-
Notifications
You must be signed in to change notification settings - Fork 18
/
hemocell.h
255 lines (202 loc) · 8.66 KB
/
hemocell.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
This file is part of the HemoCell library
HemoCell is developed and maintained by the Computational Science Lab
in the University of Amsterdam. Any questions or remarks regarding this library
can be sent to: [email protected]
When using the HemoCell library in scientific work please cite the
corresponding paper: https://doi.org/10.3389/fphys.2017.00563
The HemoCell library is free software: you can redistribute it and/or
modify it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
The library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEMOCELL_H
#define HEMOCELL_H
//Load Constants
#include "constant_defaults.h"
#include "config.h"
/* CORE libs */
#include "hemoCellFields.h"
/* IO */
#include "loadBalancer.h"
#include "profiler.h"
/* MECHANICS */
#include "cellMechanics.h"
#include "constantConversion.h"
/* Helpers */
#include "preInlet.h"
// #include "leesEdwardsBC.h"
/* Always used palabos functions in case files*/
#ifndef COMPILING_HEMOCELL_LIBRARY
#include "voxelizeDomain.h"
#include "palabos3D.h"
#include "palabos3D.hh"
using namespace hemo;
using namespace plb;
#endif
namespace hemo {
/*!
* The HemoCell class contains all the information, data and methods to set up a
* basic HemoCell simulation.
*
* Most importantly:
* - It contains one Palabos FluidField
* - It contains one CellFields
*
* After everything is set HemoCell::iterate() is used to iterate the
* simulation.
*/
class HemoCell {
public:
/** \brief Switch to indicate if the MPI instance is managed externally.
* The MPI instance is typically invoked when initialising the HemoCell class
* through the `plb::plbInit` routine. However, in some scenarios we might want
* to manually control the MPI environment and do not want HemoCell to setup
* MPI environment.
*/
enum class MPIHandle {Internal, External};
/**
* Creates an hemocell object
*
* @param configFileName the location of the main config file
*
* Unfortunately, due to palabos regulations, it is required to pass the
* commandline arguments
*/
HemoCell(char * configFileName, int argc, char* argv[]) : HemoCell{ configFileName, argc, argv, HemoCell::MPIHandle::Internal } {};
/// Creates an HemoCell object and allows to indicate the MPI environment
/// is managed externally. If so, this constructor avoids plb::plbInit().
///
/// @param mpi_handle the MPIHanndle indicator.
HemoCell(char * configFileName, int argc, char* argv[], HemoCell::MPIHandle mpi_handle);
/*
* Clean up hemocell
*/
~HemoCell();
/**
* Set all the fluid nodes to these values
*
* @param rho the desired density in lbm units
* @param vel the desired macroscopic velocity of each node
*/
void latticeEquilibrium(T rho, hemo::Array<T, 3> vel);
/**
* Initialice the cellfields structure (and thus also the particlefield)
*/
void initializeCellfield();
/**
* Add a celltype
* valid options for constructType are:
* RBC_FROM_SPHERE <- RBC
* ELLIPSOID_FROM_SPHERE <- platelet
* STRING_FROM_VERTEXES ->von willibrand factor
* use as addCelltype<RbcHO>("RBC", RBC_FROM_SPHERE) for example
* Since it is a template, it must be in the header class, maybe move to .hh
* file for readability ...
*/
template<class Mechanics>
void addCellType(string name, int constructType) {
HemoCellField * cellfield = cellfields->addCellType(name,constructType);
Mechanics * mechanics = new Mechanics(*cellfield->materialCfg, *cellfield);
cellfield->mechanics = mechanics;
cellfield->statistics();
}
/**
* Set the output of a celltype
* the outputs string should contain constants like VELOCITY_OUTPUT defined
* in the constants_defaults file
*
* @param outputs a vector of constants that define the desired output
* @param name the name of the CellType ("RBC", "PLT")
*/
void setOutputs(string name, vector<int> outputs);
//Sets the repulsion constant and cutoff distance, also enables repulsion
bool repulsionEnabled = false;
bool boundaryRepulsionEnabled = false;
void setRepulsion(T repulsionConstant, T repulsionCutoff);
// Lees-Edwards boundary condition
bool leesEdwardsBC = false;
double * LEcurrentDisplacement;
//Set the timescale separation of the particles of a particle type
void setMaterialTimeScaleSeparation(string name, unsigned int separation);
//Enable solidify mechanics of a celltype
void enableSolidifyMechanics(string name) {
hlog << "(HemoCell) Enabling Solidify Mechanics for " << name << " mechanical model" << endl;
(*cellfields)[name]->doSolidifyMechanics = true;
}
//Set the separation of when velocity is interpolated to the particle
void setParticleVelocityUpdateTimeScaleSeparation(unsigned int separation);
//Set the timescale separation of the repulsion force for all particles
void setRepulsionTimeScaleSeperation(unsigned int separation);
void setSolidifyTimeScaleSeperation(unsigned int separation);
//Set the timescale separation of the interior viscosity, in between update and raytracing (expensive) update
void setInteriorViscosityTimeScaleSeperation(unsigned int separation, unsigned int separation_entire_grid);
//Enable Boundary particles and set the boundary particle constants
void enableBoundaryParticles(T boundaryRepulsionConstant, T boundaryRepulsionCutoff, unsigned int timestep = 1);
//Set the minimum distance of the particles of a type to the solid, must be called BEFORE loadparticles
void setInitialMinimumDistanceFromSolid(string name, T distance);
//Set the output of the fluid field
void setFluidOutputs(vector<int> outputs);
//Set the output of the CEPAC field
void setCEPACOutputs(vector<int> outputs);
//Explicitly set the periodicity of the domain along the different axes
void setSystemPeriodicity(unsigned int axis, bool bePeriodic);
//Set the number or times a particle should be able to wrap around in a certain direction (both negative and positive (default: 100)
void setSystemPeriodicityLimit(unsigned int axis, int limit);
//Load the particles
private:
bool loadParticlesIsCalled = false;
public:
///Load the particles from their .pos files
void loadParticles();
///Load a checkpoint
void loadCheckPoint();
///Save a checkpoint
void saveCheckPoint();
///Specify whether the output is in SI or LBM units
bool outputInSiUnits = true;
///Write the specified output to hdf5 files
void writeOutput();
/// Do an iteration, If the system is driven by an external vector, you must set
/// it again after calling iterate
void iterate();
/// Check if any exis signal was caught
void checkExitSignals();
//Load balancing library functions
/// Calculate and return the fractional load imbalance
T calculateFractionalLoadImbalance();
///Load balance the domain (only necessary with nAtomic blocks > nMpi processors, also checkpoints
void doLoadBalance();
///Restructure the grid, has an optional argument to specify whether a checkpoint from this iteration is available, default is YES!
void doRestructure(bool checkpoint_avail = true);
///Initialize the fluid field with the given management, should be done after specifing the pre inlets and before initializing the cellfields
void initializeLattice(MultiBlockManagement3D const & management);
PreInlet * preInlet = 0;
bool partOfpreInlet = false;
map<plint,plint> BlockToMpi;
LoadBalancer * loadBalancer = 0;
///The fluid lattice
MultiBlockLattice3D<T, DESCRIPTOR> * lattice = 0, *preinlet_lattice = 0, * domain_lattice = 0;
MultiBlockManagement3D * preinlet_lattice_management = 0, * domain_lattice_management = 0;
Config * cfg = 0;
///The cellfields contains the particle field and all celltypes
HemoCellFields * cellfields = 0;
unsigned int iter = 0;
XMLreader * documentXML = 0; //Needed for legacy checkpoint reading TODO fix
private:
/// Store the last time (iteration) output occured
unsigned int lastOutputAt = 0;
std::chrono::high_resolution_clock::duration lastOutput = std::chrono::high_resolution_clock::duration::zero();
/// To be run right before the first iteration, all checking should move here
void sanityCheck();
/// Checked in iteration, do sanity check when not yet done
bool sanityCheckDone = false;
};
}
#endif // HEMOCELL_H