-
Notifications
You must be signed in to change notification settings - Fork 216
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Loss doesn't go down lower than 0.7 for market1501 dataset #91
Comments
This shouldn't be the case. My best guess would be that you did not load a
pretrained network? I just checked some of my logs and the average loss
typically doesn't go over 0.7 after a few hundred iterations. Not loading
the correct checkpoint is the only thing I could think of right now.
…On Tue, Feb 25, 2020 at 11:46 PM Mike Azatov ***@***.***> wrote:
Trying to train on market1501 as a proof of concept before modifying
anything. The training loss quickly foes down to 0.7 and stays there
forever. So far haven't changed anything in the script. Just changed the batch_p
= 16 , as I was running out of memory on my comptuer. Any ideas on what I
might be not doing right?
Colocations handled automatically by placer.
2020-02-25 16:08:37,651 [WARNING] tensorflow: From C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
2020-02-25 16:08:37,651 [WARNING] tensorflow: From C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
2020-02-25 16:08:37,665 [WARNING] tensorflow: From C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\math_grad.py:102: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
2020-02-25 16:08:37,665 [WARNING] tensorflow: From C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\math_grad.py:102: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
2020-02-25 16:08:46,499 [INFO] tensorflow: experiments\market_train\checkpoint-0 is not in all_model_checkpoint_paths. Manually adding it.
2020-02-25 16:08:46,499 [INFO] tensorflow: experiments\market_train\checkpoint-0 is not in all_model_checkpoint_paths. Manually adding it.
2020-02-25 16:09:02,141 [INFO] train: Starting training from iteration 0.
2020-02-25 16:09:09,892 [INFO] train: iter: 1, loss min|avg|max: 0.865|4.333|17.520, ***@***.***: 8.33%, ETA: 2 days, 5:48:35 (7.75s/it)
2020-02-25 16:09:10,247 [INFO] train: iter: 2, loss min|avg|max: 0.872|2.155|11.571, ***@***.***: 13.02%, ETA: 2:25:25 (0.35s/it)
2020-02-25 16:09:10,604 [INFO] train: iter: 3, loss min|avg|max: 0.886|2.971|11.878, ***@***.***: 6.25%, ETA: 2:27:55 (0.36s/it)
2020-02-25 16:09:10,963 [INFO] train: iter: 4, loss min|avg|max: 0.878|1.741| 5.409, ***@***.***: 11.46%, ETA: 2:28:15 (0.36s/it)
2020-02-25 16:09:11,322 [INFO] train: iter: 5, loss min|avg|max: 0.803|1.908| 6.864, ***@***.***: 12.50%, ETA: 2:28:21 (0.36s/it)
2020-02-25 16:09:11,678 [INFO] train: iter: 6, loss min|avg|max: 0.820|1.692| 5.620, ***@***.***: 9.38%, ETA: 2:27:01 (0.35s/it)
2020-02-25 16:09:12,030 [INFO] train: iter: 7, loss min|avg|max: 0.854|1.858| 8.326, ***@***.***: 7.29%, ETA: 2:25:25 (0.35s/it)
2020-02-25 16:09:12,385 [INFO] train: iter: 8, loss min|avg|max: 0.845|1.461| 3.330, ***@***.***: 9.90%, ETA: 2:26:38 (0.35s/it)
2020-02-25 16:09:12,744 [INFO] train: iter: 9, loss min|avg|max: 0.802|1.675| 8.456, ***@***.***: 5.21%, ETA: 2:28:42 (0.36s/it)
2020-02-25 16:09:13,104 [INFO] train: iter: 10, loss min|avg|max: 0.798|1.475| 3.716, ***@***.***: 7.29%, ETA: 2:29:01 (0.36s/it)
2020-02-25 16:09:13,455 [INFO] train: iter: 11, loss min|avg|max: 0.764|1.357| 2.830, ***@***.***: 10.94%, ETA: 2:25:00 (0.35s/it)
2020-02-25 16:09:13,817 [INFO] train: iter: 12, loss min|avg|max: 0.786|1.250| 3.432, ***@***.***: 9.90%, ETA: 2:28:41 (0.36s/it)
2020-02-25 16:09:14,172 [INFO] train: iter: 13, loss min|avg|max: 0.668|1.259| 2.927, ***@***.***: 7.81%, ETA: 2:26:36 (0.35s/it)
2020-02-25 16:09:14,519 [INFO] train: iter: 14, loss min|avg|max: 0.643|1.094| 4.106, ***@***.***: 18.75%, ETA: 2:23:16 (0.34s/it)
2020-02-25 16:09:14,878 [INFO] train: iter: 15, loss min|avg|max: 0.785|1.343| 4.559, ***@***.***: 15.10%, ETA: 2:28:03 (0.36s/it)
2020-02-25 16:09:15,234 [INFO] train: iter: 16, loss min|avg|max: 0.731|1.216| 4.446, ***@***.***: 11.98%, ETA: 2:26:59 (0.35s/it)
2020-02-25 16:09:15,592 [INFO] train: iter: 17, loss min|avg|max: 0.766|1.130| 4.649, ***@***.***: 10.94%, ETA: 2:28:17 (0.36s/it)
2020-02-25 16:09:15,947 [INFO] train: iter: 18, loss min|avg|max: 0.748|1.143| 2.784, ***@***.***: 14.06%, ETA: 2:26:52 (0.35s/it)
2020-02-25 16:09:16,304 [INFO] train: iter: 19, loss min|avg|max: 0.704|1.067| 2.621, ***@***.***: 9.38%, ETA: 2:27:26 (0.35s/it)
2020-02-25 16:09:16,690 [INFO] train: iter: 20, loss min|avg|max: 0.783|1.122| 2.887, ***@***.***: 8.85%, ETA: 2:38:55 (0.38s/it)
2020-02-25 16:09:17,052 [INFO] train: iter: 21, loss min|avg|max: 0.754|1.062| 3.799, ***@***.***: 8.33%, ETA: 2:29:52 (0.36s/it)
2020-02-25 16:09:17,414 [INFO] train: iter: 22, loss min|avg|max: 0.748|1.123| 1.990, ***@***.***: 10.94%, ETA: 2:29:28 (0.36s/it)
2020-02-25 16:09:17,795 [INFO] train: iter: 23, loss min|avg|max: 0.736|0.985| 1.747, ***@***.***: 11.46%, ETA: 2:37:45 (0.38s/it)
2020-02-25 16:09:18,155 [INFO] train: iter: 24, loss min|avg|max: 0.742|1.086| 6.032, ***@***.***: 11.98%, ETA: 2:28:37 (0.36s/it)
2020-02-25 16:09:18,518 [INFO] train: iter: 25, loss min|avg|max: 0.719|1.022| 1.805, ***@***.***: 9.90%, ETA: 2:29:44 (0.36s/it)
2020-02-25 16:09:18,871 [INFO] train: iter: 26, loss min|avg|max: 0.741|1.071| 2.763, ***@***.***: 10.94%, ETA: 2:26:08 (0.35s/it)
2020-02-25 16:09:19,227 [INFO] train: iter: 27, loss min|avg|max: 0.715|0.953| 2.764, ***@***.***: 11.46%, ETA: 2:26:58 (0.35s/it)
2020-02-25 16:09:19,585 [INFO] train: iter: 28, loss min|avg|max: 0.711|0.932| 2.323, ***@***.***: 11.98%, ETA: 2:27:46 (0.36s/it)
2020-02-25 16:09:19,941 [INFO] train: iter: 29, loss min|avg|max: 0.740|1.007| 2.782, ***@***.***: 8.85%, ETA: 2:26:56 (0.35s/it)
2020-02-25 16:09:20,295 [INFO] train: iter: 30, loss min|avg|max: 0.736|0.973| 3.527, ***@***.***: 16.15%, ETA: 2:26:17 (0.35s/it)
2020-02-25 16:09:20,651 [INFO] train: iter: 31, loss min|avg|max: 0.720|0.993| 2.995, ***@***.***: 16.15%, ETA: 2:26:59 (0.35s/it)
2020-02-25 16:09:21,009 [INFO] train: iter: 32, loss min|avg|max: 0.728|1.068| 3.389, ***@***.***: 14.58%, ETA: 2:27:42 (0.35s/it)
2020-02-25 16:09:21,364 [INFO] train: iter: 33, loss min|avg|max: 0.735|0.901| 1.411, ***@***.***: 13.02%, ETA: 2:27:19 (0.35s/it)
2020-02-25 16:09:21,719 [INFO] train: iter: 34, loss min|avg|max: 0.728|0.884| 1.307, ***@***.***: 6.77%, ETA: 2:26:16 (0.35s/it)
2020-02-25 16:09:22,080 [INFO] train: iter: 35, loss min|avg|max: 0.718|0.905| 1.174, ***@***.***: 8.85%, ETA: 2:28:59 (0.36s/it)
2020-02-25 16:09:22,439 [INFO] train: iter: 36, loss min|avg|max: 0.720|0.931| 1.618, ***@***.***: 12.50%, ETA: 2:27:29 (0.35s/it)
2020-02-25 16:09:22,795 [INFO] train: iter: 37, loss min|avg|max: 0.731|0.982| 3.842, ***@***.***: 12.50%, ETA: 2:27:17 (0.35s/it)
2020-02-25 16:09:23,154 [INFO] train: iter: 38, loss min|avg|max: 0.734|0.879| 2.909, ***@***.***: 14.06%, ETA: 2:28:08 (0.36s/it)
2020-02-25 16:09:23,507 [INFO] train: iter: 39, loss min|avg|max: 0.699|0.912| 2.311, ***@***.***: 15.10%, ETA: 2:25:40 (0.35s/it)
2020-02-25 16:09:23,884 [INFO] train: iter: 40, loss min|avg|max: 0.697|0.910| 1.829, ***@***.***: 15.62%, ETA: 2:35:33 (0.37s/it)
2020-02-25 16:09:24,287 [INFO] train: iter: 41, loss min|avg|max: 0.721|0.864| 1.853, ***@***.***: 16.67%, ETA: 2:46:49 (0.40s/it)
2020-02-25 16:09:24,664 [INFO] train: iter: 42, loss min|avg|max: 0.729|0.861| 1.211, ***@***.***: 11.46%, ETA: 2:35:34 (0.37s/it)
2020-02-25 16:09:25,047 [INFO] train: iter: 43, loss min|avg|max: 0.727|0.911| 1.790, ***@***.***: 8.33%, ETA: 2:38:28 (0.38s/it)
2020-02-25 16:09:25,417 [INFO] train: iter: 44, loss min|avg|max: 0.715|0.839| 1.201, ***@***.***: 17.19%, ETA: 2:33:04 (0.37s/it)
2020-02-25 16:09:25,793 [INFO] train: iter: 45, loss min|avg|max: 0.755|0.902| 1.494, ***@***.***: 10.94%, ETA: 2:35:27 (0.37s/it)
2020-02-25 16:09:26,165 [INFO] train: iter: 46, loss min|avg|max: 0.700|0.866| 1.410, ***@***.***: 11.46%, ETA: 2:34:07 (0.37s/it)
2020-02-25 16:09:26,531 [INFO] train: iter: 47, loss min|avg|max: 0.714|0.811| 1.563, ***@***.***: 12.50%, ETA: 2:31:06 (0.36s/it)
2020-02-25 16:09:26,892 [INFO] train: iter: 48, loss min|avg|max: 0.650|0.792| 1.180, ***@***.***: 13.54%, ETA: 2:28:54 (0.36s/it)
2020-02-25 16:09:27,245 [INFO] train: iter: 49, loss min|avg|max: 0.685|0.848| 1.405, ***@***.***: 11.98%, ETA: 2:25:37 (0.35s/it)
2020-02-25 16:09:27,605 [INFO] train: iter: 50, loss min|avg|max: 0.710|0.901| 1.537, ***@***.***: 10.42%, ETA: 2:28:03 (0.36s/it)
2020-02-25 16:09:27,960 [INFO] train: iter: 51, loss min|avg|max: 0.720|0.840| 1.334, ***@***.***: 11.46%, ETA: 2:26:00 (0.35s/it)
2020-02-25 16:09:28,316 [INFO] train: iter: 52, loss min|avg|max: 0.705|0.815| 1.043, ***@***.***: 18.23%, ETA: 2:27:15 (0.35s/it)
2020-02-25 16:09:28,674 [INFO] train: iter: 53, loss min|avg|max: 0.711|0.847| 1.636, ***@***.***: 14.58%, ETA: 2:27:22 (0.35s/it)
2020-02-25 16:09:29,034 [INFO] train: iter: 54, loss min|avg|max: 0.733|0.883| 1.860, ***@***.***: 4.69%, ETA: 2:28:26 (0.36s/it)
2020-02-25 16:09:29,405 [INFO] train: iter: 55, loss min|avg|max: 0.704|0.830| 1.334, ***@***.***: 11.46%, ETA: 2:33:08 (0.37s/it)
2020-02-25 16:09:29,771 [INFO] train: iter: 56, loss min|avg|max: 0.734|0.841| 1.506, ***@***.***: 9.90%, ETA: 2:30:49 (0.36s/it)
2020-02-25 16:09:30,126 [INFO] train: iter: 57, loss min|avg|max: 0.707|0.845| 1.865, ***@***.***: 7.81%, ETA: 2:26:48 (0.35s/it)
2020-02-25 16:09:30,497 [INFO] train: iter: 58, loss min|avg|max: 0.718|0.854| 1.185, ***@***.***: 11.98%, ETA: 2:32:59 (0.37s/it)
2020-02-25 16:09:30,863 [INFO] train: iter: 59, loss min|avg|max: 0.718|0.800| 1.581, ***@***.***: 8.85%, ETA: 2:30:54 (0.36s/it)
2020-02-25 16:09:31,252 [INFO] train: iter: 60, loss min|avg|max: 0.728|0.820| 1.343, ***@***.***: 7.29%, ETA: 2:33:10 (0.37s/it)
2020-02-25 16:09:31,607 [INFO] train: iter: 61, loss min|avg|max: 0.725|0.796| 1.221, ***@***.***: 7.81%, ETA: 2:27:21 (0.35s/it)
2020-02-25 16:09:31,963 [INFO] train: iter: 62, loss min|avg|max: 0.704|0.768| 1.018, ***@***.***: 13.02%, ETA: 2:27:07 (0.35s/it)
2020-02-25 16:09:32,317 [INFO] train: iter: 63, loss min|avg|max: 0.686|0.807| 1.369, ***@***.***: 16.15%, ETA: 2:26:21 (0.35s/it)
2020-02-25 16:09:32,675 [INFO] train: iter: 64, loss min|avg|max: 0.724|0.827| 1.182, ***@***.***: 6.25%, ETA: 2:27:33 (0.36s/it)
2020-02-25 16:09:33,036 [INFO] train: iter: 65, loss min|avg|max: 0.719|0.785| 1.116, ***@***.***: 8.85%, ETA: 2:29:19 (0.36s/it)
2020-02-25 16:09:33,414 [INFO] train: iter: 66, loss min|avg|max: 0.712|0.801| 1.183, ***@***.***: 11.98%, ETA: 2:36:10 (0.38s/it)
2020-02-25 16:09:33,814 [INFO] train: iter: 67, loss min|avg|max: 0.723|0.800| 1.365, ***@***.***: 8.85%, ETA: 2:45:05 (0.40s/it)
2020-02-25 16:09:34,181 [INFO] train: iter: 68, loss min|avg|max: 0.703|0.781| 1.249, ***@***.***: 12.50%, ETA: 2:31:15 (0.36s/it)
2020-02-25 16:09:34,551 [INFO] train: iter: 69, loss min|avg|max: 0.711|0.800| 1.218, ***@***.***: 13.54%, ETA: 2:32:55 (0.37s/it)
2020-02-25 16:09:34,920 [INFO] train: iter: 70, loss min|avg|max: 0.722|0.809| 1.138, ***@***.***: 11.98%, ETA: 2:32:59 (0.37s/it)
2020-02-25 16:09:35,296 [INFO] train: iter: 71, loss min|avg|max: 0.716|0.796| 1.108, ***@***.***: 10.94%, ETA: 2:35:18 (0.37s/it)
2020-02-25 16:09:35,665 [INFO] train: iter: 72, loss min|avg|max: 0.688|0.784| 1.115, ***@***.***: 16.15%, ETA: 2:32:34 (0.37s/it)
2020-02-25 16:09:36,024 [INFO] train: iter: 73, loss min|avg|max: 0.719|0.800| 1.315, ***@***.***: 10.94%, ETA: 2:28:35 (0.36s/it)
2020-02-25 16:09:36,380 [INFO] train: iter: 74, loss min|avg|max: 0.714|0.792| 1.027, ***@***.***: 14.06%, ETA: 2:27:07 (0.35s/it)
2020-02-25 16:09:36,751 [INFO] train: iter: 75, loss min|avg|max: 0.710|0.778| 1.118, ***@***.***: 9.90%, ETA: 2:33:15 (0.37s/it)
2020-02-25 16:09:37,138 [INFO] train: iter: 76, loss min|avg|max: 0.699|0.776| 1.313, ***@***.***: 11.98%, ETA: 2:40:23 (0.39s/it)
2020-02-25 16:09:37,504 [INFO] train: iter: 77, loss min|avg|max: 0.721|0.809| 1.144, ***@***.***: 12.50%, ETA: 2:30:51 (0.36s/it)
2020-02-25 16:09:37,866 [INFO] train: iter: 78, loss min|avg|max: 0.729|0.801| 0.942, ***@***.***: 11.46%, ETA: 2:29:15 (0.36s/it)
2020-02-25 16:09:38,225 [INFO] train: iter: 79, loss min|avg|max: 0.697|0.782| 0.967, ***@***.***: 15.10%, ETA: 2:28:17 (0.36s/it)
2020-02-25 16:09:38,586 [INFO] train: iter: 80, loss min|avg|max: 0.710|0.815| 1.793, ***@***.***: 9.38%, ETA: 2:29:01 (0.36s/it)
2020-02-25 16:09:38,941 [INFO] train: iter: 81, loss min|avg|max: 0.707|0.826| 1.555, ***@***.***: 10.94%, ETA: 2:26:38 (0.35s/it)
And lots of iterations later:
2020-02-25 19:33:32,859 [INFO] train: iter: 8898, loss min|avg|max: 0.415|0.687| 1.047, ***@***.***: 56.25%, ETA: 1:37:59 (0.37s/it)
2020-02-25 19:33:33,222 [INFO] train: iter: 8899, loss min|avg|max: 0.656|0.787| 1.747, ***@***.***: 55.73%, ETA: 1:36:35 (0.36s/it)
2020-02-25 19:33:33,579 [INFO] train: iter: 8900, loss min|avg|max: 0.691|0.737| 1.346, ***@***.***: 54.17%, ETA: 1:34:59 (0.35s/it)
2020-02-25 19:33:33,940 [INFO] train: iter: 8901, loss min|avg|max: 0.691|0.826| 2.345, ***@***.***: 42.19%, ETA: 1:36:04 (0.36s/it)
2020-02-25 19:33:34,302 [INFO] train: iter: 8902, loss min|avg|max: 0.638|0.717| 0.965, ***@***.***: 58.33%, ETA: 1:36:22 (0.36s/it)
2020-02-25 19:33:34,670 [INFO] train: iter: 8903, loss min|avg|max: 0.353|0.677| 0.728, ***@***.***: 53.65%, ETA: 1:37:55 (0.36s/it)
2020-02-25 19:33:35,031 [INFO] train: iter: 8904, loss min|avg|max: 0.691|0.745| 1.200, ***@***.***: 54.69%, ETA: 1:36:09 (0.36s/it)
2020-02-25 19:33:35,397 [INFO] train: iter: 8905, loss min|avg|max: 0.693|0.777| 3.160, ***@***.***: 43.23%, ETA: 1:37:22 (0.36s/it)
2020-02-25 19:33:35,757 [INFO] train: iter: 8906, loss min|avg|max: 0.692|0.925| 4.062, ***@***.***: 37.50%, ETA: 1:36:02 (0.36s/it)
2020-02-25 19:33:36,120 [INFO] train: iter: 8907, loss min|avg|max: 0.692|0.804| 1.711, ***@***.***: 46.88%, ETA: 1:36:18 (0.36s/it)
2020-02-25 19:33:36,483 [INFO] train: iter: 8908, loss min|avg|max: 0.378|0.677| 0.697, ***@***.***: 72.40%, ETA: 1:36:34 (0.36s/it)
2020-02-25 19:33:36,878 [INFO] train: iter: 8909, loss min|avg|max: 0.693|0.744| 3.838, ***@***.***: 57.81%, ETA: 1:45:06 (0.39s/it)
2020-02-25 19:33:37,249 [INFO] train: iter: 8910, loss min|avg|max: 0.689|0.846| 3.782, ***@***.***: 59.38%, ETA: 1:38:25 (0.37s/it)
—
You are receiving this because you are subscribed to this thread.
Reply to this email directly, view it on GitHub
<#91?email_source=notifications&email_token=AAOJDTPIPAKD2FB6QWR3BKDREWNSZA5CNFSM4K3VBCTKYY3PNVWWK3TUL52HS4DFUVEXG43VMWVGG33NNVSW45C7NFSM4IQHCSDQ>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAOJDTK2MIO5K4CZOOAVFD3REWNSZANCNFSM4K3VBCTA>
.
|
Thanks @Pandoro for a prompt reply! 👍 You are correct, I didn't do anything special to load a pretrained network. I was wondering, did you mean to load the pretrained Or did you mean start from the checkpoint you guys provide? In that case, I immediately get good results. I would like to figure out how to train it from scratch though.
|
Yes, I mean the imagenet pretrained checkpoint.
See the Readme for the instructions:
https://github.com/VisualComputingInstitute/triplet-reid/blob/master/README.md#pre-trained-initialization
…On Wed, Feb 26, 2020, 13:49 Mike Azatov ***@***.***> wrote:
Thanks @Pandoro <https://github.com/Pandoro> for a prompt reply! 👍
You are correct, I didn't do anything special to load a pretrained
network. I was wondering, did you mean to load the pretrained resnet_50v1
? If it's not loaded automatically, where would I specify the weights and
where should I put them?
Or did you mean start from the checkpoint you guys provide? In that case,
I immediately get good results. I would like to figure out how to train it
from scratch though.
2020-02-26 09:39:50,133 [INFO] train: Training using the following parameters:
2020-02-26 09:39:50,133 [INFO] train: batch_k: 4
2020-02-26 09:39:50,134 [INFO] train: batch_p: 16
2020-02-26 09:39:50,134 [INFO] train: checkpoint_frequency: 1000
2020-02-26 09:39:50,134 [INFO] train: crop_augment: False
2020-02-26 09:39:50,135 [INFO] train: decay_start_iteration: 15000
2020-02-26 09:39:50,135 [INFO] train: detailed_logs: False
2020-02-26 09:39:50,135 [INFO] train: embedding_dim: 128
2020-02-26 09:39:50,135 [INFO] train: experiment_root: experiments\official
2020-02-26 09:39:50,135 [INFO] train: flip_augment: False
2020-02-26 09:39:50,136 [INFO] train: head_name: fc1024
2020-02-26 09:39:50,136 [INFO] train: image_root: data\market1501
2020-02-26 09:39:50,136 [INFO] train: initial_checkpoint: checkpoint-25000
2020-02-26 09:39:50,136 [INFO] train: learning_rate: 0.0003
2020-02-26 09:39:50,137 [INFO] train: loading_threads: 8
2020-02-26 09:39:50,137 [INFO] train: loss: batch_hard
2020-02-26 09:39:50,137 [INFO] train: margin: soft
2020-02-26 09:39:50,137 [INFO] train: metric: euclidean
2020-02-26 09:39:50,137 [INFO] train: model_name: resnet_v1_50
2020-02-26 09:39:50,137 [INFO] train: net_input_height: 256
2020-02-26 09:39:50,138 [INFO] train: net_input_width: 128
2020-02-26 09:39:50,138 [INFO] train: pre_crop_height: 288
2020-02-26 09:39:50,138 [INFO] train: pre_crop_width: 144
2020-02-26 09:39:50,138 [INFO] train: resume: True
2020-02-26 09:39:50,138 [INFO] train: train_iterations: 30000
2020-02-26 09:39:50,138 [INFO] train: train_set: data\market1501\market1501_train.csv
2020-02-26 09:39:50,815 [WARNING] tensorflow: From train.py:250: unbatch (from tensorflow.contrib.data.python.ops.batching) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.experimental.unbatch()`.
2020-02-26 09:39:50,815 [WARNING] tensorflow: From train.py:250: unbatch (from tensorflow.contrib.data.python.ops.batching) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.experimental.unbatch()`.
2020-02-26 09:39:50,887 [INFO] tensorflow: Scale of 0 disables regularizer.
2020-02-26 09:39:50,887 [INFO] tensorflow: Scale of 0 disables regularizer.
2020-02-26 09:39:50,899 [WARNING] tensorflow: From C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
2020-02-26 09:39:50,899 [WARNING] tensorflow: From C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
2020-02-26 09:39:53,141 [WARNING] tensorflow: From C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
2020-02-26 09:39:53,141 [WARNING] tensorflow: From C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
2020-02-26 09:39:53,154 [WARNING] tensorflow: From C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\math_grad.py:102: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
2020-02-26 09:39:53,154 [WARNING] tensorflow: From C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\math_grad.py:102: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
2020-02-26 09:39:58,134 [INFO] train: Restoring from checkpoint: experiments\official\checkpoint-25000
2020-02-26 09:39:58,135 [WARNING] tensorflow: From C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to check for files with this prefix.
2020-02-26 09:39:58,135 [WARNING] tensorflow: From C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\training\saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to check for files with this prefix.
2020-02-26 09:39:58,140 [INFO] tensorflow: Restoring parameters from experiments\official\checkpoint-25000
2020-02-26 09:39:58,140 [INFO] tensorflow: Restoring parameters from experiments\official\checkpoint-25000
2020-02-26 09:40:09,902 [INFO] train: Starting training from iteration 25000.
2020-02-26 09:40:17,434 [INFO] train: iter: 25001, loss min|avg|max: 0.000|0.000| 0.009, ***@***.***: 100.00%, ETA: 10:27:19 (7.53s/it)
2020-02-26 09:40:17,786 [INFO] train: iter: 25002, loss min|avg|max: 0.000|0.002| 0.069, ***@***.***: 100.00%, ETA: 0:28:59 (0.35s/it)
2020-02-26 09:40:18,135 [INFO] train: iter: 25003, loss min|avg|max: 0.000|0.001| 0.027, ***@***.***: 100.00%, ETA: 0:28:49 (0.35s/it)
2020-02-26 09:40:18,484 [INFO] train: iter: 25004, loss min|avg|max: 0.000|0.000| 0.002, ***@***.***: 100.00%, ETA: 0:28:48 (0.35s/it)
2020-02-26 09:40:18,835 [INFO] train: iter: 25005, loss min|avg|max: 0.000|0.001| 0.014, ***@***.***: 100.00%, ETA: 0:29:03 (0.35s/it)
2020-02-26 09:40:19,191 [INFO] train: iter: 25006, loss min|avg|max: 0.000|0.000| 0.017, ***@***.***: 100.00%, ETA: 0:29:23 (0.35s/it)
2020-02-26 09:40:19,544 [INFO] train: iter: 25007, loss min|avg|max: 0.000|0.001| 0.049, ***@***.***: 100.00%, ETA: 0:29:02 (0.35s/it)
2020-02-26 09:40:19,901 [INFO] train: iter: 25008, loss min|avg|max: 0.000|0.000| 0.000, ***@***.***: 100.00%, ETA: 0:29:27 (0.35s/it)
2020-02-26 09:40:20,259 [INFO] train: iter: 25009, loss min|avg|max: 0.000|0.000| 0.001, ***@***.***: 100.00%, ETA: 0:29:32 (0.36s/it)
2020-02-26 09:40:20,611 [INFO] train: iter: 25010, loss min|avg|max: 0.000|0.001| 0.033, ***@***.***: 100.00%, ETA: 0:29:02 (0.35s/it)
2020-02-26 09:40:20,961 [INFO] train: iter: 25011, loss min|avg|max: 0.000|0.000| 0.002, ***@***.***: 100.00%, ETA: 0:28:47 (0.35s/it)
2020-02-26 09:40:21,309 [INFO] train: iter: 25012, loss min|avg|max: 0.000|0.000| 0.002, ***@***.***: 100.00%, ETA: 0:28:41 (0.35s/it)
2020-02-26 09:40:21,666 [INFO] train: iter: 25013, loss min|avg|max: 0.000|0.002| 0.101, ***@***.***: 100.00%, ETA: 0:29:25 (0.35s/it)
2020-02-26 09:40:22,015 [INFO] train: iter: 25014, loss min|avg|max: 0.000|0.001| 0.040, ***@***.***: 100.00%, ETA: 0:28:41 (0.35s/it)
2020-02-26 09:40:22,367 [INFO] train: iter: 25015, loss min|avg|max: 0.000|0.000| 0.015, ***@***.***: 100.00%, ETA: 0:28:59 (0.35s/it)
2020-02-26 09:40:22,716 [INFO] train: iter: 25016, loss min|avg|max: 0.000|0.000| 0.010, ***@***.***: 100.00%, ETA: 0:28:44 (0.35s/it)
2020-02-26 09:40:23,071 [INFO] train: iter: 25017, loss min|avg|max: 0.000|0.000| 0.002, ***@***.***: 100.00%, ETA: 0:29:14 (0.35s/it)
2020-02-26 09:40:23,432 [INFO] train: iter: 25018, loss min|avg|max: 0.000|0.000| 0.005, ***@***.***: 100.00%, ETA: 0:29:43 (0.36s/it)
2020-02-26 09:40:23,810 [INFO] train: iter: 25019, loss min|avg|max: 0.000|0.002| 0.043, ***@***.***: 100.00%, ETA: 0:31:07 (0.38s/it)
2020-02-26 09:40:24,167 [INFO] train: iter: 25020, loss min|avg|max: 0.000|0.019| 1.083, ***@***.***: 99.48%, ETA: 0:29:23 (0.35s/it)
2020-02-26 09:40:24,537 [INFO] train: iter: 25021, loss min|avg|max: 0.000|0.000| 0.011, ***@***.***: 100.00%, ETA: 0:30:24 (0.37s/it)
2020-02-26 09:40:24,887 [INFO] train: iter: 25022, loss min|avg|max: 0.000|0.000| 0.004, ***@***.***: 100.00%, ETA: 0:28:50 (0.35s/it)
2020-02-26 09:40:25,248 [INFO] train: iter: 25023, loss min|avg|max: 0.000|0.000| 0.003, ***@***.***: 100.00%, ETA: 0:29:41 (0.36s/it)
2020-02-26 09:40:25,600 [INFO] train: iter: 25024, loss min|avg|max: 0.000|0.000| 0.006, ***@***.***: 100.00%, ETA: 0:28:57 (0.35s/it)
2020-02-26 09:40:25,974 [INFO] train: iter: 25025, loss min|avg|max: 0.000|0.000| 0.009, ***@***.***: 100.00%, ETA: 0:30:46 (0.37s/it)
2020-02-26 09:40:26,380 [INFO] train: iter: 25026, loss min|avg|max: 0.000|0.262| 3.625, ***@***.***: 94.27%, ETA: 0:33:19 (0.40s/it)
2020-02-26 09:40:26,859 [INFO] train: iter: 25027, loss min|avg|max: 0.000|0.000| 0.009, ***@***.***: 100.00%, ETA: 0:39:31 (0.48s/it)
2020-02-26 09:40:27,258 [INFO] train: iter: 25028, loss min|avg|max: 0.000|0.000| 0.008, ***@***.***: 100.00%, ETA: 0:32:44 (0.40s/it)
2020-02-26 09:40:27,654 [INFO] train: iter: 25029, loss min|avg|max: 0.000|0.002| 0.032, ***@***.***: 100.00%, ETA: 0:32:33 (0.39s/it)
2020-02-26 09:40:28,010 [INFO] train: iter: 25030, loss min|avg|max: 0.000|0.001| 0.020, ***@***.***: 100.00%, ETA: 0:29:14 (0.35s/it)
2020-02-26 09:40:28,362 [INFO] train: iter: 25031, loss min|avg|max: 0.000|0.000| 0.024, ***@***.***: 100.00%, ETA: 0:28:54 (0.35s/it)
2020-02-26 09:40:28,716 [INFO] train: iter: 25032, loss min|avg|max: 0.000|0.002| 0.052, ***@***.***: 100.00%, ETA: 0:29:04 (0.35s/it)
2020-02-26 09:40:29,074 [INFO] train: iter: 25033, loss min|avg|max: 0.000|0.002| 0.065, ***@***.***: 100.00%, ETA: 0:29:28 (0.36s/it)
2020-02-26 09:40:29,488 [INFO] train: iter: 25034, loss min|avg|max: 0.000|0.000| 0.004, ***@***.***: 100.00%, ETA: 0:34:00 (0.41s/it)
2020-02-26 09:40:29,857 [INFO] train: iter: 25035, loss min|avg|max: 0.000|0.000| 0.002, ***@***.***: 100.00%, ETA: 0:30:12 (0.37s/it)
2020-02-26 09:40:30,233 [INFO] train: iter: 25036, loss min|avg|max: 0.000|0.000| 0.003, ***@***.***: 100.00%, ETA: 0:30:56 (0.37s/it)
2020-02-26 09:40:30,585 [INFO] train: iter: 25037, loss min|avg|max: 0.000|0.000| 0.000, ***@***.***: 100.00%, ETA: 0:28:52 (0.35s/it)
—
You are receiving this because you were mentioned.
Reply to this email directly, view it on GitHub
<#91?email_source=notifications&email_token=AAOJDTOC6EIEIPM6V4VOZ23REZQPFA5CNFSM4K3VBCTKYY3PNVWWK3TUL52HS4DFVREXG43VMVBW63LNMVXHJKTDN5WW2ZLOORPWSZGOENADDHI#issuecomment-591409565>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAOJDTKNERWPYV2JNXCYULDREZQPFANCNFSM4K3VBCTA>
.
|
I couldn't find your reported MAP scores anywhere. Does this look normal to you for Market dataset?
|
Trying to train on market1501 as a proof of concept before modifying anything. The training loss quickly foes down to 0.7 and stays there forever. So far haven't changed anything in the script. Just changed the
batch_p = 16
, as I was running out of memory on my comptuer. Any ideas on what I might be not doing right?And lots of iterations later:
The text was updated successfully, but these errors were encountered: