-
Notifications
You must be signed in to change notification settings - Fork 21
/
demo_14.py
194 lines (147 loc) · 5.36 KB
/
demo_14.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.widgets import Slider, Button
interval = 50 # ms, time between animation frames
fig, ax = plt.subplots(figsize=(6,6))
plt.subplots_adjust(left=0.15, bottom=0.35)
ax.set_aspect('equal')
plt.xlim(-1.2*40,1.2*40)
plt.ylim(-1.2*40,1.2*40)
#plt.grid()
t = np.linspace(0, 2*np.pi, 2000)
delta = 1
## draw pin
num_pins = 61
pins = [ax.plot([], [], 'g-')[0] for n in range(num_pins)]
ddot, = ax.plot([20],[0], 'go', ms=5)
def draw_pin_init():
for p in pins:
p.set_data([0], [0])
def pin_update(e,n,d,D, phis):
for i in range(int(n)):
xd = (d/2*np.cos(t)+ D/2*np.cos(2*i*np.pi/n)) + e*np.cos(phis)
yd = (d/2*np.sin(t)+ D/2*np.sin(2*i*np.pi/n)) + e*np.sin(phis)
x = xd*np.cos(-phis/(n+1)) - yd*np.sin(-phis/(n+1))
y = xd*np.sin(-phis/(n+1)) + yd*np.cos(-phis/(n+1))
pins[i].set_data(x,y)
xd1 = (d/2*np.cos(phis)+ D/2) + e*np.cos(phis)
yd1 = (d/2*np.sin(phis) ) + e*np.sin(phis)
x1 = xd1*np.cos(-phis/(n+1)) - yd1*np.sin(-phis/(n+1))
y1 = xd1*np.sin(-phis/(n+1)) + yd1*np.cos(-phis/(n+1))
ddot.set_data(x1, y1)
## draw drive_pin
num_drive_pins = 61
drive_pins = [ax.plot([], [], 'k-')[0] for n in range(num_drive_pins)]
def drive_pin_init():
for p in drive_pins:
p.set_data([0], [0])
def drive_pin_update(r,n,D,phis):
for i in range(int(n)):
xd = r*np.sin(t) + D/2*np.cos(2*i*np.pi/n)
yd = r*np.cos(t) + D/2*np.sin(2*i*np.pi/n)
x = xd*np.cos(-phis/(n+1)) - yd*np.sin(-phis/(n+1))
y = xd*np.sin(-phis/(n+1)) + yd*np.cos(-phis/(n+1))
drive_pins[i].set_data(x,y)
## draw circle
m1, = ax.plot([0], [0],'r-')
def draw_circle(r):
x = r*np.sin(t)
y = r*np.cos(t)
m1.set_data(x,y)
##ehypocycloidA:
ehypocycloid, = ax.plot([0],[0],'r-')
edot, = ax.plot([0],[0], 'ro', ms=5)
def update_ehypocycloidA(e,n,D,d, phis):
RD=D/2
rd=d/2
rc = (n-1)*(RD/n)
rm = (RD/n)
xa = (rc+rm)*np.cos(t)-e*np.cos((rc+rm)/rm*t)
ya = (rc+rm)*np.sin(t)-e*np.sin((rc+rm)/rm*t)
dxa = (rc+rm)*(-np.sin(t)+(e/rm)*np.sin((rc+rm)/rm*t))
dya = (rc+rm)*(np.cos(t)-(e/rm)*np.cos((rc+rm)/rm*t))
x = (xa + rd/np.sqrt(dxa**2 + dya**2)*(-dya))*np.cos(-phis/(n-1) -phis/(n+1) + np.pi/(n-1))-(ya + rd/np.sqrt(dxa**2 + dya**2)*dxa)*np.sin(-phis/(n-1) -phis/(n+1) + np.pi/(n-1))
y = (xa + rd/np.sqrt(dxa**2 + dya**2)*(-dya))*np.sin(-phis/(n-1) -phis/(n+1) + np.pi/(n-1))+(ya + rd/np.sqrt(dxa**2 + dya**2)*dxa)*np.cos(-phis/(n-1) -phis/(n+1)+ np.pi/(n-1))
ehypocycloid.set_data(x,y)
edot.set_data(x[0], y[0])
##ehypocycloidB:
ehypocycloidB, = ax.plot([0],[0],'b-')
edotB, = ax.plot([0],[0], 'bo', ms=5)
def update_ehypocycloidB(e,n,D,d, phis):
RD=D/2
rd=d/2
rc = (n+1)*(RD/n)
rm = (RD/n)
xa = (rc-rm)*np.cos(t)+e*np.cos((rc-rm)/rm*t)
ya = (rc-rm)*np.sin(t)-e*np.sin((rc-rm)/rm*t)
dxa = (rc-rm)*(-np.sin(t)-(e/rm)*np.sin((rc-rm)/rm*t))
dya = (rc-rm)*(np.cos(t)-(e/rm)*np.cos((rc-rm)/rm*t))
x = (xa - rd/np.sqrt(dxa**2 + dya**2)*(-dya))
y = (ya - rd/np.sqrt(dxa**2 + dya**2)*dxa)
ehypocycloidB.set_data(x,y)
edotB.set_data(x[0], y[0])
axcolor = 'lightgoldenrodyellow'
ax_fm = plt.axes([0.25, 0.21, 0.5, 0.02], facecolor=axcolor)
ax_Rd = plt.axes([0.25, 0.18, 0.5, 0.02], facecolor=axcolor)
ax_rd = plt.axes([0.25, 0.15, 0.5, 0.02], facecolor=axcolor)
ax_e = plt.axes([0.25, 0.12, 0.5, 0.02], facecolor=axcolor)
ax_N = plt.axes([0.25, 0.09, 0.5, 0.02], facecolor=axcolor)
ax_d = plt.axes([0.25, 0.06, 0.5, 0.02], facecolor=axcolor)
ax_D = plt.axes([0.25, 0.03, 0.5, 0.02], facecolor=axcolor)
sli_fm = Slider(ax_fm, 'fm', 10, 100, valinit=50, valstep=delta)
sli_Rd = Slider(ax_Rd, 'Rd', 1, 40, valinit=20, valstep=delta)
sli_rd = Slider(ax_rd, 'rd', 0.1, 10, valinit=1.5, valstep=delta/10)
sli_e = Slider(ax_e, 'e', 0.1, 10, valinit=2, valstep=delta/10)
sli_N = Slider(ax_N, 'N', 2, 40, valinit=10, valstep=delta)
sli_d = Slider(ax_d, 'd', 2, 20, valinit=10,valstep=delta)
sli_D = Slider(ax_D, 'D', 5, 100, valinit=80,valstep=delta)
def update(val):
sfm = sli_Rd.val
sRd = sli_Rd.val
srd = sli_rd.val
se = sli_e.val
sN = sli_N.val
sd = sli_d.val
sD = sli_D.val
ax.set_xlim(-1.5*0.5*sD,1.5*0.5*sD)
ax.set_ylim(-1.5*0.5*sD,1.5*0.5*sD)
sli_fm.on_changed(update)
sli_Rd.on_changed(update)
sli_rd.on_changed(update)
sli_e.on_changed(update)
sli_N.on_changed(update)
sli_d.on_changed(update)
sli_D.on_changed(update)
resetax = plt.axes([0.8, 0.0, 0.1, 0.04])
button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')
def reset(event):
sli_fm.reset()
sli_rd.reset()
sli_Rd.reset()
sli_e.reset()
sli_N.reset()
sli_d.reset()
sli_D.reset()
button.on_clicked(reset)
def animate(frame):
sfm = sli_fm.val
sRd = sli_Rd.val
srd = sli_rd.val
se = sli_e.val
sN = sli_N.val
sd = sli_d.val
sD = sli_D.val
frame = frame+1
phi = 2*np.pi*frame/sfm
draw_pin_init()
draw_circle(sRd)
pin_update(se,sN,sd,sD, phi)
drive_pin_init()
drive_pin_update(srd,sN,sD,phi)
update_ehypocycloidA(se,sN,sD,sd, phi)
update_ehypocycloidB(se,sN,sD,sd, phi)
fig.canvas.draw_idle()
ani = animation.FuncAnimation(fig, animate,frames=sli_fm.val*(sli_N.val-1), interval=interval)
dpi=100
plt.show()