forked from pemami4911/neural-combinatorial-rl-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sorting_task.py
181 lines (139 loc) · 5.52 KB
/
sorting_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Generate sorting data and store in .txt
# Define the reward function
import torch
from torch.utils.data import Dataset
from torch.autograd import Variable
from tqdm import trange, tqdm
import os
import sys
def reward(sample_solution, USE_CUDA=False):
"""
The reward for the sorting task is defined as the
length of the longest sorted consecutive subsequence.
Input sequences must all be the same length.
Example:
input | output
====================
[1 4 3 5 2] | [5 1 2 3 4]
The output gets a reward of 4/5, or 0.8
The range is [1/sourceL, 1]
Args:
sample_solution: list of len sourceL of [batch_size]
Tensors
Returns:
[batch_size] containing trajectory rewards
"""
batch_size = sample_solution[0].size(0)
sourceL = len(sample_solution)
longest = Variable(torch.ones(batch_size, 1), requires_grad=False)
current = Variable(torch.ones(batch_size, 1), requires_grad=False)
if USE_CUDA:
longest = longest.cuda()
current = current.cuda()
for i in range(1, sourceL):
# compare solution[i-1] < solution[i]
res = torch.lt(sample_solution[i-1], sample_solution[i])
# if res[i,j] == 1, increment length of current sorted subsequence
current += res.float()
# else, reset current to 1
current[torch.eq(res, 0)] = 1
#current[torch.eq(res, 0)] -= 1
# if, for any, current > longest, update longest
mask = torch.gt(current, longest)
longest[mask] = current[mask]
return -torch.div(longest, sourceL)
def create_dataset(
train_size,
val_size,
#test_size,
data_dir,
data_len,
seed=None):
if seed is not None:
torch.manual_seed(seed)
train_task = 'sorting-size-{}-len-{}-train.txt'.format(train_size, data_len)
val_task = 'sorting-size-{}-len-{}-val.txt'.format(val_size, data_len)
#test_task = 'sorting-size-{}-len-{}-test.txt'.format(test_size, data_len)
train_fname = os.path.join(data_dir, train_task)
val_fname = os.path.join(data_dir, val_task)
if not os.path.isdir(data_dir):
os.mkdir(data_dir)
else:
if os.path.exists(train_fname) and os.path.exists(val_fname):
return train_fname, val_fname
train_set = open(os.path.join(data_dir, train_task), 'w')
val_set = open(os.path.join(data_dir, val_task), 'w')
#test_set = open(os.path.join(data_dir, test_task), 'w')
def to_string(tensor):
"""
Convert a a torch.LongTensor
of size data_len to a string
of integers separated by whitespace
and ending in a newline character
"""
line = ''
for j in range(data_len-1):
line += '{} '.format(tensor[j])
line += str(tensor[-1]) + '\n'
return line
print('Creating training data set for {}...'.format(train_task))
# Generate a training set of size train_size
for i in trange(train_size):
x = torch.randperm(data_len)
train_set.write(to_string(x))
print('Creating validation data set for {}...'.format(val_task))
for i in trange(val_size):
x = torch.randperm(data_len)
val_set.write(to_string(x))
# print('Creating test data set for {}...'.format(test_task))
#
# for i in trange(test_size):
# x = torch.randperm(data_len)
# test_set.write(to_string(x))
train_set.close()
val_set.close()
# test_set.close()
return train_fname, val_fname
class SortingDataset(Dataset):
def __init__(self, dataset_fname):
super(SortingDataset, self).__init__()
print('Loading training data into memory')
self.data_set = []
with open(dataset_fname, 'r') as dset:
lines = dset.readlines()
for next_line in tqdm(lines):
toks = next_line.split()
sample = torch.zeros(1, len(toks)).long()
for idx, tok in enumerate(toks):
sample[0, idx] = int(tok)
self.data_set.append(sample)
self.size = len(self.data_set)
def __len__(self):
return self.size
def __getitem__(self, idx):
return self.data_set[idx]
if __name__ == '__main__':
if int(sys.argv[1]) == 0:
#sample = Variable(torch.Tensor([[3, 2, 1, 4, 5], [2, 3, 5, 1, 4]]))
sample = [Variable(torch.Tensor([3,2])), Variable(torch.Tensor([2,3])), Variable(torch.Tensor([1,5])),
Variable(torch.Tensor([4, 1])), Variable(torch.Tensor([5, 4]))]
answer = torch.Tensor([3/5., 3/5])
res = reward(sample)
print('Expected answer: {}, Actual answer: {}'.format(answer, res.data))
"""
sample = Variable(torch.Tensor([[1, 2, 3, 4, 5], [5, 4, 3, 2, 1]]))
answer = torch.Tensor([1., 1/5])
res = reward(sample)
print('Expected answer: {}, Actual answer: {}'.format(answer, res.data))
sample = Variable(torch.Tensor([[1, 2, 5, 4, 3], [4, 1, 2, 3, 5]]))
answer = torch.Tensor([3/5., 4/5])
res = reward(sample)
print('Expected answer: {}, Actual answer: {}'.format(answer, res.data))
"""
elif int(sys.argv[1]) == 1:
create_sorting_dataset(1000, 100, 'data', 10, 123)
elif int(sys.argv[1]) == 2:
sorting_data = SortingDataset('data', 'sorting-size-1000-len-10-train.txt',
'sorting-size-100-len-10-val.txt')
for i in range(len(sorting_data)):
print(sorting_data[i])