-
Notifications
You must be signed in to change notification settings - Fork 28
/
test.py
70 lines (63 loc) · 3.15 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
from util.visualizer import save_images
from util import html
from sklearn.manifold import TSNE
from sklearn.datasets import load_iris,load_digits
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
def plot_xy(data, label, title, epoch):
"""绘图"""
print(len(data), data)
print(len(label),label)
mapping = {0: "2×", 1: "3×", 2: "4×", 3: "5×", 4: "6×", 5: "7×", 6: "8×"}
tsne = TSNE(n_components=2, init='pca', random_state=0)
x_tsne = tsne.fit_transform(data)
df = pd.DataFrame(x_tsne, columns=['x', 'y'])
df['label'] = [mapping[x] for x in label]
sns.scatterplot(x="x", y="y", hue=df.label.tolist(),palette=sns.color_palette("hls", 7), data=df)
plt.title(title,fontsize=15)
# plt.xticks([])
# plt.yticks([])
plt.axis('on')
plt.xlabel('')
plt.ylabel('')
plt.savefig('./test{}.pdf'.format(epoch))
plt.show()
if __name__ == '__main__':
opt = TestOptions().parse() # get test options
# hard-code some parameters for test
opt.num_threads = 0 # test code only supports num_threads = 0
opt.batch_size = 1 # test code only supports batch_size = 1
opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
opt.no_flip = True # no flip; comment this line if results on flipped images are needed.
opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file.
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
# create a website
web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) # define the website directory
if opt.load_iter > 0: # load_iter is 0 by default
web_dir = '{:s}_iter{:d}'.format(web_dir, opt.load_iter)
print('creating web directory', web_dir)
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch))
# test with eval mode. This only affects layers like batchnorm and dropout.
if opt.eval:
model.eval()
for i, data in enumerate(dataset):
if i >= opt.num_test: # only apply our model to opt.num_test images.
break
model.set_input(data) # unpack data from data loader
model.test() # run inference
visuals = model.get_current_visuals() # get image results
img_path = model.get_image_paths() # get image paths
if i % 5 == 0: # save images to an HTML file
print('processing (%04d)-th image... %s' % (i, img_path))
save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize)
webpage.save() # save the HTML
#plot_xy(model.TsneData, model.TsneLabel, "T-sne visualization for cell size code", opt.epoch)