-
Notifications
You must be signed in to change notification settings - Fork 50
/
choc_FloatToString.h
397 lines (318 loc) · 20.2 KB
/
choc_FloatToString.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
//
// ██████ ██ ██ ██████ ██████
// ██ ██ ██ ██ ██ ██ ** Classy Header-Only Classes **
// ██ ███████ ██ ██ ██
// ██ ██ ██ ██ ██ ██ https://github.com/Tracktion/choc
// ██████ ██ ██ ██████ ██████
//
// CHOC is (C)2022 Tracktion Corporation, and is offered under the terms of the ISC license:
//
// Permission to use, copy, modify, and/or distribute this software for any purpose with or
// without fee is hereby granted, provided that the above copyright notice and this permission
// notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
// WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
// AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
// WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#ifndef CHOC_FLOAT_TO_STRING_HEADER_INCLUDED
#define CHOC_FLOAT_TO_STRING_HEADER_INCLUDED
#include <cstring>
#include <string>
#include "../math/choc_MathHelpers.h"
namespace choc::text
{
//==============================================================================
/** Converts a 32-bit float to an accurate, round-trip-safe string.
The algorithm used is "Grisu3" from the paper "Printing Floating-Point Numbers
Quickly and Accurately with Integers" by Florian Loitsch.
*/
std::string floatToString (float value);
/** Converts a 64-bit double to an accurate, round-trip-safe string.
The algorithm used is "Grisu3" from the paper "Printing Floating-Point Numbers
Quickly and Accurately with Integers" by Florian Loitsch.
*/
std::string floatToString (double value);
//==============================================================================
/** Converts a 32-bit float to an accurate, round-trip-safe string.
If maxDecimalPlaces is -1, a default is used.
If omitDecimalPointForRoundNumbers is true, then values such as "2.0" are returned
without the decimal point, e.g. simply "2".
The algorithm used is "Grisu3" from the paper "Printing Floating-Point Numbers
Quickly and Accurately with Integers" by Florian Loitsch.
*/
std::string floatToString (float value, int maxDecimalPlaces, bool omitDecimalPointForRoundNumbers = false);
/** Converts a 64-bit double to an accurate, round-trip-safe string.
If maxDecimalPlaces is -1, a default is used.
If omitDecimalPointForRoundNumbers is true, then values such as "2.0" are returned
without the decimal point, e.g. simply "2".
The algorithm used is "Grisu3" from the paper "Printing Floating-Point Numbers
Quickly and Accurately with Integers" by Florian Loitsch.
*/
std::string floatToString (double value, int maxDecimalPlaces, bool omitDecimalPointForRoundNumbers = false);
//==============================================================================
/** Helper class containing its own buffer for converting a float or double to a string.
The algorithm is "Grisu3" from the paper "Printing Floating-Point Numbers
Quickly and Accurately with Integers" by Florian Loitsch.
To use, just construct a FloatToStringBuffer with the value, and use its begin()/end()
methods to iterate the result. Or use the floatToString() functions to just convert a
value directly to a std::string.
*/
template <typename FloatOrDouble>
struct FloatToStringBuffer
{
FloatToStringBuffer (FloatOrDouble value, int maxDecimalPlaces, bool omitPointIfPossible)
: stringEnd (writeAndGetEnd (storage, value, maxDecimalPlaces, omitPointIfPossible)) {}
const char* begin() const { return storage; }
const char* end() const { return stringEnd; }
std::string toString() const { return std::string (begin(), end()); }
private:
//==============================================================================
static_assert (std::is_same<const float, const FloatOrDouble>::value || std::is_same<const double, const FloatOrDouble>::value,
"This class can only handle float or double template types");
char storage[32];
const char* stringEnd;
struct MantissaAndExponent
{
uint64_t mantissa;
int32_t exponent;
static constexpr MantissaAndExponent create (uint64_t floatBits, uint64_t significand)
{
constexpr int exponentBias = (sizeof (FloatOrDouble) == 8 ? 0x3ff : 0x7f) + numSignificandBits;
auto explonentPlusBias = static_cast<int> ((floatBits & exponentMask) >> numSignificandBits);
return explonentPlusBias == 0 ? MantissaAndExponent { significand, 1 - exponentBias }
: MantissaAndExponent { significand + hiddenBit, explonentPlusBias - exponentBias };
}
constexpr MantissaAndExponent operator* (MantissaAndExponent rhs) const
{
auto mantissaProduct = math::multiply128 (mantissa, rhs.mantissa);
return { mantissaProduct.high + (mantissaProduct.low >> 63), exponent + rhs.exponent + 64 };
}
constexpr MantissaAndExponent shiftedUp (int numBits) const { return { mantissa << numBits, exponent - numBits }; }
constexpr MantissaAndExponent normalized() const { return shiftedUp (static_cast<int> (math::countUpperClearBits (mantissa))); }
};
static uint32_t generateDigits (char* buffer, MantissaAndExponent upperBound, uint64_t mantissaDiff, uint64_t delta, int& K)
{
uint32_t length = 0;
const auto one = MantissaAndExponent { 1ull << -upperBound.exponent, upperBound.exponent };
auto p1 = static_cast<uint32_t> (upperBound.mantissa >> -one.exponent);
auto p2 = upperBound.mantissa & (one.mantissa - 1);
auto numDigits = math::getNumDecimalDigits (p1);
for (;;)
{
auto digit = p1;
switch (--numDigits)
{
case 0: p1 = 0; break;
case 1: digit /= powersOf10[1]; p1 %= powersOf10[1]; break;
case 2: digit /= powersOf10[2]; p1 %= powersOf10[2]; break;
case 3: digit /= powersOf10[3]; p1 %= powersOf10[3]; break;
case 4: digit /= powersOf10[4]; p1 %= powersOf10[4]; break;
case 5: digit /= powersOf10[5]; p1 %= powersOf10[5]; break;
case 6: digit /= powersOf10[6]; p1 %= powersOf10[6]; break;
case 7: digit /= powersOf10[7]; p1 %= powersOf10[7]; break;
case 8: digit /= powersOf10[8]; p1 %= powersOf10[8]; break;
default: break;
}
writeDigitIfNotLeadingZero (buffer, length, digit);
auto rest = p2 + (static_cast<uint64_t> (p1) << -one.exponent);
if (rest <= delta)
{
K += numDigits;
roundFinalDigit (buffer, length, delta, rest, static_cast<uint64_t> (powersOf10[numDigits]) << -one.exponent, mantissaDiff);
return length;
}
if (numDigits == 0)
{
for (;;)
{
delta *= 10;
p2 *= 10;
--numDigits;
writeDigitIfNotLeadingZero (buffer, length, static_cast<uint32_t> (p2 >> -one.exponent));
p2 &= one.mantissa - 1;
if (p2 < delta)
{
K += numDigits;
roundFinalDigit (buffer, length, delta, p2, one.mantissa, numDigits > -9 ? mantissaDiff * powersOf10[-numDigits] : 0);
return length;
}
}
}
}
}
static void roundFinalDigit (char* buffer, uint32_t length, uint64_t delta, uint64_t rest, uint64_t tenToPowerNumDigits, uint64_t diff)
{
while (rest < diff && delta - rest >= tenToPowerNumDigits
&& (rest + tenToPowerNumDigits < diff || diff - rest > rest + tenToPowerNumDigits - diff))
{
--(buffer[length - 1]);
rest += tenToPowerNumDigits;
}
}
[[nodiscard]] static char* write (char* dest, char c) { *dest = c; return dest + 1; }
template <typename... Chars> static char* write (char* dest, char first, Chars... others) { return write (write (dest, first), others...); }
[[nodiscard]] static char* writeDigit (char* dest, int digit) { return write (dest, static_cast<char> (digit + '0')); }
template <typename... Chars> static char* writeDigit (char* dest, int d, Chars... others) { return writeDigit (writeDigit (dest, d), others...); }
[[nodiscard]] static char* writeZero (char* dest) { return write (dest, '0', '.', '0'); }
[[nodiscard]] static char* writeExponent (char* dest, int e) { return writeShortInteger (write (dest, 'e'), e); }
static void writeDigitIfNotLeadingZero (char* dest, uint32_t& length, uint32_t digit) { if (digit != 0 || length != 0) dest[length++] = static_cast<char> (digit + '0'); }
[[nodiscard]] static char* writeShortInteger (char* dest, int n)
{
if (n < 0) return writeShortInteger (write (dest, '-'), -n);
if (n >= 100) return writeDigit (dest, n / 100, (n / 10) % 10, n % 10);
if (n >= 10) return writeDigit (dest, n / 10, n % 10);
return writeDigit (dest, n);
}
static void insertChar (char* dest, uint32_t length, char charToInsert, uint32_t numRepetitions)
{
std::memmove (dest + numRepetitions, dest, (size_t) length);
for (uint32_t i = 0; i < numRepetitions; ++i)
dest[i] = charToInsert;
}
static char* writeAsExponentNotation (char* dest, uint32_t totalLength, int exponent)
{
if (totalLength == 1)
return writeExponent (dest + 1, exponent);
insertChar (dest + 1, totalLength - 1, '.', 1);
while (dest[totalLength] == '0' && totalLength > 2)
--totalLength;
return writeExponent (dest + (totalLength + 1), exponent);
}
static char* writeWithoutExponentLessThan1 (char* dest, uint32_t length, int mantissaDigits, int maxDecimalPlaces)
{
auto numPaddingZeros = static_cast<uint32_t> (2 - mantissaDigits);
insertChar (dest, length, '0', numPaddingZeros);
dest[1] = '.';
if (static_cast<int> (length) > maxDecimalPlaces + mantissaDigits)
{
for (int i = maxDecimalPlaces + 1; i > 2; --i)
if (dest[i] != '0')
return dest + (i + 1);
return dest + 3;
}
length += numPaddingZeros;
while (dest[length - 1] == '0' && length > 3)
--length;
return dest + length;
}
static char* writeWithoutExponentGreaterThan1 (char* dest, uint32_t totalLength, uint32_t mantissaLength, int maxDecimalPlaces, int K)
{
if (K >= 0)
{
dest += totalLength;
for (auto i = totalLength; i < mantissaLength; ++i)
dest = write (dest, '0');
return write (dest, '.', '0');
}
insertChar (dest + mantissaLength, totalLength - mantissaLength, '.', 1);
if (K + maxDecimalPlaces >= 0)
return dest + (totalLength + 1);
for (auto i = static_cast<int> (mantissaLength) + maxDecimalPlaces; i > static_cast<int> (mantissaLength + 1); --i)
if (dest[i] != '0')
return dest + (i + 1);
return dest + (mantissaLength + 2);
}
struct Limits
{
constexpr Limits (MantissaAndExponent value)
{
upper = { (value.mantissa << 1) + 1, value.exponent - 1 };
while ((upper.mantissa & (hiddenBit << 1)) == 0)
upper = upper.shiftedUp (1);
upper = upper.shiftedUp (static_cast<int> (sizeof (upper.mantissa) * 8 - numSignificandBits - 2));
lower = value.mantissa == hiddenBit ? MantissaAndExponent { (value.mantissa << 2) - 1, value.exponent - 2 }
: MantissaAndExponent { (value.mantissa << 1) - 1, value.exponent - 1 };
lower.mantissa <<= lower.exponent - upper.exponent;
lower.exponent = upper.exponent;
}
MantissaAndExponent lower, upper;
};
static const char* writeAndGetEnd (char* pos, FloatOrDouble value, int maxDecimalPlaces, bool omitPointIfPossible)
{
auto startPos = pos;
auto floatBits = getFloatBits (value);
if ((floatBits & signMask) == 0)
{
if (isZero (floatBits)) return writeZero (pos);
}
else
{
pos = write (pos, '-');
if (isZero (floatBits)) return writeZero (pos);
value = -value;
floatBits &= ~signMask;
}
if (floatBits == nanBits) return write (pos, 'n', 'a', 'n');
if (floatBits == infBits) return write (pos, 'i', 'n', 'f');
auto v = MantissaAndExponent::create (floatBits, floatBits & significandMask);
Limits limits (v);
int K;
auto powerOf10 = createPowerOf10 (limits.upper.exponent, K);
auto w = powerOf10 * v.normalized();
auto upperBound = powerOf10 * limits.upper;
upperBound.mantissa--;
auto lowerBound = powerOf10 * limits.lower;
lowerBound.mantissa++;
auto totalLength = generateDigits (pos, upperBound, upperBound.mantissa - w.mantissa, upperBound.mantissa - lowerBound.mantissa, K);
auto end = addDecimalPointAndExponent (pos, totalLength, K, maxDecimalPlaces < 0 ? defaultNumDecimalPlaces : maxDecimalPlaces);
if (omitPointIfPossible && end > startPos + 1 && end[-1] == '0' && end[-2] == '.')
end -= 2;
return end;
}
static const char* addDecimalPointAndExponent (char* pos, uint32_t totalLength, int K, int maxDecimalPlaces)
{
auto mantissaDigits = static_cast<int> (totalLength) + K;
if (mantissaDigits < -maxDecimalPlaces) return writeZero (pos);
if (mantissaDigits <= 0 && mantissaDigits > -6) return writeWithoutExponentLessThan1 (pos, totalLength, mantissaDigits, maxDecimalPlaces);
if (mantissaDigits > 0 && mantissaDigits <= 21) return writeWithoutExponentGreaterThan1 (pos, totalLength, static_cast<uint32_t> (mantissaDigits), maxDecimalPlaces, K);
return writeAsExponentNotation (pos, totalLength, mantissaDigits - 1);
}
static uint64_t getFloatBits (double value) { uint64_t i; memcpy (&i, &value, sizeof (i)); return i; }
static uint64_t getFloatBits (float value) { uint32_t i; memcpy (&i, &value, sizeof (i)); return i; }
static bool isZero (uint64_t floatBits) { return (floatBits & (exponentMask | significandMask)) == 0; }
static constexpr int defaultNumDecimalPlaces = 324;
static constexpr int numSignificandBits = sizeof (FloatOrDouble) == 8 ? 52 : 23;
static constexpr uint64_t signMask = 1ull << (sizeof (FloatOrDouble) * 8 - 1);
static constexpr uint64_t hiddenBit = 1ull << numSignificandBits;
static constexpr uint64_t significandMask = hiddenBit - 1;
static constexpr uint64_t exponentMask = sizeof (FloatOrDouble) == 8 ? 0x7ff0000000000000ull : 0x7f800000ull;
static constexpr uint64_t nanBits = sizeof (FloatOrDouble) == 8 ? 0x7ff8000000000000ull : 0x7fc00000ull;
static constexpr uint64_t infBits = sizeof (FloatOrDouble) == 8 ? 0x7ff0000000000000ull : 0x7f800000ull;
static constexpr uint32_t powersOf10[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
static MantissaAndExponent createPowerOf10 (int exponentBase2, int& K)
{
static constexpr MantissaAndExponent powerOf10List[] =
{
{ 0xfa8fd5a0081c0288ull, -1220 }, { 0xbaaee17fa23ebf76ull, -1193 }, { 0x8b16fb203055ac76ull, -1166 }, { 0xcf42894a5dce35eaull, -1140 }, { 0x9a6bb0aa55653b2dull, -1113 },
{ 0xe61acf033d1a45dfull, -1087 }, { 0xab70fe17c79ac6caull, -1060 }, { 0xff77b1fcbebcdc4full, -1034 }, { 0xbe5691ef416bd60cull, -1007 }, { 0x8dd01fad907ffc3cull, -980 },
{ 0xd3515c2831559a83ull, -954 }, { 0x9d71ac8fada6c9b5ull, -927 }, { 0xea9c227723ee8bcbull, -901 }, { 0xaecc49914078536dull, -874 }, { 0x823c12795db6ce57ull, -847 },
{ 0xc21094364dfb5637ull, -821 }, { 0x9096ea6f3848984full, -794 }, { 0xd77485cb25823ac7ull, -768 }, { 0xa086cfcd97bf97f4ull, -741 }, { 0xef340a98172aace5ull, -715 },
{ 0xb23867fb2a35b28eull, -688 }, { 0x84c8d4dfd2c63f3bull, -661 }, { 0xc5dd44271ad3cdbaull, -635 }, { 0x936b9fcebb25c996ull, -608 }, { 0xdbac6c247d62a584ull, -582 },
{ 0xa3ab66580d5fdaf6ull, -555 }, { 0xf3e2f893dec3f126ull, -529 }, { 0xb5b5ada8aaff80b8ull, -502 }, { 0x87625f056c7c4a8bull, -475 }, { 0xc9bcff6034c13053ull, -449 },
{ 0x964e858c91ba2655ull, -422 }, { 0xdff9772470297ebdull, -396 }, { 0xa6dfbd9fb8e5b88full, -369 }, { 0xf8a95fcf88747d94ull, -343 }, { 0xb94470938fa89bcfull, -316 },
{ 0x8a08f0f8bf0f156bull, -289 }, { 0xcdb02555653131b6ull, -263 }, { 0x993fe2c6d07b7facull, -236 }, { 0xe45c10c42a2b3b06ull, -210 }, { 0xaa242499697392d3ull, -183 },
{ 0xfd87b5f28300ca0eull, -157 }, { 0xbce5086492111aebull, -130 }, { 0x8cbccc096f5088ccull, -103 }, { 0xd1b71758e219652cull, -77 }, { 0x9c40000000000000ull, -50 },
{ 0xe8d4a51000000000ull, -24 }, { 0xad78ebc5ac620000ull, 3 }, { 0x813f3978f8940984ull, 30 }, { 0xc097ce7bc90715b3ull, 56 }, { 0x8f7e32ce7bea5c70ull, 83 },
{ 0xd5d238a4abe98068ull, 109 }, { 0x9f4f2726179a2245ull, 136 }, { 0xed63a231d4c4fb27ull, 162 }, { 0xb0de65388cc8ada8ull, 189 }, { 0x83c7088e1aab65dbull, 216 },
{ 0xc45d1df942711d9aull, 242 }, { 0x924d692ca61be758ull, 269 }, { 0xda01ee641a708deaull, 295 }, { 0xa26da3999aef774aull, 322 }, { 0xf209787bb47d6b85ull, 348 },
{ 0xb454e4a179dd1877ull, 375 }, { 0x865b86925b9bc5c2ull, 402 }, { 0xc83553c5c8965d3dull, 428 }, { 0x952ab45cfa97a0b3ull, 455 }, { 0xde469fbd99a05fe3ull, 481 },
{ 0xa59bc234db398c25ull, 508 }, { 0xf6c69a72a3989f5cull, 534 }, { 0xb7dcbf5354e9beceull, 561 }, { 0x88fcf317f22241e2ull, 588 }, { 0xcc20ce9bd35c78a5ull, 614 },
{ 0x98165af37b2153dfull, 641 }, { 0xe2a0b5dc971f303aull, 667 }, { 0xa8d9d1535ce3b396ull, 694 }, { 0xfb9b7cd9a4a7443cull, 720 }, { 0xbb764c4ca7a44410ull, 747 },
{ 0x8bab8eefb6409c1aull, 774 }, { 0xd01fef10a657842cull, 800 }, { 0x9b10a4e5e9913129ull, 827 }, { 0xe7109bfba19c0c9dull, 853 }, { 0xac2820d9623bf429ull, 880 },
{ 0x80444b5e7aa7cf85ull, 907 }, { 0xbf21e44003acdd2dull, 933 }, { 0x8e679c2f5e44ff8full, 960 }, { 0xd433179d9c8cb841ull, 986 }, { 0x9e19db92b4e31ba9ull, 1013 },
{ 0xeb96bf6ebadf77d9ull, 1039 }, { 0xaf87023b9bf0ee6bull, 1066 }
};
auto dk = (exponentBase2 + 61) * -0.30102999566398114;
auto ik = static_cast<int> (dk);
auto index = ((ik + (dk > ik ? 348 : 347)) >> 3) + 1;
K = 348 - (index << 3);
return powerOf10List[index];
}
};
inline std::string floatToString (float value) { return FloatToStringBuffer<float> (value, -1, false).toString(); }
inline std::string floatToString (double value) { return FloatToStringBuffer<double> (value, -1, false).toString(); }
inline std::string floatToString (float value, int maxDecimals, bool omitPointIfPossible) { return FloatToStringBuffer<float> (value, maxDecimals, omitPointIfPossible).toString(); }
inline std::string floatToString (double value, int maxDecimals, bool omitPointIfPossible) { return FloatToStringBuffer<double> (value, maxDecimals, omitPointIfPossible).toString(); }
} // namespace choc::text
#endif