The academic paper which describes BERT in detail and provides full results on a number of tasks can be found here: https://arxiv.org/abs/1810.04805.
This repository contains TensorFlow 2.x implementation for BERT.
Note: We are in the progress to update the documentation to use official/nlp/train.py as the central place for the training driver. Internal users please refer to the g3doc for documentation.
We released both checkpoints and tf.hub modules as the pretrained models for fine-tuning. They are TF 2.x compatible and are converted from the checkpoints released in TF 1.x official BERT repository google-research/bert in order to keep consistent with BERT paper.
Pretrained checkpoints can be found in the following links:
Note: We have switched BERT implementation to use Keras functional-style networks in nlp/modeling. The new checkpoints are:
BERT-Large, Uncased (Whole Word Masking)
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Large, Cased (Whole Word Masking)
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Uncased
: 12-layer, 768-hidden, 12-heads, 110M parametersBERT-Large, Uncased
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Cased
: 12-layer, 768-hidden, 12-heads , 110M parametersBERT-Large, Cased
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Multilingual Cased
: 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
We recommend to host checkpoints on Google Cloud storage buckets when you use Cloud GPU/TPU.
tf.train.Checkpoint
is used to manage model checkpoints in TF 2. To restore
weights from provided pre-trained checkpoints, you can use the following code:
init_checkpoint='the pretrained model checkpoint path.'
model=tf.keras.Model() # Bert pre-trained model as feature extractor.
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(init_checkpoint)
Checkpoints featuring native serialized Keras models (i.e. model.load()/load_weights()) will be available soon.
Pretrained tf.hub modules in TF 2.x SavedModel format can be found in the following links:
BERT-Large, Uncased (Whole Word Masking)
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Large, Cased (Whole Word Masking)
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Uncased
: 12-layer, 768-hidden, 12-heads, 110M parametersBERT-Large, Uncased
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Cased
: 12-layer, 768-hidden, 12-heads , 110M parametersBERT-Large, Cased
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Multilingual Cased
: 104 languages, 12-layer, 768-hidden, 12-heads, 110M parametersBERT-Base, Chinese
: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters
export PYTHONPATH="$PYTHONPATH:/path/to/models"
Install tf-nightly
to get latest updates:
pip install tf-nightly-gpu
With TPU, GPU support is not necessary. First, you need to create a tf-nightly
TPU with ctpu tool:
ctpu up -name <instance name> --tf-version=”nightly”
Second, you need to install TF 2 tf-nightly
on your VM:
pip install tf-nightly
There is no change to generate pre-training data. Please use the script
../data/create_pretraining_data.py
which is essentially branched from BERT research repo
to get processed pre-training data and it adapts to TF2 symbols and python3
compatibility.
To prepare the fine-tuning data for final model training, use the
../data/create_finetuning_data.py
script.
Resulting datasets in tf_record
format and training meta data should be later
passed to training or evaluation scripts. The task-specific arguments are
described in following sections:
- GLUE
Users can download the
GLUE data by running
this script
and unpack it to some directory $GLUE_DIR
.
Also, users can download Pretrained Checkpoint and locate on some directory $BERT_DIR
instead of using checkpoints on Google Cloud Storage.
export GLUE_DIR=~/glue
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export TASK_NAME=MNLI
export OUTPUT_DIR=gs://some_bucket/datasets
python ../data/create_finetuning_data.py \
--input_data_dir=${GLUE_DIR}/${TASK_NAME}/ \
--vocab_file=${BERT_DIR}/vocab.txt \
--train_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_train.tf_record \
--eval_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_eval.tf_record \
--meta_data_file_path=${OUTPUT_DIR}/${TASK_NAME}_meta_data \
--fine_tuning_task_type=classification --max_seq_length=128 \
--classification_task_name=${TASK_NAME}
- SQUAD
The SQuAD website contains detailed information about the SQuAD datasets and evaluation.
The necessary files can be found here:
export SQUAD_DIR=~/squad
export SQUAD_VERSION=v1.1
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export OUTPUT_DIR=gs://some_bucket/datasets
python ../data/create_finetuning_data.py \
--squad_data_file=${SQUAD_DIR}/train-${SQUAD_VERSION}.json \
--vocab_file=${BERT_DIR}/vocab.txt \
--train_data_output_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
--meta_data_file_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_meta_data \
--fine_tuning_task_type=squad --max_seq_length=384
Note: To create fine-tuning data with SQUAD 2.0, you need to add flag --version_2_with_negative=True
.
- Cloud Storage
The unzipped pre-trained model files can also be found in the Google Cloud
Storage folder gs://cloud-tpu-checkpoints/bert/keras_bert
. For example:
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export MODEL_DIR=gs://some_bucket/my_output_dir
Currently, users are able to access to tf-nightly
TPUs and the following TPU
script should run with tf-nightly
.
- GPU -> TPU
Just add the following flags to run_classifier.py
or run_squad.py
:
--distribution_strategy=tpu
--tpu=grpc://${TPU_IP_ADDRESS}:8470
This example code fine-tunes BERT-Large
on the Microsoft Research Paraphrase
Corpus (MRPC) corpus, which only contains 3,600 examples and can fine-tune in a
few minutes on most GPUs.
We use the BERT-Large
(uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use BERT-Base
(uncased_L-12_H-768_A-12).
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
export TASK=MRPC
python run_classifier.py \
--mode='train_and_eval' \
--input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
--train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
--eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
--bert_config_file=${BERT_DIR}/bert_config.json \
--init_checkpoint=${BERT_DIR}/bert_model.ckpt \
--train_batch_size=4 \
--eval_batch_size=4 \
--steps_per_loop=1 \
--learning_rate=2e-5 \
--num_train_epochs=3 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=mirrored
Alternatively, instead of specifying init_checkpoint
, you can specify
hub_module_url
to employ a pretraind BERT hub module, e.g.,
--hub_module_url=https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1
.
After training a model, to get predictions from the classifier, you can set the
--mode=predict
and offer the test set tfrecords to --eval_data_path
.
Output will be created in file called test_results.tsv in the output folder.
Each line will contain output for each sample, columns are the class
probabilities.
python run_classifier.py \
--mode='predict' \
--input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
--eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
--bert_config_file=${BERT_DIR}/bert_config.json \
--eval_batch_size=4 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=mirrored
To use TPU, you only need to switch distribution strategy type to tpu
with TPU
information and use remote storage for model checkpoints.
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
export TASK=MRPC
python run_classifier.py \
--mode='train_and_eval' \
--input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
--train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
--eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
--bert_config_file=${BERT_DIR}/bert_config.json \
--init_checkpoint=${BERT_DIR}/bert_model.ckpt \
--train_batch_size=32 \
--eval_batch_size=32 \
--steps_per_loop=1000 \
--learning_rate=2e-5 \
--num_train_epochs=3 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=tpu \
--tpu=grpc://${TPU_IP_ADDRESS}:8470
Note that, we specify steps_per_loop=1000
for TPU, because running a loop of
training steps inside a tf.function
can significantly increase TPU utilization
and callbacks will not be called inside the loop.
The Stanford Question Answering Dataset (SQuAD) is a popular question answering benchmark dataset. See more in SQuAD website.
We use the BERT-Large
(uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use BERT-Base
(uncased_L-12_H-768_A-12).
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export SQUAD_DIR=gs://some_bucket/datasets
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_VERSION=v1.1
python run_squad.py \
--input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
--train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
--predict_file=${SQUAD_DIR}/dev-v1.1.json \
--vocab_file=${BERT_DIR}/vocab.txt \
--bert_config_file=${BERT_DIR}/bert_config.json \
--init_checkpoint=${BERT_DIR}/bert_model.ckpt \
--train_batch_size=4 \
--predict_batch_size=4 \
--learning_rate=8e-5 \
--num_train_epochs=2 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=mirrored
Similarily, you can replace init_checkpoint
FLAG with hub_module_url
to
specify a hub module path.
run_squad.py
writes the prediction for --predict_file
by default. If you set
the --model=predict
and offer the SQuAD test data, the scripts will generate
the prediction json file.
To use TPU, you need switch distribution strategy type to tpu
with TPU
information.
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_DIR=gs://some_bucket/datasets
export SQUAD_VERSION=v1.1
python run_squad.py \
--input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
--train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
--predict_file=${SQUAD_DIR}/dev-v1.1.json \
--vocab_file=${BERT_DIR}/vocab.txt \
--bert_config_file=${BERT_DIR}/bert_config.json \
--init_checkpoint=${BERT_DIR}/bert_model.ckpt \
--train_batch_size=32 \
--learning_rate=8e-5 \
--num_train_epochs=2 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=tpu \
--tpu=grpc://${TPU_IP_ADDRESS}:8470
The dev set predictions will be saved into a file called predictions.json in the model_dir:
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ./squad/predictions.json