install by pypi
pip install paddleclas==2.0.0rc2
build own whl package and install
python3 setup.py bdist_wheel
pip3 install dist/paddleclas-x.x.x-py3-none-any.whl
- Assign
image_file='docs/images/whl/demo.jpg'
, Use inference model that Paddle providesmodel_name='ResNet50'
Here is demo.jpg
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50',use_gpu=False,use_tensorrt=False)
image_file='docs/images/whl/demo.jpg'
result=clas.predict(image_file)
print(result)
>>> result
[{'filename': '/Users/mac/Downloads/PaddleClas/docs/images/whl/demo.jpg', 'class_ids': [8], 'scores': [0.9796774], 'label_names': ['hen']}]
- Using command line interactive programming
paddleclas --model_name='ResNet50' --image_file='docs/images/whl/demo.jpg'
>>> result
**********/Users/mac/Downloads/PaddleClas/docs/images/whl/demo.jpg**********
[{'filename': '/Users/mac/Downloads/PaddleClas/docs/images/whl/demo.jpg', 'class_ids': [8], 'scores': [0.9796774], 'label_names': ['hen']}]
- model_name(str): model's name. If not assigning
model_file
andparams_file
, you can assign this param. If using inference model based on ImageNet1k provided by Paddle, set as default='ResNet50'. - image_file(str): image's path. Support assigning single local image, internet image and folder containing series of images. Also Support numpy.ndarray.
- use_gpu(bool): Whether to use GPU or not, defalut=False。
- use_tensorrt(bool): whether to open tensorrt or not. Using it can greatly promote predict preformance, default=False.
- resize_short(int): resize the minima between height and width into resize_short(int), default=256
- resize(int): resize image into resize(int), default=224.
- normalize(bool): whether normalize image or not, default=True.
- batch_size(int): batch number, default=1.
- model_file(str): path of inference.pdmodel. If not assign this param,you need assign
model_name
for downloading. - params_file(str): path of inference.pdiparams. If not assign this param,you need assign
model_name
for downloading. - ir_optim(bool): whether enable IR optimization or not, default=True.
- gpu_mem(int): GPU memory usages,default=8000。
- enable_profile(bool): whether enable profile or not,default=False.
- top_k(int): Assign top_k, default=1.
- enable_mkldnn(bool): whether enable MKLDNN or not, default=False.
- cpu_num_threads(int): Assign number of cpu threads, default=10.
- label_name_path(str): Assign path of label_name_dict you use. If using your own training model, you can assign this param. If using inference model based on ImageNet1k provided by Paddle, you may not assign this param.Defaults take ImageNet1k's label name.
- pre_label_image(bool): whether prelabel or not, default=False.
- pre_label_out_idr(str): If prelabeling, the path of output.
We provide two ways to use: 1. Python interative programming 2. Bash command line programming
- check
help
information
paddleclas -h
- Use user-specified model, you need to assign model's path
model_file
and parameters's pathparams_file
from paddleclas import PaddleClas
clas = PaddleClas(model_file='user-specified model path',
params_file='parmas path', use_gpu=False, use_tensorrt=False)
image_file = ''
result=clas.predict(image_file)
print(result)
paddleclas --model_file='user-specified model path' --params_file='parmas path' --image_file='image path'
- Use inference model which PaddlePaddle provides to predict, you need to choose one of model when initializing PaddleClas to assign
model_name
. You may not assignmodel_file
, and the model you chosen will be download inBASE_INFERENCE_MODEL_DIR
,which will be saved in folder named bymodel_name
,avoiding overlay different inference model.
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50',use_gpu=False, use_tensorrt=False)
image_file = ''
result=clas.predict(image_file)
print(result)
paddleclas --model_name='ResNet50' --image_file='image path'
- You can assign input as format
np.ndarray
which has been preprocessed--image_file=np.ndarray
.
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50',use_gpu=False, use_tensorrt=False)
image_file =np.ndarray # image_file 可指定为前缀是https的网络图片,也可指定为本地图片
result=clas.predict(image_file)
paddleclas --model_name='ResNet50' --image_file=np.ndarray
- You can assign
image_file
as a folder path containing series of images, also can assigntop_k
.
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50',use_gpu=False, use_tensorrt=False,top_k=5)
image_file = '' # it can be image_file folder path which contains all of images you want to predict.
result=clas.predict(image_file)
print(result)
paddleclas --model_name='ResNet50' --image_file='image path' --top_k=5
- You can assign
--pre_label_image=True
,--pre_label_out_idr= './output_pre_label/'
.Then images will be copied into folder named by top-1 class_id.
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50',use_gpu=False, use_tensorrt=False,top_k=5, pre_label_image=True,pre_label_out_idr='./output_pre_label/')
image_file = '' # it can be image_file folder path which contains all of images you want to predict.
result=clas.predict(image_file)
print(result)
paddleclas --model_name='ResNet50' --image_file='image path' --top_k=5 --pre_label_image=True --pre_label_out_idr='./output_pre_label/'
- You can assign
--label_name_path
as your own label_dict_file, format should be as(class_idclass_name<\n>).
0 tench, Tinca tinca
1 goldfish, Carassius auratus
2 great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias
......
- If you use inference model that Paddle provides, you do not need assign
label_name_path
. Program will takeppcls/utils/imagenet1k_label_list.txt
as defaults. If you hope using your own training model, you can providelabel_name_path
outputing 'label_name' and scores, otherwise no 'label_name' in output information.
from paddleclas import PaddleClas
clas = PaddleClas(model_file= './inference.pdmodel',params_file = './inference.pdiparams',label_name_path='./ppcls/utils/imagenet1k_label_list.txt',use_gpu=False)
image_file = '' # it can be image_file folder path which contains all of images you want to predict.
result=clas.predict(image_file)
print(result)
paddleclas --model_file= './inference.pdmodel' --params_file = './inference.pdiparams' --image_file='image path' --label_name_path='./ppcls/utils/imagenet1k_label_list.txt'
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50',use_gpu=False)
image_file = '' # it can be image_file folder path which contains all of images you want to predict.
result=clas.predict(image_file)
print(result)
paddleclas --model_name='ResNet50' --image_file='image path'