-
Notifications
You must be signed in to change notification settings - Fork 3
/
kdtree.h
383 lines (345 loc) · 15.6 KB
/
kdtree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/*{{{
Copyright © 2014-2018 Matthias Kretz <[email protected]>
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the names of contributing organizations nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
}}}*/
#ifndef KDTREE_H_
#define KDTREE_H_
#include "simdize.h"
// make_unique {{{1
template <typename T, typename... Args> std::unique_ptr<T> make_unique(Args &&... args)
{
return std::unique_ptr<T>{new T{std::forward<Args>(args)...}};
}
// class KdTreeV {{{1
template <typename T, std::size_t Dimensions = std::tuple_size<T>::value> class KdTreeV
{
using V = simdize<T>;
using OneDimV = typename V::FirstVectorType;
using DistanceType = decltype(get_kdtree_distance(std::declval<T>(), std::declval<T>()));
template <std::size_t SplittingPlane> struct Node;
template <std::size_t SplittingPlane>
using NodePtr = std::unique_ptr<Node<SplittingPlane>>;
template <std::size_t SplittingPlane> struct Node : public V {
// Node ChildSplittingPlane {{{2
/// the template parameter to child Node objects
static constexpr std::size_t ChildSplittingPlane =
(SplittingPlane + 1) % Dimensions;
// Node ChildPtr {{{2
/// unique_ptr type for the children
using ChildPtr = NodePtr<ChildSplittingPlane>;
// Node data members {{{2
std::array<ChildPtr, 2> m_child;
unsigned int m_entries;
// Node(T) {{{2
/// create a new leaf node with payload \p x
Node(T x)
: V(x) // broadcast to all entries
, m_entries(1) // but mark that only the first entry is valid
{}
// Node::childInsert {{{2
void childInsert(ChildPtr &child, const T new_x)
{
if (child) {
child->insert(new_x);
} else {
// the Node constructor could be optimized to not have to redo the
// V(x) broadcast
child = make_unique<Node<ChildSplittingPlane>>(new_x);
}
};
// Node::insert {{{2
/// check whether \p x needs to go left or right and hand it off or create a new
/// leaf node
void insert(const T x)
{
using namespace std;
//cerr << SplittingPlane << '|' << setw(10) << get_kdtree_value<SplittingPlane>(x)
if (m_entries < V::Size) {
//cerr << " (1)";
simdize_assign(*this, m_entries, x);
++m_entries;
//cerr << ' ' << get_kdtree_value<SplittingPlane>(*this) << ' ' << m_entries << '\n';
} else {
const auto less = get_kdtree_value<SplittingPlane>(*this) <
get_kdtree_value<SplittingPlane>(V(x));
//cerr << ' ' << less << ' ' << get_kdtree_value<SplittingPlane>(*this);
if (all_of(less)) { // needs to go to the left child node
//cerr << " (2)\n";
childInsert(m_child[0], x);
} else if (none_of(less)) { // needs to go to the right child node
//cerr << " (3)\n";
childInsert(m_child[1], x);
} else {
// The new value must go into this node. The value it pushes out of (*this) could
// go to either the left or the right child - depending on which value we want to
// push out. Determine the bias from the number of values that are "less".
// If most values are "less" then the value to insert is larger than the median
// and thus we push out the max value. Otherwise push out the min value.
const bool majorityIsLess = less.count() >= int(V::Size / 2);
const auto &data = get_kdtree_value<SplittingPlane>(*this);
const auto replaceValue = majorityIsLess ? data.max() : data.min();
// replaceValue is constructed such that:
// all_of(get_kdtree_value<SplittingPlane>(*this) < get_kdtree_value<SplittingPlane>(V(new_x)))
// if the majority of values in this node are less than x (for the current
// SplittingPlane)
const std::size_t pos = (replaceValue == data).firstOne();
//cerr << " (4) " << pos << ' ' << replaceValue;
// swap largest/smallest value (of this SplittingPlane):
const T new_x = simdize_get(*this, pos);
simdize_assign(*this, pos, x);
//cerr << ' ' << get_kdtree_value<SplittingPlane>(*this) << '\n';
childInsert(m_child[majorityIsLess ? 0 : 1], new_x);
}
}
}
// Node::operator<< {{{2
friend std::ostream &operator<<(std::ostream &out, const Node &node)
{
out << SplittingPlane << ' ' << static_cast<const V &>(node);
if (node.m_child[0]) {
out << "\nl" << *node.m_child[0];
}
if (node.m_child[1]) {
out << "\nr" << *node.m_child[1];
}
return out << " up";
}
// Node::findNearest {{{2
std::pair<T, DistanceType> findNearest(const V &x) const
{
// if we have a child on the "wrong" side it could still contain the
// nearest neighbor, but only if the shortest distance of the search point
// x to the splitting plane is less than the distance to the current
// candidate. We only need to look at dx[0] and dx[V::Size - 1]
const auto dx = get_kdtree_1dim_distance<SplittingPlane>(x, *this);
const auto less = get_kdtree_value<SplittingPlane>(*this) < get_kdtree_value<SplittingPlane>(x);
if (all_of(less)) {
if (m_child[0]) {
auto candidate = m_child[0]->findNearest(x);
if (dx.min() < candidate.second) {
const auto distance = get_kdtree_distance(x, *this);
if (distance.min() < candidate.second) {
candidate.second = distance.min();
candidate.first = simdize_get(
*this, (distance.min() == distance).firstOne());
}
if (m_child[1] && dx.max() < candidate.second) {
const auto candidate2 = m_child[1]->findNearest(x);
if (candidate2.second < candidate.second) {
return candidate2;
}
}
}
return candidate;
}
} else if (none_of(less)) {
if (m_child[1]) {
auto candidate = m_child[1]->findNearest(x);
if (dx.min() < candidate.second) {
const auto distance = get_kdtree_distance(x, *this);
if (distance.min() < candidate.second) {
candidate.second = distance.min();
candidate.first = simdize_get(
*this, (distance.min() == distance).firstOne());
}
if (m_child[0] && dx.max() < candidate.second) {
const auto candidate2 = m_child[0]->findNearest(x);
if (candidate2.second < candidate.second) {
return candidate2;
}
}
}
return candidate;
}
}
const auto distance = get_kdtree_distance(x, *this);
const int pos = (distance.min() == distance).firstOne();
auto candidate = std::make_pair(simdize_get(*this, pos), distance.min());
const auto bestDx = dx[pos];
if (bestDx <= candidate.second && m_child[0]) {
const auto candidate2 = m_child[0]->findNearest(x);
if (candidate2.second < candidate.second) {
candidate = candidate2;
}
}
if (bestDx <= candidate.second && m_child[1]) {
const auto candidate2 = m_child[1]->findNearest(x);
if (candidate2.second < candidate.second) {
return candidate2;
}
}
return candidate;
}
};
NodePtr<0> m_root; //{{{2
public: //{{{2
KdTreeV() = default; //{{{2
// insert {{{2
void insert(T &&x)
{
if (m_root) {
m_root->insert(std::move(x));
} else {
m_root = make_unique<Node<0>>(std::move(x));
}
}
void insert(const T &x)
{
if (m_root) {
m_root->insert(x);
} else {
m_root = make_unique<Node<0>>(x);
}
}
// findNearest {{{2
T findNearest(T x) const
{
if (!m_root) {
throw std::runtime_error(
"No values in the KdTree, which is required for findNearest.");
}
return m_root->findNearest(V(x)).first;
}
// operator<< {{{2
friend std::ostream &operator<<(std::ostream &out, const KdTreeV &tree)
{
return out << *tree.m_root;
}
// }}}2
};
// class KdTree {{{1
template <typename T, std::size_t Dimensions = std::tuple_size<T>::value> class KdTree
{
using DistanceType = decltype(get_kdtree_distance(std::declval<T>(), std::declval<T>()));
template <std::size_t SplittingPlane> struct Node;
template <std::size_t SplittingPlane>
using NodePtr = std::unique_ptr<Node<SplittingPlane>>;
template <std::size_t SplittingPlane> struct Node {
/// the template parameter to child Node objects
static constexpr std::size_t ChildSplittingPlane =
(SplittingPlane + 1) % Dimensions;
/// unique_ptr type for the children
using ChildPtr = NodePtr<ChildSplittingPlane>;
T m_data;
std::array<ChildPtr, 2> m_child;
/// create a new leaf node with payload \p x
template <typename U> Node(U &&x) : m_data(std::forward<U>(x)) {}
/// check whether \p x needs to go left or right and hand it off or create a new
/// leaf node
template <typename U> void insert(U &&x)
{
ChildPtr &child = (get_kdtree_value<SplittingPlane>(x) <
get_kdtree_value<SplittingPlane>(m_data))
? m_child[0]
: m_child[1];
if (child) {
child->insert(std::forward<U>(x));
} else {
child = make_unique<Node<ChildSplittingPlane>>(std::forward<U>(x));
}
}
friend std::ostream &operator<<(std::ostream &out, const Node &node)
{
out << SplittingPlane << ' ' << node.m_data;
if (node.m_child[0]) {
out << "\nl" << *node.m_child[0];
}
if (node.m_child[1]) {
out << "\nr" << *node.m_child[1];
}
return out << " up";
}
static const T &selectCloser(const T &search, const T &candidate0,
const T &candidate1)
{
return get_kdtree_distance(search, candidate0) <
get_kdtree_distance(search, candidate1)
? candidate0
: candidate1;
}
std::pair<T, DistanceType> findNearest(const T x) const
{
const auto dx = get_kdtree_1dim_distance<SplittingPlane>(x, m_data);
const std::size_t index = (get_kdtree_value<SplittingPlane>(x) <
get_kdtree_value<SplittingPlane>(m_data))
? 0
: 1;
if (m_child[index]) {
// if we have a child node on the side where the search point would get
// stored, that node is an obvious candidate
auto candidate = m_child[index]->findNearest(x);
if (dx < candidate.second) {
// if the resulting distance yields a sphere that intersects the current
// splitting plane, then we have to look further
const auto distance = get_kdtree_distance(x, m_data);
if (distance < candidate.second) {
candidate = std::make_pair(m_data, distance);
}
if (dx < candidate.second && m_child[index ^ 1]) {
const auto candidate2 = m_child[index ^ 1]->findNearest(x);
if (candidate2.second < candidate.second) {
return candidate2;
}
}
}
return candidate;
}
auto candidate = std::make_pair(m_data, get_kdtree_distance(x, m_data));
if (m_child[index ^ 1] && dx < candidate.second) {
// if we have a child on the "wrong" side it could still be/find the
// nearest neighbor, but only if the shortest distance of the search point
// x to the splitting plane is less than the distance to the current
// candidate.
const auto candidate2 = m_child[index ^ 1]->findNearest(x);
if (candidate2.second < candidate.second) {
return candidate2;
}
}
return candidate;
}
};
NodePtr<0> m_root;
public:
KdTree() = default;
template <typename U> void insert(U &&x)
{
if (m_root) {
m_root->insert(std::forward<U>(x));
} else {
m_root = make_unique<Node<0>>(std::forward<U>(x));
}
}
T findNearest(const T x) const
{
if (!m_root) {
throw std::runtime_error(
"No values in the KdTree, which is required for findNearest.");
}
return m_root->findNearest(x).first;
}
friend std::ostream &operator<<(std::ostream &out, const KdTree &tree)
{
return out << *tree.m_root;
}
}; //}}}1
#endif // KDTREE_H_
// vim: foldmethod=marker