forked from Hiroshiba/become-yukarin
-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
83 lines (65 loc) · 2.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import argparse
from functools import partial
from pathlib import Path
from chainer import cuda
from chainer import optimizers
from chainer import training
from chainer.dataset import convert
from chainer.iterators import MultiprocessIterator
from chainer.training import extensions
from chainerui.utils import save_args
from become_yukarin.config.config import create_from_json
from become_yukarin.dataset import create as create_dataset
from become_yukarin.model.model import create
from become_yukarin.updater.updater import Updater
parser = argparse.ArgumentParser()
parser.add_argument('config_json_path', type=Path)
parser.add_argument('output', type=Path)
arguments = parser.parse_args()
config = create_from_json(arguments.config_json_path)
arguments.output.mkdir(exist_ok=True)
config.save_as_json((arguments.output / 'config.json').absolute())
# model
if config.train.gpu >= 0:
cuda.get_device_from_id(config.train.gpu).use()
predictor, discriminator = create(config.model)
models = {
'predictor': predictor,
'discriminator': discriminator,
}
# dataset
dataset = create_dataset(config.dataset)
train_iter = MultiprocessIterator(dataset['train'], config.train.batchsize)
test_iter = MultiprocessIterator(dataset['test'], config.train.batchsize, repeat=False, shuffle=False)
train_eval_iter = MultiprocessIterator(dataset['train_eval'], config.train.batchsize, repeat=False, shuffle=False)
# optimizer
def create_optimizer(model):
optimizer = optimizers.Adam(alpha=0.0002, beta1=0.5, beta2=0.999)
optimizer.setup(model)
return optimizer
opts = {key: create_optimizer(model) for key, model in models.items()}
# updater
converter = partial(convert.concat_examples, padding=0)
updater = Updater(
loss_config=config.loss,
predictor=predictor,
discriminator=discriminator,
device=config.train.gpu,
iterator=train_iter,
optimizer=opts,
converter=converter,
)
# trainer
trigger_log = (config.train.log_iteration, 'iteration')
trigger_snapshot = (config.train.snapshot_iteration, 'iteration')
trainer = training.Trainer(updater, out=arguments.output)
ext = extensions.Evaluator(test_iter, models, converter, device=config.train.gpu, eval_func=updater.forward)
trainer.extend(ext, name='test', trigger=trigger_log)
ext = extensions.Evaluator(train_eval_iter, models, converter, device=config.train.gpu, eval_func=updater.forward)
trainer.extend(ext, name='train', trigger=trigger_log)
trainer.extend(extensions.dump_graph('predictor/loss'))
ext = extensions.snapshot_object(predictor, filename='predictor_{.updater.iteration}.npz')
trainer.extend(ext, trigger=trigger_snapshot)
trainer.extend(extensions.LogReport(trigger=trigger_log))
save_args(arguments, arguments.output)
trainer.run()