forked from JDAI-CV/fast-reid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
caffe_inference.py
95 lines (78 loc) · 2.76 KB
/
caffe_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# encoding: utf-8
"""
@author: xingyu liao
@contact: [email protected]
"""
import caffe
import tqdm
import glob
import os
import cv2
import numpy as np
caffe.set_mode_gpu()
import argparse
def get_parser():
parser = argparse.ArgumentParser(description="Caffe model inference")
parser.add_argument(
"--model-def",
default="logs/test_caffe/baseline_R50.prototxt",
help="caffe model prototxt"
)
parser.add_argument(
"--model-weights",
default="logs/test_caffe/baseline_R50.caffemodel",
help="caffe model weights"
)
parser.add_argument(
"--input",
nargs="+",
help="A list of space separated input images; "
"or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument(
"--output",
default='caffe_output',
help='path to save converted caffe model'
)
parser.add_argument(
"--height",
type=int,
default=256,
help="height of image"
)
parser.add_argument(
"--width",
type=int,
default=128,
help="width of image"
)
return parser
def preprocess(image_path, image_height, image_width):
original_image = cv2.imread(image_path)
# the model expects RGB inputs
original_image = original_image[:, :, ::-1]
# Apply pre-processing to image.
image = cv2.resize(original_image, (image_width, image_height), interpolation=cv2.INTER_CUBIC)
image = image.astype("float32").transpose(2, 0, 1)[np.newaxis] # (1, 3, h, w)
image = (image - np.array([0.485 * 255, 0.456 * 255, 0.406 * 255]).reshape((1, -1, 1, 1))) / np.array(
[0.229 * 255, 0.224 * 255, 0.225 * 255]).reshape((1, -1, 1, 1))
return image
def normalize(nparray, order=2, axis=-1):
"""Normalize a N-D numpy array along the specified axis."""
norm = np.linalg.norm(nparray, ord=order, axis=axis, keepdims=True)
return nparray / (norm + np.finfo(np.float32).eps)
if __name__ == "__main__":
args = get_parser().parse_args()
net = caffe.Net(args.model_def, args.model_weights, caffe.TEST)
net.blobs['blob1'].reshape(1, 3, args.height, args.width)
if not os.path.exists(args.output): os.makedirs(args.output)
if args.input:
if os.path.isdir(args.input[0]):
args.input = glob.glob(os.path.expanduser(args.input[0]))
assert args.input, "The input path(s) was not found"
for path in tqdm.tqdm(args.input):
image = preprocess(path, args.height, args.width)
net.blobs["blob1"].data[...] = image
feat = net.forward()["output"]
feat = normalize(feat[..., 0, 0], axis=1)
np.save(os.path.join(args.output, os.path.basename(path).split('.')[0] + '.npy'), feat)