-
Notifications
You must be signed in to change notification settings - Fork 1
/
lidar_example.py
128 lines (109 loc) · 3.34 KB
/
lidar_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
import uncertainty as uc
from matplotlib import pyplot as pl
def read_point_cloud(fname = 'lidar.npz'):
"""
Returns:
(x, y, z)
"""
f = np.load(fname)
x = f['x']
y = f['y']
z = f['z']
f.close()
return (x, y, z)
def grid_point_cloud(x, y, z, width = 1):
"""
Aggregates a point cloud (x, y, z) to a
grid with grid cell spacing width.
Returns:
(mean, std, xbounds, ybounds)
"""
from scipy.spatial import cKDTree as kdtree
xmin, xmax = x.min(), x.max()
ymin, ymax = y.min(), y.max()
xb = np.arange(xmin, xmax+width, width)
yb = np.arange(ymin, ymax+width, width)
xr = xb[:-1] + width/2.0
yr = yb[:-1] + width/2.0
xc, yc = np.meshgrid(xr, yr)
shape = xc.shape
xc = xc.ravel()
yc = yc.ravel()
tree = kdtree(np.transpose((x, y)))
grid = kdtree(np.transpose((xc, yc)))
lsts = grid.query_ball_tree(tree, r = width/np.sqrt(2))
n = len(lsts)
m = np.zeros(n)
s = np.zeros(n)
for i in range(n):
if len(lsts[i]) < 3:
m[i] = np.nan
s[i] = np.nan
else:
j = lsts[i]
m[i] = z[j].mean()
s[i] = z[j].std()
m.shape = shape
s.shape = shape
return (m, s, xb, yb)
def plot_fields(var, xb, yb, title, fname, paperwidth = 10):
"""
Produces a DIN paper PNG figure with all six fields.
"""
label = (r'Mean elevation [m]', r'Elevation STD [m]',
r'Aspect PEU [deg]', r'Slope PEU [deg]',
r'Aspect truncation error [deg]', r'Slope truncation error [deg]')
cmaps = (pl.cm.viridis, pl.cm.magma_r,
pl.cm.Purples, pl.cm.Purples,
pl.cm.seismic, pl.cm.seismic)
fg, ax = pl.subplots(3, 2,
figsize = (paperwidth, paperwidth*np.sqrt(2)))
pl.suptitle(title)
j = 0
for i in range(3):
for k in range(2):
v = np.ma.masked_invalid(var[j])
if 0 > v.min():
vmin = np.nanpercentile(v, 2)
vmax = -vmin
else:
vmin = v.min()
vmax = np.nanpercentile(v, 98)
im = ax[i, k].pcolormesh(xb, yb, v,
vmin = vmin,
vmax = vmax,
cmap = cmaps[j])
cb = fg.colorbar(im, ax = ax[i, k], shrink = 0.75)
cb.set_label(label[j])
ax[i, k].set_aspect('equal')
j += 1
fg.tight_layout()
pl.savefig(fname)
def main():
# grid spacing width
width = 2
# read part of a real lidar point cloud
x, y, z = read_point_cloud()
xmin, ymin = x.min(), y.min()
# aggregate the point cloud
mean, stdr, xb, yb = grid_point_cloud(x-xmin, y-ymin, z, width)
xb += xmin
yb += ymin
# propagated elevation uncertainty E of aspect
easp = uc.peu_aspect_field(mean, width, stdr)
# propagated elevation uncertainty E of slope
eslp = uc.peu_slope_field(mean, width, stdr)
# truncation error T for aspect
tasp = uc.trunc_err_aspect(mean, width)
# truncation error T for slope
tslp = uc.trunc_err_slope(mean, width)
# figure
title = 'Lidar point cloud example'
fname = 'lidar_dem%.2f.png' % width
field = (mean, stdr,
easp, eslp,
tasp, tslp)
plot_fields(field, xb, yb, title, fname)
if __name__ == '__main__':
main()