wbLpr5B2+ECdzEEIIUTDd9G/TL355pvcfffdnDp1iiVLljBgwABefvllxowZw8iRI0lJSWH27Nm1GasQQgghmgC55xCiaanYtZuk8ddjzcjEGBFBxNdf49i6NSarjUeWrODJrXeh6AvQ2fx4v/98HhyQgNZuht9fgLn9IWsfOHnB1bNh/Lfg8d9KHSuKQn5aSvVrn5Awxjz9Mq7e0sP4YpUXm/hp1j5Wf3GEPStTyUgsqu+QRAMi63z9OdMPvl2Kmmh37akmQpL37QYgILIlzu4e/+rc5ipr9b837+BHz2tbct3T3WiTEIRGI7vfhRCiKWhMa/yOrB1UWivxd/YnyisK07Hj2HLz0BgNOPlWgV9r8D73AdxNp/vBd3N0BiA0xgu9QQfAsS0bObZ1I5WlJXU3ESGEEA3aRfeEnz9/Ph9++CG33nora9asYcCAAaxatYrExEQ8PT1rMUQhhBBCNCVyzyFE01H6+++k3/8AismEY/s4Qj/8EL2XF4k5Zdz17TIynGaiNZTjpg1mwchPCPUIhNTtsORuyDuqnqTNCBj+Jrj+9/LmdpuNVR/PZv+q37j28ecJa9dwymU2Fok7c1j71VGqyi1o9Rq6j2hBYPN/l9QTlyZZ5+tHSkkKySXJ6O12XDP02IHIQWr53eT9ewAIj4v/x+e1mm1s/+kUhzdlMu6pbji7GwHoMDishiIXQgjRWDSmNX5d2joAegf3RqPRUL5R3QXvHOGCVgdEn7sLHv7oB+9TbMMERMT5AlBakEdBeioajZbQNvIdQgghhOqik/DJyckMGjQIgH79+mEwGHjppZca3AIqhBBCiMZN7jmEaBoKv1lA1vPPg92Oa79+BE9/C42TE19uTebFFb+iC5qHVldFiHMrvrpyPl5aB/j1cdgyC1DAxR8uf1NNwtcAc1UlP854jVO7d4BGQ0F6qiTh/4GqcgvrFxzj2LZsAHxDXRl0cxt8gl3rOTLR0Mg6Xz/OlKIfmGnGXqnHqtPj0rEDiqJU74SPiOvwj86ZkVjE6s+PUJRdAUDizmzi+ofWbOBCCCEajcayxiuKUp2E/6MfvFotxtVDvZc9Xz/4rOIqTuSW46qAKacKgPB2arWslP17AQho0RJHV7n/FUIIobroJHxVVRWOjo7Vr41GI35+frUSlBBCCCGaLrnnEOLSpigKee++S96sDwDwGHUtzZ59liKTnUc+38nvSZtxCvkEjc5MW+845l72IW7pu2HpPVCYpJ6k/XVw2cvg7F0jMZUW5LH4tefJTTqJ3ujA8HseoFXXnjVy7qZAURSWzNhNXmoZGg10HBpOl8sj0ekvuvuZaEJkna8fZ5LwA05aAT1V0e3QOjiQm3yKiuIiDA6ONItqfVHnMldZ2fLDSfavTQMFnD2M9BsfTWR7+b+jEEI0ZY1ljU8qSSKtLA2D1kD3Zt2xV1VRsWMHAC6+xeDsC8Gdzhl3phR9b1dXKLbhH+6Gi4cDACmnq8qEtWtfN5MQQgjRKFx0Eh5g3rx5uJ5+kstqtfLJJ5/g6+t71jH33ntvzUUnhBBCiCZJ7jmEuDQpViuZzz5L8fcLAfCdPBnfe6aw6UQ+93+7hzzbPpxCP0ejtdItsBvvJLyE8/KnYOfH6gncg+HKmdBqcI3FlJN0ksWvP09Zfh7OHp6MfPgpmrWMrrHzNwUajYbOwyLY/MMJBt3cRsrPi78l63zdqrRWsiNLTS40TwUF8Out9oNPOr0LPqRNO/QGw9+eK/VQAau/PEJpvroDsHXPZiSMaomD89+PFUIIcelrDGv8poxNAHQO6IyzwZmyrRtRzGb0nk4Y3a0QNRS1Jv3ZNpwuRR/e3o9hV/ihOf28qaIoJB9Qd8KHx8bXyRyEEEI0DhedhA8LC2Pu3LnVrwMDA/n888/POkaj0dT7IiqEEEKIxk3uOYS4NNkrKkifdj9la9eCVkvg00/jMmo0r/5yhDnrT6JzPYBz6NegsdE3pC9vBQ/DYU5/KElXT9D5Vhj0HDi611hMBRnpfPPMI1iqKvEOCuGax57Fwz+wxs5/Kcs6VYypwkp4W7UEZ4uO/kTE+qIzyO538ddkna9727O2Y7KZaGaxoskyogD+fXsBYCovQ28wXnQp+pN7cinNr8LN25H+N8QQ2qZmKpIIIYRo/BrLGj8uehxtfdpWvz7TD94l0IRGw3n7wSuKwqbEfAB6tfaneas/HizIT0uhvLAAvcFI0EVWlRFCCNE0XHQSPikpqRbDEEIIIYRQyT2HEJcea2EhqZMmUbV3HxoHB4Knv0VOXDdu/GAT+9OL0bvvxjn4OxTsXBbSn1eKKjGsH68O9oqEq96FyN41HpdXsyBadu5GWUE+Vz3whPRvvAg2q50dPyex85ckHJwNjHu6a3UZTknAi4sh63zd25Cu9rkdnlaF3eSI1eiAU7t2APQadyPdrxmH3W674Hir2YbeqO4I7HFNCxxdDXQYEobR8R8VVxRCCHGJayxrvE6rI94/vvr1mSS8q3ce6Bygef9zxpzMKyerpAqjXkvnCK+zPjNXVtAsKgZHZxf0RmOtxi6EEKJxkW9MQgghhBBCiFpjTksj9fY7MCclofPwIPiDWSyz+vLcOxuotNhw998BPgtRUBjh04Hndv2MrjwXNFroPhn6PwFG5xqLR7Hbsdls6A0GNBoNQyZNRaMBnV5KKf+d/Iwyfv/kMLkppQCEtfWWvu9CNHCKorA+Te0H3/2UXX0zNh7Nn5IEF0oYVJaaWb/gGBWlFkbcF49Go8HoqKfbVc1rPW4hhBCiLliyczAdOwYacA4wQeQgcDj3wdxNp0vRX+ngyt5fk4nuFoinv/odJSiqNeNfePMvH2gTQgjRNF10Ev75558/7/seHh5ER0czZMgQtFr5AUYIIYQQ/43ccwhx6ag6dIiUO+/ElpuHPqgZXu9+wAO7yvj14H4AoqJ2kan7HoBxOh8e27EELYBfDIx4H0I612g8FrOJX99/G0Wxc+V9j6LRai+qB3JTp9gV9q5KZcsPJ7FZ7Ti46Ok3PoaWnfzrOzTRCMk6X7eSS5JJK0tDrygEpmmpBAL69ATAYqrC4OB43nFJ+/P4/dPDVJVZ0Gg15CSVEhBZc+1AhBBCXHoa4xpfvkntD+8YYETvoED0sPMetzExHxSILLKz46ck/MPcqpPwZ2jP00deCCFE03bRSfjFixef9/2ioiLS09Np27Yty5cvx99ffogRQgghxL8n9xxCXBrKN20i7Z57sZeX4xAdTfYTrzJhSRpZJVUYdNC36162Fn0LwK1lJu7L3Y1Gq4de06DPQ6B3qNF4KkqK+eGNF8g8dgStTk/2qRMEtmhVo9e4FNksdpa9u4f0Y0UAhLfzof+EmOoS9EL8U7LO160zpeg7V5ioyHFEA7j17AHA1089hN1mY9iUBwiIbFE9xmqxsWL+QcxVNnyCXRlwYwz+4ZKAF0II8dca4xpf3Q/eW+33TtS5/eBtdoXNJ/PxsWvQlNvQ6bWExHgDUFlaglanw8HZpc5iFkII0XhcdBJ+9+7dF/wsMzOT8ePH8/jjjzNv3rwaCUwIIYQQTZPccwjR+BUvW0bGY4+D1Ypj164sHHkv7y8+gaJApK8zPTpvYVny1wDcU1DEHcUlaALj1N3vzeJqPJ6CjDQWvfosxdlZOLi4MOKBJyQBf5F0Bi0e/s5kJ5fSa1RL2vQKQqPR1HdYohGTdb5urU9XS9EPSTWhseixOTnj2Lo15UWF5CafAsDNx/esMWlHCjFX2XD1cmD0Y52l7YQQQoiL0tjWeMVur94J7xpogmbtwSP4nOMOZZRQXGmht6K2bwmO9sLgoO5637P8JzYv/JquI0bRa9yNdRe8EEKIRqFGesI3a9aMF198kQkTJtTE6YQQQohGza7Y2Ze7j3j/+PoO5ZIj9xxCNGyKolDw0cfkvPEGANoBg5kWdTV7tmUBMK5LMI6BS1mY+B0AD+cXMqHcDAOfhp73gq7mS8OnHTrAkjdfpKq8DA//AK5+5Fl8QkJr/DqXkooSM4pdwcVT3e2eMKolHS8Lx8PPqZ4jE5c6WedrVoWlgh1Z2wFon2zHBjh06oRGrydl/x4A/CNb4Ozucda4U3tyAYiM85UEvBBCiBrRENd405Ej2AoK0Bq1OPmYIXr4eY/bcLoffDuNEbAREetT/Vny/j0odjvuvg1nd78QQoiGo0aS8ADBwcHk5OTU1OmEEEKIRqkwL4v3Z9zPj+FHeG3o2/QN7VvfIV1y5J5DiIZJsdvJee01Cj79DIC8odcwyS2B8qwKPJwMvHxNGzblvM7CxNVoFIWn8wsY5dkOJrwHflG1EtPRzRv45b03sVmtNGsZzciHn8LZw7NWrnWpOLE7hzVfHsU3xJWr7o1Ho9VgdNRjdKyxr45C/CVZ52vO9qztmO0Wgi1WzJke6LDj3UvtB5+0T92tGB7X4awxdrvCqX1qsiEy3q9uAxZCCHFJa2hrfNnpUvTO/iY0Os5bih5g04k8HO3gWmYDICJOrSBjrqok8/gRAMJi42s9XiGEEI1Pjf2SsnfvXiIiImrqdEIIIUSjc2DLGn764C2cqhS6lnpRPrC8vkO6JMk9hxANj91sJvPRRyn5+RcANgwaz0uOHcGi0KO5D69dG83MNTfzW9lJdIrCiwVlXJHwNHS9A7S6WovLzccHNBpadevJsCkPYDBKH/MLMVVYWL/gOEe3qlULKkstVJVbcHIz1nNkoqmRdb7mnClF37usEiXXFQCXbt1QFIXk0zvhI/4vCW+pshIe60vm8SKCojzrMlwhhBCXuIa2xpdvON0PPqAc3ILUcvT/x2S1sT2pgEirDhTwCXbFzdsRgLTDB7DbbHj4B+AZEFinsQshhGgcLjoJX1JSct73i4uL2b59Ow888AC33357jQUmhBBCNBYWUxW/fvwex1avQQ8UulsZcdNUBjY/fykz8dfknkOIxsVWWkralHuo2LoVRa9nbo/rWewai16r4YEh0dzYqpSHlw5indaMQVF4Q+PPwJuXgXdkrccWFNWa8S++hV9YBBqtlFS+kNQjBaz69DBlhSY0GuhwWThdL49EZ5D/zUTNk3W+biiKwoa0dQD0SzWjt9qwu7njEB1Nfmoy5YUF6I0OBEW3OWucg7OBgTe2RlEUNBpNfYQuhBCikWpMa7y9ooKKXbuA0/3go4fCeda9XclFVFns+BodcEB/Vin6M61dZBe8EEKIC7noJLynp+cFv4BpNBruvPNOHn744RoLTAghhGgsvn75cXKPHAPgRCsLk6e8SbvA2HqOqvGSew4hGg9Ldg6pEydiOnoUq4MjT3e+kd0+UUT6ujBjdFtanZzLvT9+wlZHBxwUhZkRo0jo+8x5f+CqCVXlZfw6awY9Rl1HQGQLAPwjmtfKtS4FVrONzYtPsG91GgDufk4MurkNzVp4/M1IIf49WefrxqmSU6SXZ2JQFDxS1P+m3bp1RaPVVpeiD2nTDr3BcN7xkoAXQgjxTzWmNb5i+3awWDC4gsHVdsF+8JtOqC1avON9uHV0e6wWe/Vnyfv3AhAuSXghhBAXcNFJ+NWrV5/3fXd3d1q1aoWrqyt79uwhPj6+pmITQgghGrxd2btY7L2TDg5OJPbQ8/IN8wlxC6nvsBo1uecQonEwnThByh13YM3IpNTZnce63sYJz2DGdA7huS5WLD+PZKI2l72ODjij5b3er9KlxbBai6ckN4dFrz5LfloKBemp3Dx9FtpaLHV/qUg9XABAuz7B9LimhfR+F7VO1vm6sT5NLUXfuaqKomwffCjBtUd3AAIiW9C27yBCWrc9a0xZoYmKEhN+YW6ShBdCCPGPNaY1/kw/eJeAcjRGF4jofd7jNiaqSfiEFr5odVqMOrVSVHlRIXkpSaDRENo2rk5iFkII0fhc9C8sffv2Pe/7xcXFfPbZZ8yfP589e/Zgs9lqLDghhBCiISoryCc/LZVEj3weWf8IJk8TLqNieXfI+3g5etV3eI2e3HMI0fBV7NpN6l13YS8uJsPVj8d73E6lTwAfjoxmaN6nFH72LncG+HDYwQF3nSMfXjafWL/a+3Eq68RxFr/2HBXFRbh6eXP51IclAX8BNpsdjUaDVqtBb9Qx6JY2VJVZCGvr8/eDhagBss7XjQ2pain6PqVVuOeVA2o/eIDQtnHnTRgc2ZzJ1qUnie4WyKBb2pzzuRBCCPFXGtMaX75xEwAugSZoMQgMjuccU1plYW9aMU526NHC+6zP9EYjg26/m6LsTJzdpYqUEEKI8/vX2xxWrVrFRx99xKJFiwgPD+faa69l3rx5NRmbEEII0eAc376Z32a/i8lcycKeyZicLPQN6csbfd/ASe9U3+FdkuSeQ4iGpXTVKtKm3Q8mE0e8wnim+220jgnlvd4W/FaNJqfwBBMD/ThhNOLt4MWcIXOJ9o6utXgSt2/hp3ffwGoy4RcWwdWPPoubj2+tXa8xK8gsZ+XHh2jVOYAOQ8IA8A93r+eoRFMn63zNq7BUsDNnJwBRKU4Y7DY03j4YW7T4y3Gn9uYCENTKs7ZDFEII0QQ01DXekpmJ+cQJ0IBLgAmiz1+ta+vJAmx2hRsrnVj95l6GTYrFL8wNAAdnF9oPrr0qX0IIIS4N/ygJn5aWxieffMJHH31EeXk5Y8aMwWKxsHDhQtq0kaekhRBCXLosVVWs+Wwe+37/FYA8dxOKXeHaVtfyZPcn0WulfG9NknsOIRqmwgXfkvncc2jsdrYGtOaNbhO4d0hL7jB/jvbbOWTotdweHESqToO/sz/zhswj0iOy1uLZ9fMSVn82DxSFiPhOXDH1ERycnWvteo2VYlfYtzqNzYtPYLPaKS820a5fMAajVAsQ9UPW+dq1NXMrFsVGiMVCQXowbmTj1r0bGo2GlAP7MDo5ERDZAo1WWz2mtKCKnORS0EBEnDzIJIQQ4t9pDGt8+elS9E7eZnRGoNVl5z1u44k8PG0a3C1QXmTCw082XgghhPhntH9/iGr48OG0adOGQ4cO8e6775KRkcG7775bm7EJIYQQDUL2yUQ+f+w+9v3+Kwqwv3kxP/fMYkLPiTzT4xlJwNcwuecQouFRFIWsme+Q9cwzaOx2lod15dPhk1lyrYE7D1yPdttskvQ6bgprTqpOQ7BrMJ8O/bRWE/B2u41Te3eBohA3aChXP/y0JODPoyS/kiUzdrPhu+PYrHbC2vow5rEukoAX9UbW+dq3IW0tAL0qq7Bnq73dnU+Xol/7+Xy+fHwaRzatO2tM0j61522z5h44uxvrMFohhBCXisayxrv07kPgrUPwji6DkC7g6nfe4zYl5tPCoqZPgqI8MTqpv/2U5OWwZ/lPFGam11nMQgghGqeLzhr89ttv3Hvvvdx11120atWqNmMSQgghGowdyxax/uvPsNusWJ11rGyXQY6fmae6P8OoqFH1Hd4lSe45hGhYFKuV4489hW3ZDwB8FT0IZdxYfnP8BsMvnwNwzDuUib7u5FtKifSIZO7guQS4BNRqXFqtjivve4SjmzfQrv9gNBpNrV6vsVEUhSObs1j/7TEsVTb0Ri0Jo1rRtneQ/G/1P/buOzqqanvg+Hf6ZNJ7IwkJLUAIPYTem11RsXefivUpKEVRQEAQLIhgFyv2ggXpJfReEyAhIQnpvSfT7u+P0fjjAUpJSEL2Z623ZGbuOXcf1mPuzOx79hYNSq7z9UtRFOLS1gLQpVRDiyJHiXnn2F5UlhSTe+I4AKFRnU8Z91cp+vDOZ05ECCGEEP+mqVzjdf5+eAZnQmX1WUvR55XVcDSnjJutjhvTWnb6u0pM8u6drPloMSEdo7l56qxLErMQQoim6Zx3wsfFxVFWVkaPHj3o1asXCxcuJC8vrz5jE0IIIRpceVEhdpuVohAN3/Y5QbE/vDn4TUnA1yP5zCFE42GrrGTnnQ9i++UnbKh4r8dNXD0ulpczH0S335GAP9zlJu7zdafAUkY7z3Z8PPLjekvAlxcVsnPZ9yiKAoDeyUSnISMkqXwGZQXVrP/yCJZqGwER7ox9PoaoAcHydyUanFzn61dySTJZNUXo7Qo1qRHo7DY0/v7oQkNJPbQfAN+wcJw9PGvH1FRayDhaDEB4ZylFL4QQ4sI0mWu8uQKSHVVjzpaE33I8H70CIVZH9aiwTt61r6Ue3Pfnc13qM0ohhBCXgXNOwvfu3Zv333+frKwsHnroIb766iuCg4Ox2+2sWrWKsrKy+oxTCCGEuGQs5praP7e8cggHe9v5OSoZJ1c3Phj5AYNCBjVccM2AfOYQonEozMxl4zVjcd27jRq1lmVX3svMK9OJ2ToOyjLBK4I91y/g/spDlJhLifaJ5sORH+Lt5P3vk1+A/LQTfPn8M2z84mP2Ll9WL+e4nLj5ONH7ulbEXhfB9eO74eEnpfpF4yDX+foVl+5IKvSsrqYwx5Fod4mNRaVSkbp/LwBh0V1PGZN6uAC7XcEryBkPf3mvEEIIcWGazDX++Dqw1YBnS/CNPOMhW5IKaGlRowY8/E21n6Xtdhvphw8AkoQXQgjx7845Cf8Xk8nEfffdx6ZNmzh48CDPPPMMr7zyCn5+flxzzTX1EaMQQghxSZirq1jxzgK+nTEFu83G4fzD3L36XnZ7phPsGsynoz+ls2/nf59I1An5zCFEw9m17RD7r7uJgJNJlOpNFN17HZP838F09AdQqaHPE2y57nUeOriQCksFPQN68t6I93A3uNdLPCcO7GXp1Gcpy8/DMzCYiG4x9XKepqymysraTxPITS2tfa7LsFC6j2qJWi2730XjI9f5+rEpeTkAMVV2vHNLAEc/eEVRSD2wBzg9Cd+6mx/X/bcrva9vdWmDFUIIcVlq9Nd4kzdEXgVRY+AsVaI2H8+nlcWxC75l9N9VYnKSk6iprMDg7IxfhFw3hRBC/LPzTsL/f+3atWPu3LmcPHmSpUuX1lVMQgghxCWXfTyRzyc+yaF1K8lKPMryjUu5d8W9FFYXEukVyWejPyPcPbyhw2y25DOHEJeG1Wbngw+XU/PQfQSU5lLk7E7EnUEMrliAqjIffNvD/atZFzmExzY8TbWtmn7B/Vg0dBHOOud6ieng2pX8+MpLmKsqCY7syK0vz8MjILBeztVUnTxaxFcztpOwJYs1nyRgtysNHZIQ50Wu83WjwlLB7uKjAKiKWtGm+CQAzr1iKMxIp7yoEK1OT3Bkh1PGqTVqgtt5ntLvVgghhKgLjfIaH9YbbvkChk4948tpBZWcLKoi3mij/YAgWnXz/fu1g47WLqEdO6NWay5JuEIIIZoubV1MotFouO6667juuuvqYjohhBDikrHbbexc9gNbvvkcu82Gi5c3btfH8nz6fKyKldjAWF4f9DouepeGDlUgnzmEqE/phZUsmPsFt/z6NiZrDVU+nvQYnIG+IgHUWuj/DPR/huXpa5kUNwmbYmNY6DDmDJiDXqOv83gUu53N33zO9h+/ASCy70BGPvIUWp2uzs/VVFnNNrb9lMz+tekAuPkYGXhbO9n5Lposuc5fnG2Z27CiEGqxkJURgUY5iS4kBF1wMKm//wxAcPuO6PSGBo5UCCFEc9OUrvGbkvIB8GvlzpDbTi1X/1c/+FApRS+EEOIc1EkSXgghhGiKSvPzWP72fE7GHwKgTa++ZPd1Y9aRRQBcGXElM/rMQKeRhI8Q4vL2496TrHjzU8Zt/xKdYkMbbKRzr3g0GgUCu8C1b0NAFD8m/siLW15EQeGqiKuY0XcGWnX9fKXIPZHMjp++AyB2zC30uel2VGcpF9kc5aaWsvrjeIqyKwHo2D+IPmNaozfKVzwhmqu4xJ8A6F1lQZVrB8DUy9G+o/OIK/Br2Qr+5210+7JkaqqsRA0IxiuwfiqaCCGEEE3J5uOOJHzf1qdWiLFZLWQnHQMgrJO0KhRCCPHv5BcaIYQQzdaKxa9zMv4QOoORQfc8yDKnHXx95B0A7u14L091fwq16qI6twghRKNWWm3hhZ8Oofn2S548/CsArmFmgmIyUesNMHgy9H4MNFq+SPiCV3a8AsBNbW/i+djn6/U90j+iNUPvfxiNVkfU4OH1dp6mKOdEKT/M3Y3drmBy0zP4zkgpIy1EM6coCpuytwPgWRVCi/wTADj3igVAo9XRokPUqWPsCoc3ZVJVaia8k48k4YUQQjR7drvC1uMFxFRr6aQzYLfZUWsc33k0Wh0PvfMpmccS8AgIauBIhRBCNAWShBdCCNFsDbnvEVZ/8DYD73+IOYkLWH1sNSpUPNvzWe7ocEdDhyeEEPVqd2ohTy3dw6i4b7nh+EYAvNqW49e1FFVoLFy7EHzaAPDBwQ94c8+bANzV4S7G9xhfL7vSi7IzUaGq7fneefgVdX6Oy4FfqCtBbT0wmHQMuq0dRhep2CJEc5dYnEiOrQqD3c7xvK4MKl4B/L0T/kxyTpRSVWpG76QlqK3HJYpUCCGEaLyOZJdhLbMwsNrI0a+O07d7EEaXv288NphMhHfp3oARCiGEaEokCS+EEKLZyE46RvbxRLqMvBIA7+AQRk2cxBNrn2BP7h50ah2z+s9iVMtRDRypEELUH6vNzltrk1i8KoGndy9lYMZ+APy6lOAVBarhr0LPB0CtRlEU3tr7Fu8ffB+ARzo/wiOdH6mXBHzG0QR+enUGTq5u3DrjVZxcXOv8HE2VYldI2JJF6x5+6I1aVGoVV4yLRqtTS4l+IQQAm47+CEDPajNFuZ6oUdBHRKDz82PP8l8oysogatAw/CNa145J3pcHQFiUNxqtVH8SQgghthzPJ8LiuCYGtHKXm12FEEJcFEnCCyGEuOzZ7TZ2/vw9W779AsWu4NsyguB27ckqz+Lh1Q+TXJKMq86VN4e8Sc+Ang0drhBC1Jv0wkqe+nofCUmZvLr9XdrmnwSVQlCvYtyH9IKrF4BnGOAobTxn5xy+SPgCgGe6P8M9UffUS1xHt8ax/O3XsFksuPv6Y7da6+U8TVFZYTVrPkkg42gRuamlDLo9EgCdXtPAkQkhGpNNqasBiLD4Ys1LB/7eBR+/cQ05yUkEtGpTm4RXFKU2CR/RxbcBIhZCCCEan81J+bSyOD5n//92T5WlJfw4ZxphnbrS9+bbUanl5jUhhBD/TpLwQgghLmul+bksX/gaJxMOAdC2d3+8g0M4VnSMR1Y/Qm5lLn4mPxYPW0xbz7YNHK0QQtSfn/dl8PyPhzAV57Jk2xu4llSi1toJHlyDy71zoeud8OeuapvdxvRt0/kh8QcAnu/1PGMjx9Z5TIqisHPZ98R9uQSAVj1iufLx8eiMxjo/V1OjKApHt2cT99UxzNU2tHo1Pi1cGjosIUQjVG4uZ29VNqggo7ArI/ITAHDu1YvK0hJyUo4DEBbdtXZMUXYlJblVqLUqQjt6NUjcQgghRGNisdnZnVzI/VbH7vf/n4RPP3yA7KRj2Mxm+t1yZ0OFKIQQoomRJLwQQojL1pEtG1n9/tvUVFagMzox9L6H6TBgCLtydvHE2icot5TTyr0V7wx/hwDngIYOVwgh6kVZtYWpPx/mx70ZDCnfzbNbl6JUgMZoI+Su9jg98A64BdYeb7FbmLJpCstTlqNWqZneZzrXtr62zuOyWa2s+WgxB9c4+hZ3u+JaBt55H2q17PCuKjOz/oujtbtU/cPdGHZPBzz8TQ0cmRCiMdqW9AtWFYRZLOwr6cJDpWsBMMXEkHRoPygKPqEtcfH8O9mest/x/tKinRd6o/w0JIQQQuxLL8a3UkGLCldvI56Bf3/2Tj24D4DQTl0aJjghhBBNknzTEkIIcVla/eFi9q/8DYDA1u244vHxeAQE8seJP5gcNxmL3UI3v24sGLIAd4N7A0crhBD140R+Bfcu2UlmfhGzSj6h++YE7GY1ejc7IbPGox/6YO3ud4AaWw0TNkxgXfo6tCotcwbMYUTLEfUS26avPuXgmhWoVGoG3f0g3UZfXS/naWqyjpew/J0DVJVZUGtUxFwdTtfhoag1UvJSCHFmcUcdVUs6W1xJzXck1w1t26L18iL1wF4Awv4naaDVaXDxMhDRxQchhBBC/E8p+mgfVP/ve1JabRK+c0OEJoQQoomSJLwQQojLkl9YOCqVml433EzsDbeg0Wr5PP5z5u6ci4LCsNBhvDLgFQwaQ0OHKoQQ9WJvWhH3f7KLVpUH+LDgA8xb7NhtaowtXAhZ8iXaFm1OOb7SUslT655ia9ZW9Go9rw9+nQEtBtRbfD2uup4T+3bT79a7aNW9V72dp6lx8zGi2MEryJlh93bAN8S1oUMSQjRiiqKwqeQYqMBc0YHO+UkAmGJ7oSgKqQf2AdDy/5WiB+g8NIToIS2w25VLHbIQQgjRKG1JKqCdzXHja8tO3rXPF+dkU5Kbg1qjoUX7qIYKTwghRBMkSXghhBCXBbvdRll+Pu5+/gB0GjqSwLaR+Ia2xK7YeW3Xa3x8+GMAbml3CxNjJqKRksdCiMvUysPZvPrVcl5WvqB32mGy97iDosa5e3tavP85atOpZc3LzeU8uuZR9uTuwUnrxMIhC4kJjKnzuCqKi3D28ATA2cOTO+cukPLzQGFWBV6BzgA4uxu45qkueAaY0Ork70YI8c+OZWwjV2XHyW4nrmAgM/KWAI5+8IWZJykryEOj0xHcvuNpY1UqFRqN6rTnhRBCiOam0mxlb3oRO1wUfr69J8FtPGtf+2sXfGCbSPRGpwaKUAghRFMkNQ2FEEI0eaV5uXwzbRLfTJ9EdUU54PhR0Te0JRabhcmbJtcm4J/s9iSTe02WBLwQ4rL11Yb9pC99imWW8URvSyJ7twcoKtyvvYqQT745LQFfXF3MAysfYE/uHlx1rrw3/L16ScAf372DD5/8D4c3rKl9rrkn4K0WG5u+S2Tp9O0c35tb+7xviKsk4IUQ5yTu4KcAdLbqMFcaaVGeB2o1pp49qSgqxM3Xj+B2HdAZjLVj8tLLsNvsDRWyEEII0ejsSCnEYlMI9nQiupMvGt3faZOztXYRQggh/o3shBdCCNGkJWzewOr338ZcVYneyYn81BO06OAoD1ZuLue/6//LtqxtaFVaXurzEte2vraBIxZCiPpht9Sw9rNZjEp9H02ulfQd3tiqNaDR4PvUk3g/8MApfQ0B8qvyeXDlgyQVJ+Fp8OTd4e/S3rt9nce2d8WvrPv4PRTFztGtcXQYMOS0WJqbvLQyVn0cT1FWBQA5KaW06urXwFEJIZqauNxdAHha29A5/zgAxvbt0bi5ERrVmQfe+hBLdVXt8TVVVr57ZRc6o4bbXozF5KZvkLiFEEKIxmTL8QJQoG9r79O+pxhdXTG6uhEqSXghhBDnSZLwQgghmqSaykrWfLSYhLh1AAS2jeTKx8fj7hcAQF5lHuPWjONI4RGctE68Nug1+gX3a8iQhRCifigKlkM/UbxsMkOqssjZ50ZxkjsA+tatCJ47F2OHDqcNy67I5oGVD5Bamoqvky/vj3ifVh6t6jQ0u93Gxs8/YvdvPwMQNXgEwx4Y16wT8HabnT0rUtn56wnsdgUnNz1D7oikZbRPQ4cmhGhiSkvS2a9UgUrF7pzeXJW/HwBTr161x6hUKvROf1dASTtUgN2mYHLVSwJeCCGE+NOuhDzGlRrxTbdgtyuo1X9/Xxn+4GMMu39cA0YnhBCiqZIkvBBCiCYn42gCyxfOoyQ3B5VKTeyYW4i9YSxqjaN0b0pJCo+sfoSM8gy8jF4sGrqIjj6n98EUQogm7+QurMsno8vYjku+jsRt/tjLHaUTve6+C9///he10XjasPTSdB5Y+QCZFZkEOQfxwYgPCHELqdPQLDXV/P7WfJJ2bgWg3y13EXPdTc06AV+cU8mqj+PJPVEKQKuuvgy8vR1OLpIIE0Kcv637PsCmUhFmU3Gouh3dCn4EwDm2F+bqKrQ6fe3n478k788DILyz7yWPVwghhGiMCivMWE5W4qzoMVbaT0nA/0Wllq6+Qgghzp8k4YUQQjQ5e377iZLcHNx8/bni8fEEt/u7dPL+vP08tuYximuKCXEN4d1h79Z5YkkIIRpcUSqsmQaHvkdjh8xDHhQnmFApoA0IIGj2LJx79z7j0OPFx3lw5YPkVeUR5hbGByM+IMA5oE7Ds1osfDN9MtlJx9BotYwa918i+w6s03M0RcW5leSeKEXvpGXALW1pG+PfrG9KEEJcnE1pjopQrZQQcisL8SvPB40Gp27d2frTd+xb8Su9b7yN7lc62jHZLHZSDxUAEN5Fqm8IIYQQAFuPF9DK6rhprXWXU29SK83Pw9XbRz6zCyGEuCCShBdCCNHkDH1gHM6eXvQdeycG09/lNdenr2fChglU26rp6N2Rt4e+jbeTd8MFKoQQda2qGOLmw/Z3wGamqlRLwtYQnIpqUAFuV19NwAvPo3FzO+Pw+IJ4Hl71MEU1RbT2aM37I97Hx6nuEzFanY7wLt0pzs7i2gnP0yKy+VYjsdnsaDSOnTMtO/nQf2xbwjv74Op1eoUCIYQ4V0pNOZssjqR7VmkPovMc/eCdOnVC4+JM6oE91FRWYHRxqR1z8lgRlmobJnc9/mFnvk4IIYQQzc3mY3mEWf7+vP4Xq9nMx089hNHVldtnvY6Lp1dDhSiEEKKJkiS8EEKIRi8+bh0ZCYcZ9uCjqFQqTG7uDLn3oVOO+e7Yd8zYNgO7YqdfcD/mD5yPSWc6y4xCCNHE2Cyw62NYPxuqClEU2JvYGu2+GpzsNahcXQma9hJuV1xx1in25e5j3OpxlFnK6OjdkXeGvYOH0aNOw1Ts9tpSjb1vvI3ooaNw8WqeN0MpisKxHTlsX5bMDeO74eLpSLpHD27RwJEJIS4HRw58Tr5Gg5MCO3K7MqHgO8DRD76qvIzs5CQAQjt1rh2Tsu/vUvSqM5TaFUIIIZqj44fzCUaF1lmLT8jfN69lHkvAajGjKArOHp4NGKEQQoimSpLwQgghGq2aygpWf7CII5s3ABDRvSetuvc65RhFUVi8fzGL9y8G4LrW1zG191R0at0lj1cIIeqcosDR5bBqKhQkAlCkCmfbWi9a5mYBYIjtTcic2ej8/c86zfas7Ty+9nGqrFV08+vG20PfxkXvctbjL8ThDWs4sGYFN06Zjs5gRKVSNdsEfFW5mQ1fHOX4XkfCa9/qdPrd1KaBoxJCXE42JS0DoAPe5Nq1dC9MBhz94NMO7gdFwbtFKK5ejh19il0hZX8+ABGdpRS9EEIIAZBRXIVLgRXQEh59atn51IP7AAiL6izl6IUQQlwQScILIYRolE4eOczyhfMpzctFpVbT+8ZbCe/S45RjrHYrL297me8TvwfgwU4P8njXx+XLkRDi8pC5F1a+ACfiAFBMPmwtGor21120tGRh1eoIeHYCPnfcXrv7/Ew2pG/g6fVPY7ab6R3YmzcGv1GnlUIURWHLt1+y7fulABxcs4JuV1xbZ/M3NScO5LP28yNUlZpRq1X0vCqcbiNDGzosIcTlxGomriwFDFrU1q4EVeTjXl6ESqfDqWtXUj99H4CWnbv+PUYFVz4aTcqBfILbym4+IYQQAmBTYh6t/ixF36ar3ymvpf2ZhA/t1OUSRyWEEOJyIUl4IYQQjYrdZmPr90vZ/sM3KIoddz9/rnh8PEFt259yXJW1igkbJrDh5AbUKjWTYyYzNnJsA0UthBB1qOQkrJkOB752PNYYMEc/wOovsgg/4EjIF4e0ous7b2Js1eqs09TYanhrz1t8Gv8pCgqDQwYzb+A89Bp9nYVqtVhY+e4CEuLWARBz3U10HXV1nc3flJirrWz+NpH4zY4KBZ6Bzgy/twO+oa4NHJkQ4nJTkvgH+/UaALZn9mBA/hEAnDp3RmUwkHpgLwBhnf5OwqtUKvzC3PCTXvBCCCFErW3H8snX24hxMtAi8u+b1KrLy8/Y2kUIIYQ4H5KEF0II0aj8+uYcErdvAaDDgCEMufdhDKZTd2wWVRfx2JrHOJB/AIPGwJwBcxgaOrQhwhVCiLpTUwabXoetb4O12vFcp5spMF1J0tRXCS8rxIaK3GtvZfDLE1Hpzt5240jhESbFTSKp2PHD0U1tb2JSr0l12qqjqryMZfNmcjLhECq1mmEPPEr00JF1Nn9Ts291uiMBr4IuQ0PodW0EWp2mocMSQlyGth7+ArtKRRgmDlV60LPYUYreFBtLUVYmpXm5aLRaWrSPauBIhRBCiMZLURQ2nSgkz8nKIw+2R6f/+7N7+uEDoCh4BYfUtnYRQgghzpck4YUQQjQqnYdfQfqhAwy9/xEi+w487fWTZSd5ZPUjnCg9gZvejYVDF9LVr+sZZhJCiCbCZoU9n8D62VDh6CFOaB/sg6eS+ukaqpdOwg3IdPFB9/w0hlw35KxTWe1WPj70MYv2L8Jqt+Jt9GZan2kMDDn9/fRiFOdk88MrL1GUeRK9kxNX/3cSLTt3q9NzNDXdRoSSk1JKt5GhUupZCFF/7Dbi8g+AkxZ/dQcOKQqd848D4NwrBrvRSO8bb6O6ogyd0QhAcU4lu5efoFU3P1pGSyJBCCGEAEjMLSevrAaDVk230FM/v9f2g5dS9EIIIS6CJOGFEEI0qOrycvLSUgjp0AlwfMF5YOFHp+1+B0goSGDcmnHkV+UT6BzIO8PeIcIj4lKHfE4URZHe9EKIf6YokLgKVr0AeY5Swni1guHTqbaHk/LIBDiRAsCa1n3p/9p0OrcNOut0aaVpTN40mf15+wEYFjqMF3q/gJfRq17Cry4vw9Xbl+snvohvaMt6OUdjlpdexqH1Jxl4eyRqtQqtXsPVj0upSiFE/bKnbmGT3vEZM7kohtCyHEzlJaiMRoydO6PW6+lz022njEnel8eRbdlUlpolCS+EEEL8adPhHCIsalq08sT4PxWsIvsMQKvX06pHrwaKTgghxOVAkvBCCCEazMn4Q/y+cD7VFeXcNWcBHgGBAGdMwG/J3MJ/1/2XSmslbT3bsmjoIvyd/S91yOekYutW8t54nZD3P0DjJn03hRBnkH0QVj4Pyesdj528YNBElK53U/Dxp+S+NQmV1UqhwZWvBt7J+BfvI8zb+YxTKYrCt8e+Zd6ueVRZq3DRuTCp1ySujri63m4G8vAPYMykaTh7eOLi5V0v52is7DY7e1amsfPXFOw2Ba8gFzoPDWnosIQQzUTCwS8p1GgwoSYlM4hr8rcBYOrWFbVef8YxyfscVVbCu/hesjiFEEKIxi5hTy5jKgxwwnraay06RNGig7R1EUIIcXHUDR3AokWLCA8Px2g00r17d+Li4v7x+JqaGqZMmUJYWBgGg4FWrVrx0Ucf1b6+ZMkSVCrVaf+rrq6u76UIIYQ4RzarlU1ffcrX0ydRVpCHs7sH5uqqsx7/a/KvPLr6USqtlfQM6MmSUUsaZQJeMZvJnTOLtPvuo2r/QfJfm93QIQkhGpvSLPjpUXinvyMBr9FDn8fhib2Yg64g9Z77yXv9dVRWK5sDo1h853SmzX7orAn4vMo8xq0Zx4xtM6iyVhETEMMP1/zANa2uqdMEvKIo7PzlB47v3lH7nH9E62aXgC/OqeSHeXvY/nMydptCRBdf2sY0vuuREOIypSjEZWwEoI0uAtDSvyINAFOvWAozM0jcvoXqivLaIRUlNeSklAIQLrvghRBCCACsNjvW9EoAQiLrp3KYEEII0aA74b/++mueeuopFi1aRN++fXn33XcZPXo08fHxhIaGnnHMzTffTE5ODh9++CGtW7cmNzcXq/XUu9Xc3Nw4evToKc8Z/+yFJoQQomEVZWfy+1vzyE46BkDHQcMYcs9/0DudvvtdURSWHF7Ca7tfA2BUy1HM7DcTvebMu3wakjk5hYzH7qM6ORsAj1YV6Ls2vjiFEA2kphy2LIAtb4HF8WMPHW+AYS+ieIRR8v335Myajb2ykkqtgcWdrkM7+io+uLXraaUR/7LixApmbJtBSU0JerWep7o/xe3tb0etqtv7bO02G2s/fof9q5ajNRi497XFuPn41ek5GjtFUTi0IYMtPyRhNdvRGzUMuKUtbXsFSOsRIcSlk7mXTWoLYKDK0guVYqdtdiLg6Ae/Z9N6tn2/lHZ9BnDVk88CkLI/HwD/cDecPQwNFbkQQgjRqOxPKyakxvE5vkefU1t+JWzegMnVneDIDmjPUmVGCCGEOBcNmoR/7bXXuP/++3nggQcAeOONN1ixYgWLFy9m9uzTdw/+8ccfbNiwgeTkZLy8HHeotWzZ8rTjVCoVAQEB9Rq7EEKI83d4wxrWfPQOluoqDM7ODH/wcdr17nfGY+2KnVd3vsrnCZ8DcGeHOxnfY3ydJ5culqIolHz4GtlvfohiUVDr7ah7qJgY8DCdjGMY39ABCiEalt0G+76AtTOh3HGTDi1iYOQsCOmJtaCArMcep3zNGgAOeoczv9stXDGiO89f2QGN+vQEb6m5lFnbZ/Fb8m8AtPdqz+z+s2nl0arOwzdXVfLrG3NI2bcbVCr6jb0LV+/mV85407eJHFh7EoAWkZ4Muas9rl5yk68Q4tIqPvQdBwyOZMDR1HDCS7LQV5ShNpkwduxI6nefAdAyumvtmJT9f5ai7yy74IUQQoi/bNueiQEVVp2KwHD32ucVu511S96jqrSEsS++IiXphRBCXJQGS8KbzWZ2797NxIkTT3l+xIgRbNmy5Yxjli1bRo8ePZg7dy6fffYZzs7OXHPNNcyYMQMnJ6fa48rLywkLC8Nms9GlSxdmzJhB165dzzgnOErc19TU1D4uLS29yNUJIYQ4k4KTaViqq2jRIYrRjz6Dm8+ZEzk1thomx01mZepKAMb3GM/dHe++lKGeE1vmMbKevJ+yg44dRnpfCz/2GMDK4Ft5elQUIzvKDWGNgVznRYM5vhZWvgA5hxyPPcJg+DTocB2oVJStXUvWC1OxFRRgU2tY0n4UP7QeyOSrOvJA/4gzTrk1cysvbH6BnMocNCoND3R6gIeiH0Kn0dV5+GWF+fz4yjTyUlPQ6g1c8fgztInpU+fnaQo69A3i6LZsYq4Op9PAFqjOcHOEEOLSa1bXeEVhS/LvKCYVYTofDlW6cE3pfgCcevagpqaG7CTHrviwP5Pw5iorJ48UARAh/eCFEEI0MfV5nc+ILyQYMIY6n/LZPi/tBFWlJWgNBgLbtquz8wkhhGieGiwJn5+fj81mw9//1B6K/v7+ZGdnn3FMcnIymzZtwmg08uOPP5Kfn8+4ceMoLCys7QsfGRnJkiVL6NSpE6Wlpbz55pv07duX/fv306ZNmzPOO3v2bKZNm1a3CxRCCAE4+r9rtI7LTd+xd+AREEjU4OGo1Wcur1xqLuXJtU+yK2cXWrWWmX1nckXEFZcy5H9nqabysxfIePtnrBUaUClkdfBlftcnuHtkLL93C0araVw79pszuc6LSy43AVY+D0mrHY+N7jDgWYh5ELQGbOUV5M55heJvvwMg2zuY6dFjyfBuwVs3d+HK6MDTpqyyVvHG7jf48siXAIS5hTGr3yyifaPrZwknkvlxzjTKCwswuXtw3bMvENi6+fwIVV1uIeNYEa26Ocruewe7cNfMPuidGrSQmBDifzSra3zeUTbZSgFn3DQ9ARhQfgIA55hepB8+gKLY8QoOwdXbseu9rLAaD38TdpuCZ4BzAwUuhBBCXJj6us5XW2yYCsyAmo49Tt08kXZwHwAh7aPQaOv+RmchhBDNS4P/ivS/PRQVRTlrX0W73Y5KpeKLL77A3d1RJua1117jxhtv5O2338bJyYnY2FhiY2Nrx/Tt25du3brx1ltvsWDBgjPOO2nSJJ5++unax6WlpYSEhFzs0oQQolmzWS1s+eYL0hMOMfbFV9BotWi0OqKHjjrrmJyKHB5e/TBJxUk465x5Y/AbxAbGnvX4S05RUA4vI3v2JIr32EHRYHdW8XGfm4i8+R6+jw07a+9m0XDkOi8umbIcWD8L9nwKih3UOkfifcAEMDlaKVXu2Uvmc89hSU8HlYpVUUN5q+VQTC4mPr+rBzHhXqdNeyj/EJPiJnGi9AQAt7S7hf92/y8mnanelhK/cQ3lhQV4BYdww8SXcPfz//dBl4kTB/NZ99kRqsot3PicEb8wNwBJwAvRCDWna7w9fhmbTY42GNl57VDbbbRIPwqAKbYXe7asA04tRe8d7MKtU3tRU2m59AELIYQQF6m+rvOb92XjaVNjQ6Fnr1NvgE475KgyExZ99qq6QgghxLlqsF+SfHx80Gg0p+16z83NPW13/F8CAwMJDg6uTcADtG/fHkVROHny5Bl3uqvVanr27EliYuJZYzEYDBgMhgtciRBCiP9VmJnB72/NIyfZ8d6bvHcnbXr2/scxSUVJPLLmEbIrsvFx8mHxsMVEekVeinDPTU48RZ89RcnPSVTlGQAVx0NDSB43m6mjonEzyh3SjZVc50W9M1fC1rdh8xtgLnc81/5qGDYNvB192hWzmby3F1Hw/vtgt6P4BTAr+iY2uYQR7OHEJ/f1pLWf6ynTWuwW3j/wPu8deA+bYsPPyY8ZfWfQJ7j+S8IPuP0+dEYnul95HUZnl3o/X2Ngrray+fsk4uMyAfAMMEnZeSEaueZ0jY8/+iOFRg3Oaj3JJ31pV5KBpqoStZsbxshIUt95DThz0sBgks+pQgghmp76us5bndSsDFXR2dX5lGukzWohPcHRSiy0U5c6P68QQojmp8GS8Hq9nu7du7Nq1Squv/762udXrVrFtddee8Yxffv25dtvv6W8vBwXF8ePgceOHUOtVtOiRYszjlEUhX379tGpU6e6X4QQQohTKIrCoXWrWLvkXaw1NRidXRj+0OP/moDfk7OHx9Y+Rpm5jJZuLXln+DsEuwRfoqj/RWUhJcuno/z+Fbk73LFbDFi1avZd/yCjnn2Eq1ybxw+/QogzsNvhwFewZgaUORK3BHWDkTMh7O9EeU1SEhnPPktNfAIAFYNG8h+PARRiICrYjY/u6Ymfq/GUqZNLkpkSN4VDBY4fgUa3HM2U2Cm4G9ypD4rdzsF1q+g4cCgarRa1RkPfm++ol3M1RplJxaxZEk9pfjUAnYeGEHttBFq9VDcRQjQCRSeIqzoJRg/CTJ3JRsNI80kATDE9KS3IpyQ3B7VGS4sOUQBUlZnRGTTyPiaEEEL8j5FRgYyMCsRstZ/yfNaxo1hrajC5e+ATEtZA0QkhhLicNGhNxaeffpo777yTHj160Lt3b9577z3S0tJ4+OGHAUfJmYyMDD799FMAbrvtNmbMmMG9997LtGnTyM/PZ8KECdx33304OTkBMG3aNGJjY2nTpg2lpaUsWLCAffv28fbbbzfYOoUQojmoKi9j1Xtvkbh9CwChUdGMGvd0bU/Ks1mduprnNj6H2W6ms29nFg5ZiIfR4xJE/C/sNko2vYd6zWwqd0JxsicAhUGhtHhjAXdGN5/eyEKIM0jZCCumQPYBx2P3UBj2InS8AdRqwJHYLvr8c3LnzUcxm9G4u3Ps9kd5IssLuwKD2vny9m3dcDb8/ZHcrthZemQpr+9+nRpbDW56N56PfZ7R4aPrbSkWcw1/LHyNY9s3k3M8keH/eazeztUY7fglmZ2/nwAFXLwMDL27Ay3aeTZ0WEII8beEX9n0528elirHBoMeRcmAox+8u58/D7z1AXmpJ9AbHcft+CWFI9uy6DumNVEDz7xpQQghhGjO9Fr1KY9P/rULPqrzWdvlCiGEEOejQZPwY8eOpaCggOnTp5OVlUVUVBS///47YWGOO82ysrJIS0urPd7FxYVVq1bx+OOP06NHD7y9vbn55pt5+eWXa48pLi7mP//5D9nZ2bi7u9O1a1c2btxITEzMJV+fEEI0JysWv8HxXdtRa7T0u+VOelx1PSq1+h/HLD2ylNnbZ6OgMChkEHMHzMVJ63SJIj67soR1VC4bj3vmCTK2eGIu06EAqtvvps/EZ1DppKSnEM1W3jFYNRWOLXc8NrhB/2eg18Og+3s3uyU7m8xJk6jcug0A5379+H7Yvby5rwiAW3qG8PJ1UWg1f79PZldk88LmF9iW5RjTJ6gP0/tMx9+5/vqxV5YU89OrM8hKPIpGq6VF+471dq7GyuiiBwUiewfQ7+a2GKT3uxCikSlM+ImDBj0AiSnBaO1WfFKOAGDq1QsAd78A3P0CAFDsCin787Ca7bh6N/xnayGEEKIp6HX9zbTq0UsS8EIIIepMg//CNG7cOMaNG3fG15YsWXLac5GRkaxateqs873++uu8/vrrdRWeEEKIczTg9nspK8hnxH8exz+i9T8eqygKC/Yu4IODHwBwY9sbmdJrClp1w16WqvJSyPj6GVrlrcF81JmUA75gV2H39qHl/Fdxjo1t0PiEEA2oIh/Wz4ZdH4NiA5UGetwHgyaC86kVP0p+/Y3s6dOxl5aiMhrxHj+elzXt+XlfFgDPDG/LY0Na1/64oygKv6X8xqxtsyizlGHUGHmmxzOMbTe2Xn8AKshI58dXXqIkNwejswvXjJ9CSIfLv4WT3a5QXlSN25+JqU4Dg/Fp4UxQG9n9LoRohMqy2VIYj+LnTahTGIcrnOlZmY6qphqNlxeGNqd/7s5NLaOixFGOXip7CCGEEOdGpVbjGxbe0GEIIYS4jDR4El4IIUTTVJh5kpPxh4geNgoAr6AW3DH7jX9NGFnsFl7a8hLLji8D4NEuj/JQ9EMNeqexuaqchO+m0+74x7SsspK23YvKbMeOVpehQwh8+WW0nvIDphDNkqUati2CuNfAXOZ4rt0VMHw6+LQ55VBbcTHZ02dQ+vvvABg7dcJtxkwe3ZjPtuQstGoVc8ZEM6b732WBi6uLmbFtBitTVwIQ7RPNzH4zaenesl6XlR5/kGXzZlJdUY67fwA3THwJr6DLv1xxcW4la5YkUFlaw9jnY9AbtajUKknACyEaryO/EWdyfC51V3cD4EprBgCmmBhykpPY+sNXtInpQ9SgYQAk788DICzKG43unytTCSGEEEIIIYSoH5KEF0IIcV4UReHgmhWs++R9rBYzXkEtaNEhCuBfE+mVlkqeXv80mzM3o1FpmNp7Kje0ueFShH1Gdpud3cs/InT3bDor+ZRnGkjeEYiqWkFlMOA/aSIeY+t3J6oQopGy2+HQ97BmGpSkO54L7AwjXobwAacdXr55M1mTp2DNyQGNBp9HHqHmlju59bO9HMspx8WgZfEd3ejfxrd2TNzJOKZumUp+VT5alZaHOz/M/Z3ur/eqIObqKpa9NpvqinIC27TjumenYnJzr9dzNjRFUTgcl8nm7xKxmu3ojRoKTpYT2NqjoUMTQoh/ZItfxhYnRxI+P8+xO69jbhIAzrG9SNi7i+TdO9Dq9LVJ+JR9jiR8eBefM8wohBBCiP+19bulFGVn0mXElQS1jWzocIQQQlwmJAkvhBDinFWWlrDqvbdI2unoVxwa1RmPgMBzGptflc+jax4lviAeo8bI/EHzGdDi9ETWpaAoCju3rcdp9RR62g5jt8Hx/f6Yj2lQoWBo25bg1+ZjaP3PZfWFEJep1C2wYgpk7nE8dg2CoVMheiyoT91RaK+qInf+axR9/jkA+pYtCXp1Lsneodz33g5ySmvwdzPw8T0xdAhyAxw3JM3bNY9vj30LQIR7BLP6z6Kj96Xpx643OnHFo09zeMMaRo57Cp3ecEnO21DKi2pY91kCafGFAAS382DIXe1ry9ELIUSjVVnIoaztFAf64qI1cSzVG53NgktSPACmmF6kfrwIgLDorgAU51RSlF2JWqMiLEqS8EIIIcS5OLJlI4UZ6bSJ6d3QoQghhLiMSBJeCCHEOTlxYC9/LHqdiqJC1Bot/W+9i+5XXodK/e8lLtNK03ho1UOcLD+Jp8GThUMXEu0bfQmiPt3eI4nk//wCQyv/QK1SKClxIn13GJrcUgA877wTv/HPoDZc3kkpIcQZFByHVVPhyK+Ox3oX6PcUxD4KetNph1cdOkzms89iTk4GwPO22/CbMJ7NJ8t55N1tlNdYaevvwpJ7YwjycCR89+XuY/KmyaSXOXbX39H+Dp7s9iRGrbFel2azWijOycY7OASA8K49CO/ao17P2Rgk7sxhw9Kj1FRa0WjV9L6+FdGDW6BSS4UTIUQTcGwFm4x6AMKcu5OFhtHqHDCb0fr5ofj7kpV0FICWfybh/ypFH9zOE4OT/OQjhBBC/JuywnwKM9JRqdSEdGiY36qEEEJcnuQbmRBCiH+1+ZvP2fb9V4Cj9/sVT0zAP7zVOY09mHeQx9Y+RmF1IcEuwbwz7J1673V8JgknC9j3/atcWfgJXVWVKEB8dnfUWwvR1JSi8fQkcPYsXAcNuuSxCSEaWGUhbJgLO98HuxVUauh2NwyaBK7+px2uWK0UvP8+eW8vAqsVra8vgbNm4tK/P9/uSmfSDwex2hV6R3jzzp3dcXfSYbFZWLx/MR8e+hC7YifAOYCZfWcSExhT78urrijnl9dmkZt6gttenodnQFC9n7MxUBSFYztzqKm04hvqyrB7OuAV5NzQYQkhxLlL+IVNf/aDt1W0A2BoleMmLlOvXqTHH0Sx2/EMDMbN1w+A1t0c//XwO/3mMSGEEEKcLu3gfgD8W7XG6OLSwNEIIYS4nEgSXgghxL9y9Xb0MO48fDQD77wfneHcdmzGnYzjmQ3PUGWtor1XexYNW4SP06Uti5lWUMnvP33B0NTXuVWdASo4qWqNOaUtqu37UADnPn0IfGU2Oj+/SxqbEKKBWWtgx3uw8VWoLnE813o4jJgBfu3POMScmkrms89Rtd/xQ43ryJEEvPQiGg8P3lydyOurjwFwXZcg5twYjUGrIbEokcmbJnOk8AgA17S6hokxE3HVu9br8mxWK/Eb17Lth68ozctFZ3SiNC/3sk/C2+0KarUKlUrF4Dsiid+cSdcRoWg0/165RQghGo2acgpS1nIo2PE5PPFEMAARJx073517xZCwfy/wdyl6ADcfJ7qNCLvEwQohhBBNV9rBfYCj5aIQQghRlyQJL4QQ4jSKolBRVIiLlzcAnYaMwCckjKC2kec8x4+JPzJt6zRsio3egb15ffDrOOsu3Q7E3LJqvli+nk6H5vKwejeooUzjTqnfXVR9uQlrzj7Q6fD773/xuufucyqrL4S4TCgKHP4RVr8ExamO5/yjHMn3VkPOMkSh+JtvyXnlFZSqKtQuLgRMfQG3q6/GaleY+P1Bvt7l2J04blArxo9oh4KdTw5/wpt73sRit+Bh8GBq76kMDxter8uzWS0c3rCG7T9+S2leDgAu3j5c/+xU/FpG1Ou5G5K52sqWH45jrbEx7N4OAJjc9PQY3bJhAxNCiAuRtJotekfrjDCXNhwqc8JHY0N77M9+8LGxpM6d5nj9/yXhhRBCCHHuFEUh9ZDjBuuwTl0aNhghhBCXHUnCCyGEOEVlaQkr311Abkoyd819C6OLCyqV6pwT8Iqi8N6B91i4byEAV0VcxfQ+09FpdPUZdq3Sagsfrz2I07Y3GKf6DYPaihUNRe3vQkkLoPSNT0FR0IeFETR/Pk5RHS9JXEKIRiJ9B6yYAid3OB67BMCQ56HLbaDWnHGINS+PrOdfoHzDBgBMMTEEvTIbXVAQFTVWxn2xhw3H8lCrYNq1UdwZG0ZGeQZTNk1hd85uAAa2GMhLfV6q92ogit3O5xOfIj/dcXOByd2DnteMofOw0eiM9dt3viFlHS9h9ZJ4SvOqAOgyPASfFvVbaUAIIepVwi/EOTkB4KFy9Kcdoy8AqxVdUBD4eOPi5U15cSEhHToBsGv5CVy9jIR39kFvlJ97hBBCiH9TmJFORVEhWp2eoLZnroYmhBBCXCj5ViaEEKLWif17+GPR61QUF6HRaslMTCCia89zHm+z25i9YzZfH/0agPui7uOpbk+hUqnqK+Ra1RYbn25JJnX9Ep6wf46/uhiAosD+OMdOoHzWIqr3rwDAfcwNBEyejNpZegML0WwUpsCaaY4d8AA6E/R5Avo8Doaz9/0rW72arBemYisqQqXT4fv003jdfRcqtZrcsmruW7KTQxmlGHVq3rq1G8Pa+/Fj4o/M2TmHCksFJq2JZ3s+yw1tbqi390Kb1YJao0WlUqFSq4noHkNVWSk9r7mR6GEjz7mFSFNks9rZ8WsKe1ekoijg4mlgyN3tJQEvhGjarDXYjq1gc4AbAPm54QD0KT0BOHbB641OjH3pFaxmM1q9HnOVlZ2/pWC3Ktz6Yi+8AuXnHiGEEOLfVJWX4dsyApObO1q9vqHDEUIIcZmRb2VCCCGwms1s+uoTdv/2MwDeLUK54vHx51W2uNpazXMbn2Nt+lpUqHgu5jlub397fYVcy2qz893uk6xc+TuPmd/nP+okUEGFcyimq19BfcxGyn3PYK+oQO3qSuD0abiNHl3vcQkhGomqItg4z9H73WYGVND1dhj8PLgFnnWYrbycnFmzKfnhBwAMkZEEzZ2DsW1bAJJyy7j7o51kFFfh7aznw3t6EuJj48l1T7IufR0AXf26MrPfTEJcQ+plaVazmYNrV7Dj5+8Y/egzhEY5dkr2uu4mYsfcgk5vqJfzNhYFGeWs+jiegpPlALSLDaD/zW0wmC5N5RUhhKg3KRs5qKqhVKPBRefK0SOeAASmHMaGox/8X/5KGKQeLsBuVfDwN+EZYGqIqIUQQogmp0VkR+6aswCb1drQoQghhLgMSRJeCCGaufz0VH5f8Cp5aScA6DLySgbccd95JW9Kakp4bM1j7Mvbh16tZ3b/2YxoOaKeInZQFIXlh7L58I9t3FLyER9pN4IaLBoT6oETMEbfTdbsuZT8vAwAp27dCH51Lrrg4HqNSwjRSFjNsOsj2PCKIxEPEDEYRrwMAVH/OLRy1y4yn5uIJSMDVCq8H7gfn8cfR/1nomNHSiEPfrqLkioL4T7OLLm3J8crtvPksmkUVheiVWt5rMtj3NPxHjRnKXF/MSzmGg6u/oMdy76noqgQgP2rl9cm4fVOl3/yxW6z89uiA5QVVGN00THo9na06urX0GEJIUTdSFhWW4o+3LkbWYqGzh5abEcSADD27EllaQkmN/faISn78x3HR/tckipUQgghxOVEo5U0iRBCiLonVxchhGjmdvz0LXlpJ3Byc2fkw0/SqnvMvw/6fzLLM3l49cOklKTgqnNlwZAF9AjoUU/ROmxKzOe1Pw7SI/trlmh/wlXr6AFs63QLuuEvUZWSS8ZNt2JJTwe1Gp9x4/B5+CFU8qVKiMufosCRX2HVVChMdjznG+lIvrceBv+QmLCbzeS/9RYFH3wIioIuOJigOa9g6vH3e9qvBzJ5+uv9mG12uoV68OZt7Xnv8Cv8lPQTAG082zC732zaebWr86VZaqrZv2o5O5d9T2VJMQCu3r70uv4mOg4aXufna8zUGjUDb23HoY0ZDL4jEpOblI4UQlwm7DY48htxHo4kvL3CcT25TpMDdjv6sDAKyktZ+vRDhHXqwo1TZmCz2kk9VABAeBffBgtdCCGEaEqqK8rRaLWXdfsuIYQQDUuyEUII0cwNvvch1BoN/W+7B2cPz/Mae7TwKONWjyO3Khd/kz+Lhy2mjWebeooU9qcXM/ePBAwpq5mv/YxwXQ4AtsBuaK6YizqoG/kffEjeW2+B1Yo2KJDgefMwdetWbzEJIRqRjN2w4nlI2+J47OwLgydD17tA888fe6uPHSPz2eeoOXIEAPcxN+A/aRIaF0e/eEVR+CAuhZm/O3Yhjuzoz91D7Dy45jYyyjNQoeKeqHt4rMtj6DX1kxD+ftZUMo7EA+Dm60ev626m46ChaLSXf/l1RVGI35SJzqihbc8AAMKivAmL8m7gyIQQoo6lbSW/pogEQwsAEk84/tsl/zgApl69OHFgLygK+j93y2ceK8ZcZcXJTY9/uFvDxC2EEEI0MXt+X8aOn74h5rqb6HNT/bdTFEII0fxIEl4IIZqZlH27Sd6zgyH3PoxKpcLJxZVR4/573vPsyNrBk+uepNxSTmuP1iwetpgA54B6iBiScsuZv/Ioxw7v5gXt5wzS7wfA7uyHevg0NNG3YMnLI/O++6ncvh0A19GjCJw2DY2b/BApxGWvOA3WTIeD3zoea43Q+zHo9xQYXP9xqGK3U7jkE/Jefx3FYkHj6UnA9Gm4Df97Z7nNrjDj13iWbDkBwJ29g3ALWs3Dqz9DQSHYJZiZ/WbS3b97nS7LXFWJWqtDq3Mk2TsNGUl5YQG9rh9LhwGDm0XyHaCipIZ1nx0h9VABeqOG4DaeOHtc3v3uhRDNWMIvbPqrFL1rOw6U6jHpNbgdOIAZcI7tRer29QC0jHbcaJq8P89xfLQParWUohdCCCHORdqhfdisVlw85cZeIYQQ9UOS8EII0UxYzWbivlzCnuWOHukt2neiXe9+FzTXHyl/MHnTZCx2C939u/Pm4DdxN7j/+8DzlFlcxZurE/lj91Ee0/zAAv0KdCobilqHqvc41P3Hg9GNstWryZryPLaSElQmEwFTpuB+w/XSD1OIy111CWx6HbYuAluN47noW2DoC+De4l+HWzIzyZw4icodOwBwGTSIwBnT0fr+Xcq32mLjya/2suKwo/LGQ8MM7KiYTlJ8EgBj2oxhQs8JOOuc62xZNZWV7P3jF3b/9hN9x95JlxFXANC+3yAi+w5sVv0Kk3bnsv7LI9RUWNFo1fS8KlxKzwshLl+K8mcS3lEW10sVDcCQQAPmbxyVWjSdOpH52TsAhEV3AaCy1AxAeGefSxywEEII0TSZqyrJSjwKQGinLg0bjBBCiMtW8/kFTwghmrH8tBP8tuBV8tNTAeg6+moiuve8oLk+Pfwpr+56FYDhYcOZ3X82Bk3d7kgsqjCzaH0Sn21N4VplHWv0X+OjKnW82HYUqpGzwLsV9qoqcl58ieKvvwbA2LEjQfNexRAeXqfxCCEaGZsVdn8M61+BynzHcy37O/q+B3X51+GKolC6bBnZM17GXl6OymTCf+JzeNx00yk37xRWmHngk53sSStGr4GrBx7lm6zPsNqteBm9mNZnGoNCBtXZsmoqK9izfBl7fvuZ6opyABK3b65Nwqs1mjo7V2NXXWFh41fHSNzpuPnBJ8SFYfd2wDvIpYEjE0KIepS5B2tpBlvCHDeS5ec5PtOOsmUCYGjTmqzsDBS7HY+AQNz9HFWoRj/UiYqSGoym5lEhRQghhLhYJxMOY7fZcPfzx8O/fqo6CiGEEJKEF0KIy5iiKOz941c2fvERNosFk7sHox55ivCuPc57Lrti57Vdr/FJ/CcA3Bp5K8/1fA6Nuu6SQhU1Vj7alMJ7G5Npaz7Mt7pP6KQ+4XjRuw2MegXaDAOg+uhRMp55BnOSoz+m1/334ffkk6j0skNSiMuWosCxFbDqBcg/5njOuw2MmAFtR8E5VL+wFhWR/dI0ylasAMCpc2eC5s5BHxZ2ynGpBRXc8/FOUvIrcHUpplXHX1mZdQiAoaFDmdp7Kl5GrzpZVnVFOXt+X8ae5T9TU1EBgGdQC3rfMJZ2fQfUyTmaEnO1la9f3kF5UQ0qtYruo8LocUVLNFp1Q4cmhBD1K+EXDhgMlKnVuOndSTjqCUBk1jEsgCmmF4cP7gUg7M9S9H9xdpc2HUIIIcS5Sj24D5Bd8EIIIeqXJOGFEOIytuq9tzi4diUA4V17MOqRpzC5e5z3PBabhSmbp7A8ZTkAT3V7ivui7quzcu9mq52lO9J4a20i2vIsZuiWcp1hCwCKwQ3VoIkQ8x/Q6FAUhaLPPid33jwUsxmNrw9Br7yCS9++dRKLEKKRytoPK6bAiTjHY5M3DJoE3e8Bzbnt/CuPiyNr8hSseXmg1eL72KN4P/AAqv8p774vvZj7l+ykoKIG36C94PULx0urcNG5MKnXJK6OuLpO212sevctjm3fDIBXcAixY26hXe9+qOvwJqemRG/U0qqbH6mHChh6T3sCwuu+3YkQQjQ6igLxy9hkcpSij3DuRoZdRStfZ1TrdgNgiu1F6m/fAn+XojdXWdE7yU87QgghxPlI+zMJHyZJeCGEEPVIvqkJIcRlLLLvIBI2b2DA7ffSZcSVF5Q0KjeX89T6p9ietR2tSsv0vtO5utXVdRKfza6wbH8G81ceI6+ohAc1v/GocRlO1KCgQtXtTlRDpoKLoz+ztbCQrEmTKd+wAfizf/OsmWi96mY3qhCiESrJgLUvw/6lgAIaA8Q+DP2fAeO5JWftVVXkvvoqRV8uBUAfEUHQ3Lk4RXU87djV8Tk8tnQPNUoxvq1/plp3GGwQExDDjL4zCHIJuuglVZU52ms4uboB0P2q6ynMPEnsmFto26svKnXz2/GdnVyCk6sOd18TALHXRdDr2gh0+uZ5I4IQohnKOwKFx4kLDgRAqYwEYGSQ3lH5SaXC1L07MVrH7r3QjtEU51SydNp2WrT34qpHo1Gp6+4GMSGEEOJyVVFcVNuuMaRjdANHI4QQ4nImSXghhLiMWMw15KYkE9yuPQChUdE8uPAjTG4XtoswrzKPR1Y/wtGiozhpnXhj0Bv0Ce5z0XEqisKahFxeXXGUozmljFTvZKrxS4LJdRwQEotq9CsQ1LV2TPmmzWROmogtLx+VXo/fs8/iefttdbobVQjRiNSUweY3YctCsFY5nou6EYZOBc+wfx77/1QdOEDms89hPnECAM8778TvmadRG42nHfvZtlRe/PkQapcDuAf/TLWqAr1az5PdnuSODnegVl1ccryytITdv/7I3hW/0WnwcAbf8x8AgtpGcterC5vl+5nNamfnbyns+SOVgAh3rnumG2q1Cq1Oku9CiGYm4RdyNRqO6HWoUJF4IhiAgRVpABgiI9F6eRE1eDhRg4cDEL8pDbtdQbHbJQEvhBBCnCO1Vsugux6kJDf7gn8vE0IIIc6FJOGFEOIykZeawm8LXqU0L5c757yJZ6Djh7sL/UKRXJLMI6seIbMiEy+jF4uGLaKj9+m7Rs/XjpRC5vxxhN2pRbRTpfG18XN64eizjGuQo7dz1Jja3s6K2Uzu629Q+PHHAOhbtyJ4/nyM7dpddCxCiEbIZoV9n8PamVDx9405jJwJLXqc8zSKxUL+u++Rv3gx2Gxo/f0JnDXzjK0r7HaFV1ceZfHGQxgDf0bnvg8b0N6rPbP6zaK1Z+uLWlJlSTE7f/mB/St/x1JTDUD28cQ/kyaOxH5zTMAXZJSzekk8+enlALj6GLFZ7KgNkoAXQjRDCcvY7PRnKXq3SPYlaDHq1ASfiKcMcO7V67QhKfvzAAjv7HspIxVCCCGaNCcXV7pfeW1DhyGEEKIZkCS8EEI0cYrdzp7lvxD35cfYrFZM7h5UFBfVJuEvxL7cfTy29jFKakoIdQ3lneHvEOIaclFxxmeW8uqKI6w7moc75czUf8et6tWosTvKS/d9Avr9F/TOtWNqklPIHD+e6vh4ADxuvQX/55474w5WIcRlIHE1rHoBch3/5vGKgGHToP3VtTfmnIualBQyn5tI9YEDALhdcQUBL05F4376TUlmq51nv9vPL8c24BzxHWpdCWqVmgc6PcDD0Q+jO8d+82dSUVzEzmXfs3/VcqzmGgD8I1oTO+ZWWnWPaZaJd3Dc9LB/dTrblh3HblUwOusYeFs7Wnf3a+jQhBCiYRSmQPZB4vwcyXQvlaM0bu8Ib6q/2g6AsWcP9iz/hdCoaLxbhFJVZiEruQSA8M4+DRO3EEIIIYQQQoizkiS8EEI0YeVFhaxY/AYn9u8BIKJbT0Y+/CQmd48LnnNd2jombJxAja2GTj6dWDh0IV7GC++5nlpQwWurjvHzvkw02LhLu5aJhu8x2Rw9kWl/jWP3u2fL2jGKolDyww9kvzwTpaoKjbs7gbNm4jp06AXHIYRoxLIPOZLvx9c6Hhs9YNBE6HE/aPXnPI2iKBR/9RU5c+aiVFejdnMjYOpU3K+68ozHl1RZ+M9nW9hX8SWmsC0AhLmFMbPfTDr7dr7YVbHzlx/Y/dtPAAS0akPvG28jvGuPZpt8B6gsNfPHewfJSnIkjlp28mbQHZE4uxsaODIhhGhAR37FAmx1NgEKBXkRAIzwVWFJTQONhnJfb9bNfB2DyZlxH3zJiQP5oIBfmCsunnKDqhBCCCGEEEI0NpKEF0KIJur47u2sWPwmVWWlaHV6Bt71AJ2Hj76o5M63x77l5W0vY1fs9A/uz7yB8zDpTBc0V25pNW+tTWLpjjSsdoVYdTzzXb4k2JwMNsCvA4x6BSIGnjLOVlJC1ksvUbb8DwBMsbEEzXkFnb//Ba9LCNFIlWXD2pdh3xeg2EGtg14PwYDx4OR5XlNZcnPJmvI8FXFxAJh6xxI0axa6wMAzHp9ZXMVtn35LrnEJei9HOd+x7cbydPenL/h9r7ywAEtNdW0lkp5X30BuchI9r72Rlp27Nevk+18MJi3mahs6g4Z+N7ehfZ9A+XsRQoiEX9hvNFCOgofBg/hjbgD0LErGAhg7diQ96SgAIR2jUWs0JEspeiGEEEIIIYRo1CQJL4QQTVTm0QSqykrxDQvnyicm4N0i9ILnUhSFRfsX8c7+dwC4vvX1TO09Fa36/C8TJVUW3tt4nI82naDKYiOYPF73/I6Yqjgw49jhOuR56H4vaE6dv3L3bjImTMCamQVaLb5PPIH3/feh0kh/YCEuK+YK2LIQNr8JlgrHcx2uhWEvOUrQn6fSFSvJnjoVW0kJKoMBv2eexvOOO2r7rf+vAycLuefHWZjdVqFR2fHUezN7wEz6Bp/eL/6czp+fx85l33Fw7UpCOnRizOTpADh7eHLzi7MvaM7LSWWpGYOzFo1GjUarZuQDHdFo1bj5ODV0aEII0fDKsiF9O3GejpYpEc7dSbepaOltwhS/mRIc/eBTD+wFoGXnrpirrZxMKAIgvIuUohdCCCGEEEKIxkiS8EII0YQodnttUqnPzXfg5OZOl5FXodVdeM9iq93KjG0z+CHxBwAein6IR7s8et47E6stNj7ZcoJF649TUmXBiWrmeq3ixpofUFfVgErtKC09eDKYTi1vr1it5C9+h/zFi8FuRxcaSvC8V3GKjr7gdQkhGiG7DfYvdex+L8tyPNeiJ4yYCaG9zns6W1kZOS/PpOTnnwEwdGhP8Ny5GFq3PuuYb/fvZtq2F1C5paMCBgYPZ2b/F3E3nN4v/t+U5uey46dvObRuFTarFQBLTQ2Wmmp0BikNDHB8Ty7rvzhKp0HBxFztuMHCM8C5gaMSQohG5MivAGxy9wasKFWRAAxs40PFgm0AaLt2IfODBQCEdeoKQL+bWpOTUopXoLynCiGEEEIIIURjJEl4IYRoAhS7nd2//UTSrm3c9MIsNFotGq2WHlddf1HzVloqmbBxAhtPbkStUjOl1xRubnfzec1htdn5dvdJ3lh9jJzSGkDhQc+9PMPnGCuzHQe17A+j54B/x9PGWzIyyJjwLFV7HH3t3a+9Fv8XXkDjIj8oCnFZSV4PK56HnIOOxx6hjp3vHW+ACyhHXrF9B5mTJjoqZ6jVeP/nQXzHjUOlP3MPebti57lVi1me8QEqoxW1YuKF3s9zY7urz/vcJbk5juT7+tXYbY7ke4sOUfQecxshHTtJeXWgptLCxq+PcWx7DgCphwrocUVL1JozVycQQohmK+EXsjUajqmsqFCRmBIEwFAPm+Map9NRaNRht1lx9w/AI8DRZiVqYAuiBv7TxEIIIYQQQgghGpIk4YUQopErLyxg+aLXSTu4D4AjmzfQceDQi563sLqQx9Y8xsH8gxg0BuYOmMuQ0CHnPN5uV1h+KJv5K4+SnO8oJz3ILYt5Ll/gU+hIqOMeCiNfhvbXnDHJVvr772S9+BL2sjLULi4EvPgi7ldfddFrE0I0IrlHYNVUSFzheGxwd/R87/UQaA3nPZ29poa8N96kcMkSUBR0ISEEzZmDqVvXs47JKs/i3l/Hk1FzAJUaPFVRfHH9fELcgi5oSSf27+HAmj8ACI2KJnbMrYR06HRBc12O0uMLWftZAuVFNahU0G1UGD2vDJcEvBBC/K/KQkiJY7Ozo3pKG48O7E7QoNeqicw+RgHgFB1N8rF4AFpGn/1aJ4QQQgghhBCicZEkvBBCNGKJO7ey8t23qC4rRas3MOiuB+gw4NwT5WeTXpbOI6sfIbU0FXeDOwuHLKSLX5dzGqsoCnGJ+cxdcYRDGaUAtDJVsSjwN9pm/IiqUAGtE/R/Gvo8DrrTe/7aKyrIfnkmJT/+CIBT584EzZ+HvkWLi16bEKKRKM+F9bNh9yeg2ECthZ4PwIBnwdn7gqasPnqUzAnPUnPsGAAeN92E/8TnUDufuXKGoij8cvxXXtz8MlYqUew6errdxQfXPYHmPBLCxdlZlBcX0iLSUc0javAwMo4cJnr46NrnBFjMNrb+cJyD608C4O7rxLB7OxAQcf6l/oUQolk49gcoNjZ5+gNWvFSOVky9wr2w7FoLgHOvGE7GHwIcpehzU0vJSSklvLMvLp7nfzObEEIIIYQQQohLQ5LwQgjRCFmqq1n/6Qe1Oy39WrbiiifG4x0cctFzxxfEM271OAqqCwhyDmLx8MVEuEec09i9aUXM/eMoW5MLAHDXKyxotZsBmR+g+jMhT9SNMHwauJ85oV518BCZ48djTk0FlQrvhx9ylJC+iL72QohGxFIFW9+GTW+AuczxXORVMGwa+Jy9V/s/UWw2Cj/+mNw3F4DFgsbbm8AZM3AdMvisY4qri3lpy3TWpK8CwFYVwkPtp/DkwL7nfN7CzAy2//g1CZvW4+7rz72vv4Nao0Gj1XHF4+MvaC2Xs4qiGhI2ZwIQNTCYPje0RmfQNHBUQgjRiCX8ggXYqgMUKMxrBTj6wVcu2Q6AqVcstz70HzISDhPYtj3bl53k4PqT5KeXMfjO9g0XuxBCCCGEEEKIfyRJeCGEaIRWvvcWRzZvAKDH1TfQd+ydaOsgSb0lYwv/Xf9fKq2VtPNsx6Jhi/Az+f3ruKTcMl5dcZQVhx29ffUaNS92yGZswSK0KY4dqQREw+i5ENb7jHModrsjifbGm2CxoA0IIGjuHJxjYi56XUKIRsBuh4PfwprpUOrYCU1gFxg5E1r2u+BpzSczyJz4HFW7dgPgMnQogdOnofU++276uJNxvLB5KgXV+SiKGnvhMF4b+QyjOp5b+fmCjHS2//A1RzZvRFHsAHgGBlFdXobJ3eOC13I5UhQF1Z/tRjz8TQy8vR0mVz2hHS+s2oEQQjQbNeWQtIZ9RgMVihVPgxcHj7kAMNCpCmteHiq9HqcunVEbDLTs0h1FUUjZnwdAeBffhoxeCCGEEEIIIcS/kCS8EEI0Qn1uuo2c5CSG3v8IYZ261Mmcvxz/hambp2JVrPQK6MXrg1/HVe/6j2Myiqt4Y9Uxvt9zErsCahX8pyM8afsIp8SVjoNM3jB0KnS9E9Rn3vFoyc0la+JEKrZsBcB1+HACZ0xH4+FRJ2sTQjSwE5tgxRTI2ud47NYChr3oqIyhvrA+4IqiUPLjT+TMnIm9ogK1yYT/lMm433BDbdL3f1VaKpm/az7fHPsGAFuNL4aiO/jo1uvpGur5r+csys5kyzdfcGTLRlAUACK69aT3mFsJaN32gtZxOSvILGftJwn0vbENQW08AIiMDWzYoIQQoqlIWgW2GuL8wwCF1q7dSLNBsIcT3okHyQGcunVDbfi75HxeWhnlRTVoDRpaRP77dU0IIYQQQgghRMORJLwQQjQCZYX5pO7fS9Tg4QB4BgZzz2uLUJ8lqX0+FEXho0Mf8caeNwAYHT6amX1notOcfWd9YYWZt9cl8dnWVMw2xy7Qa9q78pLHcrwOfAA2s6O/c8x/YOBz4ORx9rWtXUfWlCnYiopQGY34T56Ex003nTWJJoRoQvITYdWLcPQ3x2O9K/T/L8SOA53TBU9rLSwk+8UXKVu1GnAkIYLmvII+5OwtOfbl7mPypsmkl6UDYC7oS4Dtej59oB9h3mfuGf+/ygsLaquQtOoRS+8xt+AfcWEl9C9nil1h/9p0tv2UjM1qZ/N3idw4sYe8rwshxPlI+AWAOGdXsJZCpaO0/KB2vlRucLxmiunJ19MmEtCqLbE3jCVlfz4AYR280Oqk3YcQQgghhBBCNGaShBdCiAaWuGMLK999i+qKctz9/AnpGA1QJwl4m93G3J1z+fLIlwDc3eFunu7xNGrVmXemltdY+TAuhffjkimvsQLQO9yD2a0TaLn3aUjJdhzYaiiMmg2+7c56bnt1NbmvzqPoiy8AMLRvT/D8eRgizq3/vBCikcvcCx+OcNyUo9JA93tg0CRwubjyuGXr15P1/AvY8vNBp8P38cfxvv8+VJqzVNqwWVi8fzEfHvoQu2JHsXhQlXkj0T49+OCuHni7GM44DiAvNYX89FTa9xsEQEiHTsSOuYU2MX3waynvVWdSml/Fmk8SyEwsBiAsypvBd0ZKAl4IIc6HpRqOrSBboyHJWopapSYx1dEyZWBrbyrnOvrBV7YM5eSG38lNSabfLXeRvE9K0QshhBBCCCFEUyFJeCGEaCCW6mrWffIeB9c6yrr7R7TG2bPueujW2GqYFDeJVamrAJjQYwJ3dbzrzMdabXy5PY2Fa5MoqDADEBXsxozuNXQ5PBVV3C7HgZ7hjuR721HwDwmXmsREMp5+hprERAC87r4b32eeRq3X19n6hBANbMefVTFaxMC1C//xppxzYa+oIGfuqxR//TUAhjatCZo7F2P79mcdk1iUyORNkzlSeAQAS3FXqnOuYURkS968pStO+jMn7nNSjrPt+6Uk7dyGzmAkLLorJjd3APrefMdFreNypSgKR7ZmEfdNIpZqG1qDhn43tqZDvyBJwAshxPlK2QDmcuJ8ggFo69GRnfEqdBoVPVTF5BQVoTKZyK4sAyCkYzRlhWYKMytQqVWERdXddwYhhBBCCCGEEPVDkvBCCNEAso8n8vtb8yjKygCViphrxtDn5tvRaM9eIv58lNSU8OS6J9mdsxudWsfMfjMZHT76tONsdoUf92bw+qpjZBRXARDu48zk/h4My3wH1cqljgP1LjBgvKPEtPbsu0oVRaFo6VJy58xFqalB4+1N0Cuzcenfv07WJYRoJCzVkLDM8efh0y46AV+1bx8Zzz2HJTUNAK977sH3v0+d0gf3/7Mrdj6L/4wFexZgtpvRq1wpSb8Ga1kn7u4dxtSrO6JRn54YzklOYuv3Szm+y7HDEJWKiG49sVksFxV/c5CeUMjaTx03OwS2cmfoPe1x9zU1cFRCCNFE/XkNjfMOBHMu3ipHJaweYV6wx3Hzq6lbNw7EHwSgZXRX8tLKUKtVBLX1wOhcN98ZhBBCCCGEEELUH0nCCyHEJbZn+TI2fPYhdpsNFy9vRj/6DKFR0XU2f3ZFNo+sfoSk4iRcdC68OfhNYgJjTjlGURRWxecwb+VRjuWUA+DvZuDpwS250foLmjXzwOx4ns63wbAXwTXgH89rLSoia8rzlK9dC4Bz//4EzZ6F1senztYmhGgkEldCTSm4tYCQ2AueRrFYyF+8mPx33gW7HW1gIEGzZ+Ece/Y5M8ozeH7T8+zKcSQpPOlM+tGrUGyuTL4ikgf7R5y2M7soO5P1n7xP8p6dAKhUatr16U/sDWPxbhF6wfE3JyHtvWjVzQ+/MFe6DA9FfYabHIQQQpwDmxWO/I4Z2G4rAaAwvxXg6Adf8c3nAOh7didjwx8AhHXuimeAP6EdvKgqkxvHhBBCCCGEEKIpkCS8EEJcYnqjE3abjba9+jLsP4/h5OJaZ3MnFiXyyOpHyKnMwdfJl8XDFtPO69QdqtuSC5jzxxH2phUD4O6kY9zACO71PYp+zU1QmOw4MLg7jJ4LLXr863krtm0j89nnsObmotLp8Bv/DJ533olKfebe80KIJu7gt47/dhoDF/jvvCY5mcwJz1J9+DAAbtdcTcDzz6Nxczvj8Yqi8FPST8zZOYcKSwVOGidcK8dwPLkjeo2G+bd25urOQWccq9FqObF/LyqVmsh+A4m9YSxeQS0uKO7moqbKyo5fkul5ZThGZx0qlYqRD3aU0vNCCHGx0rZAVSF73H2ptNXgZfTmwCFHZZEBrb2o3LEDgGI/H+w2K26+/nj4BwJgMOkwmGQXvBBCCCGEEEI0BZKEF0KIS6CqrBQnV0diqeOgYbh6+xLaqXOdJjN2Ze/iiXVPUGYuI9w9nHeGvUOQy98JqUMZJby64igbjuUBYNSpub9fOA93tOO67llYv8ZxoIs/DJsG0WP/NbmmWCzkLVhAwQcfgqKgj4ggeN6rGDt0qLN1CSEameoSOLbC8edON533cMVup+jLpeS++ipKTQ1qd3cCX3oRt9Gnt8z4S0FVAdO2TmNd+joAOnhGk5V0HcdzTbgZtbx/Vw96RfzdHzfjaALph/YTO+YWANx8/Bjx0OMEtonEKyj4vGNubtKPFLL2kwTKi2qorrAw/N6OAJKAF0KIupDwCwCbAttAzUnauPYg1QIBbkZaFmVwoqwMtasrmcUFgKMUvWJXUGnkPVgIIYQQQgghmhJJwgshRD0yV1ex9uN3ST24j7vmvoWTiysqlYqw6C51ep6VJ1YyKW4SZruZLr5dWDh0Ie4GdwBO5Fcwf9UxftmfCYBWreLWmFCe6OOL75434aN3wW4Fjd7R833AeDD8++58c2oqGeMnUH3Q0avS4+ab8Z/4HGqT9AgW4rKW8AvYasA3EvyjzmuoJSeHrEmTqdiyBQDnvn0JnDUTnb//WcesS1vHS1tforC6EK1ay5jwB/hxfWsKyq0Eezix5N6etPF3vGedTDjE1u+WknZoPwAR3WPwaxkBQMeBQy9ktc2K1Wxj60/HObD2JABuvk5E9ZebFoQQos7Y7ZDwKwBxajMAqsr2gKMUfeV2xy54U48e6JxMOHt4Eta5K8vfPURVmZm+Y1oT2NqjQUIXQgghhBBCCHF+JAkvhBD1JCvpKL+/NY/i7CxQqUjdv4fIvgPr/DxfJnzJKzteQUFhSMgQ5gyYg1FrJKe0mgVrEvl6ZzpWuwLAtV2CeHpoK8LSfoQl06Ey3zFJ29EwciZ4t/rX8ymKQslPP5MzYwb2ykrHLtbp03EbOaLO1yaEaIRqS9HfCOexM7r099/JmjYde0kJKqMRvwnj8bzttrPuri43lzN351x+TPoRgDaebbgueDyzfyqlymKlY5AbH9/TEz83I+mHD7D1u6WkxztuClJrNHQcOBRjHbb7uNzlnChlzZJ4irIrAeg4IJg+N7RCb5SvC0IIUWcy90BZJplO7iRX5aJRaUhMCwQUBrb1peKtbQCYesXQ75Y76Tv2DmqqzKz9bCs2qx29k7wnCyGEEEIIIURTId/ghBCijtntNnb+/D1bvv0Cu82Gq7cvox97mpAOner0PIqi8OaeN/nw0IcA3Nz2Zib3mkx5tZ03Vx/h480pVFvsAAxu58v4ke3oaImHH66CLMcuUXzawqjZ0HrYOZ3TVlZG9kvTKP3tN8CxSyfo1bnoAgPrdG1CiEaqLBtSNjr+HHXjOQ2xlZSQPeNlSn917PwzRkURNHcOhoiIs47Zlb2L5zc/T0Z5BipU3NPxHrwt1/DSd0exKzCgrS+Lbu+GvayQr196iZMJhwBQa7REDR5Gr+tuxs3X7+LW2owc35vLivcPo9gVTO56htzZnrAo738fKIQQ4vwkLANgU2g0mFOJ9IxiW7yCRq2iT0t3snftBsA5NhZwtAHJOFqCzWrHzceIV5Bzg4UuhBBCCCGEEOL8SBJeCCHqUGl+LssXvlabEGrbuz/DH3gUo4tLnZ7HYrfw4uYX+SXZ0VPy8a6Pc0e7+3hv4wkWr0+itNoKQPcwT54d2Y5e3tWw6mk49J1jAoM7DJoIMQ+CRndO56zcu5fM8ROwZGSARoPv44/h/eCDqDSaOl2bEKIRO/wjKHZo0RO8wv/18IqtW8mcNBlrdjZoNPg89BA+jzyMSnfm950aWw0L9y7kk8OfoKAQ7BLMy31fZu0+F15cfxSAm3u0YOb1ndBp1FhU7hRlZaDRaokaMpKYa2/Ezce3TpfcHAS39cTJVUdwGw8G3NoOo/O5XReEEEKcB0Wp7Qcf52QEM3ipOwPQPdQTXdJR7JWVaDw8MHt7YrDbUanVpOxzVK4K7+J71uoxQgghhBBCCCEaH0nCCyFEHdr63VJOJhxCZ3Ri6H0P02HAkDr/sazCUsHT659mS+YWNCoNz8dOpaaoO4PmrSe3rAaAdv6uTBjZjqGtXVFtfRuWvgaWSkAF3e6CIS+Ay7klqhSbjYL33iNv4dtgs6ELDiZo3quYunat03UJIZqA2lL0N/3jYfbqavJef53CTz4FQBcWSvCcOTh16XLWMUcKjzApbhJJxUkA3NDmBp7qOp5pPyfx077joCg8GWmnXfZqtCpHZRGd3sAVj0/AMzAIV2+fi19fM6HYFVIO5BPe2QeVSoXRWcfYKTGY3PQNHZoQQly+cuOhMBmzxsD28lQAivIdraAGtvOlcvsaAJx69uTzyU+jUqm48YVZnDjoSMJHdJabzIQQQgghhBCiKZEkvBBC1KGBd9xPTUUF/W+/B8+AoDqfP78qn3Grx5FQmIBRY2Rs2BQW/uzOiQLHzvsWnk48M6It10QHoTn6Cyx6HorTHINDe8OoVyCoyzmfz5KVReaEZ6nctQsAt6uuIuDFqWhcpc+yEM1OwXHI2A0qNXS8/qyHVcfHk/Hss5iTjgPgcctY/J99FrXJdMbjbXYbHx/+mLf3vY3VbsXL6MVLvV+iu18/Hv5sN1uS8omoTud61WHMf5wgAWjVPYZ2vfsDEBoVXedLvZyVFlSx9pMEMo4VM+ye9rSLdbQTkQS8EELUsz93we+K6EWV9QQ+Tr7sP+QE2B394D919IOvbt+Gqg3J6IxOVJYYqam0YnTREdDKvQGDF0IIIYQQQghxviQJL4QQFyEr8ShHt25k4J0POHYTurhwzTOT6+VcqaWpPLTqITLKM3DRuuNc/BALf9MBlfi46Hl8SBtuiQnBUHAEPnsYTsQ5BroFw/DpEDUGzmNXfumKlWS98AL20lLUJhP+U1/A/dprpQymEM3Voe8d/40YBC6n91tXbDYKPviQvIULwWJB4+ND0MyXcRk48KxTppWmMWXTFPbl7QNgSMgQXuzzItXVTty0aAs1Jw5xS8lufKtzMQNavYHOw0cRHNmx7td3mVMUhaPbson7+hjmahtavRq7XWnosIQQovn4Mwm/ycMX8k/QzrUHKWY7vq4G2vsYSdyzF4A8o+OmqJAOUaQeLgYgPNoHtVo+gwshhBBCCCFEUyJJeCGEuAB2u40dP37Llu++RLHb8WvZig4DhtTb+Q7mHeTRNY9SVFOETvEh+8g9KBYvXAxaHhoQwX39wnG2lcKK52DXh46ezVoj9HkC+j0FeudzX1tlJTmzX6H4W0fZaWOnTgTPexV9WFg9rU4I0egpChz4xvHnM5SiN6enk/ncRKr27AHAdfhwAqZPQ+vpeZbpFL499i3zds2jylqFs86ZSTGTuKbVNRzJLuOh99fQO/E7/MyOErxag4EuI66kx1XX4+xx5jnF2VWWmtnw5VGS9+UBEBDhxtB7OuDhd+bqBEIIIepYwXHIOQQqDXE1OY7nqtsDMKCNLzUHDqDU1KDx9SEjw1HFKiy6G55BnlSW1NCq++k3vwkhhBBCCCGEaNwkCS+EEOepJDeH5W/PJ+NIPACRfQcS0T2m3s638eRGnl7/DDW2amxVwZSn34NO5c7d/cN4ZFBrvIxq2P0xrJsJVUWOQe2vgREvg+f5Jc6rExLIeGY85uRkUKnwfuABfB9/DJVeyhQL0axlH4CCRNAYIPKq2qcVRaHk++/JmTUbe2Ulamdn/F94/h+rZuRV5vHilheJy3BU6+gZ0JOX+75MkEsQmxLzefjz3ZRXw0CdDq3KQNeRV9HjqusxuXtcipVedg5tzCDuq2PY7QpqjYqYq8PpOiJMdlQKIcSldORXANJbxnKiLA2NSsPx1CDAyqB2vlRs/AEAQ/ceZBw5DEDLzl3xCvIlXHrBCyGEEEIIIUSTJEl4IYQ4DwmbN7D6/bcxV1Wid3Ji6P3jaN9vUL2VaP9w31e8uX82Cnas5W2pybidm7u15slhbQjycIKUjbB8IuQ6fqzDrwOMngPhA87rPIrdTuGnn5I3/zUUiwWtnx9Bc+fgHBtbD6sSQjQ5Bx2VMWg3CoxuANirqsgYP4HyNWsAMPXoQeArr6BvEXzWaVaeWMmMbTMorilGr9bzZLcnuT3yNo7v3Mbb373K25oBVKr09Irw5v4HJ+Hn543JTXrgnovyohrSEwpIiy+kQ58gQjp4AeAZYMJuV/ANdWXIXZH4tHBt4EiFEKIZ+qsUfUAryE6ng1c0W+KtqFXQv40PJa9uB6A0IhRbViKu3r54Bp79eiqEEEIIIYQQovGTJLwQQpyjDZ9/xK5fHLtUAttGcsVj4/HwD6iXc+WVVfPY8rnEVzkSX5bibgz0GseEmzrQ2s8VilLh6+chYZljgJMnDJ4C3e8Fzfm9tVvz88mcNJmKOMeuVJchQwic+fJZy0gLIZoZux0O/tkP/v+Voi/8/HPK16xBpdPh+9RTeN1zNyqN5oxTlJpLmbV9Fr8l/wZAe6/2zOzzMraj2Xz27BMUnHSU3u3g6UngwKuZd1M0Bu2Z5xIOVrONzMRi0hIKSY8vpDCzovY1J2ddbRI+oJU7d8zojbuvU0OFKoQQzVtpJpzcCajYRBUAPurOAHQJ8cBNZSNr/34ActUKAGHRXYnflElQGw88A869rZQQQgghhBBCiMZDkvBCCHGOWnWLYc/vy+h1/U3E3nAL6rMkmy5GWbWF9zYm8fGR11C5bwPA13YF86+fSNdQTzBXwNqXYfMCsNWASg097ofBk8Hkdd7nK4+LI3PiJGwFBagMBvwnPofHLbfU285+IUQTlLYFyjLB4A6thwOO6hnF3zhuEvKf+gKeN53eJ/4v27K28fym58mpzEGtUnNfh/sYWhnFppmvU5iRDkCNWs9+t050H3Ulz13TRUql/4uKkho+e34rNov97ydV4BfmRmgHL8I7+9Q+rdGoJQEvhBAN6YjjBrSakJ7syHMk24vyWwEwsK0fVXv3gsWCNjCQ9iOuQOflhXeLSNZ/cRSVWsV9r/bD6KxrsPCFEEIIIYQQQlwYScILIcRZ2G028lJT8I9oDUCLDlE88NYHuHr7/MvI81dtsfHF9jQWro+nyuMTdO4JoKgYG/E4zw94EBQFDn4Hq6ZCaYZjUMv+jtLz/h3P+3x2s5m8+fMp/ORTAAxt2xI8fx6GNm3qcllCiMvBX6XoO1wNOiMAFVu2YklPR+3qivtVV51xWLW1mjf2vMEXCV8AEOoayoxe0zjw2kesOLkKAJvWyE6XThx078Tk67txV++W9b6cpqSq3MzJhCLS4gvQ6jQMvK0dACY3Pc7uemxWhdAOXoR08CIk0gujiyRphBCi0fmzctWu0K5UZy7Hz+THvkNGwOboB/+to1+8c0wMQW0jCWobyb7VaUASQW3cJQEvhBBCCCGEEE2UJOGFEOIMSnJz+H3hfHJPHOfOVxbgFeToyVjXCXibXeGHPSd5Y3UiGWX5mFp8gs6UhlalY+7AOQxvORwy98Hy5yDdsTMej1AYMRPaXw0XsGO95vhxMp4ZT82RIwB43nEHfhPGozYY6nBlzZfVbOPItmwieweg1Uk5bdHEWc1w+CfHnzvdXPt08ddfA+B+zTWonU7fZX0o/xCTN00mpSQFFBgbOZanuz+NSWciJ2IjZUWFHPHpxipaozY4seCWrozoWD/tPZoSm81OTnIJafGOEvO5aWXgqEyM3klL/7FtUGvUqFQqxjzbAydXnVQuEUKIxqyiAE5sBmCTwfHzSzu3nhyvseHlrKdTsDtp2x394E2xsbXDUvbnAxDe2fcSByyEEEIIIYQQoq5IEl4IIf5HQtw6Vn+4GHNVJXonEyU5WbVJ+LqiKAor43OYt+IoibnlqHSFuIUvQdHl4qp35a0hb9HdORSWPQ57PgMU0Jmg39PQ5zHQnX9pYUVRKP7mW3Jmz0aprkbj6UngrJm4Dh5cp2trrszVVg5tyGDf6jSqyiwARA2o2//fCHHJHV8D1cXgEgAt+wFgyc2lbO1aADzG3nzK4Ra7hQ8OfMC7B97FbrPRNS+AXmkB3DLsLkw6EwAhI29mTkkHTpQ6EhAf3t3D0W5D8Otb+zl5pOiU57yDnQnp4E1oh1Nbjpjc9JcyNCGEEBfi2HJQbBDQibiCAwCoqtoDMKCND0plJVWHDgGQrrFTtHcX3qHtyEoqBjilvYgQQgghhBBCiKZFkvBCCPGnmsoKVn+wiCObNwAQ1K4DVzz2DO5+/nV6nq3HC5jzxxH2pRcD4O6ei1PIx1TYivA3+fPOkIW0PrYG1l8PNSWOQZ1ugmHTwP3Ckrq24mKyXphK2SpHCWjnPr0JfOUVdH5+dbGkZq26wsLB9SfZvyadmkorAK7eRgwmucSKy8BfpeijxoDaUdmh5IcfwGbDqWtXjG3b1h6aUpLC5LjJxOcdolWGC71SA9CWWqimiN2//8yI/zzOzhOFPPBFPCVVNsK8TXxybwwtfZwbYmUNxlxl5eTRItLjCzl5tIgbn+uOweQoNRzY2oP8k+WEtPdylJlv74Wzh1QpEUKIJivhFwDSWg8iNeNntCotx1MDAQsD2/lStXsX2GxoQ0JY/+sPVJYU02vMeBQFfEJccPM+/xtvhRBCCCGEEEI0DpIhEEIIIONIPL8vnEdpXi4qtZreN95Kr+tuRq2pu3LihzJKmLviKBuP5QHgpNNwZUw5caXvUmGtoLVHaxa3vp2ApXdC/jHHoMDOMHouhMb+w8z/rGLHDjKffQ5rdjbodPg99RRe996DSq2ui2U1e5u+TeTotmwAPPxNdB8VRpsYfzQa+fsVTVxNORz53fHnTjcCoNhsFH/jSMz/tQvertj56shXvLnzdVqkahlzvAXOVRrAgsndgx5X30CX4Vfw+8Esnvp6H2arnS4hHnx4dw+8XS7/BLNiV8hLLyPtcCFp8QXkJJdityu1r588UkSrbo4borqOCKXnFS1RqaXEvBBCNHk1ZXDcUTkmzs0LMqCjd2c2xVtQqWBAG18qFi0FwNK1E5WpR9EZjBTnuQHFRHSRUvRCCCGEEEII0ZRJEl4IIYAT+3dTmpeLu58/Vzw+nqC27ets7pT8CuavPMqvB7IA0GlU3BYTSvs2x5mzeyZWu5UeXh15s9SG27f3OwaZfGDoVOh6R+3u0/OlWCzkLVpEwTvvgqKgDwsjaP58nKI61tXSmqWK4hqA2t2pXYaFkp9eTvfRYbTq5odakmficnH0d7BWgVcrCOoKQMXmzVgyM1G7u+M2ahTZFdm8sPkFtmVu4+rNAXiXOv5dOHt40vOaMUQPG4XOYOSDuGRm/p6AosDwDv4suKUrTvq6u8mpsVEUpbZXe8LWLNZ9duSU1919nRw73Tt4Edzu71L8usv470QIIZqdxJVgM4N3azaVJgLgq+kMQKdgd7xdDKRs2wZAgZcnpEKL9lHkpFQAUopeCCGEEEIIIZo6ScILIZqt/58kiR1zK2qtlm6jr8VgMtXJ/Dml1by5JpGvd6ZjsyuoVHBdl2D+O6wt67K/ZebOeQCMMAYza+9qDHYLqLXQ62EYMAGcPC743Ob0dDLHT6Bq/34A3G+4gYApk1E7N6+yz3WpNL+KvSvTiN+SSWSvAAbf6bhRw6eFC2Of71n7/yUhLht/laLvdBP8+f/voq+/AcD92mtIN+dw62+3UmYuw6g10rJnDPY96cRcM4ZOw0ah0xuw2xWm/xLPR5tTALirdxgvXt0RzWV2s4rVbCMzqZi0+ELS4wuJGhBMp0EtAGjRzhO9UUNwO09CO3oT0t4Ld18pLyyEEJe9P0vRV0dewc7s5QAUFbQCYFBbX2wlJVQnJACQVVUGQMvOXblmWB8yjhXjHezSAEELIYQQQgghhKgrkoQXQjQ7iqIQv3Eth9evZsyU6Wi0OjRaLb3H3Fon85dUWli84Tgfb06hxmoHYGikH+NHtqNdgAvzds3js/jPALi90sqzKVtRA7QeBiNng2/bs09+Luf/5VeyX3oJe0UFaldXAqe9hNsVV1zkqpqv4pxKdv9xgmPbc2pLSJfkV2O3K7W73iUBLy47FfmQtMbx5z9L0Vtycihfvx4Az7FjeXPLxyjFVbQJbsP8gfNpYQxEdY8arV4PQLXFxn+/3sfyQ452DZNGR/KfARGXxb8XRVEozKogPb6QtPhCMhOLsVnsta+nHS6oTcK7+Thx//z+qKVFhRBCNB+WakhcBcBOvwhqMmsIMAWwJ94AWBnYzpfKnTtBUdBERJB53NGKKiy6K1q9hrAo7wYMXgghhBBCCCFEXZAkvBCiWamuKGf1+29zdGscAAfWrKDryKvqZO5Ks5WPN5/gnQ3HKau2AtAjzJPnRkfSs6UXZpuZiRsnsvyEYyfM04VF3FNShsorwpF8bzuydrfphbCVV5AzYzolPy8DwKlbN4LmzkXfIvjiF9cMFWSUs3v5CRJ358Kf7ZtD2nvS44qWBLXx/OfBQjR1h38ExQaBXcCnDQDF330HNhtOPbqjiwgn7+3t3JgRTPC1fQh3Dz9leFGFmQc+3cXu1CL0GjXzbu7MNZ2DGmAhdcdms6P5M5FuqbHxzcyd2G1/93Z39jDUlpgPifQ6Zawk4IUQoplJXg/mcnALJq7K0ZIq0r0niVVW3J10dAnxJO/zHQBUREViSz2Ki5c3XsEhDRi0EEIIIYQQQoi6JEl4IUSzcTL+EL+/PZ+y/DxUajV9bryNzsNHX/S8Fpudr3ams2BNInlljn7hkQGuPDuqHYPb+aFSqSgzl/HU6nHsyNuHVlGYnlfA1RY1DJsGsY+A1nBRMVQdOEDG+AlY0tJArcZn3Dh8Hn4IlVbe5i9U0u5cEnflAtAy2ofuo8MICHdv4KiEuEQOfuf4b6ebAFBsNoq/+x5w7ILfn7UX72zHTUN9ep76PppWUMk9H+8gOb8CN6OW9+7qQWxE09vRZ7PZyUkuJT2hkLTDBaBScdPEHgDojVpaRHqBojiS7h288Ap0vix2+QshhKgDf5aiVyKvIi7DcfOvutrRyqh/Gx80ahWV27cDUOzpDqngG9aRpdO2E9k7kG4jwxombiGEEEIIIYQQdUayM0KIy57NamXrd0vZ8dO3KIodD/9Arnh8PIFt2l3UvHa7wi8HMnlt1TFSCyoBCPFy4pnh7bimc1BtqfLc0pM88tttHDMXYbLbeT0nnz6RY2Doi+Dqf1ExKDYbBR98SN5bb4HVijYokOBXX8XUvftFzdscZSYVo9Gq8W/pBkDnoSGUFlTRdXgoPi1cGzg6IS6holRI3waoIOoGAMo3bsSalYXGwwPXESNY89NL6GxqbM5aQlp3qB164GQx9y3ZSX65mWAPJ5bc25M2/k3n309pfhVphwtIiy8k42gR5mrb3y+qoLrCgtFZB8BVj0VL0l0IIcTpbFY4+hsAqWExnNy1HK1ay/G0QKCGgW19sRYWUnPMUYK+30OPEV1Zwe4VqWTtrKQou6IBgxdCCCH+j737jq+rrv84/ro7uVk3e+80adO9F13QUvYSqANUEJXxU5GNG1CQJYiyHCAoCiKgqHRD9150r7RJmt3scZM7z++PW1JqC7SlbdL2/Xw88sjNOd9z7ud03CT3cz6fj4iIiJwoSsKLyBnvgz+9yIdzQy3g+0+ayrk3fAt7uPO4z2cYBgt27uexWTvYVt0KQEKkg++eV8AXR2Zht5o/WsieD1/h5vVPUm2GeH+A540E+l33KmR8/iS5r7aWqnvu7a6iibrgAlIf+BmWGFVrHy3DMKjY3sSa90qp2tVMakEMV90V+rsJi7Ax7Yb+PRyhSA/YHKp4J+cciA61kG9+4+8AxFxxBSa7nYoNG8jEQtKg4u5E9Pvba7nttfV0+gIUp0bz8g0jSY4O65FLOFreLj82h6X7Glb8s6S7AwZAWKSNzH5xZPaLI6s4rjsBDygBLyIiR1a2FDqbwBnPEkI36g6KH8bCLaGOWZMKE3EvWwCAo6gIW1wccbGx1JTsAyB3cGKPhC0iIiIiIiInlpLwInLGG3HJVexZv4ZJ191I0dgJn+tca8saeXTWDlbtbQQgymHl25PyuGF8LhGOj72k7t/Bhpnf4zZ/Oa0WC9n+IC8M+A4ZI78N5s8/G7ht/nyqf/BDAi0tmJxOUn74Q2KuulJJoaNkGAalmxpYO7OU2r2hGynMFhOxqREEfEEsNs1vlrPY/7Si91VX075oEQCua69l8/5NxFeGZqGPm3gZAH9dWc6P/rmJoBFqs/v8dcOJdPS+HzONoMH+fW2Ub21k39ZGakpauPaHI4lPjwQge2ACHS1eMotDSffEzChMZr2uiojIMTjQip6ii1hctRSAROsgAIpTo0mKDqN6xQoAnKNHAdBQ2U5bYxdWm5nM4rhTH7OIiIiIiIiccL3v3VERkc+pq72dvRvW0O+cyQC4UlL5xq9/h8Vq+/QDP8WOmjYen72DedtqAXBYzXxtXA63TMonNsJ+cGFnMyx8lPmbXuXeBBcei4VBtlh+e+VrxEZnfo6rCgl2dlL72GM0/+11AMKKi0l78gkcubmf+9xni/KtDSx7u4SGinYALDYz/SekMXRaFpGxvbtqV+Skq90CdVvAbIPiUIK9+c1/QDCIc9QoHHm5zPnPz3B6rARtZnIHDOPx2dt59oMSAK4ZnsHDVw3EZuk9N7J0tnsp2xRqMb9vWyNd7b5D9leXtHQn4YtGp1A0OqUnwhQRkTNBMAjb/wNAZ+EFrFnzUwCa6/MBmFwUqnJ3r1wFwIeBTlY//ShOVygZn1kch81uOdVRi4iIiIiIyEmgJLyInFH2bdnIe8/+ivaGepwxLrIHDgE47gT8vkY3T83byTvrKzEMsJhNXDsig++e14fUmPCDC4MBWPcqvP8Qf7d4+EViLEGTiUlJI3hs6rM4bcff/v4jXTt2UHnnnXh3h5JdcTfeSNLt38Nkt3/GkfJxXe0+GirasTksDJyczuDzsnBG689QBDhYBd/nfAiPxfD7af5HaFvsF2dgGAZ71qwiDzMxRXnc+85W3l5fCcDtU/vwvfP69HhHDr8vgN8b7G4dv7+sjfmvbOvebwuzkFEUS1ZxHJnFccQkfv7XZxEREQAq10JbNdijWO0Mxxv0khaRxtptdsDHpMJEfLV1ePfuxTCb2bNvL+6WZhLycoBE8oaoFb2IiIiIiMiZQkl4ETkjBPw+lv39NVa9+xYYBq6UVBzOiOM+3/42D89+sJvXVpbhC4TaLl88MJU7zi8kPzHy0MVly2HmPRg1G/mtK4bfxYZaSH6hzxf40ZgfYTV/vpdawzBo+str1D3+OIbXiyUhgbRf/pLIc8Z/rvOeDQK+INtXVGO1W7qrWwuGJ9HR4qXfuNRD5juLnPUM42Ot6K8GoH3hQvx1dVji4oiaOpWtjVtZlllBlTOa6bnTeXttJRaziUeuHMi1Iz9/t4/jC9ugqdpN+dYG9m1tpHJXMwMnZzD+CwUApPZxkZIXQ3qRi6zieJLzorH0okp9ERE5g2x7N/S5cDqLqpcD0M81kh0dPqIcVoZlx+J+778AeIv74m5pxmKz09YYi9kM2QPjeypyEREREREROcGUhBeR015jVSXv/eYJavfsAmDAlGlM+fq3sIeFf8aRh2vr8vH7RXv4w5K9uL0BIDTf+O7pRQzKcB26uKUC5v4ENr+FD3goKYV3DrSmv2XwLdwy+JbPXRHqb2yk+v4f0L5wIQCRkyaR+vAvsMbrDbpP4/MG2Lqkig1zy2lv8hDhclAwLAmLzYzZYmbotKyeDlGk99m3ClrKwR4JhRcA0PTGGwC4rroSk93O3NK5+K0GuSNH8fqaMMDNDy7qd8oT8MFAkJL1+9l3oMV8e5PnkP31+9q6H9vsFr5wz/BTGp+IiJyFDKN7HrzR9xKW7HgRAHNnMQDjCxKwWcx0rFwJQFN2OlTsIbVPMQm5mfg6/YRHqjuTiIiIiIjImUJJeBE5rW1d9D5z//Asfo+HsIhIpn3r/ygcc84xn6fLF+AvK8p49oPdNLlD84IHZ8RwzwV9GV+QcOhiXycs+w0s/hX4O3GbzNzVZzCLfQ2YTWZ+PObHXF149ee+tvalS6m67z4C++sx2e0k3X03sdd9pcdbPfdm3i4/mxdWsmFeOZ1tob/HiBi7ku4iR2PTm6HPfS8BuxNvRSUdi5cA4LrmGgzDYE7ZHADSbKN5u8FNVJiVL56CBHwgEKStvgtXcqh1vMlsYsnfd+Fu9QJgsZlJ6+PqbjEfl3r8nVBERESOS+0WaNoL1jD2Jvehcm0lNrONPftSgM6D8+BXhJLwdeZQt62CESMYfnG/nopaREREREREThIl4UXktGYYBn6Ph8z+g7jwtjuIik/47IM+xh8I8va6Sp6et5Oqli4A8hMjuHt6EdP7pxya8DYM2PovmPPjULUo0Jg1ittinWxu3UOYJYzHJz3O5MzJn++avF7qnv41jS+9BIC9IJ/0J58krKjoc533TLd7bR0LXtuOx+0HICo+jGHTs+k3NhWLTa2nRT5VwAdb3gk9HngNAM3/eBMMg4hxY7FnZ7O9cTtpyztICovjw/ZQkvuLIzOJcJycHydb6zsp39pI+ZYGKnc0YbGZueHRczCZTZhMJoonpOHzBMgqjiOtwIXVbjkpcYiIiByVA1Xw5J/Hkrp1AAxJHMaCrZ0ATCpKxFtRia+igoDNSk1NJQDZg4b2SLgiIiIiIiJycikJLyKnHW+nG3t4qBqyeOK5OJwR5A0fidl89AkYwzCYvaWGx2fvoGR/BwCpMWF8f2ohVw1Lx/q/84JrNsOs+6B0cejr6Az2Tbqdm8v+SXnrHlwOF78977cMThz8ua7Ns3cvVXfeRdfWrQC4vjiD5HvvxRx+7K31zzbRCWF43H5cyU6GX5BNn1HJmvsscrT2LAR3PTgTIG8yhs9H81tvAeC6dgYAs7f/l6J9kZgNE6+4WzHbY/jq2JwTGkbVrmZ2r6mlfFsjLXWdh+wLs5hpa+oiOj70ejj60rwT+twiIiKfy0dJ+H6XsrjyfQASLUMIGlCUHEVqTDjN80JV8O7ivvi9nYRHxxIIuDAMQ92uREREREREzjBKwovIaSPg97H0jb+wbelCvvroM4RHRWMymSgYOeaYzrNsdz2Pzt7Bh/uaAYh12rhtSgHXjckmzPY/iXx3I3zwC1jzEhhBsIbB+O+xpe90bl10B41djaRHpvP81OfJjck97mszDIOWt9+h5he/wHC7scTEkPqLnxM1depxn/NM1t7kYcPcckwWE+O/UABAUnY0l39/KGl9XJjNehNT5Jh81Ip+wFVgsdI2bw6B/fVYEhKIOu9cDMPgw5Uf0N8w0RkVRasthgv7p5AZ5zzupzSCBvv3tRGXGtFdxV62uZ5NC0OVgWazieS8aLKK48ksjiMxK0r/t0VEpHdqKIG6LWC24s6bwNpNjwPQ0pAPBJn0USv6VaEkvL1fX1J8HXS2R/GPX65l7JX5DJue3VPRi4iIiIiIyEmgJLyInBYaqyr47zOPU7e3BIBdK5cxaOoFx3SOTRUtPDZ7O4t31QPgtFu46ZxcbpqYR3SY7dDFAX8o8f7BL6CrObSt+HKY9hBL3RV8//1b6PR30jeuL8+d9xyJzsTjvrZAayvVP/0pbTNnheIaPZq0xx7Flpx83Oc8U7XWd7JuTjnbllUR9BtYrGaGTsvCGW0HIKMotocjFDkNed2w/T+hxx+1on/jDQBcV12FyWZjR+MOnGUdQATbbaEK9BvGH/uNRx0tHvZtbaR8ayMV2xvpbPNx8W2DyBkYGiWSOyQRb2eAzOI4MopisYfrR1URETkNfFQFnzOBlc278AV9pEems3qbFfAyuTARwzDoODAPvs/0i+g/fBR/vGMRYJBZHNdjoYuIiIiIiMjJoXc2RaRXMwyDTe/P5oNXfo/f4yEsMorzv/0d+owad9TnKNnfzq/m7OS/m6oBsFlMfGV0NrdNKSAxynH4AXsWhlrP14VawpPUHy78JeRO5N2Sd/np0p/iN/yMSR3DU5OfItIeedzX5167lsq778ZfVQ1WK4nf/S7x37gRk0WzjT+uqaaDdbPK2LGqFiNoAJBaEMOIi3IIj7J9xtEi8ql2zgJvO7iyIGMk3vJyOpYtA5MJ17WhpPzsPbNI3x9qA7/Lkc+A9GhG5hzdTS+tDZ1sWlDJvq2NNFS2H7LPFmaho9nT/XVKbgwpuTEn6MJEREROkY+1ol9SuQSA/q7RvNXuxWm3MDwnFl9ZGf7aWkw2G+FDh1K6tZGA3yAqLoyEjOP/fUJERERERER6JyXhRaTX6mxrZc6Lv2H36uUAZA0YzIW33UFkXPxRHV/d0skz83fx9zUVBIIGJhNcOSSd708rPHIL5aZSmPOjg2+ihcfCuT+CYV/HMFv446Y/8Ot1vwbgotyL+Pn4n2OzHF8C2PD7qX/+Beqffx6CQWyZmaQ/+QThgwYd1/nOZDtX1TD35a0Qyr2TWRzHiAuzSeujqneRE2LTP0KfB14DJhPNb4Za00eMH489IwPDMFizai6D/WY6bTZqHUncOz73iLNrDcOgqcaNETSITw8lFPzeIBvmlocWmCApK4rM4jiyiuNIzovBYjGfkssUERE5KVoqoXINYMIouojFc74GgMXTD4Bx+Qk4rBaaVq4KrR88CF8wyN4P9wOQOzhB8+BFRERERETOQErCi0ivtezN19i9ejlmi5UJX/oqwy++ApP5s5M1TR1enl9Ywp+WleL1BwGY2i+Zu6YX0jcl+vADvB2w5ClY+gwEPGCywMhvwOT7wRlHIBjglysf5vUdrwNwQ/8buH347ZhNx5c48lVWUnn3PXSuWwdAzOWXk/zjH2GJVAXMR/zeQPeM6Iy+cVhtZjL6xjHiwhySc4/wdygix6ezCXbNCT0eeA2G10vz2+8A4JpxLQC7m3djL20FoikJyyUxOoyLB6V2n6Krw0fF9ibKtzawb2sj7U0e8oclccG3BgAQm+Jk0LkZJOdGk9kvjvBI+ym9RBERkZNq+39DnzNHsyfoprqjGrvZzp7yFKDj4Dz4lStCy+MimHnTl3BEnQumgeQOOf6xViIiIiIiItJ7KQkvIr3W+BnX01xTzTlf+hrJufmfud7t9fPSkr28uHAPbR4/AKNy4rj3wiKGZx9hzqJhhCpA5/4E2qpC23InwgWPQnIxAJ6Ah/sW3ce88nmYMHHPyHu4rvi6476m1pkzqf7JTwm2tWGOiCDlZz8j5tJLjvt8Z5qqXc2snVlKMGhw+e1DAXBG27n+5+O6576LyAm09V0I+iB5ACT1o23mTAINDVgTE4maPBmAOWVzCJjBa4W9znyuG52NwxpqIz/7D5upKWnBMA6e0mI18/F7lEwmExOuLTy11yUiInKqbHs39PljreiHJA1nwUI3wMF58CtXYQA1Ha0EAwH8/micMVbSCjSGRURERERE5EykJLyI9BoNFfvYsmg+E770NUwmE2ERkXzhBw9+5nFef5DXV5fzzPzd1LeHZgv3S43mnguKmFyYeOT2jlUbYOa9sC9UkYIrC6Y/DH0vgQPrWzwtfPf977Kubh02s42HJzzMBTkXHNe1BTs6qHn4YVreehuAsMGDSH/iCeyZmcd1vjOJYRhUbGtizcxSqnY1A2Aym2jZ7yYmMTQ2QAl4kZNkU6j1PAOvBqDpjb8DEHP1FzDZQuM25pbOpaRfE0ujzsPckc1XxmSFDl1QQfXuFgDi0iLI7BdqMZ/Wx9XdyUJEROSM1tEAZUtDj/tdwuJVPwcgxTqEQNAgLzGCzDgnnl27CDQ00BEdSUd7GyaLDbM1nZxBCZg1lkVEREREROSMpCS8iPQ4wzDYOG8mC179I36vB1dyKoPOm/6ZxwWDBu9+WMWTc3ewr7ETgKw4J3eeX8ilg9Iwm4+QfG/fD+8/COv+DBhgc8KEO2Dsd8AW1r2spqOGm+feTElLCZG2SJ459xlGpow8ruvr3LyFqjvvxFtWBiYT8d/+Fom33dad4DpbGYZB6aYG1rxXSl1pKwBmq4l+Y1MZen42MYnhPRyhyBmutQpKQxV7DPgC3tJS3CtWgMlE7NWhpHxJcwklLSWYsODtGMA1QzNJiHQAkJAZRVofF/0npFE4KqWnrkJERKTn7HgPjCCkDKIjMpG1dWsBaGkoAHxMLkwCoOPAPPiWonzwtpNVPICx147E4dRbMiIiIiIiImcq/cYnIj3K3drCnBefoWTNSgCyBw0lb9inJ7sNw+CDHXU8NmsH22vaAEiMcvDd8/owY0QmdusRqkn8Xlj1O1j4KHhCCV8GXgNTH4CY9EOW7mzayS3zbqHOXUdSeBLPT3uewthjb6VsBIM0vvwn6p5+Gnw+rCkppD32KBGjRh3zuc5EJev2M/v3mwGw2swUT0hj6LQsImPDPuNIETkhNr8FGJA1FlxZNP3ucQAiJk7Alh56XZxTNofoditNRj4Ew7hhfG734QXDkygYntQTkYuIiPQO2/4d+tzvMlZUr8Af9JMZlcma7RbAd9g8+PooJzS0kzN4KOmFsT0UtIiIiIiIiJwKSsKLSI8p/XAds557io7mJixWKxO+/HWGXXgZJvMnt2RcXdrIY7O2s7q0CYCoMCs3T8rnhvE5OO2f8JK2ax7Mug8adoW+Th0MFz4GWWMOP3/Nar73/vdo87WRF5PHC1NfIDUy9ZivzVdXR/V999OxbFkozmnTSH3oQSwu1zGf60wRCARpq+/ClRxqMZ87JIH49AiyB8Qz+LwstZwXOdU+1oo+6PXS8s47AMTOmNG9ZMGW2Vy1KJ1mh8HucdEUp0X3RKQiIiK9T1cr7Pkg9LjfpSwpeQOAAbGj+XtrF2E2M6Nz4zCCQdyrVhMwQW1r6HeY7MHDeipqEREREREROUWUhBeRHrHyn2+y5G+vABCXnsnF372bpJy8T1y/rbqVJ2bvYP72OgAcVjNfH5/DLZPycTk/IXnbUAKz7odds0NfRyTCeT+BIV8B8+HzimeXzub+xffjC/oYmjSU35z7G2IcMcd8bW0ffED1D35IoKkJU1gYyT+4H9c11xx5Nv1ZIOALsn1FNetml2EY8JUHx2CxmLFYzMz44ShMRxobICIn1/6dUP0hmK1QfCVtc+YSaGrCmpxM5MSJAOxp2UNwVy0Qj9sUww0T+gCh/9Nbl1aRPyxJN8+IiMjZa9ccCHghvg9GQiGLFy4GwNrVD4CxefGE2Sx0bdtGoKWFloRY/D4fFnsUW5d5GBHtIcLl6MkrEBERERERkZNISXgR6REZfftjMpsZNPVCJl13AzbHkVuQlze4eWreTv65oRLDAIvZxIyRmXz33D6kxHxC2/KuVlj0OKx4HoK+UJJp9M0w6R4IO3JS/bVtr/HoqkcxMDgv6zx+OeGXhFmPrS160OOh7vEnaPrLXwBw9O1L+pNP4MjPP6bznCl83gBbl1Sxfk45Hc0eAMKjbDTXuIlPjwRQAl6kp2z+R+hz/rkQEU/zG6HqPdfVV2Oyhn48nFs6l8y6UOeKxvi+nNcvGYCyzQ0sen0n6+eUc/0vxp61NxiJiMhZrrsV/aXsbimh1l2Lw+KgZF8K0MakwlAr+o4VobFbif2KGX/RJaz81262LKxk1MW5n3BiERERERERORMoCS8ip4RhGDRW7iM+IwuA9L7F3PCr54lNTT/i+v1tHn77/i7+uqocX8AA4JJBqdwxrZC8xMgjP0kwCB/+DeY/AO21oW0FU2H6I5B45JnuQSPI0+ue5uXNLwMwo2gG94+6H8sRKuU/jWfXLirvvAvPzp0AxH3tqyTecQdmx9lX3eLt8rN5YSUb5pXT2eYDIMLlYOj5WRSfk4bNfmx/tiJyghnGx1rRX4Nnzx7cq1eD2Yzrmqu7l83fNZsRDaGbkcZOmYTlwE0zO1fVAKGZ8ErAi4jIWcnXCbvmhh73u5TFlaEq+GFJI/hgYTsAk4uSAHCvDCXh48eOpzNmONawaFILXIRHqZuMiIiIiIjImUxJeBE56dwtzcx+4deUb97IdY88TXxGJsARE/CtXT5+v2gPf1yyF7c3AMDEwkTumV7EgPRPaQ1fsQZm3gOVa0Nfx+XDBY9An/PhE5JEvoCPHy/7Mf/d818Avjv0u9w08KZjSioZhkHz669T+8tHMTweLPHxpD3ycHc757NRY1UHy98pASAqPozhF2TTd0wqFpu5hyMTEQCq1kHjHrCGQ9FFNP/qtwBETpqELSUFgNKWUjp3VWIxEmm2x/CtaaHZtR63j72b6gEoHJ3cM/GLiIj0tJIPwNcB0RmQNpQlm0PfS1NsQ/AFDLLjneQkRGD4/aEb3QDn6FHsnbMfgNzBCT0WuoiIiIiIiJwaSsKLyEm1d8NaZj33FO6WZiw2G/vL9nQn4T+uyxfgz8vLeHbBbprdoerpIZku7rmgiHH5n/ImVWs1zPsZbHw99LU9CibdDaNvAesnV5d0+Dr4/gffZ3n1ciwmCz8b9zOuKLjimK7N39RE9Y9+TPv8+QBEnHMOab98BGvC2fWmmrvVS11pKzmDQtedkhdD8TlppBbE0GdkMhaLku8ivcqmA63o+15EEBst//wnAK4Z13YvmVt2sBW9s2AIUWE2AErW7SfoN4hLi+geKyEiInLW+Vgr+nZfB+tr1wPQ2lgAeJh8oBV919atBDs6aE6KZ/Pu3VRsNzCZoskdnNhDgYuIiIiIiMipoiS8iJwUfq+XRX99mfUzQ29QxWdkcfH37iExK+fQdYEgb62r4Ol5u6hu6QKgICmSu6cXcX5x8idXpfs9sPxZWPwkeEMtHxlyHZz3E4j69OrM+s56bp13K9satxFuDedXk3/FOennHNP1daxYQdU99+KvqwObjaQ77yDuq1/FZD57Es7tTR7Wzy1j6+IqAK7/xTic0aEbH6Zc17cnQxORTxIMwOa3Qo8HXkPb7NkEWlqwpqUSOWFC97L/7HyP0XWhVvTnX3hu9/YdK0Ot6ItGp6gVvYiInJ0CPtjxXuhxv0tZUb0Cv+EnOyqb1TtDvwtMKjp0Hnx1bgZ7//p7LI7hpPS5mJjE8B4JXURERERERE4dJeFF5ISrLy/lv888Tv2+MgCGTL+EidfdgM1+cD66YRjM2lzD43N2sGd/BwDprnBun9qHq4ZldM8ePoxhwI6ZMPsH0LQ3tC1jJFz4KKQP/8zYSltKuXnezVS2VxIXFsez5z3LgIQBR31ths/H/md+Q8Mf/gCGgT03l/QnnyCsuPioz3G6a63vZN3sMrYtryboNwBIyo6is83bnYQXkV6qdDG010KYC/LPo+nBGwGIveYaTBYLAOWt5ext203nECfDGi5g6IghALQ1dlG1qxmAPiPVil5ERM5SpUugqxmcCZA1hiUrHgJgYNxo/tbcid1qZkxePBCaB28AtYTGbJlt2eQOObu6ZomIiIiIiJytlIQXkRNu58pl1O8rwxnjYvot3yNv6MhD9i/ZVc9js7ezsaIFgLgIO7dNKeAro7MIs1k++cR122H2/VDyfujryBSY9gAMvBaOogJ94/6N3Db/Npo9zWRGZfLi1BfJjD68Nf4n8ZaXU3nnXXRt2gSA65prSL7/PsxO51Gf43TW3tTFyn/tYceqWoxgKPmeWhDDyItyyegXq6pYkdPBpjdDn/tfgWdvGZ1r14LFQsxVX+he8u7uWRhm2OdM52dXfQezOfS6XLu3FbPFREpeDFFxYT0RvYiISM/7qBV934sxTGYWVy4GwOrpB8Do3DicdiuG14t73To6HDbcXZ2YzFaiE/LIUyt6ERERERGRs4KS8CJywo25agZ+r4fhF19BhCu2e/uH+5p5bPZ2lu5uACDCbuGmCXncNCG3e97wEXU2w4JfwqrfgREAix3G/h9MuAMcUUcV08J9C7lr4V10BbroH9+fZ897lvjw+KM61jAMWt99l5oHHiTodmOOjib1wQeJvmD6UR1/pjCZTOxcE0rAZxbHMeLCbNL6xH72gSLSO/i6YOuBxMHAa2h6LZSQjzp3CrbkpO5lbx9osZtgGsHYvIOvkwXDk8goisXd5j11MYuIiPQmwSBs/0/ocb/L2Nm0kzp3HWGWMPZUpAAtTDowD75z0yaMzk4aslIByCzuz9U/mtRDgYuIiIiIiMippiS8iHxue9avZv3Mf3P53T/GarNhtliY+JUbuvfvrmvnyTk7mLk5NEvYbjFz3ZhsbpuST3yk45NOG5pdvO5VeP8hcIcS9xRdDNN/DnF5Rx3fWzvf4sEVDxI0gpyTfg5PTnoSp+3oqtcDbW3UPPAgrf8JvdnmHDGCtMcfw5aaetTPf7qq3dvKvm0NjLgoF4AIl4OJMwpJyIgiOTe6h6MTkWO2ey54WiA6nWDSMFr+dScArmtndC8pbS7H21jG8H2xjBs5+LAOF2GRNsIiP+WmKRERkTNZxerQWBdHNOROZPG2VwEYnjyS9xe2ATD5o3nwK0Pz4JtSEsHTQfagoeocJSIiIiIichZREl5EjpvP62Hxa39i/axQZeX6me8y8rKDLY2rmjv59bxdvLl2H0EDzCa4algGt0/tQ0bsZyTBy5bBzHugJtT6nYQiuPCXkH/uUcdnGAYvbHyB5zY8B8Dl+Zfz03E/xWY+ugRS54YNVN51N76KCrBYSLjtVhK+/e3uuclnqqpdzayZWcq+rY0AZA9IIDEr1HGg/4T0ngxNRD6Pj1rRD/gCrbPnEGxtxZaRQcT4cd1Lnlv9Dtk1EQzcG028aw1wMQDeTj/2cP3YKCIiZ7lt74Y+F14AVjtLKpcAkGYfitcfJN0VTn5iJADuFSsJmqDO7wEga8CQnohYREREREREeojeTRWR47K/vJT3nnmc+n1lAAy76HKGXnApAE0dXp5bsJtXlpfh9QcBOL84mbumF1GY/Bnt41sqYM6PYcvboa8dMTDlfhh5E1iOvvrSH/Tz8xU/561dbwHwzYHf5DtDv3NU1SdGIEDD73/P/t/8FgIBbOnppD3+OM5hQ4/6+U83hmGwb1sja2eWUbWrGQCT2UTRqGQcTn2rEDntdbXCjlmhxwOvofn7jwDguuYaTGZz97L3981jam04AH1GjgHACBr87cGVRMY6mHZjf6ITwk9t7CIiIr2BYRycB9/vUlq9rWyo2wBAa0M+0MmkokRMJhPBri46N2ygLcxOIBgEUzhzX67juofyVQ0vIiIiIiJyllBmRUSOiREMsn7Wv1n01z8R8Plwxri44NbvkztkOB0eP8/P38XvFu2hzeMHYHRuHPde2JdhWZ8xO9zXCUufgSVPgb8TMMHwr8O5P4KIhGOKsdPfyT0L72FBxQJMmPjh6B8yo++Mzz4Q8FVXU3XPvbhXrwYg+uKLSfnZT7FEHd3s+dNRa30ns3+/mbqyUAtNs9VEv7GpDJuerWSbyJli+38g4IGEIrpaHXRu2ABWK66rruxeMm/nNsy+fSS2ZIDJRP7wUQBU7mqmvcmDzxMgIuZTRoiIiIicyWo2QXMZWMOh4DxWVC0lYATIjcllza5QYn3yR/PgN2zA8HqJT0pi2GU/Z9P7m0nNdykBLyIiIiIichYxf/aSk+u5554jNzeXsLAwhg8fzuLFiz91vcfj4Yc//CHZ2dk4HA7y8/N56aWXDlnz1ltvUVxcjMPhoLi4mHfeeedkXoLIWWXx66/ywSu/J+DzkTdsJF974lnSBwzllWWlTHr8A56cu5M2j5/+adG8cuMoXv/WmE9PwBsGbPkn/HYULHg4lIDPGgffXgSXPn3MCfimriZumnMTCyoW4LA4eGryU0edgG+dM4c9V1yJe/VqzE4nqb98hLQnHj+jE/AAETEOOpo9WG1mBp2bwfUPjWXyV/oqAS9yJvmoFf3Aa2h+4+8ARJ13HtbExO4lz656h8y60P/71IJCIlyh1+6dK2sAyB+WhMXW4z86ioiI9IyPquALzgN7BIsrQ+9dDIobTWmDG5vFxLiC0O8uH82DDx89mn1b2zFbU8gdcmy/14iIiIiIiMjprUcr4d944w1uv/12nnvuOcaPH8+LL77IhRdeyNatW8nKyjriMddeey21tbX88Y9/pKCggLq6Ovx+f/f+5cuXM2PGDB566CGuvPJK3nnnHa699lqWLFnC6NGjT9WliZyxBk+9gC0L5jH26i8z4LwL+PfGKp6cs5aKpk4AcuKd3Hl+ERcPTMVs/oxKj5rNMOs+KD1w8010Bpz/IPS/Co6jSqSyvZKb595MaWsp0fZofnvebxma9Nkt5INuN7WP/JLmN0NJqrABA0h/8gns2dnHHENvFwgE2bW6lt1r67jo5oGYLWYsNjPnf3MAriQnzmh7T4coIidaex3sWQBAsOBiWu78GgCxM67tXlLb2sXO9iWcX+sEIH946Gcmvy9Aybo6AIpGJ5/CoEVERHqZ7lb0l2EYRvc8eJunGIAR2XFEOkJvsbhXrgLA138srSu6sNjMZBXHn/qYRUREREREpMf0aBL+V7/6Fd/4xje46aabAHj66aeZPXs2zz//PI888shh62fNmsXChQvZs2cPcXFxAOTk5Byy5umnn2batGncf//9ANx///0sXLiQp59+mr/97W8n94JEzkA+TxelG9bRZ/Q4AGKSUvjGM79n8d5WLvnNErbXhFqYJ0U5+N7UPlw7IhOb5TMqJd2N8P7PYe3LYATBGgbjvwfjbwe787ji3NawjVvn30p9Zz0pESm8MPUF8l35n3lc17ZtVN55F949e8BkIv6mm0j8zv9hsp9ZyeiAL8j2FdWsm11Ga30XALvX1VE4MgWAtAJXD0YnIifVlndCr7XpI2hdvpVgezu2rCycY8Z0L3lh6RrstgpS6zMBKDgwD750YwPergCRcQ5S8109Eb2IiEjPq98F+7eB2QqF09neuJ36znrCreHsqUgCmplUFOouE+zooHPjRmpiIti5Yg5+TyE5g87D5rD07DWIiIiIiIjIKdVjSXiv18vatWu57777Dtl+/vnns2zZsiMe8+677zJixAgee+wx/vznPxMREcFll13GQw89RHh4qH3q8uXL+f73v3/IcdOnT+fpp5/+xFg8Hg8ej6f769bW1uO8KpEzS13pHv77zOM0Vu7jCz98iJxBQ1m1t5HHZm1nTVkTANFhVm6dUsDXxuYQbv+MN5YCfljzR/jgYehqDm0rvgLOfwhcR+5+cTSWVwJjpSMAALznSURBVC3n+wu+T4evgz6xfXj+vOdJjvj0ik3DMGh69VXqnngSw+fDmphI2mOPEjF27HHH0Rv5vAG2Lqli/ZxyOppDr3PhUTaGTM0iZ4BaYsrZ4az/Pv+xVvRNT4Za0cdeew0mc+iGqS5fgLd3zMJltuJ3mImPSSEuPZSM37kq1Iq+cGQKps/qbiIiInKKnbLv8R9VwedOgnAXS3aFvreOSB7F+wtDzzn5QBLevW49+P00pKTT3rQPiyOR3MH6uVtERORYnfW/y4uIyGmvx5Lw9fX1BAIBkpMPTZQlJydTU1NzxGP27NnDkiVLCAsL45133qG+vp5bb72VxsbG7rnwNTU1x3ROgEceeYQHHnjgc16RyJnDCAZZ+96/WPK3Vwj4/US4YtnX1MUDL6/igx37AQizmblxfC7fnphPjNP22SfdswBm3heqIAFIHgAX/BJyJ3yuWP+z5z/8eOmP8Qf9jEwZya+n/Joo+6fPcPfX11P1gx/QsSjUBj/y3HNJ/cXPscZ+yuz601BHs4c3frGKzjYfABEuB0PPz6L4nDRsn3XDhMgZ5Kz+Pt+4BypWg8lMl3UAXZt+DTYbMVde2b3kXxsq8TnW0+j0kXnPDK5IuQCTyURXu4+yzQ0AFKoVvYiI9EKn7Ht8dyv6SwG658Gn24fS5QuSEh1GUXLodxD3yhUYQF2EEwJeLLZscgcpCS8iInKszurf5UVE5IzQo+3oAUz/M/fZMIzDtn0kGAxiMpl47bXXiImJAUIt7a+++mqeffbZ7mr4YzknhFrW33HHHd1ft7a2kpmZeVzXI3K6a29sYNbzT1O2cT0AqYNGsDpjKo/OasQwwGo28cVRmXz33D4kRYd99gmbSmH2D2H7f0Jfh8fCuT+CYV8Hy/G/BBmGwStbXuHJtU8CMD1nOg+f8zB2y6e3kW9fvJiq++4n0NCAyeEg6d57iP3Slz71NeJ0EggEsRwYB+CMsROT6MRq9zD8gmz6jknFYvuMUQEiZ6Cz+vv8prdCn3Mn0fTveQBET5uKNT40l9YwDP6wbD0WVzlgYnru+UQ5Q4kCq8PM1BuKqS5pIT4tsieiFxER+VSn5Ht88z6oWgeYoO/FtHha+HD/h6HnaywA2plUmNj9+0THylV02G10BryYLVYmfmUK4VFn1qgrERGRU+Gs/l1eRETOCD2WhE9ISMBisRxWoV5XV3dYJftHUlNTSU9P707AA/Tr1w/DMKioqKBPnz6kpKQc0zkBHA4HDofjc1yNyJmhZO0qZj3/NF1trVjsdtoGX8xPGlLwb2sB4LLBadwxrZCchIjPPpmnHZY8Bct+AwEPmCww8iaYfB844z5XnEEjyOOrH+cv2/4CwHX9ruPukXdjNn1ygjno9bL/yV/R+MorADj69CHtyScIKyz8XLH0Fu5WLx/OL2fHihq++JPRhEXYMJlMTP/mAMKjbd2JeZGz0Vn7fd4wYFOo/Xyg4DJan34WANe1M7qXLC9poLRrBZF+E8XJg0hyJnXvs9os9BmRTJ8RqoIXEZHe6ZR8j9/+39DnrLEQmcTy0lkEjSD5MfmsKTEAuufBB9ra6NqyhfrY0M1r6X2LGXxu3smNT0RE5Ax11v4uLyIiZ4wey8rY7XaGDx/O3LlzD9k+d+5cxo0bd8Rjxo8fT1VVFe3t7d3bdu7cidlsJiMjA4CxY8ceds45c+Z84jlF5CCvu4OutlaMuDTeSL2aP9an4DdC8w3/851zeOZLQz87AW8YsPHv8NuRsPiJUAI+dxLcvAQueuxzJ+C9AS/3LLqnOwF/14i7uHfUvZ+agPfs2UPpjC92J+Bjv/IVct78+xmRgG9v8rD47zv58w+XsW52OR0t3u4ZzgCRsQ4l4EXOVjWboH4nWBy07rEQdLux5+TgHD2qe8lLS/dijd7MkF0uRrzdyaYP5vRgwCIiIr3Q/7airwi1oh8cP5qS/R1YzCbGF4S6yLhXr4FgkMbk0NfZg4ae+nhFRERERESkV+jRdvR33HEH119/PSNGjGDs2LH87ne/o7y8nJtvvhkItZyprKzk1VdfBeDLX/4yDz30EDfccAMPPPAA9fX13H333dx4443drei/973vMXHiRB599FEuv/xy/vWvfzFv3jyWLFnSY9cp0hu1NzWyc8USfB4Po6+4hi5fgEXBLBanT2ejLZugycKwLBf3XNCXMXnxR3fSqvUw817YtzL0tSsbpj8MfS+GE9DuvdXbyu0f3M7qmtVYzVZ+Pv7nXJx38SeuNwyD5n/8g9qHH8Ho7MTicpH68MNEnTvlc8fS01rrO1k3u4xty6sJ+kMVOEk50Yy4KIecgUf59yUiZ7ZNb4Y+F06n+Y13AXBde213u9zS+g7e370bZ14ZWbWpBN0eHOFOALYurcLd6qVodApRcUcxekRERORM1L4fypeFHve7hKARZGnlUgDs3v4ADM+KJSbcBoB75UqCwH67FYwA4TEFPRG1iIiIiIiI9AI9moSfMWMGDQ0NPPjgg1RXVzNgwADee+89srOzAaiurqa8vLx7fWRkJHPnzuU73/kOI0aMID4+nmuvvZaf//zn3WvGjRvH66+/zo9+9CN+/OMfk5+fzxtvvMHo0aNP+fWJ9Dbu1hZ2rVzKjmWL2bdtMxgGdmcEW2IH8+LScmpbPWDPozA5krun92Vqv6Sjm5Xevh/mPwDr/wIYYHPChDth7P+B7cQkb2o7arll/i3satpFhC2Cp6c8zZjUMZ+4PtDcTPVPfkrbnFBVZ8S4saQ+8ktsyUmfeMzpwuP28bcHVuL3BQFI6+NixIU5ZPSLPWNm24vI5xQMwubQPPjO8LF0bf0NJpuNmCuv6F7yp2WlWCI34eqwEu22YbFayRk8DMMw2DC3nKYaNxExDvqNS+2hixAREelhO94DIwipQ8CVxbaGLTR0NeC0OimpSAIaulvRA3SsXInPaiE8Ko+O9nrcrVE9FrqIiIiIiIj0rB5NwgPceuut3HrrrUfc96c//emwbX379j2s3fz/uvrqq7n66qtPRHgiZ4Tdq1ewYc5/Kd/8IUYw2L3dlJTNMnM2q/+7Fb/ZRrornDumFXLF0HQs5qNI5vq9sOpFWPgYeFpD2wZeC9MegOi0ExZ/SXMJN8+7mZqOGhLCE3h+6vP0jev7ievdq1dTefc9+GtqwGol6fu3E3fDDZjMp29b9tb6TqITQh0/HE4bfUYm09HsYfiFOaT1cfVscCLS+5Qvh9ZKcETTvLICgKjp07HGxgLQ2uXjzTX7sKZsJqsm9NqSNWAw9nAndWWtNNW4sdjM5A9N/MSnEBEROeP9Tyv6JRWhDnujUkYzf2EzAJMKQ98r/U1NeLZvx2q2Qvjl2M0B8oac/jcAi4iIiIiIyPHp8SS8iJx43k43FpsNizXUFrGutISyjesBiMvKY39SP95uTKDGCLUdzopzcvOkfL4wPB2H1XJ0T7JrLsy6Hxp2hb5OHQIXPgZZJ7brxLradXzn/e/Q6m0lJzqHF6a9QHpk+hHXGn4/+599loYXfwfBIPbsbNKeeILwgQNOaEynUu3eVtbMLKV0Uz1f/NEo4tMjAZj0lSLNeheRT3agFX0g9yJaHpsNQOyMa7t3/331PtzBJiKdpWTWJgOQPyL0+r1zVS0AuYMTsIfrR0URETlLdbXAngWhx/0uA2BxZWgefLpjKG5vgIRIB8Wp0QC4V60GoL14Cn5vkKi4MBKzVAkvIiIiIiJyttI7qyJnCJ+ni73r17B92SL2rlvDhd+5k8LR4wHod85k2rxBlgcz+d2OTjwNoWr4ouQobp2Sz8UDU7EebUK3oSSUfN8VSuoQkQjn/RSGfAVOcKX5/LL53Lv4XjwBD4MSB/Hbc39LbFjsEdd6KyqouutuOjdsACDmqqtI+eEPMEdEnNCYTpWqXU2smVnGvq2NoQ0mqNzZ1J2EVwJeRD6R3wtb/wlAa10ahtuNPT+f8BEjAAgEDV5ZXoo1agvhXhOJzQ4A8oaPIhgIsmt1KAlfOCqlR8IXERHpFXbOgaAPEoogsZDmrmY21W8CoL2pAGhlUmEi5gMdxNwrV+I3m6hK64/hMcgdnKhRUSIiIiIiImcxJeFFTmN+n4/SD9exY9kiStasxOfp6t63b8smCkePZ3ddG88vrudfW+LxBzsAGJLp4v+mFHBu36TuN40+U1crLHocVjwfejPKbIXRN8OkeyAs5oRf2+vbX+fhlQ9jYDA5czKPTXyMcGv4Ede2/Ps/1DzwAMH2dsyRkaQ88DNiLr74hMd0shmGwb5tjax5r5Tq3S0AmMwmikYnM2x6NrEpp+cNBSJyipW8D51NGM4kmuaHuqDEXntNdyJg3rZa9jV2EpW7mYw6JyYgOa8PUXEJlG9twN3qJSzCRlZxXA9ehIiISA/bfmgr+mVVywgaQQpcBazebQAcOg9+1Ur2R0Wwt/bfmK1Z5A75+SkPWURERERERHoPJeFFTlOdba388XvfxNPR0b0tOjGJorETKBo3kVprPLf8ZS2zttRghN4j4pyCBG6dks/YvPijr8oIBuHDv8K8B6CjLrStYBpc8Agk9DnBVxVKRP9m/W/4/abfA3B14dX8cPQPQ7MV/0egvYPahx6i5V//AiB86FDSHn8ce8aR29X3dgFfkHkvb6WzzYfZaqLfuDSGnZ/VPQteROSoHGhF3xU9Bc+OxZgcDmIuv7x790tL9mKytGEK28N+l5V+F0wnIyv0er5zZagKvmBEEharOm6IiMhZyjDA1wkm88F58JWhefBDE8bw0vI2zCaYUJAAgH//fry7S6jKywfA6kgkrY+rR0IXERERERGR3kFJeJHTQDAYoGLrFpqqKxg87SIAwqOiiUlKwd3cROHYCRSNnUBKQSGrSpu46/3dLN61vfv46f2TuXVyAYMzXcf2xPtWw8x7oGpd6Ou4fLjgl1B4/gm6skP5gj4eWPYA/yoJJdVvG3Ib3x707SPeMNC5aROVd96Fr7wczGYSbrmFhFtuxmQ9fV7WgkGDsk315AxMwGQ2YbVbGH5hDm31XQyZlkVkrKOnQxSR042nHXa8B0DT9tBrZ/QFF2BxuQDYUtXCyr2NOGK3YmCQkVPERZd8p/twq8OC1W6maLRa0YuIyFnMZIKvvAkd9eCMJ2gEWVq1FACHtz8AgzNdxEbYAehYtQoDaI6yAn7SigZqfJSIiIiIiMhZ7vTJVomcZYxgkKpdO9ixbBE7Vyyho7kJi81G3/GTcTidAFx5z0+IcMWCycQHO+r4zosrWFvWBIDFbOLywWncPDmfwuSoY3vy1mqY9zPY+Hroa3tUqO386JvBaj+BV3mQ2+fmjoV3sLRyKRaThR+P+TFfKPzCYeuMYJCGP/6R/b9+Bvx+rKmppD/+GM4Ds45PB4FAkF2ralk7q4zmWjcXfHsA+UOTABh8bmYPRycip7UdM8HnJhCRS+s/VwHgmjGje/fLS0sBSErdQbMB5+ccelPV5C8XMe6qfGwOyykLWUREpNeKCFW6b63fQmNXIxG2CPZUJAL1TC5M6l7mXrESt92KBz9mi5WLbr2whwIWERERERGR3kJJeJFepn5fGVsWzmfHssW0Nezv3u6IiKDPqPH4ujq7k/Dhrjj+vama5z7YzfaaNgDsVjMzRmTyrYl5ZMY5j+3JfV2w4llY9CT4DrS5H3IdnPcTiEo+Idd3JA2dDdw2/za2NGwhzBLGE5OeYFLmpMPDq62l6t77cK9YAUDUBReQ+sDPsMSc+Jn0J0PAF2Tb8mrWzS6jraELAIfTisft7+HIROSMcaAVfUv7IIyu1Tj69CF86BAA9rd5eHdDFSZLOy3GdvIqIxjQJxW/14vVfvAGK3uYfjwUERH5uMWViwEYnTKG9xc2A4fPg6+PCv3ulVbUl/CoiFMeo4iIiIiIiPQuepdVpIcZhgGGgckcaldY+uE61vz7bQDs4eHkjxhD33ETyR40BIvVBoDHH+CddZW8sLCE0gY3ABF2C9eNzeYb5+SSFBV2bEH4OmHXXJj7Y2gqDW3LGAkXPgrpw0/IdX6S8tZybp53M/va9uFyuHj2vGcZlDjosHVt8+dT/cMfEWhuxhQeTsoPf0DMF75w9LPte1AwaLDpgwrWzy2no9kDQHiUjSFTsxgwKV0JLxE5MToaoGQ+hgHNq+uAUBX8R6+Tf11ZjjcQJC93L/VGkLHbE1j04W9J/nEqSbnFtDd5SMiI7MkrEBER6ZWWVITmwWeGDaPN4ycuws6g9NCNwL7qanxl5dTmZwOQM2hYj8UpIiIiIiIivYcyPyI9pLGqgu1LF7Fj+WJGXvYFBkyeCkDR2AlU795J33ETyBkyHJv94Fxwt9fP31bt4/eL9lDTGqqkjnXauGF8Ll8bm0OM0/bpT2oY0FIBtZsPfGwJfTTsBiMYWhOVClMfgIHXgPnkzjHcUr+FW+ffSmNXI+mR6bww9QVyYnIOWRPs6qLuscdo+uvfAHAU9yP9iSdx5OWe1NhOJJMJdq6qoaPZQ4TLwdDzsyg+Jw2bXe2eReQE2vpPCPrppBjPnjJMYWHEXHYpELp5688rygCITtgK+xzYPKEuK+l9+7NlcTWL39hF4ahkpt3YvwcvQkREpHdp6mpiU/0mANqb8oFmJvRJwGwO3eTWsXIlQaAhMhzw4YjK67FYRUREREREpPdQEl7kFGqpq2H7ssXsWLaI/WV7u7fvXLGkOwkfFZ/Apbffe+hxbh+vLC/l5aV7aXL7AEiJDuObE/P40qhMnPYj/Ff2dkDdNqjZdDDZXrsFPC1HDs6ZAMO+ChPuBMfJr4RcXLGYOxfeSae/k35x/Xhu6nMkhCccsqZrx06q7roTz67dAMTdcAOJ378ds/3kzKU/Ubo6fGxaUMGgczNxhFsxmUyMuSKf1vpO+o5JxWI7uTc3iMhZatM/AGjelww0E33RRViiowH4z4fV1Ld7SHb5Ke3YyJDaKAByh4zAYrWyc1UtAEnZ0T0SuoiISG+1tGopBgaFsYWsLgnduDz5Y63o3StX0eVwYY28mKB/HwUjdDObiIiIiIiIKAkvckoE/D7e+Nl9VO/a0b3NbLGQPXAIReMmUjByzBGPq2vr4o9L9vKX5WV0eAMAZMc7uWVSPlcOS8dhtUAwCI17P5ZoP5B0b9wLGIef1GyDxCJI7n/gY0DoIzIpVLJ9Cvxz9z/52bKfETACjE0dy1NTniLCdnBuomEYNL32V+oeewzD68WSkEDaL39J5DnjT0l8x8vd6mXDvHI2L6zE5wlgMpsYcWEOAJn94no2OBE5szXvg/JlBLxmWteGbvKKnXEtEHpNfWlpaNvI/lUsbAxQUO8CDPJHjKa51k3t3lZMZhN9Rib30AWIiIj0TksqQ63ohyeO5XfLWgGY0CeUhDcMg46VK2iMH4jFlkdG36FEusJ7LFYRERERERHpPZSEFzkJOpqbqNq5jT6jxgFgsdqw2h2YTGYy+w+kaNwE+owaR3jUkSsO9zW6eXFRCX9fU4HXH6q26JsSxXfPSeH8hHqs++fArI+S7lvB23bkQCKTDyTZ+x/8nFAI1p6pJDcMgz9s+gPPrH8GgEvyLuHBcQ9isxxso+9vbKT6Bz+kfcECACImTSTt4Yexxsf3RMhHpb2pi/VzytmypIqAL/T3FZ8eSXy6ZiuLyCmy+S0AWlr6Y3gacPTtS9igQQCsLm1iS1UrDquZTtt6otuthLcamC1WcocM58P5NQBk9ovFGd27O42IiIicSoFggKWVSwFw+PoDQQZlxJAQGRoZ5quowF9Vzf7BVwOQOzjxk04lIiIiIiIiZxkl4UVOkM62VnatWsaOZYvZtyU0M/DbL7xChCsWgHNv+DbhUdHdXx/Jrto2nl9Qwr8/rCDdqOE8UzlT4uqYEltHQsduTP8pO/KBFjsk9g0l2lMOJNuT+kNk73kTKBAM8MiqR3hjxxsA3DjgRr437HuYTQdbs3csW0bVvffh378fk81G0t13E3v9dZhOUYX+sTIMg0Wv72Tr0iqC/lDXgaScaEZclEPOwPheG7eInIE2/QPDgKZtoS9jZ1zb/Rr00pJQFfwlQ2N4v241RXVOADL7D8Qe7uxuRV84KuXUxy0iItKLbWnYQrOnmShbFCX74oH9TCo8+DtWx4oVuO1O9jvqMPmc5Awa3XPBioiIiIiISK+iJLzI5+Bxd7B79Qp2LFtE2aYNBAOB7n0pBYV0NDd1J90TMrOPfJLOJnZvWsXqVYuhZjNfNZfzc1sFTpMntN994OMj0emHt5KPz4ePVZP3Nl3+Lu5bfB/zy+djwsS9o+7lK/2+0r3f8Hqp+/WvafzjSwDY8/NJ/9WThBUV9VTIR8VkMuHt9BP0G6T1cTHiohwy+sYq+S4ip1bdNqjdRGeDE29VAyank+hLLwVCnVXmbA1VuhfklDFns5/cznggSP7wUdSWttKyvxOr3Uzu4IQevAgREZHeZ3HlYgBGp47h/UXNwOHz4MuTC/B71mAx9hKb8vUeiFJERERERER6IyXhRT6HnSuWMufFZ7q/TszOpWjcRIrGTsCV/D8VhQE/NJZA7Wao3YJRuxlvxUYc7moKgAI49H+kNRyS+h3aSj65PzhPr9niLZ4WvvP+d1hftx6b2cYjEx5hes707v2evXupuutuurZsAcD1xRkk33sv5vDeN0uxvqKNtTPLGHVpLrEpoRn2Iy/Jpf+EdNL6uHo2OBE5e216E4Cm2lygiZiLL8ISGRqH8eryUoIGTOiTwMam/wCQ/eWLuCbhIpwxLtbNqQMgb0gi9jD9WCgiIvJxSypC8+CzwofR0ukjOszK4AwXcHAefF1yP6CDpJz+PReoiIiIiIiI9Dp6t1XkKPi9XvZuWMP2ZYvJHjCYQVMvAKBg1FjWz3yXglHjKBo3gfj0zNABHQ2wZ+GBme1bQon3/dvB39V9ThPgOPC4wkigJaqQ1KKRxOUNDSXd4/LAbDm1F3qCVbdXc/O8m9nTsocoWxS/PvfXjEwZCYTetGp5+x1qfvELDLcbS0wMKT9/iOhp03o46sPV7m1lzcxSSjfWA2CxmZn69WIAXElOXEnOngxPRM5mhgGb3sTvMdO2rRUA17UzAGj3+Hl99T4Avjg6gR+tXwHA9NzpxMdkATDmikjSC11ExDiOcHIREZGzV0NnA5sbNgPQ0ZQPNDKhMBGrJTROy7t3L4H99QQSK8FioniCWtGLiIiIiIjIQUrCi3yCgN9H2cYN7Fi2iN1rVuDt7ASgrWF/dxI+PDyMr951ayjJvvX38MGBpHtb9RHP6beEs4ss1nvS2WZkUWLKYcDQMVw/ZTD9486sRO6Oxh3cOu9W6jrrSHIm8cLUF+gT2weAQGsrNT/7Ga3vzQTAOWoUaY89ii2ld80jrtrVxJr3Stm3rSm0wQR9hicxdFpWzwYmIvKRitXQXE5LeSyGP0BYcTHhAwcA8NbaCtq6/OQlROBzbMIf9FMQk09uTG734RaLmZyBakMvIiLyv5ZVLQOgb1xfVpeExo59fB68e+VK3HYrnTYTZouF4gkjeyROERERERER6Z2UhBf5H4Zh8P7LL7B9yUK6Otq7t0fFxVHUP5eidBu8/e1Qsn3/dgj6jnyi2BxIHoA/sZhl7ak8vy2MFc1RGJiJdFi5fmw2vx6fS2LUmVd9uLpmNd99/7u0+9rJj8nnhWkvkBIRSrC7162j6q678VVVgcVC4ne/S/xN38Bk6V1V/zNf2MSeDfsBMJlNFI1OZtj07O429CIivcKmNzEMaC6LAzpxzQhVwQeDBn9aVgrA18fnMLf8cSwBExP+beE/pY8y7Vv/h8Op1zMREZFPsrgiNA9+ROJYXljWAsDkjyXhO1aspD4ydCN1WmE/7OFn1k3VIiIiIiIi8vkoCS9nPSMYpHZvCSn5oSptU8BLW+UeujraiQi3UpgcoCislDQWY6oH6v/nBPao0Kz2lAEH57cn9aODcP66spw/LNlDbasHgLgIOzeOz+H6sTnEhNtO7YWeIrP2zuIHS36AL+hjWNIwnjn3GWIcMRh+P/Uvvkj9s89BMIgtM5P0Jx4nfPDgng4ZACNogAlMJhMAiVmRlG6up9+4NIadn0V0Qu+bUS8iZ7mAHza/jbvOjre+E7PTSfTFFwOwYGcde+s7iAqzMn1ADE/9cxmpDWEY7R4qd24Dk52//mwFuYMTGXlJDlZb77oRSkREpKdVtFcAEObvj2H4KU6NJik6DAj9DtmxajV70ouARjL7947faURERERERKT3UBJezkqGYVCzawfbF85i56oVtLe2842LEnB17ID6nYzuCGNYloUMZwtm00dHmSA+/2CiPflA0t2VBabuRTS7vfxpcSl/WlZKsztUJZ8aE8a3JuYxY2QmTvuZ+9/uz1v/zGOrHwNgWvY0HpnwCA6LA19lJZX33Evn2rUARF92KSk/+QmWyMieDBcIVYuWrKtj7cxSxlyeT86gUFvmQVMy6Ts2jcjYM69TgYicIfYuAHc9zaXJAERfeimWyFB1+0tLSgH44shMVtUtwR/0078pAzDIHz6a0g/raapxYxj7GXNFXs/ELyIi0ov99eK/UtZaxpP/3Q/UMqnoYBW8Z9cuGgMxdNoMCEL2oKE9F6iIiIiIiIj0SmduNlDk43ydGHXb2L9pKdtXr2VHST2tnQd3O8x+GjYuxBXVCEBqrAWSBx5IuH9U3d4X7J/cure2tYs/LN7DayvLcXtDMwNzEyK4ZVI+VwxNx241n9RL7ElBI8hTa5/iT1v+BMAXi77IfaPuw2K20DprFtU//gnBtjbMERGk/PQnxFx2Wc8GDAQCQXatqmXtrDKaa90AfPj+vu4kvD3cij1cL5Ei0ott+gf+LjOt5VbAIHbGtQDsqGljye56zCb46tgcHlv/PBiQWmMHPBQMH8XGRbUAFI5K7u4AIiIiIofKjMxiye6dwKGt6N0rV1KfMAh79DQy+wZI7dOnp0IUERERERGRXkoZJjmzGAa0VITmtdduPvi5YTd7Wl38s6J/91KbKUB+VCNFGTZyigqwpk87WN0enX5IdfunKW9w88KiEv6xpgJvIAhAv9RobpuSz4UDUrGYz+zkhi/g40dLf8R7e98D4PZht3PjgBsxOjup+sUvaHnrbQDCBg8i/YknsGdm9mS4BHxBti2vZt3sMtoaugBwOK0MPi+TgZMzejQ2EZGj5uuEbf+mZa8TAgZhAwcSVlwMwJ+W7QVgev8UYiODLK1aSkKLHTo82MPDicsoomLbKiCUhBcREZEj21TZQmOHlyiHlWHZsd3b25evZH/COZhMJoonDMZs1lgXEREREREROZSS8HL68nZA3baPJdsPJNy7WmjyhrGjNZEIq5eBrlC1X1aCifA6yEiNpu/QgeSOPQ9b+kCwHd+s7x01bTy/YDfvflhF0AhtG5Edy23nFjC5MPGsqCxs97Zz+4LbWVm9EqvJyoPjH+TS/Evp3LKFqjvvwltaCiYT8d/+Fom33YbJZuvpkHnvhY2Ubwl1PAiPsjFkahYDJqVjD9PLoYicRnbOwvC007Q3DaC7Cr6xw8vb6yoBuPGcXBZULMAX9DGwORuAnMHD2bOhEcOAlLxoYhKdPRO/iIjIaWDhzv0AjC9IwGYJdTYzAgHqN5fiLr4Kixmy+8f3ZIgiIiIiIiLSSynrJL1fMAgt5VCz+dAK98Y9gNG9rNXnYEdrAttb86jrCs0aj4+LYOBXvgkpA7BFJvPtQACL9fP9s19f3sSzH5Qwb1tt97ZJhYncNqWAUblxn+vcp5P97v3cOv9WtjduJ9wazlOTn2Jc6lgaXnqZuqeeAp8Pa3IyaY89RsToUT0Wp7fTj8liwmYPVaf0G5dGY1UHQ8/Pot/4tO7tIiKnlU3/wF1rx9cK5shIoi+6CIC/rSrH4w8yID2aEdmx3P7BXABy9kdi0E7BiNFsWvxRK/qUHgtfRETkdLBgRx3AIfPgu7Ztpyo8D0/rH4iOz8dsndBT4YmIiIiIiEgvpiS89C6eNqjdeiDR/lHSfSt42468PiKJjZ5+bK4No7rO3b3ZZDaTNWAwfcdNxMg/F5M5VLVwvAl4wzBYVtLAsx/sZllJQ+g5THDRgFRumZzPgPSY4zrv6Wpvy15umXcLle2VxIXF8dzU5ygKJrHvm9+iY+lSAKKmTSXlwQexxsZ+xtlOjq4OHx++v49NH1Qw/MIchk7LAiBvaCK5gxKw2Mw9EpeIyOfW2QS75tBUEgFAzGWXYnY68QWCvLq8FIAbx+fi9rtZUrkEkwGFY86hddteXKnF7C/fgtlsomBEUg9ehIiISO/W7PayYV8zELrp+iPulSuoiU+G4F783iqsvaDbl4iIiIiIiPQ+SsJLzwgGoWnvoa3kazZBc9mR11vskFgEyQNwR/chPHsoppQBEJlExW+fpHrTB2AykdlvAEXjJtJn9Dic0Z8/MR4MGszdVstzC0r48MAbMFaziSuHpnPz5HzyEyM/93OcbjbUbeD/3v8/WjwtZEVl8cK0F3CtLWHPD75FoLERU1gYyfffj+vaa3qkJb+71cuGeeVsXliJzxMAoGxTfXcS3mw2gfnMHxUgImewbf/G3+6nrTI0TsU1YwYA722qprbVQ2KUg4sHpTK/fDbeoJecmBwuvuI2TCYTLfs76T8xHb83QHikvSevQkREpFdbvKueoAGFyZGkuQ6OMGtduRpvMJR4zx06rKfCExERERERkV5OSXg5+TqbD53ZXrsF6raCz33k9VGpkDwAkvt3f+4KS2XXutXsWLaY8s0Lue6RK0mKDFXwDZ56ISn5fSgcPZ7IuBMzj88fCPLvjVU890EJu+raAQizmfniyCy+OTGPdNfxzZE/3X1Q/gH3LLqHrkAXA+IH8NsJv8L3zMtU/PnPADiKikh/8gkcBQWnPLb2pi7Wzylny5IqAr4gAPHpkYy4KIe8oYmfcbSIyGlk05s073VCEMKHDCGsqAiAl5aWAnDd6GwcVgtzy0Kt6KdlT+u+KSomMZzJXy7qkbBFREROJx/Ng59cdLBzjOHz4VmzGlNWPDjs5I8Y3lPhiYiIiIiISC+nJLycXDPvg5XPH3mfNQwS+4YS7SkHku5J/SEilEj3dropWbOS7TPfpPTD9QQD/u5DK7ZuIiknD4D0vsWk9y0+IeF2+QL8Y20FLy4qYV9jJwBRDitfHZfNDeNzSYh0nJDnOR39Y+c/eGjFQwSNIBPSJ/Bwxq00Xn8znp07AYj96vUk3XknZkfP/Bkte7uEXatDc46Tc6MZcWEO2QPje6QaX0TkpGmtxtizmOaS0M1FH1XBrytv4sN9zdgtZr4yJgu3z83iysXYfSYGNCThcbtxOJ09GbmIiMhpZX15E3BoK/rOzZvp8HlxO+yhEWj9B/VUeCIiIiIiItLLKQkvJ09DCax6MfQ4JvNAZftHHwMhLg8sR/4nWFe6h7/96C78Pm/3toSsHIrGTqBo3ARiU9JOaKjtHj+vrSjjD0v2sr/NA0B8hJ0bz8nl+rHZRIedvXP+DMPg+Q+f5/kPQzdTXJl/Bd8t70fNnddheDxY4uJIe+RhIidNOqVxNdV0YHNYiIwNA2DY9Cw6mj2MuCiHjL6xSr6LyJlpy9t01NjxdVgxR0cTfeEFALy0ZC8Alw9JIyHSwazSWXgCHka0ZrL+D3+hct5yRl99P1GxYaTkx+g1UkRE5DPMun0i68ubGZx5cMxZ6/JV1LpCX6f26YvDGdFT4YmIiIiIiEgvpyS8nDxLfw1GEPqcD1958xOX+X0+Sjesxefpot85kwGIz8jCGhZGVEIiReMm0nfcBOIzsk54iE0dXl5eVsory0pp6fQBkBYTxrcm5jFjZBbhdssJf87TiT/o5+crfs5bu94C4Lbcr3Hx30rZP/8hACLGjyftl49gTTx17d7rK9pY814ZJevrKB6fxpTr+gKQkBHFlXdqJqOInOE2vUlzSaiiPebyyzGHhVHV3MnMzTUA3DA+F4A5pXMAGNicgkEd2YOHsehvO/G4/Vz+/aFkFMX2TPwiIiKnCZvFzKjcuEO27Vlbw46sEeDfTfbAIT0TmIiIiIiIiJwWlISXk6O1Cjb8NfR4wp2H7Q74/ZRv/pAdyxaze/VyPO4OouIT6TtuIiazGYvVytce+w0RsXEnpVqvpqWLPyzew19XleP2BgDIS4zglkn5XD4kHbvVfMKf83Tj9rm5Z9E9LKxYiNlk5uHwL1P44//QXlsLNhtJd9xB3Ne+isl8av6sava2sHZmGaUb67u3edx+DMNQRaeInB3qd+Mr+ZC2ymQAYmdcC8Cry8sIBA3G5MVRnBYdakVfsRhzAMxlLQQAp6svHncHzhg7aX1cPXcNIiIip6mg10tlSyTmCBth4W3kDB7a0yGJiIiIiIhIL6YkvJwcy5+FoA+yxkHWmO7NlTu2sXXhfHauWkZXW2v39si4eArHjMPv9WILC+vedqKV1nfw4qIS3lpbiTcQBKB/WjS3TSlgev8ULGYlcwGaupr4v/n/x8b6jTix89s95xD5xiv4DQN7bi7pTz5BWHHxKYmlenczq/+7l33bQjMZMUGf4UkMvzCH+PTIUxKDiEivsPkftOxxgmEifPhwHAUFdHoD/G1VOQA3HqiCX1K5hK5AF4M6Mwh0eYiIjWP/vnCggz4jkzHre52IiMgxa1+7ngZXP6zWMK6851ZS8lw9HZKIiIiIiIj0YkrCy4nnboQ1LwNgjP8+fKxSeduSBWycPwsAZ4yLwjHjKRo7gfSi4pNaUb2tupXnF5Twn41VBI3QtlG5cdw2pYCJfRJUSf0xFW0V3DzvZspayyjoiOTnc+Mxbwu1NXZdczXJ99+P2ek8ZfGUb21k37YmzGYThaOTGTY9m9gUzV4UkbOMYWB8+HeaDrSi/6gK/u31FbR0+siKc3Jev1CF/Jyy0Gv2sNYsoJKcwSMo3dQIQNGolFMfu4iIyBmg9IOtBKzZhJm6SM6J+ewDRERERERE5KymJLyceCtfBF8HpAxk1txNDAykkVE8AIDiCVMI+n0UjZtIZvFAzJaTO3N9bVkTz32wm/nb67q3TSlK5NYpBYzMifuUI89O2xq2ccu8W2joauDSXdFc/14nuEswR0eT+uCDRF8w/aQ+vxE02LuxHme0nZS80Btbg87NwOP2M2RqJtEJ4Sf1+UVEeq2q9XRsqcDvjscSE03U9OkYhsHLS0sB+Nq4HCxmE53+ThZVLAIDHKVteIDw6CIC/iCxqREkZKqDiIiIyPEoK+kkaKomLTMSk7rKiIiIiIiIyGdQEl5OLE87rHwBgNK0GWx9bTbBYJC0vv0wmy2kFfYlrbDvSQ3BMAyW7K7n2Q92s2JPqPLPZIKLBqZy6+R8+qepauFIllUt4/sffB+jo4MffBDJkPWhP7vwEcNJf+wxbGlpJ+25g0GDknV1rJ1ZSkNlB2l9XFx557DQ80famfjFwpP23CIip4VN/+iugo+54krMDgeLdu5nd107kQ4r147IAGBp5VI6/Z0UBtPxNLdic4TRUBMLtFM4KlmdX0RERI5DoMNNdTAer/s1tu8wM7F5IhGu2J4OS0RERERERHoxJeHlxFr7J+hqJhibz8JF2wFwRsdgNp/cincIJXLnbK3luQW72VjRAoDNYuKqoRl8e1IeeYlnT/Vf0AjS6mml2dN8yEeLp4VmTzNNXU3djz/6aOhsoKAyyN3/teJqaAGLhYTbbiXh29/GdJI6FgQCQXatqmXtrDKaa90A2MIspOTHEAwEMVtO3ogCEZHTRjCAb+VbtFeFAeA60Ir+paV7AbhmRAZRYTYA5pSGWtGPGzSNb156PbV797L8X34ACkcmn+rIRUREzgjlc9fSZWoFgkTFJykBLyIiIiIiIp9JSXg5cfweWP5bADZFXkL9vnWERUYx5uovndSn9QWCvLuhiucXlrC7rh2AMJuZL43K4psT8khznd4tzH1BXyhh3tV8WFL9o20tnhaaPAcT663eVoJG8DPPbfMZuDrA1QGT9xhcvczAHPRgS0sj7YkncA4betKuq2RdHUvf2k1bQxcAjggrg8/NZODkDMIibCfteUVETjulS2je1A5GNM4RI3Dk5bG7rp0FO/ZjMsHXx+UA0OXvYmHFQgCmZU8jOjGJ6MQkCkYY1Fe0a6SHiIjIcbLuWk/M/iXUOyFn8Mn7HUlERERERETOHErCy4nz4d+grRpPeAZLl+8GYNw1XyY8MuqkPF2XL8Cba/bxwsI9VDZ3AhAVZuXr43L4+rgc4iMdJ+V5P49Of+cRq9E/nkD/3+R6u6/9mJ7D7jOIP5BYT+lykOwJI7HTRlynhZgOg6j2AOGtHhwtnVg6vYcdH33RRaT87KdYoqNP1GUfkd8XpK2hi/AoG0OmZTFgYjr2ML0kiYj8L2PDGzSXRADg+uIXAXhlWSkA5/VNJjs+tG9p1VLcfjcpESkMTBjYfbzJbCIx6+R8LxYRETkbBNYso9PcDNjJHqgkvIiIiIiIiHw2ZbzkxAj4YcnTAKwwnUtn217i0jIYNPXCE/5UbV0+/rKinD8u2Ut9uweAhEg73zgnj+vGZHW35D2ZDMOg3dd+SML8SG3f/3efJ+A5rucL80KmL4o0r5PkLgeJXXZi3SZiOgwi2/yEt3qxt7ixNLdj6uz62JHuAx+fzGSzYUlIwJqUSOyXvkTM5Zef8JnB3k4/mxZWEBHjoO/YVAD6jEgi4AtSOCoZq/3kjysQETkt+T20z5uJvzMMS3QkUedPo8Xt4x9rKwC48Zyc7qVzy+YCcH7LAP752IMUTzyfglGjsWi0h4iIyHELtHfQuGMbHUWZmEwmMgcM6umQRERERERE5DSgJLycGFv/CU17aTKlsG5DOQCTv3oTFuuJ+yfW0O7hT8tKeWVZKa1dofm26a5wvj0pj2tHZBJmO75EbiAYoNXberAavevwhHpTV9Mhbd9bPa34Df9xPZ/VbMVljyHJFE2aJ4Jkj4P4TitxbhMx7QYRbT7C2jzYm91YmtugsQWjsxNoOvDx2UwOB9b4+FByPT4ea0I8lvh4rAmJWBPiQ/viE7AmxGOOijrhSfePdHX4+PD9fWz6oAKP209krIM+I5Kx2MyYLWaKz0k7Kc8rInLG2DWXpm2hhzFfuBqz3c7ry0vo9AXomxLF2Lx4ADwBDwv2LQAgoSzInh2rCQTTWPKWn7FX5Ov1VkRE5Dhte2c1u9IGAC2k9CkiLCKyp0MSERERERGR04CS8PL5GQYseQoA59ivMrxPOo2VFeQOHXFCTl/V3MnvF+/hb6vK6fKF5pznJ0Zw6+QCLhuShu1jFX6+gO+w9u4fb/t+pOR6m7cNA+O4Ygu3hhPjiMHlcOGyx5BoRJLUZSehy0Zsh4mo9gARbX7CWz3YWjowN7VhNDbhr6/H6Kr9zPN/PCpTWNiBxHo81vgErAkJB5Pr8R97nJiIOSLipCXWj4a71cuGeeVsXliJzxMAIDbFyfALsjGpIFNE5Kj5Fv+FjurQeJXYGTPwB4K8urwMgBvH53a/1i+rXEaHr4N0WzLNu0sBaG1Ioavdh8OpH/dERESO16Y1rdTEJYOvRa3oRURERERE5KjpXVn5/HbNgdrNYI/Ecc4tTHTGYRjHl9T+iGEYbK9t4PlFHzJr+x4Cpg5M4R1kpxsMz7OTEB1gZcd7zHn/0Lbvbv+nt17/NFG2KGIcMcSGxR6SWI8POklwW4hxQ3R7kIg2H46WLmwtHRgNTfgbGgjU1+Nv2IXh+eR280eqmzeFhx+oVE84mFw/JNF+YF98AuYIZ48m1o/W1qVVLHp9J4EDN0zEZ0Qy4sIc8oYmYjb3/vhFRHqNrlaa5qwAwnEO7Y89J4f3NlVT2dxJXISdy4YcrG7/qBX9uf7BBAM7iE5Io7M9Anu4leyB8T10ASIiIqe3jmYPjZ5IrOFj6V+cQOGY8T0dkoiIiIiIiJwmlISXz2/xrzAMYPjXMTnjAA5JFgeNIG3etsOr0Y/U9t3TRL27iWZPCwY+ABzZB5+qEZhbDVR/cjhmk5kYewyuMBcuh6s7oR7rOJBct8cQ63fg6oCo9gDONi/2lk6M2ib8DfUE6hvwNzTgb9hBoL4Bw+s95PwG0HXg44jP73Qe3gY+PgFrYsIhVevW+HjMERHH+qfdKxmG0f13Hp8eScAXJDk3mhEX5pA9MP60uHlARKS3MTa/S8tuOwCx198IwEtL9gJw3eis7jEs3oCXD/Z9AEBajZ1aIDymCG8j5A9LxHqc41pERETOdiUrQqPWXO0tTLjpJmxJST0ckYiIiIiIiJwulISXz6dsGexbwebWdDYtbGdK/g5SC4q6dz+19ile3fLqcc9PNxlWYhwuEiNiQ5XpH/v4qGrd5XARY48mxmMlst1PWGsXgfoGAg0N+OsbDiTW9+Nv2N5dtW74Qgl+P9B6FHGYIyIOqVT/34S65UA1uzU+HrPTeVzXejpqrO5g3awyHBFWJlxbCEByTjTX3D+CxKyTN2teRORs0PbOn/B3WbBEhRE1dSobK5pZU9aEzWLiujEH71BbUb2Cdl87yY4kmrftCR3bEqqSLxqV0iOxi4iInAlKlpcDJlKMSiXgRURERERE5JgoCS+fz+In8QYsLGnsg7urhKod27uT8JXtlbyy5RUCRmgmeLg1/GA1usMVqlS3u2jusLFur5fSOjACTkwBJ1MK87hlXH8GRYcTaKgPVabXNxCoqT+QWK/F37CFwP4D+xob6fT56DyG0M2RkaHW74kJn9oG3poQjzks7CT84Z2+9u9rY+3MMkrW14EBFpuZkRfnEhZhAyApO7qHIxQROc2119G8dA/gwHX5JZjsdl5euhWASwalkRR98PvS7NLZAEy1jMDj3oLDGU3An0hUnIO0Pq4eCF5EROT05+n0U11r4O9ciTm5la6OdsIiIns6LBERERERETlNKAkvx6/6Q9g9j5UNObi7AsSmpjFk+kXdu/+89c8EjACjU0bz3NTnsFvsGMEggeZmvPvrWbF2F+8v24a3Zj8TPG1c4W2jr8NPBp1Y3m/C/3Aju/zHVkFvjo4OVarHxx/aEj4h4ZA28JZ4JdaPR83eFta+V0rppobubbmDExhxUU53Al5ERD4/74JX6KgJtaJ3ffWb1LZ28Z+NVQDcOD63e50v4OtuRT8idSSNxWbamsPp6jRTOCoZk1kdSURERI5H+ZYGgoYff9cKNtQEGdbaoiS8iIiIiIiIHDUl4eX4LXmKFq+DtU2ZAEy6/htYrKFEbHNXM2/vepuRO4N8d34LFS98kUB9Pf7GRgiEKuNTga8c4bQGoTbxHzHHxHwssR6PNSHx0HnrB5Ltlvh4zA7HSb3ks9mWxZUseG0HACYTFIxIZvgF2cSn640oEZETrfnNNwETEf0zsWdl8Zc5O/AFDEbmxDIwI6Z73YrqFbR520gIT2DKuCuxnHM1+/e1sWtVLUWjU3vuAkRERE5zTWUNGN5yIEh0fAKulLSeDklEREREREROI0rCy/Gp3w1b/smiuiICQcgaOIS8YaO6d7+x4w3Cmtx8999g827G8z+Ht9qctIZHEZ6cRFpeOs7kxP+Zr54YqlqPi8Nkt5/aaxMADMPA2+nH4QzdWJE7OJGlb+0mf1gSw6dn40p29nCEIiJnJqNuF80fNgMWXF+9iS5fgNdWlgNww8eq4AHmlM0BYGrWVCxmCwCJmVEkZkadypBFRETOOH2dZZTt+yvl8ZHkDBmByaTuMiIiIiIiInL0lISX47P0aSrcUexsS8RkMjP5qzd1vynR5e/ir9v/ypcXBHF4DVqz+/BC7nmUE0azIwprXBw3Tu7Dl0dnERWmFua9jRE02LuxnrUzS7GHW7n89qEAOKPtfP2R8djD9bIhInIytb32NIEuC5YIC1EXXcmbG6po7PCS7grn/OLk7nW+oI/3y98HYJx1EO6WZpwxrh6KWkRE5MzSsXIljRGhG8KzBw3p2WBERERERETktKNsmhy7lkr48HU2NYeq8Qaedz6JWTndu98teZf4kgYmbTYA+HHOhex0ZZERG87tk/K5ZngGYTZLT0QunyIYNChZW8eamaU0VnUAYLWbaW/qIjI2DEAJeBGRk80waH5vIQCuaWPAauWlpXsB+Nq4bKwWc/fSVdWraPW2EhcWR+Vb83l+7+/IHnI9oy49j6z+8T0SvoiIyJmiYeVK2qPtmEwmMgcM7ulwRERERERE5DSjjJocu+W/haCP6WOSyMj5LvnDD7ahDwQDvLLpZW6eG5r7PidrJJXJufzqigFcOjgN28eSB3LqGIaBryuAu9WLu9VLTFI4ETEOAGr2tLB2VhkNle20NXQBYAuzMGhyBoPPyyQ8SuMAREROFe/aeXTsCwAGsd+6i+V7Gthe00a4zcKMEVmHrJ1bNheAaXETqd2zHjBRsyecdXPKlYQXERH5nALfvAHeeJXk3HzCIzXmRURERERERI6NkvBybDoaYO2fADBP/D4DC6Yesnt++Xxyl5dTUA2dNgd/Kr6Q757Xh6uGZfRAsGc+n+dgYj06IexgYn1vC+tmleFu9dLZ5sXd4sXvC3Yfd+5X+9JvXBoA3k4/pRvrAXBEWBl8biYDJ2cQFqFRASIip1rzn54FIKJPDLa8vrz0yhoArh6eQYzz4OuyL+hjfvl8AAa0pFLCemzh6ZjMERSOSj78xCIiInJMWj2dAOQMGd7DkYiIiIiIiMjpSEl4OTarXmRfs42UnEHY8s87ZJdhGLy25g/cvCCU7H2tcBqxGancMD63JyI9bfl9H0usx4fjjA5VotfubWX9nLLufe5WLz5PoPu4Kdf3pXj8wcT63g/rDzu3zWHBGW3HbDZ1b4vPiGTyV4pwxjhIL3RhD9PLgohITzC6umhesgOA2C9cTml9B/O31wLw9fE5h6xdXbOaZk8zcWFx+HfVhI4nB4vVTP6wpFMat4iIyJlowpe+xvCLrwDD6OlQRERERERE5DSkbJscPU8brYv/yNv7+hPeHM2XmxqJjDvY7nZN7Rr6/Xszrg6ojIznX/nn8PtLirFb1YI+4A+GKtJbvUTGhnUn1uvKWlk/p/yQxLq309993P8m1kvW7z/s3FabGWfM/yTW0yOZ9KVCnNEOnDF2wqPsOKPt2ByWw46PiHHQf0L6ib5kERE5Rm1vvECgC6zOIJEzvsOTc0sxDJhSlEh+YuQhaz9qRX9uyiQq3t0IgNmWT86geBzh+vFORETkRHBGx/R0CCIiIiIiInKa0ru0cvTWvMyiffH4DQsx6blExMYdsvud+c/ypdWhKoEXB1zOxOI0pvQ9c6vxgoEgne0+3K1eImIchyTWN8zbh7vVg7vVh7vVg6fjyIl1j9vP7rV1h53bbDV1n+8jcekRTJhRiDPafvAjJpRYN5lMh6yNiHEwYJJGAIiInE6a/v4mAK6xebSbwvjH2gqAwzrK+IN+5peFWtEPd+eyw78OszUWkzmOwlEppzZoERERERERERERETmMkvBydHxdVM75AztaswCY/LVvHpL43dm0k+K/rsIahNUpeWxI78+cS4p7KtrjZgQNOtt9dLZ5cUaHKsgB9pe3sWF+OZ0fq1jvbPfBgc6Ek79S1F1N7un0s2t17WHnNptNhEfbu48BiEuL4Jxr+uCMseOMCiXVndF27OHWIybWB01RYl1E5Ezk2b0Td0kjmAxc19/Eq2sqaPf4KUiKZEKfhEPWrq1dS5OnCZfDhbmkEQCTJY+wSBvZA+KPdHoREREREREREREROYWUhJejYmx4jQWlLgAGTD6P5Nz8Q/bPff1Rzi0x8JtNvNj/am48J5fchIgeiPRwhmHg6fDjbvUSHm0jPDKUWK+vaOPDeftwt30ssd7mwwiGsuQfT6x3uX3sXHl4Yt1kgrCo/6lYT41g/NUFoST+x6rWw5w2TObDE+uDz8s8GZctIiKnkeY/PA1AZIaBecRl/OlXiwG4cXzuYTdlzSmdA8B5Wecx+aKbcLryKNtsIXtgEhaNgBERERERERERERHpcUrCy2cL+Nn2rz9Q0xWPzWbhnC99/ZDd1c376Pvn5QC822cI3rRMvnNun5MakmEYeLsCuFs8hEfaCYu0AVBf0c7G9w8k1lu83XPYg4EjJNY7/GxfUXPE84dF2rqT8RBKrI+9Kp+I7sR6qP18WKTtkFnsEEqsD5madTIuW0REzkBBj4eWOaGku2v6GObvaGBfYycup40rh6YfsjYQDDCvfB4A52efjzM6hsnXXYlhGAR8wVMeu4iIiIiIiIiIiIgcTkl4+Uy+9X9n8d5IAEZfcQ0RrthD9i975kcUNxo0Oy28VnAVD13Ql0jH8f3T8naFKtbDImyERYQS6w2V7Wz8oOJgtfqBzwF/KNkw6ctFDJh4oBV8h49ty6qPeG6H09qdjAeITXEy5oq8A5XqjoMV61E2LJZDKwkjYhwMOz/7uK5JRETk07S99x8Cbj9Wp5/Ia27jpdl7AfjSqCzC7ZZD1q6rW0djVyMxjhhGpo7s3m4ymbD+z1oRERERERERERER6RlKwsunMwx8S54lNTxALTEMv+zaQ3Y3Ve8l561VALwycBxF+amHVe35vQHcrV7s4daDifWqdjYvqDyQWPd0J9j93sMT613tPrYuqTpiePYwC8HAwco/V4qT0ZfldSfUu9vBR9mx2A5PrA+/IOf4/2xEREROgOZX/wCAq7+DrdZCVuxZisVs4qtjD7/5a3bpbADOzZjCnN8+TVhUOqOvupTImKhTGrOIiIiIiIiIiIiIfDIl4eXT7ZyNs3kzl+VF0vWtf2C1Hzr//MOH7iHZA7uTbMxOuYR/Xtr/kPbsS97cxYfz9wEw6UuFDJiUAYQS65sXVR7xKa128yEtdV0pTkZdmkt41MH56h99/G/VX0SMgxEX5ZyIKxcRETnpPCUluLeVgsnAdeVlPLasDICLBqaSGhN+yNpAMMD88vkAjA8byualLwEWdq9L5PpfTMIZbUdEREREREREREREep6S8PLJDAMWPxl6PPIbhCVkHLK7deN6Ej/YDMCLwydxzchsBme6uvfvWb+/OwFvsZrxeT+WWE92MuKinFAyPSZUqe6MsRMeZccedug/y4gYByMvzj0JFygiItKzml97FYDItC7ah3+Jf/2uAoAbxucctnZ93XrqO+uJskcRVe4FwGzNIjbVpQS8iIiIiIiIiIiISC+iJLx8ouolb/LhqmbOSYkkcsxth+wzDINdP70PpwGL+9kpi76Al6f37d7f1e5jwd92ADBsehZjrsjHZDpYIR8R42D0ZXmn5kJERER6oWBXF83/eheA2BHJ/HFXGN5AkCGZLoZlxR62fk7ZHADOzTyX0pmrATDb8ykclXzqghYRERERERERERGRz2T+7CVyNjIMgw9e+zNbWpJZGpgEUYe+wd/yn3/j3FZOlw1eGjSZ703tR2KUo3v/kjd30dnqJTbFychLcg9JwIuIiAi0zZ5NsKMLm9OP46IZ/HlFqBX9jecc3v0laASZVzYPgClx46jeHbrRzWrPo89IJeFFREREREREREREehMl4eWIdvz3VaqbDKymAOO+cfch+4JuNxWPPgLAO2PshMdcyFfH5nTvL91Uz46VNZhMcO7X+mG1HTq3XURERKDpQCt6V34n86wTqW/3kBIdxoUDUg5bu6FuA/s79xNliyK20gDAZEkms38WETGOw9aLiIiIiIiIiIiISM9RO3o5jM/rYdFbbwEwqjiGqLyhh+yv/93vsNQ3U+uCtwrG89wlw7FbD97PERkbRmJWFOlFsaTkxpzK0EVERE4LXTt30rlxK5gMYiYW89u1nQBcPzYbm+XweyTnls0FYHLmZMqWrQHAYitQK3oRERERERERERGRXkiV8HKYtX//I23uIJFWDyNuuO+Qfd6KCupfegmAV6dYGZ7yBSYVJh6yJiEjki/cO5wxmvkuIiJyRM1v/B2AqPQuKgovY0tVKw6rmS+PyjpsbdAIds+Dn5Y9jWDAAliwOQvIG5J42HoRERERERERERER6VmqhJdDtDc2sGrmTAAmDo7BljnkkP11jz6GyetjU7aJFSkjmXnJmO59fl+gu/W8xWIGdaEXERE5TLCzk5Z/vQOAq4+Hn9UUA51cNSyd2Aj7Yes37t9InbuOCFsE49PHY//BFOorGmmu9WEP049yIiIiIiIiIiIiIr2NKuHlECvfeBmf3yA1vJW+X7znkH0dK1bQNncuARO8PNXClflfITs+AgBvp5+/PbCSle/uIeAL9kToIiIip4XW92YSbHdji/BjHj2et7eHWtHfMD73iOs/qoKfnDkZuyWUpE/IiKNguFrRi4iIiIiIiIiIiPRGSsLLIc5Jq2FE3D4mD47GlDWqe7vh91P7i4cBmDPMRHXUQH4wbVL3/mVv76a1voudq2oIBo1THreIiMjpoumNNwBwFbiZbZ5A0IAJfRIoTI46bG3QCHbPg5+WOZXm2ppTGquIiIiIiIiIiIiIHDsl4eWgjnocm/7CpORS0i6745BdTW+8gWfXLlrD4e8TzNw44AYiHKEWuBXbG9myuAqAKdf3w+ZQH3oREZEj6dq+na6NG8FsENMHHtmTA8CNn1AFv7l+MzUdNTitTvI6Evjjd2/i+W99h/3lbacwahERERERERERERE5FkrCCxCaBW+seB78nZA6BPKmdO/zNzWx/5nfAPDGRDNBex++M34qAN4uPx/8ZTsA/Semk1EUe8pjFxEROV18VAUfld7FvsyJ1HVZyUuIYFJh4hHXzykNtaKflDmJ0jVrAOjqdBAIaPSLiIiIiIiIiIiISG9l7ekApOf5vV5e/8ldRLhLuTjVQfSEO8Fk6t5f/5vfEGxpoSzRxPwhJu4YehOmA/tX/GsPrfVdRMY5GHdVfk9dgoiISK8X7Oig9d1/AxBb0MFDTcMB+Pr4HMxm02HrDcPobkU/PXs6O/76NwCi4vuRnBN9iqIWERERERERERERkWOlSnhh3cx3adm/n1aPlfCkbOh7Sfe+rh07aHo9VLX38jQTTms61w++EICqXc1s+qACgCnX9cUepns6REREPknLe+8R7OjAHuXHmhHBP5r7EBVm5QvDMo64fkvDFqo6qgi3hlNsyqGjqQYwUzxxbPfNcCIiIiIiIiIiIiLS+ygJf5braG5i5duhJPs5iaXYJt4O5tA/C8MwqP3FwxAMsrzQxtZsM7cO/QZmU2h/W2MXVruZfuNTySqO76lLEBEROS00v/F3AFz5HSy2j8ePlS+OzCTCceSb2Lpb0WdMYs/KtQCYrZkUn5NzSuIVERERERERERERkeOj0uWz3NK//wVvVyfJYW0UZzlg0LXd+9rmzMW9ahVei4U/Tw0SYYlnRr8ruvcXjU4hJS+GsAj9MxIREfk0nVu20LV5MyazQUxuJy80DsNsgq+OzTniesMwmFMWSsJPy57G9rf/C4ArtT+uJOepCltEREREREREREREjoMq4c9idaV72PR+6A3+Kcl7MI3/DlhsAAS7uqh79FEA/jnCSX2MiW8M+ip2i/2Qc8QkhuNw2k5t4CIiIqeZj6rgozI6aYtMZK1RyPT+KWTGHTmhvrVxK5XtlYRbwxkRPYjmmj0A9J90zimLWURERERERERERESOj5LwZynDMFjw6h/AMCiK3k96gh2GXt+9v+Gll/BVVbHfGcG/z3ETZnHyxb7X4vcF+O+zH1K5s6kHoxcRETl9BNo7aP3PfwBwFbh50zMaAzM3npP7icfMLZ0LwIT0CUQ6XQw6/yZiUiYwYFLfUxKziIiIiIiIiIiIiBw/9RE/S3W1t9HZ2oLFZDAxaS+MuQfsoWo8X3U1Db/7PQCvTvz/9u47vooq/eP456b3QiolkEAoKZRAaAJJ6E2FRQUpQkRZEZGiIOtPRARXcBVEdGEtCAisgMCiIiqghBakR+mClKD0lgAhpNz5/ZHlrjEBAt7khvB9v17zMnfmzMwzJyGP8Mw5x5NrTtd4vFYPPJ082fifXziy8xynUy/x2GtNcXC0t+VjiIiIlHrpy5ZhzsjAySsHt4AslmTdR3RFL2Kr+BbaPt9U9KFtcXJxoe0TXYAuJRi1iIiIiIiIiIiIiNwpFeHvUa6eXjzWvyOnZz+Fl7sTNHzScuz0m29hZGayK6ACm+qdwsHkSO+I3pw+ms6OlakAxPesqQK8iIjILRiGwYWFCwDwqXaFQ3Yh7DNCmNwsDJPJVOg5+87v49ilY7jYuxBXMa4kwxURERERERG5a5nNZrKysmwdhoiUIk5OTtjZaVJwsQ0V4e9VhoHdhrcJdr0MDYeBqw8AGVu3kr58OWZMfNzSHUwmOlftjL9zAAtnb8EwG1SPDaRqvQCbhi8iInI3yNy1i2t79mKyN+ETmsGMrPsJ8HShc53yNzxn5dG8qeibV2zO4Y17OLhlK7H3t6FizfCSCltERERERETkrpKVlcXhw4cxm822DkVEShE7OzvCwsJwcnKydShyD1IR/h6TkZ7GrtUriYnwxfG3reDgAk2fAcDIzeXk668D8G1YHX6tugeAxKhEtn59hPPHr+Dq6UiLR2vYLH4REZG7yYUFeaPgPStdwd7Z4ItrTenTuArODoXPJvP7qejbhbZj6/RvOHv0By6cPE/im/9XYnGLiIiIiIiI3C0Mw+DEiRPY29sTEhKiUa8iAuTNjnH8+HFOnDhB5cqVbzgrpUhxURH+HpO8cB4/rlzO8SATXcsBMX3AIxCAi4sXc23PXq44uvBpnDOYDOIrxeN9OYiVX28FoEWPGrh66I0hERGRW8m9dIn0r5YD4BuewVZzDU7bBdO7SeUbnvPzhZ85mn4UZ3tnmgXdx0fHZgEQGXdfSYQsIiIiIiIictfJyckhIyODChUq4ObmZutwRKQUCQgI4Pjx4+Tk5ODo6GjrcOQeo1fC7iFnU4/w06pvAGjg/COY7OG+IQDkpqdz5u0pAMyNiOda+Z8AeDz6cQ5sPoXZbFA1JoDwBoE2iV1ERORuk/bllxhXr+Lk54Crfxaf595Hl3oV8PdwvuE510fBN6vQjINr9mGYr4DJiZh2TUsqbBEREREREZG7Sm5uLoCmmxaRAq7/Xrj+e0KkJGkk/D3CMAyS5szAMMxUr+BIiHsa1H4UfKsAcPaf/yT3wgVSPQNZ0TAHe1MOdQLqUD+wPnQD/xAPKtb01XQdIiIiRWAYBhcXLATAt8o5crFjeW5j5jQLu+k5K478byr6ne+vA6BcxUgcnW9cuBcRERERERER9G/XIlKAfi+ILWkk/D3i8I6tHP1pB/YO9sS5JuftbD4MgGu//ML5ef8G4P3anXAJ3ALA41GPYzKZMJlM1GgUjLu3CgAiIiJFkfnjj1zbvx+Toz3eoRmsN9emetUwIit43fCcgxcPciT9CE52TjT1a865YzsBiGzRrKTCFhERERERERERERErUBH+HpCbk0PSnBkA1A93w8cpE2rdD4ERGIbBqQkTISeHH4IjOVj7EtlkEOoRiudPYWReybZx9CIiInefC/8dBe9Z1YS9k8HnuffR/yaj4OF/U9HfV/E+Dicfwcg9B9hRp3Xz4g5XRERERERERERERKxIRfh7wI8rl3Ph+K+4eXrSmO/ydjZ/DoDLq5O4sn492Xb2fBDdGc/AvFHyD2X+la1fHWXJm9swmw1bhS4iInLXyU1LI/3rrwHwDTlBpuHIHu84WkcE3fS8lUdWAtCuSjtOHjoKJid8gsNx9fQs9phFREREREREREoLk8nE0qVLi+36Y8eOpV69esV2fRERUBH+nhBWrwHVYpvQLNoDZ9M1CIuDSg0wZ2VxauJEAP5TLQ7HyPOk55yhSm51Mjd6ABDTrgp2dlozQ0REpKjSPv8CIzMT5/JeuPpls8rcgO7NIrC/ST795eIv/JL2C452jiSEJND5mQcZ8M9P6DLihRKMXERERERERERKSmJiIl27di30WGhoqGWp2OtbpUqV8h2fMmVKyQQqgPpcRG6fivD3AN/yFen69FPUvvRF3o4WzwNw4ZNPyE5N5ZyLF/NrtMI9YB0mw0Sno0+Sm2NQObIctZoG2zByERGRu4thGFxYuAAAjyoXMZngW7sWdI+tdNPzVhz571T0Fe7D0ylv5LuXnwf+IcrDIiIiIiIiIveicePGceLECcu2Y8cOW4ckIiK3QUX4Msycm/u/D5umY8rNhAr1ISye7NOnOTttOgAzIztRr95lfs04RP3TbTBOueDoYk9Cn1qYTBoFLyIiUlRXt28n6+AvmJyd8KtwijTDjaD6nfF0cbzpedfXg29bpS1pp9MwDC0FIyIiIiIiInInDMMgIyvHJps1/z7v6elJcHCwZQsICLij64wdO5bKlSvj7OxMhQoVGDJkiOVYYdO++/j4MGvWLACOHDmCyWRi4cKFtGjRAldXVxo2bMjPP//Mli1biI2NxcPDgw4dOnDmzJkixbNlyxbatm2Lv78/3t7exMfHs3379gLtTpw4QceOHXF1dSUsLIzPPvvMciwrK4vBgwdTvnx5XFxcCA0NZcKECZbjqampdOnSBQ8PD7y8vOjevTunTp26YUwJCQkMGzYs376uXbuSmJhoOX706FGGDx9umZnguuTkZOLi4nB1dSUkJIQhQ4Zw5cqVIvWFiJRtDrYOQIrP52+9hquXNy26dcN980d5O1s8ByYTZya/jTkjg32+IWwIiyW23CK8jvkTe7QjAM0eCseznIsNoxcREbn7XFiQNwreNcoPe6cjfJ3bmMea17jpOYfSDnHw4kEc7Byo59CYj58bi73dWToPHUK1Bg1LIGoRERERERGRsuNqdi6RY761yb33jGuPm1PpKbssWrSIt99+m/nz5xMVFcXJkyf58ccfb/s6r7zyClOmTKFy5cr079+fnj174uXlxTvvvIObmxvdu3dnzJgxTJ8+/ZbXunTpEv369WPq1KkATJo0iU6dOnHgwAE8PT0t7V5++WUmTpzIO++8w5w5c+jZsyfR0dFEREQwdepUvvjiCxYuXEjlypU5duwYx44dA/JewujatSvu7u6sWbOGnJwcBg0aRI8ePUhKSrrtZwdYsmQJdevW5a9//SsDBgyw7N+5cyft27dn/PjxzJgxgzNnzjB48GAGDx7MzJkz7+heIlJ2lJ5sIFZ1JGUbh7Zvwc7egcaVLuN+LQ38a0LNzlz98UfS/vt2279qd+XhZnZ8fmYr7Y49jinXnoo1fYlsXsG2DyAiInKXyblwgUvf5P0l3yvwIADHKnbmUT/3m5638shKAJqUb8Kv29IwZx/BTDbu3t7FG7CIiIiIiIiIlFqjRo1i9OjRls+vv/56vlHsRZGamkpwcDBt2rTB0dGRypUr06hRo9uOZcSIEbRv3x6AoUOH0rNnT7777juaNWsGwBNPPGEZPX8rrVq1yvf5/fffx9fXlzVr1nD//fdb9j/yyCM8+eSTAIwfP56VK1fy7rvvMm3aNFJTU6levTrNmzfHZDJRpUoVy3mrVq3ip59+4vDhw4SEhAAwZ84coqKi2LJlCw0b3v6Ah3LlymFvb2+ZneC6N998k169ellG0VevXp2pU6cSHx/P9OnTcXHRQEeRe5mK8GWQOTeXpDkzAIhp1wHffW/lHWg+HAM4+ffXAVgZEsvlqrXIcF0OgHPLC0SerECDDlU0Db2IiMhtSvv8c4ysLBxDK+DjvZWThi/NWj94y/MsU9FXbseeaZuAbFw8fAiqGl7MEYuIiIiIiIiUPa6O9uwZ195m97aWkSNHWqZDB/D397/tazzyyCNMmTKFqlWr0qFDBzp16sQDDzyAg8PtlYbq1Klj+TooKAiA2rVr59t3+vTpIl3r9OnTjBkzhu+//55Tp06Rm5tLRkYGqamp+do1bdq0wOeUlBQAEhMTadu2LTVr1qRDhw7cf//9tGvXDoC9e/cSEhJiKcADREZG4uPjw969e++oCH8j27Zt4+DBg8ybN8+yzzAMzGYzhw8fJiIiwmr3EpG7j4rwZdBPq77h3K+puHh60aSqGY6cAe/KUPth0r74gsyffuKqgzMzozrxXBsf3tqTNwKvX/0+1CxX08bRi4iI3H0Mw+DigoUAmMMMTCbY4BxPt/DAm553JO0IP1/4GQeTA9HZDVl+bhoA4Y0aY7KzK/a4RURERERERMoak8lUqqaEv1P+/v6Eh/+5F/RDQkLYv38/K1euZNWqVQwaNIg333yTNWvW4OjoiMlkKrCOfXZ2doHrODo6Wr6+PoDvj/vMZnORYkpMTOTMmTNMmTKFKlWq4OzsTNOmTcnKyrrludfvXb9+fQ4fPszXX3/NqlWr6N69O23atGHRokUYhlHoIMMb7Qews7MrUj/8kdls5qmnnip0hoLKlSvf8nwRKdts/q+706ZNIywsDBcXFxo0aMC6detu2DYpKQmTyVRg27dvn6XNrFmzCm2TmZlZEo9jc5mXL7Phs7y3rpo9/Cgu2/67BkuzIeRezeL0pEkA/LtmG2pGhpKa/TUVz9egWYVmKsCLiIjcoYwtW8g6fBiTmxsh5XYB4NWw5y1nlll5NO9FuMblG/PrjkvkZv8CQI1GTW92moiIiIiIiIhIkbi6uvLggw8ydepUkpKS2LhxIzt37gQgICCAEydOWNoeOHCAjIyMYo1n3bp1DBkyhE6dOhEVFYWzszNnz54t0O6HH34o8LlWrVqWz15eXvTo0YMPP/yQBQsWsHjxYs6fP09kZCSpqamWNeIB9uzZQ1pa2g1Hpv+xH3Jzc9m1a1e+Nk5OTuTm5ubbV79+fXbv3k14eHiBzcnJqeidIiJlkk1fB1uwYAHDhg1j2rRpNGvWjPfff5+OHTuyZ8+em74ltH//fry8vCyfAwIC8h338vJi//79+fbdK2tv/LBkPpmX0vGrVJk6QZfhh1RwD4CYPpybOo3cM2f5zd2fL6q1YE6HCkxdeJzOB5/G184Bo82N3wQTERGRG7s+Cj6nTlVcHQ9yhAq0iGtzy/MsU9FXasfPn/8ExhUcnJwJiapzizNFRERERERE5G6XlpZmmWL9unLlylnt+rNmzSI3N5fGjRvj5ubGnDlzcHV1tayh3qpVK9577z2aNGmC2Wxm1KhR+Ua4F4fw8HDmzJlDbGws6enpjBw5EldX1wLtPvvsM2JjY2nevDnz5s1j8+bNzJiRtwzv22+/Tfny5alXrx52dnZ89tlnBAcH4+PjQ5s2bahTpw69e/dmypQp5OTkMGjQIOLj44mNjS00platWvHcc8/x1VdfUa1aNd5++20uXryYr01oaChr167l0UcfxdnZGX9/f0aNGkWTJk145plnGDBgAO7u7uzdu9eyfr2I3NtsOhJ+8uTJPPHEEzz55JNEREQwZcoUQkJCmD59+k3PCwwMJDg42LLZ2+dfZ8VkMuU7HhwcXJyPUWpkZ11jf/JaABL69Mduw5S8A02eJuv4ac7Pmg3Ah9EP0LNZNbYe/ZbYw50BiIwMVQFeRETkDuRcuMClFXnF9By/kwAcD+mMyy2mvktNT2Xf+X3Ym+ypfimGzEs/AxBWrwEOeltaREREREREpMxLSkoiJiYm3zZmzBirXd/Hx4cPP/yQZs2aUadOHb777ju+/PJL/Pz8AJg0aRIhISHExcXRq1cvRowYgZubm9XuX5iPP/6YCxcuEBMTw2OPPcaQIUMIDCy4nN+rr77K/PnzqVOnDrNnz2bevHlERkYC4OHhwRtvvEFsbCwNGzbkyJEjLF++HDs7O0wmE0uXLsXX15e4uDjatGlD1apVWbBgwQ1j6t+/P/369aNv377Ex8cTFhZGy5Yt87UZN24cR44coVq1apaBoXXq1GHNmjUcOHCAFi1aEBMTw8svv0z58uWt2GMicrcyGX9c6KKEZGVl4ebmxmeffcZf/vIXy/6hQ4eSkpLCmjVrCpyTlJREy5YtCQ0NJTMzk8jISEaPHp3vl+GsWbN48sknqVixIrm5udSrV4/x48cTExNzw1iuXbvGtWvXLJ/T09MJCQkhLS0t34j7u0Hmlcv8/MN66lTIgQW9wdkLhu/i2PAXubx6NVsDazK59dMsH9aY995YQIXz1XGuaKb/S62xs1MRXkSktElPT8fb2/uuzEmlRXHn+XMzPub0m29ihIdTo8F6HExmzj2ejF+VqJue99HOj3hn+zs0Ld+U91pMY+tXG/lt3ybqtW9G9Yaajl5E5F6gPP/nlKW/y4uISNmiHP/n3U6ez8zM5PDhw5Zlb0VErtPvBykORc3zNhsJf/bsWXJzcwkKCsq3PygoiJMnTxZ6Tvny5fnggw9YvHgxS5YsoWbNmrRu3Zq1a9da2tSqVYtZs2bxxRdf8Omnn+Li4kKzZs04cODADWOZMGEC3t7eli0kJMQ6D2kDLu4e1GnVHtZPztvR8Ekub9nJ5dWryTHZ8X7tLjzfvhbfrlpNhfPVybXLocsTjVSAFxGRMqs487xhGFxcmDcV/fEqPjiYzKS61LxlAR5gxZG80fPtQtvh5OrAfQ+34JHRI1SAFxERKaKy9Hd5ERERyU95XkRE7nY2nY4eKDAFumHceF3ymjVrMmDAAOrXr0/Tpk2ZNm0anTt35q233rK0adKkCX369KFu3bq0aNGChQsXUqNGjZuuv/Hiiy+SlpZm2Y4dO2adhysh5txcDm3fgmVSg8Nr4Ldt4OCCEftXTk2cCMAXVZvjWSOcTuF+XFjtDIDnfZkEVNDbmCIiUnYVZ57P2LSJrKNHMbm74+u1FwCHej1ued6xS8fYe34v9iZ7WlVuZbV4RERE7iV3+9/lRURE5MaU54tm3rx5eHh4FLpFRd16gEBxuFE8Hh4erFu3ziYxiYjYws0XKy1G/v7+2NvbFxj1fvr06QKj42+mSZMmzJ0794bH7ezsaNiw4U1Hwjs7O+Ps7Fzke5Y2O79fwaqP/km12CZ0HTka1v13FHz9vlz4fAVZv/zCRSd3/l2zLR8/EMnns3/AKceFc56/kfjIQ7YNXkREpJgVZ56/8N/1xI7XqU8r5wWYMVGhWe9bnrfy6EoAYoNj+WnJGS6fXU5ki9qE1o3Gzs6+WGIVEREpa+72v8uLiIjIjSnPF82DDz5I48aNCz3m6OhYwtHkSUlJueGxihUrllwgIiI2ZrMivJOTEw0aNGDlypX51oRfuXIlXbp0KfJ1duzYQfny5W943DAMUlJSqF279p+Kt7S6lnGFDQvzXkKoHF0Hft2WNxLezoGciMc488qTAMyO7EirhtVoFFaOj/y+pPKvjfDvlIW7s5stwxcREblr5Zw7x6VV3wGQ6n0VgPMBTfD3DL7luSuP5BXhW/t2YNeiX7iWtpD9G+bTf8r7+JbXX0hFRERERERE5NY8PT3x9PS0dRj5hIeH2zoEEZFSwWZFeIDnnnuOxx57jNjYWJo2bcoHH3xAamoqAwcOBPKmnPntt9/45JNPAJgyZQqhoaFERUWRlZXF3LlzWbx4MYsXL7Zc89VXX6VJkyZUr16d9PR0pk6dSkpKCv/85z9t8ozF7YclC7ianoZvhUrUbdsJFvXLO1C7O2c+XoT50iUOeldkbXgTVnWsxaaTm/jB9D0p9Teyoum3tg1eRETkLpa5dx92Tk5crlyNJl47APBt0uuW5/12+Td2nduFncmOkFNRnMlZDZgpVzFEBXgRERERERERERGRMsCmRfgePXpw7tw5xo0bx4kTJ4iOjmb58uVUqVIFgBMnTpCammppn5WVxYgRI/jtt99wdXUlKiqKr776ik6dOlnaXLx4kb/+9a+cPHkSb29vYmJiWLt2LY0aNSrx5ytuF04eZ/vyLwBI6PsE9ucPwr5lgInMwAe5uOh5AP5VpytPJ1TH22THzF0zAfhLja74uvjaKnQREZG7nkfzZoSvSeKlNz5kot335JocsY988JbnXR8FHxsYy7HN6eRm/QJAeGzh08eJiIiIiIiIiIiIyN3FpkV4gEGDBjFo0KBCj82aNSvf5xdeeIEXXnjhptd7++23efvtt60VXqm2du5MzLk5VKkTQ1i9WFj6NABGzU6cnDYPDIPVlWJIrx5Ja09PPhmdTFolO+zK29E3sq+NoxcREbn7bTqVSWVjOwDm8HbYu/rc8pzr68G3dO/Iud/SMeccAaBabJPiClNERERERERERERESpCdrQOQO3Ns908c3LIRk8mOhL5PYrqYCj8tBCA95z6ubtvGNXtHPo7szN9a1mDjZwcxZxu4ZnnSvkp7KnlWsvETiIiI3P1mrT/Eg/bJADjW637L9icun+Cnsz9hwkT54zUx5/wKxjXcvH0oH16juMMVERERERERERERkRJg85HwcmfsHBzxD6lCxYho/EOqwFcjwMjFXCmO0zMWA7Cgeitq1QnH4ceLZF7O5rzbCbZXWsGn0f+2cfQiIiJ3v6PnrnB+/3oqOZ3F7OiBXY32tzzn+ij4+oENOLYmHXN23lT01Ro0wmSndyNFREREREREREREygL9a+9dqmLNCB57YyrxvR+Hy6dhxxwAzv1Wg5yTJznp5svSmi15Orw8B7eexjAZrK42j0YVGxLpF2nj6EVERO5+Zy9fo6/7FgDsIh8ER9dbnrPi6AoA2gS1IzjMC4zTAFTTevAiIiIiIiIiYgOzZs3Cx8enWO8RGhrKlClTivUeIiKljYrwdzE7e3scXVzgh2mQk0mWRz3OLfkOgI+iHqBno6rsX54KwK6KSZzxOMbjUY/bMmQREZEyo0ElTx5w3JT3ofbDt2x/8spJfjzzIyZMtKvVmg5P1WbwjGn0em0SlWvXK95gRURERERERKRUSUxMpGvXroUeCw0NxWQy5dsqVaqU73hZLmonJSVhMpm4ePGirUMREbljmo7+LvPDkgWY7Oxo0KkLDk5OcPUibJkBwOk9wRjXTvOjfzX2Vm9A7wsmDqdngW8WP1RcRk3fmjSt0NS2DyAiIlJWHErClHEO3AMgLP6WzVcdXQVATGAMgW6BADg4OVC+es1iDVNERERERERE7j7jxo1jwIABls/29vY2jEZERG6XRsLfRdJOn+KHJfNZ/+lsUnf9mLdzy0dwLZ0r18K5lPwTZpOJf9Xuwoj2NfELcsPewcSqsE/Itcvh8ejHMZlMtn0IERGRsqJyE/jL+9Dy/8D+1u81Xp+KvrVHJy6eysAwjOKOUEREREREROTeYxiQdcU2mxX/ru/p6UlwcLBlCwgIuKPrTJ48mdq1a+Pu7k5ISAiDBg3i8uXLBdotXbqUGjVq4OLiQtu2bTl27Jjl2I8//kjLli3x9PTEy8uLBg0asHXrVsvxxYsXExUVhbOzM6GhoUyaNOmG8Rw5cgSTyURKSopl38WLFzGZTCQlJXHkyBFatmwJgK+vLyaTicTERAAMw+Af//gHVatWxdXVlbp167Jo0aIi9cOFCxfo3bs3AQEBuLq6Ur16dWbOnAkUPvI+JSUFk8nEkSNHgP9N279s2TJq1qyJm5sbDz/8MFeuXGH27NmEhobi6+vLs88+S25ubpFiEpGyTSPh7yJr/z2L3OxsKkfXISwmFrIy4IfpGGY4tc0DyOCr0KZ4RNaiR8PK2NuZOFxxGwd37qSCewXahbaz9SOIiIiUHc6eUPfRIjU9deUUO07vAMAjJYy5c1ZiZC+gVtP7aPPkIEx2ei9SRERERERExCqyM+D1Cra59/8dByd329z7Buzs7Jg6dSqhoaEcPnyYQYMG8cILLzBt2jRLm4yMDP7+978ze/ZsnJycGDRoEI8++igbNmwAoHfv3sTExDB9+nTs7e1JSUnB0dERgG3bttG9e3fGjh1Ljx49SE5OZtCgQfj5+VmK57cjJCSExYsX89BDD7F//368vLxwdXUFYPTo0SxZsoTp06dTvXp11q5dS58+fQgICCA+/uazFL788svs2bOHr7/+Gn9/fw4ePMjVq1dvK7aMjAymTp3K/PnzuXTpEt26daNbt274+PiwfPlyDh06xEMPPUTz5s3p0aPHbT+7iJQtKsLfJX7dt5ufN64Dk4n4x57MG9G+Yy5knOXiiUpcSz3NJUdX5kS05+P7I7G3M5FrzmXOkVkA9I3qi6Odo20fQkRE5B61KjVvKvpY78ac2nyF3OxD5GSkc/bXVBXgRURERERERKSAUaNGMXr0aMvn119/nSFDhtz2dYYNG2b5OiwsjPHjx/P000/nK8JnZ2fz3nvv0bhxYwBmz55NREQEmzdvplGjRqSmpjJy5Ehq1aoFQPXq1S3nTp48mdatW/Pyyy8DUKNGDfbs2cObb755R0V4e3t7ypUrB0BgYCA+Pj4AXLlyhcmTJ/P999/TtGnesrtVq1Zl/fr1vP/++7cswqemphITE0NsbCwAoaGhtx1bdnY206dPp1q1agA8/PDDzJkzh1OnTuHh4UFkZCQtW7Zk9erVKsKLiIrwdwPDbCZp9ocA1G7VjsDQqpCbDclTyb1m4vR2JyCTTyI68EB4KIc/PURYXyd25P5A6qVUvJ29+Uv4X2z7ECIiIvewlUdXAtD8Wkcycw3s7Y6QA1Rr0Mi2gYmIiIiIiIiUNY5ueSPSbXVvKxk5cmS+Ira/v/8dXWf16tW8/vrr7Nmzh/T0dHJycsjMzOTKlSu4u+eN2ndwcLAUpwFq1aqFj48Pe/fupVGjRjz33HM8+eSTzJkzhzZt2vDII49YCtF79+6lS5cu+e7ZrFkzpkyZQm5urtXWst+zZw+ZmZm0bds23/6srCxiYmJuef7TTz/NQw89xPbt22nXrh1du3blvvvuu60Y3NzcLM8NEBQURGhoKB4eHvn2nT59+rauKyJlk4rwd4E961Zz6tBBnFxdada9T97OnZ9B2jHO7A/GfCWTw17BbAhvxpDULM5czGLPhhPM9Mhbz6RHzR64WTH5i4iISNGdyTjD9lPbAXA/XIGrxkWyMo4AUC22sQ0jExERERERESmDTKZSNyX8nfD39yc8PPxPXePo0aN06tSJgQMHMn78eMqVK8f69et54oknyM7OztfWZDIVOP/6vrFjx9KrVy+++uorvv76a1555RXmz5/PX/7yFwzDKHCuYRg3jMnuvzMC/r7NH2MpjNlsBuCrr76iYsWK+Y45Ozvf8vyOHTty9OhRvvrqK1atWkXr1q155plneOutt4oc0/Up+K8zmUyF7rseq4jc2zT/aSlnNueS/Nk8ABr/pQfuPr5gNsP6t8m86MCFfXlvkb1fuwtP+gaQcTELL38XnJumsfPsTpzsnOhVq5ctH0FEROSetip1FQYGDd2ace7IVcw5RzHMufiWr4hfxRBbhyciIiIiIiIiZdTWrVvJyclh0qRJNGnShBo1anD8eMFZAnJycti6davl8/79+7l48aJl+nnIm2Z++PDhrFixgm7dujFzZt4gwMjISNavX5/vesnJydSoUaPQUfABAQEAnDhxwrIvJSUlXxsnJycAcnNzLfsiIyNxdnYmNTWV8PDwfFtISNH+fSUgIIDExETmzp3LlClT+OCDD4ock4jI7dJI+FLOzs6eh/5vPFuXLaF+p/9O6bJvGcaZnzmVEgRmg/Xla+NYpQ78chmAlo9FMOFA3loxXcO74ufqZ6vwRURE7nnXp6JveqU9WYCLyzGyL2sUvIiIiIiIiMi9Li0trUCx9/p66NZQrVo1cnJyePfdd3nggQfYsGED//rXvwq0c3R05Nlnn2Xq1Kk4OjoyePBgmjRpQqNGjbh69SojR47k4YcfJiwsjF9//ZUtW7bw0EMPAfD888/TsGFDxo8fT48ePdi4cSPvvfdevjXnf8/V1ZUmTZowceJEQkNDOXv2LKNHj87XpkqVKphMJpYtW0anTp1wdXXF09OTESNGMHz4cMxmM82bNyc9PZ3k5GQ8PDzo16/fTftizJgxNGjQgKioKK5du8ayZcuIiIgAsBTyx44dy2uvvcaBAweYNGnSnXS5iIiFRsLfBcpVqEi7vz6Lg6MjGAasn8yl31zIOGlPlp0Ds6IeoN3lvClPouIqcjXwLGt/XYsJE/2ibp54REREpPicvXqWbae2AeB+PAjDyCXz0gFARXgRERERERGRe11SUhIxMTH5tjFjxljt+vXq1WPy5Mm88cYbREdHM2/ePCZMmFCgnZubG6NGjaJXr140bdoUV1dX5s+fD4C9vT3nzp2jb9++1KhRg+7du9OxY0deffVVAOrXr8/ChQuZP38+0dHRjBkzhnHjxuVbz/6PPv74Y7Kzs4mNjWXo0KG89tpr+Y5XrFiRV199lb/97W8EBQUxePBgAMaPH8+YMWOYMGECERERtG/fni+//JKwsLBb9oWTkxMvvvgiderUIS4uDnt7e8szOjo68umnn7Jv3z7q1q3LG2+8USAmEZHbZTJutjjHPSo9PR1vb2/S0tLw8vKyXRxnT+PlH5h/5y+rMc/qyqGvg8i+bM+/a7SBmO4En8rGw9eZnmMa8+q2V/jily9oW6UtkxMm2yZ4ERGxitKSk8qSkuzThfsXMv6H8dT2r80n7eZwcOuvnPh5FScP7qPHqxOxsys4LZuIiNw7lOetS/0pIiKlhXKS9d2sTzMzMzl8+DBhYWG4uLjYKEIRKY30+0GKQ1HzvKajL6WO/7yP+WNeILpVW9o++Qwmu/9OWrBuEuf3eZB92Z6zLt4srdmKF11cuEA2LfvU4rz5LMsPLQegf3R/Gz6BiIiIrDiyAoC2Vdri4GhPraZVqNX0CRtHJSIiIiIiIiIiIiLFSdPRl0KGYZA0+0MMw4w5N/d/Bfhft5K9ZwNn93gCMCOqMz3ia/LoqFgeGFKXylF+zN0zlxwjh9igWKL9o234FCIiIve2c1fPseXUFjCgTeU2tg5HRERERERERMqYefPm4eHhUegWFRVl6/BK1MCBA2/YFwMHDrR1eCJyD9JI+FJo34Y1nDi4H0dnF5o/2vd/B9ZN5vSPXhi5JnaXC2VXrcZMbVMdOzsTlSP9SM9KZ9GBRQA8Hv24jaIXERERgO+PfY/ZMNPM3I41b/1K9QbnCaycTUhUHRycnGwdnoiIiIiIiIjc5R588EEaN25c6DFHR8cSjsa2xo0bx4gRIwo9pmUhRMQWVIQvZbKvZbL237MAaPyX7nj4lss7cGoPGetXkn7UHzMwv86jDPLxx9Xuf5MZfLb/M65kXyHcJ5wWFVuUfPAiIiJicX0q+rppcaSdvsrhHdtZ/++vCW/YlC4jXrJxdCIiIiIiIiJyt/P09MTT09PWYZQKgYGBBAYG2joMERELTUdfymxd9h8unzuLp38A9Tt3sew31r3Nqe15b2t9G9qUhs4hXN19kc1fHgYgKzeLuXvnAnmj4E0mU8kHLyIiIgBcyLzAlpNbcMh1wnQ4L39nXvoZgLB6DWwZmoiIiIiIiIiIiIgUMxXhS5FL58+y+fO86eTjej+Oo5Nz3oELR0j74isyLzhx1cGJPeF/weMauHo50aBDFQCWHVrG2atnCXILomNoR1s9goiIiADfp35PrpFLs6z25GYZuPvkcO7XXwCo2qCRjaMTERERERERERERkeKkInwpcv63X3FwcqZCjQhqNv3fdPK5qyZx+kcPABZGPUK9XHcAEnrWxMXdEbNhZuaumQA8FvkYjvb31lovIiIipc2Ko3lT0UdduA8A38DTAASH1/jfUjMiIiIiIiIiIiIiUiZpTfhSpErtejwx5QMyL1/633Tyl05xdt6X5F5z5bRnOdz8m2DKhfDYQKrGBACQdCyJI+lH8HT05OEaD9vuAURERISLmRfZdGITLtkeGMfcALj236now2Ob2DI0ERERERERERERESkBKsKXMi4eHrh4eFg+X/t8Iuf3uwDwZd1BhOXa4erpSFyPGpY2s3bPAqB7ze64O7qXaLwiIiKS3+pjq8k1conP6IBhBv9KzhzftxOAapqKXkRERERERERERKTM03T0pcChHVs4sCkZwzDyH7h6kVMzl4Fh4kCFUCo4lQegRY8auHo6AbDj9A52nN6Bo50jvSN6l3ToIiIi8gfXp6KPiAil1n3lCQq9TG52Nt6BQfiFVLFxdCIiIiIiIiIipZvJZGLp0qXFdv2xY8dSr169Yrt+cShKzEeOHMFkMpGSklIiMYnIzakIb2M5WVl8N2M6X0x+nV1JK/MduzRjDFd+cwA7eCPyEaIfr0nTv1QjvEGgpc31teAfrPYgAW4BJRq7iIiI5Jd2LY0fTvwAQPtGcbTuG0F873YkTppG2wHP/m+5GRERERERERG5pyUmJtK1a9dCj4WGhmIymfJtlSpVynd8ypQpJROoALbv8xEjRvDdd99ZPt/s56e4qdgvUjSajt7Gtn21lPQzp/Hw86fWfXGW/caVNE5/8i1gx45q1anRIJp2DSvmO/dQ2iFWH1uNCRP9ovqVcOQiIiLyR6uPrSbHnEN13+qEeYcBeW9v+1WqjF+lyjaOTkRERERERETuFuPGjWPAgAGWz/b29jaMRmzNw8MDj98tZXy3y8rKwsnJydZhiBQrjYS3ocsXzrNp6WcAxPVKxNHZxXLs/D9GkJVuxxXfID4N78/L90cWOH/27tkAtAxpafmHfhEREbGdlUdXggFtzjzKmdRLBZeaEREREREREZFiZRgGGdkZNtms+e8Anp6eBAcHW7aAgDubCXfs2LFUrlwZZ2dnKlSowJAhQyzHCpv23cfHh1mzZgH/G/G8cOFCWrRogaurKw0bNuTnn39my5YtxMbG4uHhQYcOHThz5kyR4tmyZQtt27bF398fb29v4uPj2b59e4F2J06coGPHjri6uhIWFsZnn31mOZaVlcXgwYMpX748Li4uhIaGMmHCBMvx1NRUunTpgoeHB15eXnTv3p1Tp07dMKaEhASGDRuWb1/Xrl1JTEy0HD969CjDhw+3zExwXXJyMnFxcbi6uhISEsKQIUO4cuXKLfvh3XffpXbt2pbPS5cuxWQy8c9//tOyr3379rz44otA/unox44dy+zZs/n8888t8SQlJVnOO3ToEC1btsTNzY26deuycePGfPdevHgxUVFRODs7ExoayqRJk/Idv9XPRVhYXj0qJiYGk8lEQkLCLZ/3+sj9CRMmUKFCBWrUqAHA3LlziY2Ntfy89+rVi9OnT1vOa9CgQb74unbtioODA+np6QCcPHkSk8nE/v37bxmDSEnTSHgb2rBgDtmZVykfXpNazeIt+3NOHufskvWYTXZsjn6KDle9uLzrIrT831tOZzLO8OUvXwLwePTjJR26iIiI/EF6VjrJx5MJvFwFY5c/S37cRnSz41w4cYyYjg9SsWaErUMUERERERERKfOu5lyl8b8b2+Tem3ptws3RzSb3LsyiRYt4++23mT9/PlFRUZw8eZIff/zxtq/zyiuvMGXKFCpXrkz//v3p2bMnXl5evPPOO7i5udG9e3fGjBnD9OnTb3mtS5cu0a9fP6ZOnQrApEmT6NSpEwcOHMDT09PS7uWXX2bixIm88847zJkzh549exIdHU1ERARTp07liy++YOHChVSuXJljx45x7NgxIO8ljK5du+Lu7s6aNWvIyclh0KBB9OjRI1+h+nYsWbKEunXr8te//jXf7AQ7d+6kffv2jB8/nhkzZnDmzBkGDx7M4MGDmTlz5k2vmZCQwNChQzl79iz+/v6sWbPG8t9nnnmGnJwckpOTGT58eIFzR4wYwd69e0lPT7fcp1y5chw/fhyAl156ibfeeovq1avz0ksv0bNnTw4ePIiDgwPbtm2je/fujB07lh49epCcnMygQYPw8/OzvHRwK5s3b6ZRo0asWrWKqKioIo9o/+677/Dy8mLlypWWF1aysrIYP348NWvW5PTp0wwfPpzExESWL19u6aekpCSef/55DMNg3bp1+Pr6sn79ejp16sTq1asJDg6mZs2aRYpBpCSpCG8jpw4dZFfSKgAS+g3I9+bU6VeGY86G32q2xLAPwtHFnqr18r/lNm/vPLLN2cQExlAvsF5Jhi4iIiKFWHNsDTnmHGLTWwNQtV4A+zd+yoUTv1G9cTMbRyciIiIiIiIid5NRo0YxevRoy+fXX3893yj2okhNTSU4OJg2bdrg6OhI5cqVadSo0W3HMmLECNq3bw/A0KFD6dmzJ9999x3NmuX9e8cTTzxhGSV9K61atcr3+f3338fX15c1a9Zw//33W/Y/8sgjPPnkkwCMHz+elStX8u677zJt2jRSU1OpXr06zZs3x2QyUaVKFct5q1at4qeffuLw4cOEhIQAMGfOHKKiotiyZQsNGza87ecvV64c9vb2ltHa17355pv06tXLMoq+evXqTJ06lfj4eKZPn46Li8sNrgjR0dH4+fmxZs0aHnroIUuh+e233wbyZgzIzMykefPmBc718PDA1dWVa9eu5YvnuhEjRtC5c2cAXn31VaKiojh48CC1atVi8uTJtG7dmpdffhmAGjVqsGfPHt58880iF+Gvz8rg5+dX6P1vxN3dnY8++ihf0b5///6Wr6tWrcrUqVNp1KgRly9fxsPDg4SEBGbMmIHZbGbnzp3Y29vTp08fkpKS6NSpE0lJScTHxxd2OxGbUxHeBgzDIGnOR2AY1GoWT4UatSzHrv6YQtqan7jiFsSB8g8C0KJ7dTx8nS1tLmddZuH+hQA8HqVR8CIiIqXBiiMrsDPbUfl0FADB1cz89O1v2Nk7EFq3vo2jExEREREREbk3uDq4sqnXJpvd21pGjhyZryjq7+9/29d45JFHmDJlClWrVqVDhw506tSJBx54AAeH2ysN1alTx/J1UFAQQL6p1IOCgvJNIX4zp0+fZsyYMXz//fecOnWK3NxcMjIySE1NzdeuadOmBT6npKQAeVObt23blpo1a9KhQwfuv/9+2rVrB8DevXsJCQmxFOABIiMj8fHxYe/evXdUhL+Rbdu2cfDgQebNm2fZZxgGZrOZw4cPExFx41kRTSYTcXFxJCUl0bp1a3bv3s3AgQN566232Lt3L0lJSdSvX/+O1oH//ferfPnyQF6/16pVi71799KlS5d87Zs1a8aUKVPIzc3F3t7+tu9XVLVr1y4wan7Hjh2MHTuWlJQUzp8/j9lsBvJeIImMjCQuLo5Lly6xY8cONmzYQHx8PC1btuS1114DICkpqcBSAiKlhYrwNmAymWjc5RGyM6/Rolc/y37DbObUy6MwMLG/Ti/AgZDIctRqWj7f+YsPLOZS9iXCvMOID9EbPiIiIrZ2OesyG45voFJaLch0wNXTkYwL+wCoHF0HZ7fSMxWdiIiIiIiISFlmMplK1ZTwd8rf35/w8PA/dY2QkBD279/PypUrWbVqFYMGDeLNN99kzZo1ODo6YjKZCqxjn52dXeA6jo6Olq+vz+r7x33Xi6e3kpiYyJkzZ5gyZQpVqlTB2dmZpk2bkpWVdctzr9+7fv36HD58mK+//ppVq1bRvXt32rRpw6JFizAMI9/Mw9fdaD+AnZ1dkfrhj8xmM0899VShMxRUrlz5lucnJCTwwQcfsG7dOurWrYuPjw9xcXGsWbOGpKSkIq21XpjCvl/Xvz+F9cMfn72oPxe3y93dPd/nK1eu0K5dO9q1a8fcuXMJCAggNTWV9u3bW34evL29qVevHklJSSQnJ9OqVStatGhBSkoKBw4c4Oeff77jfhIpbna2DuBeFVqvAb1fn4yXf6BlX/qXX3L151R+rRzPRZdw7J3saNmnVr5fiNm52Xyy5xMgbxS8nUnfQhEREVtL+jUpb5mYtLyX46o3DOLQts0AVGtgm3XoRERERERERERcXV158MEHmTp1KklJSWzcuJGdO3cCedOKnzhxwtL2wIEDZGRkFGs869atY8iQIXTq1ImoqCicnZ05e/ZsgXY//PBDgc+1av1vVmEvLy969OjBhx9+yIIFC1i8eDHnz58nMjKS1NRUyxrxAHv27CEtLe2GI9P/2A+5ubns2rUrXxsnJydyc3Pz7atfvz67d+8mPDy8wFaUddITEhLYvXs3ixYtshSS4+PjWbVqFcnJyTedZr2weIoiMjKS9evX59uXnJxMjRo1LKPgb/Vzcf3Z7uT+v7dv3z7Onj3LxIkTadGiBbVq1Sp0RoWEhARWr17N2rVrSUhIwMfHh8jISF577TUCAwNvOuOAiC1pJHwJy83Jwf6/U738vrhuvnKF029M4JqTF4fC8qahb/5wdTzL5V8zZPnh5ZzOOE2AawCdq3YuucBFRETkhlYcWYFjrjPBZ2oAEBLhyuYleSPhq8WqCC8iIiIiIiIiBaWlpVmmWL+uXLlyVrv+rFmzyM3NpXHjxri5uTFnzhxcXV0ta6i3atWK9957jyZNmmA2mxk1alS+UdTFITw8nDlz5hAbG0t6ejojR47E1bXgNP6fffYZsbGxNG/enHnz5rF582ZmzJgBwNtvv0358uWpV68ednZ2fPbZZwQHB+Pj40ObNm2oU6cOvXv3ZsqUKeTk5DBo0CDi4+OJjY0tNKZWrVrx3HPP8dVXX1GtWjXefvttLl68mK9NaGgoa9eu5dFHH8XZ2Rl/f39GjRpFkyZNeOaZZxgwYADu7u7s3bvXsn79rVxfF37evHl8/vnnQF7B+fnnnwcodD3438fz7bffsn//fvz8/PD29r7l/QCef/55GjZsyPjx4+nRowcbN27kvffeY9q0afn642Y/F4GBgbi6uvLNN99QqVIlXFxcinz/36tcuTJOTk68++67DBw4kF27djF+/PgC7RISEnjnnXcoV64ckZGRln3vvvsu3bp1u+37ipQUDaMuQRlpF/loyJNs/nwRuTk5+Y6dff8Dcs6n4eF4HmevJCrH+BPVokK+NoZhMGv3LAB6R/TGyf7Wb1KJiIhI8bqSfYUNv23A52ogzi4O+AS5cenMXjAMAsOq4el3+2u2iYiIiIiIiEjZl5SURExMTL5tzJgxVru+j48PH374Ic2aNaNOnTp89913fPnll/j5+QEwadIkQkJCiIuLo1evXowYMQK3Yl5S7+OPP+bChQvExMTw2GOPMWTIEAIDAwu0e/XVV5k/fz516tRh9uzZzJs3z1KA9fDw4I033iA2NpaGDRty5MgRli9fjp2dHSaTiaVLl+Lr60tcXBxt2rShatWqLFiw4IYx9e/fn379+tG3b1/i4+MJCwujZcuW+dqMGzeOI0eOUK1aNQICAoC8tdfXrFnDgQMHaNGiBTExMbz88suWddhvxWQyWUa7t2jRwnJNb29vYmJi8PLyuuG5AwYMoGbNmsTGxhIQEMCGDRuKdM/69euzcOFC5s+fT3R0NGPGjGHcuHEkJiZa2tzq58LBwYGpU6fy/vvvU6FChQJrzBdVQEAAs2bN4rPPPiMyMpKJEyfy1ltvFWgXFxcH5M0ScH1wa3x8PLm5uTedLUDE1kzGHxd2ENLT0/H29iYtLe2mv+Ru18oP3+OnVd8QVDWc3n+fjMku7x2IrNRUfunUGXJyCG5+kW96LKZn2/sKnL/217U8890zuDu6s+LhFXg5WS82EREpnYorJ93LrN2nyw8tZ9S6UYR6hbL0gaVcuZjFiQPb2PLFIqrFNqbpQz2tELWIiJRFyvPWpf4UEZHSQjnJ+m7Wp5mZmRw+fJiwsDBcXFxucAURuRfp94MUh6LmeU1HX0LOHD3Mzu9WAJDQb4ClAA9w6o1/kGnvgUdgBhtDm/JQyyaFXmPmrpkAPFLjERXgRURESomVR1cC0LZKW+wd7PHyd8XLvzk1mzbHMJttHJ2IiIiIiIiIiIiIlDQV4UuAYRgkffIRhmGmRpPmVKoVZTl2ecMGLn33HXvrPkuGb0UqR/nj5FBwlYCfzvzE1lNbcbBzoHdE75IMX0RERG4gIzuDdb+tw/2aN20rty1w/Pcv3YmIiIiIiIiIWNO8efN46qmnCj1WpUoVdu/eXcIR5U0VfyNff/21Zdr1sm7dunV07NjxhscvX75cgtEUP33fRQpSEb4EHNq+mdRdP2Lv6Ehc70TLfiM7m1OvT+B4+fu44FsLkymHRvfFFHqN62vBdw7rTLB7cAlELSIiIrey9te1XMu9RrcDz7PpzXP4/DUNE6fxLV8R52JeQ01ERERERERE7m0PPvggjRs3LvSYo6NjCUeTJyUl5YbHKlasWHKB2FhsbOxN+6Ks0fddpCAV4YtZbk42a+bMAKBB5654B/6vgH7h0/mk/3qOgw2fBiCquSs+QQX/wf5o+lFWHV0FQGJUYvEHLSIiIkWy4ugKfDKC8L4UxFW7bLwDnJk94lUyL1+m12tvEVQ13NYhioiIiIiIiEgZ5enpiaenp63DyCc8XP8WAuDq6npP9cW99KwiRaU5UovZ8f17STt9CjdvHxp3fcSyP+f8eU6/+x77avQi18EVH5ffaNGzeaHX+GT3JxgYxFWKI9xXv8hERERKg4zsDNb9uo7qZxsAUDmqHBdPHiYj7SKOzs74Vw61bYAiIiIiIiIiIiIiYhMaCV/MQqLq0PfN97h09gxOrv8b5X7mnakcd4/kvF8U9mTR6tHK2NmZCpx/9upZlh5cCsDjUY+XVNgiIiJyCxtPbCQz5xoR5/KmfavROJhftn4NQGi9Btg76H+zRERERERERERERO5FGglfAvwqhhBat77lc+bevZxa+i0Hqj0EQHTgWso3jiv03E/3fUqWOYs6/nVoENSgROIVERGRW2sV0orp0bNwy/TB0cWe0Dr+HNy6CYBqsYWvxyYiIiIiIiIiIiIiZZ+K8CXMMAxO/f117HOuUiFjE4GOP9O0ZxyYCo6Cz8jOYP6++QA8Hv04pkLaiIiIiG2YTCZyfnYHoFq9AC6fO8n5345hZ29PWD29OCciIiIiIiIiIiJyr9I8qSXs0jffkLF1KyZ7OzpU+ieZFSOxr7Wu0LZLDiwhPSudKl5VaBnSsoQjFRERkZvJzTFzcNsp4L9T0W9bA0CliGhc3D1sGZqIiIiIiIiIiIiI2JBGwpcg89Wr/PaPtzEw4VUrA0f3XDxbDyt0FHy2OZtP9nwCQL+oftjb2ZdwtCIiInIzdvYmHhhcj/rtq1Cxpi+/WKaib2LjyEREREREREREimbWrFn4+PgU6z1CQ0OZMmVKsd6jrBs7diz16tW7aZsjR45gMplISUkpkZhE5OZUhC9B5z6awc5y7dlWfyheNRzJ9QmFyK6Ftl1xZAUnrpygnEs5Hqz2YInGKSIiIrdmMpkICvOi6V+qYWdnouMzz9Hq8aeo3qiprUMTERERERERkVIuMTGRrl27FnosNDQUk8mUb6tUqVK+42W5qJ2UlITJZOLixYu2DqXUGDFiBN99953l881+foqbiv0iRaPp6EtI9vHj7FmyhTM1+2Eycsi2c8W++TCwL/gtMAyDmbtmAtA7ojfO9s4lHK2IiIjcLq+AQGI6PGDrMERERERERESkDBg3bhwDBgywfLa312y59zIPDw88PMrO8odZWVk4OTnZOgyRYqWR8CUk9R/vsD+sGwANPJbg75sJ9XoV2nbj8Y3sv7AfVwdXetTsUZJhioiIiIiIiIiIiIjctQzDwJyRYZPNMAyrPYenpyfBwcGWLSAg4I6uM3nyZGrXro27uzshISEMGjSIy5cvF2i3dOlSatSogYuLC23btuXYsWOWYz/++CMtW7bE09MTLy8vGjRowNatWy3HFy9eTFRUFM7OzoSGhjJp0qQbxlPYKOqLFy9iMplISkriyJEjtGzZEgBfX19MJhOJiYlA3vf2H//4B1WrVsXV1ZW6deuyaNGiIvXDhQsX6N27NwEBAbi6ulK9enVmzswbDFnYyPuUlBRMJhNHjhwB/jdt/7Jly6hZsyZubm48/PDDXLlyhdmzZxMaGoqvry/PPvssubm5t4zn3XffpXbt2pbPS5cuxWQy8c9//tOyr3379rz44otA/unox44dy+zZs/n8888tMyUkJSVZzjt06BAtW7bEzc2NunXrsnHjxnz3vtX3y2QysXTp0nz7fHx8mDVrFgBhYWEAxMTEYDKZSEhIuOXzXh+5P2HCBCpUqECNGjUAmDt3LrGxsZaf9169enH69GnLeQ0aNMgXX9euXXFwcCA9PR2AkydPYjKZ2L9//y1jEClpGglfAq5s3syOo+XIDvLEw/QbsR6fYbpvLDgUPsL9490fA/BQ9YfwdvYuwUhFRETkduVkZfHV1DcJq9eAqIQ22Dvof69EREREREREbMW4epX99RvY5N41t2/D5OZmk3vfiJ2dHVOnTiU0NJTDhw8zaNAgXnjhBaZNm2Zpk5GRwd///ndmz56Nk5MTgwYN4tFHH2XDhg0A9O7dm5iYGKZPn469vT0pKSk4OjoCsG3bNrp3787YsWPp0aMHycnJDBo0CD8/P0vx/HaEhISwePFiHnroIfbv34+Xlxeurq4AjB49miVLljB9+nSqV6/O2rVr6dOnDwEBAcTHx9/0ui+//DJ79uzh66+/xt/fn4MHD3L16tXbii0jI4OpU6cyf/58Ll26RLdu3ejWrRs+Pj4sX76cQ4cO8dBDD9G8eXN69Lj5AMuEhASGDh3K2bNn8ff3Z82aNZb/PvPMM+Tk5JCcnMzw4cMLnDtixAj27t1Lenq65UWCcuXKcfz4cQBeeukl3nrrLapXr85LL71Ez549OXjwIA4ODlb5fm3evJlGjRqxatUqoqKiijyi/bvvvsPLy4uVK1daXljJyspi/Pjx1KxZk9OnTzN8+HASExNZvny5pZ+SkpJ4/vnnMQyDdevW4evry/r16+nUqROrV68mODiYmjVrFikGkZKkfyUuZkZuLj9Nms+poPvBMNPR723sXT2gQWKh7Xef282mE5uwN9nTN7JvyQYrIiIit+3Y7p84uGUjJw/up3br9rYOR0RERERERETKgFGjRjF69GjL59dff50hQ4bc9nWGDRtm+TosLIzx48fz9NNP5yvCZ2dn895779G4cWMAZs+eTUREhKXYmpqaysiRI6lVqxYA1atXt5w7efJkWrduzcsvvwxAjRo12LNnD2+++eYdFeHt7e0pV64cAIGBgfj4+ABw5coVJk+ezPfff0/Tpk0BqFq1KuvXr+f999+/ZRE+NTWVmJgYYmNjAQgNDb3t2LKzs5k+fTrVqlUD4OGHH2bOnDmcOnUKDw8PIiMjadmyJatXr75lET46Oho/Pz/WrFnDQw89ZCk0v/322wBs2bKFzMxMmjdvXuBcDw8PXF1duXbtGsHBwQWOjxgxgs6dOwPw6quvEhUVxcGDB6lVq5ZVvl/XZ2Xw8/Mr9P434u7uzkcffZSvaN+/f3/L11WrVmXq1Kk0atSIy5cv4+HhQUJCAjNmzMBsNrNz507s7e3p06cPSUlJdOrUiaSkpFt+70VsRUX4Ynbq34vZ5dYCgMou3xPo+As0HgXOnoW2n7VrFgAdwzpS3qN8SYUpIiIid+iXbZsAqBbbGJPJZONoRERERERERO5tJldXam7fZrN7W8vIkSPzFUX9/f3v6DqrV6/m9ddfZ8+ePaSnp5OTk0NmZiZXrlzB3d0dAAcHB0txGqBWrVr4+Piwd+9eGjVqxHPPPceTTz7JnDlzaNOmDY888oilEL137166dOmS757NmjVjypQp5ObmWm0t+z179pCZmUnbtm3z7c/KyiImJuaW5z/99NM89NBDbN++nXbt2tG1a1fuu+++24rBzc3N8twAQUFBhIaG5lurPSgoKN906jdiMpmIi4sjKSmJ1q1bs3v3bgYOHMhbb73F3r17SUpKon79+ne0DnydOnUsX5cvn1dnOn36NLVq1Sqx71dhateuXWDU/I4dOxg7diwpKSmcP38es9kM5L00ERkZSVxcHJcuXWLHjh1s2LCB+Ph4WrZsyWuvvQbkLSXw+xdNREoTrQlfzM58vwHHnCsYuRfp6PMBOLpD44GFtv310q+sOLoCgMSoxBKMUkRERO6EYTbzy9brRfgmNo5GREREREREREwmE3ZubjbZrPlyvr+/P+Hh4Zbt+ojw23H06FE6depEdHQ0ixcvZtu2bZY1x7Ozs/O1LSz26/vGjh3L7t276dy5M99//z2RkZH85z//AfLWaf/judenGi+MnZ1dgTZ/jKUw14uzX331FSkpKZZtz549RVoXvmPHjhw9epRhw4Zx/PhxWrduzYgRI24rputT8F9nMpkK3Xc91lu5PtX6unXrqFu3Lj4+PsTFxbFmzRqSkpKKtNZ6YX4f0/XvzfWYivL9MplMBfYV5Xt0K9df+rjuypUrtGvXDg8PD+bOncuWLVssP1dZWVkAeHt7U69ePZKSklizZg0JCQm0aNGClJQUDhw4wM8//3zH/SRS3FSEL2ZJvZ5mrfkwDYI+xMGUnTcNvVu5Qtt+sucTzIaZZhWaUbOc1q8QEREp7U4d/oXLF87j6OJKSFSdW58gIiIiIiIiIlJCtm7dSk5ODpMmTaJJkybUqFHDsm747+Xk5LB161bL5/3793Px4kXL9POQN2358OHDWbFiBd26dbOsRR4ZGcn69evzXS85OZkaNWoUOqr6+lTmJ06csOxLSUnJ1+b6aOnc3FzLvsjISJydnUlNTc33ckJ4eDghISFF6o+AgAASExOZO3cuU6ZM4YMPPihyTMUhISGB3bt3s2jRIkshOT4+nlWrVpGcnHzTadadnJzy9U9RFeX7FRAQkK8vDhw4QEZGRr57A3d0/9/bt28fZ8+eZeLEibRo0YJatWoVOotAQkICq1evZu3atSQkJODj40NkZCSvvfYagYGBRERE/Kk4RIqLpqMvZofOZ5JW2Z2mDslg5whNnym03YXMC/znQN4bPo9HP16SIYqIiMgd+mXrDwCE1o3B4Q9vPouIiIiIiIiI3ExaWlqBYu/19dCtoVq1auTk5PDuu+/ywAMPsGHDBv71r38VaOfo6Mizzz7L1KlTcXR0ZPDgwTRp0oRGjRpx9epVRo4cycMPP0xYWBi//vorW7Zs4aGHHgLg+eefp2HDhowfP54ePXqwceNG3nvvvXxrzv+eq6srTZo0YeLEiYSGhnL27FlGjx6dr02VKlUwmUwsW7aMTp064erqiqenJyNGjGD48OGYzWaaN29Oeno6ycnJeHh40K9fv5v2xZgxY2jQoAFRUVFcu3aNZcuWWYq31wv5Y8eO5bXXXuPAgQNMmjTpTrr8tlxfF37evHl8/vnnQF7B+fnnnwcodD3460JDQ/n222/Zv38/fn5+eHt7F+meRfl+tWrVivfee48mTZpgNpsZNWpUvtH1gYGBuLq68s0331CpUiVcXFyKfP/fq1y5Mk5OTrz77rsMHDiQXbt2MX78+ALtEhISeOeddyhXrhyRkZGWfe+++y7dunW77fuKlBSNhC9mb/eox8fh6/I+1OsJ3hULbTd/33wyczOJ9IukUXCjEoxQRERE7tT1qejDNRW9iIiIiIiIiNympKQkYmJi8m1jxoyx2vXr1avH5MmTeeONN4iOjmbevHlMmDChQDs3NzdGjRpFr169aNq0Ka6ursyfPx8Ae3t7zp07R9++falRowbdu3enY8eOvPrqqwDUr1+fhQsXMn/+fKKjoxkzZgzjxo3Lt579H3388cdkZ2cTGxvL0KFDLet7X1exYkVeffVV/va3vxEUFMTgwYMBGD9+PGPGjGHChAlERETQvn17vvzyS8LCwm7ZF05OTrz44ovUqVOHuLg47O3tLc/o6OjIp59+yr59+6hbty5vvPFGgZiKg8lksox2b9GiBZC3nru3tzcxMTF4eXnd8NwBAwZQs2ZNYmNjCQgIYMOGDUW6Z1G+X5MmTSIkJIS4uDh69erFiBEjcHNzsxx3cHBg6tSpvP/++1SoUKHAGvNFFRAQwKxZs/jss8+IjIxk4sSJvPXWWwXaxcXFAXmzBFyfSj8+Pp7c3NybzhYgYmsm42aLc9yj0tPT8fb2Ji0t7aa/5Irk5E74V3Mw2cHgreBXrUCTqzlXabeoHRevXeTN+DfpENrhz91TRETKDKvmJAGs16fZWdf4z4SxHD+wj6emz8bVU98fERG5Pcrz1qX+FBGR0kI5yfpu1qeZmZkcPnyYsLAwXFxcbBShiJRG+v0gxaGoeV7T0Re39W/n/Teya6EFeIClB5dy8dpFKnlUok3lNiUXm4iIiNwxRydnur8ygayrGTi5ut36BBERERERERERERG5J2g6+uJWrRWUqwbNhxd6OMecwye7PwGgb1RfHOz0XoSIiMjdRAV4EREREREREbGFefPm4eHhUegWFRVl6/BK1MCBA2/YFwMHDizxeNatW3fDeDw8PEo8nuJ2s2ddt26drcMTsQlVfItbTB+o2wvsCn/fYVXqKn69/Cs+zj50De9asrGJiIiIiIiIiIiIiMhd6cEHH6Rx48aFHnN0dCzhaGxr3LhxjBgxotBjtlgWIjY2lpSUlBK/r63c7FkrVqxYcoGIlCIqwpeEGxTgDcNg5q6ZAPSq1QtXB9eSjEpERERERERERERERO5Snp6eeHp62jqMUiEwMJDAwEBbh2Hh6upKeHi4rcMoMffSs4oUlaajt6HNJzez59weXOxdeLTWo7YOR0RERERERERERERERERE/iQV4W3o+ij4v1T/C74uvjaORkRERERERERERERERERE/iwV4W1k//n9bDi+ATuTHX0j+9o6HBERERERERERERERERERsQIV4W1k1u5ZALSr0o5KnpVsG4yIiIiIiIiIiIiIiIiIiFiFivA2cPzycb4+/DUAidGJtg1GRERERERERERERERERESsRkV4G5izZw65Ri6Nyzcmyi/K1uGIiIiIiIiIiIiIiIiIiIiVqAhfwtKupbH4wGIA+kf1t3E0IiIiIiIiIiIiIiJSkkwm0023xMTEYrnvlStXGDVqFFWrVsXFxYWAgAASEhJYtmyZpU1CQgLDhg0rcO6sWbPw8fEpsP/q1av4+vpSrlw5rl69WuB4aGio5bnc3NyIjo7m/ffft+ZjiYiUSg62DuBes2D/Aq7mXKWmb02aVmhq63BERERERERERERERKQEnThxwvL1ggULGDNmDPv377fsc3V1zdc+OzsbR0fHP33fgQMHsnnzZt577z0iIyM5d+4cycnJnDt37o6vuXjxYqKjozEMgyVLltC7d+8CbcaNG8eAAQO4fPkys2bNYuDAgfj4+NCjR48/8zgiIqWaRsKXoGu515i3dx4Aj0c/jslksnFEIiIiIiIiIiIiIiJlT/a13BtuOdm5RW+bVbS2tyM4ONiyeXt7YzKZLJ8zMzPx8fFh4cKFJCQk4OLiwty5cwGYOXMmERERuLi4UKtWLaZNm5bvur/99hs9evTA19cXPz8/unTpwpEjRyzHv/zyS/7v//6PTp06ERoaSoMGDXj22Wfp16/fbcX/ezNmzKBPnz706dOHGTNmFNrG09OT4OBgwsPDee2116hevTpLly6943uKiNwNNBK+BH3xyxeczzxPeffytAttZ+twRERERERERERERETKpA+GrrnhsSrRftw/uK7l88cj15GTZS60bYXqPvzl+fqWz5+8lEzm5ewC7Z75V6s/EW1Bo0aNYtKkScycORNnZ2c+/PBDXnnlFd577z1iYmLYsWMHAwYMwN3dnX79+pGRkUHLli1p0aIFa9euxcHBgddee40OHTrw008/4eTkRHBwMMuXL6dbt254enr+6Rh/+eUXNm7cyJIlSzAMg2HDhnHo0CGqVq160/NcXFzIzi7YhyIiZYlGwpeQXHMus3fPBqBvZF8c7f781DEiIiIiIiIiIiIiIlL2DBs2jG7duhEWFkaFChUYP348kyZNsuzr1q0bw4cPt6yvPn/+fOzs7Pjoo4+oXbs2ERERzJw5k9TUVJKSkgD44IMPSE5Oxs/Pj4YNGzJ8+HA2bNhQ4N7Tpk3Dw8Mj3zZw4MAC7T7++GM6duxoWRO+Q4cOfPzxxzd8ppycHGbNmsXOnTtp3bq1dTpKRKSU0kj4ErL62GqOph/Fy8mLbtW72TocEREREREREREREZEy66/vxN/wmOkPwxP7v9nixm3/sKps37/f92fCKrLY2FjL12fOnOHYsWM88cQTDBgwwLI/JycHb29vALZt28bBgwcLjHDPzMzkl19+ASAuLo5Dhw7xww8/sGHDBr7//nveeecdXn31VV5++WXLOb179+all17Kd50lS5bw+uuvWz7n5uYye/Zs3nnnHcu+Pn36MHz4cF599VXs7e0t+0eNGsXo0aO5du0aTk5OjBw5kqeeeurPdI+ISKmnInwJMAyDj3flvf31aK1HcXN0s3FEIiIiIiIiIiIiIiJll6Oz/a0bFXPbP8Pd3d3ytdmcN1X+hx9+SOPGjfO1u17sNpvNNGjQgHnz5hW4VkBAgOVrR0dHWrRoQYsWLfjb3/7Ga6+9xrhx4xg1ahROTk4AeHt7Ex4enu8agYGB+T5/++23ljXofy83N5cVK1bQsWNHy76RI0eSmJiIm5sb5cuXx/THNxtERMogFeFLwLZT29h5didOdk70qtXL1uGIiIiIiIiIiIiIiMhdIigoiIoVK3Lo0CF69+5daJv69euzYMECAgMD8fLyKvK1IyMjycnJITMz01KEL4oZM2bw6KOPFhgxP3HiRGbMmJGvCO/v71+gqC8iUtapCF8CZu2eBUDX8K74ufrZNhgREREREREREREREbmrjB07liFDhuDl5UXHjh25du0aW7du5cKFCzz33HP07t2bN998ky5dujBu3DgqVapEamoqS5YsYeTIkVSqVImEhAR69uxJbGwsfn5+7Nmzh//7v/+jZcuWt1W4P3PmDF9++SVffPEF0dHR+Y7169ePzp07c+bMmXwj8EVE7jV2t24if8bBCwdZ8+saTJjoG9XX1uGIiIiIiIiIiIiIiMhd5sknn+Sjjz5i1qxZ1K5dm/j4eGbNmkVYWBgAbm5urF27lsqVK9OtWzciIiLo378/V69etRTY27dvz+zZs2nXrh0RERE8++yztG/fnoULF95WLJ988gnu7u60bt26wLGWLVvi6enJnDlz/vxDi4jcxUyGYRi2DqK0SU9Px9vbm7S0tNt6+6swo9eP5vNfPqdtlbZMTphspQhFROReYc2cJHnUpyIiUlooJ1mX+lNEREoL5STru1mfZmZmcvjwYcLCwnBxcbFRhCJSGun3gxSHouZ5jYQvZpF+kQS5BZEYlWjrUEREREREREREREREREREpJhpTfhi1iuiF91rdsfBTl0tIiIiIiIiIiIiIiIiIlLWaSR8CVABXkRERERERERERERERETk3qAivIiIiIiIiIiIiIiIiIiIiJWoCC8iIiIiIiIiIiIiIiIiImIlKsKLiIiIiIiIiIiIiIiIiIhYiYrwIiIiIiIiIiIiIiIiIiIiVqIivIiIiIiIiIiIiIiIiIiIiJWoCC8iIiIiIiIiIiIiIiIiImIlKsKLiIiIiIiIiIiIiIiIiIhYiYrwIiIiIiIiIiIiIiIiJSgxMZGuXbsWeiw0NJQpU6bk+2wymZg/f36BtlFRUZhMJmbNmlWg/R+3iRMnWvkpRETkRhxsHYCIiIiIiIiIiIiIiIjcWEhICDNnzuTRRx+17Pvhhx84efIk7u7uBdqPGzeOAQMG5Nvn6elZ7HGKiEgeFeFFRERERERERERERKRMyc7MvOExk50dDk5ORWqLnQlHJ+dbtnV0cbn9IG9D7969efvttzl27BghISEAfPzxx/Tu3ZtPPvmkQHtPT0+Cg4OLNSYREbkxFeFFRERERERERERERKRMmdrv4RseC4uJpdvfxlo+T/trb3KuXSu0baXIaHq88r9p3D8c3J+rl9ILtHt+wbI7D7YIgoKCaN++PbNnz2b06NFkZGSwYMEC1qxZU2gRXkREbEtrwouIiIiIiIiIiIiIiJRy/fv3Z9asWRiGwaJFi6hWrRr16tUrtO2oUaPw8PDItyUlJZVovCIi9zKNhBcRERERERERERERkTJlyOxFNzxmsss/PnHQB/NufCE7U76PA977+E/F9Wd07tyZp556irVr1/Lxxx/Tv3//G7YdOXIkiYmJ+fZVrFixmCMUEZHrVIQXEREREREREREREZEy5XbWaC+uttbm4ODAY489xiuvvMKmTZv4z3/+c8O2/v7+hIeHl2B0IiLye5qOXkRERERERERERERE5C7Qv39/1qxZQ5cuXfD19bV1OCIicgM2L8JPmzaNsLAwXFxcaNCgAevWrbth26SkJEwmU4Ft3759+dotXryYyMhInJ2diYyMvOnbYCIiIiIiIiIiIiIiIiUtLS2NlJSUfFtqaupNz4mIiODs2bPMnDnzpu0uXbrEyZMn823p6enWDF9ERG7CpkX4BQsWMGzYMF566SV27NhBixYt6Nix4y2TzP79+zlx4oRlq169uuXYxo0b6dGjB4899hg//vgjjz32GN27d2fTpk3F/TgiIiIiIiIiIiIiIiJFkpSURExMTL5tzJgxtzzPz88PV1fXm7YZM2YM5cuXz7e98MIL1gpdRERuwWQYhmGrmzdu3Jj69eszffp0y76IiAi6du3KhAkTCrRPSkqiZcuWXLhwAR8fn0Kv2aNHD9LT0/n6668t+zp06ICvry+ffvppkeJKT0/H29ubtLQ0vLy8bu+hRERErEg5yfrUpyIiUlooJ1mX+lNEREoL5STru1mfZmZmcvjwYcuMuyIi1+n3gxSHouZ5m42Ez8rKYtu2bbRr1y7f/nbt2pGcnHzTc2NiYihfvjytW7dm9erV+Y5t3LixwDXbt29/02teu3aN9PT0fJuIiIiUDcrzIiIiZZNyvIiISNmlPC8iInc7mxXhz549S25uLkFBQfn2BwUFcfLkyULPKV++PB988AGLFy9myZIl1KxZk9atW7N27VpLm5MnT97WNQEmTJiAt7e3ZQsJCfkTTyYiIiKlifK8iIhI2aQcLyIiUnYpz4uIyN3OpmvCA5hMpnyfDcMosO+6mjVrMmDAAOrXr0/Tpk2ZNm0anTt35q233rrjawK8+OKLpKWlWbZjx47d4dOIiIhIaaM8LyIiUjYpx4uIiJRdyvMiInK3c7DVjf39/bG3ty8wQv306dMFRrLfTJMmTZg7d67lc3Bw8G1f09nZGWdn5yLfU0RERO4eyvMiIiJlk3K8iIhI2aU8LyIidzubjYR3cnKiQYMGrFy5Mt/+lStXct999xX5Ojt27KB8+fKWz02bNi1wzRUrVtzWNUVERERERERERERE5O5hGIatQxCRUka/F8SWbDYSHuC5557jscceIzY2lqZNm/LBBx+QmprKwIEDgbwpZ3777Tc++eQTAKZMmUJoaChRUVFkZWUxd+5cFi9ezOLFiy3XHDp0KHFxcbzxxht06dKFzz//nFWrVrF+/XqbPKOIiIiIiIiIiIiIiBQPe3t7ALKysnB1dbVxNCJSmmRlZQH/+z0hUpJsWoTv0aMH586dY9y4cZw4cYLo6GiWL19OlSpVADhx4gSpqamW9llZWYwYMYLffvsNV1dXoqKi+Oqrr+jUqZOlzX333cf8+fMZPXo0L7/8MtWqVWPBggU0bty4xJ9PRERERERERERERESKj4ODA25ubpw5cwZHR0fs7Gw2AbCIlCJms5kzZ87g5uaGg4NNy6FyjzIZmouhgPT0dLy9vUlLS8PLy8vW4YiIyD1MOcn61KciIlJaKCdZl/pTRERKC+Uk67tVn2ZlZXH48GHMZrMNohOR0srOzo6wsDCcnJxsHYqUIUXN83r1Q0RERERERERERERE7lpOTk5Ur17dMvW0iAjk/W7Q7BhiKyrCi4iIiIiIiIiIiIjIXc3Ozg4XFxdbhyEiIgKAXv8QERERERERERERERERERGxEhXhRURERERERERERERERERErERFeBERERERERERERERERERESvRmvCFMAwDgPT0dBtHIiIi97rrueh6bpI/T3leRERKC+V561KOFxGR0kI53vqU50VEpLQoap5XEb4Qly5dAiAkJMTGkYiIiOS5dOkS3t7etg6jTFCeFxGR0kZ53jqU40VEpLRRjrce5XkRESltbpXnTYZexyvAbDZz/PhxPD09MZlMtg6nxKSnpxMSEsKxY8fw8vKydThlgvrU+tSn1qc+tT5r9qlhGFy6dIkKFSpgZ6dVZKzhXszz+nNuferT4qF+tT71qfUpz5de92KOB/05Lw7qU+tTn1qf+tT6lONLt3sxz+vPufWpT61PfVo81K/WZ4s8r5HwhbCzs6NSpUq2DsNmvLy89IfaytSn1qc+tT71qfVZq0/11rx13ct5Xn/OrU99WjzUr9anPrU+5fnS517O8aA/58VBfWp96lPrU59an3J86XQv53n9Obc+9an1qU+Lh/rV+koyz+s1PBEREREREREREREREREREStREV5ERERERERERERERERERMRKVIQXC2dnZ1555RWcnZ1tHUqZoT61PvWp9alPrU99KqWNfiatT31aPNSv1qc+tT71qZQ2+pm0PvWp9alPrU99an3qUylt9DNpfepT61OfFg/1q/XZok9NhmEYJXY3ERERERERERERERERERGRMkwj4UVERERERERERERERERERKxERXgRERERERERERERERERERErURFeRERERERERERERERERETESlSEFxERERERERERERERERERsRIV4cu4CRMm0LBhQzw9PQkMDKRr167s378/XxvDMBg7diwVKlTA1dWVhIQEdu/ena/NtWvXePbZZ/H398fd3Z0HH3yQX3/9tSQfpVSaMGECJpOJYcOGWfapP+/Mb7/9Rp8+ffDz88PNzY169eqxbds2y3H16+3Jyclh9OjRhIWF4erqStWqVRk3bhxms9nSRn16c2vXruWBBx6gQoUKmEwmli5dmu+4tfrvwoULPPbYY3h7e+Pt7c1jjz3GxYsXi/nppCxQji9+yvPWoRxvXcrx1qE8L6Wd8nzxUo63HuV561Ke//OU46W0U44vfsrz1qEcb13K8X/eXZnjDSnT2rdvb8ycOdPYtWuXkZKSYnTu3NmoXLmycfnyZUubiRMnGp6ensbixYuNnTt3Gj169DDKly9vpKenW9oMHDjQqFixorFy5Upj+/btRsuWLY26desaOTk5tnisUmHz5s1GaGioUadOHWPo0KGW/erP23f+/HmjSpUqRmJiorFp0ybj8OHDxqpVq4yDBw9a2qhfb89rr71m+Pn5GcuWLTMOHz5sfPbZZ4aHh4cxZcoUSxv16c0tX77ceOmll4zFixcbgPGf//wn33Fr9V+HDh2M6OhoIzk52UhOTjaio6ON+++/v6QeU+5iyvHFS3neOpTjrU853jqU56W0U54vPsrx1qM8b33K83+ecryUdsrxxUt53jqU461POf7PuxtzvIrw95jTp08bgLFmzRrDMAzDbDYbwcHBxsSJEy1tMjMzDW9vb+Nf//qXYRiGcfHiRcPR0dGYP3++pc1vv/1m2NnZGd98803JPkApcenSJaN69erGypUrjfj4eEtCV3/emVGjRhnNmze/4XH16+3r3Lmz0b9//3z7unXrZvTp08cwDPXp7fpjUrdW/+3Zs8cAjB9++MHSZuPGjQZg7Nu3r5ifSsoa5XjrUZ63HuV461OOtz7lebkbKM9bh3K8dSnPW5/yvHUpx8vdQDneepTnrUc53vqU463rbsnxmo7+HpOWlgZAuXLlADh8+DAnT56kXbt2ljbOzs7Ex8eTnJwMwLZt28jOzs7XpkKFCkRHR1va3GueeeYZOnfuTJs2bfLtV3/emS+++ILY2FgeeeQRAgMDiYmJ4cMPP7QcV7/evubNm/Pdd9/x888/A/Djjz+yfv16OnXqBKhP/yxr9d/GjRvx9vamcePGljZNmjTB29v7nu9juX3K8dajPG89yvHWpxxf/JTnpTRSnrcO5XjrUp63PuX54qUcL6WRcrz1KM9bj3K89SnHF6/SmuMd7vSB5O5jGAbPPfcczZs3Jzo6GoCTJ08CEBQUlK9tUFAQR48etbRxcnLC19e3QJvr599L5s+fz/bt29myZUuBY+rPO3Po0CGmT5/Oc889x//93/+xefNmhgwZgrOzM3379lW/3oFRo0aRlpZGrVq1sLe3Jzc3l7///e/07NkT0M/qn2Wt/jt58iSBgYEFrh8YGHjP97HcHuV461Gety7leOtTji9+yvNS2ijPW4dyvPUpz1uf8nzxUo6X0kY53nqU561LOd76lOOLV2nN8SrC30MGDx7MTz/9xPr16wscM5lM+T4bhlFg3x8VpU1Zc+zYMYYOHcqKFStwcXG5YTv15+0xm83Exsby+uuvAxATE8Pu3buZPn06ffv2tbRTvxbdggULmDt3Lv/+97+JiooiJSWFYcOGUaFCBfr162dppz79c6zRf4W1Vx/L7VKOtw7leetTjrc+5fiSozwvpYXy/J+nHF88lOetT3m+ZCjHS2mhHG8dyvPWpxxvfcrxJaO05XhNR3+PePbZZ/niiy9YvXo1lSpVsuwPDg4GKPAGx+nTpy1vjAQHB5OVlcWFCxdu2OZesW3bNk6fPk2DBg1wcHDAwcGBNWvWMHXqVBwcHCz9of68PeXLlycyMjLfvoiICFJTUwH9nN6JkSNH8re//Y1HH32U2rVr89hjjzF8+HAmTJgAqE//LGv1X3BwMKdOnSpw/TNnztzzfSxFpxxvPcrz1qccb33K8cVPeV5KE+V561COLx7K89anPF+8lOOlNFGOtx7leetTjrc+5fjiVVpzvIrwZZxhGAwePJglS5bw/fffExYWlu94WFgYwcHBrFy50rIvKyuLNWvWcN999wHQoEEDHB0d87U5ceIEu3btsrS5V7Ru3ZqdO3eSkpJi2WJjY+nduzcpKSlUrVpV/XkHmjVrxv79+/Pt+/nnn6lSpQqgn9M7kZGRgZ1d/l/x9vb2mM1mQH36Z1mr/5o2bUpaWhqbN2+2tNm0aRNpaWn3fB/LrSnHW5/yvPUpx1ufcnzxU56X0kB53rqU44uH8rz1Kc8XL+V4KQ2U461Ped76lOOtTzm+eJXaHG9Imfb0008b3t7eRlJSknHixAnLlpGRYWkzceJEw9vb21iyZImxc+dOo2fPnkb58uWN9PR0S5uBAwcalSpVMlatWmVs377daNWqlVG3bl0jJyfHFo9VqsTHxxtDhw61fFZ/3r7NmzcbDg4Oxt///nfjwIEDxrx58ww3Nzdj7ty5ljbq19vTr18/o2LFisayZcuMw4cPG0uWLDH8/f2NF154wdJGfXpzly5dMnbs2GHs2LHDAIzJkycbO3bsMI4ePWoYhvX6r0OHDkadOnWMjRs3Ghs3bjRq165t3H///SX+vHL3UY4vGcrzf45yvPUpx1uH8ryUdsrzxU85/s9Tnrc+5fk/TzleSjvl+JKhPP/nKMdbn3L8n3c35ngV4cs4oNBt5syZljZms9l45ZVXjODgYMPZ2dmIi4szdu7cme86V69eNQYPHmyUK1fOcHV1Ne6//34jNTW1hJ+mdPpjQld/3pkvv/zSiI6ONpydnY1atWoZH3zwQb7j6tfbk56ebgwdOtSoXLmy4eLiYlStWtV46aWXjGvXrlnaqE9vbvXq1YX+/uzXr59hGNbrv3Pnzhm9e/c2PD09DU9PT6N3797GhQsXSugp5W6mHF8ylOf/POV461KOtw7leSntlOeLn3K8dSjPW5fy/J+nHC+lnXJ8yVCe//OU461LOf7PuxtzvMkwDOP2x8+LiIiIiIiIiIiIiIiIiIjIH2lNeBEREREREREREREREREREStREV5ERERERERERERERERERMRKVIQXERERERERERERERERERGxEhXhRURERERERERERERERERErERFeBEREREREREREREREREREStREV5ERERERERERERERERERMRKVIQXERERERERERERERERERGxEhXhRURERERERERERERERERErERFeBEpFomJiXTt2rXYrp+QkMCwYcOK7foiIiJSOOV4ERGRskt5XkREpGxSjhcpeQ62DkBE5E4sWbIER0dHW4chIiIiVqYcLyIiUnYpz4uIiJRNyvEiBakILyJ3pXLlytk6BBERESkGyvEiIiJll/K8iIhI2aQcL1KQpqMXucstWrSI2rVr4+rqip+fH23atOHKlSsAbNmyhbZt2+Lv74+3tzfx8fFs37493/kmk4n333+f+++/Hzc3NyIiIti4cSMHDx4kISEBd3d3mjZtyi+//GI5Z+zYsdSrV4/333+fkJAQ3NzceOSRR7h48eIN4zQMg3/84x9UrVoVV1dX6taty6JFi276bNOmTaN69eq4uLgQFBTEww8/bDn2++ltkpKSMJlMBbbExERL+y+//JIGDRrg4uJC1apVefXVV8nJySliL4uIiJQ85XjleBERKbuU55XnRUSkbFKOV44XuU5FeJG72IkTJ+jZsyf9+/dn7969JCUl0a1bNwzDAODSpUv069ePdevW8cMPP1C9enU6derEpUuX8l1n/Pjx9O3bl5SUFGrVqkWvXr146qmnePHFF9m6dSsAgwcPznfOwYMHWbhwIV9++SXffPMNKSkpPPPMMzeMdfTo0cycOZPp06eze/duhg8fTp8+fVizZk2h7bdu3cqQIUMYN24c+/fv55tvviEuLq7Qtvfddx8nTpywbN9//z0uLi6W9t9++y19+vRhyJAh7Nmzh/fff59Zs2bx97//vWgdLSIiUsKU4/Mox4uISFmkPJ9HeV5ERMoa5fg8yvEi/2WIyF1r27ZtBmAcOXKkSO1zcnIMT09P48svv7TsA4zRo0dbPm/cuNEAjBkzZlj2ffrpp4aLi4vl8yuvvGLY29sbx44ds+z7+uuvDTs7O+PEiROGYRhGv379jC5duhiGYRiXL182XFxcjOTk5HzxPPHEE0bPnj0LjXXx4sWGl5eXkZ6eXujx+Ph4Y+jQoQX2nz171qhWrZoxaNAgy74WLVoYr7/+er52c+bMMcqXL1/otUVERGxNOX5ogf3K8SIiUlYozw8tsF95XkREygLl+KEF9ivHy71Ma8KL3MXq1q1L69atqV27Nu3bt6ddu3Y8/PDD+Pr6AnD69GnGjBnD999/z6lTp8jNzSUjI4PU1NR816lTp47l66CgIABq166db19mZibp6el4eXkBULlyZSpVqmRp07RpU8xmM/v37yc4ODjf9ffs2UNmZiZt27bNtz8rK4uYmJhCn61t27ZUqVKFqlWr0qFDBzp06MBf/vIX3Nzcbtgf2dnZPPTQQ1SuXJl33nnHsn/btm1s2bIl35t0ubm5ZGZmkpGRcdNrioiI2IJyfH7K8SIiUpYoz+enPC8iImWFcnx+yvFyr1MRXuQuZm9vz8qVK0lOTmbFihW8++67vPTSS2zatImwsDASExM5c+YMU6ZMoUqVKjg7O9O0aVOysrLyXcfR0dHytclkuuE+s9l8w1iut7n+39+7ft5XX31FxYoV8x1zdnYu9Hqenp5s376dpKQkVqxYwZgxYxg7dixbtmzBx8en0HOefvppUlNT2bJlCw4O//v1ZjabefXVV+nWrVuBc1xcXG74TCIiIraiHJ+fcryIiJQlyvP5Kc+LiEhZoRyfn3K83OtUhBe5y5lMJpo1a0azZs0YM2YMVapU4T//+Q/PPfcc69atY9q0aXTq1AmAY8eOcfbsWavcNzU1lePHj1OhQgUANm7ciJ2dHTVq1CjQNjIyEmdnZ1JTU4mPjy/yPRwcHGjTpg1t2rThlVdewcfHh++//77Q5Dx58mQWLFjAxo0b8fPzy3esfv367N+/n/Dw8Nt8ShEREdtRjs+jHC8iImWR8nwe5XkRESlrlOPzKMeLqAgvclfbtGkT3333He3atSMwMJBNmzZx5swZIiIiAAgPD2fOnDnExsaSnp7OyJEjcXV1tcq9XVxc6NevH2+99Rbp6ekMGTKE7t27F5jaBvLekhsxYgTDhw/HbDbTvHlz0tPTSU5OxsPDg379+hU4Z9myZRw6dIi4uDh8fX1Zvnw5ZrOZmjVrFmi7atUqXnjhBf75z3/i7+/PyZMnAXB1dcXb25sxY8Zw//33ExISwiOPPIKdnR0//fQTO3fu5LXXXrNKf4iIiFiTcnwe5XgRESmLlOfzKM+LiEhZoxyfRzleJI+drQMQkTvn5eXF2rVr6dSpEzVq1GD06NFMmjSJjh07AvDxxx9z4cIFYmJieOyxxxgyZAiBgYFWuXd4eDjdunWjU6dOtGvXjujoaKZNm3bD9uPHj2fMmDFMmDCBiIgI2rdvz5dffklYWFih7X18fFiyZAmtWrUiIiKCf/3rX3z66adERUUVaLt+/Xpyc3MZOHAg5cuXt2xDhw4FoH379ixbtoyVK1fSsGFDmjRpwuTJk6lSpYpV+kJERMTalOPzKMeLiEhZpDyfR3leRETKGuX4PMrxInlMhmEYtg5CRO4uY8eOZenSpaSkpNg6FBEREbEi5XgREZGyS3leRESkbFKOFymdNBJeRERERERERERERERERETESlSEFxERERERERERERERERERsRJNRy8iIiIiIiIiIiIiIiIiImIlGgkvIiIiIiIiIiIiIiIiIiJiJSrCi4iIiIiIiIiIiIiIiIiIWImK8CIiIiIiIiIiIiIiIiIiIlaiIryIiIiIiIiIiIiIiIiIiIiVqAgvIiIiIiIiIiIiIiIiIiJiJSrCi4iIiIiIiIiIiIiIiIiIWImK8CIiIiIiIiIiIiIiIiIiIlaiIryIiIiIiIiIiIiIiIiIiIiV/D8CGGdQGBPnUAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Create subplots\n", - "fig, axs = plt.subplots(1, 4, figsize=(25, 10), sharey=True)\n", - "\n", - "\n", - "for i in range(len(heritability)):\n", - " h = heritability[i]\n", - " for m in methods:\n", - " if m in [\"TreeSHAP\", \"LIME\"]:\n", - " axs[i].plot(sample_row_n, agg_results[h][m][\"auroc_group1_avg_metric\"], label=m, linestyle='dashed')\n", - " else:\n", - " axs[i].plot(sample_row_n, agg_results[h][m][\"auroc_group1_avg_metric\"], label=m)\n", - " axs[i].set_xlabel('sample size')\n", - " axs[i].set_ylabel('AUROC')\n", - " axs[i].set_title('PVE = ' + str(h))\n", - " \n", - "# Share the label in the last plot\n", - "axs[3].legend()\n", - "\n", - "# Show the plots\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB+EAAANVCAYAAACnO4wHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXycdbn///fsmex72rRp2iRt2ibpvtCWQssqIgIFRFQQhaMct4PH4/eILAqiiPo7oCioRwUXFDxQRARkkZaWvaULSZc03be02deZZJb7/v0xySTTJG1Ik0ySvp6PRx+d3PO577kmXW7oe67rYzFN0xQAAAAAAAAAAAAAADht1mgXAAAAAAAAAAAAAADAWEEIDwAAAAAAAAAAAADAICGEBwAAAAAAAAAAAABgkBDCAwAAAAAAAAAAAAAwSAjhAQAAAAAAAAAAAAAYJITwAAAAAAAAAAAAAAAMEkJ4AAAAAAAAAAAAAAAGCSE8AAAAAAAAAAAAAACDhBAeAAAAAAAAAAAAAIBBQggPjGKPPfaYLBZL+IfdbtfEiRP1uc99TkeOHJEkff3rX5fFYtHOnTv7vM7tt98ui8WiTZs2SZImT54ccd3uP1asWDEcby3CE088oTlz5igmJkbZ2dm69dZb1dLS0q9zH3zwQa1atUpTpkyJWv0AAAwE9/mT27Vrl/7rv/5L8+fPV3JyslJTU7Vs2TI99dRTw1A1AAADxz3+w9m+fbtcLpcsFos2btw4BJUCADB4uM+f2rFjx/SVr3xFeXl5crvdys3N1U033aSDBw8OcdXA8LJHuwAAp+/RRx/V9OnT5fV6tW7dOt133316/fXXVVpaqptuukkPPvigfve73+lHP/pRj3MNw9Af/vAHzZkzR/PmzQsfX7ZsmX7yk5/0WJ+YmDik7+VEjz/+uD7zmc/o5ptv1gMPPKBdu3bpv//7v7V9+3a9/PLLpzz/l7/8peLi4nTeeefpueeeG4aKAQAYXNzne/fyyy/r+eef1/XXX6+FCxcqEAjoySef1DXXXKO7775bd9111zC9CwAABoZ7/KkFg0F9/vOfV3p6uo4ePTqEFQMAMLi4z/euvb1d55xzjurr63X33Xdr5syZKi8v13e+8x299NJL2rFjhxISEobpnQBDzAQwaj366KOmJHPDhg0Rx++8805TkvmnP/3JNE3TXLRokTlu3DjT7/f3uMaLL75oSjIfeuih8LHc3Fzz0ksvHdri+yEQCJjjx483L7rooojjjz/+uCnJfOGFF055jWAwGH5cVFRknnvuuYNdJgAAQ4L7/Mnv89XV1aZhGD2OX3rppWZsbKzZ1tY2qPUCADBYuMef+v/lO/34xz82J0yYYP70pz/t9XsGAMBIw33+5Pf5V155xZRk/uY3v4k4/uc//9mUZK5evXrQawaihXH0wBh01llnSZIOHDggSbrpppt07Ngxvfjiiz3WPvroo3K5XPr0pz89rDX2xzvvvKPKykp97nOfizh+zTXXKD4+Xs8888wpr2G18tccAGBs4T4fkp6eLovF0uP4okWL5PF4VFdXN6j1AgAw1LjHR6qoqNBdd92lhx9+eNg7/AAAGGzc50McDockKSkpKeJ4cnKyJCkmJmbwigWijHQKGIN2794tScrIyJAkXXfddYqNjdXvfve7iHX19fV69tlndeWVVyolJSXiOdM0FQgEevwwTfOUr9/beQO5VllZmSRp1qxZEccdDoemT58efh4AgDMJ9/mTW7NmjTIyMpSZmTmg8wEAiBbu8ZHv4+abb9bHPvYxffzjHz/legAARjru8yHLli3T/Pnz9d3vflcbNmxQS0uLNm3apG9/+9uaN2+eLrjgglO+F2C0IIQHxoBgMKhAIKCWlhY9//zzuvfee5WQkBD+H9WEhARdc801ev7551VVVRU+7/HHH1d7e7tuuummHtd84YUX5HA4evz4/ve/f8p6ejuvtx+///3vT3qd2tpaSVJqamqP51JTU8PPAwAwlnGf77/f/OY3Wrt2re644w7ZbLYPfT4AAMOJe3zffvGLX6i0tFQPPfTQKdcCADAScZ/vnd1u15o1a5SXl6dFixYpISFB8+fPV3Jysl555ZVwpzwwFtijXQCA09c5yqZTSUmJHnnkEWVlZYWP3XTTTfr973+vP/7xj/rGN74hKTTWJjc3V+eff36Pa5599tl64IEHehyfMGHCKevZsGFDv+qeMmVKv9b1Nmr2ZMcBABhLuM/3z4svvqgvf/nLuvrqq/XVr371Q50LAEA0cI/v3YEDB3TbbbfpwQcfjPheAAAwmnCf753f79e1116rsrIy/e///q8KCwu1b98+3Xvvvbrwwgv12muv9RhVD4xWhPDAGPCHP/xBM2bMkN1uV1ZWlsaPH99jzfLlyzVt2jQ9+uij+sY3vqEPPvhAmzZt0ne/+91eb4xJSUlasGDBgOqZM2dOv9adqkMtLS1NUujTdSf+j3ddXV2vn7YDAGCs4T5/ai+99JJWrVqlCy+8UI8//jgf1AMAjArc43v35S9/WcXFxbrqqqvU0NAgSfJ4PJKklpYWNTY28o/zAIARj/t8737729/qxRdf1IYNG8LvZfny5Tr77LOVn5+vBx98UN/5znf6VSsw0jGOHhgDZsyYoQULFmjOnDm93sw7ff7zn9e2bdv03nvv6Xe/+52sVqtuvPHGQa9nsEbblJSUSJJKS0sjjgcCAe3cuVPFxcWDXjsAACMN9/mTe+mll3TFFVfo3HPP1dNPPy2n0zmwNwYAwDDjHt+7srIyvfPOO0pJSQn/+PKXvyxJWrlypXJzc0/jXQIAMDy4z/duy5YtstlsmjdvXsTxvLw8paWlnXJPeWA0oRMeOIN89rOf1R133KFf/epX+vvf/67zzz9/SP7ndbBG2yxevFjjx4/XY489pmuvvTZ8/KmnnlJLS4tWrVp1WnUCADCWnIn3+ZdffllXXHGFzj77bP3tb3+Ty+XqV20AAIwmZ9o9/oknnlBbW1vEsX/+85+6//779ctf/lJFRUX9qhMAgNHgTLvPZ2dnKxgMasOGDVq8eHH4+K5du1RbW6uJEyf2q05gNCCEB84g48aN00c/+lE9+uijMk1TN910U59rGxoa9M477/Q47nK5NHfu3JO+zkBH4pzIZrPpRz/6ka6//np98Ytf1HXXXaeKigr9v//3/3ThhRfqIx/5SHjt66+/rvPPP1933XWX7rrrrvDxjRs3av/+/ZKkpqYmmaapp556SpK0cOFCPkEPABgzzrT7/BtvvKErrrhC48aN07e//W1t2bIl4vozZ85UYmLioNQKAEA0nWn3+BP30JUU/v/6+fPnD1qdAACMBGfaff5zn/ucHnjgAV111VW64447VFhYqL179+oHP/iB4uLidMsttwxKncBIQAgPnGFuuukm/f3vf1dqaqquuOKKPte9+eabWrJkSY/jEyZM0OHDh4ewwkif+cxnZLPZ9MMf/lCPPfaYUlNTdcMNN+j73/9+xDrTNBUMBmUYRsTxn//85z1G6FxzzTWSpEcffXRIRvsAABAtZ9J9/tVXX5XX69X+/ft13nnn9bj2mjVrtGLFiqF+CwAADIsz6R4PAMCZ5ky6z+fk5GjDhg265557dP/996uyslJZWVlasmSJ7rrrLhUWFg7b+wCGmsU0TTPaRQAAAAAAAAAAAAAAMBZYo10AAAAAAAAAAAAAAABjBSE8AAAAAAAAAAAAAACDhBAeAAAAAAAAAAAAAIBBQggPAAAAAAAAAAAAAMAgIYQHAAAAAAAAAAAAAGCQRD2Ef/jhhzVlyhTFxMRo/vz5Wr9+/UnXP/7445o9e7ZiY2M1fvx4fe5zn1NtbW34+ccee0wWi6XHj7a2tqF+KwAAAAAAAAAAAACAM5w9mi/+5JNP6tZbb9XDDz+sZcuW6Ve/+pUuueQSbd++XZMmTeqx/o033tANN9ygBx54QJdddpmOHDmiW265RTfffLOeeeaZ8LrExESVl5dHnBsTE9PvugzD0NGjR5WQkCCLxTLwNwgAwGkyTVPNzc3Kzs6W1Rr1z86NCdznAQAjBff5wcU9HgAwUnCPH3zc5wEAI0V/7/MW0zTNYawrwuLFizVv3jw98sgj4WMzZszQFVdcofvuu6/H+p/85Cd65JFHtGfPnvCxhx56SD/60Y906NAhSaFO+FtvvVUNDQ0Druvw4cPKyckZ8PkAAAy2Q4cOaeLEidEuY0zgPg8AGGm4zw8O7vEAgJGGe/zg4T4PABhpTnWfj1onvM/n0/vvv69vfetbEccvuugivfXWW72es3TpUt1+++164YUXdMkll6iqqkpPPfWULr300oh1LS0tys3NVTAY1Jw5c/S9731Pc+fO7bOW9vZ2tbe3h7/u/FzCoUOHlJiYONC3CADAaWtqalJOTo4SEhKiXcqoxX0eADBScZ8/PdzjAQAjFff408d9HgAwUvX3Ph+1EL6mpkbBYFBZWVkRx7OysnTs2LFez1m6dKkef/xxXXvttWpra1MgENDHP/5xPfTQQ+E106dP12OPPaaSkhI1NTXppz/9qZYtW6atW7dq6tSpvV73vvvu0913393jeGJiIjd0AMCIwKi1geM+DwAY6bjPDwz3eADASMc9fuC4zwMARrpT3eejviHNiQWaptln0du3b9fXvvY13XXXXXr//ff1z3/+U/v27dMtt9wSXnPWWWfpM5/5jGbPnq3ly5frr3/9q6ZNmxYR1J/otttuU2NjY/hH52h7AAAw+nGfBwBgbOIeDwDA2MV9HgAw2kWtEz49PV02m61H13tVVVWP7vhO9913n5YtW6ZvfvObkqRZs2YpLi5Oy5cv17333qvx48f3OMdqtWrhwoWqqKjosxaXyyWXy3Ua7wYAAIxU3OcBABibuMcDADB2cZ8HAIx2UeuEdzqdmj9/vl555ZWI46+88oqWLl3a6zkej0dWa2TJNptNUteeMCcyTVNbtmzpNaAHAAAAAAAAAAAAAGAwRa0TXpL+8z//U9dff70WLFigJUuW6Ne//rUOHjwYHi9/22236ciRI/rDH/4gSbrsssv0b//2b3rkkUd08cUXq7KyUrfeeqsWLVqk7OxsSdLdd9+ts846S1OnTlVTU5N+9rOfacuWLfrFL34RtfcJAAAAAAAAAAAAADgzRDWEv/baa1VbW6t77rlHlZWVKi4u1gsvvKDc3FxJUmVlpQ4ePBhef+ONN6q5uVk///nP9Y1vfEPJyck677zzdP/994fXNDQ06Atf+IKOHTumpKQkzZ07V+vWrdOiRYuG/f0BAAAAAAAAAAAAAM4sFrOvOe5nsKamJiUlJamxsVGJiYnRLgcAcAbjnjT4+J4CAEYK7kmDi+8nAGCk4J40+PieAgBGiv7ek6K2JzwAAAAAAAAAAAAAAGMNITwAAAAAAAAAAAAAAIOEEB4AAAAAAAAAAAAAgEFCCA8AAAAAAAAAAAAAwCAhhAcAAAAAAAAAAAAAYJAQwgMAAAAAAAAAAAAAMEgI4QEAAAAAAAAAAAAAGCSE8AAAAAAAAAAAAAAADBJCeAAAAAAAAAAAAAAABgkhPAAAAAAAAAAAAAAAg4QQHgAAAAAAAAAAAACAQUIIDwAAAAAAAAAAAADAICGEBwAAAAAAAAAAAABgkBDCAwAAAAAAAAAAAAAwSAjhAQAAAAAAAAAAAAAYJITwAAAAAAAAAAAAAAAMEkJ4AAAAAAAAAAAAAAAGCSE8AAAAAAAAAAAAAACDhBAeAAAAAAAAAAAAAIBBQggPAAAAAAAAAAAAAMAgIYQHAAAAAAAAAAAAAGCQEMIDAAAAAAAAAAAAADBICOEBAAAAAAAAAAAAABgkhPAAAAAAAAAAAAAAAAwSe7QLAAAAAAAAAAAAACCZpqnSmlI1tDcowZmgeEe8EpwJinPEKc4RJ6uF/lpgNCCEBwAAAAAAAAAAAKKoxlujv+/5u1ZXrNaBpgO9rrHIojhHnOKd8eFwPt4RH/463hmvBEdCn893hvl2K/EgMNT4UwYAAAAAAAAAAAAMs4AR0FtH39LTu57W64dfV9AMSpLcdrcmJ05Wq79VLf4WNfua5Tf8MmWqxd+iFn/Lab2u2+7uCus7A/wTQvvw484Qv1vAn+BIkMPmGIxvATBmEcIDAAAAAAAAAAAAw+RQ8yE9U/GMnt3zrKo8VeHjszNma9XUVbp48sWKc8RFnNMebFezr1ktvha1+lvV7A89bvY1h4J5X4ua/c2h5zrWdQb4nc+3BdskSd6AV96AV1XeKg2Uy+Y6ZRd+nCMuMtjvDPE7jrlsLlkslgHXAIxkhPAAAAAAAAAAAADAEGoPtuu1g6/p6Yqn9W7lu+Hjya5kXZZ/mVYVrFJBSkGf57tsLrncLqW70wdcg9/wq9XXFeB3D+mbfaEAvzPM7/5z94C/1d8afj/twXbVttUOuB671R7ZhX9CgN/9eF8Bf6w9liAfIxIhPAAAAAAAAAAAADAEdtXv0uqK1Xpuz3Nq8jVJCu3tviR7iVZNXaWVOSvltDmHpRaH1aHkmGQlxyQP+BpBI6jWQGuPLvzu3fi9deGf2K1vmIYCRkAN7Q1qaG8YcD1WizUUyHcL6buH9b114Z8Y8MfZ42Sz2gZcA9AbQngAAAAAAAAAAABgkLT6W/Xivhe1umK1SmtKw8ezYrN05dQrdUXBFZoQPyGKFQ6czWpTojNRic7EAV/DNE15Ap6Isfknhvg9AvzO57sdD5gBGaahZl+zmn3NUuvA31dnMB8O8bsH9/0I+OOccXJYHQMvAGMOITwAAAAAAAAAAABwGkzT1NbqrXq64mm9tP8leQNeSZLdYtfKSSu1auoqLRm/hI5rSRaLRXGOuNC+93EDu4ZpmmoLtn3oLvyI530t8hk+SQqP2j+u4wN+XzG2mN5D+s7HJ4b43QL+zvH6LptrwK+PkYUQHgAAAAAAAAAAABiAurY6PbfnOa2uWK29jXvDx6ckTdGqglW6LP8ypbnToljh2GSxWOS2u+W2u5WhjAFfxxf09QzpTwjsewv2uz/f+YGLtmCb2rxtqvHWDLgeh9XR6xj9zpC+ry787t36brtbFotlwDVgcBDCAwAAAAAAAAAAAP0UNIJ6p/IdPV3xtNYcWqOAEZAkue1uXZR7ka6adpXmZMwhCB0FnDanUm2pSo1JHfA1AkZArf7WcEh/sjH7PQL+biG/JPkNv+ra6lTXVjfgemwWW0THfZwjMqTv7MLv3p1/YsAf64iV1WIdcA0ghAcAAAAAAAAAAABOqbKlUn/b/Tc9s/sZVbZWho8XpxXryqlX6pIplyjBmRDFChENdqtdSa4kJbmSBnwNwzTU6m8Nh/ThUP+ELvzOn1t9rb2O3zdMQ0EzqMb2RjW2Nw64HossinfEK84Z12v3fTjEP2H8fveAP84RJ7v1zI2iz9x3DgAAAAAAAAAAAJyEP+jXmkNrtLpitd46+pZMmZKkBGeCLsu7TKumrlJhamGUq8RoZ7VYleBMUIIzQeM1fkDXME1T3oC3R/f9iV34fQX8nc8HjIBMmWr2N6vZ33xa78ttd3eF9icG+Cd04fcW8Cc4EuSwOU6rhmghhAcAAAAAAAAAAAC62dOwR6srVuu5Pc+pvr0+fHzxuMW6cuqVOn/S+Yqxx0SxQiCSxWJRrCNWsY5YZcZmDvg67cH2PkP6HuP1+xi/3xZskyR5A155A15VeasGXI/L5oroto9z9jJev1sXfvfx+53PuWyuYd8eghAeAAAAAAAAAAAAZzyP36OX9r+k1RWrtaV6S/h4hjtDVxRcoSsLrlROYk70CgSGgcvmksvtUro7fcDX8Af9vQb2J4b2Jwv4PQGPpNCHAtqD7aptqx1wPXarXRdMukA/PvfHA77Gh37NYXslAAAAAAAAAAAAYAQxTVNlNWV6uuJpvbjvxXDwZ7PYdM7Ec3TV1Ku0bMKyM3pva4x9pmlKnT8MQzI7Nl7o9rVMM3Kdaco0jM4LhNeG1kjxMhVv2DXOTJbMJJlWSU5DcphSbOf5pqQTrhd6YRnBgDy+VnkCHnl8rfL6WuXxe+Txe+T1e+T1t8rj63gc8KrN71Gb3ytPx89tfq/aAl7JNGWRT2lqGtbvKX9jAAAAAAAAAAAA4IzS2N6of+z9h56ueFoV9RXh4zkJOVo1dZUuz79cGbEZw16XaRjy7dunYH19t9BTknlCEHqS8LLr6/6e2y1Y1YnnmpJpdAtfFQpldcL1Is5V1/X6ODd8rNu5PWoxTZnmh7hev89VV7isbt/j7mGz+nE9wwit69e5kV/3Wkvnuae4Xm919BmaK/JavddiDsPv7NMX0/EjdYDnO8+3SNcPYkGnQAgPAAAAAAAAAACAMc8wDb137D2t3rVa/zr4L/kMn6TQ+O0Lcy/UqqmrtCBrwbDuHW20tspbWibv5k3ybN4s75atMpqGt2MXGDQWS9cPq1WW7sesVsli6TrW8XX4WLevZbGE/hxGXM8iiywnnKvQsYhzJYvF2uPcuNz8Yf1WEMIDAAAAAAAAAABgzDreelzP7nlWqytW60jLkfDx6anTtWrqKn10ykeV5Eoa8jpM01SgsjIUtm/aLO/mzWorL5eCwYh1FrdbjszMrmDR2hFIDjCA7DXM7HE9dYShJ4Sj1m7rTnJu+Fi32kKvfUJtVmvf1+v+viwWqb/nRpyvbu/3JNfrce6J36sTzo147Y5aIr4PvXyfO693inMt1j7OO1kt4fO7Xa+3czte29Lx6/Ghzu147fC5JwbpvZ2LMEJ4AAAAAAAAAAAAjCl+w691h9dpdcVqvXHkDRlmaO/qeEe8Ls27VKumrtLMtJlDWoPp96tt5055N2+WpyN0Dxw/3mOdPXu8YufMlXtu6EfM9EJZ7ER4wGjGn2AAAAAAAAAAAACMCQeaDmh1xWo9u/tZ1bbVho/Py5ynq6ZdpQtzL5Tb7h6S1w7U18u7ZYu8m7fIu3mzvKWlMtvaIhfZ7YqZMUPuuXMU2xG6O8aNG5J6AEQPITwAAAAAAAAAAABGLW/Aq1cPvKqnK57W+8ffDx9PjUnV5QWX68qCKzUlacqgvqZpGPLt2xfqct+8Wd7NW+Tbu7fHOltSUrjD3T13jtwlJbK6h+ZDAABGDkJ4AAAAAAAAAAAAjDrba7drdcVqvbD3BTX7myVJVotVZ084W6sKVumcnHPksDoG5bUMr1feD0pDHe6bN8u7ZYuCjY091jnz8uSeNzfc5e6cPLljL3MAZxJCeAAAAAAAAAAAAIwKTb4mvbD3Ba2uWK0ddTvCxyfET9CVBVfq8oLLNS7u9Me7+48dk3fTJnk6Rsu37dwpBQIRaywxMXKXlMg9b16oy332bNlTUk77tQGMfoTwAAAAAAAAAAAAGLFM09TG4xu1umK1XjnwitqD7ZIkh9Wh8yedr1VTV2nx+MWyWgbWcW76/Wor3yXvpk3ybtksz+YtClRW9lhnz8rq6HKfJ/fcuYqZXiiLY3A67QGMLYTwAAAAAAAAAAAAGHFqvDV6dvezemb3MzrQdCB8vCC5QFdNvUofy/uYkmOSP/R1gw0N8m7dKs+mjtHypaUyvd7IRTabYqZPl3vuXMXOC42Wd4wff5rvCMCZghAeAAAAAAAAAAAAI0LACOjNI2/q6Yqnte7wOgXNoCQp1h6rS6ZcolVTV6kkvUQWi6Vf1zNNU759++XdvFmezZvk3bxFvj17eqyzJibKPXdOaC/3OXPlnlUia2zsoL43AGcOQngAAAAAAAAAAABE1aHmQ3qm4hk9u/tZVXmrwsdnZ8zWVVOv0sWTL1as49ShuOH1qq2sLLyXu3fzZgUbGnqsc06ZIvfcueHg3ZmXJ4t1YOPsAeBEhPAAAAAAAAAAAAAYdu3Bdv3rwL+0umK13j32bvh4sitZH8//uFZNXaX85PyTXsN//Hg4bPds3qK27dulQCBijcXlUkxJcXgvd/fcObKnpAzJewIAiRAeAAAAAAAAAAAAw6i8rlzP7H5Gz+15Tk2+JkmSRRYtyV6iVVNXaWXOSjltzh7nmYGA2srL5e3W5e4/erTHOntGhtzz5oX3co+ZPl0WZ8/rAcBQIYQHAAAAAAAAAADAkGrxtejF/S9q9a7VKqstCx8fFzdOVxZcqSsKrlB2fHbEOcGmJnm3bJFn8+ZQ8P7BBzI9nsgLW61yTS9U7Jy5oeB97hzZs7P7vWc8AAwFQngAAAAAAAAAAAAMOtM0taV6i1ZXrNZL+1+SN+CVJNmtdq3MWalVU1dpyfglslltMk1Tvv375dkU6nD3btms9ordPa5pTUiQe86c0F7u8+bJXVIia1zccL81ADgpQngAAAAAAAAAAAAMmlpvrf6x9x96uuJp7WvcFz4+JWmKrpp6lT6W9zGlWOLUtm2bGl58NBy8B+vre1zLmZvbsY/7XMXOmytnfr4sVutwvh0A+NAI4QEAAAAAAAAAAHBagkZQb1e+rdUVq7Xm0BoFjIAkyW1366Lci3RV6nnKO+RX23Nb1LT5S6ravkPy+yOuYXE6FVNSoti5c8LBuz01NRpvBwBOCyE8AAAAAAAAAAAABuRoy1H9bfff9MzuZ3Ss9ZgkyWKYOt+Xr8u801RwKCD/o+/Kf/hpHT3hXFtGumLnzgt1uc+do5iZM2VxOof/TQDAICOEBwAAAAAAAAAAQL/5gj6tObRGqytW6+2jbyumzdC0o6YuqHTqrNoUZe6rlzy7JO2Sp/Mkq1WuadMUO29uuMvdMWGCLBZLFN8JAAwNQngAAAAAAAAAAACc0p6GPVq962m9vfFZjd/boKIjpq48bGpSjWQxJalNUqUkyRofL/fs2XLPm6vYuXMVM2uWbPHx0SwfAIYNITwAAAAAAAAAAAB61dpSr/Wv/V671/1DCbuO6uzDpj7m6bnOMWlSx17uofHyroJ8WWy24S8YAEYAQngAAAAAAAAAAABIkgI1NfJs2qxDb72sug1vK2l/rXKDUm63NabDLndxsWLnzguNl58zR/b09KjVDAAjDSE8AAAAAAAAAADAGcgMBtW+e7e8mzfLu3mzWt5/X8HDRyRJVkmdsXpznE2+ojzlLL1AGYuXK6aoSFanM2p1A8BIRwgPAAAAAAAAAABwBgi2tMi7dau8m7eEgvetW2W0tESsMSQdzJT2TLTLNWeW5l7wKS2Yc4msVmt0igaAUYgQHgAAAAAAAAAAYIxrWb9eh7/0ZZl+f8TxNpdF5eOlXROl8gkWWYoK9bFZn9ANeR9VojMxStUCwOhGCA8AAAAAAAAAADDGNb34T5l+v4JpSarIi9GbqTXaOUE6mCHFuxL10byP6vapqzQzbWa0SwWAUY8QHgAAAAAAAAAAYIxr2LpRFkn/34pmbZzWKsmi+Vnz9cWpV+mC3AvktrujXSIAjBmE8AAAAAAAAAAAAGOY0dYmc98hWSTV5aboc8WrtKpglSYnTY52aQAwJhHCAwAAAAAAAAAAjGHtO3fKaphqiJO+dOEdunjKR6JdEgCMadZoFwAAAAAAAAAAAICh0/zBVknS3nEWlWTMinI1ADD20QkPAAAAAAAAAAAwhlVtfls2SUcnujU+bny0ywGAIWGaplraA2rw+FXX6lO9xxd+PCk1VhfMzBq2WgjhAQAAAAAAAAAAxjDftu1yS7JML5DFYol2OQBwSoZhqqmtM0z3q8HjU11rKFSv94QC9vpWv+o8PjV4utb4g2av1/toyThCeAAAAAAAAAAAAJw+w+uV61C1JCl1zsIoVwPgTOQPGmroCMnrOzrTGzy+jgDdr/qOrvX6zoC91adGr19G73n6KbnsVqXGOZUc61RqnEPJsU7Nn5QyuG/qFAjhAQAAAAAAAAAAxqi2HTtlNaX6OKlw2pJolwNglGvzB7u60Tu61Os8PjW0dgvROwP1jnC9uS0w4NeLd9mVHOsIh+opsQ6lxDpDP+J6f+x22gbxHQ8MITwAAAAAAAAAAMAYVb91oyRp7ziLLksvjnI1AEYK0zTl8QV7GfHePUzvOQbe4wsO6PUsFikxpjNMdyg1tluoHtcRpJ/wODnWKafdOsjvfHgQwgMAAAAAAAAAAIxR1VvekUtSTW6SklxJ0S4HwBAwDFPNbYFuXeih/dK7d6V3D9M7f/YFjQG9ns1qCYfkoTC9ows9rlunelxXkJ4a51SS2yGb1TLI73zkIoQHAAAAAAAAAAAYowLby+WSZJsxNdqlAOiHoGGG907v7Exv6Bj5Xu/xqaG1Y/x7t1C9wetXcIAbqDvt1j5HvHeOge/+ODnWqcQYuyyWMydQHwhCeAAAAAAAAAAAgDHI8HjkPlwrScqYe1aUqwHOPL6AEQrLT+hM7+xG7/64M3hv9PoH/HqxTlvPvdK7daP3Fqq7HTYC9SFACA8AAAAAAAAAADAGeXfskNWU6uKl6dOWRrscYFTz+oIdYXrvI97rT3hc3+pT6wD3T5ekxBh75F7pvYx47xwD3/nYZbcN4jvG6SCEBwAAAAAAAAAAGIOqN78jSdo33qqrU6dHuRpgZDBNU83tgfBY9/rwaHd/Rzd69651fzh0bw8MbP90q0VK7hakhwL0yMfJHV3rnY+T3Q7ZbdZBfucYToTwAAAAAAAAAAAAY1DN5ncVJ6lpcrpi7DHRLgcYdEHDVJO3a4/0+m77pXcP0LuH6g0enwID3D/dYbP02C+9M2Dv/rh7B3tijENWK+PezzSE8AAAAAAAAAAAAGOQsbNCkuSYSRc8Rj5/0Ajvkd595Hv3/dLru++j7vGp0euXObA8XW6HrdfR7p0j3yNC9Y7jcU72T0f/EMIDAAAAAAAAAACMMUZrq+KONkiSsuYtiW4xOOO0+YO97pFef8LjBo8v1Lne6ldze2DAr5fgsis5zqHU8Ij3nqF6Zwd7Ssco+BgH+6ePWkG/5G2QvPVSW8fP3obIx+HnOh7nnydd8sNhK5EQHgAAAAAAAAAAYIzxbN8uqynVxUvTpy2NdjkYpUzTVKsvGNGZ3tvjhhM61r3+4IBez2KRkt2OXse9dx/x3hmuJ8c6lOx2ymln//RRxwhKbY2RQXmfgXpD5Dp/64d/vdS8QSu9PwjhAQAAAAAAAAAAxpijm9ZLkvZn23VWUn6Uq8FIYBimmtr8vXejn/C4c9x7g8cnf3Bg897tVssJAXpkZ3pyrFOpHZ3pnY8T3Q7Z2D999DBNydfSe+f5qTrU25okDXAvgU4xSVJMsuROkdzJfT92p0iJE07vtT4kQngAAAAAAAAAAIAxpm7LBiVJas3Lks3K2O2xJhA01ODtDM39Hd3oocc9QvWOTvUGj0/GADNPl93ac7R7XOSI93CoHutUcpxDCS47+6ePFv62/ofoJz42Br6NgCTJEdcVlMckdzxOPnmgHpMcCuBH8N9thPAAAAAAAAAAAABjjKV8ryQpprg4ypXgwzBNU+/tq1NFVUtEqF7v8amuI0ivb/WpqW3gwWec0xYe7d458r23MD25o4M9NdYpt3Pkhp3oEAz0EqI39C9QD7Sd3mvbnCeE6L097qNb3e48vdceoQjhAQAAAAAAAAAAxpBgS6sSKpskSePnnx3latAfhmHq1R3H9fM1u/XB4cZ+n5fkdkTsl54c6+gY8d71OLkjXE+NdSop1iGXnUB9xDIMqb2p9/HtfQbqHT98zaf32hbrKUL05L4DdYdbYupBBEJ4AAAAAAAAAACAMaR5+weymFJtglQ0dWm0y8FJBA1TL5RW6hdrdmvnsVCIGuOw6uyCdKXFuZTcMfK9e2d6Ssc+60luh+w2a5TfAXowTcnvOfl+6H0F6m2Nkmmc3uu7EiPHuvc3UHcmSFZ+Pw0WQngAAAAAAAAAAIAx5NCGtbJLOjTBqWVx46NdDnrhDxp6dstRPbxmt/bWtEqS4l123bAkV58/e4rS411RrhAKtJ98P/STBeqG//Re2+4++X7ofT2OSZJsxL8jAb8KAAAAAAAAAAAAY0jT1k1KldRWMEEWRkSPKO2BoJ56/7AeWbtHh+u9kkIj5T+/bIpuXDpZSbGOKFc4xhjBUHd5OETvFqBHjHPvJVD3e07vta32U++H3lu4HpMsOWJO77URdYTwAAAAAAAAAAAAY4h1135JUmxxSXQLQZjXF9Rf3juoX63bo+NN7ZKk9Hinbl6ep8+clat4F5Fdn0xTam/uYz/0k3WlN0rtjaf54pZQd/nJ9kPvK1B3xrFP+hmMP9EAAAAAAAAAAABjRLClVYnHWyRJExecG+Vq0Nzm1x/fOaDfrt+n2lafJGlcYoxuOTdP1y6cJLfTFuUKh4lpSn7vyfdD7zNQb5TM4Om9vjP+hPHtyX3vjd79sSuJfdIxIITwAAAAAAAAAAAAY0TtBxtkNaWaRKmkYGm0yzljNXh8evTN/Xr0zX1qagtIknJS3frSigKtmjdBLvsoDd+D/lPvh95XoB5sP73Xtrn6vzd6RKCeLNkY84/hRQgPAAAAAAAAAAAwRhzasEaxkionxmp5THK0yznj1LS06zfr9+mPb+9Xqy/UvZ2fEacvryzQx2dny24bAV3Vnfukn2w/9HCg3hgZqPtbT++1LbaT74d+skDd4T691waGESE8AAAAAAAAAADAGNFS+oFiJfmn5kS7lDNKZaNXv163V39576Da/IYkafq4BH31vKn6SPE42ayDvDe4aUq+lg/Xld75uK1Jknl6r+9KOmGsez8DdVcC+6TjjEAIDwAAAAAAAAAAMEY4Kg5KkuJL5kS3kDPEwVqPHnl9j55+/7B8wVD4PjsnWV9dWaDzZ2TK8mED54BP2vOaVLf31IG6ETi94h2xfY9vP1lXekySZB2l4/Qx5rV7WtXu8cjf5lW7xyNfm1exiUnKnJw3rHUQwgMAAAAAAAAAAIwBgeZmpRz3SJJyF50X5WrGtj3VLfrFmt16dstRBY1QV/miKan62nlTtawg7cOF76YpHXlf2voXqezpUNDeX1ZHL13oKT071HvrVrc7+/86wBAwTVOB9nb52rzyeT3yeb3ytXnljHErK68gvO7tp/6idk9L6PmONZ0/Z+bm6SNfujW89tdf+px8Xk/E6xSde0HEmuFACA8AAAAAAAAAADAGVG5+U5JUnSgtzFsY5WrGph2VTfrFmt16vrRSZsdE93OmZegrKwu0aErqh7tYw0HpgyelrU9Itbu7jsePk3KX9i9cd8Qy3h3DKhgIyNfmld/rldVmU3xqmiTJCAa1fd1rEQG5z+uV3xvqRs+ckq8lV10nSTINQ7+4+Tr5PF6ZptHjNSbPnqervn1P+OuN/1gtn9fbaz12hyPia6fbrYDPJ6fbHfoR41Z86of8szkIoh7CP/zww/rxj3+syspKFRUV6cEHH9Ty5cv7XP/444/rRz/6kSoqKpSUlKSPfOQj+slPfqK0tLTwmqefflp33nmn9uzZo/z8fH3/+9/XlVdeORxvBwAAAAAAAAAAICqObHhdSZKqJyXKbXdHu5wxZcuhBv38td16dcfx8LELZ2bpKysLNDsnuf8XamuStj8bCt4PvNF13BErTf+YNPuTUt4Kxr1j0JiGIcMIymYPhdXBgF9Hdu7oCNI9kaG5x6PMKfkqOvd8SZK/rU1/ueubEV3qQb8/fO1pS5brslv/O/SFRXrplz/ts45At/MsVquMQLArgLdY5IyJkTPGLYc7VvGp6RHnzr7oUpmG0RGqx8oZ2/Gz263YpOSItTc/9Jvwe42mqIbwTz75pG699VY9/PDDWrZsmX71q1/pkksu0fbt2zVp0qQe69944w3dcMMNeuCBB3TZZZfpyJEjuuWWW3TzzTfrmWeekSS9/fbbuvbaa/W9731PV155pZ555hl94hOf0BtvvKHFixcP91sEAAAAAAAAAAAYFq1lpUqSFCzMjXYpY8Z7++r00GsVWl9RIynUdH5pyXh9eWWBZoxP7N9FggFp75rQuPmdz0uBto4nLNKU5dLs66QZl0muhKF5ExiVjGBQTTXVoQC8o/M8HJh7vUrPyVXurDmSJE9To17+1c+6xrV3C9f97W2add7FuvALX5Ek+dra9H/f+3afr1u49JxwCG9zOFR9YF+v62wOh7rPYLBabSpYeJasdoecMe6ITnSnO1ZJWeMizr/hRw/J7nLJ6XbL4XTJYrX2WdM5n7rx1N+wzrpGQAAvRTmE/5//+R/ddNNNuvnmmyVJDz74oF566SU98sgjuu+++3qsf+eddzR58mR97WtfkyRNmTJFX/ziF/WjH/0ovObBBx/UhRdeqNtuu02SdNttt+n111/Xgw8+qL/85S/D8K4AAAAAAAAAAACGX8zuI5KkpFnzo1zJ6Gaapt7YXaOHXtut9/bVSZJsVouumDNBX1qZr/yM+P5d6FhpqOP9g79KrVVdx9MLQx3vsz4hJU0cgneA4WYYQfnb2rrtWd7VOZ6cNV4ZkyZLklob6vXuM3/tscbv9ard61Hxigu19JpPSZKaa6v126/d3OdrzrrgI+EQ3mKxaM/Gd/tc62vrGuXujHErdUJOt4DcHe5Ad7rdypqSH15rtdl09e33yhHjCofpjo71NnvPmPny/7qj39+z5HHj+712NIpaCO/z+fT+++/rW9/6VsTxiy66SG+99Vav5yxdulS33367XnjhBV1yySWqqqrSU089pUsvvTS85u2339bXv/71iPMuvvhiPfjgg33W0t7ervb29vDXTU1NA3hHAABgJOI+DwDA2MQ9HgCAsYv7/MD4GhuUWh3qsJ686PwoVzM6maapV3dU6edrdmvroQZJktNm1dULJurfz81XTmrsqS/SVCmV/l8ofK/a1nU8Nk0quUaada2UPZd93KPMNE0F/L5w+O3zehWXlBze37ylvk4731jbc3/zjp+Lzj1fxSsvlCRV7d+rP/731/p8rYWXX62Mjk5uf1ubNv/zuT7Xehobwo8dMW7Zna5uHeWx4ceOGLfG5U8Lr3XFxunCL3wlHJSHQvVuneixXb93bXa7Pvc/j/T7e9UZ9OPDiVoIX1NTo2AwqKysrIjjWVlZOnbsWK/nLF26VI8//riuvfZatbW1KRAI6OMf/7geeuih8Jpjx459qGtK0n333ae77777NN4NAAAYqbjPAwAwNnGPBwBg7OI+PzAHNq6RJFUnWbQsd26UqxldgoapF8sq9fPXdmvnsWZJUozDqk8tytUXzsnTuKSYk1/A1xoaM7/1L9LetVLnPtc2p1R4SWjcfMEFkm1kjMkerYxgUD6vVzaHXQ5X6NfE09SoIzu2ydfmVbvH0xGSd41in77sXE2ZE5oMUbm7XM/9zw/DHeimYURc/+xP3qDFV35CktRaX6fX//S7PmvJnjY9/NgR0/X7w2qzhQNwV0fXeEJHsC9J7sQkLb7yE3LEuE/oRA8F7PHd1sYmJuk//vh0v743VptNs87/SL/WYnhEdRy9FBqP0J1pmj2Oddq+fbu+9rWv6a677tLFF1+syspKffOb39Qtt9yi3/72twO6phQaWf+f//mf4a+bmpqUk5MzkLcDAABGGO7zAACMTdzjAQAYu7jPD8zR99crU1JdbrJsVlu0yxkV/EFDf99yVL9Yu1t7q1slSXFOm25YOlk3nT1F6fGuvk82DGn/+lDH+46/S76WrudyzgqNmy+6QnKnDO2bGCXaPa1qOFYZEZD7vF3j2AsWnKWsvAJJ0tFdO7Tu8UcjO9C9XgX8PknS+Td9SXMu+qgkqebgfv39f37Q5+umTZwUDuEtFquaa6t7rOkMxG2Org9JxCWnaPqyczs6z2N7dKKnTZwUXpuUkaV//9/HQyPaHY6TZpKu2Fid/ckbPsR3DqNV1EL49PR02Wy2Hh3qVVVVPTrZO913331atmyZvvnNb0qSZs2apbi4OC1fvlz33nuvxo8fr3Hjxn2oa0qSy+WSy3WSv0gBAMCoxX0eAICxiXs8AABjF/f5gWnftl2SZBbmn2Il2gNBPf3+ET3y+m4dqgvtlZ3kduhzyybrxqWTlRzr7Pvk6vKufd6bDncdT5kc6nif9QkpNW9o38AQCgYCave0hseudw/CfW0eTSqapaTMcZKko7t2asvLz3eMaff0WH/hF76i6UvPkSQdLN160rA8PiU1HML729t1ZOf2Ptf629vCj2OTkpVdOLPH/uadI9tzZpaE16ZNyNGnf/BA5BpXjCxWa896UtN06de+2a/vmdVmU2xiUr/W4swRtRDe6XRq/vz5euWVV3TllVeGj7/yyiu6/PLLez3H4/HIbo8s2WYLfZrLNE1J0pIlS/TKK69E7Av/8ssva+nSpYP9FgAAAAAAAAAAAEaE2D2VkqSUjq5f9OT1BfXEhoP61et7dawpFOSmxzt109l5+sxZk5QQ08e4+NYaqezp0Lj5o5u7jsckSUVXhsL3nMVR2efdNAz52trCI9b9HSF4Ru4UuRMSJUnH9lRo94Z3eqzpDMzPu/ELyimaJUnasX6NXvrlT/t8vUu/9s1wCN9SX6sd69f0udbn8YQfx8THKz41rSsod7vlCHeWxyptQldneUbuFH3s1m/J5XbLEe5C7zrPZu/6dUrPydV19/yoX98rR0yMxuVP7dda4HRFdRz9f/7nf+r666/XggULtGTJEv3617/WwYMHdcstt0gKjZw5cuSI/vCHP0iSLrvsMv3bv/2bHnnkkfA4+ltvvVWLFi1Sdna2JOk//uM/dM455+j+++/X5ZdfrmeffVavvvqq3njjjai9TwAAAAAAAAAAgKHiqa9WWk1oVHf+4ouiXM3I09Ie0J/eOaDfrN+rmpbQ9ykr0aUvnpOv6xZNktvZy/h+f5u065+hrvfdr0hGIHTcapcKLgyNm5/2Eclxiv3iPyTTMFSx4W3VHjoYCso9nePbPVp+3WeVPmmyJOmDV/+ptX/8rfxt3l6vs+q2u8Nj2KsP7tO7zzzZ52u2NjaEHzvdbkmS3ekKh9+ObiG4u1vHd0buFJ3zmc93C8gjA/O4lNTw2pyiWfriI7/v1/cgNjFJhUvO7tdaYKSKagh/7bXXqra2Vvfcc48qKytVXFysF154Qbm5uZKkyspKHTx4MLz+xhtvVHNzs37+85/rG9/4hpKTk3Xeeefp/vvvD69ZunSpnnjiCd1xxx268847lZ+fryeffFKLFy8e9vcHAAAAAAAAAAAw1Pa8+4rskmqSrZo+YUa0yxkxGj1+PfbWfv3uzX1q9PolSRNT3Pr3Ffm6ev5EuewnhO+mKR16L9Txvm211NbY9Vz23FDHe/FVUlz6kNRbd/SIXvn1Qzq8o6zX5+de/LFwCC+LJSKAt1itEfuWW21d7y09J1dzLv7YCR3lsR2PY5WROzm8tmDhEn39z89GnN+XlHHZWnjZqgG9V4xNpmHKME3ZbF0j/tta/Qr4DBmGEXo+2PHDMGUapjJzE8Nraw43q7XBJyNoyOhYaxpm+PH0s8bJ2nHt/aU1qj3SItMwFQyaMjuuaRihx2ddkS+HK/T7uLHao6SM2GH9XkQ1hJekL33pS/rSl77U63OPPfZYj2Nf/epX9dWvfvWk17z66qt19dVXD0Z5AAAAAAAAAAAAI9qxTW9poqSGyWmyRGEk+khT09Ku376xT398+4Ba2kMd7HkZcfryigJ9fE62HLYT9gCv2yd98GSo671+X9fxxAmhPd5nfVLKnD7kdTcer9ThHWWyu1yavvQcueLiI8awp07sGtk+7axlmlQ0KzTW3e2W3eHs89d+fEGhxhcU9quG/oTv6B/TNGWa6gqHuwXLVqtF7gRneG3d0VYFA0Y4nO5cawZNOVw2jS9IDq/du7la7d5AR6DddU3DMOVy21W0fEJ47eaXD6q1oT0cThtBI1yPK9ahcz45Lbx23RO7VFfZ2nXdYFf47Yyx66r/17XVxQuPfKDK3Y09ajVNye606os/WxFe+8rvtuvgtto+v09femRl+PfuxhcOaM+mqj7XFszPlLPjz++e96u0851jfa6df8nkcAjvbfErKaPPpUMi6iE8AAAAAAAAAAAABi6wfackyTrjzN7v+lhjm369bq/+/N4BtfkNSdL0cQn6ynkFuqR4vGzWbiG1t0Ha9kwofD/4dtdxR5w08/LQuPnJZ0vWoQ2l21paFBMfL0maMneBzv3M5zV18TIlZWad9LyYuHjFxMUPaW2DzTRNyZQsHb8OhmGqvdUfEfaGA13DVEycQ/EpoXH/AX8wFPoGuzqduwfASRmxGp8fGpUf8AVV+vqRrq7rzvC54+v0nAQVLg7tax8MGFrzx529dF2HQuhx+UlafFle+D08+f33ujq5u4XPhmEqe2qKPvKF4vDa//36Ovnbgr1+L8YXJGnVf3WF2n97YJO8zf5e12ZMStAnvr0w/PWbT1eoqaat17XJWbERIfzOdypVd7S117XxKa6IEL7qQJOO72vqda0rNjJS9rUF1dbae72GYUZ8bbVZZLVaZLFZwo+tNoss1tBj0zBlsYV+TyRlxChjUkLXOR1rw193+6DJ+KnJkrXreuHX6Pja7uz6sE1C6uBuG9EfhPAAAAAAAAAAAACjWPzeUOdo+pwzc2veQ3Ue/fL1Pfq/jYflC4bC99kTk/SV86bq/OmZsnaG70G/tPtfoXHz5S9KwfbQcYtVylsR6nif8THJGTfkNfu8Hr3x5B+1Y90affb/e1jxHfunLzhhvHu7N6CWuraI8d3dA+C07HjFJbskSc11bTpa0XBC+Ny1dtLMVKVPTJAkNRz3aPsbRyPGd3cPtactGqfcojRJUu3RFr351O6ukDqiFkMlKyaGg9/aIy36+0+3nFBr1/r5l+TqrMvzJUmNVR79+bvv9vk9mn1ejs7+ROiDJW0tfv39p1v6XDvz7OyuEN5v6K2nd/e5durCrHAIL0nl7/bdTd3ZSd2p7khrj5C5U7snMpS2WnufTNDbwIK4ZJesNms4SLbZugLo5Ex3xNrsaSlKGefrCqi7/Ryb5IpYO2PpeHmb/eEg29IttHa6I2PiRR+bonZPoGfwbbPIZo+cHnHe9dMV8BuRgXq3c7q79Euzev0+9GbJlQVacmX/1s5clq2Zy7L7tTbuhO/LcCCEBwAAAAAAAAAAGKUaag4rvS4U/k096+IoVzO89la36OG1e/TM5iMKdgSjiyan6ivnFWj51PRQ16xpSkc3h0bNlz4leWq6LpA5M9TxXnKNlNi/MG9Q6t60Qa/+5mE111ZLkiree0tzL/6YDMPU9jeOaurCLLk6AtIDpTV65Xfb+7zWBZ+bGQ6Uqw8269VH+17rjLGHQ/jmujZtfuVgn2szchLCIby/LahD2+v6XOtp8oUfm2bk1ycyuwXY1o7u5xPD5M6vHTFdAbjNYVXahPgeQXLneanjuz44YXdYVbh4XFdX9Akd0uk5XRMErFaLlq4q6DVItlgtSkiNDG8/9tXZEa/fvfYTQ+1PffesrnXda+klnL/29kV9fs9OdP4NM/q9ds4Fk069qMOkjl/v/khMd5960RmOEB4AAAAAAAAAAGCUqnjnJcVLqk2xa0ZWbrTLGRY7jzXpF2v26B8fHJXZkekun5qur6ws0OK8jiCx8bD0wV9D4+ard3adHJchlXwiFL6PK+m9LXmIeBob9Npjv1b5W+skSUmZWbrg5i9r8ux5qjrQpLWPl6v6YLPqjraGx4TbnTa5ExzdxnlbIwLo7sFvbKJTOTNSZLFaex3n3b2jOiEtRnMunNRjNHjn4+ypyeG1SZlunX/jjI5rWrvVEjonKaPrusmZbl17x0JZrBbZbNYewba9W2d5Yro7Yj/wk3HHO/XJO/sXVNudNl3wuZn9WmuxWjT3ov4H1TkzUvu9NjbReepFGLMI4QEAAAAAAAAAAEap6s3vKl5SU15GtEsZch8cbtDPX9utl7cfDx+7YEaWvnJegebkJEvtzdKWP4e63vetk9SR0NtjpOmXhsbN558n2YY/Htv2+r+09g+/UVtLsywWq+ZdermWXfNpmaZd65/cpdK1h2WaktNtV9qErq7uvDkZypvTv1/bcXlJ+vh/zO3X2uTMWC27qqBfa93xTk0/a3y/1tqdtnC3/an0J3wHRitCeAAAAAAAAAAAgFEquGOXJMk+ozDKlQydDfvr9PPXduv1XaHx7RaL9NGS8fryigLNHBcn7XtdWv2EtOM5ye/pOjF3WajjfeblUkxSlKoPqdq/V20tzcqcnK+LvvhVZU7J197N1Vr/5C61NobGt09dmKVlVxdEZf9qAIOLEB4AAAAAAAAAAGAUMk1TSftCe5xnzVsS5WoGl2maenN3rR56rULv7gvtR26zWnT5nGx9aUWBCsyD0tYfS3/5P6m5suvE1Hxp9nXSrE9IKdEbz28Eg2praVZsUrIkadm1n1Fy1jjNvvCjstps2vLqQb351G5JUmKGW+deN02TZvZ/T24AIxshPAAAAAAAAAAAwChUWVmhjPqgJCl/8cVRrmZwmKap13ZW6aHXdmvLoQZJksNm0dXzc/TlhYmaePgf0uqvSsc+6DopJlkquTo0bn7igmHd5703x/fu1su/ekh2l0uf/O4PZbFa5Yxxa+5HLguvmbZonDa9fFBFZ2dr/kdyZXfaTnJFAKMNITwAAAAAAAAAAMAotOfdl5UuqS7VoRlpWdEu57QYhql/bjumh17brR2VTZIkl92q6xdk6cvZ5UqpeFT63b8kM/ShA1kd0rSLQ+Pmp14k2aM/wt3f1qY3/+9xbXr+WZmmoZj4BNUfO6rU7Imq3NOofVurtXRVaB/22ESnrv/eEjlchO/AWEQIDwAAAAAAAAAAMArVbt2gdEkt+eOiXcqABYKG/r71qB5eu0e7q1okSfFOi75V1KCrbG/IveM5aUtT1wkTFoSC9+KrpNjUKFXd0/6tm/Tqb36hxqrjkqTpy87Vys/+m6z2OK35005tf+OoJGl8QbKmzEqXJAJ4YAwjhAcAAAAAAAAAABiNdu6RJLlmzoxyIR9eeyCo1ZuO6JG1e3SwziNJKomp0u0TP9DC5ldl23Gwa3HSJGn2tdKsa6X0qVGquHc+r0f/+u0j2r5+jSQpIS1DF/zblzRlzgLteu+43nyqVN5mvyRpxtLxGp+XFM1yAQwTQngAAAAAAAAAAIBRxjANpeyvkySNm78sytX0X5s/qCfeO6hfrdurysY2JalFX3Bv0OcT3tG4plLpcMdCZ4JUdLk0+zpp0lLJao1q3X2xOZyqPrhfslg09yMf09nXXi9Pk/Tsg1t0pLxekpQyPk4rPlWo7KnJUa0VwPAhhAcAAAAAAAAAABhl9h38QJkNpiRpyqLzo1zNqbW0B/T4Owf0v+v3qbGlVSutm/UD91s6R+/LZgakJkkWq5R/fmjcfOFHJWdstMvuVVN1lWKTU2R3OGSz2/WRL31dQb9f46cWyjRMPf/wu2o47pHNYdXCSydrzgWTZLOPzA8RABgahPAAAAAAAAAAgDOWaZo63HxYpTWlujD3QjlsjmiXBPTL3vde1URJ9ekuuZJHzt7oJ2r0+vX7t/brd2/s1eS2nfqabb0uj3lbSWqRzI5F40qkWZ+USq6RErKiWu/JGEZQm198Tm88+UctvOwqLb3mU5KkzMl5Ms3Qm7FYLVp2dYFK1x7WOZ8sVFKGO5olA4gSQngAAAAAAAAAwBmjxlujbTXbVFpTqrKaMpXVlqmxvVGSlJuYq6L0oihXCPRPw9aNmijJm58d7VJ6VdvSrt+9uU+vvLVRFwZe19O29cp3VXYtiB8nzbomFL6PK45eof1UtX+vXvn1Qzq2p0KSdKR8u0zDkLcloDefrtD4/GQVnzNBkjS5JF25xWmyWCzRLBlAFBHCAwAAAAAAAADGpFZ/q7bXbldZTVk4dK9sreyxzmF1aHrqdLUF26JQJTAw1vL9kiR38cgKsI83ten3a0rV+P5Tukyv65vWHVLHgAnT7pZlxmWhcfN5KySrLaq19off1653nvqLNjy3WqZhyBUbp3M+8zkVn3uhtr9Zqbef2aN2T0AHSmtVuHicHK7QeyKAB85shPAAAAAAAAAAgFHPH/RrV8MulVWHutvLasq0p2GPzPC86xCLLMpLylNxerGK04tVkl6iaSnTGEOPUaU92K70g02SpAkLz41yNSGHa5v0r+efUNruZ/Q1ywbFWP2SJFMWafJyWWZ/UpaZH5dcCVGutP+O7anQ8z/7kRqOhT68M3XxUp33uVvU7nHqmf/ZrGN7Q78G6TnxWvHp6eEAHgAI4QEAAAAAAAAAo4phGjrYdLBrpHxNmXbW7ZTP8PVYOy5unErSS8KB+4zUGYp3xkehamDwlO/bqMzG0AdMJsxbHr1CTFNHdr6nPa/+RjNqXtJnLY2SNfRUa2K+Yhd8WpZZn5CSc6JX42mIiYtXS12d4lNSdf5NX1LurIXa8I992vKvQzINUw6XTYs/nqeSFRNktVmjXS6AEYQQHgAAAAAAAAAwolV5qlRaUxrey31bzTY1+5t7rEt0JkZ0uBenFyvdnR6FioGhdWDDayqQVJ/hlj0xcfgLaKpU1Vt/kn/TnzXBt1cTJMkiNVmT1DrtCo1bfqPisudKo2wku2maqtq3R1l5BZKk5HHjdfk379D4gmlyxcap+mCztrx6UKYp5c3N0PJPTFV8SkyUqwYwEhHCAwAAAAAAAABGjGZfs7bVbgt3uJfWlKrKU9Vjncvm0ozUGRGhe05CDvsw44zQvHWLJMk3dRg7zH2t0s7n1fzuHxV35A1lypAktZt2lcYtVcrS65V/1hVKtDuHr6ZB1FRTrX/99mHt3bRB1959vyZOL5IkTZg+Sw5naMx8xqQELb48T6nZ8Zoyiw/4AOgbITwAAAAAAAAAICp8QZ/K68rDY+VLa0q1v2l/j3VWi1X5yfnh7vbitGIVpBTIYWUfd5yZ7BUHJEnxxbOG9oUMQ9q/Xtr6hILbnpUt0KrOHd03GNO0e9ylmnPJ57RgSu7Q1jGEDCOorS+/oPV/+YP8bV5ZbXbVHjqg7GkzVbrmsDa8sE+rvjFfqdlxkqT5H5kc3YIBjAqE8AAAAAAAAACAIWeYhvY17guH7WU1ZSqvL1fACPRYOyF+Qlfgnl6sGakzFOuIjULVwMjT5GvSuEOtkqSJC1cMzYtUl0tbn5D5wV9laTosSbJJOmhk6BnzHLVOW6VPXHyurstMOPl1RriaQwf08q9+psqKcklS9rQZuvALX5FhpOipH25U9cHQthdl647onE9Oi2apAEYZQngAAAAAAAAAwKAyTVPHPcdVWlMa3sN9W+02tfpbe6xNcaWEx8kXpRepOL1YqTGpUagaGB2273lHGU2hxxlzFg3ehVtrpLKnpa1/kY5uliRZJDWZsfpH8Cw9q3OUN/c83bKiQLlpcYP3ulGy8bnVWv+XP8gIBuR0u7X8uhs14+wL9e4/9qts7UaZpuSKteusK/JVdHZ2tMsFMMoQwgMAAAAAAAAATktje2N4D/fOTvfattoe69x2t2akzgh1uWeEgvfsuGz2cQc+hEMbXleSpMasONkSTrMT3d8m7fqntPUJafcrUsdkioBsWhOcrWeCZ2u9dYGuWlSgB87JU3ay+/TfwAjhTkySEQwof8FZOv/zt6j6kKm/3POeWht9kqSpC7N09jVTFZs4Ove4BxBdhPAAAAAAAAAAgH5rC7RpZ93O8Ej5spoyHWw+2GOdzWLTtJRp4ZHyxenFykvKk93KP0sDp6O1dKskKTB1gPuwm6Z06L1Qx/u21VJbY/ipXdYC/bl9qZ4LLpHXmarrl+fqtbPzlJHgGozSo6rd06qGY5XKyiuQJM085zwlpGUop6hEFotFu98/qNZGn5Iy3Dr3ukLlzGQiB4CB4792AAAAAAAAAAC9ChpB7WncE+5u31azTbvqdyloBnusnZQwKTxWvji9WNNTpyvGHhOFqoGxzbX7iCQpcfbcD3die4v09i9C4Xv9vvBhT0yWVgfP1mMti7XbnKiEGLs+t2KKPrd0slLixkYXeMV7b+m13/1SpqQb/7+HFRMXL8MwlTxuangSx6zzJ8pqt6hoebbsDlt0CwYw6hHCAwAAAAAAAABkmqaOtBxRWW2ZyqpDofuOuh3yBrw91qbFpIXD9s693JNcSVGoGjizHG89rolH2iRJOQtWfLiT3/65tPY+SZLpiNOejPP10+p5er6hQIasSo1z6ptnT9H1S3KVGOMY5Mqjo6WuVv/63S+1e8PbkqSU8dlqqatVfWVAa/9cLiNo6pN3LJLNYZXNZtXs83KiXDGAsYIQHgAAAAAAAADOQHVtdRH7uJfVlKm+vb7HujhHnIrSisIj5UvSS5QVm8U+7kAUbN/9tsY1hR4nlsz5cCdXvCxJ2jLpRn3lyIU6vDf0ZzgzwaUvnJOnTy2epFjn2IiNTMPQB/96Sesef1Q+r0dWm00LP36V5nzkKm147qC2v7lHkhQT71D98ValT0yIcsUAxpqx8bcpAAAAAAAAAKBPHr9HO+p2hMfKl9WU6UjLkR7r7Fa7ClMKI8bKT06cLJuV0czASHBk4zqNk9Q0LkG2+Pj+n+ipk3l0syySbtk1X8dk0YRkt25Zka9r5k9UzBgavx7w+fT0D+7S4R1lkqRxBdN04b99RXXH3Hry3k1qa/FLkmYuG68lVxYoJn5sdP0DGFkI4QEAAAAAAABgDPEbfu2u3x0aK98Ruu9p2CPDNHqsnZI0RcVpXR3uhamFctrGxh7QwFjk3bZNkmQWTvlwJ+5bJ4tpqMKYIGdqjn50XoGunDtBDpt1CKqMLrvTqcT0DDlcMTr7k9dr5rkf0T9/vU1HyvdLklKz43TupwqVXZAc1ToBjG2E8AAAAAAAAAAwSpmmqUPNh8Ld7WU1ZdpRt0PtwfYeazNjM8Pd7cXpxSpKK1KCkxHMwGhhmIbce45KkpJnL/hQ55p7XpNF0nqjRN+/sljLp2YMQYXRc3TXDiWkZSghLV2SdO4NN2vZtdcrMSNTpmnKarPK7rBqwaWTNeeCSbLZx96HDwCMLITwAAAAAAAAADBK1HhrIkbKl9WUqcnX1GNdgiNBRelFEaF7ZmxmFCoGMFj2N+5X7tGAJGnCguX9P9E0Faj4lxyS3tZsXZebOjQFRoHP69H6v/xBW15+XvnzF+vy/7pdFotFtUeDyshJkSRZLBat+FShJCkx3R3NcgGcQQjhAQAAAAAAAGAEavG1aHvtdpXWlGpb7TaV1pTqWOuxHuucVqemp02PGCs/KXGSrBY6PYGxZHvFW8pvlkyLFDuzpP8n1u6Ro/mwfKZN/olL5XaOjf3f97z/nl797cNqqa2RJMXExaml3qN3/rZfu947rpnLs7Xy09MlEb4DGH6E8AAAAAAAAAAQZf6gX7vqd6m0pjQUutds097GvTJlRqyzyKL85Pxw2F6UXqRpydPksDmiVDmA4XJs01vKl9QyPkm2+Lj+n7jnNUnSRqNQC6ZNGJrihlFrQ71ee+zX2vX2eklSUmaWLrjpy2ppytKT976vdk9Askh2u1WmacpisUS5YgBnIkJ4AAAAAAAAABhGhmlof9N+bavZFh4rv7Nup/yGv8fa7LjsiLHyM9NmKs7xIcI3AGOGb/sOSZJlesGHOq9rP/hZuqggfQgqGz6Vu8u1+gffUVtriywWq+Z/7AoVLr1cbz61T8f2lkuSMiYlaMWnC5WZmxjlagGcyQjhAQAAAAAAAGAIHW893rWPe22ZttVsU4u/pce6JFdSaP/2tK4u93T36A7MAAwOX9CnhL1VkqS02Yv6f2LQL2PfOtkkbbLP0TcmJA1NgcMkPSdXrrg4JWZk6aIvflXN9Yla/ZMPZBqmHC6bFn88TyUrJshqYzsOANFFCA8AAAAAAAAAg6TJ16RtNdvCofu2mm2q8lb1WBdji9GMtBnhsfLFacWamDCRsckAelVeV64pxwxJUta8Jf0/8fAG2fytqjPjlZQ3X/ZRFk4HAwHteGOtis45TxarVQ5XjK6+4/tKTM+Q1WZTYotPLrdd2dOStfwTUxWfEhPtkgFAEiE8AAAAAAAAAAxIe7BdO+t2qqymLPxjf9P+HuusFqumJk8Ndbl3hO75yfmyW/nnWQD9s6PibZU0S6ZFcs+c2f8TO/aDf8Mo0dKCjCGqbmgc21Ohl3/1M1Uf2Cd/e5vmXvwxtdS3ac/mNs27OPRhAne8U5+8c5Hikl1RrhYAIvFfeQAAAAAAAABwCkEjqH2N+0Ld7bWhvdx31e1SwAz0WDsxfmJ4nHxJeommp05XrCM2ClUDGCuqN78jSfJkp8gaF9fv84zd/5JV0nqjRF+cOjq2t/C3tenNv/5Jm174u0zTUEx8glyxcdr6r0N69+975W8PKjkzVvnzMiWJAB7AiEQIDwAAAAAAAADdmKapY63HQnu4d4yV3167XZ6Ap8fa1JjUiA73orQipcSkRKFqAGNZYEe5JMk2o7D/J3nqZKncIkna4V6g/Iz4IahscO3f8r5e+c3Daqo+LkmavuxcFZ/3Sb3zbKVqDlVIksblJSk5iw82ARjZCOEBAAAAAAAAnNEa2hpUVts1Ur60plR1bXU91rntbhWlFUWE7uPjxrOPO4Ah1eRrUur+eklSxtzF/T9x3zpZTEMVxgRNm1o44v+ueufpJ/TmX/8kSUpIz9CKG27Rsb3J+scvKiRTcsXateTKfM1cli2LdWS/FwAghAcAAAAAAABwxvAGvNpZt1Ol1aEu97LaMh1qPtRjnd1i19SUqSpJLwmH7nlJebJZbVGoGsCZbHvtduUdMyVJqXMX9f/Ejv3g1xslWlow8kfRT5m3UO+sfkKzL7pUy679jJ7/xQ4drTgiSZq2OEvLrpqq2ERnlKsEgP4hhAcAAAAAAAAwJgWMgPY07Al3t5fVlGl3w24FzWCPtbmJueHu9uL0YhWmFCrGHhOFqgEgUnnFO1rUIhkWKWb69P6dZJoydr8mq6R1RonuK0gb0hoHorHqmI6U79DM5SslSVlT8nXzQ79VfGqo1gWXTNbrjeU691OFypmeGs1SAeBDI4QHAAAAAAAAMOqZpqnDLYfDI+XLasq0vXa72oJtPdamu9MjOtyL0oqU5EqKQtWIFqO9XYHqagWOH1egqkr+48cVqKpW6o2flSMzM9rlARFqNr8nSWqbkC5rbD/3Qq/dI2vTIflMm6pSF2h8knsIK/xwjGBQm178u978659kBALKyJ2i1OxJ2vLqQbliHSo+J7QuZ2aqPvWdxbLarNEtGAAGgBAeAAAAAAAAwKhT663VttptKq0pVWlNqbbVbFNDe0OPdXGOOBWnde3hXpRepKzYrBG/NzIGxjQMBWtr5a+qUuB4lQJVkSF7Z+gebGjo9fyE81YSwmPEMXfuliQ5i2b0/6SOUfQbjUItmDpxKMoakKr9e/Xyr36m43tD7ylnZonqjrbrlUc3qL6yVQ6XTXlzMsJj5wngAYxWhPAAAAAAAAAARjSP36Nttdu0rWZbeKz80dajPdY5rA4VphSGAveMUKf75MTJsloIcUY70zRltLQoUFWlwPHj3UL2UNAe/rqmRgoE+nVNi8sle2am7FmZcmRmyp6ZJVvqyBvZjTPb8dbjGneoRZKUMXdx/0/cu0aStN6YpaX50d8P3t/epref+os2/uMZmYYhV1ycll5zo+qrcvXqY6F9390JDi27eqrcCY4oVwsAp48QHgAAAAAAAMCI4Tf8qqivCI+UL60p1d7GvTJMI2KdRRZNSZoSHilfkl6iaSnT5LQ5o1Q5Bsrw+UJd6h1d6z1C9uPH5a+ulunx9O+CVqvsaWmyZ2X1CNm7f21NSmIiAka8spoyTTlmSpISZ83r30lBv4y9r8sq6U2zWLfkRffDJYYR1F/u+C9VH9wvSZp21jLllFyp9/9ZrbaWY5KkmWdna8mV+YqJI4AHMDYQwgMAAAAAAACICtM0dbD5YLi7vbSmVOV15WoPtvdYmxWbFbGP+8y0mUpwJkShavSXaRgK1tX1HAdfHfl1sL6+39e0JibKkZUpe0Zmz5C98+u0NFns/NM3xoZdFe9oRYtkWCyKmTG9fycd3iCrv1V1Zrys42crKTa6wbbVatPMc8/X+8//Teff9CWl55Toz3e/K9MwlZodpxWfKtT4guSo1ggAg43/EgEAAAAAAAAwLKo91eGwvaymTGW1ZWr2NfdYl+BMiNjHvTi9WBmxGVGoGH0JdhsNHwrZqyK/rqpSoLq6/6Phnc6OQD1L9swMOcJd6x1fdwTsVrd7iN8ZMLLUb31fkuSblNH/3/8d+8G/YZRo6dTMoSqtT6ZpqvytdYpPTdPEGcWSpLkXX6aS8y6WKzZWkrTgklzZnTbNviBHNvZ9BzAGEcIDAAAAAAAAGHQtvhZtqw3t4d65l/txz/Ee65xWp2akzVBJeomK0otUkl6iSQmTGBMeJabPp0B1dc89108I2Y3+joa3WGRLT+sWqmfKnpkZDtVDI+IzZEtO5tccOIFhGrKW75UkxRQV9fs8c89rskhab5ToioLh3Q++qaZK//rtI9q7aYNSxmfrhh/9XJW7W7T+r7t00c3FcoUyeC26LG9Y6wKA4UYIDwAAAAAAAOC0+II+7arfFTFWfn/jfpkyI9ZZLVblJeVFjJWfmjJVDit7AA810zAUrK/vNhq+K2T3V3UbDV9X1+9rWhMSet1vPSJkT09nNDwwQPub9mviEZ8kKWPO4v6d5KmTjm6WJL1rma3v5aYMVXkRDCOoLS+9oDee+IP8bV7Z7HblL1iuV3+/Q3ver5UkbfjHPl1yS8mw1AMA0cZ//QAAAAAAAADoN8M0tL9xf9dI+Zoy7azfqYDRc+z4hPgJKkorCofuM9NmKtYRG4Wqx7ZgS2u4Y73H/uudIXt1jeT39+t6Foej2yj4zNAe7N2C9s6vrbH8WgJDqay6VHnHQh9mii2Z1b+T9q2TxTS0y5ignMkFinHYhrDCkJqD+/Xyrx5S5e5ySVJ24QxNmfsJla7zyuetlcUilaycqMV0vwM4gxDCAwAAAAAAAOiVaZo67jke7m7fVrNN22q3qcXf0mNtsis5Yg/3orQipbnTolD12GH6/QpUV0fuuV7VbQ/2ztHwra39u6DFIltaWkfnes/91jtDd0bDAyNDRcV7mtoqmRaLYqZP799J3faDXzYMo+irD+7Xn771HzKCQTndbs376HU6unei3n+pWZKUMSlBKz5dqMzcxCGvBQBGEkJ4AAAAAAAAAJKkxvZGbavdFg7dy2rKVOOt6bHObXdrRuqMcOhelF6kifETCW77yTTN8Gj4wPHjkfuvHz8uf3Xo62BdnWSap76gJGt8fHgc/Inj4SNGwzsY/Q+MFk0fhMbK+3PHyep2n/oE0wzvB7/OKNHX84c+hE/PydWkkjmy2R06/6ZbtHezV1WvVcgRY9NZl+ep+NyJslq5NwA48xDCAwAAAAAAAGegtkCbdtbtDI2Urw2NlT/QdKDHOpvFpqkpU0N7uKeF9nHPT86X3co/LfbG8Hi6xsFXHe81ZA9UV8vs52h4ORxyZGSEu9TDIXtWluwZXV9b4+KG9o2Nccca27S+olpXzSMwxMjgC/rkrDgoSYot7uc+6rV7ZGk8JJ9p0w5niYonJA16XW2tLXrn6Sd01qpPKiY+XhaLRRd94ZuKT42TxWJRyUpTnqZ2lazIUXyKa9BfHwBGC/5LGQAAAAAAABjjgkZQexv3RnS4V9RXKGD23Mc9JyEnYqz89NTpctv70YE5xpl+vwI1NX3vud7xtdHSc1R/X2xpaaEQPSOz95C9czS81TqE7+zMFAga2nSwQWvKq7S2vFo7KpskSdPHJapk4uAHl8CHVV5XrsmVhiQpbc6i/p3UMYp+o1GoOdMmyDbIHyipePct/evRX6q1vk7tHo+WfuILWv/kLtUebdV1dy6S3WmT1WrRkisLBvV1AWA0IoQHAAAAAAAAxhDTNHW09Wiow70jdN9eu13egLfH2tSY1HDYXpJeoqK0IiXHJA9/0VFkmqaCDQ1dXeq9huxVCtbW9n80fFxczz3XM074Oj1dFqdziN8duqtqbtPr5dVaW16tdRXVam7r+hCKxSLNyUmWx9fzgylANJTVlCqvMvR3jru4qH8n7V0jSVpvzNLZg7gffHNdjV773S+1e8M7kqSU8RPkjJupP9/9rgLtQVmtFlXublTOzNRBe00AGO0I4QEAAAAAAIBRrL6tPhy4d46Vr2ur67Eu1h6rovSi8Ej5kvQSjYsbN6b3cTe83p7j4KtO/LpKps/Xvwva7aEQPbzferdQvds+7LZ4RsOPBEHD1JZD9VpbXq015VUqO9IU8XxKrEPnTsvQisJMnTMtQ6lxfCgCI8feig2a45EMq0Wu6dNPfULQL3PfuvB+8D8bhBDeNAx98K9/at3jj8nn9chqs2nmOZepvnqmtr/ZJimo8flJOvdThUqbEH/arwcAYwkhPAAAAAAAADDKbKvdpt9v+71Kq0t1uOVwj+ftFrumpU4Ld7kXpxVrStIU2ay2KFQ7+MxA4ITR8L2H7EZzc7+vaUtNjRwHn5kle1am7JmZ4ZDdlpLCaPgRrralXa/v6up2b/D4I56fNTFJKwoztbIwQ7MmJg/6uG5gsDSXbpUkGZMnyBoTc+oTDm+QxdeiWjNB9QmFyks//Q8DvffsU3rjiT9IksYVTFNqzse1e6shmW1yxdq1dFWBZiwdLwt/jgCgB0J4AAAAAAAAYJTwG3797wf/q19/8GsFzWD4+OTEyaGwvaPDvTC1UC6bK4qVDoxpmjIaG+U/HgrTewvZ/VXHFazp/2h4S2xsxB7rjo5gvbNr3ZGVKVtGhqyMhh+VDMPUB0catWZnldbuqtYHhxsifmskuR1aPjVdKzu63TMSRt+fC5x5mn3Nit9zTJIUXzK7fyd17Af/plGsJQWZgzLlZNYFH1Hpmpc175KPa/ZFH9WLv9wmmbUqXDxOS68qUGwif28CQF8I4QEAAAAAAIBRYG/DXt32xm3aXrtdknRh7oW6Zto1KkovUqIzMcrVnZrh9YbHv/s7u9aPH1egutvXVVUy29v7d0G7XfaMjK7x8CeG7J3d6/GMSB5r6lt9WlcR6nZ/fVe16lojtxMoyk7UisIMrSzM1JycZNltTC/A6LKtdpumhDJ4Jc2e17+TOkL49UaJzp6aNqDXPbprh8rffkMrbrhZFotFvja7rrvnIcUluyVJ51w7TU3nezVxOnu/A8CpEMIDAAAAAAAAI5hhGvrT9j/pp5t+Kp/hU6IzUbcvvl2XTLlkROznbgYCCtTWhkP1iP3Wu4XsRlPTqS/WwZaSEh4Nb8/M7LYHe9d4eFtqKqPhzxCGYWrb0SatLa/SmvIqbTnUIKNbt3uCy67l09K1ojBTK6ZlKDOxH6O7gRGsrLpUxcdCv8ndRUWnPsFTJ/PoZlkkrQ+W6L/yP9x+8O0ej9544vfa8vILkmlqXEGhWhsnaeOL+zV1YZbOv2GGJCkx3a3EdPeHfTsAcEYihAcAAAAAAABGqCMtR3Tnm3dqw7ENkqRl2ct099K7lRWXNeSvbZqmjKamjnHw1d0C9W5fHz+uQG2tZBj9uqbF7Y4YDR/ef73z68ws2TMZDQ+p0ePX+t2hbve15dWqaYmckDB9XEJ4b/d5uSly0O2OMWTvro1a5pEMm1WuwsJTn7BvnSymoV3GBCVk5irrQ3wQZffGd/Wv3z6slrpaSdKUeefo/X8G1Vi9V5LUUtemYMCQzc6fMQD4MAjhAQAAAAAAgBHGNE39bfffdP+G+9Xqb5Xb7tZ/LfgvXTPtmkHpfjfa2rqNhu8WqnfsuR6oqg6Nhm9r698FbbaO0fCd4+B7D9mt8fEjonsfI49pmtpR2aw15VVaW16lTQcbFOzW7h7ntGlZQbpWTs/UisIMjU+iGxdjl7esNPRgykRZY/oRqHeMon/DKNGygv51wbc21Ou1R3+lXe+8IUlKzBynjCkf15Fd8ZJMuRMcWnb1VE1blMXf2wAwAITwAAAAAAAAwAhS463R3W/drbWH10qS5mbO1feXfV85iTmnPNcMBkOj4Y9XKVDdMR6+R8heJaOxsd/12JKTu+2xniFHRNd6KHS3pabKYrMN9C3jDNXc5tebu2u0Zme11u6q0vGmyG73qZnxodB9WoYWTE6Vk05cnAGOtx5X2sEGSVJCydxTn2Ca0p41kqR1Rok+3Y8Q3jRN/e3H39Ox3btksVo14+xLdWT3VB3ZFXq+aHm2zroiXzFxjoG+DQA44xHCAwAAAAAAACPEKwde0T1v36OG9gY5rA59Ze5X9NmZn5XNGhlw+6uq1PT3v8t/9GjkHuw1NVIw2K/XssTEdHSqZ/UesmdlyZ6RIavLNRRvFWcg0zS163hLeG/3jfvrFejW7e522LSsIC20t3thhiamxEaxWiA6ymrLlHcs9Dhh1uxTn1C7R2o8KJ9p0wZzhn6Wl3rKUywWi5Zf91mte/xRXfiFryopc5L+/N13lDbBqRWfnq5xeUmn+S4AAITwAAAAAAAAQJQ1+Zp037v36R97/yFJKkwp1A+W/0DTUqb1WNv4/PM6ds/3+u5mt9lkT0+PHAffy3h4a0ICI4Yx5FrbA6Fu9/JqvV5epaONkVsc5KXHhfZ2n56hhZNTFeNgogLObGXVpTqrMvThlJiiolOf0DGKfqNRqGk545QYc+ru9YAvqJbGDH3q3v9P1o4pJld8fZ6Sstyy2Zg4AQCDgRAeAAAAAAAAiKK3jrylO9+6U1WeKlktVt1UfJP+ffa/y2GLDFIC9fU6ds89an7xn5Ik14wZil9xbtee6xmhkN2elsZoeESNaZraU90a7nbfsK9evqARft5lt2pJfppWdnS756bFRbFaYOTZX/G+LvJKps0qV2HhqU/YGxpFv96YpWX5Jx9F/+xPvi+LNUF1VdPV2mCX3WnVtIXjJEmp2fxZBIDBRAgPAAAAAAAARIHH79H/vP8/erL8SUlSbmKu7l12r+ZkzumxtuX113X0jjsUrK6RbDal33KL0m/5oiwO9utF9Hl9Qb29N7S3+5ryKh2u90Y8Pyk1VisLM7RieqaW5KXR7Q70wTAN+bZtlyRZ8nJPvR1I0C9z3zpZFNoP/o6T7AffXFej3RveliS5kvIVnxonZwwREQAMFf6GBQAAAAAAAIbZlqotuv2N23Ww+aAk6brp1+nWebcq1hG5B3awpVVV9/9QDf/3lCTJmZ+v7B/+UO6S4mGvGehuX02r1uys0tpd1Xpnb618ga5ud6fNqsV5qaEx84UZmpIeNzK3PvB5pMot0uENHT82Sv/2mpSYHe3KcIba37Rf2UdCH2JJnD3v1Ccc3iCLr0W1ZoL22qdoXm5yn0sPfLBFkmSxZWnqolyt/Mx0QngAGEL8DQsAAAAAAAAME3/Qr4e3Pqzflf1OhmkoMzZT31v2PS3NXtpjbet776nytm/Lf+SIZLEo9YYblPH1W2WNiYlC5TjTtfmDemdvrdaWV2tteZX213oinp+Q7NbK6RlaWZipJflpinWOsH96Nk2pbm+3wH2DdKxMMoOR6w5vlGZ+PDo14oxXVlOmvMrQ49jifnzYqmM/+DeNYi2YnC6Xve8pE/u3bpIkWR2TNffCSQTwADDE+FsWAAAAAAAAGAbldeW6/Y3bVV5fLkm6LO8yfWvxt5ToTIxYZ7S3q/qBB1X3+99LpinHhAkaf98PFLdoUTTKxhnsYK1Ha3dVac3OKr29t1Zt/q5ud4fNooWTU7WyMFMrp2coPyN+ZHW7tzVKRzaFQvXO0N1b13Nd/DgpZ6E0sePH+DnDXirQqay6VOcfMyVJMUVFpz6hI4Rfb5Ro2UlG0ZuGof1bN4eum5Cn9JyE0y8WAHBShPAAAAAAAADAEAoaQT227TH9fMvPFTACSnGl6K4ld+mC3At6rPWWlunot74l3549kqTka65W5n9/S7b4uOEuG2eg9kBQ7+2r09ry0N7ue6tbI54fnxSjFYUZWlGYqWUF6Yp3jZB/XjaCUnV55Fj56p2SzMh1NpeUPacjcF8Q+jlxgjSSPjyAM9qhis1K9Eqm3SZXYeHJF3vqZB7dLIuk9cESffYkIXzV/r1qb22W5FRucZGsVn7PA8BQGyH/lQQAAAAAAACMPQebDur2N27XluotkqQVOSv0nSXfUbo7Miwx/X7V/PJXqvnlL6VgULaMdI3/3veUsGLF8BeNM8rhek/HiPlqvbWnRh5f13h2m9WiBbkpWjk9UysKM1SYlTAyut1bayI73I9sknzNPdcl53Z1uE9cKI0rluyu4a8X6Adf0CdjZ4UkyZY/RVan8+Qn7Fsni2lolzFBbbHjNHN8Yp9LO0fRZ+bNUPGKSYNWMwCgb4TwAAAAAAAAwCAzTVP/t+v/9JONP5E34FWcI07fWvQtXZ5/eY8Qs333bh3972+pbds2SVLCJR/RuLvukj0lJRqlY4zzBQxtPFAX3tt91/GWiOczE1xaURja233Z1HQlxjiiVGmHoF86XtYVuh96T6rf13OdI06aMK9b6L5Ais8c/nqBAdpVv0u5R/2SpIRZc099QngU/SwtzU87aXe7zW5XfFq6SlYsVc701EGpFwBwcoTwAAAAAAAAwCA63npc33nrO3rz6JuSpIXjFureZfcqOz47Yp1pGKr7/R9U/cADMn0+WZOSNO6uO5V06aXRKBtj2LHGNq0tr9Ka8iq9ubtWLe2B8HNWizRvUle3+8zxidHtdm86GjlW/uhmKdDWc116YeRY+cwZktU2/PUCg6S0plR5laHH7lPtB2+a0p41kqT1RrEuyO97FL0kLbhsleZ/7EoZweBJ1wEABg8hPAAAAAAAADAITNPUC/te0Pff/b6afc1y2Vy6dd6t+tSMT8lqsUas9R0+rMpv3SbPxo2SpLjlyzX+3nvlyKJzF6fPHzS06UC91u6q1pqdVdp5LHJUe3q8U+dOC4Xuy6emKzn2FGOvh6xQr1S5NTJ0bzrSc11MclfYPnFhqOPdzaQIjC1l1aW6/JgpSYopLj754to9UuNB+Uyb3jVm6Lsn2Q9ekra/eVT+tqDy5mYoIZVYCACGA3/bAgAAAAAAAKepvq1e975zr14+8LIkqSitSD9Y/gPlJeVFrDNNUw1PPaWq+34ow+ORJTZWWf/930r+xDUjY69tjFpVTW1au6tar5dXa11FtZrburrdLRZpTk6yVhaGgvfi7KSTjq4eEqYp1e/vFrhvkI6VSkYgcp3FKmUVRe7lnpovWa29XhYYKw5XbFZCm2TabXJNm3ryxR2j6DcahUpNTlFuWmyfS5tqqrXl1QOqr/QqLtmlhNSYwSwbANAHQngAAAAAAADgNKw7vE7fees7qvHWyG6x6wuzv6CbS26Wwxq5l7a/qkrH7rxLLa+/LklyL5iv7PvukzMnJxplY5QLGqa2HKrXmp3VWrurSmVHmiKeT4l16NxpGVo5PVPLp2YoNW6Yu93bm6Ujm7o63A9vkDw1PdfFZUo5i7o63cfPkVzxw1srEGXNvmY5Kg5KkhxTC2R1nuLP697OUfSztKwg7aQf4vrr3d9WY3W9nAmrNKHw7EGrGQBwcoTwAAAAAAAAwAC0+Fr0440/1uqK1ZKkvKQ8/WD5D1SU1nMv36YXX9Sx796tYGOjLA6HMm69Vak3flYWG3tYo/9qWtq1ble11pRXa92uajV6/RHPz56YpHMLM7WyMEOzJibLNlzd7oYh1eyKHCtftV2SGbnO5pTGz47cyz0pJ9SqD5zBttduV35l6M9LfMnsky8O+qV96yRJ64wSfeEko+gbq46psapSkkUZk3Lkjo/S1hMAcAYihAcAAAAAAAA+pA3HNujON+/UkZYjssii62der6/O/api7JFjfoMNDTp2z/fU9MILkqSYmTOVff8P5Zp6ilHDgELd7h8cbtDa8mqtLa/SB0caZXbLtZPcDp0zLUMrpmXonGkZykhwDU9hnrqu7vbDG6Qj70vtTT3XJU2K3Mt9/CzJPkw1AqNIaU2p8o6FHscU9fwgV4TDGyRfi2rNBG03c7U0v+8Qfv/WzZIkiz1bucXjB6tcAEA/EMIDAAAAAAAA/dQebNfPNv1Mf9z+R5kyNSF+gr637HtaOG5hj7Ut69ap8vY7FKiulmw2pX/xi0r/91tkcTh6uTIQUt/q07qKaq0tr9bru6pV1+qLeL4oOzG8t/ucnGTZbUO8V3owIFVt6+pwP/SeVLen5zpHrJQ9r1vovkBKGDe0tQFjRFl1qT59LPQJm5jiU4TwHfvBv2kUa1pW0kk/fLP/g02SJJs9VxOnpw5OsQCAfiGEBwAAAAAAAPphW+023b7+du1pDAWQV029St9c+E3FOeIi1gVbWlV1//1q+L//kyQ58/KUff8P5S4pGfaaMfIZhqltR5u0prxKa8qrtPVQg4xu3e4JLruWT0vXisJMrZiWoczEmL4vNhiaj0WOlT+6WfJ7eq5LK5AmdtvLPXOmZOOfm4GBOFqxRfFtkumwK+ZUk1I6Qvj1RomWnWQUvREM6mDpVkmSPWaKxucnDVq9AIBT47+KAAAAAAAAgJPwG379pvQ3+vXWXytgBpQWk6a7l96tc3PO7bHWs3Gjjn7rNvkPH5YkpX72BmV8/euyxgxxcIpRpdHj1/rd1Vqzs1qv76pSTUtkt/v0cQla0bG3+7zcFDmGqtvd3yYd+yAydG881HOdK0maOL9rrPyE+VIsXbXAYDjeelxJ+2okSa5p02RxnmTfdk9d6IMxktYHS/T9grQ+l1bu3iWf1yNZYjRh+jTZnbZBrRsAcHKE8AAAAAAAAEAf9jbu1bfXf1vbardJki7MvVB3nnWnUmJSItYZ7e2qfvCnqnvsMck05cjO1vj77lPc4kVRqBojjWma2l7ZFN7bfdPBBgW7tbvHOW06e2pHt3thhsYnuYeiCKnhQORe7pUfSIY/cp3FGupq776Xe9pUyTrEY++BM1RZbZnyO0bRxxafYmLKvnWSaWiXMUHV1nQtzus7hD/QMYp+6sL5WnH9zEGrFwDQP4TwAAAAAAAAwAkM09Cfd/xZD256UO3BdiU4E3T74tv10SkflcViiVjrLdumo9/6b/l2h8bUJ121Slm33SZbfHw0SscI0dTm15sVNVpTXqXXd1XreFN7xPNTM+O1cnpoxPyCyaly2gc55G5vCXXMdna4H94gtVb1XBebLuV0GyufPVdyJQxuLQD6VFZTpinHQo9jik4RlodH0c/SnJxkxbv6jnjyF5wl0zA0rmCaEtOH4IM9AICTIoQHAAAAAAAAujnaclR3vnmn3jv2niRpafZS3bP0HmXFZUWsM/1+1fz616p55JdSICBberrG33OPEs5bGY2yEWWmaWrX8ZbQ3u47q/T+gXoFunW7ux02LStIC3e7T0yJHbwXNwypdnfkWPmqbZJpRK6z2qVxs7o63HMWSsm50gkfLAEwfMqqS7W0oxPeXVzc90LTlPaskSStN4pPuh+8JGVOzlPWlPxBqxMA8OEQwgMAAAAAAAAKhah/2/033b/hfrX6W+W2u/WN+d/QJwo/0aP7vX3PHh3972+praxMkpRw8cUa993vyJ6S0tulMUa1tgf05u4arekYM1/Z2BbxfF5GnFZMy9TK6RlaODlVMY5B2pPZWy8dfr8rdD+yUWpr7LkucWLkWPnxsyQHHbHASGGYhqoqShXfJslhl6ugoO/FtXukxoPyy653jRn69/y+R9FL0sYX9mvvlmrNuWCSChePG9zCAQCnRAgPAAAAAACAM16Nt0Z3v3231h5aK0makzFH3z/7+5qUOClinWkYqv/jH1X1Pw/IbG+XNTFR4+68U4kfu7RHUI+xxzRN7alu0Zqd1Vq7q0rv7auTP9jV7e6yW7U0v6vbPTct7vRfNBiQqneEwvZDHaF7bUXPdXZ3aJR8OHRfICVmn/7rAxgyB5oOKOtwiyTJNX26LE5n34s7RtFvCE6THHGaO6nvD33teGOtdr51RI01aQr4JgxqzQCA/iGEBwAAAAAAwBnt1QOv6p6371F9e73sVru+MucrurHoRtmskV3LvsNHVPntb8vzXmhMfdzZZ2v89++VIyurt8tijPD4Anp7T63WlFdpbXm1Dtd7I56flBqr86Zn6tzCDC3JSzv9bvfm46HO9s6x8kc2Sf7WnutS86SJ3fZyzyqSbI7Te20Aw6qspkx5lR2j6IuKTr54b+co+llalJ8qp93a6zLTNLX+L79Xc021HPFXKmfGuYNaMwCgfwjhAQAAAAAAcEZq8jXph+/+UM/tfU6SNC1lmn5w9g9UmFoYsc40TTU+/bSO3/dDGa2tssTGKuv//T8lX9tzTD3Ghn01rVqzs0pryqv07r46+QJde6s7bVYtzkvVyo5u9ynpcQP/fRBol46VdtvLfYPUcLDnOmeCNHF+11j5CQukuJOPogYw8pXWlKrgWOjxSfeDD/qlfeskSeuMEl1xkv3g6yuPqLmmWpJNyVn5SkxnCwoAiAZCeAAAAAAAAJxx3jr6lu568y4d9xyX1WLV54s/r3+f/e9y2iJHAQeqq1V5511qWbtWkuSeN0/ZP7xPzkmTerkqRqs2f1Bv763V6+XVWlNepQO1nojnJyS7tXJ6hlYWZmpJfppinQP4Z1XTlBoPdXW4H94gVW6Vgr4TFlqkzBmRe7mnT5Osg7SfPIARo6y6VBcdC3XCx5ysE/7wBsnXojozQdvNXP2ooO8P4ezfulmSZLVPUE4Re8EDQLQQwgMAAAAAAOCM4fF79MD7D+iJ8ickSZMSJun7Z39fczLn9Fjb9M9/6th371awoUEWh0MZt/6HUm+8URYbYehYcLDW0zFivkpv7alVe7dud4fNokVTUrViWqZWTs9Qfkb8h+9297VKR7d063LfKLUc67kuNq1rD/eJC6XseVJM4um9OZyUaZryt7epvbVV7Z5Wtbe2KiN3spzu2GiXhjOIL+hT/Z4dimuX5HTIVVDQ9+KO/eDfMIqVEhejGeP6/jviwAebJElWR65ypqcOZskAgA+BEB4AAAAAAABnhK3VW3X7G7frQNMBSdK1hdfqP+f/p2IdkcFbsKFBx753r5qef16S5Jo5Q9k//KFipk0b9poxeNoDQb23r05rdlZr7a4q7a2O3Gd9fFKMVnSMmF9WkK5414f4p1PTlGr3RI6VP75NMoOR66x2Kau4q8M9Z6GUMkViW4MB8TQ1qqWuVu2tLWr3eDoC9Ra1tbbK523V/I9dqYTU0Njura+8qA3PPR1a19oi0zAirnXd936s7GkzovE2cIbaVb9Lk476JUkx06fL4nD0vbgjhF9vlGhJfpqs1t7/zgj4/TpY9oEkyeqYrImFKYNbNACg3wjhAQAAAAAAMKb5g349svUR/bbstzJMQ5mxmfre0u9p6YSlPda2rF+vytvvUKCqSrLZlPaFf1PGv/+7LE5nL1fGSHe43qO15dVaW16lN3fXyuvvCsXtVovm56Zo5fRQ8F6YldD/bndvg3Tk/a6x8kc2St76nusSxncF7hMXSuNnS066rYMBf0QXevqkybJ3/Bk7WPaBDm3bqrbO5zvWdP589R3fU2r2REnS5n/+Q+88/Zc+X2faWWeHQ/iAr12NxyMnEVhtNrli4+SKi5NpmEP0boHeldWUKa8/o+g9ddLR0Ij59cES/cdJ9oM/Wr5DAV+77M54TZ49TTHxJwn2AQBDihAeAAAAAAAAY9au+l369vpvq7y+XJJ0ad6lum3RbUpyJUWsM1pbdfxHP1bDk09KkpxTpij7/h/KPWvWsNeMgfMFDG3cX6e1u6q1ZmeVKqpaIp7PTHBpRWFob/dlU9OVGNOPgMoIStU7Q2H7oY4u95rynutsLil7buRe7kkTBumdjTzelmZ5GupDXeeeVrV1huWtLWr3erTo8qsVExcvSXr/+b/pg1f/qXavR+2trQr42iOudeP/PKK0CTmSpEPbS/XO6if7fN22lubw49ikJMWlpMrljpUrLk6uuPhQqB4bK1dcvGKTurqAp511tsYVFComLi4cvNudrg+/zQAwSEprSjWn43Mh7uLivhfuWyeZhiqMCTqmNC3L7zuEr6zYKUmatvj/Z+++w+Moz/WPf7fvqlfL6rIk27KaCzau9O4g00MaSQjpJ+2QAgSSAKGknBCSk34SQvJLDwSwCTU022CaqyR3yZasrlWvW+f3x0orC0lggyW53J/r4tLuzDuz7wrbI+097/Ms4ZIvLDyW0xURkaOkEF5ERERERERERE46gWCAP+z8Az/b+jN8QR9xjji+texbXJhz4Zix/Zs303DzLfgOHQIg/qPXMeO//xuzyzXV05Z3obFrILzafeM+N33ekdXuZhOclh0fLjNfmBrzzqFrb2toZftwWfn6LeDtHTsuPuewVe6LIaUErMd/xQQjGMQz0I+3v5/Bvl6SMrMxWywAHNyxlcZ9u0dWnr9lFfoH7vwBkXGhYHvTQ39h65PrJnydorPOC4fwg319tDfUjRljHwrPAz5feFvanAIWXHQpzshI7BGhwDwUnEfhiIggISMzPHbhRZey8KJLj+h9RycmEZ04cXgpMtUqW8q58khWwg+Vol8fLCUzwUVW4sTVNJZe8X7mLF81pt2CiIhMPYXwIiIiIiIiIiJyUjnUfYhbX76VrS2h8r1nZ5zNd1Z8hyTX6AAu6PHQ+tOf0v7A78EwsKalknbPPUQuWzYd05Yj5AsE2VLTwQtDwfvupp5R+5Oi7Jw1JxS6nzk7mdiIt1nt7vdCc/lIWfm6N6Dj4Nhx9ihIXzQSuqcvhqjkY/vGjoKnv4/+7q5wkD46MO9n6RXvxzrUX/q1R/7BnlfWh1ehewb6Qz3sh3z21/8vHKxXb36drU9NHKwP9vWGx7qiYnBGx4RWnR8WlNsjIkIB+mE3sRSdeS5ZRSUjK9WH9pvNljGvMWvBacxacNox+T6JHK96vD301xwgwgM47Djy8sYfaBhQ9QIQ6gf/dqvgAfq7vQT8MSSmRR7jGYuIyNGa9hD+F7/4BT/84Q9pbGykqKiI+++/nzPOOGPcsR//+Mf5wx/+MGZ7YWEhlZWVADz44INcf/31Y8YMDAzgdDqP7eRFREREREREROS4YRgG/9z7T/7nzf9hwD9ApC2Sm5bcxOX5l49Z/Ty4cycNN92EZ99+AGKvvJKUW27GEh09HVOXd9DSPciLe0Oh+4a9bno8/vA+kwkWZMZxztwZnDN3BkVpMZjNE6x276obCtuHQveGbRDwjB2XXDC6rHxyAYwTGB8twzDw+7zh8Hy4BDvAwW2baak5ECrn3t8/FKqPPP7IvfeH+6Y//8Cv2LnhhQlfZ8GFq7EOheV9nR201h4cM8ZiteKIjMLnGXn/6QWFBHy+oSB9dGl3e0QEMUkjNx4sv/qDLL/6g0f0vuNmphI3M/WIxoqcCna27SS3MbRa3VlQgMk2wc1CbVXQVYsPK68FC/jB2/SDB9j3ZjMb/7GPvIXJXPyZkmM9bREROQrTGsL//e9/5ytf+Qq/+MUvWLlyJb/+9a+55JJL2LlzJ1lZWWPG/+QnP+F73/te+Lnf72f+/Plcc801o8bFxMSwZ8/ovkwK4EVERERERERETl7Nfc18Z9N3eLn+ZQAWpyzmrlV3kR41uie34ffj/s1vcP/il+D3Y0lMJPW7dxJ97rnTMW2ZgD8QZNuhTl7c08oLe1qobOgetT8h0s6Zs5M4p2AGZ8xOJiFynDLw3n5o3D6ywr3uTehpGDvOGRcK2jNPDwXvaYvAFTfh3HyDgwz09oxTrr0X78AAS694f3jsy//4Ewe3bR4Vqgf8IzcQfPn//SscrO/a+OLbBuue/r7wWEdkFDanK7wK3REZNbT6PBSYm8zm8HGl511E7sLFoVXow/3QIyLD5zrc3OVnMHf5+AukROTYKXeXkztUit51BKXo3wjMYQAnK/ISJxz6/O9/zb43qwj6S5mRM8HKehERmTLTGsLfd9993HDDDXzyk58E4P777+fpp5/ml7/8Jffee++Y8bGxscTGxoafP/roo3R0dIxZ+W4ymZg5c+bkTl5ERERERERERI4LTx54krtevYtubzd2s50vL/oyHyn8CGaTedQ4T3U1DTfdzGB5OQDRF17IzNu/gzUhYTqmLW/h7vXw0lDovmGfm64B36j98zNiOWvuDM6Zm0xpRhyWw1e7Gwa0V48uK99cAUH/qHMEseBJLMaXPJ+YghWh8D0xjwPbNtPeUI9nSyOeDf8YCs178fT14fN6+PDd94XP8fhPf0D15tcnfB+nve/ycMDd3dJMU9W+MWNMJjOOiAi8gwPhsenzijCZzTgiQr3QncOB+WHB+bBzPv5pzr3+M0f0fU3KyiEpK+eIxorI1KhwV7Aq3A++eOKB1cOl6EuZlxpDYpRj3GGGYbDn1Y30d3Zgiyokc56uayIi023aQniv18vmzZu5+eabR22/8MILeeWVV47oHL/73e84//zzyc7OHrW9t7eX7OxsAoEACxYs4Lvf/S4LFy6c8DwejwfPYWWXuru7JxwrIiIiJxZd50VERE5OusYLQOdgJ3e9dhdPH3wagMLEQu5ZdQ95caNXABrBIB1/+hMtP7oPw+PBHBPDzG/dRsyll44pUy9TJxA02FHXGe7tvqOua9T+WJeNM+ckc87cZM6ck0xSlAO/z4enr5eumj14arbgOVSOp3EPntaDBDz9LExoDB+/viWHek8SXnMkg0EbHq+Bz+sFwGqr58sfGCmlvu2Zf1O95Y0J5+r3esNhuTMiErPFiiPy8KA8CocrAkdkJMFgIHzcwovLmLN81ciYoTDd7nSOWq0OUHrexZSed/ERfe/051ZOdif7db6iZQfXNYUeO4snWAkf8MGB9QCsD5aw8m1WwbtrD9Lf2QFYiYjNJikj6hjPWEREjta0hfBut5tAIEBKSsqo7SkpKTQ1Nb3j8Y2NjTz55JP85S9/GbW9oKCABx98kJKSErq7u/nJT37CypUr2b59O7Nnzx73XPfeey933HHHu38zIiIictzSdV5EROTkpGu8rK9bz3de+Q7uATcWk4XPlH6GT5Z+Ept5dF9dX309Dd+8lf7XXgMgcuVKUu++C5uqKE45wzBoae9m4656NtR5eGlvKx39PrL7a4jx97A46CEtArKizMxwBHEZPiw1Fq689tvg3gN7Xueh36+lvnWcHu6kYTUFWViaOdTHfTFtj75BQ3k5EARGH2Mym/H7fFiH+jBnFJaESrkf1gP98FXohwfmF33uK1z8XzceURA+M3/Oe/iOiZy6TubrfEt/C+b6FiK8YHI4cORNUDq+7g3w9tJJDDuNbL42e+J+8Ad3bAXAbM0kc14yJrNu1BERmW7TWo4ext61aRjGEf0A++CDDxIXF8fll18+avuyZctYtmxZ+PnKlStZtGgR//u//8tPf/rTcc91yy23cOONN4afd3d3k5mZeRTvQkRERI5Xus6LiIicnHSNP3X1+fr44Rs/5OF9DwMwK3YW9666l6Kk0SsJDcOg61+P0HzPPQT7+jC5XKR84+vEfeADWkX8LgWDAbz9A4f1Qu8N9zo3mUwUnnlueOwLf/g/WmsO4Onvo6e7h4HeXgzPACYM+iwRPJr1MQCinVYu6KrA1V4bOrAj9KV16DxWM/D9bPCEVsE6BgqBBBzmAA4bOJxOHFEx2GOTcSbMxPjEV8OB+WLzbIou6MYREYkzMgr7cP/0iEgs1tEfiy4pu/KIvw9mi+Wov3cicnRO5ut8hbsi3A/eWVCAyTpBTDPUD359oAiL2cLpOROXmD+4fQsAZls2GQXxx3bCIiLyrkxbCJ+UlITFYhmz6r2lpWXM6vi3MgyDBx54gOuuuw77UBmoiZjNZpYsWcK+fWN7Lw1zOBw4HOP3UhEREZETm67zIiIiJydd409Nbza9yW0v30Z9bz0mTHyk8CN8aeGXcFqdo8b5W1tp/PZ36H0h1EvXtXAhad+7F/tbWhqeagJ+Hz6PB2fkSJniA1vfpLejfShQ7wuF6n29DPb34YiIZPUXvhoe+/9u+jLu2oPjnjsyPiEcwnf1+9i1o5KBuv2jxgzf+uDAz+fOzuPsOcksyojitT/uoP2gD4e/C4enBYe3DYfFj8Psx2HxYwx2Y7JHQvoiLl22CGvW6Zgyl0D023+GmFlYcvTfJBE5LpzM1/lRIXzx2/SDHwrhNwRLWJQVT6Rj/DjH5xmkfnclAGZbjvrBi4gcJ6YthLfb7Zx22mk8++yzXHHFFeHtzz77LJdddtnbHvvSSy+xf/9+brjhhnd8HcMw2LZtGyUl+qFbRERERERERORE5Al4+NnWn/GHyj9gYJAWmcZdq+5iycwlY8Z2P/U0TbffTqCzE5PNRvKXv0TC9ddjOslWLwcDAep2VdLX1YHVZmP26SvC+5574Jd0NjcNrVbvC3/1ez0kpGdy/X2/DI996U8P0FZXO+5rRMaPDnIcEREAWG32cJl2R2Qk9ohIfLZIfv7Cfl7Y3cKW2g4yfXNwJGfjMTswO1wUz0ph2dwMzp5lI21gD6b6P8GLb0LDVlb5B0OfUlqB4fspkuaEy8qTsQSS54HFyuhmAyIiJ55ydzkXNw6F8EUT9IPvb4eGUIn5DYESPpA/cT/4ul2VBHw+ImISWHzFacQkuY75nEVE5OhNazn6G2+8keuuu47FixezfPlyfvOb31BbW8tnP/tZIFRypr6+nj/+8Y+jjvvd737H0qVLKR7nLrE77riDZcuWMXv2bLq7u/npT3/Ktm3b+PnPfz4l70lERERERERERI6dnW07uXXjrezvDK2qviL/Cr6x5BtE2aNGjQt0ddF01910r1sHgKOggLTvfx/n3JOvJ7d3oJ/H/uduaiu2A5CYkTUqhD9UWT5hsO7t7xv1PGNeMbEzUoZ6oEfgiIgKB+yumJhRY6+46TtYbHasNhvdgz427nPz4p4WXtzTSkubB57eEx5rzynivDmxrE5sZl5gL9aGF2H7G7ChfuyknLGQPhS2Zy6B9NPApXLKInLyCRpBdrZW8Lnm0PMJQ/gD68EIUkUGTSSyKn/ifvAmk4m0uYUkZ2WzZPWsSZi1iIi8G9Mawl977bW0tbVx55130tjYSHFxMU888QTZQ6XBGhsbqa0d/QtDV1cXDz/8MD/5yU/GPWdnZyef/vSnaWpqIjY2loULF7J+/XpOP/30SX8/IiIiIiIiIiJybPiDfn5b/lt+vf3X+A0/Cc4E7lhxB2dnnj1mbO+GjTTedhv+5mYwm0n89KdI/vznMb1DG8MT0UBPN//63u007d+L1eEgNX8ucSkzR41ZfvUH8Xk8OCIjcUaEVqo7IyNxRERhjxi9QvL8T37+iF7XMAwOdAd4YXctL+5pYXNNB/6gEd7vspm5LNvHpQl1zDftJ7p1K2wph6Bv9IlMZphRNLLCPWMJJObDUB93EZGTWU13DVHNPbi8YHI6ceTljj9wqBT9i/4SIu0W5mfGTXjOnPmLyJm/CMMwJhwjIiJTb1pDeIDPf/7zfP7z4/+w/+CDD47ZFhsbS39//4Tn+/GPf8yPf/zjYzU9ERERERERERGZYge6DnDrxlspd5cDcEH2Bdy27DYSnKPLowf7+mj+4Q/p/NvfAbDn5JD2/e/hmj9/yuc8FXrb23jo7m/RVleLMyqaK2+5ndT8uWPGzV1+xrF5PY+fl/ePrHZv7BoM74tkgMviG3hfQh3z2UdCxw5MdW6oe8tJIpMh4/SR0D1tITiiEBE5FVW4K8gdLkVfUIDJOk5EYxhQ9QIQ6ge/ND8Rm2XiG5X6ujxsfaaWrMIEsoomLlsvIiJTa9pDeBEREREREREREQiV6f3r7r/y480/xhPwEG2L5pvLvsn7Zr0Pk8k0amz/li003HwLvqEqivEf+QgzvnojZtfJ2Qs34Pfxjzu/SUdjPVEJiVx963dJzMg6pq9hGAb7W3p5cU8rL+xp4Y2D7fgCBiaC5Joa+aCtiotiD1HKPuL79mMaCMLh1eXNNkgtHVnhnrEE4rLgLf/vREROVRXuCnKbhkL4cdrtAtBWBV21+LDxWrCAr+ZNHKx3t7ZQU9nN9ucO0bi/UyG8iMhxRCG8iIiIiIiIiIhMu8beRm57+TZeb3odgOWpy7lz5Z3MjBxdaj3o9eL+6U9p+90DYBhYU1NJu+duIpcvn45pTxmL1cbyaz7Epn/+hau+eSexM1KOyXn7vX5e2d/Gi3tbeGF3K/WdA8TSy0Lzfr5g3s/yyGpK2Y8z0Bs6oPewg2MzR5eVn1kKNucxmZeIyMmowl3BlcMh/ET94IdK0W825jCAk5Vv0w9+/Z9/z55NG7FGnEtGwZpjPl8REXn3FMKLiIiIiIiIiMi0MQyDtVVr+d7r36PX14vL6uLG027k2rnXjln9PrhrFw3fuAnPvn0AxF5xBSnfvAVLdPR0TH1KBIMBzGYLAPNWnsXs01dgtdne9fkMw+CAu48X9rTy4p4W3qxuJTdYw0LzPm4072ehYz+5psaRAwJDX60uSF80ErqnL4aY1PfwzkRETi2+gI/d7p3Mag49dxVPEMJXh0rRv+QvISnKztyU8a9xwWCAmvJtgIHZkkTmvPhjP2kREXnXFMKLiIiIiIiIiMi0aBto445Nd/DCoVDgMD95PnevupvsmOxR4wy/n7bf/pbWn/0c/H4siYmk3nkH0eedNx3TnjIHt23mxf/3O6669U6iE0IrId9NAD/oC7Cpuo0Xd7ewY/cekrvKWWTezxfM+yixHiDC5Bl7UGL+0Ar3odB9RiFY3n34LyJyqtvbsZdktw+XF0wuF/bc3LGDAj44sB6A9cESluclYTaP39KjpbqKwd4ewI7VmcbMvNhJnL2IiBwthfAiIiIiIiIiIjLlnqt5jjtfvZP2wXasZiv/teC/uL7oeixDq76HeaoP0HDLzQxu3wFA9AUXMPOO27EmJEzHtKfMnk0beOJ/f0Qw4OeNxx7m3Os/c1TH17T1sX5XPQcrXsFSv5kS9vIp834yTG6wjx5rOGIwpZ92WC/3xRBxcn9/RUSmWrm7fKQffEEBJotl7KC6N8DbS5cphp1GNh/Nn7jH+8EdWwEw27JIn52A1TbO+UREZNoohBcRERERERERkSnT7e3m+69/n7VVawGYHT+be1fdy9yEuaPGGcEgHX/6My333YcxOIg5OpqZ37qNmLKyMWXqTzY7nnuKZ//v52AYzF1+Bmdd94l3PGbQ62d7RTl15euh7g1yPbt4v+kgDpMfDstlDEwEk+dhyVwSDt1NSXPAbJ7EdyQiIuXucnIbh0L44uLxBw31g3/JX4yBmRV5E/eDP7h9CwBmWzYZBbpxSkTkeKMQXkREREREREREpsSmhk186+Vv0dzfjNlk5vqi6/n8gs9jt4xemu1raKDhm7fS/+qrAESuWEHq3XdhSz35e5C//thDbPjLgwDMv+ASzv3EZ8M94UcJBmipfIG68vWY6t4go6+SpaYulg7vH8rUB2xxBNKWEJm3DFPGEkxpC7E4Y6birYiIyGEq3BV8bHglfFHh+IOGQvgNwWKyEyPITIgYd5inv5/GfbsBMFtzyJynEF5E5HijEF5ERERERERERCbVgH+A+zffz192/wWAzOhM7ll1DwtmLBg1zjAMuh55lOZ77iHY24vJ5WLG179G/Ac/eNKvfjcMgw1/eZA31j4MwOmXX8OqD3x07Pv2e+h/40/0vfAjZnjrmTG83QR+LDS6ZhNIW8yMwlVEzFqGKz4HTvLvnYjI8a7X28vBjmpmNYeeu8ZbCd/fDg2hEvMbAiWc8zar4A9V7iAYCBA3M5Urbr6Q+JTxw3oREZk+CuFFRERERERERGTS7Gjdwa0bb+Vg90EArp17LTeediMRttGBgd/tpvHb36H3+dAqQNeCBaR9717sOTlTPOPp4R0YoHrLGwCc+eHrWbLmqtEDPL2w+UE8G35KxEAzEUCnEcku50KC6YtJLT6DWcUryLQriBEROd7sbNtJaruB0wemiAjss2aNHXRgPRhBasyZNJHIqvyJQ/jU2XO54NNfxGQ2kZAaOYkzFxGRd0shvIiIiIiIiIiIHHO+gI9fbv8lv6v4HUEjyAzXDO5ceScr01eOGdv99DM03X47gY4OsNlI/uIXSbzhE5gs45RhP0k5IiK46tY7qassZ94Z54zs6G+H136N8dqvMQ124AAajQQedlzOyvffyPL8zGmbs4iIHJlR/eDnzRv/+jZUiv4/3tAq+eV5iROeLzIunpJzLzzpq8SIiJzIFMKLiIiIiIiIiMgxta9jH9/c+E12t4f61a6etZpvLv0msY7YUeMCXV003XU33evWAeCYO5e0H3wf59y5Uz7n6eAbHKS2cjt5p4U6uUcnJI0E8N0N8MrPYPOD4OvDBFQHZ/KrQBnRSz7MV1eXEGHXR3siR8vvDTDY5yMq3hnetv6ve3DX93LRJ4uJjHNM4+zkZFXhriDv7frBGwZUvQDAhmAJRWkxJETaJzyfd8DPn29/lbTZcZz3sXlYbafOTWsiIicK/aQuIiIiIiIiIiLHRCAY4I87/8j/bv1ffEEfcY44blt2GxflXDRmbO/Gl2m89Vb8zc1gNpP4qU+R/F+fx2SfOHQ4mQz09vDI9++gcd8e3velr1Ow4szQjrYqePl+2PZXCPoAqAxm8wv/ZeyIPpPvX7OQFW9TolhEQg7tbKejuZ+e9kF62gboaRukp32QgR4fcSkRfPiOZeGxTQe6aa3tocs9oBBeJkW5u5wzh0L4cfvBt1VBVy1+k43XggVc9zb/zh/YtpmqzXvpbXfSUmNRAC8icpxSCC8iIiIiIiIiIu/ZoZ5D3LbxNra0bAHgrIyzuH3F7SS5RgcJwf5+mn/4Qzr/+jcA7NnZpH7vXiIWLpzyOU+X3o52Hr77W7gP1eCMjCImaQY07oCN98HOx8AIArDdXMR9g5fyUrCUD56exROr5xHttE3z7EWmj2EYDPb6hoL1wVFfAVZ/rjQ8dtOjVbTW9ox7nsE+H4ZhhEt5L16dQ8AfJD4lYvLfhJxyWvpbaOltIqc59NxZVDR20FAp+u2muQzgZOXbhPA7/vMk+994FatzJZkF8yZjyiIicgwohBcRERERERERkXfNMAwe2vcQP3zjhwz4B4iwRnDT6TdxRf4VY3rV9m/ZQsPNt+CrrQUg/sMfZsZXb8QcceoEX53NTTx09210NTcRGZ/A1ddfSdLrt8H+Z8Nj9set5JaW83kjOJeUGAe/v6qUc+bOmMZZi0wNI2jQ3+2lu22QnvYBvAMBis9MD+9/5H+20FjVNe6xFpt5VLCeMTee6ARn6L/Ew74mOnFEWEf9+5S7IHly35ic0ircFaS3gdMHpogI7Dk5YwdVh0rR/8dTjM1iYklO/LjnCvj91FbsAMBsyyZzXsJkTVtERN4jhfAiIiIiIiIiIvKutPS38J1XvsPG+o0AnJZyGnetvIuM6IxR44JeL+7//V/afvcABINYZ84k7Z67iVyxYjqmPW3ctQd56J5v09fRTmx8DFcXNRP35MdCO01mOnPLuLn5PJ5qCq2AvGJhOreXFREbodXvcnIIBIIMdHtH9WN/84kD1O3ppKd9kN6OQYJ+I7zPYjNTdEZaODB3xYTaVUTE2keH60OPDQOGs/UVV+VP3RsTeRsV7gpyh/vBF87DZHlL+fiADw6sB2B9sIRFOfFE2MePbhr378E70A8mJybrDNLnjh/Wi4jI9FMILyIiIiIiIiIiR+2pA0/x3Ve/S7e3G7vZzpcWfYnrCq/DbDKPGje4axcNN92MZ+9eAGIvu4yUW7+JJSZmOqY9bXra3fz99psZ7OslKTLAVYnPENXmA4udwPwP8v9Ml3PXpkH8QYPESDt3X1HCxcUzp3vaIu9KU3UXbfW9IyXjh8rG93V6MFvNfOanZ4WD9dbaXur3dISPNZlNRMU5wgG73xfEZg+Flud8uIALPlGoHthyQil3lzOvcagf/Hil6OveAG8vPZZYdhrZ/PfblKKv2bEVALM1m5TsWJyRuklLROR4pRBeRERERERERESOWOdgJ3e/djdPHXwKgHkJ87j3jHvJi8sbNc7w+2n77W9p/fkvwOfDkpBA6p13EH3++dMx7enl9xBVtZai2EYaggZXplfidDlh8Wepyv8YX/l3M+X1oRLblxTP5K7Li0mMckzzpEXG8g74h0rFj+7J3t/l4YqvLQoH61ufqaV6W+v4JzFCPdldUaFV7cVnppO7IGmoVLyLyFg7Zot53EOdUQoc5cQSNIJUtlWyenglfHHx2EFD/eA3BooxML9tP/iD27cAoVL0GSpFLyJyXFMILyIiIiIiIiIiR2RD3Qa+88p3aB1oxWKy8KnST/Hp0k9jM48OxjwHDtBw880Mbg/1rY2+4Hxm3n471sTE6Zj29PH0Yrz5AKZXf4Gpp5GzYsA/IxHbipsILP4kv32zgx/9bi/eQJBYl407Lytizfy0Ub2qRaaKYRgM9vnC4Xpvu4fSczPCfx6ffaCSva83T3j8QI+PiKFy8TNzYwkEgqN7sg+tbI+ItmMyj/wZzyxUkCgnr9ruWvoGu5k19FfHOd5K+KEQ/nlfEVEOK/MzYsc910BvD01V+wCYMauYLIXwIiLHNYXwIiIiIiIiIiLytvp9/fzwzR/y0N6HAJgVO4t7Vt1DcdLoFX1GMEjHn/9Cy49+hDE4iDkqipTbbiX2sstOrWC5vx1e+xXlT/yDPW2RXJ7RhDU2DdOKL2I77WMc6Iav/XE7m2tCJbjPLZjBvVeWkBLjfIcTi7x7RtCgv9tLRKw9/PexYn09B7a3hoN3vzc46pjZS1LCwfrwynVHpDUcrsckusLhus0xUiJ+4YVZLLwwa4remcjxq9xdTnobOPxgjojAnpMzekB/OzSESsxvCJSwbE4C1gkqQbQePIDZbCE+NY0PfvvcSZ65iIi8VwrhRURERERERERkQluat3Drxlup660D4CPzPsKXF30Zp3V0YOxraKDhm7fS/+qrAESuWE7q3XdjS02d8jlPm6562PRz2Px73miKZ31LLgCVOV9m/kdvJWi28cdNB/neU7sZ9AWJclj59qWFXLM449S6SUEmVVt9L621PeFS8cPl43s7Bgn6Da7/wapwsN7Z1E9tZfuo4yNi7OGV68GAEd6++H05nL5mFnanPlIWOVIV7gpyh/rBOwsLMZnfErAfWA9GkDprNk0k8um8iUvRZxWX8l8P/JUet3sypywiIseIfmISEREREREREZExPAEPP9/6cx6sfBADg9TIVO5aeRenp54+apxhGHQ9+hjNd99NsLcXk9PJjK9/jfgPfnBs2HCyaquCjT+G7X/DCPjY2JrN622hVcBLyq6k9MPXc6hjgG88tIVN1W0ArMhL5AdXl5IRHzGdM5cTiN8bCAXrb+nH3tM+yCWfLQmvVN/5cgM7nq8b9xwms4m+Lk84hM9fPIOEtMjwavaoBAdWm2XcY52R6scucrQq3BWcNtwP/m1K0f/HWwjAqtkTh/AAHY0+4k+lm9tERE5gCuFFRERERERERGSUXW27+ObGb7K/cz8Al+dfzjeWfINoe/Socf62Nhq//R16n3sOANf8+aR+714cs2ZN+ZynReP2UPhe+ShgEDTgub5V7GgLrWo/40MfZ8maq/j7G4f47uM76fMGcNks3LK6gI8szcZs1up3GeEd8I9avV6wbCZ2V+jj21cfrWLzUzUTHtvTNhgO4ZOzoskoiCc60UlM4khP9qgEJ1FxDsyHlbqemRvLzNzx+0+LyHvjC/jY1b6La4ZD+OLRLVwwDKh6AYAX/SUkRzuYPSNq3HMZhkEwaPDo/VsJ+oJ88DtLiUvRTVwiIsczhfAiIiIiIiIiIhL2z73/5J5X78Fv+ElwJnD78ts5J+ucMeO6n3mGpu/cTqCjA2w2kr/wBRJv+AQm6ynwcVPNK7DhR7D/P+FNgfyLeLI2hz27d4LJxAWf+i9SlpzN9Q++wYt7WgFYnB3P/1wzn5ykyOmauUwTwzAY7PNhd1mxDIXgVVtb2PNqE91tg/S2D+Lp9486ZmZuDDOyYwBwRoVWodsclnCp+OG+7KGw3RU+rmBZKgXLtFJWZLrt7dhLwO8lpzn0fMxK+LYq6KrFb7LxWrCAi/ISJ2xNsvWpdWx75hkGu+cQlbiQ2GTXuONEROT4cQr8ViQiIiIiIiIiIkfCF/Txg9d/gN/wc17WeXx7+bdJcCaMGhPo7qb57rvpemwtAI45c0j7wfdxFhRMx5SnjmHAvmdgw31wKNT3HpMZiq6EVf9NVzCeg7fdiNli5ZIv3MhuVx4fue8lugf92K1mvn7hXD6xahYWrX4/qXW7B2g+0E1P+1Av9uGy8e2D+D0BrrllcThY72kb5MD20b2dHZHWcLhutoz8WZm3Mo2C5ak4IqwThnQicnypcFeQ7gaHH8yRkdhzskcPGCpFv8s6jwGcrMifuBT9wW2b6Wg4iNWVRUZBPCZdS0REjnsK4UVEREREREREBID9HfsZDAwSbYvmvrPvw2wa3dO99+WXabz1NvxNTWA2k3jDDSR98QuY7fZpmvEUCPhh56OhsvPNFaFtFjss+DCs/BIk5AKQAFxx0+24O7r48T4rT1duA6A0I5YfXTOf2SnR455eTgzBQJDeDs/onuxDAfuqa2aTmB4qIV29rZWXH9o/4Xn6urzhx5nzEjjzA3NGVrUnOrE7x/+41uHSx7giJ5pydzl5w6XoCwsxmUdfU6kOlaJ/ciDUD37lBCG83+fj0M7Q9cdsyyazIGHccSIicnzRT28iIiIiIiIiIgJARVvoQ/7CpMJRAXywv5+W//kfOv7yVwBs2Vmk3fs9IhYtnJZ5Tgm/B7b9BV6+HzoOhrbZo2DxJ2D5f0H0TPo6O+jet4fU2XMB2OGN49Zn62jv82I1m/jyebP53Nl5WC3mCV9Gjg9+X4Dedg/dbQP0tA2SXZxIVLwTgMoN9bz0lz0YxvjHdjb3h0P4hNRIUvNjiUl0jSkZH5XgwGqzhI9LTI8KHyciJ58KdwVnNU7QDz7ggwPrAXgpUMKspEjS48YvMV+/uxK/1wOmSEzmJDLmxU/qvEVE5NhQCC8iIiIiIiIiIgBUuisBKE4cCQv6t2yl4Zab8dXUAhD/oQ8x42tfxRwRMS1znHSeHnjz97Dp59DbFNrmSoBln4PTPwWuUPjR1dLMQ3ffRn9XF5fcdCf/u32Ax7Y1AFAwM5ofvX8+RWmx0/Uu5C28A37MFhNWeygEb9jXwY4X6sMr2we6vaPGX/yZ4nAI74y0YRhgtppGherRCU5iEp3MyIkJH5dVlEhWUeLUvTEROS71enup7qrm+uGV8G/tB1/3Bnh76bPGsXMwmw/nT/zvRs2OrUBoFXzcjAhiEtUPXkTkRKAQXkREREREREREAKhsGwrhk4oJer24//dntP3udxAMYk1JIfWeu4lauXKaZzlJ+trgtV/B67+Bwc7Qtph0WPFFWPRRsEeGh7bV1fLQXbfR29GOPS6JT/+1gmqvC7MJPnd2Hl86bzYOq2X815FJ09floam6a1Sp+OHS8Z5+Pxd/ppi8hTMA6O/2UbWlZdTxNoclHK4fXv49szCBj39/JRHRdvVhFpEjsrNtJ6ZgkJwWE2DgLCocPWCoH/xrlGJgZmXe2/SD374FAIstm4x5KkUvInKiUAgvIiIiIiIiIiIM+gfZ17EPgIJ2Jwe/9H48e/YAEHvZGlJuvRVLTMzbneLE1FUPm34Gmx8EX39oW2I+rPwKlF4L1tH97hv37+Ff997OYG8P/pgZPBB9EX1eF7nJkfzomvkszFKZ4GPNCBr093hHh+tDX+efnxnuj9y4v4un/69iwvP0dY6sdp+RE82qa2aPrGpPdOKIsGIyjQ3Z7U7rhL3aRUTGU+4uJ8MNdr+BOSoKe3b26AFDIfwTA/MwmWB53vgr4fs6O2itOQDAymvOJX3uzEmdt4iIHDv66VFERERERERERNjdvpuAEaCs0kXP/3wOfH4s8fHMvON2Yi68cLqnd+y598PLP4btf4egL7QtdT6suhHmlYF57Er2mvJtPPbDu/B5BmmPmMnDcZfgsTr55MpZfO2iuThtWv3+bgQDQXo7POGV6yk5McTPDFUeqKlo44lf7SDoH78he0ZBfDiEj0txkTIrZnTJ+MSRx4cH6TGJLuaflzn5b05ETkkV7gryhvvBFxZiMptHdva3Q0OoxPyGQAnF6bHERdjHOw0+j4eClWcx2NvDaZfMm/R5i4jIsaMQXkREREREREREqGyrxBIw+MCTfeALEnXeeaTecTvWpIlL5J6QGrfDhvtg52PAULCbvQrOuBHyzoVxVkID1O/Zxb++dztBv59DznT+nXwJqUmx/M818zl9lsoDvx2/L4ARDJV7B2hr6GXL0zXh1ex9HR6MwzL2VdfMDofwzigbQb+ByQSR8Y5woB6T6CI6wUlqfmz4uKSMaK6+afGUvjcRkfGUu8u5dLgffHHx6J0H1oMRpMmRQ/NgAlfkT3ydjUuZyfu+9PXJnKqIiEwShfAiIiIiIiIiIkKFu4KsVrD5gphjYsj435+OXrl3IjMMqHkFNvwIqp4b2T7nklD4nnn6O56i3pJAsyuNroCFp2dcwIeWz+KWS+YR6dDHawCefh+N+7tGlYrvHvo60O1l1TWzwyvP/d4ge19rHnW82WoiOj4UsEfEjKwITUqP4rq7lhMZ78BiOUn+PIrISa21v5Xm/mbymkLPJ+oH/6I/FM6vzB+/FP2wHS8cwmwxk7sgedS/jyIicnzTbwkiIiIiIiIiIkKFu4LZDaFVe66SkpMjgDcM2Ps0bLwPDr0W2mYyQ/FVsOq/IaXoHU8x4PXz4//s4/82VGNJuJAZcZH84ZoFnDE7eZInf3wwDIPBPt/oXuxDj/MXz2DOklB/4s7mAf79ix0Tnqe3YzD8OG6Gi+VX5I0qGR8RbcdkHluFwGIzE5PkOvZvTERkklS4K7AEDLJbQs9dh6+ENwyoegGApwYKsVvNLMkZv5pKb0c7/d1dvPlEHQM9PuJSIhTCi4icQBTCi4iIiIiIiIic4nq8PRzsPsglQyG8s7Rkmmf0HgX8sPPRUNn5lsrQNosDFn4YVnwJEma94ykMw+CR3/6W5yvqeNy5BEwmrlgyi2+VFRLjtE3u/KeQETTo7/GGw/XYGS5mZMcA0Fbfy0M/2IzfExj32JgkVziEj0lykpQZNRKsv+WrM3Lke+aIsLHoouzJf3MiItOg3F1OhhtsfgNzdDS2rKyRnW1V0FVLwGTjtWABp+XE47RZxj3PzvXPs+EvD2K2zyMi7n2k5saOO05ERI5PCuFFRERERERERE5xu9p2AVDQbAV8uEpKp3dC75ZvELb/BV7+CXQcDG2zR8HiT8Dy/4LomUd0Go/Xz8/u+QHseoVZQEFuLl+77mLOL0yZtKlPlmAgSMBvhPux93V5eG1t9ciK9o5Bgv6Rhuzzz8sMh/CuaHs4gHfF2IlOcBJzWLCeMismfJwr2s61t75zWX8RkZNdhbuC3OF+8IWFmEyHVfkYKkW/z1HEwICTVbMn7gdfs2MLAGbLTNJmx2GxnQQVakRETiEK4UVERERERERETnEVbRW4PAYzW/0AuE60lfCeHnjz97DpZ9A71Gs8IhGWfg5O/yS44o/4VDvr2/n9Pd9jpnsnBtA+v4y/fvmDxEcevyWA/d7ASD/29kG62wbCJeP7Or2UnpPBqmtmA2Aymdj1cuOo400miIx3hMP1Ya5oGx++YxlRCQ6sE6zUFBGREUEjSEVbBe9vHArhi9/S9qR6qBT9YKhP/Iq88fvB+wYHqd+9EwCzLZuMgvFL1ouIyPFLIbyIiIiIiIiIyClueNWeyQBbWhrWpIlX5h1X+trgtV/B67+Bwc7Qtph0WPFFWPRRsEce8an8gSC/em43e//6c7L7awhiJv3yT/C1D14+KVN/rwKBIBZLaFWkZ8DP2p9um3Ds4f3YXdE2lq6ZRVTC0Ir2BCeR8Y7wuQ5nMpmIS4k45nMXETlZ1XbX0uPtIb/ZBBi4ig4L4QM+OLAegGc9RUQ7rZSkj19i/tCucgJ+PyZzDCZzPBnzjvxmMhEROT4ohBcREREREREROcVVuitZ0hB67Cw9AUrRd9XBKz+DLX8AX39oW+JsWPUVKHk/WI9u1fr+ll6+8dfXyNn8N7I9jQTNVs7/wjdYuHLFsZ/7exTwB9nw970M9Pq4+FPFmMwmImLsJGVGERnrGNuTPdFJRPTI98NkMrF49axpfAciIievcnc5loBBdsvwSvjikZ11b4C3lwFbHDsHszk/NxHrODdAAdRs3wqA2Zod+jc+PWrS5y4iIseWQngRERERERERkVNY+2A7DX0N5DeEAgNXyXFcit69H17+MWz/OwR9oW2p8+GMr0LBpWA+upLpwaDBAy8f4IdP72Fm9wFWeBoxO1xce8t3yJhX/M4nmGL93V6e+k05jfu7wARN1V2k5sdhMpnUj11E5DhQ2VZJZitY/QbmmBhsmZkjO4f6wW+1LsDAzKr8iavOHNwe6gdvseeQMTcek9k04VgRETk+KYQXERERERERETmFVbgrAJjbZAYCx2c/+IZtsPE+2LkWCN0sQM4ZsOq/Ie/cUFPzo1Tb1s/XHtrO6wfaAciafxrL03OZXTCHGTm5x27ux0hLTTdP/qqc3g4PdqeFC24oIjU/brqnJSIihyl3l5PbNLQKvqgQ0+HXp6EQ/rHeAgBW5o/fD77b3UJ7Qx0mk5mPfv9azGbn5E5aREQmhUJ4EREREREREZFTWGVbJfE9BnHdATCbcRYWTveUQgwDal6GDfdB1XMj2+euhlU3QuaSd3lagz+/Vss9T+zC0esm2eHgvy9fygdPzxwdlhxH9rzWxAt/2k3AFyQuJYLVnyshfuaR97sXEZHJ5wv42N22m48NhfCj+sH3t0NDqMT8i75iUmIc5CWPX2I+Ijaeq279Lu11tcQmxU32tEVEZJIohBcREREREREROYVVuivJbwwFBo7ZszFHTnO4axiw96lQ+F73emibyQLFV4VWvqe8+5sEGjoHuOnhHWzY52aGp4UrW58gISGBy+ddeNwG8G8+eZDXHqsGILskkQs+UYTDpY/0RESON3s79+INeslvDlWWcR4ewh9YD0YQt2sWzYMJXJmXNOF1x2qzkV2ygJzShVMzcRERmRT6iV1ERERERERE5BRlGAYV7gouHO4HP52l6AN+qHwkVHa+ZWdom8UBCz8CK74ICbPe9akNw+DhLfXcsbaSHo+fHG8jZa1Pgs9DRGTEMXoDkyNjbjxvWs0sOD+T09fkYlZfYBGR41JFawWWgEFmSxAAZ3HxyM6hUvSvGKUArHybfvAAL/9zP00Hulh8SQ45pW8/VkREjk8K4UVERERERERETlHN/c20DbYxuyH03FkyDSG8bxC2/Rle+Sl0HAxts0fDkk/Asv+C6JT3dPqWnkG++a9y/rOrBYDzIlopPvRvgn4fWcWlXPa127C7jq8g3u8NYLVbAJiZG8uH7lhKTKJrmmclIiJvp9xdTlYrWP0G5thYbBkZoR2GAVUvAPBIz1xg4hC+teYAleuf58COKPp7kgkGjCmZu4iIHHsK4UVERERERERETlEV7gpMhkF+kwkwcJWWTt2Le3rgzQdg08+htzm0LSIRln0OlnwSXPHv+SUe39HAbY9W0Nnvw24x84WsDvwv/otgMEj+kmW870vfwGq3v+fXOZaqt7Xy4l/2UPbF+SRnRgMogBcROQFUuCvIDfeDLxwpN99WBV21BM02Xg0UkJccycxY57jn2P/mq2x+/BHMttk4ostImxM3RbMXEZFjTSG8iIiIiIiIiMgpqsJdQVobOD1BTC4Xjvz8yX/RPje89it4/Tcw2BXaFpMRKjm/6KNgf++r0tv7vHzrsQr+vaMRgKK0GG6c1cO2P/0l9Pys87nwM1/EbLG859c6VoygwZtPHuT1dQcA2P6fQ5x/feE0z0pERI5En6+P6q5qzm0MhfCj+sEPlaI/GFHKQL/zbUvRH9y+FQCzLZvk7BickbbJm7SIiEwqhfAiIiIiIiIiIqeoyrZK8huGA4NCTNZJ/Kioqw5e+RlsfhD8A6FtibNh1X9DyTVgPTYr0p/d2cwt/yrH3evBYjbxhXPy+cK5+Xi6Oznw7L/IO20pZ193Ayaz+Zi83rHgHfTz3IO7qN7WCkDJORmsvHoKbogQEZFjYmfbTgwM5rZYAR/OosP6wVeHStE/5w3dWDVRCO/p76Nx324AzNZsMue994owIiIyfRTCi4iIiIiIiIicggzDoLKtkvcPhfCukkkqRe/eBxvvhx1/h6AvtC11AZxxIxRcCuZjsxq9a8DHnet28vCWOgDmpETxo2sWUJIRC4AtPoEP3/NjnJFRIyWCjwNdrf088cty2hv6MFtNnP2hucxbkTbd0xIRkaNQ7i7H6jdIbw4A4CweWgkf8MGB9QA82lOA2QTLchPHPUdtxXaMYBCzNQGzJZbMgoQpmbuIiEwOhfAiIiIiIiIiIqeg2p5aerw9zG4c7gdfcmxfoGEbbLwPdq4FQkE/OWeEwvfcc+AYBuHr97Zy08M7aOwaxGSCT5+Zy5fOzmX9Az/HWrqQeWecA4ArKvqYveax0NHUx8M/2Iyn309ErJ1LPlPCzNzY6Z6WiIgcpQp3BZmtYAkYmGNjsaWnh3bUvQHeXjz2eHYOZlOaGUesa/wS8zU7QqXoTZYsrHazrgciIic4hfAiIiIiIiIiIqegCncFNr9BdksQAOexWAlvGHBwYyh8H+qBC8Dc1bDqRshc8t5f4zB9Hj/3PLGLP79WC0BOYgQ/ev98SlMjefz+71O9+XX2btpIVskCIuOOv7K+sTMimJETg3fAzyWfKSEyzjHdUxIRkXeh3F1OUdNQZZmiopGKK0PXwkrnIoxuMyvzxl8FbxgGB7dvASB9bimxM5Ox2I6ftikiInL0FMKLiIiIiIiIiJyCKtwV5DSDJQiWhARs6e+hBHowCHufCoXvdW+EtpksUHI1rPwKpBQekzkf7tXqNr7+0HYOtYf6y398RQ43XVyA2e/hX/d+h7qdFVhtdspuvOW4CuD93gAmswmL1YzZbOKiTxVjsZqw2o5NWX4REZlarf2tNPU1cVlT6LmzqGhk51AIv66vAIBVE/SDH+jpxu/zYbZYueyrZdidrkmds4iITD6F8CIiIiIiIiIip6DKtkryh/vBl5a+uz7pAT9U/gs2/hhadoa2WRyw8COw8ksQn3PsJjxk0BfgB0/t4fevHMAwID3OxQ+vKWVFXhL93V38455v03KgCrsrgiu+8W0yCouP+Rzerd6OQZ78VTlJmdGc/eG5mEwmHC59PCciciKrcFcAUNBqAzw4i4euO/3t0BAqMf9E3zwcVjOLsse/KSwiJpbP/PIPdLU0K4AXETlJ6Kd8EREREREREZFTjD/oZ1fbLlYNhfDOo+0H7xuEbX+Cl38KnTWhbfZoWHIDLPs8RKcc4xmHbK3t4Kv/3E51ax8AHzw9k2+unke000a3u5WH7v4WHQ11uGJiueqWO0jJzZ+UebwbjVVdPPnrcga6vXS5B1jyvllExav8vIjIia7cXY7VbzCzyQscthL+wHowgnRE5tI8mMCqnAScb1P1pK/TA8RgGMa7uzFORESOKwrhRUREREREREROMdVd1QwGBpndZAIMXEfaD36wG958AF79BfQ2h7ZFJIaC9yWfBFfcpMzX4w/wk//s41cvVRE0ICXGwfeuKuWcuTPCY3a//BIdDXVEJyZz9W3fJSEtY1Lm8m5Ubqhn/d/2EgwYJKZHsfpzJQrgRUROEhXuCrJawRIwsMTFjbR3GSpF/6ZlIQAr8ifoBx8MAlC5oYE3nzhI8VnpnPXBuZM/cRERmVQK4UVERERERERETjGV7koiBwxmtoc++HeVvEPJ9j43vPpLeOP/YLArtC0mI1RyfuF1YI+YtLlW1HfxtX9uZ3dTDwBXLEzn9rIiYiNso8YtWXMVAb+PorPOJyYpedLmczQCgSAb/7GPipfqAchblMy5H52H3amP5ERETgaGYVDRVsGyxqHKMkVFoVXshgFVLwDwr645wMT94Ov37GTtffdidcwFVpGcFT0lcxcRkcmln/hFRERERERERE4xFe4K8ocCA3t2Npa4uPEHdh6CTT+DzX8A/0BoW9IcWPkVKLkGrPZJm6MvEOSXL1bx0+f24Q8aJEbaufuKEi4unhke01y9n4SMTGx2ByaTieVXfXDS5vNuPP2bCg5sd4MJlpblctol2SoxLCJyEqntqaXH20N+c+jf9nAp+rYq6KolaLbzYv9sYpxWitJixz3Hwe1bGejuwmLvxhYJmfMSpmr6IiIyiRTCi4iIiIiIiIicYiraKpjXEHrsLB2nFH3rXnj5ftjxdwj6Q9vSFsKqG6HgUjCbJ3V++5p7uPEf2ymvD626v6R4JnddXkxi1EgJ96rNr/P4j79HVukC1tz4TSzW4+9jrqIz02nY18l5Hy9kVun4KyBFROTEVe4uB2Beqx0YwFk8FMIPlaKvj5nPQL+Ts/KSsJjHvwmrZscWAMzWbOJSIohOcE76vEVEZPIdf7+diIiIiIiIiIjIpPEGvOzt2EtZQ2glvKukZPSAF+6Bl34AhPaTcwaccSPkngOTvIo7EDT47YZqfvTsXrz+ILEuG3deVsSa+WmjVpDv2vACT/7ix+E+usNfjwcDPV5c0aEKAdlFiVx39wocLn0EJyJyMqpwV2DzG8xoGgTANbwSvjpUin5jIHSNXTlBP/j+7i6aqvcDYLZlk1EQP8kzFhGRqaLfAERERERERERETiF72vfgD/iY3Rh67io9LIT39MD6HwIGzF0NZ3wVMhZPybwOuPv42j+3s7mmA4BzC2Zw75UlpMSMXhG49al1PP/7XwMw74xzuOizXz4uVsEHgwavPVZF5cYGrrl5MbHJEQAK4EVETmLl7nKyWsAcMLDEx2NNS4OADw6sB+Dv7bMBWDlBP/jaiu1gGFgdMzCZo1SKXkTkJKLfAkRERERERERETiGVbZUkd0FMvwE2G45580Z21r0JRhDisuCDf52S+QSDBv/v1RrufXIXg74gUQ4r3760kGsWZ4xa/W4YBq/+62+88o8/A7Dw4jLO+dinME1yafwj4en38czvdlJb2QZATUUbpedETPOsRERkMvkCPna37easplDlGGdRUei6VfcGeHvxOeLZPphJaqyTWUmR457j4PZQKXqDTEwmSJ8TN1XTFxGRSaYQXkRERERERETkFFLhriC/cSgwmDsXs2Okzzq1m0Jfs5ZPyVzqOvr5xkM7eKUqFF6vzE/k+1eVkhE/NsB+5Z9/5tWH/wbA8qs/yPKrPzQqpJ8u7Y19PPHLHXS1DGC1mTnnowXMWTJzuqclIiKTbG/nXrxBLwUtNsAzph/83qglGF1mVuYnjXu9MgyDmh1bAVh+5TnYI3JxRNimavoiIjLJFMKLiIiIiIiIiJxCKtsqWT7cD770Lf3gpyiENwyDf7x5iO8+votejx+XzcI3Vxfw4aXZmM3jB+u5C5ew5YnHWPn+j7Bo9WWTOr8jdWCHm2cfqMQ3GCAqwcHqz5aSnBU93dMSEZEpUOmuBKCgxQp4cBaNDuGfHSwEJu4HH/D5KDzzXA5V7mDR6uXY7I5xx4mIyIlJIbyIiIiIiIiIyCmi39dPdVc11w2F8M6S0pGdAV+oHD1Magjf3D3IzQ/v4IU9rQAszo7nf66ZT84EpXqHpc6eyw0/+T8iYuMmbW5H42C5myd+uQMMSJsdx0WfKiYixj7d0xIRkSlS7i7H5jNIbBoAwFVUBP3t0BBa3f639nwAVuaN3w/eardzxgc/NjWTFRGRKacQXkRERERERETkFLGzbScEAuQ1mwBj9Er4ph3g6wdXPCTNOeavbRgGa7c38O3HKuka8GG3mvn6hXP5xKpZWMZZ/e4d6OeJn93H8qs+QEpuKMg4XgJ4gIyCeGZkxzAjO5pV75+NxTL9velFRGTqVLgryG4BcyCIJSEBa2oq7HwMjCA90fk0DSYwe0YUM2KcE56js7mfXZsayS5OJC0/buomLyIik04hvIiIiIiIiIjIKaKyrZLMVrD7DMxRUdhnzRrZWftq6GvmMjAf20DZ3evhtkcqeKqyCYDSjFh+dM18ZqeMX7q9v7uLf917O83V+3AfOsj19/0Ki3X6P8bq7fAQEWvHbDZhtVm4/MaF2OyW6Z6WiIhMsT5fH1WdVVzQNFRZpqgo1Pd9qBT9DsciAFbmj78K3u/1UlO+jY6WOLY8VYf7UC9pX4ybkrmLiMjUmP7fXkREREREREREZEpUuivJbxwuRV+M6fCwPdwPftkxfc2nKhq59ZEK2vq82CwmvnTubD53dh7WCVaO97S5eejub9FefwhndAyXfvmm4yKAr9vdztP/V0nhGWksvzwPQAG8iMgpamfbTgwMit0uoA9ncREYBlS9AMDa3gJg4hC+bnclj/7gTmyOeCwR15M5L36qpi4iIlNk+n+DERERERERERGRKVHRVsHqoX7wrsP7wRsG1AyH8MemH3xXv4/vrK3g0W0NABTMjOZH759PUVrshMd0NNbzz7tuo8fdSlRiEld/87skZmQek/m8W4ZhsOP5Ol5+eD9G0KBuVzuB983CYlP5eRGRU1W5uxyA2c2ha4GrqAjaqqCrFsNiZ21nDhaziaW5CeMeX7Mj1DfeMKUBkFEw/jgRETlxKYQXERERERERETkFdHm6ONRziPzhEP7wfvBtVdDvBosD0ha859d6YXcLNz28g5YeD2YTfO7sPL503mwc1olXjrccrObhe75Nf1cn8alpXH3rXcQkz3jPc3kv/L4AL/15D7tfDZXRn7t0Jmd/eK4CeBGRU1yFuwKbzyChsRcAZ3ExVK0FoCVuIQN9ThZmxBLjtI17/MHtWwAwWbJxRdtITI+cmomLiMiUUQgvIiIiIiIichS8AS92i326pyFy1CrdlTi8Bpnu0HPn4Svhh0vRZywGq+Ndv0bPoI+7/72Lv71xCIDc5Eh+dM18Fma9c5nd1x/9J/1dnSTn5HL1N+8kIjbuXc/jWOjr9PDEr8ppOdiNyQQrrspn/nmZoZ6/IiJySit3l5PTAqaggSUxEWtKCrwQKkX/ujl0fV01QSn63o523LUHARNmazYZBQm6toiInIQUwouIiIiIiIi8g7aBNp448ATrqtYxL3Eed6y4Y7qnJHLUKtoqyG0CswHWlBRsKYetMq99NfT1PfSDf2W/m68/tIP6zgFMJrhh5Sy+dtFcnLYj65t+0ee+TGR8Aiuu+RCOiOldERjwB/nX/2ym2z2II8LKRZ8sJrNQpYJFRATcA26a+pqY3xSqLOMsKsQU9MOB9QD8rX0OACvyxg/hh0vR2yNmYjK71A9eROQkpRBeREREREREZByegIcXD73Iuqp1bKzfSMAIANDY18hty27DZh6/vKjI8arCXUF+43Ap+tLRO2vffT/4fq+f7z+5mz9sqgmdIiGC/7lmPqfPeufQurl6PzNm5WEymbA5nJzzsU8d9etPBovVzNI1uWx+qobVnyshNjliuqckIiLHiQp3BQAL2qKBLlzFxVD3Bnh78TsTeKUzFafNzKLsuHGPHy5Fb7bmAOoHLyJyslIILyIiIiIiIjLEMAy2tW5jbdVanj7wND2+nvC+kqQSyvLKuDjnYgXwckKqdFfy4aF+8M7D+8H3tkB7FWCCjCVHdc7NNe189R/bOdjWD8BHlmVxyyXziHS880dO2599gv/87pcsu/IDrHz/h4/qdSdDIBCkt91DbLILgDmnzyRv0QwsVvV/FxGREeXucgBym0PPnUVFUPU8ADWxp2N0mlmSk4DDOrYSjBEMUlO+DYCyL5cRGZ9LdIJzSuYtIiJTSyG8iIiIiIiInPIO9Rzi8arHWVe9jkM9h8LbZ0bOpCy3jEvzLiU3NncaZyjy3rT0t9Ay0EL+UAjvGtUPfqgUfUoRuOKO6HyDvgA/fnYvv9lQjWFAaqyTH1xdyhmzk9/xWMMweP3Rf7Lxb38EYKCnG8MwprUf7kCvl6f/r4LO5gGuuWUxkbEOAAXwIiIyRoW7ArvPIK4hdLOms7gY1t4NwEv+0E1uE/WDx2TiA3d8n4Pbt5JeMA+LVTd2ioicrBTCi4iIiIiIyCmpx9vDMwefYW3VWra0bAlvd1ldXJB9AWvy1rBk5hLMJoVwcuKrdFcS22uQ3A2YTDiLi0Z2hkvRH1k/+B11nXz1H9vZ19ILwDWnZfCtskJinO8cJBiGwUt/eoDNjz8CwLIrr2XF+z8yrQG8u66HJ35ZTk/bIDaHhY6m/nAILyIicjjDMCh3l5PdDKZgEEtSEtYoKzSE+rz/yZ0HwMoJQniTyURCWgbxqenTeu0TEZHJpxBeREREREREThn+oJ9XGl5hXdU6nq99Hm/QC4AJE8tSl1GWV8Z5WecRYVP/Zzm5VLSN9IN35OdhiYoa2XmE/eC9/iA/e2E/P39hP4GgQXK0g+9dWcJ581KOaA7BQIBn/+9nVLzwLABnf/STnPa+y4/6vRxL+ze38NwfduL3BolJdrH6cyUkpkW984EiInJKqu2ppcfbw5nNZiCAq6gI08ENYAQZiJtNdVMMcRE2ClNjJjxHT/sgD/9gM1mFCZxzXYHCeBGRk5RCeBERERERETnp7W7fzdqqtTxR/QRtg23h7XmxeazJX8PqWauZGTlzGmcoMrkq3ZXhUvTOw0vRe3qhcUfo8duE8Luburnx79vZ2dgNQNn8NO5cU0R8pP2IXt8wDP790x+y99WNmExmLvzMFyk+54J392aOASNo8NraajY/VQNAZmECF95QhDNSZYFFRGRiw/3gF3TEAG2j+sHvjlgMwIq8RMzmscG6d3CAp3/1U+wROfR2JNLe2KcAXkTkJKYQXkRERERERE5Krf2tPHHgCdZWrWVvx97w9nhHPKtzV7Mmbw3zEubpw0856RmGQUVbBWc3hJ67SktGdta/CUYAYrMgNn3Msf5AkF+vr+b+/+zFFzCIj7Bx1+UlvK809ajmYDKZyFmwiKrNr/G+L32d2aeveC9v6T3b8kxNOIBfcEEWyy/PxWxR6wkREXl7Fe4KAGY1BgBwFhXCjt8A8ORAITBxKfq6nRXs3bQBm6sSs+NjZM5LmIIZi4jIdFEILyIiIiIiIieNAf8AL9S+wNrqtWxq2ETQCAJgM9s4O/Ns1uStYWX6SmxmrXaVU0ddbx3dg53kNw2vhD8shK99NfR1nH7wVa29fPUf29l2qBOACwpTuOeKEpKj312/9JJzLiSndBHRieOHE1Op5KwMqra0Mv+8TOYuVRUMERE5MhXuChxeg+iGLgCc6VGwoRbDYudvLRkArMwb/zp3cPsWAEyWLEwmE5nz4qdm0iIiMi0UwouIiIiIiMgJLWgE2dy8mXVV63im5hn6fH3hfQuSF1CWV8ZFORcR64idxlmKTJ/KtkpmtkPkIJgcDpxz5ozsDPeDHwnhg0GD379ykB88tRuPP0i008oda4q4YmH6UVWO6G1v47kHfskFn/oCEbFxANMawLfW9pCUGYXJZMLusnL1zYvHLRcsIiIyHl/Qx662XeS0gCloYElOwta1HYDOpNPornGQHuciOzFi3OMP7tgKgGFkYnVYSJmln01FRE5mCuFFRERERETkhHSw6yDrqtfxeNXjNPQ1hLenR6VTllfGpbmXkh2TPY0zFDk+VLoryW8cWgVfWIjJNlQJIuCHQ2+EHh/WD/7Gf2zj0W2hv1Nnzknm+1eVkBrrOqrX7Ghq4KG7vkV3azPBQIArbvrOe38j75JhGGx5uoZXH6tm5VX5LDg/C0ABvIiIHJV9HfvwBr3Ma7UDA7iKiqH6BQC22hYCsDI/cdwb1rpbW+hoqMNkMmO2ZpI+Ow6LVW1QREROZgrhRURERERE5ITR5eni6YNPs7ZqLdtbt4e3R9oiuSjnIspyy1iUsgizSR9qigyrcFdQ0hAK4Uf1g2/aAb4+cMZBcgEAbb2ecAB/9xXFfOj0rKNa/Q7QWnOAh+7+Fv1dncTNTOXc6z97TN7Hu+HzBHj+/+1i/5stAHS3DkzbXERE5MQ23A9+YXs0MICzsAAO/ACAR7pCVWYm6gd/cEeoFL0jKgPMTjIKVIpeRORkpxBeREREREREjmu+gI+N9RtZV72OFw+9iC/oA8BsMrMibQVr8tZwTuY5OK3O6Z2oyHEoEAyws20nVzQM94MvHdl5eD94c+jGldcOtANQMDOaDy89+koS9Xt28cj3b8fT10dyVg5X3fpdIuOmJ2jodg/wxK/KaavrxWw2ccYH5lB8Zvq0zEVERE585e5yALIa/AA4U+zQ3kvQlcjjraHwfcUE/eBrtodK0c+YVUQgGEnmvIQpmLGIiEwnhfAiIiIiIiJy3DEMg51tO1lbtZYnDzxJh6cjvG9u/FzK8spYPWs1yRHJ0zhLkePfwe6DeAf7yAktBB+9En6cfvCvVLkBWJ6XePSvtW0zj913D36Ph7S5hVxx07dxRka967m/F/V7Onjq/yoY7PXhirZx8WdKSMuPm5a5iIjIyaHCXYHDaxDZEPq51GmvA6AxcRlGh5mCmdEkRzvGPdbnGcRkMrPymvNIm1MwZXMWEZHpoxBeREREREREjhtNfU08Xv0466rWUd1VHd6e6Ezk0txLKcsrY27C3GmcociJpcJdQXYL2AJgiYvDlpkZ2mEYh62EH+kH/0pVGwDLc48uhA8GArz4/36H3+MhZ8FprLnxFmyO6alO0dflYd3PthPwBUnOiuaSz5YQnaBKGSIi8u71+fqo6qxiTguYggbW5GRs7tDNbK8wH5h4FTzAlbfcwUBvD46IiCmZr4iITD+F8CIiIiIiIjKt+n39PFf7HGur1vJa42sYhMpmOywOzs08l7K8MpanLcdq1q+wIkerwl1BfuNQKfrSkpH+7u3V0NcCFgekLQSguXuQ6tY+zCZYepQhvNli4YqbvsPmfz/KWdd9AovVdkzfx9GIjHWw/Io8Wg52c85HCrDaLdM2FxEROTnsbNuJgcGCtiigC+e8OdDwMAB/decBsGr22187u1qDJKWD2T7ZsxURkeOBPsEQERERERGRKRcIBnij+Q3WVa3j2ZpnGfAPhPedlnIaa/LWcEH2BUTbo6dxliInvp1tOzljqB+8a7x+8OmLwBoqnbtpaBV8UVossa4jC9Fbaw+SnJUDQOyMFM69/jPHZuJHqa/Lg28wQFxKaIVh6TkZACM3HYiIiLwHFe4KAErbIoEunKlOMIL4EuaypcGF1Wzi9Fnjh/A+zyABv4V//WAzZquZj9+7EmfU9N2sJiIiU0MhvIiIiIiIiEyZ6s5q1lat5fHqx2nubw5vz4rOoiyvjEtzLyUjOmMaZyhy8vAFfOxu3831wyH8qH7wr4S+HtYPfjiEX3EE/eANw2DDXx7kzXWPUPbVW5i9ZPk7HjNZmg908+SvdmBzWrn65sU4XFaF7yIickyVu8sBSK/3AOCMaIMBqI5ZAg2wIDOOKMfYuGWwr5dffeY6YlNyCAYvJi4xVgG8iMgpQiG8iIiIiIiITKqOwQ6ePPAka6vWUtlWGd4ebY/m4pyLWZO3hvnJ8xWaiRxj+zr3Ye33kN4eeu4sOTyEH6cffLUbgOXvEMIHgwH+838/p/z5ZwDobml+2/GTafemRl788x4C/iDxLiuePh8Olz7uEhGRY6vCXYHDa+CqD11UXf5QKP+8L3RtXZE/fj/4QxU7CPh89Hd2YbLZyChImJoJi4jItNNvJSIiIiIiInLMeQNe1tetZ23VWjbUbcBv+AGwmqysSl9FWV4ZZ2WehcPimOaZipy8KtwV5A31g7dlZGBNGPrgv7cV2vYDJsg8HYBD7f0cah/AajaxJGfigMDv8/Hkz37E3lc3YjKZueDTX6Dk3Asn+62MEQwEeeXhKrY/fwiAnNIkLri+ELsCeBEROcbcA24a+xopaAaTYWBNTsTqK8ew2PlTYzoAqyYI4Q/u2AKAyZqNAWQUxE/VtEVEZJrpNxMRERERERE5JgzDYId7B+uq1vHkgSfp9naH9xUmFrImbw0X51xMouudS12LyHtX2VZJfmPosav0sH7wh4ZWwc8oBFcoDNhUHSpFPz8zjshxyukC+AYHeexHd1OzYytmi5X3felrzFm2atLmP5HBXh9P/7aCut0dACx+Xw6nv28WJrOqaYiIyLE33A/+9M5EoAVnRiwA/SlLqK8247JZWJAZN+Y4wzA4uH0rAH5/OlaHifS5CuFFRE4VCuFFRERERETkPanvrefxqsdZV72Omu6a8PYZrhlcmncpZbll5MfnT+MMRU5NFe4KLhvqB+8sHa8U/dh+8Mtzx79JxucZ5J9330bj3t1YHQ4u+9pt5JQunJyJv4MN/9xL3e4OrA4L5398HnkLZ0zLPERE5NQw3A++yO0EwBnbD0Cl6zQAluYmYLeaxxzX2dRAd2szJrMFszWTlJxotUwRETmF6F98EREREREROWq93l6erXmWddXreKPpjfB2l9XFeVnnUZZXxtKZS7GYLdM4S5FT14B/gKqO/cweCuFHrYSv3RT6OtQP3jCMcAi/YoJ+8Fa7gxk5eXTU13HFzd8hbc68yZv8O1h51Wz6Ojycce0cEtOjpm0eIiJyahheCZ9aFwrfXeZqAJ7oKwBgZd4Epei3h0rRR8RmE0D94EVETjUK4UVEREREROSIBIIBXm18lbVVa3m+9nkGA4MAmDBx+szTKcsr4/zs84m0RU7zTEVkT/se4roDxPUBFgvOeUOhubcPGreHHg+thD/g7qOpexC71cyi7PHL5JpMJs67/jMsKbuS2BkpU/AORhhBg9qd7WQXh24QiIixc/mNi6Z0DiIicmoyDIMKdwVOj4GjPnTDmjOmGyMikX82xAMGKyfsBx8qRV+wcilxqfkK4UVETjEK4UVERERERORt7e3Yy7qqdfy7+t+0DrSGt+fE5HBZ/mW8b9b7SI1KncYZishbVbgryB9aBe+YMwezyxXaUfcmBP0QkwFxmQC8MrQKflFWHE7bSPUKd+1B3vz3o1zwqf/CYrVhMpunPID3Dvh59vc7ObjDzXkfn0fBMv1bIyIiU+dQzyG6vd2UtFoxGR6scRFYnUHaUlbS126QEGmnYGb0uMfOWboSs9lC0ZkrSM7OmuKZi4jIdFMILyIiIiIiImO4B9w8eeBJ1latZXf77vD2WEcsl+Rcwpq8NRQnFWMymaZxliIykYq2CvIbxytFP04/+OrhUvQjK/ka9u7mke/dzmBfL5Fx8ZzxwY9N/qTforO5nyd+uYOOpn4sVrP+vRERkSk33A9+aXcSUI8zMQDAm5YFQKiNi9k8/vWp6KzzKDrrvKmYpoiIHIcUwouIiIiIiAgAnoCHFw69wLqqdbxc/zIBI/Qho9Vs5ayMsyjLK+PM9DOxWWzTPFMReSeV7ko+Fu4HXzKyY7gffPZIP/hXh1bCLx/qB19Tvo3HfngXPs8gqXMKWFJ21dRNfHialW0887tKPP1+ImPtXPLZUlJmxUz5PERE5NQ23A9+XqsDAFeEG4B/dc0GmLAU/bAtT9cQEWMnpzQJZ6R+hhYROZUohBcRERERETmFGYbB1patrK1ayzMHn6HH1xPeV5pUSlleGRfnXEycM276JikiR6Xb201N5wHyGkPPnSVDIXzAD3VvhB5nhUL4vc29tPV5cdkszM+IwwgGefJnP8LnGSS7dCGXffVWbE7nlM3dMAy2PlvLq49UYRgwMzeGiz9TQmSsY8rmICIiMmx4JXxKbehnZGe8l2BSAc/VWwGDVROE8LtfWU9yVh5vPH4Avy/IB751ukJ4EZFTjEJ4ERERERGRU9Ch7kOsq17Huqp11PXWhbenRqZyae6llOWVMSt21jTOUETerV1tu8hoA6cPzBEROPLyQjuaK8DbC45YSJ4HwCtVoRV9S2YlYLeacR+qoa+zA6vDweVf/xZWu31K5958sJtN/6oCoHBlKmd+YC4Wm3lK5yAiIgLgC/rY1bYLl8fAXh+6XjoTfNQnLMNfZ5CZ4CIzIWLMcf3dXfz7pz8Ew8AR+xki4uJJSIuc6umLiMg0UwgvIiIiIiJyiuj2dvPMwWdYW7WWrS1bw9sjrBFckH0Ba/LWsHjmYswmBV4iJ7IKdwX5Q6XoncXFmCyW0I7hUvRZS8Ec+nv+ynAp+txQKfr63TsBSJs9d8oDeICZs2I5vWwWzkgbxWelqw+8iIhMm30d+/AGvZzW5gKjF2sUWJ1BNhilABOugq8p3waGQWRcOgFTJJkF8bqeiYicgqb9k5Vf/OIXzJo1C6fTyWmnncaGDRsmHPvxj38ck8k05r+ioqJR4x5++GEKCwtxOBwUFhbyyCOPTPbbEBEREREROS75gj7W163nay99jXP+fg53bLqDrS1bMZvMrEhbwb1n3MsL73+Bu1bdxemppyuAFzkJVLZVkt/4Nv3gs5YBEAgavFYdCuFXDPWDb9gzFMLPHf1Zy2Rq2N9JT/tg+PmS982i5OwMBRYiIjKthvvBL+tKBsAZOwAWO39vyQRgRd4EIfz20M2uZns2ABkFCZM9VREROQ5N60r4v//973zlK1/hF7/4BStXruTXv/41l1xyCTt37iQrK2vM+J/85Cd873vfCz/3+/3Mnz+fa665Jrxt06ZNXHvttXz3u9/liiuu4JFHHuH9738/GzduZOnSpVPyvkRERERERKaTYRjsbt/N2qq1PHHgCdoH28P78uPyWZO3htWzVpMSmTKNsxSRyVLhruD84ZXwJaHVehgG1L4aejzUD35nQzfdg36inVaK0mIAOP/TX6Dk3IuISkicmrmur2fD3/aSlBnFFV9dhNVumZLXFREReSfDIfycllCM4krw4U1fyva9PmDkBrbDGYZBzY4tAHgGUjFbIXNe/BTNWEREjifTGsLfd9993HDDDXzyk58E4P777+fpp5/ml7/8Jffee++Y8bGxscTGxoafP/roo3R0dHD99deHt91///1ccMEF3HLLLQDccsstvPTSS9x///389a9/neR3JCIiIiIiMn1a+lt4ovoJHqt6jP2d+8PbE5wJrJ61mjV5ayhIKNDqUpGTWNtAG22dDWS1hJ6HV8J3HIDeZrDYIW0RMNIPfumsBKyWUBUMm91BRmHxpM8z4A+y/u972bmhAYCYZBfGpL+qiIjIkSt3lwOQXNsFhPrB749eAsC81BgSoxxjjmk7VENvRzsWqx2TJZ34mRFExTunbtIiInLcmLYQ3uv1snnzZm6++eZR2y+88EJeeeWVIzrH7373O84//3yys7PD2zZt2sR///d/jxp30UUXcf/99094Ho/Hg8fjCT/v7u4+otcXERGR45+u8yJyshvwD/B87fOsq1rHpsZNBI0gADazjXMyz2FN3hpWpK/AZrZN80xFji1d48dX2VbJrGawGGBJTsI6c2Zox/Aq+LRFYAuFAZuGStEvn6Cc7mTp7/by1K/LaazqAhMsvzyPhRdm6QYhEREJm+7rfJ+vj6rOKlweA2td6M42Z7yPZwdD7VpW5Y9fMebg9tAq+JiUPAb6rSpFLyJyCpu2EN7tdhMIBEhJGV3+MCUlhaampnc8vrGxkSeffJK//OUvo7Y3NTUd9Tnvvfde7rjjjqOYvYiIiJwodJ0XkZNR0AiyuXkza6vW8szBZ+j394f3LZyxkLK8Mi7MvpBYR+zbnEXkxKZr/Pgq3BXkNwz3g58/Emy/pR+8LxDk9QOhVhXLc0NBwhvr/kWPu5Wis84jJTd/UubXUtPNk78qp7fDg91l5YJPFJJTMrU3AYiIyPFvuq/zO9t2YmBwWmc84MYa4ceSkMA/6+IADyvyJ+gHX7EdgPnnraLwzFUE/KrzIiJyqprWcvTAmLucDcM4ojufH3zwQeLi4rj88svf8zlvueUWbrzxxvDz7u5uMjMz33EOIiIicvzTdV5ETiYHug6wrmodj1c/TmNfY3h7elQ6a/LWcGnupWTFZE3jDEWmjq7x46tsq2ThcAhfUjKy4y394HfUddHvDRAfYaNgZjQAuza+SOvBatILiiYlhDcMg/V/20tvh4f4mRGs/lwpcSkRx/x1RETkxDfd1/nhfvCndyUBblwJPvozzqJuhwebxcTpOeOvcL/0yzdxqHIHM2bl4Yq2T9l8RUTk+DNtIXxSUhIWi2XMCvWWlpYxK9nfyjAMHnjgAa677jrs9tEXspkzZx71OR0OBw7H2P4tIiIicuLTdV5ETnRdni6eOvAUa6vWssO9I7w9yhbFRTkXUZZXxqIZi1TGWU45usaPZRgGFe4KrmkcXgk/FML3ucG9N/Q483QANg31g1+el4jZbMLT34e75iAA6XPnTcr8TCYTF95QxOvrDnDGB+bgcE372hARETlOTfd1frgffP5Q1OCM97HDcRoACzPjiXSMfw1zRESQt3ipfjYXEZHpC+HtdjunnXYazz77LFdccUV4+7PPPstll132tse+9NJL7N+/nxtuuGHMvuXLl/Pss8+O6gv/zDPPsGLFimM3eRERERERkUnkC/jYUL+BdVXreLHuRfxBPwAWk4UVaStYk7eGszPPxml1TvNMReR40tTXhK+9jZTO0HNncXHowfAq+OR5EBFaufdK1VA/+KFS9I17d2MYQWJTZhKVMH6f23djsM/HoV3tzF4cWhwRk+Ti/OsLj9n5RUREJsPwSviEg6HrpTPBx7reuYCflROUoh/2/B920dMxyOmXziJtdvxkT1VERI5T03rL8Y033sh1113H4sWLWb58Ob/5zW+ora3ls5/9LBAqOVNfX88f//jHUcf97ne/Y+nSpRQP/zJ5mC9/+cuceeaZfP/73+eyyy7jscce4z//+Q8bN26ckvckIiIiIiLybhiGQWVbJWur1vLkgSfp9HSG9xUkFFCWW8bq3NUkudQ7eboFgwZms1Y3yfGnom2kH7x91iwsMTGhHW/pBz/oC7C5pgOA5Xmhf1Pq9+wEIH3usQvI2xp6eeKX5XS7B7DZLeSU6t8vERE5/rkH3DT2NRIxCOb6VgAcs3N4sib089/K/PFvVvv3T39I7IyZVG9Pxjtgh0v186KIyKlsWkP4a6+9lra2Nu68804aGxspLi7miSeeIDs7G4DGxkZqa2tHHdPV1cXDDz/MT37yk3HPuWLFCv72t79x22238a1vfYu8vDz+/ve/s3Tp0kl/PyIiIiIiIkerqa+Jx6sfZ13VOqq7qsPbk1xJXJp7KZfmXsrchLnTOEMBaOv18ERFE+u2NZCfEsU9V5S880EiU6zCXUF+uBR96ciO4ZXw2aEqgVtrO/H4gyRHO8hLjgSgfvdQCF9wbEL46m2t/Of3O/F5AkQnOolKUOsAERE5MVS6KwFY2ZsKHMIW4acrZxUdb/qItFuYnxk35piedje7X34JTCYcMZ/F5rKQMitmaicuIiLHlWlvvvX5z3+ez3/+8+Pue/DBB8dsi42Npb+//23PefXVV3P11Vcfi+mJiIiIiIgcc/2+fv5T+x/WVq3l9cbXMQiFZg6Lg3OzzmVN3hqWpS7Dap72X9lOad2DPp6pbGbt9gZe3u8mEAz9f9rX0sOda4qwWszTPEOR0SrdlZzbEHrsHO4H7+2Hxm2hx0Mr4TdVh0rrrshLxGQyEfD7aNwf6hmfPrfoPc3BCBq88cRB3nj8wND54rnoU0W4ouzv6bwiIiJTZbgf/GmdccAhnAk+3rAsAGBpbiK2cX4GrNmxDYCYpGy8fhfpc+KwWPWzoojIqUyf6IiIiIiIiEyBQDDA602vs65qHf+p/Q8D/oHwvsUpi1mTt4YLsi8gyh41jbOUQV+A53a1sHZ7PS/sacXrD4b3laTHUjY/lUtL0xTAy3EnaATZ6a7k0w1vWQlfvxmCfohJh9hMADZVuYFQCA/Q43bjionB5/GQkJ7xrufgHfTzn9/v5MD20PlLz81g5VX5mPX3RURETiDD/eBzD4V+XncmBnm4LRvonbAffM2OrQBYHTl4/ZBZkDAlcxURkeOXQngREREREZFJVNVZxdqqtTxe/Tgt/S3h7dkx2ZTllnFp3qWkR6VP4wzF6w+ycX8ra7c18OzOZvq8gfC+vORI1sxPp2x+KrnJURAMwGAX4Jq+CYuMo7a7lojWHqIHAZsNx9yhNhaH94M3mej3+tl2qBOA5bmhICFuZiqf/vnvGejtwWR69/1ra8rbOLDdjdlq4uwPFTBvRep7eEciIiJTzzCM8Er42OpmABwFs3m5JhTIj9cP3ggGwyH8QO9MMEFGQfwUzVhERI5XCuFFRERERESOsfbBdp488CRrq9ays21neHu0PZpLci6hLK+M+cnz31PYJe9NIGjw2oE21m1v4MmKJjr7feF96XEuyuansWZ+GvNSozEFA1DzMrz2GOx+PNRX+5oHp2/yIuOoaKsgf2gVvHPePMz2ofLv4RB+OQBvHuzAFzBIj3ORmTD6ZhJXVPR7msPsJSm0N/aRXZLIzFmx7+lcIiIi0+FQzyG6vd3EeW2YWnoAaC9YycD2AElRduamjL1WthysZqCnG6vDSZAUImPsJKRFTvXURUTkOKMQXkRERERE5BjwBry8VPcSa6vWsrFuI37DD4DVZGVVxirW5K3hrIyzsFvUF3m6GIbBtkOdrN3ewL93NNLS4wnvS4pycGlpKmXz01iUFYcp6IcDL8G6x2D3v6G/beREta+FVsSbLdPwLkTGV+muJL/xLaXoA3449Hro8VA/+FeqQn+Wlw/1gzcMAwwDk/noS8YbhkHlhgbyF83AGWUDYOma3Pf4TkRERKbP8Cr4M/vSgf3YIv2sdywGYEVe0rg30R7cvgWAmblFRCXPIDLeqZttRUREIbyIiIiIiMi7ZRgG21u3s65qHU8dfIpub3d4X1FiEWV5ZVwy6xISnOoJOZ12N3WzdlsD63Y0cKh9ILw9xmnlkuJU1ixIY1luIpagF6pegEcfgz3/Hio7P8SVQDD3YgZt8zFmlBCpAF6OMxXuCq4K94MvCW1sqQRvLzhiYUYhAJuqQyH8cD/4jsZ6/nrb18gqWcClX7npiEMDvzfAC3/ezd7Xmqna0kLZlxZgNitwEBGRE9twP/gFTaFrmjPZzKON8UD3uKXoIVSO3hkVzdwVS1lw4fypmqqIiBznFMKLiIiIiIgcpfreetZVrWNd1Tpqe2rD22dEzKAst4yyvDLy4vKmcYZS09bHuu0NrN3ewN7m3vB2l83CBYUprJmfxplzkrEHB2H/f+CRtbDnKfCGyo4aBnj9MxiwLmCgJ56+7a14/rgBc+BFXAsXErli5XS9NZEx/EE/+1p3Masp9NxZMhTC174a+pp5OpgtdA/6KK/rBEIr4QHqd+9ksK+X/q7OIw7ge9oHefJX5bTW9mAym5g1Pwkt+BMRkZPBcAiffaAdAHt+NtvqQz8frsxPGveYZVd9gNOvuIZgIDg1kxQRkROCQngREREREZEj0Ovt5dmaZ1lbtZY3m98Mb3dZXZyfdT5leWWcPvN0LFohPel8g4P0d3fi9/rw+7wEfF78Xh+tnb28vr+ZF9ocvN4aWhEc7+1g6cABchMczE5ykhFtg45KvP+q5en2WuY7KshytOAfNFPdnMCG/nn4g1b8QQgAQVMfQXM/ht1EUVwkeWYHtrS06f0GiLxFVWcVM5oGsQfAHBODPTs7tCPcDz5Uiv716naCBsxKiiQ1NtQPvn7PTgDSCwqP6LUa9nfy1K/LGejx4Yy0cdGnisgoULUPERE58fmCPna17wIgpqYDA2jNO41As0F2YgQZ8RETHtvb7sVkNhGdYJui2YqIyPFOIbyIiIiIiMgE/EE/rza+ytqqtTxf+zyeQKiHuAkTp6eezpq8NZyfdT4Rtok/kDvZ+L1evIMD+L0e/F5fKAD3eQkMBeIz8+bgjIoCoOVgNXW7KvB7vfi9Q2G5zxcOzRdfejlJWTkA7H/jVV5/9J/4R43xEvCFznvpV24mf/FSAPa9/gpP/vy+CefYkXw+5ujZrMxP4jxXkLbHXoN26NgPHW8ZG9sXhbfZiq8HWqNcdOY5wEzov7eI/6/Pk//Bj6rHpxx3KtsqyR8uRV9SEurvbhhQMxzCLwdGStEPr4IHaBgO4ee+cwhfuaGe9X/bSzBgkJgexerPlRCT5DqWb0VERGTa7O/YjyfgIcUfgdEZajP1fNIqaJ54FXx/dxeu6Bi2PlNLxfp6lrwvh9PLcqdy2iIicpxSCC8iIiIiIvIWe9r3sK5qHf8+8G/cA+7w9lmxs1iTt4ZLcy9lZuTMKZ+XEQzi9/vCgfdwUO33hoLrlNx8rLbQ6pvm6v201FSHxno9I8G2z4ff62XZldcSGRcPQOVLz7Fz/fOjwu9QsB4af8237mZGTujDxM3/fpSNf/vjhHO89vbvkTGvGIC6XZW88OBvJhw7Z/nKcAg/2NtD4/49E44N+Lzhxz6TFZPNjg8Lg0EzfpOFgMmC32TF5XRw7co5XHbpeSRb+mh58TU2zwDaWjEGIDhgwhgwYQ4amIMGzt4APg9gMpE8M41zUnOJmD2byIICXHn5WF0urDYbVrsDm9OhAF6OSxXuCvIbQyG8c7gffMdB6G0Csw3SFwHwStVQCJ8bCuH7OjvoaGwAk4nUOQVv+xo+T4AtT9cQDBjkLZrBeR+bh82hyh8iInLyKHeXA3BWewzQjS3GzDp3FNDLyrzxQ/i/ffvr+Lxe7JGXAbEkZ8dM2XxFROT4phBeREREREQEcA+4eaL6CdZWrWVPx0gYHOeI45JZl7Ambw2FCYUYwQB+r4/+rs7Qqu2h1eBJWTnhgLZx/x66WppDq7gPWwE+/HjF+z+MxRoKy7c9/W8O7tg6ekX5UGju93n5yL33ExETC8Bzv/8125/594Tv4Yaf/pa4lNDNAXs2beCNtQ9POLb0vIvCIXy3u4Xaiu0TjvV7PeHHVrsdAIvNhtVmD32127HY7FhttvD7AkhIz2DuijOx2uxY7bbwGKvdgcVmIz41PTw2q2Q+l339W6H9NjsWe2ic1RY6zuyK5MnyRtZub+D53X14Mm4IH1uUFsOa+Wm8rzSVmb11DDz1Bwa+cg+1VQ0MtNnI8Y1d1m5JSsQ1fz6u0lJc80txlpRgGVrBL3KiqXBX8MnwSvjS0MbhfvBpC8HmoqPPy67G0Kq+ZUMhfMOeUMnd5MxsnJFv/+ff5rCw+nOl1FS0sfDCLN2QIiIiJ53hfvDza/oBsOWksLe5F5NpdBWZYV0tTXQ0NmAym/EFnJgtJtJnx03llEVE5DimEF5ERERERE4oRjA4UrLc6yUYDBCTNCO8v2n/Xvq7u8IruX2HheAAS8quDI/d9Njfqdz5GvWdh+jsa8cchNygiTnBVKKtUSy9+QuckX4GNouNdT/+Hs+89k0MIzjuvL7y50exWEO/Ym15Yi27X35pwvewZM3VWKJCYXVrzQGq3nx1wrF+78gK8OFV7gAmkzkUftvt4eAawwjvT8zIInfRkqFA2x4Os6320H+u6JFVOvlLlhOXkjoSftvshwXmdmJmpITHLrykjEWXrAmVu34HOaULySld+I7jAGKSZoz6/wjgCwTZuN/Num31PLOzmV6PP7wvNzmSywuTuMTZTeLezQw88CMGdlexr8t/2Bkcoe+VzYJz3hxci5biml+Kq7QUa1qaQkQ5KXgCHuqa9pI+VLTDVRKqRPHWfvCvDpWin5sSTXJ06O9G/Z5KANIKisY9d2ttD+2NfcxdGrq5JzE9isR03awiIiInp+GV8BkHQw2M3FmhVi2FqTEkRNrHjD+4fSsAcTNzGRhwkJITg92lyEVEREJ0RRARERERkaNiGAbBgB+/14cRDIb7fwM0H6jCO9AfLmPu9430Arc5XRSecU547GuP/INud0t4tbj/sB7gzqhoLvvareGx/7zrNpr278Xv9RIM+EfNJyI2js/95k/h5y/96QHqdlWMO3erw8HiS69gS8sW1lWto/c/r5DaYicKiOKtfY29nJ1xFmbzSLnltwbww6vArTY7Ab8vHMInZWaTWVgyNvweWhFutowE2AWrziIlN3/kXIetKrfa7ETExoXHrrz2I6x4/4ex2uyYLW9fBrrorPMoOuu8tx0zLDkrh+ShsvDv5PDvx2QIBg1eP9jO2u0NPFneSEd/6OYJDINF5h6udHWysK+BiI3bGXygCn8gSPNbzmFPsOAqyMO14nxcK87DMXs2psNuYBA5mexp30NWow8zYE1NxZqcHNoxvBI+ewVwWCn6w1byJaRlklFYTFZRyZjz7n2jief/uBsjaBCb7GJmbuykvg8REZHp1O/rp7qrGoDIJh9BrLycuAi6YNUE/eBrdoRCeJtrFgMDkDkvfsrmKyIixz+F8CIiIiIiJ7Gulibq9+wiIjqGnAWnhbdveuivePr7RvUADwyF5vGp6ZzzsU+Fx/7plv+mt6NtVLA+vOI6JTefj9x7f3jsuvvuoavlrZFoSHxq+qgQfvcr63HXHhx3bFR8wqjnfo8H70D/mHEms3nMiuyEtAx8Hs/o8uc2Ox6TjzpPI5f86xLqe+sByE6PoCs1nsKUEhamLiIlNm2kHLrNjomRldLn3fA5zr3+MyNl2K3WCVeDL73i/Sy94v3j7nurzMISMgvHBmDjsTmcRzTuRGMYBjvquli7vYHHdzTQ3O0hxtPH3I4aFvbVs8zTxMyGaky9PeFjBoe+WhwBXIk+XLkzcC09G+fFH8OSWTg9b0RkGlS4K8hvCD12zZ8fetDXBu6hthqZSwHYVD02hC89/2JKz794zDk3P3WQVx8NBRFZRYnEz4yYpNmLiIgcH3a27SRoBJnliyDYG7rpd60ndGPbinFC+GAgEG7n1N8TqhiTMS9hzDgRETl1KYQXERERETlJ1e2s4OF7vo3f5yWruHRUCL/lybUMHhZoHm6gp3vU8/6uTvo62scde3ipdIDYlFQsVltoBfjwyu+hleDRiaM/vJp//iUM9HaPlD4/rAy63TV6VfrqL36VYDA4qgf5RKvBL/j0F8KPuzxdPFPzDI9UrWNrS2ilCr0QYY3gwpwLWXPRGk5LOQ2z6Z1Lqw/3ZZdjZ29zD2u3NfDk1hps1fuZ21HLxzpqmddRy8y+tjHjTRYDZ7wPV6IXV6IPZ2kptmVXYipcAzFp0/AORKZfZVsls8P94Idu6Dn0WuhrcgFEJNDSPcj+llBP22Wzxva0PZzPG+D1dQcAWHRRFksvy8NsVusGERE5uQ33gz+zPnRNtSRFs3/QjN1iZknO2BXujfv34unvwx4Rhc+biN1pIWVWzJhxIiJy6lIILyIiIiJyEmqu3s8jP7gDv89LYkYWM2blj9q/4MLVBPz+UX2/h0umR8aN/pDp8m98CyC8AvzwkunD5deHXXPbXUc8xwUXve+Ix8bOmHnEY31BH6/Uv8LaqrW8eOhFvMHQjQJmk5nlqcspyyvj3KxzcVnfWn5epkKNu4/nnttM1UuvEnNgL3M7avlxVwM2IzBmrD3OjCuuF+dw6B4fxJR3BhReBgWXQtSMcV5B5NRS6a7kksahEL50KISvfSX0dagf/PAq+KK0GGIjQq0ZOpoacEXFjGopAtC0v4tgwCAq3sGyy/MwmRTAi4jIyW+4H3zxgQ7ASldmHgALs+KIsI+NUWp2bAEgq3g+RWeX0t/txWJ55xt7RUTk1KEQXkRERETkJNNWf4iH7/k23oEBMgqLufKWO7DZHaPGrLz2uiM+34yc3GM9xWPOMAx2t+9mbdVanjjwBO2DIyv38+PyuSzvMlbnrmZGhELbqebv6KDxtc3sem4T/dt3kNpYzXJfP8vfMs4cG01EZjSuiBacEc24ErxY7AaYbZB79lDw/j6IUJlPkWF9vj466qpI7AHMZpyFQ60YhvvBZ4X+pm0a6ge/Im+kIsl/fvsLasu3sfoLX2XeYa1C6vZ2AJAxN14BvIiInDKGV8KnNQYAK9vi5wIT94PPmb8IT38/GYXF5J+m3zFERGQshfAiIiIiIieR7tYWHrr7Wwz0dJOSO5vLv/7tMQH8yaSlv4V/V/+btVVr2d+5P7w9wZnA6lmrWZO3hoKEAgVJUyTo9eLZtYuB7Tvo2rqNzi3bcDaHmlVnHjbOb7HimTWblKIMYuI6cfm2YAvsIfy/yeKA/NVQuAbmXAyuuKl+KyInhJ1tO8lrDALgyM/HHBkJ3n5o2BYaMLQS/pWhEH55bqgUfTAQoHHvbgCSsmeNOmf9nlAInz53bOldERGRk5F7wE1DXwMmwOm2EABeMELh+3j94AHS5swjbc68qZukiIiccBTCi4iIiIicRLY8tY7eNjcJ6ZlcecvtOCIipntKx1y/r5/nDz3Puqp1vNr4KkEjFEDZzXbOyTqHNXlrWJ62HJvZNs0zPbkZhoGvtpaBHTsY2L6DgR07GNy1C3y+8Bjn0Ne6qGRaM/KJXzSf0xbGkUwFpr2PQ89z4BkaZI+A2RfAvDUw5yJwRE/5exI50VS6K8kf7gc/vzS0sWELBH0QnQpx2dR19FPb3o/FbGLJrFAlidaaA/g8gzgiIknKyBp1zrM+NJe63R1kzlPVCREROTVUuisBKO4zE+gLRSbbXTOJcliZnxE74XEtNd3UVLSRXZzIjGz1gxcRkdEUwouIiIiInETO/PDHsdpszL9gNRExE39gdKIJGkHebHqTtVVrebbmWfr9/eF9i2YsoiyvjAtzLiTGrg+/Jkugs5OB8vKhwH07gzvKCXR2jhnXZY9gT3wWe+Kz6M+bR/E5S1iT6WbGoadh189gc8vIYHtUaKV74WWQf34oiBeRI1bRVsHpoWITOEuG+8FvCn3NWg4mU7gUfWlGLFGO0MdA9Xt2ApA2dx4m8+j+tcmZ0SRn6iYYERE5dQz3g19xsBewM5g0gz67i/NzE7CO0+d972sv44yM4tAeJ9ueraerZYDzry+c4lmLiMjxTiG8iIiIiMgJzu/1YrFaMZnNmM0WVn3go9M9pWPmQNcB1lWt4/Hqx2nsawxvT49KZ03eGspyy8iMyXybM8i7YXi9DO7ZMxK4b9+Bt6ZmzLiAxUpVbDo74zJDwXtCFs6sLC4rncEXEqtIa3gWKr8Pb7aPHOSMhbmrQ8F77jlgc445r4gcmZ0tFXywcWglfOnQSvgJ+8Enho+r3x0K4dPnKjAQEREZ7gdfONTipTopB4CV45SiNwyDF//4W3rcrSTnfgiYScY8tXAREZGxFMKLiIiIiJzAAn4fj/3obiJiYrnos1/GbLFM95Tes87BTp46+BTrqtaxw70jvD3aFs2FOReyJm8NC2csVJ/3Y8QwDHx1daMC98FduzC83jFjg+mZ1MzI4SVLClsj06iOTcNvtpIa6+TykkTuSNhPVvPfMG19Ega7Rg50JcC8S2HeZTDrTLDap/AdipycOgc7CdbWEeEFk9OBIz8fggE49HpoQNYyDMNgU/VwCB8KEgzDCK+ETy8YHcK/tq6a2GQXuQuSsTv1kZGIiJz8DMOgoi0Uws9sDv1+8ZotBRg/hO9orKfH3YrZaqW7IxETkFmgFi4iIjKWfqMSERERETlBBYMBnvjfH3Fw22asDgdLyq4kKStnuqf1rvgCPtbXr2dd1TpeqnsJf9APgMVkYWX6Ssryyjg742ycVq2afq8CXV0M7ChnYMf2UB/3HeUEOjrGjLPExuIsLaV71lxedczkbz3R7B8cuckjMdLOR4vi+VDCHvLcz2Pa8RR4e0dOEDkD5pVB4RrIXvX/2bvv+Drr8/7/r7Okc7T33rIteUjee7Btg80MATJIQhiBtE3TtGnTJuk3s23SJm3SXxJ2yCxhhRiMDQYzbDDYgJdkW7Y1LFl77yOdcf/+uMURQvJEw7Lez8cjD0uf+3Pf5zrE1ufWue7PdYFNv36KjKbi5sF+8M7Zc7DY7VB7APo6ICgcEmdT0dxDbbubIJuVhZnmLr32hnq6W1uw2e0k5c4IXM/d7eHdFyrAgPQfxSgJLyIiU8LJzpO097XjMMDRZMMLHIlIJT48mOkJYcPmV+x/H4DY1Ol0djiITg4lNCp4nKMWEZHJQL9RiYiIiIhMQoZh8PJDv+Do2zux2uxc/7V/mXQJeMMwKGoqYlPpJrZWbKWtry1wbGbMTK7NvZars68mzjV8B4qcHbOs/NGBHu4H6N1/gP6KimHzLA4HwTNn4iosxDW3kIbUXJ5rtPLcwTrKm7oD88KD7Vw3M4LPxBwhv/VVrIe3gadn8ELhKWbSfdb1kL4UrJO/MoPIhaqoqYhppypFn74ErLZAKfr5GVE4Hea/R2doGFfd8zd0t7VgDxqsSlFzrA0MiE4KITRSyQQREZkaPugHv6CtD2+PmS45HpXK2tzYEStvnTiwF4Cg0BzogPR8laIXEZGRKQkvIiIiIjIJ7fjjYxzc/hIWi5UNX/kHsuYtnOiQzlptVy2byzezqXQT5e3lgfE4VxwbczZybe61zIiecZoryEgMw8BTXU3v/sGEu/vQoRHLyjsyM3AVFAaS7sEzZ1Ld5eWZAzVs2lfDkTcH/39xOqxsnBHK52IOMbvtNWzHtoOvb/BiURlm0n3m9ZC6EKzW8Xi7IlNeUXMR62o+SMIXmIOVu8w/B/rBv1XaBMDyD/WDd4aFUXjFumHXqy4xK2KkzlAyQUREpo4PkvDLT3oBG01RifQ4XCOWovd6PFQWm+2yerqTAUifqVL0IiIysrNOwvf29rJt2zYuu+wywsPDhxzr6OjgtddeY926dQQH62lpEREROX+65xA5s3eefZI9m54G4Kp7/poZy1ZNcERn1u3p5uUTL/Nc6XPsrtuNwUAJZZuTyzMu57rc61iavBS7Vc8Jny1fRwe9Bw8GEu69Bw7ga2kZNs8aGWkm2wcS7s6CAuzRZpKtodPN4wdq2fTwHvZWtgXOsVstXJMbxBdiD1HY8Tr28teh1DN40ZhcM/E+6zpIngcj7BISGYnW+dFTUlvEPQ3m186CQjCMwSR85nIMw+Dtj/SDP53qowNJ+Dwl4UVE5NxN1jW+qMnsB59X6wegOMxMro+UhK8pOYy3rw9XRBSevigsVoOUGVHjFquIiEwuZ/0J14MPPsimTZu47rrrhh2LiIjg5z//OVVVVfzVX/3VqAYoIiIiU4vuOUROr72hnl1P/gGASz77RQouXzvBEZ2az+/jnbp3eK70OV6pfIVeb2/g2OKkxVybcy1XZV5FWNDwXosylOHxDJaVH0i495eXD5/ocODMzw8k3F2FhTgyM4eU0mzv8bBldyWb9tfwdlkzfvN5CCwWWJdp5c7YYuZ1vYGjcidU+QavHZ8/kHi/HhJmKfEu50Xr/Oho6Gkg7EQjdj9YY6JxpKZAWyV01oLVASkLONbQRVNXP06HlXnpUQD0dnVyZOdrpObPJiErJ3C93s5+mqvN1hOpeVET8I5ERGSym4xrvMfv4XDLYQDiGyz4gaORaeTEhZIS5Ro2/+Rhc9d89tz5rLtvDa11PQQ59RCxiIiM7KxXiD/84Q98+9vfPuXxr371q3zve9+7oBZRERERmXx0zyFyepEJidzwj/9K7fESFl1700SHM6LjrcfZVLaJzaWbaehtCIxnRmRybc61bMzdSGpY6gRGeGEzy8rX4D6wP7DD3X3oEEZf37C5jvT0IQn34JkzsY6wu6i7z8vLh+vZtK+GN4414vEZgWNXpHq5K7aYhT07CDq5C+oGj5FUYJaZn3UdxOeNyfuVqUXr/Ogoaipi2kAp+pCCQvNBmw92wafMg6AQ3jpuPqizOCuGILvZJqL6cDHbf/0AsWkZfOEnvwxcr/poGwCxqWG4wgb7xIuIiJytybjGH289Tp+vj3CfH2tLMH7gWFQaK6bFjjh/+Sc+xbTFy7FarVhtVmJT9TCxiIic2lkn4Y8dO8bcuXNPebywsJBjx46NSlAiIiIydemeQ2Rkfp8Pq80GQNbcBWTNXTDBEQ3V4m5hS/kWNpVu4lDzocB4RFAEV2dfzbW511IYVzhkR7aYfJ2duA8epPfDZeWbm4fNs0ZE4CooMEvKD5SXt8ecugdln9fHayWNbNpfwyuH63F7/IFjaxJ6uSeuiMU9Owiuexc+/HIpC8yk+8zrIDZ3NN+qiNb5UVLUVMS02oG2HnMLzcFAP/hlAOwaKEX/4X7w1SXmz+fUvFlDrtdap13wIiLy8UzGNf6DfvCL2vrwdjsAKI1K469GKEUPYLFaic/M1u80IiJyVs46Ce/1emlsbCQjI2PE442NjXi93lELTERERKYm3XOIDFd16CDbHvoFN3z9W8SkpE10OAF9vj5er3qd50qfY2f1TryG+W/TbrGzOm011+Vex5q0NQTZtKvyA4bXS9/Ro0MS7v1lZWYv5w+z2wNl5Z2FBbgK5xKUlYnFaj3t9b0+P2+VNvPc/hq2FtfR6R78ebkiup1744tY0rsTZ+N+6PjQielLzTLzM6+FqJF//oqMBq3zo6O4uZhbB3bCuwo+SMK/bf6ZsRyf3+DtshYAlueMkITPH5qEX7whm9mrU/H7PvKzSERE5CxNxjW+uLkYgKXVPsDBybB4eoOcLMsZeSc8QFNVF1sfPEjO/ARWfmLaOEUqIiKT0Vkn4WfPns3LL7/MwoULRzy+bds2Zs+ePWqBiYiIyNSkew6RoerLjvPsj79Hf28vu599ivVf/uqExmMYBvsb97OpdBNbK7bS2d8ZODYndg7X5l7L+uz1xDhPvUN7qjAMA29NjZlwP2DudHcXF2O43cPmOtLSAmXlnYWFOGfNGrGs/Ej8foP3Klt5bn8NLxyspamrP3BsWXgT98YfZKn7TVwth6By4IDFChkrBhLvGyEiZTTessgZaZ3/+AzDoLzqIMmt5veugjnQ0wKNR8yB9KUcru2gvddDWLCdgtRIADz9fdSXHgeGJ+EBQiL0wJSIiJy/ybjGH2zYB8D0geoyx6LSKEiNJCpk+Jr42m8fprejnZDoJXQ0eWir7xnPUEVEZBI66yT8F7/4Rb72ta8xe/ZsNm7cOOTYc889xw9+8AN++tOfjnqAIiIiMrXonkNkUHN1FU//27/S39tL+qwCrrzryxMWy8nOkzxf9jzPlT5HZWdlYDwxJJGNORu5Lvc6cqJyJiy+C4Gvq8ssKz+ww733wAF8TU3D5lnDw3EVFOAc6OPuKizEHnvq3TYjMQyD4poOnttfw3P7a6hp/yCxb7DEVcu9CUUsd+/E1X4cagYOWWyQvcYsNZ+/EcISPt4bFjkPWuc/vpOdJ0k40Q6AIyMDW1QUlGwxD8bNgNA4dr1XBsDS7BjsNrOCRv3xY/h9XsKiY4iIT5yI0EVE5CI22db4Hk8Ppe3lAMS2hdOP1+wHnzu8FL1hGBze+Ro97W2kzs4CoknLjx7fgEVEZNI56yT8PffcwxtvvMF1111Hfn4+eXl5WCwWDh8+zNGjR7nlllu45557xjJWERERmQJ0zyFi6mhs4Kkffpvezg4Sc6Zz/de/jT1ofHcpdvZ3su3ENjaVbuK9+vcC4y67i6syr+La3GtZnLgYm9U2rnFdCAyvl75jxz6UcN9Pf+kpysrPmDGQcJ+La24hQVlZZywrfyrHG7oCifeypu4PomFpcCX3xBWxvG8nIV0noH7gkNUBuZeZO97zroEQVSiQiaV1/uMrai5i2sDDNa4Peu8G+sEvB+CtUvMBoJH6wafkzx7Sy/aNPx2lpaabhVdnkp6vnxEiInJ+Jtsaf6j5EH4MEr1e/C0uwMvxqDQ+MUI/+KbKCnra27AHB9PaYFaY0ZopIiJnctZJeIDf//73XHfddfzxj3/k6NGjGIZBXl4e3/3ud7nlllvGKkYRERGZYnTPIVNdd1srw5dV8wABAABJREFUT/3wW3Q1NxGTms5N//wdgkNCxuW1vX4vu2p28Vzpc2yv2k6frw8ACxaWJi/lutzruCLjCkIc4xPPhcAwDLx1dUMS7u7iQxi9vcPmOlJShiTcnbNmYXU6P9brn2zt4fkDtWzaV8OhWrORuwU/S+1l3B13kJX9b+LqqYHmgRNswTDtSjPxPmMduKI+1uuLjDat8x9PcVMx02o/6AdfYA5+qB+8x+dnd/lAP/gRkvCpeUNL0Z842ERHk5t5V6aPceQiInKxm0xrfFHTQQAWt/bjbQM/Fipj01mUNXyHe8X+9wGIz8intclKaGQQ0clT5/chERE5P+eUhAe45ZZbLrgFU0RERC4+uueQqez13z1Ca20NEfEJ3PzN7xMSETnmr1nSUsKm0k1sLttMs7s5MJ4TmcN1udexIWcDSaFJYx7HhcDX1Y276OBAH/f9uPcfwNvYOGyeNSwMV2EBzsKBpHthAfa44TtnzkdjZx8vHKxl0/4a3jthNn624me57ShfjDnAKs8uXO56aBs4wREC09eapeanr4Xg8FGJQ2SsaJ0/f0VNB1lVM5CELywATy9Um8kBMpZxsLqd7n4fUSEOZiZFBM7b+NV/ovZYCTEpaYGxzhY3HU1uLFYLKdOjxvNtiIjIRWqyrPEHa8wH2BYNrKnVYXHMnpaM0zG8ylfFgb0ABIflQBOkzYwZUlVGRERkJOechK+urubpp5/m6NGjWCwWZsyYwU033URqaupYxCciIiJTlO45ZCq7/I578fS5WfPZLxIeOzpJ3ZE09TaxuWwzz5U+R0lrSWA8Ojiaq7Ov5rrc65gVO+ui/oDJ8HrpO358YJf7ftwHDtB3vHR4WXmbjeC8GQM93AfKymdnn3dZ+ZG093h4sbiOTftreKu0Cb8BNnystB7mC1H7WeV9G1d/M3QOnBAUDnnrYeZ15s73IO3GkclD6/z58fl9NJQVE9mD+XNp5kyofhf8HghLgugsdu0vBWBZdixW6+DP7yCni8yCeUOuV11iPuSTkBlOkPOcPyISEREZZrKs8UWN5k743K44oJNjUemsHKEUvafPTfWRYgD6elMASFc/eBEROQvn9BvWL3/5S772ta/R399PZGQkhmHQ0dHB17/+dX7605/y5S9/eaziFBERkSlE9xwyFRmGEUh2O8PCuP4fvjUmr+P2unm16lU2lW7irZq38Bt+ABxWB5emX8q1OdeyKnUVDptjTF5/onkCZeXNHe69hw5h9PQMm2dPSR7Y3V44WFbe5Rr1eHr6vbx8uIFN+2p442gj/T4/DryssRbxmch9rPbtxulpgw9CdEZC3gaz1HzOpeD4eKXuRSaC1vnzV95eTlqV2QojOD8Pa3Dwh/rBLwOLhV2lZjWTFdNiT3WZgJMDSfjUPCUTRETk45ssa3xzbzM13k4shkFkexRuOjkWlcYXRkjCnzxcjM/jITw2jtT8HPxGC2kz1Q9eRETO7KyT8Js3b+YrX/kKX/3qV/n7v/97kpOTAaitreU///M/+du//VuysrK45pprxixYERERufjpnkOmIr/fx+af/xepebNYcPW1o399w8/79e/zXNlzvFTxEl2ersCxufFzuS73OtZlrSMyeOzL3o8nf3c3vUXFgR3uvfsP4G1oGDbPGhqKs6AgkHB3FRZij48fs7j6vD7eONrEpv01vHyonl6Pj2D6WWM9yG3h77Pav4dgXxe4B04IiYX8gcR71hqwB41ZbCJjTev8x1PUXMS0gbK5IXPnmoMf6gff5/Wxp2KgH3zOYBL+zSf+gMfdS8Hl64hNM3u/G4YR2AmfNkNJeBER+Xgm0xpf3LAfgGyPF3eV+btRdUImBanDfx/y+7zEZ2aTNG0Gl3wqb1zjFBGRye2sk/A//vGP+cY3vsEPfvCDIePJycn89Kc/JSQkhB/96EcXxCIqIiIik5fuOWSqMQyDbQ/+gqO7dlC6Zxc5CxYTlTg6vdfL28vZXLaZ58uep7qrOjCeEprCxtyNXJd7HZkRmaPyWhPN8PnoO146JOHed/w4+P1DJ9psBM+YgaugIJBwD8rJwWIb3vtxNPn8BrtKm9m0v5qtRXV0uL24cHOJ9QA3h77HGuM9gvw94Bk4ISwR8jeaiffMlWBTmWi5OGid/3iKmoqYNZCEdxYUgt8HVbvNg5nL2VfZRp/XT1xYMNMSwgbPe20bXc1N5CxYEkjCtzf20tXah9VmIWnaxfUQloiIjL/JtMYfLH8JgEUdFmhpxY+FhAWF2KzD23DlLlxK7sKl+P2+8Q5TREQmubP+JGfv3r08+OCDpzx+++2387Of/WxUghIREZGpS/ccMpUYhsEbf/g1Ra++hMVi5ZqvfP1jJ+AbexrZUr6FzeWbOdR8KDAe6ghlbeZars29loWJC7FaRq+X+UTw1NfTu38w4d5bXDxyWfnk5IE+7h8qKx8yPr3TDcPg/cpWNu2rYfPBOpq6+gillyuse7ne9S5r2IvD6IMPPs+LSDX7u8+6DtKXgnVsHwwQmQha5z+eww3FbKwzv3YVFkDDYehrh6BwSJjNW9vLAFieGxtocdLR1EBXcxNWm43kaTMC1/L2+8mYbe6WdwTp542IiHw8k2mNP1j/HgALupOAOk6GxbNkVtppz2k40UV8Rjg22+T+PUpERMbPWSfh/X4/Dsep+0I6HA4MwxiVoERERGTq0j2HTCW7n32Sd597BoCrvvTXzFi68ryu09XfxSuVr7C5bDPv1L0T6PNus9hYkbKCDTkbuDzjclz20e9pPh783d30FhcPJtwPHMBbXz9snjUkZEhZeWdhIY6EhHGN1TAMDtV2sGl/Dc/vr6W6rZcIurnS+h7XOt9lleUADqMfPvgxFpVpJt1n3QApC8CqD/Xk4qZ1/vx5fB66jx4m2AuEhhCUnQ3vPmIeTF8MNvtgP/jcwVL01UfMB7ISsnNxOJ2B8bi0MK79m7njFr+IiFzcJssabxgGRb31YIGMrmSgjmNRaawfoR98V0szwaGh9HQYPP2j9wgOtXPHf6zC5tA9u4iInNlZJ+Fnz57NX/7yF/7u7/5uxOPPPvsss2fPHrXAREREZGrSPYdMFfteeoGdj/8WgEtuv5OCy9ae0/ken4c3a97k+bLnea3qNfp8fYFjhfGFbMzZyLqsdcQ4Y0Yz7DFn+Hz0lZYOSbj3HTs2vKy81Urw9OlDEu7BubljXlb+VMoau9i0v4bn9tdQ2thNNB1cZXuPa4P3sNxShB2vOdEAYnLNMvOzrofkuWAZXvZS5GKldf78HW07Sla12bMipKAAi9UKlbvMgxnL6e33sbfK7PE+UhI+NW/W+AYsIiJTymRZ4082FtFuMXAYBv5qM5len5RFbnzosLmv/vZhSt99m5mrPwXEEZMcqgS8iIictbNOwn/5y1/mvvvuIzg4mHvuuQe73TzV6/XywAMP8K1vfYtf/vKXYxaoiIiITA2655CpoPFEOa88+isAlt10K4s23nhW5/kNP/sa9rG5bDMvnniR9r72wLGsiCw25GxgQ/YG0iPSxyTuseBpaBiScHcfPIh/pLLyiYlDEu6u2bOxhg7/oGw81bT18tz+Gp47UENRdQdxtLPOtofvB+1mqfUQNj704ED8zIHE+3WQMEuJd5mytM6fv+KmYqYN9IN3Fc4Fw4ATHyThl/HuiRY8PoOUSCcZMYNtN6pLBpLw+YNJeHe3B2+/j7DowZ3xIiIiH8dkWeMPHvkzADP9NnzHKwAIm1sQaOPyAb/fR+XBffg8HrrbzXU1febkesBZREQm1lkn4T//+c9z8OBB/vqv/5p//ud/Jjc3F4DS0lK6urr4yle+whe+8IWxilNERESmCN1zyFQQn5nNms/cQWdTIytu+ewZ55e2lbK5bDMvlL9AdVd1YDzOFcf6rPVszNnIrNhZwz44utD4e3pwFxfT+0HS/eBBvLW1w+ZZQkJwzZljJtwLCnDNnYsjMXECIh6uqauPLQdr2bS/hj0VrSTRzHrbHr4dtJvF1hKsfKjEZlKBmXifeT3Ezzj1RUWmEK3z56+oqYgVgSR8AbRXQWcNWO2QupBd26sAWJ4bF1gP3F1dNFWdAIbuhD+2p543Hj9K3tIkrrxDO+RFROTjmyxrfH7SfP6qdg9J/jhc7W/jx8L0FQuHzWsoK8Xd1UmQK4TmulDAIC1fSXgRETl7Z52EB/iv//ovbr75Zv7v//6PY8eOAbBmzRpuu+02li1bNiYBioiIyNSjew6ZChZfexOGYZwycV7fXc+W8i1sLt/MkZYjgfEQewhXZl7JhpwNLE1ais06MeXXz8Tw++kvLR1MuH9QVt7nGzrRaiV42rTBHe6FcwmeNnFl5UfS3uvhpeI6Nu2v4a3SZpKNBtZbd/PPQe+wwHp86OSUBYM73mNyJiZgkQuc1vnzc7TmALc2mV87Cwqh8jXzm+S5EBTKWwP94Jd/qBR9e0MdoZFRBLlCCImMCoxXHzXL1kclusYjdBERmSImwxqfM+Na7p1xLfUvvkILb1MVnsCKOcMriVXsfx+ApNzZNFQbOJw2ErLCxztcERGZxM4pCQ+wbNmyC2bBFBERkYuX7jnkYlNfdpy3nvwD1/zNPxAcYpZR/2gCvrO/k5dPvMzmss3srtuNMbCr2m6xsyp1FRtyNnBJ+iW47Bde0sTb2Dgk4e4+eBB/d/ewefaEhCEJd9eciS8rP5Lefh+vHKln074aXitpJMVfzdXWPXzd/g6F1vKhk9OXmUn3mddCVMbEBCwyyWidPzc9nh6MklKsBlgS4nAkJsCewX7wnW4PB6vNFiUfTsIn5kzjS/f/FndXZ2DM8BtUl7QBkDojetzeg4iITA2TZY0ve3MPUUBdYhZJkcPbs1Qc2AuAMyIXqs0102ZTP3gRETl755yEP5VnnnmG73znOxw4cGC0LikiIiIyjO45ZDJqrq7i6X/7V3o7O9j5+G+54ov3BY71+/rZUb2DzWWbeb3qdfr9/YFj8xPmszFnI2sz1xLljJqAyEfm7+3FfehQIOHee2A/3poRysq7XLhmz8Y5dyDhPrcQR1LSBER8dvq9fnYca2TT/hq2HaonxXOCq627+TvbbmY6KgcnWqyQudLc8Z6/ESKSJy5okYuM1vmRlbSWkFvjByBs7jxz8MRgEn5PRQs+v0FWbAipUUMf1LJYLLjCIwLfN9d04+72YA+2kZAVgYiIyHi40Nb4roNFRAGOmTOHHevr6aH2mFmNrK83BYD0mXpwTUREzs05JeEfeughXnrpJRwOB3/7t3/L0qVL2b59O3//939PSUkJt99++1jFKSIiIlOI7jnkYtLR2MBTP/w2vZ0dJOZMZ/WnPo/f8PNe/XtsLtvMSydeorN/cIdibmQuG3I2cE3ONaSGpU5g5CbD76e/rOxDCfcD9B09OrysvMVC8LTcwR3ucwsJnjYNi33UnvsdEz6/wTtlzWzaX8OWg7Wk9JVyte0d/tq6h+nB1YF5hsWGJXvNYOI9LH4CoxaZ3LTOn7uipiKmDfSDdxYWQk8LNB42D2Ys461XG4Chu+ANvx8slmFVV6pLzFL0KbmR2Oza0SciIqNnMq3xYSfMtlIpyxYMO1ZVfAC/z0dUUjJrPrWIykMtZM6JG+8QRURkkjvrT8T+67/+i3/5l3+hsLCQw4cP85e//IVvfvOb/PSnP+Vv/uZv+Ku/+ivi4rQQiYiIyMejew65mHS3tfLkD75JV3MTsWkZzP3y7fzi0AO8UP4Cdd11gXkJrgSuzr6ajbkbyYvOO2Wf+PHgbWr6UFn5/bgPFuHv6ho2zx4fP7jDvbAQ55w52MIuvLLyIzEMg71VbWzaV8PmAzUkdR/hGts7PGvdTXZw/eA8qwNL7uUw6zoseddASMwERi1ycdA6f36KmorYMJCEdxUUQtVu80DsdAiNY1eZmZBfnjv4367m6BE2/fTfmLZoGVfd89eB8ZMDSfjUPO3oExGR0TOZ1viTxyuJ6mnHh4V5ly0ZdjwhO5dLP3c39iAHCZkRJGSqcoyIiJy7s07CP/LII9x///188Ytf5LXXXuPyyy9n+/btHD9+nKioqDEMUURERKYS3XPIxcLd3cXT//avtNXVYokMYeviWn6y/fOB42GOMK7KvIoNORtYlLgIm9U27jH63e4PlZXfj3v/ATw1NcPmWVwunLNnBRLurrmF2JOSJvRhgXNlGAZH6jrZtL+G5/edJL79IFfbdvNn227SgpsG59mdWKZdCbOuxzJjHTgjJzBqkYuP1vnzU1mxn/gOMCwWnHNmw67/NA9kLKO1u59DtR0ALMsZfFiouuQQPe1t9HZ2BMb8foOaY22AkvAiIjK6JtMaX/TqO2QCjTHJzIkZfr8fERfPwg3Xj39gIiJyUTnrJPyJEye48sorAbj00ktxOBz88Ic/vOAWUBEREZncdM8hF4P2vnb+8KNv0Huiit4gHy/MO0Znnxe71c6a1DVsyNnAmrQ1OO3OcYvJ8Pvpr6gYknB3Hz0KXu/QiRYLQbk5QxLuwdOnX/Bl5U+loql7IPFeRXTT+6y37eZJ226SglsDcwxHCJbpa83E+/S1EBw2gRGLXNy0zp+7jv4Ogo9WAeDIzsIWFgaVb5sHM5bzTnkzhgHTE8JICB9cV6pLDgGQmj8rMGYYBpd+Jo/aY23Ep+tnnYiIjJ7JtMY3vbefTMCTO+O08/ZsLicqMYSsgjgcweP/0LSIiExuZ/1Jmtvtxukc/GUuKCiI+Hj1QRQREZHRpXsOmaz6fH28cfINNpdt5o2TbxCaAJdUx/HGvCZm5MxlY85Grsq8isjg8dtZ7evqpu3JJ+nesYPegwfxd3YOm2OLizOT7QMJd2dBgZngmcRq23t5fn8tL+yvJKT2ba6x7uYPtj3EBw/uBjWCwrDkXW0m3nOvgKCQCYxYZOrQOn/uipuKA/3gQ+fNB48bat43D2YsY9fOZgBWfKQffE2JWaI+NW8wCW+zWZm+KJHpixLHKXoREZkqJssabxgG1mMlAMQumDvs+IkD++hsbiR5eiG7ny8HA77wo5VKwouIyDk7p+0sDz/8MGEDH8h5vV4ee+yxYX1cvvKVr4xedCIiIjIl6Z5DJgu/4efdund5vux5Xj7xMp2ewSR3fMZ0stZcw1/lbCA5LHlc4/J1dNDy+9/T+pvf4mtvD4xbnE6cs2cHEu6uwkLsycmTqqz8qTR39fFCUR0v7DuBs+oN1lv28KjtXaKDBvvZG8GRWGZuhJnXYcm9DOzBExixyNSldf7cFDcXk1trfu0qLICaveDrh7BEiMnhrdI3AFj+oSR8S81J3F2d2IODic/KmYiwRURkCpoMa/zxhi4ym04AkLtq0bDj+156nuN73iZ/9Y1gZBOTEkpopH5vEBGRc3fWSfiMjAweeuihwPdJSUn87ne/GzLHYrFM+CIqIiIik5vuOeRCZxgGJa0lbC7bzAvlL9DQ0zBwAC49lkrWwsVsvPSz5MXkjXts3tZWWn7zG1p//wf8XWbyOSgzk+jPfIaQRQvNsvIOx7jHNVY63R5eLK5n695ybOWvstb6Dg9Y3yfC0ROY43fFYp25EWZdhyVrDdiDJjBiEdE6f+6KG4r4dK25E95ZUACVW80DGcto6OrjWEMXFgsszR5MwlcfMUvRp0zPwzbQTsTn87NvWyWpM6JJzIrAYp38D2CJiMiFY7Ks8bv3lLCgrxO/xULEnNlDjvm8XiqLDgBgWDIASM+PGfcYRUTk4nDWSfiKiooxDENERETEpHsOuVDVdNXwQvkLPF/6PKXtpYHx8KBw1mZcxcyiIE4e34W96hDpV4xvmV9vYyPNv36M1scfx+gxE9DB06cRe++9RKxfj8V28ZROdHt8vHK4gRf3lmIc38Za3uZ/rPsIc7gDc3whCdhmXwezrseasQJsk7OfvcjFSOv8uas/to8wNxgOB84ZM+CJ75gHMpbzdlkLALOSI4gOHXzIqPpIMQApeYPJhcYTnbz9bBnBoXbu/M/V4xa/iIhMDZNljb8muI06wMjMxupyDTlWe7yE/t4enOERtNS4gH7SZkZPSJwiIjL56dMoEREREZFTaHO38dKJl9hctpn3G94PjAdZg7gk/RI2ZG9gddpq9m56lp3bfwvA5Xd8iZDIqHGJz1NbS/Mjj9L25JMYfX0ABM+aSdx99xF+xRVYrNZxiWOseXx+dhxr5KX3j+M7spXLjV38yLofl60/MMcblox99g0w63ps6UvAevE8eCAiU1dTbxNRpY2A+fPdYrNB5TvmwYxl7Hq7CYDlObFDzovPzCalvo70WXMCYydLWgFInRGtXfAiIjJlBUVEEHbZZQRlZQ07duLAXgBSZhRQU9aP1WohZXrU+AYoIiIXjbNOwn/ve98bcTwyMpK8vDzWrl2L9SL5kE9EREQmju45ZKK5vW5eO/kam8s2s7N6J16/FwALFhYnLWZDzgauzLySiKAIAPa99AI7HzcT8JfcficFl60d8xj7q6pofvAh2p59FjweAFxz5xL35fsIXbPmoujx7vMbvFPezLb3SvAcfoFLvG/xXesBgq3ewJz+8AwcBTdgmXU99pQFoJ8NIhc8rfPnpripmGk1Zin6sHnzoPEw9LWDIxQSC9hVugOAFdOGJuEXXXsTi669achY9YeS8CIiIqNtsqzxoUuXELp0yYjHKvabD16HROYCkJgTQZBT+xhFROT8nPUK8uc//3nE8ba2Nqqrq5k9ezYvvvgiCQkJoxaciIiITD2655CJ4PP7eKfuHTaXbeaVylfo9nQHjuXH5LMhewPrs9eTFJo05LzDO1/jlUd/BcCym25l0cYbxzTOvrJymh94gPbnnwefD4CQJUuIu+9eQpYtm/TJd8Mw2FfVxsvvHaa/aBMr+9/iX6xFOCw+GNjY7o7IIbjwRiyzrycoqRAm+XsWmWq0zp+bouaiQBLeWVAIlbvMA+mLqe70UNHcg81qYXHW6fvV+jx+akvbAUjNixrLkEVEZIqa7Gt8b1cndaXHALAHZwFdpM9UP3gRETl/Z52E37t37ymP1dbW8ulPf5p/+Zd/4eGHHx6VwERERGRq0j2HjBfDMDjUcojNZZvZWr6Vxt7GwLGU0BSuybmGDdkbmBY9bcTzq0sOs+UXPwXDYN66jay45bNjFqu75CjND9xPx5atYJjJmNBVq8zk+8KFY/a646WkrpNX9hyg98BfWObeyd9ZD2O3+AOJ9+6oGbgKb8Q6+wacCTOVeBeZxLTOn5vDtQdZ3WB+7SosgD0DCY6MFewqbQagIDWScKcjcE5LzUlCo2IIDgkJjNVXtOPz+HGFO4hJDh23+EVEZOqY7Gt8/UACPjYtgyu+sISl17ux2iZ+576IiExeo1JLJTk5mR/84Afcfvvto3E5ERERkRHpnkNGQ1VnFS+UvcDzZc9T0VERGI8MjmRd5jo25GxgXsI8rJbTf+CSlDuNGUtXYrXbufwL94zJLvTeomKa7v8VXS+/EhgLu/xy4u67F1dBwai/3ng60dzN9t176d3/LAt7dnCvpQSrxQgk3juiZhEy7ybsc24gNG76xAYrIuNC6/xQhmHQcfgADh8YEWE40tPhqYGd8BnL2PWumYRfkTu0FP3zP/sxTScquPEb/4/seeaDWidL2gBIzYue9FVTRERk8pkMa3zW3AXc9+Dv6Wox19ewaOcERyQiIpPdqDU0SU1NpaGhYbQuJyIiIjIi3XPI+Whxt/BixYtsLtvM/sb9gfFgWzCXpl/KhuwNrEpdhcPmOM1VhrLZHVzzlX/A8BtYRrm3Yc/7e2m6/1d0v2H2+sViIXzdOuLu/RLO/PxRfa3xVNfu5rV39tC77xnmdr3BHdbj5oGB/3yt0YWEzr+JoDk3EBGTPXGBiozA0+ejo7kXww9xaWETHc5FS+v8oNruWhIqzBLyIYVzsbSfhI6TYLFhpC5k15/eAWD5h5LwfT09NJ2owDD8xGdkBcbrygZK0asfvIiITJDJsMaHRETiCo+Y6DBEROQiMWpJ+P3795OVlTValxMREREZke455Gz1eHp4reo1Npdv5q3qt/AaXgCsFitLkpawMWcjV2RcQVjQ2SfTmk9WceiNV1h12+ewWK1YrbZAAvnjMgyDnnd20/SrX9HzjplYwWYjcuMGYu+5h+Dc3NF5oXHW2t3Pjnd20b33GWa3v85t1nLzgBX8WGiOnkfY/E/gKryB6Kj0iQ1WpjSvx0dnsxu/zyA21fy5YPgNnvmv92hv7KW30wNAWn401391/kSGelHTOj+oqGmwH3zo3HlQ+bZ5IHkulV0WatrdOGwWFmUO9qutPXYEw/ATmZhEWMxgcn7DXxXSUNFJZLxrPN+CiIhIwGRZ41/41UH8PoNlN+QQnx4+0eGIiMgkdtZJ+I6OjhHH29vb2bNnD3//93/PXXfdNWqBiYiIyNSkew75OLx+L+/UvsPzZc/zSuUr9Hp7A8dmxc5iQ/YGrs6+mviQ+HO+dntDPU/98Ft0tTRjDwpm+c2fGpWYDcOge+dOmn51P73vv28O2u1E3nA9cffcQ1BGxqi8znjq6vOy6+2ddL7/NLNaX+U6a5V5wAo+rDTELCRs3k2Ez7uR+IjkiQ1WpqRDb9bQ0dhLR7Obzmbzz572fgCSp0Vy0z+YJbwtVgtdrX2BBHxwiB17kG3C4r4YaJ0/e0XNRRQOJOFdhQVQ+RfzQMZy3hroBz8/PRrXh/5OVpccAiA1b9aQa9lsVpJzI8chahERmaom8xq/78XNlOzawZzL1lF1yILP62fVJ6dNdFgiIjLJnXUSPioq6pR9wywWC1/60pf4x3/8x1ELTERERKYm3XPIuTIMg6KmIjaXb2ZL+RZa3C2BY6lhqWzI2cCGnA3kROac92t0t7UGEvCxaRnMXXvNx4/b76fr1Vdp+tX9uIuKALAEBRF1883E3nUnjpSUj/0a48nd7+Xdd96g4/2nyWvZzlWWGvOAFbzYqI1eTNj8m4hecBPJYef+EITImfh9frpa++hsdtPR7Kajudf8uqmX0Mhg1t09JzB393PldLf1DbuGI9g2LMl+1Rdn4XDaiYh1Ehxy9i0rZGRa58/e8cr9XD2wpDkLCuDxfza/yVjGW/vNJPzyj/SDrz4ykITPH5qEFxERGWuTeY0ve383Jw8XEZM2B583hdCoYKISQyY6LBERmeTOOgn/6quvjjgeERHB9OnTCQsLY9++fcybN2+0YhMREZEpSPcccrYqOyrZXLaZzeWbOdFxIjAeFRzFuqx1bMzZyNz4uaf8IOhsubu6ePqH36atrpaI+EQ+8c3vERJx/rsJDZ+PzhdfpOn+B+g7ehQAi8tF9K23EnPHHTgSEz5WvOPJ4/Wxf/erdLz3FNOatrPKUm8esEA/dk5GLyNs/k0kLLqR9JCY019M5AwMv0F3e38guW74DfKXD1ZS+P2336azxT3iuWExwUO+n744EW+fj/A4JxGxLiLinITHOnGGOob9zEiZrh7ao0nr/NnxG376iovNb1ISsbss0GAm2I30pex65iAAKz6UhPd5vdQeKwEgNW92YHzbo8U4nHYWrM0gIk7l6EVEZGxM1jXe6/FQdch8KBprBuAlfWb0x/49UkRE5KyT8JdccsmI4+3t7fz2t7/lkUceYd++ffh8vlELTkRERKYe3XPI6TT1NvFixYtsLtvMwaaDgXGnzcllGZexMWcjy1OW47COzm5Vj9vNMz/6Do2VFYRERnHzt75PeEzceV3L8Hppf/55mh94kP5ysy+6NTSU6M98hpgvfB57zORIUvt9Pg7teYW2d58it+kVFtFkHrBAH0FURC8nZN5NpC25gRxX1ITGKpOLYRj093qH7Dbf9edSGis76Ghy09nqxu81AsfCYoKHJOHDooPp7ugjPMZJRJyL8FgnEbFmkj08zjnktVZ+QuVFJ4rW+bNzouMEqVVmS5WwufOhajdgQOw0jveE0NTVR7DdyryMqMA5DRWlePv7cIZHEJOaBkC/28vxdxvw+w0WrJ187U1ERGTymKxrfPWRYrz9fYRGx9BS6wS6SMufHL+biYjIhe2sk/AftX37dh599FGeeeYZMjMz+cQnPsHDDz88mrGJiIiI6J5D6PH08ErlK2wu38zbNW/jM8wPbawWK8uTl7MhZwOXZ1xOqCN0VF/XMAye+5//oPboEYJDQ7n5m98nOuncS8Qb/f20PfsszQ89jKfK7I1ujYgg5nOfI+b2z2KLvPB79Bo+L6XvbaP13afIbNjOHAZL/vfgpCxqBa65N5K9/EbynOETGKlMBk0nu2ir7/lQuXizL3tnsxtXeBCf+7cVgbk1x9qoK2sPfG+xWgiPCSY81klkfAiGYQR2KW34q0KCnHYsVu1amky0zo+sqKmIaQP94EPmzoXKXeaBjGXsKjNL0S/OiiHYPtg+ISIugSvv+jIetzvw76L2eDt+v2E+lKJd8CIiMo4myxp/4sBeANJmzuXEkS7z63xVQhIRkY/vnJLwJ0+e5LHHHuPRRx+lu7ubW265BY/Hw9NPP82sWeo3JiIiIqND9xzi8XvYVbOL58ue57Wq1+j19gaOFcQVsCFnA+uy1hHnOr9d6WfDYrFQcPlaao+VcOM//SvxmdnndL7f7abtqadpfvhhvHV1ANiio4m54w6iP/0pbGFhYxH26PF5OLn3JZr3PEl6/XamMZgI7cLF0chVOOfexIwV1zPHOboPQMjk1dfjoaPZHejF3tnsxtPv4/LbZwbmvP7HkiGJ9Q/rbu/D7/NjtVkBmHdlOv3ulEC5+LCo4MCxj1K/9slD6/yZFTcVsWYgCe8qLIR9j5sHMpbzVtHI/eBDo6KZe9U1Q8aqS1oBSMtTMkFERMbeZFzjK/a/D0Bo9DQwICYllNDI4DOcJSIicmZnnYS/5ppr2LlzJxs3buR///d/Wb9+PTabjfvvv38s4xMREZEpRvccU5dhGOxv3M/mss28WPEirX2tgWMZ4RlsyNnAhpwNZEZkjltM05esIGPOPIJDQs76HH93N61/eoLmXz+Kr9Es1W6Pjyf2rjuJ+uQnsZ7Dtcadt4+G/S/RvOcJUutfJc3oJG3gUJsRypHI1QQV3sjsVdexwHkBvw8ZM/1uL53Nbno6+kmfOVim85XHDlF+oIm+Hu+wcyxWC5d+Oi+QPI/PNKslmDtzB8rFD3wdFu0ckmTPXZAwxu9IxpvW+bNz4vheorvBsFpxTsuGze8B4E9bxtvPlQHDk/AjqT5qrqWpSsKLiMgYm4xrfHdbK40nzFZhqfmFdLS0kZAVMcFRiYjIxeKsk/AvvfQSX/nKV7jvvvuYPn36WMYkIiIiU5juOaae8vZyNpdtZnPZZk52nQyMxzhjWJ+1no05G5kTNydQWncsGYbBu889Q97y1UTEm8m/s03A+zo7af3DH2h57Df42toAsKckE3f33UTedBPW4At0N4Wnl7aDW2na/STJ9a+SYPTwQdqz2YigKGIVjoIbmbvqWpaFqJTxVFK2r5G60vaBne29dDS7cXd5ALBaLXzpfy8JJMx9PiOQgHeFO4b2ZY9z4fcbWAeqZq+5dcaEvB+5MGidPzOP34Nx6CgA1mlZWNtKwNcPofEc7o+jraeEsGA7hamD7Uw6mhop3/suaTPnEJuWDpiVKRorOwFInaEkvIiIjK3JuMb39fSQu2gp/T09zFiSzYwlEx2RiIhcTM46Cb9jxw4effRRFi1aRH5+Prfffju33nrrWMYmIiIiU5DuOaaGxp5GtpRvYXP5Zg41HwqMu+wursi4gg05G1iWvAy79Zy6J31su599kp2P/5a9W5/nCz/5BUGuMyfgfW1ttPz2t7T87vf4O81khyMjg7gv3UPktddiCQoa67DPXX83XUUv0LznKRLrXiPKcBM1cKjBiGJf2Gocc25gweoNXBKmxPvFxOf109niprPJTcdAYr2zyfyzu62P23+4AutAT/Xj7zVwbE/9sGsEh9gJj3XS1+vFFWb+/V68IYuFV2cSEevCEWwbdo7IB7TOn1lpWylZ1f0ARMxf9JF+8C0ALM6Kxv6hqhEnDuzl5Yd/QdrMOdz6nf8AoOZYG4YBUYkhhEVfoA+CiYjIRWMyrvExKanc8PVvYxjGRIciIiIXobP+VHP58uUsX76cn/3sZzz++OM8+uijfO1rX8Pv97Nt2zbS09MJDw8fy1hFRERkCtA9x8Wrq7+LVypfYXPZZt6pewe/4QfAZrGxImUFG3I2cFn6ZYQ4JqbM+b6XXmDn478FYOGG68+YgPc2N9Py61/T+sf/w9/TA0BQbi5x936JiKuvxmIf3wcIzsjdgfvQC7TseYrYujcIM/r4oCt9tRHL+yGrsc25nkWr17M2QqXmJyu/z09Xax8dH+rJvnhjdiCx/vJjhzj+bsMpz+9u6yM8xglA5pxYXOGOIeXiw2NdBLuG/92OTgodmzckFx2t82dW3FRMbo35dUhhIVQ+YX6TsYJdJWY/+BW5cUPOqS4xH2hLzR/st+v1+ImMd5E6I2rMYxYREZnMa3x7Yy9BTjshERfgA9QiIjJpWYyP8ZhXSUkJjzzyCL/73e9oa2vjqquuYtOmTaMZ34To6OggMjKS9vZ2IiLUA0ZERCaO1iTTaN5z6L/p+PL4PLxZ8yabyzbzatWr9Pn6Asfmxs9lQ84G1mWtI8YZc5qrjL3DO1/jhf/vJ2AYLPvEbay85bOnnOupr6f5kUdoe+JJDLcbgOD8fOLuvZfwtVdhsVpPee646+uiv3gTbXueILpuJw7DEzh0wp/AbtcqrLNvYMnKK0mPVRJ1MvD7Dbrb+giLCsYykFgveqOa4+/W09Hspqu1D8M/9Fe8z/3bikBifdefSzmwvYrwOBcRsU4zuf6hJHtsShg2xwX0d/gipzXJNFrr/MXy3/N7b/4/Nt73BK5+yP7Lszj/vBbcbXjv3M68h5vo6vPy/N+sYs6HytE/+tV7aK2t4aZvfIfs+YuGXM/n9WOz69+1iMh4uljWpI/rQv5dvqe9DU+fm8iEJLY+cJDSvY2suW0GBZemfexri4jIxe1s16SPtT0nLy+PH//4x/z7v/87zz33HI8++ujHuZyIiIjIiHTPMbn4DT/7GvaxuWwzL554kfa+9sCxrIgsNuRsYEP2BtIj0icwykGl7+1myy9+CobB/PXXsuKTnxlxXv/Japoffoj2p5/B8JjJbGdhIXH33UvYpZeOS8/6s+LzQtlruN//A7aSFwjyuwM93kv9ybwVvApmXc/yFZfwycSp+4Hgha61rpvGqk46mtx0Duxq72h209Xixu8zhiTWO5t7qT7aFjjXarcQETuYZP/wX80lG7NZdkPOhfP3VQSt8x/VcGgvrn7wO4MIDu8Hdxs4Qjnoy6Crr45Il4OZyYM/v7vbWmmtrQGLheQZ+cOupwS8iIhMlAt5jS967WV2/PEx5ly2lpNH5wEQn3Fh7tQXEZHJaVRqZNpsNm644QZuuOGG0biciIiIyIh0z3FhK20rZXPZZl4of4HqrurAeJwrjquzr2ZDzgZmxcy6oJJ/1UcO8fx//weG38+s1Zdx2efvHhZff0UFTQ8+RPumTeD1AuBatJC4++4jdMWKC+P9GAbU7oMDT+Dd/yT23kacA4fK/Ym84rgE/8wbWLFsJZ9NjbwwYp6iDMPA3e0ZllzvbO7l8s/NJDTS7Nt8+K1a9r5UOeI1rFYL3e2DZeNzFyQQkxJGRKyTiDgXIRFBgV3yH6Vd7nIh0zoPfb4+7EfKAXDMmomlerd5IG0RuyrMh9qW5cRg+9C/8ZqSwwDEp2fiDDUbjfT1eHAE27Da9G9eREQm3oW4xp848D4Arohk+nq8BDltJGQqCS8iIqPnAmtUKSIiIiKTSX13PVvKt7C5fDNHWo4ExkMdoVyRcQUbcjawNGkpNqttAqM8taikZKJTUomIT2DtvX87pJR837FjND3wIB0vvAB+s3996IrlxN13HyGLF09UyEO1noCDT2Ic+BOWpqOAeYPfbITznG85xXHrufSyq/nCnCTsSsSMG3e3x0ywN/eSlh8T6KG+d1sle54vx9PnG/G89sbeQBI+Li2MlOlRgyXj41yBP0OjggM93gESMiNIyFRVA5GLwZGWI+TUmD8jIucvgsq3zQMZy9lVavaDX54TO+Sc6pJiAFLyZwfG3v5LGSXv1LHixlzmXKKyuiIiIh/mcbupPnIIAIstA+gmNS9aD6+JiMioUhJeRERERM5ZZ38n39jxDXac3IGB2X/abrGzKnUVG3I2cEn6JbjsrgmO8sxCo6K55f/9O3ZHEDa7eWvsPnSIpl/dT+e2bYF5YZdeSty9X8I1b94ERfohva1w6C+w/09Q+RYAFsBtONjmX8iz/lU4ZlzFnZfM4POZ0dr1PgYMwwj8d6093kbp3kY6mnrpbHHT0eSmv9cbmHvTPywgeVoUAI4gayABHxoZRHisi4i4wSR7ZPzgv5kZS5KYsSRp/N6UiFwQipqKyK0x11VXYSEc+g0AntSl7NneAsCKaXFDzqke2Amfmj/rQ2OteNw+QiKCxyNsERGRSaXq8EF8Xi8R8Qk0VTsASMuPmeCoRETkYqMkvIiIiIics98f/j1vnHwDgPkJ89mYs5G1mWuJckZNbGBnob2hnpqjh5m56lKAQOne3n37aPrV/XS9/npgbvjatcTd+yWcs2aNdKnx4+2DY9vgwONw9EXw9QPgx8Iu3yye9a9ku2UZ6xfO4JurssmJD5vYeCc5b7+PjiZzJ7u5o90sF/9BCflrvlxIcm4kAE0nu9j/StWwa7jCHUTEuTCMwbHchQmk5ccQFhOM3XFhVocQkYlVUnOAWxrMr13ZcbCrEiw29jMdt+cAcWFBTE8Y+jP+5m9+n5qjR0jMmQZAd3sfrXU9YIGUGVHj/A5EREQufCf27wUgffY8yovNdi/pM6MnMiQREbkIKQkvIiIiIufEMAy2lm8F4LsrvstN02+a4IjOXndbK0/98Fu01dXi9/mYfckVdO/eTfP999P91i5zktVKxDXXEPelewiePn3igjUMqHoHDvwJip4Bd1vg0DHSecqzik2+FfSHJvO55Vm8tCyD2DDteDwbPo/f3LX+QZK9yU3+8iSik0IBsx/7G48fPeX5nc29gSR8Uk4k865MHywXH2v+6QgenmR3hQXhCgsamzclIheFtoN7sRngi4nA7i41B5ML2VnZC8CynNhhFU6CQ0LJnrcw8H310VbAbGvhDHWMT+AiIiKTSMV+sx98RPwM/F6DsOhgohJDJjgqERG52CgJLyIiIiLn5FjbMcray3BYHVyVedVEh3PW3F1dPP3Db9NWV0tEfAJxvR4qPvtZet99z5xgtxN53XXE3n0XwdnZExdo03Ez8X7gT9B2IjDcbo/lib7lPONdyWEjg5z4ML6yOocb56fi1K7qIXw+P92tfQSHOgL92KsOtbBnczkdTb10d/SDMfSc2NTQQBI+PNaJw2kj4sPl4gNfu4hMGCwbH58RTnxG+Li9NxG5eHV7ugk5Vg2Aq6AQS9XwfvArcuNOdXpAdUkbAKl52tEnIiLyUR1NDbTUnMRisTJr9VJi0/vwefxq4yUiIqNOSXgREREROScf7IJfnbqa8KDJkXz0uN0886Pv0FhZgSsklGUNnbR89e8AsDgcRH7iJmLvupugtNSJCbCrEYqfMRPv1e8Fhr32UN4KWsEDbYvY5Z6NHytLs2N4ZE0Ol+UlYLVO7Q+Kulr7OHmkxSwX39Q7UDbeTVerG8OAq+6cxYzFZl91n89PbWl74Fx7kHXI7vWID/Vjz5wdy93/vUYfxInIuDrUfIhpA/3gI+cvgsrfAtCXsoS9O9oAWJ4bO+Sc1377MFa7nblXricywfx5V11i7oRPm6EkvIiIyEe5wiO47mv/QkttNVGJ0UQlTnREIiJysVISXkRERETOmmEYbCnfAsDV2VdPcDRnx+vx8Jef/JDao0dwGLBw7xHs7n4swcFE3XoLsXfeiSNxAj556e+BkhfgwBNw/GUwfAAYFht1cSt4rGspv22dRS9ObFYLG+Ymc/fqbArTosY/1nFm+A16Ovo/0ovdTLLPvSKdrAJzJ2hTVSev/ObwiNew2a3093gD3ydmRbD2rtlExLmIiHXiDHOcMslumeIPN4jIxChqKmJarZmEd+Vlw+vFAOwjn35fGcmRTrJiB0vl+n0+DrzyIh53LzNXXgJAZ4ub9sZeLBZInh417u9BRETkQucIdjJ96YqJDkNERKYAJeFFRERE5Kwdaj7Eya6TuOwu1qStmehwzsjX38emb36dE5Vl2Hx+FpXVEGW1E33X7cR84QvY485c1ndU+X1QscNMvB/aBP2dgUPepHnsCr2SH56YyZEqc1d2aJCNO5dkcMfKLNKiL54ehYZh4O7y0NFk9mWPTQ0jJtksBV91pIXN/98BfF7/iOem5UcHkvBRiSGk5UcTEeskfCC5Hj5QNj4kPGhIMt0VHsT0RdrmIiIXruPl77GszfzaGdULGBCTwxu15s+y5R/pB994ohyPu5fgkFBi0zMA8wGkJddm09PeH2jHISIiIsNVH22lvqKDrDlxxKSETnQ4IiJyEdJvZCIiIiJy1j7YBX9J2iWEOC7cpLDR30/7c8/R+OCD2NydWBOiWdTQzvQv3En07Z/FHj3OJXrri2H/43DwKeisGRyPzKB9+o38rmcpvyyy0dNv7oZPinDyhZVZfGpJBpEux/jGOgoMw8AwCJTLb2/sZf/LlXS0mOXiO5rdePt8gfnLbsgJJOFDwoPwef1YLBAWPdCPPW4wuZ6YFRE4LyoxhOu/On9835yIyBjpOXgQAF96EraW/eZgxnLeGugH/9FS9NUlhwBImZGP1WoDICQiiMUbsscpYhERkcnr6Dt1HHqzlp72flZ9cvpEhyMiIhchJeFFRERE5Kz4DT9bK8x+8Ouz1k9wNCPz9/XR9vTTND/8MN6aWgBmRkVRsPwKMu++G1v4OPaw76iBg0+au97riwbHnZEw+0aOJm7g50djeOHNevwGgI+ZyRHcvTqbjYUpBNmt4xfrefB5/LTW99DR1Etn8wfJ9d5Af/aFV2exYF0mAN5+Hwdfrx56AQuERgYTEevEFR4UGI5KCuH2HywnNDoYm+3C/m8gIjJaWt2tRJc1AhA2dz5Uvg2AO2UJB3a3AyMk4Y+YSfjU/NnjGKmIiMjkZxgGVYdbAUifGTPB0YiIyMVKSXgREREROSv7G/dT31NPqCOUVWmrJjqcIfw9PbQ+8QQtjzyKt7GRmqgwkuPjSLzji0TfegvW0HEqL9jXCYefM3e9l78BmL19sTpgxjp8Bbfwim8+D711kj1vtgL1AFwyI567V+ewclrsKfuUjzdPn28wsT7Qkz15WhQ58+IBaK3v4U8/2H3K8zuaegNfh8c6WbA+c6BcvJOIWBfhMU5sjuFJdpvNSkSca/TfkIjIBay4uZjcgUIpEXPnQsXvAdjHTHz+JjJiQoa0JTEMI7ATPjVvFgDd7X3UHm8nNS8KV1gQIiIiMrL2xl46W9xYbRaSp0VOdDgiInKRUhJeRERERM7KB6Xor8i4gmBb8ARHY/J1ddH6x/+j5bHH8LW0AFCVncbBiGAapudzy+c+i9U+xuXcfR4ofRUOPA5HXgDvYPKZjOVQeAu906/jqcPdPLqlnPIms9yww2bh+nmp3LU6m/ykiFNcfOx4PWaS3WYfTHp3trjZ+mARnc299HZ6hp/T7w8k4SPinDhDHQOl4gfKxX+QZI9zER7rDJwX5LSz/Ibc8XljIiKTUFHjQebXmg9uuZKCoLQPQuJ4pSEMaGLFR3bBtzfU093agtVmJ3GaWUL3RFEzr/7uCMm5kdz09YXj/RZEREQmjZNHzF3wSTmRBDmVIhERkbGhFUZEREREzsjn9/FSxUsArMtaN8HRgK+9nZbf/Z6W3/0Of7tZpteRlkbb+is4uGcnABmF87CNVQLeMKDmfdj/Jyh6GnqaBo/FToPC26DwkzQ5kvntrhP87mfv09pjJrUjXQ4+szSDz6/IIjHCeYoXGD3tjT1UH20LlI3vaDJ3t/e09wMwZ00ql3w6D4Agl52Gio7AuUFOG+FxZnI9ItZFyoyoDx2zc+dPVo95/CIiU0HVkXe5pBf8dhvB9oEt8RnL2FVuPmD20VL0HY31uMIjiE5OxRFkPhj3QUIhNS96/AIXERGZhE4eNtfX9JlaM0VEZOwoCS8iIiIiZ/Ru/bs0u5uJDI5kefLyCYvD29JCy2O/ofUPf8Df3Q1AUHY2cfd+icbkeN747/8AYP76a1nxyc+MfgCtFWaP9wN/gubjg+MhcVBwMxTeAikLON7YzSOvlvH0+4fp9/oBSI9xcefKbD65KJ3Q4PG7De9u6+e1P5Rg+I1hx+zBNj48Guyyc/W9BYTHOImIcxIcMsZVBEREBMMw6C8qNr+ZnoW1dg8AvclLKN5vPhi1PGdoEj5jzlzue+gPuLu7AteoPqokvIiIyJn4/QYnS8w1My1f/eBFRGTsKAkvIiIiImf0QSn6KzOuxGEb/8Ssp6GBlkcepfWJJzB6zXLvwTNmEHffvYSvXcvJI8U8/+//D8PvZ9bqy7js83ePXm/1nhY49Ky5673q7cFxuwvyN0DhrZB7GYbVzjvlLTz0m3d55UhDYNq89CjuWZPDutlJ2Kzj0+/dMIzA+0+ZHsWqT06jtbZnSKn4D8rJf/S/0wfl5kVEZHzU99STeMJMtkfOWwhVvwFgv3UmhuFhWkIYCSNUTrFYLLjCwgFoq++hp70fm91KUs74tzgRERGZLDoae/F6/AS57CRkhk90OCIichFTEl5ERERETsvj9/By5csArM9eP76vXVND88MP0/bU0xj9Zvl05+zZxH35PsIuuwyL1Upd6TH+/OPv4/N4yF20lLX3/i0Wq/XjvbC3D46+aO54P/YS+PoHDlgg5xIz8Z6/EZwReH1+Xiiq46E3yjhYbZbGt1jgqpmJ3LMmh4WZ0aP3QMBZaDrZySu/OcxVd8wmJiUUgMLL0sft9UVE5NwUNxeTW2PWJQnPTYbjreAI4aWWRODksF3wht8PFsuQtaW65IPethHYHbZxi11ERGSyiUoM4a6frqa9oRer7WP+3igiInIaSsKLiIiIyGm9XfM27X3txDpjWZy4eFxes7+ykqYHH6T92b+A1wuAa/584r58H6GrVg1JPFgsFuwOB0m509n4t/+EzX6et7h+v7nT/cCfoPjP4G4fPJZYYJaaL7gZIlIA6Orz8viOMn79ZgXVbQO78+1WPrkojTtX5ZAdF3p+cZwnwzA4/FYtbzx+FJ/Hz5tPHePar8wb1xhEROTcHao7wJp682tnpFlenrRF7CxrA2DFR/rBl763m1ce+SX5qy7lks9+EYCTJeZclaIXERE5M7vDRmxq2ESHISIiFzkl4UVERETktLZWbAVgbdZabNax3V3XV1pK0wMP0PH8ZjMpDoQsW0bcvfcSsnTJiDvKE3Omcdv3/pOw6GjsQUHn/qKNR83E+8EnoK1ycDw8BQo/ae56T5wdGK5t7+WxNyv44zuVdPaZDwjEhgbxueVZfHZZBrFhwecew8fk6fPxxv+VcOTtOgAyZsdy5R0zxz0OERE5d/UH9xDkBV+ok6C+EgC6Exdz9LCZkF/6kZ3w1SWH6Gptoa+nGzAfwqo5pn7wIiIiIiIiFxIl4UVERETklPp8fWyv3A7A+qyxK0XvPnKEpvsfoPPFF8EwS/KGrllN3L33EbJg/rD53W2tdDY1kjRtBgAxKann9oJdDVD0tJl8r9k7OB4UDrOuN3e9Z62CDz10UFzTzsM7ynlufw1evxljbnwod63O4cb5qTgnqPxvS203Lz5UREtNNxYLLL0+hwVrM7GMU/95ERE5f4Zh4D9kJt6ts/KwnHwbgAM280GqmckRxIQOfcCsuuQQAKl5swCzIswn/3kx1SWtJGapH7yIiIiIiMiFQEl4ERERETmlndU76fJ0kRiSyLyEeaN+/d4DB2i6/wG6tm8PjIVdeQVxX7oXV8GcEc9xd3Xx9A+/TVt9HTf+07+SPrvw7F6svweObDYT76XbwfCZ4xYbTLsS5t4KM66GoJDAKYZh8PrRRh7aUcabx5sD40uzY7hnTQ6X5SVgncBkd2NlJ8/85H28fT5CIoJYe+ds7YIUEZlEqjqrSKsyW5rEzJ4FbVvAYuXF9gygaVgpek9/H/WlxwFIzR+s0hIe4yR/efK4xS0iIiIiIiKnpyS8iIiIiJzS1nKzFP36rPVYLdZRu27Pe+/R9Mtf0f3mm+aAxULE1euJ/dK9OPNmnPI8j9vNMz/6Do2VFYRERhEWG3f6F/L7oPx1OPAEHH4O+rsGj6UuhMLbYM5NEDr0On1eH3/ZV8MjO8opqe8EwGa1cE1BMnevzqYwLep83vaoi00NJSEjHIsVrvribEIjx78UvoiInL+ipiJyawYqwCTZoAJIKuD1CjMxv/wjpejrjx/D7/MSGh1DZELiOEcrIiIiIiIiZ0tJeBEREREZUY+nh9dPvg7A+uyPX4reMAx63n6bpl/+ip49e8xBm43Ia68l9p57CM7JPu35Xo+Hv/zkh9QePUJwaCg3f/P7RCeljPRCUHdwoM/7U9BVN3gsOsvs8V5wC8RNG3ZqW08/f3inksfeqqCxsw+A0CAbty3J4I6VWaRFhww7Z7x1NPUSGhWMzW7FarNy9b0FBLnsE7ojX0REzk/Jyb2sbTK/djnN9ao7cTHl5d1YLbAkJ2bI/A+XordYLPj9Bi89XExidgRzLknFETQxrVFERERERERkKCXhRURERGREb5x8g15vL2lhacyOnX3mE07BMAy6Xn+d5l/dT+/+/eagw0HUDTcQe8/dBKWnn/Eafr+PLf/7X5w4sBd7cDA3feM7xGd+JGnfXg0HnzB3vTccGhx3Rpm73Qtvg/QlYBmerK5s7uGRnWU88e5Jej1mmfqkCCd3rMzitiUZRLoc5/v2R1XZ3kZe+e1h8pclsfpWs2KAM/TCiE1ERM5dy753sQKe+CjsrXsBKLKbvd4LUiOJcA79GV99pBgYLEXffLKL0vcbqDzUzNzL08YvcBERERERETktJeFFREREZERbyrcAcHX21VhGSFyfieH30/nyyzTdfz99hw4DYAkOJuqTnyT2zi/iSD673rWGYbDtwV9w9J03sdntXP8P3yJlxkzzoLsdDm0yd71X7ATMkr7YgmDGeph7G0y7CuxBI177/cpWHt5RxtaiOvwDp85MjuCeNdlsKEghyD56Jfg/Dp/Pz64/l7L/5SoAGk504vX4sDu041FEZLLy+X3YjpQBEDQrD+qfBWBrRxbgZnnu8JYribkz6O3sIG2mmYQ/WdIKQMr0KKy2C2PNEhERERERkQsgCf/LX/6S//zP/6S2tpbZs2fzP//zP6xevfqU8/v6+vje977H73//e+rq6khLS+Ob3/wmX/ziFwF47LHHuOOOO4ad19vbi9PpHLP3ISIiInIx6ezvZGf1TgDWZa07p3MNn4+OLVtpfuB++o4dB8ASEkL0bbcRe8cXsMfHn9P1fF4vPe2tWCxWNnzlH8maPQdKtpiJ95It4HUPTs5caZabn3U9uKJGvp7fYNuheh7eUca7J1oD45fMiOeeNTmsyI09r4cOxkpni5uXHi6irqwDgHlXprPsxlxsSraIiExqZe1lZFV7AIjNSYJeAyM6m5cqzTVoRW7ssHNW3vIZVt7ymcD31UfNdSwtL3ocIhYREREREZGzNaFJ+D/96U989atf5Ze//CUrV67kgQce4Oqrr+bQoUNkZGSMeM4tt9xCfX09jzzyCNOmTaOhoQGv1ztkTkREBCUlJUPGlIAXEREROXuvVr1Kv7+fnMgcZkTPOKtzDI+H9ueep/mBB+g/cQIAa1gY0Z/9DDGf/zz26PNLENgdDq772r9Q8+azpDc9Az/5LPQ0D06Im2Em3gtvgaiR7yEBevt9PPX+SR7ZUUZFcw8ADpuFG+alctfqHPKSws8rvrF0oqiZl399CHe3h+AQO5d/biY5887tIQYREbkwFTUVMa3GLMMSGtkNvWY/+Op9vThsFhZlnX7d9Pv81BxrAyB1hpLwIiIiIiIiF5IJTcL/9Kc/5c477+Suu+4C4H/+53948cUX+dWvfsW///u/D5u/detWXn/9dcrKyoiJiQEgKytr2DyLxUJSUtKYxi4iIiJyMfugFP367PVn3BXu7++n/Zk/0/zQQ3iqqwGwRUYS/fnPEfPZz2KLiDivGGqOHiY5NgjLwaewHfgT6S2lgwdDE6DgZjP5njx3xD7vH2js7ON3uyr43dsnaO0xdxxGuhx8dlkGn1+eRULEhfmwZl+vl22PFtPX4yUhM5x1d88hIs410WGJiMgoKT2+h/xOMCwWnBazcswhh9kPfl56FCFBQz+yaT5ZSURcAo6BTQYNlZ143D6CQ+zEpYWNb/AiIiIiIiJyWhOWhO/v7+e9997jG9/4xpDxtWvX8tZbb414zqZNm1i0aBE//vGP+d3vfkdoaCjXXXcd3//+93G5Bj+Q7OrqIjMzE5/Px7x58/j+97/P/PnzTxlLX18ffX19ge87Ojo+5rsTERGRC4XW+XPX5m7j7Zq3AViftf6U8/y9vbQ9+RTNjzyCt74eAFtsLLF3fIGo2z6FLSz0/ALoaeHwkz/jhRfeozCqliuTjps5dkcI5G80E+85l4Lt9Leyxxs6eXhHOc/srabf6wcgPcbFnSuz+eSidEKDJ7wz02kFu+xcdns+1UdaWXnzdGwOlZ8XEfmwyb7Gd+7fC4AnMxFr4/sAbOvKBmB5zvBS9E//2/+ju62F2773Y5Kn5VH9oX7wFuuF00ZFRERkNEz2dV5ERGTCPnlsamrC5/ORmJg4ZDwxMZG6uroRzykrK2Pnzp04nU7+/Oc/09TUxJe//GVaWlp49NFHAcjPz+exxx6joKCAjo4Ofvazn7Fy5Ur279/P9OnTR7zuv//7v/Pd7353dN+giIiIXBC0zp+7lytfxmt4yY/JJzsye8Q5nupqKj79mUDy3Z6YSOyddxL1yZuxus5jt7bHDUe3woE/Ufr+HrZU5gEWbFYDci+DubeZCfjg0+/0MwyDt8taeGhHGduPNATG56VHcc+aHNbNTsJ2AScqTh5pwQDS882qT7nzE8idnzCxQYmIXKAm8xrf7+vHdbQKgJDpGeB9HyMklmerQoF+lufGDZnf0dRAZ3MjFquVuLRMAPq6vVjtFtLyVYpeREQuPpN5nRcREYEJLkcPDCtvahjGKUue+v1+LBYLf/jDH4iMjATMkvY333wzv/jFL3C5XCxbtoxly5YFzlm5ciULFizgf//3f/n5z38+4nX/+Z//ma997WuB7zs6OkhPT/+4b01EREQuAFrnz93W8q3A6XfBtz7xJN76euyJicTddy+RN92ENSjo3F7I74fKt+DAn6D4L9DXTlV3JM9VzcHAwqyZKVz21QewRKWe8VIen58XDtby0I4yiqrNHRIWC6ydlcjdq3NYmBl9xrL6E8nwG7y7pYI9z5cTHOrg1m8uISw6eKLDEhG5oE3mNf5Y6zGya8wqLXHJTug3+8E3Hu4n2G5lfkbUkPnVRw4BkJidGyhHv+IT01hybTZ+vzGusYuIiIyHybzOi4iIwAQm4ePi4rDZbMN2vTc0NAzbHf+B5ORkUlNTAwl4gJkzZ2IYBidPnhxxp7vVamXx4sUcO3bslLEEBwcTHKwPOUVERC5GWufPTVNvE3vq9wCwLmvdKed17XgDgPivfpWoG284txdpOGIm3g8+Ce1VgeE6aw5/rk3HZ/jJXbSMdV/7Zyw222kv1en28Kc9VTy6s5yadjcAToeVmxemceeqHLLjzrMk/jjq7ezn5V8fovJQCwDZhXEEh074s7IiIhe8ybzGFzUcYFqtmTx3ueqhH44Emf3gF2ZG43QMXf8+SMKn5s8aMm4POv06KSIiMllN5nVeREQEJjAJHxQUxMKFC9m2bRs33nhjYHzbtm1cf/31I56zcuVKnnzySbq6uggLM0uRHj16FKvVSlpa2ojnGIbBvn37KCgoGP03ISIiInKReaniJfyGn8K4QtLCR76/8jY20nfoMABhq1ed3YU766DoaTP5Xrt/cDw4AmZdT3PiFTz90BN4PJ1kzClk49/+I9bTJOBr2np57K0K/u+dSjr7vADEhQXxueVZfHZZJjGh57grf4LUHm/jxYeL6W7rw+6wsuZTecxckTzRYYmIyBirLH6bwj7wBdkJdpvr4ivduQCsyB3eD766ZCAJnzcbAJ/Pj81mHadoRURERERE5FxN6Babr33ta9x+++0sWrSI5cuX8+CDD1JZWcm9994LmCVnqqur+e1vfwvApz/9ab7//e9zxx138N3vfpempia+/vWv88UvfhHXQO/R7373uyxbtozp06fT0dHBz3/+c/bt28cvfvGLCXufIiIiIpPF1oqBUvTZpy5F37VjJwDOWbOwx8Wdch59XXBkMxx4HMpeA8Msu4vVDtPXQuEtMGM9OFw07dpJX083SbnTuf4fvoX9FKXti6rbeXhHGc8fqMU7UH43Nz6Uu1fncMP81GE7By9UhmGw7+Uqdv25FMNvEJUYwvp75hCbevqe9yIicnHoPXgQAF9OMpa+dzDsLp6qNnu7L/9IEt7d1UVT1QkAUvJmAvDcz/fj7vJwyafzSM6NRERERERERC4sE5qEv/XWW2lubuZ73/setbW1zJkzhxdeeIHMzEwAamtrqaysDMwPCwtj27Zt/M3f/A2LFi0iNjaWW265hR/84AeBOW1tbdxzzz3U1dURGRnJ/PnzeeONN1iyZMm4vz8RERGRyaSuu469DXuxYGFt5tpTzvugFH3omtXDD/q8UP4aHHgCDj8Pnu7BY2mLofBWmH0ThA5NMOQtX0VwSAiJOdMIcoUMOWYYBq8dbeShN8p4q7Q5ML4sJ4Z71uRw6YwErNYLt9/7SCwWCy01XRh+g+mLErj0s/kEOVWCXkRkKujx9BBxvB6AiMwYcyx+Ho3lEBJkozAtasj8mmOHwTCITk4hNCoar8dHXWk7Pq8fV5hjvMMXERERERGRszDhn/R9+ctf5stf/vKIxx577LFhY/n5+Wzbtu2U1/vv//5v/vu//3u0whMRERGZMl6seBGABYkLSAxNHHGO4fXS/eZbAIStWTMwaJgl5g88AUVPQVf94AnR2TD3Nij4JMTmDrmWu6sLr6efsGgzAZE1d8GQ431eH3/ZW8PDO8s4Wt8FgM1qYUNBMnevzqEgbfLt/DMMA4vFfGBgzafySMuPYcaSxMCYiIhc/I60HCG3xqwOExvTDwYcDTbLzC/JjsHxkTLzcelZXPaFe7DazI9w6so68Hn9hEYGEZngGt/gRURERERE5KxMeBJeRERERC4MW8q3AHB11tWnnNN74AD+jg6sERG4MmJgx0/M5HvjkcFJrhiY8wlz13vaIhghwexxu3nmR9+hp72NT37rB0QmJAWOtXb384d3TvCbXSdo7OwDICzYzm2L07ljVTapUZMv4WAYBkWvV3PySCvr75mDxWrBEWQjb2nSmU8WEZGLSnHNPuY1mF87LcfAgNd6zQfVlucM7wcfERfPgquvC3xfXdIKQGpetB7iEhERERERuUApCS8iIiIiVHVUUdxcjNVi5crMK085r+uNgVL0C2ZiuX8peN3mAVsw5F1t7nrPvQLsI/d0B/B6PPzlJz+k9ugRnKFh9LvNa5xo7ubRneU88e5Jej0+AJIinHxxVRa3Lckgwjk5S+72u7289vsjHHvXzLiU7m1k2sKECY5KREQmSt3+Xdj90B/uxOErw7Ba+VNdMgArcuPOeP6Hk/AiIiIiIiJyYVISXkRERETYWrEVgKVJS4l1Dd+F94HuN3YAEBbXZibgE+fA0i/BrOvBeeby8H6fjxf+9z85cWAvjmAnN37jO1Qakfzr799ja3EdhmHOm5UcwT1rcthQmDysLO9k0lzdxdYHi2ir78FqtbD8plxyF8RPdFgiIjKBvEWHzS+y47BYyuiJmUlddRARTjuzUiKGzG2pqaa6pJi0mXOITkrB0+ejvqIDgDQl4UVERERERC5YSsKLiIiICFsqzFL067PXn3KOt7ER96FDAIRZ3jUHN/wUMpae1WsYhsG2h/4/jr3zFja7nZSb7+NvXmnhvROlgTmX5sVz9+ocVuTGTvoSu4ffquH1/zuKz+MnLDqYtXfNITl38vWxFxGR0dPe105seQsAsclOAI47CwBYmhOLzTp07St9923e+MOvmbZ4Odf/wzepLW3D7zMIj3ESETf52rOIiIiIiIhMFUrCi4iIiExxpW2lHGs9ht1q54qMK045r2vnmwAEZ6dgt70LURmQvuSsXsMwDF7/3SMUvboNLBbezryGt99yA26CbFZumJ/CXatzmJEYPhpvacK9/ZdS3ttyAoCMWTFc+cVZuMJOXaJfRESmhuLmYnJrzLIvUS6zTcnrbrMf/Irc4ZVoTh4pBiA1fxYAzlAHeUuTCI3SmiIiIiIiInIhUxJeREREZIr7oBT9ypSVRAafeqd29w6zH3xYmtmvnTk3w1nuVq9paOW9nW8BsC32Uo74U4l0Obh9WSafW5FJQrjzY7yDC0/OvHj2v1zFwquzWLg+E4t1cu/qFxGR0VFS8S7LzJbuuKzHAHiqIQ2A5R9Jwht+PzUlZun6D5LwCZkRXHnHrHGKVkRERERERM6XkvAiIiIiU5hhGGwtN5Pw67LWnXqe10vXm2YSPcxZYg4WfPKM1z9W38nDO8r5895qrJHXkBFUhTtjHt9dlc0nF6UREnTx3I52NPUGSgMnZEZw+w9XEBKhnYoiIjKoee9uANwJodiCfLjD0jnRFElsaBAzEoZWg2mpOYm7qxN7UDAJWbkTEa6IiIiIiIicp4vnU08REREROWclrSVUdFQQbAvmsvTLTjmv98BB/O3tWEOcuKJ7IGE2JI68E88wDHaVNfPQG2XsLi6n2x4GwPzsZO5ZvZK1s5OG9bydzHwePzufOsbhN2v5xD8uJD7DTKIoAS8iIh9lFB8FwJ5mrhXlIWY/+GW5sVg/sjZWHzkEQPL0PGx2O+2NPfS7fcSlhqnCioiIiIiIyAVOSXgRERGRKWxL+RYA1qStISwo7JTzugZK0Ydm2LFYgYKbh83x+Py8cLCWB98oo7img+zucj7f8BJNBRu49fZPsjAzZkzew0TqaOpl64NFNFZ2AlBzrC2QhBcREfmwpt4mkiu7AIiP6QdgR990AJbnDO8HX/2RfvAHX69m/8tVFFyWxppbZ4xHyCIiIiIiInKelIQXERERmaIMw+DFiheB05eiB+h+YwcAYREnzYE5nwgc63R7eHx3Fb9+s5yadjcA2Z5aNjS9jAU/l0V3syAjegzewcQq29fIK785TH+vF2eogyvvmEXmnOFJFBEREYCixoPk1hgARNoqAPhzUwYAK3JHSMIfHegHn2cm4atLzGbyyTmRYx2qiIiIiIiIfExKwouIiIhMUQebDlLdVY3L7mJN2ppTzvM2NeEuNnfjhSa7IX0ZRGdS09bLr98s5/HdVXT2eQGICwvm9mkWeGErXr+X3EXLWHfv32KxXDxlc30+P2//uZR9L1cBkJgdwbq75xAe45zgyERE5EJ2/MguVvaA32ohOKILT3A0h91JJEYEkx0XOmz+Z374U2qOHiYlbybubg9NJ81d9CkzosY5chERERERETlXSsKLiIiITFEflKK/LP0yXHbXKed17dwJQHC8HYfLDwU3c6img5t+9SZujx+AaQlh3L06m9XxPv78g2/i7nOTMaeQjX/7j1httrF/M+Po6Dt1gQT83CvTWX5DLja7dYKjEhGRC137vncBcKeEYrVBWUgBtFtYkRs34sNqrvAIchcuBaBsbyMYEJ0UQmhk8LjGLSIiIiIiIudOSXgRERGRKchv+Hmp4iUA1metP+3cQCn6uFaw2GD2jTzxShVuj5/8pHD+aX0+l8yIp7Opgcf/3z/i7uwgadoMrv+Hb2EPChrz9zLe8pclU3WohWkLE8mZHz/R4YiIyCRgGAb2wxUAOJPMj2Le8gz0gx+hFP1HnRwoRZ+Wd/G1dxEREREREbkYacuOiIiIyBT0fv37NPQ2EO4IZ2XqylPOM3w+ut98E4Cw5D7IvRwjJJaXD9cD8LWrZnBZfgJWq4Ujb71BV0szsWkZ3PSN7xDkChmX9zLW/H6D/dur8PT7ALBYLay9a44S8CIictZqumtIO9kLQKKrEYDnWs1+8Mtzhifhtz34//Hmn35HV2sLANVHzSR8qpLwIiIiIiIik4J2wouIiIhMQVsrtgJwReYVBNlOvVu998ABfO3tWIPAFdcPBTdzrKGLk629BNmtrJoeF5i75PqbcQQFMWPZKlzhEWP+HsZDd3sf2x4tprqkjeaTXVz+uZkTHZKIiExCRfX7yakzvw4Pa8VnC2afO5v0GBfpMUMfWuvv7eHg9pcwDD+FV11NT0c/LTXdgPrBi4iIiIiITBZKwouIiIhMMV6/l20ntgFnUYp+h1mKPjSxF0uQE/I38MquBgBW5Mbi8HvxegzsDgcWi4UF11w/tsGPo+qSVl56pJiejn7swTbS8rX7UEREzk/lvjfJ8IAn2EpQhJfKkAI83fYRd8HXHD2CYfiJTEgkPCYOn9fP9V+dR3N1N66wi6/Ni4iIiIiIyMVISXgRERGRKWZ33W5a3C1EB0ezJHnJaed2fdAPPtkNeVdDcDjbjxwE4PJp0fzlJz8E4Lq//xeCnK6xDXycGH6D9148we5NZRgGxKSEsv6eOUQnhU50aCIiMkl1H9gHQH+KE4sF3vbOAGBFbtywudUlhwBIzZsFgM1uJS0/hrT8mPEJVkRERERERD42JeFFREREppit5WYp+qsyr8JhdZxynre5GXdREQChyX1Q8Elau/t570QrFsNP8Jv/x4kDe3EEO2mrqyUhK2dc4h9L7i4P2359iMriZgDylyWx5lN5OIJtExyZiIhMVn7Dj/NoFQCh0W4AtrRnAbA8d/hO+OojA0n4/NnjE6CIiIiIiIiMOiXhRURERKYQj8/Dy5UvA7A++wyl6HfuBCA4yoMjOhymXcnrBxvxG3CpvZqTe3djs9u5/uvfuigS8ABej4+Gig5sDitrbpvBrJUpEx2SiIhMchUdFWRWewBIDmnCwMJ7/unkxIeSGOEcMtfn9VJ7rASA1PxZdLf3sffFStJmRpNVMHzXvIiIiIiIiFyYlIQXERERmULeqnmLzv5O4l3xLEhYcNq5Q0rRz7oR7MG8csTsBz/bWwnAomtvIrNg3pjGPJ7Cop2su2cOzlAHcWlhEx2OiIhcBA5VvU92o/l1aGw/9a5pdLpDuH6EXfANFaV4+/twhoUTk5LG0T0N7N9eRW1pm5LwIiIiIiIik4h1ogMQERERkfGzpWILAOuy1mGznrrEuuHzBXbChw2Uovf4/LxW0oDV8OGoOwZA7sKlYx/0GOrr8bDlgYOU7WsMjKXlRSsBLyIio6bmvZ1YDeiNsOFw+dntM/vBL88ZnlTvam4mODSUlBn5WKxWqktaAUidET2uMYuIiIiIiMjHo53wIiIiIlOE2+vm1cpXATMJf9q5Bw/ia2/H6vDjyo6FzJW8W95Kp9vLTJrwuXtxRUSSlDt9PEIfE42VnWx98CAdTW5qj7eRPisGR5B6v4uIyOjqKyoCwJ9gAeClLrOFy7KcmGFzpy9dwbTFy3D3dANw8oMkfJ6S8CIiIiIiIpOJkvAiIiIiU8SO6h30eHtICU1hbvzc0879oBR9aGIflsLPgNXG9iP1ACwNbgYgZ/5iLNbJV1jJMAyKd9Sw84lj+Lx+wmOdrLt7jhLwIiIy6jx+D+HH6wCICm8H4F3/DPKTwokNCx7xHIvViissnI6mXjqb3VitFpKnRY5bzCIiIiIiIvLxKQkvIiIiMkVsKR8oRZ+9DovFctq5Xa+/BnxQiv5mgEA/+EWf+DQLQ6/DETRy8uBC1u/28tofSji2x3ygIKswjis+PxNnqGOCIxMRkYvR8dbjZNf4AEiK6qUlKJk6dyxXj9AP3vD7hzzcVn3U3AWfkBVOkFMf34iIiIiIiEwm+i1OREREZAro9nSz46S5u3191vrTzvW2tOA+dAiA0FlJkDyP8qZuyhq7sVstrMlLIMKZOuYxj7Z+t5en/uNdWut6sFgtLL8hl3lXpZ/xgQQREZHzdfj428xsBwNwxXjY5c8DYEXu8H7wxa+/wq6nH6fwinUsvfGWwVL06gcvIiIiIiIy6SgJLyIiIjIFvFb1Gm6fm8yITGbGzDzt3O6dO8GA4CgPjuWfB4uF7QO74JdkxxDhnJy7xoOcdtLyoul3+1h312ySp0VNdEgiInKRa3rvLQC642zYHAav9uZitZjr6UedPFJMR2M9/e5eANobzD9T85WEFxERERERmWyUhBcRERGZAraWbwXMXfBnLEW//WUAwpLdMGegFP1hs3z7ssqtvHj/Oyy5/maiky/83fDefh+efh+usCAAVt48ncUbs3GFB01wZCIiMhX4iksAsMS4Adjjz2NOaiSRruEPtNWUmFVoUvNnAfCJf1xIe0MvYTGTr/2LiIiIiIjIVGc98xQRERERmcza+9rZWbMTOHMpesPno3unWbY+dE4GxE2jw+1hd3kLDn8/3tK9FL26DcMY87A/trb6Hp760XtsfaAIv88PgM1hVQJeRETGhdvrJrqsCYD4yF66bREcN1JYPkI/+O62Vlpra8BiIWW6WbHGYrEQlRiC3WEb17hFRERERETk49NOeBEREZGL3PbK7Xj9XqZFTWNa9LTTznUXFeHrcmN1+AlZexsAO4424fUbrHA0Yvh8RCUlE5NyYe+CP/ZuPa/+7giePh+ucAcdTW6iEkMmOiwREZlCjjQfJrfWfGotIbqP94x5GFhZnjM8CV9TchiAuPRMnGFh4xqniIiIiIiIjD4l4UVEREQuclsrzFL0V2dffca5XS89B0BoYh+WuZ8E4JUjZin6uUYNADkLloxFmKPC5/Hz5tPHOfjaSQBSpkex9q7ZhEaqlK+IiIyv4wd3MNsNXhs4ozzs6JuG3WphcdbwfvDVJcUApObNwjAMHv/+bqITQ1h92wytYSIiIiIiIpOQkvAiIiIiF7EWdwvv1L4DnLkUPUDX9pcACC3IgIhkfH6D10oawTBw1R/DA+TMXzyWIZ+3jqZeXnyoiIYTnQAsWJ/J0muzsdrUgUlERMZfy97dAHTHG1issMeTx9yMKEKDh38UU31ksB98S203LTXdtDf2clXI8N7xIiIiIiIicuFTEl5ERGSU9PV001hRTsOJcgqvWIc9SH2nZeK9fOJlfIaPWbGzyIjIOO1cb0sL7vJGAMKuuQWAfVVttHT3k0ULnq52HE4XabNmj3nc58owDLY9eoiGE50Eh9q58guzyCqIm+iwRERkCrMePg6AI6YPj8VBkZHNl0boB28YBil5s/D5fKTmzaKiqA2A5NxIbA49SCYiIiIiIjIZKQkvIiJyHrpaW6g9doSGinIaT5j/62isDxxPzZtJYs7pe2+LjIct5VuAs9sF3/3CnwAIjvLiWPUZAF45bP69XhXcAEBW4Xxs9gtvV57FYuHSz+ax40/HuOLzMwmPcU50SCIiMoV19XeRUNEBQFKUmyKm0Y+D5SMk4S0WC5d9/u7A99VHDwKQmhc9PsGKiIiIiIjIqFMSXkRE5DQ8fW6aqk7QeKKcnPmLCYsxPzg99MZ2dvzxsWHzw2Pjic/MGt8gRU6hoaeB9+rfA2Bd1rozzu968S8AhM1OBZf5wf/2I2byfXpGEv7ONHIWXDil6Lta3dSWtjN9USIAsSlh3PB38yc4KhEREThUu5+segOA+Og+nvVMJ8huZUHG6RPrht+g+mgrAGlKwouIiIiIiExaSsKLiIgMcHd1UXPsMI0Du9sbTpTTVluDYfgB2PjVfyJv+WoAEnOmkZCVS3xmNvGZ2SRkZROXmY0rLHwi34LIEC9VvISBwbz4eaSEpZx2ruHz0X3wBACha68F4GRrD0fqOrFa4LpP3UJ06Gcx/P4xj/tsVB5qZtujh+jr8RIWFUzytKiJDklERCSgfO9rFPrA7QRHmI89nnwWZkXjdNiGzW2qrCAqKQV7UBBN1V30dXtxBNuIz9R9pYiIiIiIyGSlJLyIiEw5Pq+HluqTNJ4oJyE7l7j0TACqig+w6af/Nmy+KyKShKwcgpyuwFhmwTxu/9HPxi1mkfOxpWKgFH32mUvRu195Ap8brA6DkGvNkrivDuyCX5gZTXRoEAAW68T2pvX7DfZsLufdFyrAgLj0MFwRQRMak4iIyEd17nsfgN54L4bFwvv+6dw1Qil6v8/HH7/9dfxeD5//yS+pLvECkDwtCptN/eBFREREREQmKyXhRUTkoubpc1N7rMTc2V5RRuOJcppPVuH3mR9wrrrtc4EkfHxWDjGp6QM723MCu9xDo6KxWCwT+TZEzll1VzUHGg9gwcLazLVnnN/1/P8BEDojHktIBACvDCThL4314O3vxx40scnuno5+tj1azMkjZpne2atTWHXLdOwj7CoUERGZSI4jZnWZkJh+jpNBB6GsGCEJ31hZgcfdS3BIKJEJibjCG0nKiSBjVsx4hywiIiIiIiKjSEl4ERG5KPj9Ptrqamk8UU5YTBypeTMBaKur5cnvf3PY/CBXSCDB/oGoxCTu+Omvxi1mkbH0YsWLACxOWkx8SPzpJ/s8dO0tAayEXnYlAD39Xt4qbcZq+PA897/84rmf8/kf/39EJSWPceQjqznWyosPF9PT3o892Maln84jb2nShMQiIiJyOi3uFlKqugFIiXKz1buYkCAbhWlRw+ZWHzlkzpuRj9VqI29pktY3ERERERGRi4CS8CIiMun4vF7qjh+l8UT54P+qKvD29QEw+9IrA0n4mNQ0olPSiB3Y4R6flU1CZg4R8Qna3S4Xta3lWwFYl7XujHO9ezfjbjT/PYTdeCcAO4810e/1M9/ejK/PTWh0DJEJiWMX8Bk0VnbR095PdHIo6++ZQ0xy6ITFIiIicjqHKvaQ1mx+HRPdz7v+PBblxBBkH15evrrETMKn5s8ezxBFRERERERkjCkJLyIiFyzDMOhsaqThRDk2u53seQsB8Hn6efw7/wSGMWS+PSiYuIxMopNSAmM2u4Mv/vf94xq3yESraK/gcMthbBYbV2Vedcb53Zt+A1gITgrHkZoGwPaBUvRLbHUAZM9bNKH94AsvT8NitTBzRTKOYJWfFxGRC9fJPa8RC3RGGNidfva48/j8CKXoDcOg5kgxAKl5s2hv7MUV5iDIpY9qREREREREJjv9ZiciIhcEwzBoKC+l4UTZkB3ufd1mKc/U/NmBJHyQK4S0/Nk4nM4h/dujkpKxWpWcE9laYe6CX5ayjGhn9Okn9/fQ9e4BIIjQ1asA8PsNMwlvGIQ3HKUPyFm4eGyD/oi68nbe+UsZV3+pgCCXHYvFQuFlaeMag4iIyPnoPXAQAE+clxriqCWW5TnDk/AdjfV0tbZgtdlJnDadrfcfpupwC1feMYsZS1SSXkREREREZDJTEl5ERMZdd1srjRVl9PX2krfcTPpZLBb+/OPv0d3aMmSu1WYnNi2d+MysIeO3fuc/xitckUnng1L067PWn3GuUbKF7mrz4ZWwjbcCUFzTQUNnH8l00tfaiM1uJ7Ng3pjFOyQew+DA9pO89cxx/D6D3c+Vs+qW6ePy2iIiIh+XYRg4j50EICKmj3d8BYQ77cxOiRg294N+8Im507BaHdSUtmMYEJMSNq4xi4iIiIiIyOhTEl5ERMZUc3WVucO9YnCHe097GwCh0TGBJDxA+qwCetpbic80d7bHZ2YTm5aOze6YoOhFJp9jrccobS/FYXVwecblZ5zvful3+PpsWJ12QhYsAOCVI/UAXOJqBCBtVgFBTtfYBT2gr9fLq789TOle83VzF8Sz+NrsMX9dERGR0VLXXUdmVR8A6VFuHvfnsXRaLHbb8JYuKTNmcsntd+IKj6ChogNvnw9nqIPYlNDxDltERERERERGmZLwIiIyKtxdXTSeKKOtoY6Cy9YGxl9+6BecPFw0dLLFQnRyKvGZ2Xg9HuwOM8m+4StfH8+QRS5KW8q3ALAqdRURQcN33Q3R20rXO+8DoYQuXohl4N/iB/3g07oqzFL0C8a+FH1jZSdbHyqio7EXq83CypunUXBpGhaLZcxfW0REZLQcObyTpG7wWSAiysMeXx63jtAPHiAqKZlFG28E4N0XygFIzYvCYtXaJyIiIiIiMtkpCS8iIueso7GButKjNJ4op2Fgd3tnU2PgeN6yVQS5QgBIyZuJ3+83e7cP7G6PS8/E4XROVPgiFy3DMAL94M+mFD2Hn6O72ky8h151DQD1HW4OnGwHYO1d99FWsp9pi5aNTcADKg42sfWBInxeP2Exway7ew5J2ZFj+poiIiJjoe69nSQBHbF+Om0hHPOmsuIUSfgPO1nSBkDqjOixDVBERERERETGhZLwIiJySh63m8bKChpPlDPnsisDZeHfeuqPFL/28rD5EfEJxGdm09fTE0jCr/7U58c1ZpGp7FDLIao6q3DanFyafukZ53vfeZzeZvPfddiaNQC8OrALfm56FDPyp0P+2PdjT8iMIDjUTkJGOFd8YRbOULWgEBGRyclzsBgAI87Du/4ZRIUEk5cYPmxeQ0UZTZUVpM2aQ0hkLHWl5gNwqXlKwouIiIiIiFwMlIQXEREAetrbqD1+NNC3vfFEGa11tWAYACRPzyMhK8f8eloeTZUVgb7tCZk5xGVm4QwNm8i3IDLlbS03d8Ffkn4JIY6Q00/uqKV79/tANME5WTiSkgB4ZSAJf0V+wliGSnd7H6GRwQCERATxiX9cSHi0UyV4RURk0jIMg/DSegBiovvZ5M9jeW4s1hHWtiNvvs6eTU9TcMU6Zl/yWXxePyERQUQnnWH9FhERERERkUlBSXgRkSnG6/HQUl1FQ0UZ2fMWEhpl7rY5uP0ldj7+22HzQyKjSMjKwfD7A2Nzr7qauVddPW4xi8iZ+Q3/uZWiL36G7lozCR562eUAuD0+dh5rwmL4Sdj/Fw4FLWTGslXYHaO7M73k7Vpe+2MJl302nxlLzOR/RKxrVF9DRERkvJ1oKyezxgtAemQvu/153JAbN+Lc6iOHAEjNm0VUUgiXfDoPv8+PxaKH0URERERERC4GSsKLiFzE+nq6qTt+jMYTZYHe7S3VVfh9PgCu/do/M2PpSgASs3OJTcsgISsnsMM9PjM7kKQXkQvbgcYD1HXXEeoIZVXqqjPONw48QddAEj5stVmK/u2yZno9Pmba26h+5zWaDu4hb/nqUYvR2+9jxxPHOLSzBoDj7zUwfXGiEg4iInJROLp3O+n90O8wsIdbOOjJ4Uc5w/vBe/r7qCs9BkBq/mxCI4OZsyZ1vMMVERERERGRMaQkvIjIRcDv99FaU0PjiTISsnOJSUkDoGL/Xp7/n/8YNj84NJT4zGzsQUGBsax5C/nCvIXjFrOIjK4t5VsAuDz9cpx25+knNx3HXVyMry8ea4iLkAXzAdg+UIp+RZD5Z9bcBdjso3O72NbQw4sPFdFU1QUWWLwhm0XXZCkBLyIiF42m994mHWiP93PAkkNUeBi58aHD5tWXHsPv8xIaHUNkQuL4ByoiIiIiIiJjTkl4EZFJxtPfR33psQ/1bi+nqaoSb38fAKs//QWWXH8zAAlZ2UQl/f/s3Xd8XPWZ7/HPVM1oJI1675ItufcG2NhUQyCEhJLeSNts2u7evbu5my3ZZG82m81eUjdl03uAFCAxYLCNTXcFN8lFzeq9a/q5fxxpZKFiG8uSbH/fr5deknV+58zvgC3Z+p7nebLOqmwvJr2wiPiUNAVfIleQcCTMU7VPAbC16Dxa0R95mP7G4Xns11yDxenEMAyeOW6G78kdp/ABxSvXTMv+Th9o5ZmfHifoC+OOd3DzBxaRtzB5Wq4tIiIyZxw7AYAtJcS+4XnwE/2d++xW9O31/bRU9ZC7IJnEdM2DFxERERERuVIohBcRmaMMw6C3rYXW2mrikpLJKi0DoLOhnt/8y9+PW++IcZGaX4A7ISH6uaSsHB742vdnbM8iMjv2t+ynfaidBGcCG7I2TL3YMODwQww0mdXyI63oK1v6aOgeItkYxNdyBiwWCqehO0Zn4wBPfO8IAFmlXm55YDFxSTEXfV0REZG5JBQJkVTdAUB6ko+9kTK2loxvRQ/QUDkcwpcv5NS+Vg48WUvZ+kxuev/CGduviIiIiIiIXFoK4UVE5oBIOExr9eno3Pa22iraamsIDA0CsOSGW6IhfEpuPt70DFJy86OV7WkFRSRmZGGxWmfzNkRklmyrMVvR31xwMw6bY+rFTYcIN55mqDMTgLhN5sz3kSr4LZ52ALLmlRGb4L3ovSVne1h5awFgsO7NxVht+jolIiJXntMtx8lriQCQ7x1if2Qe/1qSOm6dEYnQeOI4YFbC73moC4DcsqSZ26yIiIiIiIhccgrhRURmkGEYDHR30VZThdVup2DJcgCCfh+/+Ie/HrfeZreTkltAQmp69HN2h4MPfeMHM7VlEZnjgpEg22u3A3Br4a3nPuHww/Q3x4BhIWZeKY6sLGB0HnzhUB0BoGTl2je8p5rD7SRne0hIcQOw/i3FGoEhIiJXtOpXnqHAgP5YgypXNvGeNPKSx7eXt1itfOC/vkNj5XG86Xm01p4BIEchvIiIiIiIyBVFIbyIyCViGAbtZ2ppq62mtaYqOr99qLcHgLyFS6IhfEysh6zSMhxuN+mFxdEZ7snZudjs+lItIpN7uellevw9JLuSWZN5jhnukTAceSTait4z3Iq+cyDAgbouMAy8thBtQNGK1Re8l0g4wsuPVnPgyVoyihK4+29WYrNbFcCLiMgVr/vgXgqAgfQwFcYirpmkFT2AJzGJeeuuoeZwO0bEICHVRXyya+Y2KyIiIiIiIpeckh0RkWkw1N9HW001/qEB5q0Zncf88Bc/x2BP95i1FouVpOwcknNyx3z+nf/21ZnYqohcYbZVm63obym4Bbv1HH+1q30eo7eJ/maz+n2kFf2uylYMAxZke3nvp79Cf1cnnsQLq8gb6Pbz5P8coemU+aBRRmHCBd6JiIjI5ctacRqAmOQgeyNlbJ4ihB/RUKlW9CIiIiIiIlcqhfAiIheou7mJlurT0dntrbXV9HeYM5TjUlKjIbzFYiG3fBEDPd3Ryvb0wmJS8vJxOGNm8xbkEghFQtT31VPdU011bzXVPdW8e8G7KUsum+2tyRXMH/azo24HAFuLtp77hMMP4etyEPZZsMbGErtyJTA6D/7GcnP0RVxS8gXt48zxTrb/8ChDfUEcLhs3vGcBpavSz32iiIjIFSAQDpBe0wtAVpKPfZEyPjtJCP+nr3+F5OxcVmy9k4YT3YBa0YuIiIiIiFyJFMKLiEwiMDRIW10tva3NLNi4Jfr5P3/rqzSdqBi33pueQVpBEeFQEJvdAcCdf/3ZGduvzIy+QJ8ZtPdUU9NbE/24rq+OUCQ0Zu2K9BUK4eWSer7hefqD/aTHprMifcXUi0N+OPZHBprMh4BiN2zA4nQSCEXYfaINDIPriy+sej0SMdi/rYZXHq8GA1Jy49j6kcUkpo+fgSsiInKlOlG1l4xuAwBbQiyulAKyvO5x63rbW6l4/lksVitLb76TjoZ+QCG8iIiIiIjIlUghvIgI0NfZTkvVadpqq2irMWe3d7c0AWb7+NK1G3DEmHMas+eVY4TDZnX7yPz2/CJiYhU6XSkiRoTmgeZowH52dXv7UPuk57ntbgoTCin0FlLkLWJhysIZ3LVcjZ6ofgKArYVbsVqsUy8+9TT4euhvzQYgbqPZin5fTSd9/hDF9j6e++e/oH75St7yt/94XnPcI+EIVYfawICF12Wz8b552J22i7spERGRy0ztyzsoBjqTDE7Yy1g/SRV8Q+VxADKKSvB443jgPzfSUtuLx6suWSIiIiIiIlcahfAiclUJBQJ01NfRWlvFwo03YLObXwaf+9VPObZ7x7j1cUnJpBUU4Rvoj4bwm9/7oRnds1w6Q6Ehantrx4TtNb011PTU4Av7Jj0v3Z1OkbcoGrYXJRRR5C0iw5Nx7iBUZJoMBgfZVb8LMEP4czr8EGG/hSGz83x0HvwzFeYnNrraiYRDGJHIeQXwAHaHjVs/vJiW6l7K1mVe8D2IiIhcCfpfPQiAPy3E3kgZ10wWwlccAyCn3HxQ0+m2k1d+YSNgRERERERE5PKgEF5ErlhDfb20VJ2itaZqeH57NZ2N9RiRCABZpWWk5hUAkFE8j7aaqujs9rSCYtIKi4hN8M7mLcg0MAyDDl/H2Kr24bfGgcZJz7Nb7RTEF5gh+1lvhQmFxDnjZvAORCa2u2E3Q6EhcuJyWJy6eOrF/j6o3MZASwwY4CwtwZFtVsTvGA7hM3pOMwQUr1x7QftITI9V+3kREbmqxZyoA8CTFGRvpIzPFE8cwjdWHAUgp2zRjO1NREREREREZodCeBG57EXCYTob62mrraZg6YpocH7oqT/xwm9/MW69Ky7enN0eDEY/t/K2O1l5250ztmeZfsFwkDN9Z8a0jq/uqaamp4a+YN+k53ljvBR7i6MV7SPV7TlxOditF/5tMhCKsK+mk50VLXx4YxHpXoWTcmmMtKK/rei2c1euV/wJQj76O/OBEHEbNwFQ1dZPdfsAcfjx1VcBULxy9Tlfu7d9iNMH2yhdlU58suui7kNERORyNhAYIKtuAICUxAiWtAWkxo1vL+8b6KftTC0AyTmlPPzlfeSUJbH+zcVYrOfXgUZEREREREQuHwrhReSyEhgapKX6dLSyva22mvYztdFA/a7/9TlK16wHIKOolKSsnLOq24tILywmLjnlvFsty9zT4+8ZN6e9pqeGM31nCBvhCc+xWqzkxOWMaR0/8pbkSrroPTX1DPHC4VM0HN2DteEAC42TfMx6mtfsXyd961sv+voir9cf6GdP/R7g/FvRGwb0N9qBULQV/UgV/BZPJ4YRITW/kITU9HNe7uS+Fl76QxV1Rzu46zMr3vB9iIiIXO4qDu8iYQiCNmjyFLG+NG3CdU0nKsAwSMrKpqsFWqp7CQXCbHhLycxuWERERERERGaEQngRmZOMSISe1hbaaqtJLSgkKdNsm3z6wF7+/PWvjFvviHGRWlCI1WaLfq545RqKV66ZsT3L9AlHwjQONI5rH1/TW0Onr3PS82LtseNaxxd5i8hPyCfGNr4i6Y0K+YeofPUFGo89j61hP4X+Ct5mbTYPnjUSfl6oYtpeU+RsO8/sJBAJUOQtYn7S/KkX97fB6Z34uhyEe31YYmNxr1oFwNPHWwCYH6wnABSvOHcVPMDJfWZ4P291xhu+BxERkStB497dlAKdqRH2WcrZMMk8+P7uThwuN9nzF1Jf2QVAzvyLfxhURERERERE5iaF8CIy60KBQLSqPTq/va6GoG8IgOvf/UFW32lWE6cXFBOfmhatah+pcE9Mz8RitU71MjIHDQYHqemtGRu291ZT21NLIBKY9LyM2Ixxs9qLEopIj02f/i4HhgGdVfScepHW48/jaDpAtv8UiwgRneY5/Fuvy50P2avwzluPNXc1uZlLpncvIsO2VW8DzCr4c/6eP/YHMMIMDBQDA3jWr8fqdNIzFGRvTRcWI4Jx5jhwfvPgu5oH6Kjvx2q1ULxi4mo/ERGRq4X/8GEAwqkh9hllfLRo4hB+yZZbWLTpRgJDQzzylSMA5JQphBcREREREblSKYQXkRljGAb9nR201VbjSUwio7gUgPa6Gn75ub8Zt97mcJCaV4Az1hP9XEpuHh/51o9mbM9y8QzDoHWwdcyc9pG3lsGWSc9zWp0UeAvGtI8v9BZSmFCIx+GZ9LyLNtAODfuJnNlLX9XLOFsO4Q714gW8Zy3rIp5GzyKseavJXXwd8cXrSIpNvnT7EhnW4+/hxcYXgfNtRf8wAP2tCcBAtBX97hNthCMG89Ni2bjl3Zw5epis+WXnvNyp/WYVfO6CZFwexxu7CRERkStE7MkGADzJIYKZy/HGTv690WqzEQ456G4ZBAtkz0ucoV2KiIiIiIjITFMILyKXRCQcpv1M7XCFu1nd3lpbg6+vF4BlN98WDeFT8guIS0omNb9wzPz25OzcMe3lZW4LhAPU9taOr2zvqWYwNDjpecmu5Gjb+LPfsj3Z2KyX+P9/cAiaXoOGfdCwn/CZfdh6agGzuH0kdPcbDo4YhTTELsSWv4bCpZsoX7CEJJu6L8jMe7r2aUJGiLKkMooTi6de3FULZ14iHLAydNp86CVu4+vmwS/MZsXWBazYeud5vX60Ff2ac8+OFxERuZJ193eQ02h2bwrFp7CmNHvCdUYkEu3aNdKKPi0vXg+ziYiIiIiIXMEUwovIRRvs7aGtthqrzUbeQrP9dmBoiJ/93afGrbVYrSRn5xLrHW296HDG8NHv/HTG9isXp8vXNa59fHVPNQ39DUSMyITn2Cw28uLzKPQWRlvHj4Tt3hjvhOdMu0gEOk5CvRm407APo+UolkhodJ/D709FsnnVKKHCNh97/hrmLVnHxvIcVsVP31x5kTdqW81wK/qi86iCP/IIAAORZRBpwVlSgiMnh3DEYGelGabfUH7+YXpHQz9dTQNY7RaKlqkVvYiIXN0q9z5FQggGYwwOuxdMOg9+3+O/57VnnmDlbW+mq818EFmt6EVERERERK5sCuFF5LwZhkFnY310fvvIW39nBwD5i5dFQ3hXXBxpBUXEeDzm/PYCc357Sm4+dqdzNm9DzkMoEqKhvyEatJ9d3d7t7570vDhH3Lg57UXeIvLi83DYZrjSp68lGrZTvw8aD4K/d8wSC9BmJHAoUsqhSCmvGiX405axZkERW8rTuSsvEbuq3WUOaR9qZ2/zXgBuLbz13CeMtKLvTAdaolXwB+u66B4Mkmn34zz1Mn2Ja4lPTj3n5Toa+rE5rOQvTCbGrb9GiojI1a1l/3MkAF3pBvtZwHsKJx5N1FB5jO7mJsKhEM4YO644BznzE2d0ryIiIiIiIjKz9NNTEZmQf3CQtrpqAoODFK9cE/38r//pf+Pr7xu3PjEjC296xpjPvfc/vnHJ9ykXpz/QP2H7+Nq+WkJnVYi/XrYne1z7+CJvESmuFCwWywzewbDAADS9Olzlvg8aDkDPmXHL/MTwWqSQg5FSXo2UcChSQk9MJtfNT2NLeRrvmZ9Optc18/sXOU/ba7cTMSIsSV1CXnze1ItbjkLrUQyrk/5jjQDRefBPHzer4G+MbWXHDx6n8vldvP3z/3HO15+/NpPCpan4BoIXdyMiIiJXgPCRY+YHqUECWauJixn/IxYjEqGh8jgAOeULySqdx7X3lGLM5EZFRERERERkximEFxEi4TDVh/bTUnUqOsO9p9WcHZyQlh4N4S0WC9llCxjq6THnthea1e1p+QU43bGzeQsyhYgRoWWgZUzr+JoeM3hvHWqd9DyXzWW2j08oGm0j7y2iIKEAt909g3fwOpEwtFWOVrg3HIDWY2CExywzsNASU8grwSJe8hdxKFJCpZFHGBvzM+LYXJbOu8rSWF2QjNOuane5PDxR/QRwYVXw/vjrCLdXYImNxb16NQA7Ksyv8bl9NQwCxSvXnvcenC47Tpf+CikiIpJwug0AI9HF0nlFE67pbGzA19eL3RlDemEJABarhVl4bFVERERERERmkH6CKnKVMwyDX/3j/6L59Mlxx+JSUknNKyAcCmGzm18u7v7f/zTTW5Tz5Av5qO2tjQbtI2F7TW8NQ6GhSc9LdaeOm9Ne5C0i05OJ1TIHwunexrPmuO8328oH+sctC3kyOBO7kJd8RfypM5uD4SIGfObDAm6HjWvnp/DOsnQ2l6WRm6SHRuTy0zzQzIHWA8B5hPCGMdqKvi8fqMCzbh1Wp5MznYOcaOknhhD+ukqAMR1PJuMbCOLyzPBYCRERkTmqpa2WzDbzIdCWuOJJ58E3VB4FIGteGYGhCK44Y3Y6R4mIiIiIiMiMUggvchUyDLP5ocViwWKxULJqHT2tLRSvXGNWtg+/ueMTZnmn8nqGYdDh6xjTOn6knXxjfyPGJI0t7RY7+Qn5Y0L2woRCCr2FJDjn0P9nf58ZsjfsHw3e+5rGr3N4CGet4Ix7Ac/7CnmoOZ1DHR7oGF1SnOphc1k6W8rTWFOYjMthm7n7ELkEnqx5EoCV6SvJ9GROvfjMK9BTB844+o+YHS9GWtHvqDB/fX18N+FQkIS0DFJy86e8nGEY/ObfXsHlcXDrhxaTmKEHWURE5Op26sVtJANd8QaHYpZyT0HShOsaKsyW9dllC/jt/92LETG481PLScmJm8HdioiIiIiIyExTCC9ylWk8cZw9v/oJ695yH4XLVgKw6o63sPL2N6ul/BwSjASp76sfO6t9uMK9L9A36XkJzoSxc9qHq9tz4nNwWOdYBWs4ZLaRb9g/Ose99Ti8/kECixXSF2HkrKTdu4Q9QwX8oT6Ol073EAhHosti7FY2lKSweX4am8vSKUz1zOz9iFxiI63otxZtPffiww8BEC68jaFfvASAZ+MmAJ4ZDuEXhRoIAcUrV5+zIq+lupf+Tj/+gRBxSTFv8A5ERESuHB37XyAZ6EuP4MtaM+kDnw2VZgifmFlKf9cQVpuFhLRZHO0kIiIiIiIiM0IhvMhVor2uhud+8zNO73sZgEgoHA3hHTGu2dzaVa030Ds2aB9+q++rJ2SEJjzHgoWcuJyxYftwZXuyK3lutrc0DOipHzvHvekQBAfHr03IhdxVkLMaf+YKXvLlsfP0ADsrW6ntGASCQBcAeclutpSls6UsnfXFKbidqnaXK9OZvjMc6TiC1WLl5oKbp14cDsLR3wMwECiD8PM4i4tx5uYw4A/x0ukOMAzsjRXDIfy558Gf3GfOkC9alopdf85ERESwHDVHuoRSYN78RROuCYdCFCxeTqPzOOFQGlBHRlECDn0vFRERERERueIphBe5wvW0NvPCb3/Bsed2gWFgsVhZtPkmNtzzjtne2lUjYkRo7G+Mto0/+63D1zHpeW67m8KEwnFhe358Pi77HH9wwtdjBu0jFe71+2Cgdfy6mATIXgG5qyFnFeSsoi6QwK4TreysaOWFbR34Q0ejyx02C+uKUthclsaW8nSKUz1z86EDkWk20op+beZaUt2pUy+uehYG2yE2lf7KTgDiNpqt6PecbCcQjrAwLoC/rht7TAx5C5dMeTkjYnB6v/nnt3R1xkXeiYiIyOXPMAySa83uVN3eNK6ZN/H3Zpvdzs0f+QQAT/3A/DttTtnEbetFRERERETkyqIQXuQK9sofH+b53/ycSNisqJ6/7lquuf/dpOTkzfLOrkyDwUFqe2vHtI6v7qmmtrcWf9g/6XnpseljWsePvKXHpmO1WGfwDt6gcBBajoxWuDfsg/YT49dZ7ZCxCHKGA/fc1ZAyD3/EYG91FzsrW9n5pwqq2gbGnJbldZmz3cvSuLY0FU+MvnXJ1Wdb9TYAthaefyt6Y9HdDPz78wB4ovPgzYr2dcvL+Phf/ZK2umrsTueUl2s63c1ATwCn207+guQ3egsiIiJXjDPVr5LcZxCxQHXccu7NTZxyvWEYNFSanZxyFcKLiIiIiIhcFZRkiFzBvOmZRMIhCpauYOM73kdGcelsb+myZxgGbUNtVPdUU9NTMyZsbxpomvQ8h9VBQUJBtG18kbeIYm8xhd5CPI7LaHa5YUBXzfAc9/1m8N78GoR849cmFpxV4b4aspaCw5x/2dg9xK7KNnZuO8Dzp9oZDISjp9msFlYXJLGl3GwzPz8jTtXuclWr6q7iRNcJ7BY7NxXcNPXiwCBUPA6AP3YdobY/YXG7iV2zhkjEYEdFGwA3lmfgios7ZxU8wMl9ZhV88Yo0bI7L4MEgERGRS6z6hSdJB9pSDIbyr8Vpn/j7Y1ttNck5ufS0BRjsDWBzWMks8s7sZkVERERERGRWKIQXuUIEA34OPfE4rvh4lmy5BYD5667hHV/4CtnzF8zy7i4/wXCQur668fPae6sZCA5Mel5STNK49vFFCUVkx2Vjs16Gsx8HO6HxANTvH24tvx8GJ2ih7/KOhu25qyF7JcSlRQ8HwxH213axs7KGXRVtVLb0jTk9LT6GLWVpbClL59p5qSS4HJf6zkQuG0/UPAHANTnX4I05xw/uTzwBgX5IzKf/hNmK3rNuHVank1fPdNPe78fjtLG26Pwq2iPhCKcPmCH8vFXpb/wmREREriC9+54nHehPM8gtXzXhmsDQID/7u09jczi47l3/BkBmsVcPtImIiIiIiFwlFMKLXObCoRBHdz3Niw//kv6uTtwJXsrWX4fTHYvFalUAfw7dvu5oNXtNT000aK/vqydshCc8x2qxkhefN25ee2FCIUmuy7i9ZMgPzUfMsL1+OHDvPD1+ndUBmUuGq9yHK91TSuB11eqtvT6z2r2yledOttPnD41ewgIr8pPYUpbG5rJ0FmYlYLVe3tXuRjhMuLubcGcnoY5Owl2duJctw5GdPdtbk8uYYRgX2Ir+YfP9knvp/9EeYLQV/TMVZph+e2wTj3z+71h601YWXX/jOS+5+V3lVL/WTk75Zfz1TUREZBrZT9QB0JcUy4bSjAnXNJ6sxDAieBITyVuQzVC/jZTsy6gDloiIiIiIiFwUhfAilykjEqHyxT08/9uf091stkFPSEvnmnvfhT0mZpZ3N7eEI2Ea+xvHtI4feevyd016nsfhGTenvchbRF58Hk7b1DOU5zzDgM6q4bB9OHBvPgzhwPi1ycWjFe45q8wA3j7+91goHOHQme5o8H60sXfsZTxONs9PY3N5OpvmpZIYO7f/GxqBAKGubsJdnWaw3tllvu/qJDzBx+GeHvO/61myv/IfeBXCy0U40XWCmt4anFYnW/K2TL14qAtOPgVAuPB2hg7+FoC4TZuA0XnwxYM1NJ44Tt6iped8favNSvHyNIqXp51zrYiIyNUgFAqS3uAHoDmpiHuzEyZc11BxDICcsoWkFySQXjDxOhEREREREbkyKYQXuQw1napk+/e/RVtNFQDuBC/r33o/S2+6Dbvj6m3jPRAcoKanhqqeKrOyvdesbK/trSUYCU56XpYna0w1+8jHae60K2cW+UD72DnuDfvB1z1+nTt57Bz3nJUQO3nb6vZ+P7tPtLGzso3dJ9roGRr972yxwNLcxGi1+9Ic76xWu0f8/uEwfTg473rdxx2dY4L1SF/fuS/6ehYLNq8XW3IytuQkrHFx038jclUZqYLflLuJOOc5fj8dexQiQchYzMDJDgiHcRYV4czNpbnHx5GGXmyECdYdB6B45ZpLvX0REZErTs3h54j1g98O/pJbsdsmbi/fWHkUgJzyRTO5PREREREREZkjFMKLXIZsdgdtNVU43W5W3/lWVt1+F0537Gxva0YYhkHLYMu4Oe3VPdW0DrZOel6MLYaChIIxc9qLvEUUJBQQ67jC/tsFh6DpteHQfbi1fHft+HW2GMhaZgbuI8F7UuG4tvJni0QMXmvoYWdFK7sqW3mtoWdM8bfX7WDT/DS2lKWxaX4aqXGXritDZHBwOESfJFjv7CTUNVyl3tlJZHDwwl/EasWWlIQ9OQlbUjK25GTz4+QUbMlJ2JOTsSWNfC4Zm9eLxa5vrTI9DMOIzoO/tejWc59w+CHz/ZJ76N+2G4C44Vb0O4Zb0W9M6CdYPYg7PoHM0nlTXq7xZDdnjncyf20GSZlqnysiIgJwZs+jZAKt6QYZCzdOuCYcCtF4shIAZ2weZ453klnixeG0zeBORUREREREZDYpKRC5DLTV1dB0soKlN5rzgNMLi7ntE39D4bKVxCZ4Z3l3l4Y/7Ke2t3ZM2D5S2T4UGpr0vBRXyrg57UXeIrI8WdisV+APvSIR6Dh5VoX7Pmg5CpHQ+LWp84cr3IdD9/RFYD93S/juwQDPnmjj2co2nj3RRsfA2Jb1i7IT2FKWzpbyNJblJk5aDTQVwzCI9PePBurD4flIC3gzXB/bAt7w+S74dXA4sCcljYbpZwfrScmjwXpyMrakJDNUt174/YhMhyPtR2job8Btd7MpZ9PUi3sboeY5AIxFb2Xg/7wXAM/Gsa3olxuNhIGiFauxnuNr4rHnG6l8qRn/YIhNb59/cTcjIiJyhRg4dACA7jQ7a+fnTLimraaKkN+PKy6e04eC1Lx2iA13l7Dy1oKZ3KqIiIiIiIjMIoXwInNYd0szL/z25xx//lmsViv5i5eTmJEJwMKN55gNfBkwDIMuf9e4Oe3VPdU09DdgYEx4nt1iJzc+d9ys9sKEQrwxV+ZDCVH9rWPnuDccBH/P+HWetOE57sOhe/ZKcCee10sYhsHRxl52Vbays7KNg3VdRM76XxEfY2fj/FQ2z0/n+rI0MhJc468RiRDp7TWD89e3fe/sJNwxNlgPd3VhBCcfGTAZS0yMGaIPB+u25CTsw8H6RJXq1vj4K2fEgFzxttWYreg3520+d8eOI78DDMjfgL9liFBrKxa3m9g1q/EFwzx3qh0AV/MJBjh3K/pQMEzVoTYASlenX+ytiIiIXDFc1R0AdCSnsiBzknnwleY8+Oz5C2g82QtATlnSzGxQRERERERE5gSF8CJzUH9XJy/97jccfuYJIuEwAKVrNly24WEoEqK+r35M6/iRt95A76TnxTviKUocbR0/8pYbn4vD6pjBO5glgUFoOjQ6w71hP/ScGb/O7obs5WOr3L15U7aVf71eX5DnTrazq7KVXZVttPb5xxwvT/Nwc14MG9PslLnCWHraCJ2sJPxyF81nVadHW8B3dcHw790LYYmNnTBQt6ckj6tUtyclYYmNvWz/XIhMJWJEeLLmSQC2Fm499wlnt6LfvQcAz9q1WGNieLGiFV8wQqnLx0B1I1abjYKlK6a8XN3RToK+MHFJMWQVX+EPN4mIiJwn/2A/GS3m33EDxeuwWif+e2jB0hVc9473YbUn0VgdwumykZYXN5NbFRERERERkVmmEF5kDvEPDvLKHx/iwLZHCfnNELRw2Uque/t7ySguneXdnVtfoI+anppxQXtdXx2hidqjAxYsZMdlU+gtHBe2p7hSrp6ANRKGtsrRCvf6/dB6DIzXB9kWSCsfrXDPWQ3pC8F2YV/OI4EAJ042sPfQaY4eq6Wlrpl4Xz/eQD/3+QdIDg2QZ/GTEh4idrAXo6eHkeHvjRfwOtb4+PHV6WNmq7+uUt01vqpe5Gp0sPUgrYOtxDviuS7nuqkXt580H9ix2mHh3Qx87TMAeIbnwT8z3Ir+mkIvpXEbiETCuDxTBwGn9pnnlKxKxzJJwCAiInK1Of3c77FHoDcWMlbfP+m61LwCUvMKOPhUHXCK7HmJWN/AyCYRERERERG5fCmEF5lDwqEgh558nJDfT9a8Mja+433kLVo629saI2JEaB5oHts+fjh0bx9qn/Q8t91NYUKhGbaPBO0JRRQkFOCyX4XBa2/jWXPc90PjQQj0j18XnzW2wj17BcTEj1sWCQTMtu4jc9S7hj8+q+17oKODgZZ2Il1dxPgGAFg9/DaVs4cC2Lze4TB9gjnqE8xUtzrPPXNeRMbbVm22or8h/wactnP8OTr8sPm+eAvhiJPBgwcBiNu0CcMw2HG8FYAt65eypfymc7520B+m+jXz6/m8VRlv8A5ERESuPA17/kQu0JIOqxfNO+f6+souQK3oRURERERErkYK4UVmUTgUourgXuat2QBAbIKX69/zIWITvJSsXjerVeBDoSHqeuvGhe01PTX4wr5Jz0tzp42d1T5c3Z7hycBquUqrP/x90HjIrHKv3wcNB6BvgnpyhwdyVkLOSiIpSwm5iwiHnGaY3t5F+MQpwl2vROeon90CPjIwcF5bObuJfxgLvtg4rIlJeDLS8KSnjm/7fvbHiYlY7Pq2IXKphSIhttduB2Br0Tla0RvGWa3o72XghRchHMZZWIgzL49jjb009vhwOaxsKEk5r9evOdxOKBAhIdVFeuH4h35ERESuVr7jpwDoSPNQkjZxV5nGE8fpbWslu2wRTae6AYXwIiIiIiIiVyOlKSKzwIhEqHhxDy/89ud0Nzdxzz98kYKlywFYeuOtM76fgeAAT9Y8ycmuk9HAvXFg8qbjdqudgviCsWG7t4jChELinFf5rMNwCNqOD4ftZuButFYQCRqEfVbCfishv5Ww30PIkUXYlkbYiCcUcBAeCBB+potQ52MYvocu/LXtdmxJSfg8CXTYY6kLO2myuOlxeuiJ8dDjjMOVlsLCBQWsXl7E2qVFuGMc576uiMyovc176fR1khiTyLqsdVMvbjwInafB7oby2+l/6MvAaCv6HcOt6LdkWRlqb8aVlXPO1/f1B3G67ZSuyrh6RoKIiIicB2+D+eDrUF7ppN8jD+94iiM7t7No85sJ+kuJ8dhJzbnK/40kIiIiIiJyFVIILzKDDMOg+tA+nvvVT2mrrQYg1puIf3CCNuQzIBAO8NCJh/jea9+j09c57rg3xkuxt5jChMIxYXtOXA5269X75cMwDCK9vWar9zOVhE/vJ1R7lHBjNaG2FsJDYcI+KyG/jbDfStifgRGZ6Id0g0DtpK9jcTonnqP+urbvLRYXz7WFePrMEC9Vd+IPRaLXcNqsrCtOZnNZOlvK0ihK9ShUE5njnqh5AoCbC27GYT3HgzJHHjHfl92G4YxjYM9zAMRt3ATAMxVmK/olHfv54We+wTX3vosN97xjyksu2ZzLwmuzCZ31tURERORq199UQ5rZXZ6kdW+bdF1DxTEA5q1dweo7y+nr9GOx6u/fIiIiIiIiV5urN0UTmWH1FUd57lc/if5QxumOZc2db2Xlm+7C6XLP6F7CkTCPVz3Otw99O1rxnh+fz5a8LWPC9iTX1dE20QiHCff0DM9TH27x3vX6j7sId7QRam8j3NMHEWOSq8VM+joWtxt7UtJosJ6cMmmwbktKxuqJnTAw9wXDvFLdyc7KVp7d0UZVe9OY4zmJbjaXpbGlLJ0NJSl4YvSlXuRyEQwHR1vRF56jFX0kPBrCL7kX/4kThFpasLhcxK5dQ3u/n0NnusEwMOrM7z1Z88vPax82hxWb4yodISIiIjKBiid+gAdoTYQN10z8PXqwp5uupgawWMgpW4ArLo7UXI12ERERERERuRopmRGZAZFImKe+8zW6mhqxO5ws33oHa++6B3d8wozuwzAMdp7ZydcPfJ3TPacBSHen8xfL/4K7Su86d8XlZcIIhQh3dZnBeVfncLj+ujnqHR2EuszPhXt6IHLhFZ9WRwRbTAR7vAtbUhK29GzsOSXYskuwpSRHZ6rbk83g3ep+4w9b1HcNsquyjV2VrTx/qoOhYDh6zG61sKYwmS3laWwuS2deepyq3UUuUy82vUhfoI9UdyqrMlZNvbj2eehrAlcilN5E/49+AkDsurVYY2LYdaQew4D13iF8Nd04XG5yFyye8pLdrYN409z6GiIiIvI6Ta88TynQnGFnU+rE7eUbKs2H3lJz83HFqQW9iIiIiIjI1UwhvMgl0t3STHxKCja7A6vVxrX3v5e6w4dYf8/biU9OnfH97G3ey4MHHuS1ttcASHAm8KElH+Id5e/AZXfN+H4uRCQQINw1HJxPFax3dhLq6iLS0/OGXsfqcWOPtWFzBrBZ+7E7gthcEewxZthui4lgT8vAVrQU27x1WAvXQdZScEx/J4NAKMK+2s5o8H6iZezIgoyEGDbPT2dLeRrXlqYS77oyHqAQudptq94GwC0Ft2Cz2qZefPgh8/3Cu8DuZGD3HuCsVvTHzXnwa2zNABQsWY7dMfnXCt9AkF99/mXikmK497NrcHn0dUVERGSErdYc8dKbnTbpw2ojXc+SskvZ/qOjFC1No3RV+oztUUREREREROYOhfAi06y/q5OXHvk1h3c8yeb3fZgVt94BQNmG6yjbcN2M7+dYxzG+fuDrPN/4PABuu5t3L3g371/8fhKcM1uJPyIyNDQaoo9r+z42UA93dhLp7z/3RV/PYsGWmGi2ex9pAZ+SbM5Wj4vBThe2QBO2wSrsvUexRdqxvL7zsssLOWsgZzXkrDLf4tKm5b/BRJp7fDx7opWdFW08d6qdfn8oesxqgVUFScOz3dNZkBWvSlWRK4wv5GNH3Q4Abiu6berFIT8c+6P58ZJ7Cff3M3jwIABxmzYSCEXYfaINgIS2k/QCxavWTHnJ6lfbiIQN7E6bAngREZGzGOEQqc1mJyrnkvWTrhuphLfaczjxcguRkKEQXkRERERE5CqlEF5kmvj6+9n76MMc2PYYoYAfgOZTJ+DW2dlPbW8t3zz4TZ6oeQIAu8XO2+a/jY8u/ShpsdMXJBuGQWRg8Kzq9NfPUe8YV6luDA1d+AvZ7diSEs0QfaI56q+fqe71YrHZzKCq+Qg07IOG/VD/R6g7PcH1HZC5BHJHAvfVkFIClzDoDoUjHDzTzc6KVnZWtnG8qXfM8dQ4J9cPV7tvLE3DG6tQTORK9lzDcwyGBsnyZLE0benUi089Db4eiM+GgmsYePoZCIVwFhTgzM/nuZPtDATC5MaE6K2uAqB4xdQh/Ml9ZoXfvNUKC0RERM7W+NJjxA9CyApr3/ShCdcE/T5aq81/Zwz2m53PcsqSZmyPIiIiIiIiMrcohBe5SEG/jwPbHmPvow/jHxgAIGt+ORvf8T7yFi6Z8f20DrbynVe/w+9O/o6wYVZr3F50O59Y/gnyEvLOeb5hGER6e80wfbgSfVyw/roW8EYgcMH7tDgcZlh+dqX6JIG6PTkZa0LCuSu/DQM6q+DMdnhpvxm8Nx+G8AT7Sy4erXDPXW0G8PaYC76PC9XW5+fZE23srGxlz4k2en2j1e4WCyzLTWRLmRm8L872YrWq2l3kajHSiv7WwluxjmvN8TojregXvxWsNgb2mK3oPZuGW9FXmK3ob4hrByCjeB6exMmDgKG+APUVXQCUrsp4w/cgIiJyJTr61G/JAxrSLGwtKJ5wjSPGxYe+8QMaKirY8Uvz3x+5CuFFRERERESuWgrhRS7SU9/9BhXPPwtAal4B1779vZSsWjvjrcJ7/D388MgP+eXxX+IL+wDYlLuJT634FGXJZdF1hmEQamsjWFtLYOStppZAfT3h9nZC3d0QDF7w61tcLjM4TxoNzl8frNuTk6LBu9Xjufj/RgMdZnV7wz6oH65093WPX+dOHlvhnrMSYpMv7rXPUzhi8Gp9d3S2+2v1Y+fVJ8Y6uH5+GlvK0tk4L5WUuEv/IICIzD2DwUF21+8GYGvR1qkX+/ug0gzsWXIvhmHQPzIPftNGDMPgmeNmVfv6G29i/pbF52zqcfpgG0bEIC0/nsSM2Iu6FxERkSuN7+QJANqzpv4eGZ+SiidlIUb4EB6vE2+6eya2JyIiIiIiInOQQniRC2REIoQCARwuFwCr77ibplOVXHPvuyi/dhNWq21G9zMYHOSXFb/kh4d/SF+wD4AVacv5dPEHWDCYSGDXMVprt0UD92BtLZHBwXNe1+rxjIbo41rAnxWoD4fr1thLHNoEh8yq9vp9o63lu2rGr7PFQNay0Qr3nJWQVHRJ28q/XtdAgN0n29hZ0cqzJ9roGhz7UMOSHC9bytK4viyd5XmJ2FTtLnLV23VmF76wj/z4fBYmL5x6ccWfIOSDlHmQtQz/iZOEWlqwxMQQu2YNp9sGqOscxGmzcv2iHDwxBed8/VP7zMp5za0VERF5HcMgttn891OotOScyxsqzc4yOeVJM/5gtoiIiIiIiMwdsx7Cf/vb3+YrX/kKTU1NLFq0iAcffJCNGzdOut7v9/Ov//qv/PznP6e5uZnc3Fz+4R/+gQ9+8IPRNY888gj/+I//yOnTpykpKeHf/u3fuPvuu2fiduQKZhgGVQf28vyvf0rOgsXc+MGPAZBRXMoHH/zujIfvgXCAR/f/nD/v/gHu5m5u7zSY1x/HgqEkYpoqiPT/JbWTnWy14sjONmcHFxTgLCzAkZ+PPS0Ne0oKtqQkrDGzWJEdiUDHqbPmuO+DliMQCY1fmzp/uMJ9+C1jMdidM7xdg6ONveysbGVnZSuHznRjGKPH4112Ns1LY3NZGteXpZEe75rR/YnI3LetZrQV/Tl/YD/Sin7JvWCxMLDHrKCPXbcWq8vFjlfMebTrS1LwxJz7r3oDPX4aTnYDCuFFRERer/tMJalt5scFW+6acE0kHOax//fvZJbM40ylOQIsZ75a0YuIiIiIiFzNZjWE/81vfsNnPvMZvv3tb3Pttdfy3e9+l9tuu41jx46Rn58/4Tn33XcfLS0t/OAHP6C0tJTW1lZCodFg7sUXX+T+++/nC1/4AnfffTe///3vue+++3juuedYt27dTN2aXGHqjx9hz69+SmPlMQD6u7vY9K7344gxw9RLGcCHe3rGtI3319bQfuI1wnUNLPJFWDRmdR/QRwTAYsGRlWUG7CNhe/5w4J6bi9U5s0H1lPpbR9vJN+yDhoPg7xm/zpNmtpPPHQ7cs1eCO3HGtwvQMxTkuZPt7KxsZVdlG+39/jHHyzPj2VKezpaydFbkJ+KwnWO+s4hctXoDvTzf8DwAtxXdNvXi/jY4vdP8eMk95qdGWtFvNOfBPz3civ6awSM89+tKFm66geTsnEkv6Y5z8OZPL6elupeEVLXNFREROdvRP/+M5CAMOmH1tXdMuKatroZTe1/kzNHXSJ/314DmwYuIiIiIiFztZjWE/6//+i8eeOABPvShDwHw4IMP8uSTT/Lf//3ffOlLXxq3/oknnuDZZ5+lqqqK5GRznnNhYeGYNQ8++CA333wzn/3sZwH47Gc/y7PPPsuDDz7Ir371q0t7Q3LFaa2p4rlf/5Tqg/sAsDucrLjtTtbcdU80gJ8O4b4+cy57bS2BOrNl/Mivw93d49afXaMeSEnAW1JGTGFRtKrdWVCAIy9vdqvZJxMYhKZDoxXuDfuh58z4dXY3ZC8frXDPXQ3evBltK382wzCoaO4zQ/eKNvbXdRGOjJa7e5w2rpuXyuaydDaXpZHlVZB1tYpEDPq7fLjjnDhiZrZDhlyedtTtIBgJUppYyrykeVMvPvYHMMLmQ0gpJYT7+xk8cAAw58F3DwbYX9sFhoGl4nlebmsho7hkyhDearOSV55MXnnyNN6ViIjIlaHz8HMkA2eybKxyJUy4pqHCfFg7e345b/3sOnwDQVwexwzuUkREREREROaaWQvhA4EA+/fv5+///u/HfP6WW27hhRdemPCcRx99lNWrV/Mf//Ef/OxnP8Pj8fDmN7+ZL3zhC7jdZuD14osv8ld/9Vdjzrv11lt58MEHJ92L3+/H7x+tYu3t7X2DdyVXkqPPPsMT3/5/AFisVpbccAvr3/Z24pNT39D1wv0DBOtqx1S1j3wc7uyc8lwjNYkz3hAn4/ppTrLQleZiw7q38ZZNHyUuIeUN7WdGRMLQVjla4V6/H1qPmQHSGBZIKx+tcM9ZDekLwDa7P7jq94d47mQ7u4ar3Zt7fWOOl6bHsaUsjS1l6awuTMZpV7X71SQcjlB1sI3e9iF6233m+w4f/R0+IhGDOz6xjILFc/jP51Vkrn+ff6L6CcBsRX9OZ7eiBwZefBFCIRwF+TgLCth2qIFwxGC5N0h/TQtWm52CJcsv0c5FRERm10x8j7c3mr3oe/Mn/3tdw3DHtJxys0+ZAngREZGLN9f/LS8iInIusxbCt7e3Ew6HycjIGPP5jIwMmpubJzynqqqK5557DpfLxe9//3va29v5+Mc/TmdnJz/84Q8BaG5uvqBrAnzpS1/i85///EXekVwJDMOIzuItWr4Kp9tN0Yo1XHvfu0jKmryKcERkaIhAXd1ZAXvNaNDe1j7lubbU1NEZ7cNvzckW/rvjDzzdarYadlrdvHPBO/lfix8g0ZV40fc77Xobx1a4Nx6EQP/4dXGZZmX7SIV71nKYpKpkJhmGwanWfnZVtrGzspW9NZ0Ew6PV7i6HlWtLUtlcns7m+WnkJcfO4m7lUgr6w9FQvbdtiN4OM2hPzvKw4e4SACwWC0//8BiRszoijLDaLPj6AzO9bZnEXP4+3+Xr4qWmlwDYWrj1HItr4MzLgAUWvxWAgde1ot9RMdyK3mm+z1u0BKd78q9Vx55vpKOhn4XXZpOSE3cRdyIiIjLzLvX3+LaWBuLaIoCF+JVrJlxjGAaNFUcByCwtv2R7ERERudrM5X/Li4iInI9ZbUcPRAPPEWeHoK8XiUSwWCz84he/wOv1AmZL+3vuuYdvfetb0Wr4C7kmmC3r//qv/zr6697eXvLy8t7Q/cjlaai/j71/fJjOxgbe8refAyDWm8gDX/8fYhO8Y9ZGfD4zaK8dbht/VlV7qLV1ytexJSfjzM8f2zZ+OHC3xY2GH/V99fzXoW/z+PHHMTCwWqzcXXo3H1v2MTI9mdP/H+CN8PdB46HhGe77zSr3vsbx6xweyF4xXOU+HLx7z/1Aw0wZDIR48XQHOytb2VnRRkP30JjjRakerp+fxpbydNYVJeNyqL34lSAcjtDf6ae3YwgLkDvchtuIGPzks88z0DNxgD7UN/p5q9VC8co0bDYr8akuElLceNNcxKe48STGYLXOzugEGW8uf5/fXrudsBFmQfICCr2FUy8+8oj5vmgTxGdiGAb9e4ZD+E0bCYUj7Ko0q/WSO0/RAxSvWD3lJY/ubqC1to/E9FiF8CIictm51N/jT7+wjeQO8+90xZvfNOGa3rYW+rs6sdrsbPtuCxlFB7jzk8uwO/XvBhERkYsxl/8tLyIicj5mLYRPTU3FZrONq1BvbW0dV8k+Iisri5ycnGgAD7BgwQIMw6C+vp558+aRmZl5QdcEiImJIWYuzs6WSy7o83Fg26PsffQR/IMDADSdrCSjoIjgmTOEa2vpOKttfKC2llBzMxjjK19H2LxeHIVnV7QXDr/Px5YwdbV3+1A733/t+/z2xG8JRUIA3FxwM59Y8QmKvcXTd+MXKhyCtuOjFe4N+6GtAozI2HUWK6QvHK1wz1lltpm3zq0fQFW3D7CzopWdla28XN1JIDR6H067lfXFKWwpS2NzWTpFqZ5Z3KlMlwNP1tLdMmhWtLf56O/2YwxXsGcUJXDPcAhvsVqwOcyxAjGxdhJS3SSkuIgffp+UNfb3w60fWjyzNyJvyFz+Pv9EjdmKfmvROargAQ4/bL4fbkXvP3mSUHMzlpgYYteuZV9dNz1DQdJiIvSdPAFA8cq1k16up22I1to+LBYoWZl+cTciIiIyCy719/juvdvwGtARD2vmXzPhmpF58ImZBQwO2hjo8SuAFxERmQZz+d/yIiIi52PWQnin08mqVavYvn07d999d/Tz27dv56677prwnGuvvZaHHnqI/v5+4oarhk+cOIHVaiU3NxeADRs2sH379jFz4Z966imuuWbifzDL1SkcCvLak3/mpd/9msH+PgASY9wsIob+j/0l3U1NEIlMer41Pn5s6/izQndbYuIF76cv0MdPjv6Enx77KUMhsxJ7Q9YGPr3y0yxKXfSG7vENMwzoqR9b4d50CIKD49cm5I6d4569HJxzL7T2BcO8VNXBrso2dlW2UtMx9l5yEt3cUJ7OlvI01henEOuc9SYhch78QyF624foa/dF28WbIfsQnsQY7vrMiujaI7sb6OvwjTnf5rCSkOLCm+4e8/k7P7Ucd5yDmFjN8pRLq22wjX3N+4DzmAffchRaj4HNCQvuBGBguAo+du1arC4XzxyvBuDmhB4i4TBJ2bkkZmZNeslT+1sAyClLIjbBebG3IyIicsUx6k8C0JgdQ4xt4hBgsKcbuzOGmNh8BgchtyxpJrcoIiIiIiIic9SsJk1//dd/zXve8x5Wr17Nhg0b+N73vkddXR0f+9jHALPlTENDAz/96U8BeOc738kXvvAFPvCBD/D5z3+e9vZ2/vZv/5YPfvCD0Vb0n/70p9m0aRNf/vKXueuuu/jjH//I008/zXPPPTdr9ymzxwiFCDY0jGkZ31F9mt29rQzazLaCbn+Q+c2dZHf3YwFCw+daPZ5owO4YE7gXYktMnHLEwfnyh/38uuLX/M/h/6Hb3w3A4pTFfHrVp1mftf6ir39eDMMMd04+OVrp3t8yfl1MgtlW/uwq9/g50hp/Amc6B9lV2crOyjZeON2OLzj6UIXDZmFtUTKb55vBe0la3LT8/5TpFQ5G6Ov0RWezGxGDJZtzo8d/84VX6Ov0TXiufzA05teLN+UQDkWile0JqW5iE5xYJmgZn5g++fxsken0VO1TGBgsS1tGTtw5xnQcfsh8P+8WcCcC0B+dB78RgGeG58EvSLbRGxdP8SSza0ec3GeuL12lKngREZHXq2/rIKZ9CLATKi+YdN3qO9/Kitvu5Df/9iIQIkchvIiIiIiIiDDLIfz9999PR0cH//qv/0pTUxOLFy/mz3/+MwUF5j9wm5qaqKuri66Pi4tj+/btfPKTn2T16tWkpKRw33338cUvfjG65pprruHXv/41n/vc5/jHf/xHSkpK+M1vfsO6detm/P5kZhjhMMHGRjNkrxttGx+sqSXQ0AChsWEcFqAsH2fEwryuAUq9KbjWXTuuqt2WknLJgtlQJMSjpx/l24e+TcugGXgXeYv41IpPcWP+jZc+EI6E4cwrUPG4+dZVM/a41Q4Zi0Yr3HNXQ8o8sFov7b4uQiAUYW9NJzsrWtl1oo1Trf1jjmcmuNhSbraYv7Y0lbgYVbvPNiNi4BsM4o4brcB94ZFTNFf30NdhtoznrMkPHq9zTAifkOoiGAhHQ3XzzZzNHp/qGvNaK2+d/AenIrNlW/U2ALYWnqMVfSQCh4fnwQ+3og/3DzB44ABgzoOv7RjgVGs/NquFN7/9HuLfdx8hv3/SS3Y1D9BR34/VaqFkhUJ4ERGR1zt54Fli28y28omrp+6sF/RBV5P5786c+QrhRUREREREZJZDeICPf/zjfPzjH5/w2I9//ONxnysvL2f79u1TXvOee+7hnnvumY7tyRxhRCKEmppGZ7OfPae9vh6CwUnP7UxKoD47nfVZhbiLzPnsd8S6SVm8FHde7oxWQBuGwdN1T/P1A1+nprcGgExPJh9f9nHuLLkTu/US/pEM+aHqWah4DCq3wUDb6DG7C4q3QNFGM3jPWgYO9+TXmiOaeobYVdnGzopWnj/VzkAgHD1ms1pYVZDEljKz2r0sI17V7rOko6GfrubBaEV73/D73o4h3HFO3v/v10bXttT00nSqJ/pru9M6Wr2e5sYwjOj/xzs/vRybbe4+GCIylcb+Rl5texULFm4pvGXqxfWvQE8dOONhvtm2fvClFyEYxJGfj7OwkB3Pm63o1xQm4XWboxSc7sm7Opzab1bB5y5IxhWn0QsiIiKv53vtGTL7LESAovU3T7jGiESwWK00nOgCIDnboxEvIiIiIiIiAsyBEF5khBGJEGptHRuw19YSqK0hWHcGIxCY9FyL04kjPw9nQWG0or3X7WTvgZeoPX4EMOh6820U3HI7AIkzc0tjvNT0El/b/zWOdBwx9xCTyIeXfJj7y++fdL7gRfP1wsmnzGr3k9shcFZ1uMsL87dC+Zug5EaIibs0e5hGwXCEA7Vd7Bye7V7R3DfmeGpcDJvL0thSls5181KjQZRcOqFA2AzU20dnsgeGQtzwngXRNbt/fYLGk90Tnj/UFyAcjGBzmGH6ipvzWbQpezh4d+OOd0z68IQCeLmcPVnzJACrM1eTHnuOSvSRVvQL7ow+IPX6VvQ7hlvRbymIHfOwymTsDhuxXifzVqsKXkREZCKO6n0ANKZa2JyzZMI1e379U07vexlvxnVAlqrgRUREREREJEohvMwowzAItbYRqK0xW8afXdl+5gyGb+L5zgA4HDjz8sa2jc/Px1lQgD0rC8twq/Supgae/83PqXzRDCisNhtLbriF0tWzM5LgSPsRvnbga7zU9BIAbrub9y16H+9b+D7inJcg+O5vhYo/mW/Vz0L4rIcX4jLN0H3BHVC4EWxzP6Ru7fWx60Qbz1a2sftkG32+0fECFgusyEscrnZPZ2FWAtYJZnzLGxeJGPR3+RjoDpBV4o1+/tlfVVJ1sI3B3gkejrHA9W8viwbrafnxRMIR4lOG28WPtI5PcRGXFIP1rDC9cGnqJb8nkbngvFvRh4Nw9Pfmx0veBpjfS/v3DIfwmzbS7w/xUlUHALanvs/3/tjPnZ/5e7Lnl0962RW35LPspjwMw5h0jYiIyNXMFTYr2jsKEnBYJ/53U8Pxo3Q2nCFvsYuYuBTyFyXP5BZFRERERERkDlMIL5eU/9Qpeh57nECNGboH6uowBgcnP8Fux5mTg2N4Lrv5VoizsABHVhYWm23SU8OhEDt+9B0O73gKIxIBoPza67nmvneRlJk93bd2TlU9VXzz4DfZXmuOT7Bb7dxfdj8fXvJhUtwp0/tinVVw/HEzeD/zMmMGaaeUQvkdZgVl9so5PdcdIBwxOHSmm12VreysbOVIQ++Y48keJ9fPT2NzWRob56WR7FG7x+lSX9FJS02vWdHePkRv+xD9nX4iEQMs8LGvb44G60F/OBrAO1y20Zbxw3PZI4bByJ/W6+6dN0t3JDI31fbWcrzzODaLjZsKbpp6cdUuGOyA2FQo2gxA4NQpQk1NWJxOYteu5ckTbQTDBgsSIvS8WgMWC4mZWefch/nQkh5cEhERmUi4Y/jfGYsmfqgtGPDTfPokAKtvv+a8vveKiIiIiIjI1UMhvFwyRjDImY/9BcH6+rEHbDYcOTmjIXt+vlnVXlCAIycHi/2N/ba02e30tLZgRCIUrVjNdW9/L+mFxdNwJxemeaCZ/371v/nDqT8QMSJYsHBnyZ18fPnHyYnLmZ4XMQxofm00eG89OvZ49srhivc7Ia1sel7zEuro97P7ZBs7K8xq9+7B4JjjS3O9bC5LZ0tZGktzE7Gp2v2CBP3haKg+0jK+t91HX4ePez+7GpvdDNYrXmym8uXmcedbbRbiU1z4BoJ4Es3RCStvKWDpllwSUtzEeOznbH0tIqOeqH4CgPVZ60l2naNibqQV/eK3gs38/jjSij527VqsbjfPVJwAYKO7HYCs0vnEJnjHXwuzir7pVDeZJYnqHCIiIjKFusQQoWRIXjVxR7WW0yeJhEN4EpPwZmTO8O5ERERERERkrlMIL5dMz5/+RLC+HltyMqkf/QiOkdA9JweL8+KrlwO+IQ5ue4wlN9xCrDcRgOvf8wD+gX5yFyy+6OtfqG5fN/9z+H/4VcWvCETMCuEteVv45IpPMi9pGiqBI2Goe3E0eO+pGz1msUHhdWbFe/nt4M29+Ne7hCIRg8MNPeysbGVXZRuv1ndzdkfkBJedTfPN2e6b5qeRFh8ze5u9DITDEfo7/dGgvfyarOi89F2/rOTo7oZJz+3r9JGYHgtATlkiAPGpLrzDFe3xKW48iTHjwrrkbM+luRmRq8ATNWYIf2vhrVMvDAyaX/MBltwb/fTZregjEYOdw/PgM7ur6AKKV66d9JJtdX38/qsHiU9x8e4vbFAQLyIiMgnX//4Ez7Qc5C+W3THh8YaKYwCk5M6jr9NHQop7JrcnIiIiIiIic5xCeLkkjEiEju99H4DkD7yf5Pe9b9quHQ4Fee3pJ3jpd79hsKebwZ5utrz/IwCk5RdO2+ucr8HgID879jN+fPTH9Af7AViVsYrPrPwMy9OXX9zFgz6o2mmGMCe2mS2JR9jdUHqjGbzPvxVi5/b8wZ7BoFntXtnKs5VtdAyMnSW+MCuBLeVpbC5LZ0VeInbb3G6bP5NGZjaPVJtXHWqj+rV2+oYr2/u7fGMeYsgtT8KbZgbr7nhzfmVMrD3aKj7hrNnsHu/oAw4LrslmwTUzP7pB5Gpysuskp7pPYbfaubHgxqkXn3gCggOQmA+5awAI9w8wuH8/AJ6NG3m1vpuOgQCJDuirNsOA4pVrJr3kqX1mYJ9ekKAAXkREZAr3zr+Xe+ffO+nxhkrz+25Xi5ef/cOL3PmpZeQvnOaxYyIiIiIiInLZUggvl0TfU9sJVFVhTUgg6R3vmJZrRiJhKp57lud/+wt621oA8GZkkjV/4hl9l1owHOShEw/x3de+S6evE4Dy5HI+vfLTXJt97Rtvzz3UDSefgorH4eTTZgAzwpUIZbeZwXvJDeCMvej7uFQMw+BYUy+7KtvYWdHKgbouImcFxXExdq4rTWVLeRrXz08n0+uavc3OAQFfiJ62IfraffS0D5kBe8fwbPYOH+/4p3V408zqmra6PipeaBpzvs1hjc5kj4RH/0MvuyGP5TfmERPrmNH7EZGJjVTBX5dzHQnOhKkXH37YfL/kXhj+njL48ksQDOLIy8NZWMiO7WYr+puS+wmd8BOXnEJaQdGElzMMg1P7zRB+3ur0abgbERGRq5MRidBYeRwAvy8dmwMyiiYeBSMiIiIiIiJXJ4XwMu0Mw6D9e98FIPnd78YWF3fR1zy9/xX2/PLHdNSbLdg9iUmsf9s7WHLDzdjsMxsuhiNh/lz9Z7516Fs09JttvvPi8/jkik9ya+GtWC1voIK7twkq/2S2ma/eDZHQ6LGEHHO+e/kdUHAN2OZumNrnC/L8qXZ2VrSx60QrLb3+McfnZ8SxpSydzWXprCpIwmm/eqrdQ8EwfR0+ejt89LUP0dPuY/lNedFK9ANP1rJ/W+2k5/d2DEVD+LyFydjsFuJT3NHq9tgE54QPfrg8c/f3i8jVxjCM6Dz4rYVbp1481GU+kAVjW9EPz4OP27gRi8XCM8fNUL0scIZeoHjFmkkfAmup7qWv04cjxkbBYlXqiYiIvFEBn4/StRs4c7QCfzCNtPx4Ytz68YqIiIiIiIiM0r8SZdoN7N6N/9hxLLGxJL3n3dNyzZpXD9BRX0eMx8OaN9/Dyq134nDNbOW0YRg8W/8sXzvwNU51nwIgzZ3Gx5Z9jLvn3Y3DeoFhZ/sps9q94nGo3zv2WGoZLLjDDN6zV0QrIOcawzA42drPzopWdla2sq+mi9BZ5e5uh41rS1PZXJbG5rI0cpPmbuX+xYpEDAa6/bjjHNidNgBO7W/ltZ1n6G33MdDtH3dOweKUaAifkOrGHe8wQ/UUF/HD782Q3U188mjb+OzSRLJLE2fkvkRk+hzvPE5dXx0um4steVumXnzsUYgEIWMxpC8AzK+5/Xt2A+DZtJHG7iGONfViscB1W2+hOdNLyap1k17y5D6zi0zh0tTo1ykRERG5cDGxsWz9i8/wzE+OUfFiM7nlSbO9JREREREREZljFMLLtDIMg/bvmFXwSW9/O/akN/bDiJaqU9idMaTk5gGw/q33ExMby+o73oprGirrL9T+lv08uP9BDrUdAiDeGc8Dix/gnQveidvuPr+LGAY0HjSr3Sseh7aKscdzVo8G76nzpvcGptGAP8QLpzuis90buofGHC9O9bC5LJ0t5WmsKUzG5biygp6+Th/NVT1mVftIy/i2Ifo6fUTCBm/5qxXklJm/7wNDIZpO9UTPtcfY8Ka6hivYXdF57QALrsli4bWaxy5yJRupgt+Uu4lYxzkeSjr8kPl+yT3RTwVOnybU2ITF6cSzbh1/fNWsgl+Zn8SCZUtZsGzppJczIganR1rRr8m4iLsQERGREQ2V3QDkzFcILyIiIiIiImMphJdpNfjKXoYOHsTidJL8/vdd8PmdjQ08/9ufc+LFPRQuX8XbPvt5wGw/f93b3zvd2z2nis4Kvn7g6+xpMNv/umwu3rXgXXxg8QfwxpzHzL9wCOpegOOPm+F7b/3oMasdCjeawXvZmyAh6xLdxcUxDIOq9gF2Vbaxq7KVl6s6CYQj0eMxdisbSlKG28ynUZDimcXdXpxgIExf+0i4PkTv8Merby8kvcCc3Vx3tINdv6ic8Hyr1cJgXyD669zyJG750CIShkN3V5xj0jbRk31eRK4MhmFE58FvLTpHK/reRqh5zvx48duinx5pRR+7Zg1Wt5sdFWaofkP5uee7N1f3MtATwOm2k78g+Q3cgYiIiIxoranC6U6nr9OH1Wohs0Tz4EVERERERGQshfAyrTq++x0AEu95G470c4cCI/o62nnxkV9xZOd2jEgELBZcnjhCwSB2x8zPtK7rreObh77JtuptANgtdt467618dNlHSY89x30FBqFqpxm8n9hmzvUd4YiF0ptgwZ0w72Zwz82KCV8wzItVHeyqaGVnZRt1nYNjjuclu7lheLb7+uIU3JdJW+NIOEJ/l5/e9iGSsjzRVvBVh9rY9ctKhnoDE55XtCwtGsInZXnILPaSkOqKzmNPSHETn+oiLjEGq210zv1IK3kRkVfbXqVpoIlYeywbczZOvfjI7wAD8jdAYn700yOt6OM2bWQoEOb5U+0AFLceoPa1fnIXLsJmn/h7ZmZxAvf8/Wp624ewOawTrhEREZFz621v5Wd/9ynsMbHY3B8ioygFp0s/WhEREREREZGx9C9FmTZDr73GwAsvgt1OygMPnN85fb288seHOfjEY4SDQQCKV67hure/l7SCoku53Qm1Dbbx3de+yyMnHiFkhAC4reg2PrH8E+Qn5E9+4mAnnHwKjj8Gp3dA8KzQ2p0MZbebFe/Fm8Ex90LZYDjCmc5B9pxsZ2dlKy+e7sAfGq12d9gsrCtKYXNZGlvK0ylO9cz5yu3u1kFO7W+lr32InnYffR1D9HX6MYZn1t/4vgWUbzC7DzictmgA73TZSEhzR4N1b6qbzOKE6HWzSxN52/9eNfM3JCKXtZEq+C35W3DZXVMvnqAVfWRggKF9+wHwbNzEc6fb8YciFMbB8T/8nGO/i/Chb/wAb/rEreYtFgsZhQlkFCZMeFxERETOT0PlcQCSs7LZcN9y7Hq4TURERERERCagEF6mzcgseO+dd+LIyTmvcypf2MO+x34HQE75Qja+4/3klC+8ZHucTG+glx8d+RE/P/ZzfGEfANflXMenVnyKBSkLJjmp0Wwxf/wxs22wER495s0zZ7svuAPy1oNt9v6o9ftDNPf4aOn10TT8vrnnrI97fbT3+zGMsedle11sLk9nS1k615Sk4ImZG18uAr5QtE18dC778Gz21bcVRmcd97YP8fIfq8adb7VbSEhxw1nPEGQUJ3DvZ1eTkOomJtY+5x8wEJHLSzgS5smaJwG4rfC2qRe3n4SmQ+bIkoV3Rz898PLLGMEgjtxcnEWFPPOHIwDcGN+FEYmQkps/aQAvIiIi06eh4hgAuQsXUbrq/Lu/iYiIiIiIyNVlbqRqctnzVZ6gf8cOsFhI+fCHJ10XCgbpbWslOdsM6ZfceAs1rx1k6U23UrR89YyHn0OhIX5V8St+cPgH9AZ6AViWtoxPr/w0azLXjD+h7QRUPGa2mm88MPZY+sLR4D1zKVzie4lEDDoGAjT3mEF6c6+P5p4hmnv80XC9ucdHvz90Xtdz2CyszE9iy3DwPj8jblbC6HAoQl+nz5zN3jFEekECafnxAJw53smjXzs06bldzQPRj5MyPZSvzyT+rJbxCakuPN4YLNax9+V02aPt5kVEptuB1gO0D7UT74znmuxrpl58+GHzfckN4EmJfrp/92greoAdx8158Ln9NXQCxavWTnrJ5x85hW8gyPIb80jJiXvjNyIiIiI0VhwFmJWHx0VEREREROTyoRBepkXHd80q+PittxJTPL6NfCQS5vieXbzw0C+w2e287z+/jc1ux2Z38Ja//dwM7xaCkSB/OPUHvnPoO7QOmUFGaWIpn1rxKTbnbR4NnyMRaDw4Grx3nDzrKhbIW2sG7+VvgpSSadufLximtddPc6+Ppp6h4ep1/3A1+xAtvX5a+3wEw8a5LwbEx9jJ8LrITHCROfx+5NdZXhcZCS5SPE6s1ksfuhsRg0jYiM4k7mkbZN+fa8zq9o4hBrrGVuWvvbMoGsLHJ5stnGM89mioPjJ3PSHFNSZcik92ceP79YMxEZl926q3AXBT/k04bBPPbAfAMM5qRX/vWZ82GNi9BwDPxo0cbeyluddHrN3CQJUZBBSvWD3hJcOhCMdfaMQ/EKJsrSrlRURELoZvoJ+2M7UAtJ2JIzmnj9Tc+FnelYiIiIiIiMxFCuHlogVqauh9wpx1m/rRj445ZhgGp/e9zHO//ikd9XUAeJKS6W5uIiU3b8b3GjEiPFXzFN84+A3q+sz9ZHuy+csVf8mbit6EzWqDcNBsL1/xOFT8GfoaRy9gdUDx9WbwXnY7xF9YoGEYBr1DIZp6h6It4pt7/DQP/7q51wzaOwcC53U9iwVS42KiQfrZIXvmyOe8LuJmuJV8OBihs2mA3o4hetvMcL13eC57b4ePVVsLWPMm82GNSNig4sXmMefbHVbiU1zmbPZUd/TzCWluPvz/NuF060uXiFwegpEg22u3A7C1aOvUixsPQudpsLvN7zHDAlVVBBsbsTgceNatY8eLDQDclOrDf7IPlyeO7PkTj045c7wT/0AId4KT7PlJ03NTIiIiV6mmExVgGDjdKRx6ugOnO0EhvIiIiIiIiExISZZctPbvfx8iEeI2b8ZVXj7m2DM/+G9e3f5nAFyeONbcdQ8rtt6BI8Y1o3s0DIMXGl/gawe+xvHO4wAku5L5yNKPcO/8e3GGg+Z894rH4cQT4OsZPdkZB/NuNoP3eTeDyzvha4TCEdr6/WPmrzf3+mh53fx1XzByXnuOsVujQXrWSPX6SMg+/Ou0+BgcNutF//e5UKFgeHgeuy86jz2zKIGSleZMxN6OIX77f/dOen5vhy/6cUKKm3VvLiI+xY03zU18iovYBOeErfCtVosCeBG5rLzS9Ard/m6SXcmszZy8ZTww2oq+/HaIGe3s0T9cBR+7Zg3W2FieqTA7uCwK19MPFC5fhdVmm/CSp/YPd3tZmT4j3U5ERESuZA2V5jx4rFkA5JTpATcRERERERGZmNIsuSjBxkZ6/vgoAKkfG1sF393cxKtPmy14177lXta8+W24PDM/i/bVtlf52oGvsbfZDIU9Dg/vX/R+3lN4B56qZ+G374fTz0BoNBgmNtUMQcrvgKLrGTTsZqV6vY/m3vrovPXms8L1tj4/kfPrDk9irGNc1frrW8R73Y5ZmckO5rz5gW4/MNoCfqDHz5PfP0Jv2xADPeMr9RdckxUN4eOTXbgTnCSkuEhIcRGf6sab6iZ+eDZ7XHJM9Dybw8rq28ePMBARuRKMtKK/ueBm7NYp/toVCcORR8yPz2pFDzCwx5wH79m0kbY+P6+e6QYgvr+ZfqB45ZoJLxkKhqk+1AZA6er0N34TIiIiAsC8tdcQGDI48lwYu9NKRmHCbG9JRERERERE5iiF8HJROn7wQwiFiF2/Hvfy5WOOHdm1HQyDwuWr2PiO98343k51neLrB7/OzjM7AXBanby96E18iCSSDj4Of/g/YISj64c8uVSn3cBrcddyIDKfprYgzad8NPc+S58vdF6vabdaSI+PIcPrmrJFvMsxccXiTDMMg57WIZpO99Ba00tP+xC9bUP0dfqIhA0WXJvFDe8xWxzHuO00nRrtEOCIsZGQ6iJ+eDZ79rzE6DG708YH/+O6mb4dEZE5JRAOsKNuBwBbC8/Rir7mOehvBlcilNwY/XRkYIDBvfsAiNu0iT9WmpXtS3O9vOMv/4222mq86ZkTXrLuaCcBXxhPYgxZxRN3cREREZHzl1FcSnNNDLaXT5JV4sVmn/muZCIiIiIiInJ5UAgvb1iovZ3uh83Wua+vggfYcM87ScnNx5t+YXPTL1ZjfyPfOvQtHjv9GAYGFixstuXzkbZWFp/+2pi1x40Cngit5qnIao778qFjpPK8adx1PU5btBX8SLie5R3bIj7FE4NtDrf7DQXD+PqDxCWZ1e2+gSC/+OeXJlxrtVoIn9U63+60cdtHl+BJjCEh1YUrbvYq9UVELgfPNzxPX7CPdHc6KzNWTr348EPm+0VvAbsz+umBl1/BCAZx5OTgLCrimef3A3BDeToWi4X0wuJJL3lqXwsApavSsczh700iIiKXk4bKLkCt6EVERERERGRqCuHlDev88Y8x/H7cy5YRu27duOM2u50F122e9tc1DINeX8hsAz88d725x0dtdwuv9j1CC7vAYlaub+iP8PfdzRQHawGIGBb2GmU8FV7NU5FVnDEysFggxRPDYm/M2NbwCS6yvG4yvTFkJLiIdzmm/V4utcHeAM2ne2iq6qH5dDetdX1klyZy12dWAOCOc5KSE4fTZSOj2EtyViwJKWbb+Lgk17j5wcUr0mbjNkRELkvbasxW9LcU3oLVMkWlXMgPx8zRLq9vRd9/Viv6QDjCnpPtANxQdu728im5cbTW9TFv9cw+DCciInIlqjvyKkN9fdRX9ANOhfAiIiIiIiIyJYXw8oaEu7vp+uWvAEj52EfHVERHImEwwGq78Jbr4YhBe7+f5h4fTWfNW3/9/PXBwGgbeaw+3MnP4kzZQ8Rqhu/rhnx8urObJYEAAezsj1lLReL1tGZtJiE1h5UJLm4fDtfT4104r7A2grt/c4LaIx30tg2NO9bb4cMwjOj/s/v/YY0qJEVEptlQaIhdZ3YBcFvRbVMvPrkd/D0Qnw3510Q/bRgGA7v3ABC3cRMvV3UyGAiT5bHy0pc+Q8PCJdz0ob/E4XJNeNlVWwtZeWvBdNyOiIjIVe/Atkc5ve9lYuKvxxm3lvT8+NnekoiIiIiIiMxhCuHlDen8+S+IDA4SU1ZG3ObNY46dePE59vzqJ6x/69tZcsMt0c8PBcLRQL2l96yQ/axq9rZ+P+GIcV57yHAPMT/lUU55XqXfGiECLPT7+UxnN2vDTkKld2AsuhPnvJtZFRPPqmm8/7kg4AvRWtNL0+keetuGuPH9C6PHeloGzQDeAslZHrJKvGSWeMkq8ZKQ6h7z0IQCeBGR6be7fjdDoSFy4nJYkrpk6sUjreiXvA2sow+FBaqrCTY0YHE48Kxfx46nqwG4ObGPviPtnDl+BHtMzJSX1tgQERGRi2dEIjRUHgfg7r+9A09iAVbblfUgt4iIiIiIiEwvhfBywcL9A3T+7GcApH70I2N+wG8YBvse/wO9ba30d3bwq1fq+MkLNTT1+OgZCp7X9W1WC2lxMdG28CPz1jMTXOQ4B8hr38nztY/wnWA9h+xmtX1hIMinhuCmwtuwbLkTijZis08dTFxu+rv8NJ3qHm4t30N7fT/GWQ8srL+7BI/XvOeVtxaw9MY8MosSiIm9/Nroi4hc7p6ofgKAWwtvnToI9/XCCXPtuFb0u81W9LFrVmNxu3mmwpzxXjRUSydQvHLthNcO+ELUH+8if3EydseFd6URERGRsTobG/D19WJ3xpBZUorNrn9jiYiIiIiIyNQUwssF6/7Nr4n09OAsLCT+1lvHHGuoPEZL1UlsDgfJqzbzvv85RCAciR6PddrOmrfuImPM/HUzbE+Ni8F2dnV2Vy1U/Anj0GPsaD/ERxO9VDkdYLeRHoG/TFrOm5f/Bfb89WMqCC9nkXCEjoYBkrM92IZb5e/fVsOR3Q1j1sUlxUSr3G1ntdTXfEIRkdnTH+hnd70ZoJ+zFX3FnyDkg5R5kLl0zKGRVvSejZs41drPmc4hnDYL/uojABSvXD3hJatfbefpHx0jvSCeez+75iLvRkRERBoqjwKQVTpfAbyIiIiIiIicF4XwckEiPh8dP/oxACkf/jCW18193//4HwBYuOkGvrK7nkA4wrWlKfzznYvISHCR4LKfuzWuYUDzETOYqHgMmg/ziiuGB5MSOZyeCoDX6uTD8+7j/lWfwuVwT/dtzjj/YJDm6l6aT/fQdLqHlppeQv4wb/3bVWSVeAHInp9IS01vNHTPLPYSnzzxHGAREZk9O8/sJBAJUJhQSFlS2dSLo63o74Wzvj9GBgcZ3LsXgLhNG3moohWAG9JDDJzqwO6MIW/R0nGXAzi131ybvyjlIu9EREREABoqjgHQ0ZzA8w+f5Np75s3yjkRERERERGSuUwgvF6T7kUcIt7djz87C++Y7xx5rbuLUvpcAiCzcyNOPN2C3Wvj8mxdTmh439YUjYajfC8cfg4rHoasGgKNOB1/PTOcFtxk2u20xvGfR+3j/ovcT74yf9vubaXXHOnj+4VN0Ng2AMfaY021noNsf/fW81RnMW50xwzsUEZEL9USN2V5+a9HWqR8862+Fql3mx0vuGXNo4OWXMYJBHNnZOIuLeWb7iwAsp4kBIH/xUhzO8WNXfANB6o52AFC6Ov2i70VERETMjm8AwUAGPW1Ds7wbERERERERuRwohJfzZgSDdPzgBwCkPPAAFsfYNnwHnngUDIOCZav4ysvdALzvmsLJA/iQH6p3m8F75Z9hoC16qMbl4Zs5RTwZ6QXAbrVz7/x7+cjSj5DqTp3+m7uEwsEIbWf6aDrVQ3NVD2XrMylengaAI8ZOZ+MAAAlpbrPKvdhLVomX5CwPFus5ugaIiMic0uPv4YWGFwDYWrh16sVH/wBGGLJXQkrJmEMDe4Zb0W/aSPdgkP21XQC4misZwJwHP5HqV9uIhA2Ssz2kZJ/jATgRERE5p/6uTnpamgELVnuWRn+JiIiIiIjIeVEIL+et59HHCDU2YUtNJfFtbxtzLDA0yJEd2wFoL1zP6dcGSPE4+dSNr2vT5+uFU9vh+ONwcjsE+kaPubw0l27hO7FW/tB+kHCkFwsW7ii+g48v/zi58bmX+hanRTAQ5syxTppPm6F7a20f4VAkejzW64yG8On58dz20SVklniJTXDO1pZFRGSaPFP3DCEjxPyk+ZQklky9+OxW9GcxDIP+4XnwcZs28cyJNiIGlGfEMS9nJdZwkKIVE8+DP7XPbEU/T1XwIiIi08KTmMQHHvw+v/rnP4ElhlyF8CIiIiIiInIeFMLLeTHCYTq+9z0AUj7wfqyusbPIne5Y7vncF3l1z27+d4VZvf23t5bhdTvMdruVfzaD9+pnIRwYPTEuE8rfRE/pFn7QV8EvK3+Df8Bswb45dzOfXPlJ5ifNn5mbfAOMiEFn8wCRkEFavtkePzAUYtt3Do9Z5453kFlsznLPK0+Oft7msFK8Im1G9ywiIpfOtuptwHlUwXfVQP0rgAUWv3XMoUB1DcH6eiwOB55163jm0RMA3LAgg2u3Xs+19717wksO9QU4U2FWzJeu0vgSERGR6WCxWPANuMFajDveQXK2Z7a3JCIiIiIiIpcBhfByXvqefJJAbS1Wr5fE+98+4Zrs+eV8/XCAvpNnWJyTwL3LUuEPH4dDv2TMwPOUUii/AxbcyWBaOb+o/BU/OvAl+oJmVfzK9JV8ZtVnWJG+Ygbu7MIE/WFaanppPt1D0+keWqp78A+GyF+UzJ2fXA6AxxtD/sJk4pJd0dby3nT31HOBRUTkstcx1MErza8A5xHCH3nEfF+0CeIzxxwa2LMbAPfqVYRdbp6tNKvbb1wwdbBeX9GFETEfCkvMiH0DdyAiIiITaag0H3LLnpekf9eJiIiIiIjIeVEIL+dkGAbt3zWr4JPf8x5scZ5xxy0WC4fre/jNvjMA/NsNSdh+vBWaXjUXZa+IBu+klREMB3n45MN89/n/RYevA4D5SfP59MpPszFn45z7wYZhGPzx/x2k8VQPRsQYc8zutGKzW8d87s5PLZ/B3YmIyFywvXY7ESPC4pTF5CXkTb348MPm+9e1ogdGW9Fv3MT+2i56fSFSYm0ktJ4gmLEMx+u60YyYtyaD1Lw4fAOhi7oPERERMQV8Q2z75lfpaknAMBaSW65W9CIiIiIiInJ+FMLLOfXv3IW/shJrbCzJ737XmGOGYfDbf/0sKbn5/KCvFMOAv5rfzrI/fxoG2iA2Be79CRRtBCBiRPhz1eN88+A3aehvACA3LpdPrvgkW4u2YrVYx73+TImEI3Q0DNBcZVa5D/UFuOszZjW+xWIBiwUjYuBJjCGrxGwtn1XiJSU3Dptt9vYtIiJzQ7QVfdE5quBbjkLrMbA5zYfTzhIZGmJw714A4jZt5JnjLQDcnDLEo//5TeJSUvnIt3406cNqSZlqkSsiIjJdmk5UcmrvSzhjk0gpWEvO/MTZ3pKIiIiIiIhcJhTCy5TMKvjvAJD0zndgS0wcc7yh4ij1x47QcKKSg9npvNf9Ep+q/zFEgpC5BN7+S0jMxzAM9jTs4WsHvsaJLnO2bao7lY8t/RhvnfdWHDbHDN+Zqel0D3XHOmg+3UNLdS9Bf3jM8aH+AO44JwAb75uH020nPnniCkQREbl6NQ80c7D1IAC3Ft469eLDD5nv590C7sQxhwZefhkjEMCenYWzpIRn/vgsAGWBejqB/IVLJgzgR7rSiIiIyPRpqDwKQMnKZdz+yfWzvBsRERERERG5nCiElykNvvQSvldfwxITQ/L73z/u+P4//QGAqoT5fC7ml7zb+gxEgEV3w13fAqeHAy0H+NqBr3Gg9QAA8Y54Prjkg7yz/J3EOmZmZq1hGPS2+2iu6qF0dXq0cr3ihUaOPd8UXed02cgsHq1yd8aM/hFJyYmbkb2KiMjl56mapzAwWJm+kkxP5uQLIxE4PDwPfoJW9ANntaKv6Rikqm0Au9VCpM4MAYpXrZ3wso99/RBOl531bynRPHgREZFp0lBxDICc8oWzvBMRERERERG53CiElym1f+e7ACTecw/21NQxx7qbmzi172UA3pawhy32oxhYsNz4j3DdXxM2InzhhX/hkZNm2BBji+GdC97JA4sfwBvjvaT7DocitNX1RVvLN5/uYbA3YN5LRiwZhQkAFCxJJRwyoqF7cpYHi1WVhCIicmGeqHkCOI8q+PpXoKcOnPEwf+xawzDo3zMcwm/ayJ8rWgG4LsNC9wv1WKxWCpauGHfJvk4fZ453gQWuu2/+NNyNiIiIhEMhGk9WAJBZumCWdyMiIiIiIiKXG4XwMqnBgwcZfPllsNtJeeCD444f2PYoGAbZnj62uI8StMfhuO+HMP9WIkaEL7z0BR45+QhWi5W3znsrH1v6MTI8GZdkr2e34a14sYldv6gkHIqMWWO1WUjLjyccHG05X7w8jeLlaZdkTyIicnWo76vncPthrBYrtxTeMvXikVb0C+4Eh3vMoUBNDcEzZ8DhIHbdenb8+jAAa+0tDAG55YtwecZ3ZTl9wAzrs0q8xCXFXPT9iIiICLTVVBHy+8ESw+//q4b3/lsOsQnO2d6WiIiIiIiIXCYUwsukOoar4L13vRlHdvaYY77+fo48sw2Aa1JqaLTnkvXR30FaGYZh8KWXvxQN4L+86ctsLdw6bfsyIgZdLYM0n+6hqcqscl/35mJKV6UDEJ/sIhyK4PI4ohXumSVe0vPjsTtt07YPERERGK2CX5O5hlR36uQLw0E4+nvz4yX3jDs8MFwFH7tqFYN2Jy9XdQIQ33aCIaBo5ZoJL3tynxnCz1t9aR50ExERuRo1VJqt6K32bGLjY3DHO2Z5RyIiIiIiInI5UQgvE/IdP07/s8+C1Urqhz889mAkzGvf+RuCwRBpMf2cdhWS/95fYEnLxTAMvrrvq/y68tdYsPDFa784LQH8YG+A4y80mq3lq3rwD4TGHG863R0N4TOKE3jnv6wjMSM2Wh0vIiJyqTxRbYbw5/x+V7ULBjvAkwZF14873B+dB7+R3SfaCUUM5iU76HjVDAGKJwjhe9qGaK3pxWKBkpXpF3cjIiIiEjXU14vFasNqzyGnLFH/thQREREREZELohBeJtT+3e8BkLB1K87CwtEDQ93wyIdY2PUsgZQsDjgWUL36H/jn/FwAvnnom/zk2E8A+KcN/8SdJXde8GsPdPtpOt1DjMdOXnkyYM54f+kPVdE1doeV9MKE0Ur3Yu9Zx2wkZXou+HVFREQuVFVPFZVdldgtdm7Kv2nqxSOt6Be9FWxj/woWGRpi8JVXAHMe/DMHWwDYvCiX973nW5w5epjk7Nxxlzy131yXU5akFrkiIiLT6Lq3v5fGqnm01vaQU5Y029sRERERERGRy4xCeBnHX1VF35NPApDy0Y+OHmg7Ab9+B3ScwhXj4jeJd/Kc63p23bwAgO+99j2+95oZ3v/92r/nnvnjW+2+XiRi0NHQb7aWP222lu/r9AFQuDQ1GsLHJ7tYeF02yVkeMku8pObFYbNZp/O2RURELtiT1eb3yw3ZG0h0JU6+MDAIxx83P15y77jDg6+8ghEIYM/KwlZcwq5fPwPADeUZJGWlkJSVM+FlT+03W9GPdIMRERGR6eEfCtF+ZgiLxUnOfIXwIiIiIiIicmEUwss4Hd/7PhgGcTfcgKtsvvnJyifgdx8Gfy/hhFze2ftJXonk8cVbyvDGOvjJ0Z/wjYPfAOCvV/0171rwrgmvHQlHsA6H55GIwY//7jmG+oJj1lgskJIbR0rO2Gr2Le8un+Y7FREReeMMw2BbzTYAthadoxX9iW0QHIDEAshdPe7w2a3oX63voXMgQLzLzurCyX/ob0QM5q/JxGZvpWSFQngREZHp1HSyG8MAb5qb+GTXbG9HRERERERELjMK4WWMQH0DPY89BkDqxz4KhgF7vgo7vggY1Mdfw6+qS2iyWlhQnMA71ubzq4pf8Z/7/hOAv1z+l3xg8Qei1wsFwpw+2EZzlVnpDvD2z60FwGq1kJgRSyjYT2ax2VI+q8RLRlECTpd+a4qIyNx2ousE1T3VOK1OtuRtmXrx4YfN90vuNZ82e53+PcMh/KaN7KgwW8zfnBlm24P/zrz117Lg2vEz5C1WCytuyWfFLfkXdyMiIiIyTv2JLgC1ohcREREREZE3REmnjNHxg/+BcBjPNRtwl5fAwx+Ao783D65+gF0H47C2HqA0PpaP3XkPfzz9e/7vy/8XgA8t+RAfXTravt4wDB7/5qs0nOgefQGL2dYvxm3+1tv6kSW44hxYreMDCRERkbnMYrFwS8Et2K124p3xky8c7IST282PJ2hFH6ipIVhXBw4Hses38Mz/7AdgcfAMJ195AcOITBjCi4iIyKWzYEMW7jgHmUXe2d6KiIiIiIiIXIYUwktUsLWVnkd+B0DKu94CP7gVWg6D1QG3f4XOnFto/tlHsQDeNTfSxov8ywv/AsB7Fr6HT634FJazqvvqK7poONGNzWFl8aacaKX7SAAPEJvgnME7FBERmT7zk+bz1c1fxTCMqRcefxQiQchYAunjR6uMtKKPXbmSpqCFiuY+rBawNVQAULxy7bhzulsHaT7dQ9HytDHfV0VERGR6pOTEkZITN9vbEBERERERkcuUfmorUZ0/+jFGIIB7YQmx+z4DQx3gSYP7fgYFG/j9V76KBajzFLBhY5B/eO4fMDC4v+x+/nb1344J4AH2b6sBYNF12Vx377wZvx8REZGZ8Prvf+NEW9HfM+Hhs1vR/7miFYD1WQ7anz8JQNGK8TPkK15sYv+2Wopfbee2jy15gzsXERERERERERERkUtBIbwAEOrqous3vwYgNW0flqEhyFoOb/8FeHPp6uqh/cAe7EDs+mK+vO8fiRgR3lL6Fv7Puv8zLoBore2l4UQ3VpuF5TdrVq2IiFylehqg5jnz48VvG3c44vMx+MorAHg2buSZ580QfoOznQCQUVxKXFLymHMMw+DUPnNdyaq0S7d3EREREREREREREXlDrLO9AZkbun7yY4zBIWKSAngyh2DJffDBJ8CbC8CPfvBL7JEQ3bHxPOn6BSEjxO1Ft/MvG/4Fq2X8b6O0/Hhu//hS1t1VTHyya6ZvR0REZG44+jvAgPxrIDFv3OHBV17B8PuxZ2YSLijihdMdAKR0ngKgaMWacee0n+mnp20Iu8NK4ZLUS7p9EREREREREREREblwqoQXwk1VdP7o+wCkLhzAcssX4JpPwnB1e21bL/0HduEBjs07Q9AIcnPBzfzbdf+GzWqb8JoWi4WipakULVU4ICIiV7HDD5nvl4yvgofRefBxGzfywulOAqEI+YlOOioOA1CycnwIf3JvCwAFS1JwuvRXOREREREREREREZG5Rj+5vdo17Kfr799NxA9Ob4T4v/spzL9lzJL/eKKSmvQiygP7OZXZw/W51/PljV/Gbp34t084FMFmV5MFERG5yrWdgKZXwWqHhXdPuKR/z24APJs2sqPCDNdvLHCTMlBAb1srGcWlY9YbhsGp/WYr+tJVGZdw8yIiIiIiIiIiIiLyRimEv5q9+msiv/sUna8lAjZSPvk3WF4XwL9wup1tp/cTu/Rp6mx+NmRt4Kubv4rD5pjwkl3NA/z+qwdYuiWXVbcVjpsVLyIictU48rD5vuQG8KSMOxyorSVYWwd2O+5163nmGy8DsGVVGZve8Z8EA34s1rEPtbVU99LX6cMRY6NgyfhrioiIiIiIiIiIiMjsUwh/NQqH4Ol/hhe/SfdJD2G/DUd2Ft77PzBmWSgc4R///BSx+T/EYvOzOmM1X7vha8TYYia99IEnahnqC9Ja26cAXkRErl6GcVYr+nsnXDLSij525UoqeiO09vmJddpYV5wMgMM5/vttS00vWKBwaSoO58QjYURERERERERERERkdimEv9oMdsLDH4SqnRhh6KjKAgZJ+chHsDjGVrd/Y89zFNT9gOQ4G46lS/jmjd/EbXdPeune9iEqXzFb6a66rfAS3oSIiMgc13gAOqvA7oay2ydcMtKKPm7TRn4/3Ir++kIPhm8I4uImPGfZDXmUrEgnHApfmn2LiIiIiIiIiIiIyEXT4O6rSetx+P4NULUTHLF0p36CUPcg9rQ0vHePnVV7uOUUD732f1hY52L9sRS+vOKf8Dg8U17+4FN1GBGDvAVJZBQmXMo7ERERmdsOP2K+L78dYsYH6hGfj8GXXwHAs3ETOyrMOe+r/af59offya6f/s+kl45LisGbFjv9exYRERERERERERGRaaEQ/mpx/HH4n5ugqxoS8zHe9wQdf9oHQPIHP4g1ZrTlbX1fPQ88+QAL661YsJC7bBl5heVTXn6gx8/xF5oAVcGLiMhVLhKGI8Mh/CSt6Af37sXw+7FnZNCTmcdr9T0AuFoqMSIR4lPSxp0TCqr6XURERERERERERORyoBD+SheJwK4vw2/eBYF+KNwIH95F78EzBOvqsCUmknT/fdHlzQPNvHfbBwkHuik9Ew/AhjffN9nVow5tryMcipBV4iV7XuKluhsREZG5r+Y56G8GVyKU3DjhkpF58HGbNrLrRBsAK7PctJ44BkDxytVj1kfCEX7+uRd59GsHGej2X7q9i4iIiIiIiIiIiMhF00z4K5m/H/7wMTj+mPnrdR+DW76IYbHR8b3vApD8vvdijTVb2rYNtvGhJz9E21ATi6ozcUQspBUUkbdo6ZQvE/SHOfpcI2BWwVsslkt3TyIiInPd4YfM94veAnbnhEsGdpvz4D0bN/L0cbMV/abYTsLhMElZOSRl5YxZ33Cym4GeAOGQgSveccm2LiIiIiIiIiIiIiIXT5XwV6rOavjBzWYAb3PCXd+C274MNgf9O3bgP3kKa1wcSe96l7nc18mHn/owtX214EtkYU0iAKve9JZzhuqOGBv3/v1qVt9eSP6i5Et9ZyIiInNXyA/HHjU/nqQVfaCujkBtLdjt2Nes47mT7QBk9FQB46vgAU7tbTGPrUjDZtNf30RERERERERERETmMlXCX4mqdsFD74ehLojLgPt/AXlrADAMg/bvmFXwSe98J7aEBHr8PXzkqY9wuuc0lrCXrGO34Am9jCcxifJrN53XSyZlelj35uJLdEMiIiKXiZPbwd8D8dmQf82ES0Za0ceuWMErrX6GgmEy4p10n3gNgOKVa8esD4cjnD5ktqyftzr9Em5eRERERERERERERKaDQvgriWHAS/8NT30OjDDkrIL7fw4J2dElA8+/gO/IESwuF8nvfx99gT4+uv2jVHZV4rYm0nb6AXITHBTlQM68Mmz2qVveBv1hHDG2S31nIiIil4eRVvRL3gbWiSvW+/cMt6LftJEdFWYr+lvSgwy+1o3THUtO+cIx6+uPd+EfCOFOcJI9P+nS7V1EREREREREREREpoVC+CtF0AeP/xW8+kvz18veCXf8P3C4xizr+M53AEi8714C8S4+vv2jHO04iteZSPupD2IE0vjYO1bw5mXvwjCMqV8yEObn//QiuWVJbLx/Pi6PZtSKiMhVzNcLJ54wP56kFX3E72fw5VcAcx78M39oBOC6lWVkFX0C30D/uAfgTu4zW9GXrkjDap16RIyIiIiIiIiIiIiIzD6F8FeC3ib4zbugYT9YbHDLF2H9X8DrZrkP7t/P4L594HDgee87+cSOT3Co7RDxznhKI39D/YCDtYXJ3Lk0C+Ccs+CPPdfIYE+AptM9OFyqhhcRkatcxZ8g5IPU+ZC5dMIlg6/sxfD5sGdkUOvNpqH7NDF2K5uWFOJ2loxbHwqGqR5uRV+6JuOSbl9EREREREREREREpsfEfVLl8nFmL3xvsxnAuxLh3Y/Aho+PC+CB6Cz4+Lvu5H8d/xJ7m/ficXj41MKvsOuwg8RQN/eF99Pb1nrOlw2HIhzaXgfAylsLsNn0W0lERK5y0Vb09074fRjOakW/8TqeGW5Ff21pKm7nJA+zGXDN20opXZVOVrF32rcsIiIiIiIiIiIiItNPyenl7ODP4ce3Q38zpC+Ej+yEki0TLh06cpSBPXvAauW/FzfzQuMLuO1uvnnDt/jprggA98RUU7v7CXb8+LvnfOnKl5rp7/IT63VSviFzWm9LRETkstPfClW7zI8Xv23SZQO79wAQt3FTdB78ta52Dj7xGL3t4x+CszttLNqYw60fXoxFrehFRERERERERERELgsK4S9H4SBs+zv4419COADld8AD2yG5eNJTOr5rBusnV2fyqP8VYmwxfOOGb3CiNo1jTb2kOELE1x0EYNXtb5ny5SPhCPufrAVgxc352B1qRS8iIle5o38AIww5qyBlfFt5gMCZMwRqasBuJ7BsFQfqugDwVL3Cjh99l6PPPjNz+xURERERERERERGRS0Yh/OVmoAN+dje8/B3z15v/D9z3M4iJm/QU/6lT9G3fDsB/L23BYXXw4JYHKfeu5D+fqgTggZRmQgE/aYXF5C1aMuUWTh1opbdtCJfHwaKNOdNzXyIiIpezs1vRT6J/t9mKPnb5cnY3DmEYsCgjltaKwwAUr1w7Zn1DZRev7TzDQI//0uxZRERERERERERERC4J+2xvQC5A8xH49Tuguw6ccXD3d2HBHec8rf273wPg5fkWmtMdfPX6/+S6nOv4/GNH6RwIMD/VjbXieQBW3X4Xlknm2I448mwDAMtuzMURoyp4ERG5ynVWQ/0rYLHCorsnXTbSit6zaVN0HvwN3l6Cfh9xScmkF47taHN4Vz2nD7Yx0O1nw92ll27/IiIiIiIiIiIiIjKtVAl/uTj6B/jBzWYAn1QEH3r6vAJ4f10d3X96HIA/XGvj3zf9Ozfk38DJlj5++qLZUv4vCvoY6OrEk5RM+bWbznnNN/3lMjbcXcLi63Mv6pZERESuCEceMd8XbYL4zAmXRPx+Bl5+GQDXtdeyu7INgNz+GvPUlWvGPAQX8IWoOdIBQOmqjEu0cRERERERERERERG5FBTCz3WRCOz4Ijz0PggOQvEW+PAOSF9wzlMNw2Dnlz6FNWJwqMjCA/f8X24tvBXDMPjXx48RjhjcvCCd/n07AFhx6x3Y7I5zXjfGbWflrQW4POdeKyIickUzjPNqRT+4dx+Gz4c9PZ3XYtLo84dIiXXQe/I1AIpXrBmzvvrVdsLBCN50N6l5k4+cEREREREREREREZG5R+3o5zJfL/zuI3Bim/nrDZ+Amz4PtvP73/a9Z77Eht3mzPfEjzzAbSV3ArD9WAt7Trbj/P/t3Wd4VNX69/HvZNJ7SKUkJJBQElogNGmhFxuCgoAKD1gQEURB9AhIU/EoGNEDYoWD/AUVDhawABqKQaVFkSZICUKQIiSQkL6fFznMcUwhgUkmwO9zXXOZ2Xvtte+9EnIL96y1zA483TOKFIcmZJz7kybdepXaX3ZmLs5ujpddrl5EROSG8ccuOLUXzC7Q8NYSm2VsLNwP3qNDe5buLZwF372mifRdf2B2ciKscVOr9ge2FS5XHxUXrLwrIiIiIiIiIiIico1REb6qOvMbfDAITu8r/If92+ZC07vLfPmCnxZwftH7OOXDhegwet/xBABZufnMXLUHgPs7RFAnxJc6946gw6ChmB1L/3H44o2d5GbnE39PAwJDva782URERK4Xl2bB1+sBrj4lNrvw3/3gPTt05JtfCgvszTwySTU7EhrTBGdXN0vbrIxcUnb9dyn6uKAKClxEREREREREREREKoqK8FXRgbXw8XDISgOvGnD3+1CzRZkvX7RrEYuSXmPeDgOAhuMmW869s+kQKX9mEuztwiOdIy3HL1eAT/0tjWO/nsPBbMLNU8vQi4iIUFDwv/3gS1mKPuf338k5dAjMZk7Va8KhxO04mU3c3LcPzrd15+L5dKv2h346RUG+QbUaHvjX0FL0IiIiIiIiIiIiItcaFeGrEsOApLmwdioYBVCrFQx8H7yCy9zFB3s/4OWtL3P3lgJc8sA1JgaP9u0AOJGWxb++PQDAU70b8NvGtfiG1CA0pvFll7rd9sVhABq0CcHTz/WKHk9EROS6cvQHSDsKzl4Q1aPEZhc2FC5F7xbbjLXHLgLQpo4/Xq5OgBMu7u5W7c//mY2D2USUZsGLiIiIiIiIiIiIXJNUhK8qci/Cp4/+b1nb2Hvh5tng6FLmLpb/upznf3ge9yyDW3c4ATn4j3zIUmB/8cu9ZObk0zzMl56R3rw15y3ycrIZNOMlatRrWGK/p1LOc+SXM5hMENuz9tU8pYiIyPXDpxZ0GA8Y4ORWYrOMvyxFv25P4VL0nesFlNi+1S0RNOlcy6ahioiIiIiIiFzvCgoKyMnJsXcYIlKFODs74+DgYO8w5AalInxVkPY7LB0CqclgMkPvF6Hl/XCZ2el/9dlvnzFt8zQAnjraFKeL23GJisSra1cAth05y392HMNkgqm3xbBz7Zfk5WQTFF6X6lENSu1725eHAYiMC8Y3yL3UtiIiIjcM31DoOrnUJgXZ2WT88EPhm9Zt2fLhUQC8fvyY91en0n7QUMKbxBa5ztVDW7+IiIiIiIiIlFVOTg6HDh2ioKDA3qGISBXi4OBAREQEzs7O9g5FbkAqwtvbkc3w4b2QcQrc/eGuRRDRoVxdfHX4KyZ9NwkDg8Hh/YmZ/xX5gP+DD2JycKCgwGDaZ7sAuKtFLWJCPHjrq88BaHFL31KXov8zNYPfdpwqbNtLs+BFRETKI3PrVoyLF3EMDGQz1cgrSCEy0J2Te34i63w6jo7WxfbM9BzcvfWXAhEREREREZGyMgyD1NRUzGYzoaGhmvUqIkDh6hjHjx8nNTWVsLCwy27LLGJrKsLb09b3YPUEKMiF4MZw9xLwK1+h+9uUb3lqw1MUGAXcEXkHD/xam1PnzuEUGop3794AfLztd37+PQ0vF0cm9GzAvqSNZJz9E0+/atRv277U/vduTgUDIpoG4F/T84ofVURE5EZ0aSl6jw4d+GZf4YfauvlnkXU+HRcPD2rU/992MBlp2Sx6Oomg2l70HReLo7PZLjGLiIiIiIiIXEvy8vLIzMykRo0auLtrJVcR+Z/AwECOHz9OXl4eTk5aeVIql4rw9pCXA18+BVvfKXwf3Rf6zgNnj3J1892x73hi/RPkGXn0iejD5BZPc/jpXgD4P3A/JkdH0rNy+edXewEY0zWKAE9nvli1EoBmvW7F7Fj6L522fesSHOGNT2DJe92KiIhI8S5sLCzCu7dvz7dbC/eDj7h4hN+B8KYtcDD/r9D+2/ZTGAUGgArwIiIiIiIiImWUn58PoOWmRaSIS78X8vPzVYSXSqcifGW7cAo+GgpHvgNMhXvJtn+8XPu/A/yY+iNjvx1LbkEu3Wt357n2z3H+w+XknTyJY3AwPn37AvDauv2cvpBDnUAPht4UztFdOzl1+CCOLi406dbrsvcxOZioGxt0BQ8qIiJyY8v5/Rg5Bw+C2cyBsGjObfgFHzcnsg7+AkCd5i2t2h/Y9gcAkS2Ud0VERERERETKS0tNi8jf6feC2JOK8JUp9Sf4YDCk/w7OXtD/bah/+UL43+04uYPR34wmOz+b+FrxvNjhRcwFcObttwHwHzEcB2dnfjt1gfe+OwzA5FuicXZ0ID8vF7/qNQlr3Aw3T68S75F9MQ+z2aSZeCIiIlcoY+MGANyaNePT3y8C0DXUidNfHcZkciC8aXNL2/N/ZpF6IA1QEV5ERERERERERETkWqcifGXZ+TF8MhryLoJ/JNz9AQTWK383p3by8NqHuZh3kZtq3MTL8S/jZHYi7ZNPyP39d8zVquF7110YhsH0z3aTV2DQpUEQnesX/oN+RLMWhM+ZT25Odqn32brqEPt+OEGHAfWIahl8RY8sIiJyI7vw3/3gPTt04Js9hUvRNyOVU0D1qPq4e/tY2v62vfB89UgfPP1cKz1WEREREREREREREbEdB3sHcN0ryIe1U2H5iMICfGR3uH/dFRXg9/65l4fWPkRGbgYtQ1qS0DkBF7MLRkEBp998C4BqQ4fi4ObGN3tPsv7XUziZTUy+JdqqH5ODA86uJe/xnnUhl182Hufi+VycXDUTXkREpLwKcnLI+OEHAC40bcm+P85jdjAR17Q+9W/qSP2bOlq13//f/eKj4vTBNxERERERERG5sZlMJlauXFlh/U+dOpVmzZpVWP8iIqAifMUyDFh2L2x6pfB9u8dg8DJw8y13VwfOHuDBrx/kfM55mgU24/Uur+PmWFhIP79mLTm//YaDlxd+gweRnZfPjM93AzC8XQQRAR5cPJ/Oz+u+Ii8n57L3+umbo+Rl5xMQ6kntRv7ljlVERORGd3HrVozMTBwDA1lf4AdAi9p+RLdowS1jn6R571stbdNPX+Tk4XRMJqjbXEvRi4iIiIiIiNwIhg0bRt++fYs9Fx4ejslksnrVqlXL6nxCQkLlBCqAxlxEyk/L0VckkwnqdobfvoHbX4fGd15RN4fTDnP/1/dzNvssMf4xzOs2D3cndwAMw+D0gjcA8LtnCGYvL95a/xuHz2QS4OnC6C6RAPy89ks2Lf03v36/iTufmVHivXIu5rEz8XcAWvQqTPQiIiJSPpeWovfo0IF1+04B0LVB8QV2N29neoyI4c8TGbh7O1dajCIiIiIiIiJSdU2fPp0HHnjA8t5s1qq1IiLXEs2Er2gt74fRP15xAf7o+aOM+HoEZ7LOUM+vHgu6L8DL2ctyPmPjRrJ378Hk5ka1++7jZHoWr63bD8DEXvXxcnUiLzeXHV9+BkB0xy6l3m/n+t/JzszDL8SdurGBVxSziIjIje7CxsIivFPbm/j+tzMANDb9wemjRzAMw6qtk7OZqJbBtL61TqXHKSIiIiIiInK9MQyDzJw8u7z+/nf+q+Hl5UVISIjlFRh4Zf9eP3XqVMLCwnBxcaFGjRqMGTPGcq64Zd99fX1ZuHAhAIcPH8ZkMvHhhx/SoUMH3NzcaNmyJb/++itbtmwhLi4OT09PevXqxalTp8oUz5YtW+jevTsBAQH4+PjQqVMntm/fXqRdamoqvXv3xs3NjYiICD766CPLuZycHEaPHk316tVxdXUlPDycF154wXI+JSWF22+/HU9PT7y9vRkwYAB//PFHiTHFx8fz2GOPWR3r27cvw4YNs5w/cuQI48aNs6xMcElSUhIdO3bEzc2N0NBQxowZQ0ZGRpnGQkSub5oJX9FMJvANu6JLT2Sc4IGvH+Bk5knq+NThrR5v4ePiYzlvGAan31gAgN/AgTj6+fHihz+RkZNP01Bf+jcvXJ5mX9IGMs6dxdOvGvXbti/xfrk5+fy07igAzXvVxuSgWfAiIiLllXvsGDm//QZmMzuC65OTv4/a1dz4ZdlbbD59iv7/mE540+b2DlNERERERETkunQxN5/oKV/Z5d67p/fE3bnqlF0+/vhjXnnlFZYuXUpMTAwnTpzgp59+Knc/zz77LAkJCYSFhTF8+HAGDRqEt7c3r776Ku7u7gwYMIApU6Ywf/78y/Z1/vx5hg4dyty5cwGYPXs2ffr0Yf/+/Xh5/W8C4uTJk5k1axavvvoqixcvZtCgQTRq1IiGDRsyd+5cPv30Uz788EPCwsI4evQoR48W1jYMw6Bv3754eHiwfv168vLyGDVqFAMHDiQxMbHczw6wYsUKmjZtyoMPPmi1OsHOnTvp2bMnM2bM4J133uHUqVOMHj2a0aNH8957713RvUTk+lF1soFYOZV5ihFfjeDYhWOEeYXxdo+3qeZazapN5pYtXNy+HZOTE9X+3/9jR8pZlm8vXEp+6q3RODiYMAyDbatWAtCs162YHZ1KvOfve89y8XwuXv6uRLUMrrBnExERuZ5dmgXv1qwZ61IyAegWUsD5badwdHahZsMYS9vd3x0nMy2Heq2D8fZ3s0u8IiIiIiIiIlL1TJw4kUmTJlneP//881az2MsiJSWFkJAQunXrhpOTE2FhYbRq1arcsYwfP56ePXsCMHbsWAYNGsS6deto164dACNGjLDMnr+cLl2sV+tdsGABfn5+rF+/nltuucVy/K677uL+++8HYMaMGaxZs4bXXnuNefPmkZKSQlRUFO3bt8dkMlG7dm3LdWvXruXnn3/m0KFDhIaGArB48WJiYmLYsmULLVu2LPfzV6tWDbPZbFmd4JKXXnqJwYMHW2bRR0VFMXfuXDp16sT8+fNxdXUt971E5PqhInwVdObiGe7/+n5SzqdQ07Mm7/R8h0D3okvNnPnvLHif/v0wBwYydX4SAP2a1yQ2zA+Ao7t+5tSRQzi6uNCkW69S7xvRJIC7J7ciMz0Hs1k7FYiIiFwJy37w7duzbu9JAOrn/M5RIKxRE5ycXSxtk9ce5WxqBh6+LnjfpCK8iIiIiIiIyNVyczKze3pPu93bViZMmGBZDh0gICCg3H3cddddJCQkUKdOHXr16kWfPn249dZbcXQsX2moSZMmlq+Dgwsn8DVu3Njq2MmTJ8vU18mTJ5kyZQrffPMNf/zxB/n5+WRmZpKSkmLVrm3btkXeJycnAzBs2DC6d+9O/fr16dWrF7fccgs9evQAYM+ePYSGhloK8ADR0dH4+vqyZ8+eKyrCl2Tbtm0cOHCAJUuWWI4ZhkFBQQGHDh2iYcOGNruXiFx7VISvYtKy03hwzYMcTDtIkHsQb/d4mxCPkCLtLu7cSUZSEpjN+N9/Pyt2HOOno+fwcDbzVK8GlnaXZsHHdOqGm6dXkX7+zr+mJ/41bfY4IiIiN5SCnBwyvv8egNQGsZz+6jQezmbyjuwCoE7z//1F78yxC5xNzcDB0USdZuX/i7SIiIiIiIiIFGUymarUkvBXKiAggMjIyKvqIzQ0lH379rFmzRrWrl3LqFGjeOmll1i/fj1OTk6YTKYi+9jn5uYW6cfJ6X8r7F7aD/3vxwoKCsoU07Bhwzh16hQJCQnUrl0bFxcX2rZtS05OzmWvvXTv5s2bc+jQIb744gvWrl3LgAED6NatGx9//DGGYVjt2X5JSccBHBwcyjQOf1dQUMBDDz1U7AoFYWFXtk2xiFw/NN25Cjmfc54H1zzIr2d/xd/Vn3d6vEMtr1rFtr20F7zPLbeQExjCi1/uBWB0lyiCvAuXOMnPy/tvYnGgee/bSrxvQYHB+T+zbPw0IiIiN56L27ZhZGZiDgxgba4vAPHhHpzYvw+AiNg4S9sD2wo/IR4W7Y+Le8nbxYiIiIiIiIiIXCk3Nzduu+025s6dS2JiIps3b2bnzp0ABAYGkpqaamm7f/9+MjMzKzSejRs3MmbMGPr06UNMTAwuLi6cPn26SLvv/zvJ4a/vGzT43wREb29vBg4cyFtvvcWyZctYvnw5f/75J9HR0aSkpFj2iAfYvXs3aWlpJc5M//s45Ofn88svv1i1cXZ2Jj8/3+pY8+bN2bVrF5GRkUVezs7OZR8UEbkuXfsfB7tOZORm8PDah9l9Zjd+Ln683eNtwn3Ci22bte9XLqxbByYT/g89yJxv9nPqfDbh/u4Mb/+/a8yOjvR7airpp0/hHVB0OftLDmz7g3Xv7aFJl1q0uzPKxk8mIiJy47i0FL1n+w58s6+wyN7S8SRnjAICw8LxDggCCj99vX/LHwBExQXZJ1gRERERERERsau0tDTLEuuXVKtWzWb9L1y4kPz8fFq3bo27uzuLFy/Gzc3Nsod6ly5deP3112nTpg0FBQVMnDjRaoZ7RYiMjGTx4sXExcWRnp7OhAkTcHMrukXfRx99RFxcHO3bt2fJkiX8+OOPvPPOOwC88sorVK9enWbNmuHg4MBHH31ESEgIvr6+dOvWjSZNmjBkyBASEhLIy8tj1KhRdOrUibi4uCL3uTQOjz/+OKtWraJu3bq88sornDt3zqpNeHg4GzZs4O6778bFxYWAgAAmTpxImzZteOSRR3jggQfw8PBgz549lv3rReTGppnwVcDFvIuMXjean079hJezF2/2eJNIv5KXmTnz5psAePXowXHvYN7ddAiASTdH4+JYdM+Z0grwRoHBti+OUFBg4Oymz2SIiIhcjQsbNwCQF9eGX46lYzKBz5nfAIj4y1L0p49eIO3URRydHAhvoqXoRURERERERG5EiYmJxMbGWr2mTJlis/59fX156623aNeuHU2aNGHdunV89tln+Pv7AzB79mxCQ0Pp2LEjgwcPZvz48bi7u9vs/sV59913OXv2LLGxsdx7772MGTOGoKCiExSmTZvG0qVLadKkCYsWLWLJkiVER0cD4OnpyYsvvkhcXBwtW7bk8OHDrF69GgcHB0wmEytXrsTPz4+OHTvSrVs36tSpw7Jly0qMafjw4QwdOpT77ruPTp06ERERQefOna3aTJ8+ncOHD1O3bl0CAwtrLk2aNGH9+vXs37+fDh06EBsby+TJk6levboNR0xErlUm4+8bXQjp6en4+PiQlpaGt7d3hd4rOz+bMd+MIel4Eh5OHrzd420aBTQqsX3OkSP81rsPFBQQsWI5j/yYwbq9J+lYL5BF/6+lZU+TlF9+wq96Tbz8S/+H/YPJp/jijZ04uZq577mbcPXQcrgiIlVJZeakG0VFjWnu8eMc6NIVHBzY+a8PefKrw8SG+fLR/S05unsnvsEh+FWvCUDSigPs+DqFus0D6fVgY5vFICIi1xbledvSeIqISFWhnGR7pY1pVlYWhw4dIiIiAldXVztFKCJVkX4/SEUoa57XTHg7ys3P5YnEJ0g6noSboxvzu80vtQAPcPqtt6CgAI9OHfneHMC6vSdxdDAx5ZZoSwE+LzeX1a+9zNuPjuD3vbtK7MswDLZ9eQSAxp1qqQAvIiJyFS4tRe/WrBlfpxTun9a1QRCOzs5ENGthKcADYICTi5nIFsH2CFVEREREREREREREKpDWH7eTvII8Jm6cyPrf1+NiduH1Lq8TGxRb6jW5qamkffIpAL73P8j0z3cDMOymcCKDPC3t9iVtIOPcWTz9qn4tQ58AAFvrSURBVFE9sl6J/f2+9ywnD6djdnKgaddQGzyViIjIjevCxsIivGu7dmw6cBqALg2KL7Lf1D+SVrdGYHIwVVp8IiIiIiIiInJ9WbJkCQ899FCx52rXrs2uXSVP0qsonp6eJZ774osv6NChQyVGIyJiPyrC20F+QT7PbHqGNUfW4OTgRELnBFpVb3XZ68688y7k5uLeqhUfZvlx8NQJAjydGdMtytLGMAy2ff4fAJr1uhWzY8mz27d9cRiA6PY1cPd2vrqHEhERuYEZOTlkbt4MwP7wJmQdTaOGjyu//t9cToXUoOWt/XD38bW6xtHZbIdIRUREREREROR6cdttt9G6detizzk52Wfl2+Tk5BLP1axZs8RzIiLXGxXhK1mBUcC0zdNYfWg1jiZHZneaTfua7S97Xd7p05z76CMAHO8bzqtr9wMwoWd9vF3/l0xTfvmJUymHcXRxoUm3XiX2d+FsFiePnMfBbCK2e9hVPpWIiMiNLXP7dgoyMzEHBPBVtheQRrdQR3777HtMDg60vmMAAEaBwZ+pGVSr4WHZRkZERERERERE5Ep4eXnh5eVl7zCsREZG2jsEEZEqwe57ws+bN4+IiAhcXV1p0aIFG/+7lGtxEhMTMZlMRV579+61tFm4cGGxbbKysirjcUplGAbP//A8/znwHxxMDszqOIvOYZ3LdO2fixZhZGfj2qQJc8/6cj47j8Y1fbirhfUy8ttWrQSgUXw33DxLTr6efq7c9/xN9HqwEV7VXK/4mUREROR/+8F7tG/PN/sKl6KPyT8OQM0G0bh6FC7FlvpbGktn/MiKl7ZhGIZ9ghURERERERERERGRCmXXmfDLli3jscceY968ebRr144FCxbQu3dvdu/eTVhYybOz9+3bh7e3t+V9YGCg1Xlvb2/27dtndczV1b6FZsMweGnrSyzbtwwTJma2m0nP8J5lujY/LY2z//cBABl33sOH238HYOpt0Tj8ZS/ZM78f5dCOrWAy0bz3bZft19XDiYimgZdtJyIiIqXL2LgBgPTGcRzfmYWrkwMOv+8BoE5sS0u7A1v/AMA3yF0z4UVERERERERERESuU3adCT9nzhxGjBjB/fffT8OGDUlISCA0NJT58+eXel1QUBAhISGWl9lsvaeqyWSyOh8SElKRj3FZhmEwd8dcFu9eDMCzbZ/l1rq3lvn6P99/n4KMDFzq1WPqaT8MA/o2q0GL2tWs2p1KOYSTiyt1W7TGr3rJe6v8eTxDs+9ERERsJDc1lez9B8DBgfXeEQB0CPfm2O6fAajTvBUABfkFHNh+EoDIuGD7BCsiIiIiIiIiIiIiFc5uM+FzcnLYtm0bTz31lNXxHj16kJSUVOq1sbGxZGVlER0dzaRJk+jc2XpJ9wsXLlC7dm3y8/Np1qwZM2bMIDY2tsT+srOzyc7OtrxPT0+/gicq2YKfF/D2zrcB+Efrf9C/Xv8yX1uQkcHZfxcW7w/1vIutKWm4O5t5qnfDIm0b3NSR8CbNyc7MKLG/P1Mz+GDGD1Sv68PtY2MxO9l9RwIREZEKVdF5/tJS9G5Nm/LV0YsAtHX9k7N5efgEBVOtZi0Aju0/x8Xzubh4OFKroZ9NYxAREbkRVXSOFxEREftRnhcRkWud3Sqwp0+fJj8/n+Bg65lgwcHBnDhxothrqlevzptvvsny5ctZsWIF9evXp2vXrmzYsMHSpkGDBixcuJBPP/2UDz74AFdXV9q1a8f+/ftLjOWFF17Ax8fH8goNDS2xbXm998t7/Cv5XwCMjxvPoAaDynX92aXLyE9LwzGsNs+cDQLgkc6RhPgUv7y+q6cnPkElz67b/tURMAqXolcBXkREbgQVmecBLvx3KXpT65tIPnoOAP+zvwGFs+AvLTt/YGvhLPi6sUGYzcrBIiIiV6uic7yIiIjYj/K8iIhc6+z+L8B/3w/VMIwS90itX78+DzzwAM2bN6dt27bMmzePm2++mZdfftnSpk2bNtxzzz00bdqUDh068OGHH1KvXj1ee+21EmN4+umnSUtLs7yOHj1qk2czDIO9f+4FYHSz0QyNGVqu6wuyszmz8D0AtrW7hRMXcgmr5s6I9hFW7fJyczn+657L9pd++iK//li4F22L3uHlikVERORaVVF5HsDIySEzaTMAO2tFYxjQqKY31ar54uHrR53YOADy8wv4bcelpeiDbHZ/ERGRG1lF5ngRERGxL+X5yrNw4UJ8fX0r9B7h4eEkJCRU6D1ERKoauxXhAwICMJvNRWa9nzx5ssjs+NK0adOm1FnuDg4OtGzZstQ2Li4ueHt7W71swWQy8Xz750mIT+Chpg+V+/pzy5eTf+o0puBgpmfXBuCZmxvi6mS2arcvaQMfTJ7Ap3OeL7W/HV+nYBQYhDb0IzjcNs8oIiJS1VVUngfI3L6DgsxMzP7+rM7yAqBLg2A6DB7GQ/MXEdakGQC/7z1LdkYebt7O1KynpehFRERsoSJzvIiIiNjXjZDnhw0bRt++fYs9Fx4ejslksnrVqlXL6vz1XNROTEzEZDJx7tw5e4ciInLF7FaEd3Z2pkWLFqxZs8bq+Jo1a7jpppvK3M+OHTuoXr16iecNwyA5ObnUNhXJ7GCma+2u5b7OyM3lz7ffAWBd055kFjjQPjKAHtHWH1AwDINtn/8HgJC69UrsLyMtmz1JqYBmwYuIiNjKpaXo3dq1Y8P+PwHo2qBwprvJwQEHh8IPztWq78fNjzShXb+6ODgUv+KPiIiIiIiIiMgl06dPJzU11fLasWOHvUMSEZFysOty9I8//jhvv/027777Lnv27GHcuHGkpKQwcuRIoHDJmfvuu8/SPiEhgZUrV7J//3527drF008/zfLlyxk9erSlzbRp0/jqq684ePAgycnJjBgxguTkZEuf14q0zz4n9/hxCnyr8apLQ8wOJp69NbrIUv0pv/zEqZTDOLm40qRrrxL7S16TQn5eAdXr+lAjyreCoxcREbkxZGzYCMCJ+rFcyM4jwNOF6gXnMAoKrNqZHR0IbxxA/Tb2+VCgiIiIiIiIyA3DMCAnwz4vw7DZY3h5eRESEmJ5BQYGXlE/c+bMoXHjxnh4eBAaGsqoUaO4cOFCkXYrV66kXr16uLq60r17d6stAH766Sc6d+6Ml5cX3t7etGjRgq1bt1rOL1++nJiYGFxcXAgPD2f27NklxnP48GFMJhPJycmWY+fOncNkMpGYmMjhw4fp3LkzAH5+fphMJoYNGwYUTkr85z//SZ06dXBzc6Np06Z8/PHHZRqHs2fPMmTIEAIDA3FzcyMqKor33ivcDri4mffJycmYTCYOHz4M/G/Z/s8//5z69evj7u7OnXfeSUZGBosWLSI8PBw/Pz8effRR8vPzyxSTiFzfHO1584EDB3LmzBnLJ7oaNWrE6tWrqV27cOn11NRUUlJSLO1zcnIYP348x44dw83NjZiYGFatWkWfPn0sbc6dO8eDDz7IiRMn8PHxITY2lg0bNtCqVatKf74rZeTnc+bNNwH4rF4ncsxODGtTm6hgryJtt61aCUBMfDdcPT2L76/A4Pd9Z4HCWfB/L+SLiIhI+eWmppK9fz84OLDWMxw4Q9dwNxZPfBQPH1+GJyzA2c3d3mGKiIiIiIiI3FhyM+H5Gva59z+Og7OHfe5dAgcHB+bOnUt4eDiHDh1i1KhRPPnkk8ybN8/SJjMzk+eee45Fixbh7OzMqFGjuPvuu/nuu+8AGDJkCLGxscyfPx+z2UxycjJOTk4AbNu2jQEDBjB16lQGDhxIUlISo0aNwt/f31I8L4/Q0FCWL19O//792bdvH97e3ri5uQEwadIkVqxYwfz584mKimLDhg3cc889BAYG0qlTp1L7nTx5Mrt37+aLL74gICCAAwcOcPHixXLFlpmZydy5c1m6dCnnz5+nX79+9OvXD19fX1avXs3Bgwfp378/7du3Z+DAgeV+dhG5vti1CA8watQoRo0aVey5hQsXWr1/8sknefLJJ0vt75VXXuGVV16xVXh2cf7rr8k5fJg8d08WBbbAz92Jcd2KLjV/5thRDu3YCiYTzfvcVmJ/JgcTdz3dkpRfzhAWU60iQxcREblh5P7+O45BQTjVqMEXRwr/0hZrOsExw8DDt5qlAP/d8gOYTNCoY028A9zsGbKIiIiIiIiIXCMmTpzIpEmTLO+ff/55xowZU+5+HnvsMcvXERERzJgxg4cfftiqCJ+bm8vrr79O69atAVi0aBENGzbkxx9/pFWrVqSkpDBhwgQaNGgAQFRUlOXaOXPm0LVrVyZPngxAvXr12L17Ny+99NIVFeHNZjPVqhXWMYKCgvD19QUgIyODOXPm8M0339C2bVsA6tSpw6ZNm1iwYMFli/ApKSnExsYSFxcHQHh4eLljy83NZf78+dStWxeAO++8k8WLF/PHH3/g6elJdHQ0nTt35ttvv1URXkTsX4QXa4ZhcHpB4Sz4/0S046KTK5N61sfH3alI2+2rPwEgMq41fiGlf7LPwcFEeJMA2wcsIiJyg3Jv2ZLI9Ykc2H+MlHd/wtnsgMuJfQDUadESgNycfH7ZcIy87HzqxAaqCC8iIiIiIiJS0ZzcC2ek2+veNjJhwgSrInZAwJX9+/63337L888/z+7du0lPTycvL4+srCwyMjLw8Cicte/o6GgpTgM0aNAAX19f9uzZQ6tWrXj88ce5//77Wbx4Md26deOuu+6yFKL37NnD7bffbnXPdu3akZCQQH5+Pmaz+Yri/rvdu3eTlZVF9+7drY7n5OQQGxt72esffvhh+vfvz/bt2+nRowd9+/blpptuKlcM7u7ulucGCA4OJjw8HM+/rFIcHBzMyZMny9WviFyfVISvYi4kJpK9dy+5zq58WLsd0dW9ubtlWJF2BQX5HNu7G4AWN/ctsb/Tv5/HL9gDs5NDRYUsIiJywzKZTHx7IhuANhG+/L4pGYA6sYVF+CM7z5CXnY+XvyvB4d72ClNERERERETkxmEyVbkl4a9EQEAAkZGRV9XHkSNH6NOnDyNHjmTGjBlUq1aNTZs2MWLECHJzc63aFreN7aVjU6dOZfDgwaxatYovvviCZ599lqVLl3LHHXdgGEaRaw3DKDEmBweHIm3+HktxCgoKAFi1ahU1a9a0Oufi4nLZ63v37s2RI0dYtWoVa9eupWvXrjzyyCO8/PLLZY7p0hL8l5hMpmKPXYpVRG5sqsxWIYZhcOaNBQB8UrsNF5zdmXpbDGaHosnPwcHMfS+9Rv+np1GzQUyx/eXm5PPpq8ksnpTE2RMZFRq7iIjIjWrdnsJPN3fwOk/OxUzcvH0IqVu4LNuBrX8AENkiqNi/zIqIiIiIiIiIVJStW7eSl5fH7NmzadOmDfXq1eP48aKrBOTl5bF161bL+3379nHu3DnL8vNQuMz8uHHj+Prrr+nXrx/vvfceANHR0WzatMmqv6SkJOrVq1fsLPjAwEAAUlNTLceSk5Ot2jg7OwOQn59vORYdHY2LiwspKSlERkZavUJDQ8s0HoGBgQwbNoz333+fhIQE3nzzzTLHJCJSXpoJX4Vk/vADF3/6iVyzIyvqduSWJtVpFVHyHu4ODmbCm7Uo8fzuTce5eD4XL39XvAO1/K2IiIitpWXmsvXIWQBC0g6STuEseJODAzlZeRz+5QwAUXHBdoxSRERERERERKqitLS0IsXeS/uh20LdunXJy8vjtdde49Zbb+W7777jjTfeKNLOycmJRx99lLlz5+Lk5MTo0aNp06YNrVq14uLFi0yYMIE777yTiIgIfv/9d7Zs2UL//v0BeOKJJ2jZsiUzZsxg4MCBbN68mddff91qz/m/cnNzo02bNsyaNYvw8HBOnz7NpEmTrNrUrl0bk8nE559/Tp8+fXBzc8PLy4vx48czbtw4CgoKaN++Penp6SQlJeHp6cnQoUNLHYspU6bQokULYmJiyM7O5vPPP6dhw4YAlkL+1KlTmTlzJvv372f27NlXMuQiIhaaCV+FnP7vLPgvwlpx0cuXf/RpWGy7cydSyc8rfXmW/LwCktekANC8Z23MZn2rRUREbC3x15PkFxjUC/bk1J5kAOo0L9xD7fDPp8nPLcAnyI2AUM9SehERERERERGRG1FiYiKxsbFWrylTptis/2bNmjFnzhxefPFFGjVqxJIlS3jhhReKtHN3d2fixIkMHjyYtm3b4ubmxtKlSwEwm82cOXOG++67j3r16jFgwAB69+7NtGnTAGjevDkffvghS5cupVGjRkyZMoXp06db7Wf/d++++y65ubnExcUxduxYZs6caXW+Zs2aTJs2jaeeeorg4GBGjx4NwIwZM5gyZQovvPACDRs2pGfPnnz22WdERERcdiycnZ15+umnadKkCR07dsRsNlue0cnJiQ8++IC9e/fStGlTXnzxxSIxiYiUl8kobXOOG1R6ejo+Pj6kpaXh7V05+7deTE7m8N2DyDM5MLz709xzW2vGdosq0s4wDP795KNcPJ/ObY//gxr1GhTTW+Es+G/f34u7jzP3zmyLo1PRZV9ERKTqs0dOut7ZckzHLt3BJ8nHGdmxDveE53NwxxZa3zEAF3cPVs37mcM/nyauTzitb6tjo+hFROR6ojxvWxpPERGpKpSTbK+0Mc3KyuLQoUNERETg6upqpwhFpCrS7wepCGXN81qOvoq4NAv+m9AWONeowUOdiv/H+pSdP3E65TBOLq5Uq1mr2DYF+QVs++oIALHdw1SAFxERqQB5+QUk7jsFQLfoYGqFV6NWdCOg8ENz3gGuuHo6ERkXZM8wRURERERERERERKSSaY3yKiBr714uJCaSj4kP63XhmZsb4lpC4Xzbqv8A0Khzd1w9il/a9sD2k6SfuoirhxPR7WtUWNwiIiI3su0p50i7mIuvuxOxYX5W50wmEx0G1OP/vdgO/xpail5EREREREREbG/JkiV4enoW+4qJibF3eJVq5MiRJY7FyJEj7R2eiNyANBO+Cji9oHAW/KaaTQltUp/ejUKKbXfm9xQOJW8Dk4nmvW8rsb8/DqYD0KRLLZxd9S0WERGpCLX93flHnwbkXLxI4sI3qBPbkvBmLTCZTJY2DmZ93lFEREREREREKsZtt91G69atiz3n5ORUydHY1/Tp0xk/fnyx57QthIjYgyq0dpZ98BDpX36FCfiwfhf+dWuM1T/e/9W21Z8AEBnXBt+Q6iX22WFgPeq3CcEn0K0iQhYREREg2NuVBzvWZf8PSXz67iqO/LyD4bFvkpWRy9nUDELq+GByKD6ni4iIiIiIiIhcLS8vL7y8vOwdRpUQFBREUJC2BBSRqkPTs+zs1JtvYjIMvg+Jpl2PtjSsXvwnsjLT09i94RsAWtzS97L9BtX2xsX9xvqkm4iIiD38tv1HACJiW/73/UlWvLydz//1sz3DEhERERERERERERE7URHejnKPHSPts88A+LxxTx7vXq/Etge3byE/N5eQulHUrB9dbJs/UzPIOJddIbGKiIhIUUZBAYd2bAWgTvPCIvz+rScBqFnP115hiYiIiIiIiIiIiIgdaTl6Ozr+xls45OezIzCK2wf3wM/DucS2jeK7ERReh7yc7BKXq1//f/s4cSiNbsOiiYoLrqiwRURE5L/+OHiAzLRzOLu5UathDBlp2Rz/9SwAkS20BJqIiIiIiIiIiIjIjUhFeDvJPXmS8/9ZgRlIanMrCa3CLntNUHidEs+lHjjH8f3ncDCbqF7Xx4aRioiISEkO7tgCQO0msZgdnfht++8YBgSFe+Md4Gbn6ERERERERERERETEHrQcvZ0c+NebmPNy2V2tNoMf6oujufhvhWEYZKanXba/bV8eAaBBmxA8/VxtGquIiIgU7+D2wiJ8neatADiw7Q8AouI0C15ERERERERERETkRqUivB3k/XmWnBUfA3Cg+53cFBlYYtsjO5N58+GhfLNwQYltTqWc58gvZzCZILZnbZvHKyIiIkXlZmeRlXEBgIhmLbhwNovUA4UfnNNS9CIiIiIiIiIiV8ZkMrFy5coK63/q1Kk0a9aswvqvCGWJ+fDhw5hMJpKTkyslJhEpnYrwdvDjnDdwzs3moG9NBo0ZVGrbbatWkp+XV3qbLw8DEBkXjG+Qu63CFBERkVI4ubgy4tW3GDH3bTx8/Tj002kAqkf6aFUaERERERERESnVsGHD6Nu3b7HnwsPDMZlMVq9atWpZnU9ISKicQAWw/5iPHz+edevWWd6X9vNT0VTsFykb7QlfyTLPpuH86UcApN0xmDB/jxLbnj56hMPJ28Bkonnv24tt82dqBr/tOAVAi16aBS8iIlKZTCYTvsEhADTqWBP/Wp5gGHaOSkRERERERESuddOnT+eBBx6wvDebzXaMRuzN09MTT09Pe4dhMzk5OTg7O9s7DJEKpZnwlWzNrPl45Fwk1TuY28cMKbXt9tWfABDVsq3lH/j/7vTv53F0dCCiaQD+Na+fX8AiIiLXGpODiRqRvtSI8rN3KCIiIiIiIiI3LMMwyMzNtMvLsOEH8728vAgJCbG8AgNL3ta2NFOnTiUsLAwXFxdq1KjBmDFjLOeKW/bd19eXhQsXAv+b8fzhhx/SoUMH3NzcaNmyJb/++itbtmwhLi4OT09PevXqxalTp8oUz5YtW+jevTsBAQH4+PjQqVMntm/fXqRdamoqvXv3xs3NjYiICD766CPLuZycHEaPHk316tVxdXUlPDycF154wXI+JSWF22+/HU9PT7y9vRkwYAB//PFHiTHFx8fz2GOPWR3r27cvw4YNs5w/cuQI48aNs6xMcElSUhIdO3bEzc2N0NBQxowZQ0ZGxmXH4bXXXqNx48aW9ytXrsRkMvGvf/3Lcqxnz548/fTTgPVy9FOnTmXRokV88sknlngSExMt1x08eJDOnTvj7u5O06ZN2bx5s9W9ly9fTkxMDC4uLoSHhzN79myr85f7uYiIiAAgNjYWk8lEfHz8ZZ/30sz9F154gRo1alCvXj0A3n//feLi4iw/74MHD+bkyZOW61q0aGEVX9++fXF0dCQ9PR2AEydOYDKZ2Ldv32VjEKlsmglfiX4/cZagL5cDYLpnKB5uLiW2zUxPY/fGbwFocXPfEtvVaxlCaINq5Gbn2zRWEREREREREREREZFrzcW8i7T+v9Z2ufcPg3/A3anqbBn78ccf88orr7B06VJiYmI4ceIEP/30U7n7efbZZ0lISCAsLIzhw4czaNAgvL29efXVV3F3d2fAgAFMmTKF+fPnX7av8+fPM3ToUObOnQvA7Nmz6dOnD/v378fLy8vSbvLkycyaNYtXX32VxYsXM2jQIBo1akTDhg2ZO3cun376KR9++CFhYWEcPXqUo0ePAoUfwujbty8eHh6sX7+evLw8Ro0axcCBA60K1eWxYsUKmjZtyoMPPmi1OsHOnTvp2bMnM2bM4J133uHUqVOMHj2a0aNH895775XaZ3x8PGPHjuX06dMEBASwfv16y38feeQR8vLySEpKYty4cUWuHT9+PHv27CE9Pd1yn2rVqnH8+HEAnnnmGV5++WWioqJ45plnGDRoEAcOHMDR0ZFt27YxYMAApk6dysCBA0lKSmLUqFH4+/tbPnRwOT/++COtWrVi7dq1xMTElHlG+7p16/D29mbNmjWWD6zk5OQwY8YM6tevz8mTJxk3bhzDhg1j9erVlnFKTEzkiSeewDAMNm7ciJ+fH5s2baJPnz58++23hISEUL9+/TLFIFKZVISvRKtmvUHH7Auc9Q6g08jSZ8H/9PVq8nNzCYmsR436DUtt6+bljJtXqU1ERESkAn06NxnvADfieofj6Vfyh+xERERERERERMpi4sSJTJo0yfL++eeft5rFXhYpKSmEhITQrVs3nJycCAsLo1WrVuWOZfz48fTs2ROAsWPHMmjQINatW0e7du0AGDFihGWW9OV06dLF6v2CBQvw8/Nj/fr13HLLLZbjd911F/fffz8AM2bMYM2aNbz22mvMmzePlJQUoqKiaN++PSaTidq1/7dV79q1a/n55585dOgQoaGhACxevJiYmBi2bNlCy5Yty/381apVw2w2W2ZrX/LSSy8xePBgyyz6qKgo5s6dS6dOnZg/fz6urq4l9tmoUSP8/f1Zv349/fv3txSaX3nlFaBwxYCsrCzat29f5FpPT0/c3NzIzs62iueS8ePHc/PNNwMwbdo0YmJiOHDgAA0aNGDOnDl07dqVyZMnA1CvXj12797NSy+9VOYi/KVVGfz9/Yu9f0k8PDx4++23rYr2w4cPt3xdp04d5s6dS6tWrbhw4QKenp7Ex8fzzjvvUFBQwM6dOzGbzdxzzz0kJibSp08fEhMT6dSpU5ljEKlMKsJXkh/2naDh+sLl5X3+3//DoZRPBhkFBfySuAYonAX/16VNLslIyyb9dBbV6/pUTMAiIiJSJuf+yOTo7j8xOZhofVuEvcMRERERERERuaG5Obrxw+Af7HZvW5kwYYJVUTQgIKDcfdx1110kJCRQp04devXqRZ8+fbj11ltxdCxfaahJkyaWr4ODgwGsllIPDg62WkK8NCdPnmTKlCl88803/PHHH+Tn55OZmUlKSopVu7Zt2xZ5n5ycDBQubd69e3fq169Pr169uOWWW+jRowcAe/bsITQ01FKAB4iOjsbX15c9e/ZcURG+JNu2bePAgQMsWbLEcswwDAoKCjh06BANG5Y8wdJkMtGxY0cSExPp2rUru3btYuTIkbz88svs2bOHxMREmjdvfkX7wP/1+1W9enWgcNwbNGjAnj17uP32263at2vXjoSEBPLz8zGbzeW+X1k1bty4yKz5HTt2MHXqVJKTk/nzzz8pKCgACj9AEh0dTceOHTl//jw7duzgu+++o1OnTnTu3JmZM2cCkJiYWGQrAZGqQkX4SpBfYPDFK+8x8GIamV5+xA4vfRa8ycGBIc+/wq7166jXul2xbZLXpJC89ihNu4TSfkBURYQtIiIiZbB/a+GeYqEN/XDzLNvyWyIiIiIiIiJSMUwmU5VaEv5KBQQEEBkZeVV9hIaGsm/fPtasWcPatWsZNWoUL730EuvXr8fJyQmTyVRkH/vc3Nwi/Tg5OVm+vjRp8O/HLhVPL2fYsGGcOnWKhIQEateujYuLC23btiUnJ+ey1166d/PmzTl06BBffPEFa9euZcCAAXTr1o2PP/4YwzCKndhY0nEABweHMo3D3xUUFPDQQw8Vu0JBWFjYZa+Pj4/nzTffZOPGjTRt2hRfX186duzI+vXrSUxMLNNe68Up7vt16ftT3Dj8/dnL+nNRXh4eHlbvMzIy6NGjBz169OD9998nMDCQlJQUevbsafl58PHxoVmzZiQmJpKUlESXLl3o0KEDycnJ7N+/n19//fWKx0mkojnYO4AbwdLvD9F+S+H+FUEj/h8OLpdfptbd24eWt/bDoZhPHWVdyOWXjYV7e9Rq6GfbYEVERKRcDmwr/KR3ZItgO0ciIiIiIiIiImLNzc2N2267jblz55KYmMjmzZvZuXMnULiseGpqqqXt/v37yczMrNB4Nm7cyJgxY+jTpw8xMTG4uLhw+vTpIu2+//77Iu8bNGhgee/t7c3AgQN56623WLZsGcuXL+fPP/8kOjqalJQUyx7xALt37yYtLa3Emel/H4f8/Hx++eUXqzbOzs7k5+dbHWvevDm7du0iMjKyyKss+6THx8eza9cuPv74Y0shuVOnTqxdu5akpKRSl1kvLp6yiI6OZtOmTVbHkpKSqFevnmUW/OV+Li4925Xc/6/27t3L6dOnmTVrFh06dKBBgwbFrqgQHx/Pt99+y4YNG4iPj8fX15fo6GhmzpxJUFBQqSsOiNiTZsJXsLTMXL57exmPZpwm18OLmvcOLrV9bk42Ts6lF+l/+uYoedn5BIR6UruRvy3DFRERkXI4c+wCfx7PwMHRRJ1m5V8WTkRERERERERuXGlpaZYl1i+pVq2azfpfuHAh+fn5tG7dGnd3dxYvXoybm5tlD/UuXbrw+uuv06ZNGwoKCpg4caLVLOqKEBkZyeLFi4mLiyM9PZ0JEybg5lZ0Gf+PPvqIuLg42rdvz5IlS/jxxx955513AHjllVeoXr06zZo1w8HBgY8++oiQkBB8fX3p1q0bTZo0YciQISQkJJCXl8eoUaPo1KkTcXFxxcbUpUsXHn/8cVatWkXdunV55ZVXOHfunFWb8PBwNmzYwN13342LiwsBAQFMnDiRNm3a8Mgjj/DAAw/g4eHBnj17LPvXX86lfeGXLFnCJ58UbmccHx/PE088AVDsfvB/jeerr75i3759+Pv74+NTtq2Ln3jiCVq2bMmMGTMYOHAgmzdv5vXXX2fevHlW41Haz0VQUBBubm58+eWX1KpVC1dX1zLf/6/CwsJwdnbmtddeY+TIkfzyyy/MmDGjSLv4+HheffVVqlWrRnR0tOXYa6+9Rr9+/cp9X5HKopnwFeyVr/dyyy9fAxD8/4bi8LflNv7u05efY9nUpzh5+GCx53Mu5rEz8XcAWvQKL3H5FBEREal4l2bBh0X74+JesX9JFREREREREZHrS2JiIrGxsVavKVOm2Kx/X19f3nrrLdq1a0eTJk1Yt24dn332Gf7+hZP7Zs+eTWhoKB07dmTw4MGMHz8ed/eKXcr/3Xff5ezZs8TGxnLvvfcyZswYgoKCirSbNm0aS5cupUmTJixatIglS5ZYCrCenp68+OKLxMXF0bJlSw4fPszq1atxcHDAZDKxcuVK/Pz86NixI926daNOnTosW7asxJiGDx/O0KFDue++++jUqRMRERF07tzZqs306dM5fPgwdevWJTAwECjce339+vXs37+fDh06EBsby+TJky37sF+OyWSyzHbv0KGDpU8fHx9iY2Px9vYu8doHHniA+vXrExcXR2BgIN99912Z7tm8eXM+/PBDli5dSqNGjZgyZQrTp09n2LBhljaX+7lwdHRk7ty5LFiwgBo1ahTZY76sAgMDWbhwIR999BHR0dHMmjWLl19+uUi7jh07AoWrBFyqiXXq1In8/PxSVwsQsTeT8feNHYT09HR8fHxIS0sr9ZdcWSx6aRGt3plFgZs7DRK/wVzKp4FOHz3CovGPgMnEiFffwjc4pEibbV8e5vuVB/ELcWfQlNaYHFSEFxG5ntkyJ0khW42pYRgsefZ70k5epPvwaOq1Kpq3RURESqM8b1saTxERqSqUk2yvtDHNysri0KFDRERE4OrqaqcIRaQq0u8HqQhlzfOaCV/BOm3/CoDAe4aUWoAH2L66cLmRqJZtiy3A5+bk89O6wn1MmveqrQK8iIiIHRXkGdRpFohfiDvhTbQUvYiIiIiIiIiIiIgUUhG+gtV46Z/4DR5MtWFDS22XmXaO3Ru/BaDFzX2LbZN+6iKOzma8/F2Jahls61BFRESkHMxODtzUL5LBU9vg7Opo73BERERERERE5AazZMkSPD09i33FxMTYJaaS4vH09GTjxo12ickeNm7cWOpYXG/0fRcpSv9iXMGca9UiZMrky7ZL/no1+bm5hETWo0b9hsW28a/pyZDpbTh/OguzWZ+fEBERERERERERERG5Ud122220bt262HNOTk6VHE2h5OTkEs/VrFmz8gKxs7i4uFLH4nqj77tIUSrCVwF5OTkkf70KgBZ9bsdkKnmZebPZAd9g98oKTUREREREREREREREqiAvLy+8vLzsHYaVyMhIe4dQJbi5ud1QY3EjPatIWWk6dRWwb/NGLqan4eUfSFTrdkXOFxQY/LrlBPn5BXaITkREREREREREREREREREykoz4auABu064WA2A2B2LPotObDtD9a8s5vkNUe56+m4UmfKi4iIiIiIiIiIiIiIiIiI/agIXwWYHR1p2D6+2HNGgcG2L44AUKdZgArwIiIiIiIiIiIiIiIiIiJVmJajtzOjoPQl5g/vPM2fxzNwdjXTOL5WJUUlIiIiIiIiIiIiIiIiIiJXQkV4Ozqdcpi3x9zPtlWfFHveMAy2/ncWfKP4Wri4O1VmeCIiIiIiIiIiIiIiIiIiUk4qwtvRttWfkn7qJMf27Sr2/O97z3LycDqOTg406xpaydGJiIiIiIiIiIiIiMj1bOHChfj6+lboPcLDw0lISKjQe1zvpk6dSrNmzUptc/jwYUwmE8nJyZUSk4iUTkV4O8k4d5Y9m74FoMXNdxTbZtsXhwGI7lADNy/nygpNREREREREREREREQq0LBhw+jbt2+x58LDwzGZTFavWrVqWZ2/novaiYmJmEwmzp07Z+9Qqozx48ezbt06y/vSfn4qmor9ImXjaO8AblQ/rVlNfm4u1SPrU6NegyLnc7PzMTmYcHA0Eds9zA4RioiIiIiIiIiIiIiIPUyfPp0HHnjA8t5sNtsxGrE3T09PPD097R2GzeTk5ODsrMmncn3TTHg7yM3JJvnr1QC0uKUvJpOpSBsnFzO3PxbLkKlt8PRzrewQRURERERERERERESuOYZhUJCZaZeXYRg2ew4vLy9CQkIsr8DAwCvqZ86cOTRu3BgPDw9CQ0MZNWoUFy5cKNJu5cqV1KtXD1dXV7p3787Ro0ct53766Sc6d+6Ml5cX3t7etGjRgq1bt1rOL1++nJiYGFxcXAgPD2f27NklxlPcLOpz585hMplITEzk8OHDdO7cGQA/Pz9MJhPDhg0DCr+3//znP6lTpw5ubm40bdqUjz/+uEzjcPbsWYYMGUJgYCBubm5ERUXx3nvvAcXPvE9OTsZkMnH48GHgf8v2f/7559SvXx93d3fuvPNOMjIyWLRoEeHh4fj5+fHoo4+Sn59/2Xhee+01GjdubHm/cuVKTCYT//rXvyzHevbsydNPPw1YL0c/depUFi1axCeffGJZKSExMdFy3cGDB+ncuTPu7u40bdqUzZs3W937ct8vk8nEypUrrY75+vqycOFCACIiIgCIjY3FZDIRHx9/2ee9NHP/hRdeoEaNGtSrVw+A999/n7i4OMvP++DBgzl58qTluhYtWljF17dvXxwdHUlPTwfgxIkTmEwm9u3bd9kYRCqbZsLbwZ6NiVxMT8MrIJCoVjeV2tY7wK1yghIRERERERERERERucYZFy+yr3kLu9y7/vZtmNzd7XLvkjg4ODB37lzCw8M5dOgQo0aN4sknn2TevHmWNpmZmTz33HMsWrQIZ2dnRo0axd133813330HwJAhQ4iNjWX+/PmYzWaSk5NxcnICYNu2bQwYMICpU6cycOBAkpKSGDVqFP7+/pbieXmEhoayfPly+vfvz759+/D29sbNrbBOMmnSJFasWMH8+fOJiopiw4YN3HPPPQQGBtKpU6dS+508eTK7d+/miy++ICAggAMHDnDx4sVyxZaZmcncuXNZunQp58+fp1+/fvTr1w9fX19Wr17NwYMH6d+/P+3bt2fgwIGl9hUfH8/YsWM5ffo0AQEBrF+/3vLfRx55hLy8PJKSkhg3blyRa8ePH8+ePXtIT0+3fJCgWrVqHD9+HIBnnnmGl19+maioKJ555hkGDRrEgQMHcHR0tMn368cff6RVq1asXbuWmJiYMs9oX7duHd7e3qxZs8bygZWcnBxmzJhB/fr1OXnyJOPGjWPYsGGsXr3aMk6JiYk88cQTGIbBxo0b8fPzY9OmTfTp04dvv/2WkJAQ6tevX6YYRCqTivCVzDAMtq/+BIDmvW/DoZglZPb9cILQhtVw99ZSHCIiIiIiIiIiIiIiN5qJEycyadIky/vnn3+eMWPGlLufxx57zPJ1REQEM2bM4OGHH7Yqwufm5vL666/TunVrABYtWkTDhg0txdaUlBQmTJhAgwaFW+tGRUVZrp0zZw5du3Zl8uTJANSrV4/du3fz0ksvXVER3mw2U61aNQCCgoLw9fUFICMjgzlz5vDNN9/Qtm1bAOrUqcOmTZtYsGDBZYvwKSkpxMbGEhcXB0B4eHi5Y8vNzWX+/PnUrVsXgDvvvJPFixfzxx9/4OnpSXR0NJ07d+bbb7+9bBG+UaNG+Pv7s379evr3728pNL/yyisAbNmyhaysLNq3b1/kWk9PT9zc3MjOziYkJKTI+fHjx3PzzTcDMG3aNGJiYjhw4AANGjSwyffr0qoM/v7+xd6/JB4eHrz99ttWRfvhw4dbvq5Tpw5z586lVatWXLhwAU9PT+Lj43nnnXcoKChg586dmM1m7rnnHhITE+nTpw+JiYmX/d6L2IuK8JXMZDLRc+RYkr/6nMZdehQ5/2dqBmsX7sbRyYH7nrsJNy8V4kVEREREREREREREysLk5kb97dvsdm9bmTBhglVRNCAg4Ir6+fbbb3n++efZvXs36enp5OXlkZWVRUZGBh4eHgA4OjpaitMADRo0wNfXlz179tCqVSsef/xx7r//fhYvXky3bt246667LIXoPXv2cPvtt1vds127diQkJJCfn2+zvex3795NVlYW3bt3tzqek5NDbGzsZa9/+OGH6d+/P9u3b6dHjx707duXm24qfaXiv3N3d7c8N0BwcDDh4eFWe7UHBwdbLadeEpPJRMeOHUlMTKRr167s2rWLkSNH8vLLL7Nnzx4SExNp3rz5Fe0D36RJE8vX1atXB+DkyZM0aNCg0r5fxWncuHGRWfM7duxg6tSpJCcn8+eff1JQUAAUfmgiOjqajh07cv78eXbs2MF3331Hp06d6Ny5MzNnzgQKtxL46wdNRKoSFeHtoHpUfapHFb80xvavjoABoQ2rqQAvIiIiIiIiIiIiIlIOJpOpyi0JfyUCAgKIjIy8qj6OHDlCnz59GDlyJDNmzKBatWps2rSJESNGkJuba9XWZDIVuf7SsalTpzJ48GBWrVrFF198wbPPPsvSpUu54447MAyjyLWXlhovjoODQ5E2f4+lOJeKs6tWraJmzZpW51xcXC57fe/evTly5AirVq1i7dq1dO3alUceeYSXX365zDFdWoL/EpPJVOyxS7FeTnx8PG+++SYbN26kadOm+Pr60rFjR9avX09iYmKZ9lovzl9juvS9uRRTWb5fJpOpyLGyfI8u59KHPi7JyMigR48e9OjRg/fff5/AwEBSUlLo2bMnOTk5APj4+NCsWTMSExNJSkqiS5cudOjQgeTkZPbv38+vv/56xeMkUtEc7B2A/E/66Yv8+uMfALToHW7fYERERERERERERERE5Jq1detW8vLymD17Nm3atKFevXqWfcP/Ki8vj61bt1re79u3j3PnzlmWn4fCZcvHjRvH119/Tb9+/Sx7kUdHR7Np0yar/pKSkqhXr16xs6ovLWWemppqOZacnGzV5tJs6fz8fMux6OhoXFxcSElJITIy0uoVGhpapvEIDAxk2LBhvP/++yQkJPDmm2+WOaaKEB8fz65du/j4448theROnTqxdu1akpKSSl1m3dnZ2Wp8yqos36/AwECrsdi/fz+ZmZlW9wau6P5/tXfvXk6fPs2sWbPo0KEDDRo0KHYVgfj4eL799ls2bNhAfHw8vr6+REdHM3PmTIKCgmjYsOFVxSFSUTQTvhKte/cNjIICWt7WH5+g4CLnt3+dglFgENrQj+BwbztEKCIiIiIiIiIiIiIilSEtLa1IsffSfui2ULduXfLy8njttde49dZb+e6773jjjTeKtHNycuLRRx9l7ty5ODk5MXr0aNq0aUOrVq24ePEiEyZM4M477yQiIoLff/+dLVu20L9/fwCeeOIJWrZsyYwZMxg4cCCbN2/m9ddft9pz/q/c3Nxo06YNs2bNIjw8nNOnTzNp0iSrNrVr18ZkMvH555/Tp08f3Nzc8PLyYvz48YwbN46CggLat29Peno6SUlJeHp6MnTo0FLHYsqUKbRo0YKYmBiys7P5/PPPLcXbS4X8qVOnMnPmTPbv38/s2bOvZMjL5dK+8EuWLOGTTz4BCgvOTzzxBECx+8FfEh4ezldffcW+ffvw9/fHx8enTPcsy/erS5cuvP7667Rp04aCggImTpxoNbs+KCgINzc3vvzyS2rVqoWrq2uZ7/9XYWFhODs789prrzFy5Eh++eUXZsyYUaRdfHw8r776KtWqVSM6Otpy7LXXXqNfv37lvq9IZdFM+EqSce4sO9d9yU9rVpNx7s9izmezJ6nwE2iaBS8iIiIiIiIiIiIicn1LTEwkNjbW6jVlyhSb9d+sWTPmzJnDiy++SKNGjViyZAkvvPBCkXbu7u5MnDiRwYMH07ZtW9zc3Fi6dCkAZrOZM2fOcN9991GvXj0GDBhA7969mTZtGgDNmzfnww8/ZOnSpTRq1IgpU6Ywffp0q/3s/+7dd98lNzeXuLg4xo4da9nf+5KaNWsybdo0nnrqKYKDgxk9ejQAM2bMYMqUKbzwwgs0bNiQnj178tlnnxEREXHZsXB2dubpp5+mSZMmdOzYEbPZbHlGJycnPvjgA/bu3UvTpk158cUXi8RUEUwmk2W2e4cOHYDC/dx9fHyIjY3F27vkyZoPPPAA9evXJy4ujsDAQL777rsy3bMs36/Zs2cTGhpKx44dGTx4MOPHj8f9L1s8ODo6MnfuXBYsWECNGjWK7DFfVoGBgSxcuJCPPvqI6OhoZs2axcsvv1ykXceOHYHCVQIuLaXfqVMn8vPzS10tQMTeTEZpm3PcoNLT0/Hx8SEtLa3UX3LlkfTREjZ//AHVo+ozeGbRT1Bt+ng/P609SvW6Ptwxvnmx+6+IiMiNpyJy0o1OYyoiIlWFcpJtaTxFRKSqUE6yvdLGNCsri0OHDhEREYGrq6udIhSRqki/H6QilDXPayZ8JcjNySb569UAtLj5jmLbmEwmzI4OtOgdrgK8iIiIiIiIiIiIiIiIiMg1SkX4SrBnYyIX09PwDgwiqlXbYtu06x/Jfc/fRFiM7fZ7ERERERERERERERGR69OSJUvw9PQs9hUTE2Pv8CrVyJEjSxyLkSNHVno8GzduLDEeT0/PSo+nopX2rBs3brR3eCJ24WjvAK53hmGwbdVKAGJ73YqD2VxiW3dv50qKSkRERERERERERERErmW33XYbrVu3Lvack5NTJUdjX9OnT2f8+PHFnrPHthBxcXEkJydX+n3tpbRnrVmzZuUFIlKFqAhfwQ7/tJ0/jx3F2c2Nxl16FDl/cMcpPKu5EFRbewOJiIiIiIiIiIiIiEjZeHl54eXlZe8wqoSgoCCCgoLsHYaFm5sbkZGR9g6j0txIzypSVirCV7Cg8Dq0vmMgZkdHXNw9rM7l5uST+H97uXg+l1sfbUpYjL+dohQREREREREREREREREREVtQEb6Cefj60f7ue4s9t3vTcS6ez8XL35WaDfwqOTIREREREREREREREREREbE1B3sHcKPKzysgeU0KAM171sZs1rdCRERERERERERERERERORap8qvnez7/gQXzmbj7uNMg7Yh9g5HRERERERERERERERERERsQEV4OyjIL2DbV0cAiO0ehqOT2c4RiYiIiIiIiIiIiIiIiIiILagIbwcHtp0k/dRFXD2ciOlQ097hiIiIiIiIiIiIiIiIiIiIjagIbwcmkwlPPxeadq2Fk4tmwYuIiIiIiIiIiIiI3ChMJlOpr2HDhlXIfTMyMpg4cSJ16tTB1dWVwMBA4uPj+fzzzy1t4uPjeeyxx4pcu3DhQnx9fYscv3jxIn5+flSrVo2LFy8WOR8eHm55Lnd3dxo1asSCBQts+VgiIlWSo70DuBFFtQymTrNACgzD3qGIiIiIiIiIiIiIiEglSk1NtXy9bNkypkyZwr59+yzH3NzcrNrn5ubi5OR01fcdOXIkP/74I6+//jrR0dGcOXOGpKQkzpw5c8V9Ll++nEaNGmEYBitWrGDIkCFF2kyfPp0HHniACxcusHDhQkaOHImvry8DBw68mscREanSNBPeTsxODjg5axa8iIiIiIiIiIiIiIit5Wbnl/jKy80ve9ucsrUtj5CQEMvLx8cHk8lkeZ+VlYWvry8ffvgh8fHxuLq68v777wPw3nvv0bBhQ1xdXWnQoAHz5s2z6vfYsWMMHDgQPz8//P39uf322zl8+LDl/GeffcY//vEP+vTpQ3h4OC1atODRRx9l6NCh5Yr/r9555x3uuece7rnnHt55551i23h5eRESEkJkZCQzZ84kKiqKlStXXvE9RUSuBZoJX4lSf0sj/fRFouKCcDDr8w8iIiIiIiIiIiIiIhXhzbHrSzxXu5E/t4xuann/7oSN5OUUFNu2RpQvdzzR3PL+388kkXUht0i7R97ochXRFjVx4kRmz57Ne++9h4uLC2+99RbPPvssr7/+OrGxsezYsYMHHngADw8Phg4dSmZmJp07d6ZDhw5s2LABR0dHZs6cSa9evfj5559xdnYmJCSE1atX069fP7y8vK46xt9++43NmzezYsUKDMPgscce4+DBg9SpU6fU61xdXcnNLTqGIiLXExXhK9H3K3/j+P5znDuZSetbS09CIiIiIiIiIiIiIiJyY3rsscfo16+f5f2MGTOYPXu25VhERAS7d+9mwYIFDB06lKVLl+Lg4MDbb7+NyWQCCmfO+/r6kpiYSI8ePXjzzTcZMmQI/v7+NG3alPbt23PnnXfSrl07q3vPmzePt99+2+pYXl4erq6uVsfeffddevfujZ+fHwC9evXi3XffZebMmcU+U15eHu+//z47d+7k4YcfvroBEhGp4lSErySpB85xfP85HMwmYtrXsHc4IiIiIiIiIiIiIiLXrQdf7VTiOdPfFqod/lKHktuarN/f99xNVxNWmcXFxVm+PnXqFEePHmXEiBE88MADluN5eXn4+PgAsG3bNg4cOFBkhntWVha//fYbAB07duTgwYN8//33fPfdd3zzzTe8+uqrTJs2jcmTJ1uuGTJkCM8884xVPytWrOD555+3vM/Pz2fRokW8+uqrlmP33HMP48aNY9q0aZjN/9uOd+LEiUyaNIns7GycnZ2ZMGECDz300NUMj4hIlacifCXZ+sURABq0CcHTz/UyrUVERERERERERERE5Eo5uZgv36iC214NDw8Py9cFBYVL5b/11lu0bt3aqt2lYndBQQEtWrRgyZIlRfoKDAy0fO3k5ESHDh3o0KEDTz31FDNnzmT69OlMnDgRZ2dnAHx8fIiMjLTqIygoyOr9V199ZdmD/q/y8/P5+uuv6d27t+XYhAkTGDZsGO7u7lSvXt0yU19E5HqmInwlOJVynpRdZzCZILZnbXuHIyIiIiIiIiIiIiIi14jg4GBq1qzJwYMHGTJkSLFtmjdvzrJlywgKCsLb27vMfUdHR5OXl0dWVpalCF8W77zzDnfffXeRGfOzZs3inXfesSrCBwQEFCnqi4hc71SErwTbvjwMQGRcML5B7vYNRkRERERERERERERErilTp05lzJgxeHt707t3b7Kzs9m6dStnz57l8ccfZ8iQIbz00kvcfvvtTJ8+nVq1apGSksKKFSuYMGECtWrVIj4+nkGDBhEXF4e/vz+7d+/mH//4B507dy5X4f7UqVN89tlnfPrppzRq1Mjq3NChQ7n55ps5deqU1Qx8EZEbjcPlm8jV+DM1g992nAKgRS/NghcRERERERERERERkfK5//77efvtt1m4cCGNGzemU6dOLFy4kIiICADc3d3ZsGEDYWFh9OvXj4YNGzJ8+HAuXrxoKbD37NmTRYsW0aNHDxo2bMijjz5Kz549+fDDD8sVy7///W88PDzo2rVrkXOdO3fGy8uLxYsXX/1Di4hcw0yGYRj2DqKqSU9Px8fHh7S0tHJ9+qs4p46eZ+OyX3H1cKLPw01sFKGIiNwobJmTpJDGVEREqgrlJNvSeIqISFWhnGR7pY1pVlYWhw4dIiIiAldXVztFKCJVkX4/SEUoa57XcvQVLDDUi37jW5Cbk2/vUEREREREREREREREREREpIJpOfpK4uRstncIIiIiIiIiIiIiIiIiIiJSwVSEFxERERERERERERERERERsREV4UVERERERERERERERERERGxERXgREREREREREREREREREREbURFeRERERERERERERERERETERlSEFxERERERERERERERERERsREV4UVERERERERERERERERERGxERXgREREREREREREREREREREbURFeRERERERERERERERERETERlSEFxERERERERERERERqUTDhg2jb9++xZ4LDw8nISHB6r3JZGLp0qVF2sbExGAymVi4cGGR9n9/zZo1y8ZPISIiJXG0dwAiIiIiIiIiIiIiIiJSstDQUN577z3uvvtuy7Hvv/+eEydO4OHhUaT99OnTeeCBB6yOeXl5VXicIiJSSEV4ERERERERERERERG5ruRmZZV4zuTggKOzc5na4mDCydnlsm2dXF3LH2Q5DBkyhFdeeYWjR48SGhoKwLvvvsuQIUP497//XaS9l5cXISEhFRqTiIiUTEV4ERERERERERERERG5rswdemeJ5yJi4+j31FTL+3kPDiEvO7vYtrWiGzHw2f8t4/7W6OFcPJ9epN0Tyz6/8mDLIDg4mJ49e7Jo0SImTZpEZmYmy5YtY/369cUW4UVExL60J7yIiIiIiIiIiIiIiEgVN3z4cBYuXIhhGHz88cfUrVuXZs2aFdt24sSJeHp6Wr0SExMrNV4RkRuZZsKLiIiIiIiIiIiIiMh1Zcyij0s8Z3Kwnp846s0lJXfkYLJ6+8Dr715VXFfj5ptv5qGHHmLDhg28++67DB8+vMS2EyZMYNiwYVbHatasWcERiojIJSrCi4iIiIiIiIiIiIjIdaU8e7RXVFtbc3R05N577+XZZ5/lhx9+4D//+U+JbQMCAoiMjKzE6ERE5K+0HL2IiIiIiIiIiIiIiMg1YPjw4axfv57bb78dPz8/e4cjIiIl0Ex4ERERERERERERERGRSpaWlkZycrLVsWrVqpV6TcOGDTl9+jTu7u6ltjt//jwnTpywOubu7o63t/cVxSoiIuWjIryIiIiIiIiIiIiIiEglS0xMJDY21urY0KFDL3udv7//ZdtMmTKFKVOmWB176KGHeOONN8oXpIiIXBEV4UVERERERERERERERCrRwoULWbhwYZnaHj58uNTz586dK1d7ERGpeNoTXkRERERERERERERERERExEZUhBcREREREREREREREREREbERFeFFRERERERERERERERERERsREV4ERERERERERERERERERERG1ERXkRERERERERERERErmmGYdg7BBGpYvR7QexJRXgREREREREREREREbkmmc1mAHJycuwciYhUNZd+L1z6PSFSmRztHYCIiIiIiIiIiIiIiMiVcHR0xN3dnVOnTuHk5ISDg+YeiggUFBRw6tQp3N3dcXRUOVQqn37qRERERERERERERETkmmQymahevTqHDh3iyJEj9g5HRKoQBwcHwsLCMJlM9g5FbkAqwouIiIiIiIiIiIiIyDXL2dmZqKgoLUkvIlacnZ21OobYjd2L8PPmzeOll14iNTWVmJgYEhIS6NChQ7FtExMT6dy5c5Hje/bsoUGDBpb3y5cvZ/Lkyfz222/UrVuX5557jjvuuKPCnkFEREREREREREREROzHwcEBV1dXe4chIiICgF0//rFs2TIee+wxnnnmGXbs2EGHDh3o3bs3KSkppV63b98+UlNTLa+oqCjLuc2bNzNw4EDuvfdefvrpJ+69914GDBjADz/8UNGPIyIiIiIiIiIiIiIiIiIiNzi7FuHnzJnDiBEjuP/++2nYsCEJCQmEhoYyf/78Uq8LCgoiJCTE8jKbzZZzCQkJdO/enaeffpoGDRrw9NNP07VrVxISEir4aURERERERERERERERERE5EZntyJ8Tk4O27Zto0ePHlbHe/ToQVJSUqnXxsbGUr16dbp27cq3335rdW7z5s1F+uzZs2epfWZnZ5Oenm71EhERkeuD8ryIiMj1STleRETk+qU8LyIi1zq77Ql/+vRp8vPzCQ4OtjoeHBzMiRMnir2mevXqvPnmm7Ro0YLs7GwWL15M165dSUxMpGPHjgCcOHGiXH0CvPDCC0ybNq3IcSV2ERGxt0u5yDAMO0dy7VKeFxGRqkp5/uoox4uISFWlHH/1lOdFRKSqKmueNxl2+j+B48ePU7NmTZKSkmjbtq3l+HPPPcfixYvZu3dvmfq59dZbMZlMfPrppwA4OzuzaNEiBg0aZGmzZMkSRowYQVZWVrF9ZGdnk52dbXl/7NgxoqOjr+SxREREKsTRo0epVauWvcO4JinPi4hIVac8f2WU40VEpKpTjr9yyvMiIlLVXS7P220mfEBAAGazucgM9ZMnTxaZyV6aNm3a8P7771veh4SElLtPFxcXXFxcLO89PT05evQoXl5emEymMsdyrUtPTyc0NJSjR4/i7e1t73CuCxpT29OY2p7G1PZsOaaGYXD+/Hlq1Khho+huPMrz+nNeETSmFUPjansaU9tTnq86lOML6c+57WlMbU9jansaU9tTjq9alOf157wiaExtT2NaMTSutmePPG+3IryzszMtWrRgzZo13HHHHZbja9as4fbbby9zPzt27KB69eqW923btmXNmjWMGzfOcuzrr7/mpptuKnOfDg4ON/QnFL29vfWH2sY0pranMbU9jant2WpMfXx8bBCNXHIj53n9Obc9jWnF0LjansbU9pTnq54bOceD/pxXBI2p7WlMbU9janvK8VXTjZzn9efc9jSmtqcxrRgaV9urzDxvtyI8wOOPP869995LXFwcbdu25c033yQlJYWRI0cC8PTTT3Ps2DH+/e9/A5CQkEB4eDgxMTHk5OTw/vvvs3z5cpYvX27pc+zYsXTs2JEXX3yR22+/nU8++YS1a9eyadMmuzyjiIiIiIiIiIiIiIiIiIjcOOxahB84cCBnzpxh+vTppKam0qhRI1avXk3t2rUBSE1NJSUlxdI+JyeH8ePHc+zYMdzc3IiJiWHVqlX06dPH0uamm25i6dKlTJo0icmTJ1O3bl2WLVtG69atK/35RERERERERERERERERETkxmLXIjzAqFGjGDVqVLHnFi5caPX+ySef5Mknn7xsn3feeSd33nmnLcK7obi4uPDss89a7bUjV0djansaU9vTmNqexlSqGv1M2p7GtGJoXG1PY2p7GlOpavQzaXsaU9vTmNqextT2NKZS1ehn0vY0pranMa0YGlfbs8eYmgzDMCrtbiIiIiIiIiIiIiIiIiIiItcxB3sHICIiIiIiIiIiIiIiIiIicr1QEV5ERERERERERERERERERMRGVIQXERERERERERERERERERGxERXhRUREREREREREREREREREbERF+OvcCy+8QMuWLfHy8iIoKIi+ffuyb98+qzaGYTB16lRq1KiBm5sb8fHx7Nq1y6pNdnY2jz76KAEBAXh4eHDbbbfx+++/V+ajVEkvvPACJpOJxx57zHJM43lljh07xj333IO/vz/u7u40a9aMbdu2Wc5rXMsnLy+PSZMmERERgZubG3Xq1GH69OkUFBRY2mhMS7dhwwZuvfVWatSogclkYuXKlVbnbTV+Z8+e5d5778XHxwcfHx/uvfdezp07V8FPJ9cD5fiKpzxvG8rxtqUcbxvK81LVKc9XLOV421Gety3l+aunHC9VnXJ8xVOetw3leNtSjr9612SON+S61rNnT+O9994zfvnlFyM5Odm4+eabjbCwMOPChQuWNrNmzTK8vLyM5cuXGzt37jQGDhxoVK9e3UhPT7e0GTlypFGzZk1jzZo1xvbt243OnTsbTZs2NfLy8uzxWFXCjz/+aISHhxtNmjQxxo4dazmu8Sy/P//806hdu7YxbNgw44cffjAOHTpkrF271jhw4ICljca1fGbOnGn4+/sbn3/+uXHo0CHjo48+Mjw9PY2EhARLG41p6VavXm0888wzxvLlyw3A+M9//mN13lbj16tXL6NRo0ZGUlKSkZSUZDRq1Mi45ZZbKusx5RqmHF+xlOdtQzne9pTjbUN5Xqo65fmKoxxvO8rztqc8f/WU46WqU46vWMrztqEcb3vK8VfvWszxKsLfYE6ePGkAxvr16w3DMIyCggIjJCTEmDVrlqVNVlaW4ePjY7zxxhuGYRjGuXPnDCcnJ2Pp0qWWNseOHTMcHByML7/8snIfoIo4f/68ERUVZaxZs8bo1KmTJaFrPK/MxIkTjfbt25d4XuNafjfffLMxfPhwq2P9+vUz7rnnHsMwNKbl9fekbqvx2717twEY33//vaXN5s2bDcDYu3dvBT+VXG+U421Hed52lONtTzne9pTn5VqgPG8byvG2pTxve8rztqUcL9cC5XjbUZ63HeV421OOt61rJcdrOfobTFpaGgDVqlUD4NChQ5w4cYIePXpY2ri4uNCpUyeSkpIA2LZtG7m5uVZtatSoQaNGjSxtbjSPPPIIN998M926dbM6rvG8Mp9++ilxcXHcddddBAUFERsby1tvvWU5r3Etv/bt27Nu3Tp+/fVXAH766Sc2bdpEnz59AI3p1bLV+G3evBkfHx9at25tadOmTRt8fHxu+DGW8lOOtx3ledtRjrc95fiKpzwvVZHyvG0ox9uW8rztKc9XLOV4qYqU421Hed52lONtTzm+YlXVHO94pQ8k1x7DMHj88cdp3749jRo1AuDEiRMABAcHW7UNDg7myJEjljbOzs74+fkVaXPp+hvJ0qVL2b59O1u2bClyTuN5ZQ4ePMj8+fN5/PHH+cc//sGPP/7ImDFjcHFx4b777tO4XoGJEyeSlpZGgwYNMJvN5Ofn89xzzzFo0CBAP6tXy1bjd+LECYKCgor0HxQUdMOPsZSPcrztKM/blnK87SnHVzzlealqlOdtQzne9pTnbU95vmIpx0tVoxxvO8rztqUcb3vK8RWrquZ4FeFvIKNHj+bnn39m06ZNRc6ZTCar94ZhFDn2d2Vpc705evQoY8eO5euvv8bV1bXEdhrP8ikoKCAuLo7nn38egNjYWHbt2sX8+fO57777LO00rmW3bNky3n//ff7v//6PmJgYkpOTeeyxx6hRowZDhw61tNOYXh1bjF9x7TXGUl7K8bahPG97yvG2pxxfeZTnpapQnr96yvEVQ3ne9pTnK4dyvFQVyvG2oTxve8rxtqccXzmqWo7XcvQ3iEcffZRPP/2Ub7/9llq1almOh4SEABT5BMfJkyctnxgJCQkhJyeHs2fPltjmRrFt2zZOnjxJixYtcHR0xNHRkfXr1zN37lwcHR0t46HxLJ/q1asTHR1tdaxhw4akpKQA+jm9EhMmTOCpp57i7rvvpnHjxtx7772MGzeOF154AdCYXi1bjV9ISAh//PFHkf5PnTp1w4+xlJ1yvO0oz9uecrztKcdXPOV5qUqU521DOb5iKM/bnvJ8xVKOl6pEOd52lOdtTzne9pTjK1ZVzfEqwl/nDMNg9OjRrFixgm+++YaIiAir8xEREYSEhLBmzRrLsZycHNavX89NN90EQIsWLXBycrJqk5qayi+//GJpc6Po2rUrO3fuJDk52fKKi4tjyJAhJCcnU6dOHY3nFWjXrh379u2zOvbrr79Su3ZtQD+nVyIzMxMHB+tf8WazmYKCAkBjerVsNX5t27YlLS2NH3/80dLmhx9+IC0t7YYfY7k85XjbU563PeV421OOr3jK81IVKM/blnJ8xVCetz3l+YqlHC9VgXK87SnP255yvO0px1esKpvjDbmuPfzww4aPj4+RmJhopKamWl6ZmZmWNrNmzTJ8fHyMFStWGDt37jQGDRpkVK9e3UhPT7e0GTlypFGrVi1j7dq1xvbt240uXboYTZs2NfLy8uzxWFVKp06djLFjx1reazzL78cffzQcHR2N5557zti/f7+xZMkSw93d3Xj//fctbTSu5TN06FCjZs2axueff24cOnTIWLFihREQEGA8+eSTljYa09KdP3/e2LFjh7Fjxw4DMObMmWPs2LHDOHLkiGEYthu/Xr16GU2aNDE2b95sbN682WjcuLFxyy23VPrzyrVHOb5yKM9fHeV421OOtw3leanqlOcrnnL81VOetz3l+aunHC9VnXJ85VCevzrK8banHH/1rsUcryL8dQ4o9vXee+9Z2hQUFBjPPvusERISYri4uBgdO3Y0du7cadXPxYsXjdGjRxvVqlUz3NzcjFtuucVISUmp5Kepmv6e0DWeV+azzz4zGjVqZLi4uBgNGjQw3nzzTavzGtfySU9PN8aOHWuEhYUZrq6uRp06dYxnnnnGyM7OtrTRmJbu22+/Lfb359ChQw3DsN34nTlzxhgyZIjh5eVleHl5GUOGDDHOnj1bSU8p1zLl+MqhPH/1lONtSzneNpTnpapTnq94yvG2oTxvW8rzV085Xqo65fjKoTx/9ZTjbUs5/updizneZBiGUf758yIiIiIiIiIiIiIiIiIiIvJ32hNeRERERERERERERERERETERlSEFxERERERERERERERERERsREV4UVERERERERERERERERERGxERXgREREREREREREREREREREbURFeRERERERERERERERERETERlSEFxERERERERERERERERERsREV4UVERERERERERERERERERGxERXgREREREREREREREREREREbURFeRCrEsGHD6Nu3b4X1Hx8fz2OPPVZh/YuIiEjxlONFRESuX8rzIiIi1yfleJHK52jvAERErsSKFStwcnKydxgiIiJiY8rxIiIi1y/leRERkeuTcrxIUSrCi8g1qVq1avYOQURERCqAcryIiMj1S3leRETk+qQcL1KUlqMXucZ9/PHHNG7cGDc3N/z9/enWrRsZGRkAbNmyhe7duxMQEICPjw+dOnVi+/btVtebTCYWLFjALbfcgru7Ow0bNmTz5s0cOHCA+Ph4PDw8aNu2Lb/99pvlmqlTp9KsWTMWLFhAaGgo7u7u3HXXXZw7d67EOA3D4J///Cd16tTBzc2Npk2b8vHHH5f6bPPmzSMqKgpXV1eCg4O58847Lef+urxNYmIiJpOpyGvYsGGW9p999hktWrTA1dWVOnXqMG3aNPLy8so4yiIiIpVPOV45XkRErl/K88rzIiJyfVKOV44XuURFeJFrWGpqKoMGDWL48OHs2bOHxMRE+vXrh2EYAJw/f56hQ4eyceNGvv/+e6KioujTpw/nz5+36mfGjBncd999JCcn06BBAwYPHsxDDz3E008/zdatWwEYPXq01TUHDhzgww8/5LPPPuPLL78kOTmZRx55pMRYJ02axHvvvcf8+fPZtWsX48aN45577mH9+vXFtt+6dStjxoxh+vTp7Nu3jy+//JKOHTsW2/amm24iNTXV8vrmm29wdXW1tP/qq6+45557GDNmDLt372bBggUsXLiQ5557rmwDLSIiUsmU4wspx4uIyPVIeb6Q8ryIiFxvlOMLKceL/JchItesbdu2GYBx+PDhMrXPy8szvLy8jM8++8xyDDAmTZpkeb9582YDMN555x3LsQ8++MBwdXW1vH/22WcNs9lsHD161HLsiy++MBwcHIzU1FTDMAxj6NChxu23324YhmFcuHDBcHV1NZKSkqziGTFihDFo0KBiY12+fLnh7e1tpKenF3u+U6dOxtixY4scP336tFG3bl1j1KhRlmMdOnQwnn/+eat2ixcvNqpXr15s3yIiIvamHD+2yHHleBERuV4oz48tclx5XkRErgfK8WOLHFeOlxuZ9oQXuYY1bdqUrl270rhxY3r27EmPHj2488478fPzA+DkyZNMmTKFb775hj/++IP8/HwyMzNJSUmx6qdJkyaWr4ODgwFo3Lix1bGsrCzS09Px9vYGICwsjFq1alnatG3bloKCAvbt20dISIhV/7t37yYrK4vu3btbHc/JySE2NrbYZ+vevTu1a9emTp069OrVi169enHHHXfg7u5e4njk5ubSv39/wsLCePXVVy3Ht23bxpYtW6w+SZefn09WVhaZmZml9ikiImIPyvHWlONFROR6ojxvTXleRESuF8rx1pTj5UanIrzINcxsNrNmzRqSkpL4+uuvee2113jmmWf44YcfiIiIYNiwYZw6dYqEhARq166Ni4sLbdu2JScnx6ofJycny9cmk6nEYwUFBSXGcqnNpf/+1aXrVq1aRc2aNa3Oubi4FNufl5cX27dvJzExka+//popU6YwdepUtmzZgq+vb7HXPPzww6SkpLBlyxYcHf/3662goIBp06bRr1+/Ite4urqW+EwiIiL2ohxvTTleRESuJ8rz1pTnRUTkeqEcb005Xm50KsKLXONMJhPt2rWjXbt2TJkyhdq1a/Of//yHxx9/nI0bNzJv3jz69OkDwNGjRzl9+rRN7puSksLx48epUaMGAJs3b8bBwYF69eoVaRsdHY2LiwspKSl06tSpzPdwdHSkW7dudOvWjWeffRZfX1+++eabYpPznDlzWLZsGZs3b8bf39/qXPPmzdm3bx+RkZHlfEoRERH7UY4vpBwvIiLXI+X5QsrzIiJyvVGOL6QcL6IivMg17YcffmDdunX06NGDoKAgfvjhB06dOkXDhg0BiIyMZPHixcTFxZGens6ECRNwc3Ozyb1dXV0ZOnQoL7/8Munp6YwZM4YBAwYUWdoGCj8lN378eMaNG0dBQQHt27cnPT2dpKQkPD09GTp0aJFrPv/8cw4ePEjHjh3x8/Nj9erVFBQUUL9+/SJt165dy5NPPsm//vUvAgICOHHiBABubm74+PgwZcoUbrnlFkJDQ7nrrrtwcHDg559/ZufOncycOdMm4yEiImJLyvGFlONFROR6pDxfSHleRESuN8rxhZTjRQo52DsAEbly3t7ebNiwgT59+lCvXj0mTZrE7Nmz6d27NwDvvvsuZ8+eJTY2lnvvvZcxY8YQFBRkk3tHRkbSr18/+vTpQ48ePWjUqBHz5s0rsf2MGTOYMmUKL7zwAg0bNqRnz5589tlnREREFNve19eXFStW0KVLFxo2bMgbb7zBBx98QExMTJG2mzZtIj8/n5EjR1K9enXLa+zYsQD07NmTzz//nDVr1tCyZUvatGnDnDlzqF27tk3GQkRExNaU4wspx4uIyPVIeb6Q8ryIiFxvlOMLKceLFDIZhmHYOwgRubZMnTqVlStXkpycbO9QRERExIaU40VERK5fyvMiIiLXJ+V4kapJM+FFRERERERERERERERERERsREV4ERERERERERERERERERERG9Fy9CIiIiIiIiIiIiIiIiIiIjaimfAiIiIiIiIiIiIiIiIiIiI2oiK8iIiIiIiIiIiIiIiIiIiIjagILyIiIiIiIiIiIiIiIiIiYiMqwouIiIiIiIiIiIiIiIiIiNiIivAiIiIiIiIiIiIiIiIiIiI2oiK8iIiIiIiIiIiIiIiIiIiIjagILyIiIiIiIiIiIiIiIiIiYiMqwouIiIiIiIiIiIiIiIiIiNjI/wfjbe7NcAQ7QwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Create subplots\n", - "fig, axs = plt.subplots(1, 4, figsize=(25, 10), sharey=True)\n", - "\n", - "\n", - "\n", - "for i in range(len(heritability)):\n", - " h = heritability[i]\n", - " for m in methods:\n", - " if m in [\"TreeSHAP\", \"LIME\"]:\n", - " axs[i].plot(sample_row_n, agg_results[h][m][\"auroc_group2_avg_metric\"], label=m, linestyle='dashed')\n", - " else:\n", - " axs[i].plot(sample_row_n, agg_results[h][m][\"auroc_group2_avg_metric\"], label=m)\n", - " axs[i].set_xlabel('sample size')\n", - " axs[i].set_ylabel('AUROC')\n", - " axs[i].set_title('PVE = ' + str(h))\n", - " \n", - "\n", - "\n", - "# Share the label in the last plot\n", - "axs[3].legend()\n", - "\n", - "# Show the plots\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "# load in pickle file to dataframe\n", - "absolute_sum = pd.read_pickle(\"./results/mdi_local.two_subgroups_linear_sims/no_standardization/varying_heritability_n/seed331/0.8_1000/rep3/RF_LFI_sum_absolute_without_raw_feature_importance.pkl\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.metrics import roc_auc_score" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAHjCAYAAABy7iajAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADeMklEQVR4nOydd3iUZfb+75SZ9N4T0ugQEBAUKYoFA4gFC6Ky2NDFZXcRUVfQZWFVbOsiNhB2EcGKDURFJIr0IoQinRASEtLrpCeT8vuDL1ljhiQDH0Lyc+7r2utah8mZZ+Z93+ec55T7tqurq6uTDTbYYIMNNthggxWwv9gLsMEGG2ywwQYb2h9sAYQNNthggw022GA1bAGEDTbYYIMNNthgNWwBhA022GCDDTbYYDVsAYQNNthggw022GA1bAGEDTbYYIMNNthgNWwBhA022GCDDTbYYDVsAYQNNthggw022GA1bAGEDTbYYIMNNthgNWwBhA022GCDDTbYYDUuagAxf/58RUdHy9nZWf3799emTZsu5nJssMEGG2ywwYYW4qIFEMuXL9fUqVP1zDPPaM+ePbryyis1atQopaSkXKwl2WCDDTbYYEO7w8aNG3XTTTcpNDRUdnZ2WrlyZbN/s2HDBvXv31/Ozs7q2LGj3nnnHas/96IFEHPnztXEiRP10EMPqUePHpo3b57Cw8O1YMGCi7UkG2ywwQYbbGh3KC0tVZ8+ffTWW2+16P1JSUm64YYbdOWVV2rPnj16+umnNWXKFH3xxRdWfa7juSz2fFFVVaX4+HhNnz69weuxsbHaunXrxViSDTbYYIMNNrRLjBo1SqNGjWrx+9955x1FRERo3rx5kqQePXpo165devXVV3X77be32M5FCSByc3NVU1OjoKCgBq8HBQUpMzOz0fsrKytVWVnZ4DUnJyc5OTld0HXaYIMNNthgQ2vjQvu8bdu2KTY2tsFrI0aM0OLFi2U2m2UwGFpk56IEEGdgZ2fX4L/r6uoavSZJL774ov75z382eO2hPz+lh/8yA1vLL2lemC1JSs+sRu3dNzARtRd3shtqz9lYh9laty4HsyVJXXr4ofa2/ngMtffARPZarI7LR+3lZRRgtsqKSzFbkuTh7Ynaq6yobP5NVsDenq0SG52NqD0Xd2fMVmZy48Pf+cDOvrEvOB98v7Qvas8SvjUwz/LOZ+5u5PNmzZql2bNnI/YzMzMtHuCrq6uVm5urkJCQFtm5KAGEv7+/HBwcGmUbsrOzG30pSZoxY4amTZvW4LVPtjnpYAaXgXCAu0FKis2ovTRzKGqvsgo1p/TMGsyWb6A7ZkuSsrPLUXvBkYGovR5+Gai99zPKUHvmSvZeJlGQlYvac3RiHbSnL3swoQOwgsw8zFZAOPtc5KaxB4n2BEs+j864WzrAW3q9KVyUAMJoNKp///6Ki4vTrbfeWv96XFycbrnllkbvt5S6sXeUamq5NQ2KZDfx9Cz2Yfp+J3upYrqAP54kTzdufclpmClJkoebA2rv+HEuWJKkH46wwaGjIRm1RwYQdMbA3pGN/E25hai9irIK1J67twdqz2DkAqb8LDbz5eTqgtprDdgZmKzJhS7RBwcHWzzAOzo6ys+v5Rnbi1bCmDZtmiZMmKABAwZo0KBBWrRokVJSUvTII4+06O/pE/QPh4NRe9XVbAkjskPLalIthbOBdYJ5Js6W0cA6haHdClF7B/azv12IP1f+kfjUr9GFczLmKjabYWdmvyuN2hr2XqksY0ss1WZunzI623rS7B3b9v14BoMGDdLXX3/d4LW1a9dqwIABLe5/kC5iADFu3Djl5eXp2WefVUZGhnr16qXVq1crMjKyRX8f4seeoI8ksZt4Lbs8XRrOpvP2nApA7V3bJRWz9f6mxmWs88FnG7g6rySVl7AnrdxCNmCqKoejaxAGIxsI0yl9L39v1F6pqQS1Rzp8STJXcfeKq4cbZktq26WztoaSkhIdP368/r+TkpK0d+9e+fr6KiIiQjNmzFBaWpqWLVsmSXrkkUf01ltvadq0aXr44Ye1bds2LV68WB9//LFVn3tRmygnT56syZMnn9PfJqWzkZ6fD7uJFxax6/tsE5v6vfJS1snsyw7DbNXVshuHszN7mxucWHu9wlknuMmL3cgLwNS0wYkNIOwd2PIUfcInSwQXAg6O3O/n7GrLQNjB2dOWYteuXbrmmmvq//tM/8R9992n9957TxkZGQ1IGqOjo7V69Wo99thjevvttxUaGqo33njDqhFO6SIHEOeDruFsavBwMnvh6abMHl3YjSgxgw1w+kUVY7Y2FbHZoMsvZYOvw/vYpsyMIjYbVJTPsrk6uXIZHPpETqO8mF2fbwh7benfz8HAuYCyYva5sKc30VbAxSphXH311fVNkJbw3nvvNXpt2LBh2r1793l9brsNIIrL2ZMHnFnVmJ4JqL245K6oPfrZLKrkTh/lpUWYLUk6cpw9VTrAP565mt106Lp7KdgI2HsQex+nJGSj9gzwFAbtBJ3d2cbCkgIu8Kd7b9p69saGdhxAWDFp0iJUmdlTb1oV21l/6Ah78hjU3xW1l23iHnZfPzYFHxjAbkSpSWy06eHCOnwaZG378K4TmC2Jd1p2dqzDd/din7MSEzui6x/GZUhKTWwpztmN7V1qDVBTGO0FeACxYMECLViwQMnJyZKkmJgY/eMf/6in2czKytJTTz2ltWvXqrCwUFdddZXefPNNdenSxarPSYdHhM1wAPH1Fvan7dOLfZhOZbPfd1gPrk6+Yye7iXcKYx3+MS/2FJhjYu8VvxCWOCsvg+MKIMshEt9UWFfLPhcVZWyvEe2k6+rgbm8QFexXbRW0lykMCngA0aFDB7300kvq3LmzJGnp0qW65ZZbtGfPHvXs2VNjxoyRwWDQV199JU9PT82dO1fDhw/XoUOH5ObW8pOOmwt7oRxgxriCAvbBPJ7MbkThoeypPKnAG7M1fjS7c6zewV6LU4lZqL3Zo46i9j5LZQOcGrAkEtGtA2ZLkk4cSEbtOcBNmXQ5yTvQG7WXc4orAdElh6pytvTYGrBlIM4TN910U4P/njNnjhYsWKDt27fLYDBo+/btOnDggGJiYiRJ8+fPV2BgoD7++GM99NBDLf6cUD/2wUzKgClnjexGFODHnqJDfNnfL7eI+77Hktm0b7WZnepwMLDXdmflpag9Z/dk1B55yk85egqzJUnOMNmQEzxJENmFJZQ7vPskas8eLNnQEzaunuw+YAOPC9oDUVNTo88++0ylpaUaNGhQvTiIs/P/0pgODg4yGo3avHmzVQFEmCfIXCTpyElv1F4tnAp1hFNj+xLY9QX4crZSU7jGLkmaeDP7XT+t4UZWJSkpi9146VN0US6nheEVCN4okmrMbCBcVsT2GOzeeBi1R/d8+IdyPRD0CGxbn9ixBFsJA8D+/fs1aNAgVVRUyN3dXStWrFDPnj1lNpsVGRmpGTNmaOHChXJzc9PcuXOVmZmpjAzrqKSPZvugax55CdtUYWfHOq11h9mTUecI1slk5HLf18ubrZOv2s5ml04eZ2nPB/QJR+3R5EquXhx9Mt1jQItLFWazJGHO7uwpugbu+SA5PmhODkcrGBHbCuwcbAHEeaNbt27au3evCgsL9cUXX+i+++7Thg0b1LNnT33xxReaOHGifH195eDgoOHDhzerY25J2nR08WdyAmcvvysYj9mSpMNJqDkF+LE35rEkNq0f04XbPLLZyTxVVrKn1OJ8dsy0f1Ayau891JpUCY5xeoBd/5JUmM1lRyTe4ZcXweqjfqw4VxWoPuoMN8jSwZwNPC5IAGE0GuubKAcMGKCdO3fq9ddf18KFC9W/f3/t3btXJpNJVVVVCggI0MCBAzVgwICz2rMk5z3qnn/ohvGzsTVXwdmyIb1YUpWCMjYDcfwEe5LJKeCCuYoKdm39+7Dqng4OLJdBZgUbzBmd01F7ZBMlTbPt5sVeWzp742Bkt1i6hEFmDejfzt2HJYBrDdjbMhA86urqGmUQvLxOR9IJCQnatWuXnnvuubP+vSVp00VxRpF6Vf06sqp5uxLY5q4/dvgetbfb6VrU3o2dDmG2du7wx2xJ0pZtrIOurmYzGqYK9lTZFCPduYDuqSBBl0RokE2KkpQPz6+TxFk4CRestNoaoAO8tg48gHj66ac1atQohYeHq7i4WJ988onWr1+vNWvWSJI+++wzBQQEKCIiQvv379ejjz6qMWPGKDY29qw2LUmbusANujkl7Am/qoodHVyYcvbf51wQFsI+nHGpPTFbvfqyTqGkhHX4JxI4XgRJsrenuQfY7BdJJEWrcdJTE/QoolsAS4pWlN92G25ph19Rwt7HNvDAA4isrCxNmDBBGRkZ8vLy0iWXXKI1a9bo+uuvlyRlZGRo2rRpysrKUkhIiO69917NnDnT6s+By21KSmPtubuxD1P/jmyNJbeUjcBIefCd8WwnfEwMe8L/OY0NIDp6sN3rdFqfPOXTapym3ELUHq3GSTYpSmw5SWLHYJ3ghtb2GEDYtUP9jvMBHkAsXry4yX+fMmWKpkyZct6fc3f1e+dt49dY7HY/ai87hz1pxRXQtK5shuTSHtyDY8pjg6WycraW6uHDOui1R9kpjPKi/ai9WpCtsGOvKMyWxDtUenSQLrFE94xE7bl7chmco3tZjgr62rYGbD0Q7QQfO96P2qssYx/0sYPZU+qKnWxfQEU5+3C6Gzkn4xvIjQ1KUt/ObFPmrq1s8EXvk6GdQlB7plyOlyPnFHsip2vO7t7svVdVwTaNnjycitojyw60jojR2SYP3tbRbgOIXqGFqL1EJzbN/UtmEGrP15vdKB392Eu/O5ELwPz82bVt2YeawycJYiJZe2u+YHkqSMlnvxCWSMrTly3FnTrO0pS7erDra49p/XNFdSWbxW0N2Joo2wnW7WfT0uHBqDklnWJPqU5G9sb08mRPC306ck5wxyH2tgwKYKcI9sJTDq4GNoCgNzFSz6Ewh2WQ9YaVW0sKWI4PuoThCwullZdyAYkZdvi0dHlrwFbCaCegmxTzTOyD3iWSvZFqall78CSi0gu4dOOl3diNaM1GtimzQyc2u5RexDpBWqEyoAOn50A6LEk6eZTNtriBrJsSS9QkSaUmlubd6MI9tzRzJP3btQZsTJTniaioKJ082biZZvLkyXr77bdVUlKi6dOna+XKlcrLy1NUVJSmTJmiP/3pT1Z9jhscnJaWsxc+KY0NSG7tx9Y+l/8citrrHs0FdGu3sBtHly5s0+PGH9lmsTyTN2rPJ4gtE5ABCX0i9/JnM5F5GW27R8PVk72XzZVc9ou0Jf3+ygHtEXgAsXPnzgbdswcOHND111+vsWPHSpIee+wx/fTTT/rggw8UFRWltWvXavLkyQoNDdUtt9zS4s8J8mJPqYll7E9RZWZLGF/EswJORlh2lszqm6vY9Ei3MHZj2w6Pq3UPYzMkP9Sw9x4ZQDiC/RSSVGpifztzFXuv0GOhtGAV2ahIX9sKkEK9tWBnbxvjPC8EBDTkun/ppZfUqVMnDRs2TJK0bds23Xfffbr66qslSX/84x+1cOFC7dq1y6oAwtXIBhDurmz6raKCvZH8fFh7bs6sk6mt4wISV1fWQZ/IYru5vXzYxrj8UnZ99MZLyjTTdXLaadGsmyUFbMmh31CWRn3nTxyDLEk4JkkOjm2XAfVs+L1lTS5oD0RVVZU++OADTZs2TXZ2p3/YoUOHatWqVXrwwQcVGhqq9evX69ixY3r99detsn0old3EB3Zkxy7zfdlU48+H2UtVVMRu5F07cTwVBiMbLB07znL005tEhZn9vqTDlyS/YE75tiif5VmohbMtNAkXfa/8suMEaq8tM1HSxFQ28LigAcTKlStVWFio+++/v/61N954Qw8//LA6dOggR0dH2dvb67///a+GDh16VjuW1DidDUYZjNzJbf1htm5MB6K0/kL3LiwxVaQf1xz38072BB0RxdbJ92xPQe1F34CaU42ZvVdIbQ2aypoeqfUO9Ebt5aXlovYiundA7eVncVMxdHbJlMtO7LQGbFMYIBYvXqxRo0YpNPR/DXtvvPGGtm/frlWrVikyMlIbN27U5MmTFRISouHDh1u0Y0mN8+4/ztQ9k/6BrdXdmb3wtJy3uzubzsuHp07cwFqqJ0vJodJSdirBCJ+MPB3ZDAlNF52fVYjZosWl6kCWTInPaNBIOXIKtUeOStJTEyT/SGvh91bCsKujpfv+DydPnlTHjh315Zdf1vc2lJeXy8vLSytWrNDo0aPr3/vQQw/p1KlT9YJbv4WlDMR/fjDK0cA5rQGd2E18xQZ2o6QbC3t0Z8fVSNK4HTsLOWOSXuu4BLV3x5oRrL3xnBCZJC1/7xfUHkkpTPcY0CWHvAxW7dLFnS210k61ooRrQqXHOOnv+s1/2OfMEvaNvAqx02fNRsTOhcYFC/GWLFmiwMDABoGC2WyW2WyW/W86VR0cHFRbe/bI35Ia53W9cyRxDUrf72MJWq64FDWnMrgpM6eAjRs7BnPpSwc4DTgj42HUnocPO+p3o/821N5ysc1s7j5csEmXV+iSiKefN2rPwcAGTOVF7NSJEyimRU+wCOYzaQ3YpjAA1NbWasmSJbrvvvvk6Pi/j/D09NSwYcP05JNPysXFRZGRkdqwYYOWLVumuXPnWvUZW44HNP8mK9CnM3vzb/uFdYKdItkbM9CXXV9JJXcruXuwUwmenuzJKDuNdQorswah9owuR1F7vkHemK2yYra/pSiPZY4kWTclyd6B7TXy9Gfre+RYqDMskVxcyF7b1sDvrYRxQQKIH374QSkpKXrwwQcb/dsnn3yiGTNmaPz48crPz1dkZKTmzJmjRx55xKrPcIIbdIPc2JvV2ZnrXJcko4HNGGSxQyfqEcQ1PK1lD/gywlMdweHeqL3LI7JRez96sCxrJw9xxFkefqwDpJ0WndGohEdqaSIuEm1dydQGHhckgIiNjT1r53ZwcLCWLDn/mnShiW12+m436/DDQ9hTKs2p4ghf+SPZ3qC1QtCW1Ksr+2XjfmJn+08UsuUzO3uW3tkenMf39GV7b3JOsT0Lnr7sxE6tGxvguMHB4anjaZgtur+FLJ21FmxTGO0Ebq7sqdKxio128wpZez0j2ZPR/iQ2rT82Mh6zdci/N2ZLkrbF02yFbG3W0YG9V8phxUaDkUv3tXWHT48O0o2AdA8JyRlCy3nTI7qtAVsJo52A7lWhJZW37mcX+MM2duO47WrWyWwt7ofZqq1lgyWjkWYXZCd2/Fzan+rguYJ2+PlZbL2Lpp6m0/o0yyg5xULTbDfVWN9WYWuibCfIzGadTHYe3C1d3rY7iDOK2PE3Uxn3+7m5syfyKWmPo/Ymu/4NtfdLKutUK8tYsS+yFl1iYoOvWphgjVYypcmV6LFQkmqbHPeV+JKIDTysDiA2btyof/3rX4qPj1dGRoZWrFihMWPG1P/7l19+qYULFyo+Pl55eXnas2eP+vbtW//vycnJio6Otmj7008/rRfdag53DmIbz47kBaP2sgrY2md6Jjwlspu1FxHBfd+TJwoxW5L0Rsd/o/YqU1kmyvvK3kDtfaVrUHtkWtYDrmvTUxN00yONGjhgIvsM6GwLHXy1BmwljGZQWlqqPn366IEHHtDtt99u8d+HDBmisWPH6uGHG8/fh4eHKyOjYZPXokWL9Morr2jUqFEtXkcdKN4kSb5ubPrt0Al2FLFzFDt2ciqT3YhcQSZPvwCWx8DfBxZcgmf7i7tegdoj2QUlqQLsqWjrTqG2mk2bO8FTIjSKwTFYmtSrshQex2oF2AKIZjBq1KgmHf2ECRMknc40WIKDg4OCgxue9lesWKFx48bJ3b3lN+C6YyEtfu/FQKA/eyNl5LAb260DMlF721M4uXFHWJTnVDobHNLkrZ+evBy1V1t9DLXnHchNKNE1fFKOWpK8/NlyUlE+O7FD05SXiWswpjMQDsZ2W2H/3eCiX6H4+Hjt3btXb7/9tlV/N6Ibm0ae/x07Sufrx548ukSyp9731/uj9sK5+EGmQtbJvNp7BWrvD/sYutozqIXn3WlGwNw0rm+Blt/2D2Pv47wM9tRL1/Hz81hxLncfLmCiOTnonorWgC0D0cpYvHixevToocGDB1v1dwHFrFpVZEQEai+QFfeUmxP7MF09gL3R9yRwGZKCHPYk80r2H1B7PiBpltT2GXvJRsWul3fBbEnS0XhW3pouOdA9Fd7wxlJWzAWHdLBEls5aC7YpjFZEeXm5PvroI82cObPJ91kS01qWMgiV876sM+u0vt7C/rTXXs7emIdOsqnQ0EAuIAmMBdMZko4eZzfxvMwC1N41Y9kMxNZ1bKc+OXqZksCWzowubAmDVpSshdVCSYcvSVXl3Pel+1vokVobeFzUAOLzzz9XWVmZ7r333ibfZ0nO++Z7Z2nM/bOxtWSVsJtuNKxd8Usi3NzF7rvq6M8FYJ/9iJmSJIWGsteWrkPnlbOTCfaObDBclM812tH0xB4wr0RFGXvq9Q5gGW6LYKIrMqNBp+/JBs/Wgo2JshWxePFi3XzzzQoIaFoYa8aMGZo2bVqD1177ylHpWVxqtciNdfh/iN6K2nv2R5ad0cWVdYJGA9eB7ePDnmTG9mXT3GmnglB7+06wEzY0EyXp9MmGTEkqzGazQc6gOqXEkyvRJRaSB8IRZLWUJA8/NjhsDdh6IJpBSUmJjh8/Xv/fSUlJ2rt3r3x9fRUREaH8/HylpKQoPT1dknT06GllwODg4AbTF8ePH9fGjRu1evXqZj/Tkpx3l2j2JOPqxJ7w/3uEHc0bcy27Ee1OZFMQvTpwp979B9h+jy/3d0LtJR9hpxweHs0KTO3YxDpBMiCh6YnpDdsD1urIz2BV61w92BHncrjEQqI9ZiB+b7A6gNi1a5euueZ/RDVnMgP33Xef3nvvPa1atUoPPPBA/b/fddddkqRZs2Zp9uzZ9a+/++67CgsLU2xs7DktPD2bDSCcndkMBK0WmpoPz/ZXsE7ayYHLGoSEsiePId3ZjSg7m224/SWTPVUajOmovRIzOIoIj12SOh2SlJfGTjnQGQN6VJLsgaDLU6ROR2vh99ZEaVdHD7W3EuatYpft582eZHb/wj7okRHsycNgYL9v9w5co2JSNrvp5uSxwdL2n443/yYrsPBRVuxr4qvsxks6aTcv9j4m+zMkKbADOxaakcQ2jdI9H6Q4V3Ehey3octJXC7qh9iwh+aFbEDtR//0KsXOhcdHHOM8VnTuwTuFoCjuC1K83y8p2NJEtYfj6sic3V0cuNX3wMDvX6ObOflfaCSaLpVH39GUb7cqKuRIGTT1dDXf+52cVovZoSeqyYjbYJEcvPbzZ4IaeOGkN2Hog2glC3OFotyPrFNbvZm+kmK6sE/R1Zzfe+CRuo6woZx1gGDyFYcotRO1V17KNhRVw4x5J3W2uZINDeoyzrXMP0GUCOzATSZdX7GFGWht4tNsA4mAGS6ji6MA+mA727EYZ5MU6hSwTTAHszm1EHcLZU1uQP7sR0Y1sOSVsyYZ2gmR3fY9+UZgtSTr2Sypqj9YRobkRamDWMZL3gn4uaEbV1sDvrQei3QYQ2Xls9/C1vdhxMBejN2pvfxJ7qeCDjHzBQQInI5u9SUplN91ufViiq9yiti1bTDqZk8dZFV26hcsIdz/T7IzmKjYgIbNL5UVseaU9wlbCaAbNyXnff//9Wrp0aYO/GThwoLZv397gtW3btumZZ57Rjh07ZDAY1LdvX3333XdycWnZCYA+VXo5smnz3CJWW2NYD7Y7fM0eNm1eXMpdD5LVUpKOwCRciYfYxriYLuGoPQdYb6KqmEtN0w6fJn6iQU45SG07Q0LzQNCsoDbwwOW8JWnkyJFasmRJ/X8bf9PFvW3bNo0cOVIzZszQm2++KaPRqH379sneivTPTR7rrF16k5i/cxhqL7oDu1F+t5t1+NEd2ADM2cA56a+/Y2fnL+nXNFGZtaDFr2jQG6+rF1dSKoNPqbQ4l3cAy8mRm84G/s6ubOmxsoIL1smJDonv92gN2EoYzaA5OW/pNPHTbyW7f43HHntMU6ZM0fTp0+tf69KFFdmxFr1YriEdT2Pt0cO2aVlwMxb44Lh5sT0BXh5sRsPJhU1zm6vZ9dG1aLIb3i+EzczRwVzmSTa7RJcw6LFVkqfC3ZudPCsrYpsyWwV2thLGeWP9+vUKDAyUt7e3hg0bpjlz5igwMFCSlJ2drR07dmj8+PEaPHiwEhMT1b17d82ZM0dDhw5t8We8eYSVVO7XDa6lwhwo5XCmtrCI7Qvo1ZX7wkVFbJo2wIv9ro6OrFPoHAgSNYkvE5CnfNrhF2Sx8tv02CWtm0L3QJAlDDpY8g1hOTls4IEHEKNGjdLYsWMVGRmppKQkzZw5U9dee63i4+Pl5OSkEydO6xLMnj1br776qvr27atly5bpuuuu04EDByxmIiypcf7V90s5gQ/ners7MVuSVFTM1t1dXNjUGJ1pKwNToXm5bJr7SDLrFNJOsEyPUfDFKC9hU8k1Zs7J0ERIdAmjKKcQtedgZNdHK1QW53G9XzRzZH5GDmpPioTtNYatifI8MW7cuPr/36tXLw0YMECRkZH69ttvddttt6m29rRjnTRpUj3ldb9+/fTjjz/q3Xff1YsvvtjIpiU1zhF3/UOj7pmNrdsRdICSVAmPb5WWsqfoDqFsLdXbnQuYnF3YjWjkJWzn/86tbD9Klj1bcvD0ZdPcbZnQhy7XVMNjkjTVNg2SR6OyjGOjlSSjM1vKbA3YeiBghISEKDIyUgkJCfX/LUk9e/Zs8L4ePXooJSXFog1LapybjkpGIzcn7GJgN46NRezN7+bGpgdz8tjvG+bPBWCuruxtuTmRZXqsKD2K2uuexiq3VpT1Qe2RUx328AmtCCYvotPwdEOrCzyFYWfHOTxnWPfDlMuO1rcGbBkIGHl5eUpNTa0PHKKiohQaGlqv0nkGx44dO2tzpiU1zqq6GlWBz2a0O5uWrqtjBZeujmHr5JuOsKnk/BLuwenakY3iC4vZuvuZLBqFedls+czF3XIgfq4gMxA1NexvR7MV0hkIF3eWBZWU35akWlCNs6KELT06ubW/DMTvDaict6+vr2bPnq3bb79dISEhSk5O1tNPPy1/f3/deuutkiQ7Ozs9+eSTmjVrlvr06aO+fftq6dKlOnLkiD7//PMWr8PPjU2X/ZLH1sfs7FinRTv8Eb2yUHs/HQ3CbGVksgx0BgPrZDzgRrvuUag57dzM9kCQp1SamdHR0HaFwyT+ROoLT7FkJWdgtujvSiuZtgZsJYxm0JSc94IFC7R//34tW7ZMhYWFCgkJ0TXXXKPly5fLw+N/m+7UqVNVUVGhxx57TPn5+erTp4/i4uLUqVPLZym3H2FTedXVcOe6I/swZWSwYxhfVbDcCINjyICO3Tj6d2TT3NlZ7LhaXjGbNvf0ZQOc7BSuh6S2hv2uNdVssESjrat7egZ4Y7bswUBTkirgnorWgK2E0QyuvvrqJsfEvv/++xbZmT59egMeCGtB8yIM6cXWKn9JZgMcZxe22pSTwwYklTXcyS0tnb0WI7qztdScU2yau/oSb9ReLVwmMDpzjXZOMBFSVQWcrYInCQrz2IZWesy0HNRNobUratt4cGhDO9bCiGblCJRfym5sWTlsqrZDCKzG2Y299LnFXOQdHclG8d8cYKmiDU6sgFNkIHuvrEhhy1NkAEE7aDqAoEGzKVbXwpwm8BgsiVqH9hdA2DIQ7QQuRvaUFezOprn32LHNU47wlUrPYW90AygLnJfPbpLu7mzanCZDOnSSpmNmx0wrQXlwFzc2UC8rZhv3iuGMAa1dQYNsQnWoY58zeuKkVWDrgWgfGOq4BbX3nwNXovYKCtiApDecMUiB0/BBgVyGJDuL5R14pF8Cam/nlkDUHs1+S58qC0u5ElBeJrvBlsJjnPRvRzeN0idca/SHmkM1SDgmSaWF7MSJFA3bswFX48zKytJTTz2ltWvXqrCwUFdddZXefPPNBgyTV199tTZs2NDA7rhx4/TJJ5+0eB1baoZYu/Qm0SGIfTA7h7ONdum57PqcndnTAkmfXF7KpqXnbeuN2jM6sz0VD0ZuaP5NVmBTHFvf8/DmJoAMTvSZhX3O6EbA4kI2o0FPifiFctmqvEz2uahUO2yitGlhNI2m1Djr6uo0ZswYGQwGffXVV/L09NTcuXM1fPhwHTp0SG5u/2ONe/jhh/Xss8/W/3dLZbzP4Loj/7J26U1ivuu5N3RagqMDeyP1jGCdakEZW4suKee+r6cPm7osLWF/u/wsdqNccIzNfpWafkHtkadeFze2tFdeypYwwrt2QO219QwJ6fTpiRiaBrw1YBvjbAZNqXEmJCRo+/btOnDggGJiYiRJ8+fPV2BgoD7++GM99NBD9e91dXVtUrGzOfzU/Ylz/ltL6AKTAx1OZgOIxEy2dkwHygHe3O9XXsqmQvv0YXsCSorY0bzOEezF2AHTOxtB9VEXmBzIxZ21l5XC6i/4BPui9hwNbOawGCy1VpWz01M2tH2gId4ZwSvnX3GYOzg4yGg0avPmzQ0CiA8//FAffPCBgoKCNGrUKM2aNasBV0RzyCxkT9A3Bu9C7Z106Y/agyfzcMXGskrOCXbu4oXZkqRT8FhoZQUb4LgZYeInuE5OsjPmZbDqmTxVNJshKYKbMslgTmLvFZoV1F7t7zR/Macw5s+fr3/961/KyMhQTEyM5s2bpyuvPHt288MPP9Qrr7yihIQEeXl5aeTIkXr11Vfl59dysjI0gOjevbsiIyM1Y8YMLVy4UG5ubpo7d64yMzOVkfE/xrPx48crOjpawcHBOnDggGbMmKF9+/YpLi6uxZ+Vk8961J+9+6L2OoeyTYq7jrA3Jl1iCQMP5cnJbNq3Rw82IKmrY9kAadDiV215jNPDh+2BKCtm+VFoh1Jbze57ZAnI05d9ztojkdTFmsJYvny5pk6dqvnz52vIkCFauHChRo0apUOHDikiorGswubNm3Xvvffqtdde00033aS0tDQ98sgjeuihh7RixYoWfy4aQBgMBn3xxReaOHGifH195eDgoOHDhzcqeTz88MP1/79Xr17q0qWLBgwYoN27d+vSSy9tZNeSnLeHq5MMRm5jyyxgL3yQNxtAZGextV4vbzb1m1fMnYx8/dgeiF4R7G+3dhXLA3Hf1eyplxaEqq3hMiQOYDAiSYXZhag970Bv1F55CaxQCWcgSNg7sHtoDaxL0hq4WBmIuXPnauLEifVZ/nnz5un777/XggULLCpcb9++XVFRUZoyZYokKTo6WpMmTdIrr7xi1efiXSr9+/fX3r17ZTKZVFVVpYCAAA0cOFADBgw4699ceumlMhgMSkhIsBhAWJLzvvrWmbrm9n9g6+7Zmb35r09biNrL6v1n1J6/J5s2P5nJlUQy0tjxre+r2VOqB0wV/cUuTkdEklw92BJLYTZXdujQORSzJfGnVDoDQY820qXHijLu+9IlDFIFtr3B0qHZkqikJFVVVSk+Pr4Rs3NsbKy2brWs9Dt48GA988wzWr16tUaNGqXs7Gx9/vnnGj16tFXrvGBXyMvrdDorISFBu3bt0nPPPXfW9x48eFBms7lesfO3sCTn/UtyhYxGLlV7KJNNv71h/hNqz6kM3jgq2Ye9Wzi3UR46yEbxLq7sibwCPlU+0nMbam9CnDdqL7gj5/QLctieAJwXAT5F29ey9x69PpJ0jGYFpftbWgOU8JylQ/OsWbM0e/bsRu/Nzc1VTU2NgoIaHkSCgoKUmWlZO2Xw4MH68MMPNW7cOFVUVKi6ulo333yz3nzzTavWiapxRkRE6LPPPlNAQIAiIiK0f/9+PfrooxozZoxiY2MlSYmJifrwww91ww03yN/fX4cOHdLjjz+ufv36acgQy9wOliKvfWmsOuXAjuxo3p5qtvO/opINIBzgjTc5i0ut0ptkRTmbbamENzbXk/tRe3Z2w1B7JNtjjZm9FrSENK3uSWcggqIsH7LOFfkZeZgtmrbbzYvNHLYKoH3V0qHZUvbh1/gtB0VdXd1ZeSkOHTqkKVOm6B//+IdGjBihjIwMPfnkk3rkkUe0ePHiFq8TVeN87733lJGRoWnTpikrK0shISG69957NXPmzPr3G41G/fjjj3r99ddVUlKi8PBwjR49WrNmzbKqdgv7GOWWs6NvJ0+x0bi/L7ux0b0+nmAZn+6BqKxknZanLxu8Zne7GrVXV8d+X9LpG53pGj7rZAxG9jkzV8HsjCa2QZYsEwRHsgytNDFVe8LZyhWW4O/vLwcHh0bZhuzs7EZZiTN48cUXNWTIED355JOSpEsuuURubm668sor9fzzz5+1GvBb4GqcU6ZMqW/MsITw8PBGLJTnAj8vthvZ15mtfXaKZEsipeVsdN+9A5uGzy/lHEN+Hnst6IZRmk1xY2Z31J6rRzJqj0xN09TONOgJFrqOT2fnyIbbU8fSMFvtFReDSMpoNKp///6Ki4vTrbfeWv96XFycbrnlFot/U1ZWJsffCCyduRes6bNpt10qhSXshcotZB1+UQkb4GRksKlaTzf25Eb6hYBAdirByYmtQ6dWst3hQ0ITUXvLctkmVJ8gjgyJPkHTzIwGp7Y75SBJHTqzDbcnDqRgthzhEV16mqg1cLGmMKZNm6YJEyZowIABGjRokBYtWqSUlBQ98sgjkk6XRNLS0rRs2TJJ0k033aSHH35YCxYsqC9hTJ06VZdffrlCQ1ve89RuA4iuIaxD7W5/GLX3cULjaZLzwdDLWaeamMoGOE5G7sGhpzD692d5G2gFyLWJXZp/kxVw82LFw4pyTZgtdx92gsXVgy13FReyHCTFedxvJ0lpJ7JRe2Tfgr2BFkqjxbT+/8W4ceOUl5enZ599VhkZGerVq5dWr16tyMhISVJGRoZSUv4XLN5///0qLi7WW2+9pccff1ze3t669tpr9fLLL1v1uXZ19FxQK+G/P7L23F3YnyHUi3Uy7ga25PDNTjbjcmkPzta3P7KbeKdObM/Cz1u4U5skXTciCrUX9+0J1B5JNhTQIQCzJfFjl6R0uSSZK9leKLpR0cmVK+/RuiS0cNg3/+mJ2rME06uPIna8nngdsXOhYVUG4sUXX9SXX36pI0eOyMXFRYMHD9bLL7+sbt261b9n9uzZ+uSTT5Samlpfm5kzZ44GDhzYyF5dXZ1uuOEGrVmzppGqZ3PwdGVP0K5OrL2iSpYwZ18ym4Hw8UbNqZNXOmartoY9VeYXsHX30ChWCyPQu41PiYDaGryDZq8t7fBpe06usNAceMqnyz9uXmxje2vgYlJZXwxYFUBs2LBBf/7zn3XZZZepurpazzzzjGJjYxsobXbt2lVvvfWWOnbsqPLycr322muKjY3V8ePHFRDQ8PQxb968c5Y/zTPB6TIn1l5MCJu6PFLJpn6rzOxJ5tt93HiZ0ZnNQNwwiO1ZePcz9qSVV8z2o5DMkZJkyi3EbNFaE7WwCB6p+yFJrp5texSRXJ9fMDu6npPOjZjacGFgVQCxZs2aBv+9ZMkSBQYGKj4+XldddZUk6Z577mnwnrlz52rx4sX65ZdfdN1119W/vm/fPs2dO1c7d+5s8cjIrwGPa6sH7PB3JrElAjMslevhzgZMHm5c5J2dzV7c+ER2CqO2jg1w6PIZPT9fVsQFTDSLJ8ljIPG/HZ0hCY5iRyUzk7meiowky6RF5wqa2bJVYJPzbjlMptNO19fXcpd2VVWVFi1aJC8vL/Xp06f+9bKyMt1999166623zlnSO7+QPXnUhbKpJz8v1ikUsvGNXJzZ7+vuwl2PSnjKodDE2jMY2d5jb1fWydCnaBImsCFTYssrEk+NTWtX5JxiAyYXd64kUgNnvqrK2fJPa+BcM+rtFee8E9bV1WnatGkaOnSoevXq1eDfvvnmG911110qKytTSEiI4uLi5O//v7rxY489psGDB591RrUl8PVmI72TBezJyFzN3khdIll7+SyjsLxdOCfo7MI66KoqNtgMCGJPqTlFrJOhFRsdHLlxOu8ANjOXeZI99dKjg5VwQFJVzvaQ1FRzAQRdOiPHh1sNtgxEy/CXv/xFv/zyizZv3tzo36655hrt3btXubm5+s9//qM777xTO3bsUGBgoFatWqV169Zpz549Lf4sS8Ii5WWsGme4Nzuf/u02Ng3v68Pa6xrBPuxhbrmYrbIyeNTPlf3t6lj/LG83NmNAnwSrwTQ8PSYZBup0SFJWKjsmSWkjnAE9heEMTmHQ910RfcpRGGzPhnMKIP76179q1apV2rhxozp06NDo393c3NS5c2d17txZV1xxhbp06aLFixdrxowZWrdunRITE+Xt7d3gb26//XZdeeWVWr9+fSN7loRFnr73Vv39/tvPZfkW8V7KeMyWJPn7sw86PWy79yjrBfNCuYez1MRu4lFRbECy7ack1N5frmNPlU6wZHZ5ERdcuzuw1yLzZBZqj2aOLIO5DMK6hKP2slK4388ZnhAh77vWgm0KownU1dXpr3/9q1asWKH169crOjq6xX93JoMwffr0es3yM+jdu7dee+013XTTTRb/3pKwyLFUkxLADES/GrY2uyOB5R5wc2VvzAK4h8RUzEU4lw1kG8VyC9gTPt1j4FhL6yWw9tx9uHu5pIB1qHSjHZltkSQHXJyLPeWTJRt6IsYB7jVqFcAZp7YOq67Qn//8Z3300Uf66quv5OHhUS/e4eXlJRcXF5WWlmrOnDm6+eabFRISory8PM2fP1+nTp3S2LFjJUnBwcEWGycjIiLOGpBYEhbp4JAogc/S8oS+nDFJzk6sw8/IZp1WVDhbdyczJNu35XDGJPWIYZkoaZlhJzOb1nfxZAMwspmNpjvmewxYe2T/iCQ5Glh7ZE+FG8wD0R6prH9vsCqAWLBggaTTglq/xpIlS3T//ffLwcFBR44c0dKlS5Wbmys/Pz9ddtll2rRpk2JiYrBFS9Kust6oPUdH1uHDwbjCgtho/IoIjvhJkg7knNs0jSW4e7Jjl/S1pQlz4ooGofYqyw6i9kiJawfYAZI1fIkVDpP4rnxXd/b7Gl24LC4t9NUuywHtcc3nAatLGE3B2dlZX375pdWLOBc27VM5rEMtKmZTgyGB7EZ54iS7sfm4s6I80b5cw1N2F7ZTP78AvrbwLL6phN10vANYQh9y9NLdm51gKcxhJZ/t2/ipNwPkbZAk3xAuO1ecz5an6Gmi1gDdNNvW0Q6LTKfh6cZ2FTrCqcbUDJp7gL0xD7N9gIrsxzlp2uEP6MHeK0t2FaL27nX8BrX3VVZf1J4zyBVAj/q5uLHMlsWFbOc/redQUcFqf5hy8jFbXgHs2GW7JJL6naHdBhClFeypDc6+6Q+XJ6P2Xl/NlQgk6dpBbMd0URW3kefnw2Q+jmzd3c2LdVrLqieg9upqf0HtFeUUYrZcPFniJ7rp0R4+QdI9EAYn9vcjAxxa96NdwlbCaB9wZgN7Zeezp9Q3vmMd/oMjWf2Fb3azAYSDA1dLtUKOvkVIzWOdAt3INrwzq54ZB9Mxk6dyesSUhiM8xllRwmYM2nJfAN0bRPdUtAbsbERS7QOF4NigJBlhbQ0H+ObfcZKtu3eNYuuLadncxuZkZDfJfQfYKYe8DLbu/t2Rzqi9suIDqD0j6PQ9fdng5uRhjsBMkly9WJ6KgHBWvrwguxC15+oBZg4z2GtBNnjacGGAy3mfrev4lVde0ZNPPilJmjRpkn744Qelp6fL3d293k737t1bvJZTaWya28uLjZ49PNiI5KYOLWfubAmWHujT/JusQGwfjqN/2fdsp/nl/di0b2UF6xTC/Nlgjm4EJAl9suAeCNrh18AcH6ZctqeC7iEh5dWdYaVVesKmVWDTwjg7WiLnnZGR0eBvvvvuO02cOFG33/4/1sj+/ftr/PjxioiIUH5+vmbPnq3Y2FglJSW1ePb3r1cnWrP0ZvFVYq/m32QFQlnqAe0sZcdWKyrYjWjNHq7zv6iAa+ySpOIyuvOfdQqFpd6oPdoJegZ4Y7ZodUqa2pkuEVSb2e8b1b0x8+/5IOlQKmaLLmGUmtjMYavgd1bCsKs7lxnK/0NOTo4CAwO1YcOGejnv32LMmDEqLi7Wjz/+eFY7v/zyi/r06aPjx4+rU6dOLfrs179mNw548k3VNexGtGc/+zBdEsM6VR93LiApKmNP0KYS9l7Zvpnl0Lj9Vuvl7JvC0iUJqD1nN+4kaA876BxYu8InmI38adZSOsAhRyVdYI6K3DSWUC7uw/6oPUsoW/osYsf1vn8gdi40Lqicd1ZWlr799lstXbr0rDZKS0u1ZMkSRUdHKzy85TzvlVWsUyirZCPH7iEsj3uSN1sPTDjBsilOvCYNs/XaJnYTvyOWPRkdOsSWRGrgcfeKMrhxD0zLmqtgPhPY4ZfDTY8GmHmzvIhtpia1P8pL2LLy760hsT3igsh5n8HSpUvl4eGh2267rdG/zZ8/X3/7299UWlqq7t27Ky4uTsazjBRZUuOMiZCMoBaGu5F1qBsPsid8ewfWywQGsE41q5LrCwgJZWupqzezTivl6CnUXsjolmnKtBSeviwRlym3ELVHwiOcDebKitu2gBNdEnEC+wzoCRY3eJqoNfB7C3ouiJz3Gbz77rsaP368nJ0b36Tjx4/X9ddfr4yMDL366qu68847tWXLFovvtaTGed3Yf+j6O2ed6/Ibwd2NPeF7wvc+XRKJCmZ7IMy1XNkhM5PdxN3c2GDJJ4glzIkwpKD2qiraLqUwHdxkJGWi9tx92KZMWjwsIJxlkCV1TiphjZh2qYVhY6JsHs3JeUvSpk2bdPToUS1fvtziv3t5ecnLy0tdunTRFVdcIR8fH61YsUJ33313o/daUuPcllArI5g1KKliU42HktgbqbKSzUDAhHuKBLMGrq5sGtnTk722tXDNIaeOdQoOBrYJlWR7pFP6kT1YeWs6u+QTzAabhdnsCDE5oks377bLAOJ3hgsm57148WL1799fffq0bFzw15Lfv4UlNc7Kuhqd5e3nhKJy1uH36cymGjftZns+RgxkH/Z9ydzD7ghT2JpMbAmDniTIKGGl38uLWCfo4cetr9TEZpeK8thImOwJkKRiOANBqmdK/Pf93aMNE31dCKBy3mdQVFSkzz77TP/+978b2Thx4oSWL1+u2NhYBQQEKC0tTS+//LJcXFx0ww03tHgtw8utF+1qCv8pvAO1V1jMnrQC/FFzSsln0/rk4SM3m3UyEVFs2pymsqbLU7Rkdn46RxAUGMkytNIOmuYeoMdMaSZPUm+iGA7m2no/iiXYxLSaQHNy3mfwySefqK6uzmI5wtnZWZs2bdK8efNUUFCgoKAgXXXVVdq6dasCA1vOtri8eqw1S28W/TqyN+u+ZNbJZOewp2i656NrOBdB5BewDSSB/mwq9BT82x1PhUfzYLKhtswISKe56Z4FsknxQsBgzwWbbb1/xAYeqJz3Gfzxj3/UH//4R4v/FhoaqtWrV1vzsRaRV8DWoZ0MrMM/kcQGJLdewzqZoxmsU8gt4lKhl3Rjr62dHWvPlAdzcsSy9953JeyoH8kwSJcc6Lo77fCdXNtu8CVJFaXc6CWtXdEuyyu2Ekb7QJA/e7PSs/g0UdMJllNF0YFsLTW/lDvJbPmZDb7cPdhyDU0OlF3Elhy8AtnGPbLng9RekKTCHLap0Muf7UfJOcU+uLRTJUssdABBc4a0CmwljPaBU5lsmnZwDOtQtx9mTzJFRWzjXudA1gmGe3O/H70RubuztzlNNuTlSusbsIQ+pJOhHT5dwqC1K+iMRkkBuz6SftrFnQ2+6GZlG3i02wAipiNrL7+UTTXSY5e3DWVP5cVVrJx3qok7WVZVmDBbknTuZO2WEdiB7WhNz2MfQ8NZCNnOFSRBUAUc3NDUznTw5eLJZlzcfVgnTWbT6GvbLmET0zo7FixYoAULFig5OVmSFBMTo3/84x8aNWqUJOnLL7/UwoULFR8fr7y8PO3Zs0d9+/at//v8/HzNmjVLa9euVWpqqvz9/TVmzBg999xz8vKyrlPeADMzHk9jN3FnZ9ZrbTjMinW4ubA3emQgl250NMCNcSVstqXazGYMhnRkyZDi4DR3DdiUSQdfRflsPwpdYqFRVsz2t3iAjY90Zo5uBm4V2Jgoz44OHTropZdeUufOnSWdpqq+5ZZbtGfPHsXExKi0tFRDhgzR2LFj9fDDDzf6+/T0dKWnp+vVV19Vz549dfLkST3yyCNKT0/X559/btXCT2azdWNYSE6XdmKj8f0n2VTopZGFqL2j2dyoZFUVu0n6OrEPtdGZvfcS8r1Re7V1Sag9EpUVbFqa7kehRwc9fNmMAU0XXQZqa9A9C87ubJa0VfA764E4LzVO6bSQ1r/+9S9NnDix/rXk5GRFR0c3ykBYwmeffaY//OEPKi0tlaNjyx+OtfvYm/VEJhtB0AEJLX7VowtbsiEb/wtM7MnD04N9qJNPsietyAh2o9ywlg0gauu4bJ8pm2XJtId7IGjeBlrimswGSWyPBs0yWgFnNFa/2xu1ZwkVX76O2HG+7VHEzoXGOYezNTU1+uyzz1RaWqpBgwad8wJMJpM8PT2tCh4kyVTORuLeHuzGcfQEezLqF8M+nPCzif5+J1PZU6qfD5u9SUviiJUkqW8vlo6ZPpWTZEMdukZgtiQpFyS5kviApBpuBHQBR2olqbaWCw7ppse2zqFhEbYxzqaxf/9+DRo0SBUVFXJ3d9eKFSvUs2fPc/rwvLw8Pffcc5o0aZL1f2tiT5V5BWxkP34QSye8KysKtZeZw37f6A7c9TDDPQaJJ9hoiR6luyyUvVc+gQOI2gruetjDKV5Sp0OSXD3ZbBA/1cFmDkn2SNrh0xmIVsHvrIRh9U7YrVs37d27V4WFhfriiy903333acOGDVYHEUVFRRo9erR69uypWbOaVtW0JOddW+MkAyjnHR7Cnjy2p0eh9urq2MjWCe4LIFFTw2aD+sSwTsFgZH+7dQmsU3BwPIraI8maHOAGWVpbo7yU7b8J6MDJ3EtSbloeao+cYqmC1TjpCRsbeFgdQBiNxvomygEDBmjnzp16/fXXtXDhwhbbKC4u1siRI+szGAZD0+l5S3Leo+75h24YP9va5Z8VlTBnCV0n9/KGJam92I08z8Q97F5erEM1OLIBSUkxe7N0DWPXtzucnXTITuXKBC7ubTstXZzPZgxKCtgAx8GRfW5dwTFTWimUln5vFdjGOK1DUyqallBUVKQRI0bIyclJq1atkrNz8xuKJTnvj7c6yWDkLhb8XKpXDza1mprBpqWLitkx2Ni+3Mb7n32sQy0tZZ1WYR7rFC4vj0ftLcjqgdozGLn+G9qhtnXQJQeyoVWSqsq5YJjuz6iEMxqtAtsY59nx9NNPa9SoUQoPD1dxcbE++eQTrV+/XmvWrJF0muchJSVF6enpkqSjR0+nUoODgxUcHKzi4mLFxsaqrKxMH3zwgYqKilRUdNrxBAQEnJVVzpKcd1hgtSTOqZ7MYuva2TlsQ9F5Dss0goMzGzHtPcXxVHTqwm6SESHsqeDzIyxvQ6FPNGqvuJA9RZMnQXrKwRnOaNBkSDTzpmMz2VprYXTmMptF+SwBnIc3OwJrAw+rvGZWVpYmTJigjIwMeXl56ZJLLtGaNWt0/fXXS5JWrVqlBx54oP79d911lyRp1qxZmj17tuLj47Vjxw5Jqi+DnEFSUpKioqJavJbkTNYBwuzJunEge9I6nOmN2qNZYv09uUa7PXtYFT6zmVUJ7NC55aqxLcG+YlpCej9qjyT2KoF7FminRY8iunmxmjj0hA1pr7aabX4uNbEkYa2C31kJ47x5IC4WNh6EBZcM7Mljxwk/1F5lFXuZ3N3YGz3Ml4tIftzORjceHqxT2PfzSdTeiBs7N/8mK/Dj98moPTLN7R3I1rUzkjJQe7TDr61ms2k0D4QzODlBBzd0U+a3/+2F2rOEitWLEDvON1hWs25raLdaGGmFbL0tO5+1l5PHNtp5erCXqgQuRZu9uBSOgwMb3IwYwHbWJx1nMxrDO59A7X3/Tdt1WnQPBO3wy0FmRklyB6miJakapmWvquD2KbJXRmqnPBC/M7TbAKLSzDoZs5nddPt0Z3/a/UfZjSMokJ3qKCzl0twDLmEbz/alsGOchdlZqL3SGm/UXo257Spe0j0LeWkskRTttOiMAU1lTWYNnN3Y3668kA3mWgW2Jsr2ATdn1uEP7MOmQnekhqH2QoJYh+8G08znFHAllmNHCjFbkjTqOjZtTo8ibklkeyr8Q9ngOislB7NVmF2I2ZL4DASuFloD87c4s8E1GeDQDaPV9Gx9a+B31gPRbgOI8ko20tuSzDr8SH+2freenfTTFX3YJlQDOAebcpJNhR6GtaXKS1gn4+XO9rfkprN6E+Sp1+jCBsL5MJW1d6Avao8e43SChdyyT3H3MpmpkiSDBxsctgpsTJRnR3Ny3vfff7+WLl3a4G8GDhyo7du31//3okWL9NFHH2n37t0qLi5WQUGBvL29rV54OTwi3C2UJX5KzWeP+OYqdn0n0tmNvKSUywjVwn29jwZ/gdp7xO9K1B59aCH1DSSpvIjrW/A2wA4aTpvTPAv0qZxuyqS/LwlaiMwGHqictySNHDlSS5Ysqf8bo7HhTVBWVqaRI0dq5MiRmjFjxjkvnC41ZRezJ4Xjyewkwc1XsQ96RhHrpDPBC9KzoxtmS5JeT74dtVdiYlMajg7stSgzsWOwTq5cMEw7rMpSNhtETxLQXAY0vTOZIaFpxekpjFaBrYRxdtx0000N/nvOnDlasGCBtm/fXh9AODk5KTg4+Kw2pk6dKklav369dSv9DarZ51yuTuzG5unJVocOp7OpS/r3I3sq4g+xjWeDL2Ef6lMpLFU0XY4LjmbLcaZcjmvBw7ttj0nSTotuohRtrpgzSDd4tssAwtZE2TKcTc57/fr1CgwMlLe3t4YNG6Y5c+YoMJBtEpMkmDVVBSXsze8Dk6idgqmsgwLY7+vixJ2ic7PYk0x6AceSKfFiXy5w8FpZxm68vsHc70erU5qr2EY7nyC2xGJwgsev4TFYMsCpMrPXgmYttYEHKuc9atQojR07VpGRkUpKStLMmTN17bXXKj4+vhEVtTWwpMaZcMJBjgYu/UbzaRUUsJt4/z7syS3Yi11fcSWXIfELYKPDKyJZ6um479jfrrCEDXDKilknQ9qzhxvtquBmqKxkdhqLruNXVbAlG2MLtIhaCntH9vRNT9i0BupsJYym0ZSc97hx4+rf16tXLw0YMECRkZH69ttvddttt53zIi2pcV5z+0xdd0fTMuDWYGBPNje4dT/b3OXhwq6vpJI9GYV6cnX3A05sD8SXO9iSg7sX2xgHZ35x8qLiPC5rYHBlS3Gk1PiFgAuodnkhYHThDmFmeOzSTPPttwZsUxhNwxo575CQEEVGRiohIeG8FmlJjXPpBicZjNxp5mgaezK6YQDrZOL2sTWRLpFspOzpyJ1S83LZh7B7N9ahnmSJI+XnwTpBU24hao8EnZamHTStv0A7QfqUbweemOkAwghzXtjA44LKeefl5Sk1NVUhISHn9RmW1DiLy2qkMu5U7uvNBhAuDmyqMSSQTXMnp7F19+qa87vGv0bHjpgpSdKpdDbNba5iHb7Bgb0W9vApiDyl0g6Qpk+mQTcW1sEloPJSju2RnNaR+HulVWDLQJwdTcl5l5SUaPbs2br99tsVEhKi5ORkPf300/L399ett95abyMzM1OZmZk6fvy4pNM9FR4eHoqIiJCvb8sbmDpHsCfoxFS2ROAmdpTOzTkItZcHj4OVV3L2jsBMlE7ObZsvLaOArZPTJYySAvBeZulMZIbVM+ngyxkmkiInYiTJy98bs0VPxJDBTWvB1gPRBJqS8y4vL9f+/fu1bNkyFRYWKiQkRNdcc42WL18uD4//bWjvvPNOg36Gq666SpK0ZMkS3X///S1eS0Ex+6BXVbGpxnd+ikDtlZayqdWQELbPIDuPe3AeuAkurxgKUXsvvc86rU6B9Pw8m0omG/e8YKbHihI2IvEO9EbtFRewz62zO3vKJ4NDmqPC0xceZbMBR7uV8/54C7vs1EyYTjiHTZv7B7AnmYgQ9mEvKefs7d3HnrLuGslmIOa+w3bqL3yEpZ5++C1v1B5JP02XHMqK2VNqSQE7ZkqWfyTJ1YMN/MmeD1qIjJ4m+n5pX9SeJZRt/BSx43rVnYidC422ndttApcGn0Lt5Zk6oPa6dGZPCqfS2QxJYgqbwfH35Wqzbu5sSr/MzNaN3b3YTfzTk51RezU1h1F7ZFMmmTKXeP0Fuo5Pg2bKjO4ZjtlKPsLuyXSw1CqwlTDaB344xt34klRaxtbvbu5yBLW3uqYHai/Yl+35sLfj7G3byp4C9yQEoPboznpfz7adBKyt5q6tC6xdQafNaZjh0igdMJ1KZKXpSbRLIikbE2X7ACnedCGweBt7qnRzY79veiYbQFw3gDsZ/XEcO5q38zjrZBzgzvohgWyw+QU8/kaKaVWb2fuOrsDiY5JmuFkZbiwknTRN290uA4jfGVA1zqysLD311FNau3atCgsLddVVV+nNN99Uly5d6m1UVlbqiSee0Mcff6zy8nJdd911mj9/vjp0sK6EMLpvtlXvbw5rD7JTDpEd2Frv5REsm+KPh9nvm17Ifd+f97C1Tzd39hRIU0WvTWGzSxJLVNGWVRHLiliHSsuN0wFJLZwpJfsW6O9aAwebrQHbFEYTaEqNs2fPnhozZowMBoO++uoreXp6au7cuRo+fLgOHTokN7fT9aypU6fq66+/1ieffCI/Pz89/vjjuvHGGxUfH29Veq6kmq1VerixFz4ti61VfpvP6on0jGYfzuoa7vfr2Z2lsD15qm0z5BnhPCCteEmSNdXCp1QDPMZJj13mZ7IBDt2oSKIcD+baIZHU74wH4rynMHx9ffWvf/1LV155pbp166YDBw7UK3PW1NQoMDBQL7/8sh566CGZTCYFBATo/fffr6e9Tk9PV3h4uFavXq0RI0a0+HPfWs2mt7p3YJ1MYiZ783u6sd83v4gNmPpFceNgn/3Irq1zJzYg2fxTCmqv/xVsA++WdYmovcoylhSNBK2tUQcHX3TTo18IS8teAV5b+j6hxzg/foUdrbeE0m0rETtug8Ygdi40MDXOM2yUzr8SZ3FwcJDRaNTmzZv10EMPKT4+XmazWbGxsfXvCQ0NVa9evbR161arAghHB9bJ5BSzqUt6ODbpFLuxhQSyG+/RTI686NZr2BLGmu1tWxY4LIi9l3H6ZNBJu8ETLLgIXmYeas/NiyX1qipnDzqk03c0sNkgmjSrNVD3O8tAYGqcZrNZkZGRmjFjhhYuXCg3NzfNnTtXmZmZysg4PTefmZkpo9EoH5+GtMxBQUHKzLSuxp+Tz0b2QzqxG8eKZD/U3hW92ABi3c+skxk2gHMyh9NYJ9Mvhj5VslMdbb1s6uDIXVt6KoE+9br7sKdeOgNRVcEGw6TeBM3bQE7/tBra+sMMA1Xj/OKLLzRx4kT5+vrKwcFBw4cPr2+wbAp1dXVNirpYkvPuGGqQwcjd/Mkm1uF7erAn/O0HUHO6cQi7kacWcNciIZGtpXYIY/tlkhPY0bcrLmVTq225L6C2jXfWOzmzmcjiAvY5oxtaSadP33dOMCX7/++YP3++/vWvfykjI0MxMTGaN2+errzyyrO+v7KyUs8++6w++OADZWZmqkOHDnrmmWf04IMPtvgzUTXO/v37a+/evTKZTKqqqlJAQIAGDhyoAQMGSJKCg4NVVVWlgoKCBlmI7OxsDR48+KyfaUnOe/T4Wbpxwmxrl39W1NWxqSdHR3ajLCtjTzIOIG+DJBnA7xscxDaKZWSyp1SaTZE+aNFcARXg1AlNPe3mxfa30NTTYZ2CUXuVFWxAUgPefH4hME05PO3UGrhYJYzly5dr6tSpmj9/voYMGaKFCxdq1KhROnTokCIiLB9Q7rzzTmVlZWnx4sXq3LmzsrOzVV1tnZ857ybK6667TuHh4Xrvvfca/VtCQoK6d++u7777TrGxsfVNlB988IHuvPM0VWdGRoY6dOjQZBOlpQzEt/vYDERHH1Z+Oz6FzWjQMBWxaX1fb+7BOZ7EbhwRHdiG1g0/sk2U993DOplln7AjzuWg03eBtRxo6XK6cY/OuNAjxKRaaFF+2+5ZWPt+vwv+GcU7VyN2PC67war3Dxw4UJdeeqkWLFhQ/1qPHj00ZswYvfjii43ev2bNGt111106ceKEVSKWvwWmxilJn332mQICAhQREaH9+/fr0Ucf1ZgxY+qbJr28vDRx4kQ9/vjj8vPzk6+vr5544gn17t1bw4cPP+vnWpLzTs9jH8ycAtbhF5WwDnpc3+Oovbjkrqi9IZGpmK2yCnYqITWN3XRpp5Cay6al6SZKktCnmFT2FO/wi/JZFlQXN5YUje75KAPHamlWUJr2vD3B0qHZkh+UpKqqKsXHx2v69OkNXo+NjdXWrVst2l+1apUGDBigV155Re+//77c3Nx0880367nnnpOLS8uDfEyNUzqdTZg2bZqysrIUEhKie++9VzNnzmxg47XXXpOjo6PuvPPOeiKp9957z+q0qwOcKfL3Zh0+rUT76T6Y2ZLd13SqjGsstDKL1iycnNiUvos7W2KJCmADHHp9pOCSRxtXWKSDLzcvdqOiyZocwb4FusGTzHy1GqAShqWy/axZszR79uxG783NzVVNTY2CghqSAzY1nHDixAlt3rxZzs7OWrFihXJzczV58mTl5+fr3XffbfE6260a5+rd7IN+JJVl8zGZWC+Yl8tGJIMvZzdyVycuANt3lA3m+nRjN90ft7Dd5tcPZadO3luWhNqjnSqJGnjKgZbLrq1m72WaKZN00mQ5ROKzLavf7Y3as4Si+O8RO069rm5xBiI9PV1hYWHaunWrBg0aVP/6nDlz9P777+vIkcZU+bGxsdq0aZMyMzPl5eUlSfryyy91xx13qLS0tMVZiHarhXEym21ku6o72wOx+ag3am9ADOtkdh1kN97OUdz16NGJTYUeTGRj5KJ8NpjLNrHBHM0VQKam6U79aji4oR0+nQ0qzC5E7ZG6LnTzLq2t0SqAMhBnCxYswd/fXw4ODo2yDdnZ2Y2yEmcQEhKisLCw+uBBOt0zUVdXp1OnTjWQn2gK7TaAqIHr0EkFXs2/yQpUVrHrS8tlL1XnKNScQry59OW3G1mn4OnJNlHS3eExoWzdfTV8SiV7IMhyiCSFd2X7ZTKSWM0ZsV9XoZ1CUHtZKTmYLdrhG4xtV4OlLcFoNKp///6Ki4vTrbfeWv96XFycbrnlFot/M2TIEH322WcqKSmRu/vpSaZjx47J3t7eKl2qdhtAeMLaFY729FQCG41fGpGP2ttw2Kf5N1kFzknX1bEBhMnEOnxa5GdfCpuBcHZlA5KCTO7e8/Bmv2taQjpqr3PfKNRe8uE01F5uOrsPkBkhuuRgrmQzaa2BOl0cIqlp06ZpwoQJGjBggAYNGqRFixYpJSVFjzzyiCRpxowZSktL07JlyyRJ99xzj5577jk98MAD+uc//6nc3Fw9+eSTevDBBy9cE2Vbgr09TGFbwjr8AhMbkHy/h82Q9O5MyypzD05EBFuuKSxkAxKaXZAWu6TXR4pz+YV4Y7YkfnQw6eAp1B7J4ilJRpjoirxX/MNYnY7Uo+y4dGvgYvFAjBs3Tnl5eXr22WeVkZGhXr16afXq1YqMjJR0esAhJeV/v6e7u7vi4uL017/+VQMGDJCfn5/uvPNOPf/881Z97nk1Ub744ot6+umn9eijj2revHkym836+9//rtWrV+vEiRPy8vLS8OHD9dJLLyk0NLT+7xITE/XEE09o8+bNqqys1MiRI/Xmm2+etV5jCQvXnuuqLYMm80lKZuvkUZFsc5ebCxspkwyuh46w3dfDB7Gb+H+XsafeP93PSqvPm89uvK4e3L1XYmIbUO3t2Q27qhyeiAGVTKW23d8SMyAasyVJB35mZem/+U9P1J4lFO5Zh9jx7nctYudC45wzEDt37tSiRYt0ySWX1L9WVlam3bt3a+bMmerTp48KCgo0depU3Xzzzdq1a5ckqbS0VLGxserTp4/WrTv9Y8+cOVM33XSTtm/f3uINwVzNZiB6R7JOywfcdCVeTMvJSDc8cbYK4CbFXxLZcg3NRJlhYhvtSHZBiRU1osc4C3PY5ueQaLbHIOcU12MgSf6h7Cm/GizHJR7KwGxJPK9Eq8AmptU8SkpKNH78eP3nP/9pkPLw8vJSXFxcg/e++eabuvzyy5WSkqKIiAht2bJFycnJ2rNnjzw9T28mS5Yska+vr9atW9ckodSv4eUOSz4bWAnkndkxqD1vL9bhJ51kT1odo7geiGuHsZS4BxPYEkZ5KRtsXu+7E7X3mRMbMJnBW4WeGqc7/3PTaDVOlmo7L4PtgSDHYMmJDkkqL4Y7UFsBdTYxrebx5z//WaNHj9bw4cObrZmYTCbZ2dnJ29tb0mmGLTs7uwYjKs7OzrK3t9fmzZtbHEDUsAdybcrthdob0JVtKPr5KDtJ0KUja48UWdx7kP3tIsLZbFC6H3uK/vB4J9SeufIwao90MvSYpJMrm72h+0do6ml6DJakFnc0sMFcu8xA/M5gdQDxySefaPfu3dq5s/lTU0VFhaZPn6577rmnPttwxRVXyM3NTU899ZReeOEF1dXV6amnnlJtbW297PdvYYnW87LA9BbPybYEcQls/W7DFnbj8PVjU2Opqez6unfjnGrHKNbhx3ZiacBXf8EGOMPuYa/tt8vZDAk5xukfymZH8jILUXu006LHVn2D2OwcWZ5yh9UzaY6P1sDFaqK8WLAqgEhNTdWjjz6qtWvXytm56cjfbDbrrrvuUm1trebPn1//ekBAgD777DP96U9/0htvvCF7e3vdfffduvTSS8+ajrRE63nr/f/QbQ/Otmb5rQofX9YJ3nVVIWrvaB5HPS1J1TWck0k4ydbwPylkg0M7u6OovVIze6/Qks+kU01NYMcaHQ3sidwBPkX7h7LPWUkhG5CQzJu0sBk98tsqsJUwzo74+HhlZ2erf//+9a/V1NRo48aNeuutt1RZWSkHBweZzWbdeeedSkpK0rp16+qzD2cQGxurxMRE5ebmytHRUd7e3goODlZ0tOWNfsaMGZo2bVqD106rcYIS0l5sd3NZBbuJf76VPXnY27NOOiyE28jNVWya+8bBLC/CAXik1tWRzWjQp2jvAC5rQJ54JZ4roLaWrePTUxM0yoq4gMQ3hG3wLClkhdds4GHV03Lddddp//79DV574IEH1L17dz311FMNgoeEhAT99NNP8vM7u8qlv//pG27dunXKzs7WzTffbPF9lmg9rww6YM3Sm8W7O7uj9tzZ3il5uLMno4xMNs0dHMgFEKZCtrxSVMWO0lWb2VHEEjNbx7eHGwsLsrjGPZoroCiPdTJ0k6fBmc2QVMBkTe4+3CmfvE8kXlujNWArYTQBDw8P9erVsNnQzc1Nfn5+6tWrl6qrq3XHHXdo9+7d+uabb1RTU1PPz+3r6yvj/1GTLlmyRD169FBAQIC2bdumRx99VI899pi6devW4rV8m8w2PXaMYDeO4lL2FOhkZO0ZDKxTva4TJ+B06DDrZPafhDk04BHd0qq2TdlLZjRMuWw2iIY9LPNbVswGm0ZntvmZFErzDmzb49KtgYvFRHmxgIZ4p06d0qpVqyRJffv2bfBvP/30k66++mpJ0tGjRzVjxgzl5+crKipKzzzzjB577DGrPis3n03BB7GN8DLBzJaRAezJIywyF7W3cl8kZss/kC1h0KReFXBaurKadVo0pTAZQPiFnD0jeS7ITWPvY7r8Q2eDaDlvZwOX/aJVW9t6+ccSfm8ZiHYr5/11PDtutf84u3G4ubI3kqMju75QPzYAC3TnSiKrNrObrq8ve2rLyGADkuFD2BLGf//LMviR8A3yRu2VFrOlOJqYis4Y0MybZMalqoItPZLTP1LryHnnHNyB2AmIGYjYudBof0Wm/8PRk+yDZGfH3qymItZBX9KVDSByTKyTzi7kmj7s7NgT9J87fIPamxTfv/k3WYEjyWw5iXbSmSezMFuFeWwJgxY2q4VZPGnehvIiNnglQWdvaGKqVoFtCqN9oCOr4quUTDYg8fVmb6TENDbAgfl35OHGrY9Oin1dcxNqz5TLEjXdcQlbJ39yE+u0yJMgneamHbQ9LH5Fgxy7pOHsymZbSJrt1kKdfl8ljHYbQJhK6RIB67RS09n6XbWZ7Qvw92Mb9wZ25FK/RxJZQppQbzbNHR3DRq8/57AjOxVlLE8FCd8gmEgKpnamuQfMJEWrJCfYSZeXcM9GiYktK9vQ9nFeAcRv1TjP4PDhw3rqqae0YcMG1dbWKiYmRp9++qkiIiIkSZmZmXryyScVFxen4uJidevWTU8//bTuuOOOFn823CyNa2uknmKj55uGsgFEuDEBtfddYssnaJqDqZBNcx9KZZ1C5klu4kSSHAezAQR9Kidr2xUwtTNJsy3xUxO4PgTo8CU2u0RfC6MLGyy1BmxaGC2EJTVO6bRU99ChQzVx4kT985//lJeXlw4fPtyAuXLChAkymUxatWqV/P399dFHH2ncuHHatWuX+vXr16LPhxvNcW2N/Fy2VrnvJNu9/nNVV9QeyDWku2LZ6DCrhL24Lu5s/aeojP2+dPMZKVhVCz9ogRGBqL20hFOoPU+45ED3fLTljDtJctVa+L1NYaBqnJL0zDPP6IYbbtArr7xS/1rHjh0bvGfbtm1asGCBLr/8cknS3//+d7322mvavXt3iwOIazunnMvSz4qDeWGovbq+LHMkzE6sWjhgSknnNrYdu9hN0smZPbUFhrJMlCVlrMOnAwiS7bGqgi3thUaxnCGmXDZbRZMh4U2j4EZgE7/6/QFV46ytrdW3336rv/3tbxoxYoT27Nmj6OhozZgxQ2PGjKl/39ChQ7V8+XKNHj1a3t7e+vTTT1VZWVnPE9ESbD8VcS5LPyvojMbdEVtRe0sTB6H2woNYJ+PizJ1Ss7PYKD46ip1y2LYpHbV39UA2OqQVJUnQNfzsNHbskm7gpbkMqs001wJXUnJyZbMtzu7sc9sasBFJNYOm1Dizs7NVUlKil156Sc8//7xefvllrVmzRrfddpt++uknDRs2TJK0fPlyjRs3Tn5+fnJ0dJSrq6tWrFihTp0sszlZUuPMLTDKYOA2oxt6sHVt56xs1J7ZDDd5ZsEjV/bc+iorWAeYeAKua8NkPr8ksNeCPvX6d+GaRnPT8jBbFwL0KdrVg3WC9LWtLOVOTpVlbKavPcJWwmgCzalxnkmH3XLLLfXMkn379tXWrVv1zjvv1AcQf//731VQUKAffvhB/v7+WrlypcaOHatNmzapd+/GZB+W1DivvOXvumrMTGuW3yTWOnRs/k1WoEMAmyG5rjcrQuTlyDYq7s8Lx2wdOsgGS27u7Ak/j6NFkCT5+bCjg+WlbP9NTQaXNneG54fp71oHtxiUmtjgtbyY7Qtw8eAaeGkiKboZ2AYeqBpnaWmpHB0d1bNnzwZ/16NHD23evFnS6SbLt956SwcOHFBMTIwkqU+fPtq0aZPefvttvfPOO40+15Ia5+tfO8oRlN51hAdanR3ZnWjLMW/UXmgAW8cP9eQ2chc31uF378RuRJlprD1fT7YhxWBsu9oa/FgjG5CUmlgH7RvE9kLRTpqEC1xyIMsrrQXbFEYTaE6N08nJSZdddpmOHm04h37s2DFFRp7WSigrO+1ofkvJ6uDgcNaGHktqnB1CrVl58ygtZ0+9h1LYTZzuWQj3YjMQBzO8MVuVFYWYLUnKzGF/u1ITe+otLmMbAek0PNmU6eHPcnxUwmOhrh5uqD1aC8M/LAC1V5DJ8Wi4erIBRA3MCtoasPVANIHm1Dgl6cknn9S4ceN01VVX6ZprrtGaNWv09ddfa/369ZKk7t27q3Pnzpo0aZJeffVV+fn5aeXKlYqLi9M337SccriohHUKfaLZLsoME3sySkpnb8ykdDYD0TOSO1lGd2Q74YtL2I3IO4Bdn7c7m4FwgvUXyFM5zUTpF+yN2suGezSK8tlA3d2LDXAcwTJBMUxT3h5h64E4T9x6661655139OKLL2rKlCnq1q2bvvjiCw0dOlSSZDAYtHr1ak2fPl033XSTSkpK1LlzZy1dulQ33HBDiz8nNIANIGiHn18Ei3PBDLY5+WyjYm4xtxEVFrKnypuHsMHhf79gf7v8YnbTocsEbZnQJ/NkDmrPXMVOTbh5sSRhwRFsSeTgDi5gooXDbGj7aLdqnAvWsPb6RrLRc2UNWyf/jp0KVXQkG5EYwa97PIkNIC6/hI2TV37LSkhfNjAItbd+LTtRRGcNSNDbFz1mSo/U4lLtbfjEXFfHZua+/W+v5t90nkhJYHRyIrr0QOxcaLRbLQwXWAzqeA6bls43sRvb3y/9HrX3RclI1B7INaSqKrbksOsgmw1ycmaDQ082K43TMXv5e2O2aF4EgxO7heWksuPXdPaGJglzcuV6tejghiyvtBZsJYx2glAfdiPae5z9Ka6OKUbtLTgYi9oLZJmxUXXP8lL22hqNbCNbZQV7Iqdp1GknU5jNkTXRa6MdtIOR3QcCOrBNj+mJaag9BzP3felyTWUbnjix4TTabQCx8zDrFMYMYIf7l29hPbSzMyzn7cR6rdo67pTv4cWml7y82JNMVjp7ynA2wtoVMNnQbyemzgeuHmzpzJTL8qPQI7DlIFGTJLl6sk7a7nc2dnihYZvCaAKzZ89uROgUFBSkzMxMSafrkf/85z+1aNEiFRQUaODAgXr77bfr+R6Sk5MVHR1t0fann36qsWPHtngtl/dga4sZZWxzUngYuxE5svGScgpZe6Q6qhnm+3cysg91RRmbIfFyYe/l2hpaS4Q75VfCWhj0CT83ne1voXkl6AwOOfJL93vQ93FrwFbCaAYxMTH64Ycf6v/710p9r7zyiubOnav33ntPXbt21fPPP6/rr79eR48elYeHh8LDw5WRkdHA3qJFi/TKK69o1KhRVq2jBjzxSlJqDuvwS2GBpPwCNm0eFAiTNYVxNLanMtiMQWkZm20hCcwkqbiCtefixs7jk6nkoAjW4WckZaL26EmCtszJIbFKq0X5bDaIXJsNFwZWBxCOjo4KDg5u9HpdXZ3mzZunZ555RrfddpskaenSpQoKCtJHH32kSZMmycHBodHfrlixQuPGjZO7u3WpuaJyNk3r4sQ+mLn58Gy/E/swebmz3zcph0tND76EDZb2JqDmZK6CxziL2FNLcSE7UUQ6LZqEiyZ+8vBm7RXksE6VZqIkia5wEi5Yc6Y1YCthNIOEhASFhobKyclJAwcO1AsvvKCOHTsqKSlJmZmZio39X7Ofk5OThg0bpq1bt2rSpEmNbMXHx2vv3r16++23rV74UN8DVv9NU/gq6RLUXmkZm37r1pHNGBQWwycZ8FlfuwUe4+zHbmy7trB17f5Rhai9deDUhCQZwBldeoIlC56aoCdY6IyBwQnu0SjhAjpau6Kuov0xDNiorJvAwIEDtWzZMnXt2lVZWVl6/vnnNXjwYB08eLC+DyIoqOFMe1BQkE6ePGnR3uLFi9WjRw8NHjzY6oX/kMk6fAM8MQRnLnUihT2V9+7KZjSKyrgvHBjINtpVVLEXg3SokmSqpBsLk1F7vQZ2wWydOMRKodOgmyhpp0qXz0jQ1NO1tW1Xlt6G07AqgPh1n0Lv3r01aNAgderUSUuXLtUVV1whqXFXb11dncVO3/Lycn300UeaObN5RU1Lct4lpU4yGLl6ZZ8ObKoxO5ftlr6qN3vq3Z/Cnsqjg7nmuJ27YIXFOlZ/wQemsk5IZ+vutIDT0T2WDwDnAr8Qdm3ZKayEdLUd67Rq4EZAWs3UDBK4+Iexmi6ZyWx/S2ugDu7Na+s4r0YCNzc39e7dWwkJCRozZowkKTMzUyEhIfXvyc7ObpSVkKTPP/9cZWVluvfee5v9HEty3rfcN0tj7p99PstvgD0prDZEdjbbfb1iPUyN7cZ2w3cP4zbK+2/CTEmSvBzZ2fl/J7PBYXEpTAQBg6y752dxnBKS5OzOZm/ojAE9mUAHJCTSj7PPGd2A2hqoU/vr2zgfnFcAUVlZqcOHD+vKK69UdHS0goODFRcXp379+kmSqqqqtGHDBr388suN/nbx4sW6+eabFRDQfFe2JTnvL3Ya5ejA1cjcPNl629DL2U74sgr2xqSF7vLASYeN+9gG2eJiNi2dk86m4fv2ZU/l5krWabn7cBkcWgyquIAN1EsKWAK4wIhA1F4uLPZF9lTQ/CN0tqU1YGuibAJPPPGEbrrpJkVERCg7O1vPP/+8ioqKdN9998nOzk5Tp07VCy+8oC5duqhLly564YUX5OrqqnvuuaeBnePHj2vjxo1avXp1iz7Xkpx3hfn0/yh0jGQ3oh/3siejQD82gKD1kapruAeHFtMKCWGDuYwU9tqG+bPRHM09QJ7yTbnshEi1me0NouW3ablxR9hJu7hzTrqsmC0nVcGcITbwsOpuPHXqlO6++27l5uYqICBAV1xxhbZv367IyEhJ0t/+9jeVl5dr8uTJ9URSa9eulYdHwxPMu+++q7CwsAYTG9YCbkbWT/tYJ1NYwPYsFJvYjdLbh/0Bbx/Ancq31/lgtiTpyp6sQzWZ2Fpvtol1WpE9wlF7BTmc0ycdliRlJGU0/yYrQDto2qnSILNVNMsoTTrWGvi9ZSDarRrnip/ZUxs5hihJReWswauCj6D2ViV0R+15unEPztbtbJ3cE6bGPn6IrfU+N4VN6z/1Mvv71YB1fFovoTA7H7VHj0l6B3qj9irgjAYJWrWVllb/fmlf1J4lHEk8hdjp3qkDYudCo91qYTgb2MYzOowqKWNPlV8eZh3+iBi2jv/DkVDMlgEmzbqsL1uvMRWyPQt7MtiMi4MjTCQFyirT6pkusJRpNewEc9NyUHtuXuxEEcl7QTNH2v/OaKHbI9ptAHE4hV36sB7sqc3gADeLVbLd4UviWCd45zWFmK34nezJY+de9rergeUzrwvYh9r7GFRYlKRKUBDKPoANluhGuzJ4ysFgz2Y0aKIrJ/D3o1ky6XJSa+D3VsJof1fo/0BnDDYdYTe29HS2B8LFld3YQkPZjTfVxG2UN9/APoT7jtAjJ7A5x8bU8OcDewc2GPbw40acaYEkmumRbqJ09WZ7q2pgoTkSdDBHa2u0Bmw8EO0EEcFtl4pZksrK2ZNHZSV76u3cASa4ceTsbfmFvRi+PuxtnnycHZPccoINIKorWXpnEuUl7HPb1omaHGAZ3QpYHtzZjfu+BVlsP4qLOxt82cADlfP+NSZNmqRFixbptdde09SpUxv827Zt2/TMM89ox44dMhgM6tu3r7777ju5uLS8i5ccG5QkZwO7Efl6s07raALbzZ2cyZZYvNy572s0wg2yMPuvEdZz6BbKXlsXT3bjLS/imEHrDGwA4eHDNmWWmNgSAX2KdnZlJx3IUUm65GBPn+paAbYSRjNoSs77DFauXKkdO3YoNLRxY922bds0cuRIzZgxQ2+++aaMRqP27dsne3vrbpYBwSnWLr1J/PdHlvDFwYF1gtXVbAYiv4BdXxR4iO7dj03Bdyzajdq791Q0am/rQW/UHp3WdwTZGek6eT586qUb92hp9fJSluadBP1d6X6P1oAtgGjuD84i530GaWlp+stf/qLvv/9eo0ePbvTvjz32mKZMmaLp06fXv9ali/ViPasPRVj9N03h/uvYqYQtyWGovexcNrp3dWE3SvCQqje/5WxJ0pAhI1B7joYTqL1enVBz2rcTLp+VcWlzWqejFg6WSgpZJkoatNiXf5gfZistgRlhPAN6pNYGHpictyTV1tZqwoQJevLJJxUTE9Pob7Ozs7Vjxw6NHz9egwcPVmJiorp37645c+Zo6NChVq0jPIjdOL47wI0hSlJ+Aaw10QmWC4VB0op7+7EnmXA/9tTr5MqOhSZlsMEczX5IahLQNNv0KZWmY6b1HOieipIC7vezszKL3Bzasu7H2WDLQDSBpuS8/fz89PLLL8vR0VFTpkyx+PcnTpw+uc2ePVuvvvqq+vbtq2XLlum6667TgQMHzpqJsKTGWV5uQNU4y8vZEoG5ir35A1kBSG3bz97owYFcgDNkAFvnLYa5d8qK2TTyjTFJqL2vP2J5IEiuBWeYiZJO6dN1fDJ7I0kevuxGUJzP3Sv0b0cHc60B2xRGE2hKznvYsGF6/fXXtXv3bovy3dLpDIV0usHygQcekCT169dPP/74o9599129+OKLFv/OkhrnHyb9XRP+1LwUeEtxTR/WyyTmsIQvWfBEk5srGzCRjYqbfmadgtHIntroxr2aOpa8yDeUpdrOS+OmOpyc2ewNyWMg8ToidMmBLrGQGRKaZbQW7vtqDdTaMhAtx6/lvO3t7ZWdna2IiP/1JtTU1Ojxxx/XvHnzlJycXC/z3bNnzwZ2evTooZSUszdFWlLjfG+9kxIzuIfTxZl90J2NbInlUALrZPr2YKP7apBciW4YveYKNqOx7CA7NbH9VEfUnoMD22Ds4sE5hgr4RE6n9OlGQFoenBaYIicdCjJZghRHQ9su29oAynlPmDBBw4cPb/DvI0aM0IQJE+qzDVFRUQoNDdXRo0cbvO/YsWMNshu/hSU1TgeDRPZPgXT/kqTcfJinwoGNbLPy2Xpl7wiulhoSwo6YeruwTsvVkw1ISmG9JZop09OPS5sXZLJTE67wyGpVOeug6QCiLfcF2MPBXLssYdgyEGdHU3Lefn5+8vNr2NFrMBgUHBysbt26SZLs7Oz05JNPatasWerTp4/69u2rpUuX6siRI/r888+tWnhRMfsgdQhmb/7kQjZj0DmaTf3C03SqruUCkkK4AXXzATbNXVHG6hv06MBGEOvPUkI8VxQXcGlzOs1NCzhVwycJ2h7JySGxYl8ODhxjqcQrt7YGbD0QTaA5Oe+WYOrUqaqoqNBjjz2m/Px89enTR3FxcerUybpZtr9GsLN+/z5+9gzIucDTkz15VMLKtvD0m3Yncg97WRnbBDhiCEyNvZO1t+sYGxzSaW5SjVNwDwR9wqc5NOg6PsnJIUmF2YWYLTpjwPNAhMD2bGi3ct6fbGWXDfaJSZIqKtiNo7ISZsr0YTciN1fOqSadZNMjzs5sdokWCbxnINuzMP1NNsAh0+YVJWy2hZ5KKMplu5X9wtiGVtLhS6zSKg1XD7aU+dlrLAGcJcQfY0p0/buyfCkXCu2vyPR/MDqyAYS7K+sV3F1Zp+UGEz+Zq1kn4wRSFFeb2U2txsD+dod3p6H2toaxTZQlBb+g9siyA+3wS2HqaaMLmyFBszdi+1EkqaaaCw7zM3IxW+0VthJGO0FaDnuhokPYB/3gCdZpVZnZ7xvkyzppsuxuBjc1SeoRzjY9HmbVt9UpgB3Nq6pgm0bJUb/ACJYyng4gaP2FSricZDCymUNyLNTNix1dp0m4bODRbgOIqGDWyTjaw6deWOwrhM2EysGOzeCk53EZl7ISdtP95SA7208zPQY5sU2ZHr7eqD03Ly6VXJTPBkv0CZ8GTa5k8Gi7PR/2jmzwRTeMtgZsUxhNoDk1zpKSEk2fPl0rV65UXl6eoqKiNGXKFP3pT3+qf//VV1+tDRs2NLAxbtw4ffLJJ1Yt3FTGlgjKK2FehGo4o5HABjh3XMGmG9NyOTWtHj19MFuSVGVmgyVTHru+PTlsdFhXl4DaIwMmmpmRHmushXsC6CZPOnh1dueyc5aEFc8H9LVoDdhKGM2gKTXOxx57TD/99JM++OADRUVFae3atZo8ebJCQ0N1yy231L/v4Ycf1rPPPlv/39bIeJ9BZg7rFPp0Yk+9+YXsxuHsxN6YPx0D5TMlXd6Rm5xY+g17bSOi2LpxCXwyMoI6IpLk6sGWbIwgyVolPD/s4s4+Z2Z43MnLn733ck6x2SqSOAvXJYEDEht4oGqc27Zt03333aerr75akvTHP/5RCxcu1K5duxoEEK6urk0qerYEd/Y+2vybrMA7G9lGNnsHNgMR24cdbfxmlzdqb08KNwNudGZLDkN6sp3/+/ewrKWllWzqtwTuC6gCJbNppkd6iIymxs5NY9kZaWpscxXHo2EHjyfZtcP4of3lTM4PqBrn0KFDtWrVKj344IMKDQ3V+vXrdezYMb3++usNbHz44Yf64IMPFBQUpFGjRmnWrFny8LCuASe+oKu1S28S4WHs3dohgA0gVsezaXMnI5vR8HLnNnK6B2LDLyzBjcSO+pETLBLPZUA6Lbrk4Aw7fC9/thGQ5oHISafpornSLdkrI0lFeeyhqTVgK2E0gebUON944w09/PDD6tChgxwdHWVvb6///ve/DaS6x48fr+joaAUHB+vAgQOaMWOG9u3bp7i4OKsWvn0v62T+cC17s6YWsXO8BngU0cWZvdEDPLjUtLMLm5amtTWcnOH1wezE9KgfuZHbw5LPNNNjRlImao8O5miyJrI8RU/EtGWOirPB1kTZBJpS45w2bZreeOMNbd++XatWrVJkZKQ2btyoyZMnKyQkpF4n4+GHH6630atXL3Xp0kUDBgzQ7t27demll1r8XEty3n26s3LeB7LY8bJ0tlSp63oXoPZ+3O+N2ssr4TYiN3f2ITRXs5u4uYp1WsnpqDmVwT0aZEBCj0lmp2Sh9miqbTrACY5k96ncdK485ezGZoPMVe2whvE7A6bGWV5erqefflorVqzQ6NGjJUmXXHKJ9u7dq1dffbWR0NYZXHrppTIYDEpISDhrAGFJzvvGCbN0872zz2f5DUDrtnQMZY+Vq+PZU2XvzqxTLSzlHnZ/f1gCuaTtChBJkocbTBJWxWbnHA1cWr+siO1Hwcck4akJ8oQvSRlJbMBEci3QwRKdvWkN2EoYVuDXapxms1lms7lRitLBwUG1tWdPRR08eFBms7le6tsSLMl51/34npwqFpzP8htgbfAfMVuS9PMB1mm5urDReFoua8/Pi3vYjx5msy2hHdi6dlEey2XQJZQtd9EyyMUFXFMr3VlvcIKDTVA4TOJ7PugmSg8f7tkozGafW/ratgYuZglj/vz5+te//qWMjAzFxMRo3rx5uvLKK5v9uy1btmjYsGHq1auX9u7da9VnYmqcnp6eGjZsmJ588km5uLgoMjJSGzZs0LJlyzR37lxJUmJioj788EPdcMMN8vf316FDh/T444+rX79+GjJkyFk/15Kc9yu1f5HAibDwSvbCX94LNYc7/OQU9iQ4PmQHZmuzsR9mS5Jyc9nv6uTK0h0PzfwItfea+TLUXl0lFxzSJQIaNNV2cT7bW1VezE4okRkIOmNQbWaVVv9/xvLlyzV16lTNnz9fQ4YM0cKFCzVq1CgdOnRIERERZ/07k8mke++9V9ddd52ysqzPbqFqnJ988olmzJih8ePHKz8/X5GRkZozZ44eeeQRSZLRaNSPP/6o119/XSUlJQoPD9fo0aM1a9Ysq08mtAQYTeNeWMiePNzhvoCYbixXQKLrJZit2KtYJ7PrIHstctPZa5HQ8QbUnsHITomQ5E80PbGDgQ2sK0pZoitaEIoeM3UBiaToqQkHx/bXA3Gxqi5z587VxIkT9dBDD0mS5s2bp++//14LFizQiy++eNa/mzRpku655x45ODho5cqVVn+uVQFEc2yRwcHBWrJkyVn/PTw8vBEL5bmiy9mDqnNCsAcb2e87yabNT6WzBDwSm+YO9+U2on0J7FNYWsqeZFzgZrHVe1kmSncfNmAia9tV5XR/BtsDUWlmA4iADn6ovcJsOKMBqqPWwuUa+tq2BqgShqXBAUuZeEmqqqpSfHy8pk+f3uD12NhYbd269ayfsWTJEiUmJuqDDz7Q888/f07rbH9X6P8QW/ctau/f8SNRe7W1rNOiRxELC9tuevDoAVZb/Y4xQai9Dz5gG9lcXQJQe/kZLFdAZRnnZKJ7s4Rt9NhlQAf2WqQlsCM29BhnUAT3fcmJDolntmxPsDQ4MGvWLM2ePbvRe3Nzc1VTU6OgoIb73K9lJn6LhIQETZ8+XZs2bZKj47nfU+02gNjsNAK1d92lMJV1GXtKraph6+6nsthU8qkCzl5YJGZKkpSYxk450Bz99nBa3x5uVCTt5WWwjXZGZ/a5KMgqRO15wJwcZMZAYq8HKQ0u8de2NUBNYVgaHLCUffg17H4jiVxXV9foNel0Y+8999yjf/7zn+ra9fwIGdttANHfuBe190Xq5ag9d1eYXRAeD6oy0yQt3Pryc1keAy8vtpubTq1GBLZtRcnwruGYrQq4hGGuZDNpZjhzWAz3BdBNqKZcLoBwdmdpytsjqN68s5UrLMHf318ODg6Nsg3Z2dmNshKSVFxcrF27dmnPnj36y1/+Ikmqra1VXV2dHB0dtXbtWl177bUt+ux2G0AsT2Y7zemJobxC1l5CAtsYF92RPRnlFXIBk68/uxGFBLIncuer2BRJuCfbwUvzQORlslkDEqWF7NildyA7Ulvnwp6iDU407wW38bl6sM9tWXH7k/O+GDAajerfv7/i4uJ066231r8eFxfXQIPqDDw9PbV///4Gr82fP1/r1q3T559/rujo6BZ/ttV3Y1pamp566il99913Ki8vV9euXbV48WL1799fZrNZf//737V69WqdOHFCXl5eGj58uF566SWFhoY2slVXV6cbbrhBa9as0YoVKzRmzJgWr4OewoDVt9UtHD4ZmdmmzE5hbAain89xzNbb6WyH7I6fWQdYXso2tHbpwDZRSmmoNVKhkp4ioLkCivLZQJ0mpipj4yX02gaHs8FXamLb7dM6G2ovEg/EtGnTNGHCBA0YMECDBg3SokWLlJKSUj8BOWPGDKWlpWnZsmWyt7dXr14NeQYCAwPl7Ozc6PXmYFUAUVBQoCFDhuiaa67Rd999p8DAQCUmJsrb21uSVFZWpt27d2vmzJnq06ePCgoKNHXqVN18883atWtXI3vz5s2zWKNpCc7xz84KOvuWbWI3NrruXmFm+wL2FHTGbNXUsp3wN1/Ppn1XrGGvRQfPQtQePTpYBUpwk7YkPiChiZ/o70v3Bbj7cJnI5CNswygtrd4auFhMlOPGjVNeXp6effZZZWRkqFevXlq9enU9xUJGRoZSUlLwz7Wrs0IPd/r06dqyZYs2bdrU4g/YuXOnLr/8cp08ebIBocW+fft04403aufOnQoJCbE6A/HdHjY6dbRnncLOI2yqkU7D+3mwG2W2iVtfSSmbXjIVsemlA/GnUHu33BaF2lv+wRHUnhPotCK7sRMxh35ORO3RUw50v4y9Ixv4k+RP9NQELf2+cj6r4GwJcfuYgPH6Pu2jgdSqu3vVqlUaMWKExo4dqw0bNigsLEyTJ09uIJD1W5hMJtnZ2dVnKaTTmYq7775bb731loKDg89p4YPstpzT350Nz21heyqCguDUJXso18Ej7Mmo/yUcD8TxE+zaRg1mg8Mjv7DBXGYOGzC5w7LKhdmFmK0Th2CuALhEQDt8usnTYM9+X5IkjHb4tLaGDTyselpOnDihBQsWaNq0aXr66af1888/a8qUKXJyctK9997b6P0VFRWaPn267rnnHnl6/i9V9thjj2nw4MEWGzwswRKpxsKEK+Ro4KK0ySOTMFuS5FPKpvP+c3Qwai8ygmWiTM3knGBuNkvqFX+cJfOhiaSC/NlTZXkJG22SlMJuXmy/B91oRxNdkUyPEu9UyRFdunnXzo59LloDNjnvJlBbW6sBAwbohRdekCT169dPBw8e1IIFCxoFEGazWXfddZdqa2s1f/78+tdXrVqldevWac+ePS3+XEukGtfePlPXjZ1lzfKbxA/HWYKbA4foxjjWqfbszk5hRIdxAcQV3dlN91gm+1AHhrK/nZszmyGh6/hknZx2+BUwLwL929mVsfceWU6SpMoaLth0hoMlOnvTGmiHAqLnBasCiJCQEPXs2bPBaz169NAXX3zR4DWz2aw777xTSUlJWrduXYPsw7p16xo0Xp7B7bffriuvvFLr169v9LmWSDXmf2eQo4F7OKvM7JUPDWXTyMN6sxtvch7NU8HZWrWR3XTd3NiNiM6QVJrZDIkz3FhInnrptRXnsVMTtJIprT5KBzhkBsIezhjQDag28LAqgBgyZIiOHj3a4LVjx47Vd3pK/wseEhIS9NNPP8nPr+HmOH369HrBjzPo3bu3XnvtNd10000WP9cSqUZQoDUrbx5hvmz67dBJdiM6VcgGJAeOst+3RxfuZFRawq7tgetZJ/PacvbadvZn10ej1MQFTPRYo5Mre+qlnRbZYyDxTZ6unlzfgim3ELMl8cFXa+BiTWFcLFh1N57pXXjhhRd055136ueff9aiRYu0aNEiSVJ1dbXuuOMO7d69W998841qamrq2bF8fX1lNBoVHBxssXEyIiLCKgKLzBw2Ei8pYzc2OqORngOn4QPYMdPeITmYrYyO7In8ww2sk3H3hMW5HNiMBp36JRsLyWBE4sca6QCCTuvTAQnJlOnhDdN2l7Y/Iiman6itw6qd4bLLLtOKFSs0Y8YMPfvss4qOjta8efM0fvx4SaflvletWiVJ6tu3b4O//emnn3T11Vcji5akTuGsQ03n/N8FQQ3MPN2lA2vwcDbX81FYyGYgLunBBktffpGB2ttyIgq1B/cpKi+DE0mipxzopkJ6ffQpmtY5cfXhMhBlRazDpzk+bOBh9dNy44036sYbb7T4b1FRUbKCVqIe5/I3Bgc21Lu8CzvDvDuJJS/y90bNKcyTTZuv2e2F2aK1MFIy2vaoH61aXFzInvLJU7nRhQ3maF4EGjQ3QnjXMNRe8mGOXMgZLie1yyZK2xRG+4CzgT1B7zvJUkV3DGZvflM5e6kOZbK0s2HnRudhEQUFbFq6pIQ9pdbVsvdeiA97r9Bp7pDoEMxWtZktPXp4s9wDqQksDTjds5CWyMqXk06/ApR9l3hG1daArYTRTpCc1bZ7FuK2srXUnt3Z70sjzJdzgsUm1gE+HMueAudls7Xe/SfYtDTdF5B5knNanr5cpkqSThzIRu35hbD9N8UFbDaoDqa0Nxi5MoGDgb2P6QkbG3i02wCiqIR9kAJ82VTooP7syagUZqKkmS27eHHEWbW1bPnnk21gekRSWXEeaq93R/akteUH9tkg6/he/mymj+6BsLNn9wG63BUcGYDaSznK0bLTI6Y+wWww1xqwTWE0g6bUOM/g8OHDeuqpp7RhwwbV1tYqJiZGn376ab0WxqRJk/TDDz8oPT1d7u7uGjx4sF5++WV17969xesI9GMfdLpJ8VQ2eyOZzTTZEJtxCctsLJZ2rggJszzOe64oK2OdDN1jUFrFziTXwiUWEqZcVk7Szp59zvIyWGl1uonyaPwx1B5ZwqCDJVKno7XQDpd8XkDVOCUpMTFRQ4cO1cSJE/XPf/5TXl5eOnz4sJyd/5cq69+/v8aPH6+IiAjl5+dr9uzZio2NVVJSUosfOJq9L8KH3dhWbmLTyL6+bPOZlye7sW1wvRmzVVHOOvzaNl6Y7BeQjNr7AHZaHj5c1qC4gH3OcLEqmAyJDnDoRkWyR8M32AezJUm5aWww1xpo41sNDlyN86677pLBYND777/f4kX88ssv6tOnj44fP65OnTq16G8o1bMzyDSxDj9+H3tK/etottb73ZGWc260BKH+3JOzcQc7hdEJLhH88A17Crzx9m6ovdUrE1B75CSBdwDrZIrzOR4DSTI4sYG6M6ybYq5iG25JKnC6YdQeLid9tYB9zixhxc9MGefWy9sHiRaqxllbW6tvv/1Wf/vb3zRixAjt2bNH0dHRmjFjxlmluktLS7VkyRJFR0crPDy8xWs5lc86/H4dWCKIpFR2o5y/hpVBdnJiuRY83bjrccNV7CaezfoYdYxhR+k6B7Hd6zTIpszKMjbwp0/4NKoq2OeMJroinT5drqGniVoDNjGtJtCcGmd2drZKSkr00ksv6fnnn9fLL7+sNWvW6LbbbtNPP/2kYcOG1duaP3++/va3v6m0tFTdu3dXXFycjMaWOw6aJn1XCtuc5OPN5rIqKtjo3sODteftxjVQbdvPPoS3X5GF2ouLQ83p0Cm2ydPZlQ2uK8CEEN306BPEjiMX57MlFtqptmVyJZpltD2Ocf7eeiCsKmEYjUYNGDBAW7durX9typQp2rlzp7Zt26b09HSFhYXp7rvv1kcffVT/nptvvllubm76+OOP618zmUzKzs5WRkaGXn31VaWlpWnLli0NeiXOwJKc90uf2qFy3s7O7IM+tBcbPdfWsem8LQfYU/7Vl3CnaDqK33eS3Yi2bmS5AkaMZDMaXy5nSyym3ALMlncg6/DpgIR3+DCnSSEb4JDMltUw8RNdEvnmPz2bf9N54vMdTG/eHQPbNkHaGaBqnP7+/nJ0dLT4ns2bNzd4zcvLS15eXurSpYuuuOIK+fj4aMWKFbr77rsbfa4lOe/bH/yH7pg425rlN4mScribu5Q9KRxIZENbJyP7fU0V3Ea5eQ/cINsBNXdOzKlNwQ7OetKCVV7+XDmOXpubFxsc0iWHGpg4y82LHXGuKge/Lxsr4T0QrYHfWxMlqsZpNBp12WWXNavYaQl1dXWNsgxnYEnOe0tCnYxGro5RWMw6fNop3H15KmpvfTLbRJldxD3slZUs8VN6Jnsx6EkCOzt216GdYFkRl5quNrNTBEZnNpNG92jQ5EoVRWxmswbM4NC04u1TjfNir6B1gapxStKTTz6pcePG6aqrrtI111yjNWvW6Ouvv9b69eslne6jWL58uWJjYxUQEKC0tDS9/PLLcnFx0Q033GDxcy3JeaewXD7qFMxuHN9vZU8eaVGswy8vZ0/5HYI5J01zVDg4sAFERBeO2lmShoQmovY+h6NXowt3tKQzELTDrza3bf0F+vdzBnsqKuHGtLbeIGsDrMYpSbfeeqveeecdvfjii5oyZYq6deumL774QkOHDpUkOTs7a9OmTZo3b54KCgoUFBSkq666Slu3blVgIEuoYw1Kq9h6W0AA+6CbitiApGsU+3C6O3EbryN8knF3Z6/tyVL2hP/VwZaNLrcUdXVsD0RAB67B2JTLjsRUwJ36dOOeizub2czLYE9ONO05ifY4hVH7O2OitKqJsi0hKfE4au+N79hOeCcnWhaYvTHpq35FH+77btzJnmT+NuwQau+v77ITO30vZ5s0Nq1hvy8Jml2QzhjQTZ50gEP/fp0vicBs0UJpx/acQO2tfb8fas8SPt7CXJ+7h7SPQKTdamGkVcJp5MvY2mwaTGXt6sLac4TLi4HunPBNdTW7uIX7+qL27O053Q9JCvBjv29bTv3SY4jmSnYLoyWk6Tq+uz/bRHlsTxJmi56aaMv3sQ2n0W4DiMxi1uGXVbBp84xM9uTh5MRuRBOGcCI6krQnp+kmWWtw27UssVK6if3tdm1k11dUwp4q6bR0LSgUQ3NU0GluRzjAoQWmck6xjLRkgENnR9qjFkb7zOefO9ptAJFTwDr83AJ2nry6mm1SrIUbC5fv5FKXknRlb86p+jixhDQVbmw/irs3ewrsGs46mbMTzZ8bzJVcz0deCUtTTmthlJey6wsKZ/u66ICJ5NFwhQNX+tq2BtphzHNesOoKRUVF6eTJk41enzx5st5++23V1dXpn//8pxYtWqSCggINHDhQb7/9tmJiYiRJ+fn5mjVrltauXavU1FT5+/trzJgxeu655+Tl5WXVwgvhpsLr+7Gjg4fSrfs+zcHbnQ1Idu1nU7VktvG9tayDjo6iO9fZ0cHi8rY9ruYbwskq58NNgHTTI92zkJXKZgzotD7ppNtj0yMNm5x3E9i5c2eDlNyBAwd0/fXXa+zYsZKkV155RXPnztV7772nrl276vnnn9f111+vo0ePysPDQ+np6UpPT9err76qnj176uTJk3rkkUeUnp6uzz//3KqFuzizGYiUAk5xUJJgzRtt3802Fl4Sw6Zqg524voDuXdmR1V8OsJ3/+VmFqL0QmByIFEiSWMfg4euJ2ZKkUhMb+NfVsYE63fNBO2lSPKwczi61Ryrr3xusCiACAhp2n7/00kvq1KmThg0bprq6Os2bN0/PPPOMbrvtNknS0qVLFRQUpI8++kiTJk1Sr1696lkrJalTp06aM2eO/vCHP6i6ulqOji1fjsHARnqVZtbeiSR2E/eB5bwLYIGpnyo5p3/kGOsUrhvCbkSLfmE38cvzv0btOTr1Ru05galpDx/2WtDUznawnHd5EetUabImUi3UYGQzfXQ5qTVg64FoIaqqqvTBBx9o2rRpsrOz04kTJ5SZmanY2Nj69zg5OWnYsGHaunWrJk2aZNGOyWSSp6enVcGDJPl6sldqSOAR1J7UA7Xm4QITU+W27akOEqnZ7Kbr5c+Wp1Y5jkXt1dYcRO2RBEGmXNbhe/l7o/YKMvNRe7TDx6msQdZSeoKlqhxWTGwF2HogWoiVK1eqsLBQ999/vyQpMzNTkhQU1FB2OigoyGLfhCTl5eXpueeeO2tw0RTyi1gHuCK/O2rPVMQ2Zfr5sg1FWdksGdKYQZxjSEphy0n2cN3YzcsVtXejPZuBWOHdB7VH1slLCtkGWZq2m+4xcPdm72U640KWWOimxzqQAdWGC4NzvuKLFy/WqFGjFBoa2uB1u9/Q6NbV1TV6TZKKioo0evRo9ezZU7NmzWrysyypcdbVOMlg5G6wklI2dHR1YU8e2TlsdE+rj5oqOadKR/Eju7GENOvXsk7mw6KbUXvmKpZkrayYSyWT5RBJ8g5keyqK8tkAh6aepvsCysF+GZIWW2qfTZm2EkYLcPLkSf3www/68ssv618LDj7N5JiZmamQkP+RPGVnZzfKShQXF2vkyJFyd3fXihUrZDA0/ZBZUuO8+d5ZGnP/7HNZvkXc12sfZkuSPjraF7VHM1FefQlbXyyv5jbKjFSOlEqSFq5lSccqypJRewHebOMerQDp4cOdoi0dJs4H6YkZqD0abb2JkgxIigvZxiqDke37ag3YAogWYMmSJQoMDNTo0aPrX4uOjlZwcLDi4uLUr99pytCqqipt2LBBL7/8cv37ioqKNGLECDk5OWnVqlVydm7+AbOkxlm3abmcqt87l+VbxE/l45t/kxWgSdR8vNmMwc7jbC01gFN8Vk0NG0D4+bOnXhd3lsQsp5DNVtXWsgFJ9slMzJa7D5sxoOEMX1u6L4AcqZWkgiyu58Ob3AQkFeYUoPZs4GF1AFFbW6slS5bovvvua9D4aGdnp6lTp+qFF15Qly5d1KVLF73wwgtydXXVPffcI+l05iE2NlZlZWX64IMPVFRUpKKi01FrQEDAWVnRLKlxzsq739qlN4kBvqzHP5XGTmGEhrIbmxtMjd0nmDsJOo4Iav5NVuBwInsiJ9O+ktQtlLX3PZw2dwCdPl0n9w9jtStSjqSi9ugSBs1ESTp9uj+jPY5x2poom8EPP/yglJQUPfjgg43+7W9/+5vKy8s1efLkeiKptWvXysPjdAo0Pj5eO3bskCR17ty5wd8mJSUpKiqqxevw92M3omJ2D5enJ5t+o+W3O4Y2/x5rcCyfY9w7coL9rmEh7CaeAE9hlJvZe7mqvO02FtJTCaWmts1sSZcwDDDDLSmHTjeMmmkynVaArYTRDGJjY3U2AU87OzvNnj1bs2fPtvjvV1999Vn/1lpEBsF1Y9Ycjo7h7MZbVMZmIHIKuCfHC85y5+SxGQgHB/ZamGtYezQZkqMDFwzbwzwLFaADvBCohR2+XwhbJshKycFslWWx/C211exzawOP9kc2/n84kMjaq6xkH/TcbPZhys9nL1Xf3mwPRIg/Z4vmvOjmzapnvlfMlljS89j+FlpMi2zco1P6DmJ/O1pRsqyY3QdocS6jCxcchndl05rJB1NQe60BuP2ozaPdBhD0mGQNXLwyOMGpUFiNMzWD5akIBEtKiWwZWjlBrHBYUCB7rwzvzEkqS9K3oECSxKoi0rwN1WY2zU1nDGjiJ1oe3MufKzukHmMDdbrc1RqwlTDaCcor2AfdHh4vc3VlT1r28Binmyu7EcV04E5aXUPgNHc1+1TH72ZPlT6erPaHwYnlgagFT71t3eFXVbBjkvRUhxMsh15cyN3LZDZD4idYWgO2AKKdoAIOIOgMRNpJdgTpuuuCUXvxe9mO6fwCbmPr1pHdiMYWvIXa2xX2CGovzJd1WnQTZQUokuTuAzegVrJNlMYWjJVbgxJYdIaU35bYklJ7JH6y4fyAynn/GpMmTdKiRYv02muvaerUqfWvL1q0SB999JF2796t4uJiFRQUyNvb2+qFR4WzJ/wQH3bT3ekENgVIghMkio5mU6tdO3AbW00du0nO+OV+1F5JEctT4ePFjiLSTZTO7ix1N4m2PjUR2KEDau/UcbZMUF7EnfK9A70xW5JUlA8r/rUCbGOcTaA5Oe8zWLlypXbs2NGI5lqSysrKNHLkSI0cOVIzZsw4x2VLR4+z0W5JKJsaDPSD1T1T2HReUAAbgNWK+75puaxTuOFK9rt+v5UtsXQNY6/td6g1FnQJg+zPkPhTdIkJng+HQY7o+sK04oXZhai91gA1ZShwP72QwOS8zyAtLU1/+ctf9P333zdgqjyDM9mI9evXW7/aXyGmG0wRC5fbsnPZbumenWHtCraMr/xizun36MCmpeN2sgHJicPsKdAwNAy1RztVcjLBLwTOtsDfNTuFJWoimR4lfgrD05crKSUfOYXZkvhg0wYemJy3dJqlcsKECXryyScVExODLdISQrzZ+e/UPHj0DR4Ljd/Pbhy0QuWA3twp/5PVbDmpS1e2kY1u3Lts0z+bf5NVYGnZq8HouhYmXMlNy0XtlZewkbXBie3n8Q8LaP5NVsBcyZUL6WDOsRmNpLYIWxNlC/FbOW9Jevnll+Xo6KgpU6YQa6uHJTXOXYcNcjRwTj8mmo12Dx9l6/jOLmwGYuTlbAAWYOT0EjJ6RWK2JCkjix4dZK/t2gEvoPacj7Dqo8V5XM+HixsbqNPy266ebG8QTcecm8YRP0mShx+XgaA5NGh1z9aAjQeihfitnHd8fLxef/117d69G1fcs6TGOeb+WbrtgdnYZyRmsGu+57pC1N5/vmKj8fgTbDf84C5cAHbyJFs3dnGl9RdYQSNaTIsefyObKHPS2ZQ+rdhYXsqWz2giKfpUTmbTAkLZ56Iwr/01Uf7egMl5b9q0SdnZ2YqI+B9pT01NjR5//HHNmzdPycnJ57xIS2qcr37poKRU7iR4dV/2RP7dHrbWGxaOmpOHGxswZZVwhDSOBjaMD4QbRg/tYZ2Mj0fbPrbUgBkX0pbEn/Brqtj1+UexJQeaiIu0l5Oeh9lqr7CVMFoAS3LeEyZM0PDhwxu8b8SIEZowYYIeeOCB81qkJTXO6ppKVYMNRZv2s+myggI2IOnckR2lMzqyd3oVqOdQWclukkM6syeZ9AyWsreqmg3maLZCkgciKiYKsyVJKUdZ2lK6JFJWzAabzjCRVAm4TznCNOXtEbYxzmZwNjlvPz8/+fk1TGEZDAYFBwerW7du9a9lZmYqMzNTx4+fZsvbv3+/PDw8FBERIV/flp/aoyPZB8nPkz0FusCpxqOp7J1ZV8dulPb2XABRbWavxUc/snXtAz8fQ+09ciXr8Fca2GCY7AuoMbPNwLTgEs15QZcw6PIUyXvBjTCehm0Ko+0DlfNuCd55550G/QxXXXWVpNNZjV83ZDaHyir2ZnV2ZDeiazKWoPYqgiei9vYcZr+vwcDVoisr2DRy166szHBWOpuWji9k7ZWaDqL2akFiqopytuRAO3wnWIiMDKwvBMixUPq72qis2z7s6uiwsZXwnx8u9gqaBi0hTYuHdQhiL3svf44bYcE3bIOnEyxsVpDPpqXHjmYDnE9WFqL2CnK4KQx61I9GqYmleDe6sAEJPQFEin2VF7HPBT3V8c1/eqL2LOHVL5lg+4nb2nbgeQbtVguDbjwrr2Qv2NTQL5t/kxV4M+t21F5hCft9U525U7SdPXvycHNnb/NTyeyUyIFktuE282QWao90+rS4FA3a4dvD/SiucIakooS7l2nl0aJ8ljK+NdDG42Mc7TaAKKtgHWC+ib3y79Tdgdob3Zd1CnvSWXGuMDeuAzs/m+3PoE+99Clwst5u/k1WYJ3Dtai9KjPXaEeKN0lSSQGbMTDDDbw0kRSt/UE+GxUwDTjdDGwDj3YbQHi6siUCRwc2IDmSyJ6iU4vZGWt4GkwHcriAxC+ITYX6+7On3pQEjjRLkj5w/wtqr67uAGovvCsnCJWfVYjZkvipiaCoENQeTWVtdGYDEjKAcHFnm3dzUlla8dZA+2wIOHegapwlJSWaPn26Vq5cqby8PEVFRWnKlCn605/+VP/eyspKPfHEE/r4449VXl6u6667TvPnz1cHK1XrMvPZ6LSklC2J3DCQTXNvPsTWyV3gTDJJhjR4ANsYZ3Bgn+rkEzDHhy8bbNJp8/TEDMyWXxirUluUW4DaY63xtOd5MBMl2URZbWb3KM8Ab9Rea6D2d1bDQNU4H3vsMf3000/64IMPFBUVpbVr12ry5MkKDQ3VLbfcIum0mNbXX3+tTz75RH5+fnr88cd14403Kj4+3qqU1T0BcdYsvVksd7getbdiI3tSGD2EDUj2JbNOmtTWWL+Z5W0ICqFrsyWovepatmmUTv3WGdrupujh643ao8WqXNzY54zOuJBEUvZwFreqHE6T2oADVePctm2b7rvvPl199dWSpD/+8Y9auHChdu3apVtuuUUmk0mLFy/W+++/X0869cEHHyg8PFw//PCDRowY0eK1fJTDOnxzNbtJ/uFa1gnGHQxE7fl4shuRI+iz3D3hznX4FEgLkVXX0HoOrNOqAwn+aYlmuieABt0vY+/IOula8No6GNjA1aWNN9xagq2E0UJYUuMcOnSoVq1apQcffFChoaFav369jh07ptdff13Sab0Ms9ms2NjYejuhoaHq1auXtm7dalUAUWBiTwpRYeyD6W7HNncNhuXLv9nOPpzX9Oc2oiPwJllaypYIorsFofYKStiNtxhuLCwv4siQfEPZEkZbd9CVcGOhmwubTfMJ4LJfGUlsb1BbH/m1BFsA0UJYUuN844039PDDD6tDhw5ydHSUvb29/vvf/2ro0KGSTrNQGo1G+fj4NLAVFBSkzEzrbr7+3dgAogzOlm1I7Yzaczayd6aTE/v7FVdwTjA/j3WAvn5ssLRnM8tEOeMSlo75G6euqL0KOONCgk5zm6vadtqcdqpZKVxPhbsP2wNhyi1E7dnAA1PjlE4HENu3b9eqVasUGRmpjRs3avLkyQoJCWmkk/Fr1NXVNangaUnOOy3XKIORS3WXV7KbpKmITZvXwHpLUWFs6tfdiRv16xDObkSVlWywFN41DLX3QV5v1F5JwR7UnruPJ2bLAa6TG13YXiM3L5Ypky53OcFaGCRo5kgjzHnRGqj9naUgMDXO8vJyPf3001qxYkW9yNYll1yivXv36tVXX9Xw4cMVHBysqqoqFRQUNMhCZGdna/DgwWf9PEty3qPumaXRf5h9Lsu3iNw89ubPz2NTlzS9s5urN2pvQFguZuuSLmyJwAVuAvwiG24WM7PrixnYBbV3dHcSZos+QdNNj3RGgw5IspJZPhhSb4KWGid1OloLIOt7uwCmxmk2m2U2mxvxoTs4ONQ36vTv318Gg0FxcXG68847JUkZGRk6cOCAXnnllbN+niU57892OAmUX1CXUHZj27KPvfmdnVmn5e+NmtOuNO5UfjiBVTJ1cmJ/u6J8ViApPIg74UvST99xtOISOxZKNz3SGYgymI6ZzkC4wA2yZI9GcCQb+NOMqq2BdqoMcc7A1Dg9PT01bNgwPfnkk3JxcVFkZKQ2bNigZcuWae7cuZIkLy8vTZw4UY8//rj8/Pzk6+urJ554Qr17926yxGFRzrtOqgb9TEklu7F5wlMO3SLYk9aeo6y9kEDu9ysvZ7NBV/VnncyhvWw2qNLM3iv0qF9INOcYTHB/C+3w6d+O5gWgMyRkcEj2U0g8h4YNPFA1zk8++UQzZszQ+PHjlZ+fr8jISM2ZM0ePPPJI/Xtee+01OTo66s4776wnknrvvfesnl3PzWcdYFYO+6CXFLNOsKAQnu2HN7ZAL27jvXIUS+dzqoxVuwwI9UbtebuyAQnNA5F2nMtouHqwKX26RFBqYrNLRbmsngM9JVJTyTlpWkekBp6waQ2AU7FWY/78+frXv/6ljIwMxcTEaN68ebryyistvvfLL7/UggULtHfvXlVWViomJkazZ8+2ahJSasdqnMU/f4va+8l+JGovg2bKLGMvU2QIa+9gAhfQpSQVYrYkqXM3ljlyzw52auLmMZGova++TEbtlZo44ixacInOGJSD4lKSVFHCZkh8Q9gx2MIcLljv0JltLj51PA219/3Svqg9S/jHUiZD9Ox91mVNly9frgkTJmj+/PkaMmSIFi5cqP/+9786dOiQIiIiGr1/6tSpCg0N1TXXXCNvb28tWbJEr776qnbs2KF+/fq1+HPbbQDx8RZ22dF+LPHTnmSWXbBzCNsXcDKXPS14unKhd9xPbAaiQwTbY5B6kj1V3n0z61TfeZejnpakgkxOKM0nGNZ0gXkWftvDdd724KkTmveCRC3c0Eo3ZX61oBtqzxIuVgAxcOBAXXrppVqwYEH9az169NCYMWP04osvtshGTEyMxo0bp3/84x8t/ty2TePWBJqY+jwnpBexo4PwPqT9yWwdf1BXNmBKyOactF8Am5am04qmXFgBsoYNcGiFSjdv7tnwDWID6/JStlk5N42bJpL4UUSamIoE3SDblkdWzwaqMmyJusBSL6B0mtQxPj5e06dPb/B6bGystm7d2qLPq62tVXFxsXx9rcvWttsAwsuFjcT3n2BLDkZ4dBDOXOrn42zANLonN+q3cw97SjUaWSdDO8HUXDY49PRn10ciP4vN3pBaDhIvRFZVwWYOQ6JZtdDyUi4gIUtdklScxx5yWgNUb5kl6oJZs2Zp9uzZjd6bm5urmpoaBQU1bHa2hqDx3//+t0pLS+unI1uKdhtA/HyQtecNNgFKUlEJm84rr4BrveXs+k6Vc3LeVRVsHTrAn02FHj/M1rX/kDEftfdl7s2ovY69GtdQzxVZqay8dU01ex9XlrH3nrM7O3aZl8H+ftExnFT7oTRWftvRiQ2s2xMsURdYyj78Gr8lY2yOoPEMPv74Y82ePVtfffWVAgOt01yyKoCorq7W7Nmz9eGHHyozM1MhISG6//779fe//72+dvjll19q4cKFio+PV15envbs2aO+ffs2sJOYmKgnnnhCmzdvVmVlpUaOHKk333yzUQTVFLp1ZGOfzn6FqL1V29k0vG8g+zCN65+M2vsxqRNmKyiEPQXCpVlca2J9r6dQe07buGyQJKUkcD0VBic2mKNBTxI4wSWMsmJ2SuT43mTMlrsPm/mqKmezN60BqqPwbOUKS/D395eDg0OjbEN2dnazPnX58uWaOHGiPvvssyapFM4Gq7zwyy+/rHfeeUdLly5VTEyMdu3apQceeEBeXl569NFHJUmlpaUaMmSIxo4dq4cffriRjdLSUsXGxqpPnz5at26dJGnmzJm66aabtH379hY3MV3js9uapTeL1en9UXvu7mzhvX80m/qNz4lG7eXkcV66GlZGNRWx5S5PX7ZnIbe4bTtVcpIgNJq9706BI6YSX8KohEsYbVlvogLO3hiM7S8DQfN+tARGo1H9+/dXXFycbr311vrX4+LidMstt5z17z7++GM9+OCD+vjjjxuQQloDqwKIbdu26ZZbbqn/sKioKH388cfatWtX/XsmTJggSUpOTrZoY8uWLUpOTtaePXvk6Xl6I16yZIl8fX21bt26FkdBqfYdrVl6sygqYS887QS3H2OdVsdQNsAJCeQ23gMwDbivDyum5eTMOnx6DopuZuvYm3P6hXADKg1XD7bkQDNRlsA8FS5u3Pel+z3oqY7/nzFt2jRNmDBBAwYM0KBBg7Ro0SKlpKTUczDNmDFDaWlpWrZsmaTTwcO9996r119/XVdccUV99sLFxUVeXi3PJFm10wwdOlTvvPOOjh07pq5du2rfvn3avHmz5s2b12IblZWVsrOza5CecXZ2lr29vTZv3tziAOJEPpsuC2L79mRyYk8ypeWwXoLvSdTeTyYuoHNzYx00LURGC+Z4usL9MqVsj0ZaIhfQeQd6Y7YkftSvpJANcOiMBh0ckiURem3tEReLFWHcuHHKy8vTs88+q4yMDPXq1UurV69WZORpjpmMjAylpKTUv3/hwoWqrq7Wn//8Z/35z3+uf/2+++7Te++91+LPteqKP/XUUzKZTOrevbscHBxUU1OjOXPm6O67726xjSuuuEJubm566qmn9MILL6iurk5PPfWUamtrlZFhudZqaaQlPcdJBgNXX+wSynZz/3KYvZFuHsKeyg8Xco1xkpRXwHlpFxd20y0qYllBS02sgy4qo50M61TNlW1X4roWntG1s4Pnr2HQDLLkmCnNHGkT07IOkydP1uTJky3+22+DgvXr1yOfaVUAsXz5cn3wwQf66KOPFBMTo71799YzWt13330tshEQEKDPPvtMf/rTn/TGG2/I3t5ed999ty699NKzUvBaGmm56+GZuvuPs6xZfpPILGTrbUGBsOpgLesEN8ezD3vXTtzDHr+7ELMlSdddxZZ/ju1HzcnZyO46rh5sycYEBhC0nDedNu/cOwq1l53GkqLRxFT5GRzvBR+4sntea8Am590EnnzySU2fPl133XWXJKl37946efKkXnzxxRYHENJpgovExETl5ubK0dFR3t7eCg4OVvRZGqwsjbS8+qWD9h7lLpabG3vhr+nJjlt9+AOt7snWZt1dOCfo7cs6wIoq9ruGdWS1NTrBE0B0ndwAjtOZq9jAldbWOJXIKkDSGRIaHn5cKbjGzJbinN3aXwbi9warAoiysrIm5bqthb//aXakdevWKTs7WzffbHl+3dJIixs85eDsxDqZldvYbmk3dp+Utzd7WvBxbbtp7qJS9to6OLD2DmWyWh11tS0jj2kpqmu4kyCtNUEzM5LB0ml77HPm7cdm00gtkfJSNhtEToi0FtqpMsQ5w6oA4qabbtKcOXMUERGhmJgY7dmzR3Pnzm2gzJmfn6+UlBSlp58erzp69KgkKTg4WMHBp8mGlixZoh49eiggIEDbtm3To48+qscee0zdurWcq/yOS5OtWXqz+GJPFGrP04NtKLq8G7vxmirYVOjmfZy96mr2lJqRxaZCT51g6Y5vGYaaw2vR1Wbu96Nr+HQGwi/EG7WXlcLeK3mZbEmkFGwadfFkrwXdgNoauBhjnBcTVnm5N998UzNnztTkyZOVnZ2t0NBQTZo0qYH4xqpVq/TAAw/U//eZcsevaTiPHj2qGTNmKD8/X1FRUXrmmWf02GOPWbXwfblRVr2/Ofh6sw41LYN1WgdT2YezQwDrZMYM4ngq/vsVG3wZjOxGRJ8qfznJjg46wutz8eTWR0uN01TWLm5sBoJWC3WBGwsNRu5eMVexe15JAct9YwOPdqvG+dFmdtllleyD7uvBllhMpWyAk5TCbryXdOec/oZtLKf+wP5sOemHH1nK3ttvYmeIlyxNRu21ZQEn+pRKcw/QZEh0QEIGw1XlbbeMKUkr53e94J8x9U1m75r3V1ah90Kh3Q7upmayAUT/ruzN/9Ou5t9jDSor2Y2tSyf21NvZNwezVX4p26SYnc/eK+ZKNnuz5whqTrXVbPBKOkGaK4DmvCCJlSTJ05d1BDnpnLS6xJaU/EJ8MFuSlJHE9vK0BugSXVtHuw0gDAY2Eq+qZk/4V/dnN/E9x9nUZWY2m25M8ORO0T/vZlX4unVlMxDR3dgAp1cX9t7b/iPbzEae8umEJ+3w6TR85kl2qsMniG24zU5pu066PfJA/N7QbgMIsHQnSaqEA4j1P7On1Eti2IAprxDuM3Bou+Nql0azJZG3N7EBzpA+1ingNQc3L/bU6+XPBWBlxWw5pAIur9CkWQ5wxiU3ncv0SaxaKF3qqmmHVNY2Hogm0BI1zvvvv19Lly5t8HcDBw7U9u3b6/87MzNTTz75pOLi4lRcXKxu3brp6aef1h133NHitbi5sA6VRlAwGz0nnWIfprAgdmPzcOZObrdcyyoY/rSP/a51dWxzV2YhGw3TjYU5p7i0uYcvmw2inZazO8tBQqe0XeD1kWO1tJJpe2yitJUwmkBL1DglaeTIkVqyZEn9fxt/U0OdMGGCTCaTVq1aJX9/f3300UcaN26cdu3apX79+rVoLT7urENNy6UlpNkTuac7u77iUvZGz3fl6uQbt7MZg8Ag9rejuQzuLnoLtfeVXSxqz8mVdQwk6CbKCvja0qADiJaqH7fIFsyS6QAzW9rAA1fjlE4TP53hfDibnQULFujyyy+XJP3973/Xa6+9pt27d7c4gMgqYDcOeIRZEvswubH7hmh5Azs7LiCho3ian75TTBhqb134JNReVQXblUn2LVSWwfLWXuyDm5/FMsj6h7L9Mq4ebGaTDIZJYS6J5/hoDdgyEE2gpWqc69evV2BgoLy9vTVs2DDNmTNHgYGBDewsX75co0ePlre3tz799FNVVlbq6quvbvFaArxZr1BSzjp8s5m9kRzc4PEtuPslzJPLGji7sCcPWh8pP5vNkLgY2LQ+nYYnx/OCo9h+D7K8ciFAj12mn7AsOHiuICdsaIdPc4a0Bn5n8QOvxjlq1CiNHTtWkZGRSkpK0syZM3XttdcqPj6+no56+fLlGjdunPz8/OTo6ChXV1etWLFCnTp1avFa/N3YVGNhCXvzu8MO38+d7Q43lbMRxPEcjmLXVMA6BUdHNoIIjfRG7ZWaYYGpNjyPX17CZiDaul5CfgZ7L9NOuiCLY8o0OrPXgiQway3YMhBNoCVqnOPGjat/f69evTRgwABFRkbq22+/1W233SbpdMmioKBAP/zwg/z9/bVy5UqNHTtWmzZtUu/evRt9riU577if7eUIynmXl7PNWPS4WvAA9lR+IpXN4ESGcU7Qy4c9Qf/dPBu1N2HfRNRe3x4tD5xbAmd4/K0SVLwshYW+7OHgkKR2liQ3bza7ZMplqaxJeMA6HdUwJbsNPC64GmdISIgiIyOVkJAgSUpMTNRbb72lAwcOKCYmRpLUp08fbdq0SW+//bbeeeedRjYsyXmP/sMs3TRhtjXLbxLRQazDp8dCdx5g19e9E5serK7hMi7RUezJ46WsZ1F7fiHsGGdaNputorkMSNAOnybNoh0+SRV9IeAT5I/ZouW36Z6K1kA7JXY+Z1xwNc68vDylpqYqJCSk3obUuPu3KTuW5Lw/2+EkA8gSu+MQvLHVwKJBrqzDz2Z7xRToy33f0jL2t7thIJs2f20Re0oN8GGprP1DWbKhvAzu1OvkzFI7V8BNmXXwc0tPsPiHsU2ZRflcMEyn72ka8NaATUyrCTSnxllSUqLZs2fr9ttvV0hIiJKTk/X000/L399ft956qySpe/fu6ty5syZNmqRXX31Vfn5+WrlypeLi4vTNN99Y/FxLct519lIVmOG6+/JUzpik749Fo/bKy9mTFt3kaSrhArD0dPbkcQg+Vbp5sfTJsd7bm3+TFfjwJPt9SdSY2PFrmhq7ooztrSorYhtufUO4jIHE9lS0x4yBDecHVI3TwcFB+/fv17Jly1RYWKiQkBBdc801Wr58uTw8Tm9qBoNBq1ev1vTp03XTTTeppKREnTt31tKlS3XDDTe0eC3ORtYBHjN1QO2ZitiNsqiITQ8OuISN7p0NXDSXkMim9N2c2XvFy4ctsXx88grUnp3dYdQe6aSNLux9V1LAZoPs4ZEdr2Bv1F5ZMRu8kpMOjjBvAykj31qwlTCagIeHh+bNm9dobPMMXFxc9P333zdrp0uXLvriiy+s+ehGyMxhL1TiSdScXGCmTHt4HCy3kN0oR3Q+gdn6uohNwUuswy8pYhtuu4Sxae7VcPNZWKezc7pYi4oydkKkOI/tR6Gpp8uKWIdPN8jWgiQp9PRPe2yitE1htBNUVrEXqmMEGz3nFMCnXi92fb6ebEnEqZrbKF3cOIclSQeOshtbWTGb5u7kwToZulEx5cgpzBbdqU8LLlWBEycSz5RZXMgGTFE9IjBbqcfSMFsSr+liA492G0A87tp4WuN88EbOn1B7Ls5sxsDTnXUKjrD41fqcxuO354qCHFbB0NOTzWgY4UbAbw8GofboEkZtHXcSpKcmaMGlXpd3Ru0d+Pk4ai+sYyhqL/lwCmaLLv+Umtj+kdaALQPRTjC3/BHUXqA/e/NnZLPpNxdn9lI5O7Ibb5A7d3KLgdUpTSa2llpeypYwbolJRO39+C3MWgp2w5Mpc4lP6R/cxV4LmhU0P6sQtRfQgXvW6P6M9uiMbWqc7QTRHViHn53PXvjr+7EdybtOsKnfxAz20vt7c/b6d2XTyJv3sWlkemP7JJ6d2HH3YlPJ5KgffUqluQdopkdc18WetZdzKhuz5R3gg9mSpGLwvrPhwgCX887KytJTTz2ltWvXqrCwUFdddZXefPNNdenSRZKUnJys6GjLG+ann36qsWPHtmgth4+zG4eDA3tqi9vDbkRZGXDtM4od9Sut4BxDgSNbIriqDxuQSOzEzqCebI/Gzs2svUow40J36hdmsVTRNJEUrYXh5e+N2iPVRz192Z4FmrW0NdAesybnA1TOu66uTmPGjJHBYNBXX30lT09PzZ07V8OHD9ehQ4fk5uam8PBwZWQ0FIRZtGiRXnnlFY0aNarFawkPY50M3ZTp54WaU1gQa9BoYL8v2TC9fTdbIggNZdPIKUmcfoAkVV/CZpcqy9jfzwWUqqUln4M7ssqoNK9EeSnbcEtPOpBNqBlJbO9SLdzf0hqwjXE2gebkvBMSErR9+/YGNNXz589XYGCgPv74Yz300ENycHBoJPW9YsUKjRs3Tu7uLY9gy8rZCxUdwtZmSyvZjdLFif2+BxPYDE5wIHey7BDGOvyiYnYjKsgxofaOprHsgjSDX1AER15UWswGN2kJLAGcizs78usTxDbwGpzYACcjiVP3dHZln1s6e9MasDFRNoHm5LzPCF45/0qVzcHBQUajUZs3b9ZDDz3UyGZ8fLz27t2rt99+26qFRwSxDp++7qUV7M3vCgcQ3p7sRtQxmEtBfL+JdTID+rFp6SP7YdVBlgYCn0zIBiWzDU5sCcMI/3h0CppOw9PU2GSwSWeXqsrp0qMNNFA57+7duysyMlIzZszQwoUL5ebmprlz5yozM7NR2eIMFi9erB49emjw4MFn/VxLapzJGUYZQDVOR7gHgi6J7D/AjjQFBbMnLUcH7vv6+bMnme5Bhai9jZ7wSQs+aNFOmnSq9Binixt7H9PlH+9AtvRoT98sIOimR5rUqzVg64FoAs3JeRsMBn3xxReaOHGifH195eDgoOHDh5+1t6G8vFwfffSRZs6c2eTnWlLjfOJPE/W3Pz9szfKbxLKEyzFbklRdzd5InTuzDUp0CcjBnnMMWRnsONg3O9iG1tIittbr58FmDGgnSDIC0uUVvxC2RJB5kr33KmGxL5rEjNTqsHds29NOrQFbD0QTaImcd//+/bV3716ZTCZVVVUpICBAAwcO1IABAxrZ+/zzz1VWVqZ77723yc+1pMZZcny37Ou4jdcNpp6Gm7mVnsPaG9CNbcZKy+fS+tUgq+WFgIc3e+qlYQePSpKNhXSTYiHcj0Kvr7iAzRzSvBdt2UnTnCE28Lhgct5eXqdTdwkJCdq1a5eee+65Ru9ZvHixbr75ZgUENN1EZkmNc3n+1dYsvVm4u7IPEu3wI4LZ9WUXsbVUT1cumIuIYtO+NbBEc2EuK+BUVsXOz+PNZ7VcQELTbNNTCXTw5eHDZg5p+XJybNWSHzgftOXg5myog3+Dtg5UzluSPvvsMwUEBCgiIkL79+/Xo48+qjFjxig2NraBrePHj2vjxo1avXr1OS28GtZZMZnZTbe2hr2RikrZjS0zh02b3zGAIy9as45N37i4sT0BtLDZzYdnofaWmVvGpdJSkE2Zbl5sOYnOGNDiV6ZcNkNCa2uQAU4J3DBqrmKDw9aAbQqjCTQn5y1JGRkZmjZtmrKyshQSEqJ7773XYo/Du+++q7CwsEaBRUtxW2T8Of3d2fBZ0qWoPTh+UCncs9A5gnWCuzLCMVt+AezG4e7OOpnUBDZ6XdfvH82/yQrUbTqE2qPZGUm4e7LlJPrUS0/EuLixDbzklAgpDS7x/TI28LCra6ddH++uY+15urEef/9RduOohrvXg4PYh5NksS2DR2CzctlrceJ4IWpv9PXeqL2Fbx9E7fkEc42KdIo3Nw2uFcLwDeE4NCS+KZOE0YXdUwqzC1B7a9/vh9qzhDsfT0bsfPrvKMTOhUb7m5P5P1SxPEiqqGKdloc7G41nZLKn8vBA9tJX13K/39ZtLD3xVUPZTXzPDrYHIr/YD7VHn3rJUypdwvCAKV9LCuD+FlhgysmZ7V0ygxtpQSb73Lp6tj857/bYt3E+aLcBRMopNhLv0YV9MGlVtrAwNlUbt4Gtzd54HecYAoPZHoixqS+g9lZUsj0GNF8OSU8sSXYg9wDdY0CPrLr7sPcevb4K2B5JF+0EM1HSTZk28Gi3AcQ/opaj9l7P/gNqr2sEG0AUlLBNlAP6e6P2UsBMcn4um7p8MfgJ1J6LO6dgKEmwv8dPQVVmLsLx8GV1P0pNbMbA05cNIDJM7BgnTZxVAzYEV8PKqHQmrTVgy0A0g+LiYs2cOVMrVqxQdna2+vXrp9dff12XXXaZJGn27Nn65JNPlJqaKqPRqP79+2vOnDkaOHBgAzvbtm3TM888ox07dshgMKhv37767rvv5OLSsij2LRPr8AP9WAd9JJm9+c2kWtUFQFAAF4v6+rOb5IShHN+/JL2awToZL7j/JiQ6CLWXcpTTm/AJYAMIeiImN41Nw9MOn546IScdyF4ZScpJZQnbWgO/N+4Kq+/Ghx56SAcOHND777+v0NBQ/b/2zjssqjt73GdmaENv0hHpoqgoiQpEVyUWxDXZRWOMJRrXrNFsbMHEfDc/1kKyq0nUaExDjERXjZrYEmPsxm4wEkURsYAgoCK9l/P7w4dZR4r3Mgfmcjnv88yTMHd4OcLMved+yjkbN27UdNt0dXUFPz8/WLNmDXh5eUF5eTmsWLEChg0bBmlpaZp6D6dPn4YRI0bAwoULYfXq1WBkZARJSUkNakw0B3WpaOqlpNQntpoa2oTEy4N2wdNgt2tkrp2VfmQuAICNJ11IfffvppP6Rt6KI/WtvvgnUh9lk6SMa5lkLgD6bY21xIm6rRNtjY/CB7TloikpfFBA6lOIuB5IhY42AiFqF0Z5eTlYWFjArl27NB05AQCCgoJg1KhRsHTp0gbfU1RUBFZWVnDw4EEIDw8HAID+/fvD0KFDGy0uJZRzKbRz+BmFtHeV19Np30jU04GVlbQJiZ8XXa2FjLu0/9hnutL+W7fsLCD1hYQ5kPp+PUY74pKbQXcnaEe8K4G6WRXleg8A+mF4C+I1GkV5dAkJ9QJZ6t4aP8X3IPU1xl/evE7i+WGNL4mntRE1AlFTUwO1tbVa3TYBANRqNZw4caLB66uqquCrr74CKysr6NWrFwAA3Lt3D86ePQsTJkyA0NBQuHHjBnTt2hViY2PhueeeExxLaTXtHbSNKe0uBxsr2olt6kqZOfdpT5SIdL5792jr/ScqaBd3VVbQzvWaEG93Lyui/f1RjkBQd2yk7OUAAGBmRXuBpi49TV15U21O97elvuBTjy61BR1tBEJUAmFhYQEhISGwZMkSCAgIAEdHR9i8eTOcPXsWfH3/lzHt3bsXXn75ZSgrKwNnZ2c4cOAA2Ns/uvO4efMmADxaK/HRRx9BUFAQJCQkQHh4OFy+fFnLU09j3TjzS1RgaES3c+LCVeoCMrQfdOrmXMP7094ZUSYQld1ot29VEhe0o96aV0R7Ew2VFbTbOijveqkrM5rb0K6poGwcBgBgaky7BoJ6xMWCcNFoWTFtbNRdZduCdlpWqcWIXgPx7bffwmuvvQaurq6gUqmgT58+8Morr8CFCxc0rxk8eDBcvHgRHjx4AF9//TW89NJLcPbsWXBwcNBszfn73/8OU6dOBQCA3r17w6FDhyA+Ph4+/PDDBj+zsW6ck2e8B1Nm/lNs+E3i6kx7l3o/j3gvfhmtLyuf9t9bU0s4AkFc+CnQm1QHRsRDBraWxMkr8UWQcusg9R059bZG6t+d1KdYKkpof3+UUH/OGHpEJxDe3t5w7NgxKC0thaKiInB2doZx48aBp6en5jVmZmbg4+MDPj4+0L9/f/D19YV169bBwoULwdnZGQAAunXrpuUNCAiAjIyMRn9mY904N58yhlv36UYg7C1pL1oVlbRDtYYGtCcOAxXtRcvTjm47XUoabU2O5Ju0K9ep74zCHFJIfZuIh34rSuimRKiHeKlrXlAnEOUltKNV1g7UizILyFzUO0RKCmi36LYFHa12RYv/4mZmZmBmZgb5+fmwf/9+WLZsWZOvRUTNFESXLl3AxcUFrl3TXrWfmpoKERERjX5/Y904VYYAlOeih8W0J10Xe9o30sNi4i6BJrTz+NnFdNMOxcW089q1xI1JqC8yifm0u04UylRSX20VXXJtZW9N5gKgr37o7EW7Y4d6zUd+bgGpz8yK7nNbTlwkjLyrbBvAayCewv79+wERwd/fH9LS0iA6Ohr8/f1h6tSpUFpaCrGxsTB69GhwdnaGvLw8WLt2LWRmZsLYsY+q9ykUCoiOjoaYmBjo1asXBAUFwYYNGyAlJQW2b98uPHDi9TUPHtJeZAqKad/8XZxp47M2oV1oZ6Om++CUFdMuWrC3p52uoeZGJu17Rcx2aCFQ31lSoiQ+EdRUExcvIvYZGtGOfhU9pFuT0smNdjdRwX3agnIMPaLPDIWFhbBw4ULIzMwEW1tbiIqKgtjYWDA0NITa2lpISUmBDRs2wIMHD8DOzg6effZZ+PXXX6F79+4ax5w5c6CiogLmzp0LDx8+hF69esGBAwfA21v4ZLWxIW2mZ2dDe9ItKqGNz8Gc9oJ/LZd28ZmHHV18Fta0FwVrK9oLoKUt7SJPe1va914VcW1syrtU6kWKlLEBABQT98IgL/xEXO2RckSoiHgXRh1xA8G2ADtYIal2240z7hCtL9L1Iqnvmz9o9xwH+9PeyWTm0S5QolzblXNf2gtQc+/SXmSCetM20zr4I81e9Hoo2zQbGtNeUIvzaae7qBd5lpfSDutTD5FTThNQJzfUnVsPbAom9TXGyNcukXjaomYFBdIdm3wK5oRD5gAAJwp6kvqqq2nf/BZGtKuli0poh0J7e9ONQKRcpx3St7KiTZaoq4z27kKbkPyQR7tVkvIiY+/aicwFQFuKGYB+fYu1gzWpr6yYdiSymnCPs9qcdstqR1uQ2B5ptwnEXcLmTQAANcStJkxMaIels4poh2rNzYjblxvSndisra3JXAAAxcW0f1zqRZkXbtH+bY3NaO+iDQzpkk3qrXlKhbTLHVdX0r73qLdxUiaHFWXSLWDWVvAiynaCpTnxfmjilsqmJtQriDtONn71Em23SwcXK1KfAfHCvWmmW0h9+4B2+JNyK6KxKe0WXRXxGgPqOeziAtp1AUYmtL8/ymkHyqkuAPr3SlvAzbSewtO6cTaVIS9btgyio6MBAGDQoEFw7NgxrePjxo2DLVuEn0ipCzWFdqfNIG7k0g7nUffW6O1HO/R79ibdPL6RyQMyFwCArzft3+L0Kdophz3G40h9ZlaN11NpKWrCEY3iAto1CyriZE6pop3ao14ISH2Ha2pB17+Cer1Hu1xEySMQzfO0bpzZ2dqNfPbt2wfTpk2DqKgoreenT58Oixcv1nwttI13PeOCb4sNvVlOZtGWK+zhWkDqszSj3TVRVE5755ZfSJfQUQ/TWpnTfqiph6VvZZHqyPslULZVtnagbflcU027cM9QQTvFQt1My0hNe1dOWX6auqgX9egNQ4+oq0h5eTns2LEDdu3aBQMHDgSARz0tdu7cCZ9//jksXboUnJyctL5n165dMHjwYPDy8tJ63tTUtMFrxXAm2+vpLxKBSkl7kfn5Au28trsz7VxvKe10Jfh0prtbyLhNXMeAuOqmgSHtXa+3O6kO7vo7k/pSCctFUw9zK4jXQFQSl8amLoZEXZiKchssdS+M9gj1zhGp06rdOHNzc+HHH3+EDRs2NDi2adMm2LhxIzg6OkJERATExMSAhYXwxi6Xr9HeZTl0or3zKC6kvTP6nbhDpY8PbYJTVEZ3YrMk7mQ6qmA9qe9atymkPso+IgAAKRdukPoqCbNNE8LujwD0uzDIi2YRL84uLaSdAqIcNaAuJHU/k3YtVFvAUxjNILQbZz0bNmwACwsL+Otf/6r1/IQJE8DT0xOcnJzg8uXLsHDhQkhKSoIDBw4IjsXOjvaCb2dNexKf4n6a1LcufTCpj3i3GlDWasq9S7sNcbnVq6S+rAzaodXOLrT9DSysaae76mrohuHJG5E5WpP6ctLppmsA6BMm6gSCctvqvQza352dM219FIaeVunGWU98fDxMmDChwYjF9OnTNf8fGBgIvr6+8Mwzz8CFCxegT58+DTyNtfOurTECA0O6+cBC4sqRcQ8GkfrUauKhUOJNIpamdBeZ8PCWT201xq07tKNBBoa0w8jPuaaR+raU0g7DU867U7dCr6qgHYGgLoZEvRDQobMjqY+yW6gp8fTU/TvUIxCdiX0N6WiVKFulGycAwK+//grXrl2DrVu3PtXZp08fMDQ0hOvXrzeaQDTWzvv5sf8Pho6LERt+kxgZ0l5RiUsFQGUVbYLT1Z12CKKogm4IIiuXduGZnS3tsHTy77Q1+k9k+ZD6DAyvPf1FIqAsjU29DZH6jpy62Rd1gkPdHlxNOEJiaET7OWuPzbTqeApDGE/rxrlu3ToIDg6GXr16PdWVnJwM1dXVmlbfT9JYO+8TqQBGRnR3C2VVtG/+1AzaN39gF9o7o2uZtNvVOhGOwufl0W6pLSfecWLnZE3q6+dKu+1SeEs6YVjY0U2JUK8xoF70SNneGoB+Z4IJcZEw6t4flFRRF+dhyCHtxllPUVERbNu2DT7++OMG33/jxg3YtGkTjBw5Euzt7eHKlSswf/586N27N4SFhTX6Mxtr533pNu0tfmUlrc/Hg3aYe9+vtHcyvQJp56JVSrrfn6kp7UXmT31o/7abd9OO3py6Qz20SjsCQbmttryEePsPMdTz7iXEIwbUrYsoO7dS7xCh7irbFvAujKfQXDfOerZs2QKICOPHj2/w/UZGRnDo0CFYtWoVlJSUgLu7O0RGRkJMTIyoLV7BfrR35Beu096Rp9+lfSO5udEVfAEAGOSWSur7LY9uGL6yknYK4/B52hNRWTHtXW9JGfFFgfhEXlJAd5dKfUdO7aO+4Bsa055XqNdoUCaHJsSVI8lbq7cBHW0XRrvtxvn9OdoLtIsl7VDexXTa8smZ2bQjEH0DaRc8UXKZdhciPHxIOxR68+pdUt/g4bRFzH7ZnULqo5x2oJ7Xpu6eWUu44wQAoJb4IlhBPGVTR1joSkld44P4vbLnywBSX2P86a+nSDzHvg8l8bQ27bYXxvCanaS+9Tf/QuqjXvSoIv4wUa/RcLSnu+tNvUq7Heyvo+xJfWmXaJNXQwPavwX1XRDlQkXK0skA9HP45lbE8REXV6LeFlpeRLcrpltfz6e/SASJR2laY7cl+tyFsXbtWli+fDlkZ2dD9+7dYeXKlTBgwIAmX3/s2DGYN28eJCcng4uLCyxYsABmzJgh6me22wRiN9Je8KmhPom7u9IOhfb3yCH1nb9Dt/XSwpr2JHn2D9o1C65etAVz3DrRxiflrWTUix579G9Yf0YXLp+j3VJLfVduTFxHgzKBSP6NdujQsYsLqa8t0NcUxtatW2HOnDmwdu1aCAsLgy+//BIiIiLgypUr0LlzwzVWt27dgpEjR8L06dNh48aNcPLkSZg5cyZ06tSpQduJ5mi3Uxgffkc7NGhtSftBv50h7cVi1P0mbG3pTmyjg2inCGqQNk/+YjdtgvPScNr4/v3xTVIfZcdLO2faXhgPsvJIfdSVLaXekrqUcn0L8Q4R6ovxT/G0XWob47k/H3v6iwRwYs+fRL2+X79+0KdPH/j88881zwUEBMCLL74IH374YYPXv/POO7B79264evWq5rkZM2ZAUlISnD4tvAhiux2BcHWkveDnF9G+WW1taRcUUe8vDqAdbYSCUropjJ+TXclcAAC9vWmTucy0TFLfvTDaOhCGxrR3qRVldL8/6osC9bZQ6nl3c2vakvHUhbhUhLUbOtoCwtakseKJje1GBACoqqqCxMREePfdd7WeHzZsGJw61fiajNOnT8OwYcO0nhs+fDisW7cOqqurtTZFNAvKmIqKCoyJicGKigr26dkn5djYJy2flGNjn3RcreGTCjExMQgAWo+YmJhGX5uVlYUAgCdPntR6PjY2Fv38/Br9Hl9fX4yNjdV67uTJkwgAePfuXcFxyjqBKCwsRADAwsJC9unZJ+XY2Cctn5RjY590XK3hkwoVFRVYWFio9WgqSapPIE6dOqX1/NKlS9Hf37/R7/H19cUPPvhA67kTJ04gAGB2drbgONvtFAbDMAzDyJGmpisaw97eHlQqFeTkaC+Mv3fvHjg6Nt47xcnJqdHXGxgYgJ2d8GJq7a/UF8MwDMMwAPCoOGNwcHCDbtYHDhyA0NDG60mEhIQ0eP0vv/wCzzzzjPD1D8AJBMMwDMO0a+bNmwdxcXEQHx8PV69ehblz50JGRoamrsPChQth8uTJmtfPmDED0tPTYd68eXD16lWIj4+HdevWwdtvvy3q58p6CsPY2BhiYmIEDwWxr/V8Uo6NfdLySTk29knH1Rq+9sq4ceMgLy8PFi9eDNnZ2RAYGAg//fQTeHh4AABAdnY2ZGT8r2mfp6cn/PTTTzB37lz47LPPwMXFBT799FNRNSAA2nEdCIZhGIZh9AdPYTAMwzAMIxpOIBiGYRiGEQ0nEAzDMAzDiIYTCIZhGIZhRMMJBMMwDMMwouEEgmEYhmEY0XACwTAMwzCMaGRZSOr69etw6tQpyMnJAYVCAY6OjhAaGgq+vr5kP6O0tBQSExNh4MCBZM6WUFtbCyrV/1qbnz17FiorKyEkJERUSdKmmDp1KsTGxoKLi4vOrvz8fEhLSwNnZ2dwc3PTyVVQUADbtm2DjIwM8PDwgLFjx4KVlZXg709MTITg4GCdYnice/fuQXJyMgQHB4OlpSXk5ubChg0boK6uDiIjI6FHjx6inTdv3oQTJ05AdnY2qFQq8PT0hKFDh4KlpWWLYiwpKYHExEStz0VwcDCYm9O2nK6pqYG7d+9C586dSb26kpubC5WVlSRxLVq0CGbNmgX29vYEkQHcv38frK2tdf7M1tTUwJEjRzSfi8GDB2udH57GgwcPyP5N9dTW1mriUSqVUFlZCbt27YK6ujoYPHhwk/0amqP+/Pv4Z6NPnz6gUNC2Y2eeguC2W+2AgoICHD16NCoUCrS2tkY/Pz/09fVFa2trVCqV+MILL5B1bbt48SIqlUrBr6+qqsLo6Gj09vbGZ599FuPj47WO5+TkiPLdvXsXw8LCUKVS4cCBA/Hhw4cYGRmJCoUCFQoF+vn5iWrLmpSU1OjD0NAQf/jhB83XQlm4cCGWlpYi4qN/+/Tp01GpVKJCoUClUol/+ctfsLy8XLAvKioKd+zYgYiIycnJaG9vj506dcJ+/fqho6MjOjk54ZUrVwT7FAoFenl5YWxsLGZmZgr+vsY4cuQImpmZoUKhQGdnZ0xKSkI3Nzf09fVFf39/NDY2xv379wv2lZSU4JgxYzR/S6VSiU5OTqhSqdDc3BzXrFkjKr7q6mp86623UK1Wo0KhQGNjYzQyMkKFQoFqtRpnz56NVVVVYv/ZTSL2s4GI+Nlnn2F4eDiOHTsWDx06pHXs/v376OnpKdhVVFSEEyZMwM6dO+PkyZOxsrISZ86cqfldDhw4UPB54MmOiIWFhVhQUICGhoZ49uxZzXNC+fLLLzVdFevq6jA2NlZzfjI1NcW5c+dibW2tYN8//vEP3Lt3LyIi3rlzB7t27YoqlQodHR1RpVJhjx49RL2/lUolDhkyBDdt2kTSIvvixYvo5OSESqUSe/bsiXfu3MHAwEA0MzNDc3NztLGxwXPnzgn21dbWYnR0NJqamqJSqdScUxQKBXp4eODu3bt1jpkRjqwSiEmTJmGPHj3wzJkzDY6dOXMGe/bsiZMnTyb5WWJPkjExMejo6IjLly/H//u//0MrKyt8/fXXNcdzcnJQoVAI9k2aNAlDQ0Nx9+7dOG7cOAwNDcUBAwZgZmYmZmRk4IABA3DWrFmCffUn1/oP4+OPxy/8QlEqlZibm4uIj/rSd+rUCXfs2IFZWVm4Z88edHV1xcWLFwv22dvbY2pqKiIiRkRE4CuvvIKVlZWI+ChBmTZtGg4bNkzUv3f69Ono6OiIBgYGGBkZiT/88APW1NQIdtQTFhaGs2bNwuLiYly+fDm6ublp/e7ffvttDA0NFex7/fXXMSwsDC9evIgpKSkYFRWFCxYswNLSUly3bh2ampripk2bBPveeustdHV1xS1btmB+fr7m+fz8fNyyZQu6u7vj7NmzBfuehtjPxqpVq9DU1BRnzZqFEydORGNjY61Ww2KT6zfffBO7du2Kn376KQ4aNAhfeOEFDAwMxBMnTuDx48cxMDAQ33vvPUGu+ovUkw+Kz8UXX3yBZmZm+PHHH+PJkydx9erVaGVlhatXrxbsc3Z21iTOL730Ej7//PN4//59RETMy8vDUaNG4ZgxYwT7FAoFjhgxAo2MjNDGxgbffPNN/P333wV//5MMGzYMx4wZg5cuXcLZs2djt27dcOzYsVhVVYXV1dU4ceJEfP755wX73nnnHQwICMCdO3fizz//jAMGDMD//Oc/ePXqVXz//fdFJ+uMbsgqgbCysmo0eajn9OnTaGVlJchlY2PT7MPS0lLUicPHxwf37Nmj+TotLQ19fX1xypQpWFdXJ/ok6ezsjKdPn0bERycKhUKBBw8e1Bw/fPgwenl5Cfb16tULIyMj8erVq3j79m28ffs23rp1Cw0MDPDAgQOa54SiUCg0J8qgoCBct26d1vGtW7diQECAYJ9arca0tDREfPRvv3Dhgtbxa9euCf7bPh5fdXU1bt++HUeOHKm5c1uwYAGmpKQIdllaWmpiq66uRgMDA62TbmpqqqjY7O3t8bffftN8/fDhQzQxMdGM6KxZswaDgoJE+Z68q3+cgwcPor29vWBf7969m3107dpV1Hu5W7duWgnRqVOn0MHBAd9//31EFJ9AuLu74+HDhxERMSsrCxUKhdad6Y8//oj+/v6CXK6urhgZGYmHDx/Go0eP4tGjR/HIkSOoUqlw/fr1mueE8vjn4tlnn8VPPvlE6/jXX3+NPXv2FOwzMTHBmzdvIiKim5sbnj17Vuv4pUuXRP1t6+O7f/8+fvTRR9i9e3dUKpXYp08fXLt2LRYUFAh2IT46j9YnOGVlZahSqbRivHz5MtrZ2Qn2ubi44PHjxzVfZ2Zmorm5uWa0ZPHixRgSEiIqRqblyG4NRHNzYGLmxyorK+GNN95ocu46PT0dFi1aJNiXlZUFgYGBmq+9vb3h6NGjMGTIEJg0aRIsW7ZMsAvg0XoCV1dXAACwtbUFU1NTTeOUen92drZg37lz52DBggUQFRUFGzduhN69e2uOubi4aLmFUv/7vnPnDvTt21frWN++fSE9PV2wq2fPnnD48GHw9vYGJycnSE9P14oxPT0d1Gq16BgNDAwgKioKoqKiICsrC+Lj4+Gbb76Bjz76CMLCwuD48eNPdRgZGUFFRQUAAFRVVUFdXZ3mawCA8vJyUXPbNTU1WusczM3NoaamBkpLS8HU1BSGDRsmqmteeXl5s/PadnZ2UF5eLth35coVePnll8HT07PR49nZ2ZCamirYd+vWLa22wyEhIXD48GEIDw+H6upqmDNnjmAXwKP1KD4+PgDw6L2rVqvB399fc7x79+5w584dQa4//vgDpk2bBkuWLIFvv/1W85lTKBTQt29f6Natm6jY6r8X4NG/Ozw8XOvYkCFDYO7cuYJdfn5+cO7cOfD09AQLCwsoKirSOl5cXAx1dXWiY7S3t4f58+fD/Pnz4fTp0xAXFwfvvPMOvP322xAVFQUJCQmCPIgIBgaPLjNP/hcAQKVSiYqvuLhY8zcAAHB2doaKigrIz88HJycniIqKgn//+9+CfYyO6DuDoWTixInYs2dPPH/+fINj58+fx6CgIJw0aZIgV2hoKK5cubLJ42KHaT09PbVGCOrJyspCPz8/fP7550X5OnfurJXJv/POO5iXl6cVn5g7j3p++ukndHNzww8++ABra2vRwMAAk5OTRXsUCgXGxsbiqlWrGtw11MdnY2Mj2Ld37160tbXF9evX4/r167FLly4YFxeHJ0+exPj4eHR3d8fo6GjBvseHkhvj4MGD+MorrwhyvfDCCzhq1Cg8ceIEvv766/jMM89gZGQklpSUYGlpKY4ZMwZHjBghOLahQ4dqTYEsX74cnZ2dNV9fuHBB1N921KhRGB4ejjk5OQ2O5eTk4NChQ/HPf/6zYF9wcDCuXbu2yeO///676BGDJ98fiI/Wujg6OuKkSZNE+VxcXDAxMVHz9fjx47X+1pcvXxb13kNEXLt2Lbq4uOB///tfRESdPhcJCQm4a9cudHd3bzBievnyZbS0tBTsW79+Pbq5ueGRI0cwISEBAwIC8ODBg5iVlYWHDx/GHj164N/+9jfBvuY+FyUlJRgXFydqOi48PBynTZuGmZmZuGjRIvTx8cGpU6dqjs+cORMHDBgg2BcaGopLly7VfL1582a0trbWfH3p0iXRf1um5cgqgcjPz8cRI0agQqFAGxsb9Pf3x65du6KNjQ0qlUqMiIjQmgNujtjYWPzXv/7V5PGMjAycMmWK4NimTZuGr732WqPHMjMz0cfHR9RJcvTo0c0mOGvWrMEhQ4YI9j1OTk4ORkRE4HPPPdfiE6WHhwd26dJF83gy1hUrVmD//v1FObdv345ubm4N1mqYmJjgnDlzRK1feHwoWVdSU1PRx8cHFQoFdu/eHbOysnD06NFoYGCABgYG2KlTJ60L2tNITExEW1tbdHJyws6dO6ORkRFu3rxZc3zNmjWi1vJkZGRgYGAgGhgYYFBQEA4fPhxHjBiBQUFBaGBgoFncJpTZs2c3u2YiLS0NBw0aJNg3fvz4Jn2XL1/GTp06ifpsjBgxAr/44osmj69fv17URbCe5ORk7NWrF44fP16nBOLxR2xsrNbxr7/+Gnv37i3K+fHHH6OpqSmq1Wo0MjLSWqvx4osvYnFxsaj4qD4XiIjnzp1DW1tbVCqV6ODggMnJydivXz90cnJCFxcXVKvVjd5YNcXBgwfR2NgY+/btiwMHDkQDAwNcsWKF5vjy5ctbfN5jxCPLdt4pKSlw+vRpyMnJAQAAJycnCAkJga5du+otpvT0dEhJSYHhw4c3ejw7Oxt++eUXePXVV0l+3vnz50GtVmtNm4jl008/hSNHjsDq1at13nb5JGfOnAFjY2OtaQgh1NbWwoULF+DmzZtQV1cHzs7OEBwcDBYWFqI8x44dg7CwMK3hVF3Jy8sDOzs7zdeHDh2C8vJyCAkJ0XpeCNnZ2bB3716orKyEIUOGtGio/HHq6upg//79cObMmQafi2HDhoFSqb+SMH/88QckJibC1KlTGz2enJwM27dvh5iYGEG+hw8fglKpBGtr60aP79u3D9RqNQwaNEh0rFVVVfDuu+/CkSNH4Pvvv29yGqel7N27FwwNDZs8TzRFQUEBHDhwQOtzERYWJnrr+oYNG+Dll18GY2NjUd/XHCUlJXDt2jXw9/cHc3NzqKiogE2bNkF5eTkMHTpUa3pJCH/88Qds3boVKisrYfjw4TB06FCyWBmR6DuD0ScjR44UtdWxrVzsk7dPyrExDMMIpUNXojx+/LioxWNt5WKfvH1Si620tFTQYlH2ta6LfdLzMc3ToRMIhmEA0tLSYPDgwezTs4t90vMxzcMJBMMwDMMwopFdHQiGYbSxtbVt9nhtbS372sDFPun5GN3gBIJhZA51UbSO5JNybOzT3cfoiL5XceoTc3NzvHHjhuRc7JO3r61joy6K1pF8Uo6Nfbr7GN3o0Gsg3nvvvacOienDxT55+9o6tsjISCgoKGjyuK2tLUyePFnwz+tIPinHxj7dfYyO6DuDaS0SEhIwNDQUnZ2dNU2gVqxYgTt37tSri33y9kk5NoZhGEpkOQLx+eefw7x582DkyJFQUFCgWVhjbW0NK1eu1JuLffL2STk2MURGRopqxMa+1nGxT3o+5gn0ncG0BgEBAfjDDz8govb88KVLl0S1jqV2sU/ePinHJgYprx+Ruk/KsbGPoUaWIxC3bt1qtMeCsbExlJaW6s3FPnn7pBwbwzAMNbJMIDw9PeHixYsNnt+3b5/opkSULvbJ2yfl2BiGYaiRZR2I6OhomDVrFlRUVAAiwrlz52Dz5s3w4YcfQlxcnN5c7JO3T8qxMQzDkKOvuZPW5quvvsLOnTujQqFAhUKBbm5uGBcXp3cX++Ttk3JsQpH6PLSUfVKOjX0MNbJLIKqrq/Gbb77B7OxsRES8f/8+5ubm6t3FPnn7pBybWKR+EpeyT8qxsY+hRnYJBCKiWq3W7JmXkot98vZJOTYxfPDBB5ifn88+PbvYJz0fo40sE4hBgwZptr9JycU+efukHFs9Ui90JWWflGNjHxdZ0weyTCC+++479PLywtWrV+OpU6cwKSlJ66EvF/vk7ZNybIiIa9euRXt7e1y6dCmq1WrN0O769etx0KBB7GunsbFPdx/TMmSZQNQvOHv8oVQqNf/Vl4t98vZJOTZE6Re6krJPyrGxr+2KrDHayHIb561btyTpYp+8fVKOrd4n5UJXUvZJOTb26e5jWoYsEwgPDw9Jutgnb5+UYwP4X2GqJ726FrrqCD4px8Y+3X1My5BlApGQkNDscTHtXild7JO3T8qxAUi/0JWUfVKOjX1cZE1v6GvupDWxtrbWepiZmaFCoUBjY2O0sbHRm4t98vZJObZ6pF7oSso+KcfGvrYpssZoI8sEojFSU1MxPDwcf/75Z0m52Cdvn1Rik3qhKyn7pBwb+9q2yBqjTYdJIBARz58/j/7+/pJzsU/ePqnEJvVCV1L2STk29jH6QpbdOJtCpVLB3bt3Jedin7x9UomtX79+8Pvvv5PF0ZF8Uo6NfYy+kOUiyt27d2t9jYiQnZ0Na9asgbCwML252Cdvn5RjAwCYOXMmzJ8/HzIzMyE4OBjMzMy0jvfs2ZN97TA29unuY1qIvoY+WpPGiu84Ojri+PHj8e7du3pzsU/ePinH1phPaoWupOyTcmzs093HtAxZjkDU1dVJ0sU+efukHBtA+yh0JVWflGNjH6M39J3BtAaLFi3C0tLSBs+XlZXhokWL9OZin7x9Uo6NYRiGGgUior6TGGpUKhVkZ2eDg4OD1vN5eXng4OAAtbW1enGxT94+KccGIP1CV1L2STk29unuY1qIvjOY1kChUOC9e/caPH/o0CG0t7fXm4t98vZJOTZE6Re6krJPyrGxj6bIGiMeWa2BsLGxAYVCAQqFAvz8/EChUGiO1dbWQklJCcyYMaPNXeyTt0/KsT1Ofn5+g+euX78Ob7zxBkRHR7OvncbGPt19TMuQ1RTGhg0bABHhtddeg5UrV4KVlZXmmJGREXTp0gVCQkLa3MU+efukHJsQfvvtN5g4cSKkpKSwT48u9knPxzwF/Qx8tC5Hjx7FqqoqybnYJ2+flGNrjgsXLqCFhQX79Oxin/R8TPPIagSiMcrLy6G6ulrrOUtLS7272CdvnxRja64wlbu7O+zbt4997TA29unuY1qIfvKW1qW0tBRnzZqFnTp1QqVS2eChLxf75O2TcmyI7a/QlZR8Uo6Nfbr7mJYhywRi5syZGBAQgNu2bUO1Wo3x8fG4ZMkSdHNzw40bN+rNxT55+6QcG8MwDDWyTCDc3d3xyJEjiIhoYWGB169fR0TEhIQEjIiI0JuLffL2STk2ROkXupKyT8qxsU93H9MyZJlAmJmZaVq9urq64tmzZxER8ebNm2hmZqY3F/vk7ZNybIiISqUSc3NzGzz/4MGDFk2JdCSflGNjn+4+pmXIsp23l5cX3L59GwAAunXrBt999x0AAOzZswesra315mKfvH1Sjg3g0UKzx2tK1JOUlAS2trbsa6exsU93H9NC9JW5tCaffPIJrlq1ChERDx8+jGq1Go2MjFCpVOLKlSv15mKfvH1Sjc3a2hptbGxQqVRq/r/+YWlpiUqlEmfOnMm+dhYb+3T3Mboh+22cAAAZGRnw22+/gbe3N/Tq1UsyLvbJ2yeV2KRe6ErKPinHxr7WL7LGNI/sE4iKigowMTGRnIt98vZJMbZjx45BaGgoGBoaksTUkXxSjo19jN7Qx7BHa1NTU4OLFy9GFxcXVKlUeOPGDURE/Oc//4lxcXF6c7FP3j4px/YkZWVlWFhYqPVgX/uPjX26+xjhyDKBWLRoEXp5eeHGjRtRrVZrTrxbt27F/v37683FPnn7pBwbovQLXUnZJ+XY2Ke7j2kZskwgvL298eDBg4iIaG5urjnxXr16Fa2trfXmYp+8fVKODVH6ha6k7JNybOzjImv6QpYJhImJiWb//OMn3uTkZNH75yld7JO3T8qxIUq/0JWUfVKOjX26+5iWIcs6EN27d4dff/21wfPbtm2D3r17683FPnn7pBwbAMDDhw/B09MTAB414nr48CEAADz33HNw/Phx9rXT2Ninu49pGQb6DqA1iImJgUmTJkFWVhbU1dXB999/D9euXYOEhATYu3ev3lzsk7dPyrEB/K8wlYeHh6YwVd++fXUudNURfFKOjX26+5gWou8hEEpu3LiBdXV1iIj4888/48CBA9HMzAzVajWGhYXh/v379eJin7x9Uo7tcaRa6Ko9+KQcG/t09zEtQ1YJxJP10V966SXMzs7Wu4t98vZJObbmSE9Pxx07duDFixfZp0cX+6TnY4QhqwRCoVBonXgtLCw0C8/06WKfvH1Sjq0pysvL2ScBF/uk52OEI8tFlPUgYZFNShf75O2Tamy1tbWwZMkScHV1BXNzc7h58yYAALz//vuwbt069rXT2Ninu49pGbJKIBQKRYMObY11bGtrF/vk7ZNybI8TGxsL33zzDSxbtgyMjIw0z/fo0QPi4uLY105jY5/uPqZlyKoXhlKphIiICDA2NgaAR22PhwwZAmZmZlqv+/7779vUxT55+6Qc2+P4+PjAl19+CeHh4WBhYQFJSUng5eUFKSkpEBISAvn5+exrh7GxT3cf0zJktY3z1Vdf1fp64sSJknCxT94+Kcf2OFlZWeDj49Pg+bq6OqiurmZfO42Nfbr7mJYhqwRi/fr1knSxT94+Kcf2OPWFqTw8PLSe17XQVUfwSTk29unuY1qGrBIIhmGaRuqFrqTsk3Js7NPdx7QQ/Wz+YBimrZB6oSsp+6QcG/voiqwxLYMTCIaROVIvdCVln5RjY1/rFVljhCGrbZwMwzQEn9hotW/fPigrK2NfO4+Nfbr7GN3gBIJhOhhPnoTZpx8X+6TnY8TBCQTDyBypF7qSsk/KsbFPdx+jG7wLg2FkDiLClClTNIWpKioqYMaMGS0uTNWRfFKOjX26+xjd4ASCYWSO1AtdSdkn5djYR1dkjWkZsiplzTAMwzBM28BrIBiGYRiGEQ0nEAzDMAzDiIYTCIZhGIZhRMMJBMMwDMMwouEEgmEYhmEY0XACwTAMwzCMaDiBYBiGYRhGNP8fD+GUWFqiGmMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import seaborn as sns\n", - "# plot the heatmap of df\n", - "sns.heatmap(absolute_sum, cmap='coolwarm', vmin=0, vmax=1)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.8731200000000012\n" - ] - } - ], - "source": [ - "# plot heatmap of df.to_numpy()\n", - "results = absolute_sum.to_numpy()\n", - "sum = 0\n", - "for i in range(len(results)//2):\n", - " result = results[i]\n", - " support = np.concatenate((np.ones(5),np.zeros(15)))\n", - " sum += roc_auc_score(support, result)\n", - "print(sum/(len(results)//2))" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.7712266666666673\n" - ] - } - ], - "source": [ - "sum = 0\n", - "for i in range(len(results)//2):\n", - " result = results[i]\n", - " support = np.concatenate((np.zeros(5),np.ones(5),np.zeros(10)))\n", - " sum += roc_auc_score(support, result)\n", - "print(sum/(len(results)//2))" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.6197600000000005\n" - ] - } - ], - "source": [ - "sum = 0\n", - "for i in range(len(results)//2):\n", - " result = results[i][:10]\n", - " support = np.concatenate((np.ones(5),np.zeros(5)))\n", - " sum += roc_auc_score(support, result)\n", - "print(sum/(len(results)//2))" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "treeshap = pd.read_pickle(\"./results/mdi_local.two_subgroups_linear_sims/no_standardization/varying_heritability_n/seed331/0.8_1000/rep2/RF_TreeSHAP_feature_importance.pkl\")" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAHjCAYAAABy7iajAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADizUlEQVR4nOydd0CVdf/+L9kbZIMDcCvOtNyjcpurclSPaalZVubIFM00S0szsyzXk5lmjrQ0KzMxd44UxdziQFSW7D0Efn/4jR7yKBx7SfDzXH8VHi5uOPe53+/Pe1xXhYKCggKZYIIJJphgggkmGAGzf/sCTDDBBBNMMMGE8gdTAmGCCSaYYIIJJhgNUwJhggkmmGCCCSYYDVMCYYIJJphgggkmGA1TAmGCCSaYYIIJJhgNUwJhggkmmGCCCSYYDVMCYYIJJphgggkmGA1TAmGCCSaYYIIJJhgNUwJhggkmmGCCCSYYDVMCYYIJJphgggkmGI1/NYFYsGCBAgICZGNjo6ZNm2rPnj3/5uWYYIIJJphgggklxL+WQKxdu1ajR4/W5MmTdfToUbVt21bdunVTRETEv3VJJphgggkmmFDusHv3bvXs2VO+vr6qUKGCNm7cWOz37Nq1S02bNpWNjY2qVaumRYsWGf1z/7UEYu7cuRo6dKiGDRumunXrat68eapSpYoWLlz4b12SCSaYYIIJJpQ7pKenq1GjRvr0009L9PpLly6pe/fuatu2rY4ePapJkyZp1KhR+vbbb436uRZ3c7H/FDk5OQoJCdHEiROLfL1z587at2/fv3FJJphgggkmmFAu0a1bN3Xr1q3Er1+0aJGqVq2qefPmSZLq1q2rw4cPa86cOXriiSdKzPOvJBBxcXHKy8uTl5dXka97eXkpOjr6ltdnZ2crOzu7yNesra1lbW19T6/TBBNMMMEEE0ob9zrm7d+/X507dy7ytS5dumjp0qXKzc2VpaVliXj+lQTiT1SoUKHI/xcUFNzyNUl677339Pbbbxf5WovuQWrVYzJ2LYe3HcO4JGnB7ACUL/iUN8r3os2XKN9rR3pjXC6uthiXJDVvzCaajta5KN/Jy1Yo3/crf0f5LCy5x0RmShrGJUkVzNgurK2TA8qXk5mF8uXn5bF8Nzg+a3v2c5ubnYPy7d7QBuUzhJ8sayM8hyY/dUvMmzp1qqZNm4bwR0dHGzzA37hxQ3FxcfLx8SkRz7+SQLi7u8vc3PyWakNsbOwtv5QkBQUFaezYsUW+NmFRlrKzbmDXVFCQj3FJ0odfm6N81y6yCc7AoMYo39klZzGuGdMbYFySZGORhPJ9spJ9sKUkpKJ8Nnbsg9yjigfGlRibhHFJUnJsPMpnbs5+bumgmpHE3ivk9dk6sslXdvp1lK88wVDMoyvuhg7whr5+J/wrCYSVlZWaNm2q4OBg9e3bt/DrwcHB6t371pOsodLNuCfiJaVj17TI9gGMS5JsbNk/rZOrHco37EN222XpbGeMK+kGG6Dnr2IrBnaONiifjR1bgTi1/yTKdyOX+/tlZ2RiXJLkUJG77yQpNT4J5atgVvKHcUlgDlaDJCk/vwDjSk9mkxszCzaZKw1UsGTe73vdovf29jZ4gLewsJCbm1uJef61FsbYsWM1aNAgNWvWTC1bttSSJUsUERGhF198sUTf75J566zEP0HThv4oXwH3uZQknbnA8vkE3Frp+SdYvJVLcNLTsot/kTF8yRko32PduBO5JG3ZloDy0WV48lSeLTaBKAADYHnADbisT8KnRlWULyb8GspXGjCzYBPGe4WWLVvqhx9+KPK1rVu3qlmzZiWef5D+xQRiwIABio+P1/Tp0xUVFaX69etr8+bN8vPzK9H3D/3MFb2esa+wD7b5S9gEp0pNT5Qv9kocyvdqv4oYV2gk+7tuiWP77kdPshUN70pOKN/5o2zf3bdGFYwrNT4R45L4PnlAwxoo36U/zqN89MyHo5sLxhV1nq1qmhsRyO53pKWl6fz5v+61S5cuKTQ0VK6urqpataqCgoJ07do1rVixQpL04osv6tNPP9XYsWM1fPhw7d+/X0uXLtXq1auN+rkVCgros3Lp4IcQbv5Bkuq7hKN8GQX2KN/kuWx5kByMk6SsDDZokfhoIvtenEyojPI527BBcPo7f6B8JPLAdojEBxnPquywcmwEe5CwtGbbXeSQJ10doedHfl3zEMpnCL+4BSI8XeKNa0Pu3LlTDz/88C1fHzx4sL788ksNGTJE4eHh2rlzZ+G/7dq1S2PGjNHJkyfl6+urCRMmlLgD8CfKbQLx+Cg2s3/zFe4ELUnf7GKDlrk5WxpzcGATiKsRXILzch+25fDu5+yArI0t+xD/rP2vKF+fZXVRPhcP7rMREx6JcUl8kLGyYfvOKdfZiouNIzsLlZXKfdboQXQrG3bWaNvqZiifIQR71Ud4OsWcQHjuNf7VNc5/giHPsmuSE94ORfmGvswOZa5dxSZMU19zQfk+O8+VVu3EthwcXdxRvhbN2fZZ76V1UD4LS3b4LCudO6XSMwvO7i4oX3JcEspHD1GSAV9iK0J0eyUnq+xWNU24iXKbQIRdZW/W/s81Rfm2bI1B+arV80X5Fn3Hlhv79+BORpM+Z+dR2j3MBvwVCw+ifM7ubPXLzIL9bKQncwkdfUqNvngV5atQgf3b0QkE3QIiB27pDRt6GLg0QG1hlBfgCcTChQu1cOFChYeHS5ICAwP11ltvFcpsxsTEaMKECdq6dauSkpLUrl07zZ8/XzVr1jTq58CtQDWqnIzypTRmBwGzs9kH75SWbBAcvYHp/UnStOHs77pkK3tqmzS5McqXm8cGrc+/vIzykVUDuiydBwsr0QG6gL082TiwrVFyCJW+NjcftnJYGigvWxgU8ASicuXKev/991Wjxs1p5uXLl6t37946evSo6tWrpz59+sjS0lLff/+9nJycNHfuXHXs2FGnTp2SvX3Jb8Anfn0Gve4ttqtQvtZ12ITkxwNsr7fXdDYD6/EMt9r47pds9aZnDzZovf/eYZRvxXT2vY29xK6FkqXpsn6qdAK3EiQpM41NXrPT2VM+WSEpyGcT/6RYdn5EYoefDeF+q0CUyhClq6urPvjgA7Vt21a1a9fWiRMnFBh488Sal5cnT09PzZo1S8OGDSsx59zv2cv+4WtW/rd19yYoX3U/NuA/7rwN5bvqxFUgXn+XVaBr1aUeyhdxiU0Ow46cQ/ns4CCdcp1LSOihRzNYOZIuw9OgWyykNLY1rIBKCphJ0s71LVE+Q9hRsxHC83AYqzx8r3BPZyDy8vK0bt06paenq2XLloXmIDb/U8Y0NzeXlZWV9u7da1QC0SWQXY/yeKU5yrdjRyzKt/t7Nsic7tIa5WvSgDvlV6vPPogqebG3+a/flu2Ab23HVlwc3bgZjcw0Tj1Wkm7ksOvcZV2YKj+/7M5AZMHVFlp1szRgamEAOH78uFq2bKmsrCw5ODhow4YNqlevnnJzc+Xn56egoCAtXrxY9vb2mjt3rqKjoxUVFWXUz8jIY4NMfR9WWGl9NFt+e24UawTzVOYSlO/dsCEY140bbCk0I4sNCq6+rBJlg2YlE08rKX77mT29kH1yeoiSBj30SCck9KbDjVwuAaOrQeURFeB1+7KOe5JA1K5dW6GhoUpKStK3336rwYMHa9euXapXr56+/fZbDR06VK6urjI3N1fHjh2L9TE3ZG1aLeZXWVtxIjJBBzpgXJLk7ccGmUsR7NbELPPnUL79W45iXI3bce0QSWrgx5alL9RixYb2B7M733SQJtUK88CAJUlZcMvBDE4gaOSB7pkS68bpBOqFSFJiJFvFNYHHPUkgrKysCocomzVrpkOHDunjjz/W4sWL1bRpU4WGhio5OVk5OTny8PBQ8+bN1azZ7UU+DNl5137wFdV9aBR2zZWqsScFLx+2LH01PAnlS01iS8mfvMvJHXtmswF1T/qDKN/ZI6xZ1Tfj2JmKIUvYlV/SJIk+QdMBn54xoKW2LazYRzY5lJkBm2mVRylrM1MFgkdBQcEtFQRn55suemFhYTp8+LDeeeed236/IWvTC1cSZAW6lX20lu0t2ts7onzObqwCna+fC8o3azlnq1wloDHGJUlHdrMJSZ+nG6J8w5ZdRPmS49ghVHtn7l7G7bfhPrl7JXZ18PoVdlaL3sKwAPfh6eSrPIJugZV14AnEpEmT1K1bN1WpUkWpqalas2aNdu7cqS1btkiS1q1bJw8PD1WtWlXHjx/Xa6+9pj59+qhz58635TRkbfrlNvaNeq/vaZTvuhV78pjwAXtK9fZjdSquX+GClgVs49uxTwOU79uvuHaNJNk5svvzNKxA6W66T077L5jDKp50O4m2uCa3MArga6OrLSbwwN+hmJgYDRo0SFFRUXJ2dlbDhg21ZcsWderUSZIUFRWlsWPHKiYmRj4+Pnr22Wc1ZcoUo3/OxVOsAt3LEWxAfaQzW0b2r8u2RNzd2SHUjFROdjbmCtv7vHTyEsrXbQDbEjm8j3UxpLUM4q9y7wdtBkX33eOvsdWbsg4yoaPnM8r6RowhVDC/v6ow5dZM6+o5tixtBp8UfrjMlrnpU+/j/2F1Kk6c5Cok8dFsteWRzlVRvu1b2YCfmcZq/idEsQkYqTBIKz3SQcvLn038oy9eQ/nIioHEJhBlfcNm9wZ2k80QDjRnHD9bHGR1ie4Vym2N6MUP2EzvhRGsg6FXRfaDHtjcOKnv4vDrFvZUTp4W3nyFnR/JK2CVGfdYs8NdffuyCnkLPoTnDMAgQ079S5KdE11JY7UM6J64g5Mzypcaz62b0+0V00xF2Ue5TSBysrKLf5ER2PgT+9B9qAXbEokMZ68vLZGdmO76BDdnMOqN3zAuSXL1Yd8LciZAkj6dvQ/lo0H6TWTBQlJ00KpSqxLKdyqa1Zeh1RnJTQcrW9YKndSoKC2YhijLCfo+w5bgT55iy+ZbYOXIbn1qoXynz7KW2ft2cWV9en2LTjZzc9jBPYeK7KmSBillbe/K/q7pCezn9szvZ1A+3M4bVnt0q+SFcSXH0d4V5Q+mNc5ygh7V2a2JP477oHwjhgegfOs2sX1teo1zQH9OB8LPhW1hhMWxg3abf2ZX89KS2VP59cvGqboWB/KUTwd8OtmkZcVp0LoS8dc44zpScExiE9fSgkmJ8h/C399fly/faic8cuRIffbZZ0pLS9PEiRO1ceNGxcfHy9/fX6NGjdJLL71k1M85m1GNumRJkqMjOwB0PpL908ZeZUuh0ZdZx8vjB7myftXabDLXowNb9rWyYYNW00A22fz5Eju4Z+PABVW65ZCZwlbSzCzYvntqfBLKR88FkAZYGfB7YULZB55AHDp0qEjP9MSJE+rUqZP69esnSRozZox27NihlStXyt/fX1u3btXIkSPl6+ur3r17l/jn/HGJ7UM/2JhdRvFwYCfrz9Rmp8ObP+iC8m1YF4ZxvfgYeyKfvogtrT7SmfWu+GHdKZTP2csN5SN70bQQEl2BoPvu9Noq/ftmJKVgXOS2jsRrfJQGaKXVsg48gfDwKOoB8f7776t69epq3769JGn//v0aPHiwOnToIEl64YUXtHjxYh0+fNioBKJhAHtztcj5FeWbuKUVyte7E6tE2frAZJTv92pvYFzeWaxU9NBBt5dJvxt89NEfKB996k2OYQduyYQkHw6o9EyArQP7OcuBtQzyMtmDiZOHK8aVCb8XLt6sn1BpwDRECSInJ0crV67U2LFjVaHCzT9smzZttGnTJj3//PPy9fXVzp07de7cOX388cdGcXtP7ope65FZP6F8I/uwvd4FG1E6fZf3Osp3PpSrQHxTj02+aEn9Go39Ub7UJPZUXqUmu0kQdpR7b+kePlmCl3jxInptlW4B5WRyA8bO7uysUVoiVx0x4d7gniYQGzduVFJSkoYMGVL4tU8++UTDhw9X5cqVZWFhITMzM33++edq0+b2Ih+G3DgtZ396i7z1P4GNWAW6LWdY8aKq/uyDbUSN3SjfRDXCuBztYftte7YsveEEKyRVs5E/yheyjRUdI9fz6ICfDbtx2jqxZXh6tZGuuDiDWxj0tlNOFlttKQ2YtjBALF26VN26dZOv71/9+08++UQHDhzQpk2b5Ofnp927d2vkyJHy8fFRx44dDfIYcuN84+GmmvgoJykcPfBNjEuSmgSwH/T1v7JB9bHl7I1e+yEuSBcUsNc2e+ZhlK9R2/oo3yMt2aAasg2lQw2X6BM5DTpA08qR5HshSXFXuI0d9yrs8DPtm1IauN9aGPdMyvry5cuqVq2avvvuu8LZhszMTDk7O2vDhg3q0aNH4WuHDRumq1evFhpu/R2GKhApF47J2or7MAUnMhKkf8LOmt3qOHySfRClp7Gl5CPbubmArgObY1ySRN/he35mZzQ+fYtdHXxlOjsN71CRW6uNhVdMre3Z5IsWuqKHHm3gCk5ZVqKk/3Y7vmGfK4ZwrGs7hKfRFrZCfK9wzyoQy5Ytk6enZ5FEITc3V7m5uTL726Squbm58vNvH3ANuXH+mttKArfzXB1ghbcKbNSKuMDuRHfsyJ4WAutycwspaezfzptdSpA17O754pQjKB89+Z8Uy917tBdGBTN26JH+29FbJ7z7KBek8fe2HEpZm7YwAOTn52vZsmUaPHiwLCz++hFOTk5q3769xo8fL1tbW/n5+WnXrl1asWKF5s6da9TPqOLMDtj8dIg9BXZowvbdYyJY3QZLC2+U78gf3MmtYkW2b7x/J+vc+kBLdr6FDlr0Pj5ZhqdL8FY27L1CW6unw6do+vcl5xay2eIN/rkoDZhaGAC2bt2qLl266OzZs6pVq6gEc3R0tIKCgrR161YlJCTIz89PL7zwgsaMGVO4qVESdB7EDoq17sL2tS9fYLUH7BzZB0ft2k4oX9tanNBVfgGbxUemsfLJUQls3n2H4ttdYc3nB1E+e2euhZGWyG4nWcABumodNjmkBdvov5+VjQ3HBQ+M0kqUe39oj/IZwvHHHkZ4Gvy4A+G51yi3dt7h51mvibB0VhzozFU2e969LRzlWzaQtUOffKADxtWxDdvnfcCRlT3/+nggyrd/xwWULxE2cCLLsnSZmwyAEr9mWtZBWnCX9YrBr2vYOTdDONn7EYQn8PvtCM+9Rrn1wnhvvTvK17ARmz1fvMSWka3t2OubcojJlP/Eqd/PYly9HmED9MxNnE+HJEVFXET5nhvCyrLPfZ9NINwrcW6myXFJGJckFcDlGzKg3gtUhMWVEiI5jx16a6I8JnP3Wwuj3CYQdeuxoiXNq7Eth9On2TK8ixvbm429xpZCu/V/AONKzmSLYsmJbCn04S7VUb6ENPahQ68OlmVbZRtYOZJe47SDjeHir7JGbqQ7KilKVV5hGqIsJ3ikLiv8lFvA/iksrWDToHS29Pv80+xqwtffce9HA392ZqGSH5ts/rKRbYnYO7PJIX0SzErjNglo8yt6qNAWduPMSEpF+XCr+zIc9PPKcOJqwk0YHTV3796tDz74QCEhIYqKitKGDRvUp0+fwn//7rvvtHjxYoWEhCg+Pl5Hjx5V48aNC/89PDxcAQGG3Qe/+eabQtOt4jBmSrixl35HdB/IiVJJUve2bPltZwj74PhxF5uQJF7nKhq/7GMf4q6ubJAZPLQOyrd6FdsScajIJmAWllxyTZel6eTLxo6dqSD/dhK/YZMLemvcb6dvQzC1MIpBenq6GjVqpOeee05PPPGEwX9v3bq1+vXrp+HDh9/y71WqVFFUVFExmSVLlmj27Nnq1q1bia/DCdZdP32SNSCKj2dLl3t/PITybX2J8zeQpPNdS/7eFYf//sSW4Gnhpxud6qF812FxJRpkm+AGPESZdJ1tPdJIT4C3TuBBRTLo05Wvit7snFtpwJRAFINu3brdMdAPGjRI0s1KgyGYm5vL27uoBsGGDRs0YMAAOTiU/ORpDt+sz/VlTx6/HmWvzw3UrJekj1NYw6rIn7gl8Hdb7cG4JCnkUXZg9EQE+9526t8S5fv1299RPnI9j25hlGVhJUmytGWfK/TQqDlcISFBymzfRK3iX2KCUfjX756QkBCFhobqs88+M+r7lg8IRa9jRcTjKF9KCjuM1aFLDZTvaAg3fS1JzhW5U+pRO3Zfu5IN+7sey2O1An7fya4k06cg0qGSljum4eDK6qPQA6hZqWXXq4MeaHV0c0H5SgOmCkQpY+nSpapbt65atTLuRPxlMhvwrWDLZ7rv/vu+SJQvoDa7Dla7GldavZbEbmFczmM1Pnw92FNgo5bsVkdcLCsJGHmJE0OiT/i0OVd2OusASTtK0nbjZEWDnoFIgvVMSgP32xzIv5pAZGZmatWqVZoyZcodX2fITOvMmVxZWHJB2q8qO4xlYcFmooGNWenpgMrsjf75fK5s7lfXH+OSpBcHsMncuAmccdi9QNV6rK4EvdpIoqyLF9FbHXQFQmArmG6vmFD28a8mEOvXr1dGRoaeffbZO77OkJ13nyFT9fhz07Br+XIB2zfu1r8Zynf9OmvK41aRfbBZgy6B9Ruz1ZFFa9mV38BWrOx5rTouKN+271mVUVLKmu5r27ixw9T0kCc980EnTPlgRaMs64WUFszMTS2MUsPSpUvVq1cveXjcOWAEBQVp7NixRb629oC18sCE17Mqe8Kne2FmMF/n6udRviZvcHMBSzeyk/UVPdjq0unD7NrlzG5swP8pg6245IF9cvpETl6bxCZLEj/zQbt7knboeTlsApEPD8qXBkwzEMUgLS1N58//FXwuXbqk0NBQubq6qmrVqkpISFBERIQiI2/27M+evSlx7O3tXWT74vz589q9e7c2b95c7M80ZOf9gH+CJK7Xe8iTHZ56uB6rfvjxEfZk9Mt5dijz2B9JGFf1mi4YlySdCGUNjZ57gZXa7jfzMMpH2yCTq4gusBQzLT2dHMcmr24+7O9Lb5+RuhJ2cHKYncEmSybwMNpMa+fOnXr44VvX4gYPHqwvv/xSX375pZ577rlb/n3q1KmaNm1a4f9PmjRJX331lS5fviyzuxg8WX+QfXCkZbIPXT839uZf8AUrYevszp60unZ0xbhOnWff21oB7EOXnu1ycWJPLUs/YtdgnTy4NkFGCjvgSQohlQfgMxXgfAvZxpT4dtLO9ey6tCFcer4XwhPwxSaE516j3LpxPvVGBMpXp6EPypeRwZbz7Oz+9YWZO+LXbzkL6UefaI5xSdKx3y+jfN16sdWbFfPZgE8/yMm+e3pyCsYl8W6c5lbs58wMrgbRug1J0dx8EC1yRW+c7PqO1b4xhPBhvREe/8+/R3juNcp2VLoDJgxnH5KXEtkPuqUFu652FhYvalmbHe6qWqkNxrVnN6vb8OFrKJ1GzWa9MMr6ya0sO1TSQ4VZcNmc3kxw9uAqfRIb9GnvClqSvTRgmoEoJ5j2EdurbNORNZc68js7bR5QC95MWMUmENVrcyfBrExWXfBKFltd8qvNPiiDHmOracNmskE1NZ77rNFDhXRFg54foRMc0n5bYuWnaSGp/DKcuJpwE+U2gfhgHDtpPvKtoyjfuPENUL4ftrH73x07skH1zHnO1e/q2XCMS5LWBbMDspdOXUH5bvSiAz47L1OjKWcedvEY68FCC0lVMCvbHV1nT/agQ7YwzBzZBII2IisNmISkygk+/ZEt5XV5ogrK527LmujYO7C93kNH2ZPbhT+4OQPalKd9S3bw7NJJ9iHx1gq2VGtpm4TyJcZwfHQATIHNtOxd2OHi1PgklI8GWRGiN0TSEthnVGnA1MIoBsXZeQ8ZMkTLly8v8j3NmzfXgQMHinxt//79mjx5sg4ePChLS0s1btxYP//8s2xtS9YPjghjT1mzavyK8mVlsMYtHR5qi/I9cn0VyjfZaiDGFbKdVXq8Ds+31GjIemGcPHAW5cujHS9jOKdaetXPvz6ruhl1iW092sEJCT6UCQ+NknDxYpNNE3jgdt6S1LVrVy1btqzw/62sipZo9+/fr65duyooKEjz58+XlZWVjh07ZtQ6Z/c+NY299Dti0E/wdHMsqwNh73wJ5YvoPRTl696WW6cb2pn1rhjzTijK16hlbZQvJ5Nr/0i8CZEDGARp++3wE6yoF7myKrFmVRJfcSHXQtNS2KorXYksDZhaGMWgODtv6abw098tu/8XY8aM0ahRozRx4sTCr9WsaVxCEBvHfjBbdvBH+UIPsy2HmvXYIcoKcKVt+tQjGNfMdxtiXJLk4sGeyJ1d2JmF/sPZ9bKNK0NQPoEJBN3XtoBP0DlZbDJH243TWx3kDAk9MEon1qUC+sFaxnFP6lc7d+6Up6enXFxc1L59e82YMUOenp6SpNjYWB08eFDPPPOMWrVqpQsXLqhOnTqaMWOG2rQp+SqgkyOb6V2OYNe3OndmpbH3/MaePIY3YbURDjbitBHsLdn3YtGgcJRvVSRbITm4jy2b0w/ea/BQKwlnuMxNG4eVZelpScpK44S9HGFfklw4+TKBB55AdOvWTf369ZOfn58uXbqkKVOm6JFHHlFISIisra118eLNkuO0adM0Z84cNW7cWCtWrNCjjz6qEydOGKxEGHLjTEmxRN04/f3YD+aZC+yp9+JxtoWxsUlTlK92IHcyOnSZTQ53ZrRD+WzZ4pKiw9l5HjrI5N/gTpa0PHF6UirKR4NeW7V1ZGdIyGSTlMWWymsLw1SB+EcYMGBA4X/Xr19fzZo1k5+fn3766Sc9/vjjyv+/EtyIESMKJa+bNGmiX3/9VV988YXee++9WzgNuXG+/tJQvfHycOy6N0ax6oe9WrAPyqN72bXVZ1yL9yAxBm9f7ACysRH65DHWCyM1EdbQaBiA8h3ffQzl86vPVZeuhbGaF3TZnB7ypIWpkmO5gVZJcvX1xLhojQorK/aZVxowzUDA8PHxkZ+fn8LCwgr/X5Lq1atX5HV169ZVRIThh4shN84lwVb6+gJ3g0VGsh90d/hBVLmGL8o36Td2k+DEvuMY18vjHsS4JCk+zgXlS4hm20lTe7LVpVeusivJOVlcKZlWK6SVGRNBXYR7AXpANvk6N+xNS1mbKhBlH/c8gYiPj9eVK1cKEwd/f3/5+voWunT+iXPnzt12ONOQG6c969CsfNgS5FIUm4mePcyu+tHT4eSDrbIzW5Y2e4BdpTsFzyi++Al7MyfFshUXF1C7gfZyoGW7qzVit7suHD2H8tFzAeSQJ92uoQdGTeCB2nm7urpq2rRpeuKJJ+Tj46Pw8HBNmjRJ7u7u6tu3rySpQoUKGj9+vKZOnapGjRqpcePGWr58uc6cOaP169eX+Dp2bmOHABcMuYby7c95COVr3J5Vtnyv4icoX+d1nE7FrE/Z0mW/gawSZZc+dVG+qGg2KOz/ha2QxF/jEhI6KNADoykJbPJKtggktmIgsWucN+DqUnlMIEwtjGJw+PDhInbef7YWBg8erIULF+r48eNasWKFkpKS5OPjo4cfflhr166Vo+Nfp8DRo0crKytLY8aMUUJCgho1aqTg4GBVr169xNfxn6cqGXvpd8TsfewHPS6GfYj7VGHVCqekjkb5bBw4gynPyuxkfUV79sGWmsEapR3/ndUyoEGafdEnaHoGIjebrWgkwnMBdIAyB6sGtLU6XdEoDdxvLYxya+c9/Ws2KFy+yAb8WnXZILhr80mUr2FLtlRbqzo3+Ojpwr63tJPpmVPsKfDsIdbdk3YxdKjItYCizrM+IvTvSm8S0AmOk4cLyhd/lUtw6OBJa2js/aE9ymcIMRMGITxes75CeO41yq6OaTGwsGBv1rAj7IxBbk7JqyklAR3w69dh2wRWFly5saojG6AX/sieAgc+Wx/lq9+gNcr30zehKF9SLOjGCQ/G0RUNG9gQim6xJEazWxhk0Kd9RLLT2YpGaeB+q0CU2wTiZCi7O9+iC6uLYGbO3kgWlmzp8nQY++A9e4ybIalUjVXdpA2N4Fav7O3Ye8XOkR3KjLvCCV2RPXeJD9AFsIU07Utibsm2z8hTPq3JQQ96lwpMMxDlAz16sGuN9b3Y9a0tf7ijfH8cYROmjp3Yv19MFDeoOKEru9a4zKslynf8FFvmPgKbh9Hw8OPuFXIgU+LXGulBQEdXF5QvNSEJ5SNXL+n5DGu4/WMCD9yNMyYmRhMmTNDWrVuVlJSkdu3aaf78+UUUJjt06KBdu3YV4R0wYIDWrFlT4uuglR4dbNiZhdxcdrQk+mIkylfDk+0dH3PmZiBC09kth/CLSSifjR17CpzwJqt7MXPqPpSPDPp0C6Osl7nzbNhTdH4++1wpAPluZLPvRS4rzVMqqGDywrgz7uTGWVBQoD59+sjS0lLff/+9nJycNHfuXHXs2FGnTp2S/f+INwwfPlzTp08v/P+S2nj/iVaNjL3yOyMjh33jH6zLnmSOHWIrGs2ufoPyzTnF9fGXh7PzGU1bssJKsbHsg/KXPWU7CJKDinlwWdocTkisbNh7LyGKnb8hza8kycWbbReSsLGDNeNLAaY1zmJwJzfOsLAwHThwQCdOnFBgYKAkacGCBfL09NTq1as1bNiwwtfa2dnd0bGzOHy28MJdf68hePuxa5wNG7EKeR4+Lijf6KN9UL6Aetyp/PI5tl0TFcUaJGWms9WvDx5mKwbPh9cr/kVGIDONOwrSXhgWDuzQI91ioSsuFtYsHymNTQ8QJsHJklQN5jMBnYH40/DKxuavzNHc3FxWVlbau3dvkQTi66+/1sqVK+Xl5aVu3bpp6tSpRbQiikO1epW5C5d0+SzriBiaxw5jWcK2xaOf5Fz4JOmXU5wux4CO7KnoxwOwzXAWW12adaoTyhcT/jvKZ+/MzbfkwUGBLMFLkos3W+lLS0xB+WitBXIokx5ApQdGSwP/5hbGggUL9MEHHygqKkqBgYGaN2+e2ra9vcDf119/rdmzZyssLEzOzs7q2rWr5syZIze3krfz0ahUp04d+fn5KSgoSIsXL5a9vb3mzp2r6OhoRUX9FaCfeeYZBQQEyNvbWydOnFBQUJCOHTum4ODgEv+s0F2c94IkPTWiFcrXtTorYfvhj6w9+Nr9Xijf5QvcEOrFi6ybZM+H2SAzaxZb/aIFc2htBGuwlJwaz+qtpJRhZUaJD/h0iZwM+nQyVyDTFkZJsXbtWo0ePVoLFixQ69attXjxYnXr1k2nTp1S1aq3+h7t3btXzz77rD766CP17NlT165d04svvqhhw4Zpw4YNJf65aAJhaWmpb7/9VkOHDpWrq6vMzc3VsWPHW1oew4f/5aJZv3591axZU82aNdORI0f0wAMP3MJryM57TcMvZA0+eD9Pa4FxSVJoIqsDkZoUh/IN7cGuvy28yt1KeXD1ZvX37CmwUk22+tXsIbZ9tmHFIZQvLTEZ46KtxulkKf4q2z6jYWXLzmi4V+YOEglR7DOKTkhKA/9WBWLu3LkaOnRoYZV/3rx5+uWXX7Rw4UKDDtcHDhyQv7+/Ro0aJUkKCAjQiBEjNHv2bKN+Lr7G2bRpU4WGhio5OVk5OTny8PBQ8+bN1axZs9t+zwMPPCBLS0uFhYUZTCAM2Xk3bDdOjdu/jl23ewzbm427zmai6clsH3/DfjYIVqrCfXC2b2AD4GtvsL4kqZmwsuV5NpnDtRFAT4I8c3orgU02eUMoNgjSWxjXzoZjXM5e7Cbb/QxDh2ZDppKSlJOTo5CQEE2cOLHI1zt37qx9+wzPV7Vq1UqTJ0/W5s2b1a1bN8XGxmr9+vXq0aOHUdd5z3QgnJ1vngzCwsJ0+PBhvfPOO7d97cmTJ5Wbm1vo2Pl3GLLz3nDYSpagXzycPKttHfbUu9GS1W2Ii2VnIMKOcdoN06Y1xrgkqaCAFc1a/iUrx+wCr9TSjpekHDM9RJmVxibWVjbs5D/tFurmw84HXb/CVVwyUthnCt3+KQ1UqMAcHA0dmqdOnapp06bd8tq4uDjl5eXJy6toNcnLy0vR0Ybf31atWunrr7/WgAEDlJWVpRs3bqhXr16aP3++UdeJunFWrVpV69atk4eHh6pWrarjx4/rtddeU58+fdS5c2dJ0oULF/T111+re/fucnd316lTpzRu3Dg1adJErVsbXgU0lHnt+z1BEvfwSE1iH0Qx0Ww2XrMGW7rcEcYKZ30dxD0oz1dgH7o7j8Pe7zBoy2e6zE0GadKYS5Ic3djkKzWea9dIvNBVchw7Q0LC3pmVsk7FtzBKAVALw9Ch2VD14X/xdw2KgoKC2+pSnDp1SqNGjdJbb72lLl26KCoqSuPHj9eLL76opUuXlvg6UTfOL7/8UlFRURo7dqxiYmLk4+OjZ599VlOmTCl8vZWVlX799Vd9/PHHSktLU5UqVdSjRw9NnTrVqJ3uFx439srvjD1nWHfPOlXZIDhj6h6Ub9N0tvS79Axn533mNDsYF1CdTSCad2DnW34LZrc68mA1RdJvwtqePeHT3hBOcMBPjGYTdVoHghzKpCXjLeDNs/KE27UrDMHd3V3m5ua3VBtiY2NvqUr8iffee0+tW7fW+PHjJUkNGzaUvb292rZtq3ffffe23YC/w+h3qEOHDrqTgeeoUaMKBzMMoUqVKreoUN4NNodwq2WSdHA764jYdjy7NUH2oSUpaEtDlO9sCDe38FBH9toyMmDzChj+ddnkNSWRraZlgW0HuuVgAbdryIHRewF6C4PUqbCjfU6yymEL41/YwrCyslLTpk0VHBysvn37Fn49ODhYvXv3Nvg9GRkZsrAo+tn58wBvjEF3uU3x9v1yCuV7ZmgDlG/DPrYCUdGXndTPTGcH7Xyrc0OZyYnsg6NVi4oo3+plrHeFRxW2r50Ym4TykfAPDED5zv7OPgdsHNhqlZc/mxwmxyWhfJmgfTm9olsehzL/rS2MsWPHatCgQWrWrJlatmypJUuWKCIiQi+++KKkmy2Ra9euacWKFZKknj17avjw4Vq4cGFhC2P06NF66KGH5Otb8nm7cptAdH2CDfiLZu9G+fq90A7lo8vS7t5svzI9lStzu3mw6oLJaezkeq0mbBCkRcxIdUGJXZUMO3IW45L4gE8HgKjzESgfLa5EzqTQFYPkGPY+/v8ZAwYMUHx8vKZPn66oqCjVr19fmzdvlp+fnyQpKipKERF/3YtDhgxRamqqPv30U40bN04uLi565JFHNGvWLKN+boUCY+oVZQgj3mf75LXqsKfUU8fZtY7UJHbC+cMX2VLylK+50wI9VEirC7bvUhvla12XdfcMmnIS5bMFg3QGeOKVeF2J7HR2S4S+vowkdrvL0pabSTGDky9atXTnetaV1xCS57yG8Di//jHCc69hVAXivffe03fffaczZ87I1tZWrVq10qxZs1S79l8P1GnTpmnNmjW6cuVKYW9mxowZat68+S18BQUF6t69u7Zs2XKLq2dxePBB1mti+SfskKJ3NVZnISuDze7nBfuhfC8M4GY0aj3JFsam/FyygaCSorI3+6B8690wlM/Tj/19oy9exbhIWWyJL5vTSpQ0SPttiZ2tsjDSELE45OezbdbSwL8pZf1vwKgn9a5du/Tyyy/rwQcf1I0bNzR58mR17ty5iNNmrVq19Omnn6patWrKzMzURx99pM6dO+v8+fPy8Cja6503b95d25/W8mZP5ANf5LYIJOnHtWyf3K0Se4qe2IE9pf7nfe7B1qRNE4xLkqr6sWXfq9Fs0Y5ef0uKZYMq2SaghxTdq7DJUmI0WzmkKxD0kB651UEPtNKCaCbwMOod37JlS5H/X7ZsmTw9PRUSEqJ27W72/J9++ukir5k7d66WLl2qP/74Q48++mjh148dO6a5c+fq0KFDJV4ZKXLhZuxWwuXLbOly5KusI2J0IvvhnLaZnTPIv8H6Q5CIi2OrNw4O7CkwN4cVuiIH4yTJ2ZNrT9FBhtZFKOubBLTGB3mv2Duzf7tyOQNhsvMuOZKTb54mXF0NtxNycnK0ZMkSOTs7q1GjRoVfz8jI0FNPPaVPP/30ri29ryaxw1MnD7PT3O4ebAIRGckGBS8f9sOensa1bMzN2TLgoV/ZasuI124vy343qF0tEOVbMIsdCM5M5e49esbAxZvdYDGHpaxJDQ1Jysthh6nJCgTZ6pL4AdnSwN1W1Msr7jqBKCgo0NixY9WmTRvVr1+/yL/9+OOPGjhwoDIyMuTj46Pg4GC5u/9Vgh8zZoxatWp12x3VksDJlv0gderFPsTPn2eHnU7sYxOcZo82Kv5FRuDSH1wFwsGJfS+ad2J/159+jkX5aPMwRzd2IJiUxqa9HOyc2EpaQiTbwqArEKSsuMTfKyTogdtSgakCUTK88sor+uOPP7R3795b/u3hhx9WaGio4uLi9N///lf9+/fXwYMH5enpqU2bNmn79u06evRoiX+WIWOR05etZGnJlfNOnmC3OmrDWx1Xz7M70ZUrsb3ZiADOq6NfF3Zm4dPPI1G+uGtsAtH7P6zZ17YfklA+K1suaOXnwSu6sC4CXTGgzbRI4SeJHUIt60ZkJvC4qwTi1Vdf1aZNm7R7925Vrnxr6dre3l41atRQjRo11KJFC9WsWVNLly5VUFCQtm/frgsXLsjFxaXI9zzxxBNq27atdu7ceQufIWORBm3GqmG7cXdz+QbRvRs7jOVkx64gRTdgtzqGef2I8v2WX7/4F5UQP+1hy4BfPMNqDyyN7ILy7fiZXVulkRDJyTHTeiausMAaHbTohARX8gQrGvl57DOPnvcoDZi2MO6AgoICvfrqq9qwYYN27typgICSCeoUFBQUVhAmTpxY6Fn+Jxo0aKCPPvpIPXv2NPj9hoxFoq9clrV1qjGXf0f8GsG6Xf70UwzK51+T3cKokM9+2L2qcGu1TRqwfgmvbGqM8tnYsYN7nXuxuhLbfmLXQl3AIcq4K6xoFt1zdnZ3QflIt8t7AXKrwxn2EaG9NUoFkBtneYFRCcTLL7+sVatW6fvvv5ejo2OheYezs7NsbW2Vnp6uGTNmqFevXvLx8VF8fLwWLFigq1evql+/fpIkb29vg4OTVatWvW1CYshY5OsrrBLllu/ZU+qI4dVQvmVfsQNKya3Z68vL405uXy45hnFJkqUV2zemT9HnjrABn+6Tk4N2tJJiEqy6SQ9R3oArEPTfLw+0G6cD/r/hK2GCcTAqgVi4cKGkm4Za/4tly5ZpyJAhMjc315kzZ7R8+XLFxcXJzc1NDz74oPbs2aPAQHYwrkFVVgeiw+vsVkJsFuuF4ebtgvI9M4Xt41dvxAXVlW+w+99v/8JKTz/bHaXTnP+yFQ3aodLehdOpSE/iqoaSlAeXzV192K2OlARW98IGtkNPiOSeA1YObOWQdh4tFZhaGLdHcarXNjY2+u6774y+iLtR065hxvaNQ1PZBOfjeWdQvhYd66J8uTlsBeLRDlyZ+9kP2KHHWk3Yk8zes2yy6ejCnlKvX2HbZ/mgWmFWGpv400JNdMuB1pVIvs4Oe5NeGPR7W9ZVQQ2hgqmFUT7gcpGzj5akKFtW/bBHf7bFsv6LAyhftQbVUT5/V+5kOftNwx72d4u951mlx60/si2HkcOronxzzrPDZxnJ3Htblu2oJX7NlFZTpNtn5NAoXTEwKVGWfZTbBOLZXzujfP37s7v4lVzZD3qjttyWgyS90S0c5RswjjsZzZrVFOOSpEdrso6ImZ1qoHzLv2EHC2lY2XClaVtH9lRJ993pTQJzuOVAanLQoO23c7PZNnCpwNTCKB8IbFIJ5Qs9zQb8Hs1ZARkvb1aV7QN4LsDDjwsy+8+wWgFnz7AnmTMHb9U++SewcWB/X3p1kBzKpOWO83LphISdR6GFpEhrdUm6AVY0Uq6zf7uynCzdDvfb4Gf5e4f+D1V82WnkK5Fstvs7XDa/eJ4djPP0Zq+PPC3s23kR45KkTt3ZioG5OVsN+uhBVpNj4DpWmIrsu0dfvIJx3Qvg5ldwT5wu69s6cQcT2oOF3ogxgQdu5327vezZs2dr/PjxkqQRI0Zo27ZtioyMlIODQyFPnTp1Snwte/ewWwQJMUko38sjWLvsLd+yg4XOFdkZiIHPckOe3s7sCfoCvIp/A+71Pv1dC5Qv+Torx+xeiZtJsbZj5zMiTrHJJl0Nok/l7lXuzjvodrh+mXuuVIRFvWjRrFKByQvj9iiJnXdUVNF+7s8//6yhQ4fqiSeeKPxa06ZN9cwzz6hq1apKSEjQtGnT1LlzZ126dEnmJRyKWtDiB2MuvVh8YzMU5SsQGwQHDGmI8i39aA/K99Sj3Kl80Xp4Nc+NnW/xruSE8v2nN9uemvoWpxwpsauSdMCnlf/KesCn7cbJuYWcLNPQ4/3mhVGh4G52KP8P169fl6enp3bt2lVo5/139OnTR6mpqfr1119vy/PHH3+oUaNGOn/+vKpXL9nJ+Nkp7OBZ1ersANCR3awwVctO7BpnpybsylVEItcSWbOaDTJNW7HzHvl3/5ExiDb12fbZlEm/o3ze1apgXLT9Ng3az8EMbmHQBlOkkBQNup306xq2tWcIGcunIzx2g99CeO417qmdd0xMjH766SctX778thzp6elatmyZAgICVKVKyR9UURfZkr69E3uzelRmBWmOHWA3CWJjWGnsHh24Yaw6jbiAJUnJSWw1KDWVPWm19NyE8jl7PYDylWU5Zgursj3GdSOPvfdokAkTrZJpWuMs+7gndt5/Yvny5XJ0dNTjjz9+y78tWLBAb7zxhtLT01WnTh0FBwfL6jaSw4bcOEe+WkeWVlw/9ffjbJnbM5Cdlk5NY6/PzpY9GVVxIIMM56sh8QH/zCG2utT1YE2UT2LVHl19uWSYLsGTZlCSZGvPzkDEX2NFveiWDand4Ah7YaQllD8lStMWRglxJzvvP/HFF1/omWeekY2BPfJnnnlGnTp1UlRUlObMmaP+/fvrt99+M/haQ26cw16eoBdenXi3l38LsjLZ4a4bN9hsPJAVjlSFCuyH8+R1btDu6J4TGJckDX2J3Zp49jG2nfTOB5dRvrREVj45I5Vrd9E+HbTXRCrMV7Ue+8GNjWCrQeQpn5YpL5e4z5Qo72oG4tVXX9XGjRu1e/fu2xpg7dmzR+3atVNoaKgaNWp0R76cnBxVrFhRn3/+uZ566qlb/t1QBWJQ0BWZm3NBn+6TD37gNMr3xaGSb6iUBG84Lkb5BvzcEeOysmGDzIQXXVC+oOnsjEZ2RibK5+rDTsMnRHEbT7RdNn3qpYMgPVNRAMqKS+yqZHY6ex/bu7JV3F+WN0b5DCFz5UyEx/Y/kxCee417Zue9dOlSNW3atNjk4X+5/54k/AlDbpw1Av1LfN0lQU4O+8HcHct6a0SEszoQMysPR/nqP8gFhj6t2QfRJytZvm792RkDb3Z+V8v/y7qZ2jtzWyd0dYRWouSFmtghRQt4zoAUzqKTJVpXolRgUqK8PYqz8/4TKSkpWrdunT788MNbOC5evKi1a9eqc+fO8vDw0LVr1zRr1izZ2tqqe/eS2xxeucCuqvXpy+o20K2w5Dj2ZDRmAPtgmzCLexDVrcm2CB7vxYpmmVVgk83137OaJvTwmRvoUEkrPdKDe07ubAIRffEaykdrI5AzJHRyQydfpQGTmdYdUJyd959Ys2aNCgoKDLYjbGxstGfPHs2bN0+JiYny8vJSu3bttG/fPnl6lrz02qQ5O6nf0TUE5fvjBmumRdsW28ODdvWaci2gSi6s/O+hc+x8y89rWSO3FTPYBGfIFPYUZGnNbTqUdb+Ea2fDUT56qI4eGiVbIp5+rOZFufTCuM+A2nn/iRdeeEEvvPCCwX/z9fXV5s2bjfmxBkEPFcZb+6B8UXFs0Iq/yp5Sd1xphfJ1ac0F/a83saXL+KirKF9FuOcQnc+u1Dq5s9W51ETu/aBbDmR7RZI8/HxRvvw8tloVf5UdoiQTnIiTFzAuia8uSeycm0GYWhjlA+13jkX5UnuxMwGNfNib38GVfVB292YrLr9nlGzWpSSIusQ+JB95jJ1HGViP3RJxTtiN8iVEsgkJuTlRls2gJMnWgdWDoYOqjQOrWuriya1M0z4n3tVYw8RSgamFUT5g5c2tDUrSwr3sLn7T+mwCUbMRu5/+QyTrYrh1czjGZW3HOXtKUvVK7Cnw9c/ZIBgfxbbjAhqyp+ioS5zqK73GiSszwj4n9Ck6K41VkI0HW6Mu3qx4XtQF2niNnXMzoRwnEP339EX5lr52HOU7mceees+GsKuDr3eBM+XunNZCW3/2wfHOF6yYj1kJ/VpKCvdK7IP3WljZbdmkxqdgXBI/Y0DPQFjasskwLSSVm8m1HvPs2OoN/TkrFZjMtG6PhQsXauHChQoPD5ckBQYG6q233lK3bt0kSd99950WL16skJAQxcfH6+jRo2rcuHHh9yckJGjq1KnaunWrrly5Ind3d/Xp00fvvPOOnJ2NO9XRpjfD57N97YB67Emm6xPsUOZbq9k+ebcu3Cn/v1vZ98LWnl3jjDjLJjjPjeDaP5K0bDGr9piZxv390pPZBIKegbCwZM9UubAwFQ1yKDO/gK300SJhpQKTEuXtUblyZb3//vuqUaOGpJtS1b1799bRo0cVGBio9PR0tW7dWv369dPw4bfOFERGRioyMlJz5sxRvXr1dPnyZb344ouKjIzU+vXrjbrwKdOaGvX64vDDDvZmrVubbRHs28vOBeTBw13zZ+3DuILeao5xSdKylewAqjso7SxJJ86x0+aWt5GEv1vYgC2lLPiUSq+F0lsOdIWkpG7FJUVOFrvxdN/jPpuB+EdunNJNI60PPvhAQ4f+ZYcdHh6ugICAWyoQhrBu3Tr95z//UXp6uiwsSp7PvPRB0l1esWHQCnndH2VPRkfPsAHfzZU9aVX15K7v5x3siulDzVxQvujrbHXppVqstfrLa9l5nuwMTlciKTYB45KkAvjUa+PAzhplpLAzCzZwAkYiE57PoLFzfct7/jOyvvsY4bF5/DWE517jrqNIXl6e1q1bp/T0dLVsefdvTHJyspycnIxKHiSpdm12kC05hZ3mXvstWzEIqM2eerOy2IRp625umO3Bpi4YlyRV82TFd9Z8eQ7la1mPrbhEXvgD5fOowg0s27uwmhdJMaxCK90apaWnafttcivG2YM1waNVS0sFpjXOO+P48eNq2bKlsrKy5ODgoA0bNqhevXp39cPj4+P1zjvvaMSIEUZ/740bbAAcV3MLyne8aXuUb2sIe2MmJLIPopMHzmBc9g4NMS5JuhDOln1pzf/PlrLJppUtq0FCzkDQOhD0UKFvtaooX3oyeyrPTGW3Tsj3g27/2DuzyWap4D5rYRidQNSuXVuhoaFKSkrSt99+q8GDB2vXrl1GJxEpKSnq0aOH6tWrp6lTp97xtYbMtH798aLMzbkb1rrPYxiXJO3fwErYVvZn18Hc3NkgM/nNxhjXlXj22kL/YFsi1RpUR/mG9WfL0hMmslsYNr7c9eXBug10AuHgzLYwIsMiUD4aZIWEHnpMimYHvU3gYXQCYWVlVThE2axZMx06dEgff/yxFi8uubtjamqqunbtWljBsCxmV9qQnXfXp95Sl2emGXv5t8UDAexJwd+blXU9dYnNbF84+zLKt8xyAcb18zesyNVLrzVB+Zxt2WQuOYutkJiX4U0COuDnw7oN54+GoXwu3qyoVyY8U0HOkFjZsCur9MZOqcC0xmkc7uSiaQgpKSnq0qWLrK2ttWnTJtmU4KYLCgrS2LFFlScX/Gyp7GyujfHVD2xJ/+nH2Bupijd7Mpoe/QHKF/0bt9pIly43B7ODe+EnwlG+nk+zG0X0QDBZ5qaTG1qoiZYpp/0caOt3Ejdy4OpSeWwHmNY4b49JkyapW7duqlKlilJTU7VmzRrt3LlTW7bcnB9ISEhQRESEIiMjJUlnz56VJHl7e8vb21upqanq3LmzMjIytHLlSqWkpCgl5WaW6eHhcdsVJUN23p2bxEvihuNqVXXBuCTpcjx7qrwaDU/+d2OD6oo9XMXl0I5TGJckXTnHDlGS8r+S9MMqtuJCbyaQZW46ucnPYwM0vSYZF8vOt9AgK0I2jvAGSxLbejSBh1EJRExMjAYNGqSoqCg5OzurYcOG2rJlizp16iRJ2rRpk5577rnC1w8cOFCSNHXqVE2bNk0hISE6ePCgJBW2Qf7EpUuX5O/vX+JrsTVn95d/2cnerG1awrbAUWwQHPMeWx709uP65J++VRHjkqS3v2BPqU0eZI3XjhxkZz5iI8ruUCa95eDsyVYM6DVT/BRtxiaHJNIT2K0JWkOjVHCftTD+sQ7Ev4U3FrGlvHz4z+DkxE4kJyayCdPoruyQp2MmN/B0TGxJ/7PPOS+He4Ea9VnviktnWeluEmU5uZEkO0fWrConi9PQkKT0Mnwqt4DbSbTI1e4NbVA+Q8javAThselu2M26rKHcemG8+ugllO+psezE76xZbBDcsIvNxkMSWLGhgIrcSdD6BttLHfwsu5qXmsmWubvb70D5hp3wR/nIUznpvXAv+DJhcy56RoPedCBXL2/AGhV0u8sEHuU2gaiYwNrkDhndE+X7aT978mjVlH0QPeTCzhnsjuHMw77+8iTGJUkrX2XFhvrOY6tLK51YkbCMFLYCQT7Iaa0AW9jemj71lnV3T7JNQItmlUuUx7bLP0C5TSCeWMBaID/4MJvZm5mzvbDFn7Hqglvrsda28dHhGNcjj7FOpj3f3I3yvRLUAuX7fiNrzkUbOLn6cKuItNul6AQik038aUdJ2g6dtAe3dWL9f2jV0lLBfTYDUW4TiHoP1ij+RUYgNZl9cDzcip1IrleDdWzsZfkjyvdhWFeM64eVBzAuSWryKKsD8etOdtBuzjB2+GzI28W/xhiQYkh0BaKsm0HRGzF0m4B8P+gZiHLZwiiPq6f/AKid95AhQ7R8+fIi39O8eXMdOPBXQFiyZIlWrVqlI0eOKDU1VYmJiXJxcTH6ws8eYWcgqjdkT+TBu9hhp/AzrLpgg4kPoXw9K3JbHWdPsNWlQV3ZB9Hbc9ihzPFfsFsn2RnhKF+VugEYV9RFdniX9HKQpIRM1rmVPpXTMupkkKaFn8plAnGfAbXzlqSuXbtq2bJlhd9j9Tdr4YyMDHXt2lVdu3ZVUFDQXV94lVqV7vp7DcHRkZ3mbtaAzcZ/s+Me4pJ0o4B9EG3cz5Ubpw5nV1bT89ihzKw09vpuwPLOtDpjTHgkxkX3yel2Da2USQ9l2juzLr+kYRX9t6OdUUsFphbG7dGzZ9FBwxkzZmjhwoU6cOBAYQJhbW0t7zvIOI8ePVqStHPnTuOu9G/o25XN7PeGonTaF8KWVj09Wb+Ej1awpwVLK+5BdDKeTQ6Dd7G/qx2slEmv+rlXYXUqzCy4suz1y2z1hnZspIcUaftt2jKbVAbNz2MTVzpRLxWYhihLhtvZee/cuVOenp5ycXFR+/btNWPGDHl6eiIX+7+wNmdvVie4AuFfhe31ujqyJ7c9v7CCPgGBlTGuKs5swM9IZZO5pa+xD/G3N7PzPOePh6N85OogPVRI21vTCQQNa3s2ISHFn+h2DZ2QmMADtfPu1q2b+vXrJz8/P126dElTpkzRI488opCQkFukqI2BITdOR7NkWVlxQf+PI2xADWzkhfIdP8Fm444V2Q/7+dBwjGudDatRkRzH9rUXHmEHWiP/b6aIAr1JQIIeKrS0ZQ2cnN3ZeZS4K2zFhVZnJBMSul1jZsEmm6WBAlML4864k533gAEDCl9Xv359NWvWTH5+fvrpp5/0+OOP3/VFGnLjHPJSkJ57efJdc/4d7z7HDnd9e4ItI1tbswszs4ezH/bgKw0xrj7uezAuSXo7uzHKF3WN/dtZWrOnXnoGgj7lk6DXGpNiWc0QGvScAQl7V3agNSu1HLYwTFsYd4Yxdt4+Pj7y8/NTWNg/s8g15MZ5PeK8rC25TYyJy1iDpP592ZPW1atsUHBJ5lbzJOmPk5zao1mDthiXJDVhCwb6ZTP7t5s/jA1aQ2ax1SVyVTIfnqynB+18q7GJ//Wr7Hsbf40VCSOHUOkVXdqcywQe99TOOz4+XleuXJGPzz/7UBpy4zyiuhI4gN22Pdtb3HGAPaWmJLJbE899VQvlqwJ2HaJi2WTJ0oI9tT3xBDfvIUnWWedRvqwMVlyJ9JvIgy2fs9PZ+Zboy2y7KyOZXeemt1jsXLiqgck9U6YKxJ1wJzvvtLQ0TZs2TU888YR8fHwUHh6uSZMmyd3dXX379i3kiI6OVnR0tM6fv/nQPH78uBwdHVW1alW5upa8CvDVBjZA16jNZs/Vq7EP8ahoWsKWDaoZaVw21+ph9kO4YTv70K3nzw7cJjmyCUluJtt3twAn9fPgwTjaC8PVl1PdlHj3URrkEKUNrApqmoEo+8DsvDMzM3X8+HGtWLFCSUlJ8vHx0cMPP6y1a9fK0fGvtbdFixYVmWdo166dJGnZsmUaMmRIia/ls9rLi3+REVhkMw7l8/dmH5RXr7Gl37hrrJri889Xx7g8bVjHxkFd2OqSozn7tzueVA3lc3Rjg2pqPBcE6aFHeqgwPZk9mNCggyop1kQ7o9IbOybwKLd23pOWspPmYSc4sRxJemUYu4Wx6gc2KDg4sR92S0vuw+7hwV5bRSf2VPDHSTbIODiy1a89mw6jfF4BnN145LnLGJfEJyRuPqyxGY3rV9jkmhyQpVdMb8Dtrl3ftUL5DCFj9zcIj127/gjPvUa59cJ4/aFDKN/Hls1RvuRM9mR08fhplG/6m+yq5IRJRzEu+uTR5jHWWv3oDtbYbO77dVC+3d+zLRsy6NMB3xy+V1LAkr7EmlVJ98KNk0uu6QHZsrz9c1uYWhjlA6+uYqWdE2POoHw3brBDig1bs0Hmh33sW9+oPbfGeWwXG6CTk9jqzZNDWxb/IiNw6BL70HFyZzeK3Hw4vutXr2NckpQan4Ty0WV49yq3V+W9G2RnsPcyqfZo68hu/+TC70WpwKREWT4QF8k+iNp0rY/yZWWyMxC//3IE5XvjLTYIbt/PfXAWfcDOBHy2kT2R794WjvLVrM+1CCQpGdYyyAO9Osh5ComX7aZ9SVKuJ6F8tPcHqfZIVyDojRMTeKBunDExMZowYYK2bt2qpKQktWvXTvPnz1fNmn+Vy7Ozs/X6669r9erVyszM1KOPPqoFCxaocmXjJtG9/djM/kQIKyRVpyEbFOq1DET50rLY0m98DLfC5VDAlpGbNGHfizP27MxCzWrsSesQrI1g48D1tukEIjE6DuWj5ZPpigatjUCqR9KiXrQgWmnAtIVxB9zJjbNevXrq06ePLC0t9f3338vJyUlz585Vx44dderUKdnb31zxGT16tH744QetWbNGbm5uGjdunB577DGFhIQY1c+sVY8ddooIZ4PW3s3cTIAk+QeyLRsLc/a04OhMDlAlgVySuxP7IOrSik2+Pv70FMpHIy2R9SYhQQf8sqz0KJXtoJqRxN4n9FBmqeA+04H4x1sYrq6u+uCDD9S2bVvVrl1bJ06cKHTmzMvLk6enp2bNmqVhw4YpOTlZHh4e+uqrrwplryMjI1WlShVt3rxZXbp0KfHPPX+BU6GUpD0RbIAOv8IOAF25xJ7cHn6YNThbuTQU4+o5gJWObF+LFQf6+RibvO786STKR5fhyUFFugJBD2XSp2g6qNJqj+bgWmgenNzQCcQvyxujfIaQvn8jwmPfsg/Cc6+BuXH+qUZpY/PXB9rc3FxWVlbau3evhg0bppCQEOXm5qpz586Fr/H19VX9+vW1b98+oxII9/Uf3u2lG8SVyvNQPkcH9pSaeJ2tkDjbuaF89ZtzWx3WVuwp8J2FrIpnTiarHNmwJbsRc+74VZQvOZbTvaADIN0np31JaIdK2iitLLuPlkdly4L7rAKBuXHm5ubKz89PQUFBWrx4sezt7TV37lxFR0crKuqmMl50dLSsrKxUsWJRxzsvLy9FRxu33/zU6ReMvfQ7YmgH9o23sWQfbLH1WbXCjBz2900BNx0qVGAV7Xz9WXXBurXZoPD1wr0oH72F4R1QCeNKgpUZaSlrWjnSxZu992jHy8wUrmpgGnqUaY2zONzJjfPbb7/V0KFD5erqKnNzc3Xs2LFwwPJOKCgoUIU7/OEN2Xn37F9blqCdt50l23KY9S6rU9Gx30Mo3x+n2Wnu5HjutNDCj30vwq+wAbWqB3t9pBqgJDm5OaF818JY8zAS5IaIJDl7spU5+vpouWhSp8KtMjvYXpZt6csiFixYoA8++EBRUVEKDAzUvHnz1Lbt7Y0Js7OzNX36dK1cuVLR0dGqXLmyJk+erOeff77EPxN142zatKlCQ0OVnJysnJwceXh4qHnz5mrWrJkkydvbWzk5OUpMTCxShYiNjVWrVrdXCTNk5/3k0LfUf9hUYy//tjhzhd1o7T2YXZNMTmYfRDUC2OnwLi24mYqd59je52Mt2D70wlVsS8Qc9JqQpOS4JJSPTHAq1/bDuCTpyhl2Fio7g31v6YoBPfNBzhnEX2VVMml78NLAv9XCWLt2rUaPHq0FCxaodevWWrx4sbp166ZTp06palXDTsn9+/dXTEyMli5dqho1aig2NlY3bhgXZ/7xEOWjjz6qKlWq6Msvv7zl38LCwlSnTh39/PPP6ty5c+EQ5cqVK9W//02pzqioKFWuXPmOQ5SGKhDrf7dGKxCWFuwp8PR5NuCHnWJtfNs/wrZEtm/l1Ao7dWODzNGjSSifb2XH4l9kBE4dYx+8melsELQFg8zVs6yUNb2FQbcccrLYUzTtZmpuxSWvdMXgBqx5sef725/GKaQe2ozwOD7Y3ajXN2/eXA888IAWLlxY+LW6deuqT58+eu+99255/ZYtWzRw4EBdvHjRKBPLvwNz45SkdevWycPDQ1WrVtXx48f12muvqU+fPoVDk87Ozho6dKjGjRsnNzc3ubq66vXXX1eDBg3UsWPH2/5cQ3beMpPI6uC+g+yQ4rmQcyifK6zRv24Z65dgbc+djC6Gsw+i+vVdUL7UdLbXO2gA+95+8H4oypdlxyUQtDwxPaToWJFNDiNOshtAdi5se6osu3EKHrgtTzB0aDYYByXl5OQoJCREEydOLPL1zp07a9++fQb5N23apGbNmmn27Nn66quvZG9vr169eumdd96RrW3JP++YG6d0s5owduxYxcTEyMfHR88++6ymTJlShOOjjz6ShYWF+vfvXygk9eWXXxq9KjbQcp1Rry8Orh0eR/munmcfRC3a+6N8MdFsv9KlIvdhr+IDOw7CdnE/fMOuXXo+2wDlo0GuNtJ9clqZMT2Z9a6g3TNpbw0y6NPvRUFBORzKhFoYhtr2U6dO1bRp0255bVxcnPLy8uTlVdTA8U7LCRcvXtTevXtlY2OjDRs2KC4uTiNHjlRCQoK++OKLEl9nuXXjbNNzF8r3wewmKN/O42w27mDP9taiY9gP+/lTXBm+cjW2jBxYh30vaLn7tlUvonwvTGLVGclVP3omwAZW3aSDoAW8JpkHt2zoNgEJa7DyJUnbVjdD+QwhJeQXhMe6focSVyAiIyNVqVIl7du3Ty1b/jV7N2PGDH311Vc6c+ZWn6fOnTtrz549io6OlrPzzVmT7777Tk8++aTS09NLXIUot14Yk6ez1qwxaWxU8PFkTx5nwth1tQA/dhjLzo6bqejQkO3hv/8x62RauzE7o/H5h1dQPhdvtiVCbnWwqY1kCycQmaC5lMQrW2YllN0KCa2SmZPFPvNKBVAF4nbJgiG4u7vL3Nz8lmpDbGzsLVWJP+Hj46NKlSoVJg/SzZmJgoICXb16tYj9xJ1QbhOIWs7sQ3fZbnao0NKCLb/5VWEDfsx1dhgrPo4L+rtPsEGhRoMqKF9qctl+sNGrg/FRXNinlRlp0AlJYjRr+kcLP5EJhENFdmsiA65W/f8KKysrNW3aVMHBwerbt2/h14ODg9W7d2+D39O6dWutW7dOaWlpcnC4OUd07tw5mZmZGeVLVW4TCMcsTh1Pklo3YoPM8YtsBeLCJfZk1Lc9m+BcTuCG2Wgtlr5Nk1C+xT+7oHxDRrdH+VZ8ygpTWdlwySs9aJcNb5zYObLXR5/KzeAndj6Ya9LVm7LcXrkdCvTvCEmNHTtWgwYNUrNmzdSyZUstWbJEERERevHFFyVJQUFBunbtmlasWCFJevrpp/XOO+/oueee09tvv624uDiNHz9ezz///L0boixL2JXyAMr36y52C6NZs4rFv8gosBWIPyLYlg25mdCqLhsUVuxkS/q1a7IaGl/OY+d5KvqyPiekmRatVkgPKebmsEHLuxp7MLFzYucCLv3BybLbwRsxbvDmWWng39KBGDBggOLj4zV9+nRFRUWpfv362rx5s/z8brZbo6KiFBHxlyCcg4ODgoOD9eqrr6pZs2Zyc3NT//799e677xr1c//REOV7772nSZMm6bXXXtO8efOUm5urN998U5s3b9bFixfl7Oysjh076v3335ev71+WyhcuXNDrr7+uvXv3Kjs7W127dtX8+fNv268xhJfnJN3tZRuEc0X2g5kQx2bjNGgtg5gortyYFM/2eV8bzD7YIlNZvg/fNbxq9f8jzEBjLok3XKJbGAmR7BpnWR4atYWrS+nJbLtr94Y2KJ8hJB3djvC4NHkE4bnXuOsKxKFDh7RkyRI1bNiw8GsZGRk6cuSIpkyZokaNGikxMVGjR49Wr169dPjwTd2B9PR0de7cWY0aNdL27Tf/2FOmTFHPnj114MABmZVwxP3Vvmx/7Ph1dr869BT7Qa/owvY+7e3YTHnvFk4R0NndBeOSJHdLdnRv6mesGJKVLVvRoPvk9OogCbrlQFcg6E0CfFUSVBmlA36F8mhMVR6v+R/grhKItLQ0PfPMM/rvf/9bpOTh7Oys4ODgIq+dP3++HnroIUVERKhq1ar67bffFB4erqNHj8rJ6WbQXrZsmVxdXbV9+/Y7Ckr9L07F+xb/IiNw9CQrcNOiEdsd2n2IHdxLTmTbBGPG1se4tuxmf9fhk9ktjBqNa6B8U/uy7pnjlrqgfFdOc4HB0pZNbpLjWPMr0rpc4rcw6DYBmZDQVujl0QujwGSmVTxefvll9ejRQx07diy2Z5KcnKwKFSrIxcVF0k2FrQoVKhRZUbGxsZGZmZn27t1b4gSiglj5itRU9ma9FMV+mMzN2RvTtzJbcVmzIR7jmt/7GMYlSbvbPoryffwhe31P/c7ee9b27OAeqfZIn6BpKevcTDZ5pe3LaR0NEuyRhPf9MIGH0QnEmjVrdOTIER06VLzbZFZWliZOnKinn366sNrQokUL2dvba8KECZo5c6YKCgo0YcIE5efnF9p+/x2GZD3nTD8kM3Puw/lQF3Yo88gh1rvCp4oLyteuCfvg3bWJa2FcHMS+F7ZZ7Frjw70ao3y7Nh9H+ejJ/wqgchYd8OlTr50nOxtEe2HQfz+y3UXfd+UR/9YQ5b8FoxKIK1eu6LXXXtPWrVtlU8xqV25urgYOHKj8/HwtWLCg8OseHh5at26dXnrpJX3yyScyMzPTU089pQceeOC25UNDsp49npmqxwZNM+by74iMLLaiEeDPzkDs3xOJ8m0tYC2uW3Xjgv6yzbDVeCK7YfPIwyUf9i0JyrJBksRen6ObC8YlSSnX2RYGXTb38q+E8mWlssPZZMWF3oi5kV0OE5L7rIVh1BbGxo0b1bdv3yKBPi8vTxUqVJCZmZmys7Nlbm6u3Nxc9e/fXxcvXtT27dvl5uZmkC8uLk4WFhZycXGRt7e3xo0bp/Hjx9/yOkMViAmLsmRuAbpxWrE3f7uH2OGpT+eGoHx58GnBpxr3oHx9GNvnPRzOJku//hKO8jVvyypb/vJtKMpHnizLur+Bsyd7r6Qnsy2Hsu54SYLe2Nn1HatebAgJxxkNFtcG935jhIBRR5VHH31Ux48XLbc+99xzqlOnjiZMmFAkeQgLC9OOHTtumzxINyU4JWn79u2KjY1Vr169DL7OkKznzC5Hjbn0YtHrLbb0dPaIC8rnWZU1IWr3iGGP+LsF6Q9xjJ0pVKtqbDupoLM/yrcjmN3qoEFuiaTGJ2FckuTkweqtpFxPQvnoDRZ6LoAc8qQDPq2oWhowtTDuAEdHR9WvX3Ta3t7eXm5ubqpfv75u3LihJ598UkeOHNGPP/6ovLy8Qn1uV1dXWVnd7FcuW7ZMdevWlYeHh/bv36/XXntNY8aMUe3atUt8LXTAf3dmU5Qv+wZbRl6zMQnlS0ljT4LnTnNDlOOfZk9ZL7wejvK98gYrcJMASkVLUnYGO87WoDW3YXPq97Ktj0L7L9DKm7ZOLJ+NHZeQxF42PMN2t3Cvwh6aSgP/lhLlvwU0yl29elWbNm2SJDVu3LjIv+3YsUMdOnSQJJ09e1ZBQUFKSEiQv7+/Jk+erDFjxhj1szz8fIhLLsSM98+ifP0Gs+6eUZc4t0tJOneYXW2c8f6DGFdKLjsYVxE2l3K0Yds/NRpXR/nOhZxD+RJiuTVOesshHVa2JGW77wUyU9iKBjlDkpfLrsKnxrOzS6WB+60CUW7tvFew6r/66Qe2jBxQmx20S09ne5XjHmMTktFzOa7xr7AaH6u3sAG/bydW+Omdt9l2HD2oaG3D/b60bgNdbaHL8DTomQVyw4a+7+h5j9Kw875+8iDC4xHYHOG51yi3XhiXrrDZbkUPVhchsDZ7ktnyM9cikKRFO9gZiEYtuAdvhQrsKTU3h00gYpLZBKJRW65FIEmR4WxLxMKSe2/LujgQqcwo8ZsJ9AwEWRFKuc4aHNJ/u1LBfbaFUW4TiEO7wlC+pm1L5n9eUsTEsaVVB2d2qyMzg03Ajh/kTHkGt2Z/1/go9kN97BR7feeOchoakuTlz1a/Ii9wK8QW8IopnZC4+7FGZHFX2Eof3WK5AVYgzC3Z97Ysb4jcDgW6v1oY5TaBGP0q2zcOPsBO/O775Q+Ur0ot1tXvqcdgjf4OXAI25PXiRcqMQdBbbDlw12Fa6ZE2SGLv5YwkbgaC9umglR7zb7CJP13RoFs2di6ccBatUVEuKxD3Gf5RAvF3N84/cfr0aU2YMEG7du1Sfn6+AgMD9c0336hq1Ztl8+joaI0fP17BwcFKTU1V7dq1NWnSJD355JMl/tl2lmx2+mR7NihkZdZC+dw92YCfkcM+2LYf5Coa5NS/JH29/jrKl5/HBhl6WOw6PA1PPshpbwha/TDuCvu3I2cMJH5Ggw76JMr6PIohmLwwSghDbpzSTavuNm3aaOjQoXr77bfl7Oys06dPF1GuHDRokJKTk7Vp0ya5u7tr1apVGjBggA4fPqwmTUq2vTDlbXaLoHW3xijf4x3ZU+Cvh9mgZWnOJhAWFmW3dEfvk9MaGms/v4LykadKScpISsW48vLZ98LVl2053IA3CZJj2NklqzJs543rNpRDIcr7bQsDdeOUpMmTJ6t79+6aPXt24deqVatW5DX79+/XwoUL9dBDD0mS3nzzTX300Uc6cuRIiRMIWjHu8C52jdPLswHKF3YyAuXr9pALyuftxQWtPm3ZvvbqX1ixoauR7PVNndoY5Xtv9hmUz9nz9mJwxiIpmq0GpcDCVHTf3cmDfU7RLQyyxUJXl2grdBN4oG6c+fn5+umnn/TGG2+oS5cuOnr0qAICAhQUFKQ+ffoUvq5NmzZau3atevToIRcXF33zzTfKzs4u1IkoCTx82Q/m0z3Z4SRrc7YsvX8vO64ydwl7Mho3gnsQJWSwp6wzR06ifB9OYQVupi9kt06sQXEgSUpL5GYg6JI+rStR+6F6KF/EGTbxp4dGyRkS2ruCdm4tDZiEpIrBndw4Y2NjlZaWpvfff1/vvvuuZs2apS1btujxxx/Xjh071L59e0nS2rVrNWDAALm5ucnCwkJ2dnbasGGDqlc3PBhpyAujQX17WVpx63SrfmBXkDp2cEH5oi6wFZKaTditk90nuQrEwIbs79rnqcYo36uTmF3vP2ELl6XzaMdGsBdtBspiS3yQuXCM2yaS+IqGhx+rkXL9MrdhY23PVgxov57SgKmFcQcU58aZ/3+qcL179y5UlmzcuLH27dunRYsWFSYQb775phITE7Vt2za5u7tr48aN6tevn/bs2aMGDW4t/Rty4+w5aKp6DZ5mzOXfEalJ7DBRRTtWctbLn31wxEWygj629tx0/Ve57ABq7QB2foQMqJJ0A+4d04qA5KmXXvWjQVdI6C2RFFiIi9yKwTdi8su2ZogJsBtnenq6HBwcNHXqVL355puFr5kwYYL27t2r3377TRcuXFCNGjV04sQJBQYGFr6mY8eOqlGjhhYtWnTLzzVUgZj/k6UsLLnTTNhZtgLR5AF3lC8hiQ0y/R9ip83f/i9Xuou6eA3jkqQCWO6YXs37/i32lPrYFLaMauvEuaNawGucGSms22VFb/ZzSwv9JsIzJOSmgxUsckUnwr+ueQjlM4Rr544X/6ISoFItdobuXgF147S2ttaDDz6os2eLlqDPnTsnP7+blsUZGTdP+mZ/y/TNzc0LKxh/hyE3znzdUE4uFxie7MEqUVZ3ZKWxvz/G6kBcSWen12vX505u3Xtw1uCSdOYC+yDKymSTuVfWJaF8ZhYXUT4bsMVCzlNIfMCnr4/WMqgAl8jzwXaXvTOXaEr8e1EaMM1A3AHFuXFK0vjx4zVgwAC1a9dODz/8sLZs2aIffvhBO3fulCTVqVNHNWrU0IgRIzRnzhy5ublp48aNCg4O1o8//ljiazm6P9yYSy8W2dnsat77P3K9RUmq6M2eUs+HsQ/eG2C/0tKS3ZqgKwYdW7Jl+HensKqqbXqxwlnnT3D3ciI89Jibw34uyrp4ERnwJXbDJj2ZrQbRrb3SgGkG4h+ib9++WrRokd577z2NGjVKtWvX1rfffqs2bdpIkiwtLbV582ZNnDhRPXv2VFpammrUqKHly5ere/fuJf45X/dlB9kWprDKlm9MYo1bPv6Y3SRIS2FnNK6FcVoG7dqwARDWBtLBE2xL5JEnW6J86elsxSU7i+tF02uNqfAaJ51s0qA1PlLiuNYtLfxkCc9UmMCj3Lpxzv+Jvew/jrEzEJWrsi0RZyc216teiT3J7A3hgpanJ9tLbVSNPaWmZLF9/DYOR1C+xyewls8kbBzYxLWggE3m6EFAGvQaJzkQnJPFVpfods2u71qhfIYQEcYIHFatWRfhudco2yPRd8DVa+zNmpHK8tnYsGX4E8dZ3Ybd25JQPgdnMjC4gFzSz5FskLmRyyYktu0aoXzSPpSNXM+jg4yTO1vRcHZ3RvmunGGN0uhTfja4ZmoFr+hmp7OiWaUBUwujnODVDhdQvtgOPihffCZbRj64Ownl6zeAbdmcPs/9vuMDt2NcktT/U3YF9sM32fmRt+azk/X0Pj7pAEkHBVrZMjOV7ePTLZGKldh7LzGas36n31vaeM0EHuW2hbH5CBugM3LZzP7Hn9kHW7Wa3LCTxK+X9WvB/b4Hr7AB39KC/V1XLAlF+bLS2JYD3Sag1+lI0HLH7nCAvhh6DuWjdSpI0Bof9O+64xt2tsoQws8z77d/DVYL517BqHd82rRptwg6eXl5KTr6pud9QUGB3n77bS1ZskSJiYlq3ry5Pvvss0K9h/DwcAUEBBjk/uabb9SvX78SX8uD1mzfeE0UuyN8LewqypedwfY+3xnBzkAcve6Hca35MhTjkng1wEo12ZXaLPi9jb7I3ntkkKYDPj1E6VCRHVKkZyporYUccCuGFruLhvVgSgOmFkYxCAwM1LZt2wr//3+HcGbPnq25c+fqyy+/VK1atfTuu++qU6dOOnv2rBwdHVWlShVFRRUdiV+yZIlmz56tbt26GXUdR2+UzHSrpDhzmvWu8A/0R/lc3Vm54+dfD0H5Rk3kEojhIxsW/yIj8PVXbLsr7wY7U+FVhe3jJ0RyZWlJcnTj5gJiL5XtoEC3HBwqsjMVaYnsc8oWrFbFRkRjXBK/smoCD6MTCAsLC3l732omVFBQoHnz5mny5Ml6/PHHJUnLly+Xl5eXVq1apREjRsjc3PyW792wYYMGDBggBwfjREg+ns+WBl95uTbKd/Qcm4keO8SeKl8c1xrlc7LhytybfmV7qf512PmWtBS2YpCRyvLRXhhOrtypPP4q29em2yt09YauQJjDOhWp8Zw0NqlYKpXt1tntYBKSKgZhYWHy9fWVtbW1mjdvrpkzZ6patWq6dOmSoqOj1blz58LXWltbq3379tq3b59GjBhxC1dISIhCQ0P12WefGX3hw15g11y87JNQPmtr9lT5UBtW6Cojm73RP/6SS+jmBrGntrnr2JmA0/tPoHz0sBi9P3/5VDjGRQs1Obq5oHz0UCYNcqBVkvLBigttNU5vnJQGCiqYEojbonnz5lqxYoVq1aqlmJgYvfvuu2rVqpVOnjxZOAfh5eVV5Hu8vLx0+bJhWeelS5eqbt26atXK+P3cinZsX/v7A6xuQ4cm7Lra7A9ZtcJKNdl+pYsHt7bqkcGuvl2PZO23G8Brl7SRW/RFVgWVBJ3cpCenonz04B7tw0Ijvww7XtLzHibwMCqB+N85hQYNGqhly5aqXr26li9frhYtWkiSKvwtAysoKLjla5KUmZmpVatWacqUKcX+XENmWtOnn5CZOfcweno4qxy57RD74MiCs/vURHby39aB+7B/eZFtr4x9kQ3Qb884g/LRltQuoDyxxLZEMuCAbwFP/tMJTkYS6+eQCt8r5MYO3TorlzoQBaYKRIlhb2+vBg0aKCwsTH369JEkRUdHy8fnr55zbGzsLVUJSVq/fr0yMjL07LPPFvtzDNl5N2w7Vo3av/5PLr8IQo4kYVyS5FyRnTZ38WRbImZm7I0+awDXOx63kn0QZWbeev/9E/jV4wZGJWl+62CUr+sn7CCgdzXO3IwejKOVGemA7+LtgfJlpbHJMBn06W0nWpiqNFAg0xZGiZGdna3Tp0+rbdu2CggIkLe3t4KDg9Wkyc0NiZycHO3atUuzZs265XuXLl2qXr16ycOj+A9YUFCQxo4dW+RrC3+xQu28D+5h3TOr12T7+J6V2VOlfzX2+l5ZQgYGNii4OLO9VDo57PQh205ydGOH2SLDIlA+EvRaKO3VQUtt00qeZAuDnm+5kVMOzbRMQ5S3x+uvv66ePXuqatWqio2N1bvvvquUlBQNHjxYFSpU0OjRozVz5kzVrFlTNWvW1MyZM2VnZ6enn366CM/58+e1e/dubd68uUQ/15Cdd1R0miTuBmv8ELvbn5bGnrRiItjVPBqelbgZiOG92enr7afYE/mgTuwpMCeHXUk+G8KurdZqVgfjOn+UneWhRbg8/dh5maRYbstB4v0hzMAOEH1t5XEL436DUbfP1atX9dRTTykuLk4eHh5q0aKFDhw4ID+/myXdN954Q5mZmRo5cmShkNTWrVvl6Fh0DeyLL75QpUqVimxsGIuIMHbnuM/DXJlWkhIz2F7qH7+zvd5XnmQ/nO8v5ZK51TvYU2DUFfZe+Wk15zwqSX51/VE+Kxu29EsGfRtHVs/EDA5ayXFJKB8930JXNEjdi/x89pliWQ6HKO+3CkS5lbL+cCN72Vaw7Do9fH0pnD1pjejOCtIkZHMtEUdL9oT/Qwjb/vHyYEu1v/zIbp2kJcKDitbchyMxMhbjuhegdRvorQ7SPVNiKzj0OrI9bF2++YsGKJ8hnLnAzILVqV4Z4bnXKLdmWqeOsyV9Fzf2ZNT2QTZ73r6ZVfCLf5S9QZdv5Hqz056Mwbgk6fRxtpe6PzYJ5avdhB3KPLaHdW4lQQcZuu9OB2gbB/a5kpfL3sukdoMdLCRFy5SbwKPcJhBDn2QD9Pd72JPC+o1sEMyHSxpu1kkoX68u3KbDs2+xPfzmndgKxNWz7MCtS0XYBpkW9IGDNIlc0MtBkqo9VA/lu3j8IspHr5mSYk30qjmdfJUG7rcWRrlNIBws2Js19DdWfKdDD7pcxq4iJueytsUfvncI42rQJhDjkqQLp9kZCLq0evwwK5/s4QdLd4MtEQsr9pFDzwREnGE3TmghKXqwkOQry4lmacGkA1FOsOA7thRatTa7hbF362mUL6Aee30/pLEVnMbtuYTpwgl2SLFuE3+Ur3o1tuXQ0+8PlG/Iu+wGEKmNYOfCKr7SoMvwCfDMB621QK6t0pWvzBT2kGMCD9TO+38xYsQILVmyRB999JFGjx5d5N/279+vyZMn6+DBg7K0tFTjxo31888/y9a25Dvd455kBV8W/eKO8tnUZ70rju89ifI1alsf5UtL4UrJlWuwJ+hcWK73x2/Z5HBdChsUaEVAchCQDgr0CZ/0hrgXoDcTyKCfB3/O6AHU0oCphVEM7mTn/Sc2btyogwcPytf3VoGc/fv3q2vXrgoKCtL8+fNlZWWlY8eOyczIm8Umn91KSIpn+2216rJ999T61VC+Xo+wFZyFn3MmRE/0D8C47gXOH2f56JZIUgw7REmKNd2AS/D03y49ifbWYAMKLd1NKluaw9dGG6WVBkwJRHHfcBs77z9x7do1vfLKK/rll1/Uo0ePW/59zJgxGjVqlCZOnFj4tZo1axp7GVp3inXjHNSXHca6msjeSCkpLijfJwvCUT6yVBsR5Y9xSdLJY+xA641sNgiaWZRtAR5Su4GujmSksAcJOiFJuQ4LSZXhUzmpKSHxyZwJPDA7b+nmpsCgQYM0fvx4BQbeOggXGxurgwcP6plnnlGrVq104cIF1alTRzNmzFCbNm2Muo7hPiVTsSwpZux/FOVr15Rdt9r9/e8o36sTWcOqJZ9wH/Z2gWyZ29WFbYn89B37YOv/tPEJ9J2weO5+lI+UO6aTG9pNMhfecqB1JWiDKbIF5AA68kpSWgLbpi4NmCoQd8Cd7Lzd3Nw0a9YsWVhYaNSoUQa//+LFmytN06ZN05w5c9S4cWOtWLFCjz76qE6cOHHbSoQhN85z9g1lZcWtvz3yEJvZp2SxE8nt+zZH+Wq5s2XuwBa1Ma7v97Ltld5t2AfR9/Auvq0V28enp+FRtUI44Nu7sp4u9IwG/fvSCYm1Pdeeoo2+6PZPacC0hXEH3MnOu3379vr444915MgRg/bd0l9aBiNGjNBzzz0nSWrSpIl+/fVXffHFF3rvvfcMfp8hN84nh76l/sOmGnP5d0RjD3by/5dr7BDlid/DUb6uD7HS3Unx3Kk8NYlN5j5byQZ8F08XlM+/IlvmpgcLzcCgRQ8B0lsJ7lVYL4zYS6wAHO1mSvK5+nhiXJIUf41tPZYG8k0ViJLjf+28zczMFBsbq6pV/wqceXl5GjdunObNm6fw8PBCm+969YqKtdStW1cREbffvzbkxnnkUo6srLj+Z2Y+6+qXnsH2Az1gN04P6wSULy+PO/W+/DT7Xiz7gT21PdmVDYLTP2aTV7qPT54saYvmDLhPnnI9CeWjEya6BUQqg9LzLbTTqgk8MDvvQYMGqWPHjkX+vUuXLho0aFBhtcHf31++vr46e/ZskdedO3euSHXj7zDkxtn8+Mx/cum3YFKS4bbL3aLtQyid0tPZoPDFr/DWST3uQTTzE1a9r3p9ttoy58NzKF+Xx1nRsR9WcaJeEls2z8lkrdpJJUVJ8qjCnqJp1VJbWKciB1TypAdGy6MwlWkG4g64k523m5ub3NyKnpItLS3l7e2t2rVv9scrVKig8ePHa+rUqWrUqJEaN26s5cuX68yZM1q/fr1RF369eV+jXl8c/E7bo3whJ9jSalICOzw1uSeruHc53x/jqunPDhVGchumkqSYSqxmSLMabO94K3xyIx0l6ZkAD7jlYG3HVkjoigs9RFmWlSjNzdnKYWnANANxBxRn510SjB49WllZWRozZowSEhLUqFEjBQcHq3r16kZdeHIF1vK5qjfbcji0nzX7ql2flbJOMGdPWlsPcUFrRLNQjEuSvrjaEOVb0vU3lO+E2d3b2htCynW2PeUZwFVwEqPZ4d2YcHjGoIDd2LmRw87fuPp6oHxJsey9QqI8DlHebyi3dt7Pv81KxNapz54qd/7EKkc6u7PT5inwipSTKydRPGs4vNufzZZWx6xlha7io9igegPeEiHbDhW92VkeekiRTJYkKRkO0I6uLihfchz72SBBD8ju+b4tymcIIeeY97tpLfaAfK9Qbr0wJvyH7aW+Ou0YyjdmLCsV/eFs9vomBrF99yvxXKn2bAb73n7+FWum9eSTbDXosznhKJ8VPLjnWZVrE0SGsa0zcg1RkuKvsgcTUoRLktKT2aFRsoXh5c8mX3R1qTRgamGUE/x3K3uSmTwRlp7OZm+k6o1YKevcPHZVcvOmSxiXtx/7XlSpzpZ9PRzYBGdz9y0o39OHn0H5EmPKbpmbPpEnRrOtR7MKsHIk/MQmtzCyMlg13wr0384EHOU2gRjamS29rfmNnQloUpdNIK5dYE/RF6PZEtn1K9z1ObuzGyc5WWxJ/9glVnFva8EklC85LhTlswS3MGiNirgrUSifoxv73mamse04WgeCDNKp8UkYl8SvrJYGTFsYd0BxbpxpaWmaOHGiNm7cqPj4ePn7+2vUqFF66aWXCl/foUMH7dq1qwjHgAEDtGbNGqMufN46tnR5PZJdt8rLZ4WkqtS61Zjsn2DNoj0oHynA06wZO49S3ZutGHyy4AzK99xQTsVTks4cYys4uaD3B7nRIfFbHT4B7FbHxeMXUD4rG7Y9lQUmOLRKZln2/bgdTC2MYnAnN84xY8Zox44dWrlypfz9/bV161aNHDlSvr6+6t27d+Hrhg8frunTpxf+vzE23n8iK4N9ENGlxloB7Icp2pEtFj3Z9UGULzGD+32PnmQDvrk5u0rn6sWeUue9tw/lI8vSkuTmw7WAUuEKhB2si3DpJNeKkyRbB3Y9PCeLbROQQlfkfSJJceVQifJ+A+rGuX//fg0ePFgdOnSQJL3wwgtavHixDh8+XCSBsLOzu6OjZ0lQpz57s27+mn2IO9mVfLW1JPgtLBnly87htiYk6dHG3Enm9xw2WQr+ORzla9K8CsoXcYatftHT66lJ3MYOfarE7cGd2fYZXdandSXMLbn3g1aipO/j0gCbHpd9oG6cbdq00aZNm/T888/L19dXO3fu1Llz5/Txxx8X4fj666+1cuVKeXl5qVu3bpo6daocHY374I7ONuybcbc4Ue85lO/3P9i++8nfjqN8HTuwK01vv8+Vam3t2cn1Z4fUQPn8Xdj5m5Df2GTYoSJ76r0CJjh0UMgFlRQlKTuDFWqiWywFcJsgK40zD6ONyOh5lNLA/dbCMEoH4ueff1ZGRkYRN84zZ84UunHm5ORo+PDhWrFihSwsLGRmZqbPP/9cgwYNKuT473//q4CAAHl7e+vEiRMKCgpSjRo1FBwcbNSFv7OaDdA0WgayD45VG9gKRMwVdl3NyoY7GVlYshWI+k0ro3ypqeyp19+Pnef5+TtWgyT/BneuyoCDDL3GWaUWe69EnGHXVmnHS7KiQcuK07Lnu75rhfIZwr7TzJptq7psJexeAXPjHDt2rD755BMdOHBAmzZtkp+fn3bv3q2RI0fKx8en0Cdj+PDhhRz169dXzZo11axZMx05ckQPPPCAwZ9ryM775JE4mVtwN3+9Ruzw1Ffr2VNqRQ+211s7sF7xLzICe4PPFv+iEmLEMLb9s/o7Vqipem12yPPqNfZBSdpvS5KZBVfmJjc6JF7a+ezvp1A+2kzLHE6uySBNXxu9cWICD8yNMzMzU5MmTdKGDRvUo0cPSVLDhg0VGhqqOXPm3GK09SceeOABWVpaKiws7LYJhCE779aPTVabXm/+k8svgowMtqJRoy4bZFKT2VNvbCz74K1Wjzu5tb6xHeOSpIXXWeXIX0+wZl90UPWtwQr6VKjAlWWTrrOVNLqikQnPVNjAviTpyayCbFl2vKQHUEsD91sLA3PjzM3NVW5ursz+NiRlbm6u/DtMXp88eVK5ubmFVt+GYMjO++2v8kWqcNvYstmze8WyLbGxd8sJlI88CWZ2YpMvbz92xqBGA7bM3awRO/Px2fu7UT5yPY9uOdBDhfQQJa1TQf/9yJkPvDoCb5yUBv5NHYgFCxbogw8+UFRUlAIDAzVv3jy1bVv8rNtvv/2m9u3bq379+goNDTXqZ2JunE5OTmrfvr3Gjx8vW1tb+fn5adeuXVqxYoXmzp0rSbpw4YK+/vprde/eXe7u7jp16pTGjRunJk2aqHXr1rf9uYbsvJ/qmCiJu8E2HWD7d9V92GGx2Dj2xsxKZXup3tW4U++P0WwL40Yua8c54BG2WtXwwmKU7zPVRfkswLXQPNhcip6XSYpl21028Cma1tEgg35Fbzbxz0hlRbj+f8batWs1evRoLViwQK1bt9bixYvVrVs3nTp1SlWr3l6TKDk5Wc8++6weffRRxcQYvzZr1BDlwIEDtXv37iJunO+8847q1bvZT4+OjlZQUJC2bt2qhIQE+fn56YUXXtCYMWNUoUIFXblyRf/5z3904sQJpaWlqUqVKurRo4emTp0qV1fjlBE3HmL7Y9EJbAKRB+/zHP+DnamoUZM157p6jUtIXuyehHFJ0uyVbIug0QNsRWPdErZi4F6FdZTMhiWKSaQlsi0RuqRPB3wH0LROkpJjuISJro7QTqalMUS5+yST9LQLNC7xbN68uR544AEtXLiw8Gt169ZVnz599N57t99YHDhwoGrWrClzc3Nt3Ljx3lYgilOL9Pb21rJly27771WqVLlFhfJu8WgF47Y2isNHcYZnNO4WafCkfh6ckbhVZPfxo2M4vrX7WbMq/xps9cbRnuVr16cFynf8d3ZGgwzSvFoh+17Qa5z070vrSpBDnvh7Ww69MKgWhqHFAUOVeEnKyclRSEiIJk6cWOTrnTt31r59t9c3WrZsmS5cuKCVK1fq3XffvavrLNuN+jvgzd9u3/K4G9jYsgG/ShV2+trKhq2Q/HGSHT6rUoUr1e4JPo9xSdLLL7Cy4ktXRqJ812CHSntn9pRKuixmprOtMxrkiVziZyrozQRyCDUjiXUKtXFgZ4PKEwwtDkydOlXTpk275bVxcXHKy8uTl1fRg9f/2kz8HWFhYZo4caL27NkjC4u7TwPKbQJRqxb7wQw9yj44GgeyCcSe7WzQmvoSO3z27UHu9x39ErtFYGvOluDz4TVJ72rsUGbkOVbZMr+Aq37RYkO0bDe9dpmXy5bh6S0McuWXbv/Q68ilAWoLw9DigKHqw//i79tSBQUFBjeo8vLy9PTTT+vtt99WrVq1/tF1ltsEIi6erRi0bc0aEJ0+z/Y+a9Rj+9pbTrDlxvDz3KDir9+yFYj3Z9RH+WrWZ9+LsQ8cRPkGzGI1Q0iRMFqJkg5atBgSPaNBgxyipLcmymULA8p5bteuMAR3d3eZm5vfUm2IjY29pSohSampqTp8+LCOHj2qV155RZKUn39zq9HCwkJbt27VI488UqKfXW4TCAcH9tKvRrOlweuxbKk2PYXtzSYnsg9eV08uaI2bzeo2vL0wAeV7/Al2S+SpD9lqmgXobyAVNcz7p6CHCvNgqWgaDhXZYeWcLFZ0jBbiIlEAVr7+f4aVlZWaNm2q4OBg9e3bt/DrwcHBRTyo/oSTk5OOHy9qjbBgwQJt375d69evV0BAyZ+/Rkfha9euacKECfr555+VmZmpWrVqaenSpWratKlyc3P15ptvavPmzbp48aKcnZ3VsWNHvf/++/L1vdWOuqCgQN27d9eWLVu0YcMG9enTp8TXsfNn1lI55Tq75fDyeHYwLjyS7WtbW7HDZyeOc0F642FPjEuSmrdlA+qhUDY5dPUybgOpOCTFJqF8CVGc7Dl9wqcn/2lX3qRodoWYb7GwlVwS9FBmaSD/X9KBGDt2rAYNGqRmzZqpZcuWWrJkiSIiIvTiiy9KutkSuXbtmlasWCEzMzPVr1+0Kuvp6SkbG5tbvl4cjEogEhMT1bp1az388MP6+eef5enpqQsXLsjFxUWSlJGRoSNHjmjKlClq1KiREhMTNXr0aPXq1UuHDx++hW/evHl3rXJXowHriFinFrs7f+Yi2/tMTmZPHm5u7INoSj8uyCz5jT2RP/6g4UGiu8XwpWyLpaIvmzB5+bNbLOdDuOQaN5fCZbvZBIcOgrRqKQladTML3ogpDfxbSpQDBgxQfHy8pk+frqioKNWvX1+bN2+Wn9/NamlUVJQiIthhbclIHYiJEyfqt99+0549e0r8Aw4dOqSHHnpIly9fLiJocezYMT322GM6dOiQfHx8jK5ADJ/JDj22bsXOQCSnsg+26/DMx6vNWXfP3clNMK7te9hBMXjTT8mJbAWidn02gdizmX1vc0DHSy//WyuR/wRJcOWQHvKk+/j0Fga5Bksnh3R16dc1D6F8hhB8jDnodWrEDrnfKxhVgdi0aZO6dOmifv36adeuXapUqZJGjhxZxCDr70hOTlaFChUKqxTSzUrFU089pU8//VTe3ndnYtWvB3tK/eU3VvUsK4MN+Gkp7IDS0N/YD2dm6q0VpruFlQ1bHfnwTVYh76U3wlG+5Dh20I7ua5On3uiL1zAuideBoLc66KFRV7halQ6uXmalsc/Q8jhEeb/BqATi4sWLWrhwocaOHatJkybp999/16hRo2Rtba1nn332ltdnZWVp4sSJevrpp+Xk9FcPf8yYMWrVqpXBAQ9DMCSq8e60ozIz5x5sdZuzLYwej7KT8D8GsxWNZFiyt3JtbrDwnRHsSeZAJLs14enHtpNuwKt+9MnN2o5L6HJi4ZXa3PK36vdPQBqbSbyXCAla1Ks08G96YfwbMCqByM/PV7NmzTRz5kxJUpMmTXTy5EktXLjwlgQiNzdXAwcOVH5+vhYsWFD49U2bNmn79u06evRoiX+uIVGNF18dp5Gjxhtz+XfEhoNswM/MYbNnNw9WVKXxw41Qvvwb3MS0dT6reVHDg22JNGvNbmFs21Dyz0JJQAcFWwcuIclIZnv49BYGnXzRXh2W1myFhPT+sHNin6F0RaM0UA6lK/4RjLq7fXx8Cn0v/kTdunX17bffFvlabm6u+vfvr0uXLmn79u1Fqg/bt28vMnj5J5544gm1bdtWO3fuvOXnGhLVeOGdOL2/lDu5PfYYOzwVw24OateGAyjfm++0RPnmf3oO41pbrV7xLzICvRtdQfm2bWCHKEmzKolXU0xL4BIwCys2oNIBvyybzElSTDibXJNCVynX2Yeesxc7l2YCD6M+za1bt9bZs2eLfO3cuXOFk57SX8lDWFiYduzYITe3ojfBxIkTNWzYsCJfa9CggT766CP17NnT4M81JKrRoi07A1GlIvvgcLFjT1qdBrBGMKu+jUP5PpjIrSJOW8hOC4ccYKtBFb3ZB9v1K8a74N0J9IOXXHHOToc9YuAKRI0mNVG+c4fZdXO6umQObp3Q5lfkfEZp4d/awvi3YFQC8efswsyZM9W/f3/9/vvvWrJkiZYsWSJJunHjhp588kkdOXJEP/74o/Ly8grVsVxdXWVlZSVvb2+Dg5NVq1Y1SsDi+DE2AObksg9dd9isKuISu0/u6csK3HjknMC4KnrUwLgkqUdH9ndd/Q07CEhPr9MgtRss4VU/GheOsdUlesiTHiwk2wT0AGoFs/I3REkpUZYXGLXGKUk//vijgoKCFBYWpoCAAI0dO7ZwCyM8PPy2ScCOHTvUoUMHwxdRoYLRa5zf/c6qlG3fy2a7uTlsUHBxZR+8dWuxfIcOJ2FcMVfYUijp5SBJTz9TDeVr4hGO8r0ynV1FJCWKaSEpOsh4VmU1NK6eZX1J7F3YyitZXbKDr41OrIO/boryGcLmI0yFrfsDbDJ2r2B0Q/Kxxx7TY489ZvDf/P39ZWQ+Ikl39T2/bE8y+nvuhMc6sUqP6zayFYOatVxQvq7e7ODeF+AabNBbzTEuSVqyNBzl2x/CTocv3A1X0zLZLRGybE4LP9GbfvHX2PeCXuOk51tIZUv6vXV0YyuHpYF/S4ny30K59cK4cOwiynf9oWYon2/Viihf8Pd/oHx+vuwWxlcfhGFcn21je6nV6rHiRWePsqdK98rsqZcetHNy5+7lhEg2sba3ZU+9do6cLb0kmVmwGQ4tuU9uidA+J9cvR6F8EtsaNYT7rYVRbhOIAUPZgE/jajhbhqcfbLv2sS2b7+O5B/knA0MwLkl65kO2ulS7KdvCoEXHstJZrQV7Z+7ey0pjqzep8UkoH+2eyVdc2BMuXa0iYQuvhZrAo9wmED0rsyX4dzezQYGWJz51lD1Vdu3AJiR+TlzQ+jWO3TgZMIQ9BV6+ygb86o3Z92JpCLdSK93Uf6FA+xvQdt62Tux7QQu20YOK5JyBo5sLxiXxRmSlAdMWRjG4kxvnnzh9+rQmTJigXbt2KT8/X4GBgfrmm28KvTBGjBihbdu2KTIyUg4ODmrVqpVmzZqlOnXqlPg6nhzPigM9Pow9pWZlsYN7D7ZmzcPOwr4qPvW4B5unI3uC/mwdZ/QlSYnRbFDYCStRmsGnVPoUTcIc1pVwcmWfA3SFhBamygETiKw0dhWeTpZKA2X4o3JPgLpxStKFCxfUpk0bDR06VG+//bacnZ11+vRp2fyPv0HTpk31zDPPqGrVqkpISNC0adPUuXNnXbp0SeYlnNIeO6WtMZdeLA4cYYOWjS07bR4by57cLODe7PfJXLkxO5udvv7seVZnYdinLiifjT3r/XHtbDjKR/a2XX1gL4dkthWXlsRusNBDlDTIlgi5rVNecb/NQOBunAMHDpSlpaW++uqrEl/EH3/8oUaNGun8+fOqXr16ib7nzIWrJeYvCRb/7ILyje7KagV8sOnuTMduhz4d2aDVLO83jGthWHuMS5Jq+7Mn8u++Z+3Bez3GvrefLziG8pU0qS8JMmF5YlsHtuWQGs8OKdL24PSpvABsT5V13YYd37DbXYaw4Xfm8NP3Ifa+uVdA3Tjz8/P1008/6Y033lCXLl109OhRBQQEKCgo6LYaD+np6Vq2bJkCAgJUpUrJy/RX0jyMufRi4ekJlwYrsAH6bAgrcFPxsZKLdpUEz39atfgXlRAubmyLYPPXZ4t/kRGgB9k6DmQ3ihZksg8fh4rcOh3p7Cnxp1464NOwgWc+MkD7cgtL9m9XHisaJjOtO6A4N87Y2FilpaXp/fff17vvvqtZs2Zpy5Ytevzxx7Vjxw61b//XyXLBggV64403lJ6erjp16ig4OFhWViV/uFyIZiVduzRmg9aiX1gL6UZt2IRp2x9sgpMYza1xPt6vZFWoksLdi1318/NjH+KPv70f5aO9NfLzym6fnJZ2rlSTS4Ql6foVdv6G3hIxB2cq6PfiRi47rFwauN9mIIxqYVhZWalZs2bat29f4ddGjRqlQ4cOaf/+/YqMjFSlSpX01FNPadWqVYWv6dWrl+zt7bV69erCryUnJys2NlZRUVGaM2eOrl27pt9++63IrMSfMGTn3e/VMJmDdt6jX6uNcUnS4TNsNr5/OztZTw+LDR7IJTi+9uwKbFwWK0jz4fxwlO9GNvugpMvwFmDVgB7IzIODDF2Gp6tVNnDLhpSypqtLtLfGru/Y7S5DWH+QaQk92bxst4P+BOrG6e7uLgsLC4Ov2bt3b5GvOTs7y9nZWTVr1lSLFi1UsWJFbdiwQU899dQtP9eQnXf3Z6bqsaemGXP5d0RsCvtgS0lh96sr1/BB+WrXZoNqE4vfMS6Hq2xJf+6uR1E+Z3f2bzc3fyLKN6hgbPEvMgKWRlQGi0MBLCtO2shL/IwGHVTJmQWJ1Vqgk8P8cnicv9+GKFE3TisrKz344IPFOnYaQkFBwS1Vhj9hyM777a/yFR7BbSakp7HT0mkpbP/uwlG2AvFmbxeU78mJXJn7yaEDMS5JSk0KR/liwtkB2cHOr6N82elsEGSHKNkWhh2s20C2ayTpBryim5vJPldIO3RaibIsrw/fDqYE4g4ozo1TksaPH68BAwaoXbt2evjhh7Vlyxb98MMP2rlzp6SbcxRr165V586d5eHhoWvXrmnWrFmytbVV9+7dDf5cQ3bej7ZkS5exKWxfe9N3rAiKhx9bgZi5iZ3R+GAmV6qtl/wjxiVJ2W17oHyV+/mjfF8sDEX56DI8eYqmgwIdoGm3Szrg27mwrcdMcIiSNtPKKId23vcbjEogHnzwQW3YsEFBQUGaPn26AgICNG/ePD3zzDOFr+nbt68WLVqk9957T6NGjVLt2rX17bffqk2bNpIkGxsb7dmzR/PmzVNiYqK8vLzUrl077du3T56eJd8R33uULeVVqMC2HJ4b7I/yrVnPahn8pwf7oJz+IbdWu74zW21pWKsLyrfwv6wXRs1G7EbMiX2nUD4z87Lbj6WDDN0iIOdHJDbgS6ySZ1m3pS8N5N9nSpRG23mXFSSF7kT5nnjfDuWzc2azcd8A1nDJyoZdW61XhzsZOTuwt2RrbzYhGfUhSqcJo1izr2kz2ZVfEnQApP0S6ASCboncT20CuqLxy/LGKJ8hrP6N+Xs+1bp8JCLl1gvjtPUDKF/Pp9mbtVZltrS6YQsr3W0OnypPnuLWy97ufBLjkqThn7Dqh83a+aN8Eyaya5xm4MyCJNmDD3JnTzeMS+KVKF08XVG+1Hh27ZIGuSVCi1yZWhhlH+U2gfjmVzYAnth/BOXbBgu+eFZmZxYy09mTzMtPcAmTbSRr1FGQz2pobF3DBvwnh7VB+X5cw97L9KmXBL3Gef0ya1pHB1V6q4PcdKCrN3QiXBoon/X8u0e5TSBmOLB15I0vvYXy1fVihanenMXKJ9eFLalHBXHyyc0798a4JOml4eyDaMbb7ICsj3vZHiwkgxbdJ6cdIH0CWFnxMNgZldZGICsQZd33ozRQhjtC9wRGJRD+/v66fPnWAbKRI0fqs88+U0FBgd5++20tWbJEiYmJat68uT777DMFBgZKkhISEjR16lRt3bpVV65ckbu7u/r06aN33nlHzs7G7dZ3/raDUa8vlm8g+2CLimNLtc8MYfnoBMfRsRnG1f1Bdg1x2zG2PeVfn02+WruxLZsF8EnQxbMixpWZxprC0XbZtHsmKQMu8dUgciaFrrZYwE6rpQGTnfcdcOjQIeX9z1DQiRMn1KlTJ/Xr10+SNHv2bM2dO1dffvmlatWqpXfffVedOnXS2bNn5ejoqMjISEVGRmrOnDmqV6+eLl++rBdffFGRkZFav369URfuXY21t36kCbuFkZvHtliCf2f5Tp1n18G8QS+RgNzTGJckOTm2RPk6dWIHWietROl0I5tV8kxP5oIMHaBp0EOZdBnexoEd9ialxR1gdVtrO1Zu3wQe/2gLY/To0frxxx8VFnbTB8HX11ejR4/WhAkTJN2UoPby8tKsWbM0YsQIgxzr1q3Tf/7zH6Wnp8vCouRBKDSMLSP/Ecn2yWt4sgNAH3zGtjAeaseeoresOYhxfTAzEOOSpHPX2QfbxvWXUL64a+yKLq0DQXocpCewQ4Uu3uznlq5olOWBVon11iBXQiUpJ5M91JWGlPWKXQzPs6wh8T3DXR8bc3JytHLlSo0dO1YVKlTQxYsXFR0drc6dOxe+xtraWu3bt9e+fftum0AkJyfLycnJqORBkt79lA3QtRvBJ3IX1liGHu7y8ayJ8jXv3ATj2nGC/duFnWWDQtPWd1ZVNRY/fXUF5aO1B7LTubYDndzkwfMetCFUHjzzQQ9RWhnwHrpb4E6rcAJRGjDNQJQQGzduVFJSkoYMGSJJio6+eUL28ipa3vXy8jI4NyFJ8fHxeuedd26bXNwJzw9mWxg0zl5l+3fd/8NO6qems3d6j7Yc32dfsFsYLw1hWw7rf2GT12deZo8bqxbuQfmcPLgZiOQYNpnLg3UWnOE1zrgrbOUw+TrbnmKdVmEJdXimwgQedx3lli5dqm7dusnXt6gIToUKRYdICgoKbvmaJKWkpKhHjx6qV6+epk6desefZciNMz3TQpZW3GnB3Z6VnD0WypZqacGXoKdZQZ9RMzi+QUPrY1ySNG8BOwlf/0F/lG/L92eLf5ERoE/R5L1HVyDorY6U60koH24wJfb3rdaIq0RePhWOcUm8DHhpwLTGWQJcvnxZ27Zt03fffVf4NW/vm+tP0dHR8vH5y7chNjb2lqpEamqqunbtKgcHB23YsEGWxWSahtw4+w97SwOG3znxMAYbdmJU9wSpSWx2P/ET9k7v2b8BxtX36myMS5JCm7yK8p0OZVsONOhVP+8A7lROD8bFw/MjdEJCJ0w0Lh4Lw7joioGZhUkHoqzjrhKIZcuWydPTUz16/GVSFBAQIG9vbwUHB6tJk5v98JycHO3atUuzZs0qfF1KSoq6dOkia2trbdq0STYl6MEZcuP8LaxAVlbcStP1KFbpsX5jtmx+9hR7Z/brya6XmYNeItE1+mBckuRzig1av29jy/AeVdh7xa0yq7wZcYqzV6e3COiA7xlQCeWLvcQ6tzpU5NpJkpQan4hx0Sur5ICnCfcGRicQ+fn5WrZsmQYPHlxk8LFChQoaPXq0Zs6cqZo1a6pmzZqaOXOm7Ozs9PTTT0u6WXno3LmzMjIytHLlSqWkpCgl5Wbg9vDwuK1tsCE3zs17UiRxCURuNqtoZ2XJ7gNHXohC+dKyWV2JQ8e4BOLGg6y51POVtqJ8YQ81R/nOHw9H+cihR0ly9eUSkvQyLk+cEMlud9Gn8huw8iZ5ffeTT8ftUA4v+R/B6ARi27ZtioiI0PPPP3/Lv73xxhvKzMzUyJEjC4Wktm7dKkfHm6tHISEhOnjw5rpfjRo1inzvpUuX5O/vX+LrOB8abuyl3xEuni4oH30jZcAmRJ99eAjl++pde4zLJYE78UrSZ1cfQ/le7ctuxIw6xt4sfvXYBCzyAneKpoce6YoBfZBIuc6d8CXJHjbpy87gkk16a4I20yoN3G8tjHLrxpl2YBPKRweZtoHszMKmvexJJjaSbdlcPh2Occ1/tzLGJUmHr7Ful9U92GRu2gx2iJJ+kJO9aAtLdjuJPqX61mATkmth7LwMfconKxD0Gid9r2z+gpvTuh3+u43hGd6R4bnXKH9aof+Hr1N6oXxbvuGEkCSp5usPonz7fz6A8g18gRVV8avO9WY3hrCDZ/u2nUL5RrxYC+WrWqcqyhd1iV0dJIMWbeft7MW24lLi2RYLrQNBzxmQyqDO7ux8RhIs6lUagFXkyzzKbQKxby/7kKzzYG2Ub3Mwu69duTYsXvQtG1QDwbmF19pzk+GS9EQz9sH2w7GyPVlPlqUlqUod7t47H3IG45KkjBS20leQzyYQFvAMBN0CIh00aWt1WiSsNFA+6/l3j3KbQEScMSxOdbd4c0ojlO/ASfbBcTKUHaJ0rMhq/vdozT2I9iWxOhCJqbAvyfehKF+jlmzyGg1vOsRGxGJcNg7crIwkmcOGS1mpnDeEJOVksVoGNhbs38/anpWfJmEOtzBKA6YEopzgs5msEuWqvWyQsbZm76TrV9h996eHNUX5PlrIVQ3eeJlda9z5G/teDB7OJpvr1pxH+Wj/hbQUbl7GvRK7YhoTzq5Juvqw15cQxSVfkpSRxM4ukaB1G8rjFsb9BtTO+38xYsQILVmyRB999JFGjx5d+PUlS5Zo1apVOnLkiFJTU5WYmCgXFxejL3ztPtZEp3Fd9ua/HMWucVZrwE7WJySzH863X+N6s6t2ssNYmelwaTWffW8bPMi2p44dYM2+zMy439fRhT1BJ8CDe3QZngYtTEUmmwUF7AAArRlSGrjfch7UzvtPbNy4UQcPHrxF5lqSMjIy1LVrV3Xt2lVBQUF3edlS2Cn2RH4yhJ1ufrgr63bp4c22HI4cZFcRu4MDzhEX4jgySQ0e8Cn+RUZg5y5WKyA5jg1atFZAPvhUvHKO3UqghxTpLQda6MrRjZ3nIcWaKoCJpsS/F6UBbqmR/VveKxiVQHh4FD31v//++6pevbrat//LDOjatWt65ZVX9MsvvxRRqvwTf1Yjdu7cafzV/g+yMtjeYnIsO/RYUMBWDKKusKpsTVuwq43hKdzAU0V3djCuehX2w5iYwCZzKQnsZkLlGux7m3idK5snRLLJIWkGJUm2Tux7ewMOgmVZnbFCBbY6YmphlH1gdt7STZXKQYMGafz48QoMDMQu0hCeHcQG6PUb2XLZptWhKJ+TK7u+9YLXfpRv5Hfc2uqlP9iZgC4d2JXVy+fZvra3H7uKGLrjGMrn4cdVcOgtggc7cTbykhS6+yTKV9ZP0aRYE50s2cGiWaUB0xBlCfF3O29JmjVrliwsLDRq1Cji2gphyI1z2ZdXZG7OuQ4GveyOcUnSmRj2wfbN16dRvg05rI5GTEQoxvXVh+wQZbrYgO/uzSZzcZFJKB9dSiYdKm3s2Kl/OuDTQet28vx3i7gr7DYWqctBt2toSXapLsx3K0w6ECXE3+28Q0JC9PHHH+vIkSMG7bv/CQy5cT774iQNefFN7Gd8vIKVnH2wBRtk6HLelwt+R/n8A7mK0E9h7IDs/r3svMfjvZ1QvrAIli8+ihXgyQNnKugKBH3CJ4WVJMkelmO2gIdGyaFM+hlFVr5MuDfA7Lz37Nmj2NhYVa36l6peXl6exo0bp3nz5ik8PPyuL9KQG+fI9xP15TquH/jKIHY6fOp7bBm5MiyxO+Fpttc79n1usLDz0+wufiM/trrkYMkG6Ebu7BDlz2vY+aAaTWpiXLQpnKObC8pnacUG6LREdu2yal1/lO9i6DmMqyJouiaVzxkIUwujBDBk5z1o0CB17FhUwLtLly4aNGiQnnvuuX90kYbcOB9ozmb273/Cqh9Wq++P8llZsaXQHRfYU35uTijG5ZzNJhAfb3FB+QryWZEwKxv2wWvvwv79roVxFRzSPlrihamcXNlqUGpCEsoXAXrOSJKdC/f7JkWzA7JWtlyLurRQDnOefwTMztvNzU1ubkWHwSwtLeXt7a3atf9S2ouOjlZ0dLTOn785KHf8+HE5OjqqatWqcnV1LfF1tKjFTq4f+s0G5QsMZFsY8QmsrOsffyShfPbOXEUj34w9kds7sKfKBxuxD7Z169jVxqw0NoEg5wJo5UO6JRIbwUrk08ZmpPS0xLYw6IBP/+1M4IHaeZcEixYtKjLP0K5dO0k3qxr/O5BZHIJD2IBva8/y1a7E9mYPpbKioRdPRKB8/oGcIdSwD9m/3UMd2IrB8bNs0EqJY1fz6OEzZ8+SJ/bF4UYOmwjT6oe0eJETbDCVEsdWcMgZkhvw8ZteqS0N3G8tjHJr593hSXYN8dmRLVG+xpXZPvmHy9i+dr1G3ihfh4Zc0DoXwz44vF1YYaXkTDaZ++oLdpOA3se3c+KCavw1diOGFpKq6M3Oy8RdYSsa3tVYq/skUP+GTr7o+ZEd3zRH+QxhzndMhej1x8u2Yd+fKLdeGPVb1UP5ln+6D+XbVZ9VokxLYls20dGsWNMFH66X+lT0LIxLklK8HkX5LCzYZG5FPtvuSr7OKmXaOXFS2+awOyW9hUEHLdoQKuo8WzkkT/nJ5dB+m4ZpBqKcIKAaO+x07ijbm63owZ6i6d3+6Mvsh92xFTfMNuj3/hiXJPWt4o/yXYlmnxLfdfoA5XtsE5swRZ7jnG9pLwd6JsASXpOkNwlosSayakCrgppmIMo+ym0CQePhng1Rvqws9sEWBQf8Fu39Ub4ffuZOvUv95mNckvTk4kEo36JpbPLae3oXlK+ggA0y5CmVHrRLuc7OBGTCA6i2cFnfGp7VIgdu6WpQeTTTKp8DAXcP1I0zLS1NEydO1MaNGxUfHy9/f3+NGjVKL730UuFrs7Oz9frrr2v16tXKzMzUo48+qgULFqhyZeN6ey95fFf8i4zAC5vZGYjHe7MzBmZmrL8B7KqsPTFJGNeqFnMxLkla3y4Y5dsax9p5b3jkXZRvwL5+xb/ICORkcSfB/BtsYu1QkW3/0FsddAWCFroiQSeH5XKN8z7rYaBunGPGjNGOHTu0cuVK+fv7a+vWrRo5cqR8fX3Vu3dvSTfNtH744QetWbNGbm5uGjdunB577DGFhIQYJfv62q4Oxlx6sUiMYQVuQk+zw1iRV9ne7KFd7DDb+oGHMa73rrE+J18XdEL5dm7jSvqS9NgjbLKZAVtS+4HiRZdhHQP6gU3LMdNrq6T9tsRacNMbJ9cvswqyJvBA3Tj379+vwYMHq0OHDpKkF154QYsXL9bhw4fVu3dvJScna+nSpfrqq68KRadWrlypKlWqaNu2berSpeSl3JH92AfH0Sv1UT5HO/akdWAbqxXw1ST2+n67wc0tHF59FuOSpJdG1kH58vPYv93AHzugfGbmbAKRmsQN3Jb1vrZvTW4dWZLir7EDrfScATlDQm50SPy8TGnA1MIoIQy5cbZp00abNm3S888/L19fX+3cuVPnzp3Txx9/LOmmX0Zubq46d+5cyOPr66v69etr3759RiUQ0Wls6ZKGhRl7J9FS1ulWbJBZupxToatWn32Ir9vIKuTRVvKuXuzJjS7D03wknD1ZJ1NaSIr0EbkXICsk9AwE7ftRGjAlECWEITfOTz75RMOHD1flypVlYWEhMzMzff7552rTpo2kmyqUVlZWqlix6APTy8tL0dHGfXC9HVjxnV/2ssNJFSuy/bu0FHa4a/NZds00JvwQxvX+UDa5yTRjN2Le/i8rox554RrKR5/yyVMvHfDTEtnngDksTEWnXvRaKLlWSwuYWcPOrSbwwNw4pZsJxIEDB7Rp0yb5+flp9+7dGjlypHx8fG7xyfhfFBQU3NHB05Cd9+pfrWRhyQXpHu0wKknSycvsB719R3+U78xZdqZi0mRuiyW1AjtZv3YvG7QcXVhNjodaPYDybVxxAOWzc+QSptwceEME9sKg16VpoSt+VZKrptHzHrQke2kg/z4rQWBunJmZmZo0aZI2bNhQaLLVsGFDhYaGas6cOerYsaO8vb2Vk5OjxMTEIlWI2NhYtWrV6rY/z5Cdd5tek9Wu95S7uXyDiE5mKwYXLrIB2gy2SM/KYEur1xK41cZ35odjXJLUujsnxSxJ50PPo3wtWzyE8uXlsnLR5CZBRhIt1MQKU9E6EHSCQ5uRkUOjDhVZgz66olEaAGdSywUwN87c3Fzl5ubK7G+DL+bm5sr/v0Gdpk2bytLSUsHBwerf/+bQXVRUlE6cOKHZs2ff9ucZsvP+4FszWVhyQzbZcKsyIYYtwz/QnF3jPHOKHXg6cZr7sL/5FnsivxTLJoe74RbBt6tPo3y0uBLZx6f9DW7AyRLdx6dB//3IU35KHPtMoZPD0kA5dYa4a2BunE5OTmrfvr3Gjx8vW1tb+fn5adeuXVqxYoXmzr251+/s7KyhQ4dq3LhxcnNzk6urq15//XU1aNDgji0OQ3be50+zkq6SD8tWlR2MS0tjH5R29uxJ6/dtoRhXl9ZNMC5JOrCfnYSnBW6+eSoU5ev2qT/KZ2XDzQeZWbCT9XSZm25h0GZfmSls+4xcC6VbGPTvagIP1I1zzZo1CgoK0jPPPKOEhAT5+flpxowZevHFFwtf89FHH8nCwkL9+/cvFJL68ssvjdKAkKRKAazOwpXL7DBW145s2XzDRlan4sGWbEUj7Bh3MvpxF5ssubixAb/bKDbB6TmPPbVYWrNB0K0S91mLunAV45J4XQQnD9g9E1bKpBMcO7CiQQ+0lkfAxT+jsGDBAn3wwQeKiopSYGCg5s2bp7Zt2xp87XfffaeFCxcqNDRU2dnZCgwM1LRp04zahJTKsRvnmn3sZe/YzX7QO3ZwQfnOXGLvzMsXk1C+6jW5B68Z/JC8epU9yTg5sS2RQztOoXx2jmzfnRx8TE9iW3tkAJT4DZacLHbll3ZatbDihr1pq3by2iTp1zXsrJEhvLWc+axMH2xchXjt2rUaNGiQFixYoNatW2vx4sX6/PPPderUKVWteuta/OjRo+Xr66uHH35YLi4uWrZsmebMmaODBw+qSZOSH5DKbQKxbAfLZ2nB/hkiItmAf2Qfq374eD9W7ZHUkImMZB+6DzZmA/7ij4+gfLRkL63bYAYGLXoIkIZnAKu3khjNetjQZlrkTEVZnx8pDTvvfyuBaN68uR544AEtXLiw8Gt169ZVnz599N5775WIIzAwUAMGDNBbb71V4p9bbs20+ttsRPkuerBeGP/96ALKV9GbbdmkZ7Gn/OtxZVdhsKEHq7NgDp+MvniDPbm9srDs+kOkJ7NbGPSJ3M6RbXfR3h/psEw5GfTpymFZVy01BGphyZB0gaFZQOmmqGNISIgmTpxY5OudO3fWvn37SvTz8vPzlZqaKldX41rv5TaBOOrM+hv8uIPtpTZoE4jy0fbbl6+yp4Vn2nHXdz7JC+OSpNQbbJm7am02yHx9hp2XiQnfi/KVZVjZlW377cx0dsgzO4NdbSTXOC1tWTE+er6lNEDdP4akC6ZOnapp06bd8tq4uDjl5eXJy6voc9MYgcYPP/xQ6enphduRJUW5TSB+2MuePOrUZG/+tAy2LH1s1x8oX62GbKn2v1s4HYjIcHbQLiudbYkkxbDJnJML6+5JO1SSfXx6t5/ecoi+xFaraCEpWp2RFKYq6+9teYIh6QJD1Yf/xd/FGIsTaPwTq1ev1rRp0/T999/L09M4m2ajEogbN25o2rRp+vrrrxUdHS0fHx8NGTJEb775ZqH+w3fffafFixcrJCRE8fHxOnr0qBo3blyE58KFC3r99de1d+9eZWdnq2vXrpo/f/4tGdSdcOlsjDGXXiw6PMgG1JOJ7M3f7enbC23dDY6HsA/KsUO5BCI6jX0vfjvCtgjMzf1RvsO7WB0InwB2Jfn6VW4N1taRrQYlRbMruvQqohV8Ki/La5y0RkV5BDVReLt2hSG4u7vL3Nz8lmpDbGxssTF17dq1Gjp0qNatW3dHKYXbwagEYtasWVq0aJGWL1+uwMBAHT58WM8995ycnZ312muvSZLS09PVunVr9evXT8OHD7+FIz09XZ07d1ajRo20fft2SdKUKVPUs2dPHThw4BYhqtJCxHVWtCQqmnMwlCQHB7ZU+8QTlVG+ye8ew7hqNWF9Os4cCkP5Ro1j1zj3/MAGBXPzsqu1QJelacMl+oRPDxbSa6YZKdxziv5d6WSuNEDby5cEVlZWatq0qYKDg9W3b9/CrwcHB6t37963/b7Vq1fr+eef1+rVq4uIQhoDoxKI/fv3q3fv3oU/zN/fX6tXr9bhw4cLXzNo0CBJUnh4uEGO3377TeHh4Tp69KicnG6eWpctWyZXV1dt3769xFnQjJHswM7RWHbYqXkT9uY/H8HemLSuBGoLHM8mX5VqssnS/I9CUb4Ofdj1sp0bf0f5SHln3o6a/VwE1KuC8kWEsZ+z5Fi2fUaCN0pjB27/f8bYsWM1aNAgNWvWTC1bttSSJUsUERFRqMEUFBSka9euacWKFZJuJg/PPvusPv74Y7Vo0aKwemFraytn55K3QI1KINq0aaNFixbp3LlzqlWrlo4dO6a9e/dq3rx5JebIzs5WhQoVipRnbGxsZGZmpr1795Y4gZjwMas93aoDSqcjv0eifBXd2fJgRQ+WLzGGCzI167Ka+s3rs0FmzUY2ebW1ZU/lFb3Zv1/8Vc7iGq8YwKfUS6euoHy01DY59ChJdi5c6zE1Pgnjknhn1NLAv6WKMGDAAMXHx2v69OmKiopS/fr1tXnzZvn5+Um6aRkREfGXevPixYt148YNvfzyy3r55ZcLvz548GB9+eWXJf65RiUQEyZMUHJysurUqSNzc3Pl5eVpxowZeuqpp0rM0aJFC9nb22vChAmaOXOmCgoKNGHCBOXn5ysqynC2bmilZdaIdFlbcQ+jrRFs2bdPb1bp8dtv2QfbwP7sqfzcUe5BWcWXbSdt/IXVHrh4jG2JLGr9M8rX8Sqr8UGiAtyiJH06JMkWlimnE4iKvsYNuRWHpOg4jIv2YMnPK4cJxL+oRDly5EiNHDnS4L/9PSnYuXMn8jONSiDWrl2rlStXatWqVQoMDFRoaGihotXgwYNLxOHh4aF169bppZde0ieffCIzMzM99dRTeuCBB24rZ21opaXOQ6+qbvNRxlz+HeFZiQ0yteq4oHyVq7E6EL+FsDvWPfo3xrguhLPXVqkqZ0ctSU8/xs5AdJzInirpIE0Ox2Wlse0p9i8npcCn6FzQLlti7bclNujTa5zlESY77ztg/PjxmjhxogYOHChJatCggS5fvqz33nuvxAmEdFPg4sKFC4qLi5OFhYVcXFzk7e2tgADDJydDKy0hF3NlZcWtSp64CmsFeLAno++Xc0OKkjQmiFVla+Z8EuNam8dqaHQKZCf1x01jq0HNuzVD+Q5vY+8V0n+BLsHTjo30KdrRDTbVg/0myGSTVsmkTetM4GFUApGRkXFHu25j4e5+81S9fft2xcbGqlevXgZfZ2ilJTEnXwLvV6+K7IPt5CW2/Fa/VT2U71wE28dP9aiPcV2/zp6yPl7D/q7VG7JbIknxrNgQ7SFgA24mGGuaVxxotUJ64DbyArsuTYOcSTEpUZrsvO+Inj17asaMGapataoCAwN19OhRzZ07t4gzZ0JCgiIiIhQZeXOI8OzZs5Ikb29veXt7S7q5dVG3bl15eHho//79eu211zRmzBjVrl27xNfSPXyuMZdeLPbUfhXluxbJViAy09ns3twcHgS05k5uFpZsCX7aQLYCMfELVqgpMQY0EhG/KkkaYNEtDCcPVsUz4gzrOUODrpCQfHYVXTAuqXxuYfwba5z/JoxKIObPn68pU6Zo5MiRio2Nla+vr0aMGFHEfGPTpk167rnnCv//z3bH/8pwnj17VkFBQUpISJC/v78mT56sMWPGGHXhYy4PM+r1xeGFJqzGfEX4w3TxJHuS6TOI1R54bhy3dbLiA3ZQbN5WP5Tv+tVzKJ+1HayCCpe5yRkIWmwoE9SokPihTLrFYuPAOq2S0tj0ii49P2ICj3Lrxrnhd/ZmvXqdPfUePcyeeqMvs8qb7buzcwaR17iT5dGdbA+f7rv7N6yJ8rVpx27sfL+alT0nBYLIeQqJ1aiQeK8J2uKaBtnuoqWs6RXd0rDzHj2fOZjNe7V8qHqWWy+MRZ8dR/lo+d9KVV1QvvRU9sPZoBobVEe5/4hxBbc2ztClOKz4ii1Ld+7MBvy1X51A+TJguWMHV04rIBv2JaEDPl0xoIMqXYEgW0p0wKffi9IALWxW1lFuE4juT7IGROuW7Eb5HmzeHuU7vItdM9280wXls+vcB+OyzGX7vFkZbNC6FsMmX+SMgcSf8klLarpiQLd/EqJiUT56tZE0NpNYwyraOKw8DlHebyi3CcSWb9kKxJDRbMAPu8CePDr0aIDy0UOUEvdhr+TAJks+Aaw9eEBltt219h02qPabxN57tk7cOl3cFU7VUpJS49l7hdbQIDdYJOlGLvvIJn1O8mFVDnPL8heeTDoQd0BJ3DiHDBmi5cuXF/m+5s2b68CBA4X/Hx0drfHjxys4OFipqamqXbu2Jk2apCeffLLE1zJzMltGDmUdpNWjNXuKfvPN/Sjf65Nbonz1zDgdCAv4lJWbw84sLJzDvhf5Y9n3wsz8QPEvMoavAhdUHd1cMC6Jb4nkwYOANB+tbGlly2np0CiPFQhTC+MOKIkbpyR17dpVy5YtK/x/q79JTg8aNEjJycnatGmT3N3dtWrVKg0YMECHDx9WkyYlU/mrmcA+xH+O7Y7yBcPyybRRjYc9u053Op/TqfhoIZvNDXiG3epYcioc5Vu28AjKZwdvOsRd4wZ4abEhe1d2pdbejlUtNbdkV2rpCs4NMODRK6bl0Y3zfgPuxindFH76U/PhdjwLFy7UQw/dnIp988039dFHH+nIkSMlTiBybF2MufRiceYE2/vs3JUVpPn6vyEo36LV7Ppb78e4ID1zLBsAfz2L0qneQyXXKykJ4qLZtcv8PPZBbu/MvR8JUex2Ep2Q2HmxuhLXr7DPlQpgNUiSzK25BMfOiR3wTI4pu86jt4OpAnEHlNSNc+fOnfL09JSLi4vat2+vGTNmyNPTswjP2rVr1aNHD7m4uOibb75Rdna2OnToUOJrWRHexphLLxbNW7EzAcdPsSf8Rm3qonyenuxw19IlpzCuXv05VUtJ2vYjm0GMf5VNDmfMZhMIRzdua0KScjK5IG1lw9536cms2FDkebb6RauC0iCrBnRyQzu3lgbus/yBd+Ps1q2b+vXrJz8/P126dElTpkzRI488opCQkEI56rVr12rAgAFyc3OThYWF7OzstGHDBlWvXp397YwAPLiuvDz2TqIDvr0d+2GfE8Rp/l9JY0+VllbsOlhQENtycPFmjdKSYtn2mQU4zEb33FPjaXtr9hRNamhI7NaExGqk0HbeZXk+43YwVSDugJK4cQ4YMKDw9fXr11ezZs3k5+enn376SY8//rikmy2LxMREbdu2Te7u7tq4caP69eunPXv2qEGDW7cNDNl5n/gjXeYW3A02rC8bUOMS2TJ8UiL7IAqozCYkUxdwCn4LnmPbNTYOrBJlp/7s0GPj2mz2+smHR1G+XPCUmnKdle2mZyAyyvhKrb0zW10iNUNoFc/sf9Mb24QS4Z67cfr4+MjPz09hYWGSpAsXLujTTz/ViRMnFBh4Uw2xUaNG2rNnjz777DMtWrToFg5Ddt4Dhk3RwBemGnP5d0R4IvtBt7Nl+YK/YSfrg1qyJ7fPQHXnoZ/dfn7mbmBuyc57RIQnoXy7friI8jl7sn18soVR1k9o9LAyLSueDwdVUn6aHnos6yqehlBOhZ3vGvfcjTM+Pl5XrlyRj49PIYcko3gM2Xl/sdNa1+K4cl5FR/aN92Gr0nr0CdZ+e8FptuLy9kzu9JGbx17buh9gC+QKbHJYrSHburt0/BLKZ+/CbSbgypGwLoIrPERJ6ixIUnoCey+Tao92zuwGS3Js+RuiNJlp3QHFuXGmpaVp2rRpeuKJJ+Tj46Pw8HBNmjRJ7u7u6tu3rySpTp06qlGjhkaMGKE5c+bIzc1NGzduVHBwsH780bAcsiE77yOHou7m970tLoayBkl1W7KDgObmbFD18mFbLO/N5OSYX5/QEOOSpEcfZrO5Y6dY7YGRj0SgfG9lsUOeF4+FYVy0Uyht4JQHb7DQoIWuyBZLRjLc/oGHMk3ggbpxmpub6/jx41qxYoWSkpLk4+Ojhx9+WGvXrpWj483s1NLSUps3b9bEiRPVs2dPpaWlqUaNGlq+fLm6dy+5FsOShquMufRi0Q/WgahWwwXli45iTzJ2duyDvFVXLui72bK/qxu8Tp7i54Ly/XyBXQuNjWDNtEjxJ3oGgp7UjzxXtu286QSC1Ayh5z1okbDSwP3Wwii3bpxXwri1QUn66gj7EKd1JaIucnbZkjRmHHvKf+9tbkajWaeSaYGUFHT1xtuLHUDduoF1H81IYlcbSQMnRzd26DEeFLmSeKVMWsuANpgi5xZyYPttWuNj7w+sXYEhDH2H0TlZOsUD4bnXKNtLynfA/F8DUL7BHdmAn5LCrTVKUu1AVk0xlKtKS5LcKnF+E+/VXo9xSdI7V54q/kVG4MIFNkCvH83eewPms86ypIETraRIt0RSrrMrsI5u7HOAdlolgz49IGvnwm6cmMCj3CYQ/R5mddJjM11QPnsH9k97MYwt/bq4cQZJkpSakIRxzYx8GuOSpPOn2HmZhs3YGYPcH9ahfBbW41A+MoFwqMhWILLgoczKtdmV38QYuGUDC1M5uXMJTkIkqzJKVzRKA2V9y4hGuU0gvvyB5XujDzvIdsWXbYlci2DfKhsblq/ZI5xbKL3lEFCbdeP84zCrVjjOYQbKJ7FBiwz6yfAMhC3YXpH4gE+bX2WnswlTIigkVQCvmJqZse2a0oDJjbOcYGr38yjf6WzODEqStu9ge7Nx19heauw1dvjMBZRPHvwkuyGy+ke2WpWRyg55eldhVwfTElkZ9RRwdZA+oWWmsb+rlz/r8ht3lX0O0FoLZEJCz2fQ5lwm8MDtvGNiYjRhwgRt3bpVSUlJateunebPn6+aNW9aKoeHhysgwPD8wjfffKN+/fqV6FrOFLDeEOYV2AcbHfArVWfFlRycWJnYtBQuSNcxO41xSdILff1RvhW/VEH5nu7EriKOHX8F5bMFJ/XptcsKBWy1KuoC+7ezhLdE6K0TUqzJ1Zcd/Lt+mR0cLw2YWhh3QHF23gUFBerTp48sLS31/fffy8nJSXPnzlXHjh116tQp2dvbq0qVKoqKKtqTXrJkiWbPnq1u3bqV+Fq+32XMlRcPV1d2sv6ZIWyCs+hD1r78gUfYLYynHuNORlmWbAXi3U/YwbhnB7EDvG+8+TvKZ2nL3ssuoLLldXiynm5h0KArJDdy2OoXKT+dllh2t39KC+V0qfGugdp5h4WF6cCBA0VkqhcsWCBPT0+tXr1aw4YNk7m5+S1W3xs2bNCAAQPk4FDywGFvz5bLjh2CTx6WVVG+ei3ZFsubHVitgCwrToUuUexJZvhzrDzxDfiUQa+rOXmwLZGkWG4uwBw2g6KlomnQZXi6TUDqSmTCGyLlESYlyjugODvvPw2vbP7Hstfc3FxWVlbau3evhg0bdgtnSEiIQkND9dlnnxl14U6O7PhGnYZs7zMhgQ0KrrAa0qrLrCGUuwvH1dyb9Yb4YgU7eJabzZoGuVdh1y5pbQRSIIhWFzQHnULvBWjhp1x4M4FsT9EDo2a0RbIJOFA77zp16sjPz09BQUFavHix7O3tNXfuXEVHR9/StvgTS5cuVd26ddWqVavb/lxDbpyP1wqTtRXXDwz6ipU77tuT1W347CPWYfGjd9g+/nufc0H1KDzI9viTbEl/4wZ2Y6d6XXa+ZQ+cQJB9fPqERs8YOMHuntdp3Qu4gkN6k1T0ZiuHidHsWmhpwDQDcQcUZ+dtaWmpb7/9VkOHDpWrq6vMzc3VsWPH2842ZGZmatWqVZoyZcodf64hN84uA99St6enGXP5d0TcNc7LQZK272P7d1lwL/XDlSidIs9zLaCK7uwMxNHjKJ0iw9gEYllvdgailx07o3ED7JPTJ3LaQjo9mS3D09dHJxBkSyQJVt0sj8HYNANxB5TEzrtp06YKDQ1VcnKycnJy5OHhoebNm6tZs2a38K1fv14ZGRl69tln7/hzDblxLvjZUrm53JuVGp+EcUlSuxaBKJ+PTxuUz8mRfZBnZ3BbGLVqs6fAFxxY35Ru26qhfH2W1ED5JHjTAQ76JKxs2OoSLUxFIx/UbZDYlhJdDSITVxPuDe6Znbez880gEBYWpsOHD+udd9655TVLly5Vr1695OFx59KXITfO8PBESVw/cMzk1hiXJLnZs73KnVfYmYrh3Vn30V7DuSHKmHx2MG5XZslWg0uKXoP+X3vnHRfVnfX/zwzNoYMgXaSLFcQGqKsSK8YkiyXGkhhjHqPZtUWNu08eYiHZjUnUaExTjERXjRpLjMaIvWIngqJiowioFBWkc35/+GPWEdQZ5sBcrt/368UrYe7w5uDM3Hvut5zDu5DtrfMTWH2jrr3P6itmbEnNPYdvzLwGook571ojbh93KWvOERLuKpncNS8aghetdgVrO28A2LBhAxwdHdG8eXOcP38ekydPxquvvoq+fftquFJTU3Hw4EHs2LGjToHb2vO+uRJTeDP7Tm14s/E/D51m9U3J5b2LzrnBVy66xyDeKYx9W3n/7ZZ+wrvD5l9Zi1h9bkrerX5XzvAlmxbMawweFvC2kA7ozLv9+vKpFFYf94gL55SIGXOy1BgRuzCewfPaeQNAVlYWpk2bhpycHLi4uGDMmDG1rnGIjY2Fm5tbjcRCW0pLeVf8FuTxDl0er+JdA+HfsSWrz4T5bsG5O9+Jd2aTJWwuAHj90yhW35ojvAtuXV15X4uzh3g71XIXCOKEu7RzyvFkVh93My32ltmMUzbcjc0KGuEiyheNRtvO+9Ql3uJA0z7kPXGMnsS7ZuHM2QJWXwsv3k53HQP4plgelPBOEbS3v87qm7mU90T5WlQLVt+KpSdZfZy9MPJu8XYebWLJ2xTOzpm3ZkgW4+JiADBV8VaQ5axEKfUFowc3856Ta2PY9Bssnp+/aMHiqW+kvYn6GazdwztF4OzN22Exr4B3LuzhA965Yw9n3qFkb3O+BlNOZ3gXPcY5/9/zn6QDsW/UbdrtaYyK5V3fwn0nyLmYzdaZd/Sm+D7v7qSc67zlk7kv+E3deLeHcyY43IttuadrGoLGuHNEHxptAtEmkHeKQGXOe9dbVMQ7xeLtz3tntGffXVZfXogPm8vcg/eCP9iNt+rm+oyBrL7lf+PdxvnaLN5hfc6TopTrGAD8hanKmauM3r7J25qec0qEexcG92sr4KfRJhDc+Hjyvvl/XsV70TI2401wwiL8WX2/rk9kczl78hZWutOuDauvpIR3qHbI17zJZnBEMKsv/TJfMaTiIt4FnuylornrLDD7KiW8jZN75KsxIkYgnsODBw/w0UcfYfPmzbh9+zaCg4OxePFidOrUCQDw8ccfY926dUhPT4epqSlCQkIQExODLl26aHiOHTuGf/7zn0hISICJiQmCgoKwc+dOqFTareTdE8871DjsNSdW3/RpAay+Jd/cYPVlpPGuXufcTvdyJO8wbaumvNUAV/zBO/3zzpSnV2GtC+t/4l1EWXSP771i3dSWzQXwL6Lk9nHDPYLDWVfCmLEsNgDYNOMddW0Iqkhs43wm77zzDpKSkvDTTz/B1dUVq1evVnfbdHNzg7+/P5YuXQpvb28UFxdj4cKF6Nu3L1JTU9X1Ho4dO4b+/ftj9uzZWLJkCUxNTZGYmFijxsSzeGs475tr407eTnKjXuYd0eg9kHfEgLs20BsD+RKIX/bznsRXJ/HunbfkXViP5fF8ozcA/0XGwoavxkcR87ZL7jv8qkpeH/ewPvcIBGd8D3J5F7Y3ym6cL9gIhE67MIqLi2FlZYWtW7eqO3ICQFBQEAYNGoT58+fX+Jn79+/DxsYG8fHxiIiIAAB07doVffr0qbW4lLa8OpG3EJJXK97+CxUVvJko9xtzYE/e1es79vMNTQ/rxzuzFreFNyG5cpr3vWdhy3eBBvgv0uaMd5Yqa9733e3rmaw+briTOe5pAtY+J5W8yU1ZMV91WwA4tLU7q682Xnv/Cotn81I/Fk99o9OZuqKiApWVlRrdNgFApVLh8OHDNZ5fVlaG77//HjY2Nmjfvj0A4Pbt20hISMDIkSMRFhaGq1evomXLloiJiUG3btpvs3llKO8d+c7tN1h93Xt7svqOH+adslGZ8N4ZXUvi6w9xoXVbNhcAjHmVVYc9Hp1YfSf38xYb8mnPWxq7IJdvdC7vFu/efkdP3sSfuxcGd4trIzPeBKKEscoodyEpqXdarY0XbQRCp1fIysoKoaGhmDdvHgIDA+Hk5IS1a9ciISEBfn7/zZi2b9+O119/HQ8fPoSLiwt2794NB4dH27euXXvUqvnjjz/G559/jqCgIMTFxSEiIgJJSUkanmpq68b52vUvYcb4BksLnsXmAoADf/DWHlAa8845fL74KqsvuBtfQpd8kXc6qZU7c92G0AJW3+Cubqy+qbN410BwXhgqmHclcJ+wuWsZcC/y5F6j4RbQgs2VfY13NIh7RKMhaKRlleqMzlfgn376CW+//Tbc3NxgZGSEDh064I033sCZM2fUz+nVqxfOnTuHu3fv4ocffsCwYcOQkJCAZs2aqftm/M///A/Gjh0LAAgODsaePXsQGxuLTz/9tMbvrK0bZ8c+s9C574e6hv9UmpjzntiihvF2RPx5bSqrb2AU786E5s34dhJ0NucZBqxmxZ9BrL4/NvDusPltGu/WPBMz3pomVk35Fo1yX/C5d3Vwb7u0ceJdq/WQue4FZ2dZY+b1Ho2xF8aLhs4JhI+PDw4cOICioiLcv38fLi4uGD58OLy8/nvBtLCwgK+vL3x9fdG1a1f4+flhxYoVmD17NlxcXAAArVq10vAGBgYiLa32N3Nt3Tj/78dKGDMOw3fryFvwxc6c907Bvx3vRSE3j3froLUF32jQ29/wvha9B/GO3tgyrw4f/BXvCInKinc1/N10vl0s3AkEFfLe4XNftKQ+QsI5usSdfD0s5h2JbAhqaywpZ+p81rewsICFhQXy8/Oxa9cufPbZZ099LhGppyBatGgBV1dXXLp0SeM5ly9fxoABA2r9+dq6cb4XmQ6Ab37xp0O82zi9m/MuFrubwzt3bO5ly+pbF5fE5nrrnVbPf5IO3Cvi7R9gquK907JpZs/qy8/OZfVxLtyzambL5gKAe7d5/1Z7F96+H3czuUt38+5MKGPsjspddbO0EW6JFGsgnsOuXbtARAgICEBqaipmzJiBgIAAjB07FkVFRYiJicHgwYPh4uKC3NxcLFu2DBkZGRg69FFLZYVCgRkzZiA6Ohrt27dHUFAQVq1ahZSUFGzcuFHrOHJKeE+65ireu8DMHN47fO435sQOZ1l9paXt2VzGSt6/NT2T966tbUfe0aBJrY+x+v46l3fxGed770FuAZsL4N+VkH2NryQ7wN/8intNBedrW1HOe84TSB+dzzT37t3D7NmzkZGRAXt7e0RFRSEmJgYmJiaorKxESkoKVq1ahbt376Jp06bo1KkTDh06hNatW6sdU6ZMQUlJCaZOnYq8vDy0b98eu3fvho+P9uWQv1nFe+fRlLk3REAAb7Oqq4m8ayCW+fDuJBjf8yaba9sFvrLYAHDhLN88LwB0DOfdYfP7fd4mP5XlNXdE6YNXO75dHTeTeRcX2zKvMWjmwdur4/KpS89/kg5wL0LlbK/O3Vq9MVa2pEY4aqIPjbYb56DxvCvNHdx4T0S2TXmHGm9e4l1oV17Ke1fOuWJ6Y49f2FwAsD2gZjt5fdiylXdLbfhfeEc0ft9ykdXXIpBvl0hGag6bCwByM3l9Ria8JeM5Kz0CgKMHb5n3gtt5bC7uzqicFVABYN/PXZ7/JD0Z+PZ5Fs+OWN6t7PVF49to+/+ZMaUFq+/AOd557Xb+vEOXln9pzur77SBvAnElke8u/52UcWwuABjM/Fq89ipv7YGXVAdYfRtyed/LFxP4Vv6bWfB2WOS+4AeE8NaXybzGW0ad84IPACWFfK+t1FurC/hptAmEg9k9Vt+RP3jvZCws+NYEAMD5cwWsvmbOvFMsnHPb3Mnhvxbw3BVUE9aPd5Fnx868dSAs7XiHucvL+Hz37/CWO+Ye5r6YwDt6w72wkLuypbkt33mgIJt3obeKubdGQyAWUTYS0h7wzlUOft2F1Zeewbe6GQB8Aniz8d0/H2f1uTMWpMkt4r1LnTubd/Rm4wHe0RvrNU/fwVQXCrJHsvoUjI1TuKsLcsYG8DaFA/gvKCWFvJUtOS/S3HUgjJlHlxoC0UzrOTyvG6dCUftw8WeffYYZM2YAAHr27IkDBzSHbYcPH45169ZpHce2eN6CKmXMLZoj+/Fe8E8n8cbn5sd7UbWy5Ru+dLLkLQ70+Q+8o1Wdu/H+20UXLmD1ufjyDnMX5vPNRXM3XDJR8SabnH0/AKAJ85RN5qUbrL6HBXy1Fpq6867PyM3gnf5pCMQIxHN4XjfOrCzNxX47d+7EuHHjEBUVpfH4+PHjMXfuXPX32rbxrsajOW8DotQU3l0dq1byVlPs2IN3Z0KP3sxrKjbxLWptV8i7Un/IkNrri9SVbra83TPf+A9v0yDnFryjaZwFgrhHDLgXKXIXQ1Ia8f693HUgONdAFDP21QD43ysCfnRKIIqLi7Fp0yZs3boVPXr0APCop8WWLVvwzTffYP78+XB21sxCt27dil69esHb21vjcXNz8xrP1YVptj/W+WdrY/egN1l9l27yTrGcO82bjZ99wPth9wzgW1gYmxPI5gKAMyd517csPss7otE6nHfFdf4d3gp+lnZ88+Qqa94LIHddCe47yMJ83tei9CFvhVtOuJM57hoaDQF3nQ6pU6/dOHNycvDbb79h1apVNY6tWbMGq1evhpOTEwYMGIDo6GhYWWk/qlDmyHsH7WnFO+xr5c87QlJWzlsp08iI98OZeIpva6NPb95h5DMnWXVo3pp3NMjcknfuOCeN9y6a8yJYwVyKmbvhUiWzj/uCz97Om7NRGnsjssY3HdAYY9aHeunGWc2qVatgZWWFv/71rxqPjxw5El5eXnB2dkZSUhJmz56NxMRE7N69W+tYMqxbP/9JOnC/jPfO6H4J70Uh7QbvnYyFFW98Lfz4SgC3sb7G5gKAkkje9tbr1/EVzQKAy+dusPqqKnjvgpwYp0Syr/N2bOQurGRpx5v4c8M9xcKZMBkx7xB50S7GjZF66cZZTWxsLEaOHFljxGL8+PHq/2/Tpg38/PzQsWNHnDlzBh06dKjhqa2d96HUpjAx5dsiVfCA98166SLvYrHAVnasvuIS3ouMuYpvvtL5+lE2FwBsO8h7UTA24T1R3svhXX/DXRvBqQXf6JdpE95FhVXMFxnOxmEA/7C+lLc2Ft/n3SHCvWW1IXjRKlHWSzdOADh06BAuXbqE9evXP9fZoUMHmJiY4MqVK7UmELW18x72zv9h+PhoXcN/Kj8u4b1ozZtf8+/Qh90neYcHXZx4RyD8XfkWAn59nXc9yqKhvKWdh37Cu7efu+WzQsG7+Cw9hW/EpaJM2v0SuBcpco8YcPeb4Jyz534fN8YRCO6EVurUWzfOFStWICQkBO3bP7+gUnJyMsrLy9Wtvp+ktnbeKen3YWrKd+c2YEQomwsArt3mzZ6vpfA2+XmjG+9FxvnhVTbXsnje7WC/ZvPu7Xfz4y38NGAgb2XL7788wuqzYWxfzr3okXvY3D/Y+/lP0oFz+86x+ri3rXKuISnM451mNTZttGWKXhhYu3FWc//+fWzYsAFffPFFjZ+/evUq1qxZg4EDB8LBwQEXLlzA9OnTERwcjPDw8Fp/Z23tvON28WZ6Oem8DZeaufFOOXCTfJf3It3Mku8udeRo3kWKl2/wXhSsLHmTr3NJvAvtOC/43Lh48yZf6Rd5t/yeP5zM6nP05E0OuXd1qBjLT5swF5LKZ65s2RCIXRjP4VndOKtZt24diAgjRoyo8fOmpqbYs2cPFi9ejMLCQnh4eCAyMhLR0dEw0mGFcU46766JKeP5FgECwMEkvtXNAFBZyZswvXxvJavvlmNPNte6H26wuQCgfVfeHTu+rrzDyGNceKfPBu/m7UnA2fEy+wZvUzju9R7cF8GHD3gL3nGvM+BMXbnXZ3CvH2kIGuO0iz402m6cm0/wvrkSEnnXGLi78c6Tb/npNKvvg1ntWH0LF/IVkrJ15B29yc3kvZMZ8lZHVt/m/5xj9ZUW8Y5ocE4TcK+BkHqtAO5dItwJE+dCxUrmbZzca3kO/BLG6quNv/yV52agIWLloNFOMrWw493lcFLJu1I/JYV3qDGoB28Dp98P8Z7YbBxs2Vy+rXinVyaPs2f1/WcnbyEpbrjvojlrGXDfVVo78r623AlJeSnvRZV7BIKz2Rf3a8udkDQEhtyFsWzZMixYsABZWVlo3bo1Fi1ahO7duz/1+QcOHMC0adOQnJwMV1dXzJw5ExMmTNDpdzbaBOLTb5mbyljw3hm1bMM7JfL7ugRWX3Av3hGIvFt32Vzp5ryjN6WdbFl9TVS8g3aT/sZbiXLNOt4Ft5z9FyzsbdhcAFBWzFsGXOpbB7kbVnEOuXMnro0ygTDQFMb69esxZcoULFu2DOHh4fjuu+8wYMAAXLhwAc2b15zCvX79OgYOHIjx48dj9erVOHLkCCZOnAhHR8cabSeeRaOdwvghntdXWsb7z2BpznsnE7+br9IjAAR34u2X4OHE9+939BRvmW1fH96teUnnC1h96Vd4iyv5tvVk9WVe45sCupvJW1bclnnBKPciRe5tnNx3uJwXfe7khnu05eDmbqy+2uj28oHnP0kLDv/6F52e36VLF3To0AHffPON+rHAwEC8+uqr+PTTT2s8f9asWdi2bRsuXvxv+/oJEyYgMTERx44d0/r3NtoRiD+TeD/orq68F5mDe9JZfS7NeU+UkW15L1qbTvIlJCHteRdj7drFm3xVMu/Fd/HinbJJOnbx+U/SgUrGoWnuOzTuRYpWTXlHSApu8y72rmIuo8G5JoV77Q13QtKYqK14Ym27EQGgrKwMp0+fxocffqjxeN++fXH0aO1rMo4dO4a+fftqPNavXz+sWLEC5eXlGpsingnJmJKSEoqOjqaSkhLhM7BPyrEJn7R8Uo5N+KTjqg+fVIiOjiYAGl/R0dG1PjczM5MA0JEjRzQej4mJIX9//1p/xs/Pj2JiYjQeO3LkCAGgW7duaR2nrBOIe/fuEQC6d++e8BnYJ+XYhE9aPinHJnzScdWHTyqUlJTQvXv3NL6eliRVJxBHjx7VeHz+/PkUEBBQ68/4+fnRJ598ovHY4cOHCQBlZWVpHWejncIQCAQCgUCOPG26ojYcHBxgZGSE7GzNPi63b9+Gk1PtfWycnZ1rfb6xsTGaNtV+upx3o61AIBAIBIIGw9TUFCEhITW6We/evRthYbXXkwgNDa3x/D/++AMdO3bUfv0DRAIhEAgEAkGjZtq0aVi+fDliY2Nx8eJFTJ06FWlpaeq6DrNnz8aYMWPUz58wYQJu3ryJadOm4eLFi4iNjcWKFSvwwQcf6PR7ZT2FYWZmhujoaK2HgoSv/nxSjk34pOWTcmzCJx1XffgaK8OHD0dubi7mzp2LrKwstGnTBjt27ICn56Mt3VlZWUhL+2+/Jy8vL+zYsQNTp07F119/DVdXV3z11Vc61YAAGnEdCIFAIBAIBIZDTGEIBAKBQCDQGZFACAQCgUAg0BmRQAgEAoFAINAZkUAIBAKBQCDQGZFACAQCgUAg0BmRQAgEAoFAINAZkUAIBAKBQCDQGVkWkrpy5QqOHj2K7OxsKBQKODk5ISwsDH5+fmy/o6ioCKdPn0aPHj3YnHWhsrISRkZG6u8TEhJQWlqK0NBQnUqSPo2xY8ciJiYGrq6uervy8/ORmpoKFxcXuLu76+UqKCjAhg0bkJaWBk9PTwwdOhQ2Ntq3Yj59+jRCQkL0iuFxbt++jeTkZISEhMDa2ho5OTlYtWoVqqqqEBkZibZt2+rsvHbtGg4fPoysrCwYGRnBy8sLffr0gbW1dZ1iLCwsxOnTpzU+FyEhIbC05G2fXlFRgVu3bqF58+asXn3JyclBaWkpS1xz5szBpEmT4ODgwBAZcOfOHdja2ur9ma2oqMC+ffvUn4tevXppnB+ex927d9n+pmoqKyvV8SiVSpSWlmLr1q2oqqpCr169ntqv4VlUn38f/2x06NABCoWCNXbBc9C67VYjoKCggAYPHkwKhYJsbW3J39+f/Pz8yNbWlpRKJb3yyitsXdvOnTtHSqVS6+eXlZXRjBkzyMfHhzp16kSxsbEax7Ozs3Xy3bp1i8LDw8nIyIh69OhBeXl5FBkZSQqFghQKBfn7++vUljUxMbHWLxMTE9q8ebP6e22ZPXs2FRUVEdGjv338+PGkVCpJoVCQUqmk1157jYqLi7X2RUVF0aZNm4iIKDk5mRwcHMjR0ZG6dOlCTk5O5OzsTBcuXNDap1AoyNvbm2JiYigjI0Prn6uNffv2kYWFBSkUCnJxcaHExERyd3cnPz8/CggIIDMzM9q1a5fWvsLCQhoyZIj6tVQqleTs7ExGRkZkaWlJS5cu1Sm+8vJy+vvf/04qlYoUCgWZmZmRqakpKRQKUqlUNHnyZCorK9P1z34qun42iIi+/vprioiIoKFDh9KePXs0jt25c4e8vLy0dt2/f59GjhxJzZs3pzFjxlBpaSlNnDhR/W/Zo0cPrc8DT3ZEvHfvHhUUFJCJiQklJCSoH9OW7777Tt1VsaqqimJiYtTnJ3Nzc5o6dSpVVlZq7fvb3/5G27dvJyKi9PR0atmyJRkZGZGTkxMZGRlR27ZtdXp/K5VK6t27N61Zs4alRfa5c+fI2dmZlEoltWvXjtLT06lNmzZkYWFBlpaWZGdnRydOnNDaV1lZSTNmzCBzc3NSKpXqc4pCoSBPT0/atm2b3jELtEdWCcTo0aOpbdu2dPz48RrHjh8/Tu3ataMxY8aw/C5dT5LR0dHk5ORECxYsoH/+859kY2ND7777rvp4dnY2KRQKrX2jR4+msLAw2rZtGw0fPpzCwsKoe/fulJGRQWlpadS9e3eaNGmS1r7qk2v1h/Hxr8cv/NqiVCopJyeHiB71pXd0dKRNmzZRZmYm/frrr+Tm5kZz587V2ufg4ECXL18mIqIBAwbQG2+8QaWlpUT0KEEZN24c9e3bV6e/d/z48eTk5ETGxsYUGRlJmzdvpoqKCq0d1YSHh9OkSZPowYMHtGDBAnJ3d9f4t//ggw8oLCxMa9+7775L4eHhdO7cOUpJSaGoqCiaOXMmFRUV0YoVK8jc3JzWrFmjte/vf/87ubm50bp16yg/P1/9eH5+Pq1bt448PDxo8uTJWvueh66fjcWLF5O5uTlNmjSJRo0aRWZmZhqthnVNrt9//31q2bIlffXVV9SzZ0965ZVXqE2bNnT48GE6ePAgtWnThv7xj39o5aq+SD35xfG5+Pbbb8nCwoK++OILOnLkCC1ZsoRsbGxoyZIlWvtcXFzUifOwYcPopZdeojt37hARUW5uLg0aNIiGDBmitU+hUFD//v3J1NSU7Ozs6P3336ezZ89q/fNP0rdvXxoyZAidP3+eJk+eTK1ataKhQ4dSWVkZlZeX06hRo+ill17S2jdr1iwKDAykLVu20O+//07du3enf//733Tx4kX66KOPdE7WBfohqwTCxsam1uShmmPHjpGNjY1WLjs7u2d+WVtb63Ti8PX1pV9//VX9fWpqKvn5+dFbb71FVVVVOp8kXVxc6NixY0T06EShUCgoPj5efXzv3r3k7e2tta99+/YUGRlJFy9epBs3btCNGzfo+vXrZGxsTLt371Y/pi0KhUJ9ogwKCqIVK1ZoHF+/fj0FBgZq7VOpVJSamkpEj/72M2fOaBy/dOmS1q/t4/GVl5fTxo0baeDAgeo7t5kzZ1JKSorWLmtra3Vs5eXlZGxsrHHSvXz5sk6xOTg40KlTp9Tf5+XlUZMmTdQjOkuXLqWgoCCdfE/e1T9OfHw8OTg4aO0LDg5+5lfLli11ei+3atVKIyE6evQoNWvWjD766CMi0j2B8PDwoL179xIRUWZmJikUCo07099++40CAgK0crm5uVFkZCTt3buX9u/fT/v376d9+/aRkZERrVy5Uv2Ytjz+uejUqRN9+eWXGsd/+OEHateunda+Jk2a0LVr14iIyN3dnRISEjSOnz9/XqfXtjq+O3fu0Oeff06tW7cmpVJJHTp0oGXLllFBQYHWLqJH59HqBOfhw4dkZGSkEWNSUhI1bdpUa5+rqysdPHhQ/X1GRgZZWlqqR0vmzp1LoaGhOsUoqDuyWwPxrDkwXebHSktL8d577z117vrmzZuYM2eO1r7MzEy0adNG/b2Pjw/279+P3r17Y/To0fjss8+0dgGP1hO4ubkBAOzt7WFubq5unFLtz8rK0tp34sQJzJw5E1FRUVi9ejWCg4PVx1xdXTXc2lL9752eno7OnTtrHOvcuTNu3ryptatdu3bYu3cvfHx84OzsjJs3b2rEePPmTahUKp1jNDY2RlRUFKKiopCZmYnY2Fj8+OOP+PzzzxEeHo6DBw8+12FqaoqSkhIAQFlZGaqqqtTfA0BxcbFOc9sVFRUa6xwsLS1RUVGBoqIimJubo2/fvjp1zSsuLn7mvHbTpk1RXFyste/ChQt4/fXX4eXlVevxrKwsXL58WWvf9evXNdoOh4aGYu/evYiIiEB5eTmmTJmitQt4tB7F19cXwKP3rkqlQkBAgPp469atkZ6erpXrzz//xLhx4zBv3jz89NNP6s+cQqFA586d0apVK51iq/5Z4NHfHRERoXGsd+/emDp1qtYuf39/nDhxAl5eXrCyssL9+/c1jj948ABVVVU6x+jg4IDp06dj+vTpOHbsGJYvX45Zs2bhgw8+QFRUFOLi4rTyEBGMjR9dZp78LwAYGRnpFN+DBw/UrwEAuLi4oKSkBPn5+XB2dkZUVBT+9a9/ae0T6ImhMxhORo0aRe3ataOTJ0/WOHby5EkKCgqi0aNHa+UKCwujRYsWPfW4rsO0Xl5eGiME1WRmZpK/vz+99NJLOvmaN2+ukcnPmjWLcnNzNeLT5c6jmh07dpC7uzt98sknVFlZScbGxpScnKyzR6FQUExMDC1evLjGXUN1fHZ2dlr7tm/fTvb29rRy5UpauXIltWjRgpYvX05Hjhyh2NhY8vDwoBkzZmjte3wouTbi4+PpjTfe0Mr1yiuv0KBBg+jw4cP07rvvUseOHSkyMpIKCwupqKiIhgwZQv3799c6tj59+mhMgSxYsIBcXFzU3585c0an13bQoEEUERFB2dnZNY5lZ2dTnz596OWXX9baFxISQsuWLXvq8bNnz+o8YvDk+4Po0VoXJycnGj16tE4+V1dXOn36tPr7ESNGaLzWSUlJOr33iIiWLVtGrq6u9J///IeISK/PRVxcHG3dupU8PDxqjJgmJSWRtbW11r6VK1eSu7s77du3j+Li4igwMJDi4+MpMzOT9u7dS23btqV33nlHa9+zPheFhYW0fPlynabjIiIiaNy4cZSRkUFz5swhX19fGjt2rPr4xIkTqXv37lr7wsLCaP78+erv165dS7a2turvz58/r/NrK6g7skog8vPzqX///qRQKMjOzo4CAgKoZcuWZGdnR0qlkgYMGKAxB/wsYmJi6OOPP37q8bS0NHrrrbe0jm3cuHH09ttv13osIyODfH19dTpJDh48+JkJztKlS6l3795a+x4nOzubBgwYQN26davzidLT05NatGih/noy1oULF1LXrl11cm7cuJHc3d1rrNVo0qQJTZkyRaf1C48PJevL5cuXydfXlxQKBbVu3ZoyMzNp8ODBZGxsTMbGxuTo6KhxQXsep0+fJnt7e3J2dqbmzZuTqakprV27Vn186dKlOq3lSUtLozZt2pCxsTEFBQVRv379qH///hQUFETGxsbqxW3aMnny5GeumUhNTaWePXtq7RsxYsRTfUlJSeTo6KjTZ6N///707bffPvX4ypUrdboIVpOcnEzt27enESNG6JVAPP4VExOjcfyHH36g4OBgnZxffPEFmZubk0qlIlNTU421Gq+++io9ePBAp/i4PhdERCdOnCB7e3tSKpXUrFkzSk5Opi5dupCzszO5urqSSqWq9cbqacTHx5OZmRl17tyZevToQcbGxrRw4UL18QULFtT5vCfQHVm2805JScGxY8eQnZ0NAHB2dkZoaChatmxpsJhu3ryJlJQU9OvXr9bjWVlZ+OOPP/Dmm2+y/L6TJ09CpVJpTJvoyldffYV9+/ZhyZIlem+7fJLjx4/DzMxMYxpCGyorK3HmzBlcu3YNVVVVcHFxQUhICKysrHTyHDhwAOHh4RrDqfqSm5uLpk2bqr/fs2cPiouLERoaqvG4NmRlZWH79u0oLS1F79696zRU/jhVVVXYtWsXjh8/XuNz0bdvXyiVhisJ8+eff+L06dMYO3ZsrceTk5OxceNGREdHa+XLy8uDUqmEra1trcd37twJlUqFnj176hxrWVkZPvzwQ+zbtw+//PLLU6dx6sr27dthYmLy1PPE0ygoKMDu3bs1Phfh4eE6b11ftWoVXn/9dZiZmen0c8+isLAQly5dQkBAACwtLVFSUoI1a9aguLgYffr00Zhe0oY///wT69evR2lpKfr164c+ffqwxSrQEUNnMIZk4MCBOm11bCiX8MnbJ+XYBAKBQFte6EqUBw8e1GnxWEO5hE/ePqnFVlRUpNViUeGrX5fwSc8neDYvdAIhEAiA1NRU9OrVS/gM7BI+6fkEz0YkEAKBQCAQCHRGdnUgBAKBJvb29s88XllZKXwN4BI+6fkE+iESCIFA5nAXRXuRfFKOTfj09wn0xNCrOA2JpaUlXb16VXIu4ZO3r6Fj4y6K9iL5pByb8OnvE+jHC70G4h//+Mdzh8QM4RI+efsaOrbIyEgUFBQ89bi9vT3GjBmj9e97kXxSjk349PcJ9MTQGUx9ERcXR2FhYeTi4qJuArVw4ULasmWLQV3CJ2+flGMTCAQCTmQ5AvHNN99g2rRpGDhwIAoKCtQLa2xtbbFo0SKDuYRP3j4px6YLkZGROjViE776cQmf9HyCJzB0BlMfBAYG0ubNm4lIc374/PnzOrWO5XYJn7x9Uo5NF6S8fkTqPinHJnwCbmQ5AnH9+vVaeyyYmZmhqKjIYC7hk7dPyrEJBAIBN7JMILy8vHDu3Lkaj+/cuVPnpkScLuGTt0/KsQkEAgE3sqwDMWPGDEyaNAklJSUgIpw4cQJr167Fp59+iuXLlxvMJXzy9kk5NoFAIGDHUHMn9c33339PzZs3J4VCQQqFgtzd3Wn58uUGdwmfvH1Sjk1bpD4PLWWflGMTPgE3sksgysvL6ccff6SsrCwiIrpz5w7l5OQY3CV88vZJOTZdkfpJXMo+KccmfAJuZJdAEBGpVCr1nnkpuYRP3j4px6YLn3zyCeXn5wufgV3CJz2fQBNZJhA9e/ZUb3+Tkkv45O2TcmzVSL3QlZR9Uo5N+ESRNUMgywTi559/Jm9vb1qyZAkdPXqUEhMTNb4M5RI+efukHBsR0bJly8jBwYHmz59PKpVKPbS7cuVK6tmzp/A10tiET3+foG7IMoGoXnD2+JdSqVT/11Au4ZO3T8qxEUm/0JWUfVKOTfgarsiaQBNZbuO8fv26JF3CJ2+flGOr9km50JWUfVKOTfj09wnqhiwTCE9PT0m6hE/ePinHBvy3MNWTXn0LXb0IPinHJnz6+wR1Q5YJRFxc3DOP69LuldMlfPL2STk2QPqFrqTsk3JswieKrBkMQ82d1Ce2trYaXxYWFqRQKMjMzIzs7OwM5hI+efukHFs1Ui90JWWflGMTvoYpsibQRJYJRG1cvnyZIiIi6Pfff5eUS/jk7ZNKbFIvdCVln5RjE76GLbIm0OSFSSCIiE6ePEkBAQGScwmfvH1SiU3qha6k7JNybMInMBSy7Mb5NIyMjHDr1i3JuYRP3j6pxNalSxecPXuWLY4XySfl2IRPYChkuYhy27ZtGt8TEbKysrB06VKEh4cbzCV88vZJOTYAmDhxIqZPn46MjAyEhITAwsJC43i7du2ErxHGJnz6+wR1xFBDH/VJbcV3nJycaMSIEXTr1i2DuYRP3j4px1abT2qFrqTsk3Jswqe/T1A3ZDkCUVVVJUmX8MnbJ+XYgMZR6EqqPinHJnwCg2HoDKY+mDNnDhUVFdV4/OHDhzRnzhyDuYRP3j4pxyYQCATcKIiIDJ3EcGNkZISsrCw0a9ZM4/Hc3Fw0a9YMlZWVBnEJn7x9Uo4NkH6hKyn7pByb8OnvE9QRQ2cw9YFCoaDbt2/XeHzPnj3k4OBgMJfwydsn5diIpF/oSso+KccmfDxF1gS6I6s1EHZ2dlAoFFAoFPD394dCoVAfq6ysRGFhISZMmNDgLuGTt0/KsT1Ofn5+jceuXLmC9957DzNmzBC+Rhqb8OnvE9QNWU1hrFq1CkSEt99+G4sWLYKNjY36mKmpKVq0aIHQ0NAGdwmfvH1Sjk0bTp06hVGjRiElJUX4DOgSPun5BM/BMAMf9cv+/fuprKxMci7hk7dPyrE9izNnzpCVlZXwGdglfNLzCZ6NrEYgaqO4uBjl5eUaj1lbWxvcJXzy9kkxtmcVpvLw8MDOnTuFrxHGJnz6+wR1xDB5S/1SVFREkyZNIkdHR1IqlTW+DOUSPnn7pBwbUeMrdCUln5RjEz79fYK6IcsEYuLEiRQYGEgbNmwglUpFsbGxNG/ePHJ3d6fVq1cbzCV88vZJOTaBQCDgRpYJhIeHB+3bt4+IiKysrOjKlStERBQXF0cDBgwwmEv45O2TcmxE0i90JWWflGMTPv19grohywTCwsJC3erVzc2NEhISiIjo2rVrZGFhYTCX8MnbJ+XYiIiUSiXl5OTUePzu3bt1mhJ5kXxSjk349PcJ6oYs23l7e3vjxo0bAIBWrVrh559/BgD8+uuvsLW1NZhL+OTtk3JswKOFZo/XlKgmMTER9vb2wtdIYxM+/X2COmKozKU++fLLL2nx4sVERLR3715SqVRkampKSqWSFi1aZDCX8MnbJ9XYbG1tyc7OjpRKpfr/q7+sra1JqVTSxIkTha+RxSZ8+vsE+iH7bZwAkJaWhlOnTsHHxwft27eXjEv45O2TSmxSL3QlZZ+UYxO++i+yJng2sk8gSkpK0KRJE8m5hE/ePinGduDAAYSFhcHExIQlphfJJ+XYhE9gMAwx7FHfVFRU0Ny5c8nV1ZWMjIzo6tWrRET0v//7v7R8+XKDuYRP3j4px/YkDx8+pHv37ml8CV/jj0349PcJtEeWCcScOXPI29ubVq9eTSqVSn3iXb9+PXXt2tVgLuGTt0/KsRFJv9CVlH1Sjk349PcJ6oYsEwgfHx+Kj48nIiJLS0v1iffixYtka2trMJfwydsn5diIpF/oSso+KccmfKLImqGQZQLRpEkT9f75x0+8ycnJOu+f53QJn7x9Uo6NSPqFrqTsk3Jswqe/T1A3ZFkHonXr1jh06FCNxzds2IDg4GCDuYRP3j4pxwYAeXl58PLyAvCoEVdeXh4AoFu3bjh48KDwNdLYhE9/n6BuGBs6gPogOjoao0ePRmZmJqqqqvDLL7/g0qVLiIuLw/bt2w3mEj55+6QcG/DfwlSenp7qwlSdO3fWu9DVi+CTcmzCp79PUEcMPQTCydWrV6mqqoqIiH7//Xfq0aMHWVhYkEqlovDwcNq1a5dBXMInb5+UY3scqRa6agw+KccmfPr7BHVDVgnEk/XRhw0bRllZWQZ3CZ+8fVKO7VncvHmTNm3aROfOnRM+A7qET3o+gXbIKoFQKBQaJ14rKyv1wjNDuoRP3j4px/Y0iouLhU8CLuGTnk+gPbJcRFkNMRbZ5HQJn7x9Uo2tsrIS8+bNg5ubGywtLXHt2jUAwEcffYQVK1YIXyONTfj09wnqhqwSCIVCUaNDW20d2xraJXzy9kk5tseJiYnBjz/+iM8++wympqbqx9u2bYvly5cLXyONTfj09wnqhqx6YSiVSgwYMABmZmYAHrU97t27NywsLDSe98svvzSoS/jk7ZNybI/j6+uL7777DhEREbCyskJiYiK8vb2RkpKC0NBQ5OfnC18jjE349PcJ6oastnG++eabGt+PGjVKEi7hk7dPyrE9TmZmJnx9fWs8XlVVhfLycuFrpLEJn/4+Qd2QVQKxcuVKSbqET94+Kcf2ONWFqTw9PTUe17fQ1Yvgk3Jswqe/T1A3ZJVACASCpyP1QldS9kk5NuHT3yeoI4bZ/CEQCBoKqRe6krJPyrEJH1+RNUHdEAmEQCBzpF7oSso+KccmfPVXZE2gHbLaxikQCGpCT2y02rlzJx4+fCh8jTw24dPfJ9APkUAIBC8YT56Ehc8wLuGTnk+gGyKBEAhkjtQLXUnZJ+XYhE9/n0A/xC4MgUDmEBHeeustdWGqkpISTJgwoc6FqV4kn5RjEz79fQL9EAmEQCBzpF7oSso+KccmfHxF1gR1Q1alrAUCgUAgEDQMYg2EQCAQCAQCnREJhEAgEAgEAp0RCYRAIBAIBAKdEQmEQCAQCAQCnREJhEAgEAgEAp0RCYRAIBAIBAKdEQmEQCAQCAQCnfl/JifCnSGrs4AAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "sns.heatmap(treeshap, cmap='coolwarm', vmin=0, vmax=1)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.5724\n" - ] - } - ], - "source": [ - "results = treeshap.to_numpy()\n", - "sum = 0\n", - "for i in range(len(results)//2):\n", - " result = results[i][:10]\n", - " support = np.concatenate((np.ones(5),np.zeros(5)))\n", - " sum += roc_auc_score(support, result)\n", - "print(sum/(len(results)//2))" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.8277600000000003\n" - ] - } - ], - "source": [ - "sum = 0\n", - "for i in range(len(results)//2):\n", - " result = results[i]\n", - " support = np.concatenate((np.ones(5),np.zeros(15)))\n", - " sum += roc_auc_score(support, result)\n", - "print(sum/(len(results)//2))" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "# # Create subplots\n", - "# fig, axs = plt.subplots(1, 3, figsize=(25, 10), sharey=True)\n", - "\n", - "\n", - "# for i in range(len(heritability)):\n", - "# h = heritability[i]\n", - "# for m in methods:\n", - "# axs[i].plot(sample_row_n, agg_results[h][m][\"auroc_group1_avg_prediction\"], label=m)\n", - "# axs[i].set_xlabel('sample size')\n", - "# axs[i].set_ylabel('AUROC')\n", - "# axs[i].set_title('PVE = ' + str(h))\n", - " \n", - "# # Share the label in the last plot\n", - "# axs[2].legend()\n", - "\n", - "# # Show the plots\n", - "# plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "# # Create subplots\n", - "# fig, axs = plt.subplots(1, 3, figsize=(25, 10), sharey=True)\n", - "\n", - "\n", - "# for i in range(len(heritability)):\n", - "# h = heritability[i]\n", - "# for m in methods:\n", - "# axs[i].plot(sample_row_n, agg_results[h][m][\"auroc_group2_avg_prediction\"], label=m)\n", - "# axs[i].set_xlabel('sample size')\n", - "# axs[i].set_ylabel('AUROC')\n", - "# axs[i].set_title('PVE = ' + str(h))\n", - "\n", - "# # Share the label in the last plot\n", - "# axs[2].legend()\n", - "\n", - "# # Show the plots\n", - "# plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.0" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -}